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ABSTRACT 
 
Bowed instruments are among the most exciting sound sources in the musical world, 
mostly because of the expressivity they allow to a musician or the variety of sounds 
they can generate. From the physical point of view, the complex nature of the 
nonlinear sound generating mechanism – the friction between two surfaces – is no less 
stimulating.  
  In this thesis, a physical modelling computational method based on a modal 
approach is developed to perform simulations of nonlinear dynamical systems with 
particular application to friction-excited musical instruments. This computational 
method is applied here to three types of systems: bowed strings as the violin or cello, 
bowed bars, such as the vibraphone or marimba, and bowed shells as the Tibetan bowl 
or the glass harmonica. The successful implementation of the method in these 
instruments is shown by comparison with measured results and with other simulation 
methods. This approach is extended from systems with simple modal basis to more 
complex structures consisting of different sub-structures, which can also be described 
by their own modal set.  
  The extensive nonlinear numerical simulations described in this thesis, enabled some 
important contributions concerning the dynamics of these instruments: for the bowed 
string an effective simulation of a realistic wolf-note on a cello was obtained, using 
complex identified body modal data, showing the beating dependence of the wolf-
note with bowing velocity and applied bow force, with good qualitative agreement 
with experimental results; for bowed bars the simulated vibratory regimes emerging 
from different playing conditions is mapped; for bowed Tibetan bowls, the essential 
introduction of orthogonal mode pairs of the same family with radial and tangential 
components characteristic of axi-symmetrical structures is performed, enabling an 
important clarification on the beating phenomena arising from the rotating behaviour 
of oscillating modes. Furthermore, a linearized approach to the nonlinear problem is 
implemented and the results compared with the nonlinear numerical simulations.  
  Animations and sounds have been produced which enable a good interpretation of 
the results obtained and understanding of the physical phenomena occurring in these 
system. 
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PRESENTATION 

In Acoustics, as in most other fields of Science, the simulation of physical phenomena 

is the endeavour of most researchers. The main objective is to reproduce an acoustical 

event under controlled conditions in order to understand, modify, control or simply 

mimic system behaviour. The applications are immense: from noise control to musical 

sound synthesis, room acoustics design, high-fidelity sound reproduction or 

environmental noise predictions, among many others. 

Almost as numbered as the applications are the simulation methods. Experimental, 

analytical or numerical, based on physical understanding or phenomenological in 

nature, the diverse methodologies have different validities but generally with the same 

underlying goal: to determine the effect of changing one ore more variables, in order 

to comprehend the system dynamics. From these systems, musical instruments 

represent a rather interesting case, since the pleasantness of sounds produced and the 

physical analogy to non-musical systems make them perfect objects of study. 

Researchers in Musical Acoustics have devoted more than 100 years (see Helmholtz 

(1877), Rayleigh (1894), amongst others) to the study of musical instruments and, 

particularly in the past decades to the simulation of their dynamical behaviour in order 

to establish reliable models for sound reproduction or physical understanding.  

As a contribution to this field of study, this thesis describes a computational method 

based on a modal approach for the simulation of nonlinear dynamical systems with 

particular application to bowed (friction-excited) musical instruments: bowed bars, 

bowed strings and bowed bowls.  

The introductory chapter, which includes the literature review, presents three 

fundamental aspects to the contents of the thesis: 1) friction-excited vibrations, 

exploring some of the different areas where friction induced self-sustained oscillations 

have a predominant role; 2) a literature review of research work on bowed musical 

instruments, establishing the context where the present method fits and 3) the aims 

and contributions of this thesis to scientific knowledge.  

In Chapter 2 the general simulation methodology is presented, common to all three 

instruments, together with a short description of their main characteristics, relevant to 
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the computational method. The friction model used in the simulations is then 

described, followed by a reference to other approaches, found in the literature, to the 

description of friction phenomena in these instruments. Since other alternative 

methods have also been developed by different authors to simulate the dynamics of 

bowed instruments, a comparison with one of the most reliable is made regarding 

bowed strings. As a conclusion to this chapter, the main advantages and disadvantages 

of the method when compared to the alternatives are described. 

The following three chapters describe the application of the simulation methodology 

to each of the three instruments studied: Chapter 3 addresses one the most studied 

systems in Musical Acoustics – the bowed string; Chapter 4 describes the application 

of the method bowed bars as an example of a two dimensional, dispersive system;; 

and Chapter 5 concludes the applications with axi-symmetrical structures, such as the 

bowed Tibetan bowls. The results of the simulations are presented in each of these 

three chapters followed by the experimental work performed. 

In Chapter 6, a linearized analysis of the dynamical equations described in the 

previous chapters is developed, with application to the bowed bar and the bowed 

string. After presenting the linearized formulation and the steady and oscillating 

solution, a brief comparison with the results obtained from the nonlinear computations 

is made. Chapter 7 concludes the thesis, with a summary of the contents and a 

description of the main achievements. Finally, the perspectives for future work are 

described. 
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1. INTRODUCTION 

1.1. Friction-excited vibrations and sound 

A large proportion of sound sources radiate acoustical energy through the action of 

vibrating solid surfaces upon a surrounding fluid (Fahy, 2007). The source of these 

vibrations can be various, from transient impacts (as a press hammer or a xylophone 

mallet) to continuous oscillatory forces (such as rotating shaft on a turbine or a 

electromagnetic field in loudspeakers), amongst others. When referring to sound 

emanating from a violin or the brake noise from an automobile, friction is the main 

mechanism of vibratory energy. 

Friction is defined as a force that resists relative motion between two contacting 

surfaces (Ibrahim, 1994a) and develops between the sliding surfaces regardless of the 

magnitude of that motion (Akay, 2002). Tabor (1981) represents the friction force as 

the resistance which develops during the deformation of thin surface layers by 

penetrated irregularities (see Figure 1.1) and by atomic and molecular interactions on 

the portions of contacting solids separated by a distance close to 10 Å (Å = Angstrom 

= 10-8 cm). 

 

 

 

 

Figure 1.1 – Schematic representation of two sliding surfaces on the microscopic 
level (Vr is the relative velocity between the surfaces). 

Friction fulfils a dual role by transmitting energy from one surface to the other and by 

dissipating energy of relative motion (Akay, 2002). As a result from this energy 

exchange mechanisms, friction can generate waves and oscillations within the solids 

which, depending on their geometrical and dynamical characteristics, usually lead to 

the radiation of sound. It is therefore important to understand not only the microscopic 

and macroscopic mechanisms underlying the generation of friction, one of the 

Vr 
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subjects of Tribology1, but also the dynamics of the bodies whose surfaces are in 

motion.  

The study of contact and friction phenomena has been pioneered by the historical 

works of Leonardo da Vinci (1452-1519), Amontons (1699), J.T. Desaguliers (1725), 

Euler (1749) and Coulomb (1785); an interesting overview is given by Fenny et al 

(1998) and Tabor (1981). Coulomb recognized that frictional resistance occurs at 

localized asperity contacts and, together with Amontons, that the friction force is 

proportional to the normal load between the surfaces, independent of the apparent 

contact area and sliding speed (Ibrahim, 1994a). However, the friction force is 

dependent or much further aspects: the overall shapes of the contacting surfaces and 

its surface texture; whether the surface deformation is elastic and/or plastic; the 

presence of wear particles or of lubricating films; the environmental conditions 

(Ibrahim, 1994a)2, as well as the contact and dynamical properties of the moving 

solids, amongst others. 

The classic friction laws, usually referred to as Coulomb laws, apply to dry (non-

lubricated) contacts and can be summarized as: 

- The friction force is independent of the apparent area of contact. 

- The friction force is proportional to the normal contact force. 

- The friction force is independent of the sliding velocity. 

Although the first two laws are generally observed in most systems, the third law is 

known to be invalid for some systems. Martins, et al. (1990) have provided a 

distinction between static and kinetic friction (when both surfaces are in motion), in 

that kinetic friction depends on the sliding velocity while the static friction depends on 

the time of repose. This notion supports some conclusions by Euler (1748) in which 

the fact that the kinetic coefficient of friction is less than the static one could be 

attributed to the fact that asperities on one surface could jump part of the way over the 

gap between asperities on the other (Ibrahim, 1994a). In fact, depending on the system 

                                                 
1 Tribology is the science and technology of interacting surfaces in relative motion. It includes the 
study and application of the principles of friction, lubrication and wear. 
2 For the purposes of this thesis, lubricated contacts as described by fluid dynamic equations will not be 
addressed (usually relevant for mechanical components); only dry friction is of interest since it is the 
most relevant for bowed musical instruments. If appropriate to the explanation of certain phenomena in 
bowed strings, lubricated contacts will be addressed briefly. 
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in question (e.g. the nature of the solids in contact), the static and kinetic (or 

dynamical) friction coefficient can either be very different of extremely similar. 

These and other descriptions of frictional behaviour mainly associated with the 

characteristics of the surfaces are now prolific and have resulted in profound 

knowledge on the micro-scale surface interaction mechanisms. However, the 

dynamics of solid interfaces and its relation with the theory of frictional forces at solid 

interfaces in relative motion have a recent history in the engineering and applied 

mechanics research (see Bowden & Tabor, 1964; Suh, 1986; Johnson, 1985; Rice & 

Ruina, 1983; Singer & Pollack, 1992). Friction is a complex process and depends on 

several parameters, some of which are relevant to the present discussion. In friction-

excited vibrations, the dependence of friction on the relative velocity and the normal 

force between sliding surfaces is paramount. Other factors can also impose an 

important influence, such as temperature and time-dependence of the friction 

parameters (see Ibrahim, 1994a). 

1.2. Simulation Methods and Dry Friction Models 

Computer simulations of the motion of mechanical systems usually imply finding the 

solutions of the governing inhomogeneous partial differential equations either by 

analytical or numerical methods. Among these methods, some have been applied with 

success to musical instruments, from the simple lumped networks of masses and 

springs to time-domain numerical methods such as finite difference schemes, digital 

waveguides models and wave digital filters, among others. 

When dry friction excitation is present, calculations face the difficulty of the strongly 

nonlinear characteristic of the friction force near zero velocity. The Coulomb friction 

laws, described in the previous section, imply the well-known friction model 

represented in Figure 1.2a or Figure 1.2b, where the sliding (dynamical) friction force, 

f DF  – Coulomb friction –, is independent of the relative velocity between sliding 

surfaces.It is now widely understood that in order to establish motion a static force 

limit, f SF , higher than the Coulomb sliding friction is required (Figure 1.1b). 

Equation (1.1) expresses this latest model, where Dμ  is a kinetic (or dynamical) 

friction coefficient and Sμ is the static friction coefficient, and NF  is the normal load. 
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sgn( )    ; if 0

      ; if 0
f D D N

f S S N

F F y y

F F y

μ

μ

⎧ = >⎪
⎨

< =⎪⎩
 (1.1) 

The discontinuity of this step function expresses the extreme nonlinearity of the 

excitation friction force, which – together with the indeterminate friction force during 

adherence – are the major difficulties for simple simulation methods. In order to 

properly integrate the ordinary differential equations that describe the motion of the 

system, the appropriate value of the derivative must be used on each side of the 

discontinuity, which can be a problem since the discontinuity can occur inside the 

integration subintervals (Armstrong-Hélouvry et al. 1994).  

 

 

 

 

 

(a)       (b) 

Figure 1.2 – Friction force as a function of the relative velocity between surfaces: 
(a) the Coulomb model with f S f DF F= and (b) the Coulomb + static model with 

f S f DF F≥ . 

Furthermore, for most systems, the change of the dynamical friction coefficient with 

the relative velocity between surfaces is not constant. This dependency has been the 

subject of several studies: Sampson, et al. (1943), Burwell & Rabinowicz (1953), 

Grosh (1963), Rabinowicz (1958, 1965), to mention a few. Tolstoi et al. (1971) 

suggested that the decrease of the dynamical friction with increasing sliding velocity 

can be explained by the effect of normal contact oscillation between the bodies; 

Sampson, et al. (1943), referred a difference on the friction coefficient during 

acceleration and deceleration which is responsible for the hysteretic effect observed in 

some systems; this behaviour was also observed by Sakamoto (1985, 1987), Hunt et 

al. (1965), Bell & Burdekin (1969), Brockley & Ko (1970), Antoniou et al. (1976), 

and Martins et al. (1990), suggesting that the loops in the frequency-velocity plots 

fF
f SF+

f DF+

f SF−
f DF−

rV

fF

 Const.f DF =
f DF+

f DF−

rV
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were greatly affected by the experimental model. Several analytical relations for the 

friction-velocity curve have been developed, most of them showing some type of 

exponential decay (Brockley & Ko, 1970; Bo & Pavalescu, 1982; Hess & Soom, 

1990)3.  

As an example, Figure 1.3 represents a typical variation of the dynamical friction 

coefficient with the relative velocity (for continuous sliding) between two surfaces. 

Indeed, the instantaneous change between the sliding friction force to the static 

friction value represented in Figure 1.2b is unrealistic, and some kind of 

approximation to the static value has to occur when motion approaches 0rV = . For 

continuous sliding, this variation is approximately a decaying exponential function 

(Smith, 2000). 

 

 

 

 

 

 

Figure 1.3 – Typical variation of the friction coefficient with relative velocity 
between surfaces (only non-lubricated contact is considered). 

Several approaches have been used by different authors to overcome the problem of 

the discontinuity at the origin, usually recurring to a regularization method (Martins et 

al. 1990; Oden & Martins, 1985; Tworzydlo & Becker, 1991) or employing switching 

functions which detect the presence of the discontinuity in the last integration sub-

interval (Dupond, 1993). To detect zero velocity crossing one possible switching 

function is sgn( )x . For the integration of discontinuous equations, small integration 

steps must be adopted, especially to capture transients that can occur near the 

                                                 
3 The references given in this paragraph state investigation carried from an industrial perspective. Also 
in the field of Musical Acoustics, the description of the friction laws governing the interaction between 
two bodies (the bow and the string of a violin, for example) has led to interesting findings. Being 
specific to the core of this thesis, they will be discussed in section 1.3.  

fF
f SF+

( )f D rF V+

f SF−

rV

( )f D rF V−
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discontinuity, but variable-step size and variable-order methods are also adequate 

(Armstrong-Hélouvry et al. 1994). 

One possible regularization method, which overcomes the need for the switching 

functions, is the approximation of the sticking part of the friction law by a linear 

region (Haessig & Friedland, 1991; Threlfall, 1978; Bernard, 1980), like the one 

represented in Figure 1.4. 

 

 

 

 

 

 

Figure 1.4 – Variation of the friction coefficient with relative velocity with a 
linear approximation simulating a pseudo-sticking state. 

The sticking stage of the friction law is better approximated as steeper is the slope 

across the origin. This imposes the need for very short time integration steps, which 

can be a difficulty in some simulation methods. Other improvements on this law have 

been suggested by Bo & Pavalescu (1982) and Klamechi (1985), which still face the 

problem of not being able to represent the friction force at zero relative velocity. In 

other words, such approach is unable to simulate true adherence. 

Karnopp (1985) developed an alternative approach in which the zero velocity 

detection was surpassed by defining a zero velocity interval within which the velocity 

of the system may change but the output is locked to zero, therefore simulating the 

sticking stage. In this interval the friction force exactly cancels the driving force and 

only when the driving force exceeds the “break-free” force, the body accelerates and 

the magnitude of the relative velocity will surpass the interval limits and switch to slip 

mode. Some of the drawbacks of this model are that the friction force within this 

interval does not agree well with real friction and the system complexity increases 

greatly with the number of degrees of freedom. 

fF

f SF+

( )f D rF V+

f SF−

rV

( )f D rF V−
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Other models have been proposed, such as the Dahl model (Dahl, 1968; 1976) 

developed from the stress-strain curve in classical solid mechanics, in which the 

friction force fF  is a function of the displacement and the sign of the sliding velocity 

rV . Equation (1.2) represents the Dahl model, where γ  is a stiffness constant and 0F  

determines the peak sliding friction force. These constants can be selected according 

to the system in question. 

 ( )( )2

0 sgnf
r f r

dF
V F F V

dx
γ= −  (1.2) 

This particular model, however, will not generate a static friction force higher than the 

sliding friction force, unless 0F  is a function of the sliding velocity. 

These and other models, such as the “bristle model” and the Reset Integrator Model 

(Haessig & Friedland, 1991) or the Bliman and Sorine models (Bliman, 1992; Bliman 

& Sorine, 1991), have been able to simulate relevant aspects of friction induced-

vibrations, particularly the important stick-slip phenomenon. 

1.2.1 The Stick-Slip Phenomenon 

Resulting from the contact between the atomic scale random asperities of solids in 

contact, friction is characteristically aperiod in nature. However, in certain conditions, 

the vibrations or sound generated by friction can become periodic. There are several 

mechanisms that can lead to this particular situation; however the stick-slip 

phenomenon is one of the most important and characteristic of friction-induced self-

sustained oscillations4. 

In a single-degree-of-freedom system, a necessary condition for self-excited 

vibrations to exist is a negative slope of the friction-force speed curve. This negative 

slope is responsible for the energy that is supplied to the vibrations (Ibrahim, 1994b). 

If one of the sliding surfaces has a certain degree of elasticity it is possible that both 

surfaces experience relative sliding or sticking in different times of their interaction. 

When this occurs, their relative motion is not continuous but intermittent, with 

oscillations occurring by the process of stick-slip. In multi-degree-of-freedom 

                                                 
4 These particular types of oscillations are originated when a steady (non-oscillatory) flow of energy is 
transformed into an oscillatory motion through some kind of nonlinear mechanism (see section 1.2.3). 
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systems, the phase differences between the coupled modes can supply energy to 

induce vibrations (Ibrahim, 1994b). 

In most contexts where stick-slip vibration can occur, it is an undesired effect. For 

example, in machining it is likely to impair the surface finish of the cut, and in 

braking systems it may increase wear while reducing braking efficiency. (Smith & 

Woodhouse, 2000) 

1.2.2 Friction vibrations in Industrial components 

Many mechanical systems and components use friction as the dominating force for 

their functioning, such as brake systems, transmission systems (pulleys) or friction 

damping mechanisms, amongst others. However, if friction is beneficial for most 

applications it also generates some detrimental effects, which can be a serious 

problem in many industrial applications. Friction-induced vibration, chatter and 

squeal can impose functioning difficulties and ultimately failure in turning blade 

joints, electric motor drives, water-lubricated bearings in ships and submarines, 

wheel/rail of mass transit systems, machine tool/work piece systems and brake 

systems (Ibrahim, 1994).  

Apart some of the common every-day life noises generated by friction (such as the 

squeal of sneakers on parquet floors, the squeak of snow when walking on it, moving 

door hinges, scratching chalk on a blackboard) there are several examples of noises 

that result from friction-excited vibrations: squeaks and squeals in the interior of 

automobiles, aircraft and automotive brake squeals, belts on pulleys or rail-wheel 

noise (Akay, 2002), amongst others. 

1.2.3 Friction vibrations in Musical Instruments 

If the examples of the previous section are annoying to the ear, bowed musical 

instruments use friction to induce further more pleasant sounds. Apart from the well 

known violin family instruments (violin, viola, cello and double bass), friction is the 

sound producing mechanism of many others, from Medieval to Contemporary music. 

The Tromba Marina, the viola da gamba, the bowed vibraphone and marimba, the nail 

violin, the musical saw, musical glasses, the glass harmonica, the brazilian cuica or 

the Portuguese sarronca as well as Tibetan bowls are some important examples (see 

Figure 1.5, Figure 1.6 and Figure 1.7). 
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 (a)                       (b) 

Figure 1.5 – Examples of bowed membranophones: (a) the Portuguese sarronca 
and (b) the Brazilian cuica. 

 (a)                   (b) 

 (c)          (d) 

Figure 1.6 – Examples of bowed idiophones: (a) the bowed vibraphone; (b) the 
nail violin; (c) the Tibetan bowl and d) the glass harmonica. 
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 (a)    (b) 

Figure 1.7 – Examples of bowed chordophones: (a) the violin family instruments; 
(b) the medieval tromba marina. 

Of all the examples presented, three main components to the production of sound can 

be found: a source of energy (the player), a mechanism for generating friction (by the 

sliding contact of two surfaces), a tuned resonator and a component that modifies, 

amplifies and/or radiates the frictional energy (usually referred to as a resonator 

and/or radiator). In contrast to plucked string or percussion musical instruments (but 

in harmony with most wind instruments) friction excited instruments are essentially 

nonlinear in nature5. This nonlinearity allows for a self-sustained oscillation to be 

generated while the stationary source of energy is available. Figure 1.8 represents an 

energy flow diagram common to all self-sustained musical instruments where these 

and other components are represented. 

This energy transfer and transformation process can be used to describe the principles 

of functioning of musical instruments. A steady sound source (usually the player’s 

muscles when bowing or breath when blowing, or even a mechanical ventilator in the 

case of organs) generates the energy necessary to start the system. This energy is 

converted into vibratory energy through a nonlinear interface (friction, reed, etc.) 

between the musician’s gesture and the primary resonating component (string, air 

column, plate or membrane, etc.). In all self-excited instruments (violin, clarinet, tuba, 

etc.), the nonlinear interface will react in synchrony with the resonator, due to feed-

                                                 
5 It is important to state that some exceptions occur where percussion musical instruments have also 
significant nonlinear characteristics of geometrical nature (see Rossing, 2000). 
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back phenomena from the later (vibration or pressure pulse). In fact, coupling 

between the nonlinear generator and the primary resonator is so close that they cannot 

be considered separately (Fletcher, 1999). Under suitable conditions of the control 

parameters (bow normal force and tangential velocity, blow pressure, etc.), the 

instrument will become linearly unstable. Then vibratory or acoustic responses will 

grow until saturating nonlinear effects limits the oscillating amplitude, usually leading 

to limit-cycle regimes. The primary resonator can, in some instruments, interact with 

other nonlinear mechanisms and with a secondary resonator (such as the body of a 

cello) which can act also as a radiator of sound. 

 

 

 

 

 

 

Figure 1.8 – Diagram representing the components and the energy flow in a self-
sustained musical instrument. 
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1.3. Research on Bowed Musical Instruments 
Apart from bowed strings, which have been the subjects of most scientific research in 

Musical Acoustics, other bowed instruments haven’t received such a notorious 

attention. Bars, plates and shells, which are the main components of most idiophones, 

have been extensively studied, but generally only when impact (either linear or non-

linear) excitation is present. 

Several friction-excited idiophones are familiar to western musical culture, such as 

bowed vibraphone and marimba bars, the nail violin, the musical saw, musical glasses 

and the glass harmonica, as well as some natural objects rubbed against each other, 

like sea shells, bones, stones or pine-cones. In an interesting tutorial paper, Akay 

(2002) presents an overview of the acoustics phenomena related to friction, which is 

the main sound-generating mechanism for such systems. Some of these musical 

instruments have been experimentally studied, in particular by Rossing (2000). 

Nevertheless, the analysis of idiophones excited by friction is comparatively rare in 

the literature and mostly recent – see French (1983), Rossing (1994), Chapuis (2000) 

and Essl & Cook (2000). Among these studies, only French (1983) and Essl & Cook 

(2000) aim at physical modelling, respectively of rubbed glasses and bowed bars.  

On the modelling techniques of such instruments, the developments of McIntyre and 

Woodhouse (1979), with the now classic digital waveguide method, have been 

paramount for the knowledge of their behaviour and for the development of real-time 

synthesis methods for musical purposes (Smith, 2003). Other applications for musical 

purposes aiming particularly on the creation of new sounds based on physical 

modelling were developed in IRCAM. The software Modalys developed in this 

institute is based on a modal representation of the systems, similarly to the method 

developed in this thesis. However, the nonlinear interactions between the instruments 

components are treated in a totally different approach from the one presented here 

(see Bensoam, 2006).  

In this section, a review is made of some of the most important references to the three 

types of instruments studied in this thesis: bowed bars, bowed shells and bowed 

strings. 
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1.3.1 Bowed bars 
In spite of the increasing application of bowed idiophones, as vibraphones or 

marimbas, in contemporary music making, it is only recently that the scientific 

community started working on the dynamic processes behind this sound-producing 

technique ⎯ see Rossing (1994, 2000) and Essl & Cook (2000). Friction-induced 

vibrations in bowed bars present several interesting aspects: In the first place, it is still 

a challenge to properly simulate the complex stick-slip behaviour of multi-degree-of-

freedom systems; Secondly, the much studied and now well understood 

synchronization mechanism provided by the back-and-forth travelling waves in 

bowed string instruments (McIntyre & Woodhouse, 1979) does not apply to bowed 

bars. Indeed, the harmonic relationship between the modal frequencies of string 

transverse modes is not typically found in bending bars. This is connected to the fact 

that string waves are non-dispersive (or, at most, weakly dispersive), whereas flexural 

waves are strongly dispersive. Hence, the classical Helmholtz-type excitation 

mechanism (Fletcher & Rossing, 1998) found in bowed strings does not apply to 

bowed bars. 

In 2000, Essl & Cook published the results of an investigation in which several 

experimental measurements of bars of bar percussion instruments bowed by a double 

bass bow and by a bowing machine were presented. They examined the relationships 

between performance and perception parameters which are relevant for musical 

performance and presented a simulation method using a banded waveguide time-

domain approach. Their results stated the increase of the bar vibration amplitude with 

increasing bow velocity and the independence on bowing force, as also seen in bowed 

strings. Their simulation results lacked information on the spatial details of the bar 

vibratory behaviour, but presented qualitative good agreement with measurements.  

1.3.2 Bowed shells 

Recently, some researchers became interested in the physical modelling of singing 

bowls, using waveguide synthesis techniques for performing numerical simulations 

(Cook, 2002; Serafin et al, 2002; Young & Essl, 2003). Their efforts aimed 

particularly at achieving real-time synthesis. Therefore, understandably, several 

aspects of the physics of these instruments do not appear to be clarified in the 

published formulations and results. For instance, an account of the radial and 
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tangential vibratory motion components of the bowl shell – and their dynamical 

coupling – has been ignored in the published literature. Also, how these motion 

components relate to the travelling position of the excitation stick (called puja) 

contact point is not clear at the present time. Details of the contact/friction interaction 

models used in simulations have been seldom provided, and the significance of the 

various model parameters has not been asserted. On the other hand, experiments 

clearly show that beating phenomena arises even for near-perfectly symmetrical 

bowls, an important aspect which the published modelling techniques seem to miss 

(although beating from closely mistuned modes has been addressed – not without 

some difficulty (Young & Essl, 2003) – but this is a quite different aspect). Therefore, 

it appears that several important aspects of the excitation mechanism in singing bowls 

still lack clarification. 

1.3.3 Bowed strings 

Raman’s seminal paper (Raman, 1918) was a landmark study of the dynamics of 

bowed strings. Since then, a plethora of research papers has been published on bowed-

string instruments, including enlightening work by Friedlander (1953), Schelleng 

(1973), McIntyre, Schumacher and Woodhouse (1983), to name just a few – see 

Cremer’s book (Cremer, 1984) – for an extensive account of the field). 

In most published work, simulations assumed a string pinned at the bridge and the nut, 

and therefore decoupled from the instrument body. This approach proved adequate to 

obtain the typical motion patterns displayed by bowed-strings. However, because the 

bridge is assumed motionless, such computations are obviously unable to cope with 

more subtle phenomena related to the coupling of string and body motions. 

A crude approach to incorporate body effects, when simulating string sounds, is to 

start by computing the vibratory response of an “isolated” (bowed or plucked) string, 

and then use the resulting string/bridge interaction force to drive a given body vibro-

acoustic transfer function. However this simple approach is quite limited and cannot 

account for any energy feedback from the body into the string – such as is found in 

wolf notes – because the full string/body coupling is not modelled. 

Apparently only a few authors have attempted to address this string/body coupling 

problem. McIntyre (1983) incorporated in their wave-propagation computational 
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algorithm a bridge-reflection function which encapsulates the dynamical behaviour of 

a given body resonance, enabling them to simulate the coupled dynamics between the 

string and the chosen body resonance. Similarly, Puaud et al (1991) used (in 

connection with a so-called “numerical bow”) a mass-stiffness bridge-resonator, 

therefore also emulating a chosen body-resonance coupled to the string dynamics. 

Recently, a different approach has been pursued by several authors to simulate 

instrument bodies and cavities – see Huang et al (2000), for instance – by using 2D or 

3D waveguides to compute simplified multi-degree-of-freedom resonating systems. 

However, until now, this modelling technique has only been used to simulate the 

body-filtering effects on string/bridge dynamical forces, with no feedback coupling. 

In relation to other stringed instruments, Derveaux et al (2003) achieved fully coupled 

string/soundboard computations for a modelled guitar.  
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1.4. Aims and contributions 

The aim of this thesis is to present a robust computational method, based on a modal 

approach, for the simulation of three different types of bowed musical instruments: 

bowed strings, bowed bars and bowed shells. Although the dynamical and frictional 

behaviour can be quite different for each system, it is proposed to use the same 

general friction model for the three types of instruments, although using two different 

implementations for simulating the adherence state. The objective is to perform 

simulations which exhibit results with the same global vibratory behaviour when 

compared to the real instruments. 

Most of the work presented in this thesis has already been published by the author in 

refereed scientific journals. All these publications have been co-authored by other 

researchers whose contributions were related to supervision of the work carried by the 

author of this thesis. 

1.4.1 Contributions on the modelling techniques 

Several methods have been used by different authors to simulate different vibratory 

aspects of musical instruments, as already described in the previous sections. The 

main contribution of this thesis is the implementation of a computational method, 

mainly originated in industrial applications, to the simulation of the vibratory 

behaviour of two types of bowed musical instruments: strings and idiophones (divided 

into one dimensional and axi-symmetric structures – bars and bowls, respectively), 

utilizing the same underlying friction model. The modal approach and the friction 

modelling developed in this thesis allows great versatility for incorporating different 

components of the instrument in the simulations, when compared with other methods. 

Some of these contributions of this method are summarized in the following 

paragraphs and further detailed in the respective chapters: 

Bowed Bars 

- Numerical model including the force generated by the supports and acting on the 

nodal points of the first flexural mode of the bar; 

- Numerical model allowing the introduction of a bar of arbitrary shape and pre-

defined (calculated or identified) modal basis. 
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Bowed Tibetan Bowls 

- Numerical model introducing orthogonal vibratory modes pairs, with both 

tangential and radial components, coupled by the nonlinear friction force, for 

symmetrical and slightly asymmetrical shapes; 

Bowed Strings 

- Numerical model incorporating the measured dynamics of real-life instrument 

bodies, coupled to the string motions. Two different approaches to account for the 

coupled string/body dynamics are proposed. 

1.4.2 Contributions on the results 

The implementation of the simulation method presented in this thesis has contributed 

to new results, not only because some of the instruments had never been simulated 

with the level of physical detail provided by this method, but mainly from the new 

findings in relation to what was common knowledge on the vibratory behaviour of 

some musical instrument components. The new results are summarized in the 

following paragraphs and further detailed in the respective chapters: 

Bowed Bars 

- Simulation of the time history of the vibration of bowed bars with good agreement 

with measured time-history; 

- Simulation of different vibratory regimes of bowed bars for different playing 

conditions of either bow velocity and applied force; 

- Interpretation of the self-excited regimes based on a linearized analysis of the 

system before nonlinear effects emerge. 

Bowed Shells 

- Simulation of the time-history of the vibrations of bowed Tibetan bowls with good 

agreement with measured time-history; 
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- Simulation of different vibratory transients and self-sustained regimes of bowed 

Tibetan bowls for different playing conditions of either bow velocity and applied 

force; 

- Clarification of the radial and tangential vibratory behaviour of bowed Tibetan 

bowls and of the beating phenomena associated with perfectly axi-symmetrical 

instruments; 

- Demonstration of the strong dependence of the Tibetan bowls self-sustained 

regime order of oscillation on the contact/friction parameters; 

Bowed Strings 

- Presentation of the effect of torsion modes on the string dynamics for a wide range 

of torsion to transverse frequency ratios; 

- Demonstration that differences between point-model and finite-width simulations 

can be more pronounced outside the range of bowing parameters leading to the 

Helmholtz motion; 

- Effective simulation of the wolf-note on a cello, establishing the range of the 

playing parameters where this phenomenon emerges; 

- Demonstration of the beating dependence of the wolf-note with bowing velocity 

and applied bow force, with good agreement with measured results; 

- Interpretation of the self-excited regimes based on a linearized analysis of the 

system before nonlinear effects emerge. 

For all cases validating qualitative experiments are presented, as well as realistic 

“sounds” and original animations of both transients and steady-state regimes which 

are illuminating and pedagogic. 
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2. GENERIC SIMULATION METHODOLOGY 

2.1. Introduction 

The modelling approach developed in this thesis is not tied to a specific system, but 

has been devised to be used with any kind of dynamical problem, in this case bowed 

musical instrument vibratory behaviour, where localized frictional forces couple 

different vibrating subsystems. For this reason, a generic description of the 

computation method is made in this chapter, which is common to the three systems 

studied. The details of the implementation for each of the three instruments are 

presented in the corresponding chapters. 

2.2. Nonlinear computations in the time domain using a modal basis 

The mathematical description of vibrating systems like tensioned strings or rigid bars 

is usually performed by means of one or several linear partial differential equations in 

both time and space domain. Although torsional and axial vibrations are also present 

in the dynamics of these systems, a focus will be placed on transverse displacement 

only, for matter of simplicity in describing the basis of this computational method. 

