
Recent advances in surrogate-based optimization

Alexander I. J. Forrester∗ and Andy J. Keane†

Computational Engineering and Design Group
School of Engineering Sciences

University of Southampton SO17 1BJ
UK

Abstract

The evaluation of aerospace designs is synonymous with the use
of long running and computationally intensive simulations. This fu-
els the desire to harness the efficiency of surrogate-based methods in
aerospace design optimization. Recent advances in surrogate-based
design methodology bring the promise of efficient global optimization
closer to reality. We review the present state of the art of constructing
surrogate models and their use in optimization strategies. We make
extensive use of pictorial examples and, since no method is truly uni-
versal, give guidance as to each method’s strengths and weaknesses.

Contents

1 Introduction 2

2 Initial sampling 4

3 Constructing the surrogate 5
3.1 Cross-validation . 6
3.2 Polynomials . 7
3.3 Moving least-squares . 9
3.4 Radial basis functions . 10

3.4.1 Radial basis function models of noisy data 13
3.5 Kriging . 14

3.5.1 Universal Kriging . 17
3.5.2 Blind Kriging . 18
3.5.3 Kriging with noisy data 20

3.6 Support vector regression . 21
3.6.1 The support vector predictor 22

∗Lecturer in engineering design, School of Engineering Sciences
†Professor of computational engineering, School of Engineering Sciences

1

3.6.2 Finding the support vectors 26
3.6.3 Finding µ . 26
3.6.4 Choosing C and ε . 27

3.7 Enhanced modelling with additional design information . . . 29
3.7.1 Exploiting gradient information 29
3.7.2 Multi-fidelity analysis 35

4 Infill criteria 42
4.1 Exploitation . 42

4.1.1 Minimizing the predictor 42
4.1.2 The trust-region method 43

4.2 Exploration . 45
4.3 Balanced exploration / exploitation 46

4.3.1 Two-stage approaches 47
4.3.2 One-stage approaches 50

4.4 Parallel infill . 55

5 Constraints 56

6 Multiple objectives 60
6.1 Multi-objective expected improvement 62

7 Discussion and recommendations 67

1 Introduction

An overview of surrogate-based analysis and optimization was presented in
this journal by Queipo et al. [61]. They covered some of the most popu-
lar methods in design space sampling, surrogate model construction, model
selection and validation, sensitivity analysis, and surrogate-based optimiza-
tion. More recently Simpson et al. [68] presented a general overview of how
this area has developed over the past twenty years, following the landmark
paper of Sacks et al. [63]. Here we take a rather more in depth look at
the various methods of constructing a surrogate model and, in particular,
surrogate-based optimization. Our review is by no means exhaustive, but
the methods we cover are those we feel are the most promising, based on the
cited references coupled with our own experience. Parting from a common
trend in review papers, we do not include a large, industrial type problem
which may not be of interest to all readers. Instead we have employed small
illustrative examples throughout the paper in the hope that methods are
explained better in this way.

The use of long running expensive computer simulation in design leads
to a fundamental problem when trying to compare and contrast various
competing options: there are never sufficient resources to analyse all of the

2

combinations of variables that one would wish. This problem is particularly
acute when using optimization schemes. All optimization methods depend
on some form of internal model of the problem space they are exploring -
for example a quasi Newton scheme attempts to construct the Hessian at
the current design point by sampling the design space. To build such a
model when there are many variables can require large numbers of analyses
to be carried out, particularly if using finite difference methods to evaluate
gradients. Because of these difficulties it is now common in aerospace de-
sign to manage explicitly the building and adaptation of the internal model
used during optimization – these models are here termed surrogate models
although they are also often referred to as meta models or response sur-
faces. This review is concerned with this approach to design search, and in
particular to the construction of surrogates and their refinement. Figure 1
illustrates the basic process (the steps remain the same for any optimization
based search):

1. first the variables to be optimized are chosen, often due to their im-
portance, as determined by preliminary experiments;

2. some initial sample designs are analysed according to some pre-defined
plan;

3. a surrogate model type is selected and used to build a model of the
underlying problem – for surrogate-based search this process can be
quite sophisticated and time consuming;

4. a search is carried out using the model to identify new design points
for analysis;

5. the new results are added to those already available and, provided
further analyses are desired, the process returns to step 3.

These steps of course assume that an automated process has been es-
tablished to carry out design analyses when given a selection of design in-
puts, and this is a far from trivial process in most aerospace applications.
Typically it requires a scheme to create meshed water-tight geometries from
a vector of design parameters either using CAD or some specialized product
specific code, followed by the use of mesh generation. The resulting mesh
is then used in a finite volume or finite difference scheme to solve the un-
derlying equations and is then followed by some design evaluation process
to calculate performance metrics such as lift, drag, stress etc. Throughout
the rest of this paper we assume such a process is established, although
we allow for the possibility that it may fail to return usable results (per-
haps because of convergence failure, for example) or may return results that
are contaminated with noise due to round off, discretization or convergence
errors.

3

Figure 1: a surrogate-based optimization framework.

2 Initial sampling

Assuming that we already have a parameterized design coupled to a method
of evaluation, the first step in the surrogate-based optimization process is to
choose which parameters we wish to vary – our design variables. This may
be patently obvious in a familiar design problem, but in a new design prob-
lem there may be many variables, only a subset of which we can optimize.
The problem of obtaining enough information to predict a design landscape
in a hyper-cube of increasing dimensions – the curse of dimensionality – is
what holds us back in terms of the number of variables we can optimize.
The amount of information we can obtain will, of course, depend on the
computational (or experimental) expense of computing objective and, per-
haps, constraint functions. Thus the number of variables we can optimize is
a function of this expense. Choosing the variables that will be taken forward
to optimize usually requires the design and analysis of some preliminary ex-
periments. This process may in fact be revisited several times in the light
of results coming from surrogate-based searches. We will not cover such
methods here and the reader may wish to consult Morris [56]. We endorse
this reference as it makes the weakest assumptions regarding the type and
size of the problem, assuming only that the function is deterministic.

With the design space identified, we must now choose which designs we
wish to evaluate in order to construct the surrogate model – our sampling
plan. It is worth noting here that this process is often referred to as a design
of experiments, a term used for selection of physical experiments. Here we
use the term sampling plan to refer to both physical and computational

4

experiments.
To build global models of unknown landscapes, a sampling plan with

a uniform, but not regular, spread of points across the design space makes
intuitive sense. We also wish to use a sample of points whose projections onto
each variable axis are uniform, the logic being that it is wasteful to sample a
variable more than once at the same value. To this end we favour the space
filling maximin [37] Latin hypercube [55] sampling techniques of Morris and
Mitchell [57]. An in-depth description of this technique, including Matlab
code can be found in Forrester et al. [24]. Note that here we are discussing
the sample upon which an initial surrogate will be built. Further sampling –
sometimes called adaptive sampling – can be carried out subsequently (the
‘add new design(s)’ box in figure 1) and will be discussed in due course.

It is also worth noting that for some classes of surrogates it is possible
to estimate directly the quality of a sampling plan on the stability of model
building, e.g. D-optimal designs when used with polynomial surrogates. If a
particular surrogate type is to be used, whatever the outcome of the initial
experiments, this may well influence the choice of sample plan.

3 Constructing the surrogate

In everyday life we try to save time and make predictions based on assump-
tions. For example, when travelling on a road we can predict the rate of
turn of a bend based on the entry and surrounding landscape. Without
really considering it, in our mind we are constructing a surrogate using the
direction of the road, its derivatives with respect to distance along the road
(at least to second order), and local elevation information. This information
is coupled with assumptions based on our experience of going round many
bends in the past. We also formulate an estimate of the possible error in the
prediction and regulate our entry speed based on this and road surface con-
ditions. In unfamiliar surroundings, for example in a foreign country where
road building techniques are different, we have to assume a very high error
because our assumptions based on experience are likely to be incorrect, and
reduce our speed of entry accordingly. In essence we calculate a suitably
safe speed based on our prediction of curvature and subtract a safety mar-
gin based on our predicted error. In engineering design we are faced with
different problems, but in essence we try to do with a surrogate model what
we do everyday with our mind: make useful predictions based on limited
information and assumptions.

Care must be taken that any assumptions are well founded. The first
assumption we make with all the surrogate modelling techniques discussed
here is that the engineering function is continuous – incidentally one we also
make about roads, permitted due to the use of signs warning of junctions,
etc. This is usually a well founded assumption, with some notable exceptions

5

such as when dealing with aerodynamic quantities in the region of shocks,
structural dynamics, and progressive failure analysis (e.g. crash simulation).
This can be accommodated by using multiple surrogates, patched together
at discontinuities, though we will not consider this here. This is the only
assumption in Kriging (see section 3.5), making it a versatile, but compli-
cated method. Other methods may perform better if further assumptions
prove to be valid.

A second assumption is that the engineering function (though not nec-
essarily our analyses) is smooth. Again, this is usually a perfectly valid as-
sumption. Methods such as moving least-squares (section 3.3), radial basis
functions (section 3.4), support vector regression (section 3.6), and a simpli-
fied Kriging model are based on this and the continuity assumption, as too
is our mental road prediction method. Although the engineering function
may be smooth, our analysis of it may not be. The smoothness assumption
may then require ‘noise’ in the observed data, be it random physical error
or computational error appearing as noise, to be filtered.

Further assumptions can be made as to the actual shape of the function
itself, e.g. by applying a polynomial regression (see section 3.2). We know of
many engineering quantities that obey such forms (within certain bounds).
For example stress / strain is often linear and drag / velocity quadratic.
Clearly assumptions about the shape of the function can be useful, but
may be unfounded in many problems. No doubt many road accidents have
occurred when a bend suddenly tightened in front of a driver who wrongly
assumed a circular turn was ahead.

It is worth bearing in mind what we want from our surrogate. Naturally
we want an accurate prediction of the function landscape we are trying to
emulate and, moreover, in the context of surrogate-based optimization, we
want this prediction to be most accurate in the region of the optimum. In
this section we will only be considering how to produce a prediction and
will look at enhancing the accuracy in the region of the optimum in the
remaining sections. As mentioned at the beginning of this paper, we will
not be reviewing methods for surrogate model selection and validation. We
shall though consider this topic in our final discussion section, and will
now briefly describe cross-validation – an important and commonly used
generalization error estimator.

3.1 Cross-validation

To compute the cross-validation error, the surrogate model training data
is split (randomly) into q roughly equal subsets. Each of these subsets is
removed in turn from the complete training data and the model is fitted to
the remaining data. At each stage the removed subset is predicted using
the model which has been fitted to the remaining data. When all subsets
have been removed, n predictions (ŷ(1), ŷ(2), ..., ŷ(n)) of the n observed data

6

points (y(1), y(2), ..., y(n)) will have been calculated. The cross-validation
error is then calculated as

εcv =
1
n

n∑

i=1

(
y(i) − ŷ(i)

)2
. (1)

With q = n, an almost unbiased error estimate can be obtained, but one
whose variance can be very high. Hastie et al. [32] suggests using somewhat
larger subsets, with q = 5 or 10.

As will be seen in the following sections, the cross-validation error can
be used for surrogate model parameter estimation, model selection and val-
idation when it is too costly to employ a separate validation data set.

3.2 Polynomials

Although fast being replaced by radial basis function approaches, the classic
polynomial response surface model (RSM) is the original and still, probably,
the most widely used form of surrogate model in engineering design. We will
not dwell for too long on the subject of polynomials as this ground has been
covered many times before and better than we could hope to do so now.
Of the various texts out there, one of the most popular is that by Box and
Draper [6].

A polynomial approximation of order m of a function f of dimension
k = 1, can be written as

ŷ(x,m,a) = a0 + a1x + a2x
2 + . . . amxm =

m∑

i=0

aix
(i). (2)

We estimate a = {a0, a1, . . . , am}T through a least squares solution of Φa =
y, where Φ is the Vandermonde matrix:

Φ =




1 x1 x2
1 . . . xm

1

1 x2 x2
2 . . . xm

2

.
1 xn x2

n . . . xm
n


 (3)

and y is the vector of observed responses. The maximum likelihood estimate
of a is thus

a = (ΦTΦ)−1ΦTy. (4)

Estimating m is not so simple. The polynomial approximation (2) of
order m of an underlying function f is similar in some ways to a Taylor
series expansion of f truncated after m + 1 terms [6]. This suggests that
greater values of m (i.e. more Taylor expansion terms) will usually yield a
more accurate approximation. However, the greater the number of terms,
the more flexible the model becomes and we come up against the danger of

7

over fitting any noise that may be corrupting the underlying response. Also,
we run the risk of building an excessively ‘snaking’ polynomial with poor
generalization. We can prevent this by estimating the order m through a
number of different criteria [8].

One method is to hypothesise that the true function is indeed a poly-
nomial of degree m and any deviations from this are simply normally dis-
tributed noise. If this is the case then only a0, a1, ..., am are required and
am+1, ..., an = 0. The null hypothesis method (see, e.g. Ralston and Rabi-
nowitz [62] pp 254) chooses m by minimizing

σ2
m =

δ2
m

n−m− 1
, (5)

where

δ2
m =

n∑

i=1

(
y(i) −

m∑

i=0

aix
i

)2

. (6)

To choose m, σ2
m is calculated for m = 1, 2, ... as long as there are significant

decreases in σ2
m. The smallest m beyond which there are no significant

decreases in σ2
m is chosen.

A model with better generalization might be obtained by instead choos-
ing m to minimize the cross-validation error (see section 3.1 and e.g. Hastie
et al. [32]). Cross-validation can give an indication of the overall general-
ization quality of the polynomial. We can also estimate the average mean
squared error (MSE) as

s2
avg =

(y − ŷ)T(y − ŷ)
(n−m + 1)

, (7)

where ŷ is a vector of predictions at the observed data points and n is the
number of observations.

The local MSE is estimated as

s2 = s2
avgf

T(ΦTΦ)−1fT, (8)

where fT is the vector of functions in equation (2), e.g. {1, x, x2, . . . , xm}T

for a one variable quadratic [27, 58].
Polynomial surrogates are unsuitable for the non-linear, multi-modal,

multi-dimensional design landscapes we often encounter in engineering un-
less the ranges of the variables being considered are reduced, as in trust-
region methods (by suitably reducing the variable ranges under study, prob-
lems can always be simplified). In high dimensional problems it may not be
possible to obtain the quantity of data required to estimate the terms of all
but a low order polynomial. However, for problems with few dimensions,
uni- or low-modality, and/or where data is very cheap to obtain, a polyno-
mial surrogate may be an attractive choice. In particular, the terms of the

8

polynomial expression obtained using one of the above methods can provide
insight into the design problem, e.g the effect of each variable in the design
space can be easily identified from the coefficients. There may be scenarios
when the analysis for which a surrogate is to be used in lieu of is too expen-
sive to be searched directly, but is cheaper than the more complex methods
which follow in this paper. Here, a quick polynomial surrogate may find its
niche.

When dealing with results from deterministic computer experiments, as
so often is the case in design optimization, the premise that the error between
the polynomial model and the data is independently randomly distributed
(which the least-squares estimation in (4) is based upon) is completely false.
While assuming independently randomly distributed error is often useful in
laboratory experiments, for a surrogate based on deterministic experiments
the error is in fact entirely modelling error and can be eliminated by inter-
polating rather than regressing the data. Data from computer experiments
can, however, appear to be corrupted by an element of random error, or
‘noise’. This can, for example, manifest via errors due to the finite dis-
cretization of governing equations over a computational mesh. In such cases
we may again wish to assume the error between the data and the surrogate
does to some extent have a random element. The remaining methods in this
paper allow the degree of regression to be controlled in some way.

3.3 Moving least-squares

The method of moving-least squares (MLS) [51, 53] allows us to build a
standard polynomial regression, an interpolation, or something somewhere
between the two. MLS is an embellishment of the weighted least-squares
approach (WLS) [1]. WLS recognises that all {y(i),x(i)} pairs may not
by equally important in estimating the polynomial coefficients. To this
end, each observation is given a weighting w(i) ≥ 0, defining the relative
importance of {y(i),x(i)}. With w(i) = 0 the observation is neglected in the
fitting. The coefficients of the WLS model are

a = (ΦTWΦ)−1ΦTWy, (9)

where

W =




w(1) . . . 0
...

. . .
...

0 . . . w(n)


 . (10)

A WLS model is still a straightforward polynomial, but with the fit biased
towards points with a higher weighting. In a MLS model, the weightings are
varied depending upon the distance between the point to be predicted and
each observed data point. The weighting is controlled by a function which
decays with increasing distance |x(i) − x|. As in the radial basis function

9

literature, a whole host of decay functions have been used, but a popular
choice is the Gaussian function

w(i) = exp

(
−

∑k
j=1(x

(i)
j − xj)2

σ2

)
(11)

(used, for example, by Toropov et al. [78]).
The coefficients of the MLS are found using equation (9) but, unlike

normal least-squares and WLS, the calculation must be performed at every
prediction and so the process is more computationally intensive. The cost of
prediction is increased further by the need to estimate σ as well as choose the
form of the underlying polynomial. The number of terms in the polynomial
is no longer critical, however, since σ will, in some senses, take care of a poor
choice of underlying function. This may be a considerable advantage in a
multi-variable design space where the order of the polynomial is restricted
by the amount of data required to estimate all the coefficients. There is a
large expanse of literature on the selection of terms for reduced order models.
Here we will only consider the choice of σ, which may be a nested part of
the selection of terms. We can choose σ by minimizing a cross validation
error εcv (see equation (1)), either using a formal optimization algorithm or
simply try a selection of σ’s and choose the best.

