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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

Bowed instruments are among the most exciting sound sources in the musical world,
mostly because of the expressivity they allow to a musician or the variety of sounds
they can generate. From the physical point of view, the complex nature of the
nonlinear sound generating mechanism — the friction between two surfaces — is no less
stimulating.

In this thesis, a physical modelling computational method based on a modal
approach is developed to perform simulations of nonlinear dynamical systems with
particular application to friction-excited musical instruments. This computational
method is applied here to three types of systems: bowed strings as the violin or cello,
bowed bars, such as the vibraphone or marimba, and bowed shells as the Tibetan bowl
or the glass harmonica. The successful implementation of the method in these
instruments is shown by comparison with measured results and with other simulation
methods. This approach is extended from systems with simple modal basis to more
complex structures consisting of different sub-structures, which can also be described
by their own modal set.

The extensive nonlinear numerical simulations described in this thesis, enabled some
important contributions concerning the dynamics of these instruments: for the bowed
string an effective simulation of a realistic wolf-note on a cello was obtained, using
complex identified body modal data, showing the beating dependence of the wolf-
note with bowing velocity and applied bow force, with good qualitative agreement
with experimental results; for bowed bars the simulated vibratory regimes emerging
from different playing conditions is mapped; for bowed Tibetan bowls, the essential
introduction of orthogonal mode pairs of the same family with radial and tangential
components characteristic of axi-symmetrical structures is performed, enabling an
important clarification on the beating phenomena arising from the rotating behaviour
of oscillating modes. Furthermore, a linearized approach to the nonlinear problem is
implemented and the results compared with the nonlinear numerical simulations.

Animations and sounds have been produced which enable a good interpretation of
the results obtained and understanding of the physical phenomena occurring in these
system.
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PRESENTATION

In Acoustics, as in most other fields of Science, the simulation of physical phenomena
is the endeavour of most researchers. The main objective is to reproduce an acoustical
event under controlled conditions in order to understand, modify, control or simply
mimic system behaviour. The applications are immense: from noise control to musical
sound synthesis, room acoustics design, high-fidelity sound reproduction or

environmental noise predictions, among many others.

Almost as numbered as the applications are the simulation methods. Experimental,
analytical or numerical, based on physical understanding or phenomenological in
nature, the diverse methodologies have different validities but generally with the same
underlying goal: to determine the effect of changing one ore more variables, in order
to comprehend the system dynamics. From these systems, musical instruments
represent a rather interesting case, since the pleasantness of sounds produced and the

physical analogy to non-musical systems make them perfect objects of study.

Researchers in Musical Acoustics have devoted more than 100 years (see Helmholtz
(1877), Rayleigh (1894), amongst others) to the study of musical instruments and,
particularly in the past decades to the simulation of their dynamical behaviour in order

to establish reliable models for sound reproduction or physical understanding.

As a contribution to this field of study, this thesis describes a computational method
based on a modal approach for the simulation of nonlinear dynamical systems with
particular application to bowed (friction-excited) musical instruments: bowed bars,

bowed strings and bowed bowls.

The introductory chapter, which includes the literature review, presents three
fundamental aspects to the contents of the thesis: 1) friction-excited vibrations,
exploring some of the different areas where friction induced self-sustained oscillations
have a predominant role; 2) a literature review of research work on bowed musical
instruments, establishing the context where the present method fits and 3) the aims

and contributions of this thesis to scientific knowledge.

In Chapter 2 the general simulation methodology is presented, common to all three

instruments, together with a short description of their main characteristics, relevant to



the computational method. The friction model used in the simulations is then
described, followed by a reference to other approaches, found in the literature, to the
description of friction phenomena in these instruments. Since other alternative
methods have also been developed by different authors to simulate the dynamics of
bowed instruments, a comparison with one of the most reliable is made regarding
bowed strings. As a conclusion to this chapter, the main advantages and disadvantages

of the method when compared to the alternatives are described.

The following three chapters describe the application of the simulation methodology
to each of the three instruments studied: Chapter 3 addresses one the most studied
systems in Musical Acoustics — the bowed string; Chapter 4 describes the application
of the method bowed bars as an example of a two dimensional, dispersive system;;
and Chapter 5 concludes the applications with axi-symmetrical structures, such as the
bowed Tibetan bowls. The results of the simulations are presented in each of these

three chapters followed by the experimental work performed.

In Chapter 6, a linearized analysis of the dynamical equations described in the
previous chapters is developed, with application to the bowed bar and the bowed
string. After presenting the linearized formulation and the steady and oscillating
solution, a brief comparison with the results obtained from the nonlinear computations
iIs made. Chapter 7 concludes the thesis, with a summary of the contents and a
description of the main achievements. Finally, the perspectives for future work are

described.



CHAPTER 1

INTRODUCTION



1. INTRODUCTION

1.1. Friction-excited vibrations and sound

A large proportion of sound sources radiate acoustical energy through the action of
vibrating solid surfaces upon a surrounding fluid (Fahy, 2007). The source of these
vibrations can be various, from transient impacts (as a press hammer or a xylophone
mallet) to continuous oscillatory forces (such as rotating shaft on a turbine or a
electromagnetic field in loudspeakers), amongst others. When referring to sound
emanating from a violin or the brake noise from an automobile, friction is the main

mechanism of vibratory energy.

Friction is defined as a force that resists relative motion between two contacting
surfaces (Ibrahim, 1994a) and develops between the sliding surfaces regardless of the
magnitude of that motion (Akay, 2002). Tabor (1981) represents the friction force as
the resistance which develops during the deformation of thin surface layers by
penetrated irregularities (see Figure 1.1) and by atomic and molecular interactions on
the portions of contacting solids separated by a distance close to 10 A (A = Angstrom
=10-8 cm).

Figure 1.1 — Schematic representation of two sliding surfaces on the microscopic
level (V. is the relative velocity between the surfaces).

Friction fulfils a dual role by transmitting energy from one surface to the other and by
dissipating energy of relative motion (Akay, 2002). As a result from this energy
exchange mechanisms, friction can generate waves and oscillations within the solids
which, depending on their geometrical and dynamical characteristics, usually lead to
the radiation of sound. It is therefore important to understand not only the microscopic

and macroscopic mechanisms underlying the generation of friction, one of the



subjects of Tribology*, but also the dynamics of the bodies whose surfaces are in

motion.

The study of contact and friction phenomena has been pioneered by the historical
works of Leonardo da Vinci (1452-1519), Amontons (1699), J.T. Desaguliers (1725),
Euler (1749) and Coulomb (1785); an interesting overview is given by Fenny et al
(1998) and Tabor (1981). Coulomb recognized that frictional resistance occurs at
localized asperity contacts and, together with Amontons, that the friction force is
proportional to the normal load between the surfaces, independent of the apparent
contact area and sliding speed (lbrahim, 1994a). However, the friction force is
dependent or much further aspects: the overall shapes of the contacting surfaces and
its surface texture; whether the surface deformation is elastic and/or plastic; the
presence of wear particles or of lubricating films; the environmental conditions
(Ibrahim, 1994a)?, as well as the contact and dynamical properties of the moving

solids, amongst others.

The classic friction laws, usually referred to as Coulomb laws, apply to dry (non-

lubricated) contacts and can be summarized as:
- The friction force is independent of the apparent area of contact.
- The friction force is proportional to the normal contact force.

- The friction force is independent of the sliding velocity.

Although the first two laws are generally observed in most systems, the third law is
known to be invalid for some systems. Martins, et al. (1990) have provided a
distinction between static and kinetic friction (when both surfaces are in motion), in
that kinetic friction depends on the sliding velocity while the static friction depends on
the time of repose. This notion supports some conclusions by Euler (1748) in which
the fact that the kinetic coefficient of friction is less than the static one could be
attributed to the fact that asperities on one surface could jump part of the way over the

gap between asperities on the other (Ibrahim, 1994a). In fact, depending on the system

! Tribology is the science and technology of interacting surfaces in relative motion. It includes the
study and application of the principles of friction, lubrication and wear.

2 For the purposes of this thesis, lubricated contacts as described by fluid dynamic equations will not be
addressed (usually relevant for mechanical components); only dry friction is of interest since it is the
most relevant for bowed musical instruments. If appropriate to the explanation of certain phenomena in
bowed strings, lubricated contacts will be addressed briefly.



in question (e.g. the nature of the solids in contact), the static and kinetic (or

dynamical) friction coefficient can either be very different of extremely similar.

These and other descriptions of frictional behaviour mainly associated with the
characteristics of the surfaces are now prolific and have resulted in profound
knowledge on the micro-scale surface interaction mechanisms. However, the
dynamics of solid interfaces and its relation with the theory of frictional forces at solid
interfaces in relative motion have a recent history in the engineering and applied
mechanics research (see Bowden & Tabor, 1964; Suh, 1986; Johnson, 1985; Rice &
Ruina, 1983; Singer & Pollack, 1992). Friction is a complex process and depends on
several parameters, some of which are relevant to the present discussion. In friction-
excited vibrations, the dependence of friction on the relative velocity and the normal
force between sliding surfaces is paramount. Other factors can also impose an
important influence, such as temperature and time-dependence of the friction

parameters (see Ibrahim, 1994a).

1.2. Simulation Methods and Dry Friction Models

Computer simulations of the motion of mechanical systems usually imply finding the
solutions of the governing inhomogeneous partial differential equations either by
analytical or numerical methods. Among these methods, some have been applied with
success to musical instruments, from the simple lumped networks of masses and
springs to time-domain numerical methods such as finite difference schemes, digital

waveguides models and wave digital filters, among others.

When dry friction excitation is present, calculations face the difficulty of the strongly
nonlinear characteristic of the friction force near zero velocity. The Coulomb friction
laws, described in the previous section, imply the well-known friction model
represented in Figure 1.2a or Figure 1.2b, where the sliding (dynamical) friction force,

F,, — Coulomb friction —, is independent of the relative velocity between sliding

surfaces.It is now widely understood that in order to establish motion a static force

limit, F higher than the Coulomb sliding friction is required (Figure 1.1b).

S8

Equation (1.1) expresses this latest model, where g, is a kinetic (or dynamical)

friction coefficient and i, is the static friction coefficient, and F, is the normal load.
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The discontinuity of this step function expresses the extreme nonlinearity of the
excitation friction force, which — together with the indeterminate friction force during
adherence — are the major difficulties for simple simulation methods. In order to
properly integrate the ordinary differential equations that describe the motion of the
system, the appropriate value of the derivative must be used on each side of the
discontinuity, which can be a problem since the discontinuity can occur inside the

integration subintervals (Armstrong-Hélouvry et al. 1994).
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Figure 1.2 — Friction force as a function of the relative velocity between surfaces:
(a) the Coulomb model with F,; = F, ,and (b) the Coulomb + static model with
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Furthermore, for most systems, the change of the dynamical friction coefficient with
the relative velocity between surfaces is not constant. This dependency has been the
subject of several studies: Sampson, et al. (1943), Burwell & Rabinowicz (1953),
Grosh (1963), Rabinowicz (1958, 1965), to mention a few. Tolstoi et al (1971)
suggested that the decrease of the dynamical friction with increasing sliding velocity
can be explained by the effect of normal contact oscillation between the bodies;
Sampson, et al. (1943), referred a difference on the friction coefficient during
acceleration and deceleration which is responsible for the hysteretic effect observed in
some systems; this behaviour was also observed by Sakamoto (1985, 1987), Hunt et
al. (1965), Bell & Burdekin (1969), Brockley & Ko (1970), Antoniou et al. (1976),
and Martins et al. (1990), suggesting that the loops in the frequency-velocity plots



were greatly affected by the experimental model. Several analytical relations for the
friction-velocity curve have been developed, most of them showing some type of
exponential decay (Brockley & Ko, 1970; Bo & Pavalescu, 1982; Hess & Soom,
1990)3.

As an example, Figure 1.3 represents a typical variation of the dynamical friction
coefficient with the relative velocity (for continuous sliding) between two surfaces.
Indeed, the instantaneous change between the sliding friction force to the static
friction value represented in Figure 1.2b is unrealistic, and some kind of

approximation to the static value has to occur when motion approaches V. =0. For

continuous sliding, this variation is approximately a decaying exponential function
(Smith, 2000).

Figure 1.3 — Typical variation of the friction coefficient with relative velocity
between surfaces (only non-lubricated contact is considered).

Several approaches have been used by different authors to overcome the problem of
the discontinuity at the origin, usually recurring to a regularization method (Martins et
al. 1990; Oden & Martins, 1985; Tworzydlo & Becker, 1991) or employing switching
functions which detect the presence of the discontinuity in the last integration sub-
interval (Dupond, 1993). To detect zero velocity crossing one possible switching

function is sgn(x) . For the integration of discontinuous equations, small integration

steps must be adopted, especially to capture transients that can occur near the

¥ The references given in this paragraph state investigation carried from an industrial perspective. Also
in the field of Musical Acoustics, the description of the friction laws governing the interaction between
two bodies (the bow and the string of a violin, for example) has led to interesting findings. Being
specific to the core of this thesis, they will be discussed in section 1.3.



discontinuity, but variable-step size and variable-order methods are also adequate
(Armstrong-Hélouvry et al. 1994).

One possible regularization method, which overcomes the need for the switching
functions, is the approximation of the sticking part of the friction law by a linear
region (Haessig & Friedland, 1991; Threlfall, 1978; Bernard, 1980), like the one
represented in Figure 1.4.

FfA
+F,
W)
V.
_FfD(Vr)
-F

Figure 1.4 — Variation of the friction coefficient with relative velocity with a
linear approximation simulating a pseudo-sticking state.

The sticking stage of the friction law is better approximated as steeper is the slope
across the origin. This imposes the need for very short time integration steps, which
can be a difficulty in some simulation methods. Other improvements on this law have
been suggested by Bo & Pavalescu (1982) and Klamechi (1985), which still face the
problem of not being able to represent the friction force at zero relative velocity. In

other words, such approach is unable to simulate true adherence.

Karnopp (1985) developed an alternative approach in which the zero velocity
detection was surpassed by defining a zero velocity interval within which the velocity
of the system may change but the output is locked to zero, therefore simulating the
sticking stage. In this interval the friction force exactly cancels the driving force and
only when the driving force exceeds the “break-free” force, the body accelerates and
the magnitude of the relative velocity will surpass the interval limits and switch to slip
mode. Some of the drawbacks of this model are that the friction force within this
interval does not agree well with real friction and the system complexity increases

greatly with the number of degrees of freedom.



Other models have been proposed, such as the Dahl model (Dahl, 1968; 1976)
developed from the stress-strain curve in classical solid mechanics, in which the

friction force F, is a function of the displacement and the sign of the sliding velocity

V. Equation (1.2) represents the Dahl model, where y is a stiffness constant and £,

determines the peak sliding friction force. These constants can be selected according
to the system in question.
dF, 2
—L=Vy(F,-Fsan(V,)) (1.2)
dx
This particular model, however, will not generate a static friction force higher than the

sliding friction force, unless F; is a function of the sliding velocity.

These and other models, such as the “bristle model” and the Reset Integrator Model
(Haessig & Friedland, 1991) or the Bliman and Sorine models (Bliman, 1992; Bliman
& Sorine, 1991), have been able to simulate relevant aspects of friction induced-

vibrations, particularly the important stick-slip phenomenon.

1.2.1 The Stick-Slip Phenomenon

Resulting from the contact between the atomic scale random asperities of solids in
contact, friction is characteristically aperiod in nature. However, in certain conditions,
the vibrations or sound generated by friction can become periodic. There are several
mechanisms that can lead to this particular situation; however the stick-slip
phenomenon is one of the most important and characteristic of friction-induced self-

sustained oscillations®.

In a single-degree-of-freedom system, a necessary condition for self-excited
vibrations to exist is a negative slope of the friction-force speed curve. This negative
slope is responsible for the energy that is supplied to the vibrations (Ibrahim, 1994b).
If one of the sliding surfaces has a certain degree of elasticity it is possible that both
surfaces experience relative sliding or sticking in different times of their interaction.
When this occurs, their relative motion is not continuous but intermittent, with

oscillations occurring by the process of stick-slip. In multi-degree-of-freedom

* These particular types of oscillations are originated when a steady (non-oscillatory) flow of energy is
transformed into an oscillatory motion through some kind of nonlinear mechanism (see section 1.2.3).

10



systems, the phase differences between the coupled modes can supply energy to
induce vibrations (Ibrahim, 1994b).

In most contexts where stick-slip vibration can occur, it is an undesired effect. For
example, in machining it is likely to impair the surface finish of the cut, and in
braking systems it may increase wear while reducing braking efficiency. (Smith &
Woodhouse, 2000)

1.2.2 Friction vibrations in Industrial components

Many mechanical systems and components use friction as the dominating force for
their functioning, such as brake systems, transmission systems (pulleys) or friction
damping mechanisms, amongst others. However, if friction is beneficial for most
applications it also generates some detrimental effects, which can be a serious
problem in many industrial applications. Friction-induced vibration, chatter and
squeal can impose functioning difficulties and ultimately failure in turning blade
joints, electric motor drives, water-lubricated bearings in ships and submarines,
wheel/rail of mass transit systems, machine tool/work piece systems and brake
systems (Ibrahim, 1994).

Apart some of the common every-day life noises generated by friction (such as the
squeal of sneakers on parquet floors, the squeak of snow when walking on it, moving
door hinges, scratching chalk on a blackboard) there are several examples of noises
that result from friction-excited vibrations: squeaks and squeals in the interior of
automobiles, aircraft and automotive brake squeals, belts on pulleys or rail-wheel

noise (Akay, 2002), amongst others.

1.2.3 Friction vibrations in Musical Instruments

If the examples of the previous section are annoying to the ear, bowed musical
instruments use friction to induce further more pleasant sounds. Apart from the well
known violin family instruments (violin, viola, cello and double bass), friction is the
sound producing mechanism of many others, from Medieval to Contemporary music.
The Tromba Marina, the viola da gamba, the bowed vibraphone and marimba, the nail
violin, the musical saw, musical glasses, the glass harmonica, the brazilian cuica or
the Portuguese sarronca as well as Tibetan bowls are some important examples (see

Figure 1.5, Figure 1.6 and Figure 1.7).
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Figure 1.5 — Examples of bowed membranophones: (a) the Portuguese sarronca
and (b) the Brazilian cuica.
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Figure 1.6 — Examples of bowed idiophones: (a) the bowed vibraphone; (b) the
nail violin; (c) the Tibetan bowl and d) the glass harmonica.
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Figure 1.7 — Examples of bowed chordophones: (a) the violin family instruments;
(b) the medieval tromba marina.

Of all the examples presented, three main components to the production of sound can
be found: a source of energy (the player), a mechanism for generating friction (by the
sliding contact of two surfaces), a tuned resonator and a component that modifies,
amplifies and/or radiates the frictional energy (usually referred to as a resonator
and/or radiator). In contrast to plucked string or percussion musical instruments (but
in harmony with most wind instruments) friction excited instruments are essentially
nonlinear in nature®. This nonlinearity allows for a self-sustained oscillation to be
generated while the stationary source of energy is available. Figure 1.8 represents an
energy flow diagram common to all self-sustained musical instruments where these

and other components are represented.

This energy transfer and transformation process can be used to describe the principles
of functioning of musical instruments. A steady sound source (usually the player’s
muscles when bowing or breath when blowing, or even a mechanical ventilator in the
case of organs) generates the energy necessary to start the system. This energy is
converted into vibratory energy through a nonlinear interface (friction, reed, etc.)
between the musician’s gesture and the primary resonating component (string, air
column, plate or membrane, etc.). In all self-excited instruments (violin, clarinet, tuba,

etc.), the nonlinear interface will react in synchrony with the resonator, due to feed-

% It is important to state that some exceptions occur where percussion musical instruments have also
significant nonlinear characteristics of geometrical nature (see Rossing, 2000).
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back phenomena from the later (vibration or pressure pulse). In fact, coupling
between the nonlinear generator and the primary resonator is so close that they cannot
be considered separately (Fletcher, 1999). Under suitable conditions of the control
parameters (bow normal force and tangential velocity, blow pressure, etc.), the
instrument will become linearly unstable. Then vibratory or acoustic responses will
grow until saturating nonlinear effects limits the oscillating amplitude, usually leading
to limit-cycle regimes. The primary resonator can, in some instruments, interact with
other nonlinear mechanisms and with a secondary resonator (such as the body of a

cello) which can act also as a radiator of sound.

< Player <
v Sound
Stead . .
energ§ Nonlinear R Primary R reig(r:]zr[]g?% d —»
source generator resonator

radiator
X \

Losses

A 4

Secondary
nonlinearities

Figure 1.8 — Diagram representing the components and the energy flow in a self-
sustained musical instrument.
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1.3. Research on Bowed Musical Instruments

Apart from bowed strings, which have been the subjects of most scientific research in
Musical Acoustics, other bowed instruments haven’t received such a notorious
attention. Bars, plates and shells, which are the main components of most idiophones,
have been extensively studied, but generally only when impact (either linear or non-

linear) excitation is present.

Several friction-excited idiophones are familiar to western musical culture, such as
bowed vibraphone and marimba bars, the nail violin, the musical saw, musical glasses
and the glass harmonica, as well as some natural objects rubbed against each other,
like sea shells, bones, stones or pine-cones. In an interesting tutorial paper, Akay
(2002) presents an overview of the acoustics phenomena related to friction, which is
the main sound-generating mechanism for such systems. Some of these musical
instruments have been experimentally studied, in particular by Rossing (2000).
Nevertheless, the analysis of idiophones excited by friction is comparatively rare in
the literature and mostly recent — see French (1983), Rossing (1994), Chapuis (2000)
and Essl & Cook (2000). Among these studies, only French (1983) and Essl & Cook

(2000) aim at physical modelling, respectively of rubbed glasses and bowed bars.

On the modelling techniques of such instruments, the developments of Mcintyre and
Woodhouse (1979), with the now classic digital waveguide method, have been
paramount for the knowledge of their behaviour and for the development of real-time
synthesis methods for musical purposes (Smith, 2003). Other applications for musical
purposes aiming particularly on the creation of new sounds based on physical
modelling were developed in IRCAM. The software Modalys developed in this
institute is based on a modal representation of the systems, similarly to the method
developed in this thesis. However, the nonlinear interactions between the instruments
components are treated in a totally different approach from the one presented here

(see Bensoam, 2006).

In this section, a review is made of some of the most important references to the three
types of instruments studied in this thesis: bowed bars, bowed shells and bowed

strings.
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1.3.1 Bowed bars

In spite of the increasing application of bowed idiophones, as vibraphones or
marimbas, in contemporary music making, it is only recently that the scientific
community started working on the dynamic processes behind this sound-producing
technique — see Rossing (1994, 2000) and Essl & Cook (2000). Friction-induced
vibrations in bowed bars present several interesting aspects: In the first place, it is still
a challenge to properly simulate the complex stick-slip behaviour of multi-degree-of-
freedom systems; Secondly, the much studied and now well understood
synchronization mechanism provided by the back-and-forth travelling waves in
bowed string instruments (Mclntyre & Woodhouse, 1979) does not apply to bowed
bars. Indeed, the harmonic relationship between the modal frequencies of string
transverse modes is not typically found in bending bars. This is connected to the fact
that string waves are non-dispersive (or, at most, weakly dispersive), whereas flexural
waves are strongly dispersive. Hence, the classical Helmholtz-type excitation
mechanism (Fletcher & Rossing, 1998) found in bowed strings does not apply to

bowed bars.

In 2000, Essl & Cook published the results of an investigation in which several
experimental measurements of bars of bar percussion instruments bowed by a double
bass bow and by a bowing machine were presented. They examined the relationships
between performance and perception parameters which are relevant for musical
performance and presented a simulation method using a banded waveguide time-
domain approach. Their results stated the increase of the bar vibration amplitude with
increasing bow velocity and the independence on bowing force, as also seen in bowed
strings. Their simulation results lacked information on the spatial details of the bar
vibratory behaviour, but presented qualitative good agreement with measurements.

1.3.2 Bowed shells

Recently, some researchers became interested in the physical modelling of singing
bowls, using waveguide synthesis techniques for performing numerical simulations
(Cook, 2002; Serafin et al, 2002; Young & Essl, 2003). Their efforts aimed
particularly at achieving real-time synthesis. Therefore, understandably, several
aspects of the physics of these instruments do not appear to be clarified in the
published formulations and results. For instance, an account of the radial and
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tangential vibratory motion components of the bowl shell — and their dynamical
coupling — has been ignored in the published literature. Also, how these motion
components relate to the travelling position of the excitation stick (called puja)
contact point is not clear at the present time. Details of the contact/friction interaction
models used in simulations have been seldom provided, and the significance of the
various model parameters has not been asserted. On the other hand, experiments
clearly show that beating phenomena arises even for near-perfectly symmetrical
bowls, an important aspect which the published modelling techniques seem to miss
(although beating from closely mistuned modes has been addressed — not without
some difficulty (Young & Essl, 2003) — but this is a quite different aspect). Therefore,
it appears that several important aspects of the excitation mechanism in singing bowls

still lack clarification.

1.3.3 Bowed strings

Raman’s seminal paper (Raman, 1918) was a landmark study of the dynamics of
bowed strings. Since then, a plethora of research papers has been published on bowed-
string instruments, including enlightening work by Friedlander (1953), Schelleng
(1973), Mclntyre, Schumacher and Woodhouse (1983), to name just a few — see
Cremer’s book (Cremer, 1984) — for an extensive account of the field).

In most published work, simulations assumed a string pinned at the bridge and the nut,
and therefore decoupled from the instrument body. This approach proved adequate to
obtain the typical motion patterns displayed by bowed-strings. However, because the
bridge is assumed motionless, such computations are obviously unable to cope with

more subtle phenomena related to the coupling of string and body motions.

A crude approach to incorporate body effects, when simulating string sounds, is to
start by computing the vibratory response of an “isolated” (bowed or plucked) string,
and then use the resulting string/bridge interaction force to drive a given body vibro-
acoustic transfer function. However this simple approach is quite limited and cannot
account for any energy feedback from the body into the string — such as is found in

wolf notes — because the full string/body coupling is not modelled.

Apparently only a few authors have attempted to address this string/body coupling
problem. Mcintyre (1983) incorporated in their wave-propagation computational
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algorithm a bridge-reflection function which encapsulates the dynamical behaviour of
a given body resonance, enabling them to simulate the coupled dynamics between the
string and the chosen body resonance. Similarly, Puaud et al (1991) used (in
connection with a so-called “numerical bow”) a mass-stiffness bridge-resonator,
therefore also emulating a chosen body-resonance coupled to the string dynamics.
Recently, a different approach has been pursued by several authors to simulate
instrument bodies and cavities — see Huang et al (2000), for instance — by using 2D or
3D waveguides to compute simplified multi-degree-of-freedom resonating systems.
However, until now, this modelling technique has only been used to simulate the
body-filtering effects on string/bridge dynamical forces, with no feedback coupling.
In relation to other stringed instruments, Derveaux et al (2003) achieved fully coupled

string/soundboard computations for a modelled guitar.
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1.4. Aims and contributions

The aim of this thesis is to present a robust computational method, based on a modal
approach, for the simulation of three different types of bowed musical instruments:
bowed strings, bowed bars and bowed shells. Although the dynamical and frictional
behaviour can be quite different for each system, it is proposed to use the same
general friction model for the three types of instruments, although using two different
implementations for simulating the adherence state. The objective is to perform
simulations which exhibit results with the same global vibratory behaviour when

compared to the real instruments.

Most of the work presented in this thesis has already been published by the author in
refereed scientific journals. All these publications have been co-authored by other
researchers whose contributions were related to supervision of the work carried by the

author of this thesis.

1.4.1 Contributions on the modelling techniques

Several methods have been used by different authors to simulate different vibratory
aspects of musical instruments, as already described in the previous sections. The
main contribution of this thesis is the implementation of a computational method,
mainly originated in industrial applications, to the simulation of the vibratory
behaviour of two types of bowed musical instruments: strings and idiophones (divided
into one dimensional and axi-symmetric structures — bars and bowls, respectively),
utilizing the same underlying friction model. The modal approach and the friction
modelling developed in this thesis allows great versatility for incorporating different
components of the instrument in the simulations, when compared with other methods.
Some of these contributions of this method are summarized in the following

paragraphs and further detailed in the respective chapters:
Bowed Bars

- Numerical model including the force generated by the supports and acting on the

nodal points of the first flexural mode of the bar;

- Numerical model allowing the introduction of a bar of arbitrary shape and pre-

defined (calculated or identified) modal basis.
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Bowed Tibetan Bowls

- Numerical model introducing orthogonal vibratory modes pairs, with both
tangential and radial components, coupled by the nonlinear friction force, for

symmetrical and slightly asymmetrical shapes;
Bowed Strings

- Numerical model incorporating the measured dynamics of real-life instrument
bodies, coupled to the string motions. Two different approaches to account for the

coupled string/body dynamics are proposed.

1.4.2 Contributions on the results

The implementation of the simulation method presented in this thesis has contributed
to new results, not only because some of the instruments had never been simulated
with the level of physical detail provided by this method, but mainly from the new
findings in relation to what was common knowledge on the vibratory behaviour of
some musical instrument components. The new results are summarized in the

following paragraphs and further detailed in the respective chapters:
Bowed Bars

- Simulation of the time history of the vibration of bowed bars with good agreement

with measured time-history;

- Simulation of different vibratory regimes of bowed bars for different playing

conditions of either bow velocity and applied force;

- Interpretation of the self-excited regimes based on a linearized analysis of the
system before nonlinear effects emerge.