If linear dissipation is assumed, the small-amplitude motions y(x,t) of the system 

subject to a force distribution F(x,t) can be described by an equation of the type: 

 ( )
2

2 ( , )y y y F x t
t t

σ ∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂⎝ ⎠
C K  (2.1) 

where σ  is the linear density of the system inertia, y
t

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠
C  is a linear dissipative term 

and ( )yK  is the linear stiffness restoring force which depends on the particular kind 

of system in study. For the present work, the external force field F(x,t) is originated 

by the friction between a violin or cello bow or a rubber or wooden stick, and one or 

more points of the vibrating body. 

Any solution of (2.1) can be formulated in terms of the unconstrained system modal 

parameters: modal masses mn, circular frequencies ωn, damping values ζn and mode 

shapes ϕn(x), with n = 1,2, …, N. The order N of modal truncation is problem 

dependent and must be asserted by physical reasoning. On the modal space the forced 
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response of the damped string is formulated by (2.2), which follows from (2.1) by 

writing the solution of this partial-differential equation with the separation approach 

(2.4): 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )M Q t C Q t K Q t t+ + = Ξ  (2.2) 

where: [ ] ),,(Diag 1 NmmM = , [ ] )2,,2(Diag 111 NNNmmC ζωζω= , and 

[ ] ),,(Diag 22
11 NNmmK ωω= , are the matrices of modal parameters, while 

{ } T
N tqtqtQ )(,),()( 1=  and { } T

N ttt )(,),()( 1 ℑℑ=Ξ  are the vectors of modal responses 

and generalised forces, respectively. In the modal Equation (2.2) proportional 

damping is postulated. The modal damping values nζ  are usually identified from 

experiments; however, they may eventually be theoretically estimated (Fletcher & 

Rossing, 1998). Moreover, it is assumed that the system uncontrained modeshapes are 

real. The modal forces ( )n tℑ  are obtained by projecting the external force field on the 

modal basis: 

 
0

( ) ( , ) ( )  , ( 1,2,..., )
L

n nt F x t x dx n Nϕℑ = =∫  (2.3) 

The physical motions at any point of the system can be computed from the modal 

amplitudes )(tqn  by superposition: 

 ∑
=

=
N

n
nn tqxtxy

1
)()(),( ϕ  (2.4) 

and similarly concerning the velocities and accelerations. For given external 

excitation and initial conditions, the previous system of equations can be integrated 

using any adequate time-step integration algorithm. Explicit integration methods are 

well suited for the friction models developed here, as will be explained in section 2.3 

and 2.4. In these implementations, a simple Verlet integration algorithm is used 

(Beeman, 1976), which is a second order explicit scheme. Note that, although (2.2)-

(2.4) obviously pertain to a linear formulation, nothing prevent us from including in 

( )tnℑ  all nonlinear effects arising in the system. Accordingly, the system modes 

become coupled by the nonlinear effects, as will be shown later. 
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The definition of the modal basis to use in the computations is of paramount 

importance to obtain results which can be comparable to the behaviour of real-life 

instruments. In the next sections a short description is made of the different modal 

basis used for each instrument studied, to allow a clear understanding of their 

different natures. 

2.2.1 Strings 

Consider a string with a uniform linear density μ, length L and fixed at both ends 

stretched to a tension T. Assuming negligible bending stiffness in the string, the 

restoring force ( )yK  is equal to c2( 22 xy ∂∂ ) turning (2.1) into the classic damped 

wave equation, where the wave speed c is given by c2=T/μ. Since c is constant, waves 

of different frequencies travel with the same phase speed and the modal frequencies 

are then given by ωn = nπc/L, and mode shapes ϕn(x) = sin(nπx/L), with n = 1,2, …, N. 

This harmonic relation of the circular frequencies, characteristic of non-dispersive 

systems, originates naturally consonant sounds which are traditionally sough for in 

musical instruments making or tuning. 

2.2.2 Bars with constant cross section 

In clear contrast with the perfectly flexible string, the constant cross section bar 

exhibits considerable bending stiffness, EI(x), where E is the Young Modulus and I(x) 

the local moment of inertia. The restoring force ( )yK  in (2.1) is now dependent on a 

fourth spatial derivative, which results in a different phase speed for different wave 

frequencies. This dispersive behaviour originates modal frequencies with values far 

from any harmonic relation as can be seen in (2.5), for free-free boundary conditions. 

 [ ]
2

2 2 2 2
2

3.011 ,5 ,7 ,..., (2 1)
4

r
n

K E n
L

πω
ρ

= +  (2.5) 

where Kr is the radius of gyration of the cross section of the bar and ρ  is the specific 

mass of the bar material (Fletcher & Rossing, 1998).  

Although this formulation is essentially correct for long and thin bars, the model used 

in this work considers the effects of rotary inertia and shear stress, which occur in 

thick bars, by use of the Timoshenko beam model (Graff, 1975). As a result, the high 



 

 26

inharmonicity is still present but there is a slight decrease in the value of the higher 

modal frequencies (Fletcher & Rossing, 1998). 

The sound originated by the vibration of these objects tends to be somewhat 

unpleasant, unless the inharmonic frequencies are very high in the spectrum and decay 

so rapidly not to be clearly discriminated by the human ear, such as the bars used in 

the glockenspiel. 

2.2.3 Bars with variable cross section 

In order to obtain more pleasing sounds in the whole register of instruments such as 

the marimba or the vibraphone, makers usually tune these instruments by giving the 

bars a variable cross section. Following years of craftsmanship, instrument makers 

arrived to bar profiles which have natural frequencies in the approximate relation f2 = 

3f1 and f3 = 9f1 (1-3-9) or f2 = 4f1 and f3 = 10f1 (1-4-10) of the first three bending 

modes, allowing for more harmonious sounds to be produced. 

Although those are the most used relations it is possible to tune a bar to quite distinct 

sets of modal frequencies. Henrique et al (2002a, 2002b, 2002c), have developed 

optimization procedures to find the optimal bar profile for any given set of desired 

natural frequencies relations (fn/f1), for example 1-2-3, which is similar to the one 

obtained in the ideal string as far as the first three bending modes are concerned. This 

unorthodox tuning of the bars can lead to dynamical responses to friction excitation 

which behave midway between the ideal bowed string and the constant cross section 

bowed bar. 

2.2.4 Axi-symmetric structures (bodies of revolution) 

Perfectly axi-symmetrical structures, such as bells or round glasses, exhibit double 

vibrational modes occurring in orthogonal pairs with identical frequencies (Rossing, 

1994). These vibratory modes exhibit modeshapes which are usually labelled as (j,k) 

(where j relates to the number of nodal meridians and k to the number of nodal 

circles). 

When excited by impact, the different partials (usually with a great emphasis on the 

first few modes) give rise to a long stable decaying transient. However, if a slight 

alteration of this symmetry is introduced, the natural frequencies of these two 
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degenerate modal families deviate from identical values by a certain amount. In this 

situation, the slight frequency difference will generate beating between the two modal 

families. Furthermore, shell modeshapes present both radial and tangential 

components which are extremely important for the correct simulation of bowing in 

these instruments since the radial and tangential motions and contact forces are 

coupled. Furthermore, the friction excitation acts on the tangential modes of the 

system and sound radiation mainly stems from its radial motion. 
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2.3. Friction model 

The relation between the force acting on a bowed system and its resulting motion is 

governed by a friction law which can be have different behaviours depending on the 

surface properties of the bodies in contact. As seen in Chapter 1, several authors have 

developed friction models to define this relation, taking different assumptions in 

consideration.  

In bowed instruments research, a great emphasis is obviously given to this problem, 

and different models have arisen in the past decade attempting to emulate as 

accurately as possible the real contact relation between the friction force and the 

motion of the system. Particularly, the bowed string friction law has been the subject 

of the more various models, with more or less complexity (see Woodhouse & 

Galluzzo, 2004).  

For the computational method described in this thesis, a classical Coulomb model is 

used. Not being devised for a specific system, this model allows good versatility when 

used with the three different instruments analysed in this thesis. The implementation 

of this friction law in the computational method is described in the following section. 

2.3.1 Classical Coulomb model 

Consider a Coulomb-type friction force arising when the bow is applied at location cx  

of the system: 
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 (2.6) 

Here, the relative transverse velocity between the bow and the system is given by (see 

Figure 1.8): 

 )()()()(),(
1

tytqxtytxyy bow

N

n
ncnbowcc −=−= ∑

=

ϕ  (2.7) 

where )(tFN  is the normal force between the bow and the bar, Sμ  is a “static” friction 

coefficient (used during surface adherence) and )( cd yμ  is a “dynamic” friction 

coefficient (used for sliding regimes).  
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It is assumed here that dμ  is an instantaneous function of the relative bow/bar 

velocity, and use the following model: 

 cyC
DSDcd y −−+= e)()( μμμμ  (2.8) 
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Figure 2.1 – Typical evolution of the friction coefficient with the relative sliding 
velocity ( 0.4Sμ = , 0.2Dμ = , 5C = ). 

where, SD μμ ≤≤0  is an asymptotic lower limit of the friction coefficient when 

∞→cy , and parameter C controls the decay rate of the friction coefficient with the 

relative bow/bar sliding velocity. The friction model (2.8) can be readily fitted to 

typical experimental data (see for example, Lazarus, 1972), by adjusting the empirical 

constants Sμ , Dμ  and C . 

The sliding behaviour, described by the first equation (2.6), does not cause problems 

for simulations, as this equation explicitly shows how the sliding force should be 

computed as a function of the sliding velocity. However, during adherence, simulation 

becomes much more difficult. Indeed, the second equation (2.6), merely states a 

limiting value for the friction force, during adherence, and gives no hint on how 

),( tyF c  may be actually computed. This is because the adherence force depends on 

the overall balance of external and internal forces acting upon the system, which is 
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quite complex for multi-degree of freedom problems. Most friction algorithms deal 

with this problem through implicit approaches, which can be very expensive to run. 

The implementation of this friction model, mainly in what concerns the adherence 

state, can be made in different ways. Depending on the sliding/sticking time ratio 

during each period, a real adherence state (zero relative velocity between the bow and 

the system) might be more or less relevant to establish the proper motion of the 

system. For this reason, two implementations of the friction model which will be used 

in the subsequent chapters are described in the following paragraphs.  

2.3.2  Spring-dashpot true adherence model 

In this approach, adherence is simulated through a spring-dashpot model which 

enables zero relative velocity between the friction exciter and the analyzed system.  

The following explicit procedure is used at each time-step i : 

(1) If in the previous time-step the system was sliding, a possible adherence between 

the friction exciter (hereby named generically as bow) and the system is detected by 

computing )()( 1−= icici tytyJ . Then, if 0>iJ , the system is still sliding in the same 

direction. Computation of ),( ics tyF  is made according to the first equation (2.6), with 

)( ic ty  given by (2.7) and )( id tμ  by (2.8). 

(2) However, if 0≤J , then a reversal of the relative motion is occurring and 

adherence will arise. Then, the sticking force is computed using the following model: 

 )()(),( icficfica tyCtyKtxF −−=  (2.9) 

which will be used during the complete duration of the adherence state. The idea in 

(2.9) is to “attach” the system to the bow at point cx  using a suitable “adherence 

stiffness” and to damp-out any residual bow/system relative motion during sticking 

using an “adherence damping” term. At any time during adherence, the relative 

velocity cy  at the attachment point is given by (2.7) and the relative displacement cy  

is given as: 

 )()()()(),(
1
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where )(ty a
bow  is the current position of the bow “attachment point”. For a given 

constant bow speed, this changes as bowa
a
bow yttty )()( −= , where at  is the time value 

when adherence was detected. As discussed by Antunes et al (2000), the parameter 

fK  can be approximated by the axial stiffness of the bow hair, while fC  is chosen in 

order to obtain an almost-critical damping of the “adherence oscillator”. 

(3) After computing the adherence force, ( , )a c iF y t  is compared with the maximum 

allowable value NS Fμ . If NSa FF μ≤ , the current estimate is accepted and simulation 

continues assuming a sticking state. On the contrary, when NSa FF μ> , sliding will 

arise and the friction force is recomputed according to the first equation (2.6). Then, 

the procedure continues with the next time-step.  

By virtue of (2.7) and (2.10), all the modes of the system become coupled when the 

nonlinear friction forces are computed and projected on the modal basis (2.4) and then 

incorporated in (2.3). 

2.3.3  Pseudo-adherance with a regularized near-zero velocity model 
In this section, a simpler approach is taken to model friction interaction, which allows 

for faster computation times, although it lacks the capability to emulate true friction 

adherence. The friction force will be formulated as: 
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where sμ  is a “static” friction coefficient and ( )d tyμ  is a “dynamic” friction coefficient, 

which depends on the relative surface velocity ty . The following model is used: 

 

 ( )( ) ( ) exp ( , )d t s t cy C y tμ μ μ μ θ∞ ∞= + − −  (2.12) 
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where, 0 sμ μ∞≤ ≤  is an asymptotic lower limit of the friction coefficient when ty → ∞ , 

and parameter C  controls the decay rate of the friction coefficient with the relative 

sliding velocity, as shown in the typical plot of Figure 2.2(a). This model can be fitted 

to the available experimental friction data (obtained under the assumption of 

instantaneous velocity-dependence), by adjusting the empirical constants sμ , μ
∞

 and 

C . 

Notice that both equations (2.11) correspond to velocity-controlled friction forces. For 

values of ty  outside the interval [ , ]ε ε− , the first equation simply states Coulomb’s 

model for sliding. Inside the interval [ , ]ε ε− , the second equation models a state of 

pseudo-adherence at very low tangential velocities. Obviously, ε  acts as a 

regularization parameter for the friction force law, replacing the “zero-velocity” 

discontinuity (which renders the adherence state numerically tricky), as shown in 

Figure 2.2 (b). This regularization method, extensively developed in Oden & Martins 

(1985), has been often used as a pragmatic way to deal with friction phenomena in the 

context of dynamic problems. However, using this model, the friction force will 

always be zero at zero sliding velocity, inducing a relaxation on the “adherence” state 

(dependent on the magnitude of ε ), and therefore disabling a true sticking behaviour. 

How pernicious this effect may be is problem-dependent – systems involving a 

prolonged adherence will obviously suffer more from the relaxation effect than 

systems which are sliding most of the time. For the problem addressed here, realistic 

results have been obtained using formulation (2.11), for small enough values of the 

regularization domain ( 4 -110 msε −± ≈ ) – results which do not seem to critically depend 

on ε , within reasonable limits. 
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Figure 2.2 – Friction coefficient as a function of the contact relative tangential 

velocity ( μ∞ = 0.2, sμ = 0.4, C = 10): For -1< ty  <1; (b) For -0.01< ty <0.01. 

2.3.4 Other friction models 

As mentioned in the previous sections, different friction models have been explored 

over the past decade, mainly in relation to the study of the bowed string. The most 

common models relate the friction force only with the relative velocity between the 

bow and the string. This is the case of the model previously described, as well as the 

“Hyperbolic Friction Function” (Guettler, 2002) where the friction coefficient is an 

hyperbolic function of the relative bow/string velocity. 

In a recent study, Smith and Woodhouse (2000) measured the friction and relative 

sliding speed between a rosined rod and a vibrating cantilever system. This analysis 

showed a hysteresis loop in the friction-velocity relationship, which doesn’t find 

explanation on the classical friction models referred before. The authors suspected 

that this behaviour is related to the temperature dependence of the rosin characteristics 

used in the bow. In pursuing this effect two different friction models were devised: a 

“thermal viscous model” and a “thermal plastic model”. For both of these models, the 

authors claim that their implementation on the simulation of the bowed string 

dynamics give results consistent with measurements in steady sliding tests 

(Woodhouse & Galluzzo, 2004), representing an alternative to the classical friction 

model used in this thesis. This is a very active research area at the present time. 
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2.4. Numerical aspects 

2.4.1 Integration algorithm 

The modal equations (2.2), coupled through the right hand-side force terms, may be 

numerically integrated using either an explicit or implicit approach, meaning that the 

dynamical force balance may be based on the state of the system at either the last 

computed time-step it  or the next time-step 1 iit t tΔ+ = +  under computation. Both 

approaches have merits and disadvantages as, in broad terms, explicit algorithms are 

simpler and faster per time-step than implicit algorithms, which must iterate until 

convergence. However, the latter typically enable the use of larger integration time-

steps tΔ , which may compensate the previous disadvantage, the best option being 

problem dependent. Previous experience with vibro-impacting and friction-excited 

systems (see Antunes & Tafasca, 2000; Tafasca et al, 2000; Antunes et al, 2001; 

Inácio, 2002; Inácio et al, 2006]) suggests that explicit algorithms are well suited for 

such problems. Among other possible choices the so-called “Velocity-Verlet” method 

introduced by Swope et al (1982) is used here. This is a simple explicit algorithm of 

second order. Although not frequently found in structural dynamics computations, this 

algorithm has been widely used by researchers dealing with granular flow and 

molecular dynamics computations – see Deuflhard et al (1999), for instance. However, 

other methods such as Newmark’s algorithm (Newmark, 1959; Bathe & Wilson, 1973) 

might be used as well. 

Notice that because numerical efficiency is not an issue here, it is not claimed that the 

time-step integration algorithm presented is the most efficient approach for the 

problem. 

For each modal equation, the Velocity-Verlet algorithm is expressed as: 

 

2
3

1
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( )( ) ( ) ( ) ( )2
( ) ( )( ) ( ) ( )2
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Δ Δ
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+
+

ℑ= + + +

ℑ + ℑ
= + +

 (2.13) 

where, because the interaction forces depend on the system response, 

( ) ( ), ( )n ni j i j iq qt t t⎡ ⎤⎣ ⎦ℑ = ℑ  and, strictly speaking, 1 1 1( ) ( ), ( )n n j ji i iq qt t t+ + +
⎡ ⎤⎣ ⎦ℑ = ℑ  (where 

the index j stands for all modes in the range 1,...,j N= ). The use of such an 



 

 35

expression for 1( )n it +ℑ  can be solved by an implicit scheme. However, formulation 

(2.13) may be split as follows: 

 

1/ 2

1 1/ 2

1
1 1/ 2

( )( ) ( )
2

( ) ( ) ( )
( )( ) ( )
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Δ

Δ

Δ
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+
+ +

ℑ= +

= +

ℑ
= +

 (2.14) 

with ( ) ( ), ( )n ni j i j iq qt t t⎡ ⎤⎣ ⎦ℑ = ℑ  and the approximation 1 1 1/ 2( ) ( ), ( )n n j ji i iq qt t t+ + +
⎡ ⎤⎣ ⎦ℑ = ℑ  

is used instead of the unknown value 1( )n it +ℑ . 

2.4.2 Comparison with a classical approach 

Several computational approaches to the simulation of bowed musical instruments 

have been developed by other authors. Bowed string research, for example, has led to 

some of the most important developments on simulation methods, which are today 

recognized as trustworthy (Woodhouse & Galluzzo, 2004). Therefore, in order to 

establish consistent comparisons between the present approach and an already 

established and thoroughly published simulation method, the digital waveguide model 

for bowed strings motion developed by McIntyre & Woodhouse (1979) was chosen. 

In this method, considering a point bow model, two dynamical quantities are required 

in the digital waveguide model: the velocity ( )cv t  of the string at the bowing point, 

and the friction force ( )F t  at the same point. The calculation of these quantities is 

performed by two equations: one relating ( )F t  and ( )cv t  by a chosen friction law and 

the other emerging from the dynamical response of the string when excited by a given 

force ( )F t . This last relation is usually referred as the “Friedlander construction” 

(Friedlander, 1953). 

One of the most important features of the Friedlander scheme is that the calculation of 

the string velocity ( )cv t  is dependent on the friction force ( )F t , the velocity time-

history ( )hv t stemming from reflected waves, and on the string’s wave impedance Z , 

as in equation (2.15) 
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( )( ) ( )

2c h
F tv t v t

Z
= +  (2.15) 

Equation (2.15) is a direct consequence of decomposing the string (velocity) impulse 

response ( )g t  in two terms: 

 

 1( ) ( ) ( )
2 hg t t g t

Z
δ= +  (2.16) 

 

where the Dirac term applies at 0t =  and (as would happen in an infinite string) is 

independent of the pulse-reflections at the boundary conditions, while the second term 

( )hg t  is solely the result of the reflected waves. To allow for physically sound 

computations the calculation of the friction force should account not only for the term 

( )hg t  in the string dynamics but also on the term which embeds the string’s wave 

impedance. In the present approach, in contrast to most researchers, the dynamics of 

the string is not treated through a (modified) convolutional approach, but using 

instead a modal formulation. In the now-classic convolution approach developed by 

McIntyre, Schumacher and Woodhouse, the decomposition (2.16) of the string 

impulse response is useful, because it allows a very fast computation of the string 

response: in order to obtain ( )cv t , the slow convolution using the “full” impulse 

response ( )g t  is replaced by the bow load term ( )
2
F t

Z
 plus a second term stemming 

solely from the reflected waves, ( )hg t , which can be computed fast by formulating the 

reflected waves in terms of “short-lived” reflexion functions at the string ends. Such 

decomposition leads naturally to the Friedlander construct for the string dynamical 

equilibrium. 

However, it is important to notice that even if the decomposition (2.15) and (2.16) are 

useful in the framework of the above-mentioned approach, they are certainly not the 

only possible way to solve the problem. In the modal approach such decomposition is 

not needed nor used. Working with the string modal basis, which is equivalent to the 

“full” impulse response ( )g t , the full velocity ( )cv t  at the bow location is obtained 

from the dynamical time-step integration, and not only the reflections-generated term 

( )hv t . Therefore, the wave impedance of the string is encapsulated in the modal basis, 

in the same way that it is encapsulated in the “full” impulse response ( )g t . 
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This is clearly shown in Figure 2.3, below, where the initial 0.05 s of the string 

velocity impulse response at the bow location ( / 0.09bowx L = ) is plotted, obtained from 

the summation of 100 modal contributions ( 196 Hznf n= , modal damping 

0.001,n nζ = ∀ ). It is clear that all the pulses contained in ( )g t  – including the initial 

Dirac term – are rightly displayed (apart from the unavoidable Gibbs phenomenon 

and the filtering effect of modal truncation). Therefore all the terms in equation (2.16) 

are reflected in the modal basis used by these computations, as should be. 

 
Figure 2.3 – Impulse response ( )g t  obtained by modal summation 

For the needs of the demonstrative computations presented in the following, Figure 

2.4 shows the impulse response pertaining to the delayed reflections, ( )hg t . This was 

obtained from ( )g t , by replacing the first spike by zeros.  

 
Figure 2.4 – Impulse response ( )hg t  pertaining to the delayed reflections 
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In order to illustrate the validity of the preceding arguments a few demonstrative 

computations are described in the following chapters, using three computational 

approaches: 

a) The modal method, using the friction model and a time-step integration of the 

modal equations, as explained in the preceding sections of this thesis. 

b) An equivalent method, but with the string response computed from the 

convolution 

 
0

( ) ( ) ( )
t

cv t F g t dτ τ τ= −∫  (2.17) 

and the friction force also computed using the friction model presented in 

section 2.3.1. 

c) Another convolution approach, basically analogous to the classic McIntyre, 

Schumacher and Woodhouse method, except that ( )hv t  is computed from the 

“long” convolution, 

 
0

( ) ( ) ( )
t

h hv t F g t dτ τ τ= −∫  (2.18) 

instead of their rapid scheme using reflexion functions. For the computation of 

the friction force, Friedlander’s construct has been implemented 

 
( )

( ) [ ]NL

Sticking : ( ) ; ( ) 2 ( )
Sliding : ( ) such that 2 ( ) ( ) F ( )

c bow bow h

c c h bow c

v t v F t Z v v t
v t Z v t v t v v t

= = −⎧⎪
⎨ − = −⎪⎩

 (2.19) 

The computational approach (b) serves here as a convenient “bridge” between method 

(a) and the classic convolution approach (c). For this method, the “long” convolution 

is computed using ( )hg t  (instead of using reflexion functions) to maintain 

compatibility of model (c) with the modal parameters used in computation (a) and 

with the corresponding impulse response ( )g t  used in (b). Indeed, understanding and 

not computation time is the issue here. Note that, concerning the previous nonlinear 

computations, (a) and (b) are explicit methods, meaning that the friction force at time  

1it +  is computed based on the string response (at location bowx ) at the previous time-

step, e.g. ( )c iy t  and ( )c iv t . On the contrary, for computations (c) a fully implicit 
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scheme has been implemented, such that the second equation (2.19) is solved in an 

iterative manner. The physical parameters used here for a simple point model are 

those of the system studied in the paper, including the exponential sliding friction 

curve. Finally, for all simulations, and independently of the fact that it is needed or 

not, the reflections-generated response ( )hv t is also computed from the convolution: 

 
0

( ) ( ) ( )
t

h hv t F g t dτ τ τ= −∫  (2.20) 

Figure 2.5 shows the initial transient of the string, acted by the bow at normal force 

1 NbowF =  and tangential velocity 0.15 m/sbowv = , computed using approach (a). 
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Figure 2.5 – Starting transient computed according to model (a). 

The plots show the string displacement ( )cy t  and velocity ( )cv t , at the bowing location, 

the friction force, as well as a logical indicator of the friction state (stick/slip). One 

may notice at the start that the string sticks to the bow, while secondary waves 

(between the bridge and the bow) can be seen in the friction force plot. For a large 

enough amplitude, the friction force reaches the limit value S NFμ  and a complex 

sequence of sliding/sticking states follows.  

Figure 2.6 shows the same computation, but using now approach (b) – the time-step 

integration of the modal equations was replaced by convolution (2.17). It is clear from 

the results that the two approaches are equivalent. 
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Figure 2.6 – Starting transient computed according to model (b). 

Figure 2.7 shows ( )cv t  as well as the reflection-generated velocity component ( )hv t , 

which was computed from equation (2.20), using the friction force ( )F t  generated in 

the computation (b), Figure 2.6. 
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Figure 2.7 – Total velocity ( )cv t  and the reflection-connected component ( )hv t  

generated from computation (b). 

 

Figure 2.8 – Total velocity ( )cv t  and the quantity ( ) ( )
2 h

F t v t
Z

+  generated from 

computation (b). 

Notice that ( )hv t  is quite different from ( )cv t . In particular, as it should, ( ) 0hv t =  at the 

very beginning of the motion, until the first reflection arrives to the bowing point. On 

the other hand, during all the sticking motion-start, ( )c bowv t v≅ , while ( )hv t  reflects the 
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“coming and going” of the reflected waves between the bridge and the bow. The main 

point is highlighted in Figure 2.8: when comparing the computed velocity ( )cv t  with 

the quantity ( ) ( )
2 h

F t v t
Z

+ , these two quantities well fulfil equation (2.15) – which was 

never used for performing this nonlinear simulation. 

One may notice, however, that the two plots shown in Figure 2.8 are not absolutely 

identical, but present some minute differences, which are mostly due to the fact that in 

equation (2.15) the impedance Z  of the string is used, without any correction to 

account for the compliance of the bow-hairs. Indeed, because in computations (a) and 

(b) a bowing model with a finite impedance bZ  is used, equation (2.15) is not strictly 

applicable. No effort was made, however, to produce a correction for the bow 

compliance in these demonstrative computations.  

It is interesting to compare the previous computations (a) and (b) with the 

corresponding results from method (c), where the Friedlander construct is 

implemented as explained before. Results are shown in Figure 2.9, and their similarity 

with those presented in Figure 2.5 and Figure 2.6 pertaining to the present 

computational model, is unmistakable. Again, some differences can be pointed, 

essentially because computation (c) is related to a bow with infinite impedance, while 

(a) and (b) present a more “flexible” behaviour at the contact point due to the bow 

compliance implemented in the present contact model. Accounting for the fact that, 

strictly speaking, the system in computation (c) is not exactly the same as the one in 

computations (a) and (b), a comparison between all these results is quite satisfying. As 

a last illustration, Figure 2.10 shows the string displacement at the contact point, for 

the three computational models, when the transient computation is extended for 0.1 

second. Again the results (a) and (b) present slight differences when compared with 

those of the classical approach (c), which reflect the bow-hair compliance effect, as 

discussed before. 
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Figure 2.9 – Starting transient computed according to model (c). 
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Figure 2.10 – Transient computed for 0.1 s according to models (a), (b) and (c). 

 

2.5. Advantages and disadvantages of the method 

The computation method presented in this thesis has clear advantages and 

disadvantages when compared with others already referred, such as the digital 

waveguide model or other time-domain methods. 

The modal approach is able of very detailed simulations, leading to very realistic 

space-domain and time-domain dynamics. On the other hand, contrasting the efficient 

approach of McIntyre et al (1983), the modal method is well suited to deal with 

systems presenting both harmonic (e.g., with modal frequencies such as 1fmfn =  

with m integer) and non-harmonic modal relationships.  

Although this method implies a linear formulation, it allows the inclusion of nonlinear 

interaction forces without disrupting the physical principles that sustain it.  
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At the present time, with the high-level non-compiled MATLAB implementation used, 

this computational method is unable to perform real-time simulations, which is a 

definite advantage of the classic approach developed by McIntyre et al (1983), who 

cleverly exploits the non-dispersive nature of string and acoustic waves arising in 

most musical instruments. Real-time implementation was never an objective of this 

thesis, so no effort whatsoever was input in such direction. However, this modal 

approach allows the introduction of several components of the instrument, without 

any important additional of “code building” effort. This possibility of component 

addition is one of the major advantages of the method. As long as the interconnections 

are physically sound it is possible to introduce several features of the musical 

instrument to be simulated. For example, in the case of the bowed string, the presence 

of a moving finger performing glissandos along the arm of a cello is easy to simulate 

because the respective interaction force is projected on the string unconstrained modal 

basis at the finger position for each time-step. Moreover, including the effect of a 

“compliant” component, such as the body of the instrument, with its own possibly rich 

modal basis, is possible as will be demonstrated in this thesis. Obviously, as the 

number of components of the instrument grow, so will the size of the problem to be 

solved which will inevitably decrease the computation times. However, this increase 

of computation time will also increase for other methods for the same problem 

complexity, which do not share the ease of introduction of these components. 

A note on numerical stability is need at this stage when referring to the construction of 

a virtual instrument with its several components. Apart from the ease of introduction 

of these instrument parts, the modal method preserves very high numerical stability of 

the coupled system, in contrast with other methods. The finite difference scheme, for 

example, does not insure that stable isolated components computations will perform 

numerically sound once coupled (Bilbao, 2007). 

This possibility of composing an instrument with its several features allows also the 

computation of energy flow between the various components. Although this aspect 

will not be treated in this thesis, several computations performed along the research 

carried showed that this has an advantage, not only to better understand the behaviour 

of the instrument, but also to check numerical stability. Even if the system is non-
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conservative it is possible to check whether energy was dissipated by any component 

or by any numerical problem.  

One of the aspects that can lead to a time-consuming model construction is the 

definition of the modal basis. If for simple systems such as the string, this modal basis 

can be easily calculated, for more complex systems a careful modal identification or a 

“heavy” eigenvalue problem solution is needed, in order to obtain realistic results. 

However, the modal description allows for a non-local method of solving the 

governing partial differential equations of the system, in contrast with the local 

description (grid-point) of the explicit finite difference methods, digital waveguide 

and lumped network models. 

Apart from the definition of the modal basis, which can be more or less easy to obtain, 

the modal truncation order is a very important aspect. Any continuous system presents 

an infinite number of theoretical modes (degrees-of-freedom). The choice of the 

number of modes to be used in computations has to be based on the knowledge of the 

real system, and the larger the number of modes, the longer will the computation 

perform and heavier will be the amount of information processed. This is also a 

problem for other methods, such as the finite difference methods where the spatial 

discretization of the system must be high enough to allow an accurate computation of 

the detailed dynamics. In practice, all modes significantly excited through the 

nonlinear excitation mechanisms must be included in the computational modal basis. 

This should be asserted by analysing the convergence of results for incresisng number 

of modes, as well as by confrontation with experiments. 

Another clear advantage of this method, by contrast with the finite difference method 

for example, is the preservation of the frequency relations between modal frequencies, 

along the calculation, independently of the number of modes used. This aspect is one 

of the main problems with finite-difference methods where numerical dispersion can 

easily occur. Although this can be controlled to a certain extent by the degree of 

discretization of the system, this will always have as a consequence a higher 

computation effort. 
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Chapter 3 
 
BOWED STRINGS 
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3. BOWED STRINGS 

3.1. Introduction 

Raman’s seminal paper (Raman, 1918) was a landmark study of the dynamics of bowed 

strings. Since then, a plethora of research papers has been published on bowed-string 

instruments, including enlightening work by Friedlander (1953), Schelleng (1973), 

McIntyre, Schumacher and Woodhouse (1983), to name just a few – see Cremer’s book 

(Cremer, 1984) – for an extensive account of the field.  

In this Chapter, a detailed description of the implementation of the modal simulation 

method is given, with application to bowed string motion. 

