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Abstract 
 

 

A Brain-computer interface (BCI) is a direct communication system between a brain 

and an external device in which messages or commands sent by an individual do not 

pass through the brain’s normal output pathways but is detected through brain signals. 

Some severe motor impairments, such as Amyothrophic Lateral Sclerosis, head 

trauma, spinal injuries and other diseases may cause the patients to lose their muscle 

control and become unable to communicate with the outside environment. Currently 

no effective cure or treatment has yet been found for these diseases. Therefore using a 

BCI system to rebuild the communication pathway becomes a possible alternative 

solution. Among different types of BCIs, an electroencephalogram (EEG) based BCI 

is becoming a popular system due to EEG’s fine temporal resolution, ease of use, 

portability and low set-up cost. However EEG’s susceptibility to noise is a major 

issue to develop a robust BCI. Signal processing techniques such as coherent 

averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and 

extract components of interest. However these methods process the data on the 

observed mixture domain which mixes components of interest and noise. Such a 

limitation means that extracted EEG signals possibly still contain the noise residue or 

coarsely that the removed noise also contains part of EEG signals embedded. 

 

Independent Component Analysis (ICA), a Blind Source Separation (BSS) 

technique, is able to extract relevant information within noisy signals and separate the 

fundamental sources into the independent components (ICs). The most common 

assumption of ICA method is that the source signals are unknown and statistically 

independent. Through this assumption, ICA is able to recover the source signals. 

Since the ICA concepts appeared in the fields of neural networks and signal 

processing in the 1980s, many ICA applications in telecommunications, biomedical 

data analysis, feature extraction, speech separation, time-series analysis and data 
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mining have been reported in the literature. In this thesis several ICA techniques are 

proposed to optimize two major issues for BCI applications: reducing the recording 

time needed in order to speed up the signal processing and reducing the number of 

recording channels whilst improving the final classification performance or at least 

with it remaining the same as the current performance. These will make BCI a more 

practical prospect for everyday use. 

 

This thesis first defines BCI and the diverse BCI models based on different 

control patterns. After the general idea of ICA is introduced along with some 

modifications to ICA, several new ICA approaches are proposed. The practical work 

in this thesis starts with the preliminary analyses on the Southampton BCI pilot 

datasets starting with basic and then advanced signal processing techniques. The 

proposed ICA techniques are then presented using a multi-channel event related 

potential (ERP) based BCI. Next, the ICA algorithm is applied to a multi-channel 

spontaneous activity based BCI. The final ICA approach aims to examine the 

possibility of using ICA based on just one or a few channel recordings on an ERP 

based BCI.  

 

The novel ICA approaches for BCI systems presented in this thesis show that ICA 

is able to accurately and repeatedly extract the relevant information buried within 

noisy signals and the signal quality is enhanced so that even a simple classifier can 

achieve good classification accuracy. In the ERP based BCI application, after multi-

channel ICA the data just applied to eight averages/epochs can achieve 83.9% 

classification accuracy whilst the data by coherent averaging can reach only 32.3% 

accuracy. In the spontaneous activity based BCI, the use of the multi-channel ICA 

algorithm can effectively extract discriminatory information from two types of single-

trial EEG data. The classification accuracy is improved by about 25%, on average, 

compared to the performance on the unpreprocessed data. The single channel ICA 

technique on the ERP based BCI produces much better results than results using the 

lowpass filter. Whereas the appropriate number of averages improves the signal to 

noise rate of P300 activities which helps to achieve a better classification. These 

advantages will lead to a reliable and practical BCI for use outside of the clinical 

laboratory.   
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CHAPTER 1  
 

Introduction 

 

1.1 Background 

 

Many different disorders, such as Amyotrophic lateral sclerosis (ALS), brainstem 

stroke, brain or spinal cord injury and numerous other diseases can disrupt the 

neuromuscular channels through which the brain controls and communicates with its 

environment. These kinds of severe diseases may cause people to lose verbal and 

nonverbal communication. ‘Locked-in’ usually refers to a situation where individuals 

are conscious and aware, but unable to control their muscles so that they cannot 

present their needs, wishes, and emotions. In short, the healthy brain is locked into a 

paralysed body. However the current knowledge about these disorders is rather 

limited. There are no effective treatments which can provide a ‘cure’ or even a 

significant recovery. 
 

In the absence of methods for repairing the damage caused by these diseases, there 

is an option that we believe can provide an individual with a new, non-muscular 

communication – a brain-computer interface (BCI) for conveying messages and 

commands to use some devices such as assistive applications, computers etc. This 
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type of direct-brain interface would increase an individual’s independence and 

improve his/her quality of life.   
 

In theory, many measurements through monitoring brain activity might serve as a 

BCI. At present, the electroencephalogram (EEG) and related measurements can be 

applied to form a possible non-muscular BCI, for the EEG can function in most 

environments and requires relatively simple and inexpensive equipment. Regardless 

of the technology used in BCI, some specific features must be extracted from the raw 

signals in order to form a meaningful BCI. The kinds of signal patterns include 

visually evoked potentials (VEP), slow cortical potentials (SCP), P300, μ rhythms and 

cortical neuron activity. All of these methods have been shown to be useful for 

implementing practical working BCI systems [1].  
 

The traditional VEP based word speller allows the user to select a letter on a 

virtual keyboard by looking directly at it. The system determines the target by 

detecting the VEP amplitude difference of the response or different frequency of the 

response in the EEG recordings. SCP BCI system allows the user to move a cursor 

horizontally or vertically on a computer screen by generating negative or positive 

potential shifts during the procedure. This SCP BCI gives locked-in patients with 

motor disability a chance to communicate to the outside since SCP potential is easy to 

handle and apply. In P300 based BCI, especially the famous P300 word speller uses a 

characteristic called the ‘oddball paradigm’ which involves frequent and in-frequent 

stimuli and the positive potentials are evoked by rare events. This word speller is 

examined as a training-free and processing-fast system. The idea behind spontaneous 

rhythmic activity based BCI is that people can learn to modify the amplitude of a 

particular rhythmic band (say μ band) after training. The difference of amplitude can 

be compared and translated into cursor movement. This BCI requires fewer electrodes 

and simple classification. Unlike the above signal patterns used in BCIs, cortical 

neuron activity is a different signal pattern which is recorded from implanted 

electrodes located in the motor cortex in BCI system [2]. The neuronal activity is 
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much clearer and clean and can be recorded by implanted electrodes. Studies have 

found the capacity of people to learn to control neuronal firing rate and more rapid 

and accurate control can be achieved. But the argument is that whether implanted 

methods are safe and whether they can provide significant improvement compared to 

non-implanted methods.      
 

However, the task of developing a BCI is extremely difficult, since a number of 

large problems concerning EEG recordings must be overcome. Moreover, artifacts 

(such as movement artifacts, eyeblinks, etc) change the raw EEG and render the 

recording virtually unusable. In general, signal processing techniques such as coherent 

averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and 

extract components of interest. However these methods can only deal with the data 

processing on the observed mixture domain which mixes components of interest and 

noise. Such a limitation dictates that extracted EEG signals possibly still contain the 

noise residue or the removed noise contains embedded part of EEG signals. Blind 

Source Separation (BSS) techniques such as Independent Component Analysis (ICA) 

extract the relevant information buried within noisy signals and allow the separation 

of measured signals into their fundamental underlying (independent) components. The 

ultimate aim in applying ICA is to accurately and repeatedly extract the relevant 

information buried within noisy signals, so that the BCI system is more reliable and 

robust – especially for use outside of the clinical laboratory. This body of work will 

examine the use of existing and newly developed BSS techniques in conjunction with 

other relevant signal processing methods. 
 
 

1.2 Overview of the thesis 

 
The rest of this thesis is divided into seven chapters. Chapter 2 provides an 

introduction to the human brain, the EEG, the technique of BCI and signal processing 
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techniques for BCI, giving an overview of the discovery of the EEG, recording 

techniques, the definition and structure of BCI and the goal of this thesis. 
 

Chapter 3 introduces the concept of ICA and ICA techniques. Following a brief 

historical overview of its development, it presents the generic technique of ICA and 

the fundamental assumptions based on which the algorithm works. The different 

possible algorithms in the ICA literature are discussed, as well as the existing ICA 

applications in biomedical signal processing field. 
 

The rest of the chapters are about proposed ICA techniques on specific BCI 

applications. These ICA techniques are able to improve the performance of BCI 

applications and help develop more practical BCI systems based on the use of 

automated independent source selection methods. Chapter 4 presents preliminary 

analyses for a Southampton BCI pilot study. It is the first study performed within this 

BCI research group in which it followed the paradigms in the literature and examined 

the possibility of using evoked potentials and spontaneous activity within the 

Southampton BCI program. Chapter 5 reviews the P300 potential detection problem 

in a P300 word speller application. Several ICA techniques based on spatial constraint 

and templates are then proposed to enhance the performance. Chapter 6 presents 

another important BCI application which uses spontaneous rhythmic activity as the 

control feature. An ICA method based on time structure together with temporal 

constraints is proposed to deal with the problem of inefficiently detecting power 

changes generated by spontaneous rhythmic activities. The final performances are 

compared and discussed. Essentially, all the above ICA techniques are built upon 

multi-channel data recordings. But in the real world not so many circumstances allow 

us to use multiple channels, for example, multi-channel recording devices are not 

available or only a few (or even only one) channel of all recordings from the 

multi-channel data is of good quality. Chapter 7 examines the possibility of using ICA 

which is only based on one or a few channel recordings on the above same P300 word 
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speller application. The results are assessed and compared with the performance 

achieved in the multi-channel version.  
 

The thesis then concludes with a discussion on the proposed ICA techniques and 

the improvement in their applications. Also areas which could benefit from future 

work are discussed. 

 

1.3 Publications 

 
During the period of my doctoral study, the following papers and abstracts have been 

accepted for publication.  

 
Journal Papers 
S. Wang, and C. J. James, “Extracting rhythmic brain activity for brain-computer 

interfacing through constrained independent component analysis”, Computational 

Intelligence and Neuroscience, 2007(ID41468), 9pp, 2007. 

 
Conference Papers 
C. J. James and S. Wang, “Single Channel ICA on P300 based BCI”, Proceedings of 

the IET Medical Signal and Information Processing Conference MEDSIP 2008, Italy, 

14-16 July, CD-ROM, 2008 

 

M. Davies, C. J. James and S. Wang, “Space-Time ICA and EM Brain Signals”, 

Proceeding of 7th International Conference, ICA 2007, 577-584, 2007. 

 

S. Wang, and C. J. James, “On the independent component analysis of evoked 

potentials through single or few recording channels”, 29th International Conference 

of IEEE Engineering in Medicine and Biology Society (EMBC2007), Lyon, France, 

23-26 August 2007, 5433-5436, 2007. 
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C. J. James and S. Wang, “Blind source separation in single-channel EEG analysis: 

An application to BCI”, Proceedings 28th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, New York, USA, 31 August - 2 

September 2006, CD-ROM, 2006, 

 

S. Wang, and C. J. James, “Enhancing evoked responses for BCI through advanced 

ICA techniques”, Proceedings of the IET Medical Signal and Information Processing 

Conference MEDSIP 2006, Glasgow, Scotland, 17 - 19 July 2006, CD-ROM, 2006. 

 
Conference Abstracts 
S. Wang, C. J. James and M. Stokes, “The Southampton BCI Research Programme”, 

Abstract book of Satellite symposium of IEEE EMBS 27th Annual Conference, Beijing, 

China, 2005. 

 

S. Wang, and C. J. James, “Preprocessing the P300 word speller with ICA for 

Brain-Computer Interfacing”, Abstract book of ICA Research Network Workshop on 

Applied Blind Source Separation and Independent Component Analysis, Southampton, 

2005. 

 



 

 

 

 

 

CHAPTER 2  
 

Electroencephalography and  

Brain-computer Interfacing 
 

2.1 Introduction  

 
An electroencephalogram (EEG) is a recording of the brain’s electrical activity. 

Nowadays, EEG recording has become a routine clinical procedure as well as a useful 

tool to investigate many disorders such as epilepsy in particular. A BCI system is a 

direct communication pathway between the brain and an external device. In BCI 

applications, the EEG has shown the most potential to record the signal input, mainly 

due to its fine temporal resolution, ease of use, portability and low set-up costs. 
 

This chapter first gives a brief introduction of brain anatomy and an overview of 

the history and origin of the EEG. The constitution of the EEG is introduced and 

discussed next along with the technology’s susceptibility to noise. Next the chapter 

introduces the BCI concept in general, including the definition, history, structure and 

present day techniques. Finally the chapter gives a short summary of BCI systems in 

use today and introduces the goal of the BCI studies in this thesis. 
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2.2 Brain Anatomy 

 

The brain is the most complex part of the human body. It controls thought, memory, 

emotion, touch, motor skills, vision, respirations, temperature, hunger, and every 

process that regulates our body. The brain can be divided into the cerebrum, brainstem, 

and cerebellum [3] (Figure 2.1):  
 

2.2.1 Brainstem 

The brainstem is located at the bottom of the brain and connects the cerebrum to the 

spinal cord. Functions of this area include: movement of the eyes and mouth, relaying 

sensory messages (hot, pain, loud, etc.), hunger, respirations, consciousness, cardiac 

function, body temperature, involuntary muscle movements, sneezing, coughing, 

vomiting, and swallowing. 
 

2.2.2 Cerebellum 

The cerebellum is located at the lower back of the head and is connected to the brain 

stem. It is the second largest structure of the brain and is made up of two hemispheres. 

The cerebellum controls complex motor functions such as walking, balance, posture, 

and general motor coordination. 
 

2.2.3 Cerebrum 

The cerebrum is the largest part of the brain and is composed of the right and left 

hemispheres. Functions of the cerebrum include: initiation of movement, coordination 

of movement, temperature, touch, vision, hearing, judgment, reasoning, problem 

solving, emotions, and learning. More specifically four lobes make up the cerebrum, 

the frontal, temporal, parietal, and occipital. 
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1) Frontal lobe: the frontal lobe is the largest section of the brain located in the 

front of the head. It controls attention, behavior, abstract thinking, problem 

solving, creative thought, emotion, intellect, initiative, judgment, coordinated 

movements, muscle movements, smell, physical reactions, and personality. 

2) Parietal lobe: the parietal lobe is the middle part of the brain, the parietal lobe 

helps a person to identify objects and understand spatial relationships between the 

person and objects around him/her. The parietal lobe is also involved in 

interpreting pain and touch in the body. 

3) Occipital lobe: the occipital lobe is the back part of the brain and controls 

vision. 

4) Temporal lobes: the temporal lobes are sited on both sides of the brain, these 

temporal lobes are involved in auditory and visual memories, language, some 

hearing and speech, language, plus some behavior. 

 
 

Figure 2.1: The three main components of the brain -- the cerebrum, the cerebellum, and 
the brainstem. The cerebrum is the largest and most developmentally advanced part of the 
human brain. It includes the frontal, temporal, parietal, and occipital lobes [3]. 



 
Chapter 2     Electroencephalography and Brain-computer Interfacing  
 

 10

2.3 The electroencephalogram  

2.3.1 EEG history and origin  

EEG is a recording, through electrodes attached to the scalp, of electrical activity 

produced by the brain. The first EEG recording of the human brain was made by the 

German psychiatrist Hans Berger in 1924 (Figure 2.2), and his publication of this 

recording appeared in the Archives of Psychiatry, 1929 [4]. Nowadays, EEG plays 

one of the most important roles to evaluate neurological disorders in the clinic. Most 

commonly it is used to show the type and location of the activity in the brain during a 

seizure in epilepsy [5], [6]. It is also used to investigate those having problems 

associated with brain functions in the laboratory [7], [8].  

 
 

The EEG represents the averaged activity of many neurons (Figure 2.3 shows a 

simple schematic example of neurons [9]) in the brain. However the origin of the 

neuronal activity is not completely understood, it is generally accepted that the nerve 

cells communicate with each other by producing and sending action potentials 

through neighbouring axons. To let action potentials pass across the chemical junction 

interfaces ─ synapses between axons, a chemical substance called a neurotransmitter 

is released to bridge synapses and activity receptors which send a flow of ions into or 

out of the dendrite. This results in compensatory currents in the extracellular space. 

After passing through layers of fat, bone and cerebrospinal fluid these extracellular 

currents are summed and contribute to the generation of EEG potentials [10].  

Figure 2.2: The first EEG recording by Hans Berger [4]. 
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2.3.2 Types of electrodes and the 10/20 system 

The recording of these activities is obtained by placing electrodes on the scalp, 

usually after preparing the scalp area by light abrasion and application of a conductive 

gel to reduce impedance [11]. To record good EEG signals, one of the keys is to select 

the appropriate type of electrodes for the measurement. Electrodes that make the best 

contact with a subject’s scalp and contain materials (conductive gel) that most readily 

conduct EEG signals provide the best EEG recordings. Generally there are four types 

of EEG electrodes available to the related applications (Figure 2.4): 

 

1) Reusable disks: These electrodes can be placed close to the scalp, even in a 

region with hair. A small amount of conductive gel is needed to be applied under 

each disk. Disks normally are made either from tin, silver, and gold. Since these 

electrodes can be repeatedly used for years, the overall cost is low. 

2) EEG Caps with disks: EEG caps are used to hold the electrodes in place to the 

subject’s head. They are available with different numbers and types of electrodes. 

Figure 2.3: A simple schematic of neurons [9]. 
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The conductive gel is injected under each disk through a hole in the back of the 

disk. This EEG accessory offers a quick and easy way to place multi-electrodes in 

precise locations.   

3) Adhesive Gel Electrodes: These are the disposable silver/silver chloride 

electrodes for recording from regions of the scalp without hair. Since the size of 

these electrodes is large, they cannot be placed close enough to the scalp or in 

regions with hair. 

4) Subdermal Needles: These electrodes normally are single-use needles that are 

placed under the skin. However due to the potential risk of a needle stick injury 

(for example, skin infection), in some situations, permission is needed before 

needle electrodes are used. 

 

 The standard method for scalp electrode localization is the International 10/20 

electrode system [12]. The “10” and “20” represent the actual distances between 

neighbouring electrodes are either 10% or 20% of the total front-back or right-left 

distance of the skull. The positions are determined by the following two reference 

points: nasion, which is the point between the forehead and the nose, level with the 

eyes; and inion, which is the bony prominence at the base of the skull on the midline 

at the back of the head. From these points, the skull perimeters are measured in the 

transverse and median planes [13]. The electrode positions are showed in Figure 2.5. 

Each location uses a letter to identify the lobe and a number to identify the 

hemisphere location. The letters F, T, C, P and O stand for Frontal, Temporal, Central, 

Parietal and Occipital respectively. A "z" refers to an electrode placed on the midline. 

Even numbers refer to electrode positions on the right hemisphere, whereas odd 

numbers refer to those on the left hemisphere. 
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For the recording, each electrode and a system reference electrode are connected 

to a differential amplifier as two inputs. This amplifier amplifies the voltage between 

the measurement and the reference electrodes. In an analog EEG system, the signal is 

plotted on paper for investigation by specialists. Nowadays most EEG systems are 

able to digitize the amplified analog signal through an analog-to-digital (A/D) 

converter. The typical analog-to-digital sampling rate is within the range of 240Hz to 

512Hz in clinical scalp EEG. The digital signal then can be displayed on a computer 

screen or stored electronically for later use. The amplitude of a normal adult EEG is 

about 10~100 µV when measured on the scalp. 

 

a b

c d

Figure 2.4 Four types of EEG electrodes: a) Reusable disks; b) EEG Caps with disks; c) 
Adhesive Gel Electrodes; d) Subdermal Needles. 
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2.3.3 Rhythmic activity  

Historically EEG is often divided into four major types of continuous rhythmic 

sinusoidal waves (α, β, δ and θ) based on a series of frequency ranges. There is no 

precise agreement on the frequency ranges for each type: 

 

1) δ (delta) is in the frequency range: < 4 Hz. The shape is observed as 

the highest in amplitude and the slowest waves. It is often seen 

frontally in adults during deep sleep and also seen posteriorly in babies. 

It may occur focally with subcortical lesions and in general 

distribution with diffuse lesions and certain encephalopathies.  

  

2) θ (theta) is in the frequency range: 4 Hz ─ 8 Hz. It is associated 

with drowsiness, childhood, adolescence and young adulthood. This 

EEG frequency can sometimes be produced by hyperventilation. θ 

waves can be seen during hypnagogic states such as trances, hypnosis, 

Figure 2.5: The International 10-20 system seen from left (a) and above the head (b). A  
= Ear lobe, C  = central, Pg = nasopharyngeal, P  = parietal, F  = frontal, Fp = 
frontal polar, O  = occipital, T=temporal.[12] 
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deep day dreams, lucid dreaming and light sleep and the preconscious 

state just upon waking, and just before falling asleep.  

  

3) α (alpha) is in the frequency range: 8 Hz ─ 12 Hz. It is 

characteristic of a relaxed, alert state of consciousness and is present 

by the age of two. α rhythms can be best detected with the eyes closed 

whilst it attenuates with drowsiness and open eyes. It can be seen on 

both sides in the posterior area and higher amplitude on the dominant 

side. An α-like normal variant called μ rhythm is sometimes seen over 

the motor cortex (central scalp). μ rhythm attenuates with movement  

of limbs, or mental imagery of movement.  

  

4) β (beta) is in the frequency range: 13 Hz ─ 30 Hz. It is seen in low 

amplitude with multiple and varying frequencies symmetrically on 

both sides in the frontal area. It is often associated with active, busy or 

anxious thinking and active concentration. β rhythm with a dominant 

set of frequencies is associated with various pathologies and drug 

effects.  
 

2.3.4 Artifacts and other effects  

Although the EEG records brain activity, it also records electrical activity arising from 

sites other than the brain. Recorded activity that does not originate in the brain is 

referred to as an artefact. Artifacts can be divided into physiologic and 

extraphysiologic artifacts. While physiologic artifacts are generated by the subject, 

they arise from sources other than the brain (i.e. the body, e.g. muscles, heart etc). 

Extraphysiologic artifacts arise from outside the body (i.e. equipment, environment) 

[14]. 
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The major physiologic artifacts, eye movement and blinks, produce electrical 

potentials and electo-magnetic fields that are often much larger than those deriving 

from brain sources. They can cause big errors in peak measurement or source 

localization. Attempts to control this artifact by instructing subjects to fixate their 

gaze on a point or not to blink are often ineffective, particularly if the subject is 

psychotic or cognitively impaired [15]. Other artifacts, such as muscle activity, line 

noise, body movements etc can also generate potentials that may even mimic cerebral 

activity [16]. 

 
Many methods have been proposed to remove artifacts (such as eye movement 

and blinks) from EEG recordings including: trial rejection and regression based 

methods [17], [18]. However, simply rejecting contaminated EEG epochs results in a 

considerable loss of collected information. Regression is performed in the time or 

frequency domain on EEG recordings to derive parameters characterizing the 

appearance and spread of electrooculography (EOG) artifacts in the EEG channels. 

But EOG records also contain brain signals, so the regression method inevitably 

involves subtracting a portion of the relevant EEG signal from each recording as well, 

which is not desirable. 

 

2.3.5 Further EEG application  

Over time, people have also speculated that the EEG could have further applications, 

that it could be used to decipher thoughts, or intent, so that a person could 

communicate with others or control devices directly by means of brain activity, 

without using the normal channels of peripheral nerves and muscles. This is where the 

concept of brain-computer interfacing (BCI) first appears [19]. 
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2.4 Brain computer Interfacing 

2.4.1 Severe physical disability through brain damage 

Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and ultimately fatal 

neurological disease in which the degeneration of specific motor neurons causes 

muscles to stop receiving movement command [20] [21] [22]. People with ALS will 

ultimately lose the ability to control their muscles, to communicate and eventually to 

breathe. However, ALS commonly does not affect a person’s ability to think, their 

intelligence or memory. Therefore a healthy brain is “locked in” a paralysed body 

[23]. The cause of ALS is still unknown, and there are no effective treatments which 

can provide a ‘cure’ or even a significant recovery. Brainstem stroke, brain or spinal 

cord injury and numerous other diseases produce similar severe disability where 

neuromuscular channels between a brain and its environment are broken. Therefore, 

maintaining the basic communication and control capabilities so that these individuals 

can express their desires to caregivers or even operate word processing programs or 

neuroprostheses has become a very important clinical issue. 

 

2.4.2 The definition and a brief history of BCI  

BCI is primarily a communication system in which messages or commands that an 

individual sends to the external world do not pass through the brain’s normal output 

pathways of peripheral nerves and muscles, but rather pass through a computer based 

system. 

 

Early BCI research was started in the 1970’s. Professor Jacques J. Vidal first 

introduced the idea of direct brain computer communication in 1973 [19]. In his BCI 

Laboratory at the University of California Los Angeles, a successful project 

demonstrated that a computer-generated visual stimulation is able to evoke people to 
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produce a certain response which could provide a communication channel between 

the subject and a computer. In that decade, several scientists and organizations also 

tended to develop similar communication systems driven by the recorded brain 

activity. For example, the Advanced Research Projects Agency (ARPA) in the 

Defence Department of the USA planned to develop an interaction application 

between a human brain and a computer for use in military applications [24]. This 

project was proposed to improve the performance of military personnel especially in 

tasks involving heavy mental loads. The research produced valuable insights, but 

made minimal progress toward its goals due to limitations in the techniques used.  

 

Over the past decades, BCI research has grown rapidly and become a very popular 

research topic around the world. Several leading BCI research groups, such as the 

Berlin BCI group [25], University of Tübingen [26], Germany; Wadsworth Center, 

US [27] and Graz BCI research, Austria [28] have already made contributions in this 

area. For the most part, developing a possible augmentative communication option for 

people with severe motor disabilities has become the most important objective in BCI 

research. 

 

2.4.3 BCI structure  

Like any communication system, a BCI system contains several units: BCI input, 

feature extraction, translation algorithm and BCI output. Figure 2.6 shows these 

elements and their principal interaction [29], each component is discussed in more 

detail next. 

 

(1) BCI input 

In theory, any brain activity has the potential to be used as the basis of a BCI. The 

most common one is the recording of electrical activity. Other technologies such as 
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magnetoencephalography (MEG) [30], near-infrared spectroscopy (NIRS) [31], and 

functional magnetic resonance imaging (fMRI) [32] are used as well but MEG and 

fMRI equipment are currently too large and expensive, for the practical application. 

NIRS is small and affordable, but it is based on hemodynamic responses [33], and 

thus the time constants involved are relatively long. As a result, most BCI research 

groups are focused on bioelectrical brain signals recorded by EEG and 

electrocorticogram (ECoG) [34] [35]. The electrocorticogram (ECoG) is the recording 

of brain activity by using epidural or subdural electrode arrays from the cerebral 

cortex. Because a craniotomy is required for implantation of the electrodes, ECoG is 

an invasive procedure. That is to say that it is not possible to use ECoG for recording 

outside of clinical laboratory. Since EEG is recorded from multiple electrodes placed 

on the scalp, which normally does not involve an invasive procedure. EEG has 

become a popular measure of brain activity and is used for the most part as the BCI 

input. The raw EEG sequences come out of an A/D converter and are digitized at a 

sampling rate of several hundreds Hz per recording channel as input data. The 

detailed EEG acquisition method has been introduced in the early EEG section of this 

chapter.  

 

 

 
 

Figure 2.6: The basic design and operation of a BCI system. 
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(2) Feature extraction  

The BCI system receives commands sent by the user in the form of EEG patterns. 

Feature extraction procedures, such as spatial filtering, voltage amplitude 

measurements and spectral analysis etc., extract the signal features that encode the 

user’s messages or commands. BCI can use signal features that are in the time domain 

(such as evoked potential amplitudes or neuronal firing rates) or the frequency domain 

(such as μ or β rhythm amplitudes). A BCI may also use both time-domain and 

frequency-domain signal features together to improve performance. The knowledge of 

elements such as the location, size, and function of the cortical area generating a 

rhythm or an evoked potential can indicate how the signal should be recorded, how 

users might best learn to control its amplitude, and how to recognize and eliminate the 

effects of physiologic artifacts. 

 

(3) Translation algorithm  

Before the next step – the translation algorithm – begins, several important factors 

much be taken care of. First, when a new user is first introduced to a BCI system the 

algorithm must adapt to that user’s signal features. For example, if the signal feature 

is the amplitude of rhythmic activity, the algorithm should adjust to the user’s specific 

frequency band as well as the power spectra; if the feature is a particular waveform in 

time, it adjusts to the user’s own feature characteristics. Since this is a basic 

requirement, all BCI processing should reach this level of adaptation. It assumes that 

the user’s performance remains stable and never changes again. However, EEG and 

other electrophysiological signals display variations linked to time of day, hormonal 

levels, immediate environment, recent events, fatigue, illness, and other factors. Thus, 

effective and advanced BCIs need to deal with this higher level of adaptation through 

periodic online adjustments to reduce the impact of such spontaneous variations. A 

good algorithm will adjust to these variations so as to match as closely as possible the 
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user’s current range of signal feature values to the available range of device command 

values. This is even more critical in subjects with neuron degenerative disorders, 

where BCI paradigms may even have to be changed over time. 

 

In order to find out what the user wants, a BCI system has to classify the 

processed data after the previous operations. This means that the system does not 

attempt to understand the user’s intentions, but it compares the data symbolizing a 

segment to representatives of a limited number of classes and selects a class which is 

best fitted to the classification criteria. This translation process might use linear 

classification methods or nonlinear classification methods. All the methods change 

independent variables (signal features) into dependent variables (e.g. the word in the 

P300 word speller which is going to introduce in Section 2.5, the direction in a control 

panel. etc).    

 

a. Linear classification methods 

The goal of a linear classifier is to group real vectors into classes by making a 

classification decision based on the value of the linear combination of the features. 

Normally a linear classifier has a function that maps a high-dimensional input into a 

two-dimensional space (two-class problem) by using a hyperplane: all points on one 

side of the hyperplane are classified as the first class, while the others are classified as 

the second class. The most popular linear methods, for example, include: simple 

threshold method [36], linear discriminant analysis (LDA) [37] and linear support 

vector machine (SVM) [38].  

 

A simple threshold method finds a suitable threshold from a set of fully labeled 

data called a training data set, then maps all unlabeled values in a testing set which are 

above the threshold to the first class and all other values to the second class. LDA 

maximizes the ratio of between-class variance to the within-class variance and finds a 

linear transformation (“discriminant function”) which can transforms values into their 
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own classes. An SVM constructs a separating hyperplane in a high dimensional space. 