Bowed Shells

- Simulation of the time-history of the vibrations of bowed Tibetan bowls with good

agreement with measured time-history;
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Simulation of different vibratory transients and self-sustained regimes of bowed
Tibetan bowls for different playing conditions of either bow velocity and applied

force;

Clarification of the radial and tangential vibratory behaviour of bowed Tibetan
bowls and of the beating phenomena associated with perfectly axi-symmetrical

instruments;

Demonstration of the strong dependence of the Tibetan bowls self-sustained

regime order of oscillation on the contact/friction parameters;

Bowed Strings

Presentation of the effect of torsion modes on the string dynamics for a wide range

of torsion to transverse frequency ratios;

Demonstration that differences between point-model and finite-width simulations
can be more pronounced outside the range of bowing parameters leading to the

Helmholtz motion;

Effective simulation of the wolf-note on a cello, establishing the range of the

playing parameters where this phenomenon emerges;

Demonstration of the beating dependence of the wolf-note with bowing velocity
and applied bow force, with good agreement with measured results;

Interpretation of the self-excited regimes based on a linearized analysis of the

system before nonlinear effects emerge.

For all cases validating qualitative experiments are presented, as well as realistic

“sounds” and original animations of both transients and steady-state regimes which

are illuminating and pedagogic.
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Chapter 2

GENERIC SIMULATION METHODOLOGY
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2. GENERIC SIMULATION METHODOLOGY

2.1. Introduction

The modelling approach developed in this thesis is not tied to a specific system, but
has been devised to be used with any kind of dynamical problem, in this case bowed
musical instrument vibratory behaviour, where localized frictional forces couple
different vibrating subsystems. For this reason, a generic description of the
computation method is made in this chapter, which is common to the three systems
studied. The details of the implementation for each of the three instruments are

presented in the corresponding chapters.

2.2. Nonlinear computations in the time domain using a modal basis

The mathematical description of vibrating systems like tensioned strings or rigid bars
is usually performed by means of one or several linear partial differential equations in
both time and space domain. Although torsional and axial vibrations are also present
in the dynamics of these systems, a focus will be placed on transverse displacement

only, for matter of simplicity in describing the basis of this computational method.

If linear dissipation is assumed, the small-amplitude motions y(x,z) of the system
subject to a force distribution F(x,z) can be described by an equation of the type:

aﬂ+C(Qj+KZ(y)=F(x 1) (2.1)
ot ot ’ '
where o is the linear density of the system inertia, C(%} is a linear dissipative term

and IC(y) is the linear stiffness restoring force which depends on the particular kind

of system in study. For the present work, the external force field F(x,z) is originated
by the friction between a violin or cello bow or a rubber or wooden stick, and one or

more points of the vibrating body.

Any solution of (2.1) can be formulated in terms of the unconstrained system modal
parameters: modal masses m,, circular frequencies ,, damping values ¢, and mode
shapes @,(x), with » = 1,2, ..., N. The order N of modal truncation is problem

dependent and must be asserted by physical reasoning. On the modal space the forced
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response of the damped string is formulated by (2.2), which follows from (2.1) by
writing the solution of this partial-differential equation with the separation approach
(2.4):

(MO0} +[Cl{ 00} +[K {0} ={E(®)} 22)
where:  [M]=Diag(m,,--,m,) , [C]=Diag@mew,¢,, - 2mw,¢,) . and
[K]zDiag(mla)f,---,mNa)fv) , are the matrices of modal parameters, while
OO} =(q.), .9, @) and E@}=(3,0:),--,3,()" are the vectors of modal responses
and generalised forces, respectively. In the modal Equation (2.2) proportional

damping is postulated. The modal damping values » are usually identified from

experiments; however, they may eventually be theoretically estimated (Fletcher &
Rossing, 1998). Moreover, it is assumed that the system uncontrained modeshapes are

real. The modal forces 3 (;) are obtained by projecting the external force field on the

modal basis:
5,0=[ F(ut) ¢,(x) dx,(1=12,...N) .3

The physical motions at any point of the system can be computed from the modal

amplitudes g, (#) by superposition:

y(x,0) =) 0,(x)q,(t) 2.4)

n=1

and similarly concerning the velocities and accelerations. For given external
excitation and initial conditions, the previous system of equations can be integrated
using any adequate time-step integration algorithm. Explicit integration methods are
well suited for the friction models developed here, as will be explained in section 2.3
and 2.4. In these implementations, a simple Verlet integration algorithm is used
(Beeman, 1976), which is a second order explicit scheme. Note that, although (2.2)-
(2.4) obviously pertain to a linear formulation, nothing prevent us from including in

S, (¢) all nonlinear effects arising in the system. Accordingly, the system modes

become coupled by the nonlinear effects, as will be shown later.
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The definition of the modal basis to use in the computations is of paramount
importance to obtain results which can be comparable to the behaviour of real-life
instruments. In the next sections a short description is made of the different modal
basis used for each instrument studied, to allow a clear understanding of their

different natures.

2.2.1 Strings

Consider a string with a uniform linear density x, length L and fixed at both ends

stretched to a tension 7. Assuming negligible bending stiffness in the string, the

restoring force /C(y) is equal to ¢’(6%y / x? ) turning (2.1) into the classic damped

wave equation, where the wave speed ¢ is given by ¢’=T/u. Since ¢ is constant, waves
of different frequencies travel with the same phase speed and the modal frequencies
are then given by @, = nzc/L, and mode shapes ¢,(x) = sin(nzx/L), withn = 1,2, ..., N.
This harmonic relation of the circular frequencies, characteristic of non-dispersive
systems, originates naturally consonant sounds which are traditionally sough for in

musical instruments making or tuning.

2.2.2 Bars with constant cross section

In clear contrast with the perfectly flexible string, the constant cross section bar
exhibits considerable bending stiffness, E1(x), where E is the Young Modulus and 7(x)

the local moment of inertia. The restoring force C(y) in (2.1) is now dependent on a

fourth spatial derivative, which results in a different phase speed for different wave
frequencies. This dispersive behaviour originates modal frequencies with values far
from any harmonic relation as can be seen in (2.5), for free-free boundary conditions.

K, |E
o, =E2 [2[3.0112,52, 72, .., (20 +1)
iz \ | (2n+1)7] @5

where K, is the radius of gyration of the cross section of the bar and p is the specific

mass of the bar material (Fletcher & Rossing, 1998).

Although this formulation is essentially correct for long and thin bars, the model used
in this work considers the effects of rotary inertia and shear stress, which occur in
thick bars, by use of the Timoshenko beam model (Graff, 1975). As a result, the high
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inharmonicity is still present but there is a slight decrease in the value of the higher
modal frequencies (Fletcher & Rossing, 1998).

The sound originated by the vibration of these objects tends to be somewhat
unpleasant, unless the inharmonic frequencies are very high in the spectrum and decay
so rapidly not to be clearly discriminated by the human ear, such as the bars used in

the glockenspiel.

2.2.3 Bars with variable cross section

In order to obtain more pleasing sounds in the whole register of instruments such as
the marimba or the vibraphone, makers usually tune these instruments by giving the
bars a variable cross section. Following years of craftsmanship, instrument makers
arrived to bar profiles which have natural frequencies in the approximate relation f, =
3f1 and f3 = 9f1 (1-3-9) or f, = 4f; and f3 = 10f; (1-4-10) of the first three bending
modes, allowing for more harmonious sounds to be produced.

Although those are the most used relations it is possible to tune a bar to quite distinct
sets of modal frequencies. Henrique et a/ (2002a, 2002b, 2002c), have developed
optimization procedures to find the optimal bar profile for any given set of desired
natural frequencies relations (f,/f;), for example 1-2-3, which is similar to the one
obtained in the ideal string as far as the first three bending modes are concerned. This
unorthodox tuning of the bars can lead to dynamical responses to friction excitation
which behave midway between the ideal bowed string and the constant cross section

bowed bar.

2.2.4 Axi-symmetric structures (bodies of revolution)

Perfectly axi-symmetrical structures, such as bells or round glasses, exhibit double
vibrational modes occurring in orthogonal pairs with identical frequencies (Rossing,
1994). These vibratory modes exhibit modeshapes which are usually labelled as (j,k)
(where j relates to the number of nodal meridians and k to the number of nodal

circles).

When excited by impact, the different partials (usually with a great emphasis on the
first few modes) give rise to a long stable decaying transient. However, if a slight
alteration of this symmetry is introduced, the natural frequencies of these two
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degenerate modal families deviate from identical values by a certain amount. In this
situation, the slight frequency difference will generate beating between the two modal
families. Furthermore, shell modeshapes present both radial and tangential
components which are extremely important for the correct simulation of bowing in
these instruments since the radial and tangential motions and contact forces are
coupled. Furthermore, the friction excitation acts on the tangential modes of the

system and sound radiation mainly stems from its radial motion.
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2.3. Friction model

The relation between the force acting on a bowed system and its resulting motion is
governed by a friction law which can be have different behaviours depending on the
surface properties of the bodies in contact. As seen in Chapter 1, several authors have
developed friction models to define this relation, taking different assumptions in

consideration.

In bowed instruments research, a great emphasis is obviously given to this problem,
and different models have arisen in the past decade attempting to emulate as
accurately as possible the real contact relation between the friction force and the
motion of the system. Particularly, the bowed string friction law has been the subject
of the more various models, with more or less complexity (see Woodhouse &
Galluzzo, 2004).

For the computational method described in this thesis, a classical Coulomb model is
used. Not being devised for a specific system, this model allows good versatility when
used with the three different instruments analysed in this thesis. The implementation

of this friction law in the computational method is described in the following section.

2.3.1 Classical Coulomb model

Consider a Coulomb-type friction force arising when the bow is applied at location x,

of the system:

>0
=0

Ve

{ F(x,,0)==p, (3. )Fysgn(y ); if ‘ (2.6)
Ve

Fa(xc7t)|</uSFN , if

Here, the relative transverse velocity between the bow and the system is given by (see
Figure 1.8):

o= 350~ 10 = 30, (54,0~ 1 ) @

where F, (;) is the normal force between the bow and the bar, 4, is a “static” friction
coefficient (used during surface adherence) and 4, (y,) is a “dynamic” friction

coefficient (used for sliding regimes).
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It is assumed here that x, is an instantaneous function of the relative bow/bar

velocity, and use the following model:

pg (7.) = pap + (pag — )" (2.8)

0.5

0.3 b

0.2

Friction coefficient

0.1 b

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Relative velocity bow/string [m/s]

Figure 2.1 — Typical evolution of the friction coefficient with the relative sliding
velocity (u, =0.4, u, =0.2, C=5).

where, 0<u, <y, is an asymptotic lower limit of the friction coefficient when
.| >0, and parameter C controls the decay rate of the friction coefficient with the

relative bow/bar sliding velocity. The friction model (2.8) can be readily fitted to
typical experimental data (see for example, Lazarus, 1972), by adjusting the empirical
constants ., u, and C.

The sliding behaviour, described by the first equation (2.6), does not cause problems
for simulations, as this equation explicitly shows how the sliding force should be
computed as a function of the sliding velocity. However, during adherence, simulation
becomes much more difficult. Indeed, the second equation (2.6), merely states a
limiting value for the friction force, during adherence, and gives no hint on how

F(y,,t) may be actually computed. This is because the adherence force depends on

the overall balance of external and internal forces acting upon the system, which is
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quite complex for multi-degree of freedom problems. Most friction algorithms deal
with this problem through implicit approaches, which can be very expensive to run.

The implementation of this friction model, mainly in what concerns the adherence
state, can be made in different ways. Depending on the sliding/sticking time ratio
during each period, a real adherence state (zero relative velocity between the bow and
the system) might be more or less relevant to establish the proper motion of the
system. For this reason, two implementations of the friction model which will be used

in the subsequent chapters are described in the following paragraphs.

2.3.2 Spring-dashpot true adherence model

In this approach, adherence is simulated through a spring-dashpot model which

enables zero relative velocity between the friction exciter and the analyzed system.
The following explicit procedure is used at each time-step i:

(1) If in the previous time-step the system was sliding, a possible adherence between
the friction exciter (hereby named generically as bow) and the system is detected by

computing J, = y.(¢,) ».(¢,,) . Then, if J, >0, the system is still sliding in the same
direction. Computation of 7 (y_,¢) is made according to the first equation (2.6), with

¥y.(¢,) given by (2.7) and x,(z,) by (2.8).

(2) However, if J<0, then a reversal of the relative motion is occurring and

adherence will arise. Then, the sticking force is computed using the following model:
F(x.,t;) ==K, y.()-C, y.(¢) (2.9)

which will be used during the complete duration of the adherence state. The idea in

(2.9) is to “attach” the system to the bow at point x, using a suitable “adherence

stiffness” and to damp-out any residual bow/system relative motion during sticking
using an “adherence damping” term. At any time during adherence, the relative

velocity y_at the attachment point is given by (2.7) and the relative displacement y,

is given as:

= 350 0= 30,64, ¥ ) .10
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where y; () is the current position of the bow “attachment point”. For a given
constant bow speed, this changes as y; (1)=(t—t,) y,.. Where ¢, is the time value

when adherence was detected. As discussed by Antunes e al (2000), the parameter

K, can be approximated by the axial stiffness of the bow hair, while C, is chosen in

order to obtain an almost-critical damping of the “adherence oscillator”.

(3) After computing the adherence force, F (j.,z) is compared with the maximum
allowable value yF, . If |F,|<uF,, the current estimate is accepted and simulation
continues assuming a sticking state. On the contrary, when |F,|> u F,, sliding will

arise and the friction force is recomputed according to the first equation (2.6). Then,

the procedure continues with the next time-step.

By virtue of (2.7) and (2.10), all the modes of the system become coupled when the
nonlinear friction forces are computed and projected on the modal basis (2.4) and then

incorporated in (2.3).

2.3.3 Pseudo-adherance with a regularized near-zero velocity model
In this section, a simpler approach is taken to model friction interaction, which allows
for faster computation times, although it lacks the capability to emulate true friction

adherence. The friction force will be formulated as:

E(0,.0)=-|E(0,.0]u,(5,0,.0)sen(5,0..0))
N AT

(2.11)

F;(ec’t)z_

F;(ec’t)

© 3,0.0fe it |35,0.0|<e

where . is a “static” friction coefficient and ,(3,) is a “dynamic” friction coefficient,

which depends on the relative surface velocity . The following model is used:

#,G) = p, + (= 1) exp(—=C| 5,0, ) (212)
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where, 0< 4, < is an asymptotic lower limit of the friction coefficient when |5;,| -,

and parameter C controls the decay rate of the friction coefficient with the relative
sliding velocity, as shown in the typical plot of Figure 2.2(a). This model can be fitted
to the available experimental friction data (obtained under the assumption of

instantaneous velocity-dependence), by adjusting the empirical constants ., x and

C.

Notice that both equations (2.11) correspond to velocity-controlled friction forces. For

values of j, outside the interval [-s,s], the first equation simply states Coulomb’s
model for sliding. Inside the interval [-¢,¢], the second equation models a state of

pseudo-adherence at very low tangential velocities. Obviously, & acts as a
regularization parameter for the friction force law, replacing the *“zero-velocity”
discontinuity (which renders the adherence state numerically tricky), as shown in
Figure 2.2 (b). This regularization method, extensively developed in Oden & Martins
(1985), has been often used as a pragmatic way to deal with friction phenomena in the
context of dynamic problems. However, using this model, the friction force will
always be zero at zero sliding velocity, inducing a relaxation on the “adherence” state
(dependent on the magnitude of &), and therefore disabling a true sticking behaviour.
How pernicious this effect may be is problem-dependent — systems involving a
prolonged adherence will obviously suffer more from the relaxation effect than
systems which are sliding most of the time. For the problem addressed here, realistic

results have been obtained using formulation (2.11), for small enough values of the

regularization domain (+& ~10~* ms'l) — results which do not seem to critically depend

on &, within reasonable limits.
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Figure 2.2 — Friction coefficient as a function of the contact relative tangential
velocity (x,=0.2, 4, =0.4, c=10): For -1<; <1, (b) For -0.01< 3 <0.01.

2.3.4 Other friction models

As mentioned in the previous sections, different friction models have been explored
over the past decade, mainly in relation to the study of the bowed string. The most
common models relate the friction force only with the relative velocity between the
bow and the string. This is the case of the model previously described, as well as the
“Hyperbolic Friction Function” (Guettler, 2002) where the friction coefficient is an

hyperbolic function of the relative bow/string velocity.

In a recent study, Smith and Woodhouse (2000) measured the friction and relative
sliding speed between a rosined rod and a vibrating cantilever system. This analysis
showed a hysteresis loop in the friction-velocity relationship, which doesn’t find
explanation on the classical friction models referred before. The authors suspected
that this behaviour is related to the temperature dependence of the rosin characteristics
used in the bow. In pursuing this effect two different friction models were devised: a
“thermal viscous model” and a “thermal plastic model”. For both of these models, the
authors claim that their implementation on the simulation of the bowed string
dynamics give results consistent with measurements in steady sliding tests
(Woodhouse & Galluzzo, 2004), representing an alternative to the classical friction

model used in this thesis. This is a very active research area at the present time.
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2.4. Numerical aspects

2.4.1 Integration algorithm

The modal equations (2.2), coupled through the right hand-side force terms, may be
numerically integrated using either an explicit or implicit approach, meaning that the
dynamical force balance may be based on the state of the system at either the last

computed time-step ¢, or the next time-step ¢, =¢,+4¢ under computation. Both

approaches have merits and disadvantages as, in broad terms, explicit algorithms are
simpler and faster per time-step than implicit algorithms, which must iterate until
convergence. However, the latter typically enable the use of larger integration time-
steps 4¢, which may compensate the previous disadvantage, the best option being
problem dependent. Previous experience with vibro-impacting and friction-excited
systems (see Antunes & Tafasca, 2000; Tafasca et al, 2000; Antunes et al, 2001,
In&cio, 2002; Inacio et al, 2006]) suggests that explicit algorithms are well suited for
such problems. Among other possible choices the so-called “Velocity-Verlet” method
introduced by Swope er al (1982) is used here. This is a simple explicit algorithm of
second order. Although not frequently found in structural dynamics computations, this
algorithm has been widely used by researchers dealing with granular flow and
molecular dynamics computations — see Deuflhard et al (1999), for instance. However,
other methods such as Newmark’s algorithm (Newmark, 1959; Bathe & Wilson, 1973)
might be used as well.

Notice that because numerical efficiency is not an issue here, it is not claimed that the
time-step integration algorithm presented is the most efficient approach for the

problem.

For each modal equation, the Velocity-Verlet algorithm is expressed as:

2
4 (t:11) = 4, (8;) + G, (t;) At +A7t~§,,_(l‘,-)+ O(4F°)
" (2.13)

qn (tl'+1) — qn (ti) +% ‘Sn (ti)+‘5n (ti+1) +0(At3)

n

where, because the interaction forces depend on the system response,
3,(6)=3,[4,(¢).4,(t)] and, strictly speaking, 3, (1,,) =3, [q,(t,,).4,(¢,,) ] (where

the index j stands for all modes in the range j=1...,N ). The use of such an
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expression for 3,(z,,;) can be solved by an implicit scheme. However, formulation

(2.13) may be split as follows:

] 3 At Sn (ti)

4 (t:1/2) =4, (2) +?m—n

Qn (ti+1) = qn (ti) + q.n (tl'+1/2)At (214)
At Sl’l (t[+1)

qﬂ (ti+1) = C}n (ti+1/2) +7 m

n

with 3, () =3,[4,(4).4;(5)] and the approximation S,(1,,,)=3,[4;(4,1).4; () ]

is used instead of the unknown value 3, (z,,,) -

2.4.2 Comparison with a classical approach

Several computational approaches to the simulation of bowed musical instruments
have been developed by other authors. Bowed string research, for example, has led to
some of the most important developments on simulation methods, which are today
recognized as trustworthy (Woodhouse & Galluzzo, 2004). Therefore, in order to
establish consistent comparisons between the present approach and an already
established and thoroughly published simulation method, the digital waveguide model
for bowed strings motion developed by Mcintyre & Woodhouse (1979) was chosen.

In this method, considering a point bow model, two dynamical quantities are required
in the digital waveguide model: the velocity v.(z) of the string at the bowing point,
and the friction force F(r) at the same point. The calculation of these quantities is
performed by two equations: one relating F(¢) and v,(¢) by a chosen friction law and
the other emerging from the dynamical response of the string when excited by a given
force F(¢) . This last relation is usually referred as the “Friedlander construction”

(Friedlander, 1953).

One of the most important features of the Friedlander scheme is that the calculation of

the string velocity v.(¢) is dependent on the friction force F(¢) , the velocity time-
history v, (t) stemming from reflected waves, and on the string’s wave impedance Z ,

as in equation (2.15)
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V(1) = z—z+ 0 (2.15)

Equation (2.15) is a direct consequence of decomposing the string (velocity) impulse

response g(¢) in two terms:

2(0) =%5(z)+g,, 0 (2.16)

where the Dirac term applies at =0 and (as would happen in an infinite string) is
independent of the pulse-reflections at the boundary conditions, while the second term

g,(®) is solely the result of the reflected waves. To allow for physically sound

computations the calculation of the friction force should account not only for the term

g,() in the string dynamics but also on the term which embeds the string’s wave

impedance. In the present approach, in contrast to most researchers, the dynamics of
the string is not treated through a (modified) convolutional approach, but using
instead a modal formulation. In the now-classic convolution approach developed by
Mclntyre, Schumacher and Woodhouse, the decomposition (2.16) of the string
impulse response is useful, because it allows a very fast computation of the string

response: in order to obtain v (s), the slow convolution using the “full” impulse

response g(z) is replaced by the bow load term % plus a second term stemming

solely from the reflected waves, g, (¢), which can be computed fast by formulating the
reflected waves in terms of “short-lived” reflexion functions at the string ends. Such
decomposition leads naturally to the Friedlander construct for the string dynamical

equilibrium.

However, it is important to notice that even if the decomposition (2.15) and (2.16) are
useful in the framework of the above-mentioned approach, they are certainly not the
only possible way to solve the problem. In the modal approach such decomposition is
not needed nor used. Working with the string modal basis, which is equivalent to the

“full” impulse response g(r), the full velocity v (r) at the bow location is obtained

from the dynamical time-step integration, and not only the reflections-generated term

v,(?) . Therefore, the wave impedance of the string is encapsulated in the modal basis,

in the same way that it is encapsulated in the “full” impulse response g(z).
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This is clearly shown in Figure 2.3, below, where the initial 0.05 s of the string
velocity impulse response at the bow location (x,,, /L =0.09) is plotted, obtained from
the summation of 100 modal contributions ( f, =196nHz | modal damping
¢, =0.001, vn). It is clear that all the pulses contained in g() — including the initial

Dirac term — are rightly displayed (apart from the unavoidable Gibbs phenomenon
and the filtering effect of modal truncation). Therefore all the terms in equation (2.16)

are reflected in the modal basis used by these computations, as should be.

4
¥ 10
10 T T T T T T T

a(t)

_5 | | | 1 | | | | | |
-0.005 0 0.005 0.01 0015 002 0025 003 003 004 0045
Time [s]

Figure 2.3 — Impulse response g(r) obtained by modal summation

For the needs of the demonstrative computations presented in the following, Figure

2.4 shows the impulse response pertaining to the delayed reflections, g,(z). This was

obtained from g(¢), by replacing the first spike by zeros.

g,

! -

4L s

'6 | | | | | | | | | |
-0.005 0 0005 001 0015 002 0025 003 003 004 0045
Time [s]

Figure 2.4 — Impulse response g, () pertaining to the delayed reflections
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In order to illustrate the validity of the preceding arguments a few demonstrative

computations are described in the following chapters, using three computational

approaches:

a)

b)

The modal method, using the friction model and a time-step integration of the

modal equations, as explained in the preceding sections of this thesis.

An equivalent method, but with the string response computed from the

convolution
V(1) = J' F()g(t-7)dz (2.17)

and the friction force also computed using the friction model presented in

section 2.3.1.

Another convolution approach, basically analogous to the classic Mcintyre,

Schumacher and Woodhouse method, except that v, () is computed from the

“long” convolution,
w0 = [ F@g,0-0)de (218)
0

instead of their rapid scheme using reflexion functions. For the computation of
the friction force, Friedlander’s construct has been implemented

{Sticking C () =V, ; F@)=2Z(v,, -v,®) (2.19)

Sliding: v, (¢) such that 2Z(v,(t)—v, (1)) =Fy. [vbow —v, (t)]

The computational approach (b) serves here as a convenient “bridge” between method

(@) and the classic convolution approach (c). For this method, the “long” convolution

is computed using g,() (instead of using reflexion functions) to maintain

compatibility of model (c) with the modal parameters used in computation (a) and

with the corresponding impulse response g(r) used in (b). Indeed, understanding and

not computation time is the issue here. Note that, concerning the previous nonlinear

computations, (a) and (b) are explicit methods, meaning that the friction force at time

t,,, 1S computed based on the string response (at location x,,,) at the previous time-

step, e.9. ».(¢t) and v (z) . On the contrary, for computations (c) a fully implicit
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scheme has been implemented, such that the second equation (2.19) is solved in an
iterative manner. The physical parameters used here for a simple point model are
those of the system studied in the paper, including the exponential sliding friction
curve. Finally, for all simulations, and independently of the fact that it is needed or

not, the reflections-generated response v, (¢) is also computed from the convolution:

v, (0) = jF(r)gh (t-7)dr (2.20)

Figure 2.5 shows the initial transient of the string, acted by the bow at normal force

F, . =1N and tangential velocity v,,, =0.15m/s, computed using approach (a).

0 1 L L 1 1 1 L L 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.002 0.01

Time [s]

0.6 1 I I 1 1 1 I I 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time [s]
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Figure 2.5 — Starting transient computed according to model (a).

The plots show the string displacement y_(¢) and velocity v, (¢), at the bowing location,
the friction force, as well as a logical indicator of the friction state (stick/slip). One
may notice at the start that the string sticks to the bow, while secondary waves
(between the bridge and the bow) can be seen in the friction force plot. For a large
enough amplitude, the friction force reaches the limit value u,F, and a complex

sequence of sliding/sticking states follows.

Figure 2.6 shows the same computation, but using now approach (b) — the time-step
integration of the modal equations was replaced by convolution (2.17). It is clear from

the results that the two approaches are equivalent.
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Figure 2.6 — Starting transient computed according to model (b).

Figure 2.7 shows v (r) as well as the reflection-generated velocity component v, (7) ,
which was computed from equation (2.20), using the friction force F(r) generated in

the computation (b), Figure 2.6.
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Figure 2.7 — Total velocity v,(r) and the reflection-connected component v, (¢)
generated from computation (b).
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Figure 2.8 — Total velocity v (r) and the quantity I;(Zt) +v,(t) generated from
computation (b).
Notice that v, (¢) is quite different from v_(¢). In particular, as it should, v, (1) =0 at the

very beginning of the motion, until the first reflection arrives to the bowing point. On

the other hand, during all the sticking motion-start, v, () =v,,,, While v, (¢) reflects the
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“coming and going” of the reflected waves between the bridge and the bow. The main

point is highlighted in Figure 2.8: when comparing the computed velocity v (z) with

F(?)

the quantit
q y 27

+v,(t) , these two quantities well fulfil equation (2.15) — which was

never used for performing this nonlinear simulation.

One may notice, however, that the two plots shown in Figure 2.8 are not absolutely
identical, but present some minute differences, which are mostly due to the fact that in
equation (2.15) the impedance z of the string is used, without any correction to
account for the compliance of the bow-hairs. Indeed, because in computations (a) and

(b) a bowing model with a finite impedance z, is used, equation (2.15) is not strictly

applicable. No effort was made, however, to produce a correction for the bow

compliance in these demonstrative computations.

It is interesting to compare the previous computations (a) and (b) with the
corresponding results from method (c), where the Friedlander construct is
implemented as explained before. Results are shown in Figure 2.9, and their similarity
with those presented in Figure 2.5 and Figure 2.6 pertaining to the present
computational model, is unmistakable. Again, some differences can be pointed,
essentially because computation (c) is related to a bow with infinite impedance, while
(@) and (b) present a more “flexible” behaviour at the contact point due to the bow
compliance implemented in the present contact model. Accounting for the fact that,
strictly speaking, the system in computation (c) is not exactly the same as the one in
computations (a) and (b), a comparison between all these results is quite satisfying. As
a last illustration, Figure 2.10 shows the string displacement at the contact point, for
the three computational models, when the transient computation is extended for 0.1
second. Again the results (a) and (b) present slight differences when compared with
those of the classical approach (c), which reflect the bow-hair compliance effect, as

discussed before.
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Figure 2.9 — Starting transient computed according to model (c).
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Figure 2.10 — Transient computed for 0.1 s according to models (a), (b) and (c).

2.5. Advantages and disadvantages of the method

The computation method presented in this thesis has clear advantages and
disadvantages when compared with others already referred, such as the digital

waveguide model or other time-domain methods.

The modal approach is able of very detailed simulations, leading to very realistic
space-domain and time-domain dynamics. On the other hand, contrasting the efficient
approach of Mclintyre et al (1983), the modal method is well suited to deal with

systems presenting both harmonic (e.g., with modal frequencies such as f, =m f;

with m integer) and non-harmonic modal relationships.

Although this method implies a linear formulation, it allows the inclusion of nonlinear
interaction forces without disrupting the physical principles that sustain it.
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At the present time, with the high-level non-compiled MATLAB implementation used,
this computational method is unable to perform real-time simulations, which is a
definite advantage of the classic approach developed by Mcintyre et al (1983), who
cleverly exploits the non-dispersive nature of string and acoustic waves arising in
most musical instruments. Real-time implementation was never an objective of this
thesis, so no effort whatsoever was input in such direction. However, this modal
approach allows the introduction of several components of the instrument, without
any important additional of “code building” effort. This possibility of component
addition is one of the major advantages of the method. As long as the interconnections
are physically sound it is possible to introduce several features of the musical
instrument to be simulated. For example, in the case of the bowed string, the presence
of a moving finger performing glissandos along the arm of a cello is easy to simulate
because the respective interaction force is projected on the string unconstrained modal
basis at the finger position for each time-step. Moreover, including the effect of a
“compliant” component, such as the body of the instrument, with its own possibly rich
modal basis, is possible as will be demonstrated in this thesis. Obviously, as the
number of components of the instrument grow, so will the size of the problem to be
solved which will inevitably decrease the computation times. However, this increase
of computation time will also increase for other methods for the same problem

complexity, which do not share the ease of introduction of these components.