3.1.1 Bow Width 

Although computationally more expensive – for ideal non-dispersive systems – than the 

now classical and widely used approach developed by McIntyre & Woodhouse (1979) 

and McIntyre et al (1983), this method finds its most usefulness as more complex 

physical features are incorporated in the numerical simulations – such as frequency-

dependent or space-dependent system parameters, coupling of the transverse and torsion 

string motions (Inácio et al, 2001, Antunes et al, 2001; Inácio et al, 2002a), dispersive 

effects connected to bending stiffness in non-ideal inharmonic strings (or even beams or 

shells) – Inácio et al, 2003a, 2003b; Inácio et al, 2004a, 2004b –, as well as the complex 

coupling of strings and the instrument body, through the moving bridge (Inácio et al, 

2004c, 2004d; Inácio et al, 2005). 

Unlike other computational techniques, the effectiveness of the modal method is not 

affected by dispersive effects in the system dynamical equations. Furthermore, the 

computational strategy and workload of the modal approach are practically not affected 

as one considers further intricacies in the bow/string interaction model. Such is not the 

case for the wave-propagation (coupled with reflection functions) simulation method 

(McIntyre & Woodhouse, 1979; McIntyre et al, 1983) which, although extremely 

efficient when addressing basic configurations (e.g. ideal strings under point-

excitations), is hardly amenable to deal directly with significant dispersive phenomena 

and/or distributed loading – hence the need to couple it with a much “slower” finite-
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difference scheme in Pitteroff & Woodhouse (1998a, 1998b, 1998c), in order to 

accommodate the space-distributed bow/string interaction. 

The work presented in this chapter evolved from preliminary results presented in Inácio 

et al (2002b). Here, finite-width bows are simulated by a set of evenly-distributed 

contact points (which define a given bow-width, bl ), instead of a single bow/string 

contact point. The frictional forces resulting from the multiple bow/string interaction 

points are simultaneously projected on the string modes, and the modal differential 

equations are solved using an explicit time-step integration algorithm. This simple 

approach proved effective and convergence results, shown in section 3.3.3.1, suggest 

that modelling using one contact point per millimetre of contact width is adequate to 

enable realistic simulations. 

As a first approximation, the bow-hair is modelled here in a quasi-static manner, such 

that only the axial flexibility and damping of the contacting hairs are accounted for. As 

in Pitteroff & Woodhouse (1998a, 1998b, 1998c), inertial effects in the hair ribbon have 

been neglected. However, a true dynamical model of the bow, such that the hair ribbon 

is modelled by a number of its axial (and other) modes, should present no difficulties 

whatsoever. 

Also, although debatable, it was decided not to incorporate, in the simulations related to 

the bow width, phenomena such as the string inharmonicity and torsion modes. Finally, 

in spite of the considerable interest and promising results of recent and more advanced 

physically-based friction models (thermally-controlled, elasto-plastic) – Smith & 

Woodhouse (2000), Woodhouse (2003), Galluzzo & Woodhouse (2003), Serafin et al 

(2003) –, it was chosen to use in the present computations a conventional velocity- 

dependent Coulomb friction model. Indeed, the on-going research on the tribology of 

rosin interfaces is far from resolved, and – recalling the words of J. Woodhouse (in 

Woodhouse & Galluzzo, 2004) – “recent results have shown that none of the friction 

models used in the existing literature is entirely credible”. Therefore, the conventional 

approach is still justified in the context of this work, enabling an easier assessment of 

the present results with respect to others on both point-bowing and finite-width bowing, 

which were also obtained using simple velocity-dependent friction laws. 
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Finally, it is postulated here that the normal bow/string interaction force and transverse 

velocity can be externally controlled, independently of the string vibratory responses, 

which are only computed along the transverse direction. Extension of this computational 

model to deal with two-dimensional motions, incorporating the string modes along the 

normal direction as well as the bow-hair dynamics, presents no difficulties in principle 

and will be also addressed elsewhere. 

In this section, other dynamical regimes beyond the classic Helmholtz motion are 

analysed. Many researchers in this field associate musically interesting tone with this 

regime only. For instance, a recent communication (Serafin & Young, 2003) states that 

“In the case of the bowed string, good tone refers to the Helmholtz motion”, a view 

which echoes the feeling of most researchers in the field. However, inspiring violin 

playing often makes a significant use of higher-order (multiple slides-per-cycle) regimes 

to capture different musical atmospheres – for example the strings are played sul 

ponticello in almost every musical work. Therefore the effects of finite-width bowing 

are explored on various dynamical regimes which arise in the range of playing 

parameters explored.  

In many cases, a qualitative comparison with the results obtained by Pitterof & 

Woodhouse (1998a, 1998b, 1998c) is possible. However, when attempting quantitative 

comparisons, one should bear in mind that a violin G string (196 Hz) is used, using 

comparatively low friction bow/string interaction forces (μS = 0.4, μD = 0.2), while 

those authors simulated an A string (440 Hz) subjected to higher frictional forces (μS = 

0.8, μD = 0.3). Also as pointed, in contrast to Pitterof & Woodhouse (1998a, 1998b, 

1998c), the present computations pertain to an ideal string with torsion motions 

neglected. Finally, note that adherence parameters are assumed here independent of the 

contact bow width (in order to focus on the effect of bl ) while in Pitterof & Woodhouse 

(1998a, 1998b, 1998c) they are taken proportional to bl . 

Finite-width bowing simulations are compared to those of a point-excited string, and the 

main features stemming from the multiple contact points are highlighted. The results 

obtained are presented in the form of parameter-space maps which show the influence 

of bowing parameters – such as the applied normal force NF , bow velocity bowy , 

bowing bridge-distance cx , and bow-width bl  – on the self-excited vibratory regimes, as 
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well as their corresponding steady amplitudes. In agreement with previous authors 

(McIntyre et al, 1981; 1982; (Pitterof & Woodhouse, 1998a; 1998b; 1998c) the finite-

width model reveals the existence of backward and forward “partial” differential slips of 

individual hairs, occurring between the main slip phases of the Helmholtz (or other 

more complex) motions, which lead to an increase of broadband high-frequency content 

in the spectrum of the string/bridge interaction force. The range of input parameters 

explored also allowed observation of the flattening effect, which was found in the point-

model as well as in the finite-width cases, although in a lesser degree for finite-width 

bowing. 

3.1.2 String/Body Coupling 

A crude approach to incorporate body effects, when simulating string sounds, is to start 

by computing the vibratory response of an “isolated” (bowed or plucked) string, and 

then use the resulting string/bridge interaction force to drive a given body vibro-acoustic 

transfer function. However this simple approach is quite limited and cannot account for 

any energy feedback from the body into the string – such as is found in wolf notes – 

because the full string/body coupling is not modelled. 

Apparently only a few authors have attempted to address this string/body coupling 

problem. McIntyre (1983) incorporated in their wave-propagation computational 

algorithm a bridge-reflection function which encapsulates the dynamical behaviour of a 

given body resonance, enabling them to simulate the coupled dynamics between the 

string and the chosen body resonance. Similarly, Puaud et al (1991) used (in connection 

with a so-called “numerical bow”) a mass-stiffness bridge-resonator, therefore also 

emulating a chosen body-resonance coupled to the string dynamics. Recently, a 

different approach has been pursued by several authors to simulate instrument bodies 

and cavities – see Huang et al (2000), for instance – by using 2D or 3D waveguides to 

compute simplified multi-degree-of-freedom resonating systems. However, until now, 

this modelling technique has only been used to simulate the body-filtering effects on 

string/bridge dynamical forces, with no feedback coupling. In relation to other stringed 

instruments, Derveaux et al (2003) achieved fully coupled string/soundboard 

computations for a modelled guitar.  

The aim of the present work is to simulate the interaction between strings and real-life 

instrument bodies, where the present computational method is extended to incorporate 
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the multi-modal dynamics of a violin and cello body, fully coupled to the string motions. 

A hybrid approach is taken, in the sense that a theoretical model of the string is coupled 

with dynamical body data, obtained either from simplified models or real-life 

experiments. 

The string is modelled using its unconstrained modes assuming, pinned-pinned 

boundary conditions at the tailpiece and the nut. Then, at the bridge location, the 

string/body coupling is enforced using the body impulse-response or modal data (as 

measured at the bridge). At each time step, the system motion is computed by 

integrating the string modal equations, excited by the modally-projected values of the 

frictional bow force and also of the string/bridge contact force. The latter is obtained 

from the body motion at each time-step, as computed either (a) using the body impulse-

response, or (b) from a modal model of the body. In the first method, the body dynamics 

are obtained through incremental convolution, a costly procedure which however 

enables the direct simulation of real bodies without any further modelling assumptions 

or simplifications. The second method allows for faster computations, but demands a 

computed or identified modal model of the instrument body. 

It should be mentioned here that the modal basis unconstrained at the bridge location 

(coupling point) is not the only option available to solve this problem. Indeed the 

interested reader may refer to the recent work by Woodhouse (2004), who deals with 

body-string coupling in guitars by modelling the string as pinned-pinned at the nut and 

the bridge, and then complements such basis with a so-called “constraint mode” which 

can be shown to be the static response of the string when the bridge extremity is moved 

(Craig, 1981). Similar issues arise when dealing with sub-structure synthesis where the 

analyst may choose between several families of the basis functions used to represent 

each substructure – refer, for instance to Meirovich (1997). The merits of the various 

approaches will be reflected on the number of basis terms used to achieve convergence, 

however, a comparison of these different methods is a matter for future work.  

After a few demonstrative experiments and a detailed presentation, the computational 

approach is illustrated for both violin and cello typical self-excited string motion 

regimes. These are compared for “isolated” strings and for the string/body coupled 

model, based here on synthetic body dynamical data. In particular, interesting 

simulations pertaining to the so-called wolf notes are presented. 
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3.2. Computational Model 

3.2.1 Formulation of the string dynamics 

Consider a string of length L  with linear density μ  and bending stiffness EI , subject 

to a axial tension T  and an external force distribution ),( txF . If a dissipation parameter 

η  is assumed, the small-amplitude transverse motions ),( txy  are described by a fourth 

order differential equation: 

 
2 2 2 2

2 2 2 2 ( , )y y y yT EI F x t
t x t x x

μ η
⎛ ⎞∂ ∂ ∂ ∂ ∂

− + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.1) 

However, the interaction between the bow and the string also generates torsional motion 

(Cremer, 1984). The bow induces a moment distribution M(x,t) on the string, whose 

small-amplitude angular displacement θ(x,t) can be described by:  

 
2 2

2 2 ( , )J JG M x t
t x t
θ θ θρ ν∂ ∂ ∂

− + =
∂ ∂ ∂

 (3.2) 

where G  is the shear modulus of the string, ρ  is its mass density and J  the polar 

moment of inertia. A dissipation parameter ν  is also included to allow for damping of 

the string’s torsional motion. The transverse and torsional wave speeds are respectively 

given by: 

 trans
Tc
μ

=  (3.3) 

 tor
Gc
ρ

=  (3.4) 

Consider point C in Figure 3.1 as the contact point between the bow and the string when 

the bow is at rest. Once some velocity, bowV , is applied by the player, the string 

describes a transverse motion, cy  between point C and C’ (equal to 'OO ), and a 

torsional motion cθ , between point C’ and point C’’. The total displacement of point C is 

the sum of the transversal displacement, cy , with the cord ' ''C C . As the same motion 
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occurs for all the points of the surface of the string at the cross-section of contact with 

the bow, the tangential motion of the string’s surface, ( )tany t , can be described by: 

 ( ) ( ) ( )O
tan trany t y t R tθ= +  (3.5) 

where ( )O
trany t  is the transverse displacement of the centre of the string and R its radius. 

The previous equation describes the coupling between transverse and torsional motion 
of the string. 

 

Figure 3.1 – Geometric scheme of the translational and rotational motion of the 
bowed string 

Any solution of (3.1) can be formulated in terms of the string’s transverse modal 

parameters nm , nω , nζ  and modeshapes )(xnϕ , Nn ,,2,1= . The order N  of modal 

truncation is problem dependent and must be asserted by physical reasoning, supported 

by the convergence of computational results. The forced transverse response of a 

damped string can then be formulated as: 

 [ ]{ } [ ]{ } [ ]{ } { })()()()( ttQKtQCtQM Ξ=++  (3.6) 

where: [ ] ),,(Diag 1 NmmM = , [ ] )2,,2(Diag 111 NNNmmC ζωζω= , 

[ ] ),,(Diag 22
11 NNmmK ωω=  

{ } T
N tqtqtQ )(,),()( 1= , { } T

N ttt )(,),()( 1 ℑℑ=Ξ . 

yc 

θc C’’ 
R

C C’ 

O O’ 

bow 0 m/sV > bow 0 m/sV =
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The modal damping values nζ  are usually identified from experiments; however, they 

may eventually be theoretically estimated (see Fletcher & Rossing, 1998). The modal 

forces )(tnℑ  are obtained by projecting the external force field on the modal basis: 

 ∫=ℑ
L

nn dxxtxFt
0

)(),()( ϕ  (3.7) 

In a similar way, the torsional motions described by equation (4.1) can have a modal 

formulation. 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )Tor Tor Tor Tor TorI Q t C Q t K Q t t+ + = Ψ  (3.8) 

where: [ ] 1Diag( , , )NI I I= , [ ] 1 1Diag(2 , , 2 )Tor N N N NC I Iϖ ξ ϖ ξ= , 

[ ] 2 2
1 1Diag( , , )Tor N NK I Iϖ ϖ= ; { }

1
( ) ( ), , ( )

N

TTor Tor
TorQ t q t q t= , 

{ } 1( ) ( ), , ( ) T
Nt t tΨ = ϒ ϒ . 

where NI  are the modal moments of inertia, and Nϖ  and Nξ are the angular natural 

frequencies and modal damping for torsional motion, respectively. 

Torsional vibrations in strings are usually quite difficult to measure. The scarce 

available data indicates that the ratio of torsional to transverse wave speeds lies in a 

range from 2.6 to 7.6 depending on the material and construction of the string and 

damping values nξ  that vary from 1% to 7.7% (Gillan & Elliot, 1989). The modal 

moments ( )n tϒ  are obtained by projecting the external force field on the modal basis: 

 
0

( ) ( , ) ( )
n

L Tor
n t M x t x dxϕϒ = ∫  (3.9) 

where ( , ) ( , )M x t F x t R= ⋅ . 

The modal shapes nϕ  and Tor
mϕ are calculated by solving the homogeneous form of the 

second order undamped transverse and torsional wave equations: 

 
2 2

2 2

y yT
t x

μ ∂ ∂
=

∂ ∂
 and 

2 2

2 2J JG
t x
θ θρ ∂ ∂

=
∂ ∂

 (3.10) 
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The physical motions can then be computed from the modal amplitudes )(tqn  and 

( )
n

Torq t  by superposition: 

 
1 1

( , ) ( ) ( ) ( ) ( )
m

N M
Tor Tor

Tan n n m
n m

y x t x q t R x q tϕ ϕ
= =

= +∑ ∑  (3.11) 

and similarly concerning the velocities and accelerations. For given external excitation 

and initial conditions, the previous system of equations can be integrated using an 

adequate time-step integration algorithm. Explicit integration methods are well suited 

for the friction model developed here. In this implementation, a simple Verlet 

integration algorithm is used (Beeman, 1976), which is a second-order explicit scheme. 

Note that, although (3.6)–(3.9) obviously pertain to a linear formulation, nothing 

prevent us from including in )(tnℑ and ( )n tϒ  all nonlinear effects arising in the system. 

Accordingly, the system modes become coupled by the nonlinear effects. 

Considering rigid terminations at the nut and tailpiece extremities of the string, the 

external force field ( , )F x t  is due to three applied forces (see Figure 3.2): 

• The excitation friction force , ( , )s a cF x t  due to the friction-induced transverse 

excitation provided by the moving bow hairs; 

• The interaction force ( , )b bF x t  between the body and the string at the bridge; 

• The possible presence of a finger on the fingerboard, applying a force ( , )f fF x t . 

 

 

 

 

Figure 3.2 – Idealized model of the bowed string 

In this model, the finite width of the bow is simulated by considering a given number, b, 

of contact points between the string and the bow, distributed along a width lb on the 

Nut Tailpiece 
Bridge 

Finger 

String 

Bow 
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string length 'L , measured between the nut and the bridge. Each contact point is located 

at a distance hxc  from the bridge, as shown in Figure 3.3. 

 

 

 

 

 

 

Figure 3.3 – Configuration of the bow/string interaction 

In the next sections, a description of the models of the previously mentioned excitation 

forces are given. 

3.2.2 Friction Model 

As seen in the introductory chapter, friction related phenomena have been subject of a 

considerable amount of research, and several models have emerged to address a number 

of related problems. Due to the complexity of the interaction between contacting 

surfaces and of the associated high nonlinearity, most models are of an empirical nature. 

A survey of the experimental and analytical knowledge in this field can be found in 

Rabinowicz, 1965; Kragelsky et al, 1982; Oden & Martins, 1985; Haessig & Friedland, 

1985; Karnopp, 1983; Leine et al, 1998. 

In this chapter, adherence is modelled using the concept of spring/damping attachment 

point, while sliding is modelled by fitting an empirical formulation to experimental 

published data (Lazarus, 1972), as described in section 2.3.2. The implementation of the 

friction model is described once again in this chapter since it includes specific 

additional details of the application to the bowed string, namely related to the width of 

the bow.  

The friction force arising between the string and one individual bow contact point h at 

location hxc  of the string is given by equation (3.12), where h
sF and h

aF  pertain to the 

lb 

L’ 

b 

Bridge Nut 

Bow 

' b
cL x−1

cx  

String 
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friction force during sliding and adherence, stemming from the Coulomb model, 

respectively: 

 
( , ) ( ) sgn( ) ; if 0

( , ) ; if 0

h h h h hN
s c d c c c

h h hN
a c S c

FF x t y y y
b
FF x t y
b

μ

μ

⎧ = − >⎪⎪
⎨
⎪ < =
⎪⎩

 (3.12) 

where NF  is the normal force between the bow and the string, Sμ  is a “static” friction 

coefficient (used during surface adherence), ( )h
cydμ  is a “dynamic” friction coefficient 

(used for sliding regimes) and b is the number of bow hairs used in the model. Here, the 

relative transverse velocity between the bow and the string is given by: 

 
1

( , ) ( , ) ( ) ( ) ( ) ( )
N

h h h h
c c c bow n c n bow

n
y x t y x t y t x q t y tϕ

=

= − = −∑  (3.13) 

In this work it is assumed that ( )cydμ  is a function of the relative bow/string velocity, 

and use the following model: 

 ( )( ) ( )
h
cC yh

d c D S Dy eμ μ μ μ −= + −  (3.14) 

where, 0 D Sμ μ≤ ≤  is an asymptotic lower limit of the friction coefficient when 

h
cy → ∞ , and parameter C  controls the decay rate of the friction coefficient with the 

relative bow/string sliding velocity. The friction model (3.14) can be readily fitted to 

typical experimental data, by adjusting the empirical constants Sμ , Dμ  and C  (see 

Figure 3.4). 
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Figure 3.4 – Change of the friction coefficient with the bow/string relative velocity 

The sliding behaviour, described by the first equation (3.12), does not cause problems 

for simulations, as this equation explicitly shows how the sliding force should be 

computed as a function of the sliding velocity. However, during adherence, simulation 

becomes more difficult. Indeed, the second equation (3.12) merely states a limiting 

value for the friction force, during adherence, and gives no hint on how ( , )h
c

h
aF y t  may 

be actually computed. This is because the adherence force depends on the overall 

balance of all internal and external forces acting upon the system, which are quite 

complex for multi-degree of freedom problems. Most friction algorithms deal with this 

problem through implicit numerical schemes. In the present approach, the following 

explicit procedure is used at each time-step i , for each bow hair, h : 

(1) If in the previous time-step the system was sliding, detecting of a possible 

bow-hair/string adherence is made, by computing ( ) ( )1i
h h h

c cJ y t y ti i= − . Then, if 0h
iJ > , 

the system is still sliding in the same direction. ( , )h h
s cF y ti  is computed according to the 

first equation (3.12), with ( )h
cy ti  given by equation (3.13) and ( )tidμ  by equation (3.14); 

(2) However, if 0
i

hJ ≤ , then a reversal of the relative motion is occurring and 

adherence will arise. Then, the sticking force is computed using the following model: 

 ( , )  ( , )  ( , )h h h h h h
a c i a c c i a c c iF x t K y x t C y x t= − −  (3.15) 
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which will be used during the complete duration of the adherence state. The idea in 

equation (3.15) is to “attach” the string to the bow at point cx  using a suitable 

“adherence stiffness” and to damp-out any residual bow/string relative motion during 

sticking using an “adherence damping” term in equation (3.15). cy  is the relative 

displacement between the string and the bow hair, at any time during adherence, given 

as: 

 
1

( , ) ( , ) - ( ) ( ) ( ) - ( , )
N

h h h a h a h
c c c bow n c n bow c

n
y x t y x t y t x q t y x tϕ

=

= = ∑  (3.16) 

where ( , )a h
bow cy x t  is the current position of the bow contact point. For a given constant 

bow speed, this changes as ( , ) [ ( )]a h h
bow c a c bowy x t t t x y= − , where ( )h

a ct x  is the time value 

when adherence was detected for the contact point modelled at location h
cx .  

As stated before, in this work the axial vibration modes of the bow hairs are not taken 

into account and, as a first approximation, each bow hair is modelled as a spring-

dashpot attachment on each side of the contact point between the string and the bow 

hair. The adherence stiffness Ka  in equation (3.15) is computed as described in the 

following paragraphs. Consider an axial stiffness coefficient Ka  of a single bow hair 

given by: 

The adherence stiffness aK  in equation (3.15) is computed from:  

 1 2= +K K Ka a a  (3.17) 

where 1Ka  and 2Ka  are related to the axial stiffness of the bow hair on each side of the 

contact point. Although the real axial stiffness will change as the contact point moves 

along the bow, 1Ka  and 2Ka  are here assumed to be equal and given by: 

 1 2 2a
EA

K Ka H
= =  (3.18) 

where E is the Young Modulus, A the cross section of one individual bow hair and H the 

total length of the bow hair. The adherence stiffness of each contact point is given by  
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 a a aK K b=  (3.19) 

where a is the number of bow hairs assumed in contact with the string, and b is the 

number of pseudo bow hairs (contact points) used in the numerical model. Similarly, 

a a aC C b= , where aC  is the adherence damping of a single bow hair. 

(3) After computing the adherence force, ( , )h h
a c iF x t  is compared with the 

maximum allowable value S NF bμ . If h
a S NF F bμ≤ , the current estimate is accepted 

and simulation continues assuming a sticking state. On the contrary, 

when h
a S NF F bμ> , sliding will arise and the friction force is recomputed according to 

the first equation (3.12). Then, the procedure continues with the next time-step. By 

virtue of (3.13) and (3.16), all the string modes become coupled when the nonlinear 

friction force is projected on the modal basis, equations (3.7) and (3.9), and then 

incorporated in equations (3.6) and (3.8). 

3.2.3 Formulation of the Body Dynamics 

As previously explained, the present method can be implemented to simulate the 

influence of the string/body coupling using two different procedures: incremental 

convolution of a measured impulse response or through a modal model of the body 

dynamics. 

3.2.3.1 Incremental Convolution Formulation 

At the bridge, the string motion forces the violin body into vibration. The response of 

the body can be computed, at each time step i, by the incremental convolution of the 

time-history of the interaction force between the bridge and the string ( , )b bF x t  and the 

body impulse response function ( )bh t  at the same point bx , according to equation (3.20). 

 
0

( , ) ( , ) ( )
t

b b b b by x t F x h t dτ τ τ= −∫  (3.20) 

where ( , )b by x t  is the displacement of the bridge at the contact point with the string, 

while ( )bh t  is the displacement/force impulse response functions of the instrument body, 

measured at the bridge, along the horizontal direction (see Figure 3.5). 
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Figure 3.5 –Setup used for the transfer function measurements 

3.2.3.2 Modal Formulation 

As for the string, it is assumed that in the instrument body damping is proportional and 

hence body modes are also real. This assumption is debatable, as discussed in 

(Woodhouse, 2004), but will be adopted here to avoid the additional burden of using a 

complex modal basis. Notice, however, that if the direct convolution formulation (3.20) 

is used, the possible complexity of body modes is already embedded in the body 

impulse response ( )bh t  and introduces no further difficulty. The response of the body of 

the instrument can be represented by a simplified modal model: 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )B B B B B B BM Q t C Q t K Q t t+ + = Ξ  (3.21) 

where [ ] 1diag( , , )B B
B PM m m= , [ ] 1 1 1diag(2 , ,2 )B B B B B B

B P P PC m mω ζ ω ζ= , 

[ ] ( )2 2
1 1diag ( ) , , ( )B B B

B P PK m mω ω= , are the matrices of the body modal parameters, 

{ } 1( ) ( ), , ( )
TB B

B PQ t q t q t=  and { } 1( ) ( ), , ( )
TB B

B Pt t tΞ = ℑ ℑ  are the vectors of 

modal responses and generalized forces, respectively. The modal forces ( )B
p tℑ  are 

obtained by projecting the string/body coupling force ( , )b bF x t  (see section 3.2.4), on 

the body modal basis. The modal parameters are identified from a single transfer function 

measurement ( [ ]( ) ( )b bH h tω = F ) at the bridge. This fact leads to a requirement that the 

modal mass matrix should be normalised by postulating that all modeshapes ( )B
p bxϕ  are 

unitary at the bridge location. The physical motions at the bridge are then computed 

from the modal amplitudes ( )B
pq t  by superposition: 

( )F t

( )y t∫

C2 G2 D3 A3 
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1

( , ) ( )
P

B
b b p

p

y x t q t
=

= ∑ ; (3.22) 

3.2.3.3 Discussion of the Body Dynamics Formulation Methods 

Both methods described before have advantages and disadvantages from the 

computational point of view. The incremental convolution method allows the use of 

measured impulse response functions of real-life instruments, without any other 

assumptions other than linearity, nor does it require the use of any modal identification 

procedure. It allows the most accurate representation of the body dynamics, but has the 

great disadvantage of requiring long computation times due to the direct convolution 

formulation (3.20). On the other hand, the modal approach of the body allows for much 

lower computation times (at least by one order of magnitude), but requires a careful 

modal identification to be performed. Furthermore, the modal representation is less than 

ideal to cope with the body dynamics at higher-frequency modal densities because of 

the large number of modes that would be required. Computation times are proportional 

to the number of modes used in the model. In contrast, the incremental convolution 

procedure’s computation time does not depend on the modal order but only on the 

duration of the impulse response function. Finally, it should be emphasised that 

although not discussed in this thesis, vertical motion of the string and bridge can be 

easily implemented with this computational method. 

3.2.4 Formulation of the String/Body Coupling 

The coupling between the string and the body of the violin arises from the bridge/string 

contact force ( , )b bF x t  which is used in equations (3.6), (3.20) and (3.21). This 

interaction is modelled by connecting the string to the bridge through a very stiff spring and a 

dashpot to prevent parasitic oscillations: 

 [ ] [ ]( , ) ( , ) ( , ) ( , ) ( , )b b bs b b s b bs b b s bF x t K y x t y x t C y x t y x t= − + −  (3.23) 

where bsK  is the stiffness coupling coefficient between the bridge and the string, bsC  is the 

damping coupling coefficient between the bridge and the string and ( , )s by x t and ( , )s by x t  are 

the displacement and velocity of the string at the bridge, respectively. 
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3.3. Numerical Results 

3.3.1 Influence of the string inharmonicity 
Wave propagation in non-ideal (rigid) strings is dispersive. This effect is most easily 

simulated using a modal model, as the bending stiffness effect is automatically 

incorporated in the string modes, with modified frequencies 

( )1/ 22
1 1 ,  for 2n n n nω ω β= + ≥ , where β is an inharmonicity coefficient (Cremer, 

1984). Computations show that an increase in the string bending stiffness leads to 

progressive “rounding” of the Helmholtz corner and, in general, to a deterioration of the 

response spectrum, as illustrated in Figure 3.6. The results are compatible with previous 

investigations (see, Cremer, 1984; Pitteroff & Woodhouse, 1998; Serafin et al, 1999). 

 
 

Figure 3.6 – Response spectrum of Helmholtz motion of a violin G string ( cx = 30 mm; 

NF = 1N; bowy  = 0.1m/s): a) Ideal string (β=0); b) Inharmonic string ( 42 10β −= × ) 
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3.3.2 Influence of the string torsion 
Transverse and torsion modes are heavily coupled by the friction forces. Beyond the 

additional damping, inclusion of the string torsion modes can affect both the transient 

durations and the steady state regimes, depending on the ratio of propagation wave-

speeds tor tranc cα = . Indeed, opposing a conclusion from the analysis in (Serafin et al, 

1999), the systematic simulations presented suggest that torsion should not be neglected 

if α  < 4 gut strings should then be particularly prone to torsion effects. Figure 3.7 to 

Figure 3.10 show the influence of the inclusion of the torsion coupling in various aspects 

of the string’s motion. 

 

Figure 3.7 – Starting transient duration for a violin G string as a function of the ratio of 
torsional to transverse wave speeds ( cx  = 30 mm, NF  = 1N, bowy  = 0.1 m/s) 
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Figure 3.8 – Distribution of the total mechanical energy between torsional and transverse 

motion as a function of the ratio of torsional to transverse wave speeds ( cx  = 30 mm, NF  = 
1N, bowy  = 0.1 m/s) 

 

 

 
Figure 3.9 – Number of main slips per period as a function of the ratio of torsional to 

transverse wave speeds ( cx  = 30 mm, NF  = 1N, bowy  = 0.1 m/s) 
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Figure 3.10 – Number of the mode with highest energy as a function of the ratio of 

torsional to transverse wave speeds ( cx  = 30 mm, NF  = 1N, bowy  = 0.1 m/s) 
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3.3.3 Influence of the bow width 
In the following simulations, a G-string was implemented with a fundamental frequency 

of 196 Hz, length L = 0.33 m and linear density of 33.1 10σ −= × kg/m. In order to achieve 

adequate computational convergence 50 modes were used – enough to emulate the 

relevant phenomena excited by the bow string interaction; a modal damping value of 

0.1% was used for all modes (however, frequency-dependent damping could be easily 

introduced using this computational method). 

Concerning the friction model, the scarce experimental data available (Schumacher, 

1994; Askenfelt, 1989) led to a sliding law such as the one represented in Figure 3.4, 

using μS = 0.4, μD = 0.2 and C = 5. For the adherence model a total value of Ka b = 105 

N/m has been used, following calculations from equations (3.17) to (3.19) considering a 

= 50 hairs, A = 3.8x10-8 m2, E = 8.5x109 Pa and H = 65 cm which agree with the values 

measured by Pitteroff and Woodhouse (1998a). Similarly, the adherence damping value 

aC  of a single bow hair used is 0.2 Ns/m, in accordance with their measurements. In 

order to focus on the sole effects of changing the bow width bl , it was decided to use 

here the same global adherence coefficients aK b  and aC b , irrespectively of the 

number of contact points b  used in the numerical model to simulate the bow width. 

A large range of excitation parameters was explored: NF  = 0.1~10 N and bowy  = 0.01~1 

m/s. In most calculations the middle point of the contact line was located at a distance 

of 30 mm from the bridge; however results when bowing at 10 mm are also reported. 

3.3.3.1 Influence of the number of bow pseudo-hairs 
Figure 3.11 shows the reaction forces at the bridge obtained by bowing with a normal 

force of 1 N and a bow velocity of 0.1 m/s, for a different number of pseudo bow hairs 

(contact points b = 1, 2, 10, 20 and 50), the bow width being 10 mm for all cases. The 
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point-bow model (b = 1) reaction force represented in the first graph clearly shows the 

well-known Shelleng’s ripples caused by well-defined secondary waves that travel back 

and forth between the bow and the bridge during the sticking part of the fundamental 

period.  

However, as a finite-width of the bow is introduced, a clear difference is seen in the 

reaction force curve. The ripple’s staircase pattern is attenuated giving rise to a lower 

amplitude higher frequency ripple, which lacks the regularity of the point-model 

response. These effects are more pronounced as the number of contact pseudo hairs 

increases. However, increasing this number beyond 10 does not alter the reaction force 

curve significantly, which lead us to the conclusion that a minimum number of one 

pseudo hair (contact point) per millimetre of bow width is necessary to perform a 

realistic analysis of the influence of the finite width of the bow. 

The differences in the reaction forces shown in Figure 3.12 are due to the phenomenon 

known as partial slipping well explained by McIntyre et al (1981), by which some of 

the bow hairs slip while other continue to stick to the string during the adherence phase 

of the Helmholtz motion. Each partial slip generates a new wave in the string that 

propagates between the bridge and the nut. The attenuation of the Shelleng’s ripples is 

due to interference between these multiple waves. 

3.3.3.2 Influence of the width of the bow 
The influence of the finite width of the bow on the sound produced by violin synthesis 

algorithms can be seen in Figure 3.12. The spectrum of the bridge reaction force (which 

ultimately drives the body of the instrument) for the same conditions as in Figure 3.11 

shows the emergence of high-frequency broadband noise, compared to the one 

generated by the ideal point-bow model (b=1). This difference can be heard in the 

sounds generated by these simulations. Additionally, as the number of hairs is 
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increased, the amplitude differences between the harmonics generated are less 

pronounced, something that can also be seen in the results published by Schoonderwaldt 

et al (2003). This effect is particularly evident in the vicinity of the string partials which 

have nodal points at the bowing location, disappearing for bows with more than 5 bow 

hairs.  

