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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Johnsen Kho

Wireless sensor networks are receiving a considerable degree of research interest due to
their deployment in an increasing number and variety of applications. However, the
efficient management of the limited energy resources of such networks in a way that
maximises the information value of the data collected is a significant research challenge.
To date, most of these systems have adopted a centralised control mechanism, but from a
system’s perspective this raises concerns associated with scalability, robustness, and the
ability to cope with dynamism. Given this, decentralised approaches are appealing. But,
the design of efficient decentralised regimes is challenging as it introduces an additional
control issue related to the dynamic interactions between the network’s interconnected
nodes in the absence of a central coordinator.

Within this context, this thesis first concentrates on decentralised approaches to adap-
tive sampling as a means of focusing a node’s energy consumption on obtaining the
most important data. Specifically, we develop a principled information metric based
upon Fisher information and Gaussian process regression that allows the information
content of a node’s observations to be expressed. We then use this metric to derive
three novel decentralised control algorithms for information-based adaptive sampling
which represent a trade-off in computational cost and optimality. These algorithms are
evaluated in the context of a deployed sensor network in the domain of flood monitoring.
The most computationally efficient of the three is shown to increase the value of infor-
mation gathered by approximately 83%, 27%, and 8% per day compared to benchmarks
that sample in a näıve non-adaptive manner, in a uniform non-adaptive manner, and
using a state-of-the-art adaptive sampling heuristic (USAC) correspondingly. Moreover,
our algorithm collects information whose total value is approximately 75% of the opti-
mal solution (which requires an exponential, and thus impractical, amount of time to
compute).

The second major line of work then focuses on the adaptive sampling, transmitting,
forwarding, and routing actions of each node in order to maximise the information value
of the data collected in resource-constrained networks. This adds additional complexity
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because these actions are inter-related, since each node’s energy consumption must be
optimally allocated between sampling and transmitting its own data, receiving and for-
warding the data of other nodes, and routing any data. Thus, in this setting we develop
two optimal decentralised algorithms to solve this distributed constraint optimization
problem. The first assumes that the route by which data is forwarded to the base station
is fixed (either because the underlying communication network is a tree, or because an
arbitrary choice of route has been made) and then calculates the optimal integration
of actions that each node should perform. The second deals with flexible routing, and
makes optimal decisions regarding both the sampling, transmitting, and forwarding ac-
tions that each node should perform, and also the route by which this data should be
forwarded to the base station. The two algorithms represent a trade-off in optimality,
communication cost, and processing time. In an empirical evaluation on sensor networks
(whose underlying communication networks exhibit loops), we show that the algorithm
with flexible routing delivers approximately twice the quantity of information to the
base station compared to the algorithm with fixed routing. However, this gain comes at
a considerable communication and computational cost (increasing both by a factor of
100 times). Thus, while the algorithm with flexible routing is suitable for networks with
a small numbers of nodes, it scales poorly, and as the size of the network increases, the
algorithm with fixed routing should be favoured.
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Nomenclature

General

Z+ Set of positive, non-zero integer numbers (i.e. Z+ = {1, 2, . . . }).
N Set of natural numbers with zero (i.e. N = {0, 1, 2, . . . }).
< Set of real numbers including both rational numbers and irra-

tional numbers.

<+ Set of positive, non-zero real numbers.

Chapter 2

I = {1, . . . , n} Set of sensors (or nodes).

i ith sensor in I.

x Target location.

zi Sensor i’s predicted observation.

p(x ) Prior target location distribution.

q(x ) Probability distribution after a new observation.

H(x |zi) Expected conditional entropy of posterior target location distri-

bution.

p(zi|x ) Sensing models of candidate sensor i for selection.

Chapter 3

I = {1, . . . , n} Set of agents (or nodes) within a WSN system.

i ith node in I.

n Number of nodes in I.

H = {1, . . . , w} Set of time slots within a day.

w Number of time slots in H.

Ci = {c1
i , . . . , c

si
i } Set of possible sampling rates for node i over a period of time.

si Number of different sampling rates for node i in Ci.

cj
i jth sampling rate of node i in Ci (i.e. a positive integer describing

the number of times node i samples during a time slot).

csi
i Maximum sampling rate of node i in Ci.

Alloci =
˘
a1

i , . . . , a
w
i

¯
Allocated set of sampling actions (or schedules) for node i.

ak
i Allocated sampling action for node i at time slot k.

Yi = {y1
i , . . . , ygi

i } Set of noisy observations (or target values or samples) collected

by node i.

yj
i jth samples in Yi.

Xi = {x1
i , . . . , x

gi
i } Set of sampling (or training) points (corresponding to Yi) col-

lected by node i.

xi



NOMENCLATURE xii

xj
i jth sampling point in Xi.

gi Number of observations made by node i in Yi.

gj
i Number of observations collected by node i by performing its

sampling action, cj
i .

Bi Energy budget of node i.

es
i Energy required by node i in order to take a sample.

v : V → Val Valuation function (a.k.a utility or mathematical function) used

to calculate the value or goodness of a certain action taken by

nodes.

V Set of node’s alternative actions.

Val Set of possible outcomes (corresponding to V ) that is typically

represented by a set of numerical values.

X = {x1, . . . , xm} Set of a node’s test points.

xj jth test point in X.

m Number of test points in X.bµ(X) = {bµ(x1), . . . , bµ(xm)} Set of mean values of the posterior predictive distribution inferred

by GP regression after it has observed both the training and

target sets (X and Y respectively), at the test set, X.bµ(xj) jth mean value in bµ(X).bσ2(X) = {bσ2(x1), . . . , bσ2(xm)} Set of variance values of the posterior predictive distribution in-

ferred by GP regression after it has observed both the training

and target sets (X and Y respectively), at the test set, X.bσ2(xj) jth variance value in bσ2(X).

C g × g matrix for the training set covariances.

c g × 1 vector identifying the training-test set covariances.

cT Transpose of c.
C(xj , xj) Covariance of xj .

Ig g × g identity matrix.

σ2 Added Gaussian noise of the training set.

FI(X) Fisher information value calculated using GP regression over the

interval spanned by X of m test points, conditioned on the set of

sensor readings, Y , taken at times X.

Csqe(x, x) Squared exponential covariance function describing the correla-

tion between any training point, x, and any test point, x.

λsqe Length scale (or correlation length) for the squared exponential

covariance function.

vsqe Weighting term for the squared exponential covariance function.

Cper(x, x) Periodic covariance function describing the correlation between

any training point, x, and any test point, x.

p Periodicity of the training set.

λper Length scale (or correlation length) for the periodic covariance

function.

vper Weighting term for the periodic covariance function.

X∗
i Subset of sampling points of node i (satisfying its energy con-

straint) that maximises the Fisher information value over the set

of test points, X, conditioned on the set of its readings, Yi, taken

at times Xi.

b1(Xi) Slope variable found by node i using a simple linear regression

technique on its sets of data points and values, Xi and Yi respec-

tively.



NOMENCLATURE xiii

b0(Xi) Intercept variable found by node i using a simple linear regres-

sion technique on its sets of data points and values, Xi and Yi

respectively.

ŷj
i Newly found yj

i data value using the slope and intercept variables.

ȳi Mean value of Yi.

x̄i Mean value of Xi.

Sd(Xi) Standard deviation found by node i under a simple linear regres-

sion technique on its sets of data points and values, Xi and Yi

respectively.

τ t
i (Xi) Distance of the confidence bands from the simple linear regres-

sion line (calculated by node i using a simple linear regression

technique) at point xt
i, conditioned on its set of sensor readings

(or data values), Yi, taken at times (or data points) Xi.

Tdgi(k) Area between the confidence bands that represents the total de-

viation (or uncertainty) over the set of gi data points, Xi, and

the set of data values, Yi, collected by node i in time slot k.

Gainj
i (k) Reduction in total deviation that node i can achieve by taking

samples at rate cj
i (and, hence, collecting gj

i samples) rather than

the minimum sampling rate, c1
i , in time slot k.

Gi Table that node i computes to determine its set of allocated sam-

pling actions, Alloci. The table consists of si number of rows and

w number of columns. The element of the table in jth row and

the column with label k has the value of Gainj
i (k).

vjk
i Value (in matrix Vi) that node i will get if it chooses to perform

sampling action, cj
i , in time slot k (i.e. Gainj

i (k)).

djk
i Decision variable (in matrix Di) where “1” represents a state

where node i carries out the corresponding cj
i action in time slot

k, whilst ‘0” represents another state where the node does not

carry out the corresponding cj
i action.

D∗
i Decision matrix of node i that maximises the Fisher information

collected while satisfying the node’s energy constraint over a day.

Bci(k) Energy consumed by node i per time slot k.

βi Cut-off threshold of node i’s energy supply (or battery).

Bmaxi Full battery capacity of node i.

Bi(k) Energy remaining of node i at time slot k.

Bhi Preset energy increase available each day, provided by node i’s

energy harvester (or solar panel).

ns = df Beginning of night period or end of day period.

nf = ds End of night period or beginning of day period.

Bni(t) Preset energy increase of node i at any time, t, during the night

(that is from ns till nf).

Bdi Total energy recharging of node i during the day (that is from ds

till df).

δi(k) Thickness of the cloud above node i during time slot k.

Bpi(k) Energy recharging rate of node i during time slot k.

t(k) Beginning of time slot k.

t′(k) End of time slot k.

ci Confidence interval parameter used in USAC.

Lo(ci) Lower bound of ci.

Up(ci) Upper bound of ci.

Sri(t) Sampling rate of node i at time t dictated by USAC.
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dat(t + 1) Next predicted data calculated by USAC.

Chapter 4

I = {1, . . . , n} Set of agents (or nodes) within a WSN system.

i ith node in I.

n Number of nodes in I.

Ci = {c1
i , . . . , c

si
i } Set of possible sampling rates for node i over a period of time.

si Number of different sampling rates for node i in Ci.

cj
i jth sampling rate of node i in Ci (i.e. positive integer describing

the number of times node i samples during a certain period of

time).

csi
i Maximum sampling rate of node i in Ci.

Fi=
[
(0, 0) ,

(
c1
i , v

c1
i

i

)
, . . . ,(

csi
i , v

c
si
i

i

)] Private set of tuples, known only to node i, each of which con-

sists of: (i) the sampling action, cj
i , that the node may perform,

and (ii) the corresponding information content of the samples

acquired, v
c

j
i

i . The first tuple represents that should the node

choose to acquire no samples, it will yield zero information value.

Bi Energy budget of node i.

es
i Energy required by node i in order to take a sample.

eTx
i Energy required by node i in order to transmit a sample.

eRx
i Energy required by node i in order to receive a sample.

ES
i Energy required by node i in order to sense (i.e. sample and

transmit) a sample of its own.

EF
i Energy required by node i in order to forward (i.e. receive and

transmit) a sample of other nodes.

R(cj
i ) = (r1

i , . . . , rb
i ) Vector of nodes, each of which the samples (collected by node i

with its cj
i sampling action) route through in order to arrive at

the base station.

rl
i lth node in vector R(cj

i ).

d
R(c

j
i )

i Decision variable where “1” represents a state where node i car-

ries out its cj
i sampling action and the collected samples follow the

vector route, R(cj
i ), to arrive at the base station, and “0” repre-

sents the state where the node does not carry out its cj
i sampling

action.

D∗
i Decision variables of node i that maximises the information con-

tent of the forwarded samples while satisfying the node’s energy

constraint.

Di Set of neighbourhood nodes of node i.

fi Total number of incoming samples received by node i from its set

of neighbour, Di.

qi Total number of unique routes from node i to the base station.

αi Weighting factor of node i.

CmaxI Set of 3-tuples indicating for each node in network I, the sensing

and forwarding actions that it should perform and the specific

route that it should use to transmit each bundle of its own and

forwarded data to the base station.

Oi=
[(

b1
i , V max1

i , Cmax1
i

)
, . . . ,(

bKi
i , V maxKi

i , CmaxKi
i

)] Meta-data array of node i, each element of which is a 3-tuples.

bk
i kth energy limit of node i.
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Ki Number of feasible bk
i -s.

V maxk
i Maximum information value that node i can transmit to its par-

ent by using at most bk
i energy and taking into account its own

and others’ forwarded data.

Cmaxk
i Set of actions that will produce the data with value V maxk

i .

pi Unique parent node of node i (only applies in the context of fixed

routing algorithm).

Bpi Energy budget of node i’s parent node, pi.

EF
pi

Energy required by node i’s parent node, pi, to forward (i.e. re-

ceive and transmit) a forwarded sample.

Ji =
n

j1
i , . . . , jMi

i

o
Set of node i’s child nodes.

jm
i mth child node of node i in Ji.

Mi Number of node i’s child nodes in Ji.

Oj1i
, . . . , O

j
Mi
i

Meta-data arrays of node i’s child nodes in Ji.

V maxk
jm
i

Maximum information value that node i’s child node, jm
i , can

transmit to node i, and that can subsequently be relayed to node

i’s parent node, pi, by using at most bk
i energy.

Oi[x] xth element of Oi.

Ti Table that node i derives in order to determine its meta-data

array, Oi, by taking into account only its energy limits, bk
i -s.

Ti[x, y] Element of table Ti that is in the xth row and the column with

label by
i .

bl
i lth energy limit of node i’s parent node, pi.

Li Number of feasible bl
i-s.

Ui Table that node i derives in order to determine its meta-data

array, Oi, which will be sent to its parent node, by taking into

account both its own and its parent’s energy limits (bk
i -s and bl

i-s

respectively).

Ui[x, y] Element of table Ui that is in the xth row and the column with

label by
i .

Cmaxl
i Set of actions that will produce data with the value of Ui [Mi, l],

which is the maximum information value that node i can transmit

to its parent node (by using at most bk
i energy). The parent node

can then forward the received i’s data by using at most bl
i energy.

Ci Set of node i’s descendant nodes.

|Ci| Number of node i’s descendant nodes.

Pi =
n

p1
i , . . . , p

Ni
i

o
Set of node i’s parent nodes.

pn
i nth parent node of node i in Pi.

|Pi| Number of node i’s parent nodes in Pi.

Li Set of possible partitions of forwarding at node i, given |Ci| (+1

of its own) bundles of samples and |Pi| different shortest paths

to choose from for each of the bundles.

lti =
h
F

`
u1

i

´
, . . . , F

“
u
|Ci|+1
i

”i
tth partition of forwarding at node i in Li.

uj
i jth bundle that might arrive at node i from one of its descendants

in Ci.

F
`
uj

i

´
Mapping function that decides the forwarding direction (or path)

for bundle uj
i .

Oi
jm
i

Meta-data array arriving at node i from its child node, jm
i in Ji.

O
pn

i
i Meta-data array of node i’s for its parent node, pn

i in Pi.
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O
pn

i (lti)
i Meta-data array of node i’s for its parent node, pn

i in Pi. How-

ever, this particular meta-data only contains a partition of for-

warding, lti in Li.

U
pn

i
i Table that node i derives in order to determine its meta-data

array, O
pn

i
i , for its parent node, pn

i in Pi.



Chapter 1

Introduction

A wireless sensor network (WSN) is here defined as an array of small, locally battery-
powered sensor nodes that wirelessly communicate information sampled from events in
a surrounding environment to a base station (a.k.a. sink or gateway) via a wireless
communication channel (see figure 1.1 for an illustration). Information that arrives at
the base station is then transmitted outside of the network to be processed further for
the purpose of fulfilling the goals of WSN deployment. In most cases, a base station is
commonly a specialised node that has significantly more power than the ordinary ones
and, moreover, there may be more than one should system robustness be a key concern.

In WSNs, each wireless sensor node (a.k.a. mote) in the network is equipped with a
sensor module that enables it to capture signals generated by the events through a sensor
channel, and a network stack that enables it to send information to the base station
through a wireless channel (see figure 1.2). The combination of the sensor module, the
network stack (including a radio frequency transceiver with its typical operational states
of transmit, receive, idle and sleep), the sensor application interface (i.e. the interface
available for a programmer to specify the sensor’s behaviour), the processing or micro-
controller module, and multiple types of memories (program, data, or flash memories for
storage capability) is usually called the sensor function model (Raghunathan et al., 2002).
Additionally, the node will typically have a power model containing the energy-producing
components (e.g. a battery or a solar panel) and the energy-consuming components (e.g.
the radio transceiver, the CPU micro-controller, and the sensor module) that enable it
to perform its functions.

Now, WSNs, composed of a number of these wireless nodes, have recently generated
significant research interest within the academic literature of computer science and elec-
tronic engineering as they have many advantages over their wired counterparts, partic-
ularly due to their flexibility and ease of deployment. They are, therefore, becoming
increasingly prevalent in a wide variety of applications ranging from environment and
habitat monitoring, structural health surveillance, smart buildings, home automation,

1
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Figure 1.1: Typical WSN environment.

object tracking, area surveillance, traffic control, to other security and health related
applications (see chapter 2 for more details). Within this context, this thesis focuses
on developing algorithms for controlling such networks in a decentralised manner. That
is, algorithms that give the flexibility for each node in the networks to locally adapt
its sampling, transmitting, receiving, and routing behaviour (by driving its sensor and
network stack modules) without any external coordinator.

To this end, we begin in this chapter by describing the basic background to our work and
outlining the research requirements and contributions of this thesis. More specifically,
section 1.1 identifies the main research challenges in the domain of WSNs particularly
as this pertain to control. In section 1.2, we then describe two types of control regime
in such networks to overcome these challenges. From the preceding discussion, we then
motivate our research and identify the requirements of our work in section 1.3. This is
followed by an overview of our research contributions to the state-of-the-art in section
1.4. Finally, in section 1.5, we give the overall structure of the remainder of this thesis.

1.1 Wireless Sensor Network Research Challenges

Within the WSNs domain, there are a number of significant research challenges to be
addressed. These include real-world integration, real-time performance, cost and size of
sensor nodes, security and privacy, power management, and programming abstraction
(Chong and Kumar, 2003; Stankovic, 2004). In this thesis, however, we focus in particu-
lar on the challenges associated with energy management. This is of critical importance
since it allows WSNs to survive long term operation in their deployed environment with
minimal human intervention. Moreover, it dictates the amount of useful information
that can be gathered over the lifetime of each node. Unfortunately, in many cases, the
nodes have limited energy storage capabilities, and this energy is depleted rapidly. For
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Figure 1.2: Internal architecture of a wireless sensor node.

example, many devices, such as the Golem Dust or Mica2Dot1 nodes (as shown in fig-
ure 1.3), use small batteries as an energy storage. Depending on their activity level,
their lifetime may only be a few months or even weeks if no efficient power management
schemes are used. Since most deployed systems require a much longer lifetime, signifi-
cant research has been undertaken to increase the lifetime of WSNs while still meeting
their functional requirements. So far, there are two primary perspectives from which
solutions have been proposed; namely (i) hardware and (ii) software.

Within the hardware context, an over-engineering process, such as installing a bigger
and more powerful battery, helps improve the longevity of the nodes and, in turn, the
network’s lifetime (Shinozuka et al., 2004). Advances in chip manufacture have suc-
cessfully reduced the power consumption of nodes in order to improve their longevity
(Ekanayake et al., 2004; Hempstead, 2005; Kleihorst et al., 2006). Moreover, in some
WSN applications, an additional facility is available to ameliorate the energy problem
by using rechargeable batteries and energy harvesting technologies such as solar pan-
els, wind turbines, piezo-electric harvesters, or other transducers (Meninger et al., 1999;
Jiang et al., 2005; Raghunathan et al., 2005). In such cases, the harvester’s energy out-
put varies with time depending on the environmental conditions, and these are obviously
outside the control of the network’s designer. Hence, the available environmental energy
at each node location may not be the same. A further advantage of these technologies
is that a node which has exhausted its battery may start operating again in the next
available energy harvesting opportunity. However, these approaches can incur greater
costs in terms of the hardware’s production, operation, and maintenance.

1Mica2Dot are produced by Crossbow Technology Incorporation. The node’s specification can be
viewed from http://www.xbow.com/products/Product pdf files/Wireless pdf/MICA2DOT Datasheet.pdf.
A list of prototype and other commercial sensor nodes available, can be found from
http://en.wikipedia.org/wiki/Sensor node. Both links are checked on 02/02/2009.
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(a) Golem Dust (taken from (Warneke and
Pister, 2004)).

(b) Mica2Dot.

Figure 1.3: Wireless sensor motes.

Another technique which adopts a hardware solution aims to reduce the power consump-
tion of the sensor nodes by designing nodes with discrete transceiving power levels and
dynamic radio ranges so that power is not wasted through transmitting further than is
required (Yoon et al., 2004). This technique can be critical in reducing a node’s power
consumption since the power to reliably transmit over a distance d is proportional to
the mth power of this distance (i.e. power ≈ dm), where m = 2 in a simple deterministic
radio model (Mhatre and Rosenberg, 2004). In more complicated models, where the
power to transmit also depends on the transmission medium, m can be as low as 1, or
as high as 3 (Akyildiz et al., 2002). Transmission is worse, for instance, when it needs to
penetrate various forms of obstructions including walls, water, or other objects. In this
thesis, we are not focusing on hardware, however, we have endeavored to use realistic
models for building a WSN simulator in order to analyse our algorithms (detailed in
chapters 3 and 4).

From the software perspective, a number of researchers have been examining how the
individual nodes can be made more effective and intelligent so that they can perform in
a more energy efficient manner. Specifically, the two main actions that such intelligent
sensor nodes can vary in order to improve their energy management are to adapt: (i)
their sampling and (ii) their communication capabilities. In addition to sampling and
communicating its own data to other nodes, a sensor node also acts as a router, for-
warding data messages for others. Thus, researchers have aimed to adopt effective and
efficient adaptive sampling and adaptive routing policies so as to achieve the network’s
goals, while using the minimum energy resources possible.

In more detail, the former policy includes sets of rules that adapt a node’s sampling
rate (i.e. how often a node is required to sample during a particular time interval)
and schedule (i.e. when a node is required to sample). On the other hand, the latter
contains sets of rules that determine the way a node transmits data back to the base
station, including: (i) transmitting (i.e. how many samples of its own, a node is required
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to transmit during a transmission period), (ii) forwarding (i.e. how many samples of
other nodes, a node is required to receive and forward during a transmission period), and
(iii) routing (i.e. which routes a node should choose to transmit its own and forwarded
samples through) decisions. Given the energy issue of limited power availability, another
substantial challenge in a WSN deployment, and also a focus in our work, is to maximise
the information value of the data collected at the base station. Thus, considerable
research has been undertaken in this area and much work is targeted at this intelligent
protocols field (for more details, see chapter 2). Another energy management technique
in the literature is data compression. However, the effectiveness of the compression
techniques is highly dependent on the processing power of the nodes. Here, the total
computational overhead increases as both the source and destination node, now, have
to spend some processing energy in order to compress and decompress data accordingly
(Kimura and Latifi, 2005; Dong et al., 2006). Given this, this thesis will focus on the
adaptive sampling and routing option.

With regard to figure 1.2, our proposed intelligent energy management algorithms can
later be installed inside the micro-controller module to drive the sensor module and the
network stack. Specifically, each node inside a network will therefore detect an event
(based on its adaptive sampling protocol) from the environment. It then passes this
information data to its controller for more intelligent processing, such as deciding how
and which of the sensed data should be reported back to the base station (that is in
accordance with its adaptive routing protocol).

Now, within this context, the challenge is to achieve these objectives given the distin-
guishing characteristics of WSNs, including:

• Physical Constraints: The nodes are often highly constrained in their commu-
nicational, computational, energy, and storage resources, and hence they need to
manage these in the most efficient manner possible.

• Dynamism: The environment being monitored is typically highly dynamic and
events within it cannot readily be forecast a long time in advance. Furthermore,
the network topology can sometimes vary during operation since nodes may fail,
be moved, or be added at any time.

• Deployment in Hostile Environments: The communication links between
nodes are subject to additional noise and interference. The dynamism-related
problems are also further aggravated within hostile and inaccessible environments
as the nodes are more likely to fail.

• Scalability: Since the nodes are often relatively small and inexpensively mass
produced, they tend to be deployed in large numbers and at high densities in
order to produce high data rates and fidelity. Moreover, it is often not possible
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to build a global addressing scheme as the overhead of identifier maintenance is
typically high.

• Correlated Sensor Readings: With high spatial densities of sensor nodes in the
deployed area, nodes often sense the same events from their environment and, thus,
forwarding the same data to the base station can result in redundant information.
Intelligent local processing can be used to prevent correlated events being sampled
and transmitted in which some energy resources will be wasted.

• Real-World Integration: Many WSN applications are monitoring real-time phe-
nomena in which time and space are of an extreme importance.

Given these characteristics, there are two main types of control regime (i.e. a protocol
dictating the actions of the sensor nodes contingent on their states and the observations
they make) that can be deployed in a WSN; namely centralised and decentralised. We
will compare and contrast them in the following section.

1.2 Centralised Versus Decentralised Control

Both centralised and decentralised control are typically designed to intelligently use the
nodes’ limited resources in order to meet the objectives set out by the owner of the
network. However, in the former, a single coordinator node, usually the base station,
receives data from all the nodes, computes the actions to be taken by these nodes, and
then issues commands to all the nodes indicating how they should sample, transmit,
forward, and route data. In contrast, in the latter case such a central coordinating node
does not exist. Instead, the nodes are autonomous and each decides its individual actions
based on its own local state and observations, and those of its parent and children nodes.

In this thesis, we focus on a decentralised regime for controlling the nodes’ behaviour
in such networks. We do so because it increases the system’s robustness compared to
its centralised counterpart (Lesser, 2003). Specifically, the robustness is increased by
reducing bottlenecks in decision processing due to the absence of the central node. In
contrast, centralised control is often not a viable option because the centre may have to
do an infeasibly large number of computations (as a result of the scale) and the individual
actions dictated by the centre may not be efficient (as a result of the dynamism).

The design of an efficient decentralised control regime is, however, not straight forward.
By removing the centre, the decentralised approach introduces an additional control issue
related to the dynamic interactions between the interconnected nodes in the network.
Given this, it is often far from obvious how the individual node’s processes (which when
taken together constitute the decentralised control) need to be designed such that their
interactions can meet the overall design objectives. This is because it is difficult to
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check that the solution found by the distributed system is globally optimal since no
single node has a global view. Furthermore, it is typically hard to predict the global
system behaviour of distributed systems as their components’ interactions often give
unpredictable results.

To address these issues, we adopt an agent-based approach in which each sensor node is
represented by an autonomous agent that acts and interacts in an autonomous fashion in
order to achieve its individual and collective objectives (Jennings, 2001). The distributed
and dynamic nature of the complex, interconnected, and rapidly changing WSN systems
lend themselves to a multi-agent system (MAS) methodology in which the individual
agents need to coordinate their activities cooperatively in a distributed manner towards
achieving system-wide goals. Thus, in the following section we outline the research
requirements that we aim to address in order to build such a system for a WSN.

1.3 Research Requirements

Though most of the existing WSN applications (of which each considers only tens of
homogeneous nodes) have been revolutionary in replacing their traditional wired coun-
terparts, WSN technology generally still remains at a relatively immature stage (Habib
et al., 2007; Karl and Willig, 2007). However, with the imminent introduction of much
cheaper wireless sensor nodes (due to the rapid increases of their computational power,
memory capacity, wireless speed, and sensing technologies), we believe that future WSN
applications will involve much larger scale deployments with heterogeneous nodes of dif-
ferent functions and characteristics, some of which are possibly mobile for more dynamic
coverage (Kahn et al., 1999; Chen and Ma, 2006; Oh et al., 2006).

The increase in performance of hardware components is, however, not followed by that
of the nodes’ batteries which historically, has only doubled in capacity every ten years
(Chalamala, 2007). Despite the significant advances in the energy density of rechargeable
batteries and the energy scavenging technologies of solar panels or wind turbines, there
are no near-term solutions for the widening energy gap (see figure 1.4). As a result, the
need to efficiently manage these power resources will still remain of critical importance.
Moreover, the large scale deployment of WSNs will additionally raise concerns about
scalability as most of the currently implemented systems rely on a central coordinator to
operate effectively. Such systems are likely to become infeasible in governing many future
real-world applications. To remedy this, we believe it is desirable to add autonomous
capabilities for self-configuring and self-organizing at the network’s deployment stage,
self-adapting during any dynamic changes, self-sustaining throughout any component’s
failures, and self-optimizing in order to achieve the deployment objectives. Our rationale
here is that it will be intractable for the central coordinator to find the optimal actions
of a large number of nodes (of which each has its own private action space) in a timely
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(Hitachi Storage Technologies) and the computational power of microprocessors (Intel

Corporation). This graph is reproduced from (Chalamala, 2007).

manner, regardless of its processing power (as explained in the previous section).

Therefore, we aim to develop a distributed, scalable, robust, and efficient energy-aware
algorithm that is computationally applicable to a wide range of WSNs (of which most will
involve larger scale deployments in future applications). The algorithm will intelligently
adapt the sampling, transmitting, and forwarding actions that each node in the network
should autonomously choose to perform, and also the route by which each item of sensed
data should be forwarded to the base station, such that the total information collected at
the base station is maximised, given the constraints of limited energy resources imposed
on the nodes to perform their processing, sensing, storing, transmitting, or receiving
activities. With this in mind, we would like to meet the following design objectives:

1. Information Metric: We require a principled approach that is based on a non-
parametric model, to value various temporally correlated sensor observations (typ-
ically with noise and/or uncertainty). The metric will allow a node to make in-
dividual comparisons between different alternative actions and also comparisons
between multiple nodes’ actions. Moreover, in our exemplar FLOODNET envi-
ronmental sensor network (more details of which can be found in chapter 2), hy-
drologists might not be just interested in the water-level depth at sampling points,
but also at times when no reading occurs. In such cases, we observe that although
many information valuation functions that are based on a parametric model often
generate excellent predictions (e.g. the linear techniques for regression in Padhy
et al. (2006) and Hastie et al. (2009)), there is usually no notion of uncertainty
about these predictions. With this notion, however, we are likely to have better
reading estimates at points near the actual collected sampling points, compared
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to any others. This is because we are more certain that the predicted readings will
have similar values to those of the contiguous sampling points.

2. Decentralised Algorithms: The algorithms using this information metric to
control WSNs, should be distributed (i.e. decentralised); that is, there should be no
central coordinator that has a partial or complete knowledge about the network in
order to decide which node (or agent) does which action (Wagner and Wattenhofer,
2007; Boukerche, 2008). This is because a centralised approach suffers from a
lack of robustness, scalability, and ability to cope with the network’s dynamism
since the central controller is required to perform a large number of computations
in order to find each node’s optimal actions. There is also the communication
difficulty of providing all the relevant system states to the central coordinator
in a timely manner. Additionally, such a controller increases dependence and
vulnerability as a greater number of nodes rely on such a single processor that,
if it were to fail, could potentially cause catastrophic failure of the whole system.
Therefore, with the distributed algorithms, the nodes should be capable of taking
autonomous local actions that benefit the overall system.

3. Complete Algorithms: The distributed algorithms should be able to find a
solution (preferably an optimal one) if one exists, otherwise it should correctly
report that no solution is feasible. Many incomplete distributed algorithms are
available in the literature (see chapter 2 for a list), however, they are not desirable
to be implemented on energy constrained wireless nodes as they drain a significant
amount of power, particularly when the nodes are unable to converge to a stable
state.

4. Inter-Dependent Actions: The algorithms should be able to deal with the inter-
dependent actions of sampling, transmitting, forwarding, and routing. In a multi-
hop routing scenario, a node located far from the base station requires the help of
intermediate nodes to relay its data messages. The intermediate nodes therefore
should consider allocating some of their energy to relay messages (i.e. forward or
receive and transmit messages that are not its own) rather than selfishly spend all
their resources sampling and transmitting their own data frequently (Tang et al.,
2006; Chatterjee and Das, 2008). These local decisions are inter-dependent as no
node in the network is able to make such a decision individually. This is because
the sampling, transmitting, forwarding, and routing choices of an individual node
will affect those available to all of the other nodes in the network.

5. Scalability with Real-Time Performance: In general, the distributed algo-
rithms should be scalable to handle WSNs with large number of nodes. More
specifically, we expect our algorithms to handle systems with hundreds or even
thousands of nodes, each of which possesses private state or values initially known
only to itself (for instance, project ExCal by Arora et al. (2005) have deployed
a 1000+ node WSN). Therefore, the whole process of the algorithms should be
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computationally feasible and have minimal memory requirements since nodes are
usually limited in their power resources to drive their processing and storage mod-
ules.

