
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND

MATHEMATICS

School of Engineering Sciences

Numerical Studies of the Flow around an Airfoil at Low

Reynolds Number

by

Lloyd Edward Jones

Thesis for the degree of Doctor of Philosophy

January 2008

i



ABSTRACT

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

DOCTOR OF PHILOSOPHY

NUMERICAL STUDIES OF THE FLOW AROUND AN AIRFOIL AT LOW

REYNOLDS NUMBER

by Lloyd Edward Jones

A study of the flow around airfoils at low-Reynolds numbers has been performed,
by a combination of direct numerical simulation (DNS) and linear stability analy-
sis. The behaviour of laminar separation bubbles formed on a NACA-0012 airfoil
at Rec = 5 × 104 and incidence 5◦ is investigated. Initially volume forcing is
introduced in order to promote transition to turbulence. After obtaining suffi-
cient data from this forced case, the explicitly added disturbances are removed
and the simulation run further. With no forcing the turbulence is observed to
‘self-sustain’, with increased turbulence intensity in the reattachment region. A
comparison of the forced and unforced cases shows that the forcing improves the
aerodynamic performance whilst requiring little energy input. Linear stability
analysis of the time-averaged flowfield is performed, however no absolute insta-
bility is observed that could explain the presence of self sustaining turbulence.
A series of simplified DNS are presented that illustrate a three-dimensional in-
stability of the two-dimensional vortex shedding that occurs naturally. The in-
stability leads to exponential growth in time at fixed streamwise locations, and
a mechanism for its growth is proposed. The fact that this transition process
is independent of upstream disturbances has implications for modelling sepa-
ration bubbles. A further DNS, of a laminar separation bubble formed on a
NACA-0012 airfoil at incidence 7◦ clearly exhibits sustained transition to tur-
bulence via the proposed instability mechanism, and illustrates that the effect
of a modest increase in airfoil incidence upon separation bubble behaviour ap-
pears slight in comparison to that of the addition of forcing. For all airfoil flows
the transition/reattachment region of the separation bubble was observed to
be a significant contributor to airfoil self-noise. Numerical simulations of the
response of the time-averaged flowfield to small perturbations, intended to com-
plement linear stability analysis, illustrate that for two dimensional cases in the
range 5◦ ≤ α ≤ 8.5◦ the time-averaged flowfield is unstable due to an acoustic
feedback instability, whereby hydrodynamic disturbances convecting over the
trailing edge generate upstream traveling acoustic waves, which ultimately gen-
erate further downstream travelling hydrodynamic disturbances. As the cycle
repeats, the amplitude of both hydrodynamic instabilities and acoustic waves
increases. It is suggested that an acoustic feedback loop of this type may act as a
frequency selection mechanism for naturally occurring vortex shedding observed
in two-dimensions.
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Chapter 1

Introduction

1.1 Low Reynolds number aerodynamics

Interest in low Reynolds number aerodynamics has increased in recent years,

primarily due to the development of small autonomous aircraft commonly re-

ferred to as unmanned or micro air vehicles (UAV’s or MAV’s). Current goals

for the development of MAV’s are a maximum dimension of 15cm and an ex-

pected cruise velocity of 15-80km/h, yielding an operational Reynolds number

range of Re = 42, 000 − 225, 000 (Torres & Mueller, 2001). Larger UAV’s at

very high altitude will also tend to operate in a low Reynolds number regime

due to the increase in kinematic viscosity. For example, at an altitude of 24km

the kinematic viscosity of air will have reduced by a factor of 22 compared to

that at sea level, and the Reynolds number will have decreased by the same

factor. Wind turbines and turbine cascades also operate in the low Reynolds

number regime, since the velocity at the root of the blade will be substantially

lower than that at the tip, and represent another focus of low Reynolds number

research.

Historically, low Reynolds number aerodynamics has not received as much

interest as aerodynamics at higher Reynolds number, thus experimental and

numerical data are commonly only available for high to moderate Reynolds

number flow. For example, generating airfoil lift and drag data requires more

sensitive instrumentation at lower Reynolds number, and so the large amount

of experimental airfoil data publicly available does not typically extend to low

Reynolds number (Mueller, 1999). This problem is compounded by the fact that

low Reynolds number aerodynamics is dominated by different physical behav-

iour compared to aerodynamics at high Reynolds number, and hence knowledge

of the performance of an airfoil geometry at low Reynolds numbers does not

necessarily extrapolate well to high Reynolds number, and vice versa.
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At low Reynolds numbers transitional behaviour and the effect of boundary

layer separation can be critical to airfoil performance. Airfoil boundary layers

will typically remain laminar for a large percentage of the airfoil chord, whereas

at high Reynolds numbers the boundary layer will undergo transition to tur-

bulence near the airfoil leading edge and the boundary layer will be mostly

turbulent. The transition process, and hence location, is more sensitive at low

Reynolds numbers and must be predicted accurately in order to determine aero-

dynamic performance. This contrasts with high Reynolds number flows where

transition is often not modelled at all, for example in traditional computational

fluid dynamics (CFD) based on the Reynolds-averaged Navier–Stokes (RANS)

equations. Since boundary layers remain laminar for a greater streamwise extent,

laminar separation is more common at low Reynolds numbers, and the resultant

separated shear-layer may also remain laminar for a significant extent before

transition to turbulence occurs. Upon transition the increased wall-normal mo-

mentum transfer typically means that the boundary layer reattaches, followed

by a developing turbulent boundary layer. The resultant structure formed by

laminar separation, transition to turbulence and reattachment is termed a lam-

inar separation bubble (LSB) and is a classic hallmark of low Reynolds number

flows.

Differences in behaviour between high Reynolds number and low Reynolds

number fluid flow are often significant. Critically, this means that the industry

standard tool for predicting fluid flows at high Reynolds numbers, RANS based

CFD, does not perform well in the low Reynolds number regime, since large re-

gions of laminar flow are often present. Additionally, the reattachment process is

highly dependent on transition and the subsequent turbulent behaviour, and has

been found to be difficult to model accurately with RANS based CFD (Yuan, Xu

& Khalid, 2004). Methods such as direct numerical simulation (DNS) and large

eddy simulation (LES), whilst accurately capturing the physics present, are not

suitable for use as design tools due to the high computational cost. Effectively,

the state of the art for low Reynolds number airfoil design currently consists

of viscous-inviscid interaction (VII) solvers (Selig, Gopalarathnam, Giguere &

Lyon, 2001), in particular the Profoil/Eppler code, and XFoil. Both programs

solve using a panel method for the potential flow, however they differ in their

approach when solving for the boundary layer. The Eppler code (Eppler &

Somers, 1980) uses a non-coupled integral boundary layer method, with em-

pirically derived transition criterion dependent on momentum thickness, shape

factor and local flow conditions. On the other hand, XFoil’s integral boundary

layer method is coupled to the potential flow solution and uses an empirically
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derived en transition criterion (Drela & Giles, 1987), hence XFoil represents a

more advanced approach. The Eppler code cannot predict separation at all,

whereas the XFoil code does attempt to predict limited separated regions but

cannot predict stall with any accuracy. Both codes essentially provide a steady-

state two-dimensional solution, thus unsteady effects will be ignored. More

recently efforts have also been made to integrate the en transition prediction

method into RANS based simulations (Yuan et al., 2007; Windte et al., 2006)

with some success, and the technique appears promising. Potential problems

with this method are that the reattachment behaviour, and the developing tur-

bulent boundary layer are difficult to model accurately, and will be sensitive

to the turbulence model used. Also, the ability of the technique to model the

experimentally observed sudden bubble ‘bursting’ is not yet proven.

It appears therefore, that current design tools for low Reynolds number aero-

dynamics are not entirely satisfactory, and that there is a lack of publicly avail-

able experimental data at low Reynolds number. This means that experimental

studies are still critically important for MAV development. Perhaps the biggest

challenge for low Reynolds number airfoil design is the accurate prediction of

laminar separation bubble behaviour. Whilst VII solvers may predict the pres-

ence of separation bubbles, the ‘bursting’ of bubbles into extended separated

regions, or the onset of sudden stall, is not predicted. Furthermore, separation

bubble models employed by VII solvers assume that the bubble is a fundamen-

tally steady structure, whereas studies have shown that separation bubbles are

far from steady. If advances can be made in understanding the physics of laminar

separation bubbles, they may potentially lead to improvements in low Reynolds

number design tools.

1.2 Separation bubbles

As outlined in section 1.1, the accurate modelling of their behaviour represents

a considerable challenge in predicting airfoil performance at low Reynolds num-

bers. The first recorded observation of a laminar separation bubble was by Jones

(1938), in a study of the stalling process of airfoils. The initial observation was

followed by a series of experimental studies of the fundamental structure of sep-

aration bubbles, as reviewed by Young & Horton (1966). Bubble behaviour at

near-stall conditions was subsequently investigated by Gault (1957), who defined

three types of stall depending upon the separation behaviour of the boundary

layer near stall; leading edge, trailing edge and thin airfoil stall. Gault observed

that the presence and behaviour of a separation bubble can potentially have a
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strong influence on airfoil stalling characteristics. Horton (1968) was the first to

describe the time-averaged structure of a laminar separation bubble, resulting

in the classical model of a separation bubble illustrated in figure 1.1.

Figure 1.1: The structure of a laminar separation bubble, as described by Horton (1968).

In the classical model a laminar separation bubble forms when, under the

influence of an adverse pressure gradient, the boundary layer separates, forming

a free shear layer which is highly unstable. The separated shear layer undergoes

rapid transition to turbulence, and subsequent reattachment. Just downstream

of the separation point, within the bubble, the fluid velocity is close to zero

and thus this region is denoted the ‘dead air’ region. Just upstream of the

reattachment point a vortical structure is present, associated with the circulation

of air within the bubble, called the ‘reverse-flow vortex’. This steady model of a

separation bubble, where the only time dependent behaviour is the transition to

turbulence and subsequent turbulent behaviour downstream, became the widely

accepted model.

Owen & Klanfer (1953) classified bubbles of this type as either ‘short’ bub-

bles or ‘long’ bubbles. Short bubbles were defined as possessing bubble length

approximately 102 times the displacement thickness at the separation point,

whereas long separation bubbles were defined as being of order 104 times the

displacement thickness at the separation point. Perhaps more importantly, short

separation bubbles are defined as having little effect on the external potential

flow, whereas long bubbles have a marked impact, e.g completely altering the

circulation around an airfoil. Where a short separation bubble suddenly changes

state to that of a long separation bubble, or indeed to a fully separated state with

no reattachment, the process is termed bubble ‘bursting’ and is the mechanism

behind thin airfoil stall as defined by Gault (1957). Gaster (1966) investigated

a large number of bubbles on a flat surface, produced by placing an inverted air-
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foil above the plate. This experimental configuration allowed the investigation of

separation bubbles formed under a variety of conditions, by varying the location

and incidence of the airfoil. From these experiments a two parameter bursting

criterion was produced. Gaster observed that bubble bursting can occur either

as a steady increase in bubble length with some change in free-stream conditions

or as a sudden near-discontinuous event, but the parameters governing this be-

haviour were not determined. Gaster’s experimental results were subsequently

used by Horton (1969), to produce a semi empirical model for bubble growth

and bursting, based upon the concept of a steady separation bubble. Horton’s

model gave predictions for the transition location and momentum thickness dis-

tribution, as well as overall bubble length, and provided a benchmark for the

development of subsequent models. However, despite refinements such as mod-

elling the dependency on background turbulence levels (Roberts, 1980), the use

of the en transition prediction method (Ingen, 1985) and the modelling of low

Reynolds number effects (Shum & Marsdent, 1994), present day models do not

adequately predict bubble bursting or unsteady behaviour. More recently, ad-

vances in understanding the physics of separation bubbles have been made by

numerical studies.

1.2.1 Numerical separation bubble studies

Subsequent to Gaster’s experiments and Horton’s models, some of the most

important advances in the understanding of separation bubbles, particularly

with regard to unsteady behaviour, have been made via numerical methods,

primarily by directly solving the Navier–Stokes equations, with no modelling.

The first numerical simulations of separation bubbles were limited either to

two-dimensional analysis, or else only studied primary/linear instability and

did not resolve transition. Pauley, Moin & Reynolds (1990) conducted one of

the earliest attempts, and considered only the two-dimensional incompressible

Navier–Stokes equations. A separation bubble was induced on a flat plate via

the application of transpiration to an upper boundary, and at low adverse pres-

sure gradient the bubble produced was observed to be thin and steady. With

increasing adverse pressure gradient, oscillations were observed within the bub-

ble, and above a critical adverse pressure gradient periodic vortex shedding was

observed to occur from the separated shear layer. Despite the strong unsteadi-

ness, time-averaged velocity contours looked qualitatively similar to those of

Gaster and Horton. The length of the separated region was found to increase

with increasing adverse pressure gradient until the onset of vortex shedding, af-

ter which the length of the separated region was found to decrease with further
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increase in adverse pressure gradient. Pauley et al. therefore suggested that the

short and long separation bubbles observed by Gaster may in fact be steady

and unsteady separation bubbles respectively. A study by Pauley (1994) inves-

tigated the development of three-dimensionality due to the introduction of 3D

velocity perturbations to the earlier case studied by Pauley et al. (1990). Only

the initial response to these disturbances was studied however, and the simula-

tions did not resolve transition to turbulence. Similarly, Rist (1994) performed

direct numerical simulations of a laminar separation bubble subject to combina-

tions of both two-dimensional and three-dimensional disturbances. The study

focused on instability behaviour, and it was found that oblique disturbances

yielded the most realistic flow parameters and transition behaviour. Again, full

transition to turbulence was not resolved. It was not until the studies of Alam

& Sandham (2000) and Spalart & Strelets (2000) that transition to turbulence

in a separation bubble was fully resolved.

Alam & Sandham (2000) investigated a short separation bubble on a flat

surface. The bubble was induced via suction on the upper boundary, and un-

steadiness was introduced by the addition of a disturbance strip upstream of the

separation point. The study found that, unlike three-dimensional simulations,

two-dimensional simulations could not adequately capture the characteristics

of the separation bubble. The three-dimensional simulations exhibited tran-

sition to turbulence, and thus the transition process could be investigated in

detail. Transition was found to occur within the shear layer, via amplification of

oblique modes followed by a Λ-vortex induced breakdown. The boundary layer

reattached as turbulent flow, with the turbulent behaviour being most energetic

away from the wall, and relaxation to log-law boundary layer profiles taking

several bubble lengths downstream. For the case in question, it was determined

that reverse flow greater than 15% would be required in order to sustain an

absolute instability, whereas reverse flow was actually only 4-8%. As a result,

it was stated that the transition process was entirely due to the presence of

convective instability.

In the same year Spalart & Strelets (2000) conducted DNS of a laminar

separation bubble, formed by the same method as Alam & Sandham, for the

purpose of assessing turbulence models. No unsteadiness was introduced and

inflow disturbances were less than 0.1%, however transition to turbulence was

still observed. As a result the study stated that entry-region disturbances (TS-

waves) could be discarded as the mechanism behind transition, however the

study also stated that magnitude of reverse flow present was unlikely to be

sufficient to sustain absolute instability. Transition was observed by ‘wavering
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of the separated shear layer, followed by the formation of Kelvin-Helmholtz

vortices, instantly becoming three-dimensional with no clear regions of primary,

secondary or tertiary instability’. No Λ-vortices were observed, and thus the

transition process was markedly different to that of Alam & Sandham. Spalart

& Strelets suggested that the flow is independent of upstream disturbances.

Subsequent to the first fully resolved studies in 2000 several further numerical

simulations of separation bubbles have been conducted. Yang & Voke (2001)

conducted LES of a separation bubble induced by a surface curvature change.

In contrast to previous three-dimensional studies, the bubble exhibited shedding

of spanwise-coherent vortices, appearing nominally similar to that observed by

Pauley et al. (1990) in two-dimensions. Two-dimensional unsteadiness was found

to originate in the free shear layer, and three-dimensional motions were found

to develop as a result of small spanwise disturbances. The instantaneous reat-

tachment position was observed to move over a distance of 50% of the mean

bubble length and thus, in contrast to classical models, the bubble was highly

unsteady. Wissink & Rodi (2002) also observed quasi-periodic vortex shedding,

in a DNS study of a separation bubble induced on a flat plate. As the vortices

travelled downstream they were observed to break down into smaller structures

and ultimately turbulence.

An alternative approach was carried out by Marxen, Lang, Rist & Wagner

(2003), who performed a combined DNS and experimental study (including par-

ticle image velocimetry and laser doppler anemometry), with flow parameters

chosen to enable comparison. Periodic two-dimensional disturbances were in-

troduced upstream of separation, and three-dimensionality was introduced via a

spanwise array of spacers. The separated shear layer was observed to roll up to

form vortices, appearing similar to the study of Wissink & Rodi (2002), which

subsequently broke down to turbulence. The same configuration was studied

further by Lang, Rist & Wagner (2004) and again by Marxen, Rist & Wagner

(2004) in order to quantify the respective roles of two-dimensional and three-

dimensional disturbances. Marxen et al. concluded that transition was driven by

convective amplification of a two-dimensional TS wave, which also determined

the length of the bubble, and that the dominant mechanism behind transition is

an absolute secondary instability in a manner first proposed by Maucher, Rist

& Wagner (1997).

Baragona (2004) also performed a combined numerical and experimental

study of separation bubbles including DNS, although the DNS did not resolve

the transition process and subsequent turbulence. Experimental results again

revealed laminar vortex shedding from a separated shear layer, undergoing tran-
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sition to turbulence downstream of the shedding location. The vortex shedding

was found to strongly influence both the transition process and subsequent tur-

bulent boundary layer, however the study concluded that for the cases under

consideration the addition of TS-like disturbances was necessary in order to

reproduce experimental results.

More recently Marxen & Henninsdon (2007) attempted to investigate bub-

ble bursting behaviour via DNS. A separation bubble was induced on a flat

plate by means of an imposed pressure distribution and periodic disturbances

were introduced via a disturbance strip, resulting in transition to turbulence.

The bubble was observed to shorten significantly. Having formed a short bub-

ble the disturbance input was then removed, at which point the bubble grew

in length, achieving a ‘long’ bubble state. Transition was still observed how-

ever, and the transition location did not change significantly upon removal of

disturbances; the bubble length increased because the location of turbulent reat-

tachment moved downstream. The physical mechanism behind different forms

of separation bubble bursting as observed by Gaster (1966) was not investigated

in great detail, however the study implicitly illustrates that background turbu-

lence levels may play some role. Further studies by Wissink & Rodi (2003) and

Wissink, Michelassi & Rodi (2004) have investigated separation bubbles formed

under the influence of oscillating external flow, and in the case of Wissink et al.

with the addition of heat transfer. These studies are more relevant to turboma-

chinery, and will not be discussed in detail.

To summarise, it appears that separation bubble behaviour is complex and

far from universal in nature. Depending on the flow parameters separation bub-

bles may or may not exhibit vortex shedding or coherent structures, and studies

alternately attribute transition to convective instability, absolute instability or

to some form of secondary absolute instability. Furthermore, it has been sug-

gested both that the addition of TS-type disturbances is necessary to accurately

reproduce experimental data (Baragona, 2004), and alternately that bubble be-

haviour is independent of upstream disturbances (Spalart & Strelets, 2000). It

is apparent that stability characteristics of separation bubbles are not well de-

fined in all cases, and hence better understanding of instability mechanisms

present may potentially help to explain the differences in behaviour observed in

numerical studies.

1.2.2 Hydrodynamic instability and separation bubbles

From the discussion of numerical separation bubble studies in section 1.2.1 it is

apparent that if the stability characteristics of separation bubbles were better
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understood, it is likely that their physical behaviour could be better predicted.

A discussion of the role of instability mechanisms in separation bubbles follows.

The concepts of absolute and convective instability were first identified in the

context of fluid dynamics by Gaster (1963, 1968), and are fundamental to much

of the discussion regarding stability characteristics of separation bubbles (for a

review of absolute instability, including earlier studies see Huerre & Monkewitz,

1990). The difference between convective and absolute instability may be ex-

plained by considering a one-dimensional system, perturbed at location x = 0.