Consider the one variable test function f(x) = (6x − 2)2 sin(12x − 4),
x ∈ [0, 1] to which normally distributed random noise has been added with
standard deviation of one. A MLS surrogate is to be fitted to a sample of
21 points. Figure 2 shows the MLS approximations found for a range of σ’s.
Clearly the method exhibits an attractive tradeoff between regression and
interpolation and the εcv metric provides a basis for choosing the correct
tradeoff – here σ = 0.1 works best.

MLS is becoming increasingly popular in the aerospace sciences. Kim
et al. [48] present a derivative enhanced form of the method and MLS has
been used in surrogate-based optimization by Ho et al. [34]. However, we
have found no evidence of MLS being used as part of a global optimiza-
tion procedure. Although Ho et al. [34] use a global algorithm (simulated
annealing) to search a MLS surrogate (which is then followed by a further
local direct search of the true function), the search cannot be considered
global without a system of updating the surrogate to account for possible
inaccuracies which may be obscuring the global optimum (see section 4).

3.4 Radial basis functions

Radial basis functions (RBF’s, [7]) use a weighted sum of simple functions
in an attempt to emulate complicated design landscapes. Sóbester [70] uses
the analogy of imitating the specific timbre of a musical instrument with a
synthesizer, using a weighted combination of tones.

10

0 0.5 1
−20

0

20
σ=0.025, ε

cv
=41.8755

x

f(
x)

0 0.5 1
−20

0

20
σ=0.05, ε

cv
=13.5155

x

f(
x)

0 0.5 1
−20

0

20
σ=0.1, ε

cv
=12.889

x

f(
x)

0 0.5 1
−20

0

20
σ=0.25, ε

cv
=37.9795

x
f(

x)

0 0.5 1
−20

0

20
σ=0.5, ε

cv
=73.1825

x

f(
x)

0 0.5 1
−20

0

20
σ=1, ε

cv
=85.0479

x

f(
x)

Figure 2: MLS approximations of a noisy test function for varying σ.

Consider a function f observed without error, according to the sampling
plan X = {x(1), x(2), . . . x(n)}T, yielding the responses y = {y(1), y(2), . . . y(n)}T.
We seek a radial basis function approximation to f̂ of the fixed form

f̂(x) = wTψ =
nc∑

i=1

wiψ(‖x− c(i)‖), (12)

where c(i) denotes the ith of nc basis function centres and ψ is an nc vector
containing the values of the basis functions ψ themselves, evaluated at the
Euclidean distances between the prediction site x and the centres c(i) of
the basis functions. Readers familiar with the technology of artificial neural
networks will recognise this formulation as being identical to that of a single-
layer neural network with radial coordinate neurons, featuring an input x,
hidden units ψ, weights w, linear output transfer functions, and output
f̂(x).

There is one undetermined weight per basis function if fixed bases are
used. Examples basis functions include

� linear ψ(r) = r,

� cubic ψ(r) = r3, and

� thin plate spline ψ(r) = r2 ln r.

11

More freedom to improve the generalization properties of (12) – at the ex-
pense of a more complex parameter estimation process – can be gained by
using parametric basis functions, such as the

� Gaussian ψ(r) = e−
r2

2σ2 ,

� multi-quadric ψ(r) = (r2 + σ2)1/2, or

� inverse multi-quadric ψ(r) = (r2 + σ2)−1/2 .

Whether we choose a set of parametric basis functions or fixed ones, w is
easy to estimate. This can be done via the interpolation condition

f̂
(
x(j)

)
=

nc∑

i=1

wiψ(‖x(j) − c(i)‖) = y(j), j = 1 . . . n. (13)

While equation (13) is linear in terms of the basis function weights w, the
predictor f̂ can express highly non-linear responses. It is easy to see that
one of the conditions of obtaining a unique solution is that the system (13)
must be ‘square’, that is, nc = n. It simplifies things if the bases actually
coincide with the data points, that is c(i) = x(i), ∀i = 1, . . . n, which leads
to the matrix equation

Ψw = y, (14)

where Ψ denotes the so-called Gram matrix and it is defined as Ψi,j =
ψ(‖x(i) − x(j)‖), i, j = 1 . . . n. The fundamental step of the parameter
estimation process is therefore the computation of w = Ψ−1y and this is
where the choice of basis function can have an important effect. For example,
it can be shown that, under certain assumptions, Gaussian and inverse multi-
quadric basis functions always lead to a symmetric positive definite Gram
matrix [82], ensuring safe computation of w via Cholesky factorization –
one reason for the popularity of these basis functions. Theoretically, other
bases can also be modified to exhibit this property through the addition of
a polynomial term (see, e.g., [46]).

Beyond determining w, there is, of course, the additional task of esti-
mating any other parameters introduced via the basis functions. A typical
example is the σ of the Gaussian basis function, usually taken to be the
same for all basis functions in all variables.

While the correct choice of w will make sure that the approximation
can reproduce the training data, the correct estimation of these additional
parameters will enable us to minimize the (estimated) generalization error
of the model. As discussed previously, this optimization step – say, the
minimization of a cross-validation error estimate – can be performed at the
top level, while the determination of w can be integrated into the process
at the lower level, once for each candidate value of the parameter(s).

12

Finally, a note on prediction error estimation. We have already indi-
cated that the guarantee of a positive definite Φ is one of the advantages of
Gaussian radial basis functions. They also possess another desirable feature:
we can estimate their prediction error at any x in the design space as

s2(x) = 1−ψTΨ−1ψ (15)

(see, e.g. Gibbs [25] for further details and a derivation).
Such error estimates are invaluable in formulating infill criteria for use in

surrogate-based optimization, which we will look at in subsequent sections.

3.4.1 Radial basis function models of noisy data

If the responses y = {y(1), y(2), . . . y(n)}T are corrupted by noise, the above
equations may yield a model that overfits the data, that is, it does not
discriminate between the underlying response and the noise. Perhaps the
easiest way around this is the introduction of added model flexibility in
the form of the regularization parameter λ [60]. This is added to the main
diagonal of the Gram matrix. As a result, the approximation will no longer
pass through the training points and w will be the least-squares solution of

w = (Φ + λI)−1y, (16)

where I is an n×n identity matrix. λ should, ideally, be set to the variance
of the noise in the response data y [46], but since we usually do not know
that, we are left with the option of simply adding it to the list of parameters
that need to be estimated.

Another means of constructing a regression model through noisy data
using radial basis functions is to reduce the number of bases. This can be
done using the support vector regression (SVR) method which we will look
at in section 3.6. While SVR is perhaps the most elegant basis function
selection method, a simpler way is to use forward selection (see, e.g. [59]).
With 2nc−1 subsets of the n available centres to choose from, a truly optimal
subset is unlikely to be found and so greedy forward selection algorithms
which add one optimal centre at a time are often employed. Starting from
an empty subset, the basis function which most reduces some error metric
is chosen from n possible basis functions (centred at observed data points).
The process is continued, adding one basis function at a time, until there
is no significant decrease in the error metric. An improved subset might
be achieved by using an exchange algorithm [10] to choose the subset at
each stage of the forward selection process. The forward selection process
is analogous to the null hypothesis method for polynomial fitting, but here
we minimize δ2/(n− nc) [44].

13

3.5 Kriging

An increasingly popular basis function – so much so that we have given it
its own section – is that used in Kriging∗:

ψ(i) = cor[Y (x(i)), Y (x)] = exp


−

k∑

j=1

θj | x(i)
j − xj |pj


 , (17)

where Y (.) are random variables which, rather counter intuitively, we assume
the observed responses to be. Equation (17) clearly has similarities with
the Gaussian basis function in the previous section. Here there are more
parameters: the variance of the basis function can be controlled in each of
the k dimensions of the design space by θj and, instead of being fixed at 2,
the exponent can be varied, again in each dimension, by pj . These additional
parameters of Kriging naturally lead to lengthier model training times, but
this is mitigated by the possibility of improved accuracy in the surrogate. A
common thread throughout the world of surrogate modelling is that we make
assumptions as to the nature of the landscape we are emulating. Kriging is
the least assuming method in this paper, in terms of the range of function
forms it can emulate, and it is for this reason that it is so effective. Due
to the expense of estimating the θj and pj parameters, the method is of
most use when the true function is particularly computationally intensive,
e.g. a CFD based calculation. The regurgitation of the derivation of the
Kriging model is becoming somewhat trite, so we will satisfy ourselves with
quoting the key equations and giving a few insights. We find the most useful
derivation to be that in Jones [38]. There is an extensive section on Kriging,
including Matlab code, in Forrester et al. [24].

The unknown parameters θj and pj are chosen as MLE’s or, to be precise,
we maximize the natural logarithm of the likelihood with constant terms
removed – the concentrated ln-likelihood function:

ln(L) ≈ −n

2
ln(σ̂2)− 1

2
ln(|Ψ|), (18)

∗Matheron [54] coined the term Krigeage, in honour of the South African mining engi-
neer Danie Krige, who first developed the method we now call Kriging [50]. Kriging made
its way into engineering design following the work of Sacks et al. [63], who applied the
method to the approximation of computer experiments. Krige’s research into the applica-
tion of mathematical statistics in ore valuation started during his time in the Government
Mining Engineer’s office and was based on very practical analyses of the frequency dis-
tributions of gold sampling values and of the correlation patterns between the individual
sample values; also between the grade estimates of ore blocks based on limited sampling
of the block perimeters and the subsequent sampling results from inside the ore blocks as
they were being mined out. These distribution and correlation models led directly to the
development of useful spatial patterns for the data and the implementation of the geo-
statistical Kriging and simulation techniques now in extensive use, particularly in mining
circles worldwide.

14

where

σ̂2 =
(y − 1µ)TΨ−1(y − 1µ)

n
, (19)

and Ψ is an n × n matrix of correlations between the sample data, with
each element given by equation 17. It is the maximization of (30) that
lies at the heart of the computational expense of the Kriging technique.
Much research effort is directed at devising suitable training strategies and
reducing the expense of the multiple matrix inversions required (see, e.g.,
Toal et al. [77], Zhang and Leithead [87]). Still though, this parameter
estimation stage limits the method to problems of low dimensionality, with
k usually limited to around 20, depending on the expense of the analyses
the Kriging model is to be used in lieu of.

A by product of the parameter estimation is the insight into the design
landscape we can obtain from the MLE’s of θj and pj . Figure 3 shows how
exp(− | x

(i)
j − xj |pj) varies with the separation between the points. The

correlation is intuitive insofar as when the two points move close together,
x

(i)
j − xj → 0, exp(− | x

(i)
j − xj |pj) → 1 (the points show very close

correlation and Y (x(i)
j) = Y (xj)) and when the points move apart, x

(i)
j −

xj → ∞, exp− | x
(i)
j − xj |pj→ 0 (the points have no correlation). Three

different correlations are shown in figure 3: pj = 0.1, 1, and 2. It is clear
how this ‘smoothness’ parameter affects the correlation, with pj = 2 we
have a smooth correlation with continuous gradient through x

(i)
j − xj = 0.

Reducing pj increases the rate at which the correlation initially drops as
| x(i)

j − xj | increases. With a very low value of pj = 0.1, we are essentially
saying that there is no immediate correlation between the two points and
there is a near discontinuity between Y (x(i)

j) and Y (xj).
Figure 4 shows how the choice of θj affects the correlation. It is essen-

tially a width parameter which affects how far a sample point’s influence
extends. A low θj means that all points will have a high correlation, with
Y (xj) being similar across our sample, while a high θj means that there is
a significant difference between the Y (xj)’s. θj can therefore be considered
as a measure of how ‘active’ the function we are approximating is. Consid-
ering the ‘activity’ parameter θj in this way is helpful in high dimensional
problems where it is difficult to visualize the design landscape and the effect
of the variables is unknown. By examining the elements of θ, and providing
that suitable scaling of the design variables is in use, one can determine
which are the most important variables and perhaps eliminate unimportant
variables from future searches [24, 43].

With the parameters estimated, we can make function predictions at an
unknown x using

ŷ(x) = µ̂ + ψTΨ−1(y − 1µ̂), (20)

15

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x(i)
j

−x
j

ex
p(

−
|x

(i) j
−

x j|p)
p=0.1
p=1
p=2

Figure 3: correlations with varying p.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x(i)
j

−x
j

ex
p(

−θ
|x

(i) j
−

x j|2)

θ=0.1
θ=1
θ=10

Figure 4: correlations with varying θ.

16

Figure 5: the true Branin function (left) compared with a Kriging prediction
based on 20 sample points (right), with MSE = 9.30.

where

µ̂ =
1TΨ−1y
1TΨ−11

. (21)

The predictive power of Kriging is rather impressive, as shown by the pre-
diction of the popular Branin test function based on 20 observations shown
in figure 5. This demonstration does, however, come with the warning that
engineering functions are often not so smooth, noise free and predictable.

Along with other Gaussian process based models, one of the key benefits
of Kriging is the provision of an estimated error in its predictions. The
estimated mean squared error for a Kriging model is

s2(x) = σ2

[
1−ψTΨ−1ψ +

1− 1TΨ−1ψ

1TΨ−11

]
(22)

(see Sacks et al. [63] for a derivation). It is because of its error estimates
that we favour Kriging for use in surrogate-based optimization and sections
4, 5 and 6 will make extensive use of it.

The above equations are categorized as ordinary Kriging. This is the
most popular incarnation of Kriging in the engineering sciences. There is
also universal, co- and, more recently, blind Kriging. We will look at co-
Kriging in section 3.7.

3.5.1 Universal Kriging

In universal Kriging [11] the mean term is now some function of x:

µ̂ = µ̂(x) =
m∑

i=0

µiνi(x), (23)

17

where the νi’s are some known functions and the µi’s are unknown param-
eters. Usually µ̂(x) takes the form of a low-order polynomial regression.
The idea is that µ̂(x) captures known trends in the data and basis functions
added to this will fine-tune the model, thus giving better accuracy than
ordinary Kriging where a constant µ̂ is used. However, we don’t usually
have a priori knowledge of the trends in the data and specifying them may
introduce inaccuracies. Hence the popularity of ordinary Kriging.

3.5.2 Blind Kriging

Blind Kriging is a method by which the νi’s are identified through some
data-analytic procedures. Hopefully, if the underlying trends can be identi-
fied, the ensuing model will be more accurate than ordinary Kriging. Joseph
et al. [42] have certainly shown this to be the case for their engineering design
examples. We will outline the process of building a blind Kriging predic-
tion and leave the reader to consult Joseph et al. [42] for more details (our
description is drawn from this reference). The above reference suggests iden-
tifying the ν’s through a Bayesian forward selection technique [41] and uses
candidate variables of linear effects, quadratic effects, and two-factor interac-
tions. The two factor interactions are linear-by-linear, linear-by-quadratic,
quadratic-by-linear, and quadratic-by-quadratic. This gives a total of 2k2

candidate variables, plus the mean term.
The linear and quadratic effects can be defined using orthogonal poly-

nomial coding [85] and, with variables scaled ∈ [0, 1], are given by

xlin,j =
√

3√
2
2(xj − 0.5)and

xquad,j =
1√
2
[6(xj − 0.5)2 − 2], (24)

for j = 1, 2, ..., k.
To find the most important effect we need to find the maximum of the

vector
β̂ = RUTΨ−1(y −Vmµ̂m) (25)

where R is a (2k2 + 1)× (2k2 + 1) diagonal matrix:

R = diag(1, rlin,1, rquad,1, rlin,2, ..., rquad,k−1rquad,k), (26)

where

rlin,j =
3− 3ψj(1)

3 + 4ψj(0.5) + 2ψj(1)
and

rquad,j =
3− 4ψj(0.5) + ψj(1)
3 + 4ψj(0.5) + 2ψj(1)

. (27)

18

U is an n×(2k2+1) matrix whose first column is 1, with subsequent columns
given by the interactions of the sample data:

W =




1 xlin,1(x
(1)
1) xquad,1(x

(1)
1) xlin,2(x

(1)
2) . . . xquad,k−1(x

(1)
k−1)xquad,k(x

(1)
k)

...
...

...
...

. . .
...

1 xlin,1(x
(n)
1) xquad,1(x

(n)
1) xlin,2(x

(n)
2) . . . xquad,k−1(x

(n)
k−1)xquad,k(x

(n)
k)


 .

(28)
µ̂m is given by

µ̂m = (VT
mΨ−1Vm)−1(VT

mΨ−1y), (29)

where Vm is an n×m matrix containing the m interactions which have been
determined.

To build the a blind Kriging model, first the parameters of the Kriging
correlation function θ and p are estimated as per ordinary Kriging. Then
we compute β̂ from equation (25) using V0 = 1 and µ̂0 = µ̂ (from ordinary
Kriging). Now set m = 1 and choose νm as the interaction corresponding
to the maximum value of β̂. We again compute β̂ and now Vm is an
n × (m + 1) matrix whose first column is 1 and mth column is the column
of U corresponding to the index of the maximum value of β̂. µ̂m is found
from equation (29).