A note on numerical stability is need at this stage when referring to the construction of
a virtual instrument with its several components. Apart from the ease of introduction
of these instrument parts, the modal method preserves very high numerical stability of
the coupled system, in contrast with other methods. The finite difference scheme, for
example, does not insure that stable isolated components computations will perform

numerically sound once coupled (Bilbao, 2007).

This possibility of composing an instrument with its several features allows also the
computation of energy flow between the various components. Although this aspect
will not be treated in this thesis, several computations performed along the research
carried showed that this has an advantage, not only to better understand the behaviour
of the instrument, but also to check numerical stability. Even if the system is non-

46



conservative it is possible to check whether energy was dissipated by any component

or by any numerical problem.

One of the aspects that can lead to a time-consuming model construction is the
definition of the modal basis. If for simple systems such as the string, this modal basis
can be easily calculated, for more complex systems a careful modal identification or a
“heavy” eigenvalue problem solution is needed, in order to obtain realistic results.
However, the modal description allows for a non-local method of solving the
governing partial differential equations of the system, in contrast with the local
description (grid-point) of the explicit finite difference methods, digital waveguide

and lumped network models.

Apart from the definition of the modal basis, which can be more or less easy to obtain,
the modal truncation order is a very important aspect. Any continuous system presents
an infinite number of theoretical modes (degrees-of-freedom). The choice of the
number of modes to be used in computations has to be based on the knowledge of the
real system, and the larger the number of modes, the longer will the computation
perform and heavier will be the amount of information processed. This is also a
problem for other methods, such as the finite difference methods where the spatial
discretization of the system must be high enough to allow an accurate computation of
the detailed dynamics. In practice, all modes significantly excited through the
nonlinear excitation mechanisms must be included in the computational modal basis.
This should be asserted by analysing the convergence of results for incresisng number

of modes, as well as by confrontation with experiments.

Another clear advantage of this method, by contrast with the finite difference method
for example, is the preservation of the frequency relations between modal frequencies,
along the calculation, independently of the number of modes used. This aspect is one
of the main problems with finite-difference methods where numerical dispersion can
easily occur. Although this can be controlled to a certain extent by the degree of
discretization of the system, this will always have as a consequence a higher

computation effort.
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Chapter 3

BOWED STRINGS
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3. BOWED STRINGS

3.1. Introduction

Raman’s seminal paper (Raman, 1918) was a landmark study of the dynamics of bowed
strings. Since then, a plethora of research papers has been published on bowed-string
instruments, including enlightening work by Friedlander (1953), Schelleng (1973),
Mclintyre, Schumacher and Woodhouse (1983), to name just a few — see Cremer’s book
(Cremer, 1984) — for an extensive account of the field.

In this Chapter, a detailed description of the implementation of the modal simulation

method is given, with application to bowed string motion.

3.1.1 Bow Width

Although computationally more expensive — for ideal non-dispersive systems — than the
now classical and widely used approach developed by Mcintyre & Woodhouse (1979)
and Mclntyre et al (1983), this method finds its most usefulness as more complex
physical features are incorporated in the numerical simulations — such as frequency-
dependent or space-dependent system parameters, coupling of the transverse and torsion
string motions (Inacio et al/, 2001, Antunes et al, 2001; Inécio et al, 2002a), dispersive
effects connected to bending stiffness in non-ideal inharmonic strings (or even beams or
shells) — Inacio et al, 2003a, 2003b; Inacio et al, 2004a, 2004b —, as well as the complex
coupling of strings and the instrument body, through the moving bridge (Inécio et al,
2004c, 2004d; In&cio et al, 2005).

Unlike other computational techniques, the effectiveness of the modal method is not
affected by dispersive effects in the system dynamical equations. Furthermore, the
computational strategy and workload of the modal approach are practically not affected
as one considers further intricacies in the bow/string interaction model. Such is not the
case for the wave-propagation (coupled with reflection functions) simulation method
(Mcintyre & Woodhouse, 1979; Mcintyre et al, 1983) which, although extremely
efficient when addressing basic configurations (e.g. ideal strings under point-
excitations), is hardly amenable to deal directly with significant dispersive phenomena

and/or distributed loading — hence the need to couple it with a much “slower” finite-
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difference scheme in Pitteroff & Woodhouse (1998a, 1998b, 1998c), in order to

accommodate the space-distributed bow/string interaction.

The work presented in this chapter evolved from preliminary results presented in Inacio
et al (2002b). Here, finite-width bows are simulated by a set of evenly-distributed

contact points (which define a given bow-width, /, ), instead of a single bow/string

contact point. The frictional forces resulting from the multiple bow/string interaction
points are simultaneously projected on the string modes, and the modal differential
equations are solved using an explicit time-step integration algorithm. This simple
approach proved effective and convergence results, shown in section 3.3.3.1, suggest
that modelling using one contact point per millimetre of contact width is adequate to

enable realistic simulations.

As a first approximation, the bow-hair is modelled here in a quasi-static manner, such
that only the axial flexibility and damping of the contacting hairs are accounted for. As
in Pitteroff & Woodhouse (1998a, 1998b, 1998c), inertial effects in the hair ribbon have
been neglected. However, a true dynamical model of the bow, such that the hair ribbon
is modelled by a number of its axial (and other) modes, should present no difficulties

whatsoever.

Also, although debatable, it was decided not to incorporate, in the simulations related to
the bow width, phenomena such as the string inharmonicity and torsion modes. Finally,
in spite of the considerable interest and promising results of recent and more advanced
physically-based friction models (thermally-controlled, elasto-plastic) — Smith &
Woodhouse (2000), Woodhouse (2003), Galluzzo & Woodhouse (2003), Serafin et al
(2003) —, it was chosen to use in the present computations a conventional velocity-
dependent Coulomb friction model. Indeed, the on-going research on the tribology of
rosin interfaces is far from resolved, and — recalling the words of J. Woodhouse (in
Woodhouse & Galluzzo, 2004) — “recent results have shown that none of the friction
models used in the existing literature is entirely credible”. Therefore, the conventional
approach is still justified in the context of this work, enabling an easier assessment of
the present results with respect to others on both point-bowing and finite-width bowing,

which were also obtained using simple velocity-dependent friction laws.

50



Finally, it is postulated here that the normal bow/string interaction force and transverse
velocity can be externally controlled, independently of the string vibratory responses,
which are only computed along the transverse direction. Extension of this computational
model to deal with two-dimensional motions, incorporating the string modes along the
normal direction as well as the bow-hair dynamics, presents no difficulties in principle

and will be also addressed elsewhere.

In this section, other dynamical regimes beyond the classic Helmholtz motion are
analysed. Many researchers in this field associate musically interesting tone with this
regime only. For instance, a recent communication (Serafin & Young, 2003) states that
“In the case of the bowed string, good tone refers to the Helmholtz motion”, a view
which echoes the feeling of most researchers in the field. However, inspiring violin
playing often makes a significant use of higher-order (multiple slides-per-cycle) regimes
to capture different musical atmospheres — for example the strings are played sul/
ponticello in almost every musical work. Therefore the effects of finite-width bowing
are explored on various dynamical regimes which arise in the range of playing

parameters explored.

In many cases, a qualitative comparison with the results obtained by Pitterof &
Woodhouse (1998a, 1998b, 1998c¢) is possible. However, when attempting quantitative
comparisons, one should bear in mind that a violin G string (196 Hz) is used, using
comparatively low friction bow/string interaction forces (us = 0.4, up = 0.2), while
those authors simulated an A string (440 Hz) subjected to higher frictional forces (us =
0.8, up = 0.3). Also as pointed, in contrast to Pitterof & Woodhouse (1998a, 1998b,
1998c), the present computations pertain to an ideal string with torsion motions
neglected. Finally, note that adherence parameters are assumed here independent of the

contact bow width (in order to focus on the effect of /, ) while in Pitterof & Woodhouse

(1998a, 1998b, 1998c) they are taken proportional to /, .

Finite-width bowing simulations are compared to those of a point-excited string, and the
main features stemming from the multiple contact points are highlighted. The results
obtained are presented in the form of parameter-space maps which show the influence

of bowing parameters — such as the applied normal force 7, , bow velocity y, . ,

bowing bridge-distance x_, and bow-width /, — on the self-excited vibratory regimes, as
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well as their corresponding steady amplitudes. In agreement with previous authors
(Mclntyre et al, 1981; 1982; (Pitterof & Woodhouse, 1998a; 1998b; 1998c¢) the finite-
width model reveals the existence of backward and forward “partial” differential slips of
individual hairs, occurring between the main slip phases of the Helmholtz (or other
more complex) motions, which lead to an increase of broadband high-frequency content
in the spectrum of the string/bridge interaction force. The range of input parameters
explored also allowed observation of the flattening effect, which was found in the point-
model as well as in the finite-width cases, although in a lesser degree for finite-width

bowing.

3.1.2 String/Body Coupling

A crude approach to incorporate body effects, when simulating string sounds, is to start
by computing the vibratory response of an “isolated” (bowed or plucked) string, and
then use the resulting string/bridge interaction force to drive a given body vibro-acoustic
transfer function. However this simple approach is quite limited and cannot account for
any energy feedback from the body into the string — such as is found in wolf notes —

because the full string/body coupling is not modelled.

Apparently only a few authors have attempted to address this string/body coupling
problem. Mclintyre (1983) incorporated in their wave-propagation computational
algorithm a bridge-reflection function which encapsulates the dynamical behaviour of a
given body resonance, enabling them to simulate the coupled dynamics between the
string and the chosen body resonance. Similarly, Puaud et a/ (1991) used (in connection
with a so-called “numerical bow”) a mass-stiffness bridge-resonator, therefore also
emulating a chosen body-resonance coupled to the string dynamics. Recently, a
different approach has been pursued by several authors to simulate instrument bodies
and cavities — see Huang et a/ (2000), for instance — by using 2D or 3D waveguides to
compute simplified multi-degree-of-freedom resonating systems. However, until now,
this modelling technique has only been used to simulate the body-filtering effects on
string/bridge dynamical forces, with no feedback coupling. In relation to other stringed
instruments, Derveaux et al (2003) achieved fully coupled string/soundboard

computations for a modelled guitar.

The aim of the present work is to simulate the interaction between strings and real-life

instrument bodies, where the present computational method is extended to incorporate
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the multi-modal dynamics of a violin and cello body, fully coupled to the string motions.
A hybrid approach is taken, in the sense that a theoretical model of the string is coupled
with dynamical body data, obtained either from simplified models or real-life

experiments.

The string is modelled using its unconstrained modes assuming, pinned-pinned
boundary conditions at the tailpiece and the nut. Then, at the bridge location, the
string/body coupling is enforced using the body impulse-response or modal data (as
measured at the bridge). At each time step, the system motion is computed by
integrating the string modal equations, excited by the modally-projected values of the
frictional bow force and also of the string/bridge contact force. The latter is obtained
from the body motion at each time-step, as computed either (a) using the body impulse-
response, or (b) from a modal model of the body. In the first method, the body dynamics
are obtained through incremental convolution, a costly procedure which however
enables the direct simulation of real bodies without any further modelling assumptions
or simplifications. The second method allows for faster computations, but demands a

computed or identified modal model of the instrument body.

It should be mentioned here that the modal basis unconstrained at the bridge location
(coupling point) is not the only option available to solve this problem. Indeed the
interested reader may refer to the recent work by Woodhouse (2004), who deals with
body-string coupling in guitars by modelling the string as pinned-pinned at the nut and
the bridge, and then complements such basis with a so-called “constraint mode” which
can be shown to be the static response of the string when the bridge extremity is moved
(Craig, 1981). Similar issues arise when dealing with sub-structure synthesis where the
analyst may choose between several families of the basis functions used to represent
each substructure — refer, for instance to Meirovich (1997). The merits of the various
approaches will be reflected on the number of basis terms used to achieve convergence,

however, a comparison of these different methods is a matter for future work.

After a few demonstrative experiments and a detailed presentation, the computational
approach is illustrated for both violin and cello typical self-excited string motion
regimes. These are compared for “isolated” strings and for the string/body coupled
model, based here on synthetic body dynamical data. In particular, interesting

simulations pertaining to the so-called wolf notes are presented.
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3.2. Computational Model
3.2.1 Formulation of the string dynamics

Consider a string of length L with linear density # and bending stiffness EI, subject
to a axial tension 7' and an external force distribution F(x,z). If a dissipation parameter
n is assumed, the small-amplitude transverse motions y(x,¢) are described by a fourth
order differential equation:

Fy oy, o ( oy

+n—+—| El— |=F(x,t 3.1
Yo T e T o axzj () (3.1)

However, the interaction between the bow and the string also generates torsional motion
(Cremer, 1984). The bow induces a moment distribution AM(x,z) on the string, whose

small-amplitude angular displacement d(x,¢) can be described by:

20 &0 00
7020 569999 vt 3.2
P Oz Y o T M) (32)

where G is the shear modulus of the string, p is its mass density and J the polar

moment of inertia. A dissipation parameter v is also included to allow for damping of
the string’s torsional motion. The transverse and torsional wave speeds are respectively

given by:

S (3.3)
7,

o (3.4)
P

Consider point C in Figure 3.1 as the contact point between the bow and the string when

the bow is at rest. Once some velocity, V,,, , is applied by the player, the string

ow !
describes a transverse motion, y, between point C and C' (equal to OO'), and a
torsional motion 6., between point C" and point C”. The total displacement of point C is

the sum of the transversal displacement, y., with the cord C'C". As the same motion
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occurs for all the points of the surface of the string at the cross-section of contact with

the bow, the tangential motion of the string’s surface, v, (¢), can be described by:

Vin (€)= Voo (@) + RO(2) (3.5)

where y° (¢) is the transverse displacement of the centre of the string and R its radius.

The previous equation describes the coupling between transverse and torsional motion
of the string.

V. >0mls V. =0mls

bow bow

£ &£$—

-
C’f o
R
o’ )
|: .

Figure 3.1 — Geometric scheme of the translational and rotational motion of the
bowed string

Any solution of (3.1) can be formulated in terms of the string’s transverse modal

parameters m,, @,, £, and modeshapes ¢, (x), n=12,---,N. The order N of modal

truncation is problem dependent and must be asserted by physical reasoning, supported
by the convergence of computational results. The forced transverse response of a

damped string can then be formulated as:

[M1100) |+ [cliom 1+ [k liow)} = E@) (36)
where: [M]=Diag(m,,---,m,), [C |=Diag@mw,¢,,--2myw, ),

[K]: Diag(mla)f,---,mNa)f,)

00} ={a,(6)ay )", E@O}=(3,00), 3, @) .
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The modal damping values ¢, are usually identified from experiments; however, they

may eventually be theoretically estimated (see Fletcher & Rossing, 1998). The modal

forces 3, (z) are obtained by projecting the external force field on the modal basis:

3,0= [ F(xn) e, () ds (3.7)

In a similar way, the torsional motions described by equation (4.1) can have a modal

formulation.

[[] {QTor (t)} + [CTor]{QTor (Z)} + [KTor]{QTor (t)} = {‘P(t)} (3.8)

where: [1]=Diag(/,,---.1y), [Cy,, | =DiagRLw,&y -+, 21 y@ &) |
T

[Ky,,] = Diag(La; -, [y@%); {Or, (0} = (g (0,47 (1))

PO} = (00, 0)

where 7, are the modal moments of inertia, and @, and &, are the angular natural

frequencies and modal damping for torsional motion, respectively.

Torsional vibrations in strings are usually quite difficult to measure. The scarce
available data indicates that the ratio of torsional to transverse wave speeds lies in a
range from 2.6 to 7.6 depending on the material and construction of the string and
damping values &, that vary from 1% to 7.7% (Gillan & Elliot, 1989). The modal

moments Y, () are obtained by projecting the external force field on the modal basis:

Y= M) ¢ (x) dx (39)
where M (x,t) = F(x,t)-R.

The modal shapes ¢, and ¢’ are calculated by solving the homogeneous form of the

second order undamped transverse and torsional wave equations:

Py &y o0 o0
9Y 79  and Jp2l_ g0 3.10
AP P o o (3.10)

56



The physical motions can then be computed from the modal amplitudes ¢, (¢) and

g™ (1) by superposition:

Y (50)= 20, (1) 4,00+ R 01" (1) 4" (1) (311

and similarly concerning the velocities and accelerations. For given external excitation
and initial conditions, the previous system of equations can be integrated using an
adequate time-step integration algorithm. Explicit integration methods are well suited
for the friction model developed here. In this implementation, a simple Verlet
integration algorithm is used (Beeman, 1976), which is a second-order explicit scheme.
Note that, although (3.6)—(3.9) obviously pertain to a linear formulation, nothing

prevent us from including in 3, (¢) and Y, (z) all nonlinear effects arising in the system.

Accordingly, the system modes become coupled by the nonlinear effects.

Considering rigid terminations at the nut and tailpiece extremities of the string, the

external force field F(x,?) is due to three applied forces (see Figure 3.2):

e The excitation friction force F, (x,,t) due to the friction-induced transverse

excitation provided by the moving bow hairs;

e The interaction force F,(x,,t) between the body and the string at the bridge;

e The possible presence of a finger on the fingerboard, applying a force F,(x,,z).

l LJFinger
String

Tailpiece Nut
P Bridge Bow

Figure 3.2 — Idealized model of the bowed string

In this model, the finite width of the bow is simulated by considering a given number, b,

of contact points between the string and the bow, distributed along a width /, on the
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string length L', measured between the nut and the bridge. Each contact point is located

at a distance x from the bridge, as shown in Figure 3.3.

Bow

Bridge String Nut

e

Figure 3.3 — Configuration of the bow/string interaction

In the next sections, a description of the models of the previously mentioned excitation

forces are given.

3.2.2 Friction Model

As seen in the introductory chapter, friction related phenomena have been subject of a
considerable amount of research, and several models have emerged to address a number
of related problems. Due to the complexity of the interaction between contacting
surfaces and of the associated high nonlinearity, most models are of an empirical nature.
A survey of the experimental and analytical knowledge in this field can be found in
Rabinowicz, 1965; Kragelsky et al, 1982; Oden & Martins, 1985; Haessig & Friedland,
1985; Karnopp, 1983; Leine et al, 1998.

In this chapter, adherence is modelled using the concept of spring/damping attachment
point, while sliding is modelled by fitting an empirical formulation to experimental
published data (Lazarus, 1972), as described in section 2.3.2. The implementation of the
friction model is described once again in this chapter since it includes specific
additional details of the application to the bowed string, namely related to the width of
the bow.

The friction force arising between the string and one individual bow contact point 7 at

location x? of the string is given by equation (3.12), where £"and F" pertain to the
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friction force during sliding and adherence, stemming from the Coulomb model,

respectively:

>0

. i F, s . e |
F'(x!,t)=-p, (yi)fsgn(yf ); if |y
(3.12)

=0

RO G0 <

!

where F, is the normal force between the bow and the string, g is a “static” friction

coefficient (used during surface adherence), 4, (v is a “dynamic” friction coefficient

(used for sliding regimes) and b is the number of bow hairs used in the model. Here, the
relative transverse velocity between the bow and the string is given by:

VLl 1) = P (1) = Do (6) = D00 (x0) 4 (6) = o () (3.13)

n=1

In this work it is assumed that ., (y.) is a function of the relative bow/string velocity,

and use the following model:

1 G) = pap + (s — pap )= (3.14)

where, 0<up <ug is an asymptotic lower limit of the friction coefficient when

¥ — o0, and parameter ¢ controls the decay rate of the friction coefficient with the
relative bow/string sliding velocity. The friction model (3.14) can be readily fitted to
typical experimental data, by adjusting the empirical constants ug, up and C (see

Figure 3.4).
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Figure 3.4 — Change of the friction coefficient with the bow/string relative velocity

The sliding behaviour, described by the first equation (3.12), does not cause problems
for simulations, as this equation explicitly shows how the sliding force should be
computed as a function of the sliding velocity. However, during adherence, simulation

becomes more difficult. Indeed, the second equation (3.12) merely states a limiting
value for the friction force, during adherence, and gives no hint on how £"(3*,r) may

be actually computed. This is because the adherence force depends on the overall
balance of all internal and external forces acting upon the system, which are quite
complex for multi-degree of freedom problems. Most friction algorithms deal with this
problem through implicit numerical schemes. In the present approach, the following

explicit procedure is used at each time-step i, for each bow hair, #:

(1) If in the previous time-step the system was sliding, detecting of a possible

bow-hair/string adherence is made, by computing /" =y£‘(ti)j/£‘(tl~_1). Then, if J' >0,
the system is still sliding in the same direction. F/(3",4) is computed according to the

first equation (3.12), with 3/ (;;) given by equation (3.13) and 1y (t;) by equation (3.14);

(2) However, if Jf“ <0, then a reversal of the relative motion is occurring and

adherence will arise. Then, the sticking force is computed using the following model:

Fl(xl 1) =—K, y!(x!,1)=C, »/(x!,1) (3.15)
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which will be used during the complete duration of the adherence state. The idea in

equation (3.15) is to “attach” the string to the bow at point x, using a suitable

“adherence stiffness” and to damp-out any residual bow/string relative motion during

sticking using an “adherence damping” term in equation (3.15). y,. is the relative

displacement between the string and the bow hair, at any time during adherence, given

as:

N
Vil 1) = y(xl 1) - v () = D0, (x5 q, (1) - v, (0 1) (3.16)
n=1
where yZOW(Xf ,t) is the current position of the bow contact point. For a given constant
bow speed, this changes as y¢ (x",6)=[t-t,(x")]5,, , Where ¢ (x") is the time value

when adherence was detected for the contact point modelled at location x.

As stated before, in this work the axial vibration modes of the bow hairs are not taken
into account and, as a first approximation, each bow hair is modelled as a spring-
dashpot attachment on each side of the contact point between the string and the bow

hair. The adherence stiffness k, in equation (3.15) is computed as described in the
following paragraphs. Consider an axial stiffness coefficient x, of a single bow hair

given by:

The adherence stiffness &, in equation (3.15) is computed from:

Kg=K, +K (3.17)

where Eal and Eaz are related to the axial stiffness of the bow hair on each side of the

contact point. Although the real axial stiffness will change as the contact point moves

along the bow, K ; and K, are here assumed to be equal and given by:

_ — EAq

Kal = Kaz = Hi/z (3.18)

where E is the Young Modulus, 4 the cross section of one individual bow hair and H the

total length of the bow hair. The adherence stiffness of each contact point is given by
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K.=K,%, (3.19)

where a is the number of bow hairs assumed in contact with the string, and b is the

number of pseudo bow hairs (contact points) used in the numerical model. Similarly,

C,=C,%, ,where C, is the adherence damping of a single bow hair.

b H

(3) After computing the adherence force, F'(x",z) is compared with the
maximum allowable value u F, /b If |F}| < u, F, /b, the current estimate is accepted

and simulation continues assuming a sticking state. On the contrary,

When‘Fj‘ > g Fy, /b, sliding will arise and the friction force is recomputed according to

the first equation (3.12). Then, the procedure continues with the next time-step. By
virtue of (3.13) and (3.16), all the string modes become coupled when the nonlinear
friction force is projected on the modal basis, equations (3.7) and (3.9), and then

incorporated in equations (3.6) and (3.8).

3.2.3 Formulation of the Body Dynamics

As previously explained, the present method can be implemented to simulate the
influence of the string/body coupling using two different procedures: incremental
convolution of a measured impulse response or through a modal model of the body

dynamics.

3.2.3.1 Incremental Convolution Formulation

At the bridge, the string motion forces the violin body into vibration. The response of
the body can be computed, at each time step i, by the incremental convolution of the

time-history of the interaction force between the bridge and the string F, (x,,7) and the

body impulse response function #, (¢) at the same point x,, according to equation (3.20).

3y Cot) = [ Fy (2 (¢~ )z (3.20)

where y, (x,,t) is the displacement of the bridge at the contact point with the string,
while £, (¢) is the displacement/force impulse response functions of the instrument body,

measured at the bridge, along the horizontal direction (see Figure 3.5).
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Figure 3.5 —Setup used for the transfer function measurements
3.2.3.2 Modal Formulation

As for the string, it is assumed that in the instrument body damping is proportional and
hence body modes are also real. This assumption is debatable, as discussed in
(Woodhouse, 2004), but will be adopted here to avoid the additional burden of using a
complex modal basis. Notice, however, that if the direct convolution formulation (3.20)
is used, the possible complexity of body modes is already embedded in the body

impulse response #,(¢) and introduces no further difficulty. The response of the body of

the instrument can be represented by a simplified modal model:
[M,){0, 0} +[C,]{0, 0} +[K, {0 ()} = {Z, ()} (3:21)

where [MB]zdlag(mlB,,mﬁ) ) [ CB ]:diag(znﬁBwlB §131"'12m1€a)1€ é/}?) )

[KB]:diag(mf(a)f)z,---,mP(a)ﬁ)Z), are the matrices of the body modal parameters,

{QB(t)}:<qf(t),-~,q£(t)>T and {EB(t)}=<Sf(t),---,3ﬁ(t)>r are the vectors of
modal responses and generalized forces, respectively. The modal forces Sﬁ(t) are

obtained by projecting the string/body coupling force F, (x,,?) (see section 3.2.4), on
the body modal basis. The modal parameters are identified from a single transfer function
measurement (H, (w) = 7 [h,(r)]) at the bridge. This fact leads to a requirement that the
modal mass matrix should be normalised by postulating that all modeshapes gof (x,) are

unitary at the bridge location. The physical motions at the bridge are then computed

from the modal amplitudes qff (t) by superposition:
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Vy (x5,1) =i q,(1); (3.22)

3.2.3.3 Discussion of the Body Dynamics Formulation Methods

Both methods described before have advantages and disadvantages from the
computational point of view. The incremental convolution method allows the use of
measured impulse response functions of real-life instruments, without any other
assumptions other than linearity, nor does it require the use of any modal identification
procedure. It allows the most accurate representation of the body dynamics, but has the
great disadvantage of requiring long computation times due to the direct convolution
formulation (3.20). On the other hand, the modal approach of the body allows for much
lower computation times (at least by one order of magnitude), but requires a careful
modal identification to be performed. Furthermore, the modal representation is less than
ideal to cope with the body dynamics at higher-frequency modal densities because of
the large number of modes that would be required. Computation times are proportional
to the number of modes used in the model. In contrast, the incremental convolution
procedure’s computation time does not depend on the modal order but only on the
duration of the impulse response function. Finally, it should be emphasised that
although not discussed in this thesis, vertical motion of the string and bridge can be
easily implemented with this computational method.

3.2.4 Formulation of the String/Body Coupling

The coupling between the string and the body of the violin arises from the bridge/string

contact force F,(x,,z) which is used in equations (3.6), (3.20) and (3.21). This

interaction is modelled by connecting the string to the bridge through a very stiff spring and a

dashpot to prevent parasitic oscillations:
Fy(x,,t)=K, [yb (x,,8) =y, (x;, t)] +C,, [yb (x,,8) = ¥, (x,, t)] (3.23)

where K, is the stiffness coupling coefficient between the bridge and the string, C, is the

damping coupling coefficient between the bridge and the string and y (x,,#) and y (x,,t) are

the displacement and velocity of the string at the bridge, respectively.
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3.3. Numerical Results

3.3.1 Influence of the string inharmonicity

Wave propagation in non-ideal (rigid) strings is dispersive. This effect is most easily
simulated using a modal model, as the bending stiffness effect is automatically
incorporated in the string modes, with modified frequencies

1/2 . . .. .-
a)n=na)1(1+,8n2) , forn>2, where g is an inharmonicity coefficient (Cremer,

1984). Computations show that an increase in the string bending stiffness leads to
progressive “rounding” of the Helmholtz corner and, in general, to a deterioration of the
response spectrum, as illustrated in Figure 3.6. The results are compatible with previous
investigations (see, Cremer, 1984; Pitteroff & Woodhouse, 1998; Serafin et al/, 1999).
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3.3.2 Influence of the string torsion
Transverse and torsion modes are heavily coupled by the friction forces. Beyond the

additional damping, inclusion of the string torsion modes can affect both the transient
durations and the steady state regimes, depending on the ratio of propagation wave-
speeds ¢ =¢,, /c,,, - Indeed, opposing a conclusion from the analysis in (Serafin et al,
1999), the systematic simulations presented suggest that torsion should not be neglected
if & < 4 gut strings should then be particularly prone to torsion effects. Figure 3.7 to
Figure 3.10 show the influence of the inclusion of the torsion coupling in various aspects

of the string’s motion.
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Figure 3.7 — Starting transient duration for a violin G string as a function of the ratio of
torsional to transverse wave speeds (x, =30 mm, £, = 1N, y, ~=0.1m/s)
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Figure 3.9 — Number of main slips per period as a function of the ratio of torsional to
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Higher Energy Modes
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Figure 3.10 — Number of the mode with highest energy as a function of the ratio of

torsional to transverse wave speeds (x, =30 mm, F,, =1N, y, ~=0.1m/s)
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3.3.3 Influence of the bow width
In the following simulations, a G-string was implemented with a fundamental frequency

of 196 Hz, length L = 0.33 m and linear density of & =3.1x10°kg/m. In order to achieve
adequate computational convergence 50 modes were used — enough to emulate the
relevant phenomena excited by the bow string interaction; a modal damping value of
0.1% was used for all modes (however, frequency-dependent damping could be easily

introduced using this computational method).

Concerning the friction model, the scarce experimental data available (Schumacher,
1994; Askenfelt, 1989) led to a sliding law such as the one represented in Figure 3.4,
using us = 0.4, up = 0.2 and C = 5. For the adherence model a total value of K, b = 10°
N/m has been used, following calculations from equations (3.17) to (3.19) considering a
= 50 hairs, 4 = 3.8x10® m?, E = 8.5x10° Pa and H = 65 cm which agree with the values
measured by Pitteroff and Woodhouse (1998a). Similarly, the adherence damping value
C, of a single bow hair used is 0.2 Ns/m, in accordance with their measurements. In

order to focus on the sole effects of changing the bow width /, , it was decided to use

here the same global adherence coefficients K, » and C, b, irrespectively of the

number of contact points » used in the numerical model to simulate the bow width.