The effect of changing the bow width (while maintaining constant the number of bow 

hairs per millimeter width) is depicted in Figure 3.13 and Figure 3.14. The increase in 

broadband energy content above 2000 Hz is also present. For small bow widths this 

energy increment is present mainly in the vicinity of the string partials having nodal 

points at the bowing location. 
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Figure 3.11 - Reaction force at the bridge 
for a point model and five bows with 10 mm 
width and different number of bow contact 

points b for 1 NNF = , 0.1m sbowy = . 
 

Figure 3.12 - Power spectral density of the 
reaction force at the bridge for a point 

model and five bows with 10 mm width and 
different number of bow contact points b for 

1 NNF = , s0.1mbowy = . 
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Figure 3.13 - Reaction force at the bridge 
for four different bow widths lb and 1 bow 

contact point per millimetre 
 

Figure 3.14 - Power spectral density of the 
reaction force at the bridge for different 

bow widths lb and 1 bow contact point/mm 
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Figure 3.15 - Velocity waveforms of the 
string at 1

cx  (bottom trace) and 10
cx  (top 

trace). The colours stand for: adherence 
(red); backward slip (green); forward slip 

(blue). 

Figure 3.16 - Total friction force time-
history, stick/slip time-space diagram and 

velocity waveform for FN  = 1 N, 
0.1m sbowy = , using point bowing (b = 1). 
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Figure 3.17 - Total friction force time-
histories and stick/slip time-space diagram 

for xc = 10 mm, FN  = 0.2, 0.5, 1, 2 and 5 
N, 0.1m sbowy = , lb= 10 mm and b = 10 

Figure 3.18 - Displacement time-histories 
and stick/slip time-space diagram for three 

bow pseudo-hairs ( 1
cx - blue, 5

cx  - red, and 10
cx  

- green) for the same playing conditions as 
in Figure 9. 
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Figure 3.19 - Total friction force time-
histories and stick/slip time-space diagram 
for xc = 30 mm, FN  = 0.2, 0.5, 1, 2 and 5 N, 

0.1m sbowy = , lb= 10 mm and b = 10. 

Figure 3.20 - Displacement time-histories 
and stick/slip time-space diagram for three 

bow pseudo-hairs ( 1
cx - blue, 5

cx  - red, and 10
cx  

- green) for the same playing conditions as 
in Figure 11 
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3.3.3.3 Input parameter dependence 
Another interesting aspect, also mentioned by Pitteroff and Woodhouse (1998a), is the spatial 

pattern of this differential slipping phenomenon which denotes both backward (against the 

direction of bowing) and sometimes also forward (in the direction of bowing) slips of 

individual hairs in different parts of the bow’s width. Figure 3.15 shows the velocity of the 

string bowed by a 10 mm (with 10 pseudo-hairs) bow at the contact points with the first and 

tenth bow hair, together with a spatial representation of the stick/slip state of each individual 

bow hair as a function of time; the excitation parameters are 1NNF =  and 0.1m sbowy = . In 

this spatial representation, the green colour represents backwards sliding, the blue colour 

represents forward sliding and the adherence state is represented in red. The velocity 

waveform of the string contact point at the inner edge of the bow (closer to the bridge) shows 

more “activity” than at its outer edge. In fact, at 1
cx  the string slides during most of the 

oscillation period being more sensitive to the secondary waves generated between capture and 

release of the string. At the outer edge of the bow ( 10
cx ), the string is sticking during most of 

the motion, only interrupted by partial forward slips which can be understood in terms of the 

geometrical distortion of the string due to the finite width of the bow, as will be seen later. For 

comparison a similar diagram is shown in Figure 8 for the point model case under the same 

playing conditions ( 1NNF =  and 0.1m sbowy = ), together with the friction force time-

history. The secondary waves that travel between the bow and the bridge result in peaks of the 

friction force increasing in amplitude until slip occurs. 

Figure 3.17 and Figure 3.19 show the variation of the stick-slip spatial pattern, together with the 

total friction force (sum of the friction force at the 10 bow hairs) with the increase of the 

normal force applied by the bow, for two different bowing positions cx  = 10 mm and cx  = 30 

mm. An interesting aspect that arises from the analysis of these diagrams is that although the 
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global string motion is periodic, as can bee seen from the regularly spaced “full” slips that 

characterize the Helmholtz and higher-order regimes, the local slip/stick dynamics are only 

quasi-periodic, but with a clear spatial resemblance between periods. For a detailed view of 

the string behaviour under the action of the bow, Figure 3.18 and Figure 3.20 represent the 

string motions at three different contact points with the bow – 1
cx , 5

cx , and 10
cx  – for the same 

playing conditions of Figure 3.17 and Figure 3.19. This representation clearly shows that the 

displacement of the string during adherence is not uniform over the width of the bow, with the 

string at 1
cx  (bridge side) having smaller displacement amplitudes than 5

cx  and 10
cx , as implied 

by the geometry of the deformed string. Indeed, this difference in the displacement 

waveforms of the different contact points demonstrates the previously mentioned geometrical 

distortion of the string under the bow, as was also demonstrated by Pitterof and Woodhouse 

(1998a) in Figure 12. Despite the forward slips occurring in the outer hair ( 10
cx ), it seems clear 

that an effective bowing area exists located near the outer edge of the bow (nut side) that 

sticks to the string during most of the motion. Increasing the normal force increases this 

effective bowing area while the number of forward slips decreases.  

Comparing Figure 3.17 and Figure 3.18 ( cx  = 10 mm) position with Figure 3.19 and Figure 3.20 

( cx  = 30 mm), it is clear that bowing closer to the bridge implies a larger mostly sliding 

section of the string and therefore it is easier for inter-period slips to occur and originate the 

higher order regimes characteristic of sul ponticello playing. Even for high normal forces 

( 5 NNF = ) it is difficult to impose a Helmholtz regime at this bowing position. When bowing 

at cx  = 30 mm with low normal forces, for instance 0.2 NNF = , more than one slip occurs at 

each period while for higher bowing forces the Helmholtz regime dominates. As expected, 

changes in this effective bowing area influence the fluctuations of the total friction force 

applied by the bow on the string. 
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3.3.3.4 Motion Regimes 

The playing parameter-space explored was 0.1 ~ 10 NNF =  and 0.01~ 1 m sbowy = , in 7 

increasing steps proportional to 2 and 5. This analysis shows greatest interest when studying 

the effects of finite-width bowing on the various dynamical regimes which may arise for a 

significant range of playing parameters. 

The main dynamical regimes found in the simulations are illustrated in Figure 3.21 to Figure 

3.28. In the following paragraphs a description of these dynamical regimes is made 

associating them with a colour scheme for use in further discussions:  

- decaying regime – light yellow – in which a self-sustained oscillation does not arise and 

the bridge reaction force is negligible or continuously decaying after a transient 

displacement of the string originated by the initial motion of the bow (Figure 3.21).  

- Helmholtz regime – green (Figure 3.22);  

- higher-order regime – blue – representing motions with more than one slip per period, 

usually associated with sul ponticello sounds (Figure 3.23); 

- raucous regime – red – in which broadband, chaotic oscillations are present (Figure 3.24); 

- anomalous low-frequency regime – magenta – for which low frequency periodicity occurs 

well below the string fundamental (Figure 3.25).  

Other peculiar regimes were also found that show interesting characteristics: Figure 3.26 

depicts a regime (A) common to all the bow widths simulations which is the only periodic 

oscillation without a sawtooth waveform, (cyan); Figure 3.27 represents a regime (B) visible 

only in the point model simulations which, in contrast with the higher-order regime 

mentioned previously, develops multiple slips as the bow normal force and velocity are 

increased setting a transition regime to raucous motion (orange); finally, in Figure 3.28, a self-
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sustained regime (C) is depicted obtained with an initial transient of increasing amplitude 

above 2 seconds (yellow). 

Figure 3.29 and Figure 3.30 show the variation of the root mean square reaction force at the 

bridge for different values of the bow width, normal force and bow velocity, at two different 

bowing locations: cx  = 10 m and cx  = 30 mm. 

Comparing the results for both bowing positions it is clear the expected dominance of higher-

order regimes (blue area) when bowing closer to the bridge than at the “normal” location cx  = 

30 mm where the green area (Helmholtz regime) dominates. Considering both these regimes 

as “musically acceptable”, the wider blue+green area suggests that playing near the bridge 

gives more control over the playing parameters that result in “usable” sounds. Globally, a 

trend is seen for higher amplitudes as either the normal force or bow velocity are increased. 

For low normal forces the increase in bow velocity originates higher reaction forces until a 

limiting value after which no oscillation or a decaying oscillation occurs. For higher values of 

the normal force, low velocities do not allow regular bow/string slips and raucous motion 

arises. As the bow velocity increases the reaction force rises and the motion eventually 

evolves to periodic regimes. 

The results of the simulations using a point model bow (Figure 3.29a and Figure 3.30a) show a 

higher diversity of regimes comparing to the finite bow width results, particularly when 

bowing at 30 mm from the bridge. An interesting aspect is the presence of anomalous low 

frequency regimes, in contrast to finite-width bowing, with a single exception seen in Figure 

3.30c. Figure 3.29a and Figure 3.30a show globally higher amplitudes of the reaction force in 

comparison with the finite-width case. This is probably the reason for the emergence of these 

anomalous low frequencies since they require the action of high bow normal forces (Hanson 

et al, 1994).  
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Considering the simulations using a finite-width model, the increase of bow width between 5 

mm to 10 mm suggest a higher control of the musically acceptable playing range, with the 

Helmholtz motion being more easily obtained for the 10 mm width bow, when bowing with 

high normal forces and low bow velocities. However, the differences in the global behaviour 

are less significant than in comparison with the point-model simulations, which also stems 

from the analysis of Figure 3.11 to Figure 3.14. 

Four animations of the string motion corresponding to the four curves in Figure 3.13 are 

appended to this thesis. These animations pertain to the first 0.5 s of the movement of a free G 

violin string with FN = 1 N, 0.1m sbowy =  and xc = 30 mm, under the action of bows of 

different widths. Animation 1 depicts a point bow model (b = 1), while in animations 2 to 4 

the bow widths are respectively lb= 2 mm, lb= 5 mm and lb= 10 mm, with one contact point 

per millimetre. In these animations, the nature of the stick/slip state between the bow and the 

string is represented by the colours of the dots at each contact point: red indicates stick; green 

indicates backwards slip and blue indicates forward slip. The displacement time history of the 

contact point closest to the nut is also shown, in which a moving dot with the same colour 

scheme as before is used for describing the stick/slip states.  

In all simulations, the bowing parameters chosen trigger the Helmholtz motion after a short 

initial transient. One of the most elucidating aspects of these animations is the visualization of 

the passage from the initial transient, in which a double slip regime predominates, to the 

regular Helmholtz motion. Regarding the animation pertaining to the 10 mm bow width, the 

emergence of forward slips in the contact points closer to the nut is clearly seen, and seems to 

originate from the forward ‘push’ given by secondary waves travelling in advance or behind 

the Helmholtz corner. 
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3.3.3.5 Flattening effect 
Exploring the range of input parameters already mentioned allowed the study of the flattening 

effect phenomenon, characterized by a decrease on a note fundamental frequency as the bow 

force is increased. This effect has been first discussed on the basis of numerical simulations 

by McIntyre & Woodhouse (1979) and McIntyre et al (1983), and parametrically studied 

thoroughly by Schumacher (1979), Boutillon (1991) and Faure & Boutillon (1991). Basically, 

the flattening effect results from the net delay occurring during capture and release transitions 

of the Helmholtz motion, for FN above a minimum value. As mentioned in Schumacher 

(1994), the flattening effect can only be accounted for if a realistic (rounded) Helmholtz 

corner is implemented. In contrast with the algorithms used by other authors, such as 

McIntyre & Woodhouse (1979) and McIntyre et al (1983) (in which the rounded corner is 

simulated by the introduction of narrow-width reflection functions, instead of the idealized 

ones), in the present method the realistic rounded Helmholtz corner naturally emerges from 

the finite number of string modes excited by the bow-string nonlinear interaction. The 

compliant bow is only capable of effectively exciting the string up to a limiting cut-off 

frequency which is dependent on the longitudinal stiffness of the bow hairs. Therefore, the 

perfectly sharp Helmholtz corner which could only be reconstructed by an infinite number of 

modes, will be as round as the reconstruction from the finite number of effectively excited 

modes allows. It should be noted that, in this results now presented, the rounding of the 

Helmholtz corner is not a result of inharmonicity effects, since no bending stiffness was used 

in these calculations. 

More recently the flattening effect has been revisited by Pitterof and Woodhouse (1998b) and 

Woodhouse (2003). In the latter work, the author compares the influence of the use of two 

different friction models, thermal and velocity-dependent, on the flattening effect. Although 

this comparison is an interesting matter for future work, some conclusions relating the 
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evolution of a note fundamental frequency with increasing bow force are relevant. For the 

case of the velocity-dependent friction model (similar to the one used here) these authors state 

the existence of a threshold for flattening, below which the fundamental frequency is not 

altered for a specific range of bow forces. After this threshold the frequency decreases until a 

maximum bow force is reached beyond which the Helmholtz oscillation regime disrupts. 

Figure 3.31 and Figure 3.32 show the variation of the fundamental frequency (f1) with 

increasing normal force and bowing velocity for three different bow widths at different 

distances from the bridge, 10 mm and 30 mm. The fundamental frequency was calculated by 

inspection of the main oscillation period, for all periodic regimes. The different regimes are 

represented using the same colour scheme as in Figure 3.29 and Figure 3.30. 

The decreasing values of f1 with increasing FN reach 99.5% of the nominal frequency (196 

Hz). These values seem lower than those measured and predicted by other authors – 

Schumacher (1994) (which state a flattening of the fundamental frequency roughly between 

1% and 3%), however comparisons should be made with care since their results do not pertain 

to a G string and the simulation friction parameters are significantly different. However, as 

also stated by Woodhouse (2003) these results show a limit value for FN below which the 

flattening effect is not significant, in contrast to results obtained using thermal friction 

models. As the present results show, this value seems to increase for higher bow velocities and 

is markedly affected by considering point-bowing instead of finite-width bows, which seem to 

be less prone to flattening. 

Additionally, Figure 3.31 and Figure 3.32 show a limiting value as FN is increased, beyond 

which the motion jumps to the so-called raucous sounds (in the figures, the points not 

represented correspond to the raucous regime or to the anomalous low-frequency regime). 

This maximum bow force is, for most of the bowing velocities considered, higher for the 

finite width bow than for the point bow model. 
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Figure 3.21 - Time-histories and spectra of 

the decaying regime (light yellow) 
 

Figure 3.22 - Time-histories and spectra of 
the Helmholtz regime (light yellow) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23 - Time-histories and spectra of 

the higher-order regimes (blue) 
 

Figure 3.24 - Time-histories and spectra of 
the raucous regime (red) 
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Figure 3.25 - Time-histories and spectra of 

the anomalous low-frequency regime 
(magenta) 

Figure 3.26 - Time-histories and spectra of 
the particular regime A (cyan) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.27 - Time-histories and spectra of 

the particular regime B (orange) 
Figure 3.28 - Time-histories and spectra of 

the particular regime C (yellow) 
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Figure 3.29 - Variation of the RMS reaction 
force at the bridge with FN and bowy  for cx  
= 10 mm and different bow widths: a) Point 

model; b) lb= 5 mm (b = 5); c) lb = 10 mm (b 
= 10). 

Figure 3.30 - Variation of the RMS reaction 
force at the bridge with FN and bowy  for cx  
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= 30 mm and different bow widths: a) Point 
model; b) lb= 5 mm (b = 5); c) lb = 10 mm (b 

= 10). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.31 - Variation of f1 with FN and 
bowy for cx = 10 mm and different bow 

widths: a) Point model; b) lb= 5 mm (b = 5); 
c) lb = 10 mm (b = 10). 

 

Figure 3.32 - Variation of f1 with FN and  
for  = 30 mm and different bow widths: a) 

Point model; b) lb= 5 mm (b = 5); c) lb = 10 
mm (b = 10). 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 



 

 88

In this chapter, the influence of the finite width of the bow on the dynamical regimes 

of the bowed string has been modelled and analyzed using a modal method. This 

method enables accounting the finite width of the bow with only a modest increase in 

computing effort and code development. Comparisons between the use of a point-bow 

and bows with several contact points (hairs) suggest a minimum number of 10 contact 

points (pseudo-hairs) for a realistic simulation of the bowed string dynamics. In fact, 

the finite width model predicts reaction forces that are different from the point model 

case, leading to an increase of broadband high frequency content in the reaction force 

spectrum. In agreement with other authors Pitteroff & Woodhouse (1998a) the modal 

model reveals the existence of backward and sometimes forward slips (partial 

slipping) of individual hairs, occurring between the main slip phases of the Helmholtz 

motion. This partial slipping phenomenon has a complex spatial pattern denoting an 

effective adherence area that increases with the bowing force FN.  

As can be easily understood, the effects of the partial-slipping mechanism 

connected to finite-width bowing become comparatively more significant when the 

bow/bridge distance is decreased, when the very sensitive higher-order (multiple slip 

per period motion) regimes are more the rule than the exception. 

Finally, the range of input parameters explored allowed us to quantify the well-

known flattening effect, which – in agreement with Pitteroff & Woodhouse (1998b) – 

was found more significant for the point-model than for the finite-width case. This is 

connected with the apparent decrease of the “effective” static friction coefficient 

pointed in Pitteroff & Woodhouse (1998b), which is also reflected in the present 

results. The computed vibratory levels are (at comparable bowing parameters) 

consistently higher for the point-model than for the finite-width bow. 
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At the end of their most important series of papers, Pitteroff & Woodhouse Pitteroff & 

Woodhouse (1998a, 1998b, 1998c) state that “The overall conclusion is that point-

bow and finite-width models produce distinctly but not fundamentally different 

behaviour.”, and furthermore that “Many physical effects can be generated with both 

models but these effects appear in different parts of the parameter space. Other effects 

are only accessible with finite-width modelling” (Pitteroff & Woodhouse, 1998b). 

The results stemming from the modal computational model also support these 

conclusions. Furthermore, the numerical simulations presented here suggest that 

differences between point-model and finite-width simulations can be more 

pronounced outside the range of bowing parameters leading to the Helmholtz motion, 

which is typically more robust to modelling (or playing) details than the sensitive 

higher-type or near-raucous responses. In particular, at higher bow normal forces, it 

appears that the so-called “anomalous low frequency” responses Hanson et al (1994) 

may be more easily obtained under bowing conditions close to the point-model 

idealisation than under the large contacting interface of a non-tilted bow.  

Several animations of the bowed string motion are appended to this thesis, which 

highlight interesting aspects discussed in this work.  
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3.3.4 Influence of the string/body coupling 
Simulations were performed for both a violin and a cello. The movement of a violin 

G-string with a fundamental frequency of 196 Hz is simulated, with an effective 

length L = 0.33 m and a linear density of 3 -13.1 10  kg mSρ −= × , in order to test the 

behaviour of the coupled computation method described above. The cello C-string 

simulated has a total length of 0.83 m from the nut to the tailpiece with 0.7 m and a 

linear density of 3 -114 10  kg mSρ −= ×  from the bridge to the nut, giving a fundamental 

frequency of 65.4 Hz. In order to achieve adequate computational convergence 60 

modes were used for the violin string and 80 modes for the cello string, with a 

recorded sampling frequency of 20000 Hz. A modal damping value of 0.1% was used 

for all modes (however, frequency dependent damping can be easily introduced with 

this method) and a string inharmonicity coefficient β was introduced to provide more 

realistic simulations (Schelleng, 1973; McIntyre et al, 1983). This effect is easily 

simulated using the modal approach, as the bending stiffness influence is 

automatically incorporated in the string modes, with modified frequencies according 

to: 

 2
1 1n n nω ω β= + , for 2n ≥  (3.24) 

where 4 264E L Tβ π φ=  for homogeneous strings. However, the lower strings for the 

violin or cello are usually wound and therefore non-homogeneous, so a value of β = 

2.3×10-4 was used, which was inferred from Table 4.9 of (Jansson, 2002).  

The body of the violin and the cello were simulated using a modal basis whose 

parameters were identified from measured input admittances. In the case of the violin 

a very crude model was used comprising only 13 modes covering the frequency range 

between 200 Hz and 3500 Hz. In the case of the cello a thorough modal identification 
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procedure was carried and 53 modes were chosen leading to the synthesized input 

admittance shown in Figure 3.33.  
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Figure 3.33 – Measured (light line) and synthesized (heavy line) input admittance of the 
cello used in the simulations. 

A classic sliding law friction model, such as the one presented in equation (7), with μS 

= 0.4, μD = 0.2 and C = 5, was chosen, which produced realistic results. For the 

adherence model a total value of Ka = 105 N/m as been used. As previously discussed, 

a near-critical value of the adherence damping term Ca was adopted (Tafasca et al, 

2000; Antunes et al, 2001). In this context, it should be mentioned that recent research 

results (Smith & Woodhouse, 2000; Woodhouse, 2003) suggest the relevance of 

dynamical thermal phenomena in the tribology of rosin, which may induce hysteretic 

effects in the friction-velocity dependence. In spite of the unquestionable interest of 

such findings, the classical approach for sliding behaviour was used. 

The stiffness constant value, bsK , used for the string/body coupling was chosen in order to 

enable a very stiff connection, while keeping a satisfactory computational convergence. As 

demonstrated in Section 3.5 a value equal or higher than 610  N/m  is enough. Concerning the 

damping constant a value -110 NsmbsC =  proved adequate. As also shown in Section 3.5 of 
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this thesis, for bsK  equal or higher that 610  N/m  the modal damping of the string/body 

coupled modes is not affected by this value of bsC . 

3.3.4.1 Violin Simulation Results 
Figure 3.34 to Figure 3.36 show simulations of the violin string and bridge dynamics for 

different boundary conditions, when applying a normal bow force (FN) of 1 N and bow 

velocity ( bowy ) of 0.1 m/s, at 0.030 m (approximately L/10) from the bridge. Figure 3.34 

shows the most widely simulated case of a string pinned at the bridge and the nut (with a 

length of 0.330 m). Perfect reflections arise from these extremities and the Helmholtz motion 

is clearly perceptible. The force at the bridge is easily computed from the modal time 

responses ( )nq t , through a superposition of the modal reaction forces, (3.25), where f1 is the 

fundamental frequency of the string. 

 

 2
1

1

( ) 4 ( )
N

b n
n

F t Lf nq t
S
ρπ

=

= − ∑  (3.25) 

 

Figure 3.35 represents the case of a string pinned at the tailpiece and the nut, with a total 

length of 0.385 m, a rigid bridge being placed at 0.330 m from the nut. The same overall 

behaviour as in the previous example could be expected, since there is no movement of the 

bridge. However, note that the string inharmonicity enables some energy to pass to the 

tailpiece-side of the string, leading to low-amplitude waves at higher frequency. These 

parasitic oscillations are clearly perceptible in the string/bridge coupling force shown in 

Figure 3.35, superimposed on the well known bow-bridge secondary waves shown in Figure 

3.34. This effect, noted by Puaud et al (1991), can be seen very clearly on the computed 

animations of the string motion. Nevertheless, and not unexpectedly, a Helmholtz motion 

similar to the previous example developed. Notice that the overall behaviour of the string-

bridge contact force is similar for the computations in Figure 3.34 and Figure 3.35. This is a 
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reassuring feature, given that in Figure 3.34 the contact force is computed from the modal 

summation of (3.25), while in Figure 3.35 the interaction force stems from the totally 

different approach stated in (3.23). 

 

Figure 3.36 shows the results obtained from the simulations computed through the 

implementation of the string/body coupling by application of the modal model of a violin 

body (Figure 3.33). A modal identification was performed, as pointed before, on a mass-

produced violin and 13 modes were chosen to represent the gross features of its dynamical 

behaviour. The corresponding synthesized impulse response function was also calculated and 

used in the incremental convolution method, leading exactly to the same results. As in the 

previous example, the oscillations of the tailpiece side of the string can also be seen in the 

string/bridge coupling force.  

The similarity of the plots depicted in Figure 3.35 and Figure 3.36 is due to the high 

impedance presented by the violin bridge to the string waves, which are – in this computation 

– hardly affected by the comparatively negligible bridge motion. However it is important to 

emphasise that this result was obtained when bowing an open G-string, with a fundamental 

frequency significantly lower than the first body resonance (at about 276 Hz). However, in 

contrast to this situation, interaction between the string and the body can be much stronger 

when playing notes with frequencies close to body resonances. Then, bridge motion 

amplitude (and energy string/body interplaying) may become very significant, as typically 

experienced in cellos when playing wolf notes.  

Simulations of plucked violin strings were also performed using a rigidly supported bridge 

and a flexible (compliant) bridge. Figure 3.37 (a) and (b) depict the velocity of the string at 

the plucking point for these two conditions. Using a rigid bridge, case (a), the string motion 

decreases in a simple exponential manner, while with the compliant bridge, case (b), the 

interaction with the body dynamics can be clearly seen. In this later case, energy is transferred 

from the string and dissipated by the body through the bridge originating a higher motion 



 

 94

decay rate. An accurate identification of the damping factor of the individual modal responses 

of the plucked string, using the modal identification ERA method (Juang & Pappa, 1985; 

Juang, 1994), showed that the 0.1% damping of the string modes is unaltered when the 

string’s modal frequencies are not close to a body resonance (the same conclusion applies to 

the body modes’ damping factors). However, in the case of the compliant bridge, when the 

string and body resonances are close (a few Hertz apart) the string mode damping values 

become higher, as expected. As an example, the modal damping of the string’s second mode 

(at 392 Hz) couples well to the body’s second mode (at 404 Hz) changing the damping value 

from 0.1% to 0.37%. The correctness of the damping values identified from the time domain 

simulations was verified by the complex eigenvalues of a coupled system model, as shown in 

Section 3.5. 
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Figure 3.34 – Force at the bridge and string velocity at the bow contact point for a 0.330 
m string pinned at both extremities (FN = 1 N, bowy  = 0.1 m/s). 
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Figure 3.35 – Force at the bridge and string velocity at the bow contact point for a 0.385 
m string pinned at the nut and tailpiece (rigidly supported bridge at 0.330 m, FN = 1 N, 

bowy  = 0.1 m/s). 
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Figure 3.36 – Force at the bridge and string velocity at the bow contact point for a 0.385 
m string pinned at the nut and tailpiece (flexible bridge at 0.330 m, FN = 1 N, bowy  = 0.1 

m/s).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.37 – Simulation of a plucked G-string uncoupled (a) and coupled (b) to the 
instrument body. 

 

3.3.4.2 Cello Simulation Results 

3.3.4.2.1 The problem of wolf notes 

The wolf note is a particular effect to which bowed string instruments (bad or good) are 

known to be very susceptible. It is an unpopular phenomenon among musicians since it gives 

rise to harsh and beating-like sounds, making proper musical execution extremely difficult at 

some positions along the fingerboard. Although unpleasant for the listener, the emergence of 

this effect is paradigmatic of the importance of the body/string interaction. 

 

The wolf phenomenon has been the subject of several studies – Raman, (1918), Puaud (1991), 

Schelleng (1963), Firth & Buchanan (1973), Benade (1975), McIntyre, J. Woodhouse (1979), 

Gough (1980), Woodhouse (1993b) – the most generally accepted explanation being the one 
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few aspects deserving exploration, such as the influence of the string dynamics in the portion 

between the tailpiece and the bridge (see Derveaux et al (2003) for an interesting 

experimental account). On the other hand, a dependence of the wolf beating frequency on the 

bowing parameters was experienced, an aspect which seems almost absent from the literature, 

other than in McIntyre et al (1983), where two simulations of a wolf note played with 

different bow forces are shown, exhibiting different wolf beating frequencies. Also, the 

emergence of wolf phenomena appears to depend somewhat on the time-history of the 

bowing parameters, a fact which has also been noted in Derveaux et al (2003). 

 

3.3.4.2.2 Wolf-note simulation 
 
As the influence of the cello body on the dynamics of its C2 string was so apparent during the 

preliminary experiments, several coupled simulations for this instrument using a modal 

representation of this instrument body (see Figure 3.33) were performed. To easily detect the 

emergence of a possible wolf note, a glissando was implemented in the simulation-scheme by 

moving a finger along the fingerboard in the range fx = 260~210 mm relatively to the bridge 

– upward glissando – or fx = 210~260 mm – downward glissando. In this case, the bow was 

placed at 40 mm from the bridge. To simulate the force exerted by a moving finger on the 

string, the “finger” was pragmatically modelled using three spring/dashpots of adequate 

stiffness/dissipation at coordinates [ fx - 5 mm, fx  , fx + 5 mm]. 

The results are presented in Figs. Figure 3.38 to Figure 3.41, which represent the bridge 

displacement, for different bowing conditions. The wolf note emerges approximately between 

positions 243 mm to 237 mm for the upward glissando, however it does not arise at exactly 

the same range for the downward glissando as can be seen in Figure 3.39.  
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Figure 3.38 – Simulation of an upward glissando on a cello C-string with FN = 1 N and 
bowy  = 0.05 m/s.  
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Figure 3.39 – Simulation of a downward glissando on a cello C-string with FN = 1 N and 

bowy  = 0.05 m/s.  
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Figure 3.40 – Simulation of an upward glissando on a cello C-string with FN = 1 N and 

bowy  = 0.1 m/s. 
 

 



 

 99

0.2300.2350.2400.2450.2500.2550.260.2650.27

Finger position (relative to bridge) [m]

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

Time [s]B
ri

dg
e 

D
is

pl
ac

em
en

t [
m

 x
 1

0 
  -5
]

 
Figure 3.41 – Simulation of an upward glissando on a cello C-string with FN = 0.5 N and 

bowy  = 0.05 m/s.  
 

Another interesting aspect is the fact that the wolf note beating frequency changes for 

different bowing conditions. Increasing the bowing velocity causes an increase of the beating 

frequency (Figure 3.40), while higher bow normal forces tend to reduce this value. Reducing 

the bow normal force obviously increases the beating frequency as can be seen in Figure 3.41. 

This latter dependence of the beating frequency on the applied normal force was already 

briefly numerically demonstrated in McIntyre et al (1983), however no account has been 

found in the literature on the bow velocity-dependent beating frequency.  

 

An interesting aspect is that the playing conditions in Figure 3.40 and Figure 3.41 seem to 

extend the range in which the wolf note emerges, probably associated with the complexity of 

the body modal response. This feature is also apparent in real-life playing in which musicians 

denote high difficulty in obtaining clear and repeatable wolf notes. 

 

The explanation of the wolf note formation was first stated by Raman (1918), and later 

revisited by McIntyre & Woodhouse (1979), which mentions the connection between their 

time-domain explanation and the frequency-domain explanation by Schelleng. They explain 

the emergence of the wolf note in the light of the concept of minimum bow force: the 

continual increase of energy loss from the string due to the build-up of energy in the coupled 

body implies an increase in the minimum bow force necessary to establish Helmholtz motion. 
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If the minimum bow force needed exceeds the actual bow force, the Helmholtz motion gives 

way to a “double slip” regime, during which the two slips gradually get out of phase and the 

new slip takes over as the new Helmholtz motion. This cycle repeats itself giving origin to the 

characteristic wolf note sound (McIntyre & Woodhouse, 1979).  

 

It is then tempting to link the wolf beating frequency to the conditions enabling the 

emergence of the double slip regime. By increasing the normal force double slips will be 

triggered later (or even suppressed), leading to a lower beating frequency. However, by 

increasing the bow velocity, double slip motions will be triggered more easily (as shown in 

Figure 3.49 in this section) causing an increase of the wolf beating frequency. Nevertheless, 

this tentative reasoning should be supported by a detailed analysis. 

 

In order to map the space of dynamical regimes obtainable with different playing conditions, 

NF  and bowy , at the wolf note finger position, one of these input parameters was successively 

set to a wide range of discrete values while the other parameter values were continuously 

increased in an exponential time sweep. It should be clear that this approach does not intend 

to represent real transient behaviour, but simply parametric changes over a determined range 

of values (for details on bowed-string musical transients, refer to Guettler, 1997).  

 

Figure 3.42 shows the instrument bridge displacement time-histories resulting from an 

exponential sweep of the bow velocity between 0.01 m/s and 1 m/s while the bow normal 

force is varied between 0.2 N and 10 N in discrete steps proportional to 1, 2 and 5. Figure 

3.43 represents also the bridge displacement time-histories but now resulting from an 

exponential sweep of the bow normal force between 0.1 N and 10 N while the bow velocity is 

varied between 0.01 m/s and 0.5 m/s in the same proportion as in Figure 3.42. A colour 

scheme is used to represent the oscillation regimes that arise for different values of the input 

parameters.  
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Six regimes were found during the exponential sweeps performed: a low amplitude or 

inexistent oscillation; the wolf note regime; the familiar Helmholtz regime; higher order 

regimes characterized by multiple slips within one fundamental period; a raucous regime of 

chaotic oscillations; and, for a small range of input parameters, the anomalous low frequency 

regime (see Hanson et al, 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42  – Map of the oscillation regimes (see legend below) of a cello string bowed at the wolf 
note position, for discrete values of NF  and an exponential sweep of bowy . 
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Figure 3.43 – Map of the oscillation regimes (see legend below) of a cello string bowed at the wolf 
note position, for discrete values of bowy  and an exponential sweep of NF . 