The blind Kriging parameters θ and p can now be estimated by maxi-
mizing the concentrated ln-likelihood

ln(L) ≈ −n

2
ln(σ̂2

m)− 1
2

ln(|Ψ|), (30)

where

σ̂2
m =

(y −Vmµ̂m)TΨ−1(y −Vmµ̂m)
n

. (31)

The blind Kriging predictor is

ŷ(x) = ν(x)Tµ̂m + ψTΨ−1(y −Vmµ̂m), (32)

where ν(x) is an m + 1 element column vector of interactions for the point
to be predicted.

Predictions can now be used to calculate a cross-validation error and the
above process iterated to reduce this error up to m = 2k2 times. Joseph et al.
[42] stop iterating when the cross-validation error begins to rise consistently
and choose the m variables corresponding to the smallest error. They also
note that it is not necessary to estimate θ and p at every step, just the first
and the last.

The ordinary Kriging prediction in figure 5 has MSE = 9.30 based on
a 101 × 101 grid of points. Following the above procedure for building a
blind Kriging model leads to the prediction in figure 6 with MSE = 0.56.
The variables chosen using the Bayesian forward selection process were (in

19

Figure 6: the true Branin function (left) compared with a blind Kriging
prediction based on 20 sample points (right), with MSE = 0.56.

order of selection) ν1 = xlin,1xlin,2, ν2 = xquad,1, ν3 = xquad,2 and ν4 =
xlin,1xquad,2. The addition of these variables affects the prediction accuracy
as shown in figure 7. While the Branin prediction in figure 5 is impressive,
the improvements brought about by the additional terms in the underlying
function used in blind Kriging are very promising. We use the cautious
term ‘promising’ because here we are looking at an analytical test function
in just two dimensions, with a large quantity of observed data. In this
case, and in Joseph et al. [42] (who use a small amount of data in high
dimensional, non analytical problems), blind Kriging performs very well,
but we would like to see it applied to more problems before we commit
ourselves entirely. One should also bear in mind that the blind Kriging
process is more computationally expensive and this may outweigh increased
accuracy.

3.5.3 Kriging with noisy data

In the same way as for an RBF prediction, a Kriging model can be alowed to
regress the data by adding a regularization constant to the diagonal of the
correlation matrix. The addition of this constant alters the error estimation
and we need to use an error estimate in keeping with the origins of the
observed data. The modelling error and the errors due to noise are given by

ŝ2
r(xn+1) = σ̂2

r

[
1 + λ−ψT(Ψ + λI)−1ψ +

1− 1T(Ψ + λI)−1ψ

1T(Ψ + λI)−11

]
, (33)

where
σ̂2

r = (y − 1µ̂r)T (Ψ + λI)−1(y − 1µ̂r)/n, (34)

20

OK xl,1xl,2 xq,1 xq,2 xl,1xq,2 xq,1xq,2
0

1

2

3

4

5

6

7

8

9

10

M
S

E

Figure 7: MSE in blind Kriging prediction as variables are added (OK indi-
cates ordinary Kriging).

[36]. This error estimate is appropriate when the data contains error from
physical experiments.

We can express the modelling error only by using the variance

σ̂2
ri =

(y − 1µ̂)T (Ψ + λI)−1Ψ(Ψ + λI)−1(y − 1µ̂)
n

. (35)

in the interpolating error equation (22) [21]. This error estimate is ap-
propriate when the data contains ‘noise’ from computer experiments. It is
important to use the appropriate error estimate when formulating the infill
criteria in section 4.

3.6 Support vector regression

Support vector regression (SVR) comes from the theory of support vector
machines (SVM), which were developed at AT&T Bell Laboratories in the
1990s [81]. In a surrogate-based engineering design optimization context, it
is perhaps more appropriate to consider SVR as an extension to radial basis
function methods rather than SVMs, and we will do just that.

The key attribute of SVR is that it allows us to specify or calculate
a margin (ε) within which we are willing to accept errors in the sample
data without them affecting the surrogate prediction. This may be useful
if our sample data has an element of random error due to, for example,
finite mesh size, since through a mesh sensitivity study we could calculate

21

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

x

f(
x)

prediction
+ε
−ε
sample data
support vectors

Figure 8: a SVR prediction using a Gaussian kernel through the 1-D test
function with added noise.

a suitable value for ε. If the data is derived from a physical experiment,
the accuracy of the measurements taken could be used to specify ε. To
demonstrate this we have sampled our noisy one-dimensional test function
at 21 evenly spaced points. Since we know the standard deviation of the
noise is one, we chosen ε = 1. The resulting SVR is shown in figure 8.
The sample points which lie within the ±ε band (known as the ε-tube) are
ignored, with the predictor being defined entirely by those which lie on or
outside this region: the support vectors.

The basic form of the SVR prediction is the familiar sum of basis func-
tions ψ(i), with weightings w(i), added to a base term µ; all calculated in
different ways to their counterparts in the RBF and Kriging literature, yet
contributing to the prediction in the same way:

f̂(x) = µ +
n∑

i=1

w(i)ψ(x,x(i)). (36)

3.6.1 The support vector predictor

We have not included derivations of the polynomial, RBF and Kriging mod-
els in this review, as these can be found easily throughout the engineering
literature. SVR is rather new in this field and so we will devote some space
to its derivation.

Following the theme of most SVM texts, we will first consider a linear

22

regression, i.e. ψ(.) = x:
f̂(x) = µ + wTx. (37)

To produce a prediction which generalizes well, we wish to find a function
with at most ε deviation from y and at the same time minimize the model
complexity†. We can minimize the model complexity by minimizing the
vector norm |w|2, that is, the flatter the function the simpler it is, and
the more likely to generalize well. Cast as a constrained convex quadratic
optimization problem, we wish to

minimize 1
2 |w|2

subject to
{−ε ≤ y(i) −w · x(i) − µ ≤ ε.

(38)

Note that the constraints on this optimization problem assume that a
function f̂(x) exists which approximates all y(i) with precision ±ε. Such a
solution may not actually exist and it is also likely that better predictions
will be obtained if we allow for the possibility of outliers. This is achieved by
introducing slack variables, ξ+ for f(x(i))− y(x(i)) > ε and ξ− for y(x(i))−
f(x(i)) > ε. We now

minimize 1
2 |w|2 + C 1

n

∑n
i=1(ξ

+(i) + ξ−(i))

subject to





y(i) −w · x(i) − µ ≤ ε + ξ+(i)

w · x(i) + µ− y(i) ≤ ε + ξ−(i)

ξ+(i), ξ−(i) ≥ 0.

(39)

From equation (39) we see that the minimization is a tradeoff between
model complexity and the degree to which errors larger than ε are tolerated.
This tradeoff is governed by the user defined constant C ≥ 0 (C = 0 would
correspond to a flat function through µ). This method of tolerating errors
is known as the ε-insensitive loss function and is shown in figure 9. Points
which lie inside the ε-tube (the ε-tube is shown in figure 8) will have no
loss associated with them, while points outside have a loss which increases
linearly away from the prediction with the rate determined by C.

The constrained optimization problem of equation (39) is solved by in-
troducing Lagrange multipliers, η+(i), η−(i), α+(i) and α−(i), to give the

†The requirement of minimizing model complexity to improve generalization derives
from Occam’s Razor: entia non sunt multiplicanda praeter necessitatem, which translates
to “entities should not be multiplied beyond necessity” or, in lay terms, “all things being
equal, the simplest solution tends to be the best one”. This principle is attributed to
William of Ockham, a 14th century English logician and Franciscan friar.

23

-¾

6

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

f̂(x(i))− y(x(i))
+ε−ε

loss

Figure 9: ε-insensitive loss function.

Lagrangian

L =
1
2
|w|2 + C

1
n

n∑

i=1

(ξ+(i) + ξ−(i))−
n∑

i=1

(η+(i)ξ+(i) + η−(i)ξ−(i))

−
n∑

i=1

α+(i)
(
ε + ξ+(i) − y(i) + w · x(i) + µ

)

−
n∑

i=1

α−(i)
(
ε + ξ−(i) + y(i) −w · x(i) − µ

)
, (40)

which must be minimized with respect to w, µ, ξ± (the primal variables)
and maximized with respect to η±(i) and α±(i) (the dual variables), where
η±(i),α±(i) ≥ 0 (± refers to both + and − variables). For active constraints,
the corresponding (α−(i)+α+(i)) will become the support vectors (the circled
points in figure 8) whereas for inactive constraints, (α−(i) + α+(i)) = 0 and
the corresponding y(i) will be excluded from the prediction.

The minimization of L with respect to the primal variables and max-
imization with respect to the dual variables means we are looking for a
saddle point, at which the derivatives with respect to the primal variables
must vanish:

∂L

∂w
= w −

n∑

i=1

(α+(i) − α−(i))x(i) = 0, (41)

∂L

∂µ
=

n∑

i=1

(α+(i) − α−(i)) = 0, (42)

∂L

∂ξ+
=

C

n
− α+(i) − η−(i) = 0, (43)

∂L

∂ξ−
=

C

n
− α−(i) − η−(i) = 0. (44)

24

From (41) we obtain

w =
n∑

i=1

(α+(i) − α−(i))x(i), (45)

and by substituting into (37) the SVR prediction is found to be

f̂(x) = µ +
n∑

i=1

(
α+(i) − α−(i)

)(
x(i) · x

)
. (46)

The Kernel Trick Until now we have considered our data X to exist in
real coordinate space, which we will denote as X ∈ IRk. We wish to extend
equation (46) beyond linear regression, to basis functions (known in the SV
literature as kernels) which can capture more complicated landscapes. To
do this we say that x in (46) is in feature space, denoted as H, which may
not coincide with IRk. We can define a mapping between these two spaces,
φ : X 7→ H. We are only dealing with the inner product x·x and x·x = φ·φ.
We can actually choose the mapping φ and employ different basis functions
by using ψ = φ · φ:

f̂(x) = µ +
n∑

i=1

(
α+(i) − α−(i)

)
ψ(i). (47)

We can do this so long as:

1. ψ is continuous,

2. ψ is symmetric, i.e ψ(x,x(i)) = ψ(x(i),x),

3. ψ is positive definite, which means the correlation matrix Ψ = ΨT

and has nonnegative eigenvalues,

that is, ψ must be a Mercer kernel. Popular choices for ψ are:

ψ(x(i),x(j)) = (x(i) · x(j)) (linear)
ψ(x(i),x(j)) = (x(i) · x(j))d (d degree homogeneous polynomial)
ψ(x(i),x(j)) =

(
x(i) · x(j) + c

)d
(d degree inhomogeneous polynomial)

ψ(x(i),x(j)) = exp
(−|x(i)−x(j)|2

σ2

)
(Gaussian)

ψ(x(i),x(j)) = exp
(
−∑l

k=1 θk|x(i)
k − x(j)

k |pk

)
(Kriging).

(48)
Whichever form of ψ is chosen, the method of finding the support vectors

remains unchanged.

25

3.6.2 Finding the support vectors

With the kernel substitution made, the support vectors are found by sub-
stituting (41), (42), (43) and (44) into (40) to eliminate η−(i) and η+(i), and
to finally obtain the dual variable optimization problem:

maximize
{ −1

2

∑n
i,j=1(α

+(i) − α−(i))(α+(i) − α−(i))Ψ(x(i),x(j))
−ε1

2

∑n
i=1(α

+(i) + α−(i)) +
∑n

i=1 y(i)(α+(i) − α−(i))

subject to
{ ∑n

i=1(α
+(i) − α−(i)) = 0

α±(i) ∈ [0, C/n].
(49)

In order to find α+ and α−, rather than a combined (α+ − α−), we
must re-write (49) as

minimize





1
2

(
α+

−α−

)T (
Ψ −Ψ
−Ψ Ψ

)(
α+

−α−

)

+
(

1Tε− y
1Tε + y

)T (
α+

−α−

)

subject to





1T

(
α+

−α−

)
= 0

α+,α− ∈ [0,C/n].

(50)

Note that, as per the convention of most optimization algorithms, we have
also transformed the maximization problem into a minimization.

We will not cover the formulation of quadratic programming algorithms
used to solve problems such as (50). This subject is covered in detail by
Schölkopf and Smola [65]. We have had success using Matlab’s quadprog.

3.6.3 Finding µ

In order to find the constant term µ, know as the bias, we exploit the fact
that at the point of the solution of the optimization problem (49) the product
between the dual variables and the constraints vanishes and see that

α+(i)
(
ε + ξ+(i) − y(i) + wψ(x(i)) + µ

)
= 0, (51)

α−(i)
(
ε + ξ−(i) + y(i) −wψ(x(i))− µ

)
= 0, (52)

and

ξ+(i)(
C

n
− α+(i)) = 0, (53)

ξ−(i)(
C

n
− α−(i)) = 0. (54)

This is one of the Karush-Kuhn-Tucker conditions, which hold at the opti-
mum (see, e.g. Schölkopf and Smola [65]).

26

From (53) and (54) we see that either (C − α±(i)) = 0 or ξ±(i) = 0 and
so all points outside of the ε-tube (where the slack variable ξ±(i) > 0) must
have a corresponding α±(i) = C. Along with equations (51) and (52), and
noting that wψ(x(i)) =

∑n
i=1(α

+(i) − α−(i))ψ(x) this tells us that either

α+(i) = 0 and

µ = y(i) −
n∑

i=1

(α+(i) − α−(i))ψ(x) + ε if 0 < α−(i) <
C

n
, (55)

or

α−(i) = 0 and

µ = y(i) −
n∑

i=1

(α+(i) − α−(i))ψ(x)− ε if 0 < α+(i) <
C

n
. (56)

Using (55) and (56) we can compute µ from one or more α±(i)’s which
are greater than zero and less than C. More accurate results will be obtained
if an α±(i) not too close to these bounds is used.

3.6.4 Choosing C and ε

Our initial slack variable formulation (39) was a tradeoff between model
complexity and the degree to which errors larger than ε are tolerated and is
governed by the constant C. A small constant will lead to a flatter predic-
tion (more emphasis on minimizing 1

2 |w|2), usually with fewer SVs, while a
larger constant will lead to a closer fitting of the data (more emphasis on
minimizing

∑n
i=1(ξ

+(i) + ξ−(i))), usually with a greater number of SVs. We
wish to choose C which produces the model with the best generalization.
The scaling to y will have an effect on the optimal value of C, so it is good
practice to start by normalizing y to have elements between zero and one.
Figure 10 shows SVRs of the noisy 1-D function (this time with noise of
standard deviation four), normalized between zero and one, for varying C.
The Gaussian kernel variance, σ2, has been tuned to minimize the RMSE of
each prediction using 101 test points. This RMSE is displayed above each
plot. It is clear that, although there is an optimum choice for C, this exact
choice is not overly critical. It is sufficient to try a few C’s of varying orders
of magnitude and choose that which gives the lowest RMSE for a test data-
set. For small problems it is possible to obtain a more accurate C by using
a simple bounded search algorithm.

Here we have prior knowledge of the amount of noise in the data and so
have been able to choose ε as the standard deviation of this noise. There
are many situations where we may be able to estimate the degree of noise,
e.g. from a mesh dependency and solution convergence study. Situations,
however, arise where the noise is an unknown quantity, e.g. a large amount

27

0 0.5 1
0

0.5

1

x

f(
x)

C=0 RMSE=0.21 σ=1

0 0.5 1
0

0.5

1

x

f(
x)

C=0.01 RMSE=0.22 σ=0.62

0 0.5 1
0

0.5

1

x

f(
x)

C=0.1 RMSE=0.21 σ=0.28

0 0.5 1
0

0.5

1

x

f(
x)

C=1 RMSE=0.18 σ=0.34

0 0.5 1
0

0.5

1

x

f(
x)

C=10 RMSE=0.19 σ=0.13

0 0.5 1
0

0.5

1

x

f(
x)

C=100 RMSE=0.19 σ=0.16

Figure 10: SVR predictions and corresponding RMSEs for varying C (ε =
4/range = 0.18(y)).

28

of experimental data with measurements obtained by different researchers.
In these situations we can calculate a value of ε which will give the most
accurate prediction by using ν-SVR.

We have outlined the SVR formulation, but those wishing to delve fur-
ther into this promising technique will find Schölkopf and Smola [65] a very
useful text. A watered down version of the SVR related part of their book
appears in Smola and Schölkopf [69]. Our work here and in Forrester et al.
[24] is inspired by these references. While there is no doubt that SVR is
powerful method for prediction, particularly with large, high dimensional
data sets, there is only a slim body of literature detailing its use in engi-
neering design. An example among few is Clarke et al. [9] who compare
SVR with other surrogate modelling methods when predicting a variety of
engineering problems. No doubt the lack of published material is partly
because the method is still young, but also perhaps because the expense
of engineering analyses means that we are rarely faced with the problem
of very large data sets. More often than not we have a high dimensional
design space, but no possibility of filling it with large amounts of data. In
such situations we habitually wish to use all our analysis data and so the
SVR process of choosing a subset serves no purpose. SVR is an elegant
way of producing predictions from large sets of noisy data and so may have
uses in building surrogate models from, for example, extensive archives of
historical data. The time required to train an SVR model is longer than
other methods we have considered, due to the presence of the additional
quadratic programming problem, but the accuracy and speed of prediction
make it a good candidate for this scenario. Because of the lengthy training
times, SVR is unlikely to find favour with those wishing to create surrogates
in an ongoing optimization loop.