The perturbation may either grow or decay in time, and will convect as it does

so. The resultant behaviour is defined in three ways. If the perturbation decays

with time the system is stable. If the perturbation grows in time, but the convec-

tion of the perturbation is such that the perturbation amplitude at x = 0 decays

in time, the system is said to be convectively unstable (figure 1.2, left). As time

increases the system will return to its initial condition in the vicinity of x = 0.

Convective instability is the mechanism by which Tollmien-Schlicting (TS) waves

are amplified. If the perturbation grows in time, and both the temporal growth

rate and perturbation velocity are such that the perturbation amplitude grows

temporally at x = 0, the system is said to be absolutely unstable (figure 1.2,

right). The perturbation will grow in amplitude and ultimately contaminate the

entire system. The presence of absolute instability has been confirmed both for

shear-layers (Huerre & Monkewitz, 1985) and bluff body wakes (Hannemann &

Oertel, 1989), and in the latter case has been found to trigger the onset of bluff

body vortex shedding.

Figure 1.2: X/T plot illustrating convective instability (left) and absolute instability (right).

It is well known that perturbations will be rapidly amplified by convective

instability in separated shear layers; convective growth rates for separation bub-
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bles have been accurately reproduced via both linear stability analysis (Bestek,

Gruber & Fasel, 1989) and parabolic stability equation (PSE) analysis (The-

ofilis, 2000). The role of absolute instability in separation bubble flow is less

well defined however. Several studies have attempted to answer the question as

to whether absolute instability will occur in separation bubbles, and if so what

criteria govern its onset. One method of determining the stability characteris-

tics of separation bubbles is via linear stability analysis of time-averaged velocity

profiles, either constructed analytically or extracted from numerical simulations.

Hammond & Redekopp (1998) and Rist & Maucher (2002) both performed sta-

bility analysis of analytic profiles, and both studies found absolute instability to

occur, dependent on certain parameters. Hammond & Redekopp (1998) found

the onset of local absolute instability to be dependent on both the maximum re-

verse flow and the height of the reverse flow region, and found that for profiles at

Reδ∗ = 103, a minimum reverse flow velocity of 20% was required to observe lo-

cal absolute instability. Hammond & Redekopp further suggested that although

local absolute instability may be observed for reverse flow of 20%, a global re-

sponse would only be expected if reverse flow approaching 30% was present. Rist

& Maucher (2002) observed similar behaviour regarding the onset of local ab-

solute instability, and highlighted that both the height and intensity of the shear

layer are also important onset parameters. There is no guarantee however, that

analytic profiles sustaining absolute instability will occur in real situations. The

simulations of Alam & Sandham (2000) and Spalart & Strelets (2000) are a case

in point. Alam & Sandham performed linear stability velocity profiles fitted to

data extracted from DNS of a laminar separation bubble formed on a flat plate.

Alam & Sandham found that reverse flow greater than 15% would be required

in order to sustain absolute instability, compared to an observed reverse flow of

only 4-8%. As a result, it was concluded that the transition process was driven

by convective instability. Spalart & Strelets (2000) conducted DNS of a laminar

separation bubble induced on a flat plate, however again the authors suggested

that magnitude of reverse flow present was unlikely to be sufficient to sustain

absolute instability. Hence neither study observed reverse flow large enough to

sustain absolute instability as determined by analysis of analytic profiles. Simi-

larly, an earlier study by Allen & Riley (1995), performing stability analysis on

velocity profiles extracted from a RANS simulation, observed only convective

instability for all cases under investigation. A global self-sustained response was

observed by Marquillie & Ehrenstein (2003), from a separation bubble formed

behind a bump on a flat plate, although only when ‘geometrically stabilised’ by

adding a second bump at the rear of the bubble. Although such behaviour is
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of interest, the resultant bubble cannot be said to resemble that formed on, for

example, an airfoil however. In this configuration reverse flow approaching 30%

of the freestream velocity was observed, and the global response took the form

of periodic oscillation, originating at the rear of the bubble.

As well as classical linear stability analysis, recently advances have been made

with ‘global’ (also termed ‘BiGlobal’) stability analysis (Theofilis, 2003). As ex-

plained in section 2.4, classical linear stability analysis considers the growth of

normal-mode perturbations on one-dimensional velocity profiles. For the spa-

tial problem, a perturbation frequency is specified, and a corresponding wave-

length and one-dimensional eigenvector, describing the disturbance structure, is

returned. When performing ‘BiGlobal’ analysis a spanwise wavenumber is spec-

ified, and a temporal growth-rate and two-dimensional eigenvector describing

the disturbance structure is returned. When applied to the case of a laminar

separation bubble (Theofilis, 2000) temporally unstable global modes have been

observed that are not predictable by classical linear stability analysis. However

the growth rates are small compared to that of convective instabilities present,

hence it is likely that transition will occur before such a global mode may amplify

significantly. It is suggested however that the presence of global modes may be

relevant to the phenomenon of vortex shedding observed in many simulations.

To summarise, it appears that unlike bluff body wakes the presence of local

absolute instability has not been rigorously proven for either a numerically or

experimentally produced separation bubble. Despite the lack of evidence for

the presence of absolute instability in experimentally or numerically produced

separation bubbles, self-sustained transition to turbulence has been observed

in the absence of explicitly added disturbances (e.g., Spalart & Strelets, 2000).

It is perhaps possible that the presence of absolutely unstable regions of flow

leads to some form of secondary behaviour, e.g. vortex shedding or transition to

turbulence, that prevents detection of the original absolute instability from time-

averaged data, however the question remains as to whether absolute instability

will occur in ‘real’ laminar separation bubbles, and if so what form the resultant

global behaviour will take.

1.3 Airfoil studies

A discussion of laminar separation bubbles, and the role of instability mech-

anisms in separation bubble behaviour has illustrated that separation bubble

behaviour appears to differ significantly from case to case, and that instability

mechanisms present in separation bubbles are not well understood in all cases.
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Continued advances in computing power mean that direct numerical simulations

of airfoil configurations are now possible. The advantage of studying full air-

foil configurations is that the bubble can interact strongly with the potential

flow (in particular via the Kutta condition at the trailing edge), as opposed

to subjecting the bubble to pre-determined flow conditions. The bubble will

be closer in nature to those observed under flight conditions, and the influence

of the bubble behaviour on the aerodynamic performance of the airfoil can be

observed directly. To date, direct numerical simulations of airfoil flow have

typically been limited either to two-dimensions, or else to very low Reynolds

numbers. The use of modelling, such as in LES or DES, has however enabled

studies of three-dimensional airfoil flow at moderate Reynolds numbers, with

mixed success. In the following paragraph a discussion of airfoil DNS studies

to date is presented, followed by a discussion of numerical studies of airfoil flow

utilizing other numerical methods, that are relevant to the current study.

Several DNS studies of airfoil flow exist, primarily investigating the funda-

mental fluid behaviour present. Bouhadji & Braza (2003) performed a two-part

DNS study of the two-dimensional flow around a NACA-0012 airfoil at zero de-

grees. In the first part of the study simulations were performed at a Reynolds

number of Re = 104 based on airfoil chord whilst varying the Mach number

from M = 0.2 to M = 0.98. The study found steady, symmetric flow around

the airfoil in the range M = 0.2− 0.35. Above M = 0.35 the wake was found to

become unstable, and vortex shedding was observed downstream of the airfoil.

Additionally, in the Mach number range 0.75 − 0.8 a second lower frequency

oscillation was observed in the lift coefficient, described as a transonic buffet

effect. Above a critical Mach number in the range 0.9 − 0.95 vortex shedding

ceased, and the flow returned to a steady state. In the second part of the study

simulations were run at M = 0.85 for a variety of Reynolds numbers in the

range 500-10000, and the onset of wake vortex shedding was determined to be

at Rec = 2070. A further paper by Bourdet, Bouhadji, Braza & Thiele (2003)

presents two-dimensional results drawn from the previous studies and also ex-

tends the study to three dimensions. A spanwise perturbation of magnitude

1× 10−4 was introduced, and three-dimensional instability was observed by the

appearance and growth of w-velocity oscillations. Full transition to turbulence

was not observed however, and only secondary instability was investigated. Hoa-

rau, Braza, Ventikos, Faghani & Tzabiras (2003a) and Hoarau, Faghani, Braza,

Perrin, Anne-Archard & Ruiz (2003b) both performed DNS of a NACA-0012

airfoil at 20◦ incidence. The study of Hoarau et al. (2003a) first documents

the behaviour of the flow over the airfoil in two-dimensions as the Reynolds

12



number is increased. In the first regime, Rec = 800 − 2000, a von-Kârman

type instability was observed, with periodic vortex shedding. In the second

regime, Rec = 2000 − 10000, a Kelvin-Helmholtz instability was observed in

the separated shear layer, upstream of the von-Karman vortex shedding. The

frequency of the Kelvin-Helmholtz instability was much higher than that as-

sociated with the von-Karman instability, and non-linear interaction between

the two modes resulted in a more complex frequency spectrum. The simulation

was extended to three-dimensions at Rec = 800, with the addition of random

perturbations in order to introduce three-dimensionality. A spanwise-periodic

disturbance structure was observed to develop, appearing qualitatively similar

to behaviour observed in bluff-body wakes, however full transition to turbulence

was not studied. The study of Hoarau et al. (2003b) appears to draw from the

same data and reaches primarily similar conclusions.

More recently DNS has been used as a tool to study the acoustic response

of the flow around airfoils. Hatakeyama & Inoue (2006) and Tam & Ju (2006)

performed two-dimensional DNS of airfoils at Rec = 5000 and Rec = 200000

respectively, and since a compressible formulation was employed acoustic behav-

iour could be observed directly. In both cases the fluid flow was characterized

by roll-up of the upper surface boundary layer into vortices, and sound waves

were generated by acoustic scattering (Ffowcs Williams & Hall, 1970), as the

vortices convected over the airfoil trailing edge. Tam & Ju however also observed

the vortices themselves to act as sources of acoustic radiation. Kim, Lee & Fu-

jisawa (2005) performed an incompressible LES of the three-dimensional flow

around a NACA-0018 airfoil at Rec = 1 × 109 in order to investigate sources

of tonal noise. The upper airfoil surface exhibited separation and transition,

but the fluid dynamics were not extensively investigated beyond the context of

explaining self-noise mechanisms. The results of the LES were used to predict

the farfield sound spectrum via an acoustic analogy, and the study concluded

that the primary source of tonal noise is expected to be interaction of periodic

vortex shedding on the pressure side of the airfoil with the turbulent flow on the

suction side.

The only three-dimensional DNS study of an airfoil at MAV flight conditions

to date was carried out by Shan, Jiang & Liu (2005), who simulated the flow

over a NACA-0012 airfoil at Rec = 105, M = 0.2 and 4◦ incidence. A precursory

two-dimensional simulation exhibited boundary layer separation near the airfoil

leading edge, and vortex shedding from the separated shear layer. The two-

dimensional simulation was extended into three dimensions and progressed, with

no artificial noise or perturbations being added, and transition to turbulence was
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observed to subsequently take place. The primary purpose of the study was to

assess the use of pulsed jets as a separation control measure and, where unsteady

blowing was applied, bypass transition was observed to take place and the bubble

length reduced accordingly. The study did not study the fluid dynamics of the

separation bubble extensively however, and uses only eight times more grid-

points than Hoarau et al. (2003a) (6.9× 106 c.f 8.7× 105), despite an increase

of a factor of 125 in Reynolds number. Other three-dimensional studies have

been performed at MAV-type Reynolds numbers and above, however they have

all employed some form of modelling in order to reduce the computational cost.

Mary & Sagaut (2002) performed LES of an ONERA ‘A-airfoil’ geometry

with a separation bubble at Reynolds number Rec = 2.1 × 106, at M = 0.15

and incidence α = 13.3◦. The purpose was to demonstrate the ability of LES

to successfully replicate the flow in question. Results were found to be strongly

dependent on both the grid resolution and sub-grid scale (SGS) model used,

and although the results compared moderately well with experimental data,

significant differences were observed, particularly in root-mean-square (RMS)

boundary layer quantities. By the airfoil trailing edge the boundary layer thick-

ness was of similar size to the computational domain width however, which is

likely to have constrained the behaviour. Schmidt & Thiele (2003) performed a

detached-eddy simulation of the same case, alongside RANS based CFD studies.

Perhaps surprisingly the DES simulations did not perform significantly better

than the RANS simulations, and could not replicate unsteady behaviour, such

as the Reynolds stress profiles, observed in experimental studies. Yuan, Xu,

Khalid & Radespiel (2006) performed a parametric incompressible LES study

of the flow over an SD7003 airfoil at Rec = 6 × 104, investigating the influence

of both grid resolution and SGS model on results. The spanwise domain width

was only 1.2% of the airfoil chord however, and used only four grid-points. Since

the spanwise domain width was small in comparison to the separated boundary

layer thickness it is unsurprising that the study observed markedly different be-

haviour when compared to experimental results, including a separation bubble

that was 50% larger.

Kitsios, Kotapati, Mittal, Ooi, Soria & You (2006) performed a study of a

NACA-0015 airfoil at Rec = 3 × 105 with the addition of a wall-normal zero-

net-mass-flux jet at the leading edge. Both incompressible DNS and LES were

performed, and the results compared to experimental data. The majority of

discussion focuses on the two-dimensional case however, and certain differences

to experimental results were observed. A similar study that is perhaps of more

interest is that of You & Moin (2006). You & Moin performed LES of the
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flow around a NACA-0015 airfoil at the comparatively high Reynolds number of

Rec ≈ 9× 106, both with and without the addition of synthetic jet control. Per-

forming a numerical simulation at this Reynolds number appears to have been

possible due to a combination of factors. Unstructured grids were employed,

allowing strong grid-stretching, in combination with a modest computational

domain size (6c × 2.5c × 0.2c) chosen to match an experimental configuration.

In conjunction with LES this presumably led to the feasibility of using a com-

paratively low number of grid-points (∼ 8 × 106). Additionally, the use of an

incompressible code allowed an implicit time-marching scheme, and hence large

time-steps. The time-averaged pressure coefficient and wake-profiles appear to

compare well with experimental data, however unsteady behaviour and turbu-

lent statistics were not presented. The addition of periodic blowing and suction

was found to delay the onset of, presumably turbulent, separation due to in-

creased wall-normal momentum transfer, and to increase airfoil performance

significantly.

An alternative approach to modelling low Reynolds number airfoil flow was

employed by Windte, Scholz & Radespiel (2006). Windte et al. attempted to

predict transitional airfoil flow by coupling a RANS based solver to a transition

prediction model. Two transition prediction methods were employed. For the

first, boundary layer velocity profiles are analysed by a linear stability solver

and the corresponding disturbance growth-rates are used to construct a spatial

disturbance growth ‘N -factor’. When the N -factor reaches some empirically

defined threshold, transition is deemed to occur and the production terms of the

active turbulence model are activated. The second case differs in that instead

of performing linear stability analysis, the eN method is used to determine the

transition location. The test-case for the numerical method was an SD7003

airfoil geometry at Rec = 6× 104, and numerical predictions were compared to

experimental data for various angles of attack. Both methods proved to agree

well with experimental data, with respect to both the time-averaged flowfield

and force coefficients. A further study by Radespiel & Scholz (2007) used the

same coupled RANS-LST method to investigate flapping airfoil flow. In order to

account for changes in boundary layer stability characteristics due to unsteady

flow, frequency dependent N -factors were computed accounting for disturbance

history. Again, an SD7003 airfoil geometry was studied at Rec = 6×104, however

this time the airfoil was subject to a sinusoidal plunge motion, and the numerical

results were compared to phase-locked experimental data. Discrepancies could

be observed in comparison to experimental results, particularly in the streamwise

transition location, and force-coefficients were predicted less accurately than
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for steady cases. Overall however, the results were far more accurate than

could be expected of traditional RANS based CFD and would not be able to be

reproduced by panel methods or VII solvers based on steady flow.

A similar numerical method was employed by Lian & Shyy (2006), who appar-

ently deemed the transition length, i.e. the distance between onset of secondary

instability and breakdown to turbulence, of greater importance than Windte

et al. (2006), since an empirical intermittency function was employed to model

this behaviour. In contrast, Windte et al. argue that appropriate selection of

the empirically determined transition N -factor makes such modelling unneces-

sary. The method was applied to the case of an airfoil in steady flow, and an

airfoil in an unsteady flow, however unlike Radespiel & Scholz, the temporal his-

tory of disturbance growth was not considered for unsteady cases. Lian & Shyy

instead argue that if the time taken for instability waves to be convectively am-

plified from the point of receptivity to transition is significantly smaller than the

time-scale of changes to the global flow, an instantaneous application of the eN

method is valid. For the case of a rigid wing in gust flow, the method predicted

hysteresis in the time-dependent force coefficients, and in the separation and

periodic streamwise oscillation of the separation and transition points. Unfor-

tunately the unsteady airfoil flow was not compared to experimental data, and

hence the accuracy of unsteady measurements is not quantified. The method

was also applied to the case of an airfoil where part of the surface was a flexible

membrane, which was observed to undergo self-sustained oscillations.

Given the range of numerical airfoil studies discussed here it is apparent then

that the application of DNS to airfoil flow is now feasible for two-dimensional

flow, and allows accurate representation of both hydrodynamic and acoustic

behaviour. Although LES has been performed of airfoils at Reynolds numbers

greatly exceeding MAV flight conditions, the accuracy of such studies varies.

Taking this into consideration, in conjunction with the dependency of the re-

sultant flow on the SGS model used, LES does not appear a suitable tool for

studying the fundamental fluid dynamics of separation bubbles. Coupled RANS-

LST approaches appear quite promising, and have been proven to model both

steady and unsteady transition with some success. It would be interesting to

see to what extent such an approach is able to predict bubble bursting. Studies

to date do not appear to have investigated the fundamental fluid dynamics of

low Reynolds number airfoil flows with transition to turbulence, and no study

of laminar separation bubbles on airfoils has yet been performed.
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1.4 The current study

At present the physics of laminar separation bubbles are not fully understood

and hence any improvement in understanding may potentially lead to improve-

ments in prediction tools. Advances in computing power mean that it is now

possible to perform direct numerical simulations of airfoil configurations, and

hence it is now possible to perform direct numerical simulations of separation

bubbles on airfoils. The focus of this study is therefore to investigate numeri-

cally the behavior of laminar separation bubbles formed on airfoils at incidence,

at MAV-type flight conditions, with a view to improved understanding of the

physics present. Particular aims of the study have been identified, as follows:

• To quantify the grid and domain requirements for DNS of airfoil geometries,

and provide a reference for further airfoil simulations

• To capture numerically a laminar separation bubble on an airfoil at MAV-

type flight conditions

• To investigate fully the physics of laminar separation bubbles formed on air-

foils at incidence, including the transition process and subsequent turbulent

behaviour, and the unsteady characteristics of the resultant flow.

• To investigate the effect of boundary layer disturbances on the transition

process and resultant flow.

• To investigate fully the absolute/convective stability characteristics of lam-

inar separation bubbles on airfoils at incidence, with a view to clarifying

the stability mechanisms present.

• To investigate the acoustic response of the flow over airfoils with laminar

separation bubbles.

1.5 Thesis structure

Chapter 2 details the governing equations and numerical implementation of the

direct numerical simulations and stability solver used for the majority of re-

sults in this study. Chapters 3 and 4 present the results of preliminary two-

dimensional simulations at Rec = 104 and Rec = 5 × 104 respectively. Addi-

tionally, in chapter 3 stability analysis of a time averaged flow-field is performed
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which demonstrates the ability of the numerical methods to detect absolute

instability. Three dimensional separation bubbles formed on airfoils at inci-

dence are investigated in chapters 5 and 6. In chapter 5 the effect of explic-

itly adding boundary layer disturbances is investigated, whereas in chapter 6

the effect of a modest incidence change on separation bubble behaviour is in-

vestigated. In chapter 7 stability analysis is performed on the time-averaged

flowfields of all three-dimensional simulations, and in chapter 8 a mechanism

behind secondary absolute instability of vortex shedding, observed in three-

dimensional simulations, is described. In chapter 9 the acoustic characteristics

of all three-dimensional airfoil flows are discussed and, finally, conclusions and

recommendations for further study are presented in chapter 10.
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Chapter 2

Governing equations and

numerical method

2.1 Introduction

This chapter details the equations that govern the fluid flows of interest, and

the numerical methods employed to solve them. The numerical techniques em-

ployed may be broadly split into direct numerical simulations, and linear stability

analysis.