In order to achieve maximum separation, a margin between the data belonging to two 

classes is maximum so that the distance from the hyperplane to the nearest data point 

is maximized. Such a hyperplane is known as the maximum-margin hyperplane and 

can separate more complex data element into certain classes.  

 

A linear classifier is often used in situations where the speed of classification is an 

issue, since it is often the fastest classifier, also, linear classifiers often work very well 

when the number of dimensions in the input space is large.  

 

b. Nonlinear classification methods 

If a classification problem exists and it cannot be solved linearly. The classification 

may be solved by using nonlinear methods. One of popular nonlinear methods, the 

artificial neural network (ANN) often called a "neural network" (NN) [39], is a 

mathematical model or computational model based on biological neural networks. 

The ANN works like a “black box” which takes the input vector and generates an 

output vector. The processing between the input and output is typically associated 

with an adjustable set of weights which are computed during the training phase. The 

weighted sum of the input will be transformed into an output value telling which of 

classes the input vector belongs to.    

 

Another well-considered nonlinear method, the nonlinear SVM classifier, applies 

a kernel function to maximum margin hyperplanes [40]. Since linear SVM is not 

adequate for cases when complex relationships exist between input parameters and the 

class of a pattern, the SVM model can be fitted with nonlinear functions to provide 

efficient classifiers for hard-to-separate classes of patterns. The nonlinear SVM is 

formally similar to a linear SVM, except for a non-linear kernel function. An 

advantage of SVMs is that whilst ANNs can suffer from multiple local minima, the 
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solution to an SVM is global and unique. The computational complexity of SVMs 

does not depend on the dimensionality of the input space [41]. 

 

Compared to linear methods, nonlinear methods can achieve more accurate 

classification performance in complex classification problems, however several 

drawbacks in practice are that the computation complexity of nonlinear methods is 

expensive and normally the speed of training is slow.   
 

(4) BCI output 

Most BCI output devices are a computer screen. The output is the selection of targets, 

letters, or icons representing the commands. In addition to being the intended product 

of BCI operation, some output, such as cursor movement toward the item prior to its 

selection, acts as feedback that the brain can use to maintain and improve the accuracy 

and speed of communication. Some studies are exploring BCI control of a 

neuroprosthesis or orthosis that provides hand closure to people with cervical spinal 

cord injuries [42] [43] [44]. In such specific BCI application, the output device is the 

user’s own hand. A few studies have also used monkeys with implanted electrodes 

allowing the animals to control a robotic arm [45] [46]. 
 
 

2.4.4 BCI categorisation  

BCI systems fall into one of two classes: dependent and independent BCI systems. A 

dependent BCI minimally requires a partially intact neuron muscular communication 

pathway. For example, one dependent BCI could be a matrix of letters that are 

flashing on a computer screen one at a time at different frequencies, and the user 

chooses a specific letter by fixating upon at it. In this case, the brain’s way of 

communication in this example is EEG, but the flashing letter at different frequency 

activates extraocular muscles and the cranial nerves to generate the EEG signal. The 
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EEG activity with a certain frequency is detected to match a flashing letter with a 

different frequency as a way of the letter selection. Because such a dependent BCI 

select a target of interest by simply staring at it and it does not involve higher brain 

cognitive process. Therefore a dependent BCI system does not give the brain a new 

communication channel that is independent of conventional channels [47]. 
 

An independent BCI works with signals that are independent of muscle activity. 

Moreover the generation of the EEG signal relies mainly on the user’s intent. For 

example, one independent BCI presents the user with a matrix of letters that flash one 

at a time, and the user selects a specific letter not by gazing but by “thinking” which 

produces certain electrical patterns, e.g. a P300 evoked potential (EP) [48] (this will 

be explained in more detail in Section 2.5.3). Therefore independent BCIs need a 

higher level brain cognitive process. Because of this higher cognitive process, 

independent BCIs provide the brain with wholly new output pathways, for people 

with the most severe neuromuscular disabilities, who may lack all normal output 

channels, independent BCIs are likely to be the most useful. 
 
 

2.5 Current BCI techniques in the literature 

 
Present-day BCIs can be divided into five groups based on the electrophysiological 

signal patterns they use rather than the terminology of dependence and independence 

explained above. The types of patterns that have been employed for this purpose 

include: 1) visual evoked potentials (which form the only dependent BCI in 

literature), 2) slow cortical potentials, 3) P300 evoked potentials, 4) spontaneous 

rhythmic activity and 5) cortical neuron activity, which form independent BCIs. 
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2.5.1 Visual evoked potential 

The visual evoked potential (VEP) is the electrical response of the brain’s primary 

visual cortex to a visual stimulus [49]. Figure 2.7 shows an example of VEP activities 

for use in VEP based BCI. Jacques Vidal first used the term ‘brain-computer 

interface’, in his work, he developed a system that satisfied the above definition of a 

dependent BCI [19]. The work used the VEP recorded from the scalp over the visual 

cortex to determine the direction of eye gazes and then to determine the direction in 

which the user wished to move a cursor.  
 

Sutter introduced a new term – ‘Brain response interface’ [50] and developed a 

system based on VEP patterns. The scheme uses the VEPs produced by brief visual 

stimuli and recorded from the scalp over the visual cortex. The user faces a screen 

displaying 64 symbols in an 8×8 matrix and looks at the symbol he or she wants to 

select. Subgroups of these 64 symbols undergo a red/green flashing alternation or a 

red/green check pattern alternation 40–70 times/s. Each symbol is included in several 

subgroups, and the entire set of subgroups is presented several times. Each subgroup’s 

VEP amplitude about 100 ms after the stimulus is computed and compared to a VEP 

template already established for the user. Then the system determines with high 

accuracy the symbol that the user is looking at. Normal volunteers can use such a 

word processing program at 10-12 words/min.  
 

In [51], Middendorf et al. described another method for using VEPs in order to 

determine gaze direction. Several virtual buttons appear on a screen and flash at 

different frequencies. The user looks at a button and the system determines the 

frequency of the photic driving response over the visual cortex. When this frequency 

matches that of a button, the system concludes that the user wants to select it. In [52], 

Xiaorong Gao et al. applied a similar method in an environmental controller for a 

motion disabled user. Multiple targets are placed on a visual panel and flicker with 

different frequencies. The system then detects the fundamental frequency of the VEPs 
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matching the same frequency of the flickering target. Results have shown that this 

system can distinguish between at least 48 targets and provide an information transfer 

rate up to 70bits/min. They also found that a lower stimulus frequency gave higher 

accuracy but a slower speed; with the stimulus frequency in the α range (8-12Hz), the 

average speed of selection was high.  

 

 

 

Several efforts have been established to modify the model design to speed up the 

experiment at time for VEP based BCIs. For example in [53] the original framework 

includes Feature Extractor, Feature Translator and Control Interface. After 

investigation on the actual performance, the original three functional models were 

found incompatible. A new plan of optimization for the VEP based BCI framework 

design was proposed and tested in [54]. The proposed algorithms separate the 

simulator from the Control Interface. The Stimulator and the associated Stimulus 

Mechanism along with all the other components between the user and the Control 

Figure 2.7: Visual-evoked potentials (VEP) based BCI, it shows VEP activities for 
responding to different types of stimulation. The shades are the overlapped VEP 
signals and bold lines indicate the averaged VEPs. [49] 
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Interface can be treated as a conceptual BCI Transducer. The advantage of this 

functional delineation is that different BCI Transducer technologies can be connected 

to the same Control interface. It can represent a range of system configurations, 

including multi-modal designs, and supports any type of device. 

 

In summary, The VEP is a naturally occurring response and more dependent on 

the stimulus presentation than subject attentiveness. VEP based BCI requires little or 

even no training for the subjects. The transfer rate of this dependent BCI is often 

faster than that of independent BCI. 

 

2.5.2 Slow cortical potentials 

Negative or positive potential shifts in the EEG lasting over 0.5-10.0s over the cortex 

are called slow cortical potentials (SCPs). SCP activity has been applied to control 

movement of an object on a computer screen and to choose a letter by using a series 

of two-choice selections in a word speller [55]. Figure 2.8 shows SCP activity for use 

in SCP based BCI. Basically, EEG is recorded from electrodes over the vertex area. 

SCPs are extracted by appropriate filtering and the different level of amplitude of 

SCPs is used to control a cursor to choose a target either at the top or at the bottom. In 

SCP based BCI studies [56] [57] [58], the investigators have shown that after training, 

people are able to learn to control SCPs and thereby control movement of an object 

and word speller on the computer. It also has been tested in locked-in patients and has 

proved able to supply basic communication capability. After sufficient practice, 

normally several months, the system can achieve high classification accuracy 

(70%~80%). However the process of this SCP based BCI is slow, requiring more than 

an hour for patients to write 100 characters with the cursor, while training often took 

many months. For this reason, the range of possible application of this method is quite 

limited. 
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2.5.3 P300 evoked potentials 

An event-related potential (ERP) or (evoked response (EP)) is any 

electrophysiological response to an internal or external “event” [59]. This event may 

be a sensory stimulus (such as a visual flash or an auditory sound), a mental event 

(such as recognition of a specified target stimulus), or the omission of a stimulus 

(such as an increased time gap between stimuli). More simply, it is any measured 

brain response that is directly the result of a thought or perception.  
 

The well-known ERP response known as the P300 EP is a late positive wave that 

occurs over the parietal cortex at about 300 milliseconds after the onset of a 

meaningful stimuli and the principal frequency is below 10 Hz. The P300 response is 

able to occur regardless of the stimulus presented: visual, tactile, auditory, etc, 

because of this general invariance in regard to stimulus type, this ERP has been 

widely used in cognitive tasks. It forms a well known ‘oddball paradigm’ which 

involves frequent and infrequent external stimuli, the latter is able to elicit P300 EP 

Figure 2.8: Slow cortical potential (SCP) based BCI. Users learn to control SCPs to 
move a cursor toward a target by generating more positive SCPs (at the bottom) or more 
negative SCPs (top) on a computer screen [57]. 
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around 300-450 ms. A word speller based on this paradigm is one of the most 

important BCI applications to date, to detect real-time P300 waveforms and translate 

them into letters (and then words), this idea was introduced in [48]. Figure 2.9 

illustrates the modality of the P300 for use in this type BCI. The advantages of the 

P300 are that the response occurs regardless of the stimulus presented: visual, tactile, 

auditory, etc and it requires no initial user training. Because of the general invariance, 

this ERP has become a popular research topic in BCI studies.  A study has explored 

the relationship between speller matrix size and target detection accuracy [60]. The 

results show the speller matrix size has no significant effect on P300 latency but has 

an effect on P300 amplitude, and that a larger matrix produced larger differences in 

amplitude values which might decrease the difficulty of recognition [61]. Other 

studies also examined the application of advanced EEG preprocessing methods (e.g. 

Independent Component Analysis) together with newer classification methods (e.g. 

SVM) in these ERP based BCIs [62] [63] [64]. The results demonstrated that with 

appropriate methods, it is possible to increase the detection accuracy and 

simultaneously reduce the processing time.  
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2.5.4 Spontaneous rhythmic activity 

In BCI studies, an emerging popular function is that which allows users to control the 

amplitude of their μ (8 – 12Hz) or β (18 – 22 Hz) brain rhythmic activity over the 

sensorimotor cortices. This is caused by Motor Imagery (MI) [65], (i.e. imagining 

hand or foot movement). For MI, the users are instructed to imagine a specific motor 

action without any related motor output. The imagination of different movements is 

followed by the different power of the EEG or an effect known as event-related 

(de)/synchronization (ERD/ERS) [66] on the sensorimotor cortex. When an ERD is 

present, it is relatively detectable and can be used as a feedback signal to control 

specially designed electrical devices, for instance, to control the movement of a cursor 

on a computer screen or to drive/ steer a wheelchair. In addition, humans can learn to 

Figure 2.9: P300 based BCI in which a matrix of possible choices is presented on a 
screen and these choices flash in succession. Only the choice desired by the user evokes a 
large P300 potential [48]. 
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modify the amplitude of the μ rhythm after training. The analysis suggests that μ 

rhythms could be good signal features for EEG-based communication [67]. The 

classification can be very simple - just compare power in the frequency range of 

interest. Of more importance is that the accuracy is relatively high, at up to 95% [68]. 

Figure 2.10 shows the μ rhythmic activity in a μ rhythm based BCI. Because this type 

of BCI requires training and a proper training session could determine the quality of 

the experiments, a study has explored and examined the ways of designing efficient 

training sessions [69]. This study showed that with longer and better training, more 

accurate performance can be achieved. Some other studies carried out modifications 

to improve the classification. These include the use of parameters derived by 

autoregressive (AR) frequency analysis [70], and use of alternative spatial filters (e.g. 

PCA, ICA) [71] [72]. 
 

Many signal processing techniques have been developed and used in these BCI 

studies, such as AR modelling [73], and common spatial patterns (CSP) [74]. These 

methods tend to find a spatial filter to maximally improve the signal to noise ratio 

(SNR). For example CSP derives weights that are applied to each channel in order to 

emphasise or de-emphasise activity with a specific focus (or focii). Each set of 

weights can be derived and referred to as a spatial filter because when these are 

applied to multi-channel EEG they have the effect of selectively attenuating activity 

disparate spatial regions. Each spatial filter can then be attributed to one or more 

neurophysiological source or artefact. In the case of an artefact, a spatial filter which 

de-emphasises, say, ocular activity, will strongly attenuate the EEG amplitude around 

the frontal region whilst leaving other areas relatively unattenuated. Other spatial 

filters would work on other sources in a similar manner. In order to reach an optimal 

performance, some additional processing methods are required as pre-processing steps 

before the application of, for example, band-pass filtering, common average reference 

and/or manual artifact rejection. A combination of pre-processing methods can 

improve the performance, but also results in a less flexible and robust BCI system. 
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Moreover the application of additional processing methods brings with it the problem 

of increased computation time. 

 

Several pilot studies have investigated the possibility of using certain brain 

activities during performing different types of non-motor imagery tasks such as the 

imagery of spatial navigation (around a favourite place), auditory (of familiar music) 

to drive BCI systems [75]. Stronger responses should be observed over the temporal 

cortical area for the spatial task while over the parietal cortical area for the auditory 

task. As the outcome from pilot studies, these non-motor imagery tasks achieved 

better classification results than those using motor imagery [76].  The non-motor 

imagery tasks can be an alternative option for the subjects who are not suitable to 

perform the motor imagery. For example, some paralyzed subjects especially since 

birth may not be able to access motor imagery tasks. 

 

 
 

Figure 2.10: μ rhythm activity based BCI. Users control the amplitude of an 8–12 Hz μ 
rhythm to move a cursor to a target may at the top of the screen or at the bottom. 
Frequency spectra for top and bottom targets show that control is clearly focused in the 
μ-rhythm frequency band [58]. 
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2.5.5 Cortical neuron Activity 

Unlike the patterns described in previous sections, the cortical neuron activity benefits 

from implanted electrodes. These devices are very small and normally placed as an 

electrode array  [77] (for example, BrainGateTM is a brain implant system developed 

by the bio-tech company Cyberkinetics in 2003 in which individual electrode 

products are 1 mm long, several μm wide in 10×10 grid). The electrode array is 

implanted about 5 mm deep into the cortex around the motor areas. The ensemble 

activity of multiple neurons are then detected and translated into motor commands 

and typically, a computer is needed to translate these commands into useful outputs. 
 

A few studies [78] [79] [80] have shown the application of action potentials of 

single neurons from animal subjects – monkeys in particular. The monkeys have 

shown the capacity to control neuronal firing/spiking rate which is detected by the 

implanted electrodes to move a cursor on the computer screen or a robotic arm. For 

example, monkeys could learn to control the discharge of single neurons in the motor 

cortex. The classification processor compares different patterns and translates them 

into commands. The results show that the firing rates of a set of cortical neurons can 

reveal the direction and nature of movement [81].  
 

The use of implanted electrodes on human subjects appeared in the latest studies 

[82]. Matthew Nagle, a 25-year-old quadriplegic was linked to the computer by 

BrainGateTM which was implanted into the motor cortex of his brain in June 2004. 

During the experiments he imagined limb motions to modulate the neural firing. By 

detecting the certain neural response evoked by imagined actions (imagined hand or 

distal arm actions), the firing patterns are transformed into a two-dimensional output 

signal displayed as a cursor position on a screen. From the results Nagle used this BCI 

to turn on lights, change TV channel, read Email and even draw something with a 

painting programme, all by moving the cursor through his cognitive actions. The 



 
Chapter 2     Electroencephalography and Brain-computer Interfacing  
 

 34

results also show that in a specially designed letter input system, the transfer rate is 

possible to reach up to 6.5 bits/s, or about 15 words/min.    
 

2.6 Non-implanted vs implanted methods  

 

Implanted methods require electrodes which have to be implanted into the cortex 

during surgery, and then brain tissue grows around the electrodes to secure them 

against any movement [83]. However it takes about three/four months to stabilize the 

signals following implantation. Because of the lack of knowledge to access accurately 

the location of neurons into the motor cortex area, a number of electrodes will fail to 

acquire the brain activity. Therefore careful selection of active electrodes with certain 

neural evoked responses postsurgery becomes important. Apart from these, the 

performance results have shown that a simple signal processing method (e.g. a 

threshold method) is enough to achieve good performance [84]. It is believed by some 

that the use of implants will increase the clinical viability of BCIs in humans.  
 

However others believe that is not necessary to literally tap into the brain [85]. 

Non-implanted methods are based on traditional brain surface electrodes. Unlike the 

implanted electrodes and wires exposed at the scalp which carry risks of infection and 

other complications, surface electrodes are more convenient to place and to vary the 

position and number of electrodes. However for scalp electrodes the acquired data 

contain many kinds of noise, or artifacts, which are both electrical and biological in 

nature (as discussed previously in Section 2.3.4). In scalp recording the major 

challenge is to extract meaningful brain activity from the background signals in the 

presence of this noise.   
 

2.7 Signal processing techniques used in BCI in the literature  
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The main task of a BCI is to recognize patterns by interpreting sequences of signals.  

In a multi-channel BCI, 64 channels or more may be used, then the system has to deal 

with up to 10000 values per second at a suitable sampling rate. Moreover the raw data 

may be contaminated by all sorts of artifacts. Therefore it could be very difficult to 

find useful signals without applying advanced signal processing to the data. The 

signal processing could reduce the artifacts and improve the signal SNR ratio so that 

the extracted signal is clear and easily detected by the translation algorithm. The 

major signal processing methods in the literature include: coherent averaging, filtering, 

the Fast Fourier Transform (FFT) and blind source separation (BSS). 

 

2.7.1 Coherent averaging 

One of the standard ways to minimize the noise and enhance the signal quality in 

clinical data is through the process of coherent averaging [86]. In the averaging 

process, it is important to ensure that the time locking of the signal for the averaging 

process is accurate. When this requirement is met, the signal of interest will be 

averaged over many epochs. The noise is assumed to be random and different to the 

signals and so during the process the noise will be averaged out and reduced in 

amplitude.  

 

Normally ERPs benefit from signal averaging to enhance their SNR [87]. A 

stimulus or other synchronizing event defines the time epoch of interest within the 

signal. The event is repeated, and a time-locked signal average (or coherent average) 

is calculated across trial epochs for each time point of the epoch. Coherent averaging 

reduces the variance of the noise, while preserving the amplitude of signals that are 

synchronous with the beginning of the stimulus. If xj(t) is the electrical potential 

(voltage) or magnetic field strength at some electrode or sensor location at time t and 

trial j, the signal average tx is defined as:  
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where J is the number of signal trials for the coherent averaging. With coherent 

averaging, the SNR ratio of a noisy signal can be improved. It is widely accepted that 

under the conditions of (a) noise stationary, (b) physiological invariability, and (c) no 

correlation between signal and noise, through coherent averaging the SNR can be 

increased by a factor of J  [86]. In reality, although these conditions cannot be said 

to be entirely met, nevertheless coherent averaging results in a useful increase in SNR 

and furthermore it is simple and easy to apply. With the key assumption of coherent 

averaging that the signal needs to be invariant across trials. However in the real world 

the ERP brain activity is not precisely time locked. For example P300 for the same 

subject could experience a varying time delay over the duration of a trial. Therefore in 

order to extract the true amplitude of the signal, the data acquisition needs to be long 

enough such that a good number of trial data is captured enabling a good average to 

be obtained. In practice, this could slow down the speed of processing or even cause 

habituation [88] which is a decrease in response to a stimulus after too many repeated 

presentations. For example, during the habituation the signal amplitude might 

decrease and the peak latency might increase. Therefore the more averaging that is 

applied will not necessarily achieve a better extraction result.    

 

In the BCI literature, some work has already used coherent averaging to extract 

ERP activities [89] [90]. However, in order to achieve good performance studies 

sometime also require a method, for example filtering, to preprocess the data 

. 

2.7.2 Filtering  

One of the most common signal processing approaches in the time or space domain is 

to enhance the input signal through a method called filtering. Filtering generally 
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consists of some transformation of a number of surrounding samples around the 

current sample of the input or output signal. Filtering generally works by accepting an 

input signal, blocking prespecified frequency components, and passing the original 

signal minus unwanted frequency components to the output.  

 

The above filtering functions can be implemented by various types of methods. In 

the literature the most popular type of techniques are: finite impulse response (FIR) 

filtering method, infinite impulse response (IIR) method. 

 

(1) FIR filter 

A filter that has an impulse response which reaches zero in a finite number of sample 

intervals is called FIR filter. An Nth order FIR filter has a response to an impulse that 

is N+1 samples in duration. It can be described by the following difference equation 

which defines how the input signal is related to the output signal. 

 

][1][][][ N10 Nnbnbnbn −++−+= xxxy L                     (2.2) 

 

where x[n] is the input signal, y[n] is the output signal and bi are the filter coefficients. 

N is known as the filter order or the filter length. An Nth-order filter has (N + 1) terms 

on the right-hand side. The goal of filter design is to select the filter's length and 

coefficients such that it achieves the desired filtering functions.  
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(2) IIR filter 

An IIR filter is another type of digital signal filter, in which the output is the weighted 

sum of the current and past samples of input. The definition of IIR filter is given by 

the following difference equation.  

 

][]2[]1[][1][][][ 21N10 QnananaPnbnbnbn Q −−−−−−−−++−+= yyyxxxy LL  (2.3) 

 

where P is the feedforward filter order; bi are the feedforward filter coefficients; Q is 

the feedback filter order; ai are the feedback filter coefficients; x[n] is the input signal 

and y[n] is the output signal. The order of an IIR filter is the largest of P and Q.  

  

Compared to the FIR filter, the IIR filter can achieve a given filtering 

characteristic using less memory and calculations than a similar FIR filter. However 

the IIR filter is more susceptible to problems of finite-length arithmetic so that a direct 

consequence of feedback occurs when the output isn't computed perfectly and is fed 

back, the imperfections can become compounded. 

 

The overall advantage of using filtering is its simplicity that unwanted frequency 

components can be easily removed. However this method fails when the neurological 

phenomenon of interest overlap or lie in the same frequency band [91]. In BCI 

applications, some noise or artifacts have a frequency range that overlaps the EEG 

signal. As a result, a simple filtering approach cannot remove, for example, EMG or 

EOG artifacts without removing any unique neurological phenomenon. More 

specifically, since EOG artifacts generally consist of low frequency components, 

using a high-pass filter will remove most of the artifacts. However, for BCI systems 

that depend on low frequency neurological phenomena (such as ERP activities), these 

methods are not desirable, since these neurological phenomena may lie in the same 
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frequency range as that of the EOG artifacts. In the case of removing EMG artifacts 

from EEG signals, filtering specific frequency bands of the EEG can be used to 

reduce the EMG activity. Since artifacts generated by EMG activity generally consist 

of high-frequency components (most EMG exists in a frequency range between 20 

and 200 Hz), using a low-pass filter may remove most of these artifacts. But they 

cannot be effective for BCI systems that use a neurological phenomenon with 

high-frequency content (such as μ, β rhythms).  

 

2.7.3 AR model 

An autoregressive (AR) model is an IIR filter with some additional interpretation 

placed on it. It is one of a group of linear prediction formulas that attempt to predict 

an output of a system based on the previous inputs or outputs. Specifically a model 

which depends only on the previous outputs of the system is called an AR model, 

while a model which depends only on the inputs to the system is called a moving 

average model (MA), and a model based on both inputs and outputs is an 

autoregressive-moving-average model (ARMA).  

 

The notation of Pth order AR model can be written: 
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where iϕ  are the parameters of the AR model and y[n] is the output signal. 

 

The notation of Qth order MA model can be written: 
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where the iθ are the parameters of the MA model and x[n] is the input signal. 

 

The notation P+Q order ARMA refers to the model with P AR terms and Q MA 

terms. This model contains the AR and MA models: 
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AR models have been applied to EEG signals over many years now. The first 

applications of AR modeling on EEG are described in [92] [93], where the models 

were used to simulate artifacts. Other EEG applications include spectral analysis [94], 

segmentation [95] [96] and feature extraction [97]. In order to use AR modeling 

methods, a careful selected model order becomes a major issue. Normally the order 

selection can be achieved manually based on the prior knowledge of the application or 

automatically by techniques such as the Akaike Information Criterion [98] and 

Bayesian information criterion [99]. However, in general these automatic order 

selection criteria are of limited use since sometimes inappropriate model orders are 

estimated [100].  

 

In BCI applications, AR modeling can be applied to remove EOG artifacts from 

EEG signals [101]. The process starts to calculate the AR parameters for EOG signals 

in a training data set so that the specific character of EOG for a particular subject can 

be caught.  Those parameters then are used to separate the EOG artifacts in the 

subsequent data and the separated EOG signals are subtracted from the original EEG 

data to generate the non-contaminated EEG. One problem in using the AR model is 

that the EOG signal to be subtracted from the EEG signal is also contaminated with 

the EEG signal, so subtracting the EOG signal may also remove part of the EEG 

signal.     
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The reduction of EMG artifacts through AR modeling methods is more difficult 

since EMG has a more random presentation in time which means there is no reference 

to assist AR in calculating the appropriate parameters [102].     

 

2.7.4 FFT 

Sometimes, in order to analyse the data signals for their frequency content, data have 

to be converted from the time domain into the frequency domain. This is 

accomplished by the Fourier transform (FT) [103] [104]. The discrete Fourier 

transform (DFT) [105] is one of the specific forms of FT. An FFT allows the DFT to 

be obtained rapidly and efficiently [106] [107]. The definition of a DFT can be written 

as the following: 
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where ][nz are input signals, N is the length of data. In the case of N-sample signal, 

the total number of steps in the computation of the DFT is thus N2. A FFT algorithm 

(for example Radix-2 algorithm [108]) requires the number of samples in the signal be 

a power of 2. The computing time for the radix-2 FFT is proportional to )(log2 NN . 

So for example a transform on 1024 points using the FFT runs about 100 times faster 

than using the DFT. In addition, the term of window is to generate a smoother and 

more reliable estimate of the distribution of power. This is achieved by averaging 

neighbouring periodogram intensities across frequencies.  

 

The process of determining the amplitudes of frequency components of a signal is 

called the spectrum analysis [109]. The spectrum analysis separates the signal into its 



 
Chapter 2     Electroencephalography and Brain-computer Interfacing  
 

 42

specific sinusoidal and cosine waveforms. The resultant frequencies can be used to 

calculate signal power spectrum which shows a distribution of power values as a 

function of frequency. In the frequency domain, the power is the square of FFT’s 

amplitude.  

 

In EEG applications, the spectral analysis separates the relative contribution of the 

different frequencies in the signal. The analysis is able to reduce the noise which is 

achieved by selecting and discarding the noise’s troublesome frequency component(s) 

from the signal [110] [111], then the result can be represented either as the power or 

as the energy within the particular frequency band. Moreover in BCI applications as 

the rhythmic activities (for example μ, β rhythms) are generally the components of 

interest, spectral analysis based on FFT is able to straightforward compute the power 

spectrum of components [112]. However this task becomes more difficult in the case 

that the frequencies of noise and components of interest are overlapped and fall in the 

same frequency band [113].   

 

2.7.5 BSS 

Multi-channel EEG signals represent a mixture of a large number of individual brain 

sources. This is due to two reasons. First, one single action potential cannot be 

recorded in isolation from the scalp, so any potential change contained in the EEG 

recording is the effect of thousands of neurons firing simultaneously. Second, and 

more importantly, the recordings from each electrode are influenced by multiple 

(perhaps independent) sources in the brain, e.g. activity in the auditory cortex not only 

affects the electrodes directly above this brain area, but all other recording sites as 

well. Moreover, severe contamination of EEG activity by EOG, EMG, heart and line 

noise lead to a more serious problem for EEG interpretation and analysis.  
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Source separation problems in signal processing are those in which several signals 

have been mixed together and the objective is to find out what the original signals 

were. BSS is a technique to separate a set of source signals from a set of mixed 

signals, without the aid of information about the source signals or the mixing process 

[114]. BSS relies on the assumption that, for example, the signals may be mutually 

statistically independent or decorrelated [115]. It thus separates a set of mixed signals 

into a set of underling source signals. 
 

One of the key methods of BSS in recent years – Independent Component 

Analysis [116] – has the ability to extract the relevant information buried within noisy 

signals and allows the separation of measured signals into their fundamental 

underlying independent components (ICs). It has been widely applied to remove 

artifacts from EEG signals [117] [118] [119]. Studies in BCI applications have also 

shown that ICA is able to extract the signal based on morphology (in the time 

domain) [120] as well as the signal based on the spectrum (rhythmic activities) [121].  

 

Techniques such as coherent averaging, filtering and AR modelling, etc. can only 

process the data on the observed mixture domain which mixes sources of interest 

along with aritfacts. Such a limitation ensures that the extracted EEG activities 

possibly still contain the noise residue or the removed noise contains embedded 

within it part of EEG signals [122]. Unlike those techniques, BSS has the ability to 

separate the mixture of components of interest, artifacts and other components into 

their fundamental sources. By this means, ICA can extract the components of interest 

and reduce the noise at the same time. It is then possible to apply further processing 

only to a limited number of those isolated signals. This certainly promises the ability 

to achieve a better extraction performance than other traditional methods [123] [124].   

 

However it is worth noting that in the BCI literature ICA has been mainly used as 

a preprocessing step on the data [125] [126] – using ICA just to remove the artifacts, 

so not many studies focus on its applications beyond artefact removal. This thesis 
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explores the further functional ability of the ICA for the applications to BCI and 

extends BSS concepts by developing more advanced ICA techniques. The goal of 

applying BSS is to isolate the independent source signals so that the follow-on 

processes are able to achieve a much better classification performance even by using 

simple and easy techniques. Various methods for accomplishing this task will be 

discussed in more detail in Chapter 3. 