A large range of excitation parameters was explored: r, = 0.1~10 N and y,,, = 0.01~1

m/s. In most calculations the middle point of the contact line was located at a distance

of 30 mm from the bridge; however results when bowing at 10 mm are also reported.

3.3.3.1 Influence of the number of bow pseudo-hairs
Figure 3.11 shows the reaction forces at the bridge obtained by bowing with a normal

force of 1 N and a bow velocity of 0.1 m/s, for a different number of pseudo bow hairs

(contact points b = 1, 2, 10, 20 and 50), the bow width being 10 mm for all cases. The
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point-bow model (b = 1) reaction force represented in the first graph clearly shows the
well-known Shelleng’s ripples caused by well-defined secondary waves that travel back
and forth between the bow and the bridge during the sticking part of the fundamental

period.

However, as a finite-width of the bow is introduced, a clear difference is seen in the
reaction force curve. The ripple’s staircase pattern is attenuated giving rise to a lower
amplitude higher frequency ripple, which lacks the regularity of the point-model
response. These effects are more pronounced as the number of contact pseudo hairs
increases. However, increasing this number beyond 10 does not alter the reaction force
curve significantly, which lead us to the conclusion that a minimum number of one
pseudo hair (contact point) per millimetre of bow width is necessary to perform a

realistic analysis of the influence of the finite width of the bow.

The differences in the reaction forces shown in Figure 3.12 are due to the phenomenon
known as partial slipping well explained by Mclintyre et a/ (1981), by which some of
the bow hairs slip while other continue to stick to the string during the adherence phase
of the Helmholtz motion. Each partial slip generates a new wave in the string that
propagates between the bridge and the nut. The attenuation of the Shelleng’s ripples is

due to interference between these multiple waves.

3.3.3.2 Influence of the width of the bow
The influence of the finite width of the bow on the sound produced by violin synthesis

algorithms can be seen in Figure 3.12. The spectrum of the bridge reaction force (which
ultimately drives the body of the instrument) for the same conditions as in Figure 3.11
shows the emergence of high-frequency broadband noise, compared to the one
generated by the ideal point-bow model (b=1). This difference can be heard in the

sounds generated by these simulations. Additionally, as the number of hairs is
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increased, the amplitude differences between the harmonics generated are less
pronounced, something that can also be seen in the results published by Schoonderwaldt
et al (2003). This effect is particularly evident in the vicinity of the string partials which
have nodal points at the bowing location, disappearing for bows with more than 5 bow

hairs.

The effect of changing the bow width (while maintaining constant the number of bow
hairs per millimeter width) is depicted in Figure 3.13 and Figure 3.14. The increase in
broadband energy content above 2000 Hz is also present. For small bow widths this
energy increment is present mainly in the vicinity of the string partials having nodal

points at the bowing location.
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3.3.3.3 Input parameter dependence
Another interesting aspect, also mentioned by Pitteroff and Woodhouse (1998a), is the spatial

pattern of this differential slipping phenomenon which denotes both backward (against the
direction of bowing) and sometimes also forward (in the direction of bowing) slips of
individual hairs in different parts of the bow’s width. Figure 3.15 shows the velocity of the
string bowed by a 10 mm (with 10 pseudo-hairs) bow at the contact points with the first and
tenth bow hair, together with a spatial representation of the stick/slip state of each individual
bow hair as a function of time; the excitation parameters are Fy =1N and y,, =0.1m/s. In
this spatial representation, the green colour represents backwards sliding, the blue colour
represents forward sliding and the adherence state is represented in red. The velocity
waveform of the string contact point at the inner edge of the bow (closer to the bridge) shows
more “activity” than at its outer edge. In fact, at x! the string slides during most of the
oscillation period being more sensitive to the secondary waves generated between capture and
release of the string. At the outer edge of the bow (x°), the string is sticking during most of
the motion, only interrupted by partial forward slips which can be understood in terms of the
geometrical distortion of the string due to the finite width of the bow, as will be seen later. For
comparison a similar diagram is shown in Figure 8 for the point model case under the same
playing conditions ( £y =1N and ybaW:O.lm/s ), together with the friction force time-

history. The secondary waves that travel between the bow and the bridge result in peaks of the

friction force increasing in amplitude until slip occurs.

Figure 3.17 and Figure 3.19 show the variation of the stick-slip spatial pattern, together with the
total friction force (sum of the friction force at the 10 bow hairs) with the increase of the
normal force applied by the bow, for two different bowing positions x, =10 mm and x. = 30

mm. An interesting aspect that arises from the analysis of these diagrams is that although the
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global string motion is periodic, as can bee seen from the regularly spaced “full” slips that
characterize the Helmholtz and higher-order regimes, the local slip/stick dynamics are only
quasi-periodic, but with a clear spatial resemblance between periods. For a detailed view of
the string behaviour under the action of the bow, Figure 3.18 and Figure 3.20 represent the
string motions at three different contact points with the bow — x%, x°, and x!° — for the same
playing conditions of Figure 3.17 and Figure 3.19. This representation clearly shows that the
displacement of the string during adherence is not uniform over the width of the bow, with the
string at x: (bridge side) having smaller displacement amplitudes than x* and x°, as implied
by the geometry of the deformed string. Indeed, this difference in the displacement
waveforms of the different contact points demonstrates the previously mentioned geometrical
distortion of the string under the bow, as was also demonstrated by Pitterof and Woodhouse
(1998a) in Figure 12. Despite the forward slips occurring in the outer hair (x2°), it seems clear
that an effective bowing area exists located near the outer edge of the bow (nut side) that
sticks to the string during most of the motion. Increasing the normal force increases this

effective bowing area while the number of forward slips decreases.

Comparing Figure 3.17 and Figure 3.18 (x, = 10 mm) position with Figure 3.19 and Figure 3.20
(x. = 30 mm), it is clear that bowing closer to the bridge implies a larger mostly sliding
section of the string and therefore it is easier for inter-period slips to occur and originate the

higher order regimes characteristic of sul ponticello playing. Even for high normal forces
(Fy =5 N) it is difficult to impose a Helmholtz regime at this bowing position. When bowing
at x. = 30 mm with low normal forces, for instance Fy =0.2 N, more than one slip occurs at
each period while for higher bowing forces the Helmholtz regime dominates. As expected,

changes in this effective bowing area influence the fluctuations of the total friction force

applied by the bow on the string.
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3.3.3.4 Motion Regimes

The playing parameter-space explored was Fy =0.1~10N and j,, =001~1m/s , in 7

increasing steps proportional to 2 and 5. This analysis shows greatest interest when studying
the effects of finite-width bowing on the various dynamical regimes which may arise for a

significant range of playing parameters.

The main dynamical regimes found in the simulations are illustrated in Figure 3.21 to Figure
3.28. In the following paragraphs a description of these dynamical regimes is made

associating them with a colour scheme for use in further discussions:

- decaying regime — light yellow — in which a self-sustained oscillation does not arise and
the bridge reaction force is negligible or continuously decaying after a transient

displacement of the string originated by the initial motion of the bow (Figure 3.21).
- Helmholtz regime — green (Figure 3.22);

- higher-order regime — blue — representing motions with more than one slip per period,

usually associated with sul ponticello sounds (Figure 3.23);
- raucous regime — red — in which broadband, chaotic oscillations are present (Figure 3.24);

- anomalous low-frequency regime — magenta — for which low frequency periodicity occurs

well below the string fundamental (Figure 3.25).

Other peculiar regimes were also found that show interesting characteristics: Figure 3.26
depicts a regime (A) common to all the bow widths simulations which is the only periodic
oscillation without a sawtooth waveform, (cyan); Figure 3.27 represents a regime (B) visible
only in the point model simulations which, in contrast with the higher-order regime
mentioned previously, develops multiple slips as the bow normal force and velocity are

increased setting a transition regime to raucous motion (orange); finally, in Figure 3.28, a self-
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sustained regime (C) is depicted obtained with an initial transient of increasing amplitude

above 2 seconds (yellow).

Figure 3.29 and Figure 3.30 show the variation of the root mean square reaction force at the
bridge for different values of the bow width, normal force and bow velocity, at two different

bowing locations: x, =10 mand x. =30 mm.

Comparing the results for both bowing positions it is clear the expected dominance of higher-
order regimes (blue area) when bowing closer to the bridge than at the “normal” location x, =
30 mm where the green area (Helmholtz regime) dominates. Considering both these regimes
as “musically acceptable”, the wider blue+green area suggests that playing near the bridge
gives more control over the playing parameters that result in “usable” sounds. Globally, a
trend is seen for higher amplitudes as either the normal force or bow velocity are increased.
For low normal forces the increase in bow velocity originates higher reaction forces until a
limiting value after which no oscillation or a decaying oscillation occurs. For higher values of
the normal force, low velocities do not allow regular bow/string slips and raucous motion
arises. As the bow velocity increases the reaction force rises and the motion eventually

evolves to periodic regimes.

The results of the simulations using a point model bow (Figure 3.29a and Figure 3.30a) show a
higher diversity of regimes comparing to the finite bow width results, particularly when
bowing at 30 mm from the bridge. An interesting aspect is the presence of anomalous low
frequency regimes, in contrast to finite-width bowing, with a single exception seen in Figure
3.30c. Figure 3.29a and Figure 3.30a show globally higher amplitudes of the reaction force in
comparison with the finite-width case. This is probably the reason for the emergence of these
anomalous low frequencies since they require the action of high bow normal forces (Hanson

et al, 1994).
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Considering the simulations using a finite-width model, the increase of bow width between 5
mm to 10 mm suggest a higher control of the musically acceptable playing range, with the
Helmholtz motion being more easily obtained for the 10 mm width bow, when bowing with
high normal forces and low bow velocities. However, the differences in the global behaviour
are less significant than in comparison with the point-model simulations, which also stems

from the analysis of Figure 3.11 to Figure 3.14.

Four animations of the string motion corresponding to the four curves in Figure 3.13 are

appended to this thesis. These animations pertain to the first 0.5 s of the movement of a free G

violin string with Fy = 1 N, Jsow = 0.1M/S and x. = 30 mm, under the action of bows of

different widths. Animation 1 depicts a point bow model (5 = 1), while in animations 2 to 4
the bow widths are respectively /,= 2 mm, /,= 5 mm and /,= 10 mm, with one contact point
per millimetre. In these animations, the nature of the stick/slip state between the bow and the
string is represented by the colours of the dots at each contact point: red indicates stick; green
indicates backwards slip and blue indicates forward slip. The displacement time history of the
contact point closest to the nut is also shown, in which a moving dot with the same colour

scheme as before is used for describing the stick/slip states.

In all simulations, the bowing parameters chosen trigger the Helmholtz motion after a short
initial transient. One of the most elucidating aspects of these animations is the visualization of
the passage from the initial transient, in which a double slip regime predominates, to the
regular Helmholtz motion. Regarding the animation pertaining to the 10 mm bow width, the
emergence of forward slips in the contact points closer to the nut is clearly seen, and seems to
originate from the forward ‘push’ given by secondary waves travelling in advance or behind

the Helmholtz corner.
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3.3.3.5 Flattening effect
Exploring the range of input parameters already mentioned allowed the study of the flattening

effect phenomenon, characterized by a decrease on a note fundamental frequency as the bow
force is increased. This effect has been first discussed on the basis of numerical simulations
by Mcintyre & Woodhouse (1979) and Mclintyre et a/ (1983), and parametrically studied
thoroughly by Schumacher (1979), Boutillon (1991) and Faure & Boutillon (1991). Basically,
the flattening effect results from the net delay occurring during capture and release transitions
of the Helmholtz motion, for F) above a minimum value. As mentioned in Schumacher
(1994), the flattening effect can only be accounted for if a realistic (rounded) Helmholtz
corner is implemented. In contrast with the algorithms used by other authors, such as
Mclintyre & Woodhouse (1979) and Mclintyre et al (1983) (in which the rounded corner is
simulated by the introduction of narrow-width reflection functions, instead of the idealized
ones), in the present method the realistic rounded Helmholtz corner naturally emerges from
the finite number of string modes excited by the bow-string nonlinear interaction. The
compliant bow is only capable of effectively exciting the string up to a limiting cut-off
frequency which is dependent on the longitudinal stiffness of the bow hairs. Therefore, the
perfectly sharp Helmholtz corner which could only be reconstructed by an infinite number of
modes, will be as round as the reconstruction from the finite number of effectively excited
modes allows. It should be noted that, in this results now presented, the rounding of the
Helmholtz corner is not a result of inharmonicity effects, since no bending stiffness was used

in these calculations.

More recently the flattening effect has been revisited by Pitterof and Woodhouse (1998b) and
Woodhouse (2003). In the latter work, the author compares the influence of the use of two
different friction models, thermal and velocity-dependent, on the flattening effect. Although

this comparison is an interesting matter for future work, some conclusions relating the
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evolution of a note fundamental frequency with increasing bow force are relevant. For the
case of the velocity-dependent friction model (similar to the one used here) these authors state
the existence of a threshold for flattening, below which the fundamental frequency is not
altered for a specific range of bow forces. After this threshold the frequency decreases until a

maximum bow force is reached beyond which the Helmholtz oscillation regime disrupts.

Figure 3.31 and Figure 3.32 show the variation of the fundamental frequency (f;) with
increasing normal force and bowing velocity for three different bow widths at different
distances from the bridge, 10 mm and 30 mm. The fundamental frequency was calculated by
inspection of the main oscillation period, for all periodic regimes. The different regimes are

represented using the same colour scheme as in Figure 3.29 and Figure 3.30.

The decreasing values of f; with increasing Fy reach 99.5% of the nominal frequency (196
Hz). These values seem lower than those measured and predicted by other authors —
Schumacher (1994) (which state a flattening of the fundamental frequency roughly between
1% and 3%), however comparisons should be made with care since their results do not pertain
to a G string and the simulation friction parameters are significantly different. However, as
also stated by Woodhouse (2003) these results show a limit value for Fy below which the
flattening effect is not significant, in contrast to results obtained using thermal friction
models. As the present results show, this value seems to increase for higher bow velocities and
is markedly affected by considering point-bowing instead of finite-width bows, which seem to

be less prone to flattening.

Additionally, Figure 3.31 and Figure 3.32 show a limiting value as F is increased, beyond
which the motion jumps to the so-called raucous sounds (in the figures, the points not
represented correspond to the raucous regime or to the anomalous low-frequency regime).
This maximum bow force is, for most of the bowing velocities considered, higher for the

finite width bow than for the point bow model.
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Figure 3.30 - Variation of the RMS reaction

force at the bridge with Fyand y,,,, for x.
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In this chapter, the influence of the finite width of the bow on the dynamical regimes
of the bowed string has been modelled and analyzed using a modal method. This
method enables accounting the finite width of the bow with only a modest increase in
computing effort and code development. Comparisons between the use of a point-bow
and bows with several contact points (hairs) suggest a minimum number of 10 contact
points (pseudo-hairs) for a realistic simulation of the bowed string dynamics. In fact,
the finite width model predicts reaction forces that are different from the point model
case, leading to an increase of broadband high frequency content in the reaction force
spectrum. In agreement with other authors Pitteroff & Woodhouse (1998a) the modal
model reveals the existence of backward and sometimes forward slips (partial
slipping) of individual hairs, occurring between the main slip phases of the Helmholtz
motion. This partial slipping phenomenon has a complex spatial pattern denoting an

effective adherence area that increases with the bowing force Fy.

As can be easily understood, the effects of the partial-slipping mechanism
connected to finite-width bowing become comparatively more significant when the
bow/bridge distance is decreased, when the very sensitive higher-order (multiple slip

per period motion) regimes are more the rule than the exception.

Finally, the range of input parameters explored allowed us to quantify the well-
known flattening effect, which — in agreement with Pitteroff & Woodhouse (1998b) —
was found more significant for the point-model than for the finite-width case. This is
connected with the apparent decrease of the “effective” static friction coefficient
pointed in Pitteroff & Woodhouse (1998b), which is also reflected in the present
results. The computed vibratory levels are (at comparable bowing parameters)

consistently higher for the point-model than for the finite-width bow.
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At the end of their most important series of papers, Pitteroff & Woodhouse Pitteroff &
Woodhouse (1998a, 1998b, 1998c) state that “The overall conclusion is that point-
bow and finite-width models produce distinctly but not fundamentally different
behaviour.”, and furthermore that “Many physical effects can be generated with both
models but these effects appear in different parts of the parameter space. Other effects
are only accessible with finite-width modelling” (Pitteroff & Woodhouse, 1998Db).
The results stemming from the modal computational model also support these
conclusions. Furthermore, the numerical simulations presented here suggest that
differences between point-model and finite-width simulations can be more
pronounced outside the range of bowing parameters leading to the Helmholtz motion,
which is typically more robust to modelling (or playing) details than the sensitive
higher-type or near-raucous responses. In particular, at higher bow normal forces, it
appears that the so-called “anomalous low frequency” responses Hanson et a/ (1994)
may be more easily obtained under bowing conditions close to the point-model

idealisation than under the large contacting interface of a non-tilted bow.

Several animations of the bowed string motion are appended to this thesis, which

highlight interesting aspects discussed in this work.

89



3.3.4 Influence of the string/body coupling
Simulations were performed for both a violin and a cello. The movement of a violin

G-string with a fundamental frequency of 196 Hz is simulated, with an effective
length L = 0.33 m and a linear density of pS=3.1x10" kgm™, in order to test the
behaviour of the coupled computation method described above. The cello C-string
simulated has a total length of 0.83 m from the nut to the tailpiece with 0.7 m and a
linear density of pS =14x10" kg m™ from the bridge to the nut, giving a fundamental
frequency of 65.4 Hz. In order to achieve adequate computational convergence 60
modes were used for the violin string and 80 modes for the cello string, with a
recorded sampling frequency of 20000 Hz. A modal damping value of 0.1% was used
for all modes (however, frequency dependent damping can be easily introduced with
this method) and a string inharmonicity coefficient S was introduced to provide more
realistic simulations (Schelleng, 1973; Mclntyre et al, 1983). This effect is easily
simulated using the modal approach, as the bending stiffness influence is
automatically incorporated in the string modes, with modified frequencies according

to:

o, = nw\J1+ Bn* | for n>2

where g =rE¢*/64L°T for homogeneous strings. However, the lower strings for the

violin or cello are usually wound and therefore non-homogeneous, so a value of g =

2.3 x 10 was used, which was inferred from Table 4.9 of (Jansson, 2002).

The body of the violin and the cello were simulated using a modal basis whose
parameters were identified from measured input admittances. In the case of the violin
a very crude model was used comprising only 13 modes covering the frequency range

between 200 Hz and 3500 Hz. In the case of the cello a thorough modal identification
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procedure was carried and 53 modes were chosen leading to the synthesized input
admittance shown in Figure 3.33.

10"

BRI | |

107 ¢

Input admittance [m/N]

7 I I I I I I
10 200 400 600 800 1000 1200 1400
Frequency [Hz]

10

Figure 3.33 — Measured (light line) and synthesized (heavy line) input admittance of the
cello used in the simulations.

A classic sliding law friction model, such as the one presented in equation (7), with xs
=04, up = 0.2 and C = 5, was chosen, which produced realistic results. For the
adherence model a total value of K, = 10°> N/m as been used. As previously discussed,
a near-critical value of the adherence damping term C, was adopted (Tafasca et al,
2000; Antunes et al, 2001). In this context, it should be mentioned that recent research
results (Smith & Woodhouse, 2000; Woodhouse, 2003) suggest the relevance of
dynamical thermal phenomena in the tribology of rosin, which may induce hysteretic
effects in the friction-velocity dependence. In spite of the unquestionable interest of

such findings, the classical approach for sliding behaviour was used.

The stiffness constant value, K, , used for the string/body coupling was chosen in order to
enable a very stiff connection, while keeping a satisfactory computational convergence. As
demonstrated in Section 3.5 a value equal or higher than 10° N/m is enough. Concerning the

damping constant a value C,, =10 Nsm™ proved adequate. As also shown in Section 3.5 of
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this thesis, for K, equal or higher that 10° N/m the modal damping of the string/body

coupled modes is not affected by this value of C,_ .

3.3.4.1 Violin Simulation Results

Figure 3.34 to Figure 3.36 show simulations of the violin string and bridge dynamics for

different boundary conditions, when applying a normal bow force (£y) of 1 N and bow
velocity (Vpow ) Of 0.1 m/s, at 0.030 m (approximately 2/10) from the bridge. Figure 3.34

shows the most widely simulated case of a string pinned at the bridge and the nut (with a
length of 0.330 m). Perfect reflections arise from these extremities and the Helmholtz motion

is clearly perceptible. The force at the bridge is easily computed from the modal time

responses ¢, (¢) , through a superposition of the modal reaction forces, (3.25), where £ is the

fundamental frequency of the string.

F(0) =422 LY na, ) (3.25)

Figure 3.35 represents the case of a string pinned at the tailpiece and the nut, with a total
length of 0.385 m, a rigid bridge being placed at 0.330 m from the nut. The same overall
behaviour as in the previous example could be expected, since there is no movement of the
bridge. However, note that the string inharmonicity enables some energy to pass to the
tailpiece-side of the string, leading to low-amplitude waves at higher frequency. These
parasitic oscillations are clearly perceptible in the string/bridge coupling force shown in
Figure 3.35, superimposed on the well known bow-bridge secondary waves shown in Figure
3.34. This effect, noted by Puaud er a/ (1991), can be seen very clearly on the computed
animations of the string motion. Nevertheless, and not unexpectedly, a Helmholtz motion
similar to the previous example developed. Notice that the overall behaviour of the string-

bridge contact force is similar for the computations in Figure 3.34 and Figure 3.35. This is a
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reassuring feature, given that in Figure 3.34 the contact force is computed from the modal
summation of (3.25), while in Figure 3.35 the interaction force stems from the totally

different approach stated in (3.23).

Figure 3.36 shows the results obtained from the simulations computed through the
implementation of the string/body coupling by application of the modal model of a violin
body (Figure 3.33). A modal identification was performed, as pointed before, on a mass-
produced violin and 13 modes were chosen to represent the gross features of its dynamical
behaviour. The corresponding synthesized impulse response function was also calculated and
used in the incremental convolution method, leading exactly to the same results. As in the
previous example, the oscillations of the tailpiece side of the string can also be seen in the
string/bridge coupling force.

The similarity of the plots depicted in Figure 3.35 and Figure 3.36 is due to the high
impedance presented by the violin bridge to the string waves, which are — in this computation
— hardly affected by the comparatively negligible bridge motion. However it is important to
emphasise that this result was obtained when bowing an open G-string, with a fundamental
frequency significantly lower than the first body resonance (at about 276 Hz). However, in
contrast to this situation, interaction between the string and the body can be much stronger
when playing notes with frequencies close to body resonances. Then, bridge motion
amplitude (and energy string/body interplaying) may become very significant, as typically
experienced in cellos when playing wolf notes.

Simulations of plucked violin strings were also performed using a rigidly supported bridge
and a flexible (compliant) bridge. Figure 3.37 (a) and (b) depict the velocity of the string at
the plucking point for these two conditions. Using a rigid bridge, case (a), the string motion
decreases in a simple exponential manner, while with the compliant bridge, case (b), the
interaction with the body dynamics can be clearly seen. In this later case, energy is transferred

from the string and dissipated by the body through the bridge originating a higher motion
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decay rate. An accurate identification of the damping factor of the individual modal responses
of the plucked string, using the modal identification ERA method (Juang & Pappa, 1985;
Juang, 1994), showed that the 0.1% damping of the string modes is unaltered when the
string’s modal frequencies are not close to a body resonance (the same conclusion applies to
the body modes’ damping factors). However, in the case of the compliant bridge, when the
string and body resonances are close (a few Hertz apart) the string mode damping values
become higher, as expected. As an example, the modal damping of the string’s second mode
(at 392 Hz) couples well to the body’s second mode (at 404 Hz) changing the damping value
from 0.1% to 0.37%. The correctness of the damping values identified from the time domain
simulations was verified by the complex eigenvalues of a coupled system model, as shown in

Section 3.5.
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Figure 3.34 — Force at the bridge and string velocity at the bow contact point for a 0.330
m string pinned at both extremities (Fy =1 N, V3, = 0.1 m/s).
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Figure 3.35 — Force at the bridge and string velocity at the bow contact point for a 0.385
m string pinned at the nut and tailpiece (rigidly supported bridge at 0.330 m, Fy =1 N,
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Figure 3.36 — Force at the bridge and string velocity at the bow contact point for a 0.385
m string pinned at the nut and tailpiece (flexible bridge at 0.330 m, Fy =1 N, ¥, =0.1

m/s).
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Figure 3.37 — Simulation of a plucked G-string uncoupled (a) and coupled (b) to the
instrument body.
3.3.4.2 Cello Simulation Results

3.3.4.2.1 The problem of wolf notes
The wolf note is a particular effect to which bowed string instruments (bad or good) are

known to be very susceptible. It is an unpopular phenomenon among musicians since it gives
rise to harsh and beating-like sounds, making proper musical execution extremely difficult at
some positions along the fingerboard. Although unpleasant for the listener, the emergence of

this effect is paradigmatic of the importance of the body/string interaction.

The wolf phenomenon has been the subject of several studies — Raman, (1918), Puaud (1991),
Schelleng (1963), Firth & Buchanan (1973), Benade (1975), Mcintyre, J. Woodhouse (1979),
Gough (1980), Woodhouse (1993b) — the most generally accepted explanation being the one
suggested by Schelleng (1963), forty years ago. More recently the basis of this explanation

has been revisited and further discussed by Woodhouse (1993b). However, there are still a
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few aspects deserving exploration, such as the influence of the string dynamics in the portion
between the tailpiece and the bridge (see Derveaux et al (2003) for an interesting
experimental account). On the other hand, a dependence of the wolf beating frequency on the
bowing parameters was experienced, an aspect which seems almost absent from the literature,
other than in Mcintyre er al (1983), where two simulations of a wolf note played with
different bow forces are shown, exhibiting different wolf beating frequencies. Also, the
emergence of wolf phenomena appears to depend somewhat on the time-history of the

bowing parameters, a fact which has also been noted in Derveaux et al (2003).

3.3.4.2.2 Wolf-note simulation

As the influence of the cello body on the dynamics of its C, string was so apparent during the
preliminary experiments, several coupled simulations for this instrument using a modal
representation of this instrument body (see Figure 3.33) were performed. To easily detect the

emergence of a possible wolf note, a glissando was implemented in the simulation-scheme by

moving a finger along the fingerboard in the range x, = 260~210 mm relatively to the bridge

— upward glissando - or x , = 210~260 mm — downward glissando. In this case, the bow was
placed at 40 mm from the bridge. To simulate the force exerted by a moving finger on the
string, the “finger” was pragmatically modelled using three spring/dashpots of adequate
stiffness/dissipation at coordinates [x,-5mm, x, , x,+5mm].

The results are presented in Figs. Figure 3.38 to Figure 3.41, which represent the bridge
displacement, for different bowing conditions. The wolf note emerges approximately between

positions 243 mm to 237 mm for the upward glissando, however it does not arise at exactly

the same range for the downward glissando as can be seen in Figure 3.39.
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Figure 3.38 — Simulation of an upward glissando on a cello C-string with Fy =1 N and
Vpow = 0.05 m/s.
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Figure 3.39 — Simulation of a downward glissando on a cello C-string with Fy =1 N and
Vhow = 0.05 m/s.
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Figure 3.40 — Simulation of an upward glissando on a cello C-string with Fy =1 N and
Vbow = 0.1 mfs.
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Figure 3.41 — Simulation of an upward glissando on a cello C-string with Fy = 0.5 N and
Voow = 0.05 m/s.
Another interesting aspect is the fact that the wolf note beating frequency changes for
different bowing conditions. Increasing the bowing velocity causes an increase of the beating
frequency (Figure 3.40), while higher bow normal forces tend to reduce this value. Reducing
the bow normal force obviously increases the beating frequency as can be seen in Figure 3.41.
This latter dependence of the beating frequency on the applied normal force was already
briefly numerically demonstrated in Mcintyre et a/ (1983), however no account has been

found in the literature on the bow velocity-dependent beating frequency.

An interesting aspect is that the playing conditions in Figure 3.40 and Figure 3.41 seem to
extend the range in which the wolf note emerges, probably associated with the complexity of
the body modal response. This feature is also apparent in real-life playing in which musicians

denote high difficulty in obtaining clear and repeatable wolf notes.

The explanation of the wolf note formation was first stated by Raman (1918), and later
revisited by Mclntyre & Woodhouse (1979), which mentions the connection between their
time-domain explanation and the frequency-domain explanation by Schelleng. They explain
the emergence of the wolf note in the light of the concept of minimum bow force: the
continual increase of energy loss from the string due to the build-up of energy in the coupled

body implies an increase in the minimum bow force necessary to establish Helmholtz motion.
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If the minimum bow force needed exceeds the actual bow force, the Helmholtz motion gives
way to a “double slip” regime, during which the two slips gradually get out of phase and the
new slip takes over as the new Helmholtz motion. This cycle repeats itself giving origin to the

characteristic wolf note sound (Mclintyre & Woodhouse, 1979).

It is then tempting to link the wolf beating frequency to the conditions enabling the
emergence of the double slip regime. By increasing the normal force double slips will be
triggered later (or even suppressed), leading to a lower beating frequency. However, by
increasing the bow velocity, double slip motions will be triggered more easily (as shown in
Figure 3.49 in this section) causing an increase of the wolf beating frequency. Nevertheless,

this tentative reasoning should be supported by a detailed analysis.

In order to map the space of dynamical regimes obtainable with different playing conditions,
Fy and yuw , at the wolf note finger position, one of these input parameters was successively

set to a wide range of discrete values while the other parameter values were continuously
increased in an exponential time sweep. It should be clear that this approach does not intend
to represent real transient behaviour, but simply parametric changes over a determined range

of values (for details on bowed-string musical transients, refer to Guettler, 1997).