Direct numerical simulations are performed using a method fundamentally

similar to that employed by Lawal (2002), Morin (2002) and Krishnan (2005).

The primary difference between the current investigation and these earlier stud-

ies is the modification of the computational code to allow the use of complex

geometries; a C-type grid with data transfer across the wake cut is now used

instead of a rectangular computational domain. This means that the airfoil

trailing edge represents a singularity which must be treated in the appropri-

ate numerical fashion. Although MAV’s operate in the low Reynolds number

low Mach number regime, a compressible code is used in order to compute

the acoustic response of the flow. For the sake of completeness the numerical

method is described fully here, including airfoil-specific post-processing. Linear

stability analysis is performed using an incompressible Orr-Sommerfeld solver in

conjunction with the cusp-map technique to determine the presence of absolute

stability. An iterative method is employed to perform spatial stability analysis

where required.

19



2.2 Direct numerical simulations

2.2.1 Governing equations

The compressible Navier–Stokes equations are written in curvilinear form as

∂Q

∂t
+

∂E

∂ξ
+

∂F

∂η
+

∂G

∂z
=

∂R

∂ξ
+

∂S

∂η
+

∂T

∂z
. (2.1)

The conservative vector Q, inviscid flux vectors E, F and G, and the viscous

vector terms R, S and T are defined as

Q =




ρ

ρu

ρv

ρw

Et




, E =




ρU

ρuU + pξx

ρvU + pξy

ρwU

(Et + p)U




(2.2)

F =




ρV

ρuV + pηx

ρvV + pηy

ρwV

(Et + p)V




, G =




ρw

ρuw

ρvw

ρww + p

(Et + p)w




(2.3)

R =




0

τxxξx + τxyξy

τyxξx + τyyξy

τzxξx + τzyξy

Qxξx + Qyξy




, S =




0

τxxηx + τxyηy

τyxηx + τyyηy

τzxηx + τzyηy

Qxηx + Qyηy




, T =




0

τxz

τyz

τzz

Qz




, (2.4)

where ρ is the fluid density, u, v and w are velocity components in the Cartesian

x, y and z directions, p is the pressure, and Et is the total energy per unit

volume, defined as

Et = ρe +
1

2
ρ(uu + vv + ww), (2.5)

where

e =
T

γ(γ − 1)M2
. (2.6)

Primitive variables are non-dimensionalised as follows

ui =
u∗i
u∗r

, ρ =
ρ∗

ρ∗r
, T =

T ∗

T ∗
r

, xi =
x∗i
c∗

, (2.7)

and
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µ =
µ∗

µ∗r
, p =

p∗

ρ∗ru∗r
2
, e =

e∗

u∗r
2
, t =

t∗u∗r
c∗

, (2.8)

where the superscript ∗ denotes dimensional variables, the subscript r denotes

reference (free-stream) values and c∗ is the airfoil chord.

Metric terms are defined as

ξx =
yη

J
, ξy = −xη

J
, ηx = −yξ

J
, ηy =

xξ

J
, (2.9)

noting that terms ξz and ηz are both equal to zero for computational grids with

no spanwise variation, as used in the current study, and the Jacobian J is defined

as

J = xξyη − xηyξ. (2.10)

The contravariant velocities U and V are defined as

U = ξxu + ξyv, V = ηxu + ηyv, (2.11)

and, assuming a Newtonian fluid, the stress terms τij are defined as

τij =
µ

Re

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

µ

Re

∂uk

∂xk

δij. (2.12)

The terms Qi comprise the conduction and work terms of the energy equation,

Qi = −qi + ujτij, (2.13)

where

qi =
−µ

(γ − 1)M2RePr

∂T

∂xi

. (2.14)

Viscosity is calculated using Sutherland’s law (White, 1991),

µ = T 3/2 1 + C

T + C
, C = 0.3686̇, (2.15)

and finally, the perfect gas law relates p, ρ and T

p =
ρT

γM2
. (2.16)

21



2.2.2 Discretisation

Spatial scheme

fourth-order accurate central differences utilising a five-point stencil are used for

spatial discretisation when evaluating interior derivatives, i.e. not at computa-

tional domain boundaries. First and second derivatives are given by

f
′
=

fi−2 − 8fi−1 + 8fi+1 − fi+2

12∆s
(2.17)

and

f
′′

=
−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2

12∆s2
(2.18)

respectively, where ∆s is a length scale defined as

∆s = (
l

n− 1
), (2.19)

where n is the number of points in the curvilinear direction of interest, and l

is the domain length in the case of ξ derivatives and the domain half-height

in the case of η derivatives. Fourth-order accuracy is extended to the domain

boundaries by use of a Carpenter boundary scheme (Carpenter, Nordström &

Gottlieb, 1999). The first derivative operator is D, written as

Du =
1

∆s
P−1Qu (2.20)

where ∆s is defined in equation 2.19. For the fourth-order central difference

scheme used in this study, the matrices P and Q are

P =




−(216b+2160a−2125)
12960

81b+675a+415
540

−(72b+720a+445)
1440

−(108b+756a+421)
1296

(81b+675a+415)
540

−(4104b+32400a+11225)
4320

(1836b+14580a+7295)
2160

−(216b+2160a+655)
4320

−(72b+720a+445)
1440

(1836b+14580a+7295)
2160

−(4104b+32400a+12785)
4320

(81b+675a+335)
540

− (108b+756a+421)
1296

−(216b+2160a+655)
4320

(81b+675a+335)
540

−(216b+2160a−12085)
12960




(2.21)

and
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Q =




− 1
2

−(864b+6480a+305)
4320

(216b+1620a+725)
540

−(864b+6480a+3335)
4320

0 0

(864b+6480a+305)
4320

0 −(864b+6480a+2315)
1440

(108b+810a+415)
270

0 0

−(216b+1620a+725)
540

(864b+6480a+2315)
1440

0 −(864b+6480a+785)
4320

−1
12

0

(864b+6480a+3335)
4320

−(108b+810a+415)
270

(864b+6480a+785)
4320

0 2
3

−1
12




,

(2.22)

where

a =
−(2177

√
295369− 1166427)

25488
(2.23)

and

b =
(66195

√
53
√

5573− 35909375)

101952
. (2.24)

The derivative operator D is evaluated to machine accuracy at the start of

each calculation, by multiplying Q by the inverse of P. An analogous criterion

proposed by Carpenter et al. (1999) is used for the second derivative. For the

fourth-order central difference scheme used the second derivative operator may

be written explicitly as

D2 =
1

∆s2




35
12

−26
3

19
2

−14
3

11
12

11
12

−5
3

1
2

1
3

− 1
12




, (2.25)

for the first two grid-points, noting that D2 6= D.D.

Temporal scheme

The explicit fourth-order accurate Runge-Kutta scheme is used for time step-

ping, typically written as

Qn+1 = Qn +
1

6
∆t (k1 + 2k2 + 2k3 + k4) , (2.26)

k1 =

(
d(Qn)

dt

)

t=tn

, k2 =

(
d(Qn + k1

2
)

dt

)

t=tn+∆t
2

, (2.27)
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k3 =

(
d(Qn + k2

2
)

dt

)

t=tn+∆t
2

, k4 =

(
d(Qn + k3)

dt

)

t=tn+∆t

. (2.28)

The code uses a low storage implementation, requiring only three data arrays.

The array Qold stores data from the previous time-step, and does not change

throughout the time-stepping procedure. The array Qstore is used to effectively

sum the variables k1-k4. The array Qnew is used to store the data needed to

calculate variables k1-k4. Starting from the condition Qstore = 0, the following

four steps comprise the time stepping procedure:

1. Qstore = Qstore +
dQold

dt
, Qnew = Qold +

1

2
∆t

dQold

dt
(2.29)

2. Qstore = Qstore + 2
dQnew

dt
, Qnew = Qold +

1

2
∆t

dQnew

dt
(2.30)

3. Qstore = Qstore + 2
dQnew

dt
, Qnew = Qold + ∆t

dQnew

dt
(2.31)

4. Qstore = Qstore +
dQnew

dt
, Qnew = Qold +

1

6
∆t

dQstore

dt
, (2.32)

where dQ
dt

refers to the derivative of Q with respect to time, as evaluated by the

DNS code. At the last step, Qstore is equal to 1
∆t

(k1 + 2k2 + 2k3 + k4) and thus

the expression for Qnew is equivalent to equation 2.26.

2.2.3 Entropy splitting

The split high-order-entropy-conserving-scheme (SHOEC) of Gerritsen & Olsson

(1996, 1998) is applied to the Euler fluxes, in order to improve stability. The

Euler fluxes in a curvilinear coordinate system are written as

dQ

dt
+

dE

dξ
+

dF

dη
+

dG

dz
, (2.33)

with vector variables defined as in equations (2.2) and (2.3). The entropy vari-

able transformation
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W = W(Q) (2.34)

is introduced, where

W =
dψ

dQ
. (2.35)

The entropy function ψ is defined as

ψ = ρh(s), (2.36)

where

s = pρ−γ (2.37)

is the entropy. The choice of h(s) is restricted by a homogeneity requirement

and a positive definite condition on the matrix dQ/dW, which can be satisfied

by letting h(s) = Ke(
s

α+γ ), where K and α are constants. With the homogeneity

condition satisfied, the vector W can be written as

W =
p∗

p

[
E +

α− 1

γ − 1
, −ρu, −ρv, −ρw, ρ

]T

, (2.38)

where p and p∗ are related by

p∗ =
−K

β
e

s
α+γ =

−K

β
(pρ−γ)1/(α+γ). (2.39)

The split form of the Euler fluxes is then written as

dQ

dt
+ f1

(
dE

dξ
+

dF

dη
+

dG

dz

)
+ f2

(
dE

dW

dW

dξ
+

dF

dW

dW

dη
+

dG

dW

dW

dz

)
= 0,

(2.40)

where

f1 =
β

β + 1
, f2 =

1

β + 1
, β =

α + γ

1− γ
. (2.41)

Upper triangular parts of the matrices E, F and G are defined as

dE

dW
=

1

p∗
J,

dF

dW
=

1

p∗
K,

dG

dW
=

1

p∗
L, (2.42)
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with matrix J written as




α1ρU α1ρUu−pξx α1ρUv+pξy α1ρUw [α1Et+(b1−1)p]U

α1ρUu2+p(−3uξx+vξy) α1ρUuv+p(−vξx+uξy) α1ρUuw−pwξx c1Uu− p
ρ
[Et+p]ξx

α1ρUv2+p(−uξx+3vξy) α1ρUvw+pwηy c1Uv− p
ρ
[Et+p]ξy

(α1ρw2−p)U [α1Et+(b−2)p]Uw

c2U




,

(2.43)

matrix K written as




α1ρV α1ρV u−pηx α1ρV v+pηy α1ρV w [α1Et+(b1−1)p]V

α1ρV u2+p(−3uηx+vηy) α1ρV uv+p(−vηx+uηy) α1ρV uw+pwηx c1V u− p
ρ
[Et+p]ηx

α1ρV v2+p(−uηx+3vηy) α1ρV vw−pwηy c1V v− p
ρ
[Et+p]ηy

(α1ρw2−p)V [α1Et+(b−2)p]V w

c2V




,

(2.44)

and matrix L written as




α1ρw α1ρuw α1ρvw α1ρw2−p [α1Et+(b1−1)p]w

w(α1ρu2−p) α1ρuvw u(α1ρw2−p) [α1Et+(b1−2)p]uw

w(α1ρv2−p) v(α1ρw2−p) [α1Et+(b1−2)p]vw

w(α1w
2−3p) c1w

2−(Et+p)p/ρ

c2w




, (2.45)

with coefficients

a1 =
1− α− γ

α
, b1 =

1

α
, c1 = a1Et + (b1 − 2)p, (2.46)

c2 =
a1Et

2

ρ
+ p

[
2(b1 − 1)

Et

ρ
− 1

2
(u2 + v2 + w2) ] +

p2

ρ
[b1(1 + β)− 2] (2.47)

The parameter β adjusts the weighting of the Euler fluxes between the original

and split formulations. As β → ∞ the original formulation of the Euler fluxes
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Boundary Physical description Applied boundary condition
ξ+ Outflow boundary Zonal-characteristic
ξ− Outflow boundary Zonal-characteristic
η+ Freestream boundary Integral-characteristic
η− Mixed: airfoil surface and wake connection Adiabatic, no slip (airfoil)

Table 2.1: Description of domain boundaries, and details of applied boundary conditions.

is recovered. Preliminary airfoil simulations suggested a value of β = 2 provides

adequate stability, hence this value was used throughout the current study.

2.2.4 Simulation geometry

Topology of the curvilinear C-type grids used is given in Figure 2.1. The wake

length is denoted W and the domain radius is denoted R. The coordinate sys-

tem is defined such that the airfoil trailing edge is located at (x, y) = (1, 0).

A NACA airfoil geometry is specified for two reasons. Firstly, the NACA-0012

airfoil geometry is commonly studied in the research community, and hence

the current study may be more readily compared to existing work. Use of a

‘standard’ geometry also means that the current study may provide a reference

point for future investigations of airfoil flow. Secondly, experiments investigat-

ing the acoustic response of the flow around a NACA-0012 airfoil are planned

at the Institute of Sound and Vibration research (ISVR) at the University of

Southampton, which will complement acoustic analysis of the simulations pre-

sented here.

2.2.5 Boundary conditions

Unphysical reflections from the domain boundaries can be reduced by the use

of appropriate boundary conditions. Definitions of the domain boundaries and

associated boundary conditions are given in table 2.1. At the freestream (η+)

boundary, where the only disturbances likely to reach the boundary will be

in the form of linear waves, an integral characteristic boundary condition is

applied. At the downstream exit boundary (ξ± ), which will be subject to the

passage of coherent fluid structures generated by instability in the wake, a zonal

characteristic boundary condition (ZCBC) is applied for increased effectiveness.

Additionally, in certain simulations a simple buffer was applied at the free-stream

boundary to further reduce reflections from linear (acoustic) waves.
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ξ
η

R

R

W

Figure 2.1: Domain topology for airfoil simulations.

Zonal characteristic boundary condition

The zonal characteristic boundary condition (Sandberg & Sandham, 2006) is

based on similar principles to the local characteristic boundary condition (or

LCBC, Thompson, 1987). The compressible Navier-Stokes equations are lin-

earised, neglecting viscous terms. Using the method of characteristics, eigenval-

ues with associated eigenvectors can be determined. The resultant eigenvalues

λi correspond to the characteristic velocities of pressure, vorticity or entropy

waves. The sign of λi determines the direction of the associated wave, whether

it is incoming or outgoing with respect to the boundary in question. The left-

side eigenvectors Li correspond to the rate of change of the wave amplitude.

At the outflow boundary all incoming characteristic waves, those where λi < 0,

are effectively removed by setting Li to zero. All outgoing characteristic waves,

where λi > 0, are left unchanged. The primary difference between the ZCBC

and the LCBC is that for the local condition the treatment is applied only at

domain boundaries. For the zonal condition the treatment is applied for a finite

distance before the boundary, and is introduced with a smooth ramping func-

tion. The characteristic method is implemented as follows for the current code.

For an arbitrary normal direction, normal derivatives of the normal Euler fluxes

are defined as

dFn

dn
=

dFn

dξ

dξ

dn
+

dFn

dη

dη

dn
, (2.48)
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where

Fn =




ρun

ρuun + pnx

ρvun + pny

ρwun

(Et + p)un




. (2.49)

The normal derivatives are then subtracted from the previously computed right

hand side of the Navier-Stokes equations,

RHS′ = RHS− dFn

dn
(2.50)

and the temporal derivatives of the characteristic waves, Ci, are formed for the

normal direction as

C1 = (un − c)

[
−ρc

(
nx

∂u

∂n
+ ny

∂v

∂n

)
+

∂p

∂n

]
, λ1 = un − c (2.51)

C2 = un

(
ny

∂u

∂n
− nx

∂v

∂n

)
, λ2 = un (2.52)

C3 = un

(
−c2 ∂ρ

∂n
+

∂p

∂n

)
, λ3 = un (2.53)

C4 = un
∂w

∂n
, λ4 = un (2.54)

C5 = (un + c)

[
ρc

(
nx

∂u

∂n
+ ny

∂v

∂n

)
+

∂p

∂n

]
, λ5 = un + c. (2.55)

The sign of λi determines whether the wave is incoming or outgoing. The rate of

change of incoming characteristics is set to zero whilst outgoing characteristics

are left unchanged. In the standard LCBC this is carried out only at the domain

boundary, i.e.

LCBC :

{
λi < 0, C ′

i = 0

λi > 0, C ′
i = Ci.

(2.56)

Using the current ZCBC method modification to the incoming characteristics

is introduced smoothly, over a finite region adjacent to the domain boundary,

using a cosine function,

ZCBC :

{
λi < 0, C ′

i = 1
2
Ci

(
1 + cos π(x−xstart)

(xout−xstart)

)

λi > 0, C ′
i = Ci.

(2.57)
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Intermediate variables D1-D5 are then formed from the modified characteristics

C ′
1-C

′
5, that will be used to reform the normal Euler fluxes:

D1 =
1
2
C ′

1 − C ′
3 + 1

2
C ′

5

c2
(2.58)

D2 = C ′
2ny +

nx(C
′
5 − C ′

1)

2ρc
(2.59)

D3 = −C ′
2nx +

ny(C
′
5 − C ′

1)

2ρc
(2.60)

D4 = C ′
4 (2.61)

D5 =
C ′

3

ργ
(2.62)

Using the intermediate variables, the normal Euler fluxes are reconstituted, in-

corporating the modified characteristics, with

F′n =




D1

uD1 + ρD2

vD1 + ρD3

wD1 + ρD4[
c2

λ−1
+ 1

2
(u2 + v2 + w2)

]
D1 + ρuD2 + ρvD3 + ρwD4 + ργ

γ−1
D5




(2.63)

Finally, the modified normal Euler fluxes are added to the right hand side of the

Navier-Stokes equations using

RHS = RHS′ +
dF′n
dn

. (2.64)

In comparison to a standard characteristic method, an increase in computational

cost is incurred as the characteristic method is performed over a greater number

of grid-points. Additionally, the region over which the method is applied is

no longer physical and will no longer yield useful information. The method is

however advantageous in that it uses no coefficients that need to be tuned for

every application, and is proven to be more effective than alternative methods

(Sandberg & Sandham, 2006).
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2.2.6 Integral characteristic boundary condition

The integral characteristic boundary condition (Sandhu & Sandham, 1994) fol-

lows the same method as for the local characteristic boundary method, up until

the formulation of the modified normal Euler fluxes. At this point, the deriv-

atives of the normal Euler fluxes are integrated with respect to time using the

fourth-order Runge-Kutta scheme (section 2.2.2). The time-integrated normal

derivatives are then subtracted from target (freestream) values of the conserva-

tive variables, to enforce the freestream conditions on the boundary

F = Ffreestream −
∫

dF′n
dn

dt. (2.65)

2.2.7 Freestream buffer

A simple buffer was applied at the free-stream boundary in certain cases, in order

to further reduce reflections from linear waves. The buffer is active only over

a finite region adjacent to the free-stream boundary, of width LB. The buffer

ramps the conservative variables Q towards the free-stream condition Q∞, and

varies in effectiveness from zero at the buffer onset to maximum effectiveness at

the free-stream boundary. The conservative variables are modified as follows;

Q′ = Q +
1

2
A

(
1− cos(π

LB − l

LB

)

)
(Q∞ −Q) (2.66)

where l is the distance normal to the free-stream boundary, and LB the total

buffer length. The strength of the buffer is determined by the parameter A. In

all cases where a free-stream buffer was applied, A was specified as 0.05 and LB

was specified as 1.