 

2.8 General discussion on the use of BCI 

 

In Summary, it has been shown that the EEG is a recording of the electrical activity in 

the brain, which is generally recorded at the scalp. It provides information pertinent to 

the diagnosis of a number of brain disorders and is now widely used in BCI. At 

present, the main aim in the development of BCI systems is to enable people with 

severe neuromuscular disabilities to drive computers directly by their brain activity 

rather than by physical means. An EEG based BCI system links the brain and a 

computer or other electrical devices together by using the ongoing EEG. By these 

means it helps the user to communicate with his/her environment and to provide them 

with additional assistance for a better quality of life. 

 

The circadian rhythm [127] is an approximately 24-hour cycle in the biochemical, 

physiological or behavioural processes. More specifically, humans have a wake-sleep 

cycle which is associated with different levels of alertness (i.e., the state of paying 

close and continuous attention). Generally speaking, the alertness increases during the 

daytime and drops during the night. Moreover in term of quantitative measures, in the 

EEG recordings, the power in the frequency bands of brain activities can be observed 

to cycle based on this circadian rhythm.  

 



 
Chapter 2     Electroencephalography and Brain-computer Interfacing  
 

 45

In the BCI literature, there is a lack of studies on the impact on EEG based BCI 

diurnal variations since no studies have actually involved running a BCI system for 24 

hours. However it is known that the key of a good BCI system, requires a high level 

of attention from users. That is to say, different levels of alertness in a wake-sleep 

cycle may affect the BCI performance. For example, because of the lack of alertness 

during the evening/night, users may even not be able to effectively concentrate their 

attention on the BCI tasks. Moreover if BCI runs over a long period and the brain 

activities used are related to rhythmic frequency band, since the spectral information 

varies over time then it may be that a re-calibration of the BCI classification criteria 

during the task will need to take place (for example, to update the threshold value 

which determines the classification decision point). From the BCI literature, since 

BCI experiments run over a relatively short period of time and the assumption is made 

that the alertness level and the spectral information remain the same during this time, 

therefore the performance of BCIs in this context should be stable.  

 

BCI development, in order to succeed, requires a close interdisciplinary 

collaboration amongst the engineering, neuroscience, psychology, computer science 

and rehabilitation communities. The research needs to discern the nature of 

electrophysiological phenomena through psychological processes, seek appropriate 

BCI paradigms using various control patterns and develop processing methods to 

efficiently translate control patterns into final outputs. Further development of BCI 

technology will depend on basic neuroscientific research as well as applied signal 

processing techniques. However the essential neuroscientific and psychological 

foundations of the field are not sufficiently developed. As a result, most current BCI’s 

have been developed primarily by engineers and other technically oriented groups 

with limited expertise in behavioural principles and methods. High-level intellectual 

and cognitive functional patterns are not able to benefit from the current BCI usage as 

yet.  
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In the BCI literature, five different EEG activities form five types of BCI 

paradigms. Current BCI systems are able to be used in basic environmental control, 

for example, a binary choice system for answering yes/no questions, and word 

spelling. They can even be used to operate assistance devices, for example, a 

wheelchair. Due to the different fundamental signals that are used as the control 

feature, and due to the fact that each are used in different applications, there is not a 

unique quantity that could be reliably used to measure the performance of BCI 

systems. However, a fair comparison in several aspects, such as: speed and accuracy, 

training time, actual trial length and experiment accessibility, can help researchers 

select the most suitable method for specific applications. The key measure of BCI 

performance depends on speed and accuracy. For example, VEP based BCIs could 

operate a word processing program at a high rate of 10~12 words/min with a 

maximum accuracy up to 90% [50] [51]. SCP based word spelling BCIs can write 

about 0.15~3 letters/min with an accuracy of 65~90% [55]. P300 based word spelling 

BCI can type up to 5 letters/min with about 70~90% accuracy [48]. Spontaneous 

activity based BCI performing a binary selection (for example, yes/no questions) can 

achieve 10-15 bits/min with a maximum accuracy up to 95% [68]. A cortical neuron 

activity based speller can reach 15 words/min [82].  

 

However, another important measure to take into account is how long a training 

time is required. Basically VEPs and P300s are such natural brain activities that they 

therefore normally do not involve a training session. SCPs are, as their name suggests, 

very slow. SCP based BCIs require a long training time (several months in fact) so 

that users can learn to generate SCP activities. Spontaneous activity BCIs minimally 

need a few hours as a training session. Cortical neuron activity BCIs involve a 

specially designed training session so that users can learn how to control particular 

neuronal firing for specific applications. 
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The actual trial length of EEG recordings for BCI systems is also an important 

factor; that the longer such a segment is, the more time is needed to complete its 

processing. For example, VEP based BCIs detect signals of interest in the frequency 

domain and a trial lasting around 2.0 – 4.0s is able to provide sufficient spectral 

information for the processing. The duration of natural SCP potentials lasts 0.5 – 

10.0s which indicates the actual trial length of such BCI systems needs to be long 

enough to capture the potentials. In theory P300 waveforms peak at 300ms, the length 

of these trials should thus be long enough to cover this P300 peak. The actual word 

speller paradigm [48] in P300 based BCI applies a faster stimulus representation so 

that 15 repetitions of a stimulus only needs 2.5 – 3.5s. Spontaneous activity based 

BCIs also process the signal in the frequency space. The actual trial length is around 

4.0 – 6.0s. The trial length of cortical neuron activity based BCIs is short, around 

several tens to hundreds of millisecond. 

 

Experimental accessibility can determine how easily users can access the BCI 

systems. Generally speaking, the preparation for VEP, SCP, P300 and spontaneous 

activity based BCIs are similar. They all use scalp EEG recordings, commonly using 

scalp electrodes following the 10/20 placement system, a computer program based 

instruction and stimulus presentation and output devices, such as a computer and 

wheelchair etc. Moreover the electrodes are easy to don/ remove. Cortical neuron 

activity based BCI requires extensive surgery to implant electrodes into the cortex. 

The whole process needs to be done by professionals and is very expensive and may 

have potential risks of brain infection and other such injury. Because of these reasons, 

cortical neuron activity based BCIs cannot be broadly applied at this stage. 

 

From the above factors, one paradigm suitable for all application and all possible 

BCI users does NOT exist. Matching the user’s need is essential so that BCIs can be 

broadly applied to assist users with different disabilities. From four existing BCI 

methodologies based on non-implanted recordings, if the text based communication is 
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the user’s need, then VEP and P300 based BCIs appear the best choice based on a 

summary of their performance factors. If users want to control the computer cursor to 

select/click buttons on screen or even drive a wheelchair, then spontaneous activity 

based BCIs are most suitable. A BCI system that can combine various activities and 

can achieve different functions would provide more flexible and practical option for 

different users and tasks.        

 

However from BCI literature, the signal processing for BCI is made more difficult 

by the fact that EEG recording is easily affected by artifacts. The BCI study in this 

thesis is undertaken with an aim to develop and examine advanced BCI techniques, 

mainly in the signal processing field. In traditional BCI applications, signal 

processing techniques such as coherent averaging, filtering, AR modelling and FFT 

were used to reduce the artifacts and improve signal SNR. However due to their 

functional limitation, those techniques do not extract the components of interest well. 

Therefore a number of additional processing steps have to be used to solve such 

problems.  

 

A simple step is to apply a number of reinforcements in the data recording stage. 

The idea of applying the reinforcement ensures that enough temporal signal 

information gathering for the further processing, for example, for the use of the 

averaging and the majority vote technique. However, as a result, the experimental 

processing time has to be prolonged. Another step is to increase the number of 

recording electrodes so that the enough multi-channel signals are collected to find the 

best spatial electrode positions, which also will make the experiment time 

unnecessarily longer by electrode placement and processing very large data input.  

 

As the BSS, especially ICA, separation technique has the unique ability to isolate 

the mixed signals into their underlying sources which can maximally extract the 

components of interest and reduce the artefacts, it has been widely applied to many 
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biomedical applications as well as to BCI systems. However in most study cases, ICA 

acts as a preprocessing step to clear the signals, then a number of further complex 

techniques take on the role to deal with feature extraction and final classification 

problems. This thesis proposes to apply and develop advanced ICA techniques so as 

to exert the advantages of ICA to this field. Therefore ICA plays the role of a 

combination of the signal preprocessing and feature extraction steps and at the same 

time simplifies the complexity of the classification process so that even a simple 

linear classifier can achieve a very good performance.  

 

The proposed ICA techniques mainly work towards optimising two major issues: 

reducing the amount of reinforcement needed (i.e. reducing the recording time needed) 

and reducing the number of recording channels so that the total experimental time can 

be reduced. Moreover this work is in the context of increasing classification accuracy 

or at least with it remaining the same as the current final classification accuracy. The 

proposed techniques are demonstrated on two popular BCI systems in three aspects, 

multi-channel ICA algorithms for ERP based BCI; multi-channel ICA algorithms for 

spontaneous EEG based BCI; and, single channel ICA algorithms for ERP based BCI. 

As the time scale for this BCI study is limited, there is not a schedule to explore an 

application of single channel ICA on spontaneous EEG based BCI.  

 

The next chapter introduces the standard and goes in some depth into the ICA 

concept, history, different types of implementations and applications. It also explores 

at a higher level, more advanced ICA techniques. 



 

 

 

 

 

CHAPTER 3  
 

Independent Component Analysis 

 

3.1 Introduction  

 

Blind source separation (BSS) refers to the problem of recovering signals from 

several observed linear blind mixtures. The attraction of the BSS model in signal 

processing is that only mutual statistical independence between the source signals is 

assumed and no a priori information: such as the characteristics of the source signals, 

the mixing matrix or the arrangement of the sensors is needed. Several simultaneously 

active signal sources at different spatial locations can then be separated by exploiting 

mutual independence of the sources. Nowadays, BSS methods such as Independent 

Component Analysis (ICA) are increasingly being used in biomedical signal 

processing and analysis.  
 

This chapter first gives an introduction about the background to ICA, ICA theories 

followed by a detailed explanation of popular ICA algorithms which show the various 

architectures to achieve the goal of source separation. The chapter also introduces 

major processing steps to implement ICA algorithms. Moreover several advanced 

ICA algorithms with constraints and novel concepts of ICA applications on single 

channel or a few channels are highlighted and reviewed. Finally the chapter ends with 



 
Chapter 3     Independent Component Analysis  
 

 51

a summary of the existing ICA applications in the literature and a summary of this 

chapter.     
 

3.2 ICA background 

 

In the biomedical signal processing field, a major task is to extract information of 

interest from a set of observed measurements. The recorded biomedical signals, 

especially brain electromagnetic (EM) signals, contain a finite set of activities which 

are overlapped both in space and in time. These activities are generated by the body or 

are artifactual in nature. So basically the information of interest is seldom recorded in 

isolation but generally mixed with other background activities, for example artifacts 

from physiological and environmental origins, and the recorded data are nearly 

always contaminated by such ‘background’ noise. For this reason, the SNR of the 

desired signal is generally quite poor. From the point of view of the signal processing, 

it would be ideal to unmix and separate the sources of interest from a set of noisy 

biomedical signal measurements.  

 

Within the above context, ICA, one type decomposition technique, has the ability 

to correct or remove signal contaminates. ICA is a statistical and computational 

technique for revealing hidden sources/components that underlie sets of random 

variables, measurements, or signals [128]. This technique attempts to unmix the 

observed signals into some number of underlying components and usually allow 

remixing those sources that would result in a clear version of the measured data. 

  

An early ICA algorithm which made a linear source separation possible was 

proposed by Jeanny Herault & Christian Jutten in 1986 [129] and then the phrase 

‘independent component analysis’ first appeared in their publication [130] in 1991, 

Further work to develop the ICA technique and for the first time explain it from the 

statistical point of view was written by Pierre Comon in his work [131]. There are a 
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large number of papers in the literature utilizing ICA for many applications. More 

details about the applications appear later in this chapter. A common application of 

the ICA separation problem is to solve the so called “cocktail party” problem where a 

number of people talking simultaneously are recorded in a party. The objective of this 

problem is to find out what the original individuals’ voice signals were. Although this 

is a common example of ICA, it is actually a challenging problem due to the 

non-instantaneous mixing of the sources.    
 

In order to use ICA algorithms successfully there are a few strong general 

assumptions that must be made about the sources themselves and the source mixing 

conditions before these can be applied to the measured data and any proper sense 

made of the results. A more common assumption of the ICA separation problem is 

made that the unknown underlying sources, which are independent of each other are 

linearly combined to form a mixed signal. When this independence assumption is 

correct, ICA can separate these mixed signals and returns the independent 

components (ICs).  

 

For example, source signal vectors at time instant t s(t)=[s1(t), s2(t), …, sn(t)]T are 

mixed and formed as vectors x(t)=[x1(t), x2(t), …, xm(t)]T which are the observed (or 

mixed) signals, and the mixing matrix A with the dimension m×n describes the linear 

combination of sources s: 

 

x(t)=As(t),                            (3.1) 

 

m stands for the number of mixed signals, n indicates the number of sources and both 

of them have the same number of samples. Generally, it is assumed that the number of 

sources is less than or equal to the number of measured data channels (n≤m). 
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For example, we have four independent sources on the left in Figure 3.1, and these 

get mixed by a random mixing matrix A. The signals on the right in Figure 3.1 are the 

observed (mixed) signals. 

 
The task of ICA is to recover the original sources s(t) from the mixed signals x(t) 

through finding an unmixing matrix W, and obtain the independent component simply 

by:  

 

ŝ(t)=Wx(t),                          (3.2) 

 

Where unmixing matrix W is equal to the inverse of the mixing matrix A, and ŝ(t) are 

the resulting estimates of the underlying sources s(t). Figure 3.2 shows the process to 

find the estimated sources by ICA from the observed signal which is mixed in Figure 

3.1.   

A 

Figure 3.1: Four independent sources are mixed by a random mixing matrix. The sources 
shown on the left and observed signals on the right. 
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3.2.1 ICA generative models 

In actual fact equation 3.1 is a basic and simplified mixing model. A more general 

mathematical model which has no assumptions on the data signal (other than 

instantaneously mixing) can be summarized as the following,  

 

x(t)=f{s(t)} + n(t)                        (3.3) 

 

where f indicates any unknown function and n(t) is the additive random noise vector. 

Now in equation 3.3 the ICA problem becomes, to obtain an unmixing matrix by 

inverting f and to map the observed signal to the source space without knowing 

information neither of f, s or n.  

 

Based on assumptions of linear mixing, ICA can fall into two apparent models: 

linear ICA and nonlinear ICA.  

W

Figure 3.2: The mixed signals (on the left) are recovered by ICA into the independent 
sources (right). 
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3.2.2 Linear noisy ICA 

The assumption of linear mixing of source data simplifies equation 3.3 to 

 

x(t)=As(t)+n(t),                        (3.4) 

 

where A is the linear mixing matrix as the same as in equation 3.1. The linear ICA 

technique is simple and works efficiently in linear mixing environments. In brain EM 

signal processing applications, a reasonable assumption can be made that the 

underlying sources are mixed by using an instantaneous linear superposition of them 

at the measurement channels. Data signals based on such an assumption are, for 

example, fMRI and EM brain signals.  

 

3.2.3 Linear noiseless ICA 

A linear noiseless ICA is based on the assumption that the mixed observation data 

signals x(t) are noiseless or the noise n(t) is small enough to be ignored, then equation 

3.4 reduced to equation 3.1.   

 

x(t)=As(t),                            (3.1) 

 

Obviously this assumption reduces the complexity of the mixing model, but it also 

makes the mixing probably less realistic. However this noise-free model may be thus 

considered a tractable approximation of the more realistic noisy model since the noise 

here during the data recording can be regarded a source of its own in nature. In this 

regard, this approximation of using the simpler model seems to work. 
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3.2.4 Nonlinear ICA 

In a nonlinear ICA model, the assumption is made that the mixing of the sources does 

not need to be linear. The nonlinear mixing theory is proposed due to the basic linear 

model often being too simple for describing the observed data adequately. In this 

aspect, nonlinear ICA would be suitable for the applications of nonlinear mixtures. 

However in general this nonlinear ICA is often intractable and difficult to apply, since 

the indeterminacies in the separating solutions are much more severe than in the linear 

case. [132] [133] [134] [135]. Therefore the separation of the nonlinear ICA problem 

is usually highly non unique and generally the separating processing requires addition 

prior information. 

 

This study mainly concentrates on the linear noiseless ICA model for the reasons 

that the recording data are EM brain signals (especially EEG signals) which are 

assumed to be instantaneously and linearly mixed by underlying brain sources; the 

noise added to the observation can be assumed to special underlying “sources” 

participating in the mixture; most outputs of existing ICA research are based on this 

simplified ICA model and work well for certain linear mixed real data.   

 

3.2.5 ICA for convolutive mixing problems 

Many ICA algorithms have been proposed to solve BSS supposing that the 

observations are instantaneous mixtures of the sources. However sometimes the 

mixing is known as convolutive mixing. This is normally due to the fact that the 

source signals have different time delays in each observed signal due to the finite 

propagation speed in the medium. Moreover, each observed signal may contain 

time-delayed versions of the same source due to multipath propagation caused 

typically by reverberation. That is to say observations are the convoluted mixtures of 

the sources and not instantaneous mixtures. 
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The convoluted mixing problem can be solved by extending ICA algorithms 

developed for instantaneous mixtures. Basically the convolutive BSS problem can be 

solved by two types of approaches. One approach is to work in the time domain [136], 

however working in the time domain has the disadvantage of being rather 

computationally expensive, because of the need to calculate many convolutions. More 

commonly the other approach works in the frequency domain and transform the 

convolution in the time-domain into multiplication in the frequency domain and then 

to apply ICA methods for instantaneous mixtures [137], [138], [139]. Some 

applications using the convoluted mixing model for particular areas (such as the 

enhancement of mixed speech signals) have been published elsewhere [140], [141]. 

 

3.3 ICA estimation principles 

In order to estimate statistical independence, some basic definitions and terminology 

are needed to introduce a more formal understanding of ICA estimation. 

 

3.3.1 Cumulative distribution function  

In statistics, the cumulative distribution function (CDF), also known as the probability 

distribution function or just distribution function [142], represents the probability 

distribution of a real-valued random variable. Probability distributions are typically 

defined in terms of the probability density function (PDF). For a continuous random 

variable, a PDF represents a probability distribution. The definition of the probability 

that the variable x is less than or equal to x0 is: 

 

∫ −∞=
=≤=

0
)()0()(

x

x x dxxpxxpxP ,                   (3.5) 
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where P(x) represents the CDF of a given random variable x, and px(x) is the PDF of x. 

For example, Figure 3.3 shows that the calculation of P(x) is also equivalent to 

finding the shaded area underneath the PDF curve.  

  

 

3.3.2 Moments 

The concept of moments in mathematics initially comes from physics [143]. A 

general definition in mathematics for n-th moment of a real variable is  

 

∫
+∞

∞−
= dxxpxx x

nn )(]E[ ,                       (3.6) 

 

where E indicates the expectation operator, px(x) is the PDF. In statistics some lower 

order moments represent the measurement of particular properties.   

Figure 3:3 A PDF function with a Gaussian distribution. The calculation of P(x) is 
equivalent to finding the shaded area underneath the PDF curve. 
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(1) First moment 

The first moment corresponds to the mean value (normally represented by μ ) of a 

random variable x which is also known as the expected value of variable x. It can be 

defined as: 

 

∫
+∞

∞−
= dxxxpx x )(]E[ ,                       (3.7) 

 

The mean determines the centre of probability distribution of variable x.    

 

In some cases it is convenient to consider an alternative form of moment: the 

central moment. In general, the n-th central moment of a variable can be written as: 

 

∫
+∞

∞−
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nn )(μ)(]μ)E[( ,                 (3.8) 

 

(2) Second moment 

The second moment E[x2] of variable x can be formed as, 

 

∫
+∞

∞−
= dxxpxx x )(]E[ 22 ,                     (3.9) 

 

The above can also be shown as 

 

]μ)E[(]E[]E[ 222 −+= xxx ,                   (3.10) 
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where ]μ)E[( 2−x  is the variance of the variable x (it is normally represented as σ2). 

Variance is a measure of the averaged squared distance of its possible values from the 

mean. For example, assume there is real-valued random variable x which has a 

Gaussian/normal distribution with mean μ =0 and variance σ2 =1. Figure 3.4 visually 

indicates the mean and variance of the given distribution.    

 

 

 

(3) Third moment 

The third moment E[x3] of variable x can be defined as 

 

∫
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= dxxpxx x )(]E[ 33 ,                       (3.11) 

Figure 3.4: An illustration of mean and variance of a given Gaussian/normal distribution. 
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The third central moment of variable x is known as the skewness of x. Skewness is a 

measure of the “lopsidedness” of the distribution. 

 

(4) Fourth moment 

The fourth moment E[x4] of variable x can be defined as 

 

∫
+∞

∞−
= dxxpxx x )(]E[ 44 ,                        (3.12) 

The fourth moment is commonly expressed through its Kurtosis [144], which for a 

zero mean process is defined as: 

 

Kurt(x) = 224 ]E[3]E[ xx − ,                     (3.13) 

 

Kurtosis is a measure of whether the distribution is “tall and skinny” or “short and 

squat” of the probability distribution of variable (more details given in Section 3.5.1). 

For example, Kurtosis is zero for a Gaussian random variable. Kurtosis can also be 

positive or negative. A random variable with a super-Gaussian distribution has a 

‘spiky’ PDF and a positive Kurtosis. Whilst a random variable with a sub-Gaussian 

distribution has a ‘flat’ shaped PDF, then Kurtosis is negative. Figure 3.5 illustrates 

examples of Gaussian, super-Gaussian and sub-Gaussian distributions.   
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3.3.3 Cumulants  

The terms, cumulants [145] of a distribution are closely related to the moments of the 

distribution. For n = 1, the n-th cumulant is just the expected value or mean; for n = 

either 2 or 3, the n-th cumulant is just the n-th central moment; for n ≥ 4, the nth 

cumulant is an n-th-degree monic polynomial in the first n moments (about zero), and 

is also a (simpler) n-th-degree polynomial in the first n central moments. For example 

Kurtosis is the fourth-order cumulant.  

 

3.3.4 Independence and correlation  

Correlation [146] is one of the most common statistics which describes whether and 

how pairs of variables are related. Correlation is often measured as a correlation 

coefficient 

 

Figure 3.5: An illustration of the shape of Gaussian, super-Gaussian and 
sub-Gaussian distributions.  
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where yx,ρ  indicates the correlation coefficient between two random variables x and 

y. xμ  and yμ represent the mean values for x and y.  

 

From the above definition, when the correlation coefficient is close to 1, this 

indicates a strong correlation between this pair of variables, -1 means a strong 

negative correlation and values in between denote a certain degree of linear 

relationship between the variables. If the correlation coefficient is close to 0, then it 

indicates no correlation (uncorrelatedness) or a weak correlation between pair of 

variables.  

 

If the variables are independent then the correlation is 0, but the converse is not 

true. For independence,  two random variables x and y must meet the condition that 

if and only if the following exists 

 

]E[]E[],E[ yxyx = ,                        (3.15) 

 

then the two are independent. As equivalent, if x and y have PDF px(x) and py(y), then 

independence between x and y is equivalent to [147] 

px,y(x,y)= px(x) py(y),                        (3.16) 

where px,y(x,y) is the joint probability density function of x and y. 

 

Intuitively independence is in general a much stronger requirement than 

uncorrelatedness: it is interpreted as a stricter condition than the condition of 

uncorrelatedness. 
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3.3.5 Obtaining a measure of independence  

The key assumption for the ICA to be successful is that the source signals need to be 

non-Gaussian. ICA uses non-Gaussianity to measure the independence of the signals. 

Given a set of mixtures, ICA finds each source signal by finding that unmixing vector 

which extracts the most non-Gaussian source signal for the set of mixtures. Therefore 

the measurement of non-Gaussianity is defined as a separation strategy of the signals. 

For example, considering a simple example, assume there are two random sources s1 

and s2 with uniform distributions (non-Gaussian) and that they are mixed linearly to 

form observed signals x1 and x2 by the following mixing matrix 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2.04.0
8.05.0

mixA , 

 

By plotting the amplitude of one signal at each time point against the corresponding 

amplitude of the other signal, Figure 3.6 shows the joint distribution of the two 

random sources s1 and s2 with uniform distribution. Figure 3.7 illustrates the joint 

distribution of the mixed signals x1 and x2. To make ICA work, a first step called 

whitening (more details in section 3.4.2) is applied as a preprocessing to the data. The 

whitening process is simply a linear change of coordinates of the mixed data. This 

means that any correlations are removed in the data. For the same example, Figure 3.8 

shows the effect of whitening on the mixed data. The square as seen in the graph 

indicates that the distribution of the mixed data after whitening clearly is a rotated 

version of the original square. After whitening, ICA then further rotates the whitened 

signals to try to identify the original measurements by finding the unmixing matrix 

that maximizes the non-Gaussianity. Obviously the assumption of non-Gaussian 

sources is an important factor in the ICA estimation. This begs the question: what if 

the sources all have Gaussian distributions? Assume that two random sources s1 and 
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s2 with uniform distribution are linearly mixed by the above same mixing matrix. 

Figure 3.9 shows the joint distribution of the two random sources s1 and s2 with 

Gaussian distributions and Figure 3.10 presents the joint distribution of the mixed 

signals x1 and x2. After the whitening step, the distribution shown in Figure 3.11 

appears nearly symmetric. This indicates that there is insufficient directional 

information to help ICA rotate the signal back to the original measurement. Therefore 

if there is more than one Gaussian source underlying the measured/mixed data, then 

ICA can not separate the signals into their underlying sources. In the case of only one 

Gaussian source in the signals, after the non-Gaussian sources are extracted, the 

residual is the Gaussian source. That is to say ICA still works as long as there is only 

one source with a Gaussian distribution.  

 

To use the non-Gaussianity as a metric, the ICA model needs to define a quantitative 

measure of non-Gaussianity of a random variable, for example, Kurtosis and 

Negentropy (more details in Section 3.5.2). 
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Figure 3.7: The joint distribution of these two mixed signals, x1 is in the horizontal axis 
and x2 in the vertical axis. 

Figure 3.6: The joint distribution (variables) of sources s1 and s2 with uniform 
distributions. s1 is in the horizontal axis and s2 is in the vertical axis. 
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Figure 3.9: The joint distribution (variables) of sources s1 and s2 with Gaussian 
distributions. s1 is in the horizontal axis and s2 is in the vertical axis. 

Figure 3.8: The joint distribution of the two whitened data mixtures. 1x̂ is in the 

horizontal axis and 2x̂  in the vertical axis. 
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Figure 3.11: The joint distribution of the two whitened data mixtures. 1x̂ is in the 

horizontal axis and 2x̂  in the vertical axis. 

Figure 3.10: The joint distribution of these two mixed signals, x1 is in the horizontal axis 
and x2 in the vertical axis. 



 
Chapter 3     Independent Component Analysis  
 

 69

 

3.4 ICA Preprocessing   

 

In order to simplify and reduce the complexity of the problem for the actual iterative 

algorithm, generally two common steps of preprocessing are applied before the ICA 

algorithm: centering and whitening. 

 

3.4.1 Centering  

The most basic and necessary preprocessing step is to center the observed signal x 

[148], for example, to subtract the mean vector so that signal x becomes a zero-mean 

variable. Obviously source s is zero-mean too after this centering process. This 

preprocessing can simplify the ICA algorithms. However it does not indicate that the 

mean could not be counted in the processing. After estimating the mixing matrix A 

with centered data, the mean vector is added back to the centered estimates of s.  

 

3.4.2 Whitening  

Another important step is to whiten (or sphere) the data [148]. In a mathematical 

model, the observed data x can be linearly transformed to be a new dataset x̂  which 

is white by performing a linear transformation V, for example, Vxx =ˆ  so that 

covariance matrix of x̂ , Ixx =}ˆˆE{ T . This can be easily accomplished by setting V = 

C-1/2, where C = E{xxT} is the correlation matrix of the data x. It is easy to check 

}ˆˆE{ Txx  is now transformed to }ˆˆE{ Txx  = E{VxxTVT} = C-1/2C C-1/2 = I. After 

whitening, the components of x̂  are uncorrelated and their variances have equal 

unity.  
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Figure 3.3 – 3.5 show a simple example of whitening process on the data. In ICA 

literature, there are a number of different techniques to extract independent sources. 
 

3.5 ICA algorithms 

 

Here the most popular algorithms for ICA are separated into different groups: the first 

group relies on batch computations minimizing or maximizing some relevant criterion 

functions and the second uses adaptive algorithms based on stochastic gradient 

methods which is often implemented in neural networks. The algorithm based on the 

time structure of the sources [148] is considered as a separate case.  

 

3.5.1 FastICA 

FastICA [149] is one of the more popular and referenced ICA techniques in the 

literature. It attempts to separate underlying sources from the mixed data set based on 

their ‘non-Gaussianity’. A classical measure of non-Gaussianity is kurtosis or the 

fourth-order cumulant. The kurtosis of x is classically defined by  

 

kurt(x) = E{x4} − 3(E{x2})2,                    (3.13) 

 

where x is a zero-mean random variable. For a Gaussian x, the fourth moment E{x4} 

equals 4(E{x2})2. Thus, kurtosis is zero for a Gaussian random variable. For most 

non-Gaussian random variables, kurtosis is nonzero. Typically non-Gaussianity is 

measured by the absolute value of kurtosis. The square of kurtosis can also be used. 

These are zero for a Gaussian variable, and greater than zero for most non-Gaussian 

random variables. There are non-Gaussian random variables that have zero kurtosis, 

but they can be considered as very rare.  
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Kurtosis, or rather its absolute value, has been widely used as a measure of 

non-Gaussianity in ICA and related fields. The main reason for this is its simplicity, 

both computational and theoretical. Computationally, kurtosis can be estimated 

simply by using the fourth moment of the sample data. Theoretical analysis is 

simplified because of the following linearity property: If x1 and x2 are two 

independent random variables, it holds that 

 

)kurt(x)kurt(x)xkurt(x 2121 +=+                 (3.17) 

 

and  

 

)kurt(xa)kurt(ax 1
4

1 =                      (3.18) 

 

where a is a scalar. FastICA is to use a fast fixed-point iterative algorithm (to compute 

the iterated function, for example, the second step of the below FastICA algorithm in 

the sequence of given points) to find the local extrema of the kurtosis of the linear 

observed variables. In other words, as kurtosis is equal to zero for Gaussian 

distributed signals, the algorithm aims to maximize the magnitude of the kurtosis to 

make the estimated sources as non-Gaussian (independent) as possible.  