Figure 3.42 shows the instrument bridge displacement time-histories resulting from an
exponential sweep of the bow velocity between 0.01 m/s and 1 m/s while the bow normal
force is varied between 0.2 N and 10 N in discrete steps proportional to 1, 2 and 5. Figure
3.43 represents also the bridge displacement time-histories but now resulting from an
exponential sweep of the bow normal force between 0.1 N and 10 N while the bow velocity is
varied between 0.01 m/s and 0.5 m/s in the same proportion as in Figure 3.42. A colour
scheme is used to represent the oscillation regimes that arise for different values of the input

parameters.
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Six regimes were found during the exponential sweeps performed: a low amplitude or
inexistent oscillation; the wolf note regime; the familiar Helmholtz regime; higher order
regimes characterized by multiple slips within one fundamental period; a raucous regime of
chaotic oscillations; and, for a small range of input parameters, the anomalous low frequency

regime (see Hanson et al, 1994).

Low amplitude Helmholtz Higher order Raucous Anomalous low
or no oscillation Wolf-note regime regimes regime frequency regime

1 I B

Figure 3.42 — Map of the oscillation regimes (see legend below) of a cello string bowed at the wolf
note position, for discrete values of Fy and an exponential sweep of Vi, -
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Figure 3.43 — Map of the oscillation regimes (see legend below) of a cello string bowed at the wolf
note position, for discrete values of V,,, and an exponential sweep of Fj .

A detailed analysis of the previous figures can give some insight on the mechanism through
which musicians usually try to avoid the wolf note by varying the bow playing conditions.
According to these simulations, and as can be seen in Figure 3.42 and Figure 3.43, the wolf
note can emerge over a large range of bow velocities and normal forces. Nevertheless, from
Figure 3.42, if a bow force of 1 N is applied with a bow velocity around 0.03 m/s, Helmholtz
motion is possible, as well as for higher bow velocities and normal forces. Interestingly,
Figure 3.43 shows a somewhat different picture, with a large range of playing conditions
leading to a very low amplitude or even non-existent oscillation, for values where in Figure

3.42 a self-sustained regime would appear. As in many nonlinear systems, various response
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regimes may arise, for the same driving parameter values, depending on the initial conditions
of the motion. Even so, the global behaviour is similar in both figures, with other regimes,
such as the anomalous low-frequency, emerging or being less excited, such as the higher-
order regime. Thus, it seems probable that musicians try to escape the wolf note by using
playing conditions of bow velocity or normal force outside the “wolf” range represented in

the previous figures.

Another interesting and expected result is the appearance of the flattening effect (Cremer,
1984) when increasing bow normal force is applied. This feature is particularly clear in the
results from the force exponential sweep. A detailed analysis (or simply listening to the sound
resulting from these simulations) shows that Helmholtz motion is maintained in some regions
(see Figure 3.43) but as the force increases the fundamental frequency decreases, until chaotic

(raucous) motion establishes.

The dependence of the wolf beating frequency on the playing conditions, is also evident in the
simulations represented in Figure 3.42 and Figure 3.43. The continuous “sweep” of bow
velocity or normal force shows very clearly this dependence. Figure 3.49 and Figure 3.50
depict a detail of the time-history of bridge displacement, in which this continuous change in
the wolf note frequency is apparent. Values of this frequency are shown for clarity in Figure

3.49 and Figure 3.50.

The values of the wolf note “beating” frequency were identified over short time intervals
containing two “beating” periods, represented by the shaded areas in Figure 3.49 and Figure
3.50. As can be seen from the values presented and by inspection of the figures, there is a
clear trend for increasing “beating” frequency as the bow velocity increases. Also, as stated

before, the opposite effect occurs as the bow normal force is increased.
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3.4. Experimental results

3.4.1 Experimental bridge responses of a cello

In order to explore the coupling between the body of the instrument and the strings, some
preliminary measurements were made on a cello. Figure 3.44 shows a typical mobility
frequency response function measured at the bridge in the horizontal direction as shown in
Figure 3.45, through impact excitation, the bridge response being sensed by an accelerometer.
The main body resonance occurs at approximately 196 Hz with a relatively low damping ratio

(£ =0.7%) when compared with the majority of the other peaks which reveal damping ratios

of the order of 2%. This high amplitude mobility peak (1.6 x 10™ ms™N™) is responsible for

the wolf note.

0 160 320 480 640 800 960 1120 1280 1440 1600
Frequency [Hz]

Figure 3.44 — Mobility transfer function of the cello measured at the bridge.
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Figure 3.45 — Setup used for the transfer function measurements.
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Figure 3.46 to Figure 3.48 show several typical bridge velocity responses, and corresponding
spectra, to excitation by bowing on the C, open string (tuned to 65.4 Hz) at different notes on
the fingerboard. Typical velocity amplitudes for the vibration of the bridge at the C, open
string are shown to be of the order of 0.1~0.2 m/s. At a bowing position of approximately 40
mm from the bridge (Figure 3.46), the third harmonic is prevalent relative to the lower order
partials. The proximity of its frequency to the main body resonance (3 X 65.4 Hz = 196.2 Hz)
enhances this particular harmonic, revealing the importance of string/body coupling for
normal musical regimes.

Figure 3.47 depicts the typical amplitude-modulated waveform that characterizes the wolf
note. In order to achieve this sound, the C, string was stopped at a distance approximately L/3
from the bridge (where L is the length of the string), and the G; note was played at
approximately 196 Hz. Clearly, the beating phenomena displayed is the result of strong
coupling between the string vibration and the main body resonance, which is related to the
proximity of their frequencies. Shortening the effective length of the string by a small amount
is enough to prevent the wolf note to develop as can be seen in Figure 3.48. In this case the
finger moved along the fingerboard in the direction of the bridge a few millimetres, which
was enough to alter the fundamental frequency of the stopped string to 218 Hz which

prevented the strong string/body coupled response.
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Figure 3.46 — Velocity time-history and spectrum of the bridge vibration, resulting from
bowing on the C, open string.
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Figure 3.47 — Velocity time-history and spectrum of the bridge vibration, resulting from
bowing on the C; string at a fingerboard position approximately L/3 from the bridge
(generating here a wolf note).
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Figure 3.48 — Velocity time-history and spectrum of the bridge vibration, resulting from
bowing on the C, string at a fingerboard position about one semitone above the wolf
note (compare with Figure 3.46).
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3.4.2 Experimental self-excited motions in a cello

This variation was also clearly heard in real bowing experience, and for that reason an attempt
was made to obtain preliminary experimental results that could qualitatively substantiate the
previous numerical simulations. Obtaining similar controlled playing conditions as the ones
numerically implemented was not possible for the scope of this work. Therefore, a human
playing approach was followed, and for that reason the qualitative results shown in the figures
should be regarded in this light.

Figure 3.51 and Figure 3.52 show the time history of the uncalibrated sound pressure
measured at 40 cm from the bridge of a cello (the same that was used to obtain the frequency
response in Figure 3.33), when playing a wolf note under varying playing conditions. For the
results of Figure 3.51 an attempt was made to keep the applied normal force constant and
continuously increasing (as steady as possible) the bow velocity, while in Figure 3.52 the
normal force was increased and the velocity kept approximately constant. These results are
clear in showing the same trend as in Figure 3.49 and Figure 3.50, apart from some deviations
due to the difficulties in accurately controlling the playing parameters.

From the various bow strokes realized during these experiments, other aspects were found
which are in accordance (at least qualitatively) with the change in regimes depicted in Figure
3.42 and Figure 3.43. During most of the strokes in which the bow velocity was continuously
increased, the wolf note would change to a higher order regime after a limiting bow velocity
(as also seen Figure 3.42). On the other hand, the increase of normal force also showed the
emergence of the Hemholtz regime after the wolf note, and if the bow force was further

increased, the Helmholtz regime would give rise, as expected, to a raucous regime.
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Figure 3.50 — Detail of the time-history of the cello string oscillation during the wolf note
regime played with y,,, = 0.1 m/s, with increasing Fy.
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Figure 3.51 — Measured sound pressure time-history of a wolf note regime played with
increasing y,,, and approximately constant Fy.
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3.5. Modal behaviour of the string/body coupled system
Detailed interpretation of the numerical simulations presented in the previous sections

depends on the modal behaviour of the string/body coupled system. Therefore, in this
section a description of how those coupled modes may be computed is made,
presenting some representative results pertaining to the violin configuration. First the
string constrained by a “rigid” bridge (meaning that y,(x,,7)=0) is addressed, and
the dependence of the constrained modes on the constraining parameters is
investigated. Then the modal behaviour of the full string/body coupled problem is

analyzed, with y, (x,,?) given by the body motion at the bridge location, highlighting

a few interesting features of the coupled modes.

3.5.1 String constrained at the bridge
The dynamical behaviour of the string constrained at the bridge is described in terms

of (3.6) to (3.11) and the constraint force (3.23) with y,(x,,?) =0,

[M){QO)} +[Cl{QM} +[KI{QW)} =—C, [0(x){ QW - K, [®(){QW)}  (3.26)

Where, as before, matrices [M]=diag(m,,---,m,), [C]=diag(2mem, {;,-,2ma, {,)
and [K]=diag(ma/, -, m,w}) pertain to the modal parameters of the unconstrained
string, pinned at the tailpiece and the nut, while {Q(r)} =(g,(t),---,q, ()" is the vector

of modal responses. The right hand-side terms stem from the modal projections (3.7)
of the constraining force (3.23) at the bridge, accounting for the physical response

(3.11) of the string at the bridge location x, , whence the coupling matrix
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_%(xb)ﬂ(xb) Ao () Col(xb)%f(xb)_

2 ()a (%) 206)m0) - 3 (0)ey ()

[(D(xb)] :{%(xb)}{%(xb)}T = (3.27)

Lov (%) (%) ov(5)e () o oy ()ey ()
where {p,(x,)} =(@(x,) @2(x,) - @y (xb)>T stands for the modeshapes, at the

bridge location, of the unconstrained string.

From (3.26),
[MK{Q®|+[[C]+C,, [@(x)] QW +[ [K]+ K, [@(x,)] [{Q)} ={0} (3.28)
And, assuming free-response solutions of the form {Q(t)}:{‘PnQ}exp(/int), the

following quadratic eigen-problem is obtained

[lf[M]+/1n[[C]+Cbs [CD(xb)H+[[K]+KbS[(D(xb)]ﬂ{‘l’ng} (o} (3.29)

which can be easily converted into an equivalent first-order (state-space) form and
then readily solved using standard procedures. Equation (3.30) is one possible

symmetrical form, among others — see, for instance Bertolini (1998).

(l {Hc]wbs[@(x»n [M]H[[Klmm[@(mn [O]D SN {{0}}
3 (3.30)

M [o] (o] M) (w2} Lo
The eigenvalues and corresponding eigenvectors obtained from (3.30) are in general
complex and, for oscillating solutions, arise in conjugate pairs 4, = o, ti®,. The
(damped) modal frequencies @, = m(4,) and modal dissipation values &, = Re(4,)

reflect the linear dynamics of the dissipative coupled system, in terms of the

constraint parameters K, and C, . The undamped modal frequencies &,, and modal
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damping values £ of the constrained string may be inferred from the various 2,

using the following relations

~ ~2 ~2 .
a)nO = O-n +a)n ' é/n == ~ = (331)

and one obtains @, = @,,\/1- {2, as usual. After obtaining the eigenvectors {‘PQ} of

the coupled system in terms of the modal amplitude coefficients of the original string

modes, one can easily express the corresponding modeshapes {‘Pf} in terms of

physical amplitudes by recombination of the unconstrained modeshapes

i =[alde) lod )Y} . n=12,.,N (3.32)

Figure 3.53 and Figure 3.54 show the changes in the string modal frequencies and
damping values respectively, as the bridge constraining stiffness K,  increases in the
range 10 ~10” Nm™ with no coupling dissipation (C,, =0), for the first nine modes.
One may notice that modal frequencies behave as an almost harmonic series for very
the lowest values of K, , meaning that the bridge is then barely “felt” by the string.
On the opposite extreme, when K, >10° Nm™, further increase in the constraining

stiffness brings no significant changes, as for all practical purposes, the bridge is
already “rigid” as far as the string is concerned. Again, the highly constrained string
modal frequencies are almost harmonic, except for a mode at 1224 Hz, which will be
explained later. All the modal frequencies increase with K, , as they should, system

inharmonicity being maximal at about K, =5x10> N/m, when the bridge is far from

“rigid” but already a significant constraint.
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Figure 3.54 — Modal damping of the string modes constrained at the bridge, as a

function of the stiffness coupling constant X, (with C,, =0)

From Figure 3.54 it appears that the modal damping values of the constrained modes

are almost independent from K, when C, =0, and always slightly lower than those
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of the original (unconstrained) string modes (here 0.1 % was postulated for all modes).

However, as shown in Fig. A3, the scenario is considerably different when C,, is not

nil (here C,, =10 Nsm™), because significant energy is then damped out when the

constraining stiffness is low enough to allow for string motions at the bridge location.

Notice that, for high values K, >10° Nm™, modal damping of the constrained modes
does not depend whatsoever on C,, and only reflect the modal damping values of the

original modes.

To conclude this section Figure 3.55 displays the modeshapes of the first nine

constrained modes, computed from (3.30) and (3.32), when the bridge behaves as an

almost-rigid constraint ( K,, =10’ Nm™). Notice that for most modes in this frequency

range the modal amplitudes are only significant between the nut and the bridge, the
string length between the bridge and the tailpiece being only marginally active, which
is well consistent with the near-harmonic series obtained for the constrained modal
frequencies. The only exceptions (in this frequency range) being the 6™ mode, with its
modal frequency barely affected by the string motion on the tailpiece-side (because
the bridge naturally stands at a node), and mostly the 7" mode. Indeed, this mode is
strongly dominated by a localized tailpiece-side response, and hence displays a modal
frequency mostly related to the bridge-tailpiece distance. Obviously, this is the mode
which breaks the harmonic series of the modal frequencies displayed by the right side

of Figure 3.53.
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Figure 3.55 — Modeshapes of the first string modes constrained at an almost-rigid
bridge, represented by a square (K, =10’ Nm™).

3.5.2 String/body coupled modes
The coupled modes of the string/body system can be addressed in a similar manner as

in the previous section. Formulation follows similar lines to the previous presentation,

although — because now y,(x,,#) #0 — the modal parameters of the P body modes

must obviously be included. Then, from equations (3.6)-(3.11) and (3.21)-(3.23), the

coupled system becomes

{I\/I o} {Q)} {c o} {Q)} {K OH{Q(t)}}_

0 M, (6,0} L0 Cill{o,}| L0 Ky Q)
e {cbss(x,,) <I>sg(xb)} Q| Pss(x,,) q>sg<xb>} {{Q(t)}}
" Do (x,) Dpy(x,) {QB(t)} " Do (x,)  Dpylx,) {QB(I)}

(3.33)

with the coupling sub-matrices
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[‘Dss(xb)]:{(”n(xb)}{%(xb)}T ; [CDSB(xb)]:_{¢n(xb)}{¢p(xb)}T
[CDBS(xb)]:_{¢p(xb)}{¢n(xb)}T ; [CDBB(xb)]:{¢p(xb)}{¢p(xb)}T

where {¢p (xb)} is the vector of the body modeshape values at the bridge location

(here taken as unity, following the normalization procedure adopted).

Equation (3.33) is of the form (3.26), although obviously the system size is now N+P.
Therefore the corresponding eigenproblem may also be written in form (3.29) or
(3.30), from which the string/body coupled modes are computed. Notice that the
coupling matrix built from (3.34) is symmetrical, as it should. This, however, is no
guarantee that the coupled modes will display real modeshapes — and indeed, as will

be shown later, complex modes are the rule here more than the exception.

Figure 3.56 displays the change of the string/body modal frequencies as the stiffness

coupling constant K, increases. These computations are based on the same

unconstrained string modes as before, while Table 3.1 presents the modal frequencies
and damping values used for the first few body modes used in this calculation. Notice
that these body modes display damping values typically one order of magnitude
higher than the uncoupled string modes.

Essentially the left side of the plot shows the string and body modes when they are
almost uncoupled, while the right side of the plot shows the string and body almost
rigidly coupled at the bridge. In-between, the interplay of the modal frequencies stems
from increasing coupling. Understandably, the string modal frequencies change

significantly as X, increases, while the body modal frequencies are hardly affected.
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Figure 3.56 — Modal frequencies of the string/body coupled modes, as a function of

the stiffness coupling constant X, at the bridge (with C,, =0).

At the modal frequencies controlled by the body, the bridge presents a lower
impedance to the string, so that the coupled modes don’t display any more a node at

the bridge location. This is demonstrated in Figure 3.57, which shows the first 9
modes of the coupled system (using K, =10" Nm™) — see modes 2, 4, 5 and 8. Also

notice that, the coupled string/body modes are complex, as the energy dissipation
from the string will be mainly localized at the bridge, and hence damping is non-
proportional. This is particularly significant for the coupled modes controlled by the
body motion, as shown in Figure 3.57, where the modeshapes have been normalized
at unity for the maxima of their real part, the corresponding imaginary part being

plotted with a dotted line.
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Table 3.1 — Body first modal frequencies and damping values

Mode 1 2 3 4 5
Frequency [Hz] 276.5 404.0 480.7 846.5 1093.0
Damping [%] 2 3 1 1 1
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Figure 3.57 — Complex modeshapes of the first string/body coupled modes, where the
square represents the bridge (K,, =10’ Nm™).

Concerning the modal damping of the coupled modes on may notice that, when the

bridge is almost still, the modal damping values are essentially those of the uncoupled

string modes. Also understandably, when the coupled modes are controlled by the

body, damping values are essentially those of the corresponding body modes. As

thoroughly discussed by Woodhouse (2004), if the system damping is modelled in a
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satisfying manner, such typically scenario should be displayed even when two
coupled “string-controlled” and “body-controlled” modes present close frequencies,
as the orders of magnitude of their respective damping values should respect those of
the decoupled substructures. An illustration is provided by modes 3 and 4 in Figure
3.57, even so, the 60% damping increase in the “string-controlled” mode is enough to

produce some of the visible changes in the response shown in Figure 3.37(b).
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Chapter 4

BOWED BARS: MARIMBAS & VIBRAPHONES
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4. BOWED BARS: MARIMBAS & VIBRAPHONES

4.1. Introduction

In this chapter, a thorough description of the implementation of the simulation method
for bowed bars is presented. Both tuned and constant cross-section bars are studied
and the self-sustained regimes emerging from different playing conditions are

presented.

4.2. Computational Model
4.2.1 Modal model for bending bars

The cross-sectional dimensions of bars used in percussion musical instruments are not
usually small compared to their length. In fact, as modal frequencies increase, the
Bernoulli-Euler slender beam model becomes progressively inadequate. Therefore,
flexural modes are here modelled in terms of the Timoshenko thick-beam model,
which corrects for the effects of rotary inertia and shear deformation (Graff, 1975).
Although torsional and axial vibrations are also present in the dynamics of this
system, only flexural vibration modes will be addressed in this study. Thus, for small

vibratory motions, the transverse displacement y(x,z) and slope ¢(x,¢) of the free

conservative system are formulated as:

oy o 2y _ 4.1
ZOE +kGA(x){ax aﬁ]_o (4.1)
p[(x)%—Ez(x)¥+kGA(x)( _%JZO (4.2)

where A(x) and /(x) are the local bar cross-section area and moment of inertia,
respectively, p is the specific mass of the bar material, £ is the Young modulus, G is
the shear modulus and & is a geometric factor for shear energy (equal to 5/6 for

rectangular cross-sections). Inertial and stiffness terms can be easily recognized in
equations (4.1) and (4.2).

If linear dissipation is assumed, any solution of (4.1) can be written in terms of the

beam modal parameters: modal masses m, , modal circular frequencies w,, modal

n! n?

damping ¢, , and modeshapes ¢, (x), n=12,---,N . The order N of the modal
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truncation is problem-dependent and must be asserted by physical reasoning,
supported by the convergence of computational results. The forced response of a
damped bar can then be formulated as a set of N ordinary second-order differential

equations:

[M100 1+ [cliom+[Kliow} = E®) (4.3)

where: [M]=Diag(m1,-~-,mN) ' [C]ZDiag(zmla)l:l"”'sza)N:N) and
[K]:Diag(mla)f,---,mNa)fv) are matrices of the modal parameters, and

O}={q,(t),qy@)" , EO}=(3,0),,3,()" are vectors of the modal

responses and the generalized forces, respectively.

The modal damping values ¢, are usually identified from experiments; however, they

may eventually be theoretically estimated (Fletcher & Rossing, 1998). The modal

forces 3, (z) are obtained by projecting the external force field on the modal basis:
L
3,0=[ Fene,@d i n=12-N (4.

The physical motions can be computed from the modal amplitudes g, () by

superposition:

y(x,1)= Z% (x)q, () (4.5)

and similarly concerning the velocities and accelerations. For given external
excitation and initial conditions, the previous system of equations can be integrated
using an adequate time-step integration algorithm. Explicit integration methods are
well suited for the friction model developed here.

In this implementation, a simple Verlet integration algorithm is used (Beeman, 1976),
which is a second order explicit scheme. Note that, although equations (4.3)-(4.5)

obviously pertain to a linear formulation, nothing prevents us from including in 3, (¢)

all nonlinear effects arising in the system. Accordingly, the system modes become

coupled by the nonlinear effects.
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4.2.2 Friction Model

For the present system, the same friction model as described in section 2.3.1 and 2.3.2
is used. Considering the Coulomb-type friction force arising when the bow is applied

at location x, of the bar:

y.[>0
y.|=0

{ F(x.,t)==p, (v )Fysgn(y ) ; if (4.6)

Fa(xc’t)|<1uSFN ; if

Here, the relative transverse velocity between the bow and the bar is given by (see
Figure 4.1):

RS IROED WNCATROES NG @)

where F), (¢) is the normal force between the bow and the bar, u is a “static” friction
coefficient (used during surface adherence) and u,(y,) is a “dynamic” friction

coefficient (used for sliding regimes).

y bow

Fy

Figure 4.1 - Scheme of the bow/bar interaction: Normal force £ ; Tangential bow velocity y,

The numerical implementation of this friction model is made as described in section
2.3.2.

4.2.3 Modal and Friction Parameters

The numerical simulations presented in this chapter were performed for a A;
vibraphone bar (with fundamental frequency f; = 220.4 Hz), with an undercut leading
to approximate 1-4-10 harmonic relationships of the three first bending modal
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frequencies, and also for an aluminum bar of constant cross-section, with the same
fundamental but with inharmonic modal frequency relationships. This will enable us
to compare the influence of the tuning undercut on the oscillation regimes of the

bowed bars.

In order to construct the modal basis for the simulations of both bars, it is necessary to

calculate or measure its modal parameters m, , »,, ¢, and modeshapes ¢, (x) ,

n=12,---,N.

The modal basis used in the simulations of the bars were obtained from two different
procedures: 1) an experimental procedure for the identification of modal frequencies
and modal damping for the vibraphone 1-4-10 bar; 2) a numerical procedure based on
the finite element method for determination of modal parameters for the constant

cross-section and unorthodox tuning bars.

The modal frequencies, o,, and modal damping, ¢ , of the A; vibraphone bar were

n’ n!

identified by measuring the transfer function between the acceleration response of the
bar and the impulse excitation provided by an instrumented impact hammer (see
section 4.4.1). The measurements were carefully performed in order to distinguish
bending modes from torsion modes which are not included in the present

computational model. The modeshapes ¢, (x) were then calculated using finite

element methods, as applied to the geometries of both bars. The modal masses were
then computed according to:

m, = I: m(x) ¢’ (x) dx (4.8)

The fundamental frequency, f1 (220.4 Hz) and the damping values £, used in all the

computations (for both the constant section and the vibraphone bar) are those
experimentally identified for the vibraphone bar. Modal damping is low, at an average
value of 0.02 %. Table 4.1 shows the modal frequencies identified for the free-free
bars in the range 0~8000 Hz.
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Table 4.1- Modal frequencies for the Az vibraphone bar and constant section bar

Vibraphone  f, [Hz] 2204 8705 2278 3787 4960 7141 — —

bar A flfi 1 395 103 172 225 324 @ — —
Constant  f, [Hz] 2204 606.7 1187 1956 2912 4050 5366 6855
sectionbar /. 1 275 538 887 132 184 243 311

The frequency-response measurements for the vibraphone bar showed two low-
frequency free oscillations (around 35 Hz), which are related to the rigid-body
translation and rocking modes of the bar, when coupled with its supporting fixture. To
introduce this feature in the model, two flexible and damped supports were modelled

at locations x,=L/5 and x,=4L/5. Also, the zero-frequency translation and

rocking modes of the bars were included in the computational modal basis, along with
8 flexural modes (with frequencies up to about 8000 Hz). Note that the dynamic
support reactions are projected on the modal basis, along with the friction bow force.

The support stiffness and damping values used for each support are K, =10* N/m and

C, =20 Ns/m, respectively, as crudely estimated from the experimental results.

The friction parameters used in all numerical simulations are x, =1.0, x, =0.2 and
C =10. These values lead to a friction law x,(»,.) (see Figure 4.2), according to the

scarce experimental results available — see Lazarus (1972), Askenfelt (1989) and
Schumacher (1994).

1.2 T T T T

0.6F 7

Friction coefficient

0.4

0.2

0 0.2 04 0.6 0.8 1
Relative velocity bow/bar [m/s]

Figure 4.2 - Evolution of the friction coefficient with sliding velocity (x4 = 1, ¢ = 0.2, C=10)
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4.3. Numerical Simulations
Extensive numerical simulations have been performed exploring a wide range of
excitation parameters: FN = 0.05 ~ 35 N and J,,, = 0.002 ~ 1 m/s, which encompass

the usual playing range. In order to cope with the relatively large transients that arise
in these systems, 5 seconds of computed data were generated, at a sampling frequency
of 20 kHz, to obtain representative realistic simulations.

The values of the bar geometrical and mechanical parameters used in the

computations are shown in Table 4.2.

Table 4.2 - Geometric and mechanical characteristics of the A; vibraphone bar and a constant
cross-section bar

Length Width Max. Height ~ Min. Height E el
(cm) (cm) (cm) (cm) (GPa)  (kg/m®)
Az Vibraphone bar 324 5 1.11 0.42 71 2700
Constant section bar 35.2 5 0.52 0.52 71 2700

4.3.1 Basic self-excited regimes

Figure 4.3 shows the simulated response of the vibraphone bar, at the bowing point,

using a normal bow force F,, =2 N and a bowing velocity y, =0.1m/s. These

parameters might be considered “usual” for bowed bars (however, depending on
many factors, large variations from these values may be used by performers when
seeking musically-effective sounds). The first graph on the top of Figure 4.3 shows
the bar bowing point displacement time history during an interval of 5 seconds. The
next three pairs of graphs represent, respectively, zoomed time-histories and power
spectral densities of the displacement, velocity and acceleration at the bowing
location. The last two graphs show, respectively, the time-history of the tangential
friction force (on the left) and the time-intervals when the bar is sticking or sliding
relative to the bow (on the right).
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One can notice a large-amplitude low-frequency transient, which is mostly controlled
by the flexible supporting conditions of the bar. Then, a steady self-excited motion
develops, which is dominated by the response of the first vibratory flexural bar mode
(at 220,4 Hz). This behaviour contrasts with the typical responses of bowed strings,
which display very significant “activity” of the higher-order modes. Here, the spectral
harmonics due to the system nonlinearity are of lower amplitude, as shown in the
displacement spectrum. However, a few harmonics increase significantly, when they
approach a modal frequency of the bar — for this vibraphone bar, the fourth harmonic
near the 870 Hz mode (at a ratio 1>/ f1 = 3.95) can be clearly heard. Notice also that the
friction force is quite complex, with a large portion of the cycle in the sliding regime.
This also contrasts with the behaviour of bowed strings, for which most of the motion
takes place in adherence conditions (Antunes et al, 2000a; Tafasca et al, 2000).
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Figure 4.4 shows the results obtained when simulating the bowed response of the bar
with constant cross-section, under similar bowing conditions. Again the self-excited
motion is dominated by the first bar mode. However, looking at the harmonic content,
it is now the third harmonic that is slightly enhanced, as it approaches the 607 Hz
mode (at a ratio £/ f; = 2.75). Furthermore, the higher inharmonicity of this bar leads
to an even lower amplitude of the higher harmonics resulting in a distinct timbre from
the tuned bar and a longer initial transient due to the difficulty of the modes to lock

into a common periodicity.