A different form of buffer was employed for forced Navier–Stokes simulations;

the buffer was applied ramping over a finite streamwise distance and ramps

the conservative variables to the specified initial condition, not the freestream

conditions. The conservative variables are modified in the following fashion;

Q′ = Q +
1

2
A

(
1− cos(π

x− xstart

xend − xstart

)

)
(Qstore −Q), (2.67)

where Qstore is the initial value of the conservative variables, xstart is the stream-

wise buffer onset and xend is the end of the ramping function. For x < xstart the

conservative variables are not modified, whereas for x > xend the conservative

variables are modified as

Q′ = Q +
1

2
A(Qstore −Q). (2.68)
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2.2.8 Airfoil surface boundary condition

At the airfoil surface an adiabatic, no slip condition is applied. The variables,

u, v and w are set to zero, and the adiabatic thermal boundary condition is

enforced by adjusting Et such that

dT

dn
= 0. (2.69)

In order to enforce the adiabatic condition an iterative scheme is used. First,

the condition

dT

dη
= 0 (2.70)

is applied at all points on the airfoil surface. This is achieved by calculating the

temperature T from the conservative variables at all streamwise locations over

the airfoil surface, and six grid-points into the freestream. The derivative at the

airfoil surface may then be expressed as

dT

dηj=1

= D11Tj=1 + D21Tj=2 + D31Tj=3 + D41Tj=4 + D51Tj=5 + D61Tj=6 (2.71)

where Dij refers to locations in the derivative operator matrix D defined in

section 2.2.2 as P−1Q, and Tj refers to the temperature at wall normal grid-

point j. Setting dT
dηj=1

to zero and rearranging yields the expression for T at the

airfoil surface

Tj=1 =
−1

D11

(D21Tj=2 + D31Tj=3 + D41Tj=4 + D51Tj=5 + D61Tj=6) (2.72)

This serves only as an initial estimate for the surface temperature, since the wall

normal derivative of temperature depends also on the ξ derivative. New values

for the surface temperature are then calculated using the iterative scheme

dTk+1

dη
=

dξ
dn
dη
dn

dTk

dξ
, k = 1 : 5 (2.73)

where

dξ

dn
=

1

J

(
−ny

dx

dη
+ nx

dy

dη

)
,

dη

dn
=

1

J

(
ny

dx

dξ
+ nx

dy

dξ

)
(2.74)
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and

nx =
− dy

dxi√(
dx
dξ

)2

+
(

dy
dξ

)2
, ny =

dx
dxi√(

dx
dξ

)2

+
(

dy
dξ

)2
(2.75)

Investigating the performance of the iterative scheme for airfoil flow at Rec = 104

and M = 0.6 reveals that after 5 iterations dT/dN < 10−12 at all locations on

the airfoil surface.

2.2.9 Initial condition

Each simulation is initialised by setting freestream conditions throughout the

domain,

ρ = 1, ρu = 1, ρv = 0, ρw = 0, T = 1, Et =
ρT

γ(γ − 1)M2
+

1

2
ρ(u2 + v2 +w2)

(2.76)

and imposing a simple parabolic boundary layer over the airfoil to satisfy the

surface boundary condition. The simulation is then run until transient effects

are deemed to have passed, based on inspection of time dependent behaviour of

quantities such as lift-coefficient, before data capture and analysis begin.

2.2.10 Volume forcing

Low amplitude forcing is applied in certain simulations in order to excite insta-

bilities in the flow, and is implemented using the following method. Curvilinear

coordinate quantities ξforce and ηforce are defined as

ξforce =
(ξ − ξstart)

(ξend − ξstart)
, ηforce =

(η − ηstart)

(ηend − ηstart)
, (2.77)

where ξstart and ηstart are the coordinates specifying the beginning of the forcing

area, while ξend and ηend are coordinates specifying the end of the forcing area.

Thus ξforce and ηforce both vary from zero to one. Ramping functions Fξ and Fη

are then formulated such that, when differentiated with respect to the appropri-

ate curvilinear coordinate, a smooth cosine function results. Consider first the

function Fξ, which defines the forcing amplitude in the ξ direction and is only

differentiated in the ξ direction. Outside the region 0 < ηforce < 1, Fξ is defined

as zero whereas within the region 0 < ηforce < 1, Fξ possesses finite values. This

creates a discontinuity in the η direction, but the function is differentiated only

with respect to ξ and there will be no discontinuity in
dFξ

dξ
. Setting Fξ to zero
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outside the region 0 < ηforce < 1 is necessary in order to ensure
dFξ

dξ
= 0 outside

the forcing area. Within the region 0 < ηforce < 1 the function is defined as

ξforce > 1, Fξ =
Asin(2πft + φ) (1− cos(2πηforce))

2
(2.78)

0 < ξforce < 1, Fξ =
Asin(2πft + φ)

(
ξforce − 1

2π
sin(2πξforce)

)
(1− cos(2πηforce))

2
(2.79)

ξforce < 0, Fξ = 0 (2.80)

where A is a user-specified coefficient controlling the forcing amplitude, f is the

temporal frequency of the forcing, t is the non-dimensional time and ψ is the

phase of the forcing. This results in smooth variation of Fξ with ξforce, with

resultant derivative
dFξ

dξ
taking the form of a single cosine wave over the forcing

region, and being zero elsewhere (figure 2.2).

Figure 2.2: Variation of Fξ with ξforce (left), and variation of dFξ

dξ with ξforce (right).

An equivalent function Fη defines the forcing amplitude in the η direction and

is formulated in a similar fashion. Everywhere outside the region 0 < ξforce < 1,

the function Fη is zero in order to ensure dFη

dη
is also zero. Within the region

0 < ξforce < 1, Fη is defined as follows:

ηforce > 1, Fη =
Asin(2πft + φ) (1− cos(2πξforce))

2
(2.81)

0 < ηforce < 1, Fη =
Asin(2πft + φ) (1− cos(2πξforce))

(
ηforce − 1

2π
sin(2πηforce)

)

2
(2.82)

ηforce < 0, Fη = 0 (2.83)
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The function Fη and derivative dFη

dη
are smooth functions that behave in the

same manner as the ξ equivalent (figure 2.2), but in the η direction. Cartesian

derivatives of the ramping functions Fx, and Fy are then formed by

dF

dy
=

dFη

dη

dx

dξ
− dFξ

dξ

dx

dη
(2.84)

dF

dx
=

dFξ

dξ

dy

dη
− dFη

dη

dy

dξ
(2.85)

noting that

dFξ

dξ
=

dFη

dη
=

Asin(2πft + φ) (1− cos(2πξforce)) (1− cos(2πηforce))

2
(2.86)

Finally, dF
dy

is added to the right hand side of the x-momentum equation and dF
dx

is subtracted from the right hand side of the y-momentum equation, giving

dρu

dt
=

dρu

dt
+

dF

dy
,

dρv

dt
=

dρv

dt
− dF

dx
. (2.87)

Where forcing is required in a 3D simulation, a spanwise dependency is intro-

duced, and the forcing amplitude varies as

cos

(
2πn

k − 1

Nz − 1

)
, (2.88)

where k is the spanwise grid-point, Nz is the total number of spanwise grid-

points and n is the spanwise wavenumber. When used in conjunction with

cartesian grids the method is divergence free. For the case of curvilinear grids,

as used here, the method is not identically divergence free, however in practice

the forcing method appears to produce negligible acoustic perturbations, espe-

cially when compared to those occurring naturally as a result of hydrodynamic

behaviour.

2.2.11 Validation

The code is based upon an existing code that has been previously validated for

compressible turbulent plane channel flow (Sandham et al., 2002), and more

recently has been demonstrated to accurately represent the development of hy-

drodynamic instabilities (Sandberg et al., 2006). The code used in the current

study is different in that it is applied to a curvilinear C-type grid with wake

connection, however the same metric terms were used in previous versions of the

code. The use of an airfoil geometry necessitates special treatment of grid-points
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in the vicinity of the trailing edge, for which the dependency of simulation results

on trailing edge treatment is quantified in section 2.2.15. The dependency of

simulation results on boundary conditions has previously been quantified (Jones

et al., 2006), and the influence of both grid resolution and domain size upon

simulation results has also been quantified in sections 4.3.1 and 4.3.2.

2.2.12 Parallel implementation

The computational domain is divided equally amongst the total number of

processors used, such that each processor is responsible for a unique sub-domain.

Each processor is denoted an integer identification number, ranging from 0 to

npr− 1, where npr is the total number of processors used. Processor 0 is located

at the ξ = 0, η = 0 boundary. Further processors are then allocated moving first

in the ξ direction, then the η direction as indicated in figure 2.3. In order to eval-

uate the fourth-order central difference scheme, given that a five point stencil is

used, each processor requires data from adjacent processors.Each processor sub-

domain is therefore extended in each direction by two grid-points. These extra

cells are denoted ‘halo’ cells, and are filled with data from the first and second

grid-points of adjacent processor sub-domains before evaluating derivatives, as

illustrated in figure 2.4.

n -2prx

0

...

2

n -1prx

(n -1)npry prx

nprx

2nprx-1

(npryn )-1prx

...

1

Figure 2.3: Distribution and numbering of processors within the computational domain.
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Figure 2.4: Illustration of data transfer between halo cells.

2.2.13 Wake connection

In contrast to the standard processor sub-domain interface, a processor on the

wake dividing line will share the row of points on the dividing line with the

adjacent processor across the wake-cut, as illustrated in figure 2.5. The grid-

points on the dividing line are duplicated and the governing equations at these

points are calculated by both processors. In order to evaluate derivatives across

the wake, data transfer is employed using two halo cells, in a similar fashion as

for other processor boundaries. However, when performing data transfer across

the wake, halo cells will be filled with data from the second and third grid-points

of the adjacent processor, as illustrated in figure 2.6. This differs from non-wake

data transfer, where only the first and second grid-points are used. Since grid-

points on the wake dividing line are duplicated, if the flow quantities on one side

of the wake cut were to differ from those on the other side of the wake cut the

discrepancy would persist indefinitely, and each processor would effectively be

solving different equations for the same grid-points. In order to prevent this from

occurring, for example due to round-off error, data for grid-points on the wake

dividing line are averaged across the wake cut at specified intervals. Typically

the interval for wake-averaging is every 5000 iterations.

2.2.14 Metric terms

Metric terms are calculated to machine accuracy at the start of the simulation

using the spatial scheme described in section 2.2.2. When filling halo cells by
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Figure 2.5: Illustration of grid-points shared between adjacent processors across the wake cut.
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Figure 2.6: Illustration of the data transfer process across the wake cut.

transferring data across the wake dividing line, first derivative metric quantities

must be multiplied by −1 to account for the discontinuous change in direction

of ξ and η with respect to x and y.

2.2.15 Trailing edge treatment

The first two physical locations downstream of the trailing edge each consist of

two grid-points, one on each side of the wake dividing line. When evaluating ξ

derivatives, each of these coincident grid-points will use data from different five-

point stencils. This can be observed in figure 2.7, where the points TE + 1 and

TE + 2 use different derivative stencils depending on which side of the wake the

derivative is evaluated. The coincident grid-points clearly represent the same

physical location, and it would be unphysical to allow the possibility of the two

coincident points possessing differing fluid properties. Therefore, derivatives in

the direction at the two points downstream of the trailing edge, where the stencil

can encompass points on either side of the airfoil, are evaluated by averaging

data at points on the airfoil across both sides of the airfoil itself. This enforces

the same fluid properties for both grid points.

Attempts have been made to quantify the influence of the airfoil trailing edge

treatment. Grid refinement studies have been performed for two-dimensional

simulations in chapter 4, section 4.3.1 which included varying grid resolution in
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the vicinity of the trailing edge. Additionally, the effect of using an alternative

trailing edge treatment was investigated. The two-dimensional simulation at

Rec = 5 × 104, M = 0.4 and α = 5◦ presented in chapter 4, section 4.4 was

selected as the test-case. After running the simulation for 40 non-dimensional

time units using the trailing-edge treatment outlined above, an alternative trail-

ing edge treatment was implemented and the simulation run further. The sim-

ulation was run for 15 non-dimensional time units to allow any transient effects

to pass, before taking statistical data for a further 10 time units, or 29 vortex-

shedding cycles. The alternative trailing-edge treatment consisted of applying

the Carpenter boundary scheme to the first four points downstream of the trail-

ing edge, and employing no averaging of derivatives across the wake cut. The

time-dependent lift-coefficient and the Fourier transformed lift coefficient are

plotted for both cases in figure 2.8. The global behaviour appears similar for

both cases; the mean-lift coefficient changes by less than 0.3%, and the Fourier

transformed lift-coefficient exhibits the same tonal structure and amplitudes,

although the spectrum is less distinct due to the shorter time-series used. Thus

the global behaviour appears to be independent of the trailing edge treatment.

TE +1 +2 +3

-1

-2

+4 +5

+1TE
-1

-2

+2 +3 +4 +5

TE point +1
ξ-derivative stencil (upper)

TE point +1
ξ-derivative stencil (lower)

Figure 2.7: ξ derivative stencils in the vicinity of the trailing edge point.

2.2.16 Grid generation

Grid generation for high-order non-dissipative codes is non-trivial, and achieved

by an iterative approach. The presence of under resolved flow phenomena re-

sults in numerical oscillations, particularly in sensitive quantities such as density

gradient. By analysing simulation results, locations of poor resolution may be

identified by such oscillations. A new grid is then generated, with the purpose

of improving the resolution in the necessary locations, and the flow-field data

are interpolated onto the new grid. The simulation is then run on the new grid
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Figure 2.8: Time-dependent lift-coefficient (left), and Fourier transformed lift-coefficient
(right) for the two-dimensional case at Rec = 5× 104, M = 0.4 and α = 5◦, treating the trail-
ing edge with central differences and wake-cut averaging (—) and with a Carpenter scheme
and no averaging (−−).

and the results are analysed in order to assess whether resolution issues have

been eliminated. The process can be repeated as often as necessary, and avoids

the need for continually starting simulations from scratch, with the associated

computational cost of waiting for transient effects to pass. In order to minimise

the possibility of discontinuities in the metric terms, the grid-point distribu-

tion for connectors such as the airfoil surface and the downstream boundary

are generated using a polynomial mapping technique. A connector specified

with N control points will be mapped using N − 1 polynomial distributions of

grid-points. At the interfaces between polynomials, the second derivative metric

terms are always set to zero ensuring continuity in the second derivative metric

terms. All grids are generated using the program Gridgen by PointwiseTM.

2.2.17 Calculation of aerodynamic coefficients

Aerodynamic coefficients are found by integrating the appropriate force over the

airfoil surface. The lift-coefficient is calculated as

CL =
1

1
2
ρ∞u2∞

∫ s=stotal

s=0

−S(pη=0 − p∞)| sin θ|ds, (2.89)

where the subscript ∞ refers to free-stream conditions and the subscript η = 0

refers to quantities taken at the airfoil surface. The local surface inclination

with respect to the cartesian axes, θ, is defined as tan−1( dy
dxη=0

), and the surface

coordinate is denoted s. S is a function specified in order to maintain the correct

sign of the lift contribution depending on whether the expression is evaluated

on the upper or lower airfoil surface, and is defined as
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S = 1 for
dx

dξ
> 0, S = −1 for

dx

dξ
< 0. (2.90)

The pressure-drag coefficient and skin-friction drag coefficient are calculated as

CDP =
1

1
2
ρ∞u2∞

∫ s=stotal

s=0

pη=0sinθ ds (2.91)

and

CDf =
1

1
2
ρ∞u2∞

∫ s=stotal

s=0

µ

[(
du

dy η=0

)
cos θ − S

(
dv

dxη=0

)
| sin θ|

]
ds (2.92)

respectively, where S is defined in the same manner as for the lift-coefficient.

The total drag coefficient is found by summing the constituent coefficients,

CD = CDP + CDf . (2.93)

2.2.18 Calculation of integral boundary layer parameters

Extracting integral boundary layer properties, such as momentum and displace-

ment thickness, from airfoil simulations is non-trivial. Boundary layer profiles

are likely to possess a local edge velocity exceeding the free-stream velocity, and

thus difficulties arise deciding on a reference velocity and integration limits. In

order to bypass these problems a method of deriving boundary layer parame-

ters from the mean vorticity field is used. First, a pseudo velocity is formed by

integrating spanwise vorticity in the wall normal direction,

ũ(n) =

∫ n

0

ωzdn. (2.94)

Outside the boundary layer, where the velocity gradient is zero, vorticity is

also zero and hence the pseudo velocity reaches a constant value in the free-

stream. Boundary layer parameters such as kinematic displacement thickness

and momentum thickness are then formed using the pseudo velocity instead of

using a true tangential velocity obtained from the simulation:

δ∗k =

∫ n=∞

n=0

(
1− ũ

ũ∞

)
dn (2.95)

θk =

∫ n=∞

n=0

ũ

ũ∞

(
1− ũ

ũ∞

)
dn (2.96)

The reference velocity, ũ∞, is the freestream pseudo velocity found by integrating
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spanwise vorticity into the freestream, not the true free-stream velocity. This

method does not require extraction of edge velocities or ad-hoc specification of

the boundary layer thickness. The only variable is the distance to which the

spanwise vorticity is integrated. In practice the method is robust to variation of

integration length, as illustrated in figure 2.9. Typically spanwise vorticity will

be integrated to 60% of the wall-normal number of grid-points when extracting

boundary layer parameters.

Figure 2.9: Variation of time averaged δ∗ distribution with wall normal integration distance,
Rec = 10×104, M = 0.6, showing δ∗ integrated to 65 (◦), 130 (¦) and 195 (O−−O) grid-points.
Total number of wall normal grid-points is 259.

2.3 Fourier transforms

Fourier transforms of pressure series are computed at several points in this study.

In all cases the mean of the time-series is subtracted before computing the

spectra, and in certain cases windowing and segmenting is employed to improve

the quality of spectra. Segmenting is applied as follows. Given a time-series

of length T , an integer number of segments, N , is specified. The time series

is then divided into N segments, each overlapping by 50%, hence the segments

will be of length ∆T = 2T/(N + 1). Fourier transforms are performed for each

segment individually before ensemble averaging the resultant spectra. Hanning

windowing is another technique employed to improve the quality of spectra, and

essentially involves multiplying the time-series by a cosine function that ramps

to zero at either end of the time-series. For a time series of length T , the Hanning

function is defined as
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f = 0.5

[
1− cos

(
2

π
tT

)]
. (2.97)

In order to compensate for the reduction in signal amplitude, the resultant

spectrum is multiplied by 1/f i.e. 2. When computing power spectra, the

spectra are multiplied by 1/f 2 i.e. 8/3.

2.4 Linear stability analysis

2.4.1 Governing equations

Linear stability analysis is used to predict the response of boundary layer pro-

files to small amplitude perturbations. Assuming incompressible flow, which is

reasonable at the Mach numbers considered in this study, boundary layer distur-

bances are assumed to take the form of two-dimensional travelling waves such

that

u′i = ûi(y)ei(αx−ωt). (2.98)

The variable α is the complex wavenumber (defined as α = 2π/λ, where λ is

the disturbance wavelength) and ω is the complex frequency of the travelling

wave (defined as ω = 2πf , where f is the disturbance frequency). Wall normal

variation is accounted for in the function ûi(y), and the phase velocity is given

by cph = ω/α. The amplitude of instability waves varies as

eωit−αix, (2.99)

found by expanding (2.98), hence the imaginary part of the wavenumber (-αi)

corresponds to the spatial growth rate and the imaginary part of the frequency

(ωi) corresponds to the temporal growth rate.

A parallel baseflow is considered, for which u = f(y), v = 0, du/dx = 0.

Velocity and pressure are decomposed into mean and fluctuating quantities, i.e.

ui = ui + u′i, p = p + p′, and the incompressible Navier–Stokes equations are

written for the decomposed variables. The equations for the base flow (i.e. with

fluctuating quantities omitted) are subtracted, and fluctuating quantities are

considered to be small, hence multiples of fluctuating quantities are removed.