3.7 Enhanced modelling with additional design information

3.7.1 Exploiting gradient information

A key benefit of surrogate model based search is that the gradients of the
true function(s) are not required. If gradient information is available, the
designer may in fact choose to employ a localized gradient descent search of
the true function with no surrogate model. However, if a global optimum is
sought, the gradient information can be used to enhance the accuracy of a
surrogate model of the design landscape, which can then be searched using
a global optimizer.

Gradient information should only be used to enhance the surrogate if it is
available cheaply, otherwise we are likely to be better off simply making more
calls to the true function and building the surrogate using a larger sample.
This effectively precludes the use of finite-differencing and the complex step
approximation [75], although these methods could be useful for calculating

29

a few derivatives, perhaps of particularly active variables. Most likely to
be of use is gradient information found via algorithmic differentiation (AD)
[29] (also known as automatic differentiation, though the term ‘automatic’
can instill false hope, since manual intervention is required in most cases),
which requires access to the function source code, and the adjoint approach
[26], which requires the creation of a whole new source code. One could also
write separate code for the derivatives of a black-box code (see, e.g. [5]).

Howsoever the derivatives of the function have been found, the methods
by which we incorporate them into the surrogate model are essentially the
same. We mentioned earlier that Kim et al. [48] have presented a gradi-
ent enhanced MLS method. van Keulen and Vervenne [80] have presented
promising results, albeit for approximating analytical test functions, for a
gradient enhanced WLS method. We will examine how the information is
incorporated into a Gaussian process based RBF using a form of co-Kriging
[64].

RBF models are typically built from the sum of a number of basis func-
tions centred around the sample data. The height of these functions deter-
mines the value of the prediction at the sample points (usually such that the
model interpolates the data) and the width determines the rate at which the
function moves away from this value. If gradient information is available at
the sample locations, we can incorporate this into the model, using a second
set of basis function.

These additional basis functions determine the gradient of the prediction
at the sample points and the rate at which the function moves away from this
gradient. The form of the basis function used to incorporate the gradient
information is simply the derivative of the first n Gaussian basis functions
with respect to the design variables:

∂ψ(i)

∂x
(i)
l

=
∂ exp

(
−∑k

l=1 θl(x
(i)
l − xl)2

)

∂x
(i)
l

= −2θl(x
(i)
l − xl)ψ(i). (57)

Figure 11 shows how this function behaves as x
(i)
l −xl varies. Here we are

looking at how the prediction will be distorted from the model produced by
the first n basis functions. Intuitively no distortion is applied at a sampled
point: we can learn no more about the value at this point than the sample
data value. As we move away from the point the function pulls the prediction
up or down. The θl hyper-parameter determines the activity of the function:
a higher θl leads to a small region of distortion, with the value of ∂ψ/∂xl

quickly returning to zero, while a low ∂ψ/∂xl means that a larger area is
influenced by the value of the gradient in the jth direction at x(i).

In a gradient-enhanced RBF the the correlation matrix Ψ must include
the correlation between the data and the gradients and the gradients and
themselves as well as the correlations between the data, and will be denoted

30

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

x(i)
j

−x
j

−
2θ

(x
(i) j

−
x j)e

xp
[−

θ(
x(i) j

−
x j)2]

θ=0.1
θ=1
θ=10

Figure 11: differentiated correlations for varying θ.

by the (k + 1)n × (k + 1)n matrix Ψ̇. The matrix, for a k dimensional
problem (k = 1) is constructed as follows:

Ψ̇ =




Ψ ∂Ψ

∂x
(i)
1

∂Ψ

∂x
(i)
2

. . . ∂Ψ

∂x
(i)
k

∂Ψ

∂x
(j)
1

∂2Ψ

∂x
(i)
1 ∂x

(j)
1

∂2Ψ

∂x
(i)
1 ∂x

(j)
2

. . . ∂2Ψ

∂x
(i)
1 ∂x

(j)
k

∂Ψ

∂x
(j)
2

∂2Ψ

∂x
(j)
1 ∂x

(i)
2

∂2Ψ

∂x
(i)
2 ∂x

(j)
2

. . . ∂2Ψ

∂x
(i)
2 ∂x

(j)
k

...
...

...
. . .

...
∂Ψ

∂x
(j)
k

∂2Ψ

∂x
(j)
1 ∂x

(i)
k

∂2Ψ

∂x
(j)
2 ∂x

(i)
k

. . . ∂2Ψ

∂x
(i)
k ∂x

(j)
k




. (58)

The superscripts in equation 58 refer to which way round the subtraction
is being performed when calculating the distance in the correlation ψ. This is
not important when we are squaring the result but, after differentiating, sign
changes will appear depending upon whether we differentiate with respect
to x(i) or x(j). Using the product and chain rules, the following derivatives

31

are obtained:

∂Ψ(i,j)

∂x(i)
= −2θ(x(i) − x(j))Ψ(i,j), (59)

∂Ψ(i,j)

∂x(j)
= 2θ(x(i) − x(j))Ψ(i,j), (60)

∂2Ψ(i,j)

∂x(i)∂x(j)
= [2θ − 4θ2(x(i) − x(j))2]Ψ(i,j), (61)

∂2Ψ(i,j)

∂x
(i)
l ∂x

(i)
m

= −4θlθm(x(i)
l − x

(j)
l)(x(i)

m − x(j)
m)Ψ(i,j). (62)

The θ parameter is found by maximizing the concentrated ln-likelihood
in the same manner as for a standard Gaussian RBF. Other than the above
correlations, the only difference in the construction of the gradient-enhanced
model is that 1 is now a (k + 1)n × 1 column vector of n ones followed by
nk zeros. The gradient-enhanced predictor is

ŷ(x(n+1)) = µ̂ + ψ̇
T
Ψ̇
−1

(y − 1µ̂), (63)

where

ψ̇ =
(

ψ,
∂ψ

∂x1
, . . . ,

∂ψ

∂xk

)T

. (64)

Figure 12 shows a contour plot of the Branin function along with a
gradient-enhanced Kriging prediction based on nine sample points. True
gradients and gradients calculated using a finite difference of the gradient-
enhanced Kriging prediction are also shown. The agreement between the
functions and gradients is remarkable for this function, however, the method
is unlikely to perform quite so well on true engineering functions.

We can take the use of gradients to the next step and include second
derivatives in an Hessian-enhanced model. The basis function used to in-
corporate the second derivative information is the second derivative of the
first n Gaussian basis functions with respect to the design variables:

∂2ψ(i)

∂x
(i)2
l

=
∂2 exp

(
−∑k

l=1 θl(x
(i)
l − xl)2

)

∂x
(i)2
l

=
[
−2θl + 4θ2

l (x
(i)
l − xl)2

]
ψ(i).

(65)
Figure 13 shows how the twice differentiated basis function behaves for vary-
ing θ.

Figure 14 shows three predictions of our one variable test function: Krig-
ing, gradient-enhanced Kriging and Hessian-enhanced Kriging. In our other
figures showing Kriging predictions of this function based on three points
we have cheated a little by constraining the θ parameter to give a good
prediction. Here we have opened up the bounds on θ and the MLE actu-
ally gives a very poor prediction: because of the sparsity of data, no trend

32

Figure 12: contours of the Branin function (solid) and a gradient-enhanced
prediction (dashed) based on nine points (dots). True gradients (solid
arrows) and gradients calculated using a finite difference of the gradient-
enhanced Kriging prediction (dashed arrows) are also shown. Note that the
true function and the prediction are so close that the solid contours and
arrows almost completely obscure their dashed counterparts.

−2 −1 0 1 2
−10

−5

0

5

10

15

20

x(i)−x(j)

[2
θ−

4θ
2 (x

(i)
−

x(j)
)2]e

xp
[−

θ(
x(i)

−
x(j)

)2]

θ=0.1
θ=1
θ=10

Figure 13: twice differentiated correlations for varying θ.

33

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

y

f(x)
sample points
kriging
GE kriging
HE kriging

Figure 14: Kriging, gradient enhanced Kriging, and Hessian-enhanced Krig-
ing predictions of f(x) = (6x− 2)2 sin(12x− 4) using three sample points.

is recognised and the prediction is simply narrow bumps around a mean
fit. The extra gradient information significantly improves the prediction. It
should be borne in mind though that adding extra observed data instead
of the expense of calculating gradients would have improved the prediction
too. In high dimensional problems a few extra observed points will not be
as useful as many derivatives and it is here that cheap gradient information
(e.g. from adjoint formulations) is of most use.

The nine weighted basis functions and mean used to build the prediction
in figure 14 are shown in figure 15. It is clear from this figure how each type of
basis function affects the prediction. The first three (ψ) are simple deviations
from the mean and the second three (ψ̇) clearly match the gradient at the
sample points. Of the final three bases (ψ̈), the first has little effect (the
gradient is near constant at this point), the second works against ψ to flatten
the function, while the third adds to the curvature, resulting in the steep
curve into the global minimum.

The use of derivative information adds considerable complexity to the
model and the increased size of the correlation matrix leads to (very much)
lengthier parameter estimation, however, it clearly leads to the possibility
of building more accurate predictions. Schemes to reduce model parameter
estimation times for large correlation matrices are always the target of re-
search effort, though a panacea is yet to reveal itself! Second derivatives are
not often available to the designer but, with the increasing use of automatic
differentiation tools, models which can take advantage of this information

34

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6

8

x

y

wψ
wdψ/dx
wd2ψ/dx2

µ

Figure 15: the nine basis functions used to construct the Hessian-enhanced
Kriging prediction, multiplied by their weights, w = Ψ̈

−1
(y − 1µ). These

are added to the constant µ to produced the prediction in figure 14.

may soon provide significant speed-ups compared to using additional func-
tion calls – particularly in very high dimensional problems where adjoint
approaches prove most powerful.

3.7.2 Multi-fidelity analysis

When additional information is available, rather than gradients of the func-
tion to be approximated, we are perhaps more likely to have available other
cheaper approximations of the function. It may be, for example, that as well
as using finite element analysis or computational fluid dynamics, a quick cal-
culation can be made using empirical equations, more simple beam theory, or
panel methods. In multi-fidelity (also known as variable-fidelity) surrogate-
based methods a greater quantity of this cheap data may be coupled with
a small amount of expensive data to enhance the accuracy of a surrogate of
the expensive function. To make use of the cheap data, we must formulate
some form of correction process which models the differences between the
cheap and expensive function(s).

Although we may have many forms of analysis, let us assume for our dis-
cussion that we have just two ways of calculating the function (the methods
can be extended to multiple levels of analyses). Our most accurate expen-
sive data has values ye at points Xe and the less accurate cheap data has
values yc at points Xc. The formulation of a correction process is simpli-

35

fied if the expensive function sample locations coincide with a subset of the
cheap sample locations (Xe ⊂ Xc). The correction process will usually take
the form:

ye = Zρyc + Zd. (66)

With Zd = 0, Zρ can take the form of any approximation model fitted to
ye/yc(Xe). Likewise, with Zρ = 1, Zd can take the form of an approximation
fitted to ye − yc(Xe). These processes are then used to correct yc when
making predictions of the expensive function fe. If the correction process is
simpler than fe, then we can expect predictions based on a large quantity
of cheap data with a simple correction to be more accurate than predictions
based on a small quantity of expensive data. This simple form of combining
multi-fidelity analyses has be used by Leary et al. [52] for finite element
analyses using different mesh sizes and by Forrester et al. [20] for combining
CFD of varying levels of convergence.

Instead of using Zc or Zd, which are output correction processes, we can
employ an input correction, known as space mapping [4]. By distorting the
locations of Xc we can attempt to align the contours of the cheap function
with those of the expensive function. If the cheap and expensive functions
have similar scaling, we hope to find a mapping p(Xe) such that ye(Xe) ≈
yc(p(Xe)). Of course the scaling of the cheap and expensive functions may
be quite different and so an additional correction process from equation (66)
may be required.

A more powerful multi-fidelity method is that of co-Kriging [11] - an
enhancement to the geostatistical method of Kriging, but equally applicable
as an enhancement to any parametric RBF. Co-Kriging has been used ex-
tensively outside of aerospace design. For example Hevesi et al. [33] predict
average annual precipitation values near a potential nuclear waste disposal
site using a sparse set of precipitation measurements from the region along
with the correlated and more easily obtainable elevation map of the region.
Kennedy and O’Hagan [47] apply co-Kriging to the correlation of results
of computer simulations of varying fidelities and cost. Forrester et al. [23]
extend the method from prediction to optimization and present the aero-
dynamic design of a wing using correlated empirical and panel codes. The
following presentation of the co-Kriging method is based on this reference.

Using our two sets of data; cheap and expensive, we begin the co-Kriging
formulation by concatenating the sample locations to give the combined set

36

of sample points

X =
(

Xc

Xe

)
=




x(1)
c
...

x(nc)
c

x(1)
e
...

x(ne)
e




.

As with Kriging, the value at a point in X is treated as if it were the
realization of a stochastic process. For co-Kriging we therefore have the
random field

Y =
(

Yc(Xc)
Ye(Xe)

)
=




Yc(x
(1)
c)

...
Yc(x

(nc)
c)

Ye(x
(1)
e)

...
Ye(x

(ne)
e)




.

Here we use the auto-regressive model of Kennedy and O’Hagan [47] which
assumes that cov

{
Ye(x(i)), Yc(x)|Yc(x(i))

}
= 0, ∀x 6= x(i). This means that

no more can be learnt about Ye(x(i)) from the cheaper code if the value of
the expensive function at x(i) is known (this is known as a Markov property
which, in essence, says we assume that the expensive simulation is correct
and any inaccuracies lie wholly in the cheaper simulation).

Gaussian processes Zc(.) and Ze(.) represent the local features of the
cheap and expensive codes. Using the auto-regressive model we are essen-
tially approximating the expensive code as the cheap code multiplied by a
constant scaling factor ρ plus a Gaussian process Zd(.) which represents the
difference between ρZc(.) and Ze(.):

Ze(x) = ρZc(x) + Zd(x). (67)

Where in Kriging we have a covariance matrix cov{Y(X),Y(X)} = σ2Ψ(X,X),
we now have a covariance matrix:

C =
(

σ2
cΨc(Xc,Xc) ρσ2

cΨc(Xc,Xe)
ρσ2

cΨc(Xe,Xc) ρ2σ2
cΨc(Xe,Xe) + σ2

dΨd(Xe,Xe)

)
. (68)

The notation Ψc(Xe,Xc), for example, denotes a matrix of correlations of
the form ψc between the data Xe and Xc.

The correlations are of the same form as equation (17), but there are two
correlations, ψc and ψd and we therefore have more parameters to estimate:
θc, θd, pc, pd and the scaling parameter ρ. Our cheap data is considered to

37

be independent of the expensive data and we can find MLEs for µc, σ2
c , θc

and pc by maximizing the concentrated ln-likelihood:

−nc

2
ln(σ̂2

c)−
1
2

ln |det(Ψc(Xc,Xc))|, (69)

where
σ̂2

c = (yc − 1µ̂c)TΨc(Xc,Xc)−1(yc − 1µ̂c)/nc. (70)

To estimate µd, σ2
d, θd, pd and ρ, we first define

d = ye − ρyc(Xe), (71)

where yc(Xe) are the values of yc at locations common to those of Xe (the
Markov property implies that we only need to consider this data). If yc is not
available at Xe we may estimate ρ at little additional cost by using Kriging
estimates ŷc(Xe) found from equation (20) using the already determined
parameters θ̂c and p̂c. The concentrated ln-likelihood of the expensive data
is now

−ne

2
ln(σ̂2

d)−
1
2

ln | det(Ψd(Xe,Xe))|, (72)

where
σ̂2

d = (d− 1µ̂d)TΨd(Xe,Xe)−1(d− 1µ̂d)/ne. (73)

As with Kriging, equations (69) and (72) must be maximized numeri-
cally using a suitable global search routine. Depending upon the cost of
evaluating the cheap and expensive functions fc and fe, for very high di-
mensional problems the multiple matrix inversions involved in the likelihood
maximization may render the use of the co-Kriging model impractical (the
size of the matrices depends directly on the quantities of data available,
and the number of search steps needed in the MLE process is linked to the
number of parameters being tuned). Typically a statistical model used as a
surrogate will be tuned many fewer times than the number of evaluations of
fe required by a direct search. The cost of tuning the model can therefore
be allowed to exceed the cost of computing fe and still provide significant
speed-up. For large k and n the time required to find MLEs can be reduced
by using a constant θc,j and θd,j for all elements of θc and θd to simplify the
maximization, though this may affect the accuracy of the approximation.

Co-Kriging predictions are given by

ŷe(x) = µ̂ + cTC−1(y − 1µ̂). (74)

where
µ̂ = 1TC(X,X)−1y/1TC(Xe,Xe)−11 (75)

and c is a column vector of the covariance between X and x (see [23] for a
derivation).

38

If we make a prediction at one of our expensive points, x(n+1) = x(i)
e and

c is the nc + ith column of C, then cTC−1 is the nc + ith unit vector and
ŷe(x

(i)
e) = µ̂ + y(nc+i)− µ̂ = y

(i)
e . We see, therefore, that equation (74) is an

interpolator of the expensive data (just like ordinary Kriging), but will in
some sense regresses the cheap data unless it coincides with ye.