4.3.2 Influence of playing conditions

The self-excited responses shown in Figure 4.3 and Figure 4.4, which are dominated
by the first bending mode of the bars, are those typically aimed by musicians — and,
as such, will be designated “musical” regime. Quite different solutions may appear

when changing the bowing parameters F, and y, . In bowed bars, the range of
values (Fy;y,, ) leading to musically-interesting sounds is more limited than for

bowed strings — meaning that it is more difficult to excite musical self-excited
motions with bowed bars. In fact, depending on the bowing parameters, three main
response regimes may be obtained:

(@) For high values of F, and low values of y, ,, a low-frequency “non-musical”

self-excited motion arises, where rocking motions of the (un-deformed) bar are
controlled by the support stiffness — designated here as “support” regime (Figure
4.5);

(b) For low values of F, and high values of y,  , no self-excited motions are

displayed, because the bow slides all the time and any starting transient motion will

ultimately disappear — the “decaying” regime (Figure 4.6);

(c) Between the extreme values of the input parameters (F,;7,,,), the previously

mentioned musically-interesting solution exists, where stick-slip phenomena enable
self-excited motions dominated by the first bending bar mode (Figure 4.3 and Figure
4.4).
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Figure 4.7 and Figure 4.8 show the various solution domains, respectively for the
tuned and the constant-section bar. A set of colors was chosen to distinguish between
the various dynamical regimes, when plotting the energy magnitude of the various
solutions obtained from the computations. It is clear from these results that the tuned
(e.g. harmonic) bending modes of the Az vibraphone bar allow for a larger domain of

F, and y,  leading to the self-excited “musical” regime, when compared with the

corresponding domain stemming from the computations performed with the

inharmonic constant-section bar.
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Increasing the bow velocity leads to an increase of the amplitude of the bar motion —
a behaviour also displayed by bowed string instruments. When the bow velocity is far
too high for any sticking to occur then the “decaying” regime prevails. The transition
from the “decaying” regime to the low-frequency “support” oscillation (passing
through the “musical” solution), appears to be related to the fraction of time spent in
the sliding state. Figure 4.9 shows the percentage of sliding time, computed during the
stationary part of the response oscillations, as a function of the applied normal force

and bow velocity. The dependence of the sliding time on F,, and y, . is clearly seen.
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For very low velocities, a “mixed” regime arises (blue color in Figure 4.7 and Figure
4.8), where a combination of the low-frequency “support” solution and of the

“musical” self-excited regime appears. In these simulations, for values y,  between

0.005 and 0.01 m/s the frequencies of the bar modes are clearly seen in the velocity
spectra, together with other frequency components at lower amplitude, sometimes
with a harmonic structure. As the applied force is increased or the bow velocity is
decreased, these regimes give origin to double period and even chaotic oscillations
before settling into the lower-frequency support oscillation as seen in the typical
phase-trajectories and spectral plots shown in Figure 4.10. Notice that, for every
motion regime, the flexural modal frequencies of the bar are always embedded in the

response spectral envelopes.
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Within the green region in Figure 4.7 and Figure 4.8, the “sound quality” (e.g. the

relative amplitude of the spectral peaks of the responses) changes with £, and y, ,

in a much less dramatic way than with bowed strings (see Antunes et al, 2000a;
Tafasca et al, 2000; Mclintyre et al, 1983) Although, for a given motion regime, the
response amplitudes of the bars increase almost linearly with the bowing velocity (as
in bowed strings), the effects of increasing the normal force are subtle, (contrasting

with bowed strings, for which normal force effects are usually significant).

Another dramatic difference between these two systems is that the length of the
starting transients is much longer for bowed bars than with bowed strings,
emphasizing the increased difficulties in controlling this system. Figure 4.11 and

Figure 4.12 show how the initial transients increase exponentially with y, —and

decrease inversely proportionally to F), .
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Figure 4.11 - Initial transients (1-4-10 vibraphone bar) as a function of y, .
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As already stated, the dynamics of this system are mainly controlled by the first
vibratory bar mode (and by the flexible support), in clear contrast with bowed strings.
This is attested by Figure 4.13, which shows the change of the modal energies of the
system as a function of the normal force, for a bowing velocity of 0.02 m/s. These are
computed from the temporal modal responses and represented normalized to the total

energy of the system according to:

B, =5 m, (420)+ of?(0) [E, =, [, @9)
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Comparing Figure 4.13 and Figure 4.7, it can be seen how changes from the musical
regime to the chaotic regime and to the support self-excited oscillation are controlled
by a progressive transfer of energy from the first bending mode to the low-frequency
rocking and translation rigid-body bar/support modes. This behaviour is similar at
other bow velocities. This fact suggests that it may be sufficient to model analytically

this system using a couple of vibratory modes.

4.3.3 Responses of uniform, undercut and unorthodox bars

Figure 4.14 shows the profiles of the bars used in these simulations. The absolute and
relative dimensions presented in the figure are not to scale. As can be seen from the
analysis of Table 4.2, the three bars present a decreasing level of modal inharmonicity
due to the shape of the tuning undercut. The optimised bar (b) is quite similar to
current commercially available vibraphone bars, with their typical central undercut.
However, the “harmonic” bar (c) would be a very unorthodox design, by current

standards.

Table 4.3 - Natural bending frequencies and modal relationships for the three bars.

Uniform bar Vibraphone bar Harmonic bar
n fn [HZ] fo/fy fn [HZ] fo/fy fn [HZ] fo/fy
1 220.4 1 220.4 1 220 1
2 606.7 2.75 870.5 3.95 440 2
3 1187 5.38 2278 10.3 660 3
4 1956 8.87 3787 17.2 1625 7.38
5 2912 13.2 4960 22.5 2448 11.1
6 4050 18.4 7141 32.4 2983 13.5
7 5366 24.3 - - 4444 20.2
8 6855 31.1 - - 5591 25.4
N 8 8 13
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Figure 4.14 - Bar profiles: a) Uniform bar; b) Vibraphone (1-4-10) bar; ¢) Harmonic (1-2-3) bar.

4.3.3.1 Uniform and Vibraphone Bar

Figure 4.15a and Figure 4.15b show time-history segments of the computed
dynamical responses at the bowing point (located at one of the ends of the bars) and
the corresponding power spectral densities, respectively for the uniform (constant

cross-section) and for the vibraphone bar, using a normal bow force F, =2 N and a

bowing velocity j, = 0.1 m/s.

In both cases the motion is dominated by the response of the first vibratory flexural
mode although for the vibraphone bar there is more energy spread in higher-order
modes, which have natural frequencies in approximate integer ratios with the
fundamental. The high degree of inharmonicity of the uniform bar leads to a lower
amplitude of the higher harmonics (which are mostly due to the system non-linearity)
resulting in a distinct timbre from the tuned vibraphone bar. Also, the uniform bar
usually displays longer initial transients, due to the difficulty of the modes to lock into

a common periodicity. This behaviour contrasts with the typical responses of bowed
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strings, which display very significant “activity” of the higher-order modes and much

shorter initial transients.
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4.3.3.2 Harmonic Bar

The simulated displacement response of a 1-2-3 harmonic bar bowed with Fy = 3.5 N

and j, =0.1m/sis shown in Figure 4.15c. The self-excited motion of the bar is now

dominated by the first three vibratory flexural modes, with low amplitude response of
the higher harmonics, due to the high inharmonicity of the modal frequencies beyond
the third flexural mode. However, because the three first bending modes are harmonic
and respond in a very cooperative manner, the waveform of the bar displacement is

almost saw-shaped, such as the Helmholtz waveform in bowed string.

Indeed, similarity between the harmonic 1-2-3 bowed bar and bowed strings is also

noticed when looking at the stick-slip behaviour of the friction interaction. Figure
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4.16a to Figure 4.16¢ show the computed frictional forces corresponding to the three
case studies of Figure 4.15. The relative sticking-time (within a period) increases
somewhat from the uniform bar to the tuned vibraphone bar, but significantly more
for the harmonic bar (the bar sticks to the bow during 56% of the motion period). This
behaviour approaches what is observed for bowed strings, which stick during a very
significant part of the motion (see Antunes et al, 2000a; Tafasca et al, 2000). Also, the
friction force displayed by the 1-2-3 bar (Figure 4.16c) presents similarities with
typical bowi/string interaction forces, in clear contrast to the results presented in
Figure 4.16a and Figure 4.16b.

The results presented show that the dynamics of uniform and vibraphone bowed bars
are mainly dominated by the first bending mode. This is in contrast with the much
higher modal activity observed in bowed string motions. The vibraphone bar exhibits
a higher level of playability when compared to the uniform bar, due to the higher
harmonicity of its modal frequencies. However, the unorthodox tuning used for the
harmonic (1-2-3) bar enables the emergence of waveforms which are similar to those

displayed by bowed strings, as well as similar relative sticking times.

In conclusion, shaping bars so that their first few modal frequencies are harmonic,
creates an interesting new “animal”, which behaves half-way between strings and

common bars.
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4.4. Experimental Results

Experimental measurements on vibraphone bars were carried to fulfil two main
objectives: 1) to assist the calculation of modal parameters necessary to the
computations and 2) to allow a comparison of the computation results with real bowed

bar oscillations.

4.4.1 Modal identification of vibraphone bars

As explained in previous sections the modal basis used in the simulations of the bars
were obtained from two different procedures: 1) an experimental procedure for the
identification of modal frequencies and modal damping for the vibraphone 1-4-10 bar;
2) a numerical procedure based on the finite element method for determination of all
modal parameters for the constant cross-section and unorthodox tuning bars and of the
modeshapes of the 1-4-10 vibraphone bar. From these procedures, the first will be

summarily presented in this section.

The identification of the modal frequencies of the vibraphone bar were obtained by
inspection of the frequency response functions measured between the acceleration
signal of an accelerometer placed at one end of the bar (and at half the width of the
bar) and the force signal induced by an impact hammer at the opposite end (see Figure
4.17). Both signals were fed to 2 input channels of a 4-channel frequency analyser
which calculated the frequency response functions from the acceleration and force

signals.

The bar under test was supported on the vibraphone structure by a cord, as would be
in a real performance. The cord goes through two holes located at the nodal points of
the first bending mode, in order to minimize damping. All the remaining bars were

damped with a heavy cloth to eliminate unwanted sympathetic vibrations.
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Figure 4.17 — Experimental setup used for the experimental modal identification of the bars

In order to separate flexural modes from torsion modes (the impact exerted did not
excite significantly any longitudinal modes), several frequency response functions
were measured with different locations of impact along the width of the bar. Figure
4.18 shows an example of a measured frequency response function with an impact
location away from the middle of the bar width. On the other hand, Figure 4.19 shows
another frequency response function but now with an impact location precisely in the
middle of the bar width. Comparing both figures confirmed the hypothesis that both
modes showing up at approximately 750 Hz and 3100 Hz were not bending modes,
but torsion modes as confirmed by finite element calculations. Close inspection of the
frequency response functions showed two two low-frequency free oscillations at
approximately 35 Hz, in every measurement made even when damping the bar to
eliminate flexural, longitudinal or torsional vibrations. These oscillations are related
to the rigid-body translation and rocking modes of the bar, when coupled with its
supporting fixture.

Experimental modal research on these systems has already been explored thoroughly
(see Fletcher & Rossing, 1998; 2000) and the present measurements showed good
agreement with the published results. Table 4.1 shows the results obtained from the

modal identification on both vibraphone and constant cross-section bar.
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4.4.2 Experimental self-excited motions

Preliminary experiments have been performed at this stage, although under
uncontrolled conditions. Figure 4.20 shows a typical result measured near the bowing
point of a Az vibraphone bar (with the modal parameters used in these simulations), as
hand-bowed by a professional musician. The background noise of the measured
spectrum is obviously higher than in this sample simulation — compare with Figure
4.3 or Figure 4.10a — but the similarity of the computed and experimental signals is

unmistakable.
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Figure 4.20 - Experimental response of a bowed A; vibraphone bar.
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Chapter 5

BOWED SHELLS: TIBETAN BOWLS
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5. BOWED SHELLS: TIBETAN BOWLS

5.1. Introduction

In this chapter, the modal physical modelling technique is applied to axi-symmetrical
shells subjected to impact and/or friction-induced excitations. This approach is based
on a modal representation of the unconstrained system — here consisting on two
orthogonal families of modes of similar (or near-similar) frequencies and shapes. The
bowl modeshapes have radial and tangential motion components, which are prone to
be excited by the normal and frictional contact forces between the bowl and the
impact/sliding stick (called puja). At each time step, the generalized (modal)
excitations are computed by projecting the normal and tangential interaction forces on
the modal basis. Then, time-step integration of the modal differential equations is
performed using an explicit algorithm. The physical motions at the contact location
(and any other selected points) are obtained by modal superposition. This enables the
computation of the motion-dependent interaction forces, and the integration proceeds.
Details on the specificities of the contact and frictional models used in these
simulations are given. A detailed experimental modal identification has been
performed for three different Tibetan bowls. Then, extensive series of nonlinear
numerical simulations are produced, for both impacted and rubbed bowils,
demonstrating the effectiveness of the proposed computational techniques and
highlighting the main features of the physics of singing bowls. The influence of the

contact/friction and playing parameters is discussed — the normal contact force F, and
of the tangential velocity », of the exciter — on the produced sounds. Many aspects of

the bowl responses displayed by these numerical simulations have been observed in

preliminary qualitative experiments.

5.1.1 Tibetan singing bowls and their use

Singing bowls, also designated by Himalayan or Nepalese singing bowls (Gaynor,
2002) are traditionally made in Tibet, Nepal, Bhutan, Mongolia, India, China and
Japan. Although the name ging has been applied to lithophones since the Han Chinese
Confucian rituals, more recently it also designates the bowls used in Buddhist temples
(Thrasher, 2001). In the Himalaya there is a very ancient tradition of metal

manufacture, and bowls have been handcrafted using alloys of several metals —
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mainly copper and tin, but also other metals such as gold, silver, iron, lead, etc. — each
one believed to possess particular spiritual powers. There are many distinct bowls,
which produce different tones, depending on the alloy composition, their shape, size
and weight. Most important is the sound producing technique used — either impacting
or rubbing, or both simultaneously — as well as the excitation location, the hardness
and friction characteristics of the puja (frequently made of wood and eventually

covered with a soft skin) — see Jansen, 1993.

The origin of these bowls isn’t still well known, but they are known to have been
used also as eating vessels for monks. The singing bowls dates from the Bon
civilization, long before the Buddhism (Huyser, 1999). Tibetan bowls have been used
essentially for ceremonial and meditation purposes. Nevertheless, these amazing
instruments are increasingly being used in relaxation, meditation (Huyser, 1999),

music therapy (Gaynor, 2002; Gardner, 1990; Gaynor, 1999) and contemporary music.

The musical use of Tibetan singing bowls in contemporary music is a consequence
of a broad artistic movement. In fact, in the past decades the number of percussion
instruments used in Western music has greatly increased with an “invasion” of many
instruments from Africa, Eastern, South-America and other countries. Many Western
composers have included such instruments in their music in an acculturation

phenomenon.

The Tibetan bowls and other related instruments used in contemporary music are
referred to, in scores, by several names: temple bells, campana di templo, japonese
temple bell, Buddhist bell, cup bell, dobaci Buddha temple bell. Several examples of
the use of these instruments can be found in contemporary music: Philippe Leroux,
Les Uns (2001); John Cage/Lou Harrison, Double Music (1941) percussion quartet, a
work with a remarkable Eastern influence; Olivier Messiaen, Oiseaux Exotiques
(1955/6); John Kenneth Tavener, cantata Total Eclipse (1999) for vocal soloist, boys’
choir, baroque instruments, brass, Tibetan bowls, and timpani; Tan Dun Opera Marco
Polo (1995) with Tibetan bells and Tibetan singing bowls; Joyce Bee Tuan Koh, Lé
(1997) for choir and Tibetan bowls.
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Figure 5.1. Three singing bowls used in the experiments: Bowl 1 (¢ = 180 mm); Bowl
2 (¢ =152 mm); Bowl 3 (¢ = 140 mm).

Figure 5.2. Large singing bowl: Bowl 4 (¢ =262 mm), and two pujas used in the

experiments.

5.2. Computational Model
5.2.1 Modal model for axi-symmetrical shells

Perfectly axi-symmetrical structures exhibit double vibrational modes, occurring in
orthogonal pairs with identical frequencies (o* = ") (Rossing, 1994). However, if a
slight alteration of this symmetry is introduced, the natural frequencies of these two
degenerate modal families deviate from identical values by a certain amount Aw,. The
use of these modal pairs is essential for the correct dynamical description of axi-
symmetric bodies, under general excitation conditions. Furthermore, shell
modeshapes present both radial and tangential components. Figure 5.3 displays a
representation of the first four modeshape pairs, near the bowl rim, where the
excitations are usually exerted (e.g., z, ~ Z). Both the radial (green) and tangential

(red) motion components are plotted, which for geometrically perfect bowls can be

formulated as:
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0, (0) =9, (O)F+¢, (0)7

0. 0) =9 (O)7+ ¢! (0)7 (5.1)
with
(" (6) = cos(n0)
i(ﬂ,f" (0) = —sin(z0)/n (5.2)
(0" (0) = sin(uo)
i(ﬂf "(0) = cos(n6) [ n (5.3)

where ¢ (9) corresponds to the radial component of the 4 family nth modeshape,
¢ (0) to the tangential component of the 4 family nth mode shape, etc. Figure 5.3
shows that spatial phase angles between orthogonal mode pairs are z/2; . One

immediate conclusion can be drawn from the polar diagrams shown and equations
(5.2) and (5.3): the amplitude of the tangential modal component decreases relatively
to the amplitude of the radial component as the mode number increases. This suggests
that only the lower-order modes are prone to engage in self-sustained motion due to
tangential rubbing excitation by the puja.

If linear dissipation is assumed, the motion of the system can be described in terms of
the bowl’s two families of modal parameters: modal masses ="', modal circular
frequencies ", modal damping ¢, and mode shapes ¢'(0) (at the assumed

excitation level z, ~ z), with n=1,2,---,N, where X stands for the modal family 4 or

B . The order N of the modal truncation is problem-dependent and should be asserted

by physical reasoning, supported by the convergence of computational results.

The maximum modal frequency to be included, @, , mostly depends on the short

time-scales induced by the contact parameters — all modes significantly excited by
impact and/or friction phenomena should be included in the computational modal

basis.
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Figure 5.3. Mode shapes at the bowl rim of the first four orthogonal mode pairs (Blue:

Undeformed; Green: Radial component; Red: Tangential component).
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The forced response of the damped bowl can then be formulated as a set of 2N
ordinary second-order differential equations

] o |flewl| [I&] ° |lewl| [0}

o |la]||{e.0) o [x]||{e.0) ) (=,0) (5.4)

where:

[M,]=Diag(m,---,m),

[ C, |=Diag2m | &\ 2myoy 1),

[ K, ]=Diag(m (@), my (@)7),

are the matrices of the modal parameters (where X stands for 4 or B), for each of the
two  orthogonal ~ mode  families,  while {0 ()}=(¢ (1).+.q, (1))  and

&, (t)}=<5j‘ ), 3, (t)>T are the vectors of the modal responses and of the generalized

forces, respectively. Note that, although equations (5.4) obviously pertain to a linear
formulation, nothing prevents us from including in 3'(s) all the nonlinear effects

which arise from the contact/friction interaction between the bowl and the puja.

Accordingly, the system modes become coupled by such nonlinear effects.

The modal forces 3"(x) are obtained by projecting the external force field on the

modal basis:
3 0=[" [E©@.0 ¢ O+E@.0) 9" ©)]d0 =12, N (5.5)

where F (0,r) and F(6,t) are the radial (impact) and tangential (friction) force fields
applied by the puja — e.g., a localised impact £ (¢,7) and/or a travelling rub 7 (9.().7).
The radial and tangential physical motions can be then computed at any location @

from the modal amplitudes 4" () by superposition:

(=Y 0" 0 ©+0" 0" ©)] (5.6)
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v =Y [0 O O+0 )" )] (5.7)
and similarly concerning the velocities and accelerations.

5.2.2 Dynamics of the puja

As mentioned before, the excitation of these musical instruments can be performed in
two basic different ways: by impact or by rubbing around the rim of the bowl with the
puja (these two types of excitation can obviously be mixed, resulting in musically
interesting effects). The dynamics of the puja will be formulated simply in terms of a

mass m, subjected to a normal (e.g. radial) force F (¢) and an imposed tangential
rubbing velocity 7 (r) — which will be assumed constant in time for all exploratory
simulations — as well as to an initial impact velocity in the radial direction v, (z)).

These three parameters are the most relevant factors which allow the musician to play
the instrument and control the mechanism of sound generation. Many distinct sounds
may be obtained by changing them: in particular, v, (z)=0 with £, =¥ =0 will be
“pure” impact, and F,(t)=0,7 (1)=0 with ¥ (z)=0 will be “pure” singing (see

Chapter 1). The radial motion of the puja, resulting from the external force applied

and the impact/friction interaction with the bowl is given by:
m,y,=—F, (1)+F,(0,1) (5.8)

where F (6,¢) is the dynamical bowl/puja contact force.

5.2.3 Contact interaction formulation

The radial contact force resulting from the interaction between the puja and the bowl
is simply modelled as a contact stiffness, eventually associated with a contact

damping term:

F(0)=-K.5.(0.0)-C.5(0.1) (5.9)

where 7 and 7 are respectively the bowl/puja relative radial displacement and
velocity, at the (fixed or travelling) contact location o.(s), kX, and C, are the contact

stiffness and damping coefficients, directly related to the puja material. Other and

157



more refined contact models — for instance of the hertzian type, eventually with
hysteretic behaviour — could easily be implemented instead of (5.9).

5.2.4 Friction interaction formulation

In previous chapter the effectiveness of a friction model used for the simulation of
bowed bars has been shown. Such model enabled a clear distinction between sliding
and adherence states, sliding friction forces being computed from the Coulomb model
F, =—|F,| 1y (3)sgn(3;) , where 3, is the bowl/puja relative tangential velocity, and the
adherence state being modelled essentially in terms of a local “adherence” stiffness
Kk, and some damping. It was thus possible to emulate true friction sticking of the
contacting surfaces, whenever |F,|<|F,|u, , however at the expense of a longer
computational time, as smaller integration time-steps seem to be imposed by the

transitions from velocity-controlled sliding states to displacement-controlled
adherence states.

In this chapter, the simpler approach to friction interaction described in section 2.3.3
is used, which allows for faster computation times, although it lacks the capability to

emulate true friction sticking.

5.2.5 Time-step integration

For given external excitation and initial conditions, the previous system of equations
is numerically integrated using an adequate time-step algorithm. Explicit integration
methods are well suited for the contact/friction model developed here. As before a

simple Velocity-Verlet integration algorithm is used (Beeman, 1976).
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5.3. Numerical Results

The numerical simulations presented here are based on the modal data of two different
sized instruments: The modal identification performed on Bowl 2 and Bowl 4, and the
corresponding results will be shown in section 5.4.1. The simulations based on the
smaller instrument data will be used to highlight the main features of the dynamics of
these instruments, while the larger instrument simulations will serve the purpose of

studying the influence of the contact/friction parameters on the oscillation regimes.

The puja is modelled as a simple mass of 20 g, moving at tangential velocity v, , and
subjected to an external normal force r, as well as to the bowl/puja nonlinear
interaction force. A significant range of rubbing parameters is explored: F, =1~9 N
and 7, =0.1~05m/s , which encompass the usual playing conditions, although

calculations were made also using impact excitation only. For clarity, the normal

force and tangential velocity will be assumed time-constant, in the present simulations.

However, nothing would prevent us from imposing any time-varying functions F (¢)

and ¥, (¢) , or even — as musicians would do — to couple the generation of Fy (¢) and
V. (¢) with the nonlinear bowl/puja dynamical simulation, through well-designed

control strategies, in order to achieve a suitable response regime.

The contact model used in all rubbing simulations of Bowl 2 has a contact stiffness of
K_=10° N/m and a contact dissipation of C,=50 Ns/m, which appear adequate for the
present system. However, concerning impact simulations of this instrument, contact
parameters ten times higher and lower were also explored. The friction parameters
used in numerical simulations of this instrument are #, =0.4, x4, =0.2 and C=10.
In relation to the numerical simulations of Bowl 4, different contact/friction
parameters were used to simulated friction by pujas made of different materials,
namely rubber and wood. Its values will be described in section 5.3.4.

In section 5.2.1 a few general remarks were produced concerning the order of the
modal basis to use. With respect to the present system, the choice of the modal basis
order of truncation is not difficult and certainly not critical, as only a few modes are
excited (in contrast with bowed strings). For easily understandable physical reasons,

modes with modal stiffness much higher than the contact stiffness are not
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significantly excited, so a reasonable criterion to choose a minimum order of
truncation ~ is to compare x, with the successive x, of the modal series. In the
present study a maximum value of X, =10° N/m is used, then it is reasonable to
assume that modes with x, much higher than 10" N/m will be “useless”. For Bowl 2,
it was devided to use seven mode pairs, the maximum value kx, being of the order
K,., ~10° N/m. Indeed, this is a generous modal basis, and four mode pairs would do
equally well, as x,, ~10" N/m. However it is pointless to discuss on such a detail,

when the number of modes is low. In relation to the larger Bowl 4, ten mode pairs
were used, following the same reasoning. Both computational and experimental

results confirm that the truncation criterion adopted is adequate.

As discussed before, assuming a perfectly symmetrical bowl, simulations were

performed using identical frequencies for each mode-pair (@' = @’ ). However, a few

computations were also performed for less-than-perfect systems, asymmetry being

then modelled introducing a difference (or “split”) Ae, between the frequencies of

each mode pair. An average value of 0.005% was used for all modal damping
coefficients. In order to cope with the large settling times that arise with singing bowls,
20 seconds of computed data were generated (enough to accommodate transients for
all rubbing conditions), at a sampling frequency of 22050 Hz.

5.3.1 Impact responses

Figure 5.4(a, b) display the simulated responses of a perfectly symmetrical bowl to an
impact excitation (r,(z)=1m/s), assuming different values for the contact model
parameters. The time-histories of the response displacements pertain to the impact
location. The spectrograms are based on the corresponding velocity responses.
Typically, as the contact stiffness increases from 10° N/m to 10’ N/m, higher-order
modes become increasingly excited and resonate longer. The corresponding simulated
sounds become progressively brighter, denoting the “metallic” bell-like tone which is

clearly heard when impacting real bowls using wood or metal pujas.
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Figure 5.4. Displacement time histories (top) and spectrograms (bottom) of the

response of Bowl 2 to impact excitation with two different values of the bowl/puja

contact stiffness: (a) 10° N/m (sound file available); (b) 10" N/m (sound file

available).
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5.3.2 Friction-excited responses

Figure 5.5 shows the results obtained when rubbing a perfectly symmetrical bowl near

the rim, using fairly standard rubbing conditions: F,, =3 N and 7, =0.3m/s. The plots

shown pertain to the following response locations: (a) the travelling contact point
between the bowl and the puja; (b) a fixed point in the bowl’s rim. Depicted are the
time-histories and corresponding spectra of the radial (green) and tangential (red)
displacement responses, as well as the spectrograms of the radial velocity responses.

As can be seen, an instability of the first "elastic shell mode (with 4 azimuthal nodes)
arises, with an exponential increase of the vibration amplitude until saturation by
nonlinear effects is reached (at about 7.5 s), after which the self-excited vibratory
motion of the bowl becomes steady. The response spectra show that most of the
energy lays in the first mode, the others being marginally excited. Notice the dramatic
differences between the responses at the travelling contact point and at a fixed
location. At the moving contact point, the motion amplitude does not fluctuate and the
tangential component of the motion is significantly higher than the radial component.
On the contrary, at a fixed location, the motion amplitude fluctuates at a frequency
which can be identified as being four times the spinning frequency of the puja:

Q 0 =49Q,,, =4(2V;/4) . Furthermore, at a fixed location, the amplitude of the radial

motion component is higher than the tangential component.

The animations of the bowl and puja motions enable an interpretation of these results.
After synchronisation of the self-excited regime, the combined responses of the first
mode-pair result in a vibratory motion according to the 4-node modeshape, which
however spins, “following” the revolving puja. Furthermore, synchronisation settles
with the puja interacting near a node of the radial component, corresponding to an
anti-nodal region of the tangential component — see Figure 5.3 and Equations (5.2)
and (5.3). In retrospect, this appears to make sense — indeed, because of the friction
excitation mechanism in singing bowls, the system modes self-organize in such way
that a high tangential motion-component will arise at the contact point, where energy

is inputted.

At any fixed location, a transducer will “see” the vibratory response of the bowl

modulated in amplitude, as the 2; alternate nodal and anti-nodal regions of the

“singing” modeshape revolve. For a listener, the rubbed bowl behaves as a spinning
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quadropole — or, in general, a 2 -pole (depending on the self-excited mode ;) — and

the radiated sound will always be perceived with beating phenomena, even for a
perfectly symmetrical bowl. Therefore the sound files available were generated from

the velocity time-history at a fixed point in the bowl rim.
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Figure 5.5. Time-histories, spectra and spectrograms of the dynamical response of

Bowl 2 to friction excitation when £, =3 N, V.= 0.3 m/s: (a) at the bowl/puja

travelling contact point; (b) at a fixed point of the bowl rim (sound file available).
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Figure 5.6. Time-histories, spectra and spectrograms of the dynamical response of

Bowl 2 to friction excitation when =7 N, y,= 0.5 m/s: (a) at the bowl/puja

travelling contact point; (b) at a fixed point of the bowl rim (sound file available).
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Figure 5.7. Time-histories, spectra and spectrograms of the dynamical response of

Bowl 2 to friction excitation when =1 N, 7, = 0.5 m/s: (a) at the bowl/puja

travelling contact point; (b) at a fixed point of the bowl rim (sound file available).
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Figure 5.8. Radial (green) and tangential (red) interaction forces between the bowl

and the travelling puja: (a) £y=3N, V;,=0.3m/s; (b) F,=7N, V;=0.5m/s; (c)

Fy=1N, V;=05m/s.
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Following the previous remarks, the out-of-phase envelope modulations of the radial
and tangential motion components at a fixed location, as well as their amplitudes, can
be understood. Indeed, all necessary insight stems from Equations(5.2) and (5.3) and
the first plot of Figure 5.3.

In order to confirm the rotational behaviour of the self-excited mode a simple
experiment was performed under normal playing (rubbing) conditions on Bowl 2. The
near-field sound pressure radiated by the instrument was recorded by a microphone at
a fixed point, approximately 5 cm from the bowl’s rim. While a musician played the

instrument, giving rise to a self-sustained oscillation of the first shell mode (j = 2, see

Figures 4 and 5), the position of the rotating puja was monitored by an observer which
emitted a short impulse at the puja passage by the microphone position. Since sound
radiation is mainly due to the radial motion of the bowl, the experiment proves the
existence of a radial vibrational nodal region at the travelling point of excitation.
Between each two passages of the puja by this point (i.e. one revolution), 4 sound
pressure maxima are recorded, corroborating the previous comments that the listener
hears a beating phenomena (or pseudo-beating) originating from a rotating 2/-pole
source, whose “beating-frequency” is proportional to the revolving frequency of the
puja. Such behaviour will be experimentally documented in section 5.4.

It should be noted that the results basically support the qualitative remarks provided
by Rossing, when discussing friction-excited musical glass-instruments — see Rossing
(1984) or his book Rossing (2000) pp. 185-187, the only references where some
attention has been paid to these issues). However, his main point “The location of the
maximum motion follows the moving finger around the glass” may now be further
clarified: the “maximum motion” following the exciter should refer in fact to the
maximum fangential motion component (and not the radial component, as might be

assumed).