Assuming perturbations of the form given in (2.98), substituting into the Navier–

Stokes equations and rearranging leads to the well known Orr–Sommerfeld equa-

tion, which may be written as
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(u− Cph)

(
d2v̂

dy2
− α2v̂

)
− d2u

dy2
v̂ = −iν

α

(
α4v̂ − 2α2 d2v̂

dy2
+

d4v̂

dy4

)
. (2.100)

A full derivation of the Orr-Sommerfeld equation is given in Drazin & Reed

(1981). To solve the Orr–Sommerfeld equation, a velocity profile u = f(y) is

specified, hence u(y) and d2u/dy2 are known. The Orr-Sommerfeld equation

then represents an eigenvalue problem of the form Av̂ = Bv̂, with v̂ as the

eigenvector, which yields non-trivial solutions for only certain values of α and

cph. The eigenvalue problem can be solved in two ways. Either a real ω can be

specified and a complex α computed, denoted spatial linear stability analysis,

or a real α can be specified and a complex ω computed, denoted temporal

linear stability analysis. The code used throughout this study solves the Orr-

Sommerfeld equation as a temporal problem, however use of the iterative scheme

detailed in section 2.4.2 allows spatial analysis to be performed.

2.4.2 Numerical method

Grids and data fitting

Grids used for linear stability analysis are not required to be as fine as for DNS,

particularly in regions with little variation in mean fluid velocity. Therefore,

in order to avoid unnecessary computational cost, linear stability analysis are

performed upon computational grids that are not the same as that of the original

DNS. The grid-point distribution varies depending on whether the analysis is of a

wake or boundary layer profile, however in both cases the velocity profile is fitted

from the old (DNS) grid on to the new grid using cubic spline interpolation, thus

providing data values at locations between physical grid-points of the original

data set.

Spatial analysis algorithm

When considering external aerodynamics it is typically more relevant to con-

sider the spatial problem, where a frequency ω is specified and a wavenumber

α computed, rather than the temporal problem. To solve the spatial problem

using a temporal code an iterative scheme is employed. First we specify the

complex frequency that we wish to solve for, ωin. We then try to find the appro-

priate complex wavenumber, αout, such that when the Orr-Sommerfeld equation

is solved using this value of αout we return our original complex frequency ωin.

The process is as follows. Given a complex frequency ωin for which we wish

to find the corresponding αout, the first step is to make an approximate estimate
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of αout. In order to do this we first estimate a phase speed,

cph = 0.5, (2.101)

for example, and then the approximate wavenumber estimate, α1, may be com-

puted as

α1 = ωin/cph. (2.102)

A second wavenumber, α2, is specified, by adding a small increment to the first,

as

α2 = ωin/cph + 1× 10−3(1 + i). (2.103)

The associated complex frequencies for both α1 and α2 may then be found by

solving the Orr-Sommerfeld equation,

ω1 = f(α1, u(y)), (2.104)

ω2 = f(α2, u(y)). (2.105)

We are now in a position to commence the iteration sequence. At the start of

the scheme we have two α/ω pairs; (α1, ω1), and (α2, ω2). At each iteration the

derivative dω/dα is computed, and used to calculate a more accurate estimate

for αout. The new α/ω pair are stored, and (α1, ω1) discarded and the process

is repeated until ω2 = ωin to a specified level of accuracy. The method may be

written as follows:

while (|ω2 − ωin| > ε)(
dω
dα

)
= ω2−ω1

α2−α1

αnew = (ωin − ω2)
(

dω
dα

)−1
+ α2

ωnew = f(αnew, u(y))

α1 = α2

ω1 = ω2

α2 = αnew

ω2 = ωnew

end while

The convergence criteria here is that |ω − ωin| < ε, where ε is a user-specified

parameter. For the current study ε = 10−6. The initial estimate for α given by

45



(2.102) is quite crude hence, if analysis of a number of frequencies or velocity

profiles is being performed, the value of α from the previous computation will

instead be used as the initial estimate.

2.4.3 Numerics for boundary layer profiles

Discretisation

For boundary layer profiles, grid resolution is required to be fine in the vicinity of

y = 0, where strong velocity gradients are present, and is allowed to coarsen with

increasing y as freestream conditions are reached. A geometric discretisation is

specified in order to achieve this, of the form

yj+1 = yj + a(1 + s), (2.106)

where a is the grid spacing at the first point, y = 0, and s determines the

percentage increase in cell size with distance from the wall. In all cases 200

grid-points were used, in conjunction with values s = 0.055 and a = 1.30×10−4.

For validation purposes the most unstable eigenmode for a Blasius boundary

layer profile at Reδ∗ = 1500, α = 0.2 was determined, and the resultant value

for ω was found to agree with the results of Gaster (1978) to the 5th digit for

the real part and the 6th digit for the imaginary part.

Derivative scheme

In all cases 6th order compact difference stencils are used (Lele, 1992) to com-

pute derivatives, including metric terms. Sufficient resolution for the derivative

scheme is indicated by smooth derivatives of velocity profiles, up to and includ-

ing the fourth derivative.

Spatial integration

When calculating the spatial growth of instability waves, wave amplitudes are

required to be integrated spatially. Given an initial disturbance amplitude A1,

and a disturbance amplitude A2 at an arbitrary downstream location, the dis-

turbance N factor is defined as N = ln
(

A2

A1

)
. Hence, considering equation 2.99,

N = Nx=0 − αix and −αi is the spatial growth rate of the N -factor. The N

factor is integrated using an Euler scheme, as

Nx+∆x = Nx − αi∆x. (2.107)
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2.4.4 Numerics for wake profiles

For wake profiles, grid resolution is again required to be fine in the vicinity

of y = 0, where strong velocity gradients are present, and to coarsen with

increasing y. Additionally, metric terms must be smooth across the line y = 0

up to and including the fourth derivative. In order to achieve this, grid-points

are distributed using a cosh function.

First we consider only half of the wake. We define Ny as the number of

grid-points in this half of the wake and Ly as the half-height of the wake profile.

Hence we require y(0) = 0 and y(Ny) = Ly. The following function is used to

compute the cell size distribution of the grid,

4y(j) = cosh

[(
2π

(j − 1)

(Ny − 1)

)r]
, (2.108)

where r is a stretching parameter specified as r = 1.6 in order to provide a

desirable distribution of grid-points. Equation 2.108 yields arbitrary initial cell

sizes and so appropriate scaling must be applied to ensure y(Ny) = Ly. The

appropriate scaling factor is computed numerically by dividing the half-wake

height by the sum of all 4y, yielding

A =
Ly

Σ
Ny

j=14y(j)
. (2.109)

Coordinates are then defined as

y(j) = y(j − 1) + A4y(j), (2.110)

specifying y(0) = 0, hence y(Ny) = Ly as required. The opposite half of the wake

grid is a mirror image of the first. Since the cell size distribution is determined

by a cosh function, metric terms will be derivatives of a cosh function and

thus continuous across y = 0. The total number of grid-points is specified as

N = 2Ny − 1, and the total height of the wake profile is 2Ly. Hence only odd

numbers of grid-points are used. The coordinates of the grid are redefined such

that y(1) = −Ly, y(N) = Ly. In all cases 201 grid-points were used.

2.4.5 Cusp-map technique for locating absolute instability

A simple criterion for the presence of absolute instability is the existence of an

instability wave possessing zero group velocity, cg = 0, and a positive temporal

growth rate, ωi > 0. The cusp-map technique is a method of looking for the

presence of absolute instability based on these criteria, and is the temporal

equivalent of Briggs method (Briggs, 1964). A full description of both Briggs
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method and the cusp-map method is found in Schmid, Henningson & Jankowski

(2002), a brief description necessary to interpret the results follows. Use of a

temporal method is preferable in order to avoid the additional computational

expense of using the iterative spatial scheme defined in section 2.4.2.

Given that a dispersion relation D, in this case the Orr-Sommerfeld equation,

relates α and ω,

D(α, ω) = 0, (2.111)

points in the complex ω plane will map to points in the complex α plane and

vice versa. The presence of a saddle point in the complex α plane represents a

point where cg = 0, since for a saddle point

D(α, ω) = 0,
∂D(α, ω)

∂α
= 0 (2.112)

and hence

cg =
∂ω

∂α
=

∂D

∂α
/
∂D

∂ω
= 0. (2.113)

Where a saddle point occurs in the complex α plane, a branch point will occur

in the complex ω plane. Essentially, the cusp-map method is a systematic pro-

cedure for locating saddle and branch point pairs, and hence instability waves

with cg = 0. Lines of constant αr are plotted in the complex α plane, and then

mapped via the dispersion relation to the complex ω plane. A branch point in

the complex ω plane may be readily observed as a ‘cusp’ where contours in the

complex ω plane first cross themselves (figure 2.10). The presence of a branch

point represents an instability wave with cg = 0. If the branch point is in the

lower half of the complex ω plane (i.e. ωi < 0), the stationary wave is absolutely

stable. If the branch point is in the upper half of the complex ω plane (i.e.

ωi > 0), the stationary wave is absolutely unstable.

The method is employed in the current study as follows. First, for the profile

of interest, the Orr-Sommerfeld equation is solved for a range of real α, in

order to determine the envelope of unstable (real) wavenumbers. The upper

and lower limits of this envelope are denoted αr1 and αr2. A second sweep is

then performed over a range of both αr and αi, forming an equidistant grid

in the complex α plane (figure 2.10, left). The upper and lower αr values are

chosen as αr1 and αr2. The upper and lower limits of αi are chosen intuitively,

for the first attempt, and then refined. The associated map in the complex ω

plane will either contain a cusp (figure 2.10, right), or else the process can be

repeated making adjustments to α in order to locate a cusp. Once a cusp is
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found, it may be tracked as the boundary layer profile slowly varies, and the

corresponding α and ω noted.
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Figure 2.10: Equidistant grid in the complex α plane (left) and its corresponding map into the
complex ω plane (right) , revealing a cusp associated with cg = 0 and ωi > 0, as determined
for shear layer profile given by equation 2.114 with R=1.35.

Use of the Orr-Sommerfeld solver in conjunction with the cusp-map method

to determine the presence of absolute instability has been validated for analytic

wake profiles given in Huerre & Monkewitz (1985), described by the equation

u(y) = 1 + R tanh
(y

2

)
. (2.114)

The variation of ωi with R, determined using the Orr-Sommerfeld solver in

conjunction with the cusp-map method and setting the Reynolds number to

Reθ = 106, is plotted in figure 2.11 in the vicinity of ωi = 0. Transition from

convective to absolute instability was found to occur at R = 1.3156, compared

to R = 1.315 as reported by Huerre & Monkewitz using an inviscid approach.

For the profile R = 1.315, values ωi = −1.266×10−4 and ωr = 1.921×10−1 were

determined, compared to ωi = 0 and ωr = 1.92× 10−1 as reported by Huerre &

Monkewitz.
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Figure 2.11: Variation with R of complex ω associated with cg = 0, for profiles given in Huerre
& Monkewitz (1985).
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Chapter 3

Two-dimensional studies of the

flow around an airfoil at

Reynolds number 10,0001

3.1 Introduction

In this chapter the flow around an airfoil at Rec = 104 is investigated by both

numerical simulation and stability analysis. Although in reality no aircraft op-

erates at Rec = 104, simulations at this Reynolds number allow validation of

the numerical method by comparison both to similar studies and alternative

prediction methods, whilst being comparatively cheap to run in terms of com-

putational time. Furthermore, the effect of the domain size on the potential flow

around the airfoil may be investigated cheaply at this Reynolds number. The

results of studies at Rec = 104 can then be used to plan simulations at higher

Reynolds numbers.

3.2 Domain size selection

Before simulations can be performed with confidence, an appropriate size for the

computational domain must be determined. The computational domain must

be sufficiently large not to constrain the potential flow around the airfoil, whilst

not being so large as to incur unnecessary computational expense.

Three comparatively cheap 2D airfoil simulations were run on three different

grids, denoted D1, D2 and D3, in order to quantify the effect of domain size.

The simulations were all run at zero degrees incidence, Rec = 104,M = 0.6,

and the size of the computational domain was varied. Details of the domains

1See also Jones et al. (2006)
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Grid D1 D2 D3

R 3.3 5.3 7.95
W 5 5 8
Nξ 1181 1181 2361
Nη 245 259 274

Nfoil 201 201 201
Nwake 982 982 2162

Table 3.1: Domain and grid dimensions for cases D1-D3.
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x
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c f

Figure 3.1: Azimuthal variation of p
p∞

at 3 chords radius from the trailing, over the range 0.99
to 1.005 for grids D1 (· · ·), D2 (−−) and D3 (—)) (left) and time-averaged cf distributions
for grids D1 (O), D2 (−−) and D3 (◦) (right).

and grids used are given in table 3.1. The larger domain sizes were generated

by adding grid-points to grid D1, whilst leaving original grid-points unchanged.

Flowfield statistics were taken for 60 time units upon achieving a periodic state

of behaviour.

The azimuthal variation of mean pressure at a fixed radius of 3 chords about

the trailing edge is plotted in figure 4.8 (left). It can be seen that whilst there is

marked difference between grid D1 and D2, there is little difference in pressure

distribution between grids D2 and D3. Plotting time-averaged skin-friction (cf )

distributions yields a similar result (figure 4.8, right). Any further increase in

domain size will incur even smaller changes.

It appears then that a minimum radius of 5.3 chords is adequate to capture

the potential flow of the test-case with the current code. Therefore all simula-

tions at Rec = 104 are run using grid D2 unless stated otherwise. For reference

purposes the resolution of grid D2 at specific control points is given in table 3.2.

Details of grids used at higher Reynolds number are given in chapter 4.
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x y ∆ξ ∆η
Stagnation point 0 0 1.5× 10−3 3× 10−4

Trailing edge 1 0 1.75× 10−3 4.2× 10−4

Exit boundary 6 0 3.1× 10−2 1× 10−3

Exit boundary 6 0.2 3.1× 10−2 3.75× 10−3

Exit boundary 6 1 3.1× 10−2 2× 10−2

Exit/free stream boundary 6 5.3 3.1× 10−2 1.95× 10−1

Table 3.2: Grid resolution at selected control points for grid D2.

3.3 Direct numerical simulations

Having determined an appropriate computational domain size, simulations were

run at Rec = 104, zero-degrees incidence, whilst varying the Mach number.

Simulations at five Mach numbers were performed; M = 0.2, 0.3, 0.4, 0.6, 0.7

and 0.8, although where results are presented not all simulations may be shown

for the sake of clarity. The simulations were progressed until transient effects

were deemed to have passed, and statistical data capture was performed for a

minimum of 40 non-dimensional time-units.

3.3.1 Time dependent behaviour

At Rec = 104 an unsteady wake is observed at all Mach numbers; downstream of

the airfoil trailing edge the wake becomes unstable and rolls up to form vortices,

characteristic of a von-Kármán instability. Both the size and intensity (in terms

of peak vorticity magnitude) of the wake vortices increases with Mach number,

and the onset of vortex shedding moves upstream toward the trailing edge (figure

3.2). As a result of the wake unsteadiness, the airfoil experiences an oscillating

lift-coefficient, with both amplitude and frequency varying with Mach number

(figure 3.3, left). The magnitude of lift-coefficient oscillations increases with

increasing Mach number, and the frequency decreases. Fourier transforms of

the time dependent lift-coefficient are shown plotted against Strouhal number

(figure 3.3, right), where the Strouhal number is defined as

St =
f(2δ∗te)

u
, (3.1)

where f is the frequency of lift-coefficient oscillation, δ∗te is the displacement

thickness at x = 0.99 (measured on one side of the airfoil) and u is the free-

stream velocity. The Strouhal numbers associated with the dominant oscillatory

mode collapse to St = 0.2 (±13%) in all cases.

In comparison to the similar study by Bouhadji & Braza (2003), several differ-

ences may be noted. Firstly the amplitude of CL oscillations is much lower in the

53



a) M = 0.2

b) M = 0.4

c) M = 0.6

d) M = 0.8

Figure 3.2: Iso-contours of vorticity, using 20 levels over the range ±50, for the case Rec = 104,
α = 0◦ at Mach numbers indicated.
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Figure 3.3: Time dependent CL (left) and direct Fourier transform of time dependent CL

(right) at Rec = 10× 104, showing Mach numbers 0.2 (· · ·), 0.6 (−−) and 0.8 (—).

current study, for some Mach numbers appearing as much as four times lower.

Secondly, Bouhadji & Braza report a secondary low frequency mode occurring in

the Mach number range 0.75-0.85 which was not observed in the current study

(but which was observed at higher Reynolds numbers; see section 4). Finally,

Bouhadji & Braza report a steady, small non-zero ( 6 × 10−4) lift-coefficient at

M = 0.2 whereas the current study observed a lift-coefficient oscillating about

zero with peak-to-peak amplitude approximately 1 × 10−4. It is likely however

that the differences observed are due to the much finer grids, especially in the

wake, which were used in the current study. The discrepancies between the stud-

ies do however raise the question as to whether the vortex shedding observed

at M = 0.2 is physical, or whether it is caused by an unphysical mechanism,

such as a feedback loop caused by fluid structures striking the outflow boundary.

This issue is addressed in section 3.4

The pressure drag coefficient (CDP ) increases with increasing Mach number

(figure 3.4, right), whilst the skin-friction drag coefficientCDF decreases slightly.

Drag coefficients predicted by XFoil (Drela & Giles, 1987) vary by as much as

9.5% from the DNS results, although similar Mach number trends are predicted

for both drag coefficients.

3.3.2 Time-averaged results

Time-averaged pressure-coefficient distributions (figure 3.5, left) indicate that

the location of minimum CP moves downstream with increasing Mach number.

Also, the minimum CP increases in magnitude with Mach number. When com-

pared to results generated using XFoil (Drela & Giles, 1987) there appears to

be a discrepancy regarding the location and magnitude of minimum CP . XFoil

does not appear to predict the movement downstream of the minimum CP with
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Figure 3.4: Variation of RMS lift-coefficient with Mach number (left), variation of time-
averaged CDP (¦), CDf (O) and total drag (◦) with Mach number (right), with lines illustrating
XFoil predictions.

increasing Mach number, and also predicts a minimum CP that is overly large

in magnitude.

Skin friction coefficient distributions (figure 3.5, right) indicate that at all

Mach numbers the airfoil boundary layer stays attached until downstream of

the point of maximum thickness. Towards the trailing edge the boundary layer

separates and a region of recirculation is present; the separation point moves

upstream with increasing Mach number. The region of recirculation extends

downstream of the airfoil into the wake.

The momentum thickness distribution (figure 3.6, left) varies little with Mach

number, however the displacement thickness (figure 3.6, right) downstream of

separation clearly increases with Mach number. Similar trends are predicted by

XFoil.

Figure 3.5: Time-averaged CP at Mach numbers 0.2 (O), 0.6 (◦) and 0.8 (¦) with lines illus-
trating showing XFoil predictions (left), and time-averaged Cf (right) at Mach numbers 0.2
(· · ·), 0.6 (−−) and 0.8 (—).
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Figure 3.6: Time-averaged θ (left) and δ∗ (right) distributions at Mach numbers 0.2 (O), 0.6
(◦) and 0.8 (¦), with lines illustrating showing XFoil predictions.

3.4 An investigation of the vortex shedding behaviour at

M = 0.2

Since vortex shedding was observed at M = 0.2 in the current study, but not

in the study of Bouhadji & Braza (2003), it is pertinent to determine whether

the vortex shedding is physical. In order to do this the development of wake

unsteadiness is monitored from a simulation with a symmetry condition applied

across the wake-cut, and then stability analysis of the airfoil wake is performed.

3.4.1 Onset of wake instability

Using grid D2 (defined in section 4.3.2), with wake length W = 5 airfoil chords,

a simulation was run at Mach 0.2 with the additional boundary condition of

v = 0 applied on the wake dividing line in order to obtain a symmetric solution.

Upon attaining a steady solution, the boundary condition was removed and the

simulation continued. Wake unsteadiness was then allowed to develop naturally

and, by measuring time dependent pressure at several locations in the wake, the

onset of the wake instability was investigated. Unfortunately a fully symmetric

solution could not be achieved, and a steady lift-coefficient of magnitude ap-

proximately 1 × 10−6 was observed. The grid used was subsequently found to

be asymmetric. The average difference between grid-point locations on opposite

sides of the airfoil is 7× 10−6 in the x direction and 1× 10−6 in the y direction,

the asymmetry presumably being incurred during the grid generation process.