6. Minimum Communication: Communication between the nodes, as well as the
size of the coordination message being communicated, should be minimized. This
is particularly important when the nodes have limited communication bandwidth.
Moreover, communication in a sensor network has an inherited delay and could be
unreliable in many situations, particularly, in hostile environments where WSNs
are predominantly being deployed. Therefore, a good distributed algorithm should
require a small number of message exchanges. Most of the distributed algorithms
in the literature, however, require an exponential increase in the total number of
messages being exchanged, and this is unrealistic for WSNs in which the nodes are
typically installed with limited energy resources to receive and transmit messages.

7. Dynamism: The algorithms should adapt to the network’s dynamism which in-
cludes nodes’ failure (due to, for example, lack of power, physical damage, or en-
vironmental interference) or addition. The states of each node (e.g. its sampling
rate, battery recharging rate, forwarding, and routing actions) vary over time and,
therefore, the algorithms should also be reactive and proactive by responding ac-
cordingly to these changes while minimising the disruption to the overall process
(Ulema et al., 2006).

8. Node Heterogeneity: In many studies, all sensor nodes are assumed to be ho-
mogeneous and to have equal capacity in terms of computation, communication,
and power. However, sensor nodes are currently offered with varying resources,
capabilities, and thus are more likely to have different roles since their characteris-
tics can vary considerably (Lu et al., 2008). Hence, it is desirable if the algorithms
make no assumptions about the set of nodes among which the algorithms are to
be distributed.

1.4 Research Contributions

Against the research requirements outlined above, this thesis makes a number of contri-
butions to the state-of-the-art:

1. We develop a novel generic information metric for sensor networks. This metric
represents the temporal variation in the environmental parameter being sensed as
an unknown function, and then uses Gaussian process (GP) regression to infer the
characteristics (specifically its temporal correlation and periodicity) and value of
this function, over a continuous interval, conditioned on samples made at discrete
times within the interval. We then use the mean Fisher information over the entire
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interval (including periods between which sensor samples were taken) as a measure
of the information content of these actual sensor samples. Thus, informative sensor
samples are those that minimise uncertainty in the value of the environmental
parameter over the entire interval (i.e. a set of samples with the highest value is
able to generate any sets of estimated readings with the least uncertainty at any
times within the interval).

2. Using this information metric, we describe three novel decentralised control al-
gorithms for information-based adaptive sampling which represent a trade-off in
computational cost and optimality. The first uses GP regression within each sensor
node to optimise the time at which a constrained number of future sensor readings
should be taken. This process is exponential in the number of sensor readings
taken and, thus, the second algorithm we present again uses GP regression within
the sensor nodes, but performs a greedy approximate optimisation in order that it
is more computationally tractable. Finally, we further reduce the computational
cost by using a heuristic algorithm within each sensor node, rather than the GP
regression, in order to select the times at which future sensor readings should be
taken.

3. In order to ground and evaluate this approach, we need to exercise it in a particular
domain and here we choose flood monitoring and, in particular, the FLOODNET
sensor network. In this setting, the heuristic algorithm is empirically shown to
increase the value of information gathered by approximately 83%, 27%, and 8%
per day compared to benchmarks that sample in a näıve non-adaptive manner,
in a uniform non-adaptive manner, and using a state-of-the-art adaptive sampling
heuristic (USAC), correspondingly. Furthermore, it provides information whose
total value is approximately 75% the optimal solution (which requires an expo-
nential and, thus, impractical amount of time to compute).

4. We develop a novel decentralised algorithm that varies each sensor’s inter-dependent
sampling, transmitting, and forwarding rates (or actions) to ensure all nodes in a
network focus their limited resources on maximising the information content of the
data collected at the base station. This algorithm assumes that the route by which
the data is forwarded to the base station is fixed (either because the underlying
communication network is a tree or because an arbitrary choice of route has been
made). This algorithm is scalable (running on thousands of nodes in real-time)
since by utilizing distributed dynamic programming techniques, it allows each node
to make computationally tractable and optimal local decisions regarding its inte-
gration of actions, which are influenced by its own local circumstances, and those
of its parent and children.

5. Using the same distributed dynamic programming technique to extensively trun-
cate the search space of potential allocation decisions, we extend the fixed route
algorithm to deal with flexible routing. This allows each node to make optimal
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decisions regarding both the inter-related sampling, transmitting, and forwarding
actions that each node should perform, and also the route by which data should
be forwarded to the base station.

6. In order to ground and evaluate these algorithms, we empirically evaluate them
and show that they represent a trade-off in optimality, communication cost, and
processing time. In more detail, we show that when deployed on sensor networks
whose underlying communication networks exhibit loops, the algorithm with flex-
ible routing is able to deliver approximately twice the quantity of information to
the base station compared to that of the algorithm using fixed routing. However,
this gain comes at a considerable communication and computational cost (increas-
ing both by a factor of 100 times). Thus, while the algorithm with flexible routing
is suitable for networks with a small numbers of nodes, it scales poorly, and as the
size of the network increases, the algorithm with fixed routing should be favoured.

Specifically, these contributions have been published in:

• J. Kho, A. Rogers, and N. R. Jennings. Decentralised Adaptive Sampling of
Wireless Sensor Networks. In Proceedings of the 1st International Workshop on
Agent Technology for Sensor Networks, a Workshop of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, May 2007.

This workshop paper describes a distributed adaptive sampling algorithm (part of
Contribution 2) which uses a simple information metric based on the uncertainty
values of the regression line of actual FLOODNET sensor samples. The paper then
evaluates the algorithm and shows that it collects information that has significantly
less uncertainty error than a uniform non-adaptive approach (part of Contribution
3).

• J. Kho, A. Rogers, and N. R. Jennings. Decentralised Control of Adaptive Sam-
pling in Wireless Sensor Networks. ACM Transactions on Sensor Networks, 5(3),
2009 (In Press).

This article describes a novel principled information valuation of sensor readings
based on Fisher information and GP regression (Contribution 1), and details the
theoretical optimal, greedy, and an extended version of the decentralised heuristic
adaptive sampling algorithm presented in Kho et al., (2007) (Contribution 2). The
article then evaluates each algorithm in the FLOODNET setting and provides
empirical results that the heuristic algorithm performs better than a number of
benchmarks by offering the best trade-off between the computational cost and
optimality (Contribution 3).

• J. Kho, L. Tran-Thanh, A. Rogers, and N. R. Jennings. Decentralised Control
of Adaptive Sampling and Routing in Wireless Visual Sensor Networks. In Pro-
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ceedings of the 8th International Joint Conference on Autonomous Agents and
Multiagent Systems, May 2009 (In Press).

This short paper briefly highlights the research challenges in wireless visual sensor
networks due to the inherent computational, storage, and power resources in their
wireless smart camera nodes, and highlights the need of distributed algorithms in
order to optimize the nodes’ collected data at the base station by adapting their
sampling and routing actions (part of Contributions 4 and 5).

• J. Kho, L. Tran-Thanh, A. Rogers, and N. R. Jennings. Distributed Adaptive
Sampling, Forwarding, and Routing Algorithms for Wireless Visual Sensor Net-
works. In Proceedings of the 3rd International Workshop on Agent Technology
for Sensor Networks, a Workshop of the 8th International Joint Conference on
Autonomous Agents and Multiagent Systems, May 2009 (In Press).

This paper details the adaptive sampling, transmitting, and forwarding algorithm
for fixed routing in tree-structured networks (Contribution 4), and another algo-
rithm for flexible routing in networks with any topologies (Contribution 5). The
paper then empirically evaluates them and shows that albeit collecting more infor-
mation value, the latter algorithm increases the communication and computational
cost significantly compared to the former (Contribution 6).

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• In chapter 2, we provide a literature review of WSN applications in general and
the chosen FLOODNET domain testbed in particular. We then describe a decen-
tralised paradigm for controlling such networks using an agent-based approach.
Following that, we conduct a thorough survey of current research in information
metrics, adaptive sampling, adaptive routing, and inter-related adaptive sampling
and routing algorithms that are available in the literature. We also discuss their
limitations against the requirements that we placed earlier in this chapter and,
thus, motivate the work that we present later in the proceeding chapters. Finally,
we remark what models and approaches we can build upon and where further
improvements are needed.

• In chapter 3, we describe the intuition of information-based adaptive sampling,
and provide a formal model of a WSN system. We then show how we use a
GP package to calculate our Fisher information value since this will allow the
information content of a node’s observations to be expressed. Following that,
we formulate the three decentralised control algorithms that maximise the Fisher
information metric for solving the adaptive sampling problem. In the same chapter,
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we conduct a thorough empirical evaluation and show that the heuristic algorithm
collects an information value close to the optimal one and significantly more than
those collected by existing approaches. More importantly, it runs in real-time and,
hence, is scalable for large scale networks.

• In chapter 4, we begin by presenting an exemplar scenario where inter-related
adaptive sampling, transmitting, forwarding, and routing problems typically occur.
We then formalize the problem by extending our system model from the previous
chapter. Following that, we detail the two distributed optimal algorithms for
solving the problem. The first assumes fixed routing and works in tree-structured
networks. The second works in networks with any topologies by using a flexible
routing approach. Finally, we evaluate them and show that the algorithm with
flexible routing is suitable for networks with a small numbers of nodes as it is
scalable to only tens of nodes. For large-scaled networks, the algorithm with fixed
routing is better.

• We conclude this thesis in chapter 5 by focusing on a summary of our research
contributions, and finally outline future work that can be carried out to extend
and enhance the proposed algorithms. This is followed by appendix A which lists
a log of FLOODNET nodes’ data and appendix B which enumerates the acronyms
we use throughout this thesis.



Chapter 2

Literature Review

In this chapter, we discuss the existing literature in the area of adaptive sampling and
routing algorithms, and we highlight the limitations of each of these algorithms and, thus,
motivate the research in this thesis. To this end, in section 2.1, we begin by outlining the
background of WSN applications in general and introducing the FLOODNET domain in
particular. In section 2.2, we then describe, in general terms, decentralised approaches
for controlling such networks using agent-based modelling. In section 2.3, we provide a
background review on information valuation metrics as this is central to the development
of information-based adaptive algorithms. In sections 2.4 and 2.5 respectively, we detail
some of the most commonly used adaptive sampling and adaptive routing algorithms
that have been developed for WSNs. In section 2.6, we then discuss existing inter-
related adaptive sampling and routing algorithms. Finally, we conclude in section 2.7
by summarising our findings and relating them back to our original research requirements
(as detailed in section 1.3).

2.1 Wireless Sensor Network Applications

WSNs, each of which consists of a set of wireless sensor nodes, are beginning to be de-
ployed at an accelerated pace for an increasing array of applications. Many of them have
been demonstrated in environmental and habitat monitoring applications (Mainwaring
et al., 2002; Cardell-Oliver et al., 2005; De Roure, 2005; Padhy et al., 2005; Werner-Allen
et al., 2006). Some have been installed in civil structures to continuously monitor build-
ings’ structural health such that the networks can proactively determine the safety of
the structures following a natural disaster for example (Chintalapudi et al., 2006). Ad-
ditionally, WSNs are becoming increasingly popular for monitoring spatial phenomena
such as the temperature distribution in a building and controlling heating, ventilation,
and air conditioning (Reinisch et al., 2007; Krause et al., 2008). The military has also
used WSN technology for battlefield and area surveillance or counter-sniper systems to

15
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detect and accurately track sniper shooters’ locations and movements in urban envi-
ronments (Simon et al., 2004; Ledeczi et al., 2005; Bramberger et al., 2006; He et al.,
2006). Moreover, the emergency and healthcare services are starting to use pervasive
health monitoring technology of intelligent wearable sensors, known as the Body Sensor
Network, on patients under rehabilitation in order to improve the quality of the pro-
vided care (Kroc and Delic, 2003; Rahman and Shabana, 2006). Sensors could also be
implanted in the human body to monitor medical problems like cancer (Lo and Yang,
2005).

Now, such networks of battery-powered sensor nodes that wirelessly communicate infor-
mation sampled from the environment to a base station are becoming ever more popular
because they have many important advantages over their wired counterparts, including:

• Cost Effectiveness: Pervasive and ubiquitous computing technologies allow
cheap nodes in wireless networks to incur less costs in terms of setup, opera-
tion, and communication (Zachary, 2003). In a wired network, however, the cost
of wiring sometimes greatly exceeds the cost of the nodes (Rabaey et al., 2000).

• Extreme Deployment Environments: Wireless nodes can be deployed in in-
hospitable, extreme outdoor conditions where humans are normally prevented from
accessing such harmful sites (means that it would be impractical or often impos-
sible to set up a wired network).

• Scale, Size, and Availability: Large numbers of cheap and failure-tolerant
small wireless nodes can be scattered to cover a large geographical sensing area.
Installing and configuring a few hundred nodes in a wired network, on the other
hand, would be extremely time-consuming and error-prone.

• Dynamic Coverage: Wireless nodes can provide a greater level of flexibility by
allowing the possibility of having mobile nodes that move around the environment
being sensed in order to provide dynamic coverage. Such dynamism is typically
impossible within a wired network.

Within this thesis, we focus in particular on environmental wireless sensor networks
(EWSNs). We do this because the environment is a key application area for sensor net-
works and because there is considerable local expertise and access to deployed systems.
Examples of relevant (non-local) EWSNs include a volcano monitoring project that has
deployed sparse arrays of high spatial separation nodes in Volcan Tungurahua in cen-
tral Ecuador to support volcanoes studies (Werner-Allen et al., 2006), a bird habitat
monitoring system on several remote islands on the coast of Maine (Mainwaring et al.,
2002), a soil moisture and temperature monitoring project in Australia (Cardell-Oliver
et al., 2005), a hydrological environmental monitoring system in Tucson, Arizona (Delin
et al., 2004), a habitat monitoring project in cryogenic environments in Antartica (Delin
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et al., 2003), and a soil monitoring operation that has developed an underground wire-
less network of soil sensors to improve farming while minimizing environmental impacts
in central Iowa (Huang et al., 2008).

We now turn to two EWSNs of the University of Southampton deployments; namely
(i) GLACSWEB (because it is considered to be the most relevant background work
for which a similar adaptive sampling and communication algorithm to ours has been
devised), and (ii) FLOODNET (because we are using it as our testbed domain to test
our proposed mechanisms). The GLACSWEB project (Padhy et al., 2005) has produced
and placed a few tens of nodes inside the Briksdalsbreen glacier in Norway in order to
monitor the glacier movement and behaviour. The study site on the glacier was chosen
as it was flat and crevasse-free with safe access. The system operated from August 2004
to August 2006. Due to the glacier’s retreat, GLACSWEB researchers redeployed the
nodes at Skalafellsjokull glacier, a part of Vatnajokull National Park in Iceland in 2008.
The FLOODNET project (De Roure, 2005) has also developed and deployed several
wireless sensor nodes to form a WSN system that monitors the water level in the River
Crouch, East Essex in Eastern England. The site was chosen for its tidal behaviour such
that, for test purposes, there are regular variations in the water level. These variations
are particularly important for generating and testing an improved hydraulic model and
flood simulator which enables environmental experts to predict floods in advance (Neal
et al., 2007).

2.1.1 The GLACSWEB System

The aim of GLACSWEB is to develop a wireless network of autonomous probes (i.e.
sensor nodes) that could be inserted into the Briksdalsbreen glacier’s ice and till (or
the subglacial sediment). These probes should be able to collect several environmental
parameters related to the glacier’s behaviour that are useful for subglacial dynamics
and send them back to the surface via radio communications without disturbing the
surrounding environment. The collected data will then be accessed world-wide in near
real-time by researchers via the Internet in order to better understand climate change
involving sea level change due to global warming and, eventually, to act as a vital
environmental hazard warning system. Glaciologists believe it is important to monitor
how glaciers contribute to releasing fresh water into the sea as this activity could cause
rising sea levels and great disturbances to the thermohaline circulation of sea water
(Braithwaite and Raper, 2002).

In more detail, each of GLACSWEB nodes (shown in figures 2.1(a) and 2.1(b)) is around
12cm in length. More specifically, it comprises of six main components; namely (i) a
micro-controller (of a PIC181 family which controls the entire node’s system including

1http://lis.epfl.ch/contest/flying07/docs/resources/PIC 18XXXX.pdf, checked on
02/02/2009.
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(a) The hardware and the shell (taken from (Mar-
tinez et al., 2006)).

.

.

(b) The hardware parts in modules (taken from
(Martinez et al., 2006)).

Reference Station

Sensor Network Server
(Southampton)

Internet

(c) The deployed GLACSWEB system configured
using a Time Division Multiple Access protocol (re-
produced from (Elsaify et al., 2007)).

(d) The base station (taken from (Padhy et al.,
2005)).

Figure 2.1: GLACSWEB WSN.

reading (i.e. sampling) and running the node’s radio transceiver modules in order to
transmit or receive collected readings), (ii) a real-time clock2 (to control the node’s wake
up and sleep time), (iii) storage (with an on-board 128KByte memory that is used to
store programs as well as the communication control and sensors’ sampled data), (iv)
sensors (that include an orientation, a water pressure, a temperature, a resistivity, a case
stress, a humidity, and a light reflection sensor), (v) a radio communication system (with
a 433MHz helical antenna and a power amplifier), and (vi) a power controller and supply
(that is supported by three AA-sized lithium batteries of which each provides 2.25Ah).
All these six hardware parts are bundled inside a specifically designed water-proof white
tube-shaped polyester case.

The node runs in 5 different modes; namely (i) sleep mode (in which all its components
are turned off apart from the clock; this requires only 105µJ/s of energy to operate), (ii)

2http://www.maxim-ic.com/products/rtc/real-time-clocks.cfm?, checked on 02/02/2009.
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sampling mode (in which sensors are on to take samples, demanding 0.3J per sample),
(iii) transmission mode (in which only the node’s transmitter module is switched on to
transmit samples sent in packets, taking 0.5J per packet), (iv) receiving mode (in which
only the node’s receiver module is on to receive samples, requiring 0.15J per packet),
and (v) idle transceiver on mode (taking only 0.1J per second). Each packet is made up
of 64Bytes.

Glaciologists from the University of Southampton have deployed these nodes within the
glacier (see figure 2.1(c)). Now, due to the significant radio losses in the upper ice
layer, the nodes in the glacier are unable to reliably communicate with the base station
on the surface. Four anchor nodes are therefore connected directly to the base station
via a serial cable (represented by solid lines in the figure). They act as cluster-heads
responsible for communicating with the other nodes in their own sub-networks. The
base station (as shown in figure 2.1(d)) is responsible for collecting data from the nodes.
It also transmits the collected data via a radio modem down the valley to a reference
station (with a PC on a main power), from which the data is sent to a web server in
Southampton for daily back-up and made accessible from the Internet.

GLACSWEB originally adopted a centralised regime to control its system whereby each
GLACSWEB node is centrally programmed (in its real-time clock) to have fixed wake up
and sleep schedules and, hence, fixed data collection and transmission times. The clock
dictates the node to take samples at four hour intervals and to communicate them to the
base station every twelve hours. During the communication period, the nodes enable
their radio transceivers for a fixed duration. The base station also powers up during
this period, broadcasts the system time, and requests undelivered sensor readings from
the nodes. The reference station then wakes up to receive data transfer from the base
station. All the data that has been recorded is then transferred to the data server in
Southampton during a transfer period (at nineteen hour intervals).

To combat the limitations introduced by controlling such a WSN in a centralised manner,
Padhy et al. (2006) have recently developed a decentralised control to adaptively vary
the sampling actions and routing behaviour of each GLACSWEB node (for more details,
see sections 2.4 and 2.6 for the adaptive sampling and the adaptive routing aspect of
the control respectively). The decentralised algorithms, however, are not complete and
efficient since they are loosely coupled and this can sometimes result in no data collection
at the base station (see section 2.6 for a more detailed discussion).

2.1.2 The FLOODNET System

Having described the existing work in GLACSWEB, we now review the FLOODNET
project. In terms of background, flood damage in the UK rose from £1 billion lost in
1999, to nearly £1.3 billion two years later. In 2007, it was measured that flood losses
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approached nearly £3 billion (Harman, 2007; Pitt, 2008) and it could possibly hit £16
billion with the impact of climate change in 50 years time (Haddrill, 2007). Even worse,
around 5 million people, in 2 million properties, currently live in flood risk areas in
the UK. Now, this risk of flooding is increasing significantly for a number of reasons
including land-use change, climate change, flood-prone investment, and the defect of
timely flood warning for those people under threat.

Given its importance, we choose flood detection as our target domain, and given its
accessibility, we choose FLOODNET as the specific sensor network. Moreover, in com-
parison with GLACSWEB’s, FLOODNET nodes are much more powerful in terms of
computational and power resources. This, in turn, allows us to deploy an agent in-
side each node in order to compute all its own computational local actions using our
mechanism.

The ultimate aim of FLOODNET is to provide early warning of flooding such that
actions can be taken to alleviate risks to people and property. This early and precise
warning is crucial as there is a clear correlation between the cost of damage and both
the time in advance any warnings are given and the depth of the flooding. To this end,
the FLOODNET system is currently deployed to gather precise tide height readings to
enable a calibrated hydrological model of the deployment area to be constructed. The
network must withstand long term unmanned operation without any significant human
intervention as nodes are deployed at a number of hostile and not easily accessible loca-
tions where periodic data collections also might not be possible particularly in extreme
environment conditions (for instance during floods). The network thus incurs less costs
in terms of setup, operation, and communication compared to equivalent data logging
devices.

Within the FLOODNET domain, the flood predictions can be simulated based upon the
input sets of the water level data taken periodically from the site. However, there is a
resource cost associated with collecting, storing, processing, and utilising sensed data.
It is therefore important that the sampling and routing framework used to acquire the
data maximises the delivery of information to the available forecasting models, given
the limited energy resources available.

In more detail, FLOODNET consists of twelve nodes, each of which (shown in figures
2.2(a) and 2.2(b)) is based around a BitsyX3 Single Board Computer (SBC) that uses
an Intel 400MHz PXA255 RISC microprocessor. Since the SBC consumes a significant
amount of power (1000mW) when providing field processing capabilities, it is in sleep
mode for most of the time. The board provides support for PCMCIA where a wireless
LAN PC card (Conexant NL-2511CD Plus Ext2) is installed to send and receive data
wirelessly from the neighbourhood nodes (requiring an additional 910mW and 640mW
of power respectively, however, in power safe mode, the card only consumes 90mW of

3http://www.applieddata.net/products bitsyX.asp, checked on 02/02/2009.
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(a) The node on site (taken from (De Roure, 2005)). (b) The hardware parts (taken from (De Roure,
2005)).

(c) The node’s solar panel.
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(d) The deployed FLOODNET system.

Figure 2.2: FLOODNET WSN.

power). Each node is also installed with a sensor module which consists of a PIC16F88-
I/P PIC (that is used for data processing), an AD8544 A/D, an AD8541 A/D (both are
used as Analog-to-Digital converters), and a PDCR1830 water-depth transducer sensor
(which is used to make tide height measurements, requiring another additional 50mW
of power when activated). The PIC and converters are always turned on as they operate
with tiny power consumption (requiring only 20mW of power). In addition, each node is
equipped with a rechargeable lead-acid battery (FullRiver4 HGL12-12 12V 12Ah/20hr)
and a solar panel (BP5 Solar BP SX 10U as shown in figure 2.2(c)), such that it can
harvest solar energy to recharge the battery during the day.

Now, although the wireless transmission signal (under IEEE 802.11b 2.4GHz standard
with up to 11Mbps bandwidth) of each FLOODNET node can cover a range of up to
1200 metres in an open space, the presence of obstructions such as sea walls, trees,

4http://www.fullriver.com/products/admin/upfile/HGL12-12.pdf, checked on 02/02/2009.
5http://www.datataker.com/Library/Product Data Sheets TS/Accessories/BP Solar SX10.pdf,

checked on 02/02/2009.
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Figure 2.3: The battery consumption diagram of FLOODNET nodes.

and buildings at the FLOODNET field side, means that the nodes are only capable
of communicating reliably over a maximum range of around 600 to 800 metres. Thus,
most nodes do not have a direct link with the base station (see figure 2.2(d)). Nodes are
numbered in the figure and able to directly communicate only with their close neighbour-
hood nodes (represented by lines). Node 1 is the base station while others are ordinary
nodes. Each node that does not have any lines attached to it represents an old node
that has already been removed. The nodes in the network have a single transmission
level. Neighbourhood nodes within this transmission range can hear, receive, process,
and re-broadcast the transmitted messages with the objective of transmitting the data
back to the base station.

Having outlined the basics of FLOODNET system, we now consider the two types of
regime that can be used to control it; the currently deployed centralised one, as well as
our proposed decentralised one.

2.2 Agent-Based Decentralised Control

Many of the WSNs described in the previous section adopt a centralised control regime
such that there is a central coordinator node, which is normally a base station or a node
with much more computational, communication, and power resources. Such a node
possesses detailed global knowledge about the state of the overall system (including the
states of all the other nodes) and dictates which node in the network does which actions.
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Figure 2.4: The centralised FLOODNET infrastructure.

Like many other similar applications, FLOODNET currently adopts a centralised regime
to govern its system whereby each FLOODNET node is centrally programmed to have
a controlled sampling rate and routing path. The node currently takes samples and
stores them locally in its local memory at five minute intervals (in which the sensor is
switched on for approximately two seconds). Each sample includes a mean water-depth
measurement, a measurement variance estimate, the remaining battery power, and the
time (see appendix A for a log of FLOODNET nodes’ data). Following that, it activates
its SBC with the corresponding transceiver modules every two hours for the purpose of
transmitting the collected data to the base station via non-adaptive multi-hop routing.
The measurements sampling process consumes a small amount of power (around 70mW)
relative to that of the data transmission (around 1910mW), as shown in figure 2.3. The
base station subsequently relays the data to a Geographical Information System (GIS)
database using General Packet Radio Service (GPRS). Scientists from the Geography
Department of the University of Southampton then use this incoming data within a
hydraulic prediction model to make accurate and timely flood forecasts. At the same
time, various parties who are interested in the data can as well subscribe to the incoming
data stream (see figure 2.4).

The incoming sensed data (together with meteorological data) influences the program-
mer in setting the nodes’ next sampling rates. Now, as outlined in section 1.2, this
centralised approach to control has a number of drawbacks. This is because the exis-
tence of a central coordinator (i.e. the programmer) could slow down the performance
of the system since it could be required to perform a large number of computations for
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determining the actions that should be taken by each node and, hence, could act as
a catastrophic bottleneck (as shown in figure 2.4). Moreover, the centralised control
regime could suffer from a lack of scalability and ability to cope with the network’s dy-
namism and, therefore, is undesirable and often ineffective. On the other hand, if control
and responsibilities are shared among nodes, the system can tolerate the failure of one
or more of the nodes without overly affecting the overall performance (Marin-Perianu
et al., 2007).

Now, there are occasions when the centralised control paradigm is appropriate (e.g.
when the domain problem is reasonably static or when there are relatively few nodes
in the network), but when the problem is dynamic then decentralised control systems
are likely to be better. In these circumstances, decentralised (or distributed) strategies
become attractive because they increase both the speed of the network’s deployment
and its robustness as communications no longer have to pass through a single point. It
also reduces costs and places greater emphasis on smaller, cheaper computerised nodes,
which are now more feasible because of the dramatic growth in computer power and
resources (Zachary, 2003). Furthermore, the dynamic nature of future real-world WSN
applications (including the node’s failures or additions at any time and the limited
knowledge of the topology issues) are likely to be better addressed by controlling the
network in a decentralised manner.

Therefore, we remark that though FLOODNET is an exemplar of a small scale WSN and
the currently implemented centralised control is still computationally tractable to adapt
the actions of a small number of FLOODNET nodes in a timely manner, we would like
to target our more robust and scalable decentralised approach to a wider range of WSNs,
most of which will involve larger scale deployments. To illustrate the reason behind this,
consider a scenario when the coordinator ceases and both nodes 8 and 9 in figure 2.4
currently sample at their highest rates and transmit their sampled readings according
to a fixed path (i.e. both relay their messages through node 7 in order to get them to
the base station). With no further instruction from the coordinator, both nodes will
continue sampling at maximum rates and thus, rapidly deplete their energy resources.
Node 9 will therefore be unlikely to be able to forward node 8’s data readings in the
near future. Moreover, node 8 will waste its energy by sampling data that will never get
relayed to its destination. Under a decentralised regime, however, nodes 8 and 9 could
autonomously adapt their sampling actions. Node 9 will also take into consideration
the fact that its neighbour node 8 needs its help to relay data messages and hence, will
pro-actively allocate a portion of its energy for this activity.

Our ultimate aim is therefore to remove the centralised point of control in FLOODNET
system and deploy our decentralised information-based control of adaptive sampling,
transmitting, forwarding, and routing algorithms within the FLOODNET nodes them-
selves. By doing so, the aim is to maximise the information value of the data collected
at the base station, given the limited energy resources available (see the next section for
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Figure 2.5: The decentralised FLOODNET infrastructure.

a number of information valuation metrics that are most commonly used to express the
information content of sensor samples).

To this end, figure 2.5 shows the conversion of FLOODNET’s centralised control regime
to that of an agent-based decentralised one. Specifically, this is achieved by eliminating
the central controller. We replace it by developing a distributed mechanism for each
node in the network which provides simple local decision rules. The local decision rules
give each node the ability to choose its decisions regarding its adaptive sampling rates
adjustment (dictated by an adaptive sampling algorithm which is marked with num-
ber 1 in figure 2.5) and transmitting, forwarding, as well as next-hop routing decisions
(dictated by an adaptive transmitting, forwarding, and routing algorithm together with
the help of a coordination mechanism, both are marked with number 2 in the figure)
based only on its local information and those of its parents and children. The coordi-
nation mechanism dictates how each agent (i.e. node) communicates with others and
what minimum information is exchanged. Information provided to each node in order
to enact the adaptive sampling policies includes only the node’s past collected samples.
Whilst that for the transmitting, forwarding, and routing policies includes its own and
parents’ residual battery power and communication costs, as well as the information
value of the data its children and itself could potentially collect.
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Having outlined how decentralised control will operate within the specific setting of
FLOODNET, we now return to the more general setting of EWSNs. As discussed pre-
viously, in such settings, we consider each node within the WSN to be an autonomous
intelligent agent because it has private information regarding its own state and it can de-
cide for itself without any external coordinators, and the network itself as a multi-agent
system because the individual agents need to coordinate their activities cooperatively
towards achieving system-wide goals (that is, each agent is capable of reactive, social,
and goal-directed behaviour) (Weiss, 2000; Wooldridge, 2002; Rogers et al., 2009). We
believe this agent-based modelling is essential in controlling the nodes with their inher-
ent distributed nature to select the best strategy to maximise the global objectives in
accordance with other nodes. Within this context, each node must be able to decide
for itself whether or not to perform an action on request from another node. This is
different from the node being a passive distributed object which encapsulates some pri-
vate states and has public methods corresponding to operations that other nodes are
always allowed to perform on these states. There is, nevertheless, a similarity between
distributed passive objects and reactive agents in a way that they both interact with
others via message passing.

To illustrate this, consider the network scenario expected in figure 2.5 where node 7 is
out of the base station’s transmission range and hence, needs the help of either node 3, 9,
or 10 to relay its recorded samples to the base station. As node 7 has social and proactive
behaviour, it cannot attempt to achieve network goals by sending its data selfishly to the
base station without taking others into account as these goals can typically be achieved
only with the cooperation of others. Node 7 thus coordinates with others by exchanging
coordination messages (more details of which can be found in section 4.4). Node 7 will
consequently choose not to relay through node 9 which is one-hop further than itself
to the base station. Assuming that node 10 has much energy remaining, it will be
willing to cooperatively forward node 7’s data. However, if later node 10 detects any
dynamic events with high importance values in its readings, it will increase its sampling
rate and this is likely to drain its energy budget rapidly. Following that, node 10 will
reactively stop forwarding for others and refuse any further requests (as it is reactive to
the changes in its environment). Node 7 will therefore change its routing path via node
3, which has its own right to refuse node 7’s request if necessary in order to achieve
global goals. In a more complicated setting (that we will consider as part of our future
work), a node might compete with others in maximising its own utility and therefore,
must be incentivised to take an action that benefits the overall system (see section 5.2
for more details).

