


Pulsed laser deposition for growth of high quality epitaxial garnet films for low threshold waveguide lasers.

(a) Conventional PLD

(b) MULTIPLE PLD

Rob Eason
Tim May-Smith
Christos Grivas
Dave Shepherd
Mark Darby
Rossana Gazia

Optoelectronics Research Centre
University of Southampton
Southampton
SO17 1BJ
UK

Abstract:

Pulsed laser deposition (PLD) is a mature technique capable of producing extremely high quality epitaxial single crystalline films. We have grown Nd-doped garnet films of GGG ($\text{Gd}_3\text{Ga}_5\text{O}_{12}$) on YAG substrates, with thicknesses from a few μm to more than 100 μm for both single mode and multimode waveguide applications. Our lowest losses for single-mode guides are less than 0.1dB cm^{-1} , and the resulting structures yield excellent waveguide lasing.

The talk will summarise our progress using conventional (single beam) PLD in thin-film and waveguide growth, using both nanosecond and femtosecond lasers, and also introduce our new directions in tri-beam PLD (three targets, three lasers) for growth of some interesting, complex and perhaps impossible structures, such as Gaussian doping, internal voids and even helically doped structures.