Despite the presence of a small non-zero lift-coefficient, the simulation appeared

steady and near-symmetric, as shown by vorticity contours in figure 3.7. Upon

removal of the v = 0 condition along the wake centre line the wake became

unsteady, in contrast to the study of Bouhadji & Braza (2003) where a steady

wake was observed.
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Figure 3.7: Iso-contours of vorticity for the case Rec = 104, M = 0.2, α = 0◦, with v = 0
condition applied to the wake dividing line, using 20 levels over the range ±50.
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Figure 3.8: Derivative of time dependent pressure with respect to time, after the symmetry
condition was removed at t=0. Distance of the measurement location from the trailing edge
is given on the left hand x-axis. Left hand image illustrates the behaviour immediately after
the symmetry condition was released, right hand image illustrates the quasi-linear behaviour
over a longer period of time

The behaviour immediately after removing the symmetry condition is moni-

tored by recording time-dependent pressure at a number of streamwise locations

in the wake. Figure 3.8 illustrates the time-dependent behaviour of dp/dt with x-

location, in the form of an x/t plot. Immediately after the symmetry condition is

removed, pressure oscillations are observed to initiate and grow in amplitude at

locations 0.5 and 1 chord downstream of the trailing edge (figure 3.8, left). The

very sudden localised onset and growth of this oscillation suggests that the wake

is absolutely unstable at some location in the region 0 − 1 chords downstream

of the trailing edge, since the oscillation appears to be growing temporally and

does not appear to originate from an upstream location. After a short period

of time pressure oscillations are observed at all points in the wake downstream

of the trailing edge, and the amplitude of oscillation appears to increase with

downstream distance from the trailing edge (figure 3.9, right). The fact that

the amplitude of oscillation increases with downstream location suggests that

the wake may also be convectively unstable. Over time the wake instability

ultimately leads to roll-up and vortex shedding, at which point the pressure re-
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sponse increases dramatically in amplitude and becomes non-linear, illustrated

in figure 3.9 for the measurement location 1 chord downstream of the trailing

edge.
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Figure 3.9: Derivative of time dependent pressure with respect to time at 1 chord downstream
of the trailing edge.

The disturbance amplitude does not appear to follow a pure exponential enve-

lope, as would be expected for linear disturbance growth (Hannemann & Oertel,

1989). However, if the wake unsteadiness was caused by a feedback loop initi-

ated by unphysical reflections from the downstream exit boundary propagating

to some point of receptivity in the wake, this would be likely to cause periodic

behaviour in time dependent quantities. Fluctuations would be apparent with

period corresponding to the time taken for a fluid structure to convect from the

point of receptivity to the exit boundary, plus the time taken for a pressure

wave to propagate from the exit boundary to the point of receptivity. There is

no evidence for this kind of behaviour in the current simulation.

3.4.2 Cusp-map analysis of the airfoil wake

The time-averaged flowfield, instantaneous flowfield and the symmetrised flow-

field extracted from the case at Rec = 104, M = 0.2 and α = 0◦ (figure 3.10)

have been analysed using the Orr-Sommerfeld solver in conjunction with the

cusp-map method (see section 2.4.5). The complex α plane was swept with a

minimum resolution of ∆αr = ∆αi = 2. The corresponding resolution in the

complex ω plane is much higher in the vicinity of a branch-point, since ∂ω
∂α
≈ 0.

Branch point singularities associated with zero group-velocity instability waves

have been tracked, traversing the wake over the region 0.01-0.5 chords down-

stream of the airfoil trailing edge. Imaginary parts of the complex frequency

associated with cg = 0 are plotted in figure 3.11 (left). For all cases, at 0.01
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chords downstream of the trailing edge the cg = 0 wave is growing temporally,

i.e. ωi > 0, hence the flow is absolutely unstable. The temporal growth rate

decreases with increasing x, and at approximately 0.3 chords downstream of the

trailing edge ωi = 0, hence the flow transitions from absolutely unstable to con-

vectively unstable. As x increases to 0.5 chords downstream of the trailing edge

ωi decreases further. Results for the instantaneous and time-averaged flowfields

appear similar, however the symmetrised flowfield exhibits a greater tendency

toward absolute instability (i.e. ωi is greater).

There is clear evidence then, of absolute instability in the near wake region

for these flow parameters. What is surprising is that absolute instability can

be observed not only in the time-averaged and symmetrised flow fields, but also

in the instantaneous flowfield. This is surprising because, although the near-

wake region appears similar over the region 0.01 − 0.5 chords downstream of

the airfoil trailing edge for all three cases (figure 3.10), by the definition of

absolute instability one would expect exponential temporal growth of normal-

mode perturbations in any region of absolute instability. This is not the case

in the fully-developed simulation, where limit-cycle behaviour is observed. It is

possible that whilst absolute instability may be observed in the instantaneous

flowfield, exponential temporal disturbance growth does not occur due to the

presence of nonparallel effects, i.e. the global undulation of the wake. Instead,

the near-wake reaches a limit-cycle oscillatory behaviour. It should also be

noted that the final stages of vortex roll-up occur significantly downstream of

the transition from absolute to convective instability. This suggests that the

final stages of vortex roll-up are caused by convective amplification of wake

perturbations generated by a region of absolute instability.

Real parts of the complex frequency associated with cg = 0 are plotted in

figure 3.11 (right). A simple criterion for predicting the saturation frequency

of wake shedding is Koch’s criterion (Koch, 1985), which states that the final

shedding frequency may be approximated as ωr associated with the cg = 0 wave

at the location where transition from absolute to convective behavior occurs.

The corresponding value of ωr computed from linear stability analysis of the

symmetrised wake is 16.6, corresponding to frequency f = 2.64. The frequency

of vortex shedding in the fully developed case is f = 2.52, providing approximate

agreement.

3.4.3 Direct numerical simulation with forcing terms

A simulation has been performed using forcing terms to maintain the initial

condition, in order to determine the response of the symmetrised flowfield to
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Figure 3.10: Iso-contours of vorticity using 20 levels over the range ±50 for the time-averaged
flowfield (top), instantaneous flowfield (bottom-left) and symmetrised flowfield (bottom-right)
of the Rec = 104, M = 0.2, α = 0◦.
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Figure 3.11: Variation with x of ωi (left) and ωr (right) associated with cg = 0, for the case
Rec = 104, M = 0.2, α = 0◦, with x-axis showing distance downstream from the airfoil
trailing edge, showing results for the time-averaged flowfield (◦−−◦), instantaneous flowfield
(M · · · M) and the flowfield with symmetry condition applied (¦—¦).

low-amplitude perturbations. As well as confirming the linear stability analysis

results, this will validate the use of numerical simulations with forcing terms as

a tool to detect absolute instability.

The initial condition is specified as the symmetrised flowfield presented in

3.4.1. If the simulation were to be initialised in this fashion and progressed in

time, the flowfield would relax to the vortex shedding observed in the original

simulation. Instead, forcing terms are added to the governing equations, in

order to maintain the initial condition as the simulation is progressed. Assuming

there is no change to the flowfield, the initial condition will be maintained. The

behaviour of small perturbations on the initial condition (i.e. the symmetrised

flowfield) can then be determined. The process is performed as follows.

At initialisation, time t = 0, temporal derivatives of the conservative variables

are calculated and stored. The simulation is then progressed in time as normal,

except wherever a temporal derivative is computed, the temporal derivative at
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t = 0 is subtracted, i.e.

dq

dt
= RHS− dq

dt t=0
. (3.2)

Where boundary conditions are applied, additional temporal derivatives are

computed that must be treated in the same fashion. The result is that, as-

suming there is no change or perturbation to the flowfield, the initial condition

can be maintained as a reference state, upon which the behaviour of small per-

turbations can be investigated.

The initial condition is specified as the time-averaged flowfield of the two-

dimensional simulation at Rec = 104, M = 0.2, α = 0◦ with the symmetry

condition applied in the wake, illustrated in figure 3.10 (bottom-right). A region

of 3 × 3 grid-points about the location (x, y) = (1.00, 0.05), corresponding to a

location within the upper surface boundary layer at the trailing edge, is subject

to an increment of 1×10−8 in u, v and ρ. This effectively introduces a disturbance

with a sharp-edged spatial distribution, which will excite a range of frequencies

at low amplitude. No further perturbations are introduced, and the response

of the flow is monitored as the simulation is progressed. If the flow were only

convectively unstable, the initial perturbation would be expected to convect

downstream growing in amplitude, ultimately leaving the flow over the airfoil

unperturbed. If the flow were absolutely unstable, the initial perturbation would

be expected to grow exponentially in time at some location until saturation or

the onset of some secondary behaviour, ultimately affecting the entire flow-field.

The response of the flowfield is monitored in two ways; by recording the time-

dependent pressure at several x-locations within the wake, and by analysing

contour plots of flowfield quantities. If post-processed quantities were plotted

for the instantaneous flowfield, the perturbation and its subsequent response

would not be visible. This is because variations in the mean flowfield are much

larger in magnitude than those caused by the perturbation. In order to better

visualise perturbations to the mean field, iso-contours of the perturbation z-

vorticity rate are plotted, defined as ω′z = ωzt=t1 − ωzt=0, where ωzt=t1 is the

z-vorticity at time t1 and ωzt=0 is the z-vorticity at time t = 0.

Figure 3.12 shows time series of dp/dt taken at several streamwise locations

within the airfoil wake. Time t = 0 is the initialisation time, at which the

perturbation was introduced. Signals are plotted at an arbitrary amplitude,

however all signals were scaled by the same factor. Considering first the inter-

val 0 < t < 2 (figure 3.12, left), the pressure is observed almost immediately

to begin to fluctuate at 0.5 chords downstream of the trailing edge. The am-

plitude of unsteadiness increases at 1 chord downstream of the trailing edge,
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however the onset of unsteadiness occurs at a later time. When plotted for the

interval 0 < t < 16 (figure 3.12, right) the pressure fluctuations are observed

to increase in amplitude temporally, in an exponential fashion, at all locations

downstream of the trailing edge. The amplitude of pressure fluctuations also

increases with distance from the trailing edge. No unsteadiness is observed in

the boundary layer directly at the trailing edge when plotted at these levels.

The behaviour observed in figure 3.12 (left) appears strikingly similar to that

observed in figure 3.9, where the onset of unsteadiness from the symmetrised

wake was observed. Iso-contours of ω′z (figure 3.13) reveal that these fluctua-

tions are associated with a vorticity perturbation that is oscillatory in x and

symmetric about the wake centre-line. The associated u-velocity perturbation

would be antisymmetric about the wake centre-line.

This behaviour, in conjunction with the results of both section 3.4.1 and sec-

tion 3.4.2, confirms that a region of absolute instability is present in the region

0 − 0.5 chords downstream of the trailing edge. It appears that unsteadiness

is generated in the region 0 − 0.5 chords downstream of the trailing edge via

absolute instability. Downstream of this location the perturbations are subse-

quently convectively amplified, ultimately leading to the vortex shedding be-

haviour observed. Furthermore, the method of performing forced Navier–Stokes

simulations to determine the flowfield response to small perturbations has been

proven capable of detecting absolute instability.
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Figure 3.12: Time histories of dp
dt , with streamwise distance from the airfoil trailing edge

indicated on the vertical axis, for time 0 < t < 2 (left) and 0 < t < 16 (right).

3.5 Summary

At Rec = 104 the flow is dominated by vortex shedding from an unstable wake.

An investigation into the effect of computational domain size suggests that a

domain radius of 5.3 airfoil chords is sufficient to capture the potential flow
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Figure 3.13: Iso-contours of ω′z for the simulation with forcing terms at M = 0.2, using 20
levels over the range ±2× 10−8.

about the airfoil. By forming a Strouhal number St, based on trailing edge

displacement thickness, frequencies have been found to collapse.

The nature of the wake unsteadiness has been investigated via both simulation

and stability analysis. Unsteadiness appears to develop naturally as the result

of a combination of absolutely and convectively unstable regions in the airfoil

wake; there is no evidence that boundary reflections are responsible for the

unsteadiness observed. The numerical method has proven capable of capturing

weakly unstable flows that may not be evident in simulations where artificial

viscosity or damping is introduced. Both the cusp-map method and numerical

simulations with forcing have proven to be able to detect regions of absolute

instability.
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Chapter 4

Two dimensional simulations at

Reynolds number 50,0001

4.1 Introduction

Two-dimensional simulations have been performed of the flow around an airfoil

at Rec = 5 × 104. At zero degrees incidence and low Mach number the flow is

found to be qualitatively similar to that observed at Rec = 104, however as the

Mach number is increased a large-amplitude, low-frequency oscillation develops.

A grid study is performed at incidence α = 5◦ in order to ensure that the

flow is fully resolved. When the grid resolution is considered in terms of wall

units, using skin-friction predictions generated by XFoil (Drela & Giles, 1987),

the final grid appears suitable for use with three-dimensional simulations with

turbulence. A series of two-dimensional simulations at incidences over the range

α = 3◦ − 8.5◦ are then performed, with grids generated on similar principles to

that for the α = 5◦ case. The effect of incidence upon both the physics of the

flow around the airfoil and the aerodynamic performance of the airfoil is studied.

4.2 Simulations at zero degrees incidence

4.2.1 Grid parameters

Two-dimensional simulations at incidence α = 0◦ were performed upon a grid

generated by increasing the resolution of grid D2 specified in section 4.3.2, de-

noted grid G0. Important parameters for grid G0 are given in table 4.1. Sim-

ulations at zero degrees incidence were run at five Mach numbers in the range

M = 0.4− 0.8.
1See also Jones et al. (2006)
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Nξ 2001
Nξ airfoil 541
Nξ wake 741

Nη 430
Ntotal 305879

Wake length - W 5
Radius - R 5.3

Buffer length 9,465
Buffer points 31

Total domain length 12.2
Total domain height 10.6

Table 4.1: Grid parameters for grid G0.

4.2.2 Time dependent behaviour

At zero degrees incidence and Rec = 5× 104 the lift-coefficient oscillates about

zero at all Mach numbers in the range 0.4 ≤ M ≤ 0.8. At M = 0.4, the lift-

coefficient is initially subject to a large amplitude fluctuation (figure 4.1, left),

presumably due to transient effects of the initialisation, that subsequently decays

to zero leaving only a higher frequency mode present (figure 4.1 left, insert). In

contrast to the Rec = 104 cases, in the range 0.5 ≤ M ≤ 0.8 a secondary

low frequency, high amplitude mode is present (figure 4.1, right). Vorticity

contours at M = 0.4 (figure 4.2) indicate that the higher frequency mode of

oscillation is caused by the presence of an unsteady wake with vortex shedding

in a similar fashion to the Rec = 104 cases. When the shedding frequency is

non-dimensionalised in the same manner as for the Rec = 104 cases, the Strouhal

number is found to collapse to a similar value of approximately St = 0.22. In

contrast, the low frequency mode of oscillation is up to an order of magnitude

larger in amplitude than oscillations associated with vortex shedding in the wake,

and two orders of magnitude lower in frequency. Associated Strouhal numbers

are in the range 0.004 - 0.008 based on the definition given in equation 3.1.

For all cases at zero-degrees incidence, upstream propagating pressure waves

are generated at the airfoil trailing edge (figure 4.3). At M = 0.4 the trailing

edge noise appears periodic and symmetric, whereas at M = 0.8 neither the

trailing edge noise nor the vortex shedding in the wake are periodic. Acoustic

scattering was also observed at Rec = 104, albeit at very low amplitude. The

increased amplitude at Rec = 5 × 104 can be attributed to closer proximity of

the wake unsteadiness to the airfoil trailing edge.
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Figure 4.1: Time dependent CL at Rec = 5× 104, α = 0◦, showing the high frequency mode
at M = 0.4 (left), and both high and low frequency response for M = 0.5− 0.8 (right), where
the Mach number increases with amplitude.

Figure 4.2: Iso-contours of z-vorticity using 20 levels over the range ±50, at Rec = 5 × 104,
M = 0.4, α = 0◦.

4.2.3 Analysis of the low frequency (flapping) oscillation

Analysis of iso-contours of |Oρ| and u-velocity (figure 4.4) shows that the low fre-

quency mode of oscillation is caused by asymmetric boundary layer separation,

whereby the boundary layer over one airfoil surface appears stalled, whilst the

boundary layer on the opposing surface is fully attached. The airfoil boundary

layers periodically switch between stalled and unstalled states, and the behav-

iour is accompanied by local acceleration and deceleration of the flow. By cross

referencing animated images with instantaneous images taken at known points

of the low frequency cycle, a more detailed description is possible. Boundary

layer behaviour and local velocity at key points of the low frequency cycle are

shown in figure 4.4a-4.4d for the M = 0.8 case. Although some numerical oscil-

lation is present due to the high intensity pressure waves, the strong separation

at this Mach number makes the flapping easier to observe than at lower Mach

numbers. A summary of behaviour throughout the cycle follows.

For the purposes of this study, the start of the low frequency cycle will be
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Figure 4.3: Iso-contours ∇.U using 20 levels over the range ±0.05, at Rec = 5× 104, M = 0.4
and α = 0◦.

defined as the point where the lift-coefficient is at a maximum. At this point

in the cycle, with phase angle defined as φ = 0◦, the velocity over the upper

surface is at a maximum, and the boundary layer separates at a location close

to the trailing edge. As the cycle progresses, the separation point slowly moves

upstream. Meanwhile the boundary layer on the lower surface is separated

but slowly reattaching. At around φ = 90◦ the upper boundary layer is fully

separated. Vortical structures are formed within the boundary layer and convect

downstream, generating upstream travelling pressure waves as they pass over

the trailing edge. At this point the lower boundary layer is fully attached.

The velocity over the upper surface is decreasing, and the velocity over the

lower surface is increasing, thus φ = 90◦ marks a median (i.e. approximately

zero) point in the lift-coefficient cycle, with the lift-coefficient decreasing. The

structures formed in the upper boundary layer ultimately convect downstream,

and no more structures are produced until the next cycle. After structures in

the upper boundary layer have convected downstream, the upper boundary layer

slowly begins to reattach. At φ = 180◦ the velocity over the lower surface is at

a maximum, and the lower boundary layer slowly begins to separate, starting

at the trailing edge in the same manner as for the upper surface. The lift-

coefficient is now at a minimum. Behaviour is the same as at φ = 0◦, but

mirrored across the airfoil chord. At around φ = 270◦ the lower boundary layer is

fully separated. Structures form in the lower surface boundary layer and convect

downstream, as they did for the upper boundary layer at φ = 90◦. The velocity
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over the lower surface decreases, and velocity over the upper surface increases.

The lift-coefficient is at a median point on the cycle (approximately zero) and

is increasing. The structures formed in the lower boundary layer ultimately

convect downstream, and the separated lower boundary layer starts to slowly

reattach. The upper boundary layer is fully attached. Essentially the behaviour

is the same as at φ = 90◦, but mirrored across the airfoil chord. Acoustic waves

are produced at the airfoil trailing edge at all stages of the flapping cycle. In

particular, when the separated boundary layer becomes unstable and structures

are generated, strong acoustic waves are observed propagating away from the

opposing airfoil surface.

Variation of flapping frequency and RMS amplitude of lift-coefficient with

Mach number, for cases at Rec = 5 × 104, α = 0◦, are shown in figure 4.5.

The amplitude of the low frequency oscillation rises dramatically with Mach

number after the initial onset at M = 0.5, suggesting that the mode only occurs

above a critical Mach number, and the amplitude saturates for M > 0.7. The

frequency of the oscillation increases with increasing Mach number, and hence

cannot be collapsed by forming a Strouhal number based on some measure of

boundary layer thickness, since both boundary layer thickness and the frequency

of oscillation increase with Mach number.

In order to further explore the onset of the low frequency mode, several

simulations were run across the range Rec = 104 − 5 × 104 and Mach number

range 0.4-0.8 in steps of 104 for Reynolds number and 0.1 for Mach number.