Against this background, Corkill et al. (2007) have developed an agent-based, power-
aware sensor network for atmospheric monitoring (named the Collaborative Network for
Atmospheric Sensing). In their communication setting, data should be delivered within
a certain period of time from the moment it is sensed, otherwise it will be useless. Agents
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(or nodes) must then coordinate with others to have their radios turned on when others
are sending messages to them, otherwise some energy will be wasted due to dropped
messages since most of the time, nodes are in their sleep state. In a WSN where energy
is scarce, a clock synchronization protocol typically involves large message exchanges and
induces extra processing, both of which can be very expensive (Sundararaman et al.,
2005). Therefore, in our communication setting, we will assume that the transmission
time and interval of nodes are fixed and pre-determined.

Horling et al. (2001) also adopt an agent-based paradigm to deal with the issues of
coordination and reconfigurable sensors within their distributed sensor networks for
real-time tracking in order to track one or more targets that are moving through the
sensor environment. In their setting, the sensors are divided and placed into different
sectors, each of which has an agent serving as the manager of the sector. The manager
decides and organizes the scanning schedules of each node in its sector. In doing so,
it must possess a complete information regarding the state of each node in its sector.
The managers could therefore potentially act as bottlenecks as if any of them fails, this
will overly affect the overall performance of the network. Their approach thus does not
satisfy our Requirement 2 (as argued in section 1.3).

Within this agent-based approach, a useful technique that has emerged for solving multi-
agent distributed coordination problems is that of distributed constraint optimization6

(DCOP or DisCOP). To date, there has been a rich set of real-world distributed applica-
tions, such as in the area of networked systems, for which this technique has been used,
particularly, in distributed applications where constraints exist among agents. Thus we
explore this area further.

In more detail, a number of algorithms in the area of DCOP have been developed; these
include Synchronous Branch and Bound (SBB) (Hirayama and Yokoo, 1997), Distributed
Breakout Algorithm (DBA) (Yokoo and Hirayama, 1996), Asynchronous Distributed Op-
timization (ADOPT) (Modi et al., 2005), Distributed Pseudotree Optimization Procedure
(DPOP) (Petcu and Faltings, 2005), Asynchronous Partial Overlay (APO) (Mailler and
Lesser, 2006), and Max-Sum (Farinelli et al., 2008). Now, many of these algorithms are
based on the dynamic programming method because it is often used to solve problems
with distinguished properties of overlapping subproblems7 and optimal substructure8.
The method works by (i) breaking down the multi-agent problem into smaller subprob-
lems, (ii) solving these subproblems optimally using this three-step process recursively,
and (iii) constructing an optimal solution to the original problem by using these optimal

6DCOP is a distributed constraint optimization problem in which a group of agents (or nodes) must
choose values (or actions) from a set of variables in a distributed manner (as each agent possesses its
own private values), such that the actions maximises an objective function, while also satisfying the set
of imposed constraints over the variables.

7A problem with the overlapping subproblems property means that it can be broken down into
subproblems which are reused several times.

8A problem with the optimal substructure property means that the optimal solution to the problem
can be constructed efficiently from optimal solutions to its subproblems.
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solutions of the subproblems (Kellerer et al., 2004).

However, SBB is found to be ineffective due to its slow performance (and, hence, fails
to meet Requirement 5). Moreover, it uses the notion of a virtual agent that acts as
a central manager to deliver messages among agents. Now, due to the existence of
this manager that is aware of all of the delivered messages’ state, SBB does not meet
Requirement 2 either. DBA is preferable when we want a near optimal solution much
quicker than SBB, however, it may fail to return a solution even if one exists and also
it cannot correctly determine if no solution exists (and, therefore, does not satisfy Re-
quirement 3). To counter the limitations introduced by systematic, synchronous, and
sequential message exchanges between nodes, ADOPT and DPOP are guaranteed to
converge to the optimal solution while using only localized asynchronous communica-
tion and computation in the setting of a sensor resource allocation problem. However,
since these algorithms are complete and asynchronous, they require an exponential in-
crease in either the total message size being exchanged or the memory complexity on
the agents. This is unrealistic for WSNs in which the nodes are typically installed with
limited computational, storage, and memory resources (Requirements 5 and 6). More-
over, they are not specifically tailored to the specific problem that we address here.
We will, however, adopt a similar message propagation method where nodes coordinate
and exchange meta-data regarding the utility of the actual data with its neighbourhood
nodes before sending the actual data itself. This is done in order to efficiently make use
of the limited energy resources. In contrast, APO uses centralised mediator agents to
compute the solution for portions of the original problem. It lacks distributed control
and, therefore, does not satisfy Requirement 2. Finally, Max-Sum exchanges messages
between conflicting low-power sensor nodes using a cyclic bipartite factor graph rep-
resentation. It scales very well in tree-structured graphs and generates approximate
solutions close to the global ones returned by ADOPT and DPOP. However, it is not
a complete algorithm, and may fail to converge in cyclic graphs as there is no built-in
termination algorithm to stop the message exchange process.

In a somewhat related setting, Pizzocaro et al. (2008) try to optimize a sensor mis-
sion assignment problem by modelling it as a NP-complete multiple knapsack problem9

(MKP). They introduced the sensor utility maximization model in which each sensor-
mission pair is associated with a utility offer. Each mission might require and compete
for the same sensors, however, a sensor can only be assigned to serve only one mission
at any point of time. A profit function is formulated and this represents the value that
a sensor can bring to a mission. The goal is therefore to maximise the total profit, while
ensuring that the total utility cumulated by each mission does not exceed its uncertain
demand (otherwise, some utility offer will be wasted). A novel greedy algorithm was de-
veloped and showed to perform better compared to a number of benchmarks by offering

9MKP is an optimization problem by choosing a set of items, each with different value and weight,
that can fit into a number of bags, each with a different capacity, such that the total value is maximised
and the total weight on each bag does not exceed its given limit.
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the best trade-off between the quality of the returned solution and the computational
cost. However, the algorithm considered here follows a centralised approach, where all
the intensive computation takes place at a central node which has all the information
about the system’s state and, consequently, it does not answer Requirements 2 and 5.
The dynamism (Requirement 7) of the sensor-mission pair, where a mission may change
or adapt its priority value over time if its demand is not met after a certain period of
time, is also missing in this work.

Now, each of the message-exchanged type of coordination mechanism we have discussed
so far involves a relatively small additional cost in communication. This is inevitable
as each agent possesses only a limited knowledge of the network’s global problem and
so, has to communicate and exchange coordination information with others. Thus, such
a mechanism might not be ideally suited for WSNs with small data sets (including
FLOODNET) as the resources required to perform the coordination activity may over-
whelm those for transmitting the actual data which is typically of simple scalar value
that requires a small amount of energy to process (e.g. to sample, transmit, and receive)
due to its small size. To deal with this point, we motivate our new adaptive algorithms,
which are developed in chapter 4, by considering wireless visual sensor networks which
capture data of a much larger size (more details of which can be found in section 4.2).

2.3 Valuing Information in a Wireless Sensor Network

To operate effectively, a mechanism needs a means of valuing the various resources that
are exchanged and allocated. In our case, the nodes exchange information about their
local states and observations, and so we require a means for the nodes to place a value
on any piece of information or observation. These properties are encapsulated in an
information valuation function (in our case, it is a metric to determine how good a
particular piece of sensor observation is compared to another), which also defines the
desired outcome for a node’s sampling action. The observations deal with uncertainty
and imprecision that might be caused by noise.

Within the data fusion and tracking literature, where spatially correlated sensor readings
typically represent the estimated position of a target, there are a number of standard
techniques for doing this. Most common, is the use of Fisher information, whereby
the estimated position of the target is represented as a multi-dimensional probability
distribution, and Fisher information is used to quantify the uncertainty represented by
this distribution (Bar-Shalom et al., 2001; Chu et al., 2002; Frieden, 2004; Zhao and
Guibas, 2004).

Specifically, Chu et al. (2002) describe Information-Driven Sensor Querying (IDSQ) for
an array of sensing nodes that are used to estimate the position of a target being tracked.
The algorithm is decentralised, and each cluster-head node selectively chooses to fuse
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its own information with that of other available nodes, in order to update its current
belief about the target’s position. It is the job of IDSQ to direct each cluster-head node
to fuse the most valuable data (i.e. data that more accurately represents the target’s
position), and to do so, a Fisher information measure is used. In our work, we follow a
similar procedure in order to determine the value of previously collected and temporally
correlated sensor observations. The value can then be used to decide on the nodes’ next
sampling plans (more details of which will be given in section 3.3).

Krause et al. (2006) use a Gaussian process to model the spatial correlations between
nodes, and then use these correlations to select the subset of node placements that is
most informative. The mutual information metric that they use is also very similar to
the Fisher information metric that we use here in our work. However, instead of using
the metric to express the information content of spatially correlated sensor samples, we
use it to model the temporal aspect of the correlated sensor samples collected from our
FLOODNET WSN.

Several other techniques for valuing information include Shannon entropy and Kullback-
Leibler divergence, both are mainly used in signal compression (or coding), target track-
ing, and information fusion techniques in WSNs (Hwang et al., 2004; Cover and Thomas,
2006). Specifically, Shannon entropy characterises the average amount of information
which is gained from a certain set of events. The entropy is maximal when all the events
outcomes are equally likely and, therefore, we are uncertain which event is going to
happen. When one of the events has much higher chance to happen than the others,
then the uncertainty (or entropy) decreases. Information value can thus be quantified
as the difference between two probabilities of the random event.

In more detail, Wang et al. (2004) attempt to reduce the entropy of a target location
distribution by repeatedly selecting an unused sensor with maximal expected information
gain. The mutual information between the target location x and the predicted sensor
observation zi (i ∈ I is the sensor index from the set of sensors I), is given by:

I(x ; zi) = H(x )−H(x |zi)

=
∫

p(x , zi) log
p(x , zi)

p(x )p(zi)
∂x ∂zi (2.1)

where
p(x , zi) = p(zi|x )p(x ) (2.2)

and
p(zi) =

∫
p(x , zi) ∂x (2.3)

where H(x |zi) is the expected conditional entropy of the posterior target location distri-
bution, p(x ) is the prior target location distribution, and p(zi|x ) is the sensing models
of candidate sensor i for selection. The observation of sensor imax thus maximizes the
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mutual information:
imax = arg max

i∈S
I(x ; zi) (2.4)

On other hand, Gulrez and Kavakli (2007) use Kullback-Leibler divergence as a measure
of difference in information gain between two probability distributions, p(x ) and q(x ),
and the equation is given by:

DKL(Q||P ) =
∫

q(x ) log
q(x )
p(x )

∂x (2.5)

where in the object tracking literature, q(x ) typically represents the probability distri-
bution after a new measurement (with x and y coordinates of the target location) takes
place, whereas p(x ) is the prior. In general, the relevant sensor readings would increase
the information gain or the reduction of entropy from the previous knowledge about
the state of the target, whereas the irrelevant sensor information would lead us towards
an increase in entropy or would not affect the previous knowledge at all. As part of
our future work, we will investigate these two alternative metrics when we consider the
spatio-temporal correlations between FLOODNET sensor readings (see section 5.2 for
more details).

2.4 Adaptive Sampling Algorithms

With reference to WSNs, sampling is a process of sensing an event or recording a sample
generated from the monitored environment. Therefore, an adaptive sampling algorithm
(which is numbered 1 in figure 2.5) is here defined as a protocol that is responsible for
adaptively setting the sampling rate (i.e. how often a node is required to sample during
a particular time interval) and schedule (i.e. when a node is required to sample) of each
of the individual nodes in a network.

In most environmental WSNs, high spatial densities of sensor nodes are desirable for
achieving high resolution and accurate estimates of the environmental conditions. These
high densities, however, place heavy demands on the bandwidth and energy consump-
tion for sampling and communication. Thus, an adaptive sampling approach that can
significantly reduce energy consumption compared to the non-adaptive one, is needed
so that nodes do not unnecessarily continue to sample at their maximum rates and thus
deplete their energy resources rapidly. In our case, the key intuition is that the adaptive
sampling algorithm needs to be able to detect correlations in the environment; mean-
ing that many nodes may not need to sample at a given moment in order to achieve
a desired level of accuracy (e.g. when the environmental parameter being observed is
highly correlated and, thus, changing slowly, there is no need to sample frequently). The
amount of communication required will also be reduced since fewer measurements are
collected. A number of adaptive sampling algorithms within the literature use temporal
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or spatial correlations (or both) in order to make effective sampling decisions, and we
review them here.

With respect to spatial correlations between nodes, Willett et al. (2004) have studied
the backcasting adaptive sampling method in which multiple nodes that are spatially
correlated form small subsets of nodes that then communicate their information to
a fusion coordinator. Based upon this information, the coordinator then selectively
activates additional nodes in order to achieve a target error level. Similarly, Makarenko
and Durrant-Whyte (2004) describe a negotiation-based Bayesian Decentralised Data
Fusion (BDDF) technique for an array of wireless nodes in a network. Their work
accounts for the uncertainty inherent in such tracking applications, and a Bayesian non-
linear filtering method is used to aggregate sensed data. The local filter of a node
fuses the observations, and these fused observations are used to decide the node’s next
sampling plan. However, based on Requirements 2 and 6 that we placed in section 1.3,
we need a decentralised solution with minimal additional communication between sensor
nodes. Moreover, due to the use of centralised fusion, the scalability issue (Requirement
5) is likely to be problematic since the central coordinator is required to compute a
large number of fusion decisions. We also do not attempt to fuse information from
separate nodes as this technique is typically applied for applications that explicitly
consider the spatial correlations of sensor nodes (not the temporal correlations as we
outlined in Requirement 1). Although we acknowledge that these spatial correlations
almost certainly do exist within FLOODNET domain, we choose to leave it as part of
our future work as they are less important compared to those found in sensor networks
for localization purposes. In these circumstances, nodes must be distributed and they
must exchange readings to improve their local beliefs about the object’s position being
tracked as these spatially proximal sensor observations are highly correlated (Vuran
et al., 2004). However, a large number of environmental WSNs in which nodes are
required to periodically perform sampling on the event being observed mostly exploit
temporal correlations between each consecutive observation of a sensor node.

In a somewhat different setting, but still concerned with the decentralised approaches
to decision making within sensor networks, Mainland et al. (2005) present a market-
based approach for determining efficient node resource allocations in WSNs. Rather
than manually tuning node resource usage or providing specific algorithms as we do
here, Self Organising Resource Allocation (SORA) defines a virtual market in which
nodes sell goods (e.g. data sampling, data relaying, data listening, or data aggregation)
in response to global price information that is established by the end-user. However,
this approach again involves an external coordinator to determine and set the prices in
order to induce the desired global behaviour for the network and, hence, does not meet
Requirement 2 since the system has a single point of failure. Moreover, it is not clear
how this price determination should actually be done in practice.

Most similar to our work, and the one that exploits temporal correlations between sensed
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data, is the Utility Based Sensing and Communication (USAC) algorithm proposed by
Padhy et al. (2006). This is a decentralised control regime for adaptive sampling, de-
signed for the GLACSWEB WSN (which is detailed in section 2.1.1). The adaptive sam-
pling aspect of the algorithm models temporal variations in the environmental parameter
being sensed as a piece-wise linear function, and then uses a pre-specified confidence in-
terval parameter in order to make real-time decisions regarding the sampling rate of the
sensor nodes. Linear regression is used to predict the value of future measurements, and
if the actual sensor reading exceeds the confidence interval parameter, the node starts
sampling at an increased rate. However, this parameter (and several others such as the
window length and actual sampling rate) must be carefully selected, and a poorly chosen
value can result in very poor performance in our setting (as we show later in section
3.5). For this reason, we require a more principled approach of valuing information, and
this must be based on a non-parametric model (Requirement 1). Furthermore, since
the algorithm does not explicitly perform any forward planning, the node can rapidly
deplete its battery if the increased sampling rate is constantly re-triggered by data that
is far from linear.

More recently, Dang et al. (2007) have proposed an adaptive sampling algorithm to find
the optimal cruise path of a mobile sensor node in order to collect data that maximally
reduces the uncertainty of a data assimilation mode, that is based on the Sigma Point
Kalman Filter. Here, the environment being monitored is modelled as a set of grid points
that are available for the node to sample at. The next sampling point is chosen to be
the point that results in the lowest trace of the predicted covariance matrix indicating
how uncertain the estimated environment state is. However, with this algorithm, there
is an issue of scalability as the computation time of searching the next sampling point
increases exponentially when extra nodes are introduced. Therefore, this algorithm is
not suitable in our case since it does not satisfy Requirement 5.

Finally, Osborne et al. (2008) use a multi-output Gaussian process to explicitly model
both temporal and spatial correlations between a small number of nodes. The Gaussian
process is used for adaptive sampling whereby it can determine both the time, and the
node from which the next sample should be taken, to ensure that the uncertainty re-
garding the environmental parameter being measured at each node location stays below
a pre-specified threshold. However, as with the USAC algorithm, there is no forward
planning. Moreover, contradicting with Requirement 2, the algorithm is centralised,
since it requires information from all of the nodes in order to model the spatial corre-
lations between them, and it is relatively computationally expensive; the novelty in the
paper above, being a computationally efficient formalism of the Gaussian process. The
computational cost (Requirement 5) precludes it being deployed on the current genera-
tion of sensor nodes and, furthermore, since it requires nodes to exchange data with one
another, it would also incur additional communication cost that could possibly outweigh
any saving achieved through more effective sampling (and, therefore, also fails to meet
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Requirement 6).

Having described the existing work in adaptive sampling algorithms, in the next sec-
tion, we consider those that exist in routing and more specifically at some of the most
commonly used ones that have been developed for WSNs.

2.5 Adaptive Routing Algorithms

Routing is a process of transporting messages across a network by choosing a particular
route depending on the protocol used. With particular reference to WSNs, routing is
the process of delivering a message from a source node to a base station inside the same
network. An adaptive routing algorithm (which is numbered 2 in figure 2.5) is therefore
defined as an adaptive protocol that is in charge of determining the transmitting (i.e.
how many samples of its own, a node is required to transmit during a transmission
period), forwarding (i.e. how many samples of its neighbour, a node is required to
to receive and forward during a transmission period), and routing (i.e. which route a
node should transmit its own and forwarded samples through) decisions of each of the
individual nodes in a network.

The most simplistic way to undertake this is via a single-hop communication (as shown
in figure 2.6(a)), whereby a source node uses its radio transceiver to send a message
directly to its destination base station since the transmission range of the source is
within that of the base station. In contrast, multi-hop routing uses intermediate nodes
between the source and the destination to forward messages (as can be seen in figure
2.6(b)). Based on the physics of radio transmission, it is known that a number of short
range transmissions are typically more efficient than a single long range one because of
the characteristics of wireless channel (Mhatre and Rosenberg, 2004). More specifically,
this increase in inefficiency is due to the fact that as the separation of the nodes increases,
the transmission power required increases geometrically10. Given this, this thesis adopts
a multi-hop approach to routing.

Moreover, there are a number of additional key issues in WSN routing, including:

• Scalability: The number of sensor nodes deployed in a sensing area maybe in
the order of hundreds or more. Any routing schemes must be able to work (in
real-time) with this large number of nodes.

10In practice, however, the energy efficiency in multi-hop routing depends on the network configuration
including the topology and the relative distances of sensor nodes to the base station (Khan and Peng,
2005). In a number of occasions, a small number of large hops is more efficient than a large number
of the smallest possible hops (Shelby et al., 2005). We remark that while in settings where the power
required for multi-hop routing may be higher that that for single-hop, this cost is spread across a number
of nodes instead of a single node and, thus, helping to evenly distribute the network degradation over
the nodes.
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Figure 2.6: Basic routing methods.

• Integration with Wake/Sleep Schedules: To save power, many WSNs place
their nodes into sleep states. Therefore, an awake node should not choose an asleep
node as the next-hop node, unless somehow, it can first awaken that node. In our
setting, however, the wake up and sleep schedules of each node in the network are
pre-determined and synchronized.

• Network Dynamism: Some sensor nodes may fail or be added. These changes
should not overly affect the overall routing performance of the sensor network.

• Reliability: Since messages need to travel multiple hops, it is important to have
a high reliability on each link, otherwise the probability of a message arriving
successfully at the destination will be low which, in turn, means that some energy
resources will be wasted.

• Mobility: The routing process is made more complicated if either the source or
destination or both nodes are not static in term of their positions. In our case,
however, we assume that we have static nodes of which each has a 2-D spherical
radio transmission range model (as can be seen in figure 2.6).

• Security: Many WSN routing algorithms have ignored their security factors. If
the network is not owned by a single source (i.e. many adversaries exist), each
node can initiate a wide variety of attacks on the routing algorithm for its own
benefit. This selfish (or competitive) issue will be considered as part of our future
work (see section 5.2 for more details).

A comprehensive overview of routing techniques in WSNs is given in (Al-Karaki and
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Kamal, 2004; Akkaya and Younis, 2005). However, we here categorize the main example
techniques into three broad approaches; namely (i) energy-based in which the protocol is
designed to minimise energy consumption, (ii) information-based in which the protocol
is designed to maximise the information value of data collected, and (iii) market-based
in which the protocol is designed to maximise overall utility gained. We know consider
each of these in turn.

2.5.1 Energy-Based Algorithms

Energy-based routing protocols in WSNs were originally developed with the aim of
finding the least power consumption route from the source to the destination base station
(Youssef et al., 2002; Liu et al., 2005b; Gao and Zhang, 2006). Such approaches, however,
typically result in a rapid reduction in the overall network lifetime as what often happens
is that one particular shortest route is heavily used for data routing. Hence more recent
research has focused on spreading the energy cost evenly over the entire network. Specific
techniques include choosing the nodes with the most battery power remaining, using a
combination of weighted routing factors, and electing a sub-base station (or cluster-
head) to be in charge of data re-routing for a subset of nodes. We will discuss each of
them in turn.

Among the energy-based protocols, Flooding (Akyildiz et al., 2002) is the simplest. It
involves each of the nodes broadcasting every received message to all it neighbours, un-
less the maximum number of hops for the message is reached or the destination of the
message is the node itself. The major advantages of flooding, being a reactive proto-
col (i.e. one that responds appropriately to prevailing circumstances in dynamic and
unpredictable environments), are simplicity and minimal overheads since it does not
require costly topology maintenance or complex route discovery protocols. However, it
can result in data implosion (where a node receives multiple copies of the same message
from its neighbours), message overlap (where an event is detected by multiple nodes,
which all report the same stimuli at the same time, resulting in unnecessary wastage in
communication power), and resource wasteness (as it does not take resources such as
the remaining energy into account). To improve upon this basic approach, a number of
extensions have been proposed. Specifically, Gossiping (Medidi et al., 2005) is an exten-
sion in which nodes do not broadcast, but instead forward the incoming messages to a
randomly selected neighbour. This approach thus reduces the first two limitations found
in Flooding. Flossiping (Zhang and Cheng, 2004) is an enhancement to Flooding and
Gossiping approaches by using a single branch gossiping with low-probability random
selective relaying in order to achieve a better overall performance. Whilst Directional
Flooding (DF) (Ko et al., 2004) aims to reduce the number of hops, by targeting the
flood towards the destination with the assumption that all nodes know both their own
geographic location and the location of the destination for the current message. How-
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ever, all the four protocols do not meet Requirement 7 (as outlined in section 1.3) since
we require an adaptive routing algorithm that can react accordingly to the network’s
dynamism.

We observed that though Flooding, Gossiping, Flossiping, and DF techniques are still
widely used in WSNs, a number of researchers are developing new methods because of
their inherent power hungry nature. Kulik et al. (2002) develop Sensor Protocols for
Information via Negotiation (SPIN) that adopts a publish-subscribe approach in which
a source node broadcasts an advertisement (ADV) containing meta-data (which is the
data that describes the sensor data) before sending the actual data itself which requires
comparatively a bigger communication cost due to its larger size. As can be seen in
figure 2.7(a), interested listeners then respond with a request (REQ). The transmit-
ting (or source) node subsequently responds by sending the actual sensor data (DATA).
This protocol introduces a slight extra message overheads due to its publish-subscribe
approach and may only be relevant for large data sets. However, SPIN’s data adver-
tisement mechanism cannot guarantee the delivery of data (and, hence, does not satisfy
Requirement 3). Consider a simple scenario expected in figure 2.7(a) where the base
station is interested in the data but all the intermediate nodes between the source and
the base station (nodes B, C, D, E, and F) are not, such data will not be delivered to
the destination base station at all.

In FLOODNET, an Adaptive Routing Algorithm (ARA) (Zhou and De Roure, 2007)
has been developed. ARA is a protocol designed with the aim of optimising the power
consumption to extend the network’s lifetime, while also satisfying the FLOODNET
domain application specific requirement of the need for timely data. It consists of an
adaptive sampling and an adaptive routing algorithms. The adaptive sampling aspect
of the protocol uses a similar approach to the Backcasting adaptive sampling algorithm
and, hence, inherits the same limitations of having a single point of failure (Requirement
2). This is due to the existence of a central coordinator that dictates the data importance
and sampling plan of each node. The routing protocol, on other hand, is determined
by several other factors including the remaining battery power of the communicating
nodes, the importance of the data being transmitted, and the link cost (proportional
to the distance) between the two nodes (as shown in figure 2.7(b)). In their setting,
however, the adaptive sampling and adaptive routing algorithms are loosely coupled
(and, hence fail to meet Requirement 4). Consider a scenario when intermediate nodes
are required to sample at their maximum rates by the central coordinator, they will
therefore deplete their energy resources rapidly. Other nodes, particularly those at the
edge of the network, will not be able to successfully transmit their messages to the base
station at a later stage since the intermediate nodes will have insufficient power to relay
messages.

The final set of protocols in this class are Low Energy Adaptive Clustering Hierarchy
(LEACH) (Veyseh et al., 2005) and Power Efficient Gathering in Sensor Information
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Systems (PEGASIS) (Lindsey and Raghavendra, 2002). They are clustering-based pro-
tocols that minimise energy consumption in sensor networks through the rotation of
cluster-heads such that the high energy consumption in communicating with the base
station is spread across all nodes. In general, the methods in this class make good
attempts to try to balance the energy consumption by electing cluster-heads of which
each is responsible for relaying the data from a subset of nodes back to the base sta-
tion. However, these cluster-heads all need to be placed inside the base station’s radio
range as they communicate directly to it (using a single-hop routing approach as can be
seen in figure 2.7(c)). Therefore, these single cluster-leaders can become a bottleneck
(which clearly does not satisfy Requirement 2). Additionally, overhead and complexity
associated with applying reorganization phase to form clusters could increase if there
are many cuts in the network (for instance in a highly dynamic network as required
in Requirements 6 and 7). Both protocols also assume that each node has location in-
formation about all other nodes in the network so that it knows where to route data.
This is seemingly unrealistic in the current stage of WSN unless nodes are individually
equipped with a Global Positioning System (GPS) module.

2.5.2 Information-Based Algorithms

An alternative class of protocols are those that seek to gain maximum information
value across the network. An example of this is Dynamic Source Routing (DSR) (Qin
and Lee, 2004) protocol that FLOODNET once adopted for multi-hop routing. DSR
is a reactive protocol that adapts quickly to routing changes, specifically, when node
failures or additions are frequent. It is a source-routing-based protocol where the path
to the destination is known only to the source nodes. A source node determines routes
by constantly flooding route request packets into the network during a route discovery
phase, whenever it want to transmit its readings. Therefore, this protocol is undesirable
since it is not scalable and involves large communication cost due to its flooding approach
(failing to meet Requirements 5 and 6). DSR performs efficiently only for a network
with less than a few tens of nodes. And as we require an algorithm that works efficiently
on large-scale networks in general (as outlined in section 1.3), DSR is undoubtedly not
suitable.

On other other hand, Information Managed Energy Aware Algorithm for Sensor Net-
works with Rule Managed Reporting (IDEALS) (Merrett et al., 2005) protocol aims to
extend the network lifetime of WSNs. IDEALS is an application specific heuristic pro-
tocol as it includes every sensor node deciding its individual network involvement based
on the information importance contained in each message. The protocol lacks of a prin-
cipled approach to value the importance of sensor readings (Requirement 1) since the
information importance is basically divided into discrete levels. The action space of each
node considered here only includes routing, while based on Requirement 4, we also need
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to consider the inter-dependent sampling, transmitting, forwarding, and routing actions.

Other information-based protocols methods includes data-centric and data-aggregation
protocols. Directed Diffusion (DD) (Intanagonwiwat et al., 2003) is a data-centric pro-
tocol (meaning that the base station is the one that sends out an interest stating query
description by flooding the query to the entire network, as can be seen in figure 2.7(d)).
Therefore, directed diffusion is not suitable to be applied to applications (such as envi-
ronmental monitoring WSNs) that require continuous data delivery to the base station.
To avoid flooding, Rumor Routing (RR) (Braginsky and Estri, 2002) routes the queries
to the nodes that have observed a particular event to retrieve information about the oc-
curring events and, thus, reduces the total communication cost. However, rumor routing
performs well only when the number of events is small. For a large number of events,
the algorithm becomes infeasible (and, therefore, fails to satisfy Requirement 5) due to
increase in the cost of maintaining node-event tables in each node. Moreover, all data-
centric protocols do not take into account the network’s dynamism (Requirement 7) in
routing data messages.

Data Combining Entities (DCE) (Schurgers and Srivastava, 2001), Gradient Based Rout-
ing (GBR) (Xia et al., 2005), and Information Directed Routing (IDR) (Liu et al., 2005a)
family of methods permits individual nodes to process and aggregate their sensor data,
before relaying it to the others. As shown in figure 2.7(e), node F aggregates the incom-
ing data (from nodes C, D, and E) and its own before sending the result to the base
station. However, as explained before, the data fusion technique, is typically applied
for applications that explicitly consider the spatial correlations of sensor nodes (not the
temporal correlations as we have in Requirement 1).

2.5.3 Market-Based Algorithms

The last class of protocols are those that use a market-based control (MBC) paradigm.
The usage of MBC in WSN allows the use of tools from general equilibrium theory to
analyse the behaviour and correctness of a decentralised system. The main market-based
protocol includes Self Organised Routing (SOR) (Rogers et al., 2005) and SORA which
has already been discussed in section 2.4.

In more detail, SOR is a mechanism-design-based protocol proposed for the GLACSWEB
domain. It is a distributed protocol that aims to maximise the network’s lifetime. Each
node is designed to follow locally selfish strategies which, in turn, result in the self-
organization of a routing network with desirable global properties. The protocol consists
of a communication protocol, equipping nodes with the ability to find and select a node
that is willing to act as a mediator for data relaying, and a payment scheme that guides
the nodes to make local decisions that ensure good global performance whereby a node
is rewarded for forwarding messages to the destination. Specifically, the communication
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protocol calculates the implications using any found mediators and selects the one that
appears to provide the greater increase in the lifetime of the originating node. The
payment scheme has the effect of reducing the area where mediators may relay data
for other nodes. The action space of each node does not meet Requirement 4 since in
a more realistic scenario, the protocol should take into account the node’s actions of
sampling, transmitting, and routing its own samples, as well as forwarding and routing
neighbour’s data samples.

This type of incentive-compatible mechanism will however be considered as one of our
avenues of future work as it presents an incentive for nodes (e.g. to relay data for
other nodes) in a non-cooperative (i.e. competitive) setting where each of the nodes is
modelled as a rational and selfish entity trying towards achieving global system-wide
goals (see section 5.2).

2.6 Inter-Related Adaptive Sampling and Routing Algo-

rithms

In an inter-dependent sampling and routing setting, efficient coordination is typically
computationally expensive since each node’s energy consumption must be optimally
allocated between sampling and transmitting its own data, receiving and forwarding the
data of other nodes, and routing any data. In particular, this means that the choices of
one node can potentially affect all other nodes in the network. Consider a case in which
intermediate nodes (i.e. nodes that are relatively closer to the base station) näıvely
sample and transmit their own samples at their maximum frequency. By doing so, they
would deplete their energy rapidly and would not be able to relay (or forward) their
neighbours’ data messages (particularly those coming from nodes far away from the base
station). To date, very few approaches have attempted such an integration approach.
Noticeable exceptions, however, are the work of Padhy et al. (2006) and Mainland et al.
(2005) who developed USAC and SORA respectively. Both protocols have already been
discussed in section 2.4. We will therefore only highlight the integration aspect of each
of them in this section.

USAC consists of a decentralised adaptive sampling and routing protocol. Within this
mechanism, each node adjusts its sampling rate depending on a valuation function that
assigns a value to newly sampled data (recall section 2.4). This protocol is intended
for low power, computationally constrained devices, and as such, relies on a heuristic
approach to estimate the opportunity energy cost used by each sensor for sampling,
forwarding, and routing data. The protocol is not efficient and the integration of the
node’s actions (Requirement 4) is very limited since there is no guarantee that the
transmitted data will actually be forwarded to the base station. For instance, there
might be cases where nodes with data of a high value are unable to send their data to



Chapter 2 Literature Review 42

the base station because intermediate nodes have depleted their energy. The protocol
could thus result in no data collection at the base station (and, hence, does not meet
Requirement 3).