 

The fixed-point algorithm of FastICA can be described as the following steps: 

 

1. Set a random initial vector w(0) of norm 1 and k=1; 

2. Let w(k)=E{x(w(k-1)Tx)3}-3w(k-1). The expectation can be estimated using a large 

sample of x vectors; 

3. Divide w(k) by its norm. 

4. If |w(k)Tw(k-1)| is not close enough to 1, let k=k+1 and go to step 2. Otherwise, 

output the vector w(k).  
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The final output of vector w(k) equals one of the columns of unmixing matrix. The 

corresponding non-Gaussian source signal can be obtained through w(k)Tx(t), t=1, 

2, … To estimate n independent components, we need to run this algorithm n times.  
 

In the downloadable FastICA toolbox [150], the fixed-point parameter is set as 

1000 points. From the experiments, a remarkable property of FastICA is that only a 

small number of iterations usually 5-10, is usually enough to obtain the maximal 

accuracy allowed by the data set.  
 

3.5.2 Infomax ICA 

Another method of measuring non-Gaussianity is through negentropy. Negentropy is 

based on the information-theoretic quantity of differential entropy which is the basic 

concept of information theory [143] [151]. The entropy of a random variable can be 

interpreted as the degree of information that the observation of the variable gives. The 

entropy H of a random variable x with density px(x) is defined as  

 

∫= dxxpxpx xx )(log)()( -H                     (3.19) 

  

For random variables of equal variance, Gaussian random variables have the 

largest entropy which means least information. Entropy is small for distributions that 

are clearly concentrated on certain values, for example, if the PDF is very spiky 

(non-Gaussian). This indicates that entropy could be used as a measure of 

non-Gaussianity. In practise, it more likely uses a measure of non-Gaussianity which 

is zero for a Gaussian variable and always nonnegative for a non-Gaussian variable. 

Furthermore, differential entropy – or Negentropy – is defined as the difference 

between the entropy of a Gaussian random variable with the same variance as the 

observed random variable, and the entropy of the observed variable [152]. Negentropy 

J is given as follows 
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)()()( observedgauss xxx HHJ −= ,                    (3.20) 

 

where xgauss is a Gaussian random variable of the same covariance matrix as xobserved. 

Negentropy is always non-negative. It is zero when x has a Gaussian distribution and 

positive when x has a non-Gaussian distribution. 

  

Infomax ICA [153] is such an algorithm that measures the non-gaussianity of 

sources by using negentropy. It works based on a neural network gradient-based 

algorithm whose learning rule is based on the principle of information maximization 

(so called Infomax), and it maximizes the output entropy of a neural network with 

nonlinear outputs. By doing that, ICA is able to recover the original sources which are 

statistically independent. However the main problem with Infomax ICA is that it 

involves a gradient training algorithm so that the speed of the convergence is varied 

and the convergence depends crucially on the correct choice of the learning 

parameters.  
 

3.5.3 Temporal Decorrelation based ICA 

Unlike the above two ICA techniques, a totally different technique to perform ICA is 

to consider the time structure of the sources. The idea behind this approach is to 

capture the dependency structure of the observed signals using a set of square 

matrices (or a stack of matrices) and then find the unmixing matrix [154]. One of the 

practical methods based on this time structure can be achieved through temporal 

decorrelation (TD) [155] [156]. For sources with stationary waveforms and unique 

power spectra, the time structure is adequately captured by temporal 

cross-covariances [157] [158]. The decorrelation operation in time structure ICA 

methods involves the joint diagonalization of a set of symmetric matrices which 

reflect the spatio-temporal covariance structure of the source mixture.  
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}{ T x s TE x( , )x ( , ) C AC At t τ ττ τ = = ,                 (3.21) 

 

τ indicates the time delay, normally τ  are a set of delays, for example, 1, 2, 3, …. T 

denotes matrix transpose xCτ  is the signal cross-covariance matrix and sCτ  is the 

source cross-covariance matrix. The TD approaches is defined based on the statistical 

independence of the sources. Furthermore, algorithms have recently been developed 

for non-orthogonal joint diagonalisation that process signal covariances directly with 

no need for pre-whitening, one such algorithm is used here and is called LSDIAGTD 

[159]. 

 

TWWCC xs
ττ = ,                       (3.22) 

 

The coefficients of the unmixing matrix W is optimized in such a way to transform 

the signal covariances matrix stack into the source covariances matrix stack as 

diagonal as possible since diagonal is assumed as independence. Figure 3.12 indicates 

the transformation between two covariance matrix stacks. Once W is estimated, each 

of the independent sources can then be separated by s=Wx.  
 

Due to the specific assumptions, TD based ICA works fine on the stationary 

source waveforms with unique power spectra. However, the applications of the 

long-term biomedical signals recordings are unlikely to remain stationary. However if 

the assumption is made that the auto-correlation function of the source is slowly 

varying in time, so that the sources are basically stationary over short time windows, 

then the TD approach can be adapted to process non-stationary signals by using such 

short time windows and further applied to estimate the mixing matrix in the usual way 

[154]. Another issue worth noticing in this technique is the appropriate choice of the 

number of time lags which are used to describe the spatio-temporal covariance of the 

data. There could be an automatic method to select the average number of time lags of 
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the data by using statistical the selection model, but it may cost a huge computation 

time in practice [154]. Most of the present work prefers to set the number manually, 

based on experience and knowledge of the application domain (this may amount to 

trail and error) [160] [161].  

 

3.5.4 Dimensionality reduction 

Mostly it is true that the data are represented in a high dimensional form but the actual 

number of sources could be low dimensional. Especially when the number of 

channels exceeds the number of sources, the ICA approach applied on such a high 

dimensional space could waste much effort in dealing with irrelevant features. 

Therefore it is usually advantageous to reduce the high dimensional data into lower 

dimensional space as a first step. Singular value decomposition (SVD) [162] or 

principal component analysis (PCA) [163] are popular techniques for the dimensional 

reduction problem.   

  

Figure 3.12: The transformation between two covariance matrix stacks of sCτ and xCτ . The 

mixing matrix A transforms the covariance stack of the sources to the covariance 
stack of the observations and vice versa with the unmixing matrix W.  
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The SVD approach for dimensionality reduction condenses most of the 

information in a dataset to a few dimensions using eigenvectors of the transformed 

space. The equation for SVD of X (m x n matrix) is the following: 

 

TUSVX = ,                         (3.23) 

 

where U is an m x n orthogonal matrix, S is an n x n diagonal matrix with positive or 

zero elements, and VT is a transpose of the n x n orthogonal matrix. The diagonal 

elements of matrix S are necessarily equal to the singular values of X. The columns of 

U and V are, respectively, left- and right-singular vectors for the corresponding 

singular values. The dimension reduction process through SVD is to keep its first k 

(k<m) singular values. These k singular values are ordered in decreasing order along 

the diagonal of S and this ordering is preserved when constructing U and VT, 

therefore keeping the first k singular values is equivalent to keeping the first k rows of 

S and VT and the first k columns of U. after this, Equation 3.12 is reduced to Equation 

3.13  

 

TVSUX ˆˆˆˆ = ,                       (3.24) 

 

Û  is an m x k matrix, Ŝ  is a k x k matrix and V̂  is a n x k matrix. Then X̂  is the 

dimension reduced version of X.  

 

There is a direct relation between PCA and SVD in the case where principal 

components are calculated from the covariance matrix. Performing PCA is similar to 

performing SVD on the covariance matrix of the data. Given a set of data, PCA finds 

the linear lower-dimensional representation of the data such that the variance of the 

reconstructed data is preserved. When we project our data onto such a 

low-dimensional hyperplane, the variance of our data is changed as little as possible.  
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For the PCA algorithm, let Xm
T

  represent a data matrix with zero mean. The 

covariance matrix (Σ) of Xm
T is then calculated and the eigenvectors and eigenvalues 

of Σ are found. The basis of the data and the application could help us to select a 

number of first k eigenvectors with largest eigenvaules which would decide the 

dimensions of projected hyperplane.  

 

As the techniques don’t have a fixed number to decide the basic vectors. 

Therefore the dimensionality reduction is somewhat of an arbitrary process. A 

carelessly selected value of k to truncate the data could lead to the so-called 

“dimensionality reduction curse” [164] which could affect the performance.  

 

3.5.5 Source selection  

With the nature of the BSS problem and the techniques used in ICA, one assumption 

is that the number of observed mixtures must be at least as large as the number of 

estimated components, but the exact number of underlying sources is unknown. 

Therefore correct determination of the number of sources becomes a major problem. 

Generally the most common methods to select the number of sources are based on 

cumulative and relative variance thresholds. However these methods don’t offer the 

help to select the source(s) of interest after implementing ICA algorithms at all. 
 

In the literature [165] [166], the source selection can be done as a subjective 

process by the authors. The selection usually follows some subjective criterion related 

to the expected outcomes of the analysis. Especially in biomedical applications we 

may possibly have certain knowledge about the nature of some of the source signals 

which could be extracted from the recorded data in mind, for example, many 

physiological signal patterns (heart beat waveform and rhythmic brain activity) have 

particular temporal, spectral or time–frequency characteristics. In some multi-channel 
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applications, the scalp topography which tells the components' physiological origins 

forms another common method on source selection, such as eye blinks, saccades and 

bursts of muscle activity. However all of the above methods to choose sources of 

interest remain highly subjective. 
 

In a previous study a solution was proposed for source selection, which is to use 

prior information in the ICA model [167]. The idea behind it is to use only minor 

modifications of the estimation procedures, essentially by introducing constraints on 

the model, which can act on the spatial projections, or work on the temporal dynamics 

of the source waveforms. By adding prior knowledge into the model and letting ICA 

estimate the unknown parts, these modifications are presumed to guide the ICA 

solution to find an expected outcome. This may certainly help interpret the results 

meaningfully, although it is recognised that this may lead to sub-optimal results in 

some instances.  

 

3. 6 Constrained ICA   

 

Once a set of sources is determined through ICA, the ICs of interest must be identified. 

This is made difficult as the nature of the square mixing matrix means that a great 

many more sources will be identified over the expected (smaller) number of sources 

underlying the measurement set. In most specified signal processing applications, it is 

very often the case that the source signals which are aimed to extract are known to the 

applicants. Many expected signals or patterns have certain temporal, spectral or 

time–frequency characteristics. A practical way to extract only the sources of interest 

automatically is to use such prior knowledge or additional constraints on the source 

model – constrained ICA (cICA). Such prior information/knowledge is desirable and 

possible to add into the ICA model by only minor changes of the estimation 

procedures. These modifications can be achieved by imposing constraints on the 

model, for example to work on the spatial projections, or on the temporal dynamics of 
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the source waveforms. Such constraints are expected to guide the ICA solution to 

extract the ICs of the observations (if they are there). Some constraint selection 

techniques, for example, have been presented in a free ICA toolbox – ICALab [168]. 

Basically constrained ICA algorithms can be separated into two stages: the first stage 

is to apply an ICA algorithm to extract the suitable references signals; the second 

stage is to use some selected components as references signals in the constrained ICA 

applications. In order to extract more physiologically meaningful components, the 

selected references are better to give better signals for example the responses 

corresponding to pre-designed stimulus or events. 

 

3.6.1 Spatially-constrained ICA 

One example is to apply the spatial constraint on the mixing matrix which relies on 

specific prior knowledge regarding the spatial topography of some source sensor 

projections. This forms an advanced ICA algorithm called spatially-constrained ICA 

[154]. The idea of using spatial constraints in BSS was initially proposed in 

automated artifact removal in EEG. For example, the spatial topographies for 

eye-blink and eye movement can be included as an initial guess in the first two 

columns of the mixing matrix.  
 

The spatial constraint operates on initializing columns for mixing matrix A. A set 

of predetermined constraint sensor projections forms as reference columns denoted by 

Ac. Thus, the spatially constrained mixing matrix comprises two types of columns  

 

A = [Âc, Au]                         (3.25) 

 

where Âc ≈ Ac are columns subject to the constraint, and Au where are otherwise 

unconstrained columns (random values).  
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Depending on the application, the predetermined sensor projections forming the 

spatial constraint may be obtained from a source decomposition of a previous data 

segment using conventional BSS (ICA) methods [169]. Moreover in the algorithm, it 

is possible to choose one of three types of spatial constraint, namely hard, soft and 

weak spatial constraints which reflect the degree of certainty about the accuracy of 

predetermined source sensor projections. The columns of a hard constraint remains 

fixed, whereas the weak constraint only provides a starting guess for unconstrained 

subsequent estimation. Soft constraints limit the divergence between the constrained 

columns and their corresponding reference topographies [170]. Whilst column 

selection of the mixing matrix does not guarantee to offer good performance in the 

solution, it can help to separate the sources when they are present in the data. More 

information on the use of constraints can be found in [167] and [171].  

 

3.6.2 Temporally-constrained ICA 

Theoretically the ICA algorithm first converges to a single source with the largest 

negentropy of all the underlying ICs. However the algorithm is not guaranteed to 

converge to the global maximum due to random initialization of the ICA algorithm 

and other factors. The idea of using a temporal constraint is to guide the ICA 

algorithm to obtain a source output which is statistically independent of other sources 

and is closest to some reference signal [172]. This constraint (reference signal) does 

not have to be perfect, but it should be at least good enough to point the algorithm in 

the direction of a particular IC spanning the measurement space.  The closeness 

constraint can be written as 

 

,0)()( ≤−= ξε wwg                        (3.26) 

 

where w indicates a single unmixing weight vector, such that y=wTx; )(wε  denotes 
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the closeness between the estimated output y and the reference signal r, and ξ  some 

closeness threshold. The measure of closeness can be achieved by the methods such 

as mean-square-error or correlation, etc. For example using the correlation as a 

measure of closeness one can rewrite equation 3.15 as: 

 

,0)}({)( ≤−= ξxww TrEg                 (3.27) 

 

where ξ  becomes the threshold that defines the lower bound of the optimum 

correlation. The temporally-constrained ICA is now modelled as the following: 

 

Maximize: ,)}]({)}({[)( 2vxww T GEGEf −= ρ                  (3.28) 

Subject to: 1}{)(,0)( −=≤ 2yww Ehg  and ,01}{ =−2rE         (3.29) 

 

where f(w) denotes the contrast function; ρ  is a positive constant; v is a zero mean, 

unit variance Gaussian; G(.) can be any nonquadratic function; g(w) is the closeness 

constraint; h(w) constrains the output y to have unit variance; and the reference signal 

r is also constrained to have unit variance [172].  

 

3.6.3 Spectrally-constrained ICA 

In some applications, rhythmic EEG signals within the EEG recordings (specifically μ 

rhythm activity) are of interest, a predefined spectral reference is proposed to use as 

the constraint. This spectral constraint then allows only those source activities with 

the same power spectrum to be extracted via the cICA algorithm. In [160] a reference 

channel was added as an extra row to the measurement matrix x(t), such that a new 

matrix )(ˆ tx is created with 
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where c1(t) is a suitable reference vector. In order to observe changes in rhythmic 

activity in specific frequency bands, a filtered white noise with a particular power 

spectrum is often used as this reference vector. The ICA problem is now such that the 

extra row in the measurement space due to the reference vector results in an extra row 

in the IC space after the ICA step (as well as a corresponding extra column in the 

mixing matrix). For an n-channel system, the first n elements of the extra mixing 

matrix column [ 1
1

+na , 1
2

+na ,…, 1+n
na ] depict the spatial distribution (topography) of the 

new IC given by the row vector sn+1(t). Furthermore, each of the elements of the 

(n+1)th row of the mixing matrix reflects a weighting of each corresponding IC. This 

row vector, an+1, can in fact be used to depict the contribution of each topography 

described by the columns of the mixing matrix, due to the reference channel c1(t). In 

this way ICA now provides the desired convenient spanning basis, and can also be 

used to obtain the topography of interest (extracted by summing the weighted 

contribution of each column of the mixing matrix). Furthermore, the weighting value 

of each IC provides us with a spectrum of values that can be interpreted to gain some 

insight into the complexity for a given reference. The above technique can be readily 

extended to more than one reference. The extraction of rhythmic EEG signal 

components (such as epileptic seizures) by this spectrally-constrained ICA method 

have been shown in [173]. 
 

3.7 Single channel ICA 

 

In traditional multi-channel ICA analysis, the observation data must fulfil the 

following two primary conditions: 1) the underlying sources must be statistically 

independent, with static distributions; 2) the number of observations must be greater 
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than (or equal to) the number of sources expected to be extracted. From previous 

sections, the multi-channel ICA algorithms and applications are all based on these 

requirements. However since the data available for the analysis changes from 

multi-channel to single channel, the second condition no longer exists. One way to 

overcome this problem is to reform the single-channel into a multi dimensional 

representation via the method of delays [174] (also known as dynamical embedding 

[175]). Such an ICA algorithm on multi-dimensional data representation is called 

single-channel ICA (SC-ICA) 

 

3.7.1 The matrix of delays 

Dynamical embedding (DE) was firstly introduced by Takens [175]. It assumes 

that due to the non-linear interaction of just a few degrees of freedom, with additive 

noise, the measured signal exists as an unobservable deterministic generator of the 

observed data. This allows reforming the unknown dynamical system by constructing 

a new state space based on successive observations of the time series.  
 

The basic idea of DE is to structure an m-dimensional embedding matrix for an 

n-valued scalar data set. Assuming a single data channel with n elements: niix ,,1}{ K= , 

then delayed vectors in the constructed matrix are given as },{ )1(,,1 ττυ −++= mkkkk xxx L . 

The delay matrixυ is formed by obtaining kυ  for successive values of k, and 

combining these to form 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−+++−+

++++

++

τττ

τττ

ττ

υ

)1()()1(

)1(2

Nmtmtmt

mttt

Nttt

xxx

xxx
xxx

L

MOMM

L

L

,             (3.31) 

 



 
Chapter 3     Independent Component Analysis  
 

 84

where τ is the lag term, m is the number of lags (or the dimension of the matrix of 

delays) and N is the length of the matrix. After construction with these delay vectors, 

the matrix of delays is able to provide a topologically consistent representation of the 

underlying system so that the second primary condition is feasible. Therefore popular 

ICA algorithms can now be applied to the reformatted single channel data. Those 

techniques include FastICA, infomax ICA and other types of ICA algorithms 

described in the earlier sections of this chapter.  

 

In order to construct the matrix of delays or DE system, the parameters such as m 

and τ  need to be set to appropriate values. Obviously the choice of these parameters 

is an optimization process. In Takens’ theorem, if the number of degrees of freedom 

of the underlying system is given by D, then the Euclidean embedding matrix 

dimension m)  must be at least as large as D, but in practice must be such that,  

 

12 +> Dm) ,                          (3.32) 

 

Since in the real world, the value of D is unknown, another alternative method [176] 

is more practical in the studies. This method sets up the minimum size of m based on 

the sampling rate and the lowest frequency of interest as, 

,
L

s

f
fm ≥                             (3.33) 

where sf denotes the sampling frequency, and Lf the lowest frequency of interest in 

the measured signal. Depending on different applications, there could be a variety of 

methods to try to estimate the value of τ , in the literature on similar studies, the 

popular value was set to 1 [176].   
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3.7.2 Projection of the ICs 

After constructing a delay matrix, ICA is then applied which decomposes the delay 

matrix into a series of statistically independent components just as the multi-channel 

ICA application on multi-channel data does.  
 

Normally the number of ICs is the same as the dimension of the delay matrix m. 

As the delay matrix is simply composed of time-shifted versions of the original time 

series, each individual IC is hard to interpret in the source space. In this study in order 

to assess the significance of each IC neurophysiologically, it must be projected back 

to the measurement space in isolation such that 

 

,T
ii

i uaY =                            (3.34) 

 

where ui is the ith IC (i = 1, 2, …, m), ai the corresponding column of the mixing 

matrix A and Yi the resulting ‘matrix of delay vectors’. From Yi it now becomes 

possible to extract the projected time series, yi(t), by performing an average of the 

adjusted rows of the matrix Yi, in order to recover the time series, i.e.,  
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),1(,
1)( Y                        (3.35) 

 

where t is equal to 1, 2, …, N, and i
ktkY )1(, −+ refers to the element of Yi indexed by row k 

and column t + k – 1.  
 

3.7.3 Selection of the ICs  

Whereas in multi-channel ICA the columns of the mixing matrix A are interpreted as 

spatial distributions of their respective ICs, in SC-ICA these are interpreted as shifted 
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versions of the mixing filters (i.e. no spatial information but rather temporal 

information). As the independence of components is used as the important notion in 

multi-channel ICA applications, and it is not generally possible to linearly decompose 

a single time series into independent components. This study has to relax the notion of 

component-wise independence and turn to find and group the components of interest. 

Depending on different applications, specific signals such as particular epileptic 

activity or event-related evoked potential can be used for the purpose of grouping.  
 

Recent studies [177] [178] have applied SC-ICA to extracting such activities. The 

basic idea is to apply ICA to the matrix of delays, then project each resulting IC back 

to the measurement space. The selection of the most relevant ICs was based on the 

subjective analysis of wave morphology and on derived spectrograms of each 

projected IC. Results demonstrated that single channel analysis can extract 

meaningful information and achieve good signal resolution [179].  
 

However the subjective selection of relevant ICs has disadvantages. Obviously it 

is a slow process and cannot form an automatic robust system since it involves 

manual work. An approximate method [174] was introduced which intends to avoid 

the IC selection or the clustering step. The idea is to begin with a deflationary ICA 

algorithm on the delayed vector matrix. Followed by a step that forms a separation 

filter by using just a single basis vector from the unmixing matrix, one of the sources 

can be separated by applying this filter to the first extracted component. Depending on 

the data and the application, the algorithm can be repeated on the remaining signals to 

extract further related sources. From the results it is believed that this method 

performs efficiently, especially when there are only a small number of independent 

processes to be extracted. The algorithm mentioned in [174] is summarised as: 

a) create the delayed vector matrix from the selected data set, temporally whiten 

the signal and reduce the dimension by PCA;   

b) apply a deflationary ICA algorithm to learn the mixing matrix A;  
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c) create the separation filter )()()( tttf iii wa ∗−=  pi γ∈ pγ  is the selected 

subset of basis vectors; where ai(t) is the column vector of A, wi(t) is the row 

vector of W and * is defined as convolution; 

d) calculate the scaling parameter ap to adjust and rescale the filtered signal, ap is 

given as: )(),()()(),( trtrtrtftra pppipp ∗= , where ⋅⋅,  is the usual vector 

inner product and initially )()(0 txtr = ; )(trfa pip ∗  is the extracted source 

component; 

e) if further sources are needed to extract, calculate the residual 

)()()( 11 trfatrtr pippp −− ∗−=  and go back to Step (b). 

 

3.8 Space-time ICA 

 

When the input data is formed from a delay vector of samples, x(t) = [x(t); x(t-1), …, 

x(t-N +1)]T, source separation is still possible and the resulting SC-ICA can be seen as 

a special instance of multi-channel ICA. However this model carries a rather 

restrictive separability requirement. [174] introduces the notion of space-time ICA 

(ST-ICA) to relax this requirement. The data structure is treated in the same manner 

as the SC-ICA. Moreover the dimension of the observation is augmented by including 

a number of delayed copies of observations. The definition of the O × T - dimensional 

space-time vector x~ (t) is as: 

 

x~ (t) = [x(t),  x(t - 1), …, x(t - T + 1)]T                (3.36) 

 

where N is the number of copies in the delay vector. This can now be treated as an O 

× T dimensional multi-channel ICA application. In this way the problem is now 

translated and performed to be an example of a standard ICA algorithm applying on 
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this multi-dimensional matrix. This is called ST-ICA, and can also use the same 

component projection and selection techniques as in SC-ICA.  
 

3.9 Applications of ICA in the literature 

 

The data analyzed by ICA could originate from many different kinds of application 

fields, including digital images and document databases, as well as economic 

indicators and psychometric measurements. In many cases, the measurements are 

given as a set of parallel signals or time series; typical examples are mixtures of 

simultaneous speech signals that have been picked up by several microphones, brain 

waves recorded by multiple sensors, interfering radio signals arriving at a mobile 

phone, or parallel time series obtained from some industrial process. 

 

One of ICA decomposition example is to use ICA to find filters for natural images 

and, removing noise from images corrupted with additive Gaussian noise [180]. 

Another emerging application area is telecommunications. A good example of a 

real-world communications application where ICA techniques are useful is the 

separation of the user’s own signal from other interfering signals in CDMA mobile 

communications. In the field of communication networks a phenomenon called 

multipath [181] is the propagation that results in signals’ reaching the receiving 

antenna by two or more paths. Affected by the multipath, the observed signal is a 

convolutive mixture of the source signals which have different time delays due to the 

finite propagation speed in the medium. In order to solve this convoluted mixing 

problem and separate independent sources, some publications [182] have shown that 

the ICA algorithm is able to effectively decompose the received signals into the 

independent paths and noise term and hence provides information about the delay 

estimate of these paths. 
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Not very long after the appearance of ICA, it has been broadly applied to 

biomedical signal and image processing, such as the analysis of electrocardiography 

(ECG) [183] [184], EEG [185], MEG [119], and fMRI [186]. When using an 

electromagnetic record as a research or clinical tool, the investigator may face a 

problem of extracting the essential features of the neuromagnetic signals in the 

presence of artifacts. The amplitude of the disturbances may be higher than that of the 

brain signals, and the artifacts may resemble pathological signals in shape. ICA 

techniques can separate the underlying activities from noisy signal. Moreover 

advanced constrained ICA has been used in the artifactual waveform identification 

[173] as well as the EEG rhythmic activity separation such as to extract alpha 

activities or epileptic seizures [160]. Single-channel ICA techniques have also showed 

the ability to extract particular epileptic activities [178] [187].   

 

Moreover the application of EOG artefact removal has been embedded into 

several commercial devices, for example, EEG acquisition systems (g.tec® acquisition 

system [188] and the BIOPAC® system [189]) so that EOG artifact can be 

automatically removed from the recordings just by clicking the button. A commercial 

piece of software called Curry® [190] is used for brain source analysis and display, 

through EEG/MEG source localization packages. One of its features is to use ICA to 

visualize the spatio-temporal features of EEG and MEG data for the purpose of 

obtaining the maximum accuracy of electrical source analysis (this is manually 

performed and the ICA decomposition and subsequent analysis is left in the hands of 

the user of the software).  

 

3.10 Summary    

 

This chapter introduces the concept of ICA which is a method for performing BSS on 

time series. ICA techniques make two important assumptions – one is based on the 



 
Chapter 3     Independent Component Analysis  
 

 90

type of mixing of the independent sources and the other on how the statistical 

independence of those sources is measured. Of the many possible algorithms towards 

solving the BSS problem, ICA is popularly solved through the use of higher order 

statistic techniques which basically try to separate statistically independent sources 

based on their non-Gaussianity. Another ICA technique is based on using 

spatio-temporal and spatial-time frequency information. The main difference between 

these two techniques is that the latter technique uses the information inherent in the 

time-sequence of the measured data, but the former doesn’t. This chapter shows that 

adding prior knowledge and letting the ICA estimate the unknown portions which 

makes the source selection process much easier. This can be interpreted that ICA 

would generally be more useful if some more assumptions are made within the BSS 

model. This chapter also introduces the concept of using ICA on a single channel 

recording or on a few channels. Such applications of ICA are called single-channel 

ICA and space-time ICA. To make it work, a single channel or a few channel 

recordings need to be reformed to a multi-channel data representation by the method 

of delays. Such techniques bring the opportunity to use ICA in applications with the 

channel restriction. In the literature, many ICA applications can be found in the 

biomedical signal processing field as this very popular application domain.      



 

 

 

 

 

CHAPTER 4  
 

A BCI pilot study: preliminary analyses 

 

4.1 Background 

 

The Southampton Brain-Computer Interfacing Research Programme 

(http://www.bci.soton.ac.uk/) plans to examine the effect of spoken and written 

language on brain activities. The research programme brings together biomedical 

engineering and the clinical sciences within the life sciences interfaces and 

neuroscience initiatives in the University of Southampton. However, before such 

hypothesis-driven clinical work can be undertaken, a pilot study was proposed on 

normal subjects. It aimed to a) conduct P300 ERP paradigms to establish feasibility 

and baseline data for the Southampton BCI research laboratory; b) repeat protocols 

from previous BCI research [76], involving spontaneous EEG recordings during 

cognitive tasks, using both motor and non-motor imagery tasks and c) explore 

preliminary signal processing techniques to analyse the obtained signals produced by 

experiments conducted for the first two aims above, improving accuracy and 

reliability of previously used methods. The pilot study included both ERP (P300) 

paradigm and cognitive tasks (motor imagery and non-motor imagery tests). The 

interests here are to examine basic and advanced signal processing techniques on the 

data from the pilot study so that the necessary knowledge may be accumulated and 
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contribute towards follow-on studies. The final overall goal is to build user-friendly 

BCI systems to widen accessibility and compliance for use in rehabilitation.  

 

This chapter first introduces details of the pilot study regarding the choice of 

proposed tests, with a full description of the proposed test paradigms. The chapter 

then develops and demonstrates several proposed signal processing techniques related 

to different tests which include: averaging either in time or in the frequency spectrum; 

traditional ICA and spatially constrained ICA, and event related 

desynchronization/synchronization (ERD/ERS) mapping. Conclusions are then made 

after the proposed methods are compared and discussed.  

 

4.2 Methods 

4.2.1 Subjects 

Seven healthy subjects aged 20–60 years were involved in this pilot study (three 

males).  They were recruited from the staff and students at the University of 

Southampton. None of the subjects had attended any experiment similar to our 

proposed tasks before. Subjects were given an information sheet (Appendix A) and 

written, informed consent was obtained by each subject signing a consent form 

(Appendix B).  The studies were approved by the School of Health Professions and 

Rehabilitation Sciences Ethics Committee.  

 

4.2.2 Data acquisition  

The non-invasive technique of surface EEG was used to record signals from the brain 

during different test paradigms. The electrodes were the silver plated adhesive disk 

type. The EEG recordings were acquired by NeuroScan EEG apparatus in the EEG 

Laboratory in the School of Psychology. The recordings were digitized at 250Hz from 
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24 scalp electrodes (VEOG_1, VEOG_S, HEOG_L, HEOG_R, A1, A2, FP1, FP2, F3, 

Fz, F4, FT7, FT8, T3, C3, Cz, C4, T4, TP7, TP8, P3, Pz, P4, Oz all based on the 

International 10/20 system). A1 and A2 were used as the reference electrodes. From 

24 channels, 18 channels were selected (FP1, FP2, F3, Fz, F4, FT7, FT8, T3, C3, Cz, 

C4, T4, TP7, TP8, P3, Pz, P4, Oz) as those electrodes cover the active area of brain 

signals in this study. The discarded channels are EOG channels which contain mainly 

EOG noise. The visual stimulus programs are coded by the Presentation TM software 

[191]. 

