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Abstract

A modified method of lines (MoL) technique is presented for calculating the reflection
characteristics of apodised fibre gratings. To demonstrate the technique, reflection spectra of
fibre gratings with triangular and diamond apodisation profiles have been calculated showing
significant side-lobe suppression. MoL can accurately calculate not only average power but
also field and phase distribution across reflected waves. It has been shown that the phase of

the reflected light is maximally affected at the edge of the grating stop-band.
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It is now well established that fibre Bragg gratings (FBGs) will play an important role in the
implementation of a number of high performance devices used to provide optical feedback,
wavelength control, filtering, pulse compression and dispersion compensation [1,2]. In
addition to uniform periodic structures, specially designed FBGs with modified
characteristics, such as chirped and apodised gratings have also been extensively studied and
successfully demonstrated. Chirped fibre gratings have a continuously varying local period
and, therefore, show wide reflection bandwidths and large in-band dispersion [3].  Their
characteristics are easily controllable and can be used for efficient dispersion compensation in
fibre communication links [4]. Apodised periodic fibre gratings, on the other hand, have
variable coupling strength along their length and show reflection spectra with reduced
sidelobes [5]. The time delay and reflection characteristics of linearly chirped FBGs are also
shown to improve considerably when proper apodisation profiles are applied [6].

Among the most commonly used techniques for the analysis of FBGs are the coupled-
mode theory (CMT) [7-8] and the transfer-matrix method (TMM) [9-10]. CMT is a powerful
mathematical formulation that describes power transfer and evolution in a number of different
continuous optical structures. It is based on the “slow-amplitude approximation”, and it is,
therefore, applicable to situations that the optical powers change slightly over an optical
wavelength. However, CMT is proved to be very accurate in most practical cases. TMM, on
the other hand, is a much more general computational technique and can accurately describe the
power evolution in much more complex optical structures involving discontinuities and spatial-
phase shifts. In general, TMM is an exact method. Another powerful technique widely used for
the analysis of general periodic structures is formulated in terms of the Floquet theorem and
involves Bloch modes [11-12].

Recently, another method has been proposed for the analysis of periodic uniform
gratings based on the method of lines (MoL) [13-14]. MoL is a special finite-difference
method that enables the analysis of wave propagation in multi-layer waveguides and fibre
structures. This method uses a semi-analytical approach, which yields accurate results with
less computational effort compared to other techniques. In MoL the mode coupling and
scattering losses are automatically taken into account. We have already applied successfully
this method to calculate the reflection and transmission characteristics of uniform periodic

fibre gratings [15] and analyze nonlinear fibre Bragg gratings [16].



In this work we extend the basic method of lines to analyse apodized fibre grating
structures. The first step of the algorithm is analogous to [15,16]. We start with the vector
wave equation for the vector potential I, namely [17]:

VIT-¢e'(Ve)V-TI+€ll=0

n,H = jV xII (1)

E=¢"VxVxIL
where, in general, € = n’ is the dielectric permittivity (n = n., n. are the refractive indices in
the fibre core and cladding, respectively). The dielectric permittivity is considered to be a
general function of the cylindrical coordinates (r, ¢, z).

To implement the method, the apodised fibre grating structure is divided into
homogeneous sections with different propagation constants (see Figure 1(a)). In each section
the dielectric permittivity is only a function of the transverse coordinates, i.e. € = &r,¢). In
this case only the two transverse components of IT need to be considered. In our calculations,
we assume that the fibre is isotropic and therefore & ¢) is constant. Thus, the ¢-dependence
of the vector potentials can be described by:

IT,.(r,@,2) =11, (r,z)cos(me)

I, (r,0,2)=11,(r,z)sin(me)
and their derivatives with respect to coordinate ¢ can be determined analytically. After some
mathematical manipulations, wave equation (1) can be written in cylindrical coordinates as

[18]

2)

where the coordinates and dimensions are normalized with respect to free-space wave number
ko . Namely, ZT=kyz, F=kr, 7,=7/R, @=R,9, m=m/R, and R, =Rk,
where R,, is the fibre core radius.