Another approach in this area is that of SORA. Here, an external coordinator (or agent)
determines and sets the prices of nodes’ actions in a virtual market to induce the desired
global behaviour for a network. If the coordinator wants to capture more samples (due
to, for instance, the rapid changes in the environment being monitored), it raises the
price of data sampling and decreases those of data listening and transmitting. Later,
in order to guarantee the successful delivery of collected data to the base station, the
coordinator will increase the price of data listening and relaying so that nodes will help
others to relay messages. This is because nodes are designed to selfishly maximise their
utility function and, therefore, are incentivised to take this particular action. Given
their limited energy resources, they will thus reduce their sampling frequency since a
portion of energy has been highly drained for forwarding activities.

2.7 Summary

In this chapter, we have described some widely used WSN applications, with a detailed
introduction into the FLOODNET domain, since this forms the exemplar application of
this thesis. We then reviewed centralised and agent-based decentralised control regimes
for WSNs, particularly, in the area of DCOP, and explicitly discussed their advantages
and disadvantages. Following that, we compared and contrasted the most common
adaptive sampling, adaptive routing, and inter-related adaptive sampling and routing
algorithms in WSNs (see table 2.1 for a summary). We have shown that they all suffer
from at least one of the following major limitations:

• Using a centralised paradigm (e.g. SBB, APO, MKP, SORA, ARA, and BDDF
protocols) that has a partial or complete knowledge regarding the state of the
network, but could catastrophically act as a bottleneck and reduce the network
robustness (Requirement 2).

• Requiring significant amounts of communications among the nodes, raising the
issues of scalability and reliability (failing to meet Requirements 5 and 6) when
applied for large-scale networks with hundreds of nodes of which each is installed
with limited computational, storage, memory, and communication resources. A
list of algorithms that suffer from these drawbacks include SBB, ADOPT, DPOP,
BDDF, DSR, and DD protocols.

• Adopting an approach that is not reactive and proactive to the dynamic and
rapid changes of the complex and inter-connected WSN systems. MKP, LEACH,
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PEGASIS, Flooding, Gossiping, Flossiping, DF, DD, and RR protocols therefore
fail to meet Requirement 7.

• A few algorithms (e.g. DBA, SPIN, and USAC protocols) do not give a warranty
that data samples will eventually arrive at the base station since intermediate
nodes might deplete their energy much faster than those nodes on the edge of the
network. This clearly does not satisfy our Requirement 3.

• All algorithms in the literature do not show a tight integration among the nodes’
actions. We believe nodes in WSNs should have an option to either act simply
for their own good (by sampling and transmitting their own samples at maximum
rate) or to cooperate and help others (by receiving and forwarding their samples
to the destination), as outlined in Requirement 4.

Against this background, in chapter 3, we design three novel decentralised control algo-
rithms for information-based adaptive sampling which represent a trade-off in compu-
tational cost and optimality, using the combination of a Fisher information metric and
GP regression as a measure of the information content of sensor samples. This work is
similar to that of Krause et al. (2006), but we consider temporal, rather than spatial,
correlations (see section 3.3.1 for more details).

In chapter 4, we continue to develop a novel optimal decentralised adaptive sampling,
transmitting, and forwarding algorithm which assumes fixed routing and varies each
node’s sampling, transmitting, and forwarding rates in order to ensure all nodes use
their limited resources on maximising the information content of the data collected
at the base station. We then extend it to deal with flexible routing such that the
extended algorithm will work with any arbitrary network topologies and we optimise
both the route and the integration of actions of each node. To this end, we will use the
technique of DCOP and meta-data message exchange before sending the actual data (in
a similar way to those of DPOP and Max-Sum). However, in our case, we use localized
synchronous communication to reduce the exponential increase in total messages being
exchanged due to the conflicts of decisions between nodes.
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Table 2.1: Protocols summary (sorted alphabetically).

Protocol Method Additional Remarks

ADOPT Asynchronous message passing. Uses a distributed asynchronous opportunistic depth-
first search strategy and an efficient termination de-
tection.

APO Cooperative mediation process. Creates centralised mediator agents to solve subprob-
lems of the distributed constraint problem. The agents
then increase the size of the subproblems over time.

ARA Adaptive sampling and energy-
aware adaptive routing algo-
rithm.

Centralised adaptive sampling and routing protocol
driven by an external coordinator.

Backcasting Adaptive sampling algorithm. Adopts a centralised approach for adapting the sensor
nodes’ sampling behaviour to achieve a target error
level.

BDDF Data aggregation algorithm. Uses the Bayesian non-linear filtering method to aggre-
gate sensed data in order to decide the next sampling
plan of each node.

DBA Constraint satisfaction algo-
rithm.

Incomplete distributed algorithm that uses the combi-
nation of the hill-climbing technique in parallel with
the breakout method as a strategy to escape from local
minima.

DCE Data aggregation algorithm. Aggregates sensed events before transmitting them to
significantly reduce energy consumption for communi-
cation.

DD Data-centric protocol with in-
terest flooding method.

Base station sends out interest (stating its query de-
scription) which is flooded within the network. Listen-
ing nodes that satisfy the interest’s requirements react
by sending their data back to the base station.

DF Rebroadcasts every received
messages towards the destina-
tion.

Each node must be aware of its own and others’ geo-
graphic locations, as well as the location of the desti-
nation for the current message.

DPOP Asynchronous communication. Agents (or nodes) construct the pseudotree structure
of the network and exchange asynchronous messages
with neighbourhood nodes to converge into an optimal
and non-conflicting solution.

DSR Source-based path discovery. Was used to control FLOODNET system but lacks
of scalability as nodes constantly flood route request
packets into the network whenever they want to trans-
mit readings.

Flooding Rebroadcasts every received
message.

Simple and reactive protocol but is power hungry as
it can result in massive message redundancy.

Flossiping Single branch gossiping with
low-probability random selec-
tive relaying.

Enhancement to Flooding and Gossiping approaches.

GBR Data aggregation algorithm. Protocol that employs data aggregation to save trans-
mission energy.
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Protocol Method Additional Remarks

Gossiping Forwards every received mes-
sage to a randomly selected
neighbourhood node.

Reduces redundancy in Flooding, however, is still
power hungry in nature.

GP Most informative sensor place-
ments algorithm.

Uses the GP to model spatial correlations between
nodes.

IDEALS Information importance rule
managed reporting algorithm.

Each node decides its individual network involvement
based on the information importance contained in its
message.

IDR Data aggregation algorithm. Centralised protocol that is formulated as a joint op-
timisation of data transport and information aggrega-
tion with the objective of minimising communication
cost while maximising information gain.

IDSQ Data fusion algorithm. Decentralised protocol to update each node’s current
belief about the target’s position being tracked, by fus-
ing the most valuable data from other nodes.

LEACH Clustering- (or hierarchy-)
based routing algorithm.

Cluster head aggregates the data of its cluster member
nodes.

Max-Sum Variant of sum-product algo-
rithm.

Uses a simple message passing scheme to efficiently
find approximate solutions to the distributed con-
straint optimization problem.

MKP Centralised greedy sensor-
mission assignment algorithm.

Maximises the total profit that sensors can bring to
missions, imposed by a set of constraints (modelled as
a multiple knapsack problem).

Multi-
Output
GP

Adaptive sampling algorithm. Uses the GP to model both spatial and temporal cor-
relations between a small number of nodes.

PEGASIS Clustering- (or hierarchy-)
based routing algorithm.

Assumes that each node has location information
about all other nodes (i.e. has complete knowledge
about the network).

RR Data-centric algorithm. Uses the same method as that of DD. However, instead
of flooding the whole network with query or event mes-
sages, it creates paths leading to each event when the
event happens and, thus, reduces the total communi-
cation cost.

SBB Synchronous message passing. Complete and centralised constraint optimization al-
gorithm in multi-agent system coordination.

SOR Mechanism design approach. Decentralised control approach that utilizes a payment
scheme to ensure global goals achievement.

SORA Market-based algorithm for
node’s resource allocation.

Protocol with a payment scheme for nodes to act upon
in order to determine their ideal behaviours (by taking
actions that maximise their own utilities).

SPIN Publish-subscribe approach. Involves extra message overheads and, thus, only effi-
cient for large data sets.

USAC Inter-dependent adaptive sam-
pling and routing algorithm.

Its information valuation is calculated based on the
confidence interval that is resulted from a simple linear
regression over the actual sensor readings. The routing
protocol relies on a heuristic approach to estimate the
opportunity energy cost to transmit.



Chapter 3

Decentralised Control of

Adaptive Sampling

This chapter outlines the work undertaken towards addressing the problem of decen-
tralised control of adaptive sampling in WSNs in general and FLOODNET in particu-
lar. Specifically, here we describe a principled information measure based upon Fisher
information and Gaussian process (GP) regression (Contribution 1), and we present
three decentralised algorithms that allow individual nodes to maximise this information
measure given their individual energy constraints (Contribution 2). We then show how
the algorithms permit nodes to collect more valuable information compared to that of
a number of benchmarks (Contribution 3).

To this end, in section 3.1, we highlight the intuition of information-based adaptive
sampling by considering an exemplar scenario. In section 3.2, we then detail the sam-
pling problem we face in a general manner. In section 3.3, we show how we use a GP
package to calculate our information metric that allows the information content of a
node’s observations to be expressed. In section 3.4, we formulate the three decentralised
control algorithms for solving the problem. We start with an exponential algorithm that
maximises the Fisher information metric by performing GP regression on the individ-
ual nodes, and progress to a more computationally tractable algorithm that performs
a greedy optimisation. We further reduce the computational cost by using an efficient
algorithm that uses a heuristic approach, rather than the GP regression, in order to
determine the allocation of sampling actions each day. Their performances are then em-
pirically evaluated against a number of benchmarks in section 3.5. Finally, conclusions
are discussed in section 3.6.

46
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3.1 Information-Based Adaptive Sampling

Due to their constrained energy resources, a key requirement within WSN applications
is an effective energy management policy. Now, this is often addressed through adapting
the sampling policies of the nodes. Sampling policies generally describe a node’s sampling
rate (i.e. how often a node is required to sample during a particular time interval) and
schedule (i.e. when a node is required to sample). In most of these WSNs, the nodes
are typically not able to sample at their maximum rate because doing so would deplete
their energy in a number of months or even weeks. Therefore, there exists a trade-off
associated with wanting to gain as much information as possible by sampling at the
highest frequency, with the energy constraints available to accomplish these activities.
To address this, our mechanism (more details of which are given in section 3.4) seeks to
dictate that each node should conserve battery energy by taking more samples during
the most dynamic (unpredictable or rapidly changing) events, while sacrificing some
energy by sampling less during the static ones.

To illustrate this point, consider the exemplar scenario expected in figure 3.1. If both
nodes had not sampled as frequently as they did during the static event (i.e. if we
remove some samples that are represented by small filled dots, randomly or at fixed
intervals), we would still be very certain about the water level pattern at that period
of time. But if the nodes had not taken samples during the dynamic event (those that
are represented with bigger dots), the value of uncertainty about the water level would
increase dramatically (as we would have expected the water level in figure 3.1(a) to
remain constant within regions 2.2 and 2.4, to continue to rise within regions 1.1 and
1.2, and to continue falling within regions 2.1 and 2.3, and the water level in figure 3.1(b)
to remain constant within regions 1.2 and 2.1, to continue to rise within regions 1.1 and
1.3, and to continue falling within region 2.2). Thus, sampled data within dynamic
events is more valuable than that during static ones.

Nodes are therefore required to make optimal use of their energy resources to sample
data of top importance. In doing so, they should place higher priority on those samples
that have a higher information content (i.e. those within regions 1.1, 1.2, 1.3, 2.1, 2.2,
2.3, 2.4, and 3.1). Predictable samples that are less important (i.e. those within regions
4.1, 4.2, 4.3, and 4.4, and all other smaller dots) are sensed only if there is sufficient
remaining energy to do so.

To this end, some recent work has explored decentralised algorithms that enable the
nodes to autonomously adapt and adjust their own sampling policies (recall section
2.4). Such solutions are attractive in our context since they remove the bottleneck of a
central decision maker (and the need to inform this decision maker of the energy state
of each node), and they fully exploit the ever increasing computational capacity of the
nodes themselves. Furthermore, they are also more robust than centralised alternatives
since there is no single point of failure, and even in the case that communication with
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Figure 3.1: Information-based adaptive sampling scenario for (a) FLOODNET node
1 and (b) node 2. Filled dots represent the collected samples. The bigger the dot the
higher the level of importance of this particular sample. In these cases, the biggest ones
are located within regions 1.1, 1.2, and 1.3. Smaller ones are located in other regions

identified by numbers sorted increasingly according to their levels of importance.

the base station fails (perhaps due to the failure of a node on a multi-hop route to the
base station), the nodes are able to continue to autonomously operate in the absence of
any external direction until communication is restored.

To date, such decentralised algorithms have typically been applied to WSNs deployed
for environmental monitoring, and they have specifically considered networks composed
of battery powered nodes that exhibit finite lifetimes. Since a node sampling at its
maximum rate would deplete its battery in a short period of time, effective sampling
policies in this context seek to balance the lifetime of the sensor network as a whole
against the value of the information that it collects. To do so, they typically invoke
domain specific heuristics that depend upon one or more user specified parameters. For
example, the USAC algorithm of Padhy et al. (see section 2.4), which is representative
of the state-of-the-art in this area, models temporal variations in the environmental
parameter being sensed as a piece-wise linear function, and uses a pre-specified confidence
interval parameter in order to make real-time decisions regarding the sampling rate of
the nodes.

However, in many applications, nodes are also capable of harvesting energy from their
local environment through different sources (e.g. solar power (Li et al., 2008; Alippi and
Galperti, 2008), wind (Weimer et al., 2006; Park and Chou, 2006), or vibration energy
(Zhang and He, 2008; Torah et al., 2008)). In such cases, additional operating modes
become possible, and a common alternative to that described above is to require that
the nodes maintain energy neutral operation; balancing energy harvesting against energy
consumption, in order that they exhibit an indefinite lifetime (Kansal et al., 2007). In
this context, an effective sampling policy must maximise the information that a node
collects over a particular time interval subject to energy constraints, and this typically
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involves planning exactly when, within the specified time interval, to take a constrained
number of samples. To actually achieve this within a general setting without resorting
to domain specific heuristic requires that (i) we can predict the information content
of a node’s future samples, given a particular sampling schedule, and (ii) we can then
optimise this sampling schedule, subject to energy constraints, in order to maximise the
information that will be collected by a node over a particular time interval.

Thus, against this background, in this chapter we address these two complementary
challenges. In particular, we develop a principled generic information metric for sensor
networks based upon Fisher information and GP regression. We then present three de-
centralised algorithms for information-based adaptive sampling which represent a trade-
off in computational cost and optimality. These algorithms allow individual nodes to
maximise this information measure by adapting and adjusting their sampling policies.

3.2 Problem Description

Here, we formalise a description of the generic sampling problem that we face (of which
FLOODNET is but one specific instance). To this end, let n be the number of sensor
nodes within a WSN system and the set of all nodes be I = {1, . . . , n}. The sensor
network is tasked with monitoring some environmental parameter over multiple days.
We divide the day into a fixed number of time slots and denote these time slots by the
set H = {1, . . . , w}.

Each node i ∈ I can sample at si different rates over a period of time. Its set of
possible sampling rates is denoted by Ci = {c1

i , . . . , c
si
i } where Ci ⊆ Z+ and cj

i < cj+1
i .

Specifically, each element of this set, cj
i , is a positive integer that describes the number

of times that the node samples during a time slot.

Each of the algorithms (that we will devise within this chapter) determines the actual
sampling rate that each node should use within any specific time slot. Thus, each node
i ∈ I has an allocated set of sampling actions (i.e. sampling schedules) for each day
denoted by Alloci = {a1

i , . . . , a
w
i }, where ak

i ∈ Ci, ∀k ∈ H. Any element, ak
i ∈ Alloci

therefore represents the number of times that the node should sample within any specific
time slot within the day. Hence, at the end of a day, node i will have collected a
set of gi observations, Yi, at a corresponding set of sampling points, Xi, such that
|Xi| = |Yi| = gi =

∑w
k=1 ak

i .

In general, the nodes within the network will deplete their energy resources at different
rates since they will have different sampling schedules. Assuming that the remaining
battery power available for sampling of node i at the beginning of a day is Bi, and it
requires a certain amount of energy, es

i , to sample an event, we must ensure that any set
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of sampling actions satisfies:
w∑

k=1

ak
i · es

i ≤ Bi (3.1)

such that the sum of all the energy required to do the sampling actions on that day
must not exceed the remaining battery power. Note that our choice of imposing the
energy constraint over a 24 hour period is a natural one since it represents a daily cycle
in which the node recharges its battery during daylight and gradually depletes it during
the night. Furthermore, note that we do not include the constant transmitting and
receiving variables into the equation since each node transmits its recorded readings
in every two hour period to the base station using a non-adaptive multi-hop routing
method (with a routing table created at system start up time)1.

The algorithms that we shall consider are thus constrained to take a maximum number
of samples within a 24 hour period. The details of how this maximum number is calcu-
lated, however, are not restricted in any way. For example, figure 3.2 illustrates this by
comparing (a,c) the case where H = {1, . . . , 12}, in which one time slot represents a two
hour interval, and (b,d) where H = {1, . . . , 24}, in which one time slot represents a one
hour interval. Given the environmental parameter they are observing, both FLOOD-
NET nodes 1 and 2 must optimize their energy to take samples of greater importance by
adapting their sampling actions as those indicated inside round brackets. In this case,
node 1 should increase its sampling rate to maximum within regions 1.1 and 1.2 in order
to capture the incoming and outgoing tides, and reducing it to either a moderate rate or
a minimum during other regions. On the other hand, node 2 should adjust its sampling
rate by: (i) increasing it to its highest frequency within regions 1.1, 1.2, 1.3, 2.1, and
2.2, (ii) decreasing it to its moderate rate within regions 3.1, 4.1, 4.2, 4.3, and 4.4, and
(iii) decreasing it further till its lowest value within other regions.

The bigger the number of the time slots, the more flexibly the nodes can adapt their
sampling schedules. Therefore, in order to find the optimal sampling actions, the set of
time slots must be set to H = {1, . . . , |Yi|}, where Yi is node 1’s or 2’s set of observations
and |Yi| is the number of observations (or samples). However, the optimal solution within
this setting is only computationally feasible if the size of the adaptive sampling problem
is very small (more details of which are given in section 3.4.1).

A node’s preferences express the satisfaction of any particular action when faced with a
choice between different alternatives. In our case, the actions correspond to the different
sampling rates that a node may choose to perform within any particular time slot, and
the preferences express the information content of the data collected by performing the
corresponding actions. A preference structure brings together all the alternatives, V ,
and represents a node’s preferences over the set of possible outcomes. Now, there are

1Note that we also assume that the communication costs do not depend on the quantity of samples
taken. However, more complex relationships will be modeled in the next chapter for the inter-related
adaptive sampling, transmitting, forwarding, and routing problem.
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Figure 3.2: The set of adaptive sampling actions that (a,b) FLOODNET node 1 and
(c,d) FLOODNET node 2 should use within any specific time slot on Oct 15th 2005.

several choices that can be made regarding the definition of a mathematical model for
preference structures (see Chevaleyre et al. (2006) for a review), but here we choose a
simple cardinal structure since it allows a node to make individual comparisons between
its sampling actions (i.e. whether node i is obtaining greater information value by
sampling at rate cj

i rather than ck
i ). Furthermore, in the next chapter, it will also

allow comparisons between multiple nodes (i.e. whether node i is obtaining a greater
information value by sampling at rate cj

i than node l operating at cj
l ).

In more detail, a cardinal preference structure consists of a valuation function (i.e. a
utility function or a mathematical function used to calculate the value or goodness of a
certain action taken by nodes) given by v : V → Val , where Val is a set of numerical
values (typically, N,<, [0, 1], or <+).
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3.3 Information Metric

Building on the problem description above, an algorithm needs a way to value the various
observations that the nodes may make. As mentioned in section 2.3, we use Fisher
information to determine the value of previously collected and temporally correlated
observations and this is then used to decide on the next sampling plans of each node. If at
any point in time, we are able to calculate an estimate of the value of the environmental
parameter being sensed, and this estimate is represented by a predictive distribution
with mean, µ̂(t), and variance, σ̂2(t), then the mean Fisher information over any period
of time between t1 and t2 is given by:

FI =
1

t2 − t1

∫ t2

t1

1
σ̂2(t)

∂t (3.2)

The estimated value of the environmental parameter between times t1 and t2 is informed
by the samples that the node actually takes, and in the next section we specifically
describe how we can perform this estimation in a principled Bayesian framework using
GP regression.

Finally, we remark that we consider the value of the information collected by the sensor
network as a whole to simply be the sum of the information collected by each individual
node and, thus, we are explicitly not considering correlations between different nodes.
Relaxing this assumption is a focus of our future work, and we discuss it in more detail
in section 5.2.

3.3.1 Gaussian Process Regression

As described above, in order to calculate the mean Fisher information, we must use
the actual (and possibly noisy) samples taken by the node to estimate the value of
the environmental parameter being sensed over a continuous period of time (including
times between those at which samples were actually taken). Furthermore, this estimate
must represent a full predictive distribution with both a mean and a variance. Hence,
we use GP regression to generate this estimate. This principled approach allows us
to perform Bayesian inference about functions; in our case, the function representing
the value of the environmental parameter over time (Rasmussen and Williams, 2006).
Such techniques have a long history in geospatial statistics (Cressie, 1993), and more
recently have been used as a generic non-parametric probabilistic model for spatially
correlated phenomena (Guestrin et al., 2005; Ertin, 2007). In contrast, here we use it
with temporally correlated node’s samples.

In more detail, a GP regression takes as inputs a set of g sampling points, X =
{x1, . . . , xg}, and a set of g noisy observations or target values, Y = {y1, . . . , yg} (both
are termed the training set) (Mackay, 1998; Seeger, 2004). Given a covariance function
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that describes the correlation between sensor readings at any two times (we shall dis-
cuss this function in more detail later), the GP is able to infer the posterior predictive
distribution (i.e. the conditional distribution available after the GP has observed the
training set and the covariance function) of the environmental parameter at any other
set of m test points, X = {x1, . . . , xm}. This predictive distribution is represented by a
mean, µ̂(X) = {µ̂(x1), . . . , µ̂(xm)}, and a variance, σ̂2(X) = {σ̂2(x1), . . . , σ̂2(xm)}, given
by:

µ̂(xj) = cT(C + σ2Ig)−1Y (3.3)

σ̂2(xj) = C(xj , xj)− cT(C + σ2Ig)−1c (3.4)

where C is a g×g matrix for the training set covariances, c is a g×1 vector identifying the
training-test set covariances (i.e. a row vector of the covariances of xj with all variables
in the training set), C(xj , xj) is the covariance of xj , Ig is a g × g identity matrix, and
σ2 is an added Gaussian noise of the training set accordingly.

The variance is then used to calculate the mean Fisher information of the interval
spanned by X of m test points. Thus, the mean Fisher information, over the inter-
val X, conditioned on the set of observations represented by the sensor readings, Y ,
taken at times X, is given by:

FI(X) =
1
m

m∑
j=1

1
σ̂2(xj)

(3.5)

Note that this is a discretization of equation 3.2, whose resolution is determined by the
number of prediction points that cover the period of interest (i.e. by the value of m).
Furthermore, note that the value of Fisher information calculated above does not depend
directly on the actual samples (since there is no dependence on Y in the expression for
σ̂2(xj) in equation 3.4).

3.3.2 Covariance Functions

A key assumption of the GP regression technique described above is that points in time
within X that are close together are likely to have similar predicted values within µ̂(X).
Furthermore, training points in X which are close to estimation points in X are those that
are most informative. This notion of closeness or similarity is defined by a covariance
function. The covariance function is a crucial ingredient within GP regression. It allows
prior information concerning the domain problem to be incorporated into the inference
(for instance that the environmental parameter being sensed varies smoothly over time
and/or is periodic), and thus, it influences the quality of the predictions made. While
much empirical guidance for the choice of covariance functions does exist, there is no
formal methodology for determining this choice automatically (Rasmussen, 2004).
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In our case, we choose a commonly used covariance function termed squared exponential
or Gaussian covariance function:

Csqe(x, x) = vsqe · exp
[
−(x− x)2

λ2
sqe

]
(3.6)

where vsqe is the weighting of this term, and λsqe is the length scale or correlation
length, that represents the length along which successive target values are strongly
correlated. We choose this function because it is infinitely differentiable and, thus,
capable of modelling smoothly varying environmental parameters. Moreover, Girard
(2004) shows that this covariance function has good general modelling abilities and
predictive performance comparable with that of neural networks. However, this choice
is not fundamental to our algorithms and alternatives such as rational quadratic, linear,
or exponential could also be used in other cases. Furthermore, these alternative forms
can also be combined together (by summation or multiplication) to derive a rich family
of possible covariance functions2.

Since many WSNs monitoring environmental phenomena show a periodical pattern be-
tween days in their readings (as we have with FLOODNET tide data), we also use a
periodic covariance function:

Cper(x, x) = vper · exp

−2 sin2
(

x−x
p

)
λ2

per

 (3.7)

where vper is the weighting of this term, p is the periodicity of the data, and λper is the
length scale. In addition, an independent covariance function with weighting vnoi is used
to represent Gaussian distributed noise in sensor readings:

Cnoi(x, x) = vnoi · κ, where κ =

{
1 if x = x

0 if x 6= x
(3.8)

These three separate terms are combined by simply adding them together, and this
combination is shown to provide accurate water level estimates for the FLOODNET
domain. For example, figure 3.3 illustrates this by comparing (a,c) the case where
C = Csqe+Cnoi which excludes the periodic term, and (b,d) where C = Csqe+Cper+Cnoi

which includes it. In both cases, the markers represent the nodes’ samples, the solid
line indicates the mean of the predictive distribution, and the shaded area represents its
variance.

The weightings, vsqe, vper, and vnoi, characteristic lengths, λsqe and λper, periodicity, p,
and sensor noise, σ2, are collectively termed hyperparameters, and in general, we do not

2In general, if we use a covariance function with sufficient flexibility, then we can be confident that the
machinery of Bayesian inference will automatically reduce the weighting of terms that are not necessary
to describe the data that has been observed.
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(a) GP regression on FLOODNET node 1 using a
covariance function without period terms such that
C = Csqe + Cnoi.

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

3000
Gaussian Process Regression

Time Unit

W
at

er
 L

ev
el

 (
m

m
)

Error Bars
GP Regression Line
Sampled Data

(b) GP regression regression on FLOODNET node 1
using a covariance function with period terms such
that C = Csqe + Cper + Cnoi.

0 500 1000 1500 2000 2500

800

1000

1200

1400

1600

1800

2000

2200

2400

Time Unit

W
at

er
 L

ev
el

 (
m

m
)

Gaussian Process Regression

Error Bars
GP Regression Line
Sampled Data

(c) GP regression on FLOODNET node 2 using a
covariance function without period terms such that
C = Csqe + Cnoi.
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(d) GP regression regression on FLOODNET node 2
using a covariance function with period terms such
that C = Csqe + Cper + Cnoi.

Figure 3.3: Gaussian process regression applied to FLOODNET nodes’ water level
data on Oct 15th 2005. One time unit represents a minute interval.

Table 3.1: Example hyperparameters for the covariance functions learned from
FLOODNET data.

Parameter Value
Variance for Csqe (vsqe) log 112.2733
Variance for Cper (vper) log 956.3368
Variance for Cnoi (vnoi) log 3.3753
Correlation length scale for Csqe (λsqe) log 19.4994
Correlation length scale for Cper (λper) log 0.7882
Unit period scale for Cper (p) log 736.3052



Chapter 3 Decentralised Control of Adaptive Sampling 56

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5
Information Measured (from Sensor 1 Sampled Data)

Total Number of Samples (on Oct 15th 2005)

F
is

he
r 

In
fo

rm
at

io
n

Figure 3.4: Fisher information value (FI) gathered over one day period plotted
against the number of samples. As expected, the value of information generally in-
creases (i.e. we are more certain in the value of the environmental parameter being
sensed) as the sensor nodes takes more samples. Note that in the case of a GP with
fixed hyperparameters, we would expect to observe a concave function since the obser-

vations are correlated.

know their values a priori. However, a number of techniques can be used to infer their
values from the sensor readings themselves. Within the GPML3 package that we use
here, techniques for learning the hyperparameters are based on maximisation of the log
likelihood function using an efficient conjugate gradient-based optimization algorithm
(Bishop, 2006). However, there is no guarantee that the marginal log likelihood does not
suffer from multiple local optima. Thus, we use a multi-start process for setting good
initial hyperparameters whereby we restart the maximisation of log likelihood from a
number of different starting points, and select the one that results in the maximum log
likelihood4. We perform this learning prior to performing regression whenever new data
is present, and table 3.1 shows an example of these hyperparameters.

Within the FLOODNET domain, whenever the water level raw data points are closely
related (i.e. they have a small covariance matrix or they are more frequently sampled),
the variances of the estimated values, σ̂2(X), will decrease. The Fisher information
value will, on the other hand, increase as it is the inverse uncertainty of the estimate
(see figure 3.4). To illustrate this, consider the scenario illustrated in figure 3.5. Assume
FLOODNET nodes 1 and 2, each of which has a set of twelve noisy measurements per
hour for a given day. Thus, each of the nodes samples at five minute intervals such that
the total number of samples (g) on that day is 288 (12 samples/hour x 24 hours). Now,
in order to find out the value of this set of data, the node performs the GP regression
utilizing the sampling and target sets (sets X and Y correspondingly) to produce the
predictive distribution with mean µ̂(X) and variance σ̂2(X). Given this, equation 3.5

3http://www.gaussianprocess.org/gpml/, checked on 02/02/2009.
4In future work we intend to investigate the use of fully Bayesian approaches to maintain a distribution

over possible hyperparameter values (Osborne et al., 2008).
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(a) Regression on sampled data taken between time
unit 30 and 115, with 18 samples. FLOODNET node
1 collects Fisher information value of FI = 0.20290.
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(b) Regression on sampled data taken between time
unit 30 and 115, with 9 samples. FLOODNET node
1 collects Fisher information value of FI = 0.40650 ·
10−1.
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(c) Regression on sampled data taken between time
unit 620 and 680, with 13 samples. FLOODNET node
2 collects Fisher information value of FI = 0.10683.

620 630 640 650 660 670 680
1650

1700

1750

1800

1850

Time Unit

W
at

er
 L

ev
el

 (
m

m
)

Gaussian Process Regression

Error Bars
GP Regression Line
Sampled Data

(d) Regression on sampled data taken between time
unit 620 and 680, with 4 samples. FLOODNET node
2 collects Fisher information value of FI = 0.40357 ·
10−1.
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(e) Regression on sampled data taken between time
unit 1005 and 1315, with 63 samples. FLOODNET
node 2 collects Fisher information value of FI =
0.10680.
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(f) Regression on sampled data taken between time
unit 1005 and 1315, with 15 samples. FLOODNET
node 2 collects Fisher information value of FI =
0.40256 · 10−1.

Figure 3.5: GP regression example using sampled data collected from FLOODNET
nodes operating on Oct 15th 2005. One time unit represents a minute interval.
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can then be used to determine the information content of the samples.

3.4 Decentralised Information-Based Adaptive Sampling

Given the problem description and information metric, the objective in this work is
to now derive an algorithm that can automatically determine the allocation of actions
each day, Alloc, that will maximise the total mean Fisher information collected by the
nodes (i.e. the utilitarian social welfare), subject to the energy constraint (in equa-
tion 3.1). To this end, we now present three novel decentralised control algorithms
for information-based adaptive sampling that achieve this. Each algorithm represents
a different trade-off between computational cost and optimality. We start with an ex-
ponential algorithm that maximises the Fisher information metric by performing GP
regression on the individual nodes, and progress to a more computationally efficient
algorithm that uses a heuristic approach, rather than the GP regression, in order to
determine the allocation of actions each day.