 

4.2.3 Experimental paradigms  

Six types of experimental paradigms or protocols were explained and the standard 

instructions were given to subjects for each test. During the testing session, subjects 

sat still in a chair. Baseline EEG recordings were made during two 2-minute periods 

when the subject sat resting, first with eyes open and then with eyes closed.  

 

Test 1: Auditory oddball task (approximately 2 minutes) 

This experiment was a simple auditory ERP task which is expected to detect P300 

responses [59]. Auditory stimuli of high frequency and low frequency tones were 

delivered randomly through external speakers and the interval between stimuli was 

approximately 1s. Subjects were instructed to click a button on a computer mouse 

when noting the infrequent high frequency tone. During the procedure approximately 

50 high frequency tones out of 120 tones in total were presented. Subjects were asked 

to fixate on a cross in the middle of the screen during the test. 

 

Test 2: N400 sentence semantic congruent test  

The N400, another component with potential clinical use, is a negative going 

deflection that can be obtained in language tasks [192]. A typical situation for the 

reliable elicitation of the N400 entails the presentation of words that either match or 
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do not match a preceding context. This test can be done either in a sentence or a pair 

of words. For example, a sentence using context matching could be like the following: 

“I drink my coffee with cream and sugar/mud”; a pair of words context matching is 

like the following: “boat, ship/crater”. In the examples, “cream”, “boat” serve as 

previous context and the following word “sugar” or “mud”, “ship” or “crater” are the 

candidate words to match/un-match the previous context. Words that do not match the 

context give rise to a more negative waveform starting approximately 250ms after 

stimulus onset and peaking at about 400ms (Figure 4.1). The effect is widespread, 

normally having a maximal amplitude in the centroparietal area.  

 

For the test in this pilot study, several auditory sentences were presented, some of 

which terminated with a semantically congruent one-syllable word and others with a 

semantically incongruent one-syllable word. The onset of the final word served as the 

stimulus (with an investigator pressing the button immediately when the last word 

was presented). The N400 ERP component evoked by the incongruent end word is 

expected to have a longer latency than one in a word matching experiment. For 

example, the latency may be spread in the range from 400ms to 800ms. The test 

presented ten pairs of congruent/incongruent sentences while several seconds were 

used as the inter stimulus interval. The total duration of the test lasted about four 

minutes. 
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Test 3 & Test 4: Motor Imagery-left/right hand (approximately three minutes)  

The subjects were asked to imagine the movement of grasping and releasing right or 

left hand without actually moving [193]. Before recordings began, subjects were 

asked to practice actually grasping and releasing right/left hand a few times and notice 

how this felt. They were then asked to imagine doing this, while making sure that 

their hand did not actually move. They were instructed by words on the screen to 

“start” and they imagined the movement for 15 seconds until they were instructed by 

the word “rest”, when they stopped and rested for 5 seconds. There were 10 

repetitions for each hand imagery test, following the protocol published in [76].   
 
Test 5: Imagery-Spatial Navigation (approximately three minutes) 

Subjects were asked to imagine being in the familiar surroundings of their own home, 

moving from room to room [194]. They were asked to imagine scanning the rooms, 

rather than think about actually walking around, to avoid motor activity. The protocol 

consisted of the subject following the instructions on the screen to start imagery (15 

seconds) and then to stop and rest (5 seconds), involving 10 repetitions [76]. 
 
Test 6: Imagery-Music (approximately three minutes) 

Subjects were asked to think of a favourite song or a familiar tune they enjoyed [194]. 

Figure 4.1: Discourse-semantic N400 effect. Average ERP at Pz, elicited by a stimulus 
(critical word) that is matched (solid line) or mismatched (dotted line).[192]. 
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They were instructed to ‘listen’ to it in their head, without mouthing the words or 

moving any part of their body. This section had 10 repetitions.  

 

4.2.4 The data quality 

Despite standardised instructions being given to each subject and them remaining as 

still as possible while performing the tasks, there were some unexpected problems, 

including: presentation software crashed during the recording so that some trigger 

information was not captured; electrodes occasionally became detached from the skin 

and fell off; some electrodes produced high resistance and may have been faulty. 

These made some of the recordings impossible to assess and were discarded. The 

above means that the proposed analysis was only carried on the data which were 

practically available to us (Table 4.1).  
 

 

Subjects 
ID  

(1) 
 

P300 

(2) 
 

N400 

(3) 
Motor 

imagery 
right 
hand 

(4) 
Motor 

imagery 
left hand 

(5) 
 

Imagery
music 

(6) 
 

Imagery 
navigation 

1 9 9 9 9 9 9 

2 9 8 9 9 9 9 

3 8 8 9 9 9 9 

4 8 8 9 9 9 9 

5 8 8 9 9 9 9 

6 9 8 9 9 9 9 

7 8 8 9 9 9 9 

Table 4.1: The actual available dataset in this pilot data. 9 indicates the data 
practically available to us and 8 means the unuseable data.
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4.3 Signal analysis  

To analyse the data from different tasks and show them into a meaningful 

presentation, appropriate processing techniques were proposed. For auditory ERP 

tests, the analysis used was the coherent averaging method and ICA techniques to 

enhance the SNR and enhance the P300 relative to the background noise. Coherent 

averaging and an improved averaging technique (see Section 4.3.2) were used to 

analyse the N400 data. For motor imagery data, the averaged power spectra and 

ERD/ERS maps were calculated to compare the power changes over the motor cortex. 

Averaged power spectra of imagination trials were compared for the two different 

non-motor imagery tests. 

 

4.3.1 The analysis on ERP data 

(1) Coherent averaging 

As a traditional signal processing technique, coherent averaging is able to enhance 

ERPs’ SNR since the technique assumes the actual EEG activities such as the P300s 

are invariant across data trails and background EEG noise is random noise and not 

time locked. The detailed coherent averaging method has been introduced in Chapter 

2. This study applied the coherent averaging at Cz which is most active site for P300 

activities. To examine the coherent averaging performance, different times of 

averaging are applied to the data. 
 

(2) ‘Standard’ ICA 

To extract P300 activity, the study also proposes to apply an ICA algorithm to the 

data. There are a number of algorithms available for the implementation of ICA. For 

this study, the FastICA algorithm which uses a practical approximation of negentropy 
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together with a fixed-point algorithm is applied on P300 data set. The details about 

the FastICA algorithm have been presented in the Chapter 3. 

 

a. Component selection  

After ICA decomposition, the underlying sources are separated into separate ICs. As 

we are interested in the extraction of P300’s, those ICs with relatively larger 

amplitude in the latency range of the P300 should be considered. The columns of the 

W-1 matrix are denoted as the scalp topography of the components which provides 

evidence for the components’ (spatial) physiological origins. According to the a priori 

physiological knowledge, the P300 appears at the vertex region (Fz, C3, Cz, C4, Pz), 

normally maximised at Cz. Therefore a manual selection of one P300 component 

based on viewing the topography map of the components and the IC itself is used in 

the study. 
 
b. Component projection  

The activity of the selected component needs to be projected back to the observed 

measurement space since the component in the source space is ‘unit-less’. The 

detailed projection process is introduced in Chapter 3. After this projection, clearer 

P300 activities can be visually extracted from noisy EEG data. 

 

(3) Spatially constrained ICA 

The idea of spatially constrained ICA is already explained in the Chapter 3. If a priori 

knowledge about the spatial location of some of the sources is known, then it can be 

applied to the ICA algorithm by constraining the column(s) of the mixing matrix. As 

the typical P300 spatial distribution is known, such knowledge of P300 scalp 

topography can be used as a spatial constraint in the first column of the mixing 

matrix.  
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To construct this spatial constraint in the data all trials with potential P300 

activities are manually selected and joined together in series to a new data set. The 

modification is expected to lead to the P300 relative projection strengths being 

enhanced. A normal ICA decomposes this data into ICs, and after viewing the time 

course and the corresponding spatial scalp topography of each IC, the scalp 

topographies associated with P300 components (corresponding column of the 

estimated mixing matrix) can be chosen as the selected spatial constraints. To 

simplify the problem a single constraint was considered in the study. 

 

This single spatial constraint was used to initialize the first column of the mixing 

matrix A and set random values for the rest column for the spatially constrained ICA 

algorithm. After spatially constrained ICA on the original P300 data, the 

corresponding component was projected to the measurement space. The coherent 

averaging method was then applied on the extracted data at Cz.  

  

(4) Correlation with a template  

In order to assess the performance of ICA applications, we compared the correlation 

with a predefined template before and after applying ICA. The template was obtained 

from a 1.5s averaged P300 activity selected from averaging the above P300 trials.  

 

4.3.2 Analysis on N400 data 

Two simple methods were proposed: a normal coherent averaging method on the data 

and the averaging with a few samples shifted while the number of shifting steps was 

calculated from the maximum cross correlation values between one random selected 

epoch as a reference and the other epochs. The assumption made to apply the shifted 

averaging is based on the fact that the recorded stimulus marks for response activities 

in this data are not automatically set by the presentation program but manually by 
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clicking a button and the time delay between the actual stimulus start and the recorded 

one is going to be approximate (to within about one second). Therefore, shifting the 

response epochs a few samples to match the maximum cross correlation values 

between an individual epoch and a given reference in a range of one second recording 

will tune and find a best position to coherently average the data trials.   

 

4.3.3 Analysis on imagery data 

(1) Averaged power spectra  

The exact nature of the manifestation in the brain of mental imagery is still uncertain. 

At this stage, there still lacks a clear solution to decide what exact EEG characteristics 

are most suitable to apply in the BCI field. One assumption is that different mental 

imagery tasks may lead to power changes over the active regions. A basic and 

efficient technique was applied to calculate the power spectra in frequency space.  

 

The power is normally defined to be the average of the square of the signal’s 

amplitude while in the frequency domain it is equivalent to the square of FFT´s 

magnitude [195]. Power spectra indicate the quantity of power at particular 

frequencies. Practically it can be computed through the power spectral density which 

presents power per Hz vs frequency. In this study, a 1024-point FFT was applied on 

ten 15-second response trials for each task. Depending on the different active 

locations, the averaged power spectra over ten repetition trials were compared for the 

position at T3, T4, P3 and P4 for non-motor imagery tasks and at C3 and C4 for 

motor imagery tasks.  
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(2) Event related desynchronization/synchronization (ERD/ERS) 

In addition, different to non-motor imagery, motor imagery of (for example) hand 

movements is accompanied by the suppression of alpha-range activity on the 

contralateral hemisphere and with enhancement on the corresponding hemisphere. 

This phenomenon is called event related desynchronization/synchronization 

(ERD/ERS). Therefore this study applied the ERD/ERS mapping on hand grasping 

tasks as an extra analysis.     

 

The calculation of ERD/ERS time courses can be performed in different ways. A 

standard ERD/ERS calculation [196] was performed by bandpass filtering of the data 

of each trial, squaring of samples and subsequent averaging over trials and over 

sample points. The ERD/ERS is then defined as the proportional power decrease 

(ERD) or power increase (ERS) in relation to a specific reference interval which is 

usually placed several seconds before trigger onset. The procedure is performed as 

follows:  
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where N is the total number of trials - (equal to ten in this study), xij is the jth sample 

of the ith trial of the bandpass filtered (cutoff frequency is between 8~15Hz) data, and 

jx  is the mean of the jth sample averaged over all bandpass filtered trials. R is the 
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average power in the reference interval [r0, r0+k]. The length of the interval was five 

seconds. 

 

4.4 Results  

4.4.1 Results on P300 data 

The proposed techniques were applied to three available sets of data from Subject 1, 2 

and 6 as shown in Table 4.1.  

  

Figure 4.2 shows the two selected topographic maps on the data from Subject 1, 

which correspond to two selected components after running a standard ICA. Figure 

4.3 plots the averaged P300 activities against the number of coherent averaging on 

raw data and extracted data after normal ICA. A total of ten pairs of averaged results 

are shown. For each plot, the upper signal shows the averaged activity on the raw data 

and the lower one shows the averaged activity with the same averages as the upper 

signal but on the ICA extracted data. The first vertical dashed line represents the 

auditory stimulus onset and the second vertical dashed line marks 300ms where the 

P300 activities should occur. After ICA extraction and the coherent averaging, some 

noise - especially eye blinks - were reduced whilst P300 peaks were enhanced. Most 

extracted P300 signal trials are easy to identify visually. However the indentifiation of 

P300 ICs based on visual observation is limited. Here a simple measurement based on 

the calculation of the correlation between a trial and a P300 template is employed to 

assess the performance.   
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Figure 4.4 shows the template used to compute the correlation coefficient which 

was obtained from averaged selected P300 trials. These P300 segments were 

subjectively selected based on wave morphology from the raw data.  Figure 4.5 

shows the performance based on the correlation between the P300 template and the 

averaged P300 activities before and after standard ICA. The height of these two 

colour bars represents how well the raw and extracted signals are correlated with the 

predefined template. The results after the standard ICA showed a higher correlation 

than on raw data to the averaged P300 template.  Moreover results also indicated that 

more averages did not necessarily achieve better correlation.   

Figure 4.2: The two selected topographic maps from the data of Subject 1 after the normal 
ICA. Each map is corresponding to an independent component. Therefore there are two 
selected components projected to the original measurement space.    
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Figure 4.3: The averaged P300 activities vs the number of random averaging on raw data 
and extracted data for Subject 1 after normal independent component analysis (ICA). For 
each plot, the upper signal shows the averaged activity on raw data, and the bottom one 
plots the same average but on the extracted data. 
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Figure 4.6 shows a single constraint for the proposed spatially constrained ICA on 

the data from Subject 1. This constraint was a selected column of the mixing matrix 

after a standard ICA on a selected data portion which includes all the selected P300 

epochs. This recomposition of the data reinforced the existing P300s in the data so 

that ICA is able to maximally extract components of interests.  

  

 Figure 4.7 plots the randomly selected averaged P300 activities against the 

number of averages on raw data and extracted data after spatially constrained ICA. 

Figure 4.4: The template used to compute the correlation coefficient with the averaged 
P300 activities. The template was an average of selected P300 epochs. 

Figure 4.5: The performance of the correlation between the P300 template and the 
averaged P300 activities before and after normal ICA. There were a total of 10 pairs of 
random averages of P300 activities.  
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Figure 4.8 shows the performance based on the correlation between the P300 template 

and the averaged P300 activities before and after the spatially constrained ICA. 

Similar to the results as the standard ICA show previously, some noise was reduced 

and the P300 response was clearly enhanced. The extracted signal showed a clear 

version of its raw signal. In terms of correlation performance, results after spatially 

constrained ICA showed higher correlation than their raw data counterpart.  

 

Results of the P300 data analysis on the other two subjects in whom recordings 

were obtained using the same methods (Subjects 2 & 6) are shown in Appendix C. 

After the analysis on these three available sets of P300 data, the results indicated that 

both standard ICA and spatially constrained ICA techniques are able to improve the 

SNR.  However the standard ICA involves a manual component selection which is 

dependent on user’s knowledge and cannot form an automated signal processing 

system. Although there is the requirement of a priori knowledge to initialise the 

mixing matrix for the proposed spatially constrained ICA, the technique is rather 

straightforward, and the correct component is projected back to the measurement 

space each time. The performance from both techniques on these three datasets is 

almost identical. In comparison with the correlation measurement between the raw 

data and their enhanced version; a better performance was shown by the averaging on 

the extracted data than by the averaging on the raw data. 

Figure 4.6: The constraint topographic map for Subject 1. This constraint was a selected 
column of the mixing matrix after a normal ICA on a special data portion which includes 
all the selected P300 epochs 
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Figure 4.7: The averaged P300 activities vs the number of random averaging on raw data 
and extracted data for Subject 1 after spatially constrained ICA. For each plot, the upper 
signal shows the averaged activity on raw data, and the bottom one plots the same 
average but on the extracted data. 
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4.4.2 Results on N400 data 

From the literature, a negative peak should occur around 400ms from the 

centroparietal area for averaged activities from (two-word pair) incongruent word 

matching; and a decay to the negative (not necessary a peak) should be delayed 

around 800ms in the case of sentence incongruent matching [197]. The present 

findings are only for the one subject in recordings from Pz.  

 

Figure 4.9 shows the averaged activity for the sentence congruence/incongruence 

test after a coherent averaging on the data from Subject 1. The dashed wave was 

presented as the averaged activity for the sentence correct matching and the bold wave 

was for the sentence incorrect matching. The stimuli occurred at time ‘zero’. However 

from the results the averaged response for incongruent words did not show changes to 

the negative from 400ms to 800ms in time. A possible reason for this may be because 

the stimulus marks manually set for the data were not exactly time-locked to the 

actual stimulus onset. Based on an assumption that the time between the estimated 

and the actual value may be delayed within one second, an averaging method with a 

few samples shifted was proposed on this N400 data. Therefore the process of 

Figure 4.8: The performance of the correlation between the P300 template and the 
averaged P300 activities before and after the spatially constrained ICA on the data from 
Subject 1. 
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averaging is extended to individual components being shifted forward/backward 

within 250 samples (one second recording) to match the best cross-correlated with a 

reference activity. In Figure 4.10, the plots show the averaged activities after a few 

steps shifted. The number of shifting samples were found in the range of 250 samples 

(within one second of recording) to match the maximum cross correlation value 

between each response activity and a random selected reference. Since the reference 

can be any activity from the data, Figure 4.11 shows another possible plot of averaged 

activities obtained by comparing the cross correlation to another randomly selected 

activity as a reference. The results after the proposed averaging indicated that the 

amplitude has a trend to change to the negative from 400ms to 800 ms for the 

averaged activities of the incorrect matching test.  

 

Figure 4.9: The averaged activity for the sentence congruence/incongruence test after a 
normal averaging on the data from Subject 1. 
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Figure 4.11: Another possible plot of averaged activities was obtained by comparing the 
cross correlation to another randomly selected activity as a reference. 

Figure 4.10: The averaged activities after a few steps shifted. The number of shifting 
samples were found in the range of 250 samples (within one second recording) to match 
the maximum cross correlation value between each response activity and a random 
selected reference. 
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4.4.3 Results on motor imagery data 

Results of comparing the averaged power spectra between the response activity and 

the baseline signal on the contralateral hemisphere (C3 and C4) and ERD/ERS maps 

for right/left hand grasping imagination are presented below and discussed.  

 

(1) Power spectra 

Figure 4.12 shows the averaged power spectra over ten trials for right hand grasping 

task together with the averaged power spectra of baseline signal on C3 and C4 in 

frequency domain on the data from Subject 7. The bold line presents the power 

spectra at C3, the bold dashed line is for the power spectra at C4, the thin line is for 

the power spectra of baseline signal at C3 and the thin dashed line is for baseline at 

C4. Baseline signals on C3 and C4 aims to represent brain activities when subjects 

think of nothing and the averaged power spectra of these two recordings was almost 

identical and stayed in the lower amplitude. Once the thoughts of motor imagery are 

involved, the output is such that a higher power than baseline signal is presented. 

Similarly Figure 4.13 shows the averaged power spectra for left hand grasping task 

from the same subject. However nothing different is shown for averaged power 

spectra of the baseline signal and left hand imagery across the frequency space. Figure 

4.14 shows the above averaged power spectra for right/left hand imagination in one 

graph. Results using the same measurement for the data from the other six subjects are 

attached in Appendix C. From the results it is not possible to see a clear difference 

between these two hand imagery tasks which may suggest the measurement of power 

spectra on its own is not good enough to assess the performance of motor imagery. As 

an alternative approach, a mean power spectra within a certain range was proposed to 

measure the performance. The comparison of mean power spectra in the range from 

8Hz to 35Hz over ten trials for all seven subjects together with the standard deviation 

of the averaged power spectra is shown in Figure 4.15. Ideally the power differences 
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should be observed on the same location for different hand grasping imagery tasks. 

However the results did not show much difference between the two different motor 

imageries. In addition, standard deviation values of power spectra variables for ten 

repetition trials might indicate that the mean power between 8 Hz to 35 Hz from the 

individual trial is far from the mean power. This may indicate that the power 

measurement also is not good enough in the motor imagery tasks.    

 

 

 

 

Figure 4.12: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 7. 
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Figure 4.13: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 7. 
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Figure 4.14: the averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 7. 
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(2) Event related desynchonisation/synchronisation (ERD/ERS)  

As another measurement of motor imagery tasks, ERD/ERS maps may be a good 

choice to present the changes between two different tasks. Figure 4.16 shows the 

ERD/ERS maps for right hand grasping imagery on the data from the same Subject 7. 

The solid line presented the ERD/ERS for the right hand grasping imagination at C4. 

The dashed line indicated the ERD/ERS for the right hand grasping imagination at 

C3. The dashed vertical line indicated the stimulus started. For example, right hand 

imagery would restrain the alpha-range activity on the left hemisphere, as a result, a 

dashed declined curve after the stimulus was showed to confirm this phenomenon. 

Figure 4.17 shows the ERD/ERS maps for left hand grasping imagery for Subject 7 

too. The results show the distinct ERD curve for about 2~3 seconds after stimulus 

when the subject imagined the right hand grasping on C3 and an ERS curve presented 

at the same time at C4; a similar ERD curve occurs in the left hand grasping 

imagination at C4 and an ERS curve achieved at C3. Results using the same 

Figure 4.15: The comparison of mean power spectra in the range from 8Hz to 35Hz over ten 
trials for all seven subjects together with the standard deviation of the averaged power spectra. 
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ERD/ERS measurement for the data from the other six subjects are attached in 

Appendix C. A summary of the actual ERD/ERS presentations for all the available 

data was shown in Table 4.2. However from the table, ERD/ERS occurred on both 

hand imagery tests only in the data for Subject 7. ERD/ERS either on right or on left 

hand imagery alone were present in four dataset from Subjects 1, 3, 4 and 6. The rest 

of the signals from Subject 2 and 5 did not show anything useful at all.       

 

 

 

 

 

 

 

Figure 4.16: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 7. The dashed vertical line represented the stimulus onset. 
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Subjects ERD presents in Motor imagery 
right hand task 

ERD presents in Motor imagery 
left hand task 

1 9 8 

2 8 8 

3 9 8 

4 8 9 

5 8 8 

6 8 9 

7 9 9 

 

Table 4.2: A summary of the actual ERD/ERS presentations for all the available 
data. 

Figure 4.17: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 7. The dashed vertical line represented the stimulus onset. 
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4.4.4 Results on non-motor imagery data 

In the literature, spatial imagery and auditory imagery tasks caused people to generate 

the response at the tempero-parietal area [76]. For the spatial navigation imagery, the 

stronger responses are expected to occur at the temporal area (T3 and T4) while 

stronger responses can be viewed at the parietal area (P3 and P4) for the music 

imagery. Results of the averaged power spectra for the navigation imagery and music 

imagery tasks on the focus area are compared and discussed next.  

 

Figure 4.18 shows the averaged power spectra over ten trials for the spatial 

navigation imagery and music imagery at the temporal area on the data from Subject 

1. Especially for frequencies greater than 8Hz, four power spectra for the navigation 

imagery and music imagery on sites of T3 and T4 were shown as separable. Figure 

4.19 shows the averaged power spectra on the same data but over the parietal area. 

Similar to results on Figure 4.18, the power spectra can be seen to be different from 

each other. Results using the same measurement for the remaining six datasets are 

included in Appendix C. In order to estimate differences in the power spectra, Figure 

4.20 and Figure 4.21 compared the mean power spectra in the range from 8Hz to 

35Hz over ten trials for all seven subjects together with the standard deviation of these 

power spectra over the temporal area and over the parietal area respectively.  
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Figure 4.18: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 1. 
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From results in all seven datasets, distinct mean power changes where a stronger 

mean power either occurred in the navigation or in the music task at T3 of the 

temporal area were observed. In addition, the standard deviation values in Figures 

4.20 and Figure 4.21 indicate that how close the band of power from a single trial is to 

the mean power.  

 

This finding is not as expected as the stronger mean powers should be observed at 

the parietal area for music imagery task, but the actual mean powers measured 

showed a distinct magnitude over the temporal area.  

 

Figure 4.19: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 1. 
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Figure 4.20: The comparison of the mean power spectra for both music and spatial 
navigation (nav) tasks in the range from 8 Hz to 35 Hz over ten trials for all seven 
subjects together with the standard deviation of these power spectra on the temporal area. 

Figure 4.21: The comparison of the mean power spectra for both music and spatial 
navigation (nav) tasks in the range from 8 Hz to 35 Hz over ten trials for all seven 
subjects together with the standard deviation of these power spectra on the parietal area.  
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4.5 Discussion  

 

The current findings from this pilot study have demonstrated an ability to run ERP 

experiments. The tasks in the pilot study include: auditory P300 test, motor imagery 

tests, non motor imagery tests and N400 test. Seven normal subjects volunteered and 

contributed several datasets for this study. Depending on the type of task, several 

signal processing techniques were proposed to analyse the available data. 

 

In the literature, the P300 has become a common choice for psychological tests for 

clinical and scientific researchers since it is a natural and training free activity for 

most people [198]. The analysis started on the P300 oddball paradigm where four 

datasets were available. The signal to noise ratio was significantly enhanced and some 

artifacts, such as eye movement and blink, were removed after the proposed standard 

ICA and spatial constrained ICA methods were used through all the available data. 

However clear and distinct P300 responses could not be detected by proposed 

methods in the data except for the data from Subject 1. After comparing three datasets, 

unexpectedly strong noise and possibly imprecise stimulus marks were found in those 

two unsuccessful data which might be the major reason to cause the P300 detection 

failures. Furthermore other problems, for example, in the ratio between the number of 

infrequent and frequent stimulus used in this study was set imprecisely at about 42%, 

which was much higher than the normal settings (at most 30%) in the P300 literature 

[199]; the sound hearing level of the auditory stimuli might also not be calibrated 

within a suitable range and so could also influence the subject’s attention to generate 

related activities.    

  

A normal coherent averaging and an improved averaging technique were proposed 

and applied on the only available N400 data contributed by Subject 1 for the language 

(sentence) congruence/incongruence test. The averaged responses for the sentence 

incongruence test are supposed to show changes to the negative around 400ms to 
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800ms in the time scale. However due to the fact that the stimulus marks were set 

manually and therefore not set synchronously to the actual stimulus, the results after 

the normal coherent averaging did not show distinct changes as expected. After 

assuming the time delay of setting marks caused by human reaction is possibly around 

one second, the improved averaging applies averaging with a few samples shifted to 

match the best cross correlation value to a selected reference activity. Results after the 

proposed averaging with a few samples shifted (within 250 samples) show a better 

tendency to the negative from 400ms to 800ms in time. Compared to the results in the 

literature which show a good negative decay in a similar sentence incongruence test 

[197], the number of the averages applied in that study was about fifty times whilst in 

our case the number was ten times. However the disadvantage of this proposed 

averaging method should be noted that this “peak to peak” matching is to find a best 

averaging point of the data trial which is maximally cross correlated to a selected 

reference signal. For example a poor randomly selected reference could mislead to a 

completely wrong decision in the final averaged activity.  

 

In the literature, cognitive tasks, such as motor imagery have been applied in BCI 

applications [65] [66] [68]. They can produce a natural response in EEG signals when 

a movement planned and the response can be detected relatively straightforwardly. 

The measurement of power spectra and ERD/ERS mapping method were proposed on 

seven available motor imagery (left/right hand grasping tasks) datasets. Results after 

calculating the mean power in a particular frequency band showed obscure changes at 

the same location for two different imagery tasks. However the standard deviation 

values of power in certain frequency bands for single trials between two different 

tasks at the same location indicated the pairs of power did not change consistently but 

variably. Therefore the power spectra alone were not good enough to classify the 

responses of single trials. After applying ERD/ERS mapping method on the data, 

results still did not show significant ERD/ERS change for two different tasks. Only 
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one subject presented the ERD/ERS on both tasks. Two subjects presented ERD/ERS 

on right hand imagery task while two subjects showed ERD/ERS on left hand task.  

 

The other types of cognitive task, using non-motor imagery, such as spatial 

navigation imagery and auditory music imagery have been included in this pilot study. 

The same power spectra measurement was applied on the seven available datasets. In 

the physiological study, significant changes for the spatial navigation imagery should 

occur over the temporal area and strong changes for the auditory music imagery 

should present over the parietal area [200]. Results of mean power in a particular 

frequency band did show stronger changes in the navigation imagery task rather than 

in the music imagery task over the temporal area. However in the case of the music 

imagery there were no significant changes over the parietal area. Despite the fact that 

the results did not follow the expected physiological hypothesis, significant changes 

especially at T3, the left temporal area between two different tasks were still 

encouraging. The standard deviation values of power for a particular frequency band 

for single trials between two different tasks at T3 indicated each individual power 

component was tight and close to its mean power. That is to say that even from the 

power of single trials it is possible to decide their classification. Moreover, results 

may suggest that it is possible to use power from just one single recording channel 

(for example at T3) to decide the binary classification for a BCI application.   

 

As a performance comparison between motor and non-motor imagery tasks, this 

study showed the spatial navigation and auditory music imagery tasks were 

significantly better discriminated than left/hand grasping tasks. Perhaps the reason is 

that different ways of performing the cognitive tasks employ different mental 

processes which make it easier for people to generate the related responses. Poor 

results of motor imagery tasks may be because left/hand grasping tasks were not 

functional. More functional motor tests (for example “steer wheel to the left or right”) 

could perhaps provide more reliable results.   
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4.6 Conclusion  

 

This pilot study followed the paradigms in the literature to examine the possibility of 

using evoked potential and spontaneous activity within the Southampton BCI 

program. The study demonstrated that ICA techniques are able to reduce noise and 

reconstruct the enhanced P300 components to obtain a clean version of the original 

signal. Although P300 evoked potential experiments did not succeed in providing 

good quality data, several P300’s advantages, such as, less training and easy 

processing, are of great benefit for use in BCI system. This study also suggests that 

the proposed cognitive tasks may be used to drive the BCI system. However the 

effectiveness of processing may depend on individual subjects and in different 

applications, for example, one would like to type words at a certain speed or want to 

control a cursor, say, to turn on/off a TV. Such variability has already determined that 

a universal BCI system for everyone does not exist. To design a practically working 

BCI system for the use outside of clinical laboratory, a broader range of reliable tasks 

should be considered and made available to different subjects to choose for different 

applications. To achieve this target, more work of enhancing the performance of 

cognitive tasks in current BCI systems and developing new signal processing 

techniques to improve current BCIs is required.    