The estimated mean squared error in this prediction is similar to the
Kriging error, and is calculated as

s2(x) ≈ ρ2σ̂2
c + σ̂2

d − cTC−1c +
1− 1TC−1c

1TC−11
. (76)

For x(ne+1) = x(i)
e , cTC−1 is the nc+ith unit vector, cTC−1c = c(nc+i) =

ρ2
cσ

2
c + σ2

d and so s2(x) is zero (just like ordinary Kriging). For Xc \ Xe,
s2(x) 6= 0 unless ye = yc(Xe). The error at these points is determined by
the character of Yd. If this difference between ρYc(Xe) and Ye(Xe) is simple
(characterized by low θd,j ’s) the error will be low, whereas a more complex
difference (high θd,j ’s) will lead to high error estimates.

As shown for Kriging in section 3.5.3, a regression parameter can be
added to the leading diagonal of the correlation matrix when noise is present.
In fact, two parameters may be used: one for the cheap data and one for
the expensive data.

We will recycle our simple one variable test function to demonstrate
co-Kriging. Imagine that our expensive to compute data are calculated
by the original function fe(x) = (6x − 2)2 sin(12x − 4), x ∈ [0, 1], and
a cheaper estimate of this data is given by fc(x) = Afe + B(x − 0.5) −
C. We sample the design space extensively using the cheap function at
Xc = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, but only run the expensive
function at four of these points, Xe = {0, 0.4, 0.6, 1}.

Figure 16 shows the functions fe and fc with A = 0.5, B = 10, and
C = −5. A Kriging prediction through ye gives a poor approximation to
the deliberately deceptive function, but the co-Kriging prediction lies very
close to fe, being better than both the standard Kriging model and the
cheap data. Despite the considerable differences between fe and fc, a simple
relationship has been found between the expensive and cheap data and the
estimated error reduces almost to zero at Xc (see figure 17).

While we are not considering sampling techniques in this paper, the
problem of choosing the ne-element subset Xe of Xc is an unusual one and
so in this case we will make an exception. As with an initial sample, we
wish to cover the parameter space evenly so we turn to the Morris-Mitchell
criterion [57], but this time we are dealing with a limited, discreet parameter
space and thus the problem becomes a combinatorial one. Since selecting
the subset that satisfies this is an NP-complete problem and an exhaustive
search would have to examine ncCne = nc!/ne!(nc − ne)! subsets (clearly
infeasible for all but very moderate cardinalities), here we use an exchange

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

x

y

f
e

f
c

y
e

y
c

kriging through y
e

co−kriging

Figure 16: a one variable co-Kriging example. The Kriging approximation
using four expensive data points (ye) has been significantly improved using
extensive sampling from the cheap function (yc).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

x 10
−3

x

s2

Figure 17: estimated error in the co-Kriging prediction in figure 16. The
simple relationship between the data results in low error estimates at Xc as
well as Xe.

40

(a) (b)

Figure 18: a 20 point Morris-Mitchell optimal Latin hypercube (+) with a
five point subset found using the exchange algorithm (◦).

algorithm to select Xe (see, e.g. Cook and Nachtsheim [10]).
We start from a randomly selected subset Xe and calculate the Morris-

Mitchell criterion. We then exchange the first point x(1)
e with each of the

remaining points in Xc \Xe and retain the exchange which gives the best
Morris-Mitchell criterion. This process is repeated for each remaining point
x(2)

e . . .x(ne)
e . A number of restarts from different initial subsets can be

employed to avoid local optima. Figure 18 shows a Morris-Mitchell optimal
LH with a subset chosen using this exchange algorithm.

A rule of thumb for the number of points which should be used in the
sampling plan is n = 10k. When using using a particularly cheap analysis nc

may be rather greater than this, allowing us to build a more accurate model,
and if the relationship between fc and fe is simple, ne may be somewhat
fewer – the advantage of the co-kriging method.

Our choice of cheap function for the above example is somewhat con-
trived. For our test function the correction process Zd(.) is linear. Co-
Kriging will work effectively for more complex correction processes with the
proviso that Zd(.) must be simpler to model than Ze(.). Although we have
only considered combining two levels of analysis, the co-Kriging method can
be extended to multiple levels by using additional ρ’s and d’s (see Kennedy
and O’Hagan [47] for more details).

Although multi-level modelling can be achieved simply by combining
independent surrogates of the ratios or differences between data, the co-
Kriging method is more powerful, both in terms of the complexity of rela-
tionships it can handle, and its ability to provide error estimates which can
be used to formulate infill criteria.

41

4 Infill criteria

While our surrogate is built upon assumption, our designs, of course, cannot
be – the ensuing lawsuits would be too costly! Results from the surrogate
must be confirmed with calls to the true function. Indeed, at any stage
we take our optimum design to be the best result of the true function, not
that from the surrogate. Additional calls to the true function are not only
used to validate the surrogate, but also to enhance its accuracy. It is the
judicious selection of new points at which to call the true function, so-called
infill points, which represents the heart of the surrogate-based optimization
process. Applying a series of infill points, based on some infill criteria, is
also known as adaptive sampling (or updating), that is we are sampling
the objective function in promising areas based on a constantly changing
surrogate.

The success or failure of a surrogate-based optimization rests on the cor-
rect choice of model and infill criteria. Just as when choosing the model,
when selecting the infill criteria we can also take short-cuts by making certain
assumptions. While offering quick solutions, such short-cuts are naturally
susceptible to failure. Jones [38] does an admirable job in highlighting pos-
sible avenues of failure and points towards the correct route to the global
optimum. In the following sections we will give an overview of his work cou-
pled with our own experience, and point towards some new methods which
try to guarantee the eventual location of the global optimum. We should
note at this point, however, that in much practical design work our aim is
design improvement and often starts from a locally optimized design. Also,
that it is always possible to design pathological functions that will fool any
optimization process except exhaustive search.

Before embarking on an infill process, we can try a simple ‘trick’ to im-
prove the accuracy of the surrogate. Consider the problem of predicting
stress vs. cross-sectional area. The problem, albeit already simple, could be
further simplified to a linear relationship by predicting the negative of the
reciprocal of the stress. Of course relationships will rarely be so straight-
forward, but, nonetheless, it is worth trying a few transformations (e.g.,
negative reciprocal, logarithm) and re-calculating a generalization error es-
timate to see if the accuracy of the surrogate can be improved [40].

4.1 Exploitation

4.1.1 Minimizing the predictor

The most basic assumption we can make is that the surrogate model is glob-
ally accurate and all we need to do is validate the optimum of the surrogate,
having found it with large numbers of calls to a suitably robust global opti-
mizer, by running a single true function evaluation at this point. Hopefully
our assumption of global accuracy is based on some form of validation met-

42

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

true function
RBF prediction
initial sample

Figure 19: an intial prediction of our one variable function using Gaussian
process model based on three points.

ric. Cross-validation or, ideally, tests using a separate set of data used to
compute a mean squared error or correlation coefficient can be used to in-
dicate the global validity of a surrogate [32]. It is, however, unlikely that
the surrogate will, initially, be sufficiently accurate in the region of the op-
timum and so it is usual practice to apply a succession of infill points at
the predicted optimum. After each infill point the surrogate is re-fitted to
the data such that an interpolating model will descend into the optimum
location. This method is illustrated in figures 19 and 20, where a function,
f(x) = (6x − 2)2 sin(12 − 4), x ∈ [0, 1], is sampled with three initial points
followed by five infill points at the minimum of the prediction. The method
quickly descend into a local minimum. The vague region of this minimum
was indicated by the initial prediction and the infill points isolate the precise
position.

4.1.2 The trust-region method

The above method will find at least a local minimum of the surrogate, given
the mild assumptions that the objective function is smooth and continuous.
Convergence may be rather lengthy depending upon the function. Alexan-
drov et al. [2] shows rigorous proofs of convergence to a local optimum from
an arbitrary point for a trust-region based method which can be used if the
surrogate interpolates the observed data and also matches the gradient of
the objective function at the observed points. Of the surrogates we have

43

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

1 2345

true function
RBF prediction
initial sample
updates

Figure 20: minimum prediction based infill points, starting from the predic-
tion in figure 19, converging towards a local optimum.

considered, a gradient enhanced MLS and gradient enhanced Kriging are
permissible. The trust-region method can also be employed by using the
first order scaling algorithm of Haftka [31] to match the gradient of the
function. Eldred et al. [16] have extended this to second-order scaling.

In this approach we start at an arbitrary x0 and search a surrogate ŷ(x)
in the interval x0± δ0. The trust-region δ is initialized at some user defined
value. The first plot in figure 21 shows a gradient enhance Kriging model of
our one variable test function through x0 = 0.5. δ0 = 0.25 and the second
plot shows an infill point at the minimum of the trust-region with a new
gradient enhanced Kriging model through this point (x1) and the initial
point. Based on this first iteration at m = 0, δm is updated as follows. We
first evaluate how well the prediction performed as

r =
f(xm−1)− f(xm)
f(xm−1)− ŷ(xm)

, (77)

then calculate the new trust-region as

δm =





c1||xm − xm−1|| if r < r1

min{c2||xm − xm−1||,∆} if r > r2

||xm − xm−1|| otherwise.
(78)

c1 < 1 and c2 > 1 are factors affecting the degree to which the trust-region
shrinks and expands depending on how well the surrogate performs (here

44

0 0.5 1
−10

0

10

20

x

f(
x)

0 0.5 1
−10

0

10

20

1

x

f(
x)

0 0.5 1
−10

0

10

20

12

x

f(
x)

0 0.5 1
−10

0

10

20

123

x

f(
x)

Figure 21: trust-region based infill points to a gradient enhanced Kriging
prediction.

we have used c1 = 0.75 and c2 = 1.25). r1 and r2 determine how poorly
we allow the surrogate to perform before reducing the trust-region and how
well it must perform before increasing the trust-region. Typical values are
r1 = 0.10 and r2 = 0.75.

We now find x2 by minimizing ŷ(x) in the region x1± δ1. The process is
repeated until a stopping criterion is met (see Dennis and Schnabel [14] for
information on stopping criteria). The remaining plots in figure 21 show a
further two infill points converging towards a local minimum of the function.
The above description outlines the core of the trust-region approach to the
use of surrogate models. More details can be found in Alexandrov et al. [2],
with a multi-fidelity implementation in Alexandrov et al. [3].

Although the above exploitation based infill criteria are attractive meth-
ods for local optimization, it is clear from figure 20 that a prediction based
infill criterion may not find the global optimum of a deceptive objective func-
tion. Likewise, although the trust-region approach will find a local optimum
from an arbitrary starting point, it may not find the global optimum if x0

is not in the global basin of attraction. To locate the true global optimum,
we clearly need an element of exploration in our infill criterion.

4.2 Exploration

Pure design space exploration can essentially be viewed as filling in the gaps
between existing sample points. Perhaps the simplest way of doing this is

45

to use a sequentially space filling sampling plan such as a Sobol sequence or
LPτ array [74, 76], although such sample methods exhibit rather poor space
filling characteristics for small samples. New points could also be positioned
using a maxi-min criterion [57]. If error estimates are available for the
surrogate, infill points can be positioned at points of maximum estimated
error. Error estimates from regressing models, with the exception of those
with the modified Gaussian process variance (equation 35), are of dubious
merit here. For the exploration of a design space populated by computer
experiments we require that the estimated error returns to zero at all sample
locations. Otherwise we run the risk of the maximum error occurring at a
previously visited point. While this is a valid outcome in the world of
physical experiments with their random errors, re-running a deterministic
computer experiment as an infill point is useless.

The Gaussian process based models considered in this paper assume a
stationary covariance structure, that is the basis function variance is con-
stant across the design space. The model does not account for some areas
of the design space having more activity than others, e.g. flat spots may
not be modelled effectively. This is unlikely to be a serious problem for op-
timization, but may be for building a model which accurately predicts the
underlying function in all areas. For such stationary covariance models a
maximum error based infill will indeed just fill in the gaps between sample
points. It is possible to build a surrogate with a non-stationary covariance
[86]. Maximum error infill points based on such a model may well perform
better at improving generalization than simply using a space filling sample
with more points.

Pure exploration is of dubious merit in an optimization context. Time
spent accurately modelling suboptimal regions is time wasted when all we
require is the global optimum itself. Exploration based infill has its niche in
design space visualization and comprehension where the object is to build
an accurate approximation of the entire design landscape to help the de-
signer visualize and understand the design environment they are working
in. We will not dwell on visualization issues, but those interested in design
space visualization might consult Holden [35]. Exploration also has a role in
producing a globally accurate model when the final surrogate is to be used
in a realtime control system or in a more complex overarching calculation,
such as aeroelasticity.

4.3 Balanced exploration / exploitation

We know that to exploit the surrogate before the design space has been ex-
plored sufficiently may lead to the global optimum lying undiscovered, while
over exploration is a waste of resources. Thus the Holy Grail of global opti-
mization is finding the correct balance between exploitation and exploration.
Concurring with Jones [38], we will split the following discussion into two

46

breeds of infill criteria: one- and two-stage methods. In a two stage method
the surrogate is fitted to the data and the infill criterion calculated based
upon this model. In a one-stage approach the surrogate is not fixed when
calculating the infill criterion, rather the infill criterion is used to calculate
the surrogate. We will begin with the simpler and more common two-stage
methods.

4.3.1 Two-stage approaches

Statistical lower bound The simplest way of balancing exploitation of
the prediction ŷ(x) and exploration using s2(x) (e.g., equation 22) is to
minimize a statistical lower bound

LB(x) = ŷ(x)−As(x) (79)

where A is a constant that controls the exploitation/exploration balance.
As A → 0, LB(x) → ŷ(x) (pure exploitation) and as A → ∞, the effect of
ŷ(x) becomes negligible and minimizing LB(x) is equivalent to maximizing
s(x) (pure exploration). A key problem is that, as the method stands, it
is difficult to choose a value for A. For example, a suitable choice of A for
one function might lead to over exploitation of another. In section 4.3.2 we
will look at how a one stage approach can solve this problem. A possible
solution for a two-stage implementation is to try a number of values of A
and position infill points where there are clusters of minima of equation (79).

Probability of improvement By considering ŷ(x) as the realization of
a random variable we can calculate the probability of an improvement I =
ymin − Y (x) upon the best observed objective value so far, ymin:

P [I(x)] =
1

s
√

2π

∫ 0

−∞
e
−(I−ŷ(x))2

2s2 dI. (80)

This equation is interpreted graphically in figure 22. The figure shows
the prediction in figure 20 along with a vertical Gaussian distribution with
variance s2(x) centred around ŷ(x). This Gaussian distributions represents
our uncertainty in the prediction ŷ(x) and the part of the distribution be-
low the horizontal dotted line indicates the possibility of improving on the
best observed value (the quantity we are integrating in equation 80). The
probability of improvement is the area enclosed by the Gaussian distribution
below the best observed value so far (the value of the integral in equation
(80)).

Expected improvement Instead of simply finding the probability that
there will be some improvement, we can calculate the amount of improve-
ment we expect, given the mean ŷ(x) and variance s2(x). This expected

47

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f(
x)

true function
RBF prediction
observed data
y

min

distribution of Y(x)
P[I(x)]

Figure 22: a graphical interpretation of the probability of improvement.

improvement is given by

E[I(x)] =

{
(ymin − ŷ(x))Φ

(
ymin−ŷ(x)

s(x)

)
+ sφ

(
ymin−ŷ(x)

s(x)

)
if s > 0

0 if s = 0
(81)

where Φ(.) and φ(.) are the cumulative distribution function and probability
density function, respectively. This equation can be interpreted graphically
from figure 22 as the first moment of the area enclosed by the Gaussian
distribution below the best observed value so far.

The progress of maximum E[I(x)] updates to our one-variable test func-
tion is shown in figure 23. Clearly the E[I(x)] has escaped the local mini-
mum to the left and succeeded in locating the global optimum.

The infill criteria we have reviewed so far represent the current tools
of choice for surrogate based optimization in the aerospace industry. We
will now look at a more recently developed breed of infill criteria, which
attempt to address some of the problems with those we have covered so far.
In many situations maximizing E[I(x)] will prove to be the best route to
finding the global optimum and as such has become very popular as a tool
for global optimization, evident from the number of citations to the seminal
paper by Jones et al. [40]. Should the assumptions through which we base
our confidence in this method prove to be false, maximizing E[I(x)] (and
P [I(x)]) may converge very slowly or not at all. The assumption upon which
E[I(x)] and P [I(x)] trip up is that they assume that the model parameters
have been estimated accurately based on the observed data. Note that,

48

0 0.5 1
−20

0

20 0

f(
x)

θ=70.79
0 0.5 1

0

1

2

E
[I(

x)
]

0 0.5 1
−20

0

20
1

f(
x)

θ=2.82
0 0.5 1

0

0.01

0.02

E
[I(

x)
]

0 0.5 1
−20

0

20
2

f(
x)

θ=0.89
0 0.5 1

0

2

4
x 10

−3

E
[I(

x)
]

0 0.5 1
−20

0

20
3

f(
x)

θ=6.31
0 0.5 1

0

1

2
x 10

−4
E

[I(
x)

]

0 0.5 1
−20

0

20

f(
x)

θ=18.64

4

0 0.5 1
0

0.5

1

E
[I(

x)
]

0 0.5 1
−20

0

20

f(
x)

θ=16.89

5

0 0.5 1
0

0.05

0.1

E
[I(

x)
]

0 0.5 1
−20

0

20

f(
x)

θ=12.4

6

0 0.5 1
0

0.5

1

E
[I(

x)
]

0 0.5 1
−20

0

20

x

f(
x)

θ=12.85

7

0 0.5 1
0

0.02

0.04

x

E
[I(

x)
]

Figure 23: the progress of a search of the one variable test function using a
maximum E[I(x)] infill strategy.