 

A detailed analysis of the previous figures can give some insight on the mechanism through 

which musicians usually try to avoid the wolf note by varying the bow playing conditions. 

According to these simulations, and as can be seen in Figure 3.42 and Figure 3.43, the wolf 

note can emerge over a large range of bow velocities and normal forces. Nevertheless, from 

Figure 3.42, if a bow force of 1 N is applied with a bow velocity around 0.03 m/s, Helmholtz 

motion is possible, as well as for higher bow velocities and normal forces. Interestingly, 

Figure 3.43 shows a somewhat different picture, with a large range of playing conditions 

leading to a very low amplitude or even non-existent oscillation, for values where in Figure 

3.42 a self-sustained regime would appear. As in many nonlinear systems, various response 
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regimes may arise, for the same driving parameter values, depending on the initial conditions 

of the motion. Even so, the global behaviour is similar in both figures, with other regimes, 

such as the anomalous low-frequency, emerging or being less excited, such as the higher-

order regime. Thus, it seems probable that musicians try to escape the wolf note by using 

playing conditions of bow velocity or normal force outside the “wolf” range represented in 

the previous figures. 

 

Another interesting and expected result is the appearance of the flattening effect (Cremer, 

1984) when increasing bow normal force is applied. This feature is particularly clear in the 

results from the force exponential sweep. A detailed analysis (or simply listening to the sound 

resulting from these simulations) shows that Helmholtz motion is maintained in some regions 

(see Figure 3.43) but as the force increases the fundamental frequency decreases, until chaotic 

(raucous) motion establishes. 

 

The dependence of the wolf beating frequency on the playing conditions, is also evident in the 

simulations represented in Figure 3.42 and Figure 3.43. The continuous “sweep” of bow 

velocity or normal force shows very clearly this dependence. Figure 3.49 and Figure 3.50 

depict a detail of the time-history of bridge displacement, in which this continuous change in 

the wolf note frequency is apparent. Values of this frequency are shown for clarity in Figure 

3.49 and Figure 3.50. 

 

The values of the wolf note “beating” frequency were identified over short time intervals 

containing two “beating” periods, represented by the shaded areas in Figure 3.49 and Figure 

3.50. As can be seen from the values presented and by inspection of the figures, there is a 

clear trend for increasing “beating” frequency as the bow velocity increases. Also, as stated 

before, the opposite effect occurs as the bow normal force is increased.  
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3.4. Experimental results 

3.4.1 Experimental bridge responses of a cello 
 
In order to explore the coupling between the body of the instrument and the strings, some 

preliminary measurements were made on a cello. Figure 3.44 shows a typical mobility 

frequency response function measured at the bridge in the horizontal direction as shown in 

Figure 3.45, through impact excitation, the bridge response being sensed by an accelerometer. 

The main body resonance occurs at approximately 196 Hz with a relatively low damping ratio 

(ζ = 0.7%) when compared with the majority of the other peaks which reveal damping ratios 

of the order of 2%. This high amplitude mobility peak (1.6×10-1 ms-1N-1) is responsible for 

the wolf note. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.44  – Mobility transfer function of the cello measured at the bridge. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.45 – Setup used for the transfer function measurements. 
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Figure 3.46 to Figure 3.48 show several typical bridge velocity responses, and corresponding 

spectra, to excitation by bowing on the C2 open string (tuned to 65.4 Hz) at different notes on 

the fingerboard. Typical velocity amplitudes for the vibration of the bridge at the C2 open 

string are shown to be of the order of 0.1~0.2 m/s. At a bowing position of approximately 40 

mm from the bridge (Figure 3.46), the third harmonic is prevalent relative to the lower order 

partials. The proximity of its frequency to the main body resonance (3×65.4 Hz = 196.2 Hz) 

enhances this particular harmonic, revealing the importance of string/body coupling for 

normal musical regimes. 

Figure 3.47 depicts the typical amplitude-modulated waveform that characterizes the wolf 

note. In order to achieve this sound, the C2 string was stopped at a distance approximately L/3 

from the bridge (where L is the length of the string), and the G3 note was played at 

approximately 196 Hz. Clearly, the beating phenomena displayed is the result of strong 

coupling between the string vibration and the main body resonance, which is related to the 

proximity of their frequencies. Shortening the effective length of the string by a small amount 

is enough to prevent the wolf note to develop as can be seen in Figure 3.48. In this case the 

finger moved along the fingerboard in the direction of the bridge a few millimetres, which 

was enough to alter the fundamental frequency of the stopped string to 218 Hz which 

prevented the strong string/body coupled response. 



 

 106

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.46 – Velocity time-history and spectrum of the bridge vibration, resulting from 

bowing on the C2 open string. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.47 – Velocity time-history and spectrum of the bridge vibration, resulting from 

bowing on the C2 string at a fingerboard position approximately L/3 from the bridge 
(generating here a wolf note). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.48 – Velocity time-history and spectrum of the bridge vibration, resulting from 

bowing on the C2 string at a fingerboard position about one semitone above the wolf 
note (compare with Figure 3.46). 
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3.4.2 Experimental self-excited motions in a cello  
 
This variation was also clearly heard in real bowing experience, and for that reason an attempt 

was made to obtain preliminary experimental results that could qualitatively substantiate the 

previous numerical simulations. Obtaining similar controlled playing conditions as the ones 

numerically implemented was not possible for the scope of this work. Therefore, a human 

playing approach was followed, and for that reason the qualitative results shown in the figures 

should be regarded in this light.  

Figure 3.51 and Figure 3.52 show the time history of the uncalibrated sound pressure 

measured at 40 cm from the bridge of a cello (the same that was used to obtain the frequency 

response in Figure 3.33), when playing a wolf note under varying playing conditions. For the 

results of Figure 3.51 an attempt was made to keep the applied normal force constant and 

continuously increasing (as steady as possible) the bow velocity, while in Figure 3.52 the 

normal force was increased and the velocity kept approximately constant. These results are 

clear in showing the same trend as in Figure 3.49 and Figure 3.50, apart from some deviations 

due to the difficulties in accurately controlling the playing parameters. 

From the various bow strokes realized during these experiments, other aspects were found 

which are in accordance (at least qualitatively) with the change in regimes depicted in Figure 

3.42 and Figure 3.43. During most of the strokes in which the bow velocity was continuously 

increased, the wolf note would change to a higher order regime after a limiting bow velocity 

(as also seen Figure 3.42). On the other hand, the increase of normal force also showed the 

emergence of the Hemholtz regime after the wolf note, and if the bow force was further 

increased, the Helmholtz regime would give rise, as expected, to a raucous regime. 

 
 
 
 
 
 
 
 
 



 

 108

 
 

 

 

 

 

Figure 3.49 – Detail of the time-history of the cello string oscillation during the wolf note 
regime played with FN = 1 N with increasing bowy  

 

 

 

 

 

 

Figure 3.50 – Detail of the time-history of the cello string oscillation during the wolf note 
regime played with bowy = 0.1 m/s, with increasing FN. 

 
 

B
rid

ge
 d

is
pl

ac
em

en
t [

m
] 

0.04 0.1 0.2
-2

0

3
x 10

-5
4.3 Hz 

bowy [m/s] 

6.8 Hz 8.0 Hz 7.3 Hz

B
rid

ge
 d

is
pl

ac
em

en
t [

m
] 

0.4 0.5 0.6 0.7 0.8 0.9 1.0
-2

0

2

4

6

8
x 10

-6
5.8 Hz 4.1 Hz 3.6 Hz 

FN [N] 



 

 109

 

 

 

 

 

 

Figure 3.51 – Measured sound pressure time-history of a wolf note regime played with 
increasing bowy  and approximately constant FN. 

 
 

 

 

 

 

 

Figure 3.52 – Measured sound pressure time-history of the wolf note regime played with 
increasing FN and approximately constant bowy . 
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3.5. Modal behaviour of the string/body coupled system 
Detailed interpretation of the numerical simulations presented in the previous sections 

depends on the modal behaviour of the string/body coupled system. Therefore, in this 

section a description of how those coupled modes may be computed is made, 

presenting some representative results pertaining to the violin configuration. First the 

string constrained by a “rigid” bridge (meaning that ( , ) 0b by x t = ) is addressed, and 

the dependence of the constrained modes on the constraining parameters is 

investigated. Then the modal behaviour of the full string/body coupled problem is 

analyzed, with ( , )b by x t  given by the body motion at the bridge location, highlighting 

a few interesting features of the coupled modes. 

3.5.1 String constrained at the bridge 
The dynamical behaviour of the string constrained at the bridge is described in terms 

of (3.6) to (3.11) and the constraint force (3.23) with ( , ) 0b by x t = , 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }( ) ( ) ( ) ( ) ( ) ( ) ( )bs b bs bt t t C x t K x t+ + = − Φ − ΦM Q C Q K Q Q Q  (3.26) 

Where, as before, matrices [ ] 1diag( , , )Nm m=M , [ ] 1 1 1diag(2 , , 2 )N N Nm mω ζ ω ζ=C  

and [ ] 2 2
1 1diag( , , )N Nm mω ω=K  pertain to the modal parameters of the unconstrained 

string, pinned at the tailpiece and the nut, while { } 1( ) ( ), , ( ) T
Nt q t q t=Q  is the vector 

of modal responses. The right hand-side terms stem from the modal projections (3.7) 

of the constraining force (3.23) at the bridge, accounting for the physical response 

(3.11) of the string at the bridge location bx , whence the coupling matrix  
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[ ] { }{ }

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

b b b b b N b

T b b b b b N b
b n b n b

N b b N b b N b N b

x x x x x x
x x x x x x

x x x

x x x x x x

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥Φ = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.27) 

where { } 1 2( ) ( ) ( ) ( ) T
n b b b N bx x x xϕ ϕ ϕ ϕ≡  stands for the modeshapes, at the 

bridge location, of the unconstrained string. 

From (3.26), 

 [ ]{ } [ ] [ ] { } [ ] [ ] { } { }( ) ( ) ( ) ( ) ( )bs b bs bt C x t K x t⎡ ⎤ ⎡ ⎤+ + Φ + + Φ =⎣ ⎦ ⎣ ⎦M Q C Q K Q 0  (3.28) 

And, assuming free-response solutions of the form { } { }( ) exp( )Q
n nt tλ= ΨQ , the 

following quadratic eigen-problem is obtained 

 [ ] [ ] [ ] [ ] [ ] { } { }2 ( ) ( ) Q
n n bs b bs b nC x K xλ λ⎡ ⎤⎡ ⎤ ⎡ ⎤+ + Φ + + Φ Ψ =⎣ ⎦ ⎣ ⎦⎣ ⎦M C K 0  (3.29) 

 

which can be easily converted into an equivalent first-order (state-space) form and 

then readily solved using standard procedures. Equation (3.30) is one possible 

symmetrical form, among others – see, for instance Bertolini (1998). 

 
[ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
{ }

{ }
{ }
{ }

( ) ( ) Q
nbs b bs b

n Q
n n

C x K x
λ

λ

⎧ ⎫Ψ⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ Φ + Φ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎜ ⎟+ =⎢ ⎥ ⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎜ ⎟− ⎪ ⎪Ψ⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎪ ⎪⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭

C M K 0 0
0M 0 0 M  (3.30) 

The eigenvalues and corresponding eigenvectors obtained from (3.30) are in general 

complex and, for oscillating solutions, arise in conjugate pairs ˆˆn n niλ σ ω= ± . The 

(damped) modal frequencies ˆ Im( )n nω λ=  and modal dissipation values ˆ Re( )n nσ λ=  

reflect the linear dynamics of the dissipative coupled system, in terms of the 

constraint parameters bsK  and bsC . The undamped modal frequencies 0ˆnω  and modal 
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damping values ˆ
nζ  of the constrained string may be inferred from the various nλ  

using the following relations 

 
2 2

0 2 2

ˆˆˆ ˆˆ ;
ˆˆ

n
n n n n

n n

σ
ω σ ω ζ

σ ω
= + = −

+
 (3.31) 

and one obtains 2
0

ˆˆ ˆ 1n n nω ω ζ= − , as usual. After obtaining the eigenvectors { }Q
nΨ  of 

the coupled system in terms of the modal amplitude coefficients of the original string 

modes, one can easily express the corresponding modeshapes { }Y
nΨ  in terms of 

physical amplitudes by recombination of the unconstrained modeshapes 

 { } { } { } { } { }1 2, ,..., , 1,2,...,Y Q
n N n n Nϕ ϕ ϕΨ = Ψ =⎡ ⎤⎣ ⎦  (3.32) 

 
Figure 3.53 and Figure 3.54 show the changes in the string modal frequencies and 

damping values respectively, as the bridge constraining stiffness bsK  increases in the 

range 710 ~ 10  Nm-1 with no coupling dissipation ( 0bsC = ), for the first nine modes. 

One may notice that modal frequencies behave as an almost harmonic series for very 

the lowest values of bsK , meaning that the bridge is then barely “felt” by the string. 

On the opposite extreme, when 610bsK >  Nm-1, further increase in the constraining 

stiffness brings no significant changes, as for all practical purposes, the bridge is 

already “rigid” as far as the string is concerned. Again, the highly constrained string 

modal frequencies are almost harmonic, except for a mode at 1224 Hz, which will be 

explained later. All the modal frequencies increase with bsK , as they should, system 

inharmonicity being maximal at about 35 10bsK ×  N/m, when the bridge is far from 

“rigid” but already a significant constraint.  
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Figure 3.53 – Modal frequencies of the string modes constrained at the bridge, as a 
function of the stiffness coupling constant bsK  (with 0bsC = ) 

 

Figure 3.54 – Modal damping of the string modes constrained at the bridge, as a 
function of the stiffness coupling constant bsK  (with 0bsC = ) 

 
 

From Figure 3.54 it appears that the modal damping values of the constrained modes 

are almost independent from bsK  when 0bsC = , and always slightly lower than those 
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of the original (unconstrained) string modes (here 0.1 % was postulated for all modes). 

However, as shown in Fig. A3, the scenario is considerably different when bsC  is not 

nil (here -110 NsmbsC = ), because significant energy is then damped out when the 

constraining stiffness is low enough to allow for string motions at the bridge location. 

Notice that, for high values 6 -110  NmbsK > , modal damping of the constrained modes 

does not depend whatsoever on bsC  and only reflect the modal damping values of the 

original modes. 

 
To conclude this section Figure 3.55 displays the modeshapes of the first nine 

constrained modes, computed from (3.30) and (3.32), when the bridge behaves as an 

almost-rigid constraint ( 710bsK =  Nm-1). Notice that for most modes in this frequency 

range the modal amplitudes are only significant between the nut and the bridge, the 

string length between the bridge and the tailpiece being only marginally active, which 

is well consistent with the near-harmonic series obtained for the constrained modal 

frequencies. The only exceptions (in this frequency range) being the 6th mode, with its 

modal frequency barely affected by the string motion on the tailpiece-side (because 

the bridge naturally stands at a node), and mostly the 7th mode. Indeed, this mode is 

strongly dominated by a localized tailpiece-side response, and hence displays a modal 

frequency mostly related to the bridge-tailpiece distance. Obviously, this is the mode 

which breaks the harmonic series of the modal frequencies displayed by the right side 

of Figure 3.53. 

 



 

 115

0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

Coupled Mode 1 : 197.1 Hz , 0.094 %
A

m
pl

itu
de

0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

Coupled Mode 2 : 394.3 Hz , 0.096 %

0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

Coupled Mode 3 : 591.3 Hz , 0.098 %

0 0.1 0.2 0.3 0.4
-1

0

1

Coupled Mode 4 : 788.3 Hz , 0.098 %

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4
-1

0

1

Coupled Mode 5 : 984.8 Hz , 0.099 %

0 0.1 0.2 0.3 0.4
-1

0

1

Coupled Mode 6 : 1176 Hz , 0.1 %

0 0.1 0.2 0.3 0.4
-1

0

1

Coupled Mode 7 : 1224 Hz , 0.093 %

Length [m]

A
m

pl
itu

de

0 0.1 0.2 0.3 0.4
-1

0

1

Coupled Mode 8 : 1382 Hz , 0.098 %

Length [m]
0 0.1 0.2 0.3 0.4

-1

0

1

Coupled Mode 9 : 1578 Hz , 0.099 %

Length [m]
 

Figure 3.55 – Modeshapes of the first string modes constrained at an almost-rigid 
bridge, represented by a square ( 710bsK =  Nm-1). 

 

3.5.2  String/body coupled modes 
The coupled modes of the string/body system can be addressed in a similar manner as 

in the previous section. Formulation follows similar lines to the previous presentation, 

although – because now ( , ) 0b by x t ≠  – the modal parameters of the P body modes 

must obviously be included. Then, from equations (3.6)-(3.11) and (3.21)-(3.23), the 

coupled system becomes 

{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

( ) ( ) ( )
( )( ) ( )

( )( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( )( )

BB B BB B

SS b SB b SS b SB b
bs bs

BS b BB b BS b BB bB

t t t
tt t

tx x x x t
C K

x x x xt

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫Φ Φ Φ Φ⎡ ⎤ ⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥ ⎢ ⎥Φ Φ Φ Φ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

Q Q QM 0 C 0 K 0
Q0 M 0 C 0 KQ Q

Q Q

Q

{ }
{ }

)
( )B t

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭Q

 (3.33) 

with the coupling sub-matrices 
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 [ ] { }{ } [ ] { }{ }
[ ] { }{ } [ ] { }{ }

( ) ( ) ( ) ; ( ) ( ) ( )

( ) ( ) ( ) ; ( ) ( ) ( )

TT
SS b n b n b SB b n b p b

TT
BS b p b n b BB b p b p b

x x x x x x

x x x x x x

ϕ ϕ ϕ φ

φ ϕ φ φ

Φ = Φ = −

Φ = − Φ =

 (3.34) 

where { }( )p bxφ  is the vector of the body modeshape values at the bridge location 

(here taken as unity, following the normalization procedure adopted).  

Equation (3.33) is of the form (3.26), although obviously the system size is now N+P. 

Therefore the corresponding eigenproblem may also be written in form (3.29) or 

(3.30), from which the string/body coupled modes are computed. Notice that the 

coupling matrix built from (3.34) is symmetrical, as it should. This, however, is no 

guarantee that the coupled modes will display real modeshapes – and indeed, as will 

be shown later, complex modes are the rule here more than the exception. 

 

Figure 3.56 displays the change of the string/body modal frequencies as the stiffness 

coupling constant bsK  increases. These computations are based on the same 

unconstrained string modes as before, while Table 3.1 presents the modal frequencies 

and damping values used for the first few body modes used in this calculation. Notice 

that these body modes display damping values typically one order of magnitude 

higher than the uncoupled string modes. 

Essentially the left side of the plot shows the string and body modes when they are 

almost uncoupled, while the right side of the plot shows the string and body almost 

rigidly coupled at the bridge. In-between, the interplay of the modal frequencies stems 

from increasing coupling. Understandably, the string modal frequencies change 

significantly as bsK  increases, while the body modal frequencies are hardly affected.  
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Figure 3.56 – Modal frequencies of the string/body coupled modes, as a function of 

the stiffness coupling constant bsK  at the bridge (with 0bsC = ). 

 

At the modal frequencies controlled by the body, the bridge presents a lower 

impedance to the string, so that the coupled modes don’t display any more a node at 

the bridge location. This is demonstrated in Figure 3.57, which shows the first 9 

modes of the coupled system (using 7 -110  NmbsK = ) – see modes 2, 4, 5 and 8. Also 

notice that, the coupled string/body modes are complex, as the energy dissipation 

from the string will be mainly localized at the bridge, and hence damping is non-

proportional. This is particularly significant for the coupled modes controlled by the 

body motion, as shown in Figure 3.57, where the modeshapes have been normalized 

at unity for the maxima of their real part, the corresponding imaginary part being 

plotted with a dotted line. 
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Table 3.1 – Body first modal frequencies and damping values 
Mode 1 2 3 4 5 

Frequency [Hz] 276.5 404.0 480.7 846.5 1093.0 
Damping [%] 2 3 1 1 1 
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Figure 3.57 – Complex modeshapes of the first string/body coupled modes, where the 
square represents the bridge ( 710bsK =  Nm-1). 

 

Concerning the modal damping of the coupled modes on may notice that, when the 

bridge is almost still, the modal damping values are essentially those of the uncoupled 

string modes. Also understandably, when the coupled modes are controlled by the 

body, damping values are essentially those of the corresponding body modes. As 

thoroughly discussed by Woodhouse (2004), if the system damping is modelled in a 
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satisfying manner, such typically scenario should be displayed even when two 

coupled “string-controlled” and “body-controlled” modes present close frequencies, 

as the orders of magnitude of their respective damping values should respect those of 

the decoupled substructures. An illustration is provided by modes 3 and 4 in Figure 

3.57, even so, the 60% damping increase in the “string-controlled” mode is enough to 

produce some of the visible changes in the response shown in Figure 3.37(b). 
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Chapter 4 
 
BOWED BARS: MARIMBAS & VIBRAPHONES 
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4. BOWED BARS: MARIMBAS & VIBRAPHONES 

4.1. Introduction 

In this chapter, a thorough description of the implementation of the simulation method 

for bowed bars is presented. Both tuned and constant cross-section bars are studied 

and the self-sustained regimes emerging from different playing conditions are 

presented.  

4.2. Computational Model 

4.2.1 Modal model for bending bars 

The cross-sectional dimensions of bars used in percussion musical instruments are not 

usually small compared to their length. In fact, as modal frequencies increase, the 

Bernoulli-Euler slender beam model becomes progressively inadequate. Therefore, 

flexural modes are here modelled in terms of the Timoshenko thick-beam model, 

which corrects for the effects of rotary inertia and shear deformation (Graff, 1975). 

Although torsional and axial vibrations are also present in the dynamics of this 

system, only flexural vibration modes will be addressed in this study. Thus, for small 

vibratory motions, the transverse displacement ( , )y x t  and slope ),( txφ  of the free 

conservative system are formulated as: 

 
2 2

2 2( ) ( ) 0y yA x kGA x
t x x

φρ
⎛ ⎞∂ ∂ ∂

+ − =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (4.1) 

 
2 2

2 2( ) ( ) ( ) 0yI x EI x kGA x
t x x
φ φρ φ∂ ∂ ∂⎛ ⎞− + − =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (4.2) 

where )(xA  and )(xI  are the local bar cross-section area and moment of inertia, 

respectively, ρ  is the specific mass of the bar material, E  is the Young modulus, G is 

the shear modulus and k  is a geometric factor for shear energy (equal to 6/5  for 

rectangular cross-sections). Inertial and stiffness terms can be easily recognized in 

equations (4.1) and (4.2). 

If linear dissipation is assumed, any solution of (4.1) can be written in terms of the 

beam modal parameters: modal masses nm , modal circular frequencies nω , modal 

damping nζ , and modeshapes )(xnϕ , Nn ,,2,1= . The order N  of the modal 
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truncation is problem-dependent and must be asserted by physical reasoning, 

supported by the convergence of computational results. The forced response of a 

damped bar can then be formulated as a set of N  ordinary second-order differential 

equations: 

 [ ]{ } [ ]{ } [ ]{ } { })()()()( ttQKtQCtQM Ξ=++  (4.3) 

 

where: [ ] ),,(Diag 1 NmmM = , [ ] )2,,2(Diag 111 NNNmmC ζωζω=  and 

[ ] ),,(Diag 22
11 NNmmK ωω=  are matrices of the modal parameters, and 

{ } T
N tqtqtQ )(,),()( 1= , { } T

N ttt )(,),()( 1 ℑℑ=Ξ  are vectors of the modal 

responses and the generalized forces, respectively. 

The modal damping values nζ  are usually identified from experiments; however, they 

may eventually be theoretically estimated (Fletcher & Rossing, 1998). The modal 

forces )(tnℑ  are obtained by projecting the external force field on the modal basis: 

 NndxxtxFt
L

nn ,,2,1;)(),()(
0

==ℑ ∫ ϕ  (4.4) 

The physical motions can be computed from the modal amplitudes )(tqn  by 

superposition: 

 ∑
=

=
N

n
nn tqxtxy

1
)()(),( ϕ  (4.5) 

and similarly concerning the velocities and accelerations. For given external 

excitation and initial conditions, the previous system of equations can be integrated 

using an adequate time-step integration algorithm. Explicit integration methods are 

well suited for the friction model developed here. 

In this implementation, a simple Verlet integration algorithm is used (Beeman, 1976), 

which is a second order explicit scheme. Note that, although equations (4.3)-(4.5) 

obviously pertain to a linear formulation, nothing prevents us from including in )(tnℑ  

all nonlinear effects arising in the system. Accordingly, the system modes become 

coupled by the nonlinear effects. 
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4.2.2 Friction Model 

For the present system, the same friction model as described in section 2.3.1 and 2.3.2 

is used. Considering the Coulomb-type friction force arising when the bow is applied 

at location cx  of the bar: 

 
⎩
⎨
⎧

=<
>−=

0if;),(
0if;)sgn()(),(

cNSca

cNcdcs

yFtxF
yyFytxF

μ
μ

 (4.6) 

Here, the relative transverse velocity between the bow and the bar is given by (see 

Figure 4.1): 
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where )(tFN  is the normal force between the bow and the bar, Sμ  is a “static” friction 

coefficient (used during surface adherence) and )( cd yμ  is a “dynamic” friction 

coefficient (used for sliding regimes).  

 

Figure 4.1 - Scheme of the bow/bar interaction: Normal force NF ; Tangential bow velocity bowy  

The numerical implementation of this friction model is made as described in section 

2.3.2. 

4.2.3 Modal and Friction Parameters 

The numerical simulations presented in this chapter were performed for a A3 

vibraphone bar (with fundamental frequency f1 = 220.4 Hz), with an undercut leading 

to approximate 1-4-10 harmonic relationships of the three first bending modal 

FN 

bowy  
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frequencies, and also for an aluminum bar of constant cross-section, with the same 

fundamental but with inharmonic modal frequency relationships. This will enable us 

to compare the influence of the tuning undercut on the oscillation regimes of the 

bowed bars. 

In order to construct the modal basis for the simulations of both bars, it is necessary to 

calculate or measure its modal parameters nm , nω , nζ  and modeshapes )(xnϕ , 

Nn ,,2,1= .  

The modal basis used in the simulations of the bars were obtained from two different 

procedures: 1) an experimental procedure for the identification of modal frequencies 

and modal damping for the vibraphone 1-4-10 bar; 2) a numerical procedure based on 

the finite element method for determination of modal parameters for the constant 

cross-section and unorthodox tuning bars.  

The modal frequencies, nω , and modal damping, nζ , of the A3 vibraphone bar were 

identified by measuring the transfer function between the acceleration response of the 

bar and the impulse excitation provided by an instrumented impact hammer (see 

section 4.4.1). The measurements were carefully performed in order to distinguish 

bending modes from torsion modes which are not included in the present 

computational model. The modeshapes )(xnϕ  were then calculated using finite 

element methods, as applied to the geometries of both bars. The modal masses were 

then computed according to: 

 2

0
( ) ( ) 

L

n nm m x x dxϕ= ∫  (4.8) 

The fundamental frequency, f1 (220.4 Hz) and the damping values nζ used in all the 

computations (for both the constant section and the vibraphone bar) are those 

experimentally identified for the vibraphone bar. Modal damping is low, at an average 

value of 0.02 %. Table 4.1 shows the modal frequencies identified for the free-free 

bars in the range 0~8000 Hz. 
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Table 4.1- Modal frequencies for the A3 vibraphone bar and constant section bar 

fn  [Hz] 220.4 870.5 2278 3787 4960 7141 ⎯ ⎯ Vibraphone 
bar A3 fn / f1 1 3.95 10.3 17.2 22.5 32.4 ⎯ ⎯ 

fn  [Hz] 220.4 606.7 1187 1956 2912 4050 5366 6855 Constant 
section bar fn / f1 1 2.75 5.38 8.87 13.2 18.4 24.3 31.1 

The frequency-response measurements for the vibraphone bar showed two low-

frequency free oscillations (around 35 Hz), which are related to the rigid-body 

translation and rocking modes of the bar, when coupled with its supporting fixture. To 

introduce this feature in the model, two flexible and damped supports were modelled 

at locations 1 / 5x L=  and 2 4 / 5x L= . Also, the zero-frequency translation and 

rocking modes of the bars were included in the computational modal basis, along with 

8 flexural modes (with frequencies up to about 8000 Hz). Note that the dynamic 

support reactions are projected on the modal basis, along with the friction bow force. 

The support stiffness and damping values used for each support are 410sK =  N/m and 

20sC =  Ns/m, respectively, as crudely estimated from the experimental results. 

The friction parameters used in all numerical simulations are 1.0Sμ = , 0.2Dμ =  and 

10C = . These values lead to a friction law ( )d cyμ  (see Figure 4.2), according to the 

scarce experimental results available ⎯ see Lazarus (1972), Askenfelt (1989) and 

Schumacher (1994). 

 

Figure 4.2 - Evolution of the friction coefficient with sliding velocity (μs = 1, μd = 0.2, C = 10) 
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4.3. Numerical Simulations 

Extensive numerical simulations have been performed exploring a wide range of 

excitation parameters: FN = 0.05 ~ 35 N and bowy  = 0.002 ~ 1 m/s, which encompass 

the usual playing range. In order to cope with the relatively large transients that arise 

in these systems, 5 seconds of computed data were generated, at a sampling frequency 

of 20 kHz, to obtain representative realistic simulations. 

The values of the bar geometrical and mechanical parameters used in the 

computations are shown in Table 4.2. 

Table 4.2 - Geometric and mechanical characteristics of the A3 vibraphone bar and a constant 
cross-section bar 

 Length 
(cm) 

Width 
(cm) 

Max. Height 
(cm) 

Min. Height 
(cm) 

E 
(GPa) 

ρ 
(kg/m3) 

A3 Vibraphone bar 32.4 5 1.11 0.42 71 2700 

Constant section bar 35.2 5 0.52 0.52 71 2700 

4.3.1 Basic self-excited regimes 

Figure 4.3 shows the simulated response of the vibraphone bar, at the bowing point, 

using a normal bow force 2NF =  N and a bowing velocity 0.1bowy = m/s. These 

parameters might be considered “usual” for bowed bars (however, depending on 

many factors, large variations from these values may be used by performers when 

seeking musically-effective sounds). The first graph on the top of Figure 4.3 shows 

the bar bowing point displacement time history during an interval of 5 seconds. The 

next three pairs of graphs represent, respectively, zoomed time-histories and power 

spectral densities of the displacement, velocity and acceleration at the bowing 

location. The last two graphs show, respectively, the time-history of the tangential 

friction force (on the left) and the time-intervals when the bar is sticking or sliding 

relative to the bow (on the right). 
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Figure 4.3 - Vibratory response at the bowing point of a tuned A3 vibraphone bar: Normal bow 

force 2=NF N; Bowing velocity 1.0=bowy m/s  (“musical” regime). 
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One can notice a large-amplitude low-frequency transient, which is mostly controlled 

by the flexible supporting conditions of the bar. Then, a steady self-excited motion 

develops, which is dominated by the response of the first vibratory flexural bar mode 

(at 220,4 Hz). This behaviour contrasts with the typical responses of bowed strings, 

which display very significant “activity” of the higher-order modes. Here, the spectral 

harmonics due to the system nonlinearity are of lower amplitude, as shown in the 

displacement spectrum. However, a few harmonics increase significantly, when they 

approach a modal frequency of the bar ⎯ for this vibraphone bar, the fourth harmonic 

near the 870 Hz mode (at a ratio f2/ f1 = 3.95) can be clearly heard. Notice also that the 

friction force is quite complex, with a large portion of the cycle in the sliding regime. 

This also contrasts with the behaviour of bowed strings, for which most of the motion 

takes place in adherence conditions (Antunes et al, 2000a; Tafasca et al, 2000). 



 

 129

 

Figure 4.4 - Vibratory response at the bowing point of a bar of constant section: Normal bow 
force 2=NF  N ; Bowing velocity 1.0=bowy m/s  (“musical” regime). 
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Figure 4.4 shows the results obtained when simulating the bowed response of the bar 

with constant cross-section, under similar bowing conditions. Again the self-excited 

motion is dominated by the first bar mode. However, looking at the harmonic content, 

it is now the third harmonic that is slightly enhanced, as it approaches the 607 Hz 

mode (at a ratio f2/ f1 = 2.75). Furthermore, the higher inharmonicity of this bar leads 

to an even lower amplitude of the higher harmonics resulting in a distinct timbre from 

the tuned bar and a longer initial transient due to the difficulty of the modes to lock 

into a common periodicity. 