Figure 4.6 summarises the results of these simulations, illustrating that for a

constant Reynolds number the low frequency oscillation only occurs above a

certain Mach number, and vice versa. In the present study, the low frequency

oscillation was only found at Rec = 2 × 104 and above, whereas Bouhadji &

Braza (2003) reported similar behaviour at Rec = 104. Although the onset of

the low frequency mode is Mach number dependent, it appears to be distinct

from transonic buffet, where the presence of an oscillating attached shockwave

(Lee, 1990) leads to low frequency oscillation of the lift-coefficient. In contrast,

the low frequency mode observed here is present at subsonic Mach numbers

where no local supersonic flow is present. The observation of acoustic waves at

the trailing edge suggests that an acoustic feedback mechanism may be present,

however animations at M = 0.6 and 0.8 display a marked difference in upstream

wave velocities but only minimal variation in the period of the low frequency

cycle. This appears to discount a simple (feedback) model based on downstream

convection of vortices followed upstream acoustic waves, which would predict

an increase in period with increasing Mach number. Instead, it is suggested
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b) φ = π
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Figure 4.4: Iso-contours of |Oρ| (left) using six levels in the range 3.5-20 and iso-contours of
u-velocity (right) with levels marked, at Rec = 5× 104, M = 0.8, α = 0◦. Four phases (φ) of
the low-frequency oscillation are shown.
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Figure 4.5: Frequency (left) and RMS (right) of CL vs. Mach number at Rec = 5 × 104 and
α = 0◦.

Figure 4.6: Occurrence of low frequency (flapping) mode with Reynolds number and Mach
number. Points marked ¦ indicate cases where flapping was not observed, points marked
◦ indicate cases where flapping was observed. The dashed line indicates a possible onset
behaviour.

that a more complex viscous-acoustic mechanism is responsible for the observed

behaviour.

4.3 Simulations at incidence

Preliminary studies of the flow around a NACA-0012 airfoil at Rec = 5 × 104

using XFoil (Drela & Giles, 1987) suggest that separated regions of flow are

likely to occur over the upper airfoil surface. Simulations at these conditions

represent an opportunity to capture numerically a laminar separation bubble

on an airfoil at flight conditions similar to those of micro-air-vehicles. Although

the goal is ultimately to perform three-dimensional simulations, two-dimensional

simulations provide insight into mechanisms and behaviour which may persist or
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Grid G1 G2 G3
R 5.3 5.3 7.3
W 5 5 5
Nξ 2001 2570 2570
Nη 440 440 692

Nfoil 541 1066 1066
Nwake 1462 1506 1506

Table 4.2: Domain and grid dimensions for grid resolution investigation at Rec = 5 × 104,
α = 5◦.

otherwise be relevant to the three-dimensional simulation case. It is also sensible

to use a fully developed two-dimensional flowfield as the initial condition for a

three-dimensional simulation, in order to reduce the time taken to achieve a

statistically stationary state.

4.3.1 Grid resolution at α = 5◦

Resolution requirements for direct simulation of the flow around an airfoil at

incidence are complex, since a variety of fluid phenomena are present and must

be resolved. The iterative method of grid production (outlined in section 2.2.16)

is particularly useful for the current case, since a priori grid requirements are

not known for all regions. The iterative grid production process has been per-

formed for the case at Rec = 5× 104, M = 0.4, and α = 5◦, in two dimensions.

Simulations were run on three grids in total, and sufficient data was recorded to

compare the performance of each grid. The first grid, G1, was generated by esti-

mating resolution requirements based on simulations at zero degrees incidence.

Two further grids, denoted G2 and G3 were subsequently produced in order to

improve the resolution of the simulation. Details of all grids are given in table

4.2.

Results from the two-dimensional simulation at Rec = 5× 104, M = 0.4 and

α = 5◦ are presented in full in section 4.4. Essentially, the upper airfoil boundary

layer is observed to separate near the leading edge of the airfoil and the separated

shear layer subsequently rolls-up to form vortices (figure 4.9c). The system of

laminar separation, shear-layer roll-up and periodic vortex shedding gives rise

to a characteristic cf distribution and causes CL to oscillate.

Time-averaged skin-friction and lift-coefficients are compared for grids G1-G3

in figure 4.7. When run using grid G1, CL oscillates in an almost perfectly peri-

odic fashion. The time-averaged cf distribution exhibits separation, secondary

separation (the small region of positive cf within the larger separated region)

and reattachment. Downstream of reattachment a wave-like cf distribution is

observed. This appears to be a characteristic feature of two-dimensional sepa-

72



0 1 2 3
t

0.44

0.48

0.52

C
L

0 0.2 0.4 0.6 0.8 1
x

-0.01

0

0.01

0.02

c f

Figure 4.7: Time dependent CL (left) and time-averaged cf (right) for grids G1 (· · ·), G2
(−−) and G3 (—).

ration bubbles with vortex shedding, and is discussed further in section 4.4.2.

Some evidence of numerical oscillation was observed for grid G1 when iso-

contours of vorticity were plotted at sensitive levels, hence grid G2 was generated

with an increased streamwise grid resolution over the airfoil surface. When the

simulation was continued on grid G2, the mean lift-coefficient increased, and the

time dependent behaviour became slightly less regular. Numerical oscillations

could no longer be observed in hydrodynamic properties. The fundamental fre-

quency of the vortex shedding remained unchanged, however the reattachment

point, and hence by inference the vortex shedding location, moved upstream

slightly. This alters the wave-like cf distribution downstream of reattachment.

Grid G3 was generated with increased wall-normal resolution and a larger do-

main radius compared to grid G2. Only small differences are observed in CL and

cf between grids G2 and G3. The behaviour of cf in the region of secondary sep-

aration changes very slightly, however elsewhere the cf distributions are nearly

identical. It appears that grid G2 adequately captures the vortex shedding

behaviour observed in two-dimensions, with no evidence of under-resolution,

however grid G3 will be more suited to three-dimensional simulations, since the

increased wall normal resolution is more appropriate for resolving turbulence.

Estimates of skin-friction using XFoil (Drela & Giles, 1987), with Rec = 5×104,

M = 0., and α = 5◦, suggest the maximum cf in the turbulent region will be

cf = 5.25 × 10−3 at x = 0.6. The resultant resolution in wall-units for this

region for grid G3 would then be x+ = 2.6, and the number of grid-points in

the region y+ < 10 would be 11, comparing favourably with the well resolved

plane-channel flow in Sandham et al. (2002).
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Figure 4.8: Azimuthal variation of p/p∞ over the range 0.99 to 1.005, at two chords (left) and
three chords (right) radius from the airfoil trailing edge, for grids G2 (−−) and G3 (—).

4.3.2 Domain size

The effect of domain size upon the potential flow about the airfoil may be

investigated by considering simulations run using grids G2 and G3 (defined in

section 4.3.1); grid G2 is of radius R = 5.3, whereas grid G3 is of radius R = 7.3.

The azimuthal variation of p/p∞, where p∞ is the free-stream pressure, is plotted

in figure 4.8 for both grids, at a radius of two chords (left) and three chords

(right) from the airfoil trailing edge.

At around 0◦ there is a difference of approximately p/p∞ = 1.5×10−3 between

the two grids, presumably caused by differences in resolution in the η direction

in the wake region, however this is the only significant difference observed. The

azimuthal pressure distribution in the potential flow region appears remarkably

similar for both cases, and at three chords radius the difference between grids in

this region is significantly less than p/p∞ = 1×10−3. If the radius of the domain

were increased beyond seven chords, further changes would be even smaller in

amplitude. It appears then that a domain radius of 5.3 airfoil chords adequately

captures the potential flow about the airfoil, and hence a domain radius of 7.3

chords is more than adequate. The characteristics based boundary conditions

appear sufficiently effective that a comparatively modest domain size is able to

capture the potential flow.

In light of grid resolution and domain size studies, all two-dimensional simu-

lations at α = 5◦ were performed on grid G3. For reference purposes important

parameters for grid G3 are given in table 4.3, and grid resolution at specified

control points is given in table 4.4. A series of grids at other non-zero inci-
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Nξ 2570
Nξ airfoil 1066
Nξ wake 753

Nη 692
Ntotal 1778440

Wake length - W 5
Radius - R 7.3

Buffer length 0.6
Buffer points 31

Total domain length 12.3
Total domain height 14.6

Table 4.3: Grid parameters for grid G3.

x y ∆ξ ∆η
Stagnation point 0 0 1× 10−3 2.5× 10−4

Trailing edge 1 0 1× 10−3 3.8× 10−4

Exit boundary 6 0 1.5× 10−2 1× 10−3

Exit boundary 6 0.2 1.5× 10−2 2× 10−3

Exit boundary 6 1 1.5× 10−2 8× 10−3

Exit/free stream boundary 6 1.5 3.1× 10−2 5× 10−2

Table 4.4: Grid resolution at selected control points for grid G3.

dences were generated based on the requirements for the α = 5◦ case, using

similar numbers of grid points and similar resolution. These grids were used for

two-dimensional simulations only, and will not be discussed in detail.

4.4 Two-dimensional simulations at incidence, for Rec =

5× 104, M = 0.4

Having generated grids with the appropriate resolution, a series of two-dimensional

simulations at incidence α = 3◦, 5◦, 7◦ and 8.5◦ were conducted. All simulations

were run at Rec = 5 × 104, M = 0.4, with time-step ∆t = 1.4 × 10−4, and

statistics were taken over a minimum of 40 non-dimensional time-units after

achieving a statistically stationary flow.

4.4.1 Time-dependent behaviour

Iso-contours of vorticity illustrate the flow behaviour in the vicinity of the airfoil

for all cases, in figure 4.9. At α = 0◦ the flow over the airfoil is steady. The

boundary layer separates over the aft section of the airfoil, and the wake rolls-up

into von-Kármán-type vortex shedding immediately downstream of the trailing-

edge. As the airfoil incidence is increased, the separation point on the upper

airfoil surface moves upstream. By α = 3◦, vortex shedding from the separated
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shear layer over the upper surface is observed, as opposed to vortex shedding

from an unsteady wake, and the same-sign vortex shedding from the separated

shear layer occurs at approximately half the frequency of the antisymmetric wake

shedding. Both the separation point and the onset of vortex-shedding continue

to move further upstream with increasing incidence.

The time-dependent lift-coefficient oscillates due to the vortex shedding be-

haviour. For cases at 0◦ ≤ α ≤ 5◦ the lift-coefficient oscillates in a periodic

fashion, with a clear dominant frequency (figure 4.10). Above α = 5◦, how-

ever, the time-dependent lift-coefficient oscillates in a more irregular fashion,

with a more complex frequency content. Plotting the direct Fourier transform

of the lift-coefficient for α = 3◦ and α = 7◦ confirms that this is the case (figure

4.11). The direct Fourier transform of the lift-coefficient at α = 3◦ (figure 4.11,

left) exhibits a clear peak, that of the dominant shedding frequency (f = 2.27),

and several lower amplitude peaks associated with higher-harmonics. At α = 7◦,

however, the direct Fourier transform of the lift-coefficient exhibits a much more

broadband spectrum (figure 4.11, right). Hence it appears that at some value

of α in the range 5◦ < α < 6◦ the vortex shedding behaviour transitions from

being dominated by a single frequency, to a more broadband behaviour. Hoarau,

Braza, Ventikos, Faghani & Tzabiras (2003a) observed a similar transition to a

more complex shedding behaviour, and in the case of Hoarau et al. the increased

complexity was due to the onset of a Kelvin-Helmholtz instability in the free-

shear layer. Were a Kelvin-Helmholtz instability present one could reasonably

expect to observe small scale vortices to be generated within the shear layer, as

in the study of Hoarau et al., however no such fundamental change in behaviour

is observed here. In the current case the change in behaviour appears to be

associated with increased complexity of the vortex dynamics present at higher

incidence (for example, by a mechanism similar to the ‘period doubling’ also

observed by Hoarau et al. (2003a)). The dominant vortex shedding frequency

appears to increase almost linearly from α = 3◦ to α = 5◦ before broadband be-

haviour takes precedence at α > 6◦ (figure 4.12, left). No real conclusions can be

drawn on the dependency of f upon α however, since relatively few data points

are available. The RMS lift-coefficient varies little over the range α = 4◦ to

α = 5◦, but once broadband behaviour occurs at α = 6◦ the RMS lift-coefficient

increases dramatically (figure 4.12, right). The RMS lift-coefficient for cases

above α = 5◦ is approximately three times larger than at α = 5◦ and below.

Acoustic waves are generated by acoustic scattering as vortices convect over

the trailing edge (Ffowcs Williams & Hall, 1970), and the trailing edge noise

undergoes a similar behavioral change to the vortex shedding for α > 5◦. For
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a) α = 0◦

b) α = 3◦

c) α = 5◦

d) α = 7◦

Figure 4.9: Iso-contours of vorticity, using 20 levels over the range ±150, at Rec = 5 × 104,
M = 0.4, displaying four angles of attack as labeled.
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Figure 4.10: Time-dependent CL for simulations at Rec = 5 × 104, M = 0.4, displaying
incidence α = 7◦, α = 5◦, α = 3◦ and α = 0◦, moving from top-to-bottom.
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Figure 4.11: Direct Fourier transform of the time-dependent lift-coefficient at Rec = 5× 104,
M = 0.4, for incidence α = 3◦ (left) and α = 7◦ (right)
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Figure 4.12: Variation with incidence of the dominant frequency observed in CL (left), and
variation of the RMS CL with incidence (right), at Rec = 5 × 104, M = 0.4. Points marked
◦ on the left hand image indicate cases with a clear dominant frequency, points marked ¦
indicate cases with a more broadband frequency composition.
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α ≤ 5◦, where the vortex shedding is periodic, trailing edge noise is observed to

be tonal in nature, whereas for α > 5◦, where the vortex shedding is irregular,

trailing edge noise is observed to be more broadband. This is illustrated by

plotting iso-contours of O.U for α = 5◦ (figure 4.13, left) and for α = 7◦ (figure

4.13, right). At α = 5◦ the trailing edge noise appears symmetric and near-

periodic. However, at α = 7◦, the trailing edge noise appears asymmetric and

non-periodic; the amplitude of acoustic waves is greater above the airfoil, and

the frequency content appears more complex. There also appears to be more

than one acoustic source present on the upper airfoil surface at α = 7◦. Acoustic

waves appear well-resolved to a radius of at least three airfoil chords from the

trailing edge for these grids. Further acoustic analysis of simulations presented

in this chapter is presented in Sandberg, Jones, Sandham & Joseph (2007)

Figure 4.13: Iso-contours of O.U over the range ±0.1 for α = 5◦ (left), and α = 7◦ (right), at
Rec = 5× 104, M = 0.4.

4.4.2 Statistical analysis

The time-averaged lift-coefficient increases with incidence (figure 4.14, left), as

expected. When plotting the available results it does not appear possible to

link all data points by a straight line intersecting (CL, α) = (0, 0). It is likely

that the formation of a separation bubble at modest incidence increases the lift-

coefficient more rapidly in the range 0◦ < α < 3◦ than in the range 4◦ < α < 7◦,

where a separation bubble is present for all values of α. The time-averaged

friction drag coefficient, CDF (figure 4.14, right), varies little with incidence.

The time-averaged pressure drag coefficient (CDP ), however, and hence the total

drag-coefficient, increase modestly until α = 5◦ and then more rapidly for α >

5◦. This change in dCD/dα appears to coincide with the behavioural change

observed in vortex shedding, discussed in section 4.4.1.
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Figure 4.14: Variation of time-averaged lift-coefficient (left) and drag coefficients (right) with
incidence at Rec = 5 × 104, M = 0.4. Right hand image shows skin-friction drag coefficient
(M · · · M), pressure drag coefficient (◦ − −◦), and total drag coefficient (¦—¦).

At α = 0◦ the time-averaged skin-friction is symmetric with both boundary

layers separating over the aft section of the airfoil. For all cases at α ≥ 3◦ the

time-averaged skin-friction is characteristic of the presence of a separation bub-

ble, with an extended region of negative Cf present on the upper airfoil surface.

A region of positive Cf is observed within all separation bubbles, associated

with the so-called secondary separation which occurs upstream of the reverse

flow vortex, itself located just upstream of the reattachment point. The case at

α = 5◦ exhibits a wave-like distribution of skin-friction coefficient over the upper

airfoil surface, in the region 0.6 < x < 1. The behaviour in this region does not

change when statistics are taken over a longer period of time (∆t = 60), and

similar wave-like behaviour may also be observed in other fluid properties, such

as z-vorticity. Alam & Sandham (2000) observed similar behaviour for a two-

dimensional separation bubble induced on a flat surface, which also exhibited

vortex shedding. This suggests that this behaviour is a characteristic of two-

dimensional separation bubbles with regular vortex shedding, and is not related

to the presence of a trailing edge. It should be noted that the wavelength of the

vortex shedding is of similar order of magnitude to that observed in the skin-

friction distribution. Above α = 5◦ a wave-like pattern cannot be observed in

flowfield properties, presumably because of the more complex frequency content

of vortex shedding. Below α = 5◦ there is only a comparatively short distance

between the reattachment point and airfoil trailing edge, hence the vortex shed-

ding wavelength is too long to produce noticeable wave-like behaviour.

The movement of the separation and reattachment points with incidence,

and the variation of the total separation bubble length, is plotted in figure

4.16. Both the separation point and reattachment point move upstream with

increasing incidence. The reattachment point moves upstream at a greater rate
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Figure 4.15: Time-averaged cf distribution at Rec = 5 × 104, M = 0.4, for several angles of
attack, as labeled.

than the separation point however, and hence the bubble length decreases with

increasing incidence. Thus the two-dimensional case does not exhibit the char-

acteristics of thin-airfoil stall, where the reattachment point moves downstream

and the separation bubble increases in length with increasing incidence (Mc-

Cullough & Gault, 1951). Characteristics of trailing-edge stall or leading-edge

stall are not observed either, however this may be because the airfoil incidence

is insufficient to observed such behaviour. Time-averaged pressure-coefficient

distributions illustrate the length and magnitude of the pressure-plateau caused

by the separation bubble (figure 4.17). As expected, the length and magnitude

of the pressure-plateau increase with incidence. A local maxima can clearly be

observed near the end of the pressure plateau for all separation bubbles. This

is a two-dimensional phenomenon which has been observed in flat plate simula-

tions (e.g. see Alam & Sandham, 2000; Pauley et al., 1990), and is not expected

to persist in cases with turbulence.

Time-averaged momentum and displacement thickness distributions are given
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Figure 4.16: Variation of time-averaged separation point (¦—¦), reattachment point (◦−−◦),
and total bubble length (4· · ·4) with incidence, at Rec = 5× 104, M = 0.4.
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Figure 4.17: Time-averaged CP distribution at Rec = 5×104, M = 0.4, displaying four angles
of attack, as labeled.
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Figure 4.18: Displacement thickness distribution (left) and momentum thickness distribution
(right) for the case at α = 3◦ (−−) and the case at α = 7◦ (—), at Rec = 5× 104, M = 0.4.

in figure 4.18 for the case at α = 3◦ and at α = 7◦. Displacement thickness

increases rapidly across the separated region, until reaching a local maxima.

Upon reaching this local maxima, the displacement thickness decreases slightly

before increasing steadily once more until the trailing edge is reached. Similar

behaviour is observed for all the two-dimensional separation bubbles, however

the growth rate of δ∗ across the bubble increases with incidence. The momentum

thickness increases only slowly, and does not vary significantly with incidence,

across the separated region. At the onset of vortex shedding the momentum

thickness rapidly increases by a factor of four or more over a comparatively

short distance, before increasing steadily until the trailing edge is reached.

The variation with α of the percentage reverse-flow observed in the time-

averaged flowfield, normalized by the local boundary layer edge velocity, is plot-

ted in figure 4.19. The percentage reverse flow increases with incidence over the

range 4◦ ≤ α ≤ 7◦, and appears to saturate for α > 7◦. At α = 3◦ the percentage

reverse flow is greater than at α = 4◦. The reason why is not clear, however for

the case at α = 3◦ the separation occurs due to a combination of surface curva-

ture and adverse pressure gradient, whereas for α ≥ 5 separation occurs solely

under the influence of an adverse pressure gradient. This may potentially have

an influence on the boundary layer characteristics in this region. For all cases

at positive incidence, the percentage reverse flow present is greater than that

found necessary to sustain local absolute instability (20%), as determined by

Hammond & Redekopp (1998) and Rist & Maucher (2002) for analytic profiles.

4.5 Summary

At Rec = 5×104, α = 0◦ a low frequency oscillation was observed in conjunction

with vortex shedding from an unstable wake. The low frequency (flapping)
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Figure 4.19: Variation of the maximum reverse flow observed in the time-averaged flowfield
with α, at Rec = 5× 104, M = 0.4.

oscillation was found to be associated with asymmetric boundary-layer stall

periodically switching airfoil surfaces, accompanied by periodically alternating

accelerating and decelerating flow. The onset of this low frequency mode has

been determined over the range Rec = 104−5×104 and M = 0.2−0.8. The low

frequency oscillation is distinct from transonic buffet, and the period appears

unrelated to upstream acoustic wave velocities.