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x)

Figure 24: a deceptive function with a particularly unlucky sampling plan.

although the search in figure 23 does locate the optimum, it dwells in a
region which does not even contain a local optimum until θ is estimated
correctly. That is, until there is sufficient data to estimate θ correctly. In
situations where data is sparse and/or the true function is deceptive, we
may wish to consider a breed of infill criteria which can alleviate this pitfall.

4.3.2 One-stage approaches

All the above infill criteria could possibly be mislead by a particularly poor or
unlucky initial sample and a very deceptively positioned optimum. Consider
the function shown in figure 24 which, although on face value looks rather
contrived, represents the worst case scenario of a type of situation that can
occur in surrogate-based optimization. We have been unlucky enough to
sample the function at three points with the same function value. An error
based infill criterion cannot cope with the prediction in figure 24 because the
estimated error is zero for all values of x and so P [I(x)] or E[I(x)] would
also be zero. The error does not have to be zero in all areas for problems
to arise. Slow convergence of error based infill criteria can occur whenever
there is a significant underestimation of the error.

In situations like that in figure 24 we need to employ an infill criterion
which takes into account the possibility that a deceptive sample may have
resulted in significant error in the model parameters. The criteria we will
consider do not use the surrogate to find the minimum, but rather use the
minimum to find the surrogate. Or, in a sound bite (paraphrased from Jones

50

and Welch [39]) – ask not what the surrogate implies about the minimum –
ask what the minimum implies about the surrogate.

Goal seeking We may be able to estimate a suitable value for the global
optimum or perhaps we would just like to search for a specific improvement,
even if it is not known if that improvement is possible. In such cases we
can use a method which does not search for expectations or probabilities of
improvement, but assesses the likelihood that an objective function value
could exist at a given point [38].

The Kriging predictor can be considered as a maximum likelihood esti-
mate of the sample data augmented with the point to be predicted. Instead
of estimating the value ŷ(x) for a given x, we can assume the predictor
passes through a goal yg as well as the sample data and find the value of
x̂g which best fits this assumption. To do this we maximize the conditional
ln-likelihood

−n

2
ln(2π)− n

2
ln(σ̂2)− 1

2
ln |C| − (y −m)TC−1(y −m)T

2σ̂2
, (82)

where
m = 1µ + ψ(ŷg − µ), (83)

and
C = Ψ−ψψT, (84)

by varying x̂g and the model parameters (at this stage we may wish to widen
any upper and lower bounds on θ). The position of the goal, x̂g, appears in
equation (82) via its vector of correlations with the observed data, ψ. We
must maximize the conditional ln-likelihood numerically in the same way as
for tuning the model parameters. We can first make a substitution for the
MLE σ̂2 (equation 31) to give the concentrated conditional ln-likelihood:

−n

2
ln(σ̂2)− 1

2
ln |C|. (85)

To see how effective this method can be we will consider the search
of our 1-D test function. We begin with three sample points and set an
objective function goal of −7 (a little less than the true optimum, but let’s
assume we don’t know what that is). Figure 25 shows the progress of infill
points positioned at locations which maximize the conditional likelihood of
the goal. Despite its deceptive location, the goal seeking method quickly
finds the global optimum. We cannot choose a purely arbitrary goal. An
overly optimistic goal will lead to too much exploration, since there will be
an equally low likelihood in many areas. A pessimistic goal will result in a
local search, but the goal will quickly be obtained, which may well be an
acceptable outcome. Gutmann [30] suggests, and has had success, trying a
range of goals and positioning infill points where there are clusters of optimal

51

0 0.5 1
−10

0
10
20

f(
x)

0 0.5 1
0

0.005

0.01

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−0.055353f(
x)

0 0.5 1
0

1

2
x 10

−4

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−3.9399f(
x)

0 0.5 1
0

1

2
x 10

−5

C
on

d.
 L

ik
e.

0 0.5 1
−10

0
10
20

−6.0009

x

f(
x)

true function
prediction
initial sample
updates

Figure 25: the progress of a search of the one variable test function in the
range {0, 1} using a goal seeking infill strategy.

infill locations ‡. A more elegant method, when a suitable estimate for a
goal cannot be made, is to calculate a lower bound based on the conditional
likelihood.

The conditional lower bound In many cases we will not be able to
specify a goal for the optimization, but we can still use a conditional likeli-
hood approach. Instead of finding the x which gives the highest likelihood
conditional upon ŷ(x) passing through a goal, we find the x which minimizes
ŷ(x) subject to the conditional likelihood not being too low [39].

Again, consider the prediction of our deceptive one variable test function
based on an initial sample of three points. This is shown in figure 26, along
with the statistical lower bound found by subtracting the estimated RMSE
(s(x)). At x = 0.7572, which we know is the minimum of the function, a
point with yh = ŷ(x) has been imputed (i.e. we have hypothesized that
this point is part of the sample data, even though it has not actually been
observed). The likelihood conditional upon the prediction passing through
this point is shown. Subsequently, we have imputed lower and lower values

‡This is similar to trying a range of weightings between local and global search.
Sóbester et al. [73] used a weighted expected improvement formulation as part of a two-
stage approach to achieve similar ends, while Forrester [18] used a weighted statistical
lower bound with reinforcement learning to chose the weighting.

52

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

1.11e−002

x

f(
x)

3.15e−003
Λ=2.52

1.58e−003
Λ=3.9

8.06e−004
Λ=5.25

true function
initial sample
prediction
prediction−MSE
imputed points with cond. lik.

Figure 26: the conditional likelihood and likelihood ratio for hypothesized
points with increasingly lower objective function values.

at x = 0.7572 and re-optimized θ̂ to produce a prediction through these
points. These values fall well below our statistical lower bound, but still
have a conditional likelihood and so represent possible values at x = 0.7572.
As the imputed value reduces the conditional likelihood becomes extremely
low and we clearly need a systematic method of dismissing imputations
which are very unlikely. We achieve this using a likelihood ratio test.

By calculating the ratio of the initial maximized likelihood based on
the sample data, L0, to the conditional likelihood, Lcond, of the prediction
passing through the imputed point and comparing to the χ2 distribution,
we can make a decision as to whether to accept the value of the imputed
point. To be accepted

2 ln
L0

Lcond
< χ2

critical(limit, dof) (86)

must be satisfied. The value of the critical χ2 value will depend upon the
confidence limit we wish to obtain and the number of degrees of freedom
(the number of model parameters). For the example in figure 26, if we
wish to obtain a confidence limit of 0.95, we use limit = 0.975 (we are
only considering the lower bound) and dof = 1 to obtain χ2

critical = 5.0239
(from tables or, e.g., Matlab). Figure 26 shows the likelihood ratio for each
hypothesized point which has been imputed, calculated using the conditional
likelihoods shown. The lowest value would be rejected based on χ2

critical

Using this likelihood ratio test we can systematically compute a lower

53

0 0.5 1
−20

0

20

x

f(
x)

0 0.5 1
−20

0

20

x

f(
x)

0 0.5 1
−20

0

20

x

f(
x)

0 0.5 1
−20

0

20

x

f(
x)

true function
observed data
prediction
lower bound
new infill point

Figure 27: the progress of a search of the one variable test function in the
range [0, 1] using a conditional lower bound infill strategy.

confidence bound for the prediction. The minimum of this lower bound can
then be used as an infill criterion. To choose a new infill point we must
minimize yh by varying yh, x, and the model parameters, subject to the
constraint defined by (86). Figure 27 shows the progress of a search of the
deceptive one variable test problem using this infill criterion, starting from
the same three point initial sample. A 95% confidence interval has been
chosen. Despite us not specifying a goal a priori, the infill strategy has
quickly found the global optimum. We are still left with a rather annoying
control parameter – we must choose the confidence interval and it is not
entirely clear what is the best method of doing this. In a similar vein to
Gutmann’s goal seeking method, a number of confidence intervals could be
tried.

Kriging is known to give inaccurate error estimates, particularly with
sparse sampling [13] and the conditional lower bound can, in fact, be used
to calculate what may be a more reliable Gaussian process based model error
estimate by setting the confidence interval to give one standard deviation.
By using the conditional lower bound approach to calculate error estimates,

54

the two-stage approaches of probability of improvement and expected im-
provement can be transformed into one-stage methods, allowing problems
such as that shown in figure 24 to be solved with the added benefits of
E[I(x)] over a lower bound criterion. The benefits are that, assuming the
function to be searched is smooth and continuous, E[I(x)] can be proved to
converge to the global optimum. It can also readily be modified to account
for constraints and multiple objectives, which we will consider in the next
two sections. Forrester and Jones [19] show the formulation of an expected
improvement criterion using conditional lower bound based error estimates.

These one-stage approaches seem to be the panacea we have been looking
for, but in many situations they could prove to be intractable. In the con-
ditional bound approach, for example, x, yh, θ and p (for a Kriging model)
need to be varied to minimize the lower bound. This search of up to 3k + 1
parameters is naturally far more computationally intensive than a standard
two-stage method, particularly when we have a significant number of sample
points. Recall that at each step in this 3k + 1 dimensional search we must
invert a matrix whose dimensions are the size of the data set. If, however,
the data set is rather limited because the underlying function is extremely
expensive, this may nonetheless be worthwhile. This will sometimes be the
case in high fidelity CFD or non-linear FEA based optimization.

4.4 Parallel infill

We have so far assumed that infill points will be applied in a serial process,
but it is often possible to apply parallel updates. Many of the infill criteria we
have reviewed exhibit multi-modal behaviour. In particular, the E[I(x)] and
conditional likelihood plots in figures 23 and 25. A search which locates a
number of minima, e.g. multi-start hill-climbers or a genetic algorithm with
clustering, can be employed to obtain a number of infill points [72]. The can
then be evaluated simultaneously to take advantage of parallel computing
capabilities. We cannot guarantee how many infill points will be obtained
and so the process may not take advantage of all available resources.

A method of obtaining a specified number of infill points has been sug-
gested by Schonlau [66]. We search the infill criterion to find its global
optimum and then temporarily add the surrogate model predicted value
at this point, i.e. assume the model is correct at this location and im-
pute its value. The surrogate is then constructed with this temporary new
point (with no need to re-estimate model parameters) and the infill criterion
searched again. For P [I(x)] and E[I(x)] we do not change fmin, should the
imputed prediction be lower than this. The process is continued until the
desired number of infill points has been obtained. These infill points are
then evaluated and added to the data set in place of the temporary pre-
dictions. This method makes effective use of parallel computing resources,
though the sampling may not be as well placed as a sequential scheme.

55

We note in passing that setting up and searching a surrogate of any
kind can be a bottleneck in a heavily parallel computing environment. If
we have sufficient processors, then evaluating all the points in our initial
sampling plan can occur simultaneously. We must then pull all these results
together to build and study the surrogate before we can return to our parallel
calculation of sets of infill points. This fact will always limit the amount of
time we can dedicate to the building and searching of surrogates.

5 Constraints

Traditional constrained optimization approaches can be applied to a surrogate-
based optimization process. Of note is the use of the augmented Lagrangian
method for constrained optimization in a surrogate-based trust region search
[3]. More simple to implement is the application of penalty functions [67].
Whether the constraint is cheap, and evaluated directly, or expensive, and
a surrogate model of the constraint is employed, in most cases penalty func-
tions can be applied to surrogate-based search in the usual manner. When
one or more constraints are violated, a suitable penalty is applied to the value
obtained from the surrogate of the objective function. Thus a search of the
surrogate is deviated away from regions of violation. For a max{E[I(x)]}
or max{P [I(x)]} based search, ymin should be replaced with the minimum
observed function value which satisfies the constraint.

We may not be able to model a constraint function, for example when
a region of infeasibility is defined purely by objective function calculations
failing. In such situations we can penalize the surrogate in regions of failures
by imputing large objective function values at failed points. Forrester et al.
[22] used ŷ(xfailed) + s2(xfailed) for imputed points and showed this to work
well for an aerofoil design problem.

Assuming we can model the constraint function(s), a fully probabilistic
approach can be taken to their inclusion. We shall concentrate on this
surrogate model specific method. Before delving into the mathematics, it is
useful to set out what we might expect when using Gaussian process (e.g.
Kriging) models for both the objective and constraint functions. If, at a
given point in design space, the predicted errors in a constraint model are
low and the surrogate shows a constraint violation, then the expectation of
improvement will also be low, but not zero, since there is a finite possibility
that a full evaluation of the constraints may actually reveal a feasible design.
Conversely, if the errors in the constraints are large then there will be a
significant chance that the constraint predictions are wrong and that a new
point will, in fact, be feasible. Thus the expectation of improvement will be
greater. Clearly, for a fully probabilistic approach we must factor these ideas
into the calculation of the expectation. It turns out that this is relatively
simple to do, although it is rarely mentioned in the literature (a formulation

56

can be found in the thesis of Schonlau [66]). Provided that we assume that
the constraints and objective are all uncorrelated a closed form solution
can readily be derived. If not, and if the correlations can be defined, then
numerical integration in probability space is required. Since such data is
almost never available this idea is not pursued further here.

We have already discussed the probability of improvement infill crite-
rion. Now consider a situation when we have a constraint function, also
modelled by a Gaussian process, based on sample data in exactly the same
way. Rather than calculating P [I(x)], we could use this model to calculate
the probability of the prediction being greater than the constraint limit, i.e.
the probability that the constraint is met, P [F (x) > gmin]. The probability
that a design is feasible can be calculated following the same logic as for
an improvement, only now instead of using the current best design as the
dividing point in probability space we use the constraint limit value, i.e.

P [F (x) > gmin] =
1

s
√

2π

∫ ∞

0
e
−(F−ĝ(x))2

2s2 dG (87)

where g is the constraint function, gmin is the limit value, F is the measure
of feasibility G(x) − gmin, G(x) is a random variable, and s is the variance
of the Kriging model of the constraint. We can couple this result to the
probability of improvement from a Kriging model of the objective and the
probability that a new infill point both improves on the current best point
and is also feasible is then just

P [I(x) ∩ F (x) > gmin] = P [I(x)]P [F (x) > gmin], (88)

since these are independent models.
We can also use the probability that a point will be feasible to formulate

a constrained expected improvement. We simply multiply E[I(x)] (equation
81) by P [F (x) > gmin]:

E[I(x) ∩ F (x) > gmin] = E[I(x)]P [F (x) > gmin]. (89)

As an example, the first plot of figure 28 shows our one variable function
along with a constraint function (simply the negative of the objective minus
a constant). The second plot shows E[I(x)], the third plot shows the prob-
ability of satisfying the constraint (equation 88), and the fourth plot shows
the product of these – our constrained expected improvement (equation 89).
Note how multiplying by the probability of satisfying the constraint forces
the expectation away from the region where the constraint is violated and
the next infill will be on the constraint boundary (see figure 29, which shows
the situation after this infill point has been applied).

57

0 0.5 1
−40

−20

0

20

X

f(
x)

0 0.5 1
0

0.5

1

1.5

X

E
[I(

x)
]

0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

P
[c

on
st

r.
 m

et
]

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

X

C
on

st
r.

 E
[I(

x)
]

Figure 28: Predictions of the objective (dash) and constraint functions (thin
solid) based on four sample points, with the constraint limit shown as a
dash-dot line (first plot), the unconstrained E[I(x)] (second plot), the prob-
ability of meeting the constraint (third plot) and the constrained expected
improvement (final plot).

58

0 0.5 1
−40

−20

0

20

1

1

X

f(
x)

0 0.5 1
0

0.1

0.2

0.3

0.4

X

E
[I(

x)
]

0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

P
[c

on
st

r.
 m

et
]

0 0.5 1
0

0.05

0.1

0.15

0.2

X

C
on

st
r.

 E
[I(

x)
]

Figure 29: The build up of the constrained expected improvement after an
infill point has been applied to the maximum constrained E[I(x)] in figure
28.

59

6 Multiple objectives

In aerospace design it is common to be aiming for light weight, low cost,
robust, high performance systems. These aspirations are clearly in tension
with each other and so compromise solutions have to be sought. The final
selection between such compromises inevitably involves deciding on some
form of weighting between the goals. However, before this stage is reached
it is possible to study design problems from the perspective of Pareto sets.
A Pareto set of designs is one whose members are all optimal in some sense,
but where the relative weighting between the competing goals is yet to be
finally fixed (see for example, Fonseca and Fleming [17]). More formally, a
Pareto set of designs contains systems that are sufficiently optimized that,
to improve the performance of any set member in any one goal function,
its performance in at least one of the other functions must be made worse.
Moreover, the designs in the set are said to be non-dominated in that no
other set member exceeds a given design’s performance in all goals. It
is customary to illustrate a Pareto set by plotting the performance of its
members against each goal function, see figure 30, where the two axes are
for two competing goal functions that must both be minimized. The series
of horizontal and vertical lines joining the set members is referred to as
the Pareto front - any design lying above and to the right of this line is
dominated by members of the set.