4.3.2 Influence of playing conditions 

The self-excited responses shown in Figure 4.3 and Figure 4.4, which are dominated 

by the first bending mode of the bars, are those typically aimed by musicians ⎯ and, 

as such, will be designated “musical” regime. Quite different solutions may appear 

when changing the bowing parameters NF  and bowy . In bowed bars, the range of 

values ( )bowN yF ;  leading to musically-interesting sounds is more limited than for 

bowed strings ⎯ meaning that it is more difficult to excite musical self-excited 

motions with bowed bars. In fact, depending on the bowing parameters, three main 

response regimes may be obtained:  

(a) For high values of NF  and low values of bowy , a low-frequency “non-musical” 

self-excited motion arises, where rocking motions of the (un-deformed) bar are 

controlled by the support stiffness ⎯ designated here as “support” regime (Figure 

4.5); 

(b) For low values of NF  and high values of bowy , no self-excited motions are 

displayed, because the bow slides all the time and any starting transient motion will 

ultimately disappear ⎯ the “decaying” regime (Figure 4.6);  

(c) Between the extreme values of the input parameters ( )bowN yF ; , the previously 

mentioned musically-interesting solution exists, where stick-slip phenomena enable 

self-excited motions dominated by the first bending bar mode (Figure 4.3 and Figure 

4.4).  
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Figure 4.5 - Low-frequency self-excited oscillation. 20NF =  N and 1.0=bowy m/s (“support” 
regime). 

 

 



 

 132

Figure 4.6 - Decaying not self-excited oscillation. 0.2NF =  N and 0.5bowy = m/s 

(“decaying” regime). 
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Figure 4.7 - Total energy of vibration of a 1-4-10 vibraphone bar as a function of NF   and bowy . 
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Figure 4.7 and Figure 4.8 show the various solution domains, respectively for the 

tuned and the constant-section bar. A set of colors was chosen to distinguish between 

the various dynamical regimes, when plotting the energy magnitude of the various 

solutions obtained from the computations. It is clear from these results that the tuned 

(e.g. harmonic) bending modes of the A3 vibraphone bar allow for a larger domain of 

NF  and bowy  leading to the self-excited “musical” regime, when compared with the 

corresponding domain stemming from the computations performed with the 

inharmonic constant-section bar. 



 

 135

 

 

Figure 4.8 - Total energy of vibration of a constant-section bar as a function of NF  and bowy . 

Increasing the bow velocity leads to an increase of the amplitude of the bar motion ⎯ 

a behaviour also displayed by bowed string instruments. When the bow velocity is far 

too high for any sticking to occur then the “decaying” regime prevails. The transition 

from the “decaying” regime to the low-frequency “support” oscillation (passing 

through the “musical” solution), appears to be related to the fraction of time spent in 

the sliding state. Figure 4.9 shows the percentage of sliding time, computed during the 

stationary part of the response oscillations, as a function of the applied normal force 

and bow velocity. The dependence of the sliding time on NF  and bowy  is clearly seen. 
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Figure 4.9 – Relative sliding time as a function of NF  and bowy . 

For very low velocities, a “mixed” regime arises (blue color in Figure 4.7 and Figure 

4.8), where a combination of the low-frequency “support” solution and of the 

“musical” self-excited regime appears. In these simulations, for values bowy  between 

0.005 and 0.01 m/s the frequencies of the bar modes are clearly seen in the velocity 

spectra, together with other frequency components at lower amplitude, sometimes 

with a harmonic structure. As the applied force is increased or the bow velocity is 

decreased, these regimes give origin to double period and even chaotic oscillations 

before settling into the lower-frequency support oscillation as seen in the typical 

phase-trajectories and spectral plots shown in Figure 4.10. Notice that, for every 

motion regime, the flexural modal frequencies of the bar are always embedded in the 

response spectral envelopes. 
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Figure 4.10 - Phase Space and Power Spectral Density representations for the: a) Musical regime 
-FN = 2 N, Vb = 0.1 m/s; b) Double period regime - FN = 0.5 N, Vb = 0.01 m/s;  c) Chaotic regime - 

FN = 2 N, Vb = 0.02 m/s and d) Support regime - FN = 10 N, Vb = 0.02 m/s.  

(a) 

(b) 

(c) 

(d) 
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Within the green region in Figure 4.7 and Figure 4.8, the “sound quality” (e.g. the 

relative amplitude of the spectral peaks of the responses) changes with NF  and bowy  

in a much less dramatic way than with bowed strings (see Antunes et al, 2000a; 

Tafasca et al, 2000; McIntyre et al, 1983) Although, for a given motion regime, the 

response amplitudes of the bars increase almost linearly with the bowing velocity (as 

in bowed strings), the effects of increasing the normal force are subtle, (contrasting 

with bowed strings, for which normal force effects are usually significant).  

Another dramatic difference between these two systems is that the length of the 

starting transients is much longer for bowed bars than with bowed strings, 

emphasizing the increased difficulties in controlling this system. Figure 4.11 and 

Figure 4.12 show how the initial transients increase exponentially with bowy  and 

decrease inversely proportionally to NF .  

 

Figure 4.11 - Initial transients (1-4-10 vibraphone bar) as a function of bowy . 
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Figure 4.12 - Initial transients (1-4-10 vibraphone bar) as a function of NF . 

 

As already stated, the dynamics of this system are mainly controlled by the first 

vibratory bar mode (and by the flexible support), in clear contrast with bowed strings. 

This is attested by Figure 4.13, which shows the change of the modal energies of the 

system as a function of the normal force, for a bowing velocity of 0.02 m/s. These are 

computed from the temporal modal responses and represented normalized to the total 

energy of the system according to: 

 2 2 21 ( ) ( )
2n n n n n T n TE m q t q t E E Eω= + ≡  (4.9) 
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Figure 4.13 - Modal energies (1-4-10 vibraphone bar) as a function of NF  for bowy =0.02 m/s 
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Comparing Figure 4.13 and Figure 4.7, it can be seen how changes from the musical 

regime to the chaotic regime and to the support self-excited oscillation are controlled 

by a progressive transfer of energy from the first bending mode to the low-frequency 

rocking and translation rigid-body bar/support modes. This behaviour is similar at 

other bow velocities. This fact suggests that it may be sufficient to model analytically 

this system using a couple of vibratory modes. 

4.3.3 Responses of uniform, undercut and unorthodox bars 

Figure 4.14 shows the profiles of the bars used in these simulations. The absolute and 

relative dimensions presented in the figure are not to scale. As can be seen from the 

analysis of Table 4.2, the three bars present a decreasing level of modal inharmonicity 

due to the shape of the tuning undercut. The optimised bar (b) is quite similar to 

current commercially available vibraphone bars, with their typical central undercut. 

However, the “harmonic” bar (c) would be a very unorthodox design, by current 

standards. 

Table 4.3 - Natural bending frequencies and modal relationships for the three bars. 

 Uniform bar Vibraphone bar Harmonic bar 
n fn [Hz] fn/f1 fn [Hz] fn/f1 fn [Hz] fn/f1 
1 220.4 1 220.4 1 220 1 
2 606.7 2.75 870.5 3.95 440 2 
3 1187 5.38 2278 10.3 660 3 
4 1956 8.87 3787 17.2 1625 7.38 
5 2912 13.2 4960 22.5 2448 11.1 
6 4050 18.4 7141 32.4 2983 13.5 
7 5366 24.3 - - 4444 20.2 
8 6855 31.1 - - 5591 25.4 
… … … … … … … 
N 8 8 13 
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Figure 4.14 - Bar profiles:  a) Uniform bar; b) Vibraphone (1-4-10) bar; c) Harmonic (1-2-3) bar. 

 

4.3.3.1 Uniform and Vibraphone Bar 

Figure 4.15a and Figure 4.15b show time-history segments of the computed 

dynamical responses at the bowing point (located at one of the ends of the bars) and 

the corresponding power spectral densities, respectively for the uniform (constant 

cross-section) and for the vibraphone bar, using a normal bow force NF  =2 N and a 

bowing velocity bowy = 0.1 m/s.  

In both cases the motion is dominated by the response of the first vibratory flexural 

mode although for the vibraphone bar there is more energy spread in higher-order 

modes, which have natural frequencies in approximate integer ratios with the 

fundamental. The high degree of inharmonicity of the uniform bar leads to a lower 

amplitude of the higher harmonics (which are mostly due to the system non-linearity) 

resulting in a distinct timbre from the tuned vibraphone bar. Also, the uniform bar 

usually displays longer initial transients, due to the difficulty of the modes to lock into 

a common periodicity. This behaviour contrasts with the typical responses of bowed 

a)

b)

c)
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strings, which display very significant “activity” of the higher-order modes and much 

shorter initial transients.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.15 - Time history and power spectral density of the bowed response of a: a) Uniform bar 

(using FN = 2 N); b) Vibraphone (1-4-10) bar (using FN = 2 N); c) Harmonic bar (using FN = 3.5 
N). 

 

4.3.3.2 Harmonic Bar 

The simulated displacement response of a 1-2-3 harmonic bar bowed with FN = 3.5 N 

and bowy  = 0.1 m/s is shown in Figure 4.15c. The self-excited motion of the bar is now 

dominated by the first three vibratory flexural modes, with low amplitude response of 

the higher harmonics, due to the high inharmonicity of the modal frequencies beyond 

the third flexural mode. However, because the three first bending modes are harmonic 

and respond in a very cooperative manner, the waveform of the bar displacement is 

almost saw-shaped, such as the Helmholtz waveform in bowed string. 

Indeed, similarity between the harmonic 1-2-3 bowed bar and bowed strings is also 

noticed when looking at the stick-slip behaviour of the friction interaction. Figure 

a) 

b) 

c) 
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4.16a to Figure 4.16c show the computed frictional forces corresponding to the three 

case studies of Figure 4.15. The relative sticking-time (within a period) increases 

somewhat from the uniform bar to the tuned vibraphone bar, but significantly more 

for the harmonic bar (the bar sticks to the bow during 56% of the motion period). This 

behaviour approaches what is observed for bowed strings, which stick during a very 

significant part of the motion (see Antunes et al, 2000a; Tafasca et al, 2000). Also, the 

friction force displayed by the 1-2-3 bar (Figure 4.16c) presents similarities with 

typical bow/string interaction forces, in clear contrast to the results presented in 

Figure 4.16a and Figure 4.16b. 

The results presented show that the dynamics of uniform and vibraphone bowed bars 

are mainly dominated by the first bending mode. This is in contrast with the much 

higher modal activity observed in bowed string motions. The vibraphone bar exhibits 

a higher level of playability when compared to the uniform bar, due to the higher 

harmonicity of its modal frequencies. However, the unorthodox tuning used for the 

harmonic (1-2-3) bar enables the emergence of waveforms which are similar to those 

displayed by bowed strings, as well as similar relative sticking times. 

In conclusion, shaping bars so that their first few modal frequencies are harmonic, 

creates an interesting new “animal”, which behaves half-way between strings and 

common bars.  
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Figure 4.16 - Friction force time-history segment and slipping-time diagrams of a: a) Uniform 
bar (using FN = 2 N); b) Vibraphone (1-4-10) bar (using FN = 2 N); c) Harmonic bar (using FN = 

3.5 N). 

 

a)

b)

c)
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4.4. Experimental Results 

Experimental measurements on vibraphone bars were carried to fulfil two main 

objectives: 1) to assist the calculation of modal parameters necessary to the 

computations and 2) to allow a comparison of the computation results with real bowed 

bar oscillations.  

4.4.1 Modal identification of vibraphone bars 

As explained in previous sections the modal basis used in the simulations of the bars 

were obtained from two different procedures: 1) an experimental procedure for the 

identification of modal frequencies and modal damping for the vibraphone 1-4-10 bar; 

2) a numerical procedure based on the finite element method for determination of all 

modal parameters for the constant cross-section and unorthodox tuning bars and of the 

modeshapes of the 1-4-10 vibraphone bar. From these procedures, the first will be 

summarily presented in this section. 

The identification of the modal frequencies of the vibraphone bar were obtained by 

inspection of the frequency response functions measured between the acceleration 

signal of an accelerometer placed at one end of the bar (and at half the width of the 

bar) and the force signal induced by an impact hammer at the opposite end (see Figure 

4.17). Both signals were fed to 2 input channels of a 4-channel frequency analyser 

which calculated the frequency response functions from the acceleration and force 

signals.  

The bar under test was supported on the vibraphone structure by a cord, as would be 

in a real performance. The cord goes through two holes located at the nodal points of 

the first bending mode, in order to minimize damping. All the remaining bars were 

damped with a heavy cloth to eliminate unwanted sympathetic vibrations. 



 

 147

 

 

 

 

 

 

 

 

 

Figure 4.17 – Experimental setup used for the experimental modal identification of the bars 

In order to separate flexural modes from torsion modes (the impact exerted did not 

excite significantly any longitudinal modes), several frequency response functions 

were measured with different locations of impact along the width of the bar. Figure 

4.18 shows an example of a measured frequency response function with an impact 

location away from the middle of the bar width. On the other hand, Figure 4.19 shows 

another frequency response function but now with an impact location precisely in the 

middle of the bar width. Comparing both figures confirmed the hypothesis that both 

modes showing up at approximately 750 Hz and 3100 Hz were not bending modes, 

but torsion modes as confirmed by finite element calculations. Close inspection of the 

frequency response functions showed two two low-frequency free oscillations at 

approximately 35 Hz, in every measurement made even when damping the bar to 

eliminate flexural, longitudinal or torsional vibrations. These oscillations are related 

to the rigid-body translation and rocking modes of the bar, when coupled with its 

supporting fixture. 

Experimental modal research on these systems has already been explored thoroughly 

(see Fletcher & Rossing, 1998; 2000) and the present measurements showed good 

agreement with the published results. Table 4.1 shows the results obtained from the 

modal identification on both vibraphone and constant cross-section bar.

Impact hammer 

Vibraphone bar 

Accelerometer 

Frequency 
Analyser 
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Figure 4.18 – Frequency response function of the 1-4-10 vibraphone bar with impact off-axis 

 
Figure 4.19 – Frequency response function of the 1-4-10 vibraphone bar with impact on-axis 
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4.4.2 Experimental self-excited motions 

Preliminary experiments have been performed at this stage, although under 

uncontrolled conditions. Figure 4.20 shows a typical result measured near the bowing 

point of a A3 vibraphone bar (with the modal parameters used in these simulations), as 

hand-bowed by a professional musician. The background noise of the measured 

spectrum is obviously higher than in this sample simulation – compare with Figure 

4.3 or Figure 4.10a – but the similarity of the computed and experimental signals is 

unmistakable. 

 

Figure 4.20 - Experimental response of a bowed A3 vibraphone bar. 
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Chapter 5 

 

BOWED SHELLS: TIBETAN BOWLS 
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5. BOWED SHELLS: TIBETAN BOWLS 

5.1. Introduction 

In this chapter, the modal physical modelling technique is applied to axi-symmetrical 

shells subjected to impact and/or friction-induced excitations. This approach is based 

on a modal representation of the unconstrained system – here consisting on two 

orthogonal families of modes of similar (or near-similar) frequencies and shapes. The 

bowl modeshapes have radial and tangential motion components, which are prone to 

be excited by the normal and frictional contact forces between the bowl and the 

impact/sliding stick (called puja). At each time step, the generalized (modal) 

excitations are computed by projecting the normal and tangential interaction forces on 

the modal basis. Then, time-step integration of the modal differential equations is 

performed using an explicit algorithm. The physical motions at the contact location 

(and any other selected points) are obtained by modal superposition. This enables the 

computation of the motion-dependent interaction forces, and the integration proceeds. 

Details on the specificities of the contact and frictional models used in these 

simulations are given. A detailed experimental modal identification has been 

performed for three different Tibetan bowls. Then, extensive series of nonlinear 

numerical simulations are produced, for both impacted and rubbed bowls, 

demonstrating the effectiveness of the proposed computational techniques and 

highlighting the main features of the physics of singing bowls. The influence of the 

contact/friction and playing parameters is discussed – the normal contact force NF  and 

of the tangential velocity TV  of the exciter – on the produced sounds. Many aspects of 

the bowl responses displayed by these numerical simulations have been observed in 

preliminary qualitative experiments.  

5.1.1 Tibetan singing bowls and their use 

Singing bowls, also designated by Himalayan or Nepalese singing bowls (Gaynor, 

2002) are traditionally made in Tibet, Nepal, Bhutan, Mongolia, India, China and 

Japan. Although the name qing has been applied to lithophones since the Han Chinese 

Confucian rituals, more recently it also designates the bowls used in Buddhist temples 

(Thrasher, 2001). In the Himalaya there is a very ancient tradition of metal 

manufacture, and bowls have been handcrafted using alloys of several metals – 
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mainly copper and tin, but also other metals such as gold, silver, iron, lead, etc. – each 

one believed to possess particular spiritual powers. There are many distinct bowls, 

which produce different tones, depending on the alloy composition, their shape, size 

and weight. Most important is the sound producing technique used – either impacting 

or rubbing, or both simultaneously – as well as the excitation location, the hardness 

and friction characteristics of the puja (frequently made of wood and eventually 

covered with a soft skin) – see Jansen, 1993.  

The origin of these bowls isn’t still well known, but they are known to have been 

used also as eating vessels for monks. The singing bowls dates from the Bon 

civilization, long before the Buddhism (Huyser, 1999). Tibetan bowls have been used 

essentially for ceremonial and meditation purposes. Nevertheless, these amazing 

instruments are increasingly being used in relaxation, meditation (Huyser, 1999), 

music therapy (Gaynor, 2002; Gardner, 1990; Gaynor, 1999) and contemporary music.  

The musical use of Tibetan singing bowls in contemporary music is a consequence 

of a broad artistic movement. In fact, in the past decades the number of percussion 

instruments used in Western music has greatly increased with an “invasion” of many 

instruments from Africa, Eastern, South-America and other countries. Many Western 

composers have included such instruments in their music in an acculturation 

phenomenon.  

The Tibetan bowls and other related instruments used in contemporary music are 

referred to, in scores, by several names: temple bells, campana di templo, japonese 

temple bell, Buddhist bell, cup bell, dobaci Buddha temple bell. Several examples of 

the use of these instruments can be found in contemporary music: Philippe Leroux, 

Les Uns (2001); John Cage/Lou Harrison, Double Music (1941) percussion quartet, a 

work with a remarkable Eastern influence; Olivier Messiaen, Oiseaux Exotiques 

(1955/6); John Kenneth Tavener, cantata Total Eclipse (1999) for vocal soloist, boys’ 

choir, baroque instruments, brass, Tibetan bowls, and timpani; Tan Dun Opera Marco 

Polo (1995) with Tibetan bells and Tibetan singing bowls; Joyce Bee Tuan Koh, Lè 

(1997) for choir and Tibetan bowls. 
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Figure 5.1. Three singing bowls used in the experiments: Bowl 1 (φ = 180 mm); Bowl 

2 (φ = 152 mm); Bowl 3 (φ = 140 mm). 

 

Figure 5.2. Large singing bowl: Bowl 4 (φ = 262 mm), and two pujas used in the 

experiments. 

5.2. Computational Model 

5.2.1 Modal model for axi-symmetrical shells 

Perfectly axi-symmetrical structures exhibit double vibrational modes, occurring in 

orthogonal pairs with identical frequencies ( A B

n nω ω= ) (Rossing, 1994). However, if a 

slight alteration of this symmetry is introduced, the natural frequencies of these two 

degenerate modal families deviate from identical values by a certain amount nωΔ . The 

use of these modal pairs is essential for the correct dynamical description of axi-

symmetric bodies, under general excitation conditions. Furthermore, shell 

modeshapes present both radial and tangential components. Figure 5.3 displays a 

representation of the first four modeshape pairs, near the bowl rim, where the 

excitations are usually exerted (e.g., ez Z≈ ). Both the radial (green) and tangential 

(red) motion components are plotted, which for geometrically perfect bowls can be 

formulated as: 
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ϕ

ϕ
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⎧
⎨
⎩

 (5.3) 

 

where ( )Ar
nϕ θ  corresponds to the radial component of the A family nth modeshape, 

( )At
nϕ θ  to the tangential component of the A family nth mode shape, etc. Figure 5.3 

shows that spatial phase angles between orthogonal mode pairs are / 2 jπ . One 

immediate conclusion can be drawn from the polar diagrams shown and equations 

(5.2) and (5.3): the amplitude of the tangential modal component decreases relatively 

to the amplitude of the radial component as the mode number increases. This suggests 

that only the lower-order modes are prone to engage in self-sustained motion due to 

tangential rubbing excitation by the puja. 

If linear dissipation is assumed, the motion of the system can be described in terms of 

the bowl’s two families of modal parameters: modal masses X

nm , modal circular 

frequencies X

nω , modal damping X

nζ , and mode shapes ( )X
nϕ θ  (at the assumed 

excitation level ez Z≈ ), with 1,2, ,n N= , where X  stands for the modal family A  or 

B . The order N  of the modal truncation is problem-dependent and should be asserted 

by physical reasoning, supported by the convergence of computational results. 

The maximum modal frequency to be included, Nω , mostly depends on the short 

time-scales induced by the contact parameters – all modes significantly excited by 

impact and/or friction phenomena should be included in the computational modal 

basis.  
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Figure 5.3. Mode shapes at the bowl rim of the first four orthogonal mode pairs (Blue: 

Undeformed; Green: Radial component; Red: Tangential component). 
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The forced response of the damped bowl can then be formulated as a set of 2N 

ordinary second-order differential equations 

 

 
{ }
{ }

{ }
{ }

{ }
{ }

{ }
{ }

0 0 0( ) ( ) ( ) ( )

0 0 0 ( ) ( )( ) ( )

A A AA A A A

B B B B BB B
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 (5.4) 

where: 

[ ] 1Diag( , , )N

X X

XM m m= , 

[ ] 1 1 1Diag(2 , , 2 )X X X X X X

X N N NC m mω ζ ω ζ= , 

[ ] 2 2

1 1Diag( ( ) , , ( ) )X X X X

X N NK m mω ω= ,  

are the matrices of the modal parameters (where X stands for A or B), for each of the 

two orthogonal mode families, while { } 1( ) ( ), , ( )
TX X

X NQ t q t q t=  and 

{ } 1( ) ( ), , ( )
TX X

X Nt t tΞ = ℑ ℑ  are the vectors of the modal responses and of the generalized 

forces, respectively. Note that, although equations (5.4) obviously pertain to a linear 

formulation, nothing prevents us from including in ( )X

n tℑ  all the nonlinear effects 

which arise from the contact/friction interaction between the bowl and the puja. 

Accordingly, the system modes become coupled by such nonlinear effects. 

The modal forces ( )X

n tℑ  are obtained by projecting the external force field on the 

modal basis: 

 
2

0
( ) ( , ) ( ) ( , ) ( )X Xr Xt

n r n t nt F t F t d
π

θ ϕ θ θ ϕ θ θℑ = +⎡ ⎤⎣ ⎦∫ 1, 2, ,n N=  (5.5) 

where ( , )rF tθ  and ( , )tF tθ  are the radial (impact) and tangential (friction) force fields 

applied by the puja – e.g., a localised impact ( , )r cF tθ  and/or a travelling rub , ( ( ), )r t cF t tθ . 

The radial and tangential physical motions can be then computed at any location θ  

from the modal amplitudes ( )X

nq t  by superposition: 

 
1

( ) ( ) ( ) ( ) ( )
N

Ar A Br B

r n n n n
n

y t q t q tϕ θ ϕ θ
=

= +⎡ ⎤⎣ ⎦∑  (5.6) 
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1

( ) ( ) ( ) ( ) ( )
N

At A Bt B

t n n n n
n

y t q t q tϕ θ ϕ θ
=

= +⎡ ⎤⎣ ⎦∑  (5.7) 

and similarly concerning the velocities and accelerations. 

5.2.2 Dynamics of the puja 

As mentioned before, the excitation of these musical instruments can be performed in 

two basic different ways: by impact or by rubbing around the rim of the bowl with the 

puja (these two types of excitation can obviously be mixed, resulting in musically 

interesting effects). The dynamics of the puja will be formulated simply in terms of a 

mass Pm  subjected to a normal (e.g. radial) force ( )NF t  and an imposed tangential 

rubbing velocity ( )TV t  – which will be assumed constant in time for all exploratory 

simulations – as well as to an initial impact velocity in the radial direction 
0( )NV t . 

These three parameters are the most relevant factors which allow the musician to play 

the instrument and control the mechanism of sound generation. Many distinct sounds 

may be obtained by changing them: in particular, 
0 0( )NV t ≠  with 0N TF V= =  will be 

“pure” impact, and ( ) 0 , ( ) 0TNF t V t≠ ≠  with 
0 0( )NV t =  will be “pure” singing (see 

Chapter 1). The radial motion of the puja, resulting from the external force applied 

and the impact/friction interaction with the bowl is given by: 

 ( ) ( , )P P N rm y F t F tθ=− +  (5.8) 

where ( , )rF tθ is the dynamical bowl/puja contact force. 

5.2.3 Contact interaction formulation 

The radial contact force resulting from the interaction between the puja and the bowl 

is simply modelled as a contact stiffness, eventually associated with a contact 

damping term: 

 ( ) ( ) ( ), ,r c c r c c r cF K y t C y tθ θ θ= − −  (5.9) 

where ry  and ry  are respectively the bowl/puja relative radial displacement and 

velocity, at the (fixed or travelling) contact location ( )c tθ , cK  and cC  are the contact 

stiffness and damping coefficients, directly related to the puja material. Other and 
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more refined contact models – for instance of the hertzian type, eventually with 

hysteretic behaviour – could easily be implemented instead of (5.9).  

5.2.4 Friction interaction formulation 

In previous chapter the effectiveness of a friction model used for the simulation of 

bowed bars has been shown. Such model enabled a clear distinction between sliding 

and adherence states, sliding friction forces being computed from the Coulomb model 

( ) ( )t r d t tF F y sgn yμ= − , where ty  is the bowl/puja relative tangential velocity, and the 

adherence state being modelled essentially in terms of a local “adherence” stiffness 

aK  and some damping. It was thus possible to emulate true friction sticking of the 

contacting surfaces, whenever t r sF F μ< , however at the expense of a longer 

computational time, as smaller integration time-steps seem to be imposed by the 

transitions from velocity-controlled sliding states to displacement-controlled 

adherence states. 

In this chapter, the simpler approach to friction interaction described in section 2.3.3 

is used, which allows for faster computation times, although it lacks the capability to 

emulate true friction sticking.  

5.2.5 Time-step integration 

For given external excitation and initial conditions, the previous system of equations 

is numerically integrated using an adequate time-step algorithm. Explicit integration 

methods are well suited for the contact/friction model developed here. As before a 

simple Velocity-Verlet integration algorithm is used (Beeman, 1976). 
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5.3. Numerical Results 

The numerical simulations presented here are based on the modal data of two different 

sized instruments: The modal identification performed on Bowl 2 and Bowl 4, and the 

corresponding results will be shown in section 5.4.1. The simulations based on the 

smaller instrument data will be used to highlight the main features of the dynamics of 

these instruments, while the larger instrument simulations will serve the purpose of 

studying the influence of the contact/friction parameters on the oscillation regimes.  

The puja is modelled as a simple mass of 20 g, moving at tangential velocity TV , and 

subjected to an external normal force NF  as well as to the bowl/puja nonlinear 

interaction force. A significant range of rubbing parameters is explored: 1 ~ 9 NNF =  

and 0.1 ~ 0.5 m/sTV = , which encompass the usual playing conditions, although 

calculations were made also using impact excitation only. For clarity, the normal 

force and tangential velocity will be assumed time-constant, in the present simulations. 

However, nothing would prevent us from imposing any time-varying functions ( )NF t  

and ( )TV t , or even – as musicians would do – to couple the generation of ( )NF t  and 

( )TV t  with the nonlinear bowl/puja dynamical simulation, through well-designed 

control strategies, in order to achieve a suitable response regime. 

The contact model used in all rubbing simulations of Bowl 2 has a contact stiffness of 
610  N/mcK = and a contact dissipation of 50 Ns/mcC = , which appear adequate for the 

present system. However, concerning impact simulations of this instrument, contact 

parameters ten times higher and lower were also explored. The friction parameters 

used in numerical simulations of this instrument are 0.4sμ = , 0.2μ∞ =  and 10C = . 

In relation to the numerical simulations of Bowl 4, different contact/friction 

parameters were used to simulated friction by pujas made of different materials, 

namely rubber and wood. Its values will be described in section 5.3.4.  

In section 5.2.1 a few general remarks were produced concerning the order of the 

modal basis to use. With respect to the present system, the choice of the modal basis 

order of truncation is not difficult and certainly not critical, as only a few modes are 

excited (in contrast with bowed strings). For easily understandable physical reasons, 

modes with modal stiffness much higher than the contact stiffness are not 
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significantly excited, so a reasonable criterion to choose a minimum order of 

truncation N  is to compare cK  with the successive nK  of the modal series. In the 

present study a maximum value of 610 N/mcK =  is used, then it is reasonable to 

assume that modes with nK  much higher than 710 N/m  will be “useless”. For Bowl 2, 

it was devided to use seven mode pairs, the maximum value NK  being of the order 
8

2 7 ~ 10 N/mK × . Indeed, this is a generous modal basis, and four mode pairs would do 

equally well, as 7
2 4 ~ 10 N/mK × . However it is pointless to discuss on such a detail, 

when the number of modes is low. In relation to the larger Bowl 4, ten mode pairs 

were used, following the same reasoning. Both computational and experimental 

results confirm that the truncation criterion adopted is adequate. 

As discussed before, assuming a perfectly symmetrical bowl, simulations were 

performed using identical frequencies for each mode-pair ( A B

n nω ω= ). However, a few 

computations were also performed for less-than-perfect systems, asymmetry being 

then modelled introducing a difference (or “split”) nωΔ  between the frequencies of 

each mode pair. An average value of 0.005% was used for all modal damping 

coefficients. In order to cope with the large settling times that arise with singing bowls, 

20 seconds of computed data were generated (enough to accommodate transients for 

all rubbing conditions), at a sampling frequency of 22050 Hz.  

5.3.1 Impact responses 

Figure 5.4(a, b) display the simulated responses of a perfectly symmetrical bowl to an 

impact excitation (
0( ) 1 m/sNV t = ), assuming different values for the contact model 

parameters. The time-histories of the response displacements pertain to the impact 

location. The spectrograms are based on the corresponding velocity responses. 

Typically, as the contact stiffness increases from 510  N/m  to 710  N/m , higher-order 

modes become increasingly excited and resonate longer. The corresponding simulated 

sounds become progressively brighter, denoting the “metallic” bell-like tone which is 

clearly heard when impacting real bowls using wood or metal pujas. 
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(a) (b) 

Figure 5.4. Displacement time histories (top) and spectrograms (bottom) of the 

response of Bowl 2 to impact excitation with two different values of the bowl/puja 

contact stiffness: (a) 510  N/m  (sound file available); (b) 710  N/m  (sound file 

available). 
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5.3.2 Friction-excited responses  

Figure 5.5 shows the results obtained when rubbing a perfectly symmetrical bowl near 

the rim, using fairly standard rubbing conditions: 3 NNF =  and 0.3 m/sTV = . The plots 

shown pertain to the following response locations: (a) the travelling contact point 

between the bowl and the puja; (b) a fixed point in the bowl’s rim. Depicted are the 

time-histories and corresponding spectra of the radial (green) and tangential (red) 

displacement responses, as well as the spectrograms of the radial velocity responses. 

As can be seen, an instability of the first "elastic" shell mode (with 4 azimuthal nodes) 

arises, with an exponential increase of the vibration amplitude until saturation by 

nonlinear effects is reached (at about 7.5 s), after which the self-excited vibratory 

motion of the bowl becomes steady. The response spectra show that most of the 

energy lays in the first mode, the others being marginally excited. Notice the dramatic 

differences between the responses at the travelling contact point and at a fixed 

location. At the moving contact point, the motion amplitude does not fluctuate and the 

tangential component of the motion is significantly higher than the radial component. 

On the contrary, at a fixed location, the motion amplitude fluctuates at a frequency 

which can be identified as being four times the spinning frequency of the puja: 

( )4 4 2fluct puja TV φΩ = Ω = . Furthermore, at a fixed location, the amplitude of the radial 

motion component is higher than the tangential component. 

The animations of the bowl and puja motions enable an interpretation of these results. 

After synchronisation of the self-excited regime, the combined responses of the first 

mode-pair result in a vibratory motion according to the 4-node modeshape, which 

however spins, “following” the revolving puja. Furthermore, synchronisation settles 

with the puja interacting near a node of the radial component, corresponding to an 

anti-nodal region of the tangential component – see Figure 5.3 and Equations (5.2) 

and (5.3). In retrospect, this appears to make sense – indeed, because of the friction 

excitation mechanism in singing bowls, the system modes self-organize in such way 

that a high tangential motion-component will arise at the contact point, where energy 

is inputted. 