Before leaving this example, notice in Figure 5.8 the behaviour of the radial and
tangential components of the bowl/puja contact force, on several cycles of the steady
motion. The radial component oscillates between almost zero and the double of the
value F, imposed to the puja, and contact is never disrupted. The plot of the friction
force shows that the bowl/puja interface is sliding during most of the time. This

behaviour is quite similar to what was observed in simulations of bowed bars, and is
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in clear contrast to bowed strings, which adhere to the bow during most of the time —
see Inacio et al (2003b), for a detailed discussion. The fact that sticking only occurs
during a short fraction of the motion, justifies the simplified friction model which has

been used for the present computations.

Figure 5.6 shows the results for a slightly different regime, corresponding to rubbing
conditions: £, =7 N and ¥, =0.5m/s . The transient duration is smaller than in the

previous case (about 5 s). Also, because of the higher tangential puja velocity, beating
of the vibratory response at the fixed location also displays a higher frequency. This
motion regime seems qualitatively similar to the previous example, however notice
that the response spectra display more energy at higher frequencies, and that is
because the contact between the exciter and the bowl is periodically disrupted, as
shown in the contact force plots of Figure 5.8(b). One can see that, during about 25%
of the time, the contact force is zero. Also, because of moderate impacting, the

maxima of the radial component reach almost 3 F, . Both the radial and friction force

components are much less regular than in the previous example, but this does not

prevent the motion from being nearly-periodic.

Figure 5.7 shows a quite different behaviour, when 7, =1N and », =0.5m/s. Here, a

steady motion is never reached, as the bowl/puja contact is disrupted whenever the
vibration amplitude reaches a certain level. As shown in Figure 5.8(c), severe chaotic

impacting arises (the amplitude of the radial component reaches almost 7 £, ), which

breaks the mechanism of energy transfer, leading to a sudden decrease of the motion
amplitude. Then, the motion build-up starts again until the saturation level is reached,
and so on. As can be expected, this intermittent response regime results in curious
sounds, which interplay the aerial characteristics of “singing” with a distinct “ringing”
response due to chaotic chattering. Anyone who ever attempted to play a Tibetan
bowl is well aware of this sonorous saturation effect, which can be musically

interesting, or a vicious nuisance, depending on the context.

To get a clearer picture of the global dynamics of this system, Figure 5.9 and Figure
5.10 present the domains covered by the three basic motion regimes (typified in
Figure 5.5 to Figure 5.7), as a function of £, and V; : (1) Steady self-excited

vibration with permanent contact between the puja and the bowl (green data); (2)
Steady self-excited vibrations with periodic contact disruption (yellow data); (3)
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Unsteady self-excited vibrations with intermittent amplitude increasing followed by
attenuation after chaotic chattering (orange data). Note that, under different conditions,
the self-excitation of a different mode may be triggered — for instance, by starting the
vibration with an impact followed by rubbing. Such issue will be discussed in

subsequent sections of this chapter.

Figure 5.9(a) shows how the initial transient duration depends on F, and v, . In every
case, transients are shorter for increasing normal forces, though such dependence
becomes almost negligible at higher tangential velocities. At constant normal force,
the influence of r, strongly depends on the motion regime. Figure 5.9(b) shows the
fraction of time with motion disruption. It is obviously zero for regime (1), and
growing up to 30% at very high excitation velocities. It is clear that the “ringing”

regime (3) is more prone to arise at low excitation forces and higher velocities.
Figure 5.10(a) and Figure 5.10(b) show the root-mean-square vibratory amplitudes at
the traveling contact point, as a function of F, and r, . Notice that the levels of the

radial components are much lower than the corresponding levels of the tangential
component, in agreement with the previous comments. These plots show some
dependence of the vibratory level on the response regime. Overall, the vibration

amplitude increases with . for regime (1) and decreases for regime (3). On the other
hand, it is almost independent of F, for regime (1), while it increases with F, for

regime (3).
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Figure 5.9. (a) Initial transient duration and (b) percentage of time with no bowl/puja

contact, as a function of £, and y, .
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Figure 5.10. Displacement amplitude (RMS) at the bowl/puja travelling contact point,

as a function of £, and y, : (a) Radial motion component; (b) Tangential motion

component.
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5.3.3 Non-symmetrical bowls

Figure 5.11 (a) and (b) enable a comparison between the impact responses of perfectly
symmetrical and a non-symmetrical bowls. Here, the lack of symmetry has been
simulated by introducing a frequency split of 2% between the frequencies of each

mode-pair (e.g. Aw, =0.020, ), all other aspects remaining identical — such crude

approach is adequate for illustration purposes.

Notice that the symmetrical bowl only displays radial motion at the impact point (as it
should), while the unsymmetrical bowl displays both radial and tangential motion
components due to the different propagation velocities of the travelling waves excited.
On the other hand, one can notice in the response spectra of the unsymmetrical system
the frequency-split of the various mode-pairs. This leads to beating of the vibratory

response, as clearly seen on the corresponding spectrogram.

Figure 5.12 shows the self-excited response of the symmetrical bowl, when rubbed at

F,=3N and ¥V, =0.3m/s. Notice that sound beating due to the spinning of the

response modeshape dominates, when compared to effect of modal frequency-split.
Interestingly, the slight change in the modal frequencies was enough to modify the
nature of the self-excited regime, which went from type (1) to type (3). This fact

shows the difficulties in mastering these apparently simple instruments.

5.3.4 Influence of the contact/friction parameters

Playing experience shows that rubbing with pujas made of different materials may
trigger self-excited motions at different fundamental frequencies. This suggests that
friction and contact parameters have an important influence on the dynamics of the
bowl regimes. Although this behaviour was present in all the bowls used in this study,
it was clearly easier to establish these different regimes on a larger bowl. Therefore
the illustration of the different behaviours that can be obtained is made by using Bowl
4 and parameters corresponding to two pujas, respectively covered with rubber and
made of naked wood.

As the frequency separation between mode-pairs was relatively small for this bowl, a

perfectly symmetrical bowl is assumed, and simulations using 10 mode-pairs wree

performed with identical frequencies (o' = ") — see Table 5.2. An average value of

172



0.005% was used for all modal damping coefficients. In order to cope with the large
settling times that arise with singing bowls, 30 seconds of computed data were

generated (enough to accommodate transients for all rubbing conditions).

Figure 5.13 shows a computed response obtained when using a soft puja with
relatively high friction. Here a contact stiffness K. = 10° N/m was used, assuming

friction parameters , =08, x, =04 and C = 10, under playing conditions Fy = 5 N

and V- =0.3 m/s.
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Figure 5.11. Dynamical responses of an impacted bowl, at the impact location: (a) Axi-
symmetrical bowl (0% frequency split); (b) Non-symmetrical bowl with 2% frequency

split (sound file available).
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Figure 5.12. Dynamical response of a rubbed bowl with 2% frequency split when F, =3
N, 7. = 0.3 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the

bowl rim (sound file available).

175



Radial &
Tangential

Radial

response
P.S.D. [m%/Hz]

response
P.S.D. [m%/Hz]

Tangential

Frequency [Hz]

x 10" x10”

7 1.5
3 s3T
= E5= o
[-3 T oo
2 T Co
a ESa
L 1.5 1 L 1 L 1
5 0 5 10 15 20 25 30
Time [s]
10 . . ‘ = 10° . . . ; ‘ ‘ ‘
e T
10-10 H i £ g NE -10
| - 0 L | i
’ e = H+-——d
. S e L R
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz] Frequency [Hz]
u
10° : : : : : : : = 10 ‘ ‘ ‘ .
T e I
2%
10—10 | i g8 =10 ¢ 1
= =]
y | o = .
-20 '!H[l' P ""210'2“ . . . . . . )
10 0500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz] Frequency [Hz]
4000}‘ e e e 2 o =
3000 | 4 -
al )
s z
2000F =
::(Jl = =
T A g
1000F 0 E
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time [s] Time [s]
(@ (b)

Figure 5.13. Time-histories, spectra and spectrograms of the dynamical response of
Bowl 4 excited by a rubber-covered puja for £,=5Nand ¥, = 0.3 m/s: (a) at the

bowl/puja travelling contact point; (b) at a fixed point of the bow! rim (sound file

available).
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Figure 5.14. Time-histories, spectra and spectrograms of the dynamical response of

Bowl 4 excited by a wooden puja for £, =5 N and ¥, = 0.3 m/s: (a) at the bowl/puja

travelling contact point; (b) at a fixed point of the bowl rim (sound file available).
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The plot shown in a) displays the radial (green) and tangential (red) bowl motions at the
travelling contact point with the puja. These are of about the same magnitude, and
perfectly steady as soon as the self-excited motion locks-in. In contrast, plot b) shows
that the radial motion clearly dominates when looking at a fixed location in the bowl,
with maximum amplitudes exceeding those of the travelling contact point by a factor
two. Most important, beating phenomena is observed at a frequency related to the puja

spinning frequency @, =217 /¢4, as also observed in relation to Bowl 2. The spectrum

shown in plot ¢) presents the highest energy near the first modal frequency, while the
spectrogram d) shows that the motion settles after about 7 seconds of exponential
divergence. Indeed, the computed animations show that the unstable first bowl mode
(®87Hz) spins, following the puja motion, with the contact point located near one of
the four nodes of the excited modeshape (see Figure 5.3). The bowl radiates as a

quadro-pole spinning with frequency @, , and beating is perceived with frequency

p!

Qpoar =42,

Figure 5.14 shows a computed response obtained when using a harder puja with lower

friction, assuming K, =10° N/m, . =0.4 and ., =0.2, under the same playing conditions

as before.

The self-excited motion takes longer to emerge and is prone to qualitative changes.
However, vibration is essentially dominated by the second modal frequency (=253Hz),
with a significant contribution of the first mode during the initial 25 seconds. This leads
to more complex beating phenomena, except during the final 5 seconds of the
simulation, where one can notice that, in spite of the similar value of », used, beating is
at a higher frequency than in Figure 5.13. Indeed, because the second elastic mode is
now unstable (see Figure 5.3), the bowl radiates as a hexa-pole spinning with frequency

£,, and beating is perceived with frequency ... = 6.£2,.
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5.4. Experimental Results

5.4.1 Modal ldentification

Figures 1.1 and 1.2 in Chapter 1 show the four bowls and two pujas used for the

experimental work in this work. In order to estimate the natural frequencies o, ,
damping values ¢, , modal masses m, and modeshapes ¢,(¢,z) to be used in the

numerical simulations, a detailed experimental modal identification based on impact
testing was performed for Bowls 1, 2 and 3. A mesh of 120 test locations was defined
for each instrument (e.g., 24 points regularly spaced azimuthally, at 5 different heights).
Impact excitation was performed on all of the points and the radial responses were
measured by two accelerometers attached to inner side of the bowl at two positions,
located at the same horizontal plane (near the rim) with a relative angle of 55° between
them, as can be seen in Figure 5.15(a). Modal identification was achieved by
developing a simple MDOF algorithm in the frequency domain (Ewins, 1984). The

modal parameters were optimized in order to minimize the error ¢(w,.c,,m ¢ ) between
the measured transfer functions #_(w)=7¥(w)/F(w) and the fitted modal model
H (0;0,¢.m,9), for all measurements (P excitation and p response locations), in a

given frequency range [o,, .o, ]encompassing ¥ modes. Hence:

g(a)n ’gn ’mn ’(Dn ):

:i i w:rx [Her (a))—ﬁe, (w;0,,6,,m,,p, ):|da) (5.10)

with:

Her(a);a)n’gn'mn’(pn) =
n,+N er
2 An

a)Z

_ n -
n=n,

(5.11)

0 +2iow,g,
where the modal amplitude coefficients are given as 4" = ¢, (6,,z,)9,(6,,2,.)/m, and the

two last terms in (5.11) account for modes located out of the identified frequency-range.

The values of the modal masses obviously depend on how modeshapes are normalized

(|¢(60.2)| . =1)- Note that the identification is nonlinear in o, and ¢, but linear in 4.
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Results from the experiments on the three bowls show the existence of 5 to 7 prominent
resonances with very low modal damping values up to frequencies about 4~6kHz. For
these well-defined experimental modes, the simple identification scheme used proved
adequate. As an illustration, Figure 5.15(b) depicts the modulus of a frequency response
function obtained from Bowl 2, relating the acceleration measured at point 1 (near the

bowl rim) to the force applied at the same point.

The shapes of the identified bowl modes are mainly due to bending waves that
propagate azimuthally, resulting in patterns similar to some modeshapes of bells

(Rossing, 2000). Following Rossing, notation (j,k) represents here the number of

complete nodal meridians extending over the top of the bowl (half the number of nodes

observed along a circumference), and the number of nodal circles, respectively.

Despite the high manufacturing quality of these handcrafted instruments, perfect axi-
symmetry is nearly impossible to achieve. As was explained in section 5.2.1, these
slight geometric imperfections lead to the existence of two orthogonal modes (hereby
called modal families A and B), with slightly different natural frequencies. Although
this is not apparent in Figure 5.15(b), by zooming the analysis frequency-range, an
apparently single resonance often reveals two closely spaced peaks.

Figure 5.16 shows the perspective and top views of the two orthogonal families of the
first 7 “sounding” (radial) modeshapes (rigid-body modes are not shown) for Bowl 2, as
identified from experiments. In the frequency-range explored, all the identified modes

are of the (;,0) type, due to the low value of the height to diameter ratio (z/¢) for

Tibetan bowls, in contrast to most bells. The modal amplitudes represented are
normalised to the maximum amplitude of both modes, which complicates the perception

of some modeshapes. However, the spatial phase difference (z/2;) between each modal

family (see section 5.2.1) is clearly seen. Although modal frequencies and damping
values were obtained from the modal identification routine, it was soon realized that the
accelerometers and their cables had a non-negligible influence on the bowl modal
parameters, due to the very low damping of these systems, which was particularly
affected by the instrumentation.

Indeed, analysis of the near-field sound pressure time-histories, radiated by impacted
bowls, showed slightly higher values for the natural frequencies and much longer decay

times, when compared to those displayed after transducers were installed. Hence, it was
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decided to use some modal parameters identified from the acoustic responses of non-
instrumented impacted bowls. Modal frequencies were extracted from the sound
pressure spectra and damping values were computed from the logarithm-decrement of
band-pass filtered (at each mode) sound pressure decays.

Table 5.1 shows the values of the double modal frequencies ( s“and ) of the most

prominent modes of the three bowls tested, together with their ratios to the fundamental

— mode (2,0) — where /% represents the average frequency between the two modal
frequencies s“and r”. These values are entirely in agreement with the results obtained

by Rossing (2000). Interestingly, these ratios are rather similar, in spite of the different
bowl shapes, sizes and wall thickness. As rightly pointed by Rossing (2000), these

modal frequencies are roughly proportional to j2, as in cylindrical shells, and inversely
proportional to 2. Rossing explains this in simple terms, something that can be also

grasped from the theoretical solution for in-plane modes for rings (Harris, 1996):

JU° -1 | EI
w; = m AR’ ,with j=12,..,.N (3)

where E and p are the Young Modulus and density of the ring material, 7 the area

moment of inertia, 4 the ring cross section area and R the ring radius. It can be seen that
as j takes higher values, the first term of equation 3 tends to ;2, while the dependency

on the ring diameter is embedded in the second term.
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Figure 5.15. Experimental modal identification of Bowl 2: (a) Picture showing the measurement

grid and accelerometer locations; (b) Modulus of the accelerance frequency response function.
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Figure 5.16. Perspective and top view of experimentally identified modeshapes (j,k) of the first 7
elastic mode-pairs of Bowl 2 (j relates to the number of nodal meridians and k to the number of

nodal circles — see text).
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Table 5.1 — Modal frequencies and frequency ratios of bowls 1, 2 and 3 (as well as their total

masses Mt and rim diameters ¢).

Bowl 1 Bowl 2 Bowl 3
Total Mass My =934 ¢ Mt =563 ¢ Mt =557¢
Diameter ¢ =180 mm ¢ =152 mm ¢ =140 mm
MOdE f;,A [HZ] f;,B [HZ] f;lAB/f;lAB an [HZ] f‘nB [HZ] f;,AB/fiAB f‘nA [HZ] f‘nB [HZ] f;zAB/fiAB
(2,0) 219.6 220.6 1 310.2 3121 1 513.0 523.6 1
(3,0 609.1 609.9 2.8 828.1 828.8 2.7 1451.2 1452.2 2.8
(4,0) 1135.9 1139.7 5.2 1503.4 1506.7 4.8 2659.9 2682.9 5.2
(5,0 1787.6 1787.9 8.1 2328.1 2340.1 75 4083.0 4091.7 79
(6,0) 2555.2 2564.8 11.6 3303.7 3312.7 10.6 5665.6 5669.8 10.9
(7,0 3427.0 3428.3 15.6 4413.2 4416.4 14.2 - - -
(8,0) 4376.3 4389.4 19.9 5635.4 5642.0 18.1 - - -
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The frequency relationships are mildly inharmonic, which does not affect the definite

pitch of this instrument, mainly dominated by the first (2,0) shell mode. As stated,
dissipation is very low, with modal damping ratios typically in the range ¢, =

0.002~0.015 % (higher values pertaining to higher-order modes). However, note that
these values may increase one order of magnitude, or more, depending on how the

bowls are actually supported or handled.

Further experiments were performed on the larger bowl shown in Figure 1.2 (Bowl 4),
with ¢ = 262 mm, a total mass of 1533 g and a fundamental frequency of 86.7 Hz. A
full modal identification was not pursued for this instrument, but ten natural frequencies
were identified from measurements of the sound pressure resulting from impact tests.
These modal frequencies are presented in Table 5.2, which show a similar relation to the
fundamental as the first three bowls presented in this study. For this instrument all these
modes were assumed to be of the (;,0) type.

Table 5.2 — Modal frequencies and frequency ratios of Bowl 4.

Mode (j k) £, [Hz] Sulfi
(2,0) 86.7 1.0
(3,0) 252.5 2.9
(4,0) 490.0 5.7
(5,0) 788.0 9.1
(6,0) 1135.0 13.1
(7,0) 1533.0 17.7
(8,0) 1963.0 22.6
(9,0) 2429.0 28.0
(10,0) 2936.0 33.9
(11,0) 3480.0 40.1

5.4.2 Experimental Self-Excited Motions

Figure 5.17(a) shows the experimental results recorded by a microphone placed near the
bowl rim, while playing with a rubber-covered puja. As described before, timing pulses
were generated at each consecutive revolution, when the puja and microphone were
nearby. Vibration was dominated by an instability of the first mode (2,0) and, in spite of
mildly-controlled human playing, it is clear that radiation is minimal near the contact
point and that four beats per revolution are perceived. When a harder naked wood puja
was used, the initial transient became longer, before an instability of the second mode

(3,0) settled. The bowl responses tended to be less regular, as shown in Figure 5.17(b),
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however six beats per revolution are clearly perceived. All these features support the
simulation results presented in Figure 5.13 and Figure 5.14, as well as the physical

discussion presented in section 5.3.2.

The present results stress the importance of the contact/friction parameters, if one
wishes a bowl to “sing” in different modes — such behaviour is easier to obtain in larger
bowls. As a concluding remark, it should be emphasised that a sonorous bowl/puja
rattling contact can easily arise, in particular at higher tangential velocities and lower
normal forces, a feature which was equally displayed by many experiments and

numerical simulations, as discussed before.

10 12 14 16 18 20 22 24 26 28 30
Time [s]

10 12 14 16 18 20 22 24 26 28 30
Time [s]

Figure 5.17 — Near-field sound pressure waveform (blue) due to friction excitation by: a)
a rubber-covered puja and b) a wooden puja on Bowl 4, and electrical impulses (red)
synchronized with the passage of the puja by the microphone position (sound files

available).
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Chapter 6
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6. LINEARISED ANALYSIS OF SELF-EXCITED REGIMES

6.1. Introduction

As explained in the previous chapters, considerable efforts have been invested by the
scientific community to produce time-domain numerical simulations of the self-excited
nonlinear regimes. However, no systematic analysis of the linearized behaviour of the
bowed string has ever been pursued. In this chapter the features of the linearized modal
dynamics of bowed bars and bowed strings are analysed, starting from a modal
formulation of the string acted by the nonlinear bowing forces, using a classic Coulomb
model with velocity-dependent friction coefficient. Then the corresponding linearized
formulation is developed, about an average sliding state, which enables computation of
the complex eigenvalues and eigenvectors as a function of the bowing parameters,
which can offer interesting information concerning the system stability behaviour, and

further insight when addressing the post-instability nonlinear limit-cycle responses.

6.2. Bowed bar
6.2.1 Modal formulation for the bowed bar

For the purpose of the work presented in this section the simple Bernoulli-Euler model
for the bar flexural vibrations is adequate. However, extension to the more realistic
Timoshenko model is straightforward and merely leads to a correction in the beam
modal parameters used in the following. Starting from the classic damped equation for a

non-uniform beam:

2

oy 0oy & o’y |
Pﬂﬂw*‘ﬂg*‘axz [E[(x)a? = F(x,1) (6.1)

where y(x,7) is the lateral bending displacement, p and E are the beam density and
Young modulus, 7 is a coefficient of viscous dissipation, S(x) and 7(x) are the cross-
section area and geometric moment of inertia about the bending axis, F(x,z) is the

externally applied excitation, Equation (2.1) may be recast in modal form:
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(MO0} +[C]{ 00| +[K]{00)} = {1} (6.2)

where, [M],[c]and [k], are the matrices of modal parameters of the unconstrained
system m, , ¢, =2m,®,{, and k, =m,®’ (using N modes with frequencies », and
modal damping values ¢,) while {o(;)} and {=(s)} are the vectors of modal amplitudes

and generalised forces, respectively. For a bar with uniform cross-section and free-free

boundary conditions, the modal masses, modal frequencies and modeshapes are given
respectively by m, = [ m(x) ¢ (x) dx , o, =(4,/L) JEI1 pS and
4,(x) = B, {cos(4,x/ L) +sinh(2,x/ L) + a, [sin(4,x/ L) +cosh(2,x/ L)]} | with the parameters

a, =—-(cos i, —sinh 4,)/(sin4,—cosh 4,) and B, chosen such as to obtain a

normalizing condition max

¢,(x)|=1. From the free-free boundary conditions of the bar —
$"(0)=¢"(L)=0 and ¢"(0)=¢"(L)=0 — the bar modal frequencies and modeshapes are

obtained. The first two eigen-frequencies pertain to rigid-body modes, with frequencies

o, =o, =0 and modeshapes ¢ (x)=1 (translational mode) and ¢,(x)=1-2x/L (rocking

mode).

The generalised forces (1) of vector {Z(¢)} are obtained by projection of the external

force field on the modal basis. For the present case, three point-forces are applied to the

system at three different positions: the friction force, F,(s), induced by the bow at the

edge of the bar, and the forces F,(r) and F, (), applied by the elastic supports of the bar

at the nodal points of the first vibratory bending mode, giving a total of:

F(x,t)=F, (x;,0)+ Fy(x,, 1)+ F,(x,,,1) (6.3)

where x,,x;and x, are the locations of the applied forces. 7, (r) and F,(s) are given by
Equation (6.4) where x, and ¢, are the stiffness and damping values of the bar elastic

supports.

() =Ky, (0)+Cp,(0), withi = 1,2 (6.4)
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The generalized forces can then be described by:
Z(0) = iFm (t) 4,(x,), withx, =x,,x, =x, andx, = x, (6.5)
The physical and modal variables are related by modal superposition:
y(x1) = ZN;¢ (x)q,() (6.6)

and similarly when relating velocities and accelerations.
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6.2.2 Friction Model

As in the previous chapters, a Coulomb-type friction model is used for the tangential

contact force:

F (1) =—F, u(V,)sign(V,) if |V,|#0 (sliding)
| (6.7)

|7, (0)] < Fy if |V]=0  (adherence)

r

where F, is the normal force which compresses the contacting surfaces and
v.(n)=V,-y,(r) is the relative velocity between the excited location of the vibrating bar
y,()=y(x,,1) and the driving bow ¥, . During sliding, the friction coefficient .(v,)

depends on the relative velocity, which are formulated in the following convenient

manner:
u(V,) = wp + (a5 = p1,) eXp(=C|V, ) 6.8)

where 4 is the so-called static friction coefficient, at . =0, », is a limiting friction

coefficient when V.| -« and ¢ is a parameter defining how fast w«(v,) decreases as 7,

increases. During adherence, when v, =0 (or, more physically, |[v,|<¢ ), the friction
force can take any value within the allowed range |Ff(t)|£F:WuS, the actual force

depending on the overall static and dynamic forces acting on the system. In any case,
frictional will oppose (incipient or actual) motion of the system.

Figure 3.1(a) shows a typical plot of w«(7,), which highlights the extreme nonlinearity of
frictional forces in the vicinity of the adherence discontinuity. This feature, although of
extreme significance as far as the nonlinear regimes are concerned, is only marginal in
this work, as the low-amplitude vibrations pertaining to the linearized range are
important, well before the nonlinear motions settle-in. Under such conditions, v, >y, (1),
only the right half of the friction curve is “active” (e.g., ¥, >0) and the system is always

sliding, with moderate nonlinearity. Experimental results pertaining to this kind of

friction model report, for bowed strings, a decrease of the friction coefficient u(v))

when the sliding velocity |r,| increases. However, the opposite situation is also
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investigated, as shown in Figure 3.1(b), where . (v,) increases with | |. In industrial

friction-induced vibration problems, friction curves which mix the features of Figure

3.1(a) and Figure 3.1(b) are known to arise.

6.2.3 Linearized formulation

Within the framework of linearized theory, small amplitude vibrations 7(x,z) about a

steady deformed state y(x) imply:

Y )=3@)+ 31 = px)=yxnn = P =3(x0) (6.9)
as well as small amplitude fluctuating forces about a steady value:
F(x,f) = F(x)+ F(x,1) (6.10)

Then, when (6.9) and (6.10) are replaced in the dynamical formulation, two sets of
equations may be extracted: the so-called zero-order equations, only depending on
space, related to the mean deformed state, as well as the first-order equations, depending
on both space and time, which enables computation of the system eigenproperties.

The modal formulation applies to dynamic as well as steady states. Therefore,
approximation (6.9) may be applied as well to the modal amplitudes, obtaining from
(6.6):

V) = 5@+ 50 = Y 4,(0[7, +4, )] (6.11)

n=1
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Figure 6.1 — Example of friction law with: (a) x, =08, x,=02 and c=10 and (b)

u; =04, u,=06 and c=5.

hence the static and vibratory relations:

P =) 4,07, (6.12)

n=1
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HEOEDWACIAG (6.13)

Turning now to the nonlinear sliding friction law, under the previously discussed

assumption concerning ¥, , Equations (6.7) and (6.8) lead to:
- N ~
F(0) = Fy [ty + (g = 15) eXp(=C V)] With 7, =7, =>4, (x,)4, (1) (6.14)
n=1

since ¢=¢, as the ¢, must obviously be null. From(6.14), stems the steady frictional

force:
F[ =F, [IUDJ"(,Us_lUD) exp(_CVb)] (615)

as well as the oscillating linearized term
~ N ~
Fi)=4) 4,()4,0) (6.16)
n=1

where all relevant parameters which control the system linear stability are encapsulated
in the crucial coefficient:

A=F, (us — pp) Cexp(=CV,) (6.17)

which has the dimensions of a damping coefficient, as it should. Notice that in (6.17)
the amplitude of the dynamical friction force increases linearly with the normal force

F,, and the difference 1 — 1, between the static and dynamic friction coefficients (in
agreement with well-known results), but decreases with the bow velocity ¥, in an
exponential manner. The influence of the “steepness” parameter ¢ of the friction law
u(7,) is introduced through two terms of opposing nature: for low values of v, the
linear term prevails and 4 increases with ¢, while for high values of v, the exponential
term prevails and 4 decreases when C increases. As far as the linearized dynamics are
concerned, the specific values of the individual friction parameters are irrelevant, as
only the value of the global magnitude coefficient 4 matters. The steady and dynamical

forces applied by the supports are given respectively by:
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F, =K, 4,(:)3, (6.18)

N N
Fi0)=K, Y 4,()3,0+C, > 4,(,)4,0) withi=1,2. (6.19)
n=1

n=1

6.2.4 Steady and oscillating solutions

Replacing (6.9)-(6.13) into (6.2) and obtaining the zero-order and first-order equations:
[x1{o} = {5} (6.20)
[M]{6}+[C1{6} +[K1{0} = {E} (6.21)

where the generalized steady and dynamic forces are directly obtained from results
(6.15) and (6.18) as well as from (6.16), (6.17) and (6.19), by modal projection:

) (x/ ) A(xy)  dilxy,)

A F
Z| 860w alsa || 622
Z) 1) dusn b [P
0| [46) a6 a6 ]z
Z(t) _ ¢2(:x,-) ¢2(:xﬂ) ¢2(?¢Y2) 7, (6.23)
Z0) 14t h) g |

Proceeding now to the computation of the steady deformation under friction excitation
and accounting for the supports action. From the previous equations, the steady modal

displacements are given by:

10} ={[K]—KY [{@.ﬂ}{@sz}]l{@“} ]} (o, F, (6.24)

where {@_}, {o,}and {@,}are the modeshape vectors at the supports location s; and s2

and at the friction excitation point, respectively, as seen in equations (6.22) or (6.23).
Using (6.6), the mean deformed state is obtained in terms of physical coordinates:
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{?}-[@1{[@& [{qal}{q»xz}][{@“} ”{@f}ﬁ, 625

where [@] is the modal matrix built from the bar modeshapes. On the other hand, the

linearized dynamics stem from (6.21) and (6.23):
(][00} +([C]-[¥.]){ 00| +([K]-[¥.]) {00} = {0} (6.26)

where [¥,] and [¥,] express how bowing couples all the bar modes (with nonzero

modeshapes at the bowing and support locations).