Expression (2) is a system of two coupled partial differential equations. Following the

MoL, coupled partial differential equations have to be discretized with respect to the r



coordinate using finite differences. This results in a system of ordinary differential equations,
which can be solved analytically. In this case, all potentials and dielectric permittivities, as
well as, the radial coordinate r have to be discretized [18]. The discretisation algorithm for
apodised fibre gratings is the exactly same with the one used for the uniform gratings [15].
The algorithm has been detailed in Ref. [15] and will not be repeated here.

In a similar manner to the well-established impedance-matching technique [19], we

represent each grating section with its characteristic wave impedance Z, [15]. The wave
impedance of the homogeneous section at the end of the fibre grating (where only forward
propagating modes exist) is the load wave impedance at the output of the fibre grating, i.e.

Z}" =7,,. The technique involves the successive transfer of the load output wave

impedance to the input of the grating and, in that way, determines the input impedance of the
entire grating structure. Because in an apodized structure, the refractive index modulation
varies continuously along the grating length, the impedance matching should be applied on
each grating layer. However, since fibre gratings can be long involving a large number of
periods, such approach would require extremely long computation time. The apodisation
profiles considered in this study are shown schematically in Figure 1(b)-(d).

To decrease the numerical effort, we propose the same iteration algorithm, which was
introduced and applied successfully in the analysis of nonlinear fibre gratings [16]. The
technique involves the division of the apodised grating in a number of different sections.
Each section is considered to be several-grating-period long and uniform. Therefore, the core
refractive index change An., = (11 - Reo2)/Mco1 along each section is constant. An,, however,
varies from section to section. The derivation of the wave impedance in each uniform grating
section can be derived by Floquet’s theorem [15,20]. Following the algorithm presented in

[15,16], we progressively transfer the impedance Z ,, from the far end of the entire grating,

through the successive grating sections, to the front end of the grating. In such a way, the

wave impedance at the input of the entire fibre grating structure is obtained. Using the initial

conditions, the electric and magnetic fields of the incident (El{, and H {;) and reflected (Ef’n

and Hf’,,) waves at the input of the fibre grating can be determined. Following a similar

procedure in the reverse direction, the input values of the electric and magnetic fields can be
used to determine the field distribution at any point along the grating. Full knowledge of the
electromagnetic field components along the fibre grating can provide useful information

about field and phase distributions, as well as, calculation of reflection and transmission



coefficients. For instance, the grating reflection coefficient is determined as the amplitude
ratio between backward- and forward-propagating electric fields at the grating input end.

The calculation accuracy depends on the number of grating sub-sections (Nser). In
order to check the accuracy and rate of convergence, for a given wavelength, the number of
grating sections is successively increased by a factor of 2 until the difference in calculated

reflectivities is below a certain limit. If n; denotes the number of iterations, the

corresponding number of sub-sections is N, =2". Each section is comprised of N/Nsect

sect
number of periods (N is the total number of periods). Figure 2 shows the reflectivity accuracy
(in %) as a function of the number of iterations n;, for two apodised grating with different
lengths Ly, = N-A, where A is the length of grating periods. In contrast with nonlinear grating
analysis [16], for a given N, the accuracy and convergence rate is the same for all incident
wavelengths. It is shown that a 0.1% accuracy of the reflectivity for the apodized fibre
grating (triangular apodisation - see Fig.3(c)) is achieved with Nyeet = 2% =32 and Nieet = 2 =
128 for grating length of L, = 2048-A (curve 1) and Lg = 4096-A (curve 2), respectively. In
addition to grating length, the number of sections required for 0.1% reflectivity convergence
will depend on the exact apodisation profile.

In all calculations reported in this paper, the fibre core radius is R,,=2um, the core
refractive index is n.,=1.45 and the refractive index step is A=0.005. The grating period is
A=0.528um and the maximum relative core index difference An, at the grating centre is
0.001 unless otherwise stated.