There are a number of technical difficulties associated with constructing
Pareto sets. Firstly, the set members need to be optimal in some sense - since
it is desirable to have a good range of designs in the set this means that an
order of magnitude more optimization effort is usually required to produce
such a set than to find a single design that is optimal against just one goal.
Secondly, it is usually necessary to provide a wide and even coverage in the
set in terms of the goal function space - since the mapping between design
parameters and goal functions is usually highly non-linear, gaining such
coverage is far from simple. Finally, and in common with single objective
design, many problems of practical interest involve the use of expensive
computer simulations to evaluate the performance of each candidate, and
this means that only a limited number of such simulations can usually be
afforded.

Currently, there appear to be two popular ways of constructing Pareto
sets. First, and most simply, one chooses a (possibly non-linear) weight-
ing function to combine all the goals in the problem of interest into a single
quantity and carries out a single objective optimization. The weighting func-
tion is then changed and the process repeated. By slowly working through
a range of weightings it is possible to build up a Pareto set of designs. In
a similar vein, one can also search a single objective at a time, while con-
straining the other objectives. Slowly working through a range of constraint
values, a Pareto set can be populated. However, it is by no means clear

60

Figure 30: a Pareto set of five non-dominated points (×) for a problem
with two objectives. The solid line is the Pareto front. The shaded area
shows where new points would augment the Pareto front, while the hatched
area is where new points would dominate and replace the existing set of
non-dominated points.

what weighting function or constraint values to use and how to alter them
so as to be able to reach all parts of the potential design space (and thus to
have a wide ranging Pareto set). In particular, the weighted single objective
method will miss Pareto optimal points if the front is not convex and the
weighting in linear. If it is not linear this can be avoided, but then the form
of the function to use must be decided upon.

In an attempt to address this limitation designers have turned to a sec-
ond way of constructing Pareto sets via the use of population based search
schemes. In such schemes a set of designs is worked on concurrently and
evolved towards the final Pareto set in one process. In doing this, designs
are compared to each other and progressed if they are of high quality and if
they are widely spaced apart from other competing designs. Moreover such
schemes usually avoid the need for an explicit weighting function to combine
the goals being studied. Perhaps the most well known of these schemes is
the NSGA-II method introduced by Deb et al. [12].

To overcome the problem of long run-times a number of workers have
advocated the use of surrogate modelling approaches within Pareto front
frameworks [49, 84]. It is also possible to combine tools like NSGA-II with
surrogates [83]. In such schemes an initial sampling plan is evaluated and
surrogate models built as per the single objective case, but now there is one
surrogate for each goal function. In the NSGA-II approach the search is

61

simply applied to the resulting surrogates and used to produce a Pareto set
of designs. These designs are then used to form an infill point set and, after
running full computations, the surrogates are refined and the approach con-
tinued. Although sometimes quite successful this approach suffers from an
inability to explicitly balance exploration and exploitation in the surrogate
model construction, in just the same way as when using a prediction based
infill criterion in single objective search, although the crowding or niching
measures normally used help mitigate these problems to some extent. Here
we consider statistically based operators for use in surrogate model based
multi-objective search so as to explicitly tackle this problem.

6.1 Multi-objective expected improvement

To begin with consider a problem where we wish to minimize two objective
functions f1(x) and f2(x), which we can sample to find observed outputs
y1 and y2. For simplicity, assume that x consists of just one design variable
x (k = 1). By evaluating a sampling plan, X, we can obtain observed
responses y1 and y2. This will allow us to identify the initial Pareto set of
m designs that dominate all the others in the training set:

y∗1,2 =
{

[y(1)∗
1 (x(1)∗), y(1)∗

2 (x(1)∗)], [y(2)∗
1 (x(2)∗), y(2)∗

2 (x(2)∗)], ..., [y(m)∗
1 (x(m)∗), y(m)∗

2 (x(m)∗)]
}

.

In this set the superscript * indicates that the designs are non-dominated.
We may plot these results on the Pareto front axes as per figure 30. In
that figure the solid line is the Pareto front and the hatched and shaded
areas represent locations where new designs would need to lie if they are to
become members of the Pareto set. Note that if new designs lie in the shaded
area they augment the set and that if they lie in the hatched area they will
replace at least one member of the set (since they will then dominate some
members of the old set). It is possible to set up our new metric such that
an improvement is achieved if we can augment the set or, alternatively, only
if we can dominate at least one set member - here we consider the latter
metric.

Given the training set it is possible to build a pair of Gaussian process
based models (e.g. Kriging models). As when dealing with constrained
surrogates, it is assumed that these models are independent (though it is
also possible to build correlated models by using co-Kriging, as per section
3.7.2). The Gaussian processes have means ŷ1(x) and ŷ2(x) (from equation
(20)), and variances s2

1(x) and s2
2(x) (from equation (22)). These values may

then be used to construct a two dimensional Gaussian probability density
function for the predicted responses of the form

φ(Y1, Y2) =
1

s1(x)
√

2π
exp

[
−(Y1(x)− ŷ1(x))2

2s2
1(x)

]
1

s2(x)
√

2π
exp

[
−(Y2(x)− ŷ2(x))2

2s2
2(x)

]
,

(90)

62

Figure 31: improvements possible from a single point in the Pareto set.

where it is made explicitly clear that ŷ1(x), s2
1(x), ŷ2(x) and s2

2(x) are
all functions of the location at which an estimate is being sought. Clearly
this joint pdf accords with the predicted mean and errors coming from the
two Kriging models at x. When seeking to add a new point to the training
data we wish to know the likelihood that any newly calculated point will
be good enough to become a member of the current Pareto set and, when
comparing competing potential designs, which will improve the Pareto set
most.

We first considering the probability that a new design at x will dominate
a single member of the existing Pareto set, say [y(1)∗

1 , y
(1)∗
2]. For a two-

objective problem this may arise in one of three ways: either the new point
improves over the existing set member in goal one, or in goal two, or in both
(see figure 31). The probability of the new design being an improvement
is simply P [Y1(x) < y

(i)
1 ∩ Y2(x) < y

(i)
2], which is given by integrating the

volume under the joint probability density function, i.e. by integrating over
the hatched area in figure 31.

Next consider the probability that the new point is an improvement given
all the points in the Pareto set. Now we must integrate over the hatched
(and possibly the shaded) area in figure 30. We can distinguish whether
we want the new point to augment the existing Pareto set or dominate at
least one set member by changing the area over which the integration takes
place. Here we will consider only points which dominate the Pareto set
(for formulations which deal with Pareto set augmentation see Keane [45]).
Carrying out the desired integral is best done by considering the various
rectangles that comprise the hatched area in 30 and this gives

63

P [Y1(x) < y∗1 ∩ Y2(x) < y∗2] =
∫ y

∗(1)
1

−∞

∫ ∞

−∞
Y1φ(Y1, Y2)dY2dY1 (91)

+
m−1∑

i=1

∫ y
∗(i+1)
1

y
∗(i)
1

∫ y
∗(i+1)
2

−∞
Y1φ(Y1, Y2)dY2dY1

+
∫ ∞

y
∗(m)
1

∫ y
∗(m)
2

−∞
Y1φ(Y1, Y2)dY2dY1.

This is the multi-objective equivalent of the P [I(x)] formulation in sec-
tion 4.3.1. It will work irrespective of the relative scaling of the objectives
being dealt with. When used as an infill criterion it will not, however, nec-
essarily encourage very wide ranging exploration since it is not biased by
the degree of improvement being achieved. To do this we must consider the
first moment of the integral, as before when dealing with single objective
problems.

The equivalent improvement metric we require for the two objective case
will be the first moment of the joint probability density function integral
taken over the area where improvements occur, calculated about the cur-
rent Pareto front. Now, while it is simple to understand the region over
which the integral is to be taken (it is just the same as in equation (92))
the moment arm about the current Pareto front is a less obvious concept.
To understand what is involved, it is useful to return to the geometrical
interpretation of E[I(x)] (shown in figure 22 for the single objective case).
P [I(x)] represents integration over the probability density function in the
area below and to the left of the Pareto front where improvements can occur.
E[I(x∗)] (we will use the * superscript to denote the multi-objective formu-
lation) is the first moment of the integral over this area, about the Pareto
front. Now the distance the centroid of the E[I(x∗)] integral lies from the
front is simply E[I(x∗)] divided by P [I(x∗)], see figure 32. Given this po-
sition and P [I(x∗)] it is simple to calculate E[I(x∗)] based on any location
along the front. Hence we first calculate P [I(x∗)] and the location of the
centroid of its integral, (Ȳ1, Ȳ2), (by integration with respect to the origin
and division by P [I(x∗)]). It is then possible to establish the Euclidean dis-
tance the centroid lies from each member of the Pareto set D. The expected
improvement criterion is subsequently calculated using the set member clos-
est to the centroid, (y∗1(x

∗), y∗2(x
∗)), by taking the product of the volume

under the probability density function with the Euclidean distance between
this member and the centroid, shown by the arrow in figure 32. This leads
to the following definition of E[I(x∗)]:

E[I(x∗)] = P [I(x∗)]
√(

Ȳ1(x)− y∗1(x∗)
)2 +

(
Ȳ2(x)− y∗2(x∗)

)2
, (92)

64

Figure 32: centroid of the probability integral and moment arm used in
calculating E[I(x∗)], also showing predicted position of currently postulated
update.

where

Ȳ1(x) =





∫ y
∗(1)
1

−∞
∫∞
−∞ Y1φ(Y1, Y2)dY2dY1

+
∑m−1

i=1

∫ y
∗(i+1)
1

y
∗(i)
1

∫ y
∗(i+1)
2

−∞ Y1φ(Y1, Y2)dY2dY1

+
∫∞
y
∗(m)
1

∫ y
∗(m)
2

−∞ Y1φ(Y1, Y2)dY2dY1





/P [I(x∗)], (93)

and Ȳ2(x) is defined similarly.
When defined in this way E[I(x∗)] varies with the location of the pre-

dicted position of the currently postulated update (ŷ1, ŷ2) – also shown in
figure 32, and also with the estimated errors in this prediction, s1 and s2,
since it is these quantities that define the probability density function being
integrated.

The further the predicted update location lies below and to the left of the
current Pareto front the further the centroid will lie from the front. More-
over, the further the prediction lies in this direction the closer the integral
becomes to unity (since the greater the probability of the update offering
an improvement). Both tendencies will drive updates to be improved with
regard to the design objectives. Note that if there is a significant gap in the
points forming the existing Pareto front, then centroidal positions lying in or
near such a gap will score proportionately higher values of E[I(x∗)], since the
Euclidean distances to the nearest point will then be greater. This pressure
will tend to encourage an even spacing in the front as it is updated. Also,

65

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

x

f(
x)

1234 5

objective 1
objective 2
prediction 1
prediction 2
sample points
Pareto optimal

−1 −0.95 −0.9 −0.85 −0.8 −0.75
−9.4

−9.2

−9

−8.8
Pareto front

f1(x)

f2
(x

)

Figure 33: The first four infill points positioned at the maximum expectation
of improving on the Pareto front are all Pareto optimal.

when the data points used to construct the Gaussian process model (i.e.,
all points available and not just those in the Pareto set) are widely spaced,
the error terms will be larger and this tends to further increase exploration.
Thus this E[I(x∗)] definition balances exploration and exploitation in just
the same way as its one-dimensional equivalent.

When calculating the location of the centroid there is still no requirement
to scale the objectives being studied but, when deciding which member
of the current Pareto set lies closest to the centroid, relative scaling will
be important (i.e., when calculating the Euclidean distance). This is an
unavoidable and difficult issue that arises whenever explicitly attempting to
space out points along the Pareto front, whatever method is used to do this.

Again we will use our one variable test function for illustration. The
first plot in figure 33 shows two objective functions, the first of which is that
used in the previous examples. Starting from a three point initial sample,
the first four infill points, based on maximizing the dual-objective expected
improvement (equation (92)), are all Pareto optimal. Further updates lead
to the location of the global optimum of objective one, which represents
another part of the Pareto front, as shown in figure 34.

It is worth noting that there is no fundamental difficulty in extending this
form of analysis to problems with more than two goal functions. This does,
of course, increase the dimensionality of the Pareto surfaces being dealt with,
and so inevitably complicates further the expressions needed to calculate the
improvement metrics. Nonetheless, they always remain expressible in closed
form; it always being possible to define the metrics in terms of summations
over known integrable functions.

66

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

x

f(
x)

1234 5
67

8

objective 1
objective 2
prediction 1
prediction 2
sample points
Pareto optimal

−6 −5 −4 −3 −2 −1 0
−10

−8

−6

−4
Pareto front

f1(x)

f2
(x

)

Figure 34: Further updates locate the global optimum of objective one,
which is also, naturally, Pareto optimal.

7 Discussion and recommendations

We have covered a range of surrogate modelling methods and infill criteria
and have noted the pros and cons of each method along the way. We will now
provide some more general thoughts on the applicability of the methods we
have discussed. The suitability of each method for various types of problem
is shown in table 1, which we have taken from Forrester et al. [24]. Naturally
there are exceptions to every rule and it is risky to make such generalizations
on the applicability of methods. The table does, however, give a concise view
of the context in which we see each method.

Working through figure 1, after any preliminary experiments we may
wish to conduct to reduce the dimensionality of the problem, we must choose
the number of points which our initial sampling plan will comprise. Assum-
ing there is a maximum budget of function evaluations, we will define the
number of points as a fraction of this budget. If our aim is purely to create
an accurate model for visualization and design space comprehension, our
sampling plan could contain all of our budgeted points. However, it is likely
to be beneficial to position some points where it is believed that the error in
the surrogate is high. Error estimates which reflect the possibility of varying
function activity across the design space will be of most use here, e.g. from
non-stationary Kriging [86]. If we are using the surrogate as the basis of an
infill criteria, we must save some points for that process. For an exploitation
based criterion, most of the points, i.e. more than one half, should be in the
initial sample because only a small amount of surrogate model enhancement
is possible during the infill process. A notable exception is the trust-region
example in figure 21 where we started from just one. If a two-stage bal-

67

T
ab

le
1:

a
ta

xo
no

m
y

of
su

rr
og

at
e

m
et

ho
ds

.
sa

m
pl

e
pl

an
:in

fil
l
po

in
ts

ra
ti

o
≤
∞

>
2

:1
≈

1
:2

<
1

:2
co

m
pr

eh
en

si
on

op
ti

m
iz

at
io

n
si

m
pl

e
co

m
pl

ex
lo

ca
l

P
[I

(x
)]

,
go

al
co

nd
it

io
na

l
la

nd
sc

ap
e

la
nd

sc
ap

e
se

ar
ch

E
[I

(x
)]

se
ek

in
g

lo
w

er
bo

un
d

SV
R

!
!

!
k

>
20

fix
ed

ba
se

s
e.

g.
cu

bi
c,

th
in

pl
at

e
!

!
!

n
>

50
0

po
ly

no
m

ia
ls

!

M
L
S,

pa
ra

m
et

ri
c

e.
g.

m
ul

ti
-q

ua
dr

ic
!

!
!

!

ba
se

s
G

au
ss

ia
n

ba
se

s

k
<

20

n
<

50
0

e.
g.

K
ri

gi
ng

!
!

!
!

!
!

68

anced exploitation/exploration infill criterion is to be employed, Sóbester
et al. [71] have shown that approximately one third of the points should
be in the initial sample, with the majority saved for the infill stage. The
one-stage methods rely less on the initial prediction and so fewer points are
required.

The choice of which surrogate to use should be based on the problem size,
that is k, the expected complexity, the cost of the analyses the surrogate is to
be used in lieu of, and the form of infill strategy that will follow. As discussed
at the end of section 3.2, polynomial models make good surrogates of cheap
analyses, following simple trends, in low dimensions. MLS (see section 3.3)
can model more complex landscapes, but is still limited to lower dimensions
(for the same reasons as polynomials), and its added expense means that
it may not be cheaper than some quick analyses. Fixed bases RBF’s (see
section 3.4) are suitable for higher dimensional, but simple landscapes and
can be used in lieu of cheap analyses. SVR (see section 3.6) with a fixed
kernel also fits somewhere in this category, though the initial cost of training
the model is higher than for RBF’s. Our most complex surrogates – Kriging
(see section 3.5) and parametric RBF’s, including parametric SVR’s – can
only be used for relatively low dimensional problems due to the expense of
training the model, but these methods have the potential to provide more
accurate predictions.

Often the choice of surrogate modelling method will be dictated by the
infill criteria we wish to apply. When this is not the case, although we can
pigeon-hole which surrogate is likely to perform best for a given problem (as
we have in table 1), a more educated choice can be made using various model
selection and validation criteria. The accuracy of a number of surrogates
could be compared by assessing their ability to predict a validation data
set. Such a strategy will require a portion of observed data to be set aside
for validation purposes only, making this impractical when observations are
expensive. More likely is that cross validation or bootstrapping errors [15]
will be compared when selecting the most accurate surrogate. These meth-
ods rely only on the observed data used to construct the surrogate being
assessed.