I & (xf) ) (x.yl) ) (x.sz) [ 0 0 . 0 ]
[lPl] _ ¢, (x/) 9, (xsl) , (x52) K [¢1(x51) 4(x) o o (xﬂ)] (6.27)
605 dy(x)) () LK LAGR) dabia) o ()]
R e
[\Pz] =" : ! ’ : * ’ : N CS[¢1 (xsl) ¢2 (xsl) ¢N (xsl)] (6.28)
_¢N (xf) ¢N (Xxl) ¢N (xsz) CS[¢1 (XSZ) ¢2 (xSZ) - ¢N (xSZ )]

One should notice in both previous equations that coefficient 4 indeed contains all the
control parameters of the friction-excited system, apart from the excitation location, and

that the displacement and velocity-coupling matrices [¥,] and [¥,] carry the modal

information at the excitation and support points. Equation (6.26) leads to the second-

order eigenproblem:
(42 [M]+2,[@]+[X]){gr} = {0} (6.29)

with [&]=[c]-[%,] and [c]=[K]-[¥,], where eigen solutions {O())} ={4*|exp(47)

have been assumed. The modes of the friction-coupled system may be easily computed,

as a function of 4, x, and C, , by writing (6.29) as an equivalent first-order (state-

space) form, which can be readily solved using standard procedures. Equation (6.30) is

one possible symmetrical form, among others (see, for instance Bertolini, 1998):
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The eigenvalues and corresponding eigenvectors obtained from (6.30) are in general
complex and, for oscillating solutions, arise in conjugate pairs 4, =0, ti®, and
{#:}=1{¢,)+i{3,} . The (damped) modal frequencies &, =Im(4,) and modal dissipation
values &, =Re(4,) determine the behaviour of the bowed system, before nonlinear

effects take control. In particular, self-excited regimes stem from the linear instability of

a mode, whenever Re(4,)>0. Then, if Im(2,)=0, it is a flutter instability, otherwise
Im(4,) =0 implies a divergence (non-oscillatory) instability. The values of the undamped
modal frequencies &, and modal damping ¢, of the friction-coupled system may be

inferred from the 2, using the following relations:
3, =+0; +@; (6.31)

% (6.32)

and one obtains &, =a,,y1-¢; , as usual. From the modeshapes {4/} in terms of the

modal amplitude coefficients, one can easily compute the corresponding modeshapes in
terms of the physical coordinates:

() =[{a} (o) Ao} o) n=22..N (6.33)
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6.2.5 Results

Two types of bars were analyzed in light of this theoretical approach: bars with uniform

cross-section and bars with variable cross-section s(x) tuned to specific frequency

ratios of the first 3 natural frequencies. As a first example, Figure 1.8 shows a typical
stability plot, for a 220 Hz tuned bar (1-4-10) modelled using 8 modes (2 rigid-body and
6 flexural), as a function of coefficient 4 — see Equation (6.17). The friction parameters

used were u, =10, u,=02 and C=10. In this figure the green colour stands for

stability and the red colour for instability. The first two modes of the coupled system, s;
and sy, which represent the transverse and rocking motions of the rigid bar, have nearly
the same frequency until the first reaches instability as 4 increases, with a clear decrease
of the oscillation frequency, under flutter instability or divergence for high enough
values of 4. On the other hand, the flexural modes, f; to fg, reach instability for different
values of 4, with the first flexural mode being unstable over a wider range, in agreement

with musical playing experience.

4

— 10 & fz E

Nt ]

L f, ]

Q | ———

10 E

1 R

10 L L .-.x-.l- L L .-.-.-I' L a0 1oaaaal M o oa s aaal L p 1 a a1 aaal L PRI

10° 10° 10" 10° 10' 10° 10°
A [Ns/m]

Figure 6.2 — Stability plot for a tuned 1-4-10 bar in function of coefficient A. Green
— Stability; Red — Instability.

Figure 3 depicts two stability plots for the first bending mode of the tuned bar, subjected

to two different friction laws (see Figure 1) where the modal frequency is plotted as a

function of the bow normal force and velocity. In the first case self-sustained

oscillations are expected to engage at higher values of F, and lower values of 7,. As

expected, only the friction law of Figure 1(a) allows for the appearance of unstable

regimes.
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f [Hz

Figure 6.3 — 3D Stability plots for the first flexural mode of a tuned 1-4-10 bar for the
two different friction laws in Figure 3.1(a) and Figure 3.1(b), respectively. Green —
Stability; Red — Instability.
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0.01

10°
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G [%] A [Ns/m]
10 10

y

Figure 6.4 — 3D Stability plots for the first flexural mode of (a) a tuned 1-4-10 bar
and (b) a uniform cross section bar. Green — Stability; Red — Instability.

As another illustration Figure 6.4(a) and Figure 6.4(b) show the first flexural mode

damping ¢, and stability as a function of the global parameter 4 and bar modal
damping ¢, assumed identical for all unconstrained modes. When comparing the two

bars previously discussed, the first flexural mode of the tuned bar is more prone to

instability for a wide variation of 4 and ¢, .
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The work presented in the Chapter 3 enabled a classification of different dynamical
regimes as depicted in Figure 6.5. Performing now a linear stability analysis for all
modes of the two bars, and for the same playing range and friction characteristics as in
Chapter 3 — see Figure 6.6 — it is possible to establish a correlation of the main regime
features between the two approaches. If, using an heuristic reasoning, the unstable mode
with higher negative damping value is highlighted as dominant (for each pair of bowing

conditions F, and 7, ), the linear analysis predicts instability of the first rigid-body

mode (support regime) and the first flexural bar mode (musical regime) in
approximately the same ranges as the nonlinear simulations. Notice that the other
“intermediate” self-sustained regimes, apart from the ones mentioned, are also related to
self-sustained oscillation of the first flexural mode of the bar. These variations are,
obviously, something that the linear approach cannot predict. Also notice that the region

of stability correlates well with the non-oscillatory regimes depicted in Figure 6.5.
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Figure 6.5 — Nonlinear dynamical regimes for (a) the 1-4-10 bar and (b) the uniform
cross section bar in function of the playing parameters 7, and Fy.
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Figure 6.6 — 2D Modal stability plots for (a) a tuned 1-4-10 bar and (b) a uniform
cross-section bar in function of the playing parameters. Green — Stability; Blue — 1%
flexural mode instability; Red — 1* support mode instability.
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6.3. Bowed String

6.3.1 Modal formulation for the bowed string

Starting from the classic damped wave equation:

Oy, Oy 0%
it p—=—T——==F(x,t 6.34
L rakir el ot (6.34)
where y(x,7) is the lateral displacement, m, is the string linear density, » is a coefficient
of viscous dissipation, 7 is an axial tensioning force and F(x,z) is the externally applied

excitation, Equation (6.34) may be recast in modal form:

mo 0 - 0 1g g 0 - 0|lq k0 - 01lq A
0 my, -~ 0 ||g 0 ¢, -+ 0]|gqg 0 k&, -~ 01|gq F
CE DR T TR =7 (6.35)
0 0 - my|ldy 0 0 - ¢ ]l4n 0 0 - ky]lay A

where m, =m,L12 (Vn), c,=2m,w,¢, and k,=m,e’ are the modal parameters of the
pinned-pinned string (using ~ modes with frequencies o, =nzc/L, with ¢=T/m, , and
modal damping values ¢, ). The modeshapes of a string pinned at both the bridge (x=0)
and nut (x=L) extremities are given by ¢ (x) =sin(zzx/L). For inharmonic strings with
bending stiffness parameter g, the modal frequencies depart from the harmonic series

for increasing modal index, and w, = (nzc/ L)1+ pn®, forn>2.

On the other hand, ¢, () are the modal amplitudes and ~(¢) are the generalized

forces obtained by modal projection of the external force field:

L

Z(t)z'.‘F(x,t) ¢ (x)dx , n=12,..,N (6.36)
0

with the modeshapes ¢, (x) =sin(nzx/ L) . For point-forces at 7 locations:

F
F(x,)= > F () 8(x, -x) (6.37)
=1
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F
Equation (6.36) simplifies to = (¢) :ZF/.(t) ¢,(x,) . In matrix form:
f=1

A #(x) a(x,) - 4() ||FR

(;:7; _ &, (:xl) &, (xz) &, (XF) F:z (638)
5{5 ¢N (xl) ¢N (xz) o ¢N (XF) FF
The physical and modal variables are related by the variable transformation:
W)=Y 4,(x)q,() (6.39)
which expresses modal superposition. In matrix form, at p discrete locations:
B2} $(x) &) - o(x) |4
y:z _ ) (xz) ¢, (xz) © Py (:xz) q:2 (640)

Yp $(xp) A(xp) - By(x) | gy
and similarly when relating velocities and accelerations.

6.3.2 Friction model

Following the work presented in the previous section, a Coulomb-type friction model is

used for the tangential contact force:

{ F, (1) =-Fy u(V,)sign(v,) if |V,|=0 (sliding)
(6.41)

IF, ()] < if |[7]=0 (adherence)

where F, is the normal force which compresses the contacting surfaces and
v.()=V,-y,() is the relative velocity between the vibrating surface y, (:)=y(x,,7) and
the driving bow 7, . During sliding, the friction coefficient »(.) depends on the relative

velocity, which is formulated as:

4

HV,) =t + (s — 1) €Xp(=C |V, ) (6.42)
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where 4, is the so-called static friction coefficient, at ¥, =0, x, is a limiting friction
coefficient when |1,| >« and C is a parameter defining how fast n(7,) decreases as 7,
increases. During adherence, when v, =0 (or, more physically, |[V,|<¢ ), the friction
force can take any value within the allowed range |F, (t)|SFN,uS , the actual force

depending on the overall static and dynamic forces acting on the system. In any case,

frictional will oppose the (incipient or actual) motion of the system.

Figure 6.7 shows a typical plot of «(7.), which highlights the extreme nonlinearity of
frictional forces in the vicinity of the adherence discontinuity. As referred in the
previous section, this feature will be neglected in this work, as the low-amplitude
vibrations pertaining to the linearized range are important, well before the nonlinear

motions settle-in. Under such conditions, 7, >y, (), only the right half of the friction
curve is “active” (e.g., ¥.>0) and the system is always sliding, with moderate

nonlinearity. Experimental results pertaining to this kind of friction model report, for

bowed strings, a decrease of the friction coefficient »(v.) when the sliding velocity

v,

increases (Cremer, 1984).
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Figure 6.7 — Example of friction law with ., =08, x, =02 and C=10.
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6.3.3 Linearized formulation

Within the framework of linearized theory, small amplitude vibrations 7(x,z) about a

steady deformed state y(x) imply:
y(x!t) = J_/(X) +j}(xvt) = y(x!t) = J‘.}(X,Z‘) = )./'(X, t) = )L}(xvt) (643)
as well as small amplitude fluctuating forces about a steady value:

F(x,t) =F(x)+F(x,7) (6.44)

Then, when (6.43) and (6.44) are replaced in the dynamical formulation, two sets of
equations may be extracted: the so-called zero-order equations, only depending on space,
which supply the mean deformed state, as well as the first-order equations, depending

on both space and time, which enables computation of the system eigenproperties.

The modal formulation applies to dynamic as well as steady states. Therefore,
approximation (6.43) may be applied as well to the modal amplitudes, obtaining from
(6.39):

Y0 =3+ 50n0) = D 4,()[F, +4,0)] (6.45)

hence the static and vibratory relations:

y(x) = Zcﬁn (x)q, (6.46)
Hx0 =) 44,0 (6.47)

Turning now to the nonlinear sliding friction law, under the previously discussed

assumption concerning 7., (6.41) and (6.42) reduce to:
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Ff (t) = FN [ILID + (,us _ILID) EXp(—C V;)] (648)

hence:

N
Ff ()= Fy {ﬂp + (ﬂs _ﬂb) EXp[_C(Vb _Z¢” (x_/')qn (t)J:|} (649)
n=1

Then, accounting for (6.45):

N
F(0)=F, {ﬂD + (1t — 1)) eXp[—C (Vb —Z@ (x,)4q, (t)ﬂ} (6.50)
n=1

as the g, must obviously be null. From (6.50), stems the steady frictional force:

F, =Fy [1p +(us — 11,) eXp(-CV,)] (6.51)

as well as the oscillating linearized term:

N
F =4 4,()4,0) (6.52)
n=1

where all relevant parameters which control the system stability are encapsulated in the

important coefficient:

A=F, (45— up) Cexp(=CV,) (653)

which has the dimensions of a damping coefficient, as it should.
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Notice that the amplitude of the dynamical friction force increases linearly with the

normal force F, and the difference u, -, between the static and dynamic friction
coefficients (which are well-known results), but decreases with the bow velocity 7, in

an exponential manner. The influence of the “steepness” parameter ¢ of the friction
law «(v,) is introduced through two terms of opposing nature: for low values of 7, the
linear term prevails and 4 increases with ¢, while for high values of 7, the
exponential term prevails and 4 decreases when C increases. As far as the linearized
dynamics are concerned, the specific values of all these parameters are irrelevant, as

only the value of the amplitude coefficient 4 matters.

6.3.4 Steady and oscillating solutions

Replacing (6.43)-(6.47) into (6.35) and obtaining the zero-order and first-order

equations:
Kk 0 - 0](g ;1:
0 k 0|lg Z
’ eI (6.54)
0 O ky |19y ;jv_”
m 0 01(g,| [« O 01(g| [& O 01(4q, Z
O m2 0 ‘qu N O cz 0 62 N O k2 0 62 _ ;7; (6 55)
0 0 my|lg,] [0 0 ey llg,] [0 O ke llay) | Z

where the generalized steady and dynamic forces are directly obtained from results

(6.51) and (6.52)-(6.53), by modal projection:

Z_T _¢1(x/)_
;NT _¢N (xf )_

F10) [ a(x) ]

7;(1) _¢N (xf)_

207



Proceeding now to the computation of the steady deformation under friction excitation,

from (6.54) and (6.56):

) [k 0 -« o)
mo | Rl =
l7N 0 0o - kN ¢N(‘x/)

and, using (6.40), the mean deformed state in terms of physical coordinates is obtained:

0 - 0] dax)

0 ¢2(x/) E
: . S

N #(x) A(x) - o(x) ||k
Vs _ #4(x,) #(x,) - Sy(x) || 0 k -

< ky ¢N(xf)

(6.59)

Ve ¢1(xp) ¢2(XP) ¢N(XP) 0 0

On the other hand, the linearized dynamics stem from (6.55) and (6.57):

0 ql ¢1 ('xf )

m 0 - 07][§ ¢ 0 - 01(g k0 -
0 m, --- 0|l& 0 ¢. - 015 0 k, - 0||g &, (x,) | -

Co T T T T T R (6.60)
0 0o - my ‘?N 0 0 - Cn ‘;N 0 0 - kN qzv ¢N(‘xf)

and, accounting that (6.52) is equivalent to:

9
E0=A[40) h0) ~ b))% 6.61
7 W\Xp) PolXy, v Xy . (6.61)
dy
one obtains:
m 0 - 01(é) [a 0 « 01(&) [k 07(q
O m2 0 q‘z . O C2 0 qz N 0 kz 0 qz _
0 0 « mylld,] [0 0 e llég,] [0 0 -« k]ldy (6.62)

¢1 (x/ )¢2 (xf) T ¢1 (xf )¢N (Xf) q,

¢ (x, ) (x,)
< B (x_/)¢N (x/) 6?2

_ | #EAG) 4(x)4(x)

O (x A (x,) by (x)d(x,) o by ()b (x) ] |Gy

208



which clearly expresses how bowing couples all the string modes with nonzero

modeshapes at the bowing location.

Writing now (6.62) in condensed notation:
[///]{é(t)} + [/]{é(r)} +[1(00)} = A[ o (x, )]{é(t)} (6.63)

where one should notice that coefficient 4 encapsulates all the control parameters of
the friction-excited system, apart from the excitation location, while the velocity-

coupling matrix [@(x,)] carries the modal information at the excitation point x, .

Equation (6.63) reduces to the homogeneous form:

(7100} +([~]- 1[ee) ) 60} + [~ 10w}

(0} (6.64)

leading to a second-order eigenvalue/eigenvector problem:
(R[71+4, [@(A,xf)}[/]){&g} ={0} with [&(4,x,)]=[]-4[®(x,)] (6.65)

where solutions {Q(t)}z{gi"}exp(/lt) have been assumed. The modes of the friction-

coupled system may be easily computed, as a function of 4 and x,, by writing (6.65) in

an equivalent first-order (state-space) form, which can be readily solved using standard
procedures. Equation (6.66) is one possible symmetrical form, among others (see, for

instance, Bertolini, 1998):

[ V//]]+ ] [O]J ] _fo
{ﬂn[ [7] [0] {[0] —[%]} {{ﬂné\:} {{0}} (6.66)

The eigenvalues and corresponding eigenvectors obtained from (6.66) are in general

complex and, for oscillating solutions, arise in conjugate pairs 4, =5, +io, and
{gg,f}:{@n}ii{tﬁ”}. The (damped) modal frequencies &, =Im(4,) and modal dissipation
values &, =Re(4,) determine the behaviour of the bowed system, before nonlinear

effects take control. In particular, self-excited regimes stem from the linear instability of

a mode, whenever Re(4,)>0. Then, if Im(1,)=0, it is a flutter instability, otherwise

Im(4,) =0 implies a divergence (non-oscillatory) instability. The values of the undamped
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modal frequencies &,, and modal damping £, of the friction-coupled system may be

inferred from the 2, using the following relations:

D =0+ (6.67)

(6.68)

and one obtains &, =&, /1-¢2 , as usual. After the modeshapes {q@j} in terms of the

modal amplitude coefficients of the original string modes have been obtained, one can

easily compute the modeshapes in terms of the physical coordinates:
)=l (e} o8} n=12..N (6.69)
or, in extended notation:

60| [A00) 40 - a(0)]|4@)
¢n(x2) _ ¢1(X2) ¢z(x2) ¢N(.x2) ¢,1(q2) Cn=12..N (670)

&n(xp) ¢1(xp) ¢z(xp) ¢N(xp) &n(qN)
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6.3.5 Results

Calculations using the previously described approach were made for a violin string with

length, L = 33 cm, a linear density of 3.1x10° kg/m, and a fundamental frequency of

196 Hz. A modal damping of 0.1% was used for all modes and no string inharmonicity

was included in the present calculations (inclusion of the string bending stiffness

presents no difficulty). The string was modelled using 50 modes and the friction

parameters used were x,=0.4, ¢, =0.2and Cc=5.

) F =0.1 =
x 10 n x10° Fo=1
15 1 15
(a) (b)
s 1 s 1
> S0
0.5 0.5
0 ' 0 " i
0 0.1 0.2 0.3 0 0.1 0.2 0.3
X [m] X [m]
) F =25 ) F =10
x10° n x10° n
15 ©f 15 (d)
[7] 7]
> >
0.5 0.5
o i i i 0 i i i
0 0.1 0.2 0.3 0 0.1 0.2 0.3
X [m] X [m]

Figure 6.8 — Static string deformation for: (a) Fy,=0.1N; (b) Fy=1N, (c) Fy,=25N

and (d) F,=10N
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Figure 6.9 — Stability plot in function of 4, for x, =10 mm.
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Figure 6.10 — Stability plot in function of 4, for x, =30 mm
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As a first and plausible illustration, Figure 6.8 shows the zero-order solutions obtained
from equation (6.59), for three values of the normal force Fy , when bowing at location

x, = 30 mm. Dynamical results from the first-order solution (6.63) are shown in the

stability plots of Figure 6.9 to Figure 6.11, where the friction-coupled modal

frequencies of the bowed string are displayed as a function of the excitation coefficient

A, for three locations x, of the bow. For each mode, the green colour stands for

stability and the red colour for instability. Notice that many modes become linearly
unstable simultaneously, however a few of them — those with nodal regions near the
bowing location — never become unstable. On the other hand, it is well known from
playing experience and confirmed by nonlinear numerical simulations that playing near
the bridge brings increased energy from higher-order modes. The counterpart to this fact,
from the point of view of this linearized analysis, is that an increased number of higher-
order modes become unstable at lower values of parameter 4 when bowing near the

bridge.
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Figure 6.12 — (a)-(e): Modal frequencies and stability maps of the first five string
modes as a function of £ and j,,, (bowing at x, = 30 mm); (f) Dynamical bridge

reaction force and nonlinear motion regimes from time-domain numerical simulations
of the bowed string (decaying regime — light yellow; Helmholtz regime — green; higher-
order regime — blue; raucous regime — red; anomalous low-frequency regime —
magenta).

A last and very interesting aspect deserving to be mentioned concerns the linear
instability of those modes which present antinodes near the bow. For high enough
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values of A, their modal frequencies decrease drastically, so that the first of them in fact
becomes unstable by divergence (and not by flutter, as usual). It is tempting to connect
such behaviour with the trigging of chaotic “raucous” motions, which arise when
bowing the string with excessive normal forces. Figure 6.12 displays the stability maps

of the first bow-coupled string modes, when x, = 30 mm, as a function of the bow

normal force and tangential velocity. For this bow location, it is the 5th mode which
becomes unstable by divergence, and the corresponding stability map may be compared
with the nonlinear motion regimes computed from time-domain simulations also shown

in Figure 6.12. The similarity of the qualitative behaviour is striking.
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/. CONCLUSIONS

The work described in this thesis aimed to develop a general computational
methodology for the simulation of bowed musical instruments dynamics, based on a
modal approach. The main objective was to obtain results that could be comparable to
the behaviour of real instruments, in particular bowed strings such as the violin or cello,
bowed bars as the vibraphone or marimba and bowed shell structures as the Tibetan
singing bowls or the glass harmonica. The conclusions of each chapter, mainly from
Chapter 3 to Chapter 5 show that this objective has been fulfilled. Furthermore, a
linearized approach to the nonlinear problem was developed using the same basic
methodology, which showed coherent results with those obtained from the nonlinear
computations. The main achievements presented in this thesis are described in the
following paragraphs, divided into the subsection related to each of the three

instruments studied.

7.1. Main achievements

The main contributions to scientific knowledge brought by the contents of this thesis are
presented in the following paragraphs. For all three systems studied, animations and
sounds have been produced which enable a good interpretation of the results obtained

and understanding of the occurring physical phenomena.

7.1.1 Bowed strings

- A numerical modal model was implemented which incorporates the measured

dynamics of real-life instrument bodies, coupled to the string motions;

- A systematic study was made of the effect of torsion modes on the string dynamics
was made revealing the different types of behaviour that the string motion can

acquire for a wide range of torsion to transverse frequency ratios;

- A demonstration was made that differences between point-model and finite-width
simulations can be more pronounced outside the range of bowing parameters
leading to the Helmholtz motion;
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Effective simulation of a realistic wolf-note on a cello was obtained, establishing
also the range of the playing parameters where this phenomenon emerges, for a

particular friction law and instrument body characteristics;

Demonstration was made of the beating dependence of the wolf-note with bowing

velocity and applied bow force, with good agreement with experimental results;

Apart from the numerical model implementation, the results relating to the coupling

between the body of the instrument and the string are, according to the literature review

made, the most detailed published up to the present date.

7.1.2 Bowed bars

A numerical modal model was developed which includes the force generated by the

supports acting on the nodal points of the first flexural mode of the bar;

The numerical modal model developed allows the introduction of bars of arbitrary
shape and pre-defined (calculated or identified) modal basis;

The results of the simulation of the vibration time history of bowed vibraphone bars

are in good agreement with measured time-history on these instruments;

Different vibratory regimes of bowed vibraphone and constant cross-section bars,
for different playing conditions of bow velocity and applied force were simulated.

7.1.3 Bowed shells

A numerical modal model was developed that allows the introduction of orthogonal
vibratory modes pairs, including their tangential and radial components, essential to
the correct description of the instrument dynamics;

The results of the simulations of the time-history of the vibrations of bowed Tibetan

bowls are in good agreement with the measured time-history;

Different vibratory transients and self-sustained regimes of bowed Tibetan bowls
were simulated, for different playing conditions of the exciting stick velocity and

applied force, in good agreement with real instrument playing experience;
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- An important clarification was made on the radial and tangential vibratory
behaviour of bowed Tibetan bowls and of the beating phenomena associated with

perfectly axi-symmetrical instruments;

- Demonstration was made of the strong dependence of the Tibetan bowls self-
sustained regime order of oscillation on the contact/friction parameters, with a clear

support from measured results;

According to the literature review made, the results presented on Tibetan bowls seem to

be, currently, the most detailed and illuminating ever published.
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7.2. Perspectives for future work

The main objective of future research that can be proposed based on the theme of this
thesis is the improvement of the numerical model in order to achieve better quality
simulations when compared to measured results. This can be accomplished by refining
the method in two of its main pillars: the friction model and the description of the
dynamical system. Both of these aspects imply numerical and experimental work, the

main points of which are detailed in the following paragraphs.

7.2.1 Numerical
7.2.1.1 Improving the description of the system

The modal method presented in this thesis allows the incorporation of different
components of the system in study. In the case of the cello, for example, the body of the
instrument as well as the moving finger pressing the string along the fingerboard
(glissando effect) were successfully implemented, something not easily accomplished -
if ever — with the current computational techniques. However, further aspects can be

included, not only for bowed strings but also for bars and bowls.

In the case of bowed strings, the coupling between the in-plane transverse motion of the
string (where in-plane means in a plane parallel to the top plate of the instrument body)
and the out-of-plane motion (perpendicular to the top plate) should be implemented.
This can be easily achieved with most computational approaches, including the one
presented in this thesis. This fact seems important because this vertical motion of the
string can have a strong influence on the motion of the bow hairs, which will influence
the string motion, etc. Longitudinal modes also couple with transverse modes of the
string, and its effect on the sound experienced by a player is more pronounced if bowing
with the bow in a position not perpendicular to the string. Bow hair compliance is
another important issue that should be addressed by introducing the longitudinal and

transverse dynamical properties of the bow hair, for a certain rod tension.

Bowed bars and shells are much simpler systems with very few components. The main
improvement comes from an adequate definition of the support dynamics which can
have some influence on the resulting system motion. Since bowed bars are usually
excited by a bow, the supports should have some compliance and damping in the

direction of the normal force applied by the player and not only on the direction of the
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applied friction force. This motion can probably couple with oscillations of the bow
which can be one of the reasons for the difficulty experience by players when trying to

obtain sounds from this instrument.

7.2.1.2 Comparison of friction models

As described in this work, several friction models can be used to simulate bowed
instruments. Recent research with the bowed strings (Woodhouse, 2003; Galluzzo &
Woodhouse, 2003; Serafin et al, 2003; Woodhouse & Galluzzo, 2004) has proposed the
use of thermal related friction models as a more reliable alternative to the classic
Coulomb friction model used in this thesis. Implementing the different friction models
in the modal method described in this thesis is the natural next step in this research
work. This implementation will allow a clear comparison between the behaviour of the
different models. The implementation and the results obtained must be accompanied
experimental measurements of the frictional behaviour of the system analyzed (see
section 7.2.2).

7.2.1.3 Friction-modelling refining

Apart from the comparisons described in the previous section, the refining of the present
friction model should be considered, in order to incorporate the features that can be
considered indispensable to the realistic simulation of the system dynamics. These
features, which should originate from the results of friction force measurements on both
string, bars, bowls and respective exciters (see section 7.2.2), would preferably be
implemented in such a way that the friction model behaves well for the different
systems, by incorporating shaping variables to the friction law, that will approximate it
to real measurement results. Notice that the friction interfacefor the puja/bowl excitation
is not of the same type as the bow/string interface. There is no rosin melting in such

interaction and therefore the tribological aspects should be quite different.

7.2.1.4 Implementing sound radiation

The generation of realistic sounds from the simulations obtained by the present method,
which relies solely on physics, is still a challenge. All sounds that were extracted from
the present simulation method were simply related to the vibratory velocity of the
surface of the instrument. From the three systems studied the Tibetan bowl was the one

that gave strikingly realistic results. However, this approach should be now
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complemented by the implementation of a set of transfer functions relating vibratory
variables in several points of the instrument to the far field sound pressure at some point
in space. Otherwise, use of the integral Helmholtz-Kirchoff radiation equations may be
adopted. Both approaches present quite distinct advantages and drawbacks.

7.2.1.5 Improving numerical efficiency

The numerical efficiency of the model implementation presented in this thesis is not
optimized. The comparatively large computation times described as one of the main
disadvantages of this method — but notice that, contrary to faster computation methods,
the modal approach easily provides information on the dynamical response of the full
system — may certainly be decreased. Different approaches on integration methods and
on the code building should allow a decrease of computation times of at least an order
of magnitude.

7.2.2 Experimental
7.2.2.1 ldentification of friction parameters

The work carried by Woodhouse & Galluzzo (2003), showed good resemblance of
simulated bowed string initial transient with measured results, by using the thermal
modelled developed by Smith & Woodhouse (2000). Although, as stated by the authors
of that work, further work is needed to find a more accurate friction law, since the one
used could not represent accurately some important features such as the flattening
effect. To improve the friction model, experimental work on the identification of the
friction force, and its relation with its governing quantities, whether it is the bow/string
relative velocity, temperature or other, is needed. A possible path to continue this work
Is using remote identification techniques by inverse algorithms, first on more rigid
structures such as the bowed bar which has a more simple geometry than the Tibetan
bowl, and then on the string. One of the major difficulties with this technique (apart
from noise presence in the measurements) is the influence of the transducer on the
dynamical properties of the system. Therefore, non-contact transducers are preferred.
An interesting approach would be to try friction force identification not from
measurements on the instrument, but on the bow itself (at the frog, for example) using
the same inverse techniques. A major step on the use of inverse methods for the
identification of bow/string interaction forces was recently provided by Woodhouse et
al (2000) and Schumacher et al (2005).
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7.2.2.2 Quantitative validation of numerical results

As obvious as it may seem, the use of measurements to validate the numerical results is
very important. In this thesis only qualitative comparisons have been made between
simulations and measurements. In following work one should aim for quantitative
comparisons. This will not only allow testing of the method itself but also helping the
improvement of the friction laws. Again in this case, the main difficulty is the presence
of the transducer, which has a great influence on the instrument sound, and therefore
non-contact transducers should be used.
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