At any fixed location, a transducer will “see” the vibratory response of the bowl 

modulated in amplitude, as the 2 j  alternate nodal and anti-nodal regions of the 

“singing” modeshape revolve. For a listener, the rubbed bowl behaves as a spinning 
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quadropole – or, in general, a 2 j -pole (depending on the self-excited mode j ) – and 

the radiated sound will always be perceived with beating phenomena, even for a 

perfectly symmetrical bowl. Therefore the sound files available were generated from 

the velocity time-history at a fixed point in the bowl rim. 
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(a)                                                                                                                (b) 

Figure 5.5. Time-histories, spectra and spectrograms of the dynamical response of 

Bowl 2 to friction excitation when NF = 3 N, TV = 0.3 m/s: (a) at the bowl/puja 

travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 
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(a)                                                                           (b) 

Figure 5.6. Time-histories, spectra and spectrograms of the dynamical response of 

Bowl 2 to friction excitation when 
NF = 7 N, TV = 0.5 m/s: (a) at the bowl/puja 

travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 
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(a)                                                                                                                 (b) 

Figure 5.7. Time-histories, spectra and spectrograms of the dynamical response of 

Bowl 2 to friction excitation when 
NF = 1 N, TV = 0.5 m/s: (a) at the bowl/puja 

travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 
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Figure 5.8. Radial (green) and tangential (red) interaction forces between the bowl 

and the travelling puja: (a) NF = 3 N, TV = 0.3 m/s; (b) NF = 7 N, TV = 0.5 m/s; (c) 

NF = 1 N, TV = 0.5 m/s. 
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Following the previous remarks, the out-of-phase envelope modulations of the radial 

and tangential motion components at a fixed location, as well as their amplitudes, can 

be understood. Indeed, all necessary insight stems from Equations(5.2) and (5.3) and 

the first plot of Figure 5.3. 

In order to confirm the rotational behaviour of the self-excited mode a simple 

experiment was performed under normal playing (rubbing) conditions on Bowl 2. The 

near-field sound pressure radiated by the instrument was recorded by a microphone at 

a fixed point, approximately 5 cm from the bowl’s rim. While a musician played the 

instrument, giving rise to a self-sustained oscillation of the first shell mode ( j = 2, see 

Figures 4 and 5), the position of the rotating puja was monitored by an observer which 

emitted a short impulse at the puja passage by the microphone position. Since sound 

radiation is mainly due to the radial motion of the bowl, the experiment proves the 

existence of a radial vibrational nodal region at the travelling point of excitation. 

Between each two passages of the puja by this point (i.e. one revolution), 4 sound 

pressure maxima are recorded, corroborating the previous comments that the listener 

hears a beating phenomena (or pseudo-beating) originating from a rotating 2j-pole 

source, whose “beating-frequency” is proportional to the revolving frequency of the 

puja. Such behaviour will be experimentally documented in section 5.4. 

It should be noted that the results basically support the qualitative remarks provided 

by Rossing, when discussing friction-excited musical glass-instruments – see Rossing 

(1984) or his book Rossing (2000) pp. 185-187, the only references where some 

attention has been paid to these issues). However, his main point “The location of the 

maximum motion follows the moving finger around the glass” may now be further 

clarified: the “maximum motion” following the exciter should refer in fact to the 

maximum tangential motion component (and not the radial component, as might be 

assumed). 

Before leaving this example, notice in Figure 5.8 the behaviour of the radial and 

tangential components of the bowl/puja contact force, on several cycles of the steady 

motion. The radial component oscillates between almost zero and the double of the 

value NF  imposed to the puja, and contact is never disrupted. The plot of the friction 

force shows that the bowl/puja interface is sliding during most of the time. This 

behaviour is quite similar to what was observed in simulations of bowed bars, and is 
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in clear contrast to bowed strings, which adhere to the bow during most of the time – 

see Inácio et al (2003b), for a detailed discussion. The fact that sticking only occurs 

during a short fraction of the motion, justifies the simplified friction model which has 

been used for the present computations. 

Figure 5.6 shows the results for a slightly different regime, corresponding to rubbing 

conditions: 7 NNF =  and 0.5 m/sTV = . The transient duration is smaller than in the 

previous case (about 5 s). Also, because of the higher tangential puja velocity, beating 

of the vibratory response at the fixed location also displays a higher frequency. This 

motion regime seems qualitatively similar to the previous example, however notice 

that the response spectra display more energy at higher frequencies, and that is 

because the contact between the exciter and the bowl is periodically disrupted, as 

shown in the contact force plots of Figure 5.8(b). One can see that, during about 25% 

of the time, the contact force is zero. Also, because of moderate impacting, the 

maxima of the radial component reach almost 3 NF . Both the radial and friction force 

components are much less regular than in the previous example, but this does not 

prevent the motion from being nearly-periodic. 

Figure 5.7 shows a quite different behaviour, when 1 NNF =  and 0.5 m/sTV = . Here, a 

steady motion is never reached, as the bowl/puja contact is disrupted whenever the 

vibration amplitude reaches a certain level. As shown in Figure 5.8(c), severe chaotic 

impacting arises (the amplitude of the radial component reaches almost 7 NF ), which 

breaks the mechanism of energy transfer, leading to a sudden decrease of the motion 

amplitude. Then, the motion build-up starts again until the saturation level is reached, 

and so on. As can be expected, this intermittent response regime results in curious 

sounds, which interplay the aerial characteristics of “singing” with a distinct “ringing” 

response due to chaotic chattering. Anyone who ever attempted to play a Tibetan 

bowl is well aware of this sonorous saturation effect, which can be musically 

interesting, or a vicious nuisance, depending on the context. 

To get a clearer picture of the global dynamics of this system, Figure 5.9 and Figure 

5.10 present the domains covered by the three basic motion regimes (typified in 

Figure 5.5 to Figure 5.7), as a function of NF  and TV : (1) Steady self-excited 

vibration with permanent contact between the puja and the bowl (green data); (2) 

Steady self-excited vibrations with periodic contact disruption (yellow data); (3) 
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Unsteady self-excited vibrations with intermittent amplitude increasing followed by 

attenuation after chaotic chattering (orange data). Note that, under different conditions, 

the self-excitation of a different mode may be triggered – for instance, by starting the 

vibration with an impact followed by rubbing. Such issue will be discussed in 

subsequent sections of this chapter.  

Figure 5.9(a) shows how the initial transient duration depends on NF  and TV . In every 

case, transients are shorter for increasing normal forces, though such dependence 

becomes almost negligible at higher tangential velocities. At constant normal force, 

the influence of TV  strongly depends on the motion regime. Figure 5.9(b) shows the 

fraction of time with motion disruption. It is obviously zero for regime (1), and 

growing up to 30% at very high excitation velocities. It is clear that the “ringing” 

regime (3) is more prone to arise at low excitation forces and higher velocities. 

Figure 5.10(a) and Figure 5.10(b) show the root-mean-square vibratory amplitudes at 

the traveling contact point, as a function of NF  and TV . Notice that the levels of the 

radial components are much lower than the corresponding levels of the tangential 

component, in agreement with the previous comments. These plots show some 

dependence of the vibratory level on the response regime. Overall, the vibration 

amplitude increases with TV  for regime (1) and decreases for regime (3). On the other 

hand, it is almost independent of NF  for regime (1), while it increases with NF  for 

regime (3). 
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     (a)                                                                                                                                (b) 

Figure 5.9. (a) Initial transient duration and (b) percentage of time with no bowl/puja 

contact, as a function of 
NF  and 

TV . 

 

 

 

 

 

 

 

 

 

 
(a)                                                                                                                            (b) 

Figure 5.10. Displacement amplitude (RMS) at the bowl/puja travelling contact point, 

as a function of 
NF  and 

TV : (a) Radial motion component; (b) Tangential motion 

component. 
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5.3.3 Non-symmetrical bowls 

Figure 5.11 (a) and (b) enable a comparison between the impact responses of perfectly 

symmetrical and a non-symmetrical bowls. Here, the lack of symmetry has been 

simulated by introducing a frequency split of 2% between the frequencies of each 

mode-pair (e.g. 0.02n nω ωΔ = ), all other aspects remaining identical – such crude 

approach is adequate for illustration purposes. 

Notice that the symmetrical bowl only displays radial motion at the impact point (as it 

should), while the unsymmetrical bowl displays both radial and tangential motion 

components due to the different propagation velocities of the travelling waves excited. 

On the other hand, one can notice in the response spectra of the unsymmetrical system 

the frequency-split of the various mode-pairs. This leads to beating of the vibratory 

response, as clearly seen on the corresponding spectrogram. 

Figure 5.12 shows the self-excited response of the symmetrical bowl, when rubbed at 

3 NNF =  and 0.3 m/sTV = . Notice that sound beating due to the spinning of the 

response modeshape dominates, when compared to effect of modal frequency-split. 

Interestingly, the slight change in the modal frequencies was enough to modify the 

nature of the self-excited regime, which went from type (1) to type (3). This fact 

shows the difficulties in mastering these apparently simple instruments. 

5.3.4 Influence of the contact/friction parameters 

Playing experience shows that rubbing with pujas made of different materials may 

trigger self-excited motions at different fundamental frequencies. This suggests that 

friction and contact parameters have an important influence on the dynamics of the 

bowl regimes. Although this behaviour was present in all the bowls used in this study, 

it was clearly easier to establish these different regimes on a larger bowl. Therefore 

the illustration of the different behaviours that can be obtained is made by using Bowl 

4 and parameters corresponding to two pujas, respectively covered with rubber and 

made of naked wood. 

As the frequency separation between mode-pairs was relatively small for this bowl, a 

perfectly symmetrical bowl is assumed, and simulations using 10 mode-pairs wree 

performed with identical frequencies ( A B

n nω ω= ) – see Table 5.2. An average value of 
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0.005% was used for all modal damping coefficients. In order to cope with the large 

settling times that arise with singing bowls, 30 seconds of computed data were 

generated (enough to accommodate transients for all rubbing conditions). 

Figure 5.13 shows a computed response obtained when using a soft puja with 

relatively high friction. Here a contact stiffness Kc = 105 N/m was used, assuming 

friction parameters 8.0=sμ , 4.0=∞μ  and C = 10, under playing conditions FN = 5 N 

and VT = 0.3 m/s. 
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(a)                                                                                                  (b) 

Figure 5.11. Dynamical responses of an impacted bowl, at the impact location: (a) Axi-

symmetrical bowl (0% frequency split); (b) Non-symmetrical bowl with 2% frequency 

split (sound file available). 
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(a)                                                                                                      (b) 

Figure 5.12. Dynamical response of a rubbed bowl with 2% frequency split when NF = 3 

N, TV = 0.3 m/s: (a) at the bowl/puja travelling contact point; (b) at a fixed point of the 

bowl rim (sound file available). 
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(a)                                                                                                      (b) 

Figure 5.13. Time-histories, spectra and spectrograms of the dynamical response of 

Bowl 4 excited by a rubber-covered puja for NF = 5 N and TV  = 0.3 m/s: (a) at the 

bowl/puja travelling contact point; (b) at a fixed point of the bowl rim (sound file 

available). 
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(a)                                                                                                      (b) 

Figure 5.14. Time-histories, spectra and spectrograms of the dynamical response of 

Bowl 4 excited by a wooden puja for NF  = 5 N and TV  = 0.3 m/s: (a) at the bowl/puja 

travelling contact point; (b) at a fixed point of the bowl rim (sound file available). 
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The plot shown in a) displays the radial (green) and tangential (red) bowl motions at the 

travelling contact point with the puja. These are of about the same magnitude, and 

perfectly steady as soon as the self-excited motion locks-in. In contrast, plot b) shows 

that the radial motion clearly dominates when looking at a fixed location in the bowl, 

with maximum amplitudes exceeding those of the travelling contact point by a factor 

two. Most important, beating phenomena is observed at a frequency related to the puja 

spinning frequency 2p TΩ V φ= , as also observed in relation to Bowl 2. The spectrum 

shown in plot c) presents the highest energy near the first modal frequency, while the 

spectrogram d) shows that the motion settles after about 7 seconds of exponential 

divergence. Indeed, the computed animations show that the unstable first bowl mode 

( ≈ 87Hz) spins, following the puja motion, with the contact point located near one of 

the four nodes of the excited modeshape (see Figure 5.3). The bowl radiates as a 

quadro-pole spinning with frequency pΩ , and beating is perceived with frequency 

4beat pΩ Ω= . 

Figure 5.14 shows a computed response obtained when using a harder puja with lower 

friction, assuming 610  N/mcK = , 4.0=sμ  and 2.0=∞μ , under the same playing conditions 

as before.  

The self-excited motion takes longer to emerge and is prone to qualitative changes. 

However, vibration is essentially dominated by the second modal frequency ( ≈ 253Hz), 

with a significant contribution of the first mode during the initial 25 seconds. This leads 

to more complex beating phenomena, except during the final 5 seconds of the 

simulation, where one can notice that, in spite of the similar value of TV  used, beating is 

at a higher frequency than in Figure 5.13. Indeed, because the second elastic mode is 

now unstable (see Figure 5.3), the bowl radiates as a hexa-pole spinning with frequency 

Ωp, and beating is perceived with frequency Ωbeat = 6Ωp. 
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5.4. Experimental Results 

5.4.1 Modal Identification 

Figures 1.1 and 1.2 in Chapter 1 show the four bowls and two pujas used for the 

experimental work in this work. In order to estimate the natural frequencies nω , 

damping values nς , modal masses nm  and modeshapes ( , )n zϕ θ  to be used in the 

numerical simulations, a detailed experimental modal identification based on impact 

testing was performed for Bowls 1, 2 and 3. A mesh of 120 test locations was defined 

for each instrument (e.g., 24 points regularly spaced azimuthally, at 5 different heights). 

Impact excitation was performed on all of the points and the radial responses were 

measured by two accelerometers attached to inner side of the bowl at two positions, 

located at the same horizontal plane (near the rim) with a relative angle of 55º between 

them, as can be seen in Figure 5.15(a). Modal identification was achieved by 

developing a simple MDOF algorithm in the frequency domain (Ewins, 1984). The 

modal parameters were optimized in order to minimize the error ( , , , )n n n nmε ω ς ϕ  between 

the measured transfer functions ( ) ( ) ( )er r eH Y Fω ω ω=  and the fitted modal model 

ˆ ( ; , , , )
er n n n n

H mω ω ς ϕ , for all measurements ( eP  excitation and rP  response locations), in a 

given frequency range [ ]min max,ω ω encompassing N  modes. Hence: 
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m in
1 1
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= =
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ω ω
ω ω ω ω ς

+

=

=

= − − +
− +∑  (5.11) 

where the modal amplitude coefficients are given as ( , ) ( , )er
n n e e n r r nA z z mϕ θ ϕ θ=  and the 

two last terms in (5.11) account for modes located out of the identified frequency-range. 

The values of the modal masses obviously depend on how modeshapes are normalized 

( max( , ) 1zϕ θ = ). Note that the identification is nonlinear in nω  and nς  but linear in er
nA . 
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Results from the experiments on the three bowls show the existence of 5 to 7 prominent 

resonances with very low modal damping values up to frequencies about 4~6kHz. For 

these well-defined experimental modes, the simple identification scheme used proved 

adequate. As an illustration, Figure 5.15(b) depicts the modulus of a frequency response 

function obtained from Bowl 2, relating the acceleration measured at point 1 (near the 

bowl rim) to the force applied at the same point.  

The shapes of the identified bowl modes are mainly due to bending waves that 

propagate azimuthally, resulting in patterns similar to some modeshapes of bells 

(Rossing, 2000). Following Rossing, notation ( , )j k  represents here the number of 

complete nodal meridians extending over the top of the bowl (half the number of nodes 

observed along a circumference), and the number of nodal circles, respectively.  

Despite the high manufacturing quality of these handcrafted instruments, perfect axi-

symmetry is nearly impossible to achieve. As was explained in section 5.2.1, these 

slight geometric imperfections lead to the existence of two orthogonal modes (hereby 

called modal families A and B), with slightly different natural frequencies. Although 

this is not apparent in Figure 5.15(b), by zooming the analysis frequency-range, an 

apparently single resonance often reveals two closely spaced peaks. 

Figure 5.16 shows the perspective and top views of the two orthogonal families of the 

first 7 “sounding” (radial) modeshapes (rigid-body modes are not shown) for Bowl 2, as 

identified from experiments. In the frequency-range explored, all the identified modes 

are of the ( ,0)j  type, due to the low value of the height to diameter ratio ( /Z φ ) for 

Tibetan bowls, in contrast to most bells.  The modal amplitudes represented are 

normalised to the maximum amplitude of both modes, which complicates the perception 

of some modeshapes. However, the spatial phase difference ( / 2 jπ ) between each modal 

family (see section 5.2.1) is clearly seen. Although modal frequencies and damping 

values were obtained from the modal identification routine, it was soon realized that the 

accelerometers and their cables had a non-negligible influence on the bowl modal 

parameters, due to the very low damping of these systems, which was particularly 

affected by the instrumentation.  

Indeed, analysis of the near-field sound pressure time-histories, radiated by impacted 

bowls, showed slightly higher values for the natural frequencies and much longer decay 

times, when compared to those displayed after transducers were installed. Hence, it was 
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decided to use some modal parameters identified from the acoustic responses of non-

instrumented impacted bowls. Modal frequencies were extracted from the sound 

pressure spectra and damping values were computed from the logarithm-decrement of 

band-pass filtered (at each mode) sound pressure decays. 

Table 5.1 shows the values of the double modal frequencies ( A
nf and B

nf ) of the most 

prominent modes of the three bowls tested, together with their ratios to the fundamental 

– mode (2,0) – where AB
nf  represents the average frequency between the two modal 

frequencies A
nf and B

nf . These values are entirely in agreement with the results obtained 

by Rossing (2000). Interestingly, these ratios are rather similar, in spite of the different 

bowl shapes, sizes and wall thickness. As rightly pointed by Rossing (2000), these 

modal frequencies are roughly proportional to 2j , as in cylindrical shells, and inversely 

proportional to 2φ . Rossing explains this in simple terms, something that can be also 

grasped from the theoretical solution for in-plane modes for rings (Harris, 1996):  

2

42

( 1)

1
j

j j EI
ARj

ω
ρ

−
=

+
, with 1,2,...,j N=   (3) 

where E and ρ are the Young Modulus and density of the ring material, I the area 

moment of inertia, A the ring cross section area and R the ring radius. It can be seen that 

as j takes higher values, the first term of equation 3 tends to 2j , while the dependency 

on the ring diameter is embedded in the second term. 
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(a)                   (b) 

Figure 5.15. Experimental modal identification of Bowl 2: (a) Picture showing the measurement 

grid and accelerometer locations; (b) Modulus of the accelerance frequency response function. 
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Figure 5.16. Perspective and top view of experimentally identified modeshapes (j,k) of the first 7 

elastic mode-pairs of Bowl 2 (j relates to the number of nodal meridians and k to the number of 

nodal circles – see text). 
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Table 5.1 – Modal frequencies and frequency ratios of bowls 1, 2 and 3 (as well as their total 

masses MT and rim diameters φ). 

 Bowl 1 Bowl 2 Bowl 3 
Total Mass MT  = 934 g MT  = 563 g MT  = 557 g 
Diameter φ = 180 mm φ = 152 mm φ = 140 mm 

Mode A
nf  [Hz] B

nf  [Hz] 1
AB AB

nf f  A
nf  [Hz] B

nf  [Hz] 1
AB AB

nf f  A
nf  [Hz] B

nf  [Hz] 1
AB AB

nf f  

(2,0) 219.6 220.6 1 310.2 312.1 1 513.0 523.6 1 
(3,0) 609.1 609.9 2.8 828.1 828.8 2.7 1451.2 1452.2 2.8 
(4,0) 1135.9 1139.7 5.2 1503.4 1506.7 4.8 2659.9 2682.9 5.2 
(5,0) 1787.6 1787.9 8.1 2328.1 2340.1 7.5 4083.0 4091.7 7.9 
(6,0) 2555.2 2564.8 11.6 3303.7 3312.7 10.6 5665.6 5669.8 10.9 
(7,0) 3427.0 3428.3 15.6 4413.2 4416.4 14.2 - - - 
(8,0) 4376.3 4389.4 19.9 5635.4 5642.0 18.1 - - - 
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The frequency relationships are mildly inharmonic, which does not affect the definite 

pitch of this instrument, mainly dominated by the first (2,0) shell mode. As stated, 

dissipation is very low, with modal damping ratios typically in the range nς = 

0.002~0.015 % (higher values pertaining to higher-order modes). However, note that 

these values may increase one order of magnitude, or more, depending on how the 

bowls are actually supported or handled. 

Further experiments were performed on the larger bowl shown in Figure 1.2 (Bowl 4), 

with φ = 262 mm, a total mass of 1533 g and a fundamental frequency of 86.7 Hz. A 

full modal identification was not pursued for this instrument, but ten natural frequencies 

were identified from measurements of the sound pressure resulting from impact tests. 

These modal frequencies are presented in Table 5.2, which show a similar relation to the 

fundamental as the first three bowls presented in this study. For this instrument all these 

modes were assumed to be of the (j,0) type. 

Table 5.2 – Modal frequencies and frequency ratios of Bowl 4. 

Mode (j,k) fn [Hz] fn/f1 
(2,0) 86.7 1.0 
(3,0) 252.5 2.9 
(4,0) 490.0 5.7 
(5,0) 788.0 9.1 
(6,0) 1135.0 13.1 
(7,0) 1533.0 17.7 
(8,0) 1963.0 22.6 
(9,0) 2429.0 28.0 
(10,0) 2936.0 33.9 
(11,0) 3480.0 40.1 

5.4.2 Experimental Self-Excited Motions 

Figure 5.17(a) shows the experimental results recorded by a microphone placed near the 

bowl rim, while playing with a rubber-covered puja. As described before, timing pulses 

were generated at each consecutive revolution, when the puja and microphone were 

nearby. Vibration was dominated by an instability of the first mode (2,0) and, in spite of 

mildly-controlled human playing, it is clear that radiation is minimal near the contact 

point and that four beats per revolution are perceived. When a harder naked wood puja 

was used, the initial transient became longer, before an instability of the second mode 

(3,0) settled. The bowl responses tended to be less regular, as shown in Figure 5.17(b), 



 

 186

however six beats per revolution are clearly perceived. All these features support the 

simulation results presented in Figure 5.13 and Figure 5.14, as well as the physical 

discussion presented in section 5.3.2. 

The present results stress the importance of the contact/friction parameters, if one 

wishes a bowl to “sing” in different modes − such behaviour is easier to obtain in larger 

bowls. As a concluding remark, it should be emphasised that a sonorous bowl/puja 

rattling contact can easily arise, in particular at higher tangential velocities and lower 

normal forces, a feature which was equally displayed by many experiments and 

numerical simulations, as discussed before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 – Near-field sound pressure waveform (blue) due to friction excitation by: a) 

a rubber-covered puja and b) a wooden puja on Bowl 4, and electrical impulses (red) 

synchronized with the passage of the puja by the microphone position (sound files 

available). 
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Chapter 6 
 



 

 188

6. LINEARISED ANALYSIS OF SELF-EXCITED REGIMES 

6.1. Introduction 

As explained in the previous chapters, considerable efforts have been invested by the 

scientific community to produce time-domain numerical simulations of the self-excited 

nonlinear regimes. However, no systematic analysis of the linearized behaviour of the 

bowed string has ever been pursued. In this chapter the features of the linearized modal 

dynamics of bowed bars and bowed strings are analysed, starting from a modal 

formulation of the string acted by the nonlinear bowing forces, using a classic Coulomb 

model with velocity-dependent friction coefficient. Then the corresponding linearized 

formulation is developed, about an average sliding state, which enables computation of 

the complex eigenvalues and eigenvectors as a function of the bowing parameters, 

which can offer interesting information concerning the system stability behaviour, and 

further insight when addressing the post-instability nonlinear limit-cycle responses. 

6.2. Bowed bar 

6.2.1 Modal formulation for the bowed bar 

For the purpose of the work presented in this section the simple Bernoulli-Euler model 

for the bar flexural vibrations is adequate. However, extension to the more realistic 

Timoshenko model is straightforward and merely leads to a correction in the beam 

modal parameters used in the following. Starting from the classic damped equation for a 

non-uniform beam: 

 

 
2

2

2 2

2 2( ) ( ) ( , )S x EI
x

y y yx F x t
tt x

ρ η
⎡ ⎤∂

+ + ⎢ ⎥∂ ⎣ ⎦

∂ ∂ ∂ =
∂∂ ∂  (6.1) 

 

where ( , )y x t  is the lateral bending displacement, ρ  and E  are the beam density and 

Young modulus, η  is a coefficient of viscous dissipation, ( )S x  and ( )I x  are the cross-

section area and geometric moment of inertia about the bending axis, ( , )F x t  is the 

externally applied excitation, Equation (2.1) may be recast in modal form: 
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 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( )M Q t C Q t K Q t t+ + = Ξ  (6.2) 

 

where, [ ]M , [ ]C and [ ]K , are the matrices of modal parameters of the unconstrained 

system nm , 2n n n nc m ω ζ=  and 2
n n nk m ω=  (using N  modes with frequencies nω  and 

modal damping values nζ ) while { }( )Q t  and { }( )tΞ  are the vectors of modal amplitudes 

and generalised forces, respectively. For a bar with uniform cross-section and free-free 

boundary conditions, the modal masses, modal frequencies and modeshapes are given 

respectively by 2

0
( ) ( ) 

L

n nm m x x dxφ= ∫ , ( )2 /n n L EI Sω λ ρ=  and 

[ ]{ }( ) cos( / ) sinh( / ) sin( / ) cosh( / )n n n n n n nx x L x L x L x Lφ β λ λ α λ λ= + + + , with the parameters 

(cos sinh ) (sin cosh )n n n n nα λ λ λ λ= − − −  and nβ  chosen such as to obtain a 

normalizing condition max ( ) 1n xφ = . From the free-free boundary conditions of the bar – 

''(0) ''( ) 0Lφ φ= =  and '''(0) '''( ) 0Lφ φ= =  – the bar modal frequencies and modeshapes are 

obtained. The first two eigen-frequencies pertain to rigid-body modes, with frequencies 

1 2 0ω ω= =  and modeshapes 1( ) 1xφ =  (translational mode) and 2 ( ) 1 2 /x x Lφ = −  (rocking 

mode). 

The generalised forces ( )n tF  of vector { }( )tΞ  are obtained by projection of the external 

force field on the modal basis. For the present case, three point-forces are applied to the 

system at three different positions: the friction force, ( )fF t , induced by the bow at the 

edge of the bar, and the forces 1( )sF t  and 2 ( )sF t , applied by the elastic supports of the bar 

at the nodal points of the first vibratory bending mode, giving a total of: 

 1 1 2 2( , ) ( , ) ( , ) ( , )f f s s s sF x t F x t F x t F x t= + +  (6.3) 

where fx , 1sx and 2sx  are the locations of the applied forces. 1( )sF t  and 2 ( )sF t  are given by 

Equation (6.4) where sK  and sC  are the stiffness and damping values of the bar elastic 

supports. 

 ( ) ( ) ( ),  with   1, 2si s si s siF t K y t C y t i= + =  (6.4) 
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The generalized forces can then be described by: 

 
3

1 2 1 3 2

1

( ) ( ) ( ),  with ,  and n m n m f s s

m

t F t x x x x x x xφ
=

= = = =∑F  (6.5) 

The physical and modal variables are related by modal superposition: 

 
1

( , ) ( ) ( )
N

n n
n

y x t x q tφ
=

= ∑  (6.6) 

and similarly when relating velocities and accelerations. 
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6.2.2 Friction Model 

As in the previous chapters, a Coulomb-type friction model is used for the tangential 

contact force: 

 
( ) ( ) ( ) 0 (sliding)

( ) 0 (adherence)
f N r r r

f N S r

F t F V sign V if V

F t F if V

μ

μ

⎧ = − ≠⎪
⎨

≤ =⎪⎩
 (6.7) 

 

where NF  is the normal force which compresses the contacting surfaces and 

( ) ( )r b fV t V y t= −  is the relative velocity between the excited location of the vibrating bar 

( ) ( , )f fy t y x t≡  and the driving bow bV . During sliding, the friction coefficient ( )rVμ  

depends on the relative velocity, which are formulated in the following convenient 

manner: 

 ( ) ( ) exp( )r D S D rV C Vμ μ μ μ= + − −  (6.8) 

where Sμ  is the so-called static friction coefficient, at 0rV = , Dμ  is a limiting friction 

coefficient when rV → ∞  and C  is a parameter defining how fast ( )rVμ  decreases as rV  

increases. During adherence, when 0rV =  (or, more physically, rV ε< ), the friction 

force can take any value within the allowed range ( )f N SF t F μ≤ , the actual force 

depending on the overall static and dynamic forces acting on the system. In any case, 

frictional will oppose (incipient or actual) motion of the system. 

Figure 3.1(a) shows a typical plot of ( )rVμ , which highlights the extreme nonlinearity of 

frictional forces in the vicinity of the adherence discontinuity. This feature, although of 

extreme significance as far as the nonlinear regimes are concerned, is only marginal in 

this work, as the low-amplitude vibrations pertaining to the linearized range are 

important, well before the nonlinear motions settle-in. Under such conditions, ( )>b fV y t , 

only the right half of the friction curve is “active” (e.g., 0rV > ) and the system is always 

sliding, with moderate nonlinearity. Experimental results pertaining to this kind of 

friction model report, for bowed strings, a decrease of the friction coefficient ( )rVμ  

when the sliding velocity rV  increases. However, the opposite situation is also 
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investigated, as shown in Figure 3.1(b), where ( )rVμ  increases with rV . In industrial 

friction-induced vibration problems, friction curves which mix the features of Figure 

3.1(a) and Figure 3.1(b) are known to arise. 

6.2.3 Linearized formulation 

Within the framework of linearized theory, small amplitude vibrations ( , )y x t  about a 

steady deformed state ( )y x  imply: 

 ( , ) ( ) ( , ) ( , ) ( , ) ( , ) ( , )y x t y x y x t y x t y x t y x t y x t= + ⇒ = ⇒ =  (6.9) 

as well as small amplitude fluctuating forces about a steady value: 

 ( , ) ( ) ( , )F x t F x F x t= +  (6.10) 

Then, when (6.9) and (6.10) are replaced in the dynamical formulation, two sets of 

equations may be extracted: the so-called zero-order equations, only depending on 

space, related to the mean deformed state, as well as the first-order equations, depending 

on both space and time, which enables computation of the system eigenproperties. 

The modal formulation applies to dynamic as well as steady states. Therefore, 

approximation (6.9) may be applied as well to the modal amplitudes, obtaining from 

(6.6): 

 [ ]
1

( , ) ( ) ( , ) ( ) ( )
N

n n n
n

y x t y x y x t x q q tφ
=

= + = +∑  (6.11) 
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Figure 6.1 – Example of friction law with: (a) 0.8Sμ = , 0.2Dμ =  and 10C =  and (b) 

0.4Sμ = , 0.6Dμ =  and 5C = . 

hence the static and vibratory relations: 

 
1

( ) ( )
N

n n
n

y x x qφ
=

= ∑  (6.12) 

(a) 

(b) 
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1

( , ) ( ) ( )
N

n n
n

y x t x q tφ
=

= ∑  (6.13) 

Turning now to the nonlinear sliding friction law, under the previously discussed 

assumption concerning rV , Equations (6.7) and (6.8) lead to: 

 [ ]( ) ( ) exp( )f N D S D rF t F CVμ μ μ= + − −  with 
1

( ) ( )r b n f n

N

n
V V x q tφ

=
= −∑  (6.14) 

since q q= , as the nq  must obviously be null. From(6.14), stems the steady frictional 

force: 

 [ ]( ) exp( )f N D S D bF F CVμ μ μ= + − −  (6.15) 

as well as the oscillating linearized term 

 
1

( ) ( ) ( )f n f n

N

n
F t A x q tφ

=
= ∑  (6.16) 

where all relevant parameters which control the system linear stability are encapsulated 

in the crucial coefficient: 

 ( ) exp( )N S D bA F C CVμ μ= − −  (6.17) 

which has the dimensions of a damping coefficient, as it should. Notice that in (6.17) 

the amplitude of the dynamical friction force increases linearly with the normal force 

NF  and the difference S Dμ μ−  between the static and dynamic friction coefficients (in 

agreement with well-known results), but decreases with the bow velocity bV  in an 

exponential manner. The influence of the “steepness” parameter C  of the friction law 

( )rVμ  is introduced through two terms of opposing nature: for low values of bV  the 

linear term prevails and A  increases with C , while for high values of bV  the exponential 

term prevails and A  decreases when C  increases. As far as the linearized dynamics are 

concerned, the specific values of the individual friction parameters are irrelevant, as 

only the value of the global magnitude coefficient A  matters. The steady and dynamical 

forces applied by the supports are given respectively by: 
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1

( )si s n si n

N

n
F K x qφ

=
= ∑  (6.18) 

 
1 1

( ) ( ) ( ) ( ) ( )si s n si n s n si n

N N

n n
F t K x q t C x q tφ φ

= =
= +∑ ∑  with i = 1, 2. (6.19) 

6.2.4 Steady and oscillating solutions 

Replacing (6.9)-(6.13) into (6.2) and obtaining the zero-order and first-order equations: 

 [ ]{ } { }K Q = Ξ  (6.20) 

 [ ]{ } [ ]{ } [ ]{ } { }( )M Q C Q K Q t+ + = Ξ  (6.21) 

where the generalized steady and dynamic forces are directly obtained from results 

(6.15) and (6.18) as well as from (6.16), (6.17) and (6.19), by modal projection: 

 

1 1 1 1 21

2 2 1 2 22
1

2
1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

f s s
f

f s s
s

s
N f N s N sN

x x x F
x x x

F
Fx x x

φ φ φ
φ φ φ

φ φ φ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎢ ⎥⎣ ⎦⎩ ⎭

F
F

F

 (6.22) 

 

1 1 1 1 21

2 2 1 2 22
1

2
1 2

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

f s s
f

f s s
s

s
N f N s N sN

x x xt F
x x xt

F

Fx x xt

φ φ φ
φ φ φ

φ φ φ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎢ ⎥⎣ ⎦⎩ ⎭

F
F

F

 (6.23) 

Proceeding now to the computation of the steady deformation under friction excitation 

and accounting for the supports action. From the previous equations, the steady modal 

displacements are given by: 

 { } [ ] { }{ }
{ }
{ }

{ }
1T

1
1 2 T

2

s
s s s f f

s

Q K K F

−
⎧ ⎫⎡ ⎤Φ⎪ ⎪⎢ ⎥= − Φ Φ Φ⎡ ⎤⎨ ⎬⎣ ⎦ ⎢ ⎥Φ⎪ ⎪⎣ ⎦⎩ ⎭

 (6.24) 

where { }1sΦ , { }2sΦ and { }fΦ are the modeshape vectors at the supports location s1 and s2 

and at the friction excitation point, respectively, as seen in equations (6.22) or (6.23). 