Each of these algorithms follows the same broad pattern. On any specific day, each node
i ∈ I may be in one of two modes: (i) an updating mode in which the node samples at
a predefined maximum rate throughout all time slots, or (ii) a standard sampling mode
in which it samples according to the allocation, Alloci. The algorithms use the samples
taken whilst the node is in its updating mode to calculate the allocation of actions,
Alloci, to be used whilst the node is in its standard sampling mode. The frequency with
which the node enters the updating mode is determined manually by the system designer,
and depends on the variability of the environment. In relatively static environments the
allocation will remain valid for sometime and, thus, updating can occur less frequently.
In more dynamic settings the allocation must be updated more often5. Note that since
the node samples at its maximum rate whilst in the updating mode, then the more often
updating is performed, the less samples can be taken during any day whilst the node is
in its standard sampling mode (in order to maintain energy neutral operation). In the
experiments that we present in section 3.5.4 the nodes update once every three days.

3.4.1 The Optimal Algorithm

A first approach to providing a decentralised algorithm is to simply deploy the GP
regression algorithm on each node, and then to find the subset of the samples that were
taken whilst the node was in its updating mode that maximises our Fisher information
metric (whilst also satisfying the energy constraints of the node when it is in its standard

5We remark that setting this parameter automatically is part of our future work. We expect that this
can be achieved by measuring the information content of samples collected each day, and re-entering the
updating mode when this shows a significant departure from that which is expected.
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sampling mode). Thus, in more detail, if Xi is the set of sampling points taken whilst
node i was in its updating mode, we wish to solve:

X∗i = arg max
Xi

FI(Xi) (3.9)

subject to the constraint that X∗i ⊆ Xi and |X∗i | · es
i ≤ Bi. Given this subset of

sampling points, we then calculate the allocation of sampling actions of node i, Alloci =
{a1

i , . . . , a
w
i }, by simply counting the number of sample points in each time slot such

that:

ak
i =

|Xi|∑
j=1

1 if xj
i ∈ X∗i and in time slot k

0 otherwise
∀k ∈ H (3.10)

Now, a näıve approach to finding this optimal subset is to simply enumerate all possible
combinations. This approach, however, is too computationally intensive and works only
for very small problems as it very rapidly becomes intractable. For instance, in the case
of FLOODNET in which a node takes 288 samples a day whilst in its updating mode,
but can only take 144 samples a day in its standard sampling mode, this algorithm
would need to evaluate more than 10100 (C288

144 ) solutions. This is clearly impossible to
compute in a reasonable amount of time regardless of processor speed (for more details,
see section 3.5.4.2 for the run time performance of the algorithms that we present in this
section).

3.4.2 The Greedy Algorithm

Since the näıve enumeration approach is infeasible, we need a smarter means of tackling
this problem. Thus, we devise a greedy adaptive sampling algorithm that again deploys
the GP regression algorithm on the sensor node, but then works by allocating one addi-
tional sampling point at a time until there are no more samples to add. The allocated
sampling points cannot be altered in subsequent iterations (i.e. they are fixed). This sig-
nificantly reduces the number of possibilities to compute compared to the näıve optimal
algorithm which considers the whole set of combinations of sampling points as possible
solutions. For example, in the case discussed above where 144 out of the possible 288
sampling points must be selected, we need only evaluate 31104 solutions (as compared
to C288

144 solutions above). Nevertheless, this method is still reasonably slow to be run
on nodes with the type of limited computational power found in WSNs in general and
FLOODNET in particular.

In more detail, this algorithm works as follows (see algorithm 1). At setup time, the
vector variable gpFI that temporarily records all the evaluated information values (FI

as in equation 3.5), is initialized to a null set (line 1). Each node i ∈ I then presets a
number of samples (preSamp) and equally distributes them into its time slots. Following
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Algorithm 1 Greedy adaptive sampling.
1: gpFI ← {}
2: while addSamp > 0 do . While there is an additional sample to allocate

3: for each sampToTry ∈ remSP do . Iterates each remaining sampling point

4: preSampTemp← preSamp ∪ sampToTry
5: gpFI ← gpFI ∪ CalcFIUsingGP(preSampTemp) . Calculates the GP information value

6: end for
7: [maxFI, indexOfNextSP ]←Max(gpFI)
8: nextSP ← NextSamplingPoint(indexOfNextSP ) . Finds nextSP

9: preSamp← preSamp ∪ nextSP . nextSP is included into preSamp

10: remSP ← remSP\nextSP . nextSP is excluded from the remaining sampling point, remSP

11: gpFI ← {}
12: addSamp← addSamp− 1
13: end while

this initialization phase, the node then uses its energy resources to iteratively sample
addSamp times more from the possible remaining sampling points remSP (lines 2 and
3). On each iteration, the node evaluates the information value of each remaining
sampling point (line 5). It then allocates one sample at the sampling point nextSP

where the information value is increased the most (lines 7 and 8). At the end, the chosen
nextSP is included into the vector variable preSamp (line 9). It is then excluded from
the vector variable remSP and the variable gpFI is cleared (lines 10 and 11 respectively).
This repeats until there are no more samples to add.

The vector variable preSamp eventually contains the greedy selection of sampling points
and, thus, the allocation of sampling actions of node i, Alloci = {a1

i , . . . , a
w
i }, can again

be found by simply counting the number of sample points in each time slot such that:

ak
i =

|Xi|∑
j=1

1 if xj
i ∈ preSamp and in time slot k

0 otherwise
∀k ∈ H (3.11)

Finally, we remark that the GP regression algorithm itself is relatively computationally
expensive and, thus, we next present a heuristic algorithm that enables the sensor nodes
to use a simpler means of valuing information in order to gain a faster performance.

3.4.3 The Heuristic Algorithm

We first describe a simplified valuation function that avoids the need to perform GP
regression on the node, and we then present the algorithm that we use to select sampling
points in order to maximise it.

3.4.3.1 The Valuation Function

In this algorithm, we value information heuristically rather than computing it using
equation 3.5. We do this because the iterative process of calculating the information
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value using the GP regression technique is computationally expensive, and both the al-
gorithms presented above require that this process is performed repeatedly. Specifically,
we use simple linear regression and develop an information function that is based on the
standard deviation of the best-fit regression line. This is appropriate, since given a small
enough time window, the relationship between the time and environmental observations
data can be approximated as a piecewise linear function.

Using this method, the uncertainty in a set of sensor readings is expressed in confidence
bands about the linear regression line. The confidence band has the same interpretation
as the standard deviation of the residuals (termed Sd in equation 3.13, where g represents
the number of data points and ŷ is the new value of y calculated from the newly found
slope, b1, and intercept, b0, variables), except that it varies according to the location
along the regression line. The distance of the confidence bands from the regression line,
τ t
i (Xi), at point xt

i conditioned on the set of sensor readings, Yi, that is collected by
node i at times Xi, is:

τ t
i (Xi) = Sd(Xi)

√√√√√ 1
gi

+
(xt

i − x̄i)
2∑gi

j=1

(
xj

i − x̄i

)2 (3.12)

where xt
i is the location along the x-axis data points where the distance is being calcu-

lated. x̄i and ȳi are the mean values of Xi and Yi respectively.

Sd(Xi) =

√√√√∑gi
j=1

(
yj

i − ŷj
i

)2

gi − 2
(3.13)

where
ŷj

i = b0(Xi) + b1(Xi) · xj
i (3.14)

and
b0(Xi) = ȳi − b1(Xi) · x̄i (3.15)

and

b1(Xi) =

∑gi
j=1

{(
xj

i − x̄i

) (
yj

i − ȳi

)}
∑gi

j=1

(
xj

i − x̄i

)2 (3.16)

In order to perform this simple linear regression properly, the input must consist of
at least three data points. This is because if there are only two data points they will
produce a smooth linear regression line (with no standard deviation), while anything
less than that will result in invalid inputs. For these reasons, we enforce the fact that
a node must at least sample once in every time slot (defined as the minimum sampling
rate and, therefore, Bi ≥ w · es

i , ∀i ∈ I, where as defined in section 3.2, w is the number
of time slots and es

i is the energy required by node i to perform one sample). In this
way, given the standard deviation and the confidence bands, we are able to tell whether
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one set of observations is more valuable than another which, in turn, allows us to define
a value associated to every action.

Given the expressions above, we can now derive the total deviation, Tdgi , for a set of gi

data points, Xi, collected in time slot k, by calculating the area between the confidence
bands, and this total deviation represents our uncertainty over this period. Specifically,
we use a trapezoidal numerical integration method for this (Rabinowitz and Davis, 2006).
The trapezoid approximation (or trapezoid sum, Ts) of

∫ b
a f(x) ∂x, that is associated

with the partition a = x1 < x2 < ... < xgi = b is given by:

Ts =
1
2
[f(x1) + 2f(x2) + ... + 2f(xt−1) + f(xgi)]∆x

=
1
2
[f(x1) + 2

gi−1∑
t=2

f(xt) + f(xgi)]∆x (3.17)

and, thus, we are now able to derive:

Tdgi(k) =
1
2
[2τ1

i (Xi) + 4
gi−1∑
t=2

τ t
i (Xi) + 2τ gi

i (Xi)]∆xi (3.18)

For example, consider the case shown in figure 3.6 that uses real data collected from
FLOODNET node 1 on Oct 15th 2005 between time unit 1005 and 1045 (where one
time unit represents a minute interval). Figure 3.6(a) shows a case where 9 samples
are taken and figure 3.6(b) shows another case where only 5 are taken. The X axis
represents the time unit, whilst the Y axis represents the water level. The solid line
denotes the simple linear regression line, whilst the curved dashed lines demarcate the
confidence bands (it represents the boundaries of all possible straight lines). In the case
where 9 samples are taken, the procedure just described allows us to calculate the total
deviation, Td, as 14.6050, while in the case of 5 samples, it is 35.5968. In both cases,
the total deviation is represented by the shaded area between the confidence bands; less
uncertainty is denoted by a smaller area.

Given this total deviation, we can now simply derive the gain in information value (or
the decrease in uncertainty) when different sampling decisions are made. More formally,
Gainj

i (k) is defined as the reduction in total deviation that node i can achieve by taking
samples at rate cj

i (and, hence, collecting gi samples) rather than the minimum sampling
rate, c1

i , in time slot k, and is given by:

Gainj
i (k) = Tdc1i (k)− Tdcj

i (k) where cj
i ∈ Ci, i ∈ I, k ∈ H (3.19)

This minimum sampling rate is applied as a basis where a node gains zero value.

The data values for each node are often best represented in a table format. To this end,
let Gi be a table with si rows numbered from 1 to si, and w columns, where si is the
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Figure 3.6: Example application of the linear regression based valuation metric ap-
plied to data collected from FLOODNET node 1 on Oct 15th 2005 between time unit
1005 and 1045. Two cases are shown; (a) where 9 samples are taken and (b) where

only 5 samples are taken.

different sampling rates of node i and w is the number of time slots. The element of the
table that is in the jth row and the column with label k is thus Gainj

i (k). This value
indicates the decrease in uncertainty (or the reduction in total deviation) of node i if it
chooses to perform cj

i sampling action in time slot k rather than its minimum sampling
rate, c1

i .

As described earlier, when in its updating mode, each node i ∈ I samples at its maximum
rate, csi

i . Now, by taking subsets of samples (corresponding to the set of actions specified
in table Gi) from the full set and performing the linear regression on these subsets, we
obtain a new total deviation for each subset. The values that will be assigned to the
table are the total deviation difference between sampling at the minimum rate and at
other rates. For instance where column = k, if the total deviation that is produced with
a subset of samples cj

i taken during time slot k has a value of Tdcj
i (k), while that of a

minimum sampling rate c1
i taken between the same period is Tdc1i (k), then the value

inside column = k and row = j; that is Gainj
i (k), will be Tdc1i (k)− Tdcj

i (k).

3.4.3.2 The Algorithm

We now focus on how to search for an allocation of a node’s actions that maximises
the information metric described above. For this purpose, we introduce Vi as a si × w
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matrix with si number of actions of node i and w number of time slots:

Vi =


v11
i v12

i . . . v1w
i

...
...

. . .
...

vsi1
i vsi2

i . . . vsiw
i

 Di =


d11

i d12
i . . . d1w

i
...

...
. . .

...
dsi1

i dsi2
i . . . dsiw

i


such that vjk

i represents the value that node i will get if it chooses to perform action cj
i

in time slot k (i.e. Gainj
i (k)). Di is a matrix of binary values and each of the elements

corresponds to a decision variable (a “1” represents a state where node i carries out
the corresponding cj

i action in time slot k, whilst a “0” represents another state where
the node does not carry out the corresponding cj

i action). For instance, when d11
i = 1

then this node i chooses to perform action c1
i in time slot 1. This also means that

dj1
i = 0,∀j ∈ Ci\c1

i .

In more detail, the objective function to be maximised is defined in equation 3.20. The
constraint in equation 3.21 states that every node i ∈ I can only elect one action at any
particular point of time, whereas that in equation 3.22 states that the total number of
samples taken by it must not exceed the maximum number of samples it can take on
that day:

D∗i = arg max
{Vi,Di}

∑
cj
i∈Ci

w∑
k=1

vjk
i · djk

i (3.20)

subject to:
si∑

j=1

djk
i = 1 ∀k ∈ H (3.21)

∑
cj
i∈Ci

w∑
k=1

cj
i · d

jk
i ≤ Ni (3.22)

where Ni is calculated such that Ni · es
i ≤ Bi as described in equation 3.1.

This problem, as formulated above, can be cast as a person-task assignment problem6

(Yong et al., 1993). Given this insight, we can solve the problem using binary integer
programming (BIP) (Chen et al., 2000), which is a subset of linear programming. A
popular method to solve this numerically is the simplex algorithm and in this case we
exploit the GNU Linear Programing Kit7 (GLPK) to do so.

Having described the techniques that we use, we now seek to present the rest of the
heuristic information-based adaptive sampling algorithm (see algorithm 2 and figure
3.7). Specifically, the algorithm, which is distributed and installed on each node in the
network, provides a means for the individual nodes to adjust their own sampling rates

6In the assignment problem, we want to assign a set of people to do a set of tasks. Each person takes
a certain number of minutes to do a certain task, or cannot do a particular task at all, and each person
can be assigned to exactly one task. The ultimate aim, here, is to minimize the total time taken to do
all of the tasks.

7http://www.gnu.org/software/glpk/, checked on 02/02/2009.
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Algorithm 2 Heuristic information-based adaptive sampling.
1: updSSched← TRUE . Node in updating mode

2: sRate←MAX S RATE . Samples at maximum rate, c
si
i

3: readings← {}
4: loop
5: if sT ime = NOW then . Time to sample

6: readings← PerformSampling(sT ime)
7: if ¬updSSched then
8: timeSlot← TimeSlot(sT ime)
9: sRate← GetSRate(timeSlot) . Changes sampling rate according to timeSlot

10: end if
11: SetSTime(sT ime + sRate) . Node sets its next sampling time

12: end if
13: if tT ime = NOW then . Time to transmit

14: uError ← CalcUError(readings) . Calculates information uncertainty in current readings using (3.18)

15: if dateChanged then
16: daysCount← daysCount + 1
17: if updSSched then
18: CalcTdReduction(readings) . Computes the gain in information value or the decrease in

uncertainty (i.e. the reduction in total deviation for table Gi) using (3.19)

19: FindSSchedule() . Optimizes (3.20) using the BIP solver, subject to constraints (3.21) and (3.22) to

determine D∗
i

20: updSSched← FALSE
21: end if
22: end if
23: if ¬updSSched ∧HasEnoughEnergy() ∧ (daysCount ≥ CONST ) then
24: updSSched← TRUE . Node in updating mode

25: daysCount← 0
26: sRate←MAX S RATE . Sets sampling rate to maximum

27: end if
28: PerformTransmit(readings)
29: SetTTime(tT ime + tRate) . Node sets its next transmitting time

30: readings← {}
31: end if
32: end loop

based only upon their local historical data and remaining energy resources. Now, within
the initialization phase, some required variables are set. These include the boolean
variable updSSched which is set to TRUE to indicate that the node starts in its updating
mode, and then having calculated an allocation of sampling actions for subsequent days,
enters its standard sampling mode.

Following the initial updating phase, each node i ∈ I enters an infinite loop state.
On each iteration, it checks its sampling and transmitting time. Whenever the cur-
rent loop represents the time that it needs to sample (line 5 or state 1), the function
PERFORMREADING instantiates a new reading and attaches it to the end of the variable
readings. Subsequently, if the node is not in updating mode, its sRate is assigned a
value equal to the sampling rate in its schedule, corresponding to the appropriate time
slot (line 9 or state 2). The node then sets its next sampling time variable, sT ime.

Inside the same loop iteration, whenever the node is also required to transmit its current
readings (line 13 or state 3), it first calculates the total deviation in this set of readings
by using the simple linear regression method described earlier (i.e. calling function
CALCUERROR with equation 3.18). Later, if the node detects that it has entered the
following day and it is also in updating mode, it will call the function CALCTDREDUCTION

(with equation 3.19, see line 18) to compute the reduction in total deviation that the
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Figure 3.7: State diagram of the algorithm.

node can achieve by taking more samples than the minimum sampling rate. Function
FINDSSCHEDULE then uses the BIP GLPK solver to evaluate (in real-time) the best
allocations of node i’s schedule and resources that maximise the total deviation reduction
(i.e. equation 3.20), given the node’s current energy constraints of equations 3.21 and
3.22 (line 19 or state 4). The allocation of sampling actions, Alloci = {a1

i , . . . , a
w
i }, is

thus determined by:

ak
i = cj

i , where j ∈ {1..si}|djk
i = 1, djk

i ∈ D∗i ∀k ∈ H (3.23)

The node then transmits its collected sensor readings and sets its next transmission time
variable, tT ime.

3.4.3.3 Illustrative Example

To illustrate how the algorithm works in practice, reconsider the scenario expected in
figure 3.8. FLOODNET node 2 samples at its maximum sampling rate, cs2

2 , on Oct 15th

2005 and, thus, collects 288 samples at the end of the day. The node has as well its
energy budget, B2 = 720, to perform sampling on the next day, Oct 16th 2005 (requiring
es
2 = 8 units of energy per sample). In this case, the day is divided into 24 time slots,

where H = {1, . . . , 24}. Each time slot thus represents a one hour interval.

In this case, the reduction values in total deviation for table G2 are chosen arbitrarily
for illustrative purposes. However, these values are practically calculated using equation
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Figure 3.8: The action-value table G2 of FLOODNET node 2 with H = {1, . . . , 24}.

3.19. In this table, the rows represent the different sampling rates (or actions) and the
columns represent the time slots. For instance where column = 10, if node 2 chooses
to sense at sampling rate c2

2 or cs2
2 , it will sample at its moderate or maximum rate

(three or twelve times) respectively (assuming c2
2 = 3 and cs2

2 = 12), and, in return, will
gain a corresponding reduction in total deviation of 3.114 or 5.126 (that is Gain2

2(10)
or Gains2

2 (10) respectively) compared to if it had only taken samples at its minimum
sampling rate, c1

2, during the same period.

The heuristic information-based adaptive sampling algorithm dictates the node to max-
imise the reduction in total deviation (or the gain in information value) and, thus, with
its remaining energy budget, node 2 will:

• Increase its sampling rate to its maximum, cs2
2 , by sampling twelve times during

each of time slots 10, 12, 13, 22, and 24 (gaining the reduction of 5.126, 6.777,
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7.910, 9.315, and 7.911 respectively),

• Increase its sampling rate to its moderate value, c2
2, by sampling three times during

each of time slots 7, 16, 19, 20, and 21 (gaining the reduction of 0.706, 1.992, 0.845,
0.912, and 1.709 respectively),

• Maintain its minimum sampling rate, c1
2, by sampling only once during each of the

other time slots (gaining no additional reduction).

3.5 Empirical Evaluation

Having detailed the three decentralised algorithms for information-based adaptive sam-
pling, we now turn to their evaluation in order to examine their performance and effec-
tiveness. Specifically, we are interested in comparing the total Fisher information value
gathered at the base station and the run time performance (i.e. the computational cost)
from each of the individual nodes for the various decentralised control regimes. We chose
these measures because they enable us to determine whether by using the same amount
of battery energy, our adaptive sampling algorithms permit the nodes to collect more
valuable information compared to that of a number of benchmarks.

To this end, we first describe the wireless sensor network simulator that was developed in
the course of this research. We then detail the experimental setup and the benchmarks,
and go on to the actual evaluation.

3.5.1 The Simulator

Simulation is the most widely adopted method for analysing WSNs as it allows algo-
rithms (or protocols) to be properly tested prior to the actual development on-site, and
offers the possibility of performing evaluations, with different parameter values and set-
tings, in a rapid and cost-effective way (Khan et al., 2008). Results are, however, highly
dependent of the fidelity of the models within the simulation8.

Due to the absence of a high-fidelity FLOODNET domain simulator, we built a wireless
sensor network simulator (called DC-WSNS). This is implemented in the Java program-
ming language and was specifically developed to provide a virtual environment in which
sensor nodes can either be scattered randomly or situated at specific locations. The
simulator’s main parameters can be varied at set up time (e.g. the sampling actions and

8Some open source WSN simulators include ns-2 (Chen, 2007), SensorSIM (Park et al., 2000), J-
Sim (Sobeih et al., 2005), OBIWAN (Egea-Lopez et al., 2006), and OMNeT++ (Colesanti et al., 2007).
However, we chose not to use any of them due to many restrictions and difficulties in integrating and
tailoring our algorithms into any of these simulations’ environment. Moreover, none of them deals with
the model of node’s renewable energy resources as we have in our case with the FLOODNET nodes.
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Figure 3.9: FLOODNET’s nodes (represented by the filled dots) transmit their col-
lected samples back to the base station node 1 (most left hand side node, using multi-
hop routing). On the top and right of the screen are the toolboxes and controls cor-
respondingly. Whilst on the left is the graphical display of the network. The message

transmissions are represented by the circles that surround the nodes.

power consumptions of each node). At this stage, however, they can’t be varied at run
time.

In more detail, individual nodes in the network can be identified by selecting a particular
node on the graphical network display (as shown in figures 3.9 and 3.10). Once selected,
information such as the node’s location (i.e. the relative location on the display panel of
the simulator), type (whether it is an ordinary node or a base station), residual energy
level, energy recharging rate, and sampling rate, can be viewed on the simulator’s right
panel. The simulation toolbox available on the toolbar is used to drive and simulate
the network. This allows us to step through the simulation in single time steps (which
is the fundamental period of time that is implemented in DC-WSNS and that can be
adjusted) or to run the simulation until a particular time step. At each time step, all
the nodes in the network are inspected to ascertain whether or not they are scheduled
to sample or transmit data.

Additionally, during a simulation run, DC-WSNS records a range of real-time temporal
network statistics. These include the remaining energy level, the battery recharging
rate, the information value measurement, and the water level sampled data of each
node. Each of these sets of information can be shown in a graph- or text-based format.
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Figure 3.10: FLOODNET’s nodes sample from the environment.

Besides, the simulation’s workflow is logged and displayed inside the simulator’s internal
frame at the bottom of the screen.

Having outlined the basic features of DC-WSNS, we now consider the domain models
upon which DC-WSNS is built. These models include the wireless communication, the
battery, and the energy harvesting capabilities (specifically a solar panel model in com-
bination with a cloud cover model). A network stack model (including the routing table
of each node) is adapted from those in the ARA simulator (Zhou and De Roure, 2007).
With all these models, DC-WSNS provides a platform in which objective observations
can be made at any time.

3.5.1.1 The Wireless Communication Model

DC-WSNS is not currently designed to accurately model the wireless communication
channel. Rather, we assume that a node has a single transmission level such that only
neighbourhood nodes within its transmission range can hear, receive, and process its
broadcasted messages. In DC-WSNS, a message is either a sampled data collected from
the environment or a “HELLO” typed message packet originated by the base station for
the node initialization process. Messages have a fixed size and, hence, require the same
amount of time and energy to transmit.

We further assume that every propagated message is received by the receiving node
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without any failures and that there is no difference between overhearing and receiving
in term of power consumption. Moreover, the nodes are pre-programmed to ignore
and drop packets that are not destined for them (for the purpose of energy savings).
Therefore, the communication model implemented is reasonably primitive9.

3.5.1.2 The Battery Model

In our case, the nodes in the network deplete their energy resources at different rates
(as the nodes might have different sampling rates at any time slots). The total energy
consumed, Bci(k), per time slot k for node i is given by the equation:

Bci(k) = ak
i · es

i where ak
i ∈ Ci and i ∈ I (3.24)

where ak
i is the sampling action (or schedule) of node i at time slot k. We remark that

as described in section 3.2, we do not include the constant transmitting and receiving
variables into the equation since each node transmits its recorded readings in every two
hour period to the base station using a non-adaptive multi-hop routing method.

Moreover, DC-WSNS reserves a fraction βi (labelled as the cut-off threshold) of the
energy supply (i.e. the battery) of each node i ∈ I. This reservation is normally
applied to preserve the longevity of the battery’s lifetime and, here, the cut-off threshold,
βi, is expressed as a fraction of the maximum energy supply, Bmaxi (i.e. the full
battery capacity). If a node’s residual energy drops below this threshold, its radio
communications (transmitting or receiving) and sensing capabilities cease. The energy
budget available to each node at the outset is thus given by Bmaxi · (1 − βi). Whilst
the energy remaining at time slot k for node i, Bi(k), is given as:

Bi(k) = Bmaxi · (1− βi)−
k−1∑
j=1

Bci(j) (3.25)

We note that this model is identical to the linear model proposed in (Park et al., 2001)
where the battery is treated as a linear storage of current regardless of what the discharge
rate is. The remaining battery capacity after operation duration of time td is thus
expressed by the following equation:

B = B′ −
∫ t0+td

t0
I(t) ∂t (3.26)

9See section 4.5.1 for a more comprehensive model implemented for the inter-related adaptive sam-
pling, transmitting, forwarding, and routing problem. The development of an algorithm for WSNs is
typically targeted at analysing specific network’s performance and, thus, realistic models should be used
in the areas that significantly affect this particular criteria. In our case, the information-based algo-
rithms require realistic energy and information models in order to ensure close correlation with practical
results.
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where B′ is the previous capacity and I(t) is the instantaneous current consumed by the
node at time t. The linear model assumes that I(t) will stay the same for the duration
td. With this assumption, equation 3.26 simply becomes:

B = B′ −
∫ t0+td

t0

I(t) ∂t = B′ − I · t|t0+td

t0

= B′ − I · td (3.27)

Being the most simplistic model, our linear model falls short of portraying the behavior
of a real life battery with characteristics such as discharge rate dependent capacity10 and
relaxation effect11 (Park et al., 2001; Pop et al., 2005). However, we believe that our
results presented in the next section would not be significantly affected by these types
of battery model.

3.5.1.3 The Battery Recharging Model

While the battery model we have discussed so far is reasonably standard, it is not
adequate for FLOODNET nodes because they have solar panels as one of their energy
producing components. Thus a model of battery charging needs to be incorporated in
addition to that of the static battery. Specifically, this involve an energy recharging
model. For a such solar powered system found in FLOODNET nodes, a key issue is
that of the amount of sunlight available; this is given by the time of day (i.e. there is
no sunlight at night) and the cloud cover (i.e. if it is very cloudy then the panels will
receive little sunlight). In modelling the clouds as realistically as possible, we consider
their shape, their size, their thickness, their speed, and their movements in variable
directions (recall figures 3.9 and 3.10).

With the cloud model, one form of energy recharging using a solar panel is to assume
that if the solar panel of node i does not lie under a cloud, it will gain a preset energy
increase defined as Bhi each day. However, this energy will be reduced depending on
the number of layers or the thickness of the cloud above the solar panel (represented by
δi). The thicker or the more layers the cloud has (i.e. the bigger δi is), the more of the
sun’s energy is trapped inside, hence, the less energy is regained.

During night time (defined from time ns to time nf), due to the absence of the sunlight,
the node’s energy supply recharges at a small rate of Bni(t) at time t due to stored
energy in the solar cells. This rate is chosen arbitrarily and remains constant during

10A dependent capacity model considers the effect of battery discharge rate on the maximum battery
capacity.

11A relaxation model considers the effect of high discharge rates that causes the battery to reach
its end of life even though active materials inside are still available. This model is currently the most
comprehensive model but there exists considerable difficulty in implementing it since the relaxation effect
involves many electrochemical and physical properties of the battery.
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Figure 3.11: Recharging rate model (during winter season) where nf = ds and df =
ns.

the night time. Whilst during day time (defined from time ds to time df), the energy
recharging rate is modelled as a quadratic function which peaks (i.e. recharges the most)
at midday (see figure 3.11). This approach is based on the model used in (Kansal et al.,
2004). The total energy recharging during day time, Bdi, for node i can be found by
deducting the total energy recharging during night time from that of each day:

Bdi = Bhi −
∫ nf

ns
Bni(t) ∂t

= Bhi −Bni · t|nf
ns (3.28)

Bdi =
∫ df

ds
(ait

2 + bit + ci) ∂t

=
[
1
3
ait

3 +
1
2
bit

2

]df

ds

where ci = 0

=
1
3
ai(df3 − ds3) +

1
2
bi(df2 − ds2) (3.29)

where we assume ci = 0 because Bni(t) is negligible compared to Bdi. Now, because
tpeak is exactly at the half way point of the quadratic curve:

tpeak = − bi

2ai
and tpeak =

(df − ds)
2

bi = −ai(df − ds) (3.30)

The combination of equations 3.28, 3.29, and 3.30 is further derived as:

Bhi −Bni · t|nf
ns =

1
3
ai(df3 − ds3)− 1

2
ai(df2 − ds2)(df − ds) (3.31)
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Figure 3.12: Heliomote solar energy-based charging power recorded for nine days
(taken from (Kansal et al., 2007)).

Given equation 3.31, we are able to obtain the specific ai and bi values for node i. In
turn, we are now able to calculate the energy recharging rate, Bpi(k), during a particular
time slot k for node i:

Bpi(k) =

 Bni · t|t
′(k)

t(k) if ns ≤ t ≤ nf[
1
3ait

3 + 1
2bit

2
]t′(k)

t(k)
if ds ≤ t ≤ df

(3.32)

where t(k) and t′(k) are the beginning and end of time slot k respectively.

From equations 3.25 and 3.32, the energy remaining, Bi(k), at time slot k for node i

becomes:

Bi(k) = Bmaxi · (1− βi)−
k−1∑
j=1

Bci(j) +
k−1∑
j=1

[Bpi(j) · (1− δi(j))]

= Bmaxi · (1− βi)−
k−1∑
j=1

[Bci(j)−Bpi(j) · (1− δi(j)] (3.33)

where the energy remaining never exceeds its maximum:

Bi(k) ≤ Bmaxi · (1− βi) (3.34)

We believe this energy recharging model is adequate enough for our current purposes.
This view is based on an experiment in which a test Heliomote was installed with a
solar panel and was placed in a location where sunlight is available for part of the day
(Kansal et al., 2007). The power output from the solar cell was recorded for a nine day
period that vary among cloudy, hazy, and sunny. Figure 3.12 shows the results of this
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Figure 3.13: The solar irradiation of a wireless sensor node with an intelligent hybrid
power source system, plotted against time (taken from (Li et al., 2008)).

experiment. Note that it shows a similar global pattern to that of our energy recharging
model. The fluctuations are due to cloud covers and possibly energy leakage. We also
note that the development of wireless sensor nodes with a hybrid power system to realize
a self-sustaining WSN has also produced a similar solar irradiation plot to that of our
recharging model (see figure 3.13).

3.5.2 Network and Parameters Setup

In our experiments, we use a simulation of the FLOODNET network, driven by real data
for batteries, tide readings, and cloud cover (used to model solar energy harvesting). The
experiments are run using FLOODNET’s actual topology with a fixed number of nodes
(twelve) at fixed locations (i.e. the nodes are immobile). The sampled data model (worth
approximately eight days of measured data starting from Oct 14th 2005 00.00AM) for
each node was fixed for each instance of the experiments. All the cloud parameters
including the cloud coverage, thickness, and wind speed are initialized with realistic
data (at FLOODNET’s site) available in METAR12 format. These are all done in
order to reproduce the FLOODNET scenario as realistically as possible. The remaining
battery energy of each node and its recharging rate are set to be low so that it cannot
continuously sample at its maximum rate. Given these constraints, nodes must therefore
allocate resources and schedule themselves to determine how often and when to sample
efficiently in order to maximise their collected information value.

In a simulation run, nodes can fail due to their battery depletion, but they cannot be
added or removed. For the sake of simplicity and in order to exploit all the possible

12http://weather.noaa.gov/weather/metar.shtml, checked on 02/02/2009.
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Table 3.2: Parameters used for the simulations.