Recently, rather than selecting one surrogate which appears to have bet-
ter generalization properties, as determined by some validation metric, Goel
et al. [28] have tried using a weighted average of an ensemble of surrogates.
While Kriging, for example, might accurately predict some non-linear aspect
of a function, a polynomial may better capture the underlying trend. By
combining these two methods (and maybe others) in a weighted average,
better generalization could be achieved. We would argue though that blind
Kriging (see section 3.5.2) can do this in a more mathematically rigorous
manner. Ensembles or committees (as they are known in the machine learn-
ing literature [79]) are a powerful concept, indeed blind Kriging could be
viewed as form of committee model. These ‘Jack-of-all-trade’ methods seem

69

likely to find increasing favour in problems where the nature of the design
landscapes is unknown.

We have already taken an in depth look at the various infill criteria and
table 1 shows which surrogate types these marry to. Essentially, for a sur-
rogate to be suited to some form of search-infill process, the surrogate must
have the capacity to modify its shape to fit any complex local behaviour
the true function may exhibit. Thus, polynomials must be excluded, since,
for practical purposes, there is a limitation on the order polynomial which
can be used. From figures 19 and 20 we see how an interpolating surrogate
converges on an optimum. We stop short of saying that the surrogate must
interpolate the data, since SVR and regressing Kriging and RBF’s will con-
verge towards the optimum of a noisy function to an accuracy determined by
the noise, not by deficiencies in the surrogate. For a global search we need
some form of error estimate for predictions made by the surrogate (coupled
with the above requirements). Thus, of the methods reviewed in this paper,
we are limited to the Gaussian process based methods, although Gutmann
[30] has employed a one-stage goal seeking approach for a variety of radial
basis functions.

We have not yet looked at when to stop the iterative process in figure 1.
Choosing a suitable convergence criterion to determine when to stop the sur-
rogate infill process is rather subjective. Goal seeking is the obvious winner
in terms of convergence criteria and nothing need be added to the method
itself. When choosing infill points based on minimizing the prediction (ex-
ploitation), the convergence criterion is simple: we stop when the change in
a number of successive infill point objective values is small. Maximum error
based infill (exploration) is likely to be stopped when some generalization
error metric, e.g. cross-validation, drops below a certain threshold.

When using the probability or expectation of improvement, we can sim-
ply stop when the probability is very low or the expectation is smaller than a
percentage of the range of observed objective function values. Care should,
however, be taken since the estimated MSE of Gaussian process based mod-
els is often an under estimator and the search may be stopped prematurely.
It is wise to set an overly stringent threshold and wait for a consistently low
P [I(x)], E[I(x)] or E[I(x∗)].

When minimizing a lower bound there is no quantitative indicator of con-
vergence and we are limited to the convergence criteria used for exploitation.
Unfortunately, an infill strategy may dwell in the region of a local minima
before jumping to another so we cannot guarantee that a series of similar
objective values means that the global optimum has been found.

In many real engineering problems we actually stop when we run out of
available time or resources, dictated by design cycle scheduling or costs.

Final thoughts The above discussion gives no definitive answers, and

70

deliberately so. This is because a method which is universally better than all
others is yet to present itself. While we wait for it to do so, we must choose
our surrogate-based optimization methodology carefully. Although exact
choice of methodology may be problem dependent, one underlying trait that
any surrogate-based optimization must include is some form of repetitive
search and infill process to ensure the surrogate is accurate in regions of
interest. Other considerations in terms of model selection, validation and
infill criteria are secondary to this key requirement

Acknowledgements

We are grateful for the input and advice of Danie Krige, Donald Jones,
András Sóbester, Prasanth Nair and Rafi Haftka.

References

[1] A. C. Aitken. On least squares and linear combinations of observations.
Proceedings of the Royal Society of Edinburgh, 55:42–48, 1935.

[2] N. Alexandrov, J. E. Dennis, R. M. Lewis, and V. Torczon. A trust
region framework for managing the use of approximation models in
optimization. Stuctural Optimization, 15:16–23, 1998.

[3] N. M. Alexandrov, R. M. Lewis, C. R. Gumbert, L. L. Green, and
P. A. Newman. Approximation and model management in aerodynamic
optimization with variable-fidelity models. Journal of Aircraft, 38(6):
1093–1101, November-December 2001.

[4] J. Bandler, Q. Cheng, S. Dakroury, A. Mohamed, M. Bakr, K. Madsen,
and J. Sndergaard. Space mapping: the state of the art. IEEE Trans.
Microwave Theory Tech, 52:337–361, 2004.

[5] B. M. Barthelemy, R. T. Haftka, and G. A. Cohen. Physically based
sensitivity derivatives for structural analysis programs. Computational
Mechanics, 4(6):465–476, 1989.

[6] E. P. Box and N. R. Draper. Empirical Model Building and Response
Surfaces. John Wiley & Sons, 1987.

[7] D. S. Broomhead and D. Loewe. Multivariate functional interpolation
and adaptive networks. Complex Systems, 2:321–355, 1988.

[8] V. Cherkassky and F. Mulier. Learning From Data – Concepts, Theory,
and Methods. John Wiley & Sons, 1998.

71

[9] S. M. Clarke, J. H. Griebsch, and T. W. Simpson. Analysis of support
vector regression for approximation of complex engineering analyses.
Journal of mechanical design, 127, 2005.

[10] R. D. Cook and C. J. Nachtsheim. A comparison of algorithms for con-
structing exact D-optimal designs. Technometrics, 22(3):315, August
1980.

[11] N. A. C. Cressie. Statistics for Spatial Data. Probability and mathe-
matical statistics. Wiley, revised edition, 1993.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

[13] D. den Hertog, J. P. C. Kleijnen, and A. Y. D. Siem. The correct
kriging variance estimated by bootstrapping. Journal of the Operational
Research Society, 57(4):400–409, April 2006.

[14] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained
optimization and nonlinear equations. Prentice Hall, Englewood Cliffs,
N.J., 1983.

[15] B. Efron. Estimating the error rate of a prediction rule: improvement
on cross-validation. Journal of the American Statistical Association, 78
(382):316–331, June 1983.

[16] M. S. Eldred, A. A. Giunta, and S. S. Collis. Second-order correc-
tions for surrogate-based optimization with model hierachies. 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Confer-
ence, Albany, New York, 30-31 August 2004.

[17] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algo-
rithms in mutliobjective optimization. IEEE Transactions on Evolu-
tionary Computation, 3(1):1–16, 1995.

[18] A. I. J. Forrester. Efficient Global Optimisation Using Expensive CFD
Simulations. PhD thesis, University of Southampton, Southampton,
UK, November 2004.

[19] A. I. J. Forrester and D. R. Jones. Global optimization of deceptive
functions with sparse sampling. 12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Victoria, British Colombia, 10-
12 September 2008.

[20] A. I. J. Forrester, N. W. Bressloff, and A. J. Keane. Optimization using
surrogate models and partially converged computational fluid dynamics
simulations. Proceedings of the Royal Society A, 462(2071):2177–2204,
2006.

72

[21] A. I. J. Forrester, A. J. Keane, and N. W. Bressloff. Design and analy-
sis of ‘noisy’ computer experiments. AIAA Journal, 44(10):2331–2339,
2006.

[22] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Optimization with
missing data. Proc. R. Soc. A, 462(2067):935–945, 2006.

[23] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Multi-fidelity optimiza-
tion via surrogate modelling. Proc. R. Soc. A, 463(2088):3251–3269,
2007.

[24] A. I. J. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via
Surrogate Modelling: A Practical Guide. John Wiley & Sons, Chich-
ester, 2008.

[25] M. N. Gibbs. Bayesian Gaussian Processes for Regression and Classi-
fication. Dphil dissertation, University of Cambridge, 1997.

[26] M. B. Giles and N. A. Pierce. An introduction to the adjoint approach
to design. Flow, Turbulance and Combustion, 65:393–2000, 2000.

[27] T. Goel and R. Haftka. Comparing error estimation measures for poly-
nomial and kriging approximation of noise-free functions. Structural
and Multidisciplinary Optimization, to appear, 2008.

[28] T. Goel, R. Haftka, W. Shyy, and N. V. Queipo. Ensemble of surrogates.
Structural and Multidisciplinary Optimization, 33:199–216, 2007.

[29] A. Griewank. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Frontiers in Applied Mathematics. SIAM,
Philadelphia, 2000.

[30] H. M. Gutmann. A radial basis function method for global optimization.
Journal of Global Optimization, 19(3):201–227, 2001.

[31] R. T. Haftka. Combining global and local approsimations. AIAA Jour-
nal, 29(9):1523–1525, September 1991.

[32] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer-Verlag, New York, 2001.

[33] J. Hevesi, A. Flint, and J. Istok. Precipitation estimation in moun-
tainous terrai using multivariate geostatistics. part II: Isohyetal maps.
Journal of Applied Meteorology, 31:677–688, 1992.

[34] S.L. Ho, S. Yang, P. Ni, and H.C. Wong. Developments of an efficient
global optimal design technique a combined approach of mls and sa
algorithm. COMPEL, 21(4):604–614, 2002.

73

[35] C. Holden. Visualization Methodologies in Aircraft Design Optimiza-
tion. PhD thesis, University of Southampton, Southampton, UK, Jan-
uary 2004.

[36] N. Hoyle. Automated multi-stage geometry parameterization of inter-
nal fluid flow applications. PhD thesis, University of Southampton,
Southampton, UK, 2006.

[37] M. E. Johnson, L. M. Moore, and D. Ylvisaker. Minimax and maximin
distance designs. Journal of Statistical Planning and Inference, 26:131–
148, 1990.

[38] D. R. Jones. A taxonomy of global optimization methods based on
response surfaces. Journal of Global Optimisation, 21:345–383, 2001.

[39] D. R. Jones and W. J. Welch. Global optimization using response
surfaces. Fifth SIAM Conference On Optimization, Victoria, Canada,
20-22 May 1996.

[40] D. R. Jones, M. Schlonlau, and W. J. Welch. Efficient global optimisa-
tion of expensive black-box functions. Journal of Global Optimisation,
13:455–492, 1998.

[41] V. R. Joseph. A bayesian approach to the design and analysis of frac-
tional experiments. Technometrics, 48:219–229, 2006.

[42] V. R. Joseph, Y. Hung, and A. Sudjianto. Blind kriging: A new method
for developing metamodels. ASME Journal of Mechanical Design, 130,
2008.

[43] A. J. Keane. Wing optimization using design of experiment, response
surface, and data fusion methods. Journal of Aircraft, 40(4):741–750,
2003.

[44] A. J. Keane. Design search and optimisation using radial basis functions
with regression capabilities. In I. C. Parmee, editor, Proceedings of
the Conference on Adaptive Computing in Design and Manufacture,
volume VI, pages 39–49. Springer Verlag, 2004.

[45] A. J. Keane. Statistical improvement criteria for use in multiobjective
design optimization. AIAA Journal, 44(4):879–891, 2006.

[46] A. J. Keane and P. B. Nair. Computational Approaches to Aerospace
Design: the Pursuit of Excellence. John Wiley & Sons, Chichester,
2005.

[47] M. C. Kennedy and A. O’Hagan. Predicting the output from copmlex
computer code when fast approximations are available. Biometrika, 87
(1):1–13, 2000.

74

[48] C. Kim, S. Wang, and K. K. Choi. Efficient response surface modeling
by using moving least-squares method and sensitivity. AIAA Journal,
43(11):2404–2411, November 2005.

[49] J. Knowles and E. J. Hughes. Multiobjective optimization on a budget
of 250 evaluations. In Carlos Coello et al, editor, Evolutionary Multi-
Criterion Optimization (EMO-2005), volume 3410 of Lecture Notes in
Computer Science. Springer-Verlag, 2005.

[50] D. G. Krige. A statistical approach to some basic mine valuation prob-
lems on the Witwatersrand. Journal of the Chemical, Metallurgical and
Mining Engineering Society of South Africa, 52(6):119–139, December
1951.

[51] P. Lancaster and K. Salkauskas. Surfaces generated by moving least
squares methods. Mathematics of Computation, 37(155):141–158, July
1981.

[52] S. J. Leary, A. Bhaskar, and A. J. Keane. A knowledge-based approach
to response surface modelling in multifidelity optimization. Journal of
Global Optimization, 26(3):297–319, 2003.

[53] D. Levin. The approximation power of moving least-squares. Mathe-
matics of computation, 67(224):1517–1531, October 1998.

[54] G. Matheron. Principles of geostatistics. Economic Geology, 58:1246–
1266, 1963.

[55] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of
three methods for selecting values of input variables in the anslysis
of output from a computer code. Technometrics, 21(2):239–245, May
1979.

[56] M. D. Morris. Factorial sampling plans for preliminary computational
experiments. Technometrics, 33(2):161–174, 1991.

[57] M. D. Morris and T. J. Mitchell. Exploratory designs for computational
experiments. Journal of Statistical Planning and Inference, 43:381–402,
1995.

[58] R. H. Myers and D. C. Montgomery. Response Surface Methodology:
Process and Product Optimization Using Designed Experiments. Wiley,
New York, 1995.

[59] M. Orr. Regularisation in the selection of RBF centres. Neural Com-
putation, 7(3):606–623, 1995.

[60] T. Poggio and F. Girosi. Regularization algorithms for learning that
are equivalent to multilayer networks. Science, 247:978–982, 1990.

75

[61] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. K. Tucker. Surrogate-based analysis and optimization. Progress in
aerospace sciences, 41:1–28, 2005.

[62] A. Ralston and P. Rabinowitz. A first course in numerical analysis.
McGraw-Hill, 1978.

[63] J. Sacks, W. J. Welch, T. J. Mitchell, and H. Wynn. Design and analysis
of computer experiments. Statistical Science, 4(4):409–423, 1989.

[64] T. J. Santner, B. J. Williams, and W. I. Notz. Design and Analysis of
Computer Experiments. Springer Series in Statistics. Springer, 2003.

[65] B. Schölkopf and A. J. Smola. Learning with Kernals. MIT, Cambridge,
Massachusetts, 2002.

[66] M. Schonlau. Computer Experiments and Global Optimization. PhD
thesis, University of Waterloo, Waterloo, Ontario, Canada, 1997.

[67] J. N. Siddall. Optimal Engineering Design: Principles and Applications.
Marcel Dekker, New York, 1982.

[68] T. W. Simpson, V. Toropov, V. Balabanov, and F. A. C. Viana. De-
sign and analysis of computer experiments in multidisciplinary de-
sign optimization: a review of how we have come – or not. 12th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Confer-
ence, Victoria, British Colombia, 10-12 September 2008.

[69] A. J. Smola and B. Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14:199–222, 2004.

[70] A. Sóbester. Enhancements to Global Optimisation. PhD thesis, Uni-
versity of Southampton, Southampton, UK, October 2003.

[71] A. Sóbester, S. J. Leary, and A. J. Keane. A parallel updating scheme
for approximating and optimizing high fidelity computer simulations.
3rd ISSMO/AIAA Internet Conference on Approximations in Opti-
mization, 2002.

[72] A. Sóbester, S. J. Leary, and A. J. Keane. A parallel updating scheme
for approximating and optimizing high fidelity computer simulations.
Structural and multidisciplinary optimization, 27:371–383, 2004.

[73] A. Sóbester, S. J. Leary, and A. J. Keane. On the design of optimiza-
tion strategies based on global response surface approximation models.
Journal of Global Optimization, 33:31–59, 2005.

[74] I. M. Sobol. On the systematic search in a hypercube. SIAM Journal
of Numerical Analysis, 16:790–793, 1979.

76

[75] W. Squire and G. Trapp. Using complex variables to estimate deriva-
tives of real functions. SIAM Review, 40:110–112, 1998.

[76] R. B. Statnikov and J. B. Matusov. Multicriteria Optimization and
Engineering: Theory and Practice. Chapman and Hall, 1995.

[77] D. J. J. Toal, N. W. Bressloff, and A. J. Keane. Kriging hyperparameter
tuning strategies. AIAA Journa;, 46(5):1240–1252, 2008.

[78] V. V. Toropov, U. Schramm, A. Sahai, R. D. Jones, and T. Zeguer.
Design optimization and stochastic analysis based on the moving least
squares method. 6th World congress of structural and multidisciplinary
optimization, Rio de Janeiro, 30th May - 3rd June 2005.

[79] V. Tresp. A Bayesian committee machine. Neural Computation, 12:
2719–2741, 2000.

[80] F. van Keulen and K. Vervenne. Gradient-enhanced response surface
building. Structural and Multidisciplinary Optimization, 27:337–351,
2004.

[81] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[82] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York,
1998.

[83] I. I. Voutchkov and A. J. Keane. Multi-objective optimization using
surrogates. Proceedings of the 7th International Conferance on Adaptive
Computing in Design and Manufacture.

[84] B. Wilson, D. Cappelleri, W. Simpson, and M. Frecker. Efficient Pareto
frontier exploration using surrogate approximations. Optimization and
Engineering, 2:31–50, 2001.

[85] C. F. J. Wu and M. Hamada. Experiments: Planning, Analysis, and
Paramter Design Optimization. Wiley, New York, 2000.

[86] Y. Xiong, W. Chen, D. Apley, and X. Ding. A non-stationary
covariance-based kriging method for metamodelling in engineering de-
sign. International Journal for Numerical Methods in Engineering, 71:
733–756, 2007.

[87] Y. Zhang and W. E. Leithead. Exploiting hessian matrix and trust-
region algorithm in hyperparameters estimation of gaussian process.
Applied Mathematics and Computation, 171:12641281, 2005.

77