 

 This was the first study performed within the BCI research program and served to 

allow us to get started applying various BCI paradigms as list in the literature.  



 

 

 

 

 

CHAPTER 5  
 

Multi-channel ICA algorithms for ERP based BCI  

 

5.1 Introduction  

 
The use of ERPs in BCI, especially P300 based word spellers, has become one of the 

most popular systems in BCI. However due to the difficulty of enhancing the SNR of 

these recordings, the performance for such systems is lacking. As shown in the 

previous chapter, ICA has the ability to extract the relevant information within noisy 

signals quite accurately. Applications of these ICA techniques on P300 based systems 

provide the opportunity of increased performance.  
 

This chapter proposes three slightly different ICA approaches to solve this 

problem: (i) ‘standard’ ICA, (ii) ICA assisted by a posteriori template matching and 

(iii) spatially-constrained ICA. These methods are then applied to the datasets being 

used and the results are then analysed and discussed. These ICA approaches are able 

to enhance the SNR such as to improve the final character identification accuracy 

which is an indicator of how well the system can translate the brain activities. 

Furthermore, the results indicate that it is possible to reduce the number of epochs 

required to perform stimulus locked averages, whilst still maintaining good 

performance measures. This has the potential of speeding up the word speller and has 
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further implications for use on similar ERP based systems both within BCI and 

elsewhere. 
 

5.2 The BCI Dataset 

 

To validate and improve signal processing and classification methods for BCIs, some 

world leading BCI groups organized an online BCI data bank — known as the BCI 

competition data sets [201]. These data sets are obtained from several popular BCI 

systems such as SCP based BCI, spontaneous activity based BCI and P300 based BCI. 

Each data set consists of continuous single-trials of EEG activity, one part labeled 

(training data) and another part unlabeled (test data). Initially for the purposes of the 

competition, the labels for test data were not available. After the competition, the 

labels for testing sets were released and the data sets became available for developing 

new methods towards improving BCI studies. This chapter uses the BCI competitions 

2003 IIb dataset which are recorded from a P300/ERP based BCI word speller [202].  
 

As shown previously in Chapter 2, the ERP has already played an important role 

and is widely used in cognitive tasks in psychology as well as in BCI research. Within 

BCI, P300 potentials can provide a means of detecting a user’s intentions concerning 

the choice of objects. Basically a subject is shown a character matrix, the rows and 

columns of which flash randomly at high speed. Large P300 waves are observed in 

response only to the flashing of the chosen character.  

 

In this P300 based BCI, the user was presented with a 6×6 character matrix with 

36 symbols on a screen. The user then focuses attention on letters of an expected 

word, one by one. The rows and columns of the matrix are successively and randomly 

flashed. For each letter of the word, there are 12 illuminations (6 rows and 6 columns) 

which provide the visual stimulus. Two (one row and one column) out of the twelve 

intensifications decide a desired character. Figure 5.1 depicts the steps taken in 
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recognising a character. Each small vertical notch represents each of 12 stimuli. 

Suppose the user is focusing on the character ‘C’, then the P300 responses are 

expected to be evoked by the stimuli 3 and 7 respectively. It is expected that the 

evoked waveforms are different from those recorded where the stimuli that did not 

contain the desired character, i.e. a P300 is expected only for stimuli 3 and 7.  

 

Signals are sampled at 240Hz and collected from one subject in three sessions 

(two labeled sessions and one unlabeled session). Each session consisted of a number 

of runs. Each run is stored in one Matlab file. In each run, the subject focused 

attention on a series of characters (Table 5.1). For each character, the word matrix was 

displayed for a 2.5 s period, and during this time each character was shown blank. 

Subsequently, each row and column in the matrix was randomly illuminated for 

100ms and 6 rows and 6 columns’ illuminations resulted in 12 different stimuli. After 

illumination of a row/column, the matrix was blank for 75ms. Sets of 12 illuminations 

were repeated 15 times for each character. Thus there were 180 total illuminations for 

each character. Each sequence of 15 sets of intensifications was followed by a 2.5 s 

period, and during this time the matrix was blank. This period informed the user that 

this character was completed and to focus on the next character in the word that was 

displayed on the top of the screen. 

 

The goal of this study is to use the labeled data in the training data sessions to 

learn a certain subject oriented information to be used to predict the words in the 

testing session. This testing session was unlabeled for the purpose of the competition 

and after this BCI competition unlabeled words were released so that all data are fully 

labeled for the use by other BCI research group. A series of target characters in the 

testing data sessions are shown in Table 5.2. 

 

The data was originally recorded from 64 scalp electrodes. The number of 

channels was manually reduced to simplify the analysis and also decrease the 
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computational complexity. 19 channels were selected based on the placement of 

standard International 10/20 System which include Channel C3, Cz, C4, Fp1, Fp2, F7, 

F3, Fz, F4, F8, T3, T4, T5, P3, Pz, P4, P6, O1 and O2. The reason to select such an 

electrode placement is that 10/20 system is one of the most common electrode setup 

methods and the selection adequately covers the central and parietal sites in particular 

which are the P300’s active fields [59]. The dataset is not subjected to any additional 

preprocessing and after analysis the results are lowpass-filtered for visualisation 

purposes only. 
 

 

 

(a) 

(b) 

Figure 5.1: A sketch of character ‘C’ recognition in the P300 based word speller. (a) 
Suppose the user is focusing on the character ‘C’ which is located in Column 3 and Row 
7. Flashing Columns and rows form Stimuli. (b) Two responses evoked by stimuli 3 & 7 
point to this character and 15 trials would reinforce this decision.  
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5.3 Signal enhancement methodologies  

 

This section contrasts a basic signal enhancement technique, coherent averaging, with 

three new ICA based algorithms.   

Session Run Target character 
12 1 FOOD 
12 2 MOOT 
12 3 HAM 
12 4 PIE 
12 5 CAKE 
12 6 TUNA 
12 7 ZYGOT 
12 8 4567 

 

Table 5.2: The target word for each run in unlabeled (testing) Session 12. 

Session Run Target character 
10 1 CAT 
10 2 DOG 
10 3 FISH 
10 4 WATER 
10 5 BOWL 
11 1 HAT 
11 2 HAT 
11 3 GLOVE 
11 4 SHOES 
11 5 FISH 
11 6 RAT 

 

Table 5.1: The target word for each run in labeled (training) Session 10 and 11. 
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5.3.1 Coherent averaging 

As already introduced in Chapter 2, coherent averaging is a classic signal 

enhancement method especially for time-locked signals [86]. The random flashing of 

each row and column for the word matrix in this P300 based BCI is considered as a 

time-locked stimulus, the information about when exactly the stimulus appeared is 

stored in the recorder data. The number of different stimuli is twelve, therefore there 

will be the potential of twelve evoked responses to these twelve stimuli. This set of 

twelve stimuli is repeated fifteen times in random order. Based on the assumption that 

the background noise is random and incoherent across data trials, through coherent 

averaging the brain responses for the same stimulus, it is possible to reduce the noise 

and enhance the SNR of the data. Here the coherent averaging is applied at Cz which 

is the most active site for P300 activities [59].  

 

5.3.2 Standard implementation of ICA 

A standard implementation of ICA is first applied to the data. The details about this 

ICA algorithm have been presented earlier in Chapter 3. The FastICA algorithm and 

an online downloadable toolbox are used in this experiment [150]. In the literature 

FastICA is one of the most popular ICA techniques since it has fewer parameters to 

choose and has a fast rate of convergence. The process of this standard ICA can be 

separated into three steps: component selection, component projection and character 

detection.  

 

(1) Component selection  

After ICA decomposition, the underlying sources are separated into separate ICs. 

Based on the knowledge from the scalp topography (the columns of the W-1 matrix) 

of the components and the knowledge of the P300’s physiological origins in which 
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the P300 appears at the vertex region (Fz, C3, Cz, C4, Pz), normally maximised at Cz, 

one component containing the P300 pattern is manually chosen based on the 

topographic maps and the IC morphology itself.  
 

(2) Component projection  

The selected source activity needs to be projected back to the observed measurement 

space and the projection process brings the selected source back to the original data 

space and ensures that it is back to the correct scale. The detailed projection process is 

introduced in Chapter 3. After this projection, clearer P300 activities can be seen over 

the noisy EEG data. 
 

(3) Character detection 

There are many ways to detect the P300 potential in the ‘de-noised’ EEG and predict 

the characters in this P300 speller. In order to evaluate the ICA performance, a very 

simple linear detector within a window from 300 ms to 360 ms on Channel Cz is 

considered (Figure 5.2), in which two peaks with the maximum amplitude values out 

of twelve waveforms are selected as candidate P300’s. 
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5.3.3 ICA with template assisted component selection  

The method of Section 5.3.2 is proposed to select and project one related component 

only. However it is an ideal assumption that ICA can completely separate the different 

relevant information into the different independent sources. In practice relevant 

information can be distributed into one or several ICs, i.e. the ICA processing is not 

perfect, resulting in least dependent components. In this section a new algorithm is 

introduced to automatically select one or more related least dependent components. 

There are two main steps to achieve this algorithm: creating a template and computing 

the correlation. 
 

Figure 5.2 An illustration of detection of target P300 activities over twelve evoked brain 
activities, the orange area represents the window used to detect the target activities. Two 
peaks with the maximum amplitude in the window are selected as candidate P300’s.    
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(1) Creating a template 

Since the columns of W-1 describe the topographical information of the each 

independent component, where the spatial information can help to identify related 

underlying sources, the template used here is a column selected from W-1 which is 

obtained from running ICA on a balanced data set. As two training datasets are 

available fully labelled, the target/non-target ratio is balanced by replacing non-target 

epochs with target epochs and so increasing the original ratio of target to non-target 

from 1:5 to 1:1 (20 epochs of P300 response signals and 20 epochs of non-P300 

signals). This modification leads to the P300 relative projection strengths being 

enhanced. After running ICA on this data, a topography which presents maximal 

signal intensity at the vertex region is selected manually as the template among the 

scalp topographies. 
 

(2) Computing the correlation 

After applying ICA to the original testing data and the inverse unmixing matrix W-1 is 

obtained, the correlation values between the template obtained from the first step and 

each column of W-1 is used to assist in choosing the related P300 components. After 

computing the correlations, the set of correlation values which describe the degree of 

spatial relationship between the template and each IC are found and rank ordered. The 

first three highly ranked components are automatically selected and projected into the 

measurement space. The fixed number three was tuned and found empirically in the 

training data sessions. The enhanced data is here classified by using the same simple 

linear character detection method described above.    
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5.3.4 Spatially-constrained ICA  

 
As discussed in Chapter 3, if a priori knowledge about the spatial location of some of 

the sources is known, then it can be applied to the ICA algorithm by constraining the 

column(s) of the mixing matrix. The concept of spatially-constrained ICA which uses 

this idea has already been explained in Chapter 3. Here, as the P300 is used and its 

typical spatial distribution is known, and then P300 scalp topography information 

could be applied as a spatial constraint to initialise a column of the mixing matrix for 

spatially-constrained ICA algorithm.  
 

As is known from the spatially-constrained ICA algorithm, the spatial constraint 

may be obtained from a source decomposition of previous data by using standard ICA 

methods or any other suitable method. In this case, the template obtained in section 

5.3.3 is used as a single spatial constraint to initialize the first column of the mixing 

matrix A and set random values for the rest of columns. After spatially-constrained 

ICA, the corresponding component is projected to the measurement space and the 

same simple linear character detection is applied to the enhanced data.   

 

5.4 Results 

 
Denoising and decomposition by ICA and the final classification were all processed 

on the raw (unfiltered) data. The results presented in this section are averaged for 15 

times. Moreover purely for visualization purposes (i.e. after all processing is complete) 

the results are also presented after the application of a low-pass FIR filtered (cutoff at 

10Hz) version. In order to evaluate the different performances fairly, all the examples 

in the following figures are shown on the same character. Figure 5.3 shows 12 

response activities corresponding to the 12 stimuli (coherently averaged). The two 

thick red lines represent the targets and the other blue lines represent non-target 

responses. It is clear that it is difficult to distinguish P300 targets directly from this 
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data. The distinct P300 waveforms after extraction using the manual component 

selection method are shown in Figure 5.4, the two target waveforms clearly show 

P300 responses such that the two targets can be identified clearly from the other ten 

responses. Figure 5.5 illustrates the performance of ICA with the template assisted 

selection method; the three topographic maps are most likely correlated to the 

(automatically selected) P300 template components. Figure 5.6 depicts the 

performance of ICA using the fixed spatial constraint. As can be seen from the figures, 

the three types of ICA implementation extract the related responses very effectively.  

 

Due to the fact that ICA is able to reduce the noise and extract the components of 

interest from the signal at the same time, this means ICA has also optimized the 

feature extraction stage. A very simple classification method on the extracted data set 

was used. Using these techniques a maximum accuracy of 96.8% (30 out of 31 

characters) was achieved on the test set. The classification accuracy is defined as the 

percentage of the number of correct classified characters over the total number of 

characters. It is also equivalent to the sensitivity statistical measures [203]. One of the 

winners for this BCI competition dataset achieved 100% accuracy by using an 

advanced classifier based on SVM [204] technique. The method uses a new formed 

training dataset to train the proposed SVM classifier. This dataset is manually selected 

two P300 target response signals and two non-P300 signals of every character in 

provided training datasets (in total 168 epochs). Moreover in order to obtain a good 

performance, it has to carefully select parameters for this SVM classifier based on the 

knowledge about the application and the SVM classifier itself. Whilst the standard 

ICA does not need the training data, it is straightforwardly applied on the testing 

datasets. As for the template assisted ICA and spatially constrained ICA, the selected 

training dataset only has just 40 epochs and the step of P300 topography (template 

and constraint) selection is very simple (visually choose one with a strong activation 

over the P300 physiological origin). Therefore ICA techniques are comparable in 

speed and efficiency with the SVM methods. Moreover on looking into the 
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misclassified character after the experiment, a misclassification appears to identify the 

target character of ‘E’ to ‘C’. In the speller matrix, these two characters are placed at 

the same row (the seventh) but at different columns (‘E’ for the fifth and ‘C’ for the 

third). Therefore the averaged evoked response for Stimulus 3 appeared to be the one 

of the target activity with high amplitude. Since the proposed simple classifier 

straightforwardly determines two activities with highest amplitude within a window, 

so the classifier detected the correct row activity but missed the correct column one.     
 

The performance was also examined when reducing the number of averaging trials 

before detection takes place. Figure 5.7 and Table 5.3 summarize and compare the 

performance of the three different ICA-based methods with those obtained by using 

simple coherent-averaging whilst varying the number of epochs used in the averaging 

process.  
 

In the experiments, signal enhancement based on ICA plays a very important role. 

After ICA, a simple linear classifier is used to classify target and nontarget responses. 

A time window around the 300ms is applied and simply detected two maximum 

responses to estimate a character. Three proposed ICA methods achieved the source 

separation goal well. In BCI applications, especially for an online system, manual 

selection of the P300 component trial by trial obviously is not possible. With the 

assistance of a template obtained from the training data, the P300 related components 

can be automatically selected by estimating the correlation as shown in Section 5.3.3. 

Spatially-constrained ICA uses the template previously obtained as the constraint to 

initialize the mixing matrix which will increase the rate of convergence of the 

algorithm to the related sources. After Spatially-constrained ICA, the component(s) 

containing P300 patterns are separated and placed in the first position directly by the 

algorithm. It offers a more practical method to implement an online BCI system and 

shows the same high accuracy as all of the ICA based methods. 
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Figure 5.3: The above plot is the 15-epoch averaged response curves on Cz on raw data. 
The two thick lines (red) are the targets. The bottom plot is the lowpass filtered version. 
They are difficult to distinguish directly from the data. 
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Figure 5.4: The above plot is the 15-epoch averaged response curves on the extracted 
data after ICA. The bottom plot is the lowpass filtered version and the topographic map 
(above left) represents the single project component. Two targets can be identified from 
the other ten responses. 
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Figure 5.5: The above plot is the 15-epoch averaged response curves on the extracted 
data after ICA with template method. The bottom plot is the lowpass filtered version and 
the inset three topographic maps represent the three projected components. These three 
form a superimposed map which shows the P300 patterns in this combination making 
them clearer to see. 
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Figure 5.6: The above plot is the 15-epoch averaged response curves on the extracted 
data after spatially-constrained ICA. The bottom plot is the lowpass filtered version. The 
spatial template (represents the projected component) is shown inset at the top left. 
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Table 5.3: Comparison of classification accuracy (%) with different averages by using averages (Non-ICA) and three 
proposed ICA methods. 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

non-ICA 3.23 9.68 16.13 16.13 19.35 29.03 29.03 32.26 51.61 38.71 38.71 41.94 51.61 45.16 38.71 

Std-ICA 22.58 22.58 35.48 35.48 48.39 58.06 67.74 74.19 74.19 77.42 77.42 83.87 83.87 83.87 87.10 

Spatially C-ICA 19.35 25.81 41.94 45.16 61.29 70.97 80.65 83.87 87.10 74.19 80.65 83.87 93.55 96.77 96.77 

ICA+Temp 19.35 22.58 41.94 45.16 51.61 48.39 74.19 70.97 80.65 90.32 87.10 93.55 96.77 96.77 96.77 

 

Methods 

Figure 5.7: Comparison of classification accuracy with different averages by using 
averages (Non-ICA) and three proposed ICA methods. The blue line shows the 
classification performance by standard ICA, the green line represents the performance by 
ICA plus a template assisted, the red line indicates the classification accuracy by spatially 
constrained ICA and the black line is for the non-ICA.    
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5.5 Summary   

 
This chapter introduces the use of ICA in P300 (ERP) based multi-channel BCI 

systems. The results clearly show a significant improvement after ICA when 

compared with the classification results obtained from the raw coherent averaged data, 

even a very simple classifier can achieve very good classification accuracy. The 

results also show that even for fewer averages the ICA based techniques still exhibit 

quite good performance – this, coupled with the ability to use a simple linear classifier, 

means that this has the great potential for speeding up the word speller paradigm and 

has further implications for use on after ERP based systems – both within BCI and for 

other clinical use. 
 

The next chapter introduces an ICA application on spontaneous activity based 

BCI.  This BCI system uses spontaneous rhythmic activity rather than time locked 

evoked responses as the control features. However due to artefacts and other problems 

within the EEG recordings, the performance of such a BCI system is usually quite 

mediocre. A novel ICA method is proposed to work towards solving these problems. 



 

 

 

 

 

CHAPTER 6  
 

A multi-channel ICA algorithm for  

spontaneous EEG based BCI 
   

6.1 The BCI paradigm  

 
As discussed in Chapter 2, spontaneous activity based BCI has shown great potential. 

It uses more natural rhythmic brain activities evoked by imagining (say) limb 

movement which is believed to be easy to learn and understand during the training 

sessions. The power changes within a specific rhythmic band can be used as the 

control features, for example, where the user generates these patterns to control the 

movement of a cursor on a computer screen. In this way the system offers the user at 

least two or even four degrees of freedom to move a cursor on a screen. The features 

can also be extended and applied to other assistive systems such as to drive a powered 

wheelchair or a robot arm etc. However, as has already been said, the EEG is recorded 

from surface electrodes, and artifacts contaminate the raw EEG recordings and render 

the unprocessed recording virtually unusable. Moreover, as the prediction of imagery 

is dependent on the individual’s ability to generate a good ERD, such a BCI will 

mutually exhibit variable performance.  
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The studies shown so far have applied ICA to BCI applications [205] [206] [207], 

for example, ERP based BCI and spontaneous activity based BCI. The results indicate 

that ICA performed well in extracting time-locked ERPs. However since spontaneous 

activity based BCI does not use time-locked activity but rather relies on rhythmic 

activities as features, applications of ICA are unable to track the changes in power 

spectra among the different sources. However using time structure based source 

decomposition methods, the sources with stationary waveforms and unique power 

spectra can be isolated. Furthermore, when the power spectrum of the particular 

source activity is known, the spatial extent of the sources can be extracted by 

constrained ICA. 
 

This chapter proposes to apply a time structure based spectrally-constrained ICA 

algorithm to a μ rhythm based BCI system (this type of BCI has been introduced in 

Chapter 2) and to describe the selection of power features from the provided data sets 

and the overall classification system used. The study then presents the results obtained 

and discusses the performance enhancements to be had from the use of this algorithm 

in this way. 
 
 

6.2 The Data 

 
This chapter uses two data sets: BCI Competition Data Data Set IIa and Data set IVa. 

Although these two experiments were designed in different ways, they both use the 

property of the ERD power spectrum adjusted by different specific activations as 

shown in Chapter 2.  
 

6.2.1 BCI Competition Data Set IIa 

The BCI Competition Data Set IIa (self-regulation of μ- and/or central β-rhythm) was 

provided by the Wadsworth Center [201]. The idea is that the subjects either increase 
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or decrease their μ or β rhythm amplitude power to control a cursor’s vertical position 

aiming to the correct target through visual feedback. This data set contains a whole 

record of an actual BCI system from 3 trained subjects in 10 sessions (about 30 

minutes per session) each. EEG was recorded from 64 scalp electrodes (10/20 system) 

sampled at 160 Hz and each electrode was referred to an electrode on the right ear. 

For this BCI to work, after a one second resting period during which the screen stays 

blank, a target appears at one of four possible positions on the right-hand side of the 

screen. One second later, a cursor appears at the middle of the left of the screen and 

starts moving at constant speed across the screen from left to right. When the cursor 

reaches the right-hand side, the screen is cleared and the next trial begins. The 

experiment includes visual feedback whereby the vertical position of the cursor on the 

screen is determined through brain activity. Three data subsets marked as AA, BB and 

CC are supplied. Each session consisted of 192 trials (48 trials for one of four targets: 

‘top’, ‘upper middle ’, ‘lower middle’ or ‘bottom’). The first six sessions are labelled 

as training sets. The remaining four sessions are test sets. This study only selects trials 

with the target position code: ‘top’ (Target 1) and ‘bottom’ (Target 2) to examine the 

proposed method.  
 

6.2.2 BCI competition data set IVa 

The BCI competition III data set IVa (motor imagery, small training sets) is from the 

Berlin BCI group [208]. For this BCI to work, the subjects imagine either right hand 

or right foot movements indicated by a visual cue on screen without feedback. The 

power in a particular frequency band is used to control the cursor movement. This 

data set contains 118 multi-channel (extended 10/20 system) EEG signals recorded 

from five healthy subjects (labelled ‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’ respectively) at a 

sampling rate of 100 Hz. During the experiments, subjects were prompted by a 

displayed letter (R/right hand, or F/right foot) to imagine for 3.5 s either right hand 

(Target A) or right foot movements (Target B) without feedback. Each type of MI was 
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recorded 140 times, thus in total there are 280 trials for each subject. Between the 

trials, there was a random period of time (1.75 to 2.25 seconds) in which the subject 

could relax. This data set also brings with it a challenge in that only a small amount of 

training data are available, this allows one to examine the influence of using small 

training sets in order to reduce the overall training time. The task is to classify the 

type of the imagined movement for each trial in an offline fashion. 

 

The data were originally recorded from 64 scalp electrodes for Data Set IIa and 

118 electrodes for Data Set IVa. Since the activity in the motor cortex is the interest in 

this study, so the electrodes around the sensorimotor cortex were chosen manually, 

these included: C5, C3, C1, C2, C4, C6, CP5, CP3, Cp1, Cp2, Cp4, Cp6, P5, P3, P1, 

P2, P4 and P6. A small segment of EEG data is used for training in the proposed 

algorithm: for Data Set IIa, the data between 0.5-2 s of each trial is used after the 

cursor is displayed on the screen; for Data Set IVa, the data between 0.5-2.5 s is 

considered after the instruction is displayed on the screen. There are two main reasons 

to select such a short time segment for the data. One reason is to satisfy the 

assumption of the proposed time structure based ICA technique (the details is given in 

the following methodology section). The other reason is that the subjects generate 

strong responses only in a short time period after stimulus. The parameters of the 

short window are selected after examining the available training sets manually.    
 

6.3 Methodology 

6.3.1 Temporal Decorrelation based spectrally-constrained ICA 

In this chapter it is proposed to use the spectrally-constrained ICA technique based on 

temporal decorrelation and a specific algorithm LSDIAGTD is selected to capture the 

dependency structure of the observed signals. The detailed TD based ICA algorithm 

has been introduced in Chapter 3. One basic assumption with this method is that the 

source waveforms should be stationary and have unique power spectra. Obviously this 
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method is not suitable to use for long-term EEG recording. In order to use TD based 

ICA, the assumption needs to be made that the signals are stationary over short time 

windows. In this chapter, since the imagery epochs last just a few seconds (about 4 

seconds long), the auto-correlation function of the source activity is assumed slowly 

varying in time. The temporal correlations over short time windows can be computed 

and then the mixing matrix is estimated in the usual way [154]. 

 

The TD based ICA algorithm used in the study is called the LSDIAGTD technique 

[159], where 

 

Txs WWCC ττ = ,                         (3.11) 

 

xCτ  is the signal cross-covariance matrix and sCτ  is the source cross-covariance 

matrix. W is the unmixing matrix. The algorithm aims to transform the signal 

covariances matrix stack into the source covariances matrix stack as diagonal as 

possible since diagonal is assumed to represent independence. After TD based ICA W 

is then estimated so that each of the independent sources can be separated by s=Wx.  

 

Another issue of TD based ICA is to decide the number of time lags as shown in 

Chapter 3. Here, since the data are separated into two parts: a training session and a 

testing session, the number of time lags of use is tuned and found from the training 

session. It turns out that the use of 5 lags is able to achieve the best performance.   
 

6.3.2 The Reference Channel   

In this spectrally constrained model, prior knowledge of the spectral content of the 

sources can be introduced into the model by means of reference channels. If the power 

spectrum of a particular source activity is known, such reference(s) would consist of 

filtered noise with the desired power spectrum. This chapter applies the method using 
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just a single (μ rhythm) reference. To observe changes in rhythmic activity in specific 

frequency bands, band-pass filtered white noise are used to derive a reference signal. 

Particularly an 8th order Butterworth BP filter with lower and upper corner 

frequencies set appropriately is used to set the desired constraint. Since the phase 

information of this added reference channel is meaningless (i.e. the study is not 

expecting the phase of the reference signal to be connected in any way to that of the 

desired brain response), the problem of matching the phase of the reference channel 

with that of the desired activity in the recordings can be overcomed through 

calculating the lagged covariance matrices that LSDIAGTD requires via the FFT and 

then removing the phase information of the signal in the frequency domain. Recall 

that the convolution of two functions f(t) and g(t) can be obtained by 

 

{ }}{}{)()( 1 fGfHFtgth ⋅=∗ −                        (6.1)  

 

where * denotes convolution, F−1 denotes the inverse Fourier Transform, H{f} and 

G{f} the Fourier Transform of h(t) and g(t) respectively. 
 

6.4 The Proposed Algorithm    

 

The flowchart of this work includes four parts: 1) spatial filter generation, 2) spatial 

filtering, 3) power feature extraction, and 4) classification. This is depicted in 

diagrammatic form in Figure 6.1.   
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6.4.1 Spatial filter generation 

The power spectrum of each data trial is calculated and averaged across the frequency 

domain. For display purposes, the averaged trial power spectrum on C3 towards to 

two targets is shown in Figure 6.2. This confirms that two kinds of activities have 

different power amplitude at the μ band around 8Hz~13Hz which can be used as the 

control features. For the analysis, a number of data trials of two different targets in the 

training data set were used to estimate the lagged covariance matrix stack x
τC  the 

stack of matrices are treated as arising from two-part averaged lagged covariance 

matrix stacks 1XT
τC , 2XT

τC  in which each part is obtained from trial data 

corresponding to one of two targets. The reason to construct such stacks of matrices is 

that the stack of covariance matrices needs to capture as much information as possible 

so that for this two-target system the covariance matrix should be constructed from 

the data of both two targets.  

 

[ ]2XTXT
τττ CCC 1x ，=                           (6.2) 

 

Figure 6.1: A diagram depicting the proposed algorithm. It includes four parts: spatial 
filter generation, spatial filtering, power feature extraction and classification.  
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where ],...,0[ l=τ  depicts the range of lags (here l =5 as determined in previous work 

[209] ). xk∈[XT1, XT2] denotes that trial data are from training set corresponding to 

the labels: Target 1/A and Target 2/B. The number of trials in each data set for XT1 

and XT2 are m and n respectively. Here the value of m equal to n is set to balance the 

proportion of trials for both targets. Once the unmixing matrix W is estimated from 

the training datasets, it then works as a simple spatial filter straightforward on the 

testing datasets.   

 

The spectrum, )(iP  is defined as a trial spectrum in the ith channel by the sum of 

the ordinates of the frequency bins ( dh ) within the proposed frequency band, i.e. 

∑
=

=
D

1
)(

d
di hP ,                           (6.5) 

 

where D denotes the number of frequency bins. After spectrally-constrained ICA 

decomposition, the EEG data are extracted into the ICs. Thus the power spectrum 

after spectrally-constrained ICA is defined as the sum of the weighted spectra of 

sources (ICs) within the μ band. So, for given source epochs, the power feature 

reflected in an individual channel is defined as 
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where k denotes the number of sources. As this implementation of 
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spectrally-constrained ICA assumes a square mixing matrix, then the number of 

sources is the same as the number of measurement channels, and ji,a  is an element 

in the mixing matrix A. jk ,1+a  is a particular element in the last row of A. )( jicP  

denotes a trial spectrum in the jth IC source.  

 

6.4.2 Feature selection 

In order to find discriminative power bands for each subject, here the study uses a 

technique called ─ the r2 measure, also called the coefficient of determination [210], 

which is able to interpret the proportion of variability in a data set. A definition of the 

r2 measure is as following: 
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where Yi represents an individual data point of Target 1 in the frequency domain, Yi’ 

represents an individual data point of Target 2 in the frequency domain and Y  

represents the average of the Yi values. r2 values range from 0 to 1, with 1 

representing that the covariates can predict the outcome perfectly in the model, and 0 

representing a complete lack of predictability of the outcome. The power spectra of 

two targets are calculated in these two data sets, and then combined the variables on 

each individual channel into r2 values. By comparing to the averaged power spectra 

corresponding to two targets, this describes the relationship between power intensity 

and target labels. These parameters were slightly different due to differences in each 

individual recording. Figure 6.3 shows two discriminative power bands roughly 

around 10-15 Hz (μ band) and 23-28 Hz (β band) in Data set IIa. The reason that there 

exist two power bands is because both movement and imagery are associated with μ 



 
Chapter 6     A multi-channel ICA algorithm for spontaneous EEG based BCI  
 

 153

and β rhythm together. Depending on which rhythm is used as the control pattern, in 

this work we choose 10-15 Hz as the working band. Increased power is taken to 

correspond to Target 1 which raises the cursor in Subjects AA and CC while it makes 

the cursor go down in Subject BB (Figure 6.4). In Data set IVa, the sub-band 

approximately around 8-15 Hz is selected to calculate power (Figure 6.5). Increased 

power is related to Target 2 which is the right foot imagination (Figure 6.6) in all 

subjects.  
 