Parameter Value

Number of nodes (n) 12
Number of time slots (w) 24
Maximum energy capacity (Bmaxi,∀i ∈ I) 51840 joules
Energy supply cut-off threshold (βi,∀i ∈ I) 0.5
Energy to sample (es

i,∀i ∈ I) 0.14 joules/sample
Transmission rate 1 transmission/2 hours
Number of different sampling rates (si,∀i ∈ I) 4
Set of possible sampling rates (Ci,∀i ∈ I) {1, 3, 6, 12} samples
Maximum sampling rate (csi

i ,∀i ∈ I) 12 samples/time slot
Minimum sampling rate (c1

i ,∀i ∈ I) 1 sample/time slot
Energy recharging rate at night time (Bni,∀i ∈ I) 18 mJ/hour
Night start time (ns, df) during summer 19:00 pm
Day start time (ds, nf) during summer 07:00 am
Night start time (ns, df) during winter 16:00 pm
Day start time (ds, nf) during winter 08:00 am
Energy recharging rate in month 1 ≤ month ≤ 12
(Bhi,∀i ∈ I)

{8.4, 13.2, 16.8, 21.6, 25.2, 22.8, 24.0, 22.8,
19.2, 14.4, 7.2, 6.0} J/day

Average temperature in month 1 ≤ month ≤ 12 {1.6, 2.3, 5.4, 7.8, 11.7, 14.6, 17.5, 17.1, 14.1,
10.0, 5.1, 2.8} Celsius

changes in the system, at this point of time, we only consider four different actions
(si = 4, ∀i ∈ I) describing each node’s sampling rate. Thus, it can either sample one,
three, six, or twelve times per hour (i.e. Ci = {1, 3, 6, 12}, ∀i ∈ I). The other simulator
parameters are initialized as described in table 3.2.

3.5.3 Benchmark Algorithms

In our experiments, the benchmark algorithms include:

• A Näıve Non-Adaptive Sampling Algorithm: This dictates that each node
i ∈ I should sample at its maximum rate, csi

i , whenever there is enough battery
energy to do so. The node’s sampling behaviour is therefore non-adaptive and can
be described as:

ak
i = csi

i ∀i ∈ I,∀k ∈ H (3.35)

• A Uniform Non-Adaptive Sampling Algorithm: This dictates that each
node i ∈ I in the network should simply choose to divide the total number of
samples it can perform in a day, Ni, where Ni = Bi

es
i
, equally into its time slots,

such that:

ak
i = arg max

u
u where u ∈

{
cj
i ∈ Ci|cj

i ≤
Ni

w

}
∀i ∈ I,∀k ∈ H (3.36)

• A Utility-based Sensing And Communication (USAC) Algorithm: This
is a state-of-the-art algorithm that lets each node adjust its sampling rate depend-
ing on the rate of change of its observations (recall section 2.4 for more details).
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(a) GP Regression with Näıve Non-Adaptive Sampling
Algorithm collecting Fisher information value of FI =
1.804 · 10−3.

0 500 1000 1500
0

500

1000

1500

2000

2500

3000

Time Unit

W
at

er
 L

ev
el

 (
m

m
)

GP Regression with Uniform Non−Adaptive Sampling

Error Bars
GP Regression Line
Sampled Data

(b) GP Regression with Uniform Non-Adaptive Sam-
pling Algorithm collecting Fisher information value of
FI = 3.278 · 10−2.
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(c) GP Regression with Heuristic Information-Based
Adaptive Sampling Algorithm collecting Fisher infor-
mation value of FI = 7.396 · 10−2.
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(d) GP Regression with Greedy Adaptive Sampling
Algorithm collecting Fisher information value of FI =
1.045 · 10−1.

Figure 3.14: GP Regression evaluated on daily basis for FLOODNET node 1 collect-
ing samples on Oct 15th 2005. One time unit represents a one minute interval.

Specifically, the algorithm uses a linear regression method which is run to deter-
mine the next predicted data, dat(t + 1), with some bounded error (termed its
confidence interval, ci). If the next observed data falls outside ci, the node sets
its sampling rate to the maximum rate in order to incorporate this phase change.
However, if data falls within the ci, it implies that the node is allowed to reduce its
sampling rate for energy efficiency due to the presence of predictable information
that has a low value. The USAC algorithm does not have a notion of time slot
and therefore, each node has the flexibility to change its own sampling rate at any
point of time13.

Now, assuming that the sampling rate of node i ∈ I at t point of time, Sri(t), is
13All other algorithms, on the other hand, dictate that each node should only change its sampling

rate at subsequent time slots.
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(a) GP Regression with USAC (ci=60%) collecting
Fisher information value of FI = 4.058 · 10−3.
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(b) GP Regression with USAC (ci=85%) collecting
Fisher information value of FI = 6.142 · 10−2.
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(c) GP Regression with USAC (ci=95%) collecting
Fisher information value of FI = 5.559 · 10−2.

Figure 3.15: GP Regression with USAC using different values of ci evaluated on
daily basis for FLOODNET node 1 collecting samples on Oct 15th 2005. One time unit

represents a one minute interval.

equal to cj
i , where cj

i ∈ Ci, then its sampling rate at t + 1 is defined as:

Sri(t + 1) =

{
cj−1
i if Lo(ci) ≤ dat(t + 1) ≤ Up(ci)

csi
i otherwise

(3.37)

where Lo(ci) and Up(ci) are the lower and upper bound of ci respectively. As the
setting of ci is central to USAC’s operation, and because no guidelines are given
about what values to use, here we use the following range of values: 60%, 85%,
and 95%. This is, we believe, sufficient to fully examine USAC’s performance in
this domain.

• Unconstrained Sampling: This ignores the constrained energy of the node, and
allows the node to sample its maximum rate for the entire trial period. This rep-
resents an absolute upper bound on the value of information that can be collected,
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but clearly cannot actually be implemented in practice since the nodes will deplete
their batteries before the end of the trial period.

3.5.4 Results

We now present the results of the simulation process described above. Figures 3.14
and 3.15 show the comparison of Fisher information values that are evaluated (on a
daily basis using the GP regression technique as per equation 3.5) with different sets of
FLOODNET node 1 observations collected using the different algorithms. It also shows
that the node obtains the lowest uncertainty in its set of readings on that day and,
hence, the highest information value (FI), when it collects samples using the greedy
adaptive sampling algorithm. With the heuristic information-based adaptive sampling
algorithm, on the other hand, it collects slightly less information value. However, this
value is significantly higher compared to those collected using the two non-adaptive and
USAC benchmarks.

The actual σ̂2(xj) (defined in equation 3.4) in figures 3.14 and 3.15 are too small to be
visible on such a scale (for enlarged versions and to show more clearly how the heuristic
adaptive sampling algorithms outperform the non-adaptive and USAC algorithms, see
figures 3.16 and 3.1714). Moreover, we also compare the computational time perfor-
mance of the various algorithms in order to provide the other side of the optimality and
computational time trade-off.

3.5.4.1 Information Value Analysis

As can be seen in figure 3.18(a), the heuristic information-based adaptive sampling al-
gorithm performs well. Compared to the näıve and uniform non-adaptive approaches
respectively, this algorithm consistently increases the total Fisher information collected
by about 83% and 27% per day over the trial period. The plot clearly shows the su-
periority of the heuristic information-based adaptive sampling algorithm and that the
information value of the data collected found by it is approximately 75% of the greedy’s.

Furthermore, in comparison with case of nodes that can sample unconstrained by power
requirements (i.e. they can sample at the maximum rate throughout the trial period)
our heuristic information-based adaptive sampling algorithm is approximately 66% of
this upper bound. This upper bound corresponds to the peaks in figure 3.18 and, thus,
we do not show it as an additional line in this plot.

14In these figures, the GP regression using the näıve non-adaptive and USAC (ci = 60%) sampling
algorithms are not shown because the plots would simply be covered by the error bars as can be seen
from figures 3.14(a) and 3.15(a) respectively.
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(a) GP Regression with Uniform Non-Adaptive Sam-
pling Algorithm.
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(b) GP Regression with Heuristic Information-Based
Adaptive Sampling Algorithm.
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(c) GP Regression with Greedy Adaptive Sampling
Algorithm.
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(d) GP Regression with USAC (ci=85%).
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(e) GP Regression with USAC (ci=95%).

Figure 3.16: GP Regression on sampled data taken between time unit 1170 and 1250
from FLOODNET node 1 operating on Oct 15th 2005. One time unit represents a one

minute interval.
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(a) GP Regression with Uniform Non-Adaptive Sam-
pling Algorithm.

1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430
2400

2450

2500

2550

Time Unit

W
at

er
 L

ev
el

 (
m

m
)

GP Regression with Heuristic Information−Based Adaptive Sampling

Error Bars
GP Regression Line
Sampled Data

(b) GP Regression with Heuristic Information-Based
Adaptive Sampling Algorithm.
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(c) GP Regression with Greedy Adaptive Sampling
Algorithm.
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(d) GP Regression with USAC (ci=85%).
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(e) GP Regression with USAC (ci=95%).

Figure 3.17: GP Regression on sampled data taken between time unit 1380 and 1430
from FLOODNET node 1 operating on Oct 15th 2005. One time unit represents a one

minute interval.



Chapter 3 Decentralised Control of Adaptive Sampling 82

Oct 14 Oct 15 Oct 16 Oct 17 Oct 18 Oct 19 Oct 20 Oct 21
1

2

3

4

5

6

7

8

9

Cumulative Information

Time (Dates are in 2005)

F
is

h
e
r 

In
fo

rm
a
ti
o
n

Naive Non-Adaptive Sampling

Uniform Non-Adaptive Sampling

Heuristic Information-Based Adaptive Sampling

Greedy Adaptive Sampling

USAC (ci=60%)

USAC (ci=85%)

USAC (ci=95%)

(a) Cumulative information gathered over an 8-day period plotted against time.

Oct 14 Oct 15 Oct 16 Oct 17 Oct 18 Oct 19 Oct 20 Oct 21
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Information Measured (per day)

Time (Dates are in 2005)

F
is

h
e
r 

In
fo

rm
a
ti
o
n

Naive Non-Adaptive Sampling

Uniform Non-Adaptive Sampling

Heuristic Information-Based Adaptive Sampling

Greedy Adaptive Sampling

USAC (ci=60%)

USAC (ci=85%)

USAC (ci=95%)

(b) Information gathered daily over an 8-day period plotted against time.

Figure 3.18: Information measurement graph performances.
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Figure 3.19: Water samples gathered on the second day of the simulation using the
heuristic information-based adaptive sampling algorithm. Graph only displays some

selected nodes for better visibility.

The heuristic information-based adaptive sampling algorithm also outperforms USAC
for all values of ci. The main reason is due to the absence of a forward planner in
USAC. In more detail, figure 3.15(a) shows how USAC (ci = 60%) behaves poorly with
performance similar to that of the näıve one. With this non-carefully chosen ci value,
a small change in environmental readings will trigger each node to change its sampling
rate to its maximum (of which energy is never reserved for possible future usage). As
it does not have the power to continuously sample at this maximum rate, it often runs
out of energy during a day and so collects no information for a long period of time.
Figures 3.15(c), 3.16(e), and 3.17(e), on the other hand, show how USAC (ci = 95%)
performs in a similar fashion to the uniform non-adaptive one. In this setting, the
next predicted data is highly likely to fall within the bounded error, ci, and hence,
the algorithm dictates that each node should decrease its sampling rate due to the
presence of low value predictable readings. Here, the harvested and renewable energy is
not allocated effectively because the algorithm does not maintain the nodes in energy
neutral operation mode (i.e. balance the amount of energy harvesting against that of
energy consumption). USAC’s optimal ci value for FLOODNET data is found to be
85% in which the algorithm collects information with value 8% lower than that collected
by our heuristic information-based adaptive sampling algorithm over the trial period.

Additionally, figure 3.18(b) shows more clearly how the adaptive sampling algorithms
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Figure 3.20: Number of samples taken in each hour slot from FLOODNET node
1 operating on Oct 15th 2005. The heuristic information-based adaptive sampling
algorithm behaves in the same pattern as the greedy one. Both generally samples more
often during dynamic events while sacrificing some energy to sample less during static

ones.

achieve this performance. After leaving the schedule updating mode (i.e. the second
day of a simulation, as can be seen in figures 3.19 and 3.20), a node is able to perform
adaptive sampling by conserving its battery energy in order to take more samples during
the most dynamic events, while taking fewer samples during the static ones. In our
case, the dynamic events of a tide occur at the time it comes in (specifically when the
node rises off mud, between 07.00 and 09.00 in figure 3.19), reaches the peak (between
10.00 and 11.00), and goes out (between 12.00 and 14.00). During these events, nodes
normally set their sampling rates to a maximum value (i.e. in our case, at five minute
intervals). As a result, from the second day onward, figure 3.18(b) shows a gain in
information value collected (particularly during the dynamic events), except when the
nodes are in updating mode (on Oct 17th and 20th). In this mode, all nodes sample
at their maximum rates (as discussed in section 3.4.3.2), therefore on those dates, the
information valuations of the five approaches are the same.

3.5.4.2 Run Time Performance

The optimal adaptive sampling algorithm works only for very small problems as it very
rapidly becomes infeasible for even small- to medium-sized ones. For instance, consider
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Figure 3.21: Computational time performance.

an adaptive sampling problem in which a node has sufficient battery capacity to sample
only 3 times from the possible 288 sampling points in a day. In this scenario, there
are 105(C288

3 ) solutions to enumerate, which is just about possible to do with a modern
computer in a finite amount of time. However, for a slightly larger problem, where
a node has the flexibility to sample 36 times from the possible 288 sampling points
in a day, there are now 1037(C288

36 ) solutions to enumerate, which is intractable in a
reasonable amount of time, even for a very fast computer. Assuming a 3GHz desktop
PC on which the GP regression technique takes approximately 5 seconds, we estimate
this would take 1030 years to compute. In more detail, figure 3.21 shows a comparison
of the computation time of all the algorithms that we consider.

The greedy adaptive sampling algorithm significantly reduces the computation time,
since it reduces the number of possible combinations of sampling points that must be
compared. However, it is still too slow to be run on the nodes that have similar compu-
tational power to FLOODNET’s. This is because there are still 1

2 ·addSamp ·((remSP−
addSamp) + remSP )) possible solutions to iterate, where as defined in section 3.4.2,
addSamp and remSP are the number of additional samples to be allocated and the
possible remaining sampling points respectively. For instance, for a problem in which a
node is capable of allocating 36 samples from the possible 288 sampling points, there are
still 9720 solutions to evaluate, and experiments indicate that this takes approximately
14 hours to compute on a standard 3Ghz desktop PC.



Chapter 3 Decentralised Control of Adaptive Sampling 86

The heuristic information-based adaptive sampling algorithm, on the other hand, runs
in real-time on the current configuration. This is due to the performance of the linear
programming optimization technique and the simplified information valuation metric.
Again, consider the 36 sample problem for example, this algorithm calculates the pre-
ferred solution in hundreds of milliseconds. Finally, due to the similar nature of linear
regression method used for valuing information, USAC also executes in real-time.

3.6 Summary

In this chapter, we have focused on issues associated with energy management in general
and information-based adaptive sampling in particular. We have developed a principled
information metric based upon Fisher information and Gaussian process regression that
allows the information content of a node’s observations to be expressed (thus address-
ing Contribution 1), and given a set of node readings, we have shown how an optimal
and a greedy adaptive sampling algorithm can be devised. They are, however, only
tractable for very small problems and, thus, we have developed a more practical, heuris-
tic information-based adaptive sampling algorithm with the ultimate aim of maximizing
the information value of the data collected (Contribution 2). This approach is a better
choice for larger sampling problems (beating the benchmarks and obtaining performance
close to the optimal one, but with much lower time complexity). The empirical results
show that all three decentralised control algorithms for information-based adaptive sam-
pling are effective in balancing the trade-offs associated with wanting to gain as much
information as possible by sampling as often as possible, with the constraints imposed
on these activities by the limited power available (Contribution 3).

Although the effectiveness of these algorithms is evaluated within the FLOODNET do-
main, the challenges that are involved here are very similar to those that occur in the
design of many other WSNs. Specifically, many WSNs are being deployed in the domain
of environmental phenomena monitoring (see section 2.1), and data in these settings
typically exhibits periodic features (as we have with the tides) due to the natural cycle
of day and night. The GP regression algorithm learns this periodicity from the tempo-
rally data and, thus, can be applied directly. It is also expected to work well in domains
in which readings are more noisy since the GP handles sensor noise well. The linear
programming technique, together with the utility functions and constraints, can also be
adapted to meet the design objectives of other WSNs in general. However, some WSN
applications also require spatially dense node deployments to achieve satisfactory cov-
erage (such as object tracking applications). This is because with high spatial densities
of sensors in the deployed area, multiple nodes often record information about a single
event and collect spatially correlated data. These spatially proximal node observations
are highly correlated with the degree of correlation increasing typically with the dimin-
ishing inter-node separation. As our algorithms do not explicitly take spatial correlation
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into account, they will not work well in reducing the redundancy in each event infor-
mation sensed by multiple nodes. Moreover, the manual setting of the calibration cycle
(as discussed in section 3.4) might prevent our algorithms from performing well when
applied in WSN applications whose data exhibits extremely irregular patterns. We will,
however, work towards automating this parameter setting as part of our future work.

We have so far only looked at controlling WSNs by adapting the nodes’ sampling actions.
Moreover, we have argued that there are many realistic application areas where such
an approach is sufficient. However, there are also clearly other environments where the
problem model needs to be extended to incorporate the nodes’ inter-related sampling,
transmitting, forwarding, and routing actions in multi-hop WSNs. Thus, we address
this case in the following chapter in which we develop adaptive sampling, transmitting,
forwarding, and routing algorithms that will allow nodes to make principled trade-offs
between using their energy reserves to take more samples and transmit them, or to relay
data from another node to the base station.



Chapter 4

Decentralised Control of Adaptive

Sensing, Forwarding, and Routing

So far, we have looked at information-based decentralised control of adaptive sampling
in WSNs in which the nodes transmit their samples either directly to the base station
or using a non-adaptive multi-hop routing method, with the system-wide goal of max-
imising the information value of the data collected, constrained by their limited energy
resources. As discussed in chapter 2, however, FLOODNET nodes need to transmit
their readings in an adaptive multi-hop fashion as most of them do not have a direct
link with the base station and at any particular point of time, they will have different
remaining energy budgets and total values of information collected so far.

We thus turn our attention to the inter-related adaptive sampling, transmitting, forward-
ing, and routing problem. Specifically, we here develop two novel optimal decentralised
algorithms. The first one varies each sensor’s sampling, transmission, and forwarding
rates to ensure all nodes in a network focus their limited resources on maximising the in-
formation content of the data delivered to the base station while assuming that the route
by which the data is forwarded is fixed, either because the underlying communication
network is a tree or because an arbitrary choice of route has been made (Contribution 4).
The other deals with flexible routing and dictates each node to make optimal decisions
regarding both the integration of actions that each node should perform, and also the
route by which this data should be forwarded to the base station (Contribution 5). We
then empirically evaluate them and show that they represent a trade-off in optimality,
communication cost, and processing time (Contribution 6).

To this end, in section 4.1, we consider an exemplar scenario where this problem typically
occurs. In section 4.2, we then detail a specific type of WSN for which our proposed
decentralised control mechanism is extremely well suited. In section 4.3, we state the
formal model of our distributed constraint optimization problem (i.e. the inter-related
adaptive sampling, transmitting, forwarding, and routing problem) by extending our

88
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system model from the previous chapter (in section 3.2). In section 4.4 we detail two
novel algorithms for solving the problem. In both cases, we show how we find the optimal
local allocation decisions. Our experimental evaluation of these algorithms are presented
in section 4.5. The chapter is then concluded in section 4.6.

4.1 Inter-Related Information-Based Adaptive Sampling,

Transmitting, Forwarding, and Routing

In a multi-hop cooperative WSN, the nodes need to coordinate in order to maximise
the network’s global objective. In general, they are typically not able to simply sample
and transmit their own samples at their maximum frequency because doing so would
deplete their energy and, hence, they would not be able to relay (or forward) their
neighbours’ data messages. Such uncoordinated behaviour would mean that very little
data would end up at the base station because it is never forwarded on. Therefore,
there exists a trade-off associated with wanting to gain as much information as possible
by sampling and transmitting as often as possible, with the constraints of the limited
resources available on these nodes.

To address this efficiently and effectively, our approach (more details of which are given
in section 4.4) seeks to provide a distributed coordination mechanism for the cooperative
nodes to potentially conserve battery energy by taking and transmitting fewer of their
own samples, while allocating some of their energy to forward and route the data of
others. By doing this, the system should maximise the total information that reaches
the base station, subject to the constrained energy resources of each individual node
within the network.

To illustrate this point, consider the scenario case expected in figure 4.1(a). Here, nodes
i and 3 are out of the base station’s wireless transmission range. Hence, they require the
help of node 1 to forward their data. Nodes have their own energy budgets (as one of their
private values which we will discuss in more detail in section 4.3) to perform sampling,
transmitting, and forwarding activities of which each requires a different amount of
energy. Now, if node i’s or 3’s sampled data is judged to be more important than that
of node 1, then sacrificing a portion of node 1’s energy to forward some or all nodes i’s
or 3’s data to the base station will yield a higher information value at the base station.

Now, consider the slightly different case of figure 4.1(b). Here, node i has two options
to route node 6’s and its own data through; namely (i) node 1 and (ii) node 2. If node
2 has important data to be transferred to the base station, then node i is better off
either by: (i) routing both node 6’s and its own data through node 1 or (ii) routing the
smallest in size data between the two through node 2 while the other is forwarded via
node 1.
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Figure 4.1: Inter-related information-based adaptive sampling, transmitting, forward-
ing, and routing scenario in (a) a tree-structured network and (b) an arbitrary network

that exhibits loops. Dotted node i could represent any subnetwork.

For both these distributed constraint optimization settings, a scalable and robust dis-
tributed coordination mechanism needs to be devised to provide the nodes with the
flexibility of making their own efficient local decisions. Control must be distributed
among the nodes, each of which cooperates to calculate the optimal decisions by ex-
changing coordination messages with neighbourhood nodes. Given that the nodes may
have different energy constraints and communication costs, these local allocation deci-
sions must include those that: (i) dictate each node’s sampling rate over a particular
time interval, (ii) adapt the node’s transmitting, receiving, and forwarding behaviour,
and (iii) select the best, feasible energy efficient routing path with the fewest number of
hops towards the base station. The size of the exchanged coordination messages must
be kept to minimum as there is also a resource cost associated with this activity.

In more detail, we note that these local decisions are inter-dependent as no node in
the network is able to make such a decision individually. This is because the sampling,
transmitting, forwarding, and routing choices of an individual node will affect those
available to all of the other nodes in the network. This is may be directly, since they
are on the path from this node to the base station and, thus, must devote energy to
the forwarding of this node’s data, rather than acquiring and transmitting their own.
Or it may be indirectly through the propagation of these effects. Now, as explained
in section 2.2, this message-exchange coordination mechanism inevitably involves an
additional small communication cost in order to derive an optimal distributed resource
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allocation algorithm for networks in which the nodes possess private values. We thus
motivate our new algorithms by considering WSN applications that deal with large data
sets. Specifically, we chose wireless visual sensor networks (WVSN) as the nodes capture
image (or visual) data of a large size and so the additional overhead of coordination is
much less significant compared to the size and volume of the data sent (Zahariadis and
Voliotis, 2007).

4.2 Wireless Visual Sensor Networks

A WVSN consists of a number of spatially distributed smart camera devices, each of
which is capable of performing basic capturing, processing, and compression of visual
data of a scene from a variety of viewpoints (i.e. only within a specific area) before
relaying it to a base station in a multi-hop fashion to be jointly processed, analysed,
or fused into some form more useful than the individual data (e.g. to reconstruct the
entire surveillance area covered by the network). Each node has its own image sensor,
image processing, storage, communication, and limited power units (see figure 4.2 for
an example of a wireless smart camera mote).

Such networks are intended for distributed image acquisition (in a variety of applications
such as object tracking (Simon et al., 2004), unattended area surveillance (Bramberger
et al., 2006), and other security related applications) over large and possibly hostile envi-
ronments and, as such, are required to operate for extended periods of time with minimal
human intervention. The increased computational power of the nodes within a WVSN
compared to those typically deployed within a conventional WSN, the large amounts of
visual information that they collect, and the high energy cost of wirelessly communicat-
ing this information through the network, mean that efficient energy management is a
key challenge in these networks.

To this end, recent work has explored decentralised coordination algorithms that enable
the nodes to autonomously adapt and adjust their sampling and routing behaviours (re-
call the discussion in section 2.6). However, much of this work has specifically addressed
WSNs in which the nodes are assumed to be low power, computationally constrained
devices, and as such, has considered simple heuristic algorithms that allow the nodes to
make local decisions to improve the overall performance of the network.

While such approaches have proved valuable in the context in which they were developed,
when applied to WVSN they do not fully exploit the computational power available to
the nodes. Furthermore, the large amounts of visual data that the nodes within the
WVSN collect and communicate means that the communication resources available to
the decentralised coordination mechanism are much greater than those of many conven-
tional WSNs. When taken together, the move to WVSN means that there is now the
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(a) (b)

Figure 4.2: (a) Wireless smart camera mote (taken from (Kleihorst et al., 2006))
which is battery-powered and equipped with two VGA colour image sensors, SIMD
(Single Instruction Multiple Data) image-analysis processor and 8051 micro-controller,
a dual port RAM with 128KB memory, and a ZigBee IEEE 802.15.4 communication

module, as shown in (b).

possibility of deploying algorithms that can optimally maximise the overall effectiveness
of the network through distributed computation, rather than use local heuristics.

Thus, it is exactly this challenge that we address in this chapter and to this end, we
present two optimal and decentralised algorithms for adaptive sampling, transmitting,
forwarding, and routing to solve the distributed constraint optimization (DCOP or Dis-
COP) problem.

4.3 Problem Description

Here, we formalise the generic inter-related adaptive sampling, transmitting, forwarding,
and routing problem that we face. To this end, let n be the number of visual sensor
nodes within a WVSN system and the set of all nodes (or agents) be I = {1, . . . , n}.
Each node i ∈ I can sample at si different rates over a period of time. Its set of possible
sampling (or frame) rates is denoted by Ci = {c1

i , . . . , c
si
i }; the elements of which appear

in increasing order such that cj
i < cj+1

i . Specifically, each element of this set, cj
i , is a

positive integer that describes the number of samples that the node takes during any
specific time interval1.

Each node has private information regarding the information content of the samples
that it acquires, and this is represented by an array of 2-tuples Fi =

[
(0, 0) ,

(
c1
i , v

c1
i

i

)
, . . . ,(

csi
i , v

c
si
i

i

)]
, where the first value of each tuple is the number of samples that the node

may take and v
cj
i

i is the corresponding information content for those cj
i samples. The

information value of the visual data generally increases as the node takes more samples2.
1We remark that the model described so far is the same as that for the information-based adaptive

sampling in chapter 3 (in section 3.2). For this reason, we use the same notations as those used before.
2Our algorithms are, however, not restricted to any particular types of information valuation function.
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We assume that should the node choose to acquire no samples, it will yield zero infor-
mation value (see later in this section for a more detailed discussion of this information
value). Furthermore, we assume that the visual data captured by a node needs to be
processed at the base station with that of other nodes and, therefore, the information
content of the data will only be accounted for if it arrives successfully at the base station.

We further assume that each node has an energy budget, Bi (also a private value initially
known only to the node), such that its total energy consumption over a given period
of time cannot exceed this budget, and here, we consider three specific kinds of energy
consumption for each node in the network; namely the energy required to (i) acquire,
es
i , (ii) transmit, eTx

i , and (iii) receive, eRx
i , a single sample. We disregard the energy

required for other types of processing since it is negligible in comparison. Now, since the
node has to transmit its own data towards the base station, the total energy required for
this activity is thus ES

i = es
i +eTx

i per sample (we will later on refer to the combination of
these processes as sensing). Similarly, the node could potentially spend a portion of its
energy to help its neighbourhood nodes to forward their own samples (and/or data that
these nodes are forwarding for another node). This incoming data forwarding process
requires a total energy of EF

i = eRx
i + eTx

i per sample.

Each node initially stores its collected samples into its local memory buffer in order to
be transmitted at a later stage. The transmission period and interval are predetermined.
During each transmission phase, the transmitter module of each node is turned on for
the purpose of transmitting data or message packets to the base station in a multi-hop
fashion since some nodes might be out of the base station’s wireless range (recall figure
4.1), and hence, require the help of others to relay their packets. Battery-powered visual
sensor nodes typically offer reasonably small on-board memory and, hence, at the end
of the transmission phase, each node’s memory buffer is flushed, reinitialized, and ready
to store new sampled data (Mathur et al., 2006).

We describe the route through which the samples, cj
i , will be transmitted to the base

station by the vector R(cj
i ) = (r1

i , . . . , r
b
i ), where rl

i ∈ I. The first element of this vector
is the origin node i that actually takes the samples. Each subsequent element of this
vector is unique and rl

i will forward the data to rl+1
i . Thus, for the data value of cj

i

samples to be taken into account, its routing set must contain the base station node as
its last node.

Given the formal description of the problem above, we now wish to maximise the value
of the collected data that arrives at the base station. That is, we wish to solve:

D∗i = arg max
{Di,Fi}

n∑
i=1

∑
cj
i∈Ci

d R(cj
i )

i v
cj
i

i (4.1)

In this expression, d R(cj
i )

i ∈ Di ∈ {0, 1}, is a decision variable where “1” represents a state



Chapter 4 Decentralised Control of Adaptive Sensing, Forwarding, and Routing 94

where the node carries out the corresponding cj
i sampling action and the samples follow

the R(cj
i ) route to arrive at the base station, and “0” represents the state where the

node does not carry out the corresponding cj
i sampling action. This objective function

is maximised subject to the energy budget constraint on each node i ∈ I, such that:

Bi ≥ cj
iE

S
i + fiE

F
i (4.2)

where fi represents the total incoming data (or forwarded number of samples from its
set of neighbourhood nodes Di), and is given by:

fi =
∑
d∈Di

cj
d + fd (4.3)

where i ∈ R(cj
d). Note that the total outgoing number of samples from node i is thus

cj
i +fi. We must also constrain the node to choose one and only one sampling rate, such

that: ∑
cj
i∈Ci

d R(cj
i )

i = 1 (4.4)

for all different possible routes in the network.

Now, consider a simple scenario expected in figure 4.3(a). Here, nodes i, 1, and 3
have their own sets of sampling actions with si, s1, and s3 being different numbers of
sampling actions respectively. The nodes also have their corresponding energy budgets,
Bi, B1, and B3 to perform either sampling and transmitting their own data (requiring
ES

i amount of energy per sample) and/or receiving and forwarding the other nodes’
data (requiring EF

i amount of energy per sample). For the sake of simplicity, we here
assume ES

i requires 8 units of energy and EF
i requires 12 units of energy3, ∀i ∈ I. Each

sampling action has a corresponding information value if the samples (collected by the
corresponding sampling action) successfully arrive at the base station. In this case, it
turns out that the optimal resource allocation for maximising the gathered information
value is where node 1 spends its energy to acquire only two samples, while reserving a
portion to relay one and two of nodes i’s and 3’s samples respectively. The information
value collected at the base station is optimized with these sensing and forwarding actions
(acquiring the total value of 52.60).

In the case of a network with loops, as depicted in figure 4.3(b), node i now has two
options to route its data through; namely (i) node 1 which results in route R(cj

i ) =
(i, 1, base station) and (ii) node 2 which results in route R(cj

i ) = (i, 2, base station). In
this case, we simply disregard both nodes 4’s and 5’s sets of possible sampling actions for
the sake of simplicity. With our effective and efficient coordination mechanism (which
we will describe shortly in the next section), node 2 will decide to use up all its energy
to sample five times as both nodes 4 and 5 do not sample. Node 1, however, will sample

3This is just for illustration purposes and our algorithms will naturally work for any values.
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Figure 4.3: A WVSN configured using the wireless transmission range model as in
figure 4.1 and, thus, forms (a) a connected and undirected tree structured network (of
which any two nodes are connected by exactly one path) and (b) an arbitrary network
with loops. Each node only has a single transmission level. We further assume that
communication is bi-directional and multiple nodes within range can thus establish a

connection.

only twice and reserve some of its energy to relay one of each node i’s, 3’s and 6’s
samples. The optimal information value collected with these nodes’ behaviour is thus
88.74.