Using (6.6), the mean deformed state is obtained in terms of physical coordinates: 
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 { } [ ] [ ] { }{ }
{ }
{ }

{ }
T

1
1 2 T

2

s
s s s f f

s

Y K K F
⎧ ⎫⎡ ⎤Φ⎪ ⎪⎢ ⎥= Φ − Φ Φ Φ⎡ ⎤⎨ ⎬⎣ ⎦ ⎢ ⎥Φ⎪ ⎪⎣ ⎦⎩ ⎭

 (6.25) 

where [ ]Φ  is the modal matrix built from the bar modeshapes. On the other hand, the 

linearized dynamics stem from (6.21) and (6.23): 

 [ ]{ } [ ] [ ]( ){ } [ ] [ ]( ){ } { }2 1( ) ( ) ( ) 0M Q t C Q t K Q t+ − Ψ + − Ψ =  (6.26) 

where [ ]1Ψ  and [ ]2Ψ  express how bowing couples all the bar modes (with nonzero 

modeshapes at the bowing and support locations). 

 [ ]
[ ]
[ ]
[ ]

1 1 1 1 2

2 2 1 2 2
1 1 1 2 1 1

1 2 2 2 2
1 2

( ) ( ) ( )         0      0          0    
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

f s s

f s s
s s s N s

s s s N s
N f N s N s

x x x
x x x

K x x x

K x x xx x x

φ φ φ
φ φ φ

φ φ φ

φ φ φφ φ φ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥Ψ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (6.27) 

 [ ] [ ]
[ ]

1 1 1 1 2
1 2

2 2 1 2 2
2 1 1 2 1 1

1 2 2 2 2
1 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

f s s
f f N f

f s s
s s s N s

s s s N s
N f N s N s

x x x A x x x
x x x

C x x x
C x x x

x x x

φ φ φ φ φ φ
φ φ φ

φ φ φ
φ φ φ

φ φ φ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥Ψ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (6.28) 

One should notice in both previous equations that coefficient A  indeed contains all the 

control parameters of the friction-excited system, apart from the excitation location, and 

that the displacement and velocity-coupling matrices [ ]1Ψ  and [ ]2Ψ  carry the modal 

information at the excitation and support points. Equation (6.26) leads to the second-

order eigenproblem: 

 [ ] [ ] [ ]( ){ } { }2 ˆ 0q
n n nMλ λ φ+ + =C K  (6.29) 

with [ ] [ ] [ ]2C= − ΨC  and [ ] [ ] [ ]1K= − ΨK , where eigen solutions { } { }ˆ( ) exp( )qQ t tφ λ=  

have been assumed. The modes of the friction-coupled system may be easily computed, 

as a function of A , sK  and sC , by writing (6.29) as an equivalent first-order (state-

space) form, which can be readily solved using standard procedures. Equation (6.30) is 

one possible symmetrical form, among others (see, for instance Bertolini, 1998): 
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 [ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }

ˆ0 0
0 0 0ˆ

q
n

n q
n n

M
M M

φ
λ

λ φ

⎧ ⎫⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ =⎜ ⎟ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟− ⎪ ⎪⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎝ ⎠ ⎩ ⎭

C K
 (6.30) 

The eigenvalues and corresponding eigenvectors obtained from (6.30) are in general 

complex and, for oscillating solutions, arise in conjugate pairs ˆˆn n niλ σ ω= ±  and 

{ } { } { }ˆ ˆˆq
n n niφ ϕ ϑ= ± . The (damped) modal frequencies ˆ Im( )n nω λ=  and modal dissipation 

values ˆ Re( )n nσ λ=  determine the behaviour of the bowed system, before nonlinear 

effects take control. In particular, self-excited regimes stem from the linear instability of 

a mode, whenever Re( ) 0nλ > . Then, if Im( ) 0nλ ≠ , it is a flutter instability, otherwise 

Im( ) 0nλ =  implies a divergence (non-oscillatory) instability. The values of the undamped 

modal frequencies ˆnω  and modal damping ˆ
nζ  of the friction-coupled system may be 

inferred from the nλ  using the following relations: 

 2 2ˆ ˆˆnu n nω σ ω= +  (6.31) 

 
2 2

ˆˆ
ˆˆ

n
n

n n

σ
ζ

σ ω
= −

+
 (6.32) 

 

and one obtains 2ˆˆ ˆ 1n nu nω ω ζ= − , as usual. From the modeshapes { }ˆq
nφ  in terms of the 

modal amplitude coefficients, one can easily compute the corresponding modeshapes in 

terms of the physical coordinates: 

 { } { } { } { } { }1 2
ˆ ˆ, ,..., , 1,2,...,x q
n N n n Nφ φ φ φ φ= =⎡ ⎤⎣ ⎦  (6.33) 
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6.2.5 Results 

Two types of bars were analyzed in light of this theoretical approach: bars with uniform 

cross-section and bars with variable cross-section ( )S x  tuned to specific frequency 

ratios of the first 3 natural frequencies. As a first example, Figure 1.8 shows a typical 

stability plot, for a 220 Hz tuned bar (1-4-10) modelled using 8 modes (2 rigid-body and 

6 flexural), as a function of coefficient A – see Equation (6.17). The friction parameters 

used were 1.0Sμ = , 0.2Dμ =  and 10C = . In this figure the green colour stands for 

stability and the red colour for instability. The first two modes of the coupled system, s1 

and s2, which represent the transverse and rocking motions of the rigid bar, have nearly 

the same frequency until the first reaches instability as A increases, with a clear decrease 

of the oscillation frequency, under flutter instability or divergence for high enough 

values of A. On the other hand, the flexural modes, f1 to f6, reach instability for different 

values of A, with the first flexural mode being unstable over a wider range, in agreement 

with musical playing experience. 

 

Figure 6.2 – Stability plot for a tuned 1-4-10 bar in function of coefficient A. Green 
– Stability; Red – Instability. 

Figure 3 depicts two stability plots for the first bending mode of the tuned bar, subjected 

to two different friction laws (see Figure 1) where the modal frequency is plotted as a 

function of the bow normal force and velocity. In the first case self-sustained 

oscillations are expected to engage at higher values of NF  and lower values of bV . As 

expected, only the friction law of Figure 1(a) allows for the appearance of unstable 

regimes. 

f1 

f2 
f3
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Figure 6.3 – 3D Stability plots for the first flexural mode of a tuned 1-4-10 bar for the 
two different friction laws in Figure 3.1(a) and Figure 3.1(b), respectively. Green – 

Stability; Red – Instability. 

 

          

Figure 6.4 – 3D Stability plots for the first flexural mode of (a) a tuned 1-4-10 bar 
and (b) a uniform cross section bar. Green – Stability; Red – Instability. 

 

As another illustration Figure 6.4(a) and Figure 6.4(b) show the first flexural mode 

damping nζ  and stability as a function of the global parameter A  and bar modal 

damping 0ζ  assumed identical for all unconstrained modes. When comparing the two 

bars previously discussed, the first flexural mode of the tuned bar is more prone to 

instability for a wide variation of A  and 0ζ . 

(a) (b) 

(a) (b) 
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The work presented in the Chapter 3 enabled a classification of different dynamical 

regimes as depicted in Figure 6.5. Performing now a linear stability analysis for all 

modes of the two bars, and for the same playing range and friction characteristics as in 

Chapter 3 – see Figure 6.6 – it is possible to establish a correlation of the main regime 

features between the two approaches. If, using an heuristic reasoning, the unstable mode 

with higher negative damping value is highlighted as dominant (for each pair of bowing 

conditions NF  and bV ), the linear analysis predicts instability of the first rigid-body 

mode (support regime) and the first flexural bar mode (musical regime) in 

approximately the same ranges as the nonlinear simulations. Notice that the other 

“intermediate” self-sustained regimes, apart from the ones mentioned, are also related to 

self-sustained oscillation of the first flexural mode of the bar. These variations are, 

obviously, something that the linear approach cannot predict. Also notice that the region 

of stability correlates well with the non-oscillatory regimes depicted in Figure 6.5. 
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Figure 6.5 – Nonlinear dynamical regimes for (a) the 1-4-10 bar and (b) the uniform 
cross section bar in function of the playing parameters Vb and FN. 

 

 
Figure 6.6 – 2D Modal stability plots for (a) a tuned 1-4-10 bar and (b) a uniform 

cross-section bar in function of the playing parameters. Green – Stability; Blue – 1st 
flexural mode instability; Red – 1st support mode instability. 

 
 

 

(a) (b) 

(a) (b) 
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6.3. Bowed String 

6.3.1 Modal formulation for the bowed string 

Starting from the classic damped wave equation: 

 
2 2

0 2 2 ( , )y y ym T F x t
tt x

η+
∂ ∂ ∂− =

∂∂ ∂
 (6.34) 

where ( , )y x t  is the lateral displacement, 0m  is the string linear density, η  is a coefficient 

of viscous dissipation, T  is an axial tensioning force and ( , )x tF  is the externally applied 

excitation, Equation (6.34) may be recast in modal form: 

 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0N N N N N N N

m q c q k q
m q c q k q

m q c q k q

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

F
F

F

 (6.35) 

where 0 / 2 ( )nm m L n= ∀ , 2n n n nc m ω ζ=  and 2
n n nk m ω=  are the modal parameters of the 

pinned-pinned string (using N  modes with frequencies /n n c Lω π= , with 0/c T m= , and 

modal damping values nζ ). The modeshapes of a string pinned at both the bridge ( 0x = ) 

and nut ( x L= ) extremities are given by ( ) sin( / )n x n x Lφ π= . For inharmonic strings with 

bending stiffness parameter β , the modal frequencies depart from the harmonic series 

for increasing modal index, and ( ) 2/ 1 ,  for 2n n c L n nω π β= + ≥ . 

On the other hand, ( )nq t  are the modal amplitudes and ( )n tF  are the generalized 

forces obtained by modal projection of the external force field: 

 
0

( ) ( , ) ( ) , 1, 2,...,n n

L

t x t x dx n Nφ= =∫F F  (6.36) 

with the modeshapes ( ) sin( / )n x n x Lφ π= . For point-forces at F  locations: 

 
1

( , ) ( ) ( )f f
f

F

x t t x xδ
=

= −∑F F  (6.37) 
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Equation (6.36) simplifies to 
1

( ) ( ) ( )n f n f
f

F

t t xφ
=

= ∑F F . In matrix form: 

 

1 1 1 1 2 1 1

2 2 1 2 2 2 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

F

F

N N N N F F

x x x
x x x

x x x

φ φ φ
φ φ φ

φ φ φ
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F
F

F

F
F

F

 (6.38) 

The physical and modal variables are related by the variable transformation: 

 
1

( , ) ( ) ( )
N

n n
n

y x t x q tφ
=

= ∑  (6.39) 

which expresses modal superposition. In matrix form, at P  discrete locations: 

 

1 1 2 1 1 11

1 2 2 2 2 22

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

N

N

P P N P NP

x x x qy
x x x qy

x x x qy

φ φ φ
φ φ φ

φ φ φ

⎡ ⎤ ⎧ ⎫⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (6.40) 

and similarly when relating velocities and accelerations. 

6.3.2 Friction model  

Following the work presented in the previous section, a Coulomb-type friction model is 

used for the tangential contact force: 

 
( ) ( ) sign( ) if 0 (sliding)

( ) if 0 (adherence)
f N r r r

f N S r

t V V V

t V

μ

μ

⎧ = − ≠⎪
⎨

≤ =⎪⎩

F F

F F  (6.41) 

where NF  is the normal force which compresses the contacting surfaces and 

( ) ( )r b fV t V y t= −  is the relative velocity between the vibrating surface ( ) ( , )f fy t y x t≡  and 

the driving bow bV . During sliding, the friction coefficient ( )rVμ  depends on the relative 

velocity, which is formulated as: 

 ( ) ( ) exp( )r D S D rV C Vμ μ μ μ= + − −  (6.42) 

 



 

 204

where Sμ  is the so-called static friction coefficient, at 0rV = , Dμ  is a limiting friction 

coefficient when rV → ∞  and C  is a parameter defining how fast ( )rVμ  decreases as rV  

increases. During adherence, when 0rV =  (or, more physically, rV ε< ), the friction 

force can take any value within the allowed range ( )f N St μ≤F F , the actual force 

depending on the overall static and dynamic forces acting on the system. In any case, 

frictional will oppose the (incipient or actual) motion of the system. 

Figure 6.7 shows a typical plot of ( )rVμ , which highlights the extreme nonlinearity of 

frictional forces in the vicinity of the adherence discontinuity. As referred in the 

previous section, this feature will be neglected in this work, as the low-amplitude 

vibrations pertaining to the linearized range are important, well before the nonlinear 

motions settle-in. Under such conditions, ( )b fV y t> , only the right half of the friction 

curve is “active” (e.g., 0rV > ) and the system is always sliding, with moderate 

nonlinearity. Experimental results pertaining to this kind of friction model report, for 

bowed strings, a decrease of the friction coefficient ( )rVμ  when the sliding velocity rV  

increases (Cremer, 1984). 

 

 
Figure 6.7 – Example of friction law with 0.8Sμ = , 0.2Dμ =  and 10C = . 
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6.3.3 Linearized formulation 

Within the framework of linearized theory, small amplitude vibrations ( , )y x t  about a 

steady deformed state ( )y x  imply: 

 ( , ) ( ) ( , ) ( , ) ( , ) ( , ) ( , )y x t y x y x t y x t y x t y x t y x t= + ⇒ = ⇒ =  (6.43) 

as well as small amplitude fluctuating forces about a steady value: 

 ( , ) ( ) ( , )x t x x t= +F F F  (6.44) 

 

Then, when (6.43) and (6.44) are replaced in the dynamical formulation, two sets of 

equations may be extracted: the so-called zero-order equations, only depending on space, 

which supply the mean deformed state, as well as the first-order equations, depending 

on both space and time, which enables computation of the system eigenproperties. 

The modal formulation applies to dynamic as well as steady states. Therefore, 

approximation (6.43) may be applied as well to the modal amplitudes, obtaining from 

(6.39): 

 [ ]
1

( , ) ( ) ( , ) ( ) ( )
N

n n n
n

y x t y x y x t x q q tφ
=

= + = +∑  (6.45) 

 

hence the static and vibratory relations: 

 
1

( ) ( )
N

n n
n

y x x qφ
=

= ∑  (6.46) 

 
1

( , ) ( ) ( )
N

n n
n

y x t x q tφ
=

= ∑  (6.47) 

Turning now to the nonlinear sliding friction law, under the previously discussed 

assumption concerning rV , (6.41) and (6.42) reduce to: 
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 [ ]( ) ( ) exp( )f N D S D rt CVμ μ μ= + − −F F  (6.48) 

 

hence: 

 
1

( ) ( ) exp ( ) ( )f N D S D b n f n

N

n
t C V x q tμ μ μ φ

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∑F F  (6.49) 

 

Then, accounting for (6.45): 

 
1

( ) ( ) exp ( ) ( )f N D S D b n f n

N

n
t C V x q tμ μ μ φ

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∑F F  (6.50) 

 

as the nq  must obviously be null. From (6.50), stems the steady frictional force: 

 [ ]( ) exp( )f N D S D bCVμ μ μ= + − −F F  (6.51) 

 

as well as the oscillating linearized term: 

 
1

( ) ( ) ( )f n f n

N

n
t A x q tφ

=
= ∑F  (6.52) 

 

where all relevant parameters which control the system stability are encapsulated in the 

important coefficient: 

 ( ) exp( )N S D bA C CVμ μ= − −F  (6.53) 

 

which has the dimensions of a damping coefficient, as it should. 
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Notice that the amplitude of the dynamical friction force increases linearly with the 

normal force NF  and the difference S Dμ μ−  between the static and dynamic friction 

coefficients (which are well-known results), but decreases with the bow velocity bV  in 

an exponential manner. The influence of the “steepness” parameter C  of the friction 

law ( )rVμ  is introduced through two terms of opposing nature: for low values of bV  the 

linear term prevails and A  increases with C , while for high values of  bV  the 

exponential term prevails and A  decreases when C  increases. As far as the linearized 

dynamics are concerned, the specific values of all these parameters are irrelevant, as 

only the value of the amplitude coefficient A  matters.  

6.3.4 Steady and oscillating solutions  

Replacing (6.43)-(6.47) into (6.35) and obtaining the zero-order and first-order 

equations: 

 

1 1 1

2 2 2

0 0
0 0

0 0 N N N

k q
k q

k q
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 (6.54) 
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2 2 2 22 2 2
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m c k qq q
m c k qq q

m c k qq q
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F
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F ⎪

 (6.55) 

 

where the generalized steady and dynamic forces are directly obtained from results 

(6.51) and (6.52)-(6.53), by modal projection: 
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Proceeding now to the computation of the steady deformation under friction excitation, 

from (6.54) and (6.56): 
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and, using (6.40), the mean deformed state in terms of physical coordinates is obtained: 
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On the other hand, the linearized dynamics stem from (6.55) and (6.57): 
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and, accounting that (6.52) is equivalent to: 
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one obtains: 
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which clearly expresses how bowing couples all the string modes with nonzero 

modeshapes at the bowing location. 

Writing now (6.62) in condensed notation: 

 [ ]{ } [ ]{ } [ ]{ } { }( ) ( ) ( ) ( ) ( )fQ t Q t Q t A x Q t⎡ ⎤+ + = Φ⎣ ⎦M C K  (6.63) 

where one should notice that coefficient A  encapsulates all the control parameters of 

the friction-excited system, apart from the excitation location, while the velocity-

coupling matrix ( )fx⎡ ⎤Φ⎣ ⎦  carries the modal information at the excitation point fx . 

Equation (6.63) reduces to the homogeneous form: 

 [ ]{ } [ ]( ){ } [ ]{ } { }( ) ( ) ( ) ( ) 0fQ t A x Q t Q t⎡ ⎤+ − Φ + =⎣ ⎦M C K  (6.64) 

leading to a second-order eigenvalue/eigenvector problem: 

 [ ] [ ]( ){ } { } [ ]2 ˆ( , ) 0 with ( , ) ( )q
n n f n f fA x A x A xλ λ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + = = − Φ⎣ ⎦ ⎣ ⎦ ⎣ ⎦M K CC C  (6.65) 

where solutions { } { }ˆ( ) exp( )qQ t tφ λ=  have been assumed. The modes of the friction-

coupled system may be easily computed, as a function of A  and fx , by writing (6.65) in 

an equivalent first-order (state-space) form, which can be readily solved using standard 

procedures. Equation (6.66) is one possible symmetrical form, among others (see, for 

instance, Bertolini, 1998): 
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The eigenvalues and corresponding eigenvectors obtained from (6.66) are in general 

complex and, for oscillating solutions, arise in conjugate pairs ˆˆn n niλ σ ω= ±  and 

{ } { } { }ˆ ˆ ˆq
n n niφ ϕ ψ= ± . The (damped) modal frequencies ˆ Im( )n nω λ=  and modal dissipation 

values ˆ Re( )n nσ λ=  determine the behaviour of the bowed system, before nonlinear 

effects take control. In particular, self-excited regimes stem from the linear instability of 

a mode, whenever Re( ) 0nλ > . Then, if Im( ) 0nλ ≠ , it is a flutter instability, otherwise 

Im( ) 0nλ =  implies a divergence (non-oscillatory) instability. The values of the undamped 
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modal frequencies 0ˆnω  and modal damping ˆ
nζ  of the friction-coupled system may be 

inferred from the nλ  using the following relations: 

 2 2ˆ ˆˆnu n nω σ ω= +  (6.67) 

 
2 2

ˆˆ
ˆˆ

n
n

n n

σ
ζ

σ ω
= −

+
 (6.68) 

and one obtains 2ˆˆ ˆ 1n nu nω ω ζ= − , as usual. After the modeshapes { }ˆq
nφ  in terms of the 

modal amplitude coefficients of the original string modes have been obtained, one can 

easily compute the modeshapes in terms of the physical coordinates: 

 { } { } { } { } { }1 2
ˆ ˆ, ,..., , 1, 2,...,x q
n N n n Nφ φ φ φ φ= =⎡ ⎤⎣ ⎦  (6.69) 

or, in extended notation: 
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6.3.5 Results 

Calculations using the previously described approach were made for a violin string with 

length, L = 33 cm, a linear density of 33.1 10−×  kg/m, and a fundamental frequency of 

196 Hz. A modal damping of 0.1% was used for all modes and no string inharmonicity 

was included in the present calculations (inclusion of the string bending stiffness 

presents no difficulty). The string was modelled using 50 modes and the friction 

parameters used were Sμ = 0.4, Dμ = 0.2 and C = 5. 
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Figure 6.8 – Static string deformation for: (a) NF = 0.1 N; (b) NF = 1 N, (c) NF = 2.5 N 
and (d) NF = 10 N 
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Figure 6.9 – Stability plot in function of A , for fx  = 10 mm. 
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Figure 6.10 – Stability plot in function of A , for fx  = 30 mm 
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Figure 6.11 – Stability plot in function of A , for fx  = 100 mm 
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As a first and plausible illustration, Figure 6.8 shows the zero-order solutions obtained 

from equation (6.59), for three values of the normal force FN , when bowing at location 

fx  = 30 mm. Dynamical results from the first-order solution (6.63) are shown in the 

stability plots of Figure 6.9 to Figure 6.11, where the friction-coupled modal 

frequencies of the bowed string are displayed as a function of the excitation coefficient 

A, for three locations fx  of the bow. For each mode, the green colour stands for 

stability and the red colour for instability. Notice that many modes become linearly 

unstable simultaneously, however a few of them – those with nodal regions near the 

bowing location – never become unstable. On the other hand, it is well known from 

playing experience and confirmed by nonlinear numerical simulations that playing near 

the bridge brings increased energy from higher-order modes. The counterpart to this fact, 

from the point of view of this linearized analysis, is that an increased number of higher-

order modes become unstable at lower values of parameter A when bowing near the 

bridge. 
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Figure 6.12 – (a)-(e): Modal frequencies and stability maps of the first five string 
modes as a function of NF  and bowy  (bowing at cx  = 30 mm); (f) Dynamical bridge 
reaction force and nonlinear motion regimes from time-domain numerical simulations 
of the bowed string (decaying regime – light yellow; Helmholtz regime – green; higher-
order regime – blue; raucous regime – red; anomalous low-frequency regime – 
magenta). 

 

A last and very interesting aspect deserving to be mentioned concerns the linear 

instability of those modes which present antinodes near the bow. For high enough 
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values of A, their modal frequencies decrease drastically, so that the first of them in fact 

becomes unstable by divergence (and not by flutter, as usual). It is tempting to connect 

such behaviour with the trigging of chaotic “raucous” motions, which arise when 

bowing the string with excessive normal forces. Figure 6.12 displays the stability maps 

of the first bow-coupled string modes, when fx  = 30 mm, as a function of the bow 

normal force and tangential velocity. For this bow location, it is the 5th mode which 

becomes unstable by divergence, and the corresponding stability map may be compared 

with the nonlinear motion regimes computed from time-domain simulations also shown 

in Figure 6.12. The similarity of the qualitative behaviour is striking. 
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7. CONCLUSIONS 

The work described in this thesis aimed to develop a general computational 

methodology for the simulation of bowed musical instruments dynamics, based on a 

modal approach. The main objective was to obtain results that could be comparable to 

the behaviour of real instruments, in particular bowed strings such as the violin or cello, 

bowed bars as the vibraphone or marimba and bowed shell structures as the Tibetan 

singing bowls or the glass harmonica. The conclusions of each chapter, mainly from 

Chapter 3 to Chapter 5 show that this objective has been fulfilled. Furthermore, a 

linearized approach to the nonlinear problem was developed using the same basic 

methodology, which showed coherent results with those obtained from the nonlinear 

computations. The main achievements presented in this thesis are described in the 

following paragraphs, divided into the subsection related to each of the three 

instruments studied. 

7.1. Main achievements 

The main contributions to scientific knowledge brought by the contents of this thesis are 

presented in the following paragraphs. For all three systems studied, animations and 

sounds have been produced which enable a good interpretation of the results obtained 

and understanding of the occurring physical phenomena. 

7.1.1 Bowed strings 

- A numerical modal model was implemented which incorporates the measured 

dynamics of real-life instrument bodies, coupled to the string motions; 

- A systematic study was made of the effect of torsion modes on the string dynamics 

was made revealing the different types of behaviour that the string motion can 

acquire for a wide range of torsion to transverse frequency ratios; 

- A demonstration was made that differences between point-model and finite-width 

simulations can be more pronounced outside the range of bowing parameters 

leading to the Helmholtz motion; 
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- Effective simulation of a realistic wolf-note on a cello was obtained, establishing 

also the range of the playing parameters where this phenomenon emerges, for a 

particular friction law and instrument body characteristics; 

- Demonstration was made of the beating dependence of the wolf-note with bowing 

velocity and applied bow force, with good agreement with experimental results; 

Apart from the numerical model implementation, the results relating to the coupling 

between the body of the instrument and the string are, according to the literature review 

made, the most detailed published up to the present date.  

7.1.2 Bowed bars 

- A numerical modal model was developed which includes the force generated by the 

supports acting on the nodal points of the first flexural mode of the bar; 

- The numerical modal model developed allows the introduction of bars of arbitrary 

shape and pre-defined (calculated or identified) modal basis; 

- The results of the simulation of the vibration time history of bowed vibraphone bars 

are in good agreement with measured time-history on these instruments; 

- Different vibratory regimes of bowed vibraphone and constant cross-section bars, 

for different playing conditions of bow velocity and applied force were simulated. 

7.1.3 Bowed shells 

- A numerical modal model was developed that allows the introduction of orthogonal 

vibratory modes pairs, including their tangential and radial components, essential to 

the correct description of the instrument dynamics; 

- The results of the simulations of the time-history of the vibrations of bowed Tibetan 

bowls are in good agreement with the measured time-history; 

- Different vibratory transients and self-sustained regimes of bowed Tibetan bowls 

were simulated, for different playing conditions of the exciting stick velocity and 

applied force, in good agreement with real instrument playing experience; 
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- An important clarification was made on the radial and tangential vibratory 

behaviour of bowed Tibetan bowls and of the beating phenomena associated with 

perfectly axi-symmetrical instruments; 

- Demonstration was made of the strong dependence of the Tibetan bowls self-

sustained regime order of oscillation on the contact/friction parameters, with a clear 

support from measured results; 

According to the literature review made, the results presented on Tibetan bowls seem to 

be, currently, the most detailed and illuminating ever published. 
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7.2. Perspectives for future work 

The main objective of future research that can be proposed based on the theme of this 

thesis is the improvement of the numerical model in order to achieve better quality 

simulations when compared to measured results. This can be accomplished by refining 

the method in two of its main pillars: the friction model and the description of the 

dynamical system. Both of these aspects imply numerical and experimental work, the 

main points of which are detailed in the following paragraphs. 

7.2.1 Numerical 

7.2.1.1 Improving the description of the system 

The modal method presented in this thesis allows the incorporation of different 

components of the system in study. In the case of the cello, for example, the body of the 

instrument as well as the moving finger pressing the string along the fingerboard 

(glissando effect) were successfully implemented, something not easily accomplished – 

if ever – with the current computational techniques. However, further aspects can be 

included, not only for bowed strings but also for bars and bowls.  

In the case of bowed strings, the coupling between the in-plane transverse motion of the 

string (where in-plane means in a plane parallel to the top plate of the instrument body) 

and the out-of-plane motion (perpendicular to the top plate) should be implemented. 

This can be easily achieved with most computational approaches, including the one 

presented in this thesis. This fact seems important because this vertical motion of the 

string can have a strong influence on the motion of the bow hairs, which will influence 

the string motion, etc. Longitudinal modes also couple with transverse modes of the 

string, and its effect on the sound experienced by a player is more pronounced if bowing 

with the bow in a position not perpendicular to the string. Bow hair compliance is 

another important issue that should be addressed by introducing the longitudinal and 

transverse dynamical properties of the bow hair, for a certain rod tension. 

Bowed bars and shells are much simpler systems with very few components. The main 

improvement comes from an adequate definition of the support dynamics which can 

have some influence on the resulting system motion. Since bowed bars are usually 

excited by a bow, the supports should have some compliance and damping in the 

direction of the normal force applied by the player and not only on the direction of the 
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applied friction force. This motion can probably couple with oscillations of the bow 

which can be one of the reasons for the difficulty experience by players when trying to 

obtain sounds from this instrument.  

7.2.1.2 Comparison of friction models 

As described in this work, several friction models can be used to simulate bowed 

instruments. Recent research with the bowed strings (Woodhouse, 2003; Galluzzo & 

Woodhouse, 2003; Serafin et al, 2003; Woodhouse & Galluzzo, 2004) has proposed the 

use of thermal related friction models as a more reliable alternative to the classic 

Coulomb friction model used in this thesis. Implementing the different friction models 

in the modal method described in this thesis is the natural next step in this research 

work. This implementation will allow a clear comparison between the behaviour of the 

different models. The implementation and the results obtained must be accompanied 

experimental measurements of the frictional behaviour of the system analyzed (see 

section 7.2.2). 

7.2.1.3 Friction-modelling refining 

Apart from the comparisons described in the previous section, the refining of the present 

friction model should be considered, in order to incorporate the features that can be 

considered indispensable to the realistic simulation of the system dynamics. These 

features, which should originate from the results of friction force measurements on both 

string, bars, bowls and respective exciters (see section 7.2.2), would preferably be 

implemented in such a way that the friction model behaves well for the different 

systems, by incorporating shaping variables to the friction law, that will approximate it 

to real measurement results. Notice that the friction interfacefor the puja/bowl excitation 

is not of the same type as the bow/string interface. There is no rosin melting in such 

interaction and therefore the tribological aspects should be quite different. 

7.2.1.4 Implementing sound radiation 

The generation of realistic sounds from the simulations obtained by the present method, 

which relies solely on physics, is still a challenge. All sounds that were extracted from 

the present simulation method were simply related to the vibratory velocity of the 

surface of the instrument. From the three systems studied the Tibetan bowl was the one 

that gave strikingly realistic results. However, this approach should be now 
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complemented by the implementation of a set of transfer functions relating vibratory 

variables in several points of the instrument to the far field sound pressure at some point 

in space. Otherwise, use of the integral Helmholtz-Kirchoff radiation equations may be 

adopted. Both approaches present quite distinct advantages and drawbacks. 

7.2.1.5 Improving numerical efficiency 

The numerical efficiency of the model implementation presented in this thesis is not 

optimized. The comparatively large computation times described as one of the main 

disadvantages of this method – but notice that, contrary to faster computation methods, 

the modal approach easily provides information on the dynamical response of the full 

system – may certainly be decreased. Different approaches on integration methods and 

on the code building should allow a decrease of computation times of at least an order 

of magnitude. 

7.2.2 Experimental 

7.2.2.1 Identification of friction parameters 

The work carried by Woodhouse & Galluzzo (2003), showed good resemblance of 

simulated bowed string initial transient with measured results, by using the thermal 

modelled developed by Smith & Woodhouse (2000). Although, as stated by the authors 

of that work, further work is needed to find a more accurate friction law, since the one 

used could not represent accurately some important features such as the flattening 

effect. To improve the friction model, experimental work on the identification of the 

friction force, and its relation with its governing quantities, whether it is the bow/string 

relative velocity, temperature or other, is needed. A possible path to continue this work 

is using remote identification techniques by inverse algorithms, first on more rigid 

structures such as the bowed bar which has a more simple geometry than the Tibetan 

bowl, and then on the string. One of the major difficulties with this technique (apart 

from noise presence in the measurements) is the influence of the transducer on the 

dynamical properties of the system. Therefore, non-contact transducers are preferred. 

An interesting approach would be to try friction force identification not from 

measurements on the instrument, but on the bow itself (at the frog, for example) using 

the same inverse techniques. A major step on the use of inverse methods for the 

identification of bow/string interaction forces was recently provided by Woodhouse et 

al (2000) and Schumacher et al (2005). 
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7.2.2.2 Quantitative validation of numerical results 

As obvious as it may seem, the use of measurements to validate the numerical results is 

very important. In this thesis only qualitative comparisons have been made between 

simulations and measurements. In following work one should aim for quantitative 

comparisons. This will not only allow testing of the method itself but also helping the 

improvement of the friction laws. Again in this case, the main difficulty is the presence 

of the transducer, which has a great influence on the instrument sound, and therefore 

non-contact transducers should be used. 
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