6.4.3 Classification  

In order to evaluate the performance of the proposed algorithm, a simple 

one-dimensional linear classifier based on thresholding the power feature(s) is 

considered in the chosen frequency band for the final classification. The threshold 

value is selected by minimizing the number of trials misclassified in both classes from 

the training set for individual subjects, for example the threshold value for Subject CC 

is between 7.842×109 ~ 8.031×109 in arbitrary units. In addition, as a comparison for 

the classification performance, a more complex classifier, a SVM based classifier is 

also applied. The study uses a downloadable SVM toolbox [211]. The main 

parameters are set as the following: the power of 40 data trials on three channels C3, 

CP1 and CP5 for both targets is used as the SVM classifier’s training input; the kernel 

function is set to be linear.  
 

The next procedure is to decide which power feature will be suitable to use for the 

classification. Based on the distribution of r2 values across the topography spectrum 

in the previous section, a number of channels (between 1 and 3) around the left 

sensorimotor cortex were selected. The power on C3 was used in the threshold 

classifier and the power on C3, CP1 and CP5 for the SVM classifier as the use of 

these power features was found to give better classification accuracy in this study. 
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Figure 6.2: The averaged trial power spectrum on Channel C3 towards to two targets in 
a training set for Subject CC.  
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Figure 6.3: r2 values across the spectrum on Channel C3 for Target 1 & 2 (Subject CC). 
The shadowed frequency band was chosen here. Inset is the topography of the r2 values at 
13.75 Hz across all channels.   
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Figure 6.4: Averaged power spectra of data trials corresponding to Target 1 & 2 (Subject 
CC). In this experiment, greater power in 10~15Hz (Target 1) implies the cursor going up 
and vice versa.   



 
Chapter 6     A multi-channel ICA algorithm for spontaneous EEG based BCI  
 

 157

 

 

 
Figure 6.5: r2 values across the spectrum on Channel C3 for Target A & B (Subject ‘ay’). 
The shadowed frequency band was chosen in this work. Inset is the topography of the r2 
values at 12.25 Hz across all channels.   
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Figure 6.6: Averaged power spectra of trials corresponding to Target A & B (Subject 
‘ay’). The averaged power for imagined foot movement (Target A) is greater than the 
power for hand movement imagination (Target B). 
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6.5 Results 

 
The proposed TD based ICA method generates the spatial filter from the training data 

for each individual subject. The spatial filter is then applied to the unlabeled test 

dataset. It can capture the relevant dynamics of the subject’s brain state more robustly. 

Furthermore, the resulting time series will have optimised the spectra resulting in 

better discrimination between two different brain states. The results show that 

following this pre-processing, even a simple linear classifier can achieve very good 

classification accuracy.  
 

To make the proposed ICA system work, a segment of bandpass filtered white 

noise is used as the reference signal (constraint). Moreover this reference needs to be 

modulated to match each individual’s particular EEG frequency band. The sub-plot in 

Figure 6.7 illustrates the original white noise with arbitrary units used for Subject CC; 

the middle sub-plot shows the bandpass (10 ~ 15 Hz) filtered white noise modulated 

with the mean power of the signal recordings; the bottom sub-plot represents the same 

signal (in the middle sub-plot) in the frequency domain. 

 

Figures 6.8 and 6.9 depict the power features related to different targets before and 

after the processing for channel C3. Figure 6.8 plots the power features of Testing 

session 10 for Subject CC in Data set IIa. Ideally, the higher power feature represents 

Target 1 and the lower power for Target 2 (Figure 6.3). However, without spatial 

filtering, the power features between the two targets from the original data appear 

overlapped, and a classifier based on either a simple linear method or a potentially 

complicated advanced method is hardly able to separate these patterns efficiently. 

After the spectrally constrained ICA processing, the weighted power values for two 

different targets are better separated than the power features from the unprocessed 

data. Figure 6.9 shows the power features of Subject ‘ay’ from Data set IVa. The 
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power related to the right hand movement imagination is marked as Target A and the 

power for right foot movement imagination marked as Target B. As shown in Figure 

6.5, the averaged power for imagined foot movement is larger than the power for hand 

movement imagination, but powers correlated to two different targets do not show 

much different in the raw data. After processing, the power features are maximally 

separated into the different levels, which further demonstrate the improved separation 

achieved by using this spatial filter. The above examples suggest that the use of this 

spatial filter can help to extract different brain activities within a particular μ rhythmic 

band. 
 

Table 6.1 lists the classification results on the test sets (most sessions have 52 

trials for each target, several have 51 trials) in Data set IIa. For each subject, 80 

randomly chosen trials in total (40 for each target) are used to calculate the spatial 

filter. The results are shown as three columns for each individual subject. The first 

column shows the results using the unprocessed data. The results of using a threshold 

based linear classifier with one power feature on C3 are shown in the second column. 

The third column is for the results from an advanced SVM based classifier using three 

power features on C3, CP1 and CP5. Table 6.2 shows the classification performance 

on the testing data in Data set IVa. There are five subjects contributing to individual 

sub-sets with different sizes of training and testing sessions. The numbers of available 

trial data for training/testing sessions are shown in the first column. To construct the 

spatial filter, the total number of training trials is selected from 28 and 80 (average of 

65 trials was used) due to the different size of training sets. As before, one power 

feature on C3 is used for the final classification based on a threshold and a linear 

classifier. Moreover, three features on Channel C3, CP1 and CP5 were also applied to 

examine the performance of a SVM classifier. In addition, as a comparison, the last 

column lists the classification results from previous published work [212] which 

proposes a method based on dynamical system (DS) features together with a SVM 

classifier. The overall classification accuracy is about 85% by this DS+SVM method. 

From the two tables, we can see that spectrally constrained ICA implementation 
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extracts the related rhythmic information very effectively. After processing, the 

classification accuracy was of 82% for Subject AA, 69% for Subject BB and 90% for 

Subject CC in comparison with the average 62% accuracy before processing in 

Dataset IIa. In Dataset IVa, the classification accuracy was of an average of 82% 

through five testing sets which is 30% higher than the accuracy using the unprocessed 

data. It is worth noting that the more advanced SVM based classifier did not show a 

significant improvement in performance on the same data, although an increase of 

about 2% compared to the simple linear classifier was observed.  

 

Figure 6.7: (above) The original white noise with arbitrary unit for Subject CC; (middle) 
The bandpass (10 ~ 15 Hz) filtered white noise modulated with the mean power of the 
signal recordings; (below) The same signal in the middle shown in frequency domain.  
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Figure 6.8: The power feature outputs of Subject CC for testing Session 10. (a) shows the 
power features on C3 using the unprocessed data; (b) shows the power features on C3 
after spectrally constrained ICA processing. A circle denotes Target 1 (cursor up); a star 
indicates Target 2 (cursor down).   
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Figure 6.9: The power feature outputs for Subject ‘ay’ on testing set. (a) shows the power 
features on C3 using the unprocessed data; (b) shows the power features on C3 after 
spectrally constrained ICA processing. A circle denotes the power feature for Target A 
(right hand imagination); a star indicates the power feature for Target B (right foot 
imagination). 
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Table 6.1: Classification accuracy of the test set based on power feature(s) in Data set IIa. The 
three columns for each individual subject show the performance of linear classification on 
unprocessed data, linear classification and SVM classification on the processed data.  
 

  Data AA   Data BB   Data CC  

Testing 

data set 

Linear 

classifier 

on raw 

data 

linear 

classifier 

on 

extracted 

data 

SVM on 

extracted 

data 

Linear 

classifier 

on raw data 

linear 

classifier 

on 

extracted 

data 

SVM on 

extracted 

data 

Linear 

classifier 

on raw data 

linear 

classifier 

on 

extracted 

data 

SVM on 

extracted 

data 

Set 7 64.6% 80.2% 85.4% 65.6% 72.0% 73.0% 58.3% 85.4% 87.4% 

Set 8 59.4% 88.5% 89.6% 71.9% 72.9% 72.9% 62.1% 92.2% 90.3% 

Set 9 61.5% 80.2% 79.2% 66.8% 63.5% 67.7% 60.1% 86.1% 88.1% 

Set 10 65.6% 80.2% 80.2% 59.4% 68.8% 72.9% 61.2% 96.1% 98.1% 

 

 
Table 6.2: Classification accuracy of the testing set based on power feature(s) in Data set IVb. The 
columns depict the results using the three proposed classification schemes, and the last column lists 
published [212] for comparison. 
 
 

Data set 
training/test 

trials 

linear classifier 

on raw data 

Linear classifier on 

extracted data 

SVM on 

extracted data 

SVM on DS 

features 

al 224/56 48.2% 85.7% 89.3% 96.3% 

aa 168/112 46.0% 83.0% 85.7% 83.3% 

av 84/196 49.5% 75.0% 75.0% 72.7% 

aw 56/224 55.4% 80.3% 85.3% 86.9% 

ay 28/252 54.3% 85.0% 85.0% 89.0% 
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6.6 Summary  

 
Two datasets described in this chapter being part of the BCI competition dataset have 

been used to examine the performance of the proposed algorithm. Both of these data 

sets use the characteristic that changes in the amplitude of sensorimotor rhythms over 

the right/left hemisphere act as the major control pattern. The difficulty here is to 

maximally and reliably identify at least two classes from single-trial data. The 

proposed ICA technique using spectral constraints has been developed and applied to 

isolate and extract the power spectrum in the rhythmic band of interest. In order to 

demonstrate the performance of the proposed spectrally constrained ICA, the power 

feature in the μ rhythm frequency band is used as the major classification pattern. The 

results using a simple linear classifier and a SVM to classify the ICA processed data 

show that the classification accuracy has considerably increased over processing the 

raw data. After the basic analysis the overall classification accuracy is improved by 

about 20% in Dataset IIa and 30% in Dataset IVa. As an additional comparison of 

classification performance to spectrally constrained ICA in Dataset IVa, the results of 

a method using DS features as well as a SVM classifier is reviewed and compared 

[212]. This method also includes two steps for data pre-processing (a temporal filter 

and a spatial filter). The accuracy of the techniques in [212] was about 3% more than 

the results of spectrally constrained ICA with a linear classifier and 1% more than 

spectrally constrained ICA with a SVM. However the use of a linear classifier and a 

simple spatial filter in this study aims to simplify the problem and is desirable from a 

computational complexity perspective. 
 

As this work is an application to single trial classification, the sensitivity to 

artifacts in the EEG becomes a major problem. The LSDIAGTD ICA algorithm uses 

the covariance of the trial data to estimate the covariance stack matrices which are the 

essentials to calculate the unmixing matrix and hence the spatial filter. The random 

selection of training trials which may include artifacts can cause serious changes to 

the final filter. Therefore, most methods require that the data should be artifact free, 
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which can be achieved by several preprocessing steps such as filtering or manual 

artifact rejection. Here instead of applying any preprocessing methods before hand, 

the study estimates the stack matrices by using the averaged lagged covariance 

matrices from the data. The idea behind the process is that the influence of artifacts is 

reduced since the procedure of averaging the covariance matrices acts as a filter which 

could balance and minimise the random noise level. Moreover, the system includes a 

training phase used to tune the proper unmixing matrix (spatial filter) using the 

proposed ICA. Once the unmixing matrix has been computed, it works as a spatial 

filter to remove the additional artifacts by weighted spatial averaging the testing data 

trials and returns the processed time series patterns. After filtering, the different brain 

activities seen as power changes can be clearly extracted. It indicates that through the 

use of spectrally constrained ICA, it is possible to track the rhythmic changes of 

different brain states in the EEG. These results show a clear improvement for use in 

this kind of BCI system. 
 

The next chapter proposes the application of the ICA algorithm to recordings from 

single (or few) channel(s) in a P300 BCI application. The aim is to drastically reduce 

the number of channels required; not a big number of channels as is required in 

multi-channel application, the actual recording channels here are reduced to just one 

or two channels. This would mean that simpler BCI systems could be designed using 

less setup time and with less reliance on accurate placement of the scalp electrodes.  



 

 

 

 

 

CHAPTER 7  
 

Single channel ICA algorithm for ERP based BCI 

 

7.1 Introduction 

 
Conventional BSS (such as multi-channel ICA) generally requires multi-channel data 

for the inputs. However there are many circumstances where only one recording 

channel is available or desired. Such BSS techniques are not directly applicable to the 

data which consists of only one single channel record. Fortunately by applying as 

explained in Chapter 3 the so-called method of delays, the single channel data can be 

rearranged and represented as a matrix of time-delayed vectors. In this way, the BSS 

analysis techniques can be used with single channel recordings and is able to solve the 

more sources than sensors problem. This ICA algorithm is referred to here as SC-ICA. 

Moreover, this single channel model can be extended to a more general algorithm 

called ST-ICA based on the combination of space-time vectors.  
 

This chapter demonstrates the proposed SC-ICA, as well as ST-ICA methods, on 

the dataset from a P300 based BCI system. It also proposes an automatic method to 

speed up the component selection process. Results show that the proposed ICA 

methods can separate the single channel recordings into their underlying components. 

Moreover the results are also comparable in the final classification performances 

between Multi-channel ICA, SC-ICA and a lowpass FIR filter.     
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7.2 The dataset  

 

The dataset used here is from the BCI competition Data set IIb as it explained in 

Chapter 5. There are a total of 180 brain responses for each presented character (12 

responses multiply 15 reinforcements), 30 of which should contain P300 responses. 

The study firstly demonstrates the proposed methods on the data where each character 

is present in only three 1.5s-epochs (the recording of an epoch starts 0.5s before the 

stimulus presents) where possible P300 patterns are randomly selected and then 

concatenated to form a 4.5s trial. To examine the performance when using different 

channel locations, three channels including C3, C4 and Oz are selected to form 

several data combinations: C3, C4 and Oz alone, and C3 & C4, C3 & Oz and C4 & 

Oz combined. In the literature the P300 activity dominates over the parietal electrode 

sites (around C3 and C4), whereas Oz is located further way, towards the occipital 

region. However as the EEG is believed to be a linear mixture of underlying brain 

sources, even the recordings from a far electrode, for example Oz, is supposed to 

contain P300 patterns at a lower SNR. The above combination sets aim to explore this 

fact. The second purpose is to examine and compare the performance of the character 

identification on the single channel Cz.  

 

7.3 P300 EP extraction  

7.3.1 The proposed ICA techniques 

(1) Single channel ICA (SC-ICA) 

To examine the possibility of extracting P300 EP activities on just one channel by 

ICA, SC-ICA is applied. The details have already been introduced in Chapter Three. 

However for SC-ICA single channel the data need to be reformatted as a 
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multi-dimensional data representation which is done through the method of delays. 

Such a multi-channel representation is also called the matrix of delays. Some 

parameters, for example dimension of the matrix of delay m and delay lag τ  need to 

be set.  To set parameters for the embedding dimension m, the analysis introduces 

and uses Equation 3.22 as shown in Chapter 3. The sampling rate is set at 240Hz, and 

the lowest frequency of interest is assumed to be at about 2 Hz. Therefore m is set to 

120; and τ  is set to 1 as the default value. In short this SC-ICA algorithm includes 

following steps:  

a) create the delayed vector matrix and temporally whiten the signal;  

b) apply an ICA algorithm to learn the mixing matrix A;  

c) project all the components back to the measurement space;  

d) select the relative components based on observing the positive peaks presented 

around 300ms after the stimulus onset (subjectively);  

e) project the selected components together to the measurement space and form 

the extracted signal.  
 

For the ICA algorithm, both FastICA or Infomax ICA can be chosen in this 

analysis. However due to the high dimension of this delayed input data and the length 

of the data, the FastICA algorithm sometimes fails to converge for the exceptionally 

low achieved SIR problem [213]. Generally dimensional reduction is applied to 

discard some weak components so that the possibility of convergence could be 

improved. However Infomax ICA is able to achieve a better global convergence [214]. 

For this reason, Infomax ICA (the software in the EEGLab package) is selected for 

this analysis.  

 
The proposed SC-ICA method tests the performance on different chosen channels. 

The analysis starts on Channel C3, C4 and Oz separately (C3 and C4 are located over 

the P300 focus).  
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(2) Space-time ICA (ST-ICA) 

A ST-ICA technique is developed to work on the two-channel data. Adding just one 

more signal channel would provide extra information on both temporal and spatial 

domains. Although such information is quite limited, it allows ICA to achieve a better 

extraction performance. The study is applied to the two-channel combinations: 

C3&C4, C3&Oz and C4&Oz. The new delay matrix is similar to the application of 

the single channel case. However, this matrix is constructed from the concatenation of 

two delay vectors for each channel. So the value of m for each set of delay vectors is 

120 and then the dimension of this delayed matrix would be 240. Forτ , the default 

value 1 is used here again. In the IC projection step, each IC has to be back-projected 

on to the measurement space for each channel separately. This also means that the 

number of ICs will be doubled. The IC selection is the same as the manual method 

shown above.  
 

7.3.2 Dimensional reduction  

In the above context, the dimension of the matrix of delay m has been set ‘big enough’ 

to capture the necessary information of the signal. In effect, it takes a single channel 

data and generates a multivariate data set. Because this data set is likely to be of 

extremely high dimensionality, the problem of interpretation of this data remains. To 

overcome the problem, the dimensionality of this data should be reduced before 

applying ICA. Here SVD is used to decompose each delay matrix into a set of 

orthogonal components. Dimensional reduction of the data is performed by truncating 

the SVD transformation after a certain number of eigenvectors. This step also 

provides an opportunity to reduce some of the low level noise [215] [216].  
 



 
Chapter 7     Single channel ICA algorithm for ERP based BCI  
 

 171

7.3.3 Manual IC selection  

Since each individual IC is hard to interpret physiologically in the source space, to 

assess each IC’s neurophysiological significance, it needs to be projected back to the 

measurement space. However it is not generally possible to linearly separate 

independent components from a single time series, for example, the resulting sources 

are not necessarily truly independent. Therefore the IC selection is about finding and 

grouping the components of interest. Since this application is to extract P300 EPs, the 

P300 wave morphology is used as the IC selection criteria.  
 

7.3.4 Automatic IC selection 

The current component selection is based on a subjective (manual) method. Obviously 

it is a functionally limited method and can be only really used in the lab for study 

purposes. To build a practical BCI system, the component selection has to be 

automated. Here the study proposes and demonstrates a simple P300 extraction 

application which involves an automatic method – an improved approximate method 

to take the place of manual selection. The basic idea is to apply SC-ICA on the 

selected data from Cz (these data are randomly selected from the P300 response 

epochs) and learn the parameters needed to construct a separation filter. The obtained 

filter then can be applied to extract the rest of the data. The original automatic 

algorithm can be repeated if there are more sources in the data. Here the study found 

that running this filter once on the data is good enough to extract the P300 

components. The algorithm is summarised as: 

a) create the delayed vector matrix from the selected data set, temporally whiten 

the signal and reduce the dimension by SVD (here reduce the dimension down to 

40 by observing the convergence of the singular spectra of the matrix of delay);   

b) apply a deflationary ICA algorithm to learn the mixing matrix A;  
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c) create the separation filter )()()( twtatf iii ∗−= ,  where pi γ∈ pγ  is the 

selected subset of basis vectors; where )(tai  is the column vector of A and 

)(twi  is the row vector of W; 

d) apply this filter to the available data set and then calculate the scaling 

parameter pa  to adjust and rescale the filtered signal, pa  is given as: 

)(),()()(),( txtxtxtftxa ip ∗= , where ⋅⋅,  is the usual vector inner product; 

the )(txfa ip ∗  is the extracted source component.  

Infomax ICA has been applied in the previous session, for the automatic IC 

selection, here the aim is to examine another popular ICA algorithm – FastICA. In 

order to prevent the failure of convergence, the data dimension is reduced by SVD 

(the number of dimensions is set to 40). The FastICA program is obtained from 

FastICA software package [150].  

 

7.3.5 Comparison of extraction methods  

In the digital signal processing field, many filtering techniques have already been 

developed with the aim of enhancing the signal’s SNR. Of course, one of the primary 

applications is noise removal: removing unwanted parts of the signal, such as random 

noise, or extracting the useful parts of the signal, such as components lying within a 

certain frequency range. In this aspect, SC-ICA works like a filter. As a performance 

comparison of noise reduction and useful component extraction, the study uses a 

lowpass FIR filter on the same data. This FIR filter is setup as part of the EEGLab 

toolbox. The filter has a cutoff frequency at 10Hz (since the frequency band of 

interest for P300 EP is below 10Hz) and the filter order is set to 72 by an approximate 

method (3×(sampling frequency/cutoff)). In addition, the performance after this FIR 

filter is applied is compared with the performance after the proposed SC-ICA 

techniques with manual component selection and with automatic component selection. 
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Figure 7.1 shows the frequency response of the applied lowpass FIR filter. As the 

proposed automatic component selection after SCICA is equivalent to the filtering 

and the filter coefficient (order is 79 in this case) are found from 

)()()( twtatf iii ∗−= . Figure 7.2 shows the frequency response of the applied filter 

learned from SCICA. Comparing to the frequency responses of this lowpass FIR filter 

and the filter directly learned from SCICA, both two filters perform lowpass filtering 

the data. FIR filter reduces higher frequency components and smoothes the signal. 

However the filter from SCICA passes the low frequency components and also leaves 

partly higher frequency components. 

 

 

Figure 7.1: The frequency response of the applied lowpass FIR filter. The filter order is 
set to 72 by an approximate method (3×(sampling frequency/cutoff), the sampling 
frequency was 240 Hz and cutoff was 10 Hz).  
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7.4 Results 

 

Figure 7.3 depicts the results for the single character ‘a’ using SC-ICA on C3, Figure 

7.3a shows the raw data and consists of three concatenated 1.5s P300 epochs. The 

solid vertical line represents the stimulus presentation time and the dashed line marks 

the point 300ms following the stimulus onset. It is clear in the raw data that the P300 

representation is poor due to the low SNR. Figure 7.3b shows the manually selected 

ICs with P300 patterns in the measurement space after SC-ICA is performed. The 

signal recovered from the back-projected and summed ICs of Figure 7.3b is depicted 

in Figure 7.3c. For each epoch, a peak around 300ms after the stimulus is apparent.  
 

Figure 7.2: The frequency response of the applied filter learned by SCICA. The filter 

coefficients (order is 79) are found by )()()( twtatf iii ∗−= .  
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Figure 7.4 depicts the same analysis steps on the same character ‘a’ but as 

measured from the opposite electrode C4. The raw data shown on Figure 7.4a still 

shows a poor SNR level. Figure 7.4b shows the manually selected ICs in the 

measurement space after ICA. Figure 7.4c depicts the recovered signal by the back 

projection of selected ICs of Figure 7.4b. The extracted data have the clear P300 peak 

for each epoch. Comparing both of the extracted signals on C3 and C4, the extracted 

P300 patterns are nearly identical and also exhibit similar amplitude.  
 

Figure 7.5 demonstrates the same analysis on the same character ‘a’ but far from 

P300 focused area – on channel Oz this time. It is even more difficult to identify any 

P300 patterns from the raw data shown in Figure 7.5a. The extracted signal in Figure 

7.5c is much cleaner and depicts similar peaks as in those extracted on C3 and C4 – 

albeit at a lower SNR. These results demonstrate that the SC-ICA method is able to 

extract the information from the single recording on the related central cortex region 

and even in the locations far from it. 
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Figure 7.3: (a) Raw data for character ‘a’ using single channel C3 consisting of 3 P300 
epochs. (b) The selected ICs in the measurement space. (c) Extracted signal from the 
back-projected selected ICs. 
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Figure 7.4: (a) Raw data for character ‘a’ using single channel C4 consisting of 3 P300 
epochs. (b) The selected ICs in the measurement space. (c) Extracted signal from the 
back-projected selected ICs. 
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Figure 7.5: (a) Raw data for character ‘a’ using single channel Oz consisting of 3 P300 
epochs. (b) The selected ICs in measurement space. (c) Extracted signal from the back 
projected selected ICs.P300 peaks (at a lower SNR signal before) are apparent in the 
trace in (c). 
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Figure 7.6 shows the analysis as before but using ST-ICA on both channels C3 and 

C4. Both raw signals are depicted in Figure 7.6a. After ST-ICA, the selected 

back-projected components for each channel are shown in Figure 7.6b. These selected 

components are finally projected back to the measurement space together to form an 

extracted signal. In Figure 7.6c the results show that using only one additional 

channel leads to a similar to results in Figure 7.3c.  
 

Figure 7.7 depicts the same ST-ICA analysis but on the channel combination C3 

and Oz and Figure 7.8 presents the results on the combination C4 and Oz. These tests 

are designed to determine whether it is possible to extract components for a pair of 

recordings: one from near the P300 site and the other further away. From the extracted 

signals are shown in Figure 7.7c and 7.8c, with the assistance of recordings from C3 

and C4 in these two examples, the final extraction gives a better visual improvement 

compared to the previous extractions on a signal recording channel.  
 

Figure 7.9 uses the same two channels on C3 and C4 as Figure 7.6 but this time 

the middle epoch is replaced by a non-P300 epoch. This aims to test the reliability of 

the ICA method in conditions where the response is alternately present. After 

applying ST-ICA, as expected the recovered signal (Figure 7.9c) depicts P300 peaks 

in the 1st and 3rd epoch but none in the 2nd. For the purpose of visualization, Figure 

7.10 plots two of the extracted signals, of Figure 7.6c and Figure 7.9c, superimposed 

on top of each other. In order to measure the similarity of extracted signals, one way 

of doing this is to calculate the correlation values between these two signals for each 

epoch (there are three 1.5 second epochs in the signal and the correlation is assessed 

through each pair of epochs across the signals). The values for each pair of epochs are 

0.93, 0.15 and 0.89, correctly depicting a strong correlation when P300’s are present 

and very little correlation at epoch 2.  
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Figure 7.6: (a) Raw data for character ‘a’ using channels C3 and C4 consisting of 3 P300 
epochs. (b) The selected ICs for each channel in the measurement space. (c) Extracted 
signal from the back-projected selected ICs for C3 and C4 and the average of these two 
extracted signal. 
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Figure 7.7: (a) Raw data for character ‘a’ using channels C3 and Oz consisting of 3 P300 
epochs. (b) The selected ICs for each channel in the measurement space. (c) Extracted 
signal from the back-projected selected ICs for C3 and Oz and the average of these two 
extracted signal. 
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Figure 7.8: (a) Raw data for character ‘a’ using channels C4 and Oz consisting of 3 P300 
epochs. (b) The selected ICs for each channel in the measurement space. (c) Extracted 
signal from the back-projected selected ICs for C4 and Oz and the average of these two 
extracted signal. 
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Figure 7.9: (a) Raw data for character ‘a’ using channels C3 and C4 – epoch 2 is a 
non-P300 epoch. (b) The selected ICs for each channel in the measurement space. (c) 
Extracted signal from the back-projected selected ICs for C3 and C4 and the average of 
these two extracted signal. 
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One way to assess the performance of extracted P300 signal is to compare the 

correlation with a predefined template. Here two P300 templates are prepared: 

Template A (Figure 7.11a) is a 1.5s averaged P300 which is obtained from averaging 

a number (200) of raw P300 responses on C3; Template B (Figure 7.11b) is 4.5s of 

activity which is repeated Template A three times in series to the same length of data 

trial. After that, it is easy to calculate values of correlation between the outputs of the 

SC-ICA analysis and these two P300 templates. It is worth noting that P300 is a 

subject dependent signal and can be affected by habituation in which the peak 

amplitude could be decreased. Moreover the P300 peak appears somewhere near to 

300ms, and not exactly at 300ms. After a number of averages, the averaged P300 peak 

could become wider and the amplitude level could be lower compared to an individual 

P300 wave. Therefore the templates from coherent averaged raw EEG are not 

necessarily the most desirable way to construct a ‘gold standard’.   
 

The graph of Figure 7.12 shows the correlation values from raw data and extracted 

data after SC-ICA together with Template B, it indicates that SC-ICA over C3 

consistently outperforms its raw signal counterpart. Furthermore, the same analysis on 

Oz yields good results, again always exceeding the raw signal counterpart and 

sometimes even exceeding the performance of the raw channel located over the P300 

focus.  
 

In order to build an online real time BCI system, the component selection has to 

be automatic. Here this study examines the possibility of applying an automatic 

method. Figure 7.13 depicts the results for the single character ‘e’ using SC-ICA on 

C3. Figure 7.13a shows the raw data and consists of three concatenated 1.5s P300 

epochs as before. The solid vertical line represents the stimulus presentation time and 

the dashed line marks the point 300ms following the stimulus onset. The study applies 

the approximate component method which has been introduced in Section 3.6.3, 

Chapter 3. The proposed algorithm (depending on the application) can repeatedly be 
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used to extract more than one component of interest. But in this case, the first 

extraction has almost extracted the entire relevant P300 component. Figure 7.13b 

presents this extracted component in the measurement space. As a comparison, Figure 

7.13c shows the extracted component for the same data but by using manual 

component selection instead. Both extracted P300 peaks between the manual and 

automatic methods are nearly identical. This confirms that the approximate method 

can perform at least at the same performance level as the manual selection method.  
 

To be able to apply this automatic component separation method to this BCI 

system, the above approximation has been changed by a few steps to an improved 

version. For this new method, the P300 components are extracted by filtering the data 

with the filter that is obtained from the SC-ICA on the training data.   
 

Figure 7.14 presents a set of 15 P300 repetition responses to one type of flashing 

stimulus for the character ‘z’. The thick and dashed activity depicts P300 Template A. 

The dashed vertical line represents the stimulus presentation at the time 300 ms. The 

raw P300 responses are quite noisy and it is not possible to view P300 patterns at all. 
 

Figure 7.15 shows the extracted P300 components for the data as shown in Figure 

7.14. The thick and dashed red line depicts P300 Template A. The dashed vertical line 

represents the stimulus presentation at the time 300 ms. The extracted data are 

visually cleaner than the raw data. Some individual extracted components exhibit a 

similar shape as Template A.  
 

The correlation values between Template A with raw P300 epochs and the 

extracted components are shown in Figure 7.16. For those original signals with low 

SNR or even without P300 pattern, the extraction cannot enhance the data quality. 