For both these small sized networks with complete information, a näıve approach to
finding the optimal subset of actions is to simply enumerate all possible combinations.
This approach, however, is too computationally intensive and works only for very small
problems as it very rapidly becomes intractable. For instance, consider the case in figure
4.4(a) in which each node has 30 different sampling actions, the näıve algorithm would
now need to evaluate approximately 3 · 1029 (

∏n
i=1 csi

i ) solutions (where n is the number
of nodes within the the network), and considerably more possibilities (

∏n
i=1 (qi · csi

i ),
where qi is the total number of unique routes from node i to the base station) for the
case in figure 4.4(b). These are clearly impossible to compute in a reasonable amount
of time regardless of processor speed.

Against this background, the problem as formulated above, can be viewed as being
similar to multiple-choice knapsack4 problems (i.e. NP-complete resource allocation or

4There are m items and the set of all items is T = {1, . . . , m}. Each item t ∈ T has a value vt and
a weight wt. The items are subdivided into o categories and exactly one item must be taken from each
category. The maximum weight that can be carried in a bag is G. Given these, we need to determine
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Base Station

(a)

Base Station
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Figure 4.4: (a) A tree-structured network formed when each node makes an arbitrary
choice of route from (b) a randomly created and connected WVSN (of 20 nodes, each
of which is represented by a black filled dot) whose underlying communication network

exhibits loops.

distributed constraint optimization problems) (Sinha and Zoltners, 1979), that exhibit
the optimal substructure property. This property means that the optimal solution can be
constructed efficiently from optimal solutions to its subproblems. Given this insight, we
propose algorithms to solve this problem based on the sort of computationally efficient
dynamic programming technique that are often used on such knapsack problems (see
section 2.2).

Having formulated our problem, we need to describe an information metric to value
the various visual data that the nodes may acquire. In our particular case, we seek a
generic metric in order to simply express the nodes’ satisfaction of any particular sensing,
forwarding, and routing action when faced with a choice between different alternatives.
Now, assuming that we concern only about portions of data rather than anything specific
about image data, and given the fact that more samples will generally generate data with
a higher information content, we choose a simple linear information valuation function
given by:

v
cj
i

i = αic
j
i (4.5)

where αi is a weighting factor (with support [0, 1]) that models the typical situation that
the sensors within the network are heterogeneous, have different capabilities (i.e. the
resolution of their cameras, the quality of their optics, or the sophistication of their image
processing algorithms) and varying fields of view. Hence, samples from some sensors will

which items to include in the bag such that the total weight does not exceed its given limit, while the
total value is maximised.
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contribute more to the total amount of information collected at the base station than
others (Rinner et al., 2008). However, we remark that our algorithms are not restricted
to this linear information valuation function, and in some domains, it may be more
appropriate to model the information as a strictly concave function where continuing to
increase the sampling rate generates decreasing gains in information content5.

4.4 The Algorithms

Having described our problem representation and information metric, we now focus on
the algorithms that seek to use the limited resources on each node in order to maximise
the total value of information that arrives at the base station. To do so, nodes are
required to make optimal use of their energy resources to cooperatively sense and forward
data to the base station. In doing so, they should place higher priority on those samples
that have a higher information content, and this is achieved by exchanging coordination
messages between connected nodes. In particular, samples that are less important are
sensed and relayed only if there is sufficient remaining energy to do so. Thus, under this
control regime, some nodes might need to sacrifice their own limited energy to forward
other node’s data, rather than taking any samples themselves.

To this end, we distinguish three types of messages being exchanged by the nodes;
namely (i) actual data messages containing visual data sampled by the nodes, and two
types of coordination messages composed of (ii) meta-data messages that describe the
information content of the visual data together with the number of samples taken to
produce that data (i.e. v

cj
i

i and cj
i respectively), and (iii) control messages that contain

the allocation decisions. In WVSNs, the size of the actual data messages overwhelms
that of the coordinations messages and, hence, exchanging these before sending the
actual data, can significantly increase the information collected at the base station by
making more efficient use of each node’s constrained energy.

The goal of the algorithms that we derive is to calculate the optimal sensing, forwarding,
and next-hop decisions of each node. This is given by:

CmaxI = {(i, cj
i , R(cj

i ))|d
R(cj

i )
i = 1,∀i ∈ I,∀cj

i ∈ Ci,∀d R(cj
i )

i ∈ D∗i } (4.6)

and represents a set of 3-tuples indicating for each node in the network, the sensing
and forwarding rates that it should adopt and the route that it should use to transmit

5We did not chose to use the mean Fisher information metric (as described in the previous chapter)
based on a GP regression to infer the temporal variation characteristics of the visual data being sensed.
This is because this metric is computationally intensive and would significantly affect the performance
of our algorithms but solely during the times when each node needs to evaluate the information content
of its potential sets of readings. More comprehensive information valuation functions in the domain of
image processing could have also been used. However, they would also typically be too computationally
intensive to be run on nodes with the physical constraints of computational and power resources.
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its own and its forwarded data to the base station, in order to maximise the objective
function in equation 4.1, subject to the constraints in equations 4.2 and 4.4.

We now present our two novel algorithms. Both of them are efficient as they satisfy the
data flow conservation of the network where no energy is wasted by transmitting data
that later will not be forwarded to the final destination. We start with the algorithm
that assumes that the route by which data is forwarded to the base station is fixed, and
then progress to the other that assumes flexible routing and makes optimal decisions
regarding both the sensing and forwarding actions that each node should perform, and
also the route by which this data should be forwarded to the base station.

4.4.1 The Algorithm With Fixed Routing

In this case, each node i ∈ I can only forward its data to exactly one other node (which
will later be referred to as its parent). This may be because the underlying communica-
tion network of the WVSN is tree structured or because it actually exhibits loops but an
arbitrary choice of route has been made (effectively turning the loopy communication
network into a tree). An example of a WVSN whose underlying network structure is a
tree is shown in figure 4.5. We remark that in such tree-structured networks, there is
only one unique route between each node and the base station (e.g. R(cj

4) = (4, 2, base
station), R(cj

3) = (3, 1, base station), and R(cj
6) = (6, i, 1, base station)).

In general, the nodes within a network will deplete their energy resources at different
rates since they will have different sampling rates, and will be transmitting and for-
warding different quantities of visual data. Each node i ∈ I thus needs to compute the
highest information value it can transmit by using at most bk

i ≤ Bi of its energy. As we
have described in section 4.3, the energy consumption of node i only includes ES

i and
EF

i (i.e. the energy to acquire and transmit a sample, and the energy required to receive
and transmit a forwarded sample from another node). It is therefore sufficient that bk

i

satisfies the following criteria:

bk
i = cj

iE
S
i + fiE

F
i where cj

i , fi ≥ 0
bk
i ≤ Bi

(4.7)

where cj
i is its own number of samples and fi is the number of forwarded incoming

samples.

Now, let Oi =
[(

b1
i , V max1

i , Cmax1
i

)
, . . . ,

(
bKi
i , V maxKi

i , CmaxKi
i

)]
denote an array of 3-

tuples sorted incrementally by bk
i where k = 1, . . . ,Ki, and bk

i is the energy limit that
satisfies equation 4.7 (i.e. Ki is the number of feasible bk

i -s for node i) which will later
on be referred to as the labels of Oi, V maxk

i is the maximum information value that
node i can transmit to its parent by using at most bk

i , and Cmaxk
i is the set of sensing
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Figure 4.5: The flow of the algorithm in a connected and undirected tree-structured
WVSN.

and forwarding actions that will produce data with the value of V maxk
i . This set of

actions is calculated by taking into account its own and its descendants’ data.

The algorithm installed on each node runs in three phases (see the state diagram in
figure 4.5 and algorithm 3). In the first, meta-data message propagation is initiated
by the base station. To this end, messages containing the value of each node’s energy
budget, Bi, and energy consumption for forwarding, EF

i , are propagated down the tree
(i.e. as soon as any node receives this information from its unique parent node, pi (see
state 1 or line 7), it sends its own information to its set of children, Ji =

{
j1
i , . . . , jMi

i

}
(line 9)). Having sent this information each node i then enters an idle mode in which
it waits for the O meta-data arrays from its child nodes. With regard to figure 4.5, the
leaf nodes (3, 5, and 6) eventually receive the meta-data message of nodes 1, 4, and i

respectively.

In the second phase, node i waits until it has received all the O meta-data arrays from
its children (denoted by Oj1

i
, . . . ,O

j
Mi
i

, see state 2 or lines 14-15), and then calculates
its own Oi (line 18). If Mi = 0, then node i is a leaf node. With regard to figure 4.5,
nodes 3, 5, and 6 are the leaf nodes and, consequently, they correspondingly calculate
O3, O5, and O6 which is then sent to their respective parent nodes 1, 4, and i. We will
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Algorithm 3 Optimal adaptive sensing and forwarding with fixed routing.
1: loop
2: if sT ime = NOW then . Time to sample

3: readings← PerformSampling(sT ime) . Sampling action, c
j
i

4: SetSTime(sT ime + sRate)
5: end if
6: if tT ime = NOW then . Time to transmit, transmission module is turned on

7: [Bpi , E
F
pi

]←WaitMetaData(pi) . Receives Bpi
and EF

pi
from its unique parent node, pi

8: for each jm
i ∈ Ji do . Iterates each child node in Ji =

n
j1i , . . . , j

Mi
i

o
9: SendMetaData(jm

i ,
ˆ
Bi, E

F
i

˜
) . Sends Bi and EF

i to child node jm
i

10: end for
11: CalcFirstRowTables(readings) . Calculates the 1st rows of Ti and Ui using (4.8) and (4.11) respectively

12: if ¬leafNode then
13: for each jm

i ∈ J do
14: Ojm

i
←WaitMetaData(jm

i ) . Receives Ojm
i

from child node jm
i

15: CalcTheRestTables(Ojm
i

) . Calculates the other rows of Ti and Ui using (4.9) and (4.12)

respectively

16: end for
17: end if
18: Oi ← CalcMetaDataArray() . Determines Oi which is basically the last row of Ui

19: SendMetaData(pi, Oi) . Sends Oi to unique parent node, pi

20: CmaxI ←WaitControlMessage(pi) . Receives control message from unique parent node, pi

21: PropagateControlMessage(jm
i , CmaxI) . Sends control message to each child node, jm

i ∈ Ji

22: PerformTransmit(readings, CmaxI)
23: SetNodeOptimalBehaviour(CmaxI) . Sets node’s optimal sensing and forwarding actions

24: SetTTime(tT ime + tRate) . Node sets its next transmitting time

25: readings← {}
26: end if
27: end loop

discuss this illustrative example in more detail in the next section.

Now, let Ti be a table with Mi +1 rows numbered from 0 to Mi, and Ki columns, where
Ki is the number of all the bk

i values that satisfy equation 4.7. Thus, each column k

has label bk
i . Let Ti [x, y] denote the element of the table that is in the xth row and the

column with label by
i . Ojm

i
[x] is the xth element of Ojm

i
, which is a 3-tuple. As every

node could choose not to sample (yielding zero value), then Ojm
i

[0] = Ti [m, 0] = 0 for
all 0 ≤ m ≤ Mi. Moreover, we can assume that the set of labels in each Ojm

i
that node

i has received is the same as the set of labels in its table Ti. We will show how we can
guarantee this later on. Ti’s other elements are filled as follows:

Ti [0, k] = max{vcj
i

i } (4.8)

Ti [m, k] = max
0≤r≤k

{
Ti [m− 1, r] + V maxk−r

jm
i

}
(4.9)

for all 1 ≤ k ≤ Ki and 1 ≤ m ≤ Mi, where (cj
i , v

cj
i

i ) ∈ Fi, and Fi is the array of 2-tuples
defined in the previous section.

According to equation 4.8, we can see that Ti [0, k] stores the maximum information
value of data that can be delivered to node i’s parent by sensing only (with the energy
consumption not exceeding the energy limit bk

i ). Due to the fact that each of the sets
of labels in Ojm

i
is equivalent to the set of labels of table Ti, equation 4.9 gives the

maximum value of data that node i can deliver to its parent (noting that this data
now does not only include its own sensed data but also its children’s data that will
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potentially be forwarded through it). Hence, Ti [1, k] is the maximum value that can
be sent by taking into account the sensed data and the data from j1

i , with respect
to the bk

i energy limit. Ti [2, k] stores the maximum value when the data from child
node j2

i is also included. In general, Ti [m, k] is the maximum information value that
node i can transmit to its parent, given the bk

i energy limit. The data considered is
the potential forwarded data from child nodes j1

i ,. . . ,jm
i and node i’s own sensed data.

Note that while it is necessary to construct the entire table, as in conventional dynamic
programming solutions to the multiple-choice knapsack problem, it is only the last row
that provides useful meta-data regarding the maximum information values of data that
can be transmitted given different feasible values of bk

i . Indeed, it is only the last element
of this row that represents the maximal information value that node i can transmit to
the parent node.

Now, the next step of the algorithm is to calculate Oi. To do so, let Ui denote a table
similar to Ti. However, its labels bl

i, now, satisfy the following:

bl
i = (cj

i + fi)EF
pi

where cj
i , fi ≥ 0

bl
i ≤ Bpi

(4.10)

where Bpi is the energy budget of i’s unique parent node, pi, and EF
pi

is the value of
energy consumption of the parent for forwarding a sample. Recall that these values were
delivered to node i in the first stage. Let Li denote the number of all bl

i that satisfy
equation 4.10. Similarly, we can calculate table Ui’s elements in a similar fashion to
those of Ti as described earlier, but with the new labels:

Ui [0, l] = min
(

max{vcj
i

i }, Ti [0,Ki]
)

(4.11)

Ui [m, l] = min
(

max
0≤r≤l

{
Ui [m− 1, r] + V maxl−r

jm
i

}
, Ti [m,Ki]

)
(4.12)

for all 1 ≤ l ≤ Li and 1 ≤ m ≤ Mi, where (cj
i , v

cj
i

i ) ∈ Fi.

We can now construct the meta-data array of node i such that Oi =
[(

b1
i , Ui [Mi, 1] , Cmax1

i

)
,

. . . ,
(
bLi
i , Ui [Mi, Li] , CmaxLi

i

)]
, where Ui [Mi, l] is the maximum information value that

node i can transmit to its parent node (by using at most bk
i energy) which can sub-

sequently forward the received i’s data by using at most bl
i energy. Cmaxl

i is the set
of sensing and forwarding actions that will produce data with the value of Ui [Mi, l].
Hence, once Oi is sent to the parent node, its labels will be the same as those in table
Tpi of the parent node. This second phase meta-data message containing Oi propagates
up the network arriving back at the base station (line 19).

In the third phase of the algorithm, each parent node will have received meta-data
arrays from all of its children. The base station will be able to calculate the highest
information value it can potentially receive from all the nodes beneath it in the network.
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Figure 4.6: The first phase of the algorithm with fixed routing.

Based on the structure of Oi, each node i can easily determine what amount of data
it should receive from each child node and, hence, how many samples it should acquire
and transmit itself. A control message containing this set is then propagated down the
network (see state 3 or lines 20-21), and this control message informs each node of its
optimal sensing and forwarding decisions (lines 22-23). In this way, there is a guarantee
that all of the data transmitted by each node will reach the base station. The control
message eventually reaches the leaf nodes which then start to acquire and transmit visual
data as planned.

4.4.2 Illustrative Example

To illustrate how the algorithm works in practice, reconsider the scenario expected in
figure 4.3(a). For the sake of simplicity, we can assume here, that nodes with no Fi

(nodes 2, 4, 5, and 6) do not have anything interesting worth sampling in their fields of
view. Each of nodes i, 1, and 3 has as one of their private values, si, s1, and s3 different
numbers of sampling actions and thus, Ci, C1, and C3 sets of sampling actions (or rates)
respectively. The nodes have as well their corresponding Fi, F1, and F3 regarding the
information content of the samples that they acquire (which are chosen arbitrarily for
illustrative purposes), and energy budgets, Bi, B1, and B3 to perform either sampling
and transmitting their own data (requiring ES

i = 8 units of energy per sample, ∀i ∈ I),
and/or forwarding the other nodes’ data (requiring EF

i = 12 units of energy per sample,
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Figure 4.7: The second phase of the algorithm with fixed routing. O meta-data arrays
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∀i ∈ I).

In the first phase (as shown in figure 4.6), the base station initiates the meta-data
message propagation. After receiving the base station’s meta data message, node 1
sends B1 and EF

1 to both nodes 3 and i. Node 2, however, sends its own meta data to
node 4. The leaf nodes (including nodes 3, 5, and 6) eventually receive the meta-data
message from their respective parents.

As can be seen in figure 4.7, in the second phase, nodes i and 3 calculate their corre-
sponding tables. More specifically, node i evaluates its Ti and Ui tables, while node 3
finds its T3 and U3. The columns of tables T and U represent the energy limits that sat-
isfy equations 4.7 and 4.10 respectively. The rows of the tables represent the set of nodes
whose data has been taken into account. For instance in table Ti, where row = {i},
if node i has b0

i , b1
i , b2

i , b3
i , b4

i , b5
i , and b6

i as energy limits, in return it will be able to
sense its own data with the maximum values of 0, 0, 19.15, 19.15, 19.24, 19.24, or 19.37.
These values are calculated using equation 4.8. Node i then evaluates Ui using equation
4.11. Each cell of this table stores the maximum information value that its parent node
1 could potentially forward given the upper bound value found in table Ti (19.37 in this
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Table 4.1: (a) Ojm
1

meta-data arrays that have arrived at node 1 from its child nodes
j1
1 = i and j2

1 = 3, and (b) the T1 table of node 1.
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case). Node i can now construct its meta-data array from only the last row of table Ui

such that Oi =
[(

b1
i , Ui [Mi, 1] , Cmax1

i

)
, . . . ,

(
bLi
i , Ui [Mi, Li] , CmaxLi

i

)]
.

Node i sends Oi to its parent node 1. Oj1
1=i then arrives (as shown in table 4.1(a) where

row = Oj1
1=i) from child nodes j1

1 = i containing the maximum values of node i’s sensed
data that node 1 could potentially forward to node 1’s parent node given node 1’s energy
limits (that is V max0

j1
1=i

, V max1
j1
1=i

, V max2
j1
1=i

, V max3
j1
1=i

, V max4
j1
1=i

, V max5
j1
1=i

, till
V max13

j1
1=i

respectively). Node 3 calculates the values of its own tables and eventually
O3 in a similar way. Node 3 as well sends O3 to its parent node 1.

After receiving the V maxk
j1
1=i

and V maxk
j2
1=3

values of Oj1
1=i and Oj2

1=3 arriving from
its child nodes j1

1 = i and j2
1 = 3 respectively, node 1 can now calculate its T1 and

U1 tables. The elements of T1’s first row are evaluated using equation 4.8 (by taking
into account only node 1’s sensed data) as above. The elements of T1’s other rows
(both row = {i ∪ j1

1} and row = {i ∪ j1
1 ∪ j2

1}) are, however, found using equation 4.9.
These elements represent the maximum information that node 1 could send by taking
into account not only its own sensed data, but also the data that could be potentially
forwarded from its child nodes i and 3.

For instance where row = {i∪ j1
1} and column = b2

1, node 1 could allocate all its b2
1 = 8

energy resources to either acquire and transmit its own data (resulting in maximum
information value of 20.34) or to forward data from its child node j1

1 (resulting in max-
imum information value of 0, as node 1 requires at least 12 units of energy to receive
and forward a sample from its connected nodes). Alternatively, it could as well divide
its b2

1 = 8 energy resources by allocating a half (b1
1 = 4) to its own and another (b1

1 = 4)
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to j1
1 (resulting in maximum information value of 0+0=0, as with 4 units of energy node

1 is not capable of sensing nor forwarding any sample). In this case, it turns out that
node 1 is better off spending all its energy for its own sensing activities.

Specifically, where row = {i∪ j1
1 ∪ j2

1} and column = b5
1 (see table 4.1(b)), node 1 could

either:

• Allocate all its b5
1 = 20 energy resources to sense its own data and forward j1

1 ’s
data (resulting in a maximum information value of 39.49 by sensing once and
forwarding one of node i’s samples),

• Allocate all its b5
1 = 20 energy resources to forward data from its other child node

j2
1 (resulting in a maximum information value of 3.11 by forwarding one of node

3’s samples),

• Divide its b5
1 = 20 energy resources by allocating a portion of b1

1 = 4 energy
resources to both its own and j1

1 , and b4
1 = 16 to j2

1 (resulting in a maximum
information value of 0+3.11=3.11 by only forwarding one of node 3’s samples),

• Divide its b5
1 = 20 energy resources by allocating a portion of b2

1 = 8 energy
resources to both its own and j1

1 , and b3
1 = 12 to j2

1 (resulting in a maximum
information value of 20.34+3.11=23.45 by sensing once and forwarding one of
node 3’s samples),

• Divide its b5
1 = 20 energy resources by allocating a portion of b3

1 = 12 energy
resources to both its own and j1

1 , and b2
1 = 8 to j2

1 (resulting in a maximum
information value of 20.34+0=20.34 by only sensing once), or

• Divide its b5
1 = 20 energy resources by allocating a portion of b4

1 = 16 energy
resources to both its own and j1

1 , and b1
1 = 4 to j2

1 (resulting in a maximum
information value of 24.11+0=24.11 by sensing twice).

In this case, node 1 chooses the first option since by doing so it yields the highest
information value of 39.49. T1’s other elements are calculated in a similar way6. Note
that node 1 is not required to evaluate its U table because its parent node, the base
station, has more energy than the ordinary nodes and, hence, is capable of receiving any
transmitted data.

As can be seen in figure 4.8, the base station starts the third phase by propagating
control message CmaxI down the network. We can now see that the optimal sensing
and forwarding decisions are stored inside CmaxK1=13

1 with the maximum information
value V maxK1=13

1 of 52.60. CmaxK1=13
1 determines what amount of data node 1 will

forward for each child node and, hence, how many samples it should acquire and transmit
6Note that this is somewhat similar to a knapsack problem where we consider allocating spaces in a

bag for different items.
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Figure 4.8: The third phase of the algorithm with fixed routing.

its own. In this case, nodes i and 3 need to sample once and twice respectively. Node
1, however, spends its energy to take only two samples, while reserving a portion to
forward one and two of node i’s and 3’s samples respectively. This third phase of the
mechanism satisfies the data flow conservation of the network by guaranteeing that all
taken samples will eventually reach the base station.

4.4.3 The Algorithm With Flexible Routing

Next, we consider the algorithm which assumes flexible routing, and makes optimal deci-
sions regarding both the sensing and forwarding actions that each node should perform,
and also the route by which data should be forwarded to the base station (see figure
4.9 for an illustration of this case). In order to make the routing decision tractable, we
place one minor restriction on the routes that our algorithm can consider. Specifically,
we assume that the nodes always forward their data toward the base station; that is,
they will not forward data to a node that is further from the base station (in terms of
hop count) than themselves. We believe this is a reasonable assumption. There might
be cases where several nodes are better off taking longer paths. However, in general,
such paths will deplete the energy resources of a greater number of nodes, and are thus
unlikely to be optimal solutions. Furthermore, we assume that the data samples of a
node can only be sent as a bundle (i.e. they are indivisible). The data readings of
different nodes could be, however, sent through different routes if there is more than one
option to choose from.
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Figure 4.9: The flow of the algorithm that assumes flexible routing and makes opti-
mal decisions regarding both sensing, forwarding, and next-hop decisions (or routing
actions). The phases involved in this algorithm are similar to those in the algorithm

for fixed routing.

With these assumptions, we now need to organize the nodes into different levels. To this
end, a network simulator using a BGP -based7, robust, and scalable routing discovery
TCP/IP protocol is developed (more details of which are given in section 4.5). Our
coordination mechanism will therefore sit on top of this network protocol. The first
level consists of all the nodes that have a 1-hop shortest path to the base station (nodes
1 and 2 in figure 4.9). Nodes that belong to the second level have a 2-hop shortest
path to the base station (nodes i, 3, and 4 in figure 4.9). Nodes 5 and 6 have a 3-hop
shortest path. Now, according to this hierarchy, each node can only forward its data to
higher level nodes within its transmission range. In figure 4.9, for example, node i has
two potential shortest routes to choose from; namely (i) node 1 which results in route
R(cj

i ) = (i, 1, base station) and (ii) node 2 which results in route R(cj
i ) = (i, 2, base

station). Node i does not consider routing through node 6 since 6 is a greater hop count
away from the base station than it is.

Furthermore, as we can see from the figure, node i has potentially two bundles of data
to consider (its own and data that it is forwarding for node 6). In addition, it has two
possible shortest paths to choose between (either through node 1 or 2 for each of the
bundled data). Thus, a number of routing options exist for this node. It could send
both bundles of data through node 1, such that R(cj

i ) contains (i, 1, . . . ) and R(cj
6)

contains (. . . , i, 1, . . . ), or it could send them through node 2, such that R(cj
i ) contains

(i, 2, . . . ) and R(cj
6) contain (. . . , i, 2, . . . ). Other alternatives are to send each of

them separately through each possible route, such that R(cj
i ) contains (i, 1, . . . ) and

R(cj
6) contains (. . . , i, 2, . . . ), or the other way around.

7BGP stands for Border Gateway Protocol and it is a common network routing protocol on the
Internet (Feigenbaum et al., 2005).
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Algorithm 4 Optimal adaptive sensing and forwarding with flexible routing.
1: loop
2: if sT ime = NOW then . Time to sample

3: readings← PerformSampling(sT ime) . Sampling action, c
j
i

4: SetSTime(sT ime + sRate)
5: end if
6: if tT ime = NOW then . Time to transmit, transmission module is turned on

7: for each pn
i ∈ Pi do . Iterates each parent node, pn

i ∈ Pi

8: [Bpn
i
, EF

pn
i
]←WaitMetaData(pn

i ) . Receives Bpn
i

and EF
pn

i
from parent node pn

i

9: end for
10: for each jm

i ∈ Ji do . Iterates each child node in Ji = {j1i , . . . , j
Mi
i }

11: SendMetaData(jm
i ,

ˆ
Bi, E

F
i

˜
) . Sends Bi and EF

i to child node jm
i

12: end for
13: CalcFirstRowTables(readings) . Calculates the 1st rows of Ti and U

pn
i

i (for each parent node, pn
i in Pi)

using (4.8) and (4.11) respectively

14: Ci ← {i} . Adds this node to the set of descendants Ci

15: if ¬leafNode then
16: for each jm

i ∈ Ji do
17: Oi

jm
i
←WaitMetaData(jm

i ) . Receives Oi
jm
i

from child node jm
i

18: CalcTablesWithIdentifier(Oi
jm
i

) . Calculates the other rows of Ti using (4.9) by identifying the

same forwarding partition with the same unique identifier

19: Ci ← Ci ∪ jm
i . Adds child node jm

i to the set of descendants Ci

20: end for
21: end if
22: for each pn

i ∈ Pi do
23: Li ← PartitionPossibleForwarding(Ci) . Partitions the possible forwardings using a mapping

function that decides the direction of each bundle, u
j
i , from one of its descendants in Ci

24: O
pn

i
i ← CalcMetaDataArray(Li) . Calculates the other rows of U

pn
i

i using (4.12) to forms its own O
pn

i
i

meta-data for parent node pn
i

25: SendMetaData(pn
i , O

pn
i

i ) . Sends O
pn

i
i to parent node pn

i

26: end for
27: CmaxI ←WaitControlMessage(pn

i ) . Receives control message from parent node pn
i in Pi

28: PropagateControlMessage(jm
i , CmaxI) . Sends control message to each child node, jm

i ∈ Ji

29: PerformTransmitIncRouting(readings, CmaxI)
30: SetNodeOptimalBehaviourIncRouting(CmaxI) . Sets node’s optimal sensing, forwarding, and

next-hop decisions

31: SetTTime(tT ime + tRate) . Node sets its next transmitting time

32: readings← {}
33: end if
34: end loop

Now, let Pi denote the set of parent nodes (which are nodes with a one hop shorter
shortest path to the base station) of node i and Ci denote the set of its descendants.
Thus, at each node i ∈ I, there are at most |Pi||Ci|+1 possibilities to forward the bundled
data, where |Pi| and |Ci| are the sizes of Pi and Ci respectively. This is because each
node has to forward |Ci|+ 1 bundles through |Pi| different shortest paths. Next, let Li

denote the set of these possibilities (with |Li| = |Pi||Ci|+1) and each lti ∈ Li, a possible
partition of forwarding at node i. That is, lti =

[
F

(
u1

i

)
, . . . , F

(
u
|Ci|+1
i

)]
where uj

i is the

jth bundle that might arrive at node i from one of its descendants, F
(
uj

i

)
is a mapping

function that decides the forwarding direction (or path) for this particular bundle, and
u
|Ci|+1
i is node i’s own bundle of samples.

Given this, our algorithm with flexible routing is similar to that with fixed routing, and
as before, it runs in three phases (see algorithm 4). The first, in which the parent nodes
send their information regarding Bpn

i
and EF

pn
i

to their child nodes, is identical (see lines
7-13). There are, however, slight modifications in the next phase. These modifications
are needed to keep track of all the possible partitions of forwarding for nodes which have
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Figure 4.10: The first phase of the algorithm with flexible routing.

more than one shortest path routes to the base station.

In more detail, in the second phase, instead of sending one Oi to a unique parent (as in
the case of tree-structured networks), here, each node i has to calculate all the O

pn
i

i

(
lti
)

meta-data arrays for each lti ∈ Li partition of forwarding for each pn
i ∈ Pi (see lines

23-25). Specifically, this is achieved by first calculating the Ti table as we did for the
first algorithm (line 17). In this case, however, we join each of the arriving Oi

jm
i

(
ltjm

i

)
from its children j1

i , . . . , jMi
i with those that belong to the same forwarding partition

with the same unique identifier (line 18). The unique identifier is formed and attached
to a particular partition of forwarding when there are more than one possible routes to
forward to (line 23). As in figure 4.9, a feasible unique identifier could be the index of
ltjm

i
. Next, we calculate U

pn
i

i tables for each pn
i ∈ Pi as in the first algorithm (line 24).

The rest of the second phase and third phase remain the same as that of the algorithm
with fixed routing described previously (see lines 27-30).

4.4.4 Illustrative Example

To illustrate how the second algorithm works in practice, reconsider the scenario de-
scribed in figure 4.3(b). Each of nodes i, 1, 2, 3, and 6 is set with si, s1, s2, s3, and s6

different numbers of sampling actions and thus, Ci, C1, C2, C3, and C6 sets of sampling
actions (or rates) respectively, as one of their private values. The nodes also have their
corresponding F-s regarding the information content of the samples that they acquire
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Figure 4.11: The second phase of the algorithm with fixed routing where nodes 3 and
6 correspondingly send O1

3 and Oi
6 to their respective parent nodes 1 and i. Node i

subsequently sends O1
i and O2

i to its parent nodes 1 and 2 correspondingly. O meta-data
arrays are represented by dotted rectangles. Tables are enlarged in the next figure.

(which are chosen arbitrarily for illustrative purposes) and energy budgets B-s to per-
form either sensing and/or forwarding. Other nodes (4 and 5) do not sample in this
case.

In the first phase (as shown in figure 4.10), the base station initiates the meta-data
message propagation. We remark that node i receives two meta-data messages (one
from node 1 and another from node 2). The leaf nodes (including nodes 3, 5, and 6)
eventually receive the meta-data message from their respective parents.

In the second phase, the leaf nodes 3 and 6 calculate their corresponding tables in a
similar way as they do with the algorithm for fixed routing (as both nodes only have
one parent). As can be seen in figure 4.11, node 3 sends O1

3 to its parent node 1 while
node 6 sends its own to node i. After receiving Oi

j1
i =6

(which contains V maxk
j1
i =6

values)
from child nodes j1

i = 6 (see table 4.2(a)), node i can now calculate its Ti, U1
i , and U2

i

tables. The Ui tables are for its parent nodes 1 and 2 respectively. The elements of Ti’s
first and second rows (as shown in table 4.2(b)) are evaluated using equations 4.8 (by
taking into account only node i’s sensed data) and 4.9 (by also incorporating node 6’s
forwarded data) respectively.
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Table 4.2: After receiving (a) Oi
j1
i =6

meta-data array from its child nodes j1
i = 6,

node i evaluates its (b) Ti and (c) Ui tables.
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Node i has two potential routes for forwarding node 6’s and its own data and, hence,
there are four (|Li| = 22) possible partitions of forwarding for each Ui table; namely:

• Node i routes both node 6’s and its own data through node 1 (where Li = {i(i,1) ∪
j1
i
(j1

i ,i,1)} in U1
i and Li = {} in U2

i ),

• Node i routes only its data through node 1 while node 6’s is forwarded towards
node 2 (where Li = {i(i,1)} in U1

i and Li = {j1
i
(j1

i ,i,2)} in U2
i ),

• Node i routes its data through node 2 but sends node 6’s through node 1 (where
Li = {j1

i
(j1

i ,i,1)} in U1
i and Li = {i(i,2)} in U2

i ), and

• Node i routes both node 6’s and its own data through node 2 (where Li = {} in
U1

i and Li = {i(i,2) ∪ j1
i
(j1

i ,i,2)} in U2
i ).