Figure 3 shows the reflectivity spectra of apodised gratings with N = 4096 obtained
with the modified MoL. Curves 1, 2 and 3 correspond to square, triangular and diamond
apodiéation profiles, respectively (see Fig. 1(b)-(d)). In each case, the corresponding
maximum An,, is adjusted to result in approximately equal maximum reflectivity. As
expected, it is shown that grating apodisation results in significant decrease of the reflectivity
sidelobes. The main Bragg wavelength of the apodised gratings is shifted to longer
wavelengths because of the increased average effective index over the grating area. The
corresponding maximum An,, in the three cases was 0.0005 for curve 1 and 0.0010 for curves
2 and 3.

As already mentioned, one of the unique features of the MoL is that it takes accurately
into account the propagating field exact transverse profile. Therefore it can be used to

calculate the transverse field and phase distribution at any point along the grating for any



electric or magnetic field components. Figures 4(a) and (b) show the modulus and phase
distribution of the electric field tangential components as a function of the normalised fibre
radius of the forward- and backward-propagating fields at the grating input, for wavelengths
corresponding maximum (A;), 3dB (A;) and minimum (A3) reflectivity. It is shown that the
backward-propagating (reflected) field becomes progressively smaller and its phase
transverse distribution less uniform as the wavelength is approaching the band-gap edge. The
phase of the incident wave is constant across the entire field distribution. At the Bragg (A1)
and 3dB (A;) wavelengths, the phase distribution is almost constant due to minimum
penetration and small interaction with the periodic medium. There is only a fixed phase delay
due to different degrees of penetration. At the band-gap edge, however, there is significant
phase non-uniformity observed. This is due to the multiple trapping and effective time delay
increase associated with the band-gap edge. The phase in the core region is retarded the most
because of the higher index of this region. To the best of our knowledge, such an effect is
reported for the first time. The unapodised grating has been chosen for this demonstration
since the three aforementioned wavelengths are better defined. Similar effects are observed
with the apodised gratings.

In conclusion, we have modified the MoL technique to calculate the reflection
characteristics of apodised fibre gratings. The method involves proper segmentation and
step-wise approximation of the actual continuously-apodised gratings.  Application of
Floquet’s theorem on each uniform sub-section results in a fast converging algorithm capable
of calculating long gratings. To demonstrate the technique, we have calculated reflection
spectra of fibre gratings with triangular and diamond apodisation profiles, showing significant
side-lobe suppression. MoL takes accurately into account the actual field and phase
distributions of the interacting modes and is, therefore, uniquely poised to calculate not only
average power but also field and phase distribution across reflected waves. It has been shown

that the phase of the reflected light is maximally affected at the edge of the grating stop-band.
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Figure captions:

Figure 1: Schematic of refractive index variation (a) and apodisation profiles used in this

paper; (a) square profile (unapodised), (b) triangular profile and (c) diamond profile.

Figure 2: Reflectivity convergence (in %) of MoL method for apodised fibre gratings with N
= 2048 (curve 1) and N = 4096 (curve 2).

Figure 3: Reflectivity functions of unapodized (curve 2) and apodized (1,3) fibre gratings

with N = 4096. Curve 1 states for complete and curve 3 for partial decreasing core index step.

Figure 4: Electric field modulus (a) and and phase (b) distribution as a function of the
normalised fibre radius of the forward- and backward-propagating fields for wavelengths

corresponding maximum (A,), 3dB (A;) and minimum (A3) reflectivity.
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Figure 1: Schematic of refractive index variation (a) and apodisation profiles used in this

paper; (a) square profile (unapodised), (b) triangular profile and (c) diamond profile.
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Figure 2: Reflectivity convergence (in %) of MoL method for apodised fibre gratings with N
= 2048 (curve 1) and N = 4096 (curve 2).
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Figure 3: Reflectivity functions of unapodized (curve 2) and apodized (1,3) fibre gratings

with N = 4096. Curve 1 states for complete and curve 3 for partial decreasing core index step.
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Figure 4: Electric field modulus (a) and and phase (b) distribution as a function of the

normalised fibre radius of the forward- and backward-propagating fields for wavelengths

corresponding maximum (,), 3dB (A,) and minimum (A3) reflectivity.