However once such extraction is applied on the signal containing P300 patterns, 

things change. By comparing the correlation values with and without extraction, the 

results (for example the correlation values between Template A and the sixth epoch 
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are 0.45 (on the extract data) and 0.32 (on the raw data) show clearly that such 

processing is able to enhance the quality of P300 in the recordings. 

  

However applying an appropriate lowpass FIR filter could properly achieve the 

same outcome, this is discussed in Section 7.5.  
 

Figure 7.17 highlights an unaveraged P300 response plotted from the raw and 

extracted data. The thick and dashed active depicts P300 Template A. Figure 7.18 

shows the P300 response which benefits from two averages on the raw and extracted 

data. Figure 7.19 presents the P300 activity after three averages and Figure 7.20 

shows the P300 activity after four averages. The results show that after a few averages 

the SNR of both raw signal and extracted signal is improved. Visually the extracted 

signal has shown a clearer P300 pattern than the raw signal. Figure 7.21 shows the 

correlation values between the averaged signals and Template A. 

 



 
Chapter 7     Single channel ICA algorithm for ERP based BCI  
 

 187

 

Figure 7.10: Two extracted signals (from Figure 7.6c and Figure 7.9c), the values in bold 
indicate the correlation between each epoch across both channels. 

Figure 7.11: a) P300 Template A is a clear 1.5s P300 response which is averaged from 
200 P300 epochs; b) P300 Template B is a 4.5s activity which is repeated P300 Template 
A three times in series. 
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Figure 7.13: (a) Raw data for character ‘e’ using single channel C3 consisting of 3 P300 
epochs. (b) Extracted signal by applying the filter obtained from the approximate method. 
(c) The extracted signal by using manual component selection as a comparison. 

 

Figure 7.12: Correlation values between signals (before and after ICA using single 
channel C3) and P300 Template A.  
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Figure 7.14: A set of 15 P300 repetition responses to flashing stimulus for the character 
‘z’. The thick and dashed active depicts P300 Template A. The dashed vertical line 
represents the stimulus presentation at the time 300 ms. 
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Figure 7.15: 15 Extracted P300 components from the same data shown in Figure 7.12. 
The thick and dashed line (red) depicts P300 Template A. The dashed vertical line 
represents the stimulus presentation at the time 300 ms. 

Figure 7.16: The correlation values between Template A with 15 raw P300 epochs and 
the extracted version. 
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Figure 7.18: A twice averaged P300 response plotted from the raw and extracted data. 
The thick and dashed active depicts P300 Template A. The dashed vertical line represents 
the stimulus presentation at the time 300 ms.  

Figure 7.17: A non-averaged P300 response plotted from the raw and extracted data. 
The thick and dashed active depicts P300 Template A. The dashed vertical line 
represents the stimulus presentation at the time 300 ms.  
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Figure 7.19: A three-time averaged P300 response plotted from the raw and extracted 
data. The thick and dashed active depicts P300 Template A. The dashed vertical line 
represents the stimulus presentation at the time 300 ms.  

Figure 7.20: A four-time averaged P300 response plotted from the raw and extracted 
data. The thick and dashed active depicts P300 Template A. The dashed vertical line 
represents the stimulus presentation at the time 300 ms.  
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To compare the extraction performance between the traditional lowpass FIR filter 

and the proposed SC-ICA techniques, Figure 7.22 shows an example of filtering a 

signal segment consisting three 1.5s P300 signal trials. Results after SC-ICA with 

manual component selection, a lowpass FIR filter and the raw signal on its own are 

superimposed to give a better view for a close comparison. The results indicate both 

lowpass FIR filter and SC-ICA are able to extract the P300 peaks out of the noisy 

signal. The SC-ICA manages to preserve maximum wave appearance so that the 

signal amplitude nearly remains the same. As a drawback perhaps, the extraction still 

has some higher frequency noise left. 

 

In order to examine and enhance the component extraction so to improve the final 

P300 word identification accuracy. Figure 7.23 shows twelve 8-time averaged 

activities for one character detection, these two bold waves are the targets containing 

averaged P300 EP. The first vertical line at 500ms presents the stimulus and the 

second vertical line at 800ms indicates the line 300ms after the stimulus onset. Figure 

7.23 (a) shows results after the lowpass FIR filter. Components higher than 10Hz are 

filtered off, extracted signals are very smooth and P300 peaks in the target waves are 

Figure 7.21: The correlation values between Template A with raw averaged data and 
extracted averaged data.  
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clear. As a comparison, Figure 7.23 (b) shows results after the proposed SC-ICA and 

the manual component selection method. Two clear bold target waves indicate 

SC-ICA is able to extract the component of interest. In both plots similar P300 peaks 

can be observed. Figure 7.24 demonstrates another good example of the performance 

difference caused by the same problem. Data shown here are twelve 9-time averaged 

activities for the detection of a character. After that coherent averaging is then applied 

to the extracted signals. Obviously the averaging does not bring much benefit to the 

lowpass filtered signals since they have already had high frequency noise reduced and 

smoothed through the filter. As the assumption of coherent averaging is that the noise 

is random and not fixed to the stimulus, so the noise can be reduced through 

averaging.  

 

As a comparison of final classification performance for this P300 speller system, 

the classification accuracy of using the previous multi-channel ICA algorithm, and 

SC-ICA with manual/automatic component selection, FIR lowpass filter and raw data 

on its own. Table 7.1 depict the final classification accuracy whilst looking at various 

times of averaging on the data. Figure 7.25 gives a better visualization of such 

performance. Obviously the classification using multi-channel ICA is the best 

performed since multi-channel signals offer more information and allows ICA to 

construct a suitable spatial filter to extract component of interest from the mixing 

multi-channel data. Performance after FIR lowpass filtering gives a better result than 

one on the raw data, but not as favourable as in the multi-channel case. The SC-ICA 

together with manual component selection acts more likely a precise filter for each 

data portion (signals for one character form a data portion). This method reduces most 

of the noise and leaves the slow wave untouched so as to benefit the final 

classification accuracy during the processing of the averaging. SC-ICA methods end 

up extracting parameters that are equivalent to an FIR filter. SC-ICA with the manual 

component selection performs marginally better than the FIR filter, however the FIR 
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filter works, and since it is a much simpler method to implement, it should be the 

method of choice in this single channel application.  

 

The most important thing is that this method can implement and provide an 

automatic and fast way to extract components of interest from the noisy signal which 

is more suitable to embed into an online BCI system.       
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Figure 7.23: Twelve 8-time averaged activities for one character detection, two bold 
waves are the targets containing averaged P300 EP. a) shows results after the lowpass 
FIR filter; b) shows results after proposed SC-ICA and the manual component selection 
method. 

a) 

b) 
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Figure 7.24: Twelve 9-time averaged activities for another character detection, two bold 
waves are the targets containing averaged P300 EP. a) shows results after the lowpass 
FIR filter; b) shows results after proposed SC-ICA and the manual component selection 
method. 

a) 

b) 
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7.5 Summary 

 

This chapter proposes a new ICA technique on single or few channel(s) of recorded 

data. This chapter first demonstrates the proposed SC-ICA together with a manual 

component selection on just three P300 epochs from the total of thirty P300 

Figure 7.25: The final comparison of the classification accuracy using a previous en-ICA 
method, the proposed SC-ICA algorithm and a lowpass FIR filter.   

Table 7.1: The final comparison of the classification accuracy (%) using a previous multi-channel ICA 
method, the proposed SC-ICA algorithm, a lowpass FIR filter and a normal average method. 
 

Numbers of Averages 
Methods 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
en-ICA 29.03 41.94 51.61 54.84 67.74 64.52 67.74 80.65 83.87 93.55 93.55 96.77 96.77 96.77 93.55 

FIR filter 6.45 3.23 16.13 22.58 29.03 38.71 58.06 58.06 64.52 67.74 58.06 67.74 67.74 74.19 74.19 

SC-ICA manu 12.90 16.13 25.81 29.03 41.96 45.16 61.29 58.06 74.19 70.97 70.97 70.97 70.97 80.65 87.10 

SC-ICA auto  6.45 3.23 9.68 16.13 16.13 35.48 35.48 41.94 48.39 51.61 51.61 70.97 67.74 70.97 83.87 

raw 3.23 9.68 16.13 16.13 19.35 29.03 29.03 32.26 51.61 38.71 38.71 41.94 51.61 45.16 38.71 
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repetitions for each character. The data is structured as three individual channels C3, 

C4 and Oz and also in another three combinations: C3&Oz, C4&Oz and C3&C4. The 

extracted data from one-channel studies show very clear P300 peaks with higher SNR 

compared to the raw data. Even from a relatively far channel on Oz, the technique is 

still able to trace P300 responses. Moreover with only a minimal requirement of an 

extra recording channel, this work shows that the proposed ST-ICA algorithm can 

increase the BCI performance. Since channels C3 and C4 are much closer to the P300 

area, the original data SNR is already good so that the extraction performance from 

this pair of channels is much clearer and better than from others. By using this 

ST-ICA method, even the data from a far channel such as Oz has benefited from the 

assistance of extra recording from C3 or C4. The results have shown a better 

performance than those using Oz individually. Therefore with the proposed ICA 

algorithm on few or even a single channel, accurate spatial location of the recording 

electrode is not critical and the P300 responses can still be recovered to a usable 

degree of accuracy.  
 

Furthermore since the IC selection algorithms in the literature currently are based 

on a manual selection which will negate a real time BCI system, here the study 

presents and demonstrates an application using an improved version of approximate 

automatic IC selection method to take the place of manual selection. The new method 

creates a filter by using the vectors of the mixing and unmixing matrixes from ICA. 

After that the system performs rather like on the signal filtering in one go rather than 

to select the relevant components. In this way the approximate method avoids the 

selection step and as a consequence performs substantially faster than the application 

with the manual method. The results show that this approximate component selection 

method has a similar performance as those from the manual method. As a comparison 

of classification performance after different extraction techniques are applied, this 

chapter presents results by using proposed multi-channel ICA method introduced in 

previous chapter, the SC-ICA method with manual/automatic component selection 

and lowpass FIR filtering. Results also show the classification accuracy along with 
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different amounts of averaging applied. The results indicate that naturally more 

information available to multi-channel ICA contributes to a better classification 

performance. As for the SC-ICA method, since in this situation only one recording is 

available, the current results are much better than results after lowpass FIR filter but 

are not good as those in the multi-channel applications. Whereas the appropriate 

number of averages improves the SNR of P300 patterns which lead to achieve a better 

classification.     
 

In summary, these results on the P300 speller BCI dataset are extremely 

encouraging. The proposed ICA method can extract information from single or few 

channels with a reasonable accuracy even at low SNR channels. This method also has 

the potential of reducing the required number of repeated trials and speeding up the 

system – whilst maintaining accuracy. Furthermore this system can be easily extended 

to other, similar task-relevant EP based systems.  



 

 

 

 

 

CHAPTER 8  
 

Discussion and Future work 

 

8.1 Background 

 
Throughout the history of the development of BCI, although not long, people have 

realized that this may be the only way for patients who have suffered some severe 

debilitating diseases to increase their independence, leading to a dramatically 

improved quality of life and also reduce social cost. These diseases include ALS, 

brainstem stroke, brain or spinal cord injury and numerous other debilitating diseases. 

The diseases may result in paralysis of the entire motor system restricting both verbal 

and nonverbal communication, these also called locked-in syndrome. From a healthy 

person’s point of view, the quality of life in such patients is low. However, the quality 

of life can be maintained regardless of the physical decline. By creating another 

communication output pathway, BCIs allow a person with restricted motor abilities to 

maintain communication and operate electrical devices and computers directly 

through their brain activity. 
 

In theory, BCIs can be divided into dependent and independent types. In 

dependent BCIs, the brain’s normal output pathways are not used to carry the message, 

but the pathways need to be active to carry certain generated brain activities 

pertaining to a given task. For example, a VEP based BCI depends on extraocular 
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muscles and EEG signals generated by the cranial nerves for the operation. Whereas 

for the independent case, relevant EEG signals will arise regardless of the activity 

pattern carried in brain output pathways. The generation of the EEG control signal 

depends mainly on the user’s intent. Such control patterns include: SCPs, P300, μ and 

cortical neuron activity. Depending on the type of electrodes being used, in the 

literature BCIs are also separated into two classes, namely implanted BCIs and 

non-implanted BCIs. In the former, the micro electrode array is implanted directly 

into the grey matter of the brain through neurosurgery. As the electrodes are very 

close to the neuronal activity, this is able to produce the highest quality signals. 

However, there are safety and potential ethical issues with implanted methods in 

human subjects. Whether the implanted electrodes’ performance remains optimal in 

the long term is also questionable at this stage. For non-implanted technologies, 

mainly surface attached EEG electrodes are used, which obviously are inexpensive 

and easy to wear, setup and maintain. But the drawbacks of non-implanted 

technologies could be such as incorrect electrodes location, electrodes falling off, time 

consuming to attach multi-electrodes and their characteristics varying with time.  

 

EEG recording from non-implanted methods also could lead to the problem of 

poor signal resolution because the skull attenuates signals, dispersing and blurring the 

electromagnetic waves created by the groups of neurons. Eye movement, teeth 

clenching, frowning, varying facial expression, muscle contractions and other forms 

of artifacts can also spot the EEG signal. Moreover the noise contaminating the 

recordings is generally non-deterministic. To reduce these artifacts, filtering methods 

such as FIR, IIR filterings are usually applied to the recordings. However due to the 

diversity of artifacts, the performance of the filtering sometime is not effective. 
 

In order to detect the relevant EEG patterns for BCI, one way of dealing with 

those artifact-containing segments is to simply discard them. However it is impossible 

to do this in real time BCI system. Based on the assumption that the noise is random 

and not reproducible, one possible way is to perform a coherent averaging, i.e. to 
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measure the EEG control signal more than once and average out all the measurements 

point-by-point. This can substantially improve the SNR. However too many times of 

averaging could slow down the speed of processing or even cause habituation. AR 

modelling is often used to remove EOG artifacts from EEG signals. Although one 

problem in practise is that when AR modelling removes EOG from EEG signals it 

could possibly remove part of the EEG signal too. Another method used for BCI 

application is spectrum analysis. It can be used to separate the relative contribution of 

the different frequencies and reduce the noise’s troublesome frequency component 

from the signal. However if the frequencies of noise and components of interest are 

overlapped and fall in the same frequency band(s) it could be more difficult for the 

spectrum analysis to separate the component of interest from the signal. Since the 

EEG signals are so small in amplitude and sensitive to noise, to achieve an efficient 

detection the input signal (or features derived from it) should be selected with great 

care. 
 

These techniques bring with them, however, two problems in developing an 

efficient BCI system: (1) The repetition of signal measurements for the use of signal 

reinforcement means longer recording times, and (2) multi-channel signal input for 

the use of spatial position optimisation produces huge amounts data. This really slows 

down the BCI signal processing capability and the detection accuracy is not 

guaranteed to be improved much anyway. For these reasons, the real-world 

application of BCI is somewhat limited. Therefore, the development of faster, more 

useful and stable BCI systems continues to remain a difficult challenge.  
 

EEG signals measured on the scalp actually are the result of linear mixture of 

underlying cortical activities. The discovery of how the sources mix and extracting 

them from the observations would offer the great opportunity to enhance the signal 

SNR fundamentally. In the field of biomedical signal processing, the technique of 

ICA provides a tool to extracting a set of underlying sources or components from a set 

of random variables, measurements or signals. The ultimate aim is to extract 
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information underlying a set of signal measurements made over time. Fundamentally, 

the sources are assumed to be unknown and to be mixed linearly or even nonlinearly. 

ICA tends to demix these sources by exploiting this independence of the sources 

underlying the measured data. In the literature there are quite a number of 

publications about applications of ICA to biomedicine and even to BCIs. However 

most studies only tend to apply the existing ICA techniques to preprocess their data 

(e.g. filtering the data to reduce some simple noise). This work here expands the ICA 

concept and develops improved ICA techniques especially for use in the field of BCI 

research.     
 

8.2 Objectives 

 
The thesis presents two overreaching objectives in this BCI study: (1) to reduce the 

amount of reinforcement needed in order to reduce the processing time and hence 

increase the information transfer rate, whilst maintaining a high performance, and (2) 

to reduce the number of recording channels to make the application of BCI recording 

equipment less cumbersome and less reliant on accurate electrode placement in the 

context of increasing classification accuracy or at least with it remaining the same as 

the current classification performance.   
 

8.3 Discussion  

 
This thesis proposes and demonstrates several ICA techniques on two popular BCI 

systems: ERP based BCI and spontaneous EEG based BCI to deal with the EEG 

pattern detection problems and improve the overall performance. It starts with the 

preliminary analyses on the Southampton BCI pilot study. The purpose here is to 

examine the basic and advanced signal processing techniques on the pilot datasets so 

that the necessary knowledge can be accumulated and contributed towards follow-on 

studies. The pilot study includes ERP experiments (P300 and N400 tasks) and mental 
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imagery experiments (motor/non-motor imagery tasks). As this is a pilot study, the 

pilot data are not designed and structured as meaningful information carriers. 

Therefore it is difficult to measure and compare the performance with the results from 

the literature. However, irrespective, results show that the proposed ICA techniques 

are able to achieve an improvement between the extracted and raw ERP datasets so 

that the relevant P300 peaks are extracted more clearly and are much more easily 

identifiable. Results also indicate the mental imagery can be used in the Southampton 

BCI study if the suitable paradigm is available and the subjects are well trained. 
 

In a multi-channel P300 based word speller BCI application, three ICA methods 

are proposed to improve the existing systems in the literature. After extracting and 

enhancing the desired responses through these ICA based techniques, the results show 

that much better performance can be achieved by using these techniques followed by 

a simple classifier, when compared to straight coherent averaging followed by simple 

classification, on the BCI competition data set. Furthermore, two of the proposed 

algorithms which benefit from the use of a spatial constraint and a predefined 

template mainly optimize and automate the components selection, meaning that this 

allows ICA to be run in an automated fashion. This is non-trivial as most ICA 

algorithms yield components which require interactive and subjective post processing. 

The final classification accuracy by an ICA technique has been increased to about 

40% higher than one by coherent averaging. The study also shows that for fewer 

averages the ICA based post-processed techniques still exhibit quite good 

performance. For example, after ICA the data just applied to eight averages/epochs 

can achieve 83.9% classification accuracy whilst the data by coherent averaging can 

give only 32.3% accuracy.  
 

Multi-channel spontaneous rhythmic activity based BCI applications are different 

to the above systems. In the above numerous repetitive trials could be performed, in 

this case the analysis must be based on “single trial” classification. Traditional 

methods need to select some trial recordings as the training datasets. However if the 
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training sets include artifacts, it can cause serious problems and lead to a poor 

performance. Therefore most methods require that the data should be artifact free, 

which can be achieved by several preprocessing steps such as filtering or manual 

artifact rejection. Here instead of applying any preprocessing methods beforehand, the 

study proposes an ICA technique based on time structure and spectral constraints to 

deal with this classification issue. It estimates the stack matrices by using the 

averaged lagged covariance matrices from the data. The idea behind the process is 

that the influence of artifacts is reduced since the procedure of averaging the 

covariance matrices acts as a filter which could balance and minimise the random 

noise level. Through the technique of spectrally constrained ICA, a spatial filter suited 

to each individual EEG recording is learned. This can effectively extract 

discriminatory information from two types of single-trial EEG data. Through the use 

of the ICA algorithm, the classification accuracy is improved by about 25%, on 

average, compared to the performance of the same classifier on the unpreprocessed 

data. 

 

The thesis has already demonstrated how efficient ICA based techniques are able 

to enhance single-trial recording so that this means it is not necessary to apply many 

repetitions to obtain a reliable output. To examine the possibility of achieving the 

second objective— i.e. reducing the number of recording channels, an ICA technique 

working on single or few channel(s) recordings is proposed and demonstrated on the 

above same P300 word speller application. The results show that it is possible to 

extract single trial evoked potentials and to do so even on recording channels not sited 

over the event focus. Moreover, an automatic IC selection method is also proposed to 

take the place of manual source selection. The idea of manual selection is to simply 

check and choose the related signal patterns visually after ICA. But it is impossible to 

use it in an online BCI system which requires signal processing in real time. From the 

results the automatic IC selection performs substantially faster than the application of 

a manual method. The final classification performance indicates that more 
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information available to multi-channel ICA can benefit a better classification 

performance. However, as only one recording channel is available for the SC-ICA 

method, the current results are much better than results after lowpass FIR filter but are 

not as good as those in the multi-channel applications (unsurprisingly). Whereas the 

appropriate number of averages improves the SNR of P300 patterns which helps 

SC-ICA to achieve a better classification. Therefore the final classification by 

SC-ICA can be comparable to that obtained using multi-channel analysis techniques.  
 

In this thesis, ICA has played an important role in signal enhancement (or signal 

de-noising). The results are extremely encouraging and show that the proposed 

algorithms are able to accurately and repeatedly extract the relevant information 

buried within noisy signals. Therefore the proposed ICA techniques are able to reduce 

the number of repetitions and reduce the number of recording channels in the BCI 

applications. Moreover the quality of the extracted signal is enhanced such that even a 

very simple linear classifier can achieve good classification accuracy. The use of a 

linear classifier in BCI applications simplifies the classification process and is 

desirable from a reduced computational complexity perspective. In order to 

maximally increase the final classification performance, more advanced classifiers 

can be applied in the BCI application. However results from this study did not 

necessarily show a significant improvement in performance on the same data used by 

the simple classifier. For example, a SVM on the data from a spontaneous EEG based 

BCI increased the performance by about 2% more than the simple linear classifier. 

Therefore a good classification rate coupled with low computational cost is designed 

in order to be able to achieve a reliable, on-line, system for BCI – especially for use 

outside of the clinical laboratory.  
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8.4 Future Work 

 

Extensive future work should examine the possibility of using the single channel ICA 

concept to reduce the number of channels or even use a signal channel recording in 

the spontaneous EEG based BCI application. The work will discover the ICA 

application on identifying and isolating rhythmic component underlying single 

channel brain recordings.  

 

Up to this point, the study has examined and analyzed improvements in several 

existing BCI systems and paradigms. When the development of BCI systems is 

reviewed, some BCI applications appear difficult to improve performance due to the 

limitation of the existing BCI paradigm themselves. Control signals like SCP requires 

long training time but its processing speed is still slow. μ rhythm based BCI again 

requires long time training and the performance is more dependent on the individual’s 

skill.  

 

An upgraded BCI paradigm which combines the P300 ERP paradigm and the VEP 

approach can possibly be a good solution to overcome the existing limitation. The 

advantage of grouping these two features in one system is that the P300 ERP is 

known to be a training free component for most subjects, such that in the literature the 

P300 word speller has been proved to be able to reach a relatively good information 

transfer rate and classification accuracy. However, one drawback is that the 

performance is much more dependent on subjects’ intention and concentration. A 

VEP is a naturally occurring response and more dependent on the stimulus 

presentation than subject attentiveness. For example in a VEP application some 

objects are flashing with different frequencies and the frequency correlated signal 

pattern can be magnified and detected when a flickering stimulus is visually fixated. 

In the literature, VEP based BCI belongs to dependent BCI paradigms and requires 

little or even no training for the subjects, and it can reach the maximum information 
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transfer rate among all types of BCI systems. Furthermore a technique called a 

pseudorandom binary sequence (PRBS) [217] [218] can be introduced as a new 

feature in the presentation stimulation, VEPs can benefit from several advantages, 

such as, the recording time reduction and more efficient pattern detection. As a 

summary, visual stimuli with different frequency are involved in this new formed BCI 

paradigm, the user intends to response to low frequency flashings to generate P300 EP 

patterns; the natural response — the VEP is evoked by PRBS flashings regardless of 

the user’s intention. All the characteristics are able to support each other and make the 

detection more efficient.  
 

To make this paradigm work, the analysis could be divided into three steps:  

Step 1: to construct P300 based word speller (it has been done already); 

Step 2: to construct a VEP based system using a standard flashing stimulus at 

fixed (yet alterable) flashing rates. This will be followed by a VEP system 

with PRBS stimulus.  

Step 3: to combine the P300 and VEP to build up the proposed BCI system. At the 

same time, the developed ICA techniques will be plugged into the system 

to maximally support the detection of the signal control patterns.  

 

This new formed BCI system should offer these immediate benefits: fewer 

recording channels, less need for training, less (or no) averaging, less false detections 

and faster on-line classification. 
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Figure C.1: The averaged P300 activities vs the number of random averaging on raw 
data and extracted data for Subject 2 after normal ICA. For each plot, the upper signal 
shows the averaged activity on raw data, and the bottom one plots the same average but 
on extracted data. 
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Figure C.3: the template used to compute the correlation coefficient with the averaged 
P300 activities on the data from Subject 2. The template was an average of selected P300 
epochs. 

Figure C.4: The performance of the correlation between the P300 template and the 
averaged P300 activities before and after normal ICA on the data from Subject 2. There 
were a total 10 pairs of random averages of P300 activities.  

Figure C.2: The one selected topographic map from the data of Subject 2 after the normal 
ICA. Each map is corresponding to an independent component. Therefore there are one 
selected components projected to the original measurement space.    
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Figure C.5: The averaged P300 activities vs the number of random averaging on raw 
data and extracted data for Subject 2 after spatially constrained ICA. For each plot, the 
upper one shows the averaged activity on raw data, and the bottom one plots the same 
average but on the extracted data. 
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Figure C.6: The constraint topographic map for Subject 2. This constraint was a selected 
column of the mixing matrix after a normal ICA on a special data portion which includes 
all the selected P300 epochs 

Figure C.7: The performance of the correlation between the P300 template and the 
averaged P300 activities before and after the spatially constrained ICA on the data from 
Subject 2. 
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Figure C.8: The averaged P300 activities vs the number of random averaging on raw 
data and extracted data for Subject 6 after normal ICA. For each plot, the upper signal 
shows the averaged activity on raw data, and the bottom one plots the same average but 
on the extracted data. 
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Figure C.10: The template used to compute the correlation coefficient with the averaged 
P300 activities on the data from Subject 6. The template was an average of selected P300 
epochs. 

Figure C.11: The performance of the correlation between the P300 template and the 
averaged P300 activities before and after normal ICA on the data from Subject 6. There 
were a total 10 pairs of random averages of P300 activities.  

Figure C.9: The two selected topographic maps from the data of Subject 6 after the 
normal ICA. Each map is corresponding to an independent component. Therefore there 
are two selected components projected to the original measurement space.    
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Figure C.12: The averaged P300 activities vs the number of random averaging on raw 
data and extracted data for Subject 6 after spatially constrained ICA. For each plot, the 
upper signal shows the averaged activity on raw data, and the bottom one plots the same 
average but on the extracted data. 
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Figure C.13: The constraint topographic map for Subject 6. This constraint was a 
selected column of the mixing matrix after a normal ICA on a special designed data with 
all the selected P300 epochs 

Figure C.14: The performance of the correlation between the P300 template and the 
averaged P300 activities before and after the spatially constrained ICA on the data from 
Subject 6. 
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Figure C.15: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 1. 

Figure C.16: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 1. 
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Figure C.17: The averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 1. 

Figure C.18: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 2. 
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Figure C.19: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 2. 

Figure C.20: the averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 2. 
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Figure C.21: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 3. 

Figure C.22: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 3. 
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Figure C.23: the averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 3. 

Figure C.24: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 4. 
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Figure C.25: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 4. 

Figure C.26: the averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 4. 
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Figure C.27: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 5. 

Figure C.28: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 5.
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Figure C.29: the averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 5. 

Figure C.30: The averaged power spectra over ten trials for right hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 6. 
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Figure C.31: The averaged power spectra over ten trials for left hand grasping task 
together with the averaged power spectra of baseline signal on C3 and C4 in frequency 
domain on the data from Subject 6. 

Figure C.32: the averaged power spectra for right/left hand imagination in one graph on 
the data from Subject 6. 
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Figure C.33: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 1. The dashed vertical line represented the stimulus onset. 

Figure C.34: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 1. The dashed vertical line represented the stimulus onset. 
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Figure C.35: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 2. The dashed vertical line represented the stimulus onset. 

Figure C.36: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 2. The dashed vertical line represented the stimulus onset. 
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Figure C.37: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 3. The dashed vertical line represented the stimulus onset. 

Figure C.38: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 3. The dashed vertical line represented the stimulus onset. 
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Figure C.39: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 4. The dashed vertical line represented the stimulus onset. 

Figure C.40: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 4. The dashed vertical line represented the stimulus onset. 
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Figure C.41: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 5. The dashed vertical line represented the stimulus onset. 

Figure C.42: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 5. The dashed vertical line represented the stimulus onset. 
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Figure C.43: The ERD/ERS maps for right hand grasping imagery on the data from the 
same Subject 6. The dashed vertical line represented the stimulus onset. 

Figure C.44: The ERD/ERS maps for left hand grasping imagery on the data from the 
same Subject 6. The dashed vertical line represented the stimulus onset. 
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Figure C.45: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 2. 

Figure C.46: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 2. 
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Figure C.47: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 3. 

Figure C.48: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 3. 
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Figure C.49: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 4. 

Figure C.50: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 4. 
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Figure C.51: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 5. 

Figure C.52: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 5. 
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Figure C.53: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 6. 

Figure C.54: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 6. 
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Figure C.56: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the parietal area on the data from Subject 7. 

Figure C.55: The averaged power spectra over ten trials for the spatial navigation 
imagery and music imagery at the temporal area on the data from Subject 7. 
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Journal Papers 

 

S. Wang, and C. J. James, “Extracting rhythmic brain activity for brain-computer 

interfacing through constrained independent component analysis”, Computational 

Intelligence and Neuroscience, 2007(ID41468), 9pp, 2007. 

 

 

Conference Papers 

 

C. J. James and S. Wang, “Single Channel ICA on P300 based BCI”, Proceedings of 

the IET Medical Signal and Information Processing Conference MEDSIP 2008, Italy, 

14-16 July, CD-ROM, 2008 

 

M. Davies, C. J. James and S. Wang, “Space-Time ICA and EM Brain Signals”, 

Proceeding of 7th International Conference, ICA 2007, 577-584, 2007. 

 

S. Wang, and C. J. James, “On the independent component analysis of evoked 

potentials through single or few recording channels”, 29th International Conference 

of IEEE Engineering in Medicine and Biology Society (EMBC2007), Lyon, France, 

23-26 August 2007, 5433-5436, 2007. 

 

C. J. James and S. Wang, “Blind source separation in single-channel EEG analysis: 

An application to BCI”, Proceedings 28th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, New York, USA, 31 August - 2 

September 2006, CD-ROM, 2006, 
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Conference Abstracts 
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