As shown in table 4.2(c) where row = {i∪ j1
i }, for each Ui table, there are four li-s, each

of which represents a possible partition of forwarding at node i, together with the same
unique identifier (in column ID) attached to it. We will later see how this identifier is
useful.
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Figure 4.12: Nodes 1 and 2 correspondingly send OB
1 and OB

2 to the base station.

After receiving O1
j1
1=3

and O1
j2
1=i

(which contain V maxk
j1
1=3

and V maxk
j2
1=i

values) from
child nodes j1

1 = 3 and j2
1 = i respectively, node 1 can now evaluate its T1 table, as shown

in figure 4.12. Node 1’s OB
1 is then sent to the base station (B stands for Base station).

Node 2 also sends its own OB
2 to the base station after receiving O2

j1
2=i

from node i and
evaluating its T2. In this case, both nodes 1 and 2 are not required to evaluate their U

tables because their parent node, the base station, has sufficient energy to receive any
transmitted data.

The base station eventually receives the meta-data arrays OB
j1
B=1

and OB
j2
B=2

(see figure

4.13). Now, as each corresponding row of the arriving OB
jm
B

-s contains the same ID,
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Figure 4.13: The base station receives the OB
1 and OB

2 meta-data arrays and evaluates
the optimal sensing, forwarding, and routing actions that yield the highest information

value collected.

the base station combines each pair of these rows as one partition. For instance, where
both LB = {i(i,1) ∪ j1

i
(j1

i ,i,1)} in the OB
j1
B=1

table and LB = {} in the OB
j2
B=2

table have
the same unique identifier, i1, the total information value that could potentially be
collected with this particular sensing and routing behaviour (i.e. partition) is 88.74
(V max13

j1
B=1

+ V max10
j2
B=2

= 65.62 + 23.12). This is achieved when both nodes i and 6
sample once. Node i then routes both node 6’s and its own data through node 1 which
samples just twice itself. Nodes 2 and 3 sample five times and twice correspondingly.
Node 1 also forwards two of node 3’s collected samples. Other possible partitions result
in lower information value gathered.

The base station starts the third phase by propagating control message CmaxI down
the network in a similar manner as it does for the algorithm with fixed routing.

4.5 Empirical Evaluation

Having described the algorithms with fixed and flexible routing, we now seek to evaluate
their performance and effectiveness when applied to typical WVSNs whose communi-
cation networks exhibit loops. Our goal in this empirical evaluation is to quantify the
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performance of the algorithms in terms of the quantity of information that they deliver
to the base station, and the communication and computational costs of the coordina-
tion. We expect the algorithm with flexible routing to deliver more information, but
make greater demands of computation and communication resources (because of the
large number of alternative routes for the data that it must evaluate). However, given
that the algorithm with fixed routing can always be applied in this setting, by ignor-
ing the fact that there exist alternative routing options and just making an arbitrary
choice, we are interested in the trade-off between the loss in information and the saving
in resources that results. We first describe the extended simulator from the previous
chapter (in section 3.5.1). We then detail the experimental setup and go on to the actual
evaluation.

4.5.1 The Simulator Extension

This section details the extensions that are needed to the previously defined domain
models upon which DC-WSNS is built. In the previous chapter, each node within the
simulated network is pre-initialized with a static routing table that it uses to route its
collected samples in a multi-hop fashion to the base station. However, in most WSN
deployments, this node with a fixed and non-adaptive routing scheme is undesirable,
particularly if deployed in environments that are highly dynamic. The nodes therefore
need to be designed to self-configure at the deployment stage (e.g. in finding their own
shortest routes to the base station or synchronizing their clocks), and to self-adapt when-
ever the state (or topology) of the network changes (e.g. in finding alternative routes if
their shortest paths cease or updating them if a shorter shortest path is established). To
this end, we extend the domain models of the simulator to include the enhanced message
exchange (or communication) and the newly built node models. We know consider each
of these in turn. The other models remain the same.

4.5.1.1 The Message Exchange/Communication Model

As described in section 4.4, we distinguish three types of messages being exchanged by
the nodes under our coordination mechanism. However, in our simulator, we introduce
an additional type of message termed BGP-typed messages. These are exchanged for
distributed network routing discovery purposes at the network’s deployment stage or
whenever the topology of the network experiences any changes (e.g. due to the addition,
removal, failure, or battery depletion of nodes).

This type of message is categorized into four kinds; namely (i) BGP-OPEN, (ii) BGP-
UPDATE, (iii) BGP-KEEPALIVE, and (iv) BGP-NOTIFICATION messages (or pack-
ets). The OPEN message is used by a node to establish a BGP TCP/IP-based connection
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(or session) with its neighbour node. Once established, the node can then send or re-
ceive any KEEPALIVE (that is a handshake message, sent at regular intervals, which
the node uses to inform and keep the session alive), UPDATE (that is a message the
node uses to announce new, withdrawal, or any changes of routes), or NOTIFICATION
(that is a message used to shut down the established session) messages to or from its
session-connected node.

In some WSN scenarios, the limited bandwidth available to nodes in the network might
be an interesting issue to explore. In our case, however, we assume that message pack-
ets, regardless of their size, require the same amount of time to transmit. Moreover, we
do not consider the dropping or corruption of BGP-typed, meta-data, or control mes-
sage packets and, hence, assume that they are always transferred successfully to their
destination nodes. There exists no communication interference within the transmission
range of nearby nodes. And we still assume that there is no difference between over-
hearing and receiving in terms of power consumption. Moreover, the nodes are still
pre-programmed to ignore and drop packets that are not destined to them. Therefore,
we acknowledge that the message exchange model implemented here is somewhat ide-
alised as it assumes that some portion of a node’s energy is consumed only when it either
transmits or receives a message8. Incorporating a more realistic communication model
into our simulator will be part of our future work (see section 5.2 for more details).

4.5.1.2 The Node Model

Each node in the network is installed with a distributed, scalable, and robust BGP-based
routing discovery protocol and the two algorithms described in the previous section.
The BGP routing discovery works by maintaining a table of IP networks. We therefore
assume that the node possesses sufficient memory to store its growing routing table.
To discover failing nodes, the protocol implements an acknowledgement mechanism, in
which recipient nodes acknowledge the originator of any messages they receive.

In more detail, the node uses a simple finite state machine that consists of three main
states; namely Idle, OpenSent, and Established, for self-configuring purposes (see figure
4.14). In the Idle state, the node is listening to a TCP/IP connection from any of
its neighbourhood nodes. In the OpenSent state, it sends a BGP-OPEN message and
listens for one in return from its session-connected node. In the Established state, it
listens for a BGP-KEEPALIVE message from its peer and if no message is received after
a certain period of time (according to the time-out or acknowledgement mechanism),
it transitions back to the IDLE state. After the Established state, the node sends a

8We remark that these assumptions and limitations are the same as those found in the domain models
of the simulator defined in the previous chapter. However, rather than manually creating the routing
table of each node at system start-up time, we here use an adaptive, scalable, and robust distributed
BGP-based network routing discovery protocol.
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Figure 4.14: The sequence diagram of BGP-based routing discovery protocol. Node i
initiates a session to notify its neighbour node, i1, regarding its routing table updates.

BGP-UPDATE message about new destination nodes to which it offers reachability and
withdrawals to which the destination no longer offers connectivity.

As shown in figures 4.15 and 4.18(a), at a network deployment phase, the nodes are not
aware of the network’s topology as there is no central coordinator. The network thus
enters a network discovery phase in which the base station broadcasts a BGP-OPEN
message that is heard by the neighbourhood nodes within its transmission range. The
recipient nodes are now aware of the base station’s presence and, subsequently, update
their routing tables by exchanging BGP-UPDATE messages with it. A successful routing
table update will trigger each of the recipient nodes to broadcast a new BGP-OPEN
message in order to notify its own neighbourhood nodes about the changes (see figure
4.16). The local computation of a single node can thus be viewed as consisting of a
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Figure 4.15: A randomly created and connected WVSN of 9 sensor nodes in a simula-
tion. The unfilled circle represents the wireless transmission range of the base station.

All other ordinary nodes are set with the same transmission range.
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Figure 4.16: The network enters its route discovery phase. The nodes exchange BGP-
UPDATE messages to update their own routing tables. BGP messages are represented
by filled rectangles (more specifically, the white and black ones are BGP-KEEPALIVE
and BGP-UPDATE messages respectively). We note that, in the simulator’s display

panel, the message packets are visualised and directed towards their destinations.
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Figure 4.17: The network converges into a stable state and enters its coordination
phase. In this particular case, node i has two shortest paths to the base station; through
node 1 or 2 (both with 2 hops). The shortest paths are represented by dotted lines.

Node i’s alternative paths to the centre are represented by solid lines.

sequence of stages. Each stage consists of receiving routing tables from its neighbours,
followed by local computation, followed (perhaps) by sending its own routing table to
its own neighbourhood nodes (if its routing table changed).

This sequence will stop when the network converges into a stable state and enters a
network coordination phase (see figure 4.17), in which each node’s routing table is syn-
chronized with those of others and, thus, the node is aware of its surrounding nodes,
as well as its fewest number of hops (i.e. shortest path routes) to the base station.
The node will possibly have a number of shortest path routes (of which each has the
same fewest number of hops) to the base station and, therefore, will not send data to
a node that is further from the base station in term of hop count than itself (recall the
discussion in section 4.4.3). As in figure 4.18(b), this means node i will not forward data
through nodes 6, 4, and 2 nor through nodes 6, 4, 5, 8, and 7 to reach the base station.
In the case where the shortest paths cease (e.g. due to the battery depletion in figure
4.18(c) or the removal in figure 4.18(d) of any intermediate node), the network reenters
the route discovery phase in order to find out the new shortest paths that potentially
have a bigger number of hops to the base station. Similarly, in the case where a new
shortest path is found (e.g. due to the addition of an intermediate node as in figure
4.18(e)), the newly added node will first broadcast a BGP-OPEN message notifying its
surrounding regarding its presence.
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(a) The same WVSN as that created in figure 4.15.
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(b) At the end of a network routing discovery phase,
nodes are aware of their shortest path routes. Node
i has two shortest paths to the base station; through
node 1 or 2 (both with 2 hops). The shortest paths
are represented by dotted lines.
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(c) Node 1 depletes its battery. Node i removes node
1 from its routing table and, hence, broadcasts a
BGP-OPEN message notifying its neighbour about
the changes. Node 3 is isolated and, therefore, un-
aware of these.
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(d) Node 2 is removed. Node i’s shortest paths is
now through nodes 6, 4, 5, 8, and 7.
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(e) Node 9 is added into the network. It broad-
casts a BGP-OPEN message informing its presence.
Node i establishes its new shortest route to the base
station.

Figure 4.18: Network discovery phase using BGP-based TCP/IP protocol.
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4.5.2 Network and Parameters Setup

In our experiments, we create instances of a WVSN by randomly deploying the nodes
within a unit square (i.e. x and y coordinates within the square are randomly drawn
from a uniform distribution with support [0, 1]) and connecting them according to a
randomly determined radio transmission range (extending this range as necessary to
ensure that there are no unconnected nodes). Each resulting WVSN exhibits a loopy
communication network such that for each node there are multiple alternative routes to
the base station.

We consider twenty different sampling actions for each of the nodes such that the possible
sampling rates, Ci, of each node are initialized to Ci = {1, . . . , 20}. The corresponding

information content v
cj
i

i for each of the cj
i ∈ Ci samples is generated using the generic

information metric (defined in section 4.3), with the factor, αi, randomly drawn from a
uniform distribution with support [0, 1].

The energy budget of each node is randomly generated (drawn from the same distribu-
tion) with a predetermined maximum value which ensures that the network as a whole
is energy constrained, and no node is able to sample and transmit at its maximum rates.
We scale this predetermined maximum value with the number of nodes in the network
since larger networks require that nodes forward data for a larger number of other nodes.
We assume that each real valued number inside a coordination message (e.g. the value
of node i’s energy budget, Bi, or its optimal sampling rate, cj

i ) occupies 4 bytes of com-
munication cost, and the energy consumption of each node for sensing and forwarding
a sample is fixed throughout the entire experiment.

For each instance of the created WVSN, the network first enters a route discovery phase
(as explained in the previous section). At the end of this (i.e. when the network is in a
coordination phase), each node has a number of shortest path routes (of which each has
the same fewest number of hops) to the base station. The task of each node is thus to
find both its optimal sensing and forwarding actions, as well as the most energy efficient
route from the collection of these shortest paths in order to maximise the total value of
information gathered at the base station, under its energy constraints. This is when we
then execute each of our newly developed algorithms as described below:

• Algorithm with Flexible Routing

We apply our algorithm with flexible routing just once, directly on the loopy
communication network of the WVSN (see figure 4.19(a) for an exemplar scenario),
such that it determines both the optimal sensing and forwarding actions, as well
as the routes.

• Algorithm with Fixed Routing

Prior to applying our algorithm with fixed routing, we allow each node to make
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an arbitrary choice of the route that its data (and any data that it forwards
for other nodes) will take toward the base station. This effectively turns the
loopy communication network into a tree-structured one, with each node effectively
selecting their parent in the tree (see figure 4.19(b)). We then apply our algorithm
with fixed routing to calculate the optimal sensing and forwarding decisions of each
node. For each instance of the WVSN, we repeat this process 100 times, averaging
over the unique instances of trees that result.

We perform repeated experiments by creating 100 instances of the WVSN with 6, 9, 12,
15, . . . , 60 nodes. The algorithm with flexible routing, however, is only run with up to
21 nodes. This is due to the insufficient memory allocated for the java heap space that is
used to keep track all possible partitions of forwarding which grows exponentially with
the number of nodes and potential routes.

4.5.3 Benchmark Algorithms

In this experiment, we also benchmark our two algorithms against a uniform non-
adaptive algorithm with fixed routing. This algorithm dictates that each sensor i ∈ I in
the network should simply choose to allocate its energy budget, Bi, equally to itself and
each of its descendants such that it will näıvely sample and transmit the minimum of(

Bi

|Ci|·ES
i
,

Bpi

|Cpi |·ES
pi

)
times regardless of whether the samples will eventually be forwarded

towards the base station. |Ci| and |Cpi | are the numbers of descendants of node i and
node i’s parent, pi, respectively, and Bpi is the energy budget of node pi. As outlined
in section 4.3, ES

i and ES
pi

are the energy required by node i and pi correspondingly in
order to sense a sample.

4.5.4 Results

We present the results of the simulation process described above in figures 4.20, 4.21,
and 4.22. The error bars shown represent the standard error in the mean, and we remark
that in the case of the fixed routing algorithm, the error bars are often smaller than the
plotted symbol size.

Considering first figure 4.20. We observe that the algorithm with flexible routing delivers
close to twice the quantity of information to the base station compared to the algorithm
with an arbitrary fixed routing. This is as expected, since in communication networks
that exhibit loops, there are typically many alternative routes available for routing data,
and the algorithm with flexible routing is able to exploit these alternatives to deliver the
maximum possible information to the base station. Note that the quantity of information
delivered does not increase monotonically, but decreases in a number of cases. This effect
is due to the way in which we have scaled the maximum energy budget of the nodes as
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Figure 4.19: (a) A randomly created and connected WVSN (of 60 nodes) whose
underlying communication network exhibits loops. (b) The resulting tree-structured
network formed when each node makes an arbitrary choice of the route that its data
will take toward the base station. The dotted circle in each graph represents the
wireless range of node i. Neighbourhood nodes within this transmission range can hear
the transmitted messages of the node. In both these networks, all nodes are set with

the same transmission range.
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Figure 4.20: Simulation results showing the performance of the algorithms with flexi-
ble, fixed (with maximum and minimum performance), and uniform non-adaptive rout-

ing against total information collected at the base station.

the network increases in size. This scaling fails to fully account for the necessary increase
in sample forwarding and, thus, the network becomes increasingly energy constrained
as the network grows in size. The uniform non-adaptive algorithm, however, performs
poorly compared to each of the two algorithms as it has no intelligence of adapting the
actions of each individual nodes within the network.

In the same figure, we also show the mean maximum and minimum performance (that
is, for each loopy network, we record the performance of the best and worst tree, and
then average over each loopy network that we test) of the algorithm with fixed routing.
We remark that by making an appropriate choice of parent, we can derive performance
close to that of the algorithm with flexible routing without incurring any additional
computation or communication cost as will be explained shortly.

However, the increased information delivered by the algorithm with flexible routing
comes at a considerable communication and computational cost. Specifically, figures
4.21 and 4.22 show the total size of coordination messages exchanged by the nodes and
the average computation time of each node. Note that these figures are presented on a
logarithmic scale for a clearer visualization. In particular, figure 4.21 shows that typically
only a few tens of kilobytes of coordination message packets are required by the algorithm
with fixed routing, while the algorithm with flexible routing exhibits approximately two
orders of magnitude more; with a few megabytes of coordination message packets being
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Figure 4.21: Simulation results showing the performance of the algorithms with flexi-
ble, fixed (with maximum and minimum performance), and uniform non-adaptive rout-

ing against total communication cost for coordination.

exchanged. The increase is due to the way in which the flexible routing algorithm keeps
track all possible partitions of forwarding that grows exponentially with the number of
nodes and potential routes.

Likewise, figure 4.22 shows that the average computation time of a node required by
the algorithm with fixed routing is typically less than 1 millisecond, while that of the
algorithm with flexible routing approaches 100 milliseconds (a two orders of magnitude
increase)9. The increase in terms of computation time is due to the additional time
which the flexible routing algorithm requires in order to enumerate each of the possible
partitions of forwarding.

Speaking more generally, these results indicate that the algorithm with flexible routing
is able to deliver significantly more information to the base station, but it incurs a
considerable additional computation and communication cost in doing so. The choice
of algorithm thus largely depends on the actual application domain. If the network
is small, and the size of the actual data messages is large, then the algorithm with
flexible routing is most appropriate. However, this algorithm scales poorly as the size or
connectivity of the network increases (due to the exponential growth in the number of

9These measurements were performed on a 3GHz desktop PC. Typically, the nodes within a WVSN
will use much lower powered processors and, thus, while we would expect the ratio between the algorithms
to be the same, the overall computation time is likely to be longer.
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Figure 4.22: Simulation results showing the performance of the algorithms with flexi-
ble, fixed (with maximum and minimum performance), and uniform non-adaptive rout-

ing against average computation time at each node.

possible combinations of routing options that it must evaluate). In such cases, the size
of the coordination messages may rapidly approach that of the actual data messages,
and hence, coordination may not actually yield any energy saving. To address this, the
algorithm with fixed routing may be run on the original loopy network by ignoring the
fact that there exist alternative routing options, and having each node make an arbitrary
choice of route. While the quantity of information delivered to the base station will be
reduced (by up to 50% in our experiments), this solution will scale well and use minimal
communication and computational resources.

4.6 Summary

In this chapter, we have considered the problem of inter-related adaptive sampling,
transmitting, forwarding, and routing within a wireless visual sensor network in order
to manage the limited energy resources of nodes in an effective and efficient way. We
have developed two novel and optimal decentralised algorithms: one that assumes fixed
routing and calculates the optimal sensing and forwarding actions that each node should
perform (Contribution 4), and one that assumes flexible routing and makes optimal
decisions regarding both the integration of actions that each node should perform, and
also the route by which data should be forwarded to the base station (Contribution
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5). In an empirical evaluation, we showed that the algorithm with flexible routing
delivered approximately twice the quantity of information to the base station, but at
a considerably higher communication and computational cost (Contribution 6). Thus,
while the algorithm with flexible routing is suitable for networks with a small numbers
of nodes, it scales poorly, and as the size of the network increases, the algorithm with
fixed routing should be favoured.

Our ongoing work in this area includes relaxing the restriction that the nodes may
only forward data to nodes that are closer to the base station (in terms of hop count)
than themselves and, in particular, we would like to characterise the circumstances in
which this may yield some benefit. More significantly, we would also like to develop a
principled algorithm for making the choice of route when applying the algorithm with
fixed routing to WVSN whose underlying communication network exhibits loops. That
is, rather than having the nodes make an arbitrary choice of parent in order to convert
the loopy network into a tree-structured one, we would like to provide some guiding
algorithm such that the tree-structured network that is generated delivers the greatest
quantity of information to the centre (without having to run the full algorithm with
flexible routing). Our empirical evaluation indicates that there is potential in doing
so as the performance of the algorithm with fixed routing is very close to that of the
algorithm with flexible routing if the appropriate fixed route is selected (recall figure
4.20)10. However, how to select this particular tree-structure in an efficient decentralised
manner is an open question.

10Note the algorithms are not necessarily identical in this case, since the algorithm with flexible routing
allows individual nodes to forward data through multiple routes.



Chapter 5

Conclusions and Future Work

In this final chapter, we conclude the thesis by reviewing its contributions to the field
of decentralised control in the domain of WSN, and outline the opportunities for fu-
ture work. To this end, in section 5.1, we look back at the research challenges and
requirements that have motivated this thesis, and then discuss our research contribu-
tions. Then, in section 5.2, we propose a number of directions on how our work can be
extended.

5.1 Conclusions

WSNs are receiving significant multi-disciplinary research interest from institutions
around the globe. The research opportunities in this area are diverse and plentiful.
In this thesis, we have focused primarily on issues associated with energy management
as the efficient management of the limited energy resources of such networks is central
to their successful operation. Within this context, we concentrated in particular on the
sampling, transmitting, forwarding, and routing strategies of decentralised control to
provide simple local decision rules for each node in the network. Such local decision
rules give each node the ability to make its own decisions regarding its own sampling
rates adjustment, transmitting, forwarding, and next-hop routing decisions based only
on its local information and those of its parents and children, within the context of the
system-wide goal of maximising the information value collected.

To this end, in chapter 2, we looked at a number of WSN applications and presented
various approaches to controlling such networks. However, currently, most of these
approaches adopt a centralised control mechanism which has issues associated with scal-
ability, robustness, and dynamism that often exist in such energy-constrained networks.
Given this, decentralised methods are appealing and, therefore, we use an agent-based
approach in which each sensor node is represented by an autonomous agent capable of

127
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making local autonomous decisions in order to achieve its individual objectives. The
individual agents also coordinate their activities cooperatively in a distributed manner
towards achieving system-wide goals.

In chapter 3, we first concentrated on adaptive sampling as a means of focusing a node’s
energy consumption on obtaining the most important data. We tackled the problem by
developing a principled information metric based upon Fisher information and Gaussian
process regression that allows the information content of a node’s observations to be
expressed. With this metric, we devised three novel decentralised information-based
adaptive sampling algorithms which represent a trade-off in computational cost and
optimality. Given a set of node readings, we showed how an optimal and a greedy
adaptive sampling algorithms can be devised. These algorithms are, however, only
tractable for very small problems and, thus, we develop a more practical, heuristic
information-based adaptive sampling algorithm. This approach is a better choice for
larger sampling problems (beating the benchmarks and obtaining performance close to
the optimal one, but with much lower time complexity). The empirical results show that
all the three algorithms are effective in balancing the trade-off associated with wanting
to gain as much information as possible by sampling as often as possible, with the energy
constraints available to accomplish these activities.

In chapter 4, we then moved on to consider the problem of inter-dependent adaptive
sampling, transmitting, forwarding, and routing within a WVSN in order to manage the
limited energy resources of nodes in an effective and efficient way. These actions are
inter-related in this setting because each node’s energy consumption must be optimally
allocated between sampling and transmitting its own data, receiving and forwarding the
data of other nodes, and routing any data. Specifically, we developed two novel optimal
decentralised algorithms. The first assumes that the route by which data is forwarded to
the base station is fixed and then calculates the optimal sensing and forwarding rates that
each node should perform. The second deals with flexible routing and makes optimal
decisions regarding both the integration of actions that each node should perform, and
also the route by which this data should be forwarded to the base station. In an empirical
evaluation, we showed that the algorithm with flexible routing delivered approximately
twice the quantity of information to the base station. However, this gain comes at
a considerable communication and computational cost. The algorithm with flexible
routing is therefore suitable only for networks with a small numbers of nodes. As the
size of the network increases, the algorithm with fixed routing should be favoured.

5.2 Future Work

There are a number of extensions that can be added to our work to make it more
applicable to a wider range of scenarios in the domain of WSNs. Specifically these are
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as follows:

• Model the Spatial Correlation of Node Samples: As argued in section 2.3,
the incorporation of spatial correlations between nodes into both the information
metric and the algorithms would be beneficial. Incorporating this aspect will allow
the nodes that are physically close together in a network to autonomously and
more efficiently coordinate their limited resources by dividing the sampling tasks
between themselves as they may be sensing similar readings and, thus, forwarding
redundant data to the base station.

• Further Exploration on Information Metrics: The use of Shannon entropy
and Kullback-Leibler divergence should then be investigated as alternative infor-
mation metrics to express the information content of spatio-temporally correlated
sensor samples.

• Extended Mechanisms. Relaxing the restriction that the nodes may only for-
ward data to nodes that are closer to the base station (in terms of hop count)
should be considered. More significantly, we believe it would be valuable to de-
velop a principled decentralised algorithm for making the choice of route when
applying the algorithm with fixed routing to networks whose underlying commu-
nication networks exhibit loops such that the generated tree-structured network
delivers the greatest quantity of information to the base station while using mini-
mum communication and computational resources (as discussed in section 4.5.4).

• Simulator Improvements: We think it would be advantageous to extend our
current simulator so that a more comprehensive domain model of the wireless
communication channels could be addressed in order to model the probability
of dropped, undelivered, or corrupted messages more realistically (recall the dis-
cussion in section 4.5.1.1). This feature is important to appropriately test our
mechanisms’ scalability and robustness.

• Non-Cooperative/Competitive Nodes: We believe that in some settings it
would be necessary to extend the algorithms to be incentive-compatible to include
a payment scheme where rational selfish nodes are rewarded (e.g. for forwarding
messages to the destination). This will eventually drive them towards achieving
global system-wide goals in a non-cooperative setting (e.g. in a mobile ad hoc net-
work where sensors are owned by different providers, each of which has different
priorities, as discussed in section 2.5). To this end, the area of distributed com-
putational mechanism design (Dash et al., 2003) seems to be a promising point of
departure because it applies the tools of economic and game theory to design rules
of interaction that yield some desired system-wide goals (Binmore, 1991; Dixit
and Nalebuff, 1993; Song et al., 2008). In particular, the nodes are assumed to
be economically rational entities that act in a game-theoretic way and select a
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best-response strategy to selfishly maximise their expected utility in accordance
with other nodes and, thereby modelling the effect their actions will have on other
node’ actions. This detailed modelling further facilitates the design of a system in
which certain system wide properties emerge, despite the selfish actions and goals
of the constituent components’ interaction.

• Real Deployment: For real deployment purposes, a key next step is to install our
algorithms on the actual nodes. This is important in this context in order to see
how well they scale and perform in practice in term of maximising the information
value collected at the base station.
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FLOODNET Log Data

Node
Name

Mean Wa-
ter Level

Variance
Water Level

Battery
Voltage

Date
Stamp

Time
Stamp

Floodnet1 55.31 1.21 11.72 05/10/14 00:04:27
Floodnet1 52.84 1.38 11.72 05/10/14 00:09:27
Floodnet1 52.19 0.34 11.72 05/10/14 00:14:27
Floodnet1 64.47 0.25 11.72 05/10/14 00:19:27
nodeA 181.56 1288.18 12.67 05/10/14 00:01:17
nodeA 142.50 668.75 12.67 05/10/14 00:06:17
nodeA 135.94 830.37 12.67 05/10/14 00:11:17
nodeA 135.62 1062.11 12.67 05/10/14 00:16:17
nodeG 587.19 1157.71 12.67 05/10/14 00:00:39
nodeG 588.44 700.68 12.74 05/10/14 00:05:39
nodeG 597.19 1145.21 12.74 05/10/14 00:10:39
nodeG 592.19 1179.59 12.74 05/10/14 00:15:39
nodeC 52.19 129.59 12.54 05/10/14 00:03:16
nodeC 49.69 109.28 12.54 05/10/14 00:08:16
nodeC 47.81 92.09 12.54 05/10/14 00:13:16
nodeC 51.88 108.98 12.54 05/10/14 00:18:16
nodeB 1088.44 456.93 11.78 05/10/14 00:03:00
nodeB 1096.25 579.69 11.78 05/10/14 00:08:00
nodeB 1095.31 574.90 11.78 05/10/14 00:13:00
nodeB 1096.56 610.06 11.71 05/10/14 00:18:00
nodeF 53.12 315.23 12.80 05/10/14 00:02:17
nodeF 60.62 830.86 12.80 05/10/14 00:07:17
nodeF 62.81 920.21 12.80 05/10/14 00:12:17
nodeF 63.12 765.23 12.80 05/10/14 00:17:17
Floodnet1 65.28 0.39 11.73 05/10/14 00:24:27
Floodnet1 67.03 1.84 11.72 05/10/14 00:29:27
Floodnet1 68.25 0.94 11.72 05/10/14 00:34:27
Floodnet1 68.91 0.15 11.72 05/10/14 00:39:27
nodeA 136.88 696.48 12.67 05/10/14 00:21:17
nodeA 143.44 1128.81 12.67 05/10/14 00:26:17
nodeA 138.12 1077.73 12.67 05/10/14 00:31:17
nodeA 144.38 1030.86 12.67 05/10/14 00:36:17
nodeC 53.12 83.98 12.54 05/10/14 00:23:16
nodeC 48.12 127.73 12.54 05/10/14 00:28:16
nodeC 52.50 156.25 12.54 05/10/14 00:33:16
nodeC 51.88 158.98 12.54 05/10/14 00:38:16
nodeB 1097.50 725.00 11.71 05/10/14 00:23:01
nodeB 1100.00 656.25 11.71 05/10/14 00:28:01
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Acronyms

ADOPT Asynchronous Distributed Optimization

ADV Advertisement

APO Asynchronous Partial Overlay

ARA Adaptive Routing Algorithm

A/D Analog/Digital

BDDF Bayesian Decentralised Data Fusion

BIP Binary Integer Programming

BGP Border Gateway Protocol

ci Confidence Interval

CPU Central Processing Unit

DBA Distributed Breakout Algorithm

DCE Data Combining Entities

DCOP Distributed Constraint Optimization

DC-WSNS Decentralised Control of Wireless Sensor Network Simulator

DD Directed Diffusion

DF Directional Flooding

DisCOP Distributed Constraint Optimization

DPOP Distributed Pseudotree Optimization Procedure

DSR Dynamic Source Routing

EWSN Environmental Wireless Sensor Network
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GBR Gradient Based Routing

GIS Geographical Information System

GLPK GNU Linear Programing Kit

GP Gaussian Process

GPRS General Packet Radio Service

GPS Global Positioning System

IDEALS Information Managed Energy Aware Algorithm for Sensor Networks with
Rule Managed Reporting

IDR Information Directed Routing

IDSQ Information-Driven Sensor Querying

LAN Local Area Network

LEACH Low Energy Adaptive Clustering Hierarchy

MAS Multi-Agent System

MBC Market Based Control

METAR Meteorological Aviation Routine Report

MKP Multiple Knapsack Problem

PC Personal Computer

PCMCIA Personal Computer Memory Card International Association

PEGASIS Power Efficient Gathering in Sensor Information Systems

PIC Programmable Interface Controller

REQ Request

RISC Reduced Instruction Set Computer

RR Rumor Routing

SBB Synchronous Branch and Bound

SBC Single Board Computer

SIMD Single Instruction Multiple Data

SOR Self Organised Routing

SORA Self Organising Resource Allocation
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SPIN Sensor Protocols for Information via Negotiation

TCP/IP Transmission Control Protocol/Internet Protocol

USAC Utility Based Sensing and Communication Protocol

VGA Video Graphic Array

WSN Wireless Sensor Network

WVSN Wireless Visual Sensor Network
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