A grid resolution study was performed for the two-dimensional case at Rec =

5× 104, M = 0.4 and α = 5◦. Further grids were then produced for several val-

ues of positive incidence, with similar resolution, and used to perform a series

of two-dimensional simulations at incidence. Vortex shedding from an unsteady

separation bubble was observed for all cases, and time-averaged skin-friction and

pressure-coefficient distributions were characteristic of two-dimensional separa-

tion bubbles. The vortex shedding appears to undergo a change in behaviour

when the airfoil incidence is increased above α = 5◦. For α ≤ 5◦ the vortex shed-

ding appears regular and near-periodic, and lift-coefficient spectra exhibit clear

tones. For α > 5◦ the vortex shedding is irregular, and lift-coefficient spectra

exhibits broadband behaviour. Both the RMS lift-coefficient and dCD/dα also

exhibit sudden changes at α = 5◦. The onset of this behavioural change does

not appear to coincide with the occurrence of any fundamentally different phys-

ical behaviour, apart from the increased complexity of vortex dynamics present.

Trailing edge noise was observed for all cases, and found to be dominated by the

characteristics of the vortex shedding behaviour. Where the vortex shedding is

periodic, trailing edge noise is observed to be tonal in nature. Where the vortex

shedding is irregular, trailing edge noise is observed to be more broadband. Ad-

ditionally, acoustic radiation appeared to be produced not only at the trailing

edge, but also at a secondary source located above the airfoil.
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Chapter 5

The effect of boundary layer

forcing on three-dimensional

separation bubble behaviour1

5.1 Introduction

In this chapter the simulation at Rec = 5 × 104, M = 0.4, α = 5◦ is extended

into three-dimensions; the intention is to capture a separation bubble exhibiting

laminar separation and turbulent reattachment on an airfoil at MAV flight condi-

tions, and to investigate the effect of low-amplitude boundary layer disturbances

upon bubble behaviour.

Initially, forcing is introduced in order to promote transition to turbulence.

After obtaining sufficient data from this forced case, the explicitly added dis-

turbances are removed and the simulation run further. Upon removal of dis-

turbances, the turbulence is observed to self-sustain, with increased turbulence

intensity in the reattachment region. A comparison of the forced and unforced

cases shows that forcing may improve aerodynamic performance whilst requiring

little energy input.

5.2 Extension to three dimensions

In chapter 4 section 4.3.1, grid G3 was found capable of resolving of resolving

the turbulent boundary layer at Rec = 5 × 104, M = 0.4 and α = 5◦, based

on cf predictions from XFoil (Drela & Giles, 1987) and comparison to Sandham

et al. (2002). The spanwise domain width was selected based upon criteria de-

termined from simulations of the flow over a backward facing step (Terzi, 2004).

1See also Jones et al. (2007a,b)
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Simulation ∆x+ ∆z+ ∆y+ Nη : y+ < 10

Case 3DF 3.36 6.49 1.0 9
Sandham et al. (2002) 15 7.5 - 10

Table 5.1: Grid resolution in wall units at the maximum cf location for case 3DF.

A domain width of at least 4 times the step height (corresponding approximately

to the reattachment length), is necessary to resolve fully the case of flow over

a backwards facing step. Making an analogy with the maximum bubble height

based on displacement thickness, δ∗, a domain width Lz = 0.2 was chosen, be-

ing 9.6 times the maximum bubble height of δ∗ = 2.09× 10−2 and 7.2 times δ∗

at the trailing edge. The number of spanwise grid-points was chosen to be 96,

again based on the resolution requirements of turbulent plane channel flow and

cf predictions from XFoil.

During initial stages of three-dimensional simulations, flowfield properties

were checked in order to confirm that all fluid structures appeared resolved. A

final confirmation of adequate spatial and temporal resolution is provided by a

posteriori statistical analysis of the DNS data. Grid resolution in wall-units,

taken at the maximum turbulent cf location observed over all simulations, was

found to differ slightly from XFoil predictions, but was still found to be well

resolved based on turbulent plane channel flow criteria. Resolution in wall units

for case 3DF (defined in section 5.5), taken at x = 0.612 where the maximum

cf of 7.60× 10−3 is observed, is given in table 5.1.

In order to confirm that turbulent behaviour is resolved over all time and

length scales, power spectra of turbulence kinetic energy, defined as K = 1
2
(u′u′+

v′v′ + w′w′), are computed. To incorporate a reasonable number of samples,

spanwise spectra are integrated over the finite wall-normal distance 1 < y+ < 50

as well as time-averaged, using nine flowfields taken at intervals of t = 0.7.

Figure 5.1 displays spanwise power spectra of K taken at three x-locations for

case 3DF (left) and case 3DU (right, defined in section 5.5). A roll off of order

103 is observed with increasing wavenumber, comparable with the well-resolved

turbulent boundary layer DNS performed by Spalart (1988) using a fully spectral

method. Temporal power spectra of K at specific locations (figure 5.2) are

computed using three segments and Hanning windowing (as detailed in section

2.3), and display a minimum roll-off of 106 with increasing frequency.
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Figure 5.1: Spanwise power spectra of K, integrated over the range 1 < y+ < 50, taken for
case 3DF (left) and case 3DU (right) at x = 0.8 (−), x = 0.9 (−−), and x = 1.0 (− ·).
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Figure 5.2: Temporal power spectra of K, taken at x = 0.9 at the airfoil mid-span for case
3DF (left), at y+ = 12.3, y+ = 51 and y+ = 313 moving from top-to-bottom, for and case
3DU (right) taken at y+ = 54, y+ = 13.2 and y+ = 335 moving from top-to-bottom.

5.3 The effect of compressibility

A compressible code is employed in order to capture the acoustic response of

the airfoil. This means that at low Mach numbers, due to the increased veloc-

ity of acoustic waves, very small time-steps must be used in order to capture

their propagation. This leads to dramatically increased computational cost at

low Mach numbers, and is clearly undesirable. Conversely, it is also undesirable

to perform these simulations at Mach numbers where compressibility effects

are pronounced, since aircraft operating at low Reynolds numbers will oper-

ate at very low Mach numbers. Therefore a Mach number of 0.4 was selected

as a compromise between computational requirements and the desire to min-

imise compressibility effects. The magnitude of compressibility effects present

in the simulation can be quantified a posteriori by comparing plots of Favre

averaged quantities, which include density weighting, to corresponding plots of

Reynolds averaged quantities for the fully developed three-dimensional flow. A

full discussion of Favre averaged quantities can be found in Huang et al. (1995).
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Figure 5.3: Comparison of time-averaged boundary layer profiles at x = 0.7 (—), x = 0.8
(−−), x = 0.9 (·−), x = 0.99 (· · ·) with Favre-averaged boundary layer profiles at x = 0.7 (¦),
x = 0.8 (M), x = 0.9 (◦), x = 0.7 (O) for case 3DF.

Essentially, f refers to the ensemble average of f , f̃ refers to the Favre average

of f , and

ũi =
ρui

ρ
, (5.1)

u′′i = ui − ũi, (5.2)

ũ′′i u
′′
j = u′iu

′
j − u′′i u′′j +

ρ′u′iu
′
j

ρ
. (5.3)

Comparing Reynolds and Favre averaged boundary layer profiles (figure 5.3) and

stresses (figure 5.4) for simulation 3DF (defined in section 5.5) clearly illustrates

that Reynolds averaged statistics are almost identical to Favre averaged statistics

for the current case. This suggests that compressibility effects are small, and

that plotting Reynolds averaged statistics, i.e. with no density weighting, is

sufficient. Additionally, linear stability analysis using an incompressible solver

will incur minimal error due to compressibility effects.

5.4 Volume forcing

Volume forcing is applied to the x and y momentum equations in the three-

dimensional simulation using the method outlined in section 2.2.10. The goal is

to introduce three-dimensional disturbances that are amplified in the free-shear

layer and subsequently break down to turbulence. Forcing is centred on the

location x = 0.1, y = 0.129, corresponding to a point within the boundary layer

of the time-averaged solution, and is periodic in both time and span. The forcing

is varied smoothly from a maximum at the centre of the forcing location to zero

at radius 5 × 10−3 from the forcing location. Frequencies were chosen based
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Figure 5.4: Comparison of Reynolds stresses with Favre-averaged stresses for case 3DF at
x = 0.7 (left) and x = 0.9 (right), showing u′u′ (—), v′v′ (−−), w′w′ (·−), u′v′ (· · ·), ũ′′u′′

(¦), ṽ′′v′′ (M), w̃′′w′′ (◦), ũ′′v′′ (O).

ω β
48.76 31.42
53.60 94.24
53.60 125.66

Table 5.2: Forcing parameters used for case 3DF.

on linear stability analysis of the time-averaged flowfield extracted from the

two-dimensional simulation (presented in section 7), selecting the most unstable

modes observed. Forcing was applied at several spanwise wavenumbers, with the

total amplitude 0.1% of the freestream velocity. Details of forcing parameters

are given in table 5.2, where ω = 2πf , with f the frequency, and β the spanwise

wavenumber.

5.5 DNS of forced and unforced laminar separation bub-

bles

Results from three DNS will be discussed, all run at Rec = 5 × 104, M = 0.4

and α = 5◦, with time-step ∆t = 1× 10−4, defined as follows:

Case 2D: The precursory two-dimensional simulation that was run in or-

der to provide a suitable initial condition for the subsequent three-dimensional

simulation, presented in section 4.3.

Case 3DF: The two-dimensional flowfield was extruded in the z-direction.

Three-dimensionality was then introduced by explicitly adding disturbances via

volume forcing, the goal being to excite unstable oblique modes which would

subsequently be amplified within the separated shear layer, leading to transition
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to turbulence.

Case 3DU: After an appropriate amount of statistical data was captured

from case 3DF, the simulation was progressed further in time with the explicitly

added forcing removed. The dependency of bubble behaviour on the addition of

disturbances could then be investigated.

5.5.1 Time dependent behaviour

In two-dimensions, the time dependent lift coefficient (CL) exhibits periodic

oscillatory behaviour with frequency f = 3.37 and (CL)RMS = 0.0172. As out-

lined in section 4.3.1, the cause of this behaviour can be attributed to periodic

vortex shedding from the separated shear-layer present on the upper airfoil sur-

face (figure 4.9c, section 4.3.1). This behaviour appears qualitatively similar

to that observed by Marxen et al. (2003) and Pauley et al. (1990) in flat plate

simulations, and results in the observed periodic oscillation in CL and CD.

Figure 5.5 shows a time-history of CL and CD starting at time t = 0, the start

of case 3DF and the point at which forcing was introduced. The time dependent

CL initially displays oscillatory behaviour associated with two-dimensional vor-

tex shedding. This oscillatory behaviour ceases by time t = 2, whereupon CL

increases significantly. At this stage in the flow development, time series of pres-

sure taken within the separated shear layer (figure 5.6, x = 0.4) clearly exhibit

periodic oscillation, associated with the strongly amplified instability waves in-

duced by the forcing. Downstream of the vortex shedding location, at x = 0.8,

the pressure signal is seemingly random, characteristic of turbulent fluctuations

passing the measurement location. Instantaneous iso-contours of vorticity taken

at the mid-span (figure 5.7, top) illustrate that the separated shear layer under-

goes transition to turbulence, and that a developing turbulent boundary layer

is now present over the aft section of the airfoil. Iso-surfaces of the secondary

invariant of the velocity gradient tensor, Q, illustrate structures present in the

transition region (figure 5.8, left). Structures within the boundary layer are

observed to break down to smaller scales, however no large-scale Λ-vortices are

observed here. After a transient lasting until approximately t = 6.3, case 3DF

settles to a stationary flow and statistics were taken for 6.3 < t < 14. Figure

5.5 illustrates the data capture period for both 3D simulations.

Case 3DF was then run further in time but with the forcing removed, and

the resultant simulation denoted 3DU. Upon removing the forcing, the turbu-

lent behaviour can be monitored by observing pressure fluctuations within the

boundary layer (figure 5.6). It can be seen that downstream of the separa-

tion bubble, at x = 0.8, the pressure fluctuations do not decrease. In fact,
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Figure 5.5: Left figure shows time dependent lift-coefficient, the dotted line indicates the
time at which forcing was removed (t = 14) and hatched areas indicate periods over which
statistical data capture was undertaken. Right figure shows time dependent skin friction drag
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Figure 5.6: Time dependent pressure within the boundary layer at x = 0.4 (lower curve) and
x = 0.8 (upper curve). The dotted line indicates the time at which forcing was removed.

the maximum amplitude of pressure fluctuations increases slightly. Oscillations

are still observed within the separated shear layer at x = 0.4, however the sig-

nal is lower in amplitude, more intermittent, and no longer dominated by the

forcing frequencies as observed in case 3DF. Statistics for case 3DU were taken

for 18.9 < t < 26.6. At the end of this period of time turbulent fluctuations

have still not decreased in amplitude, and the transition to turbulence appears

to self-sustain. Instantaneous iso-contours of vorticity taken at the mid-span

(figure 5.7, bottom) suggest that the height of the separated shear layer has

increased. Iso-surfaces of Q illustrate structures present in the transition region

(figure 5.8, right). In contrast to the forced case, much larger structures may be

observed, with clear spanwise orientation. These structures persist downstream

of the transition region of case 3DF, until they break down into turbulence that

still has a strong spanwise coherence. Animations of flowfield properties suggest

that the transition process is highly erratic for case 3DU; for example, large
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Figure 5.7: Iso contours of vorticity using 10 levels over the range ±200 for case 3DF at t = 14
(top) and case 3DU at t = 23.8 (bottom), taken at mid-span.

Figure 5.8: Iso-surfaces of the second invariant of the velocity gradient tensor at Q = 500, for
case 3DF at t = 14 (left) and case 3DU at t = 23.1 (right).

scale fluctuations reminiscent of two-dimensional vortex shedding are observed

to occur occasionally, which rapidly break down to turbulence.

5.5.2 Statistical analysis

Time dependent lift and drag coefficients are given in figure 5.5, with the asso-

ciated time-averaged values in table 5.3. It can be seen that whilst removal of

forcing leads to a slight increase in CL and a very slight decrease in friction drag

92



Case CL CD CDF CDP

2D 0.499 0.0307 0.0087 0.0220
3DF 0.615 0.0294 0.0095 0.0199
3DU 0.621 0.0358 0.0081 0.0278

Table 5.3: Time-averaged lift and drag coefficients for all cases.

(CDF ), pressure drag (CDP ) is subject to a significant increase. The net effect

is to decrease the lift-to-drag ratio from 21.1 to 17.2, hence it appears that the

presence of forcing significantly improves the aerodynamic performance of the

airfoil while requiring little energy input. By way of comparison, the synthetic

jets employed by You & Moin (2006) at Rec ≈ 9×106 operate with peak velocity

of the order 2u∞.

The displacement thickness across the separated region of case 3DF (fig-

ure 5.9, left) appears similar to that of the two-dimensional case in the region

0 < x < 0.35. It appears that transition to turbulence has decreased the bubble

length without significantly modifying the displacement thickness in the laminar

region. In contrast, the displacement thickness over the separated region of the

unforced case appears markedly different to that of either the two-dimensional

case or case 3DF; δ∗ increases much more rapidly with increasing x and reaches

a greater peak value at the rear of the bubble. The momentum thickness distri-

bution (figure 5.9, right) appears similar over the separated region for all three

cases. Given that the momentum thickness stays the same in this region, whilst

displacement thickness rises, this indicates that the separated shear layer in case

3DU has effectively increased in wall-normal distance from the airfoil. In the

turbulent region, both δ∗ and θ are larger in magnitude for case 3DU than for

case 3DF. By the airfoil trailing edge δ∗ and θ appear to be growing at a similar

rate in both three-dimensional cases.
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Figure 5.9: Time-averaged displacement thickness distribution (left) and time-averaged mo-
mentum thickness distribution (right), for the two-dimensional case (· · ·), case 3DF (−−) and
case 3DU (−−−).
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Dividing the distance from the separation point to the transition location

(defined as the location at which the turbulent kinetic energy, K, is a max-

imum), denoted Llam, by the momentum thickness at separation, θsep, gives

a non-dimensional measure of bubble length. Plotting this parameter versus

Reθsep allows a general comparison of the bubbles formed to those of existing

studies (figure 5.10). The first observation that can be made is that the separa-

tion bubbles studied here are formed at a comparatively low Reynolds number

compared to those of Gaster (1966), formed on a flat plate. The second ob-

servation is that the bubbles appear ‘long’. All of the bubbles observed by

Gaster below Reθsep = 250, which are those that are closest in size and Reθsep

to the current study, were deemed to have burst. However, Weibust, Bertelrud

& Ridder (1987) performed a study of separation bubbles formed on an airfoil

at Rec = 0.9 − 2.2 × 105. The bubbles observed by Weibust et al. were all be-

low Reθsep = 200 and appear similar in length to Gaster’s ‘burst’ bubbles. The

bubbles observed by Weibust et al. appear to be the most similar in nature to

those observed in the current study. In fact, the proximity of the two studies is

perhaps surprising given that the chordwise Reynolds numbers differ by a factor

of 20. Hence although the bubbles observed here would be classically termed

‘long’ or ‘burst’, they appear of realistic dimension when compared to the study

of Weibust et al.. The separation bubble studied by Spalart & Strelets (2000)

appears of similar length and Reynolds number to the burst bubbles observed

by Gaster, whereas the separation bubbles studied by Alam & Sandham appear

quite ‘short’, shorter in fact than any of Gaster’s bubbles.

Time-averaged pressure coefficient (Cp) distributions are plotted in figure

5.11, left. In all cases a pronounced pressure plateau is visible on the upper air-

foil surface, illustrating the presence of a separation bubble. Comparing cases

3DF and 3DU, it can be seen that the length of the pressure plateau has in-

creased significantly in the unforced case, whereas downstream of the bubble the

Cp distributions are similar. The slight CL increase observed in case 3DU is due

to the increased length of the pressure plateau. The increase in CDP for case

3DU can also be attributed to the increase in length of the pressure plateau,

since pressure recovery is delayed downstream of the point of maximum air-

foil thickness, in conjunction with the reduced suction peak observed near the

leading edge.

Time-averaged skin friction coefficient (cf ) distributions (figure 5.11, right)

give a quantitative measure of bubble length (table 5.4). Comparing the two-

dimensional simulation to case 3DF it can be seen that the bubble length has

decreased in the forced three-dimensional case. Due to transition to turbulence
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Figure 5.11: Time-averaged distributions of Cp (left) and cf (right) for the two-dimensional
case (· · ·), case 3DF (−−) and case 3DU (—).

and hence increased wall normal mixing, the reattachment point has moved up-

stream from x = 0.582 to x = 0.504. The separation point has also moved

upstream slightly in the forced three-dimensional case. Comparing the three-

dimensional cases, it can be seen that removing the forcing has increased the

bubble length significantly. The reattachment point has moved from x = 0.504

in case 3DF to x = 0.607 in case 3DU. The cf peak downstream of transition de-

creases upon removal of forcing, resulting in the slight decrease in CDF observed

in case 3DU.

The time-dependent nature of separation can be investigated by computing

probability density functions (PDFs) of cf . Ordinarily PDFs are constructed us-

ing a fixed number of ‘bins’ over a constant cf range. In the present study, time-

dependent cf behaviour was observed to vary dramatically with x-wise location,
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Case xsep xreatt

2D 0.151 0.582
3DF 0.133 0.504
3DU 0.099 0.607

Table 5.4: Time-averaged separation and reattachment points for all cases.

making this approach unsatisfactory. Instead, for each x-location the PDF was

constructed using 30 bins equally spaced over three standard-deviations about

the mean cf . PDF bounds are thus given by the equation

c̃f (x, i) = cf (x)− 3S(x) +
i− 1

29
6S(x), for i = 1, 30, (5.4)

where S(x) is the standard deviation of cf at location x. Using different upper

and lower bounds for each x-wise location means that the area under the PDF

varies with x. To avoid this, the normalised PDF (i.e. N/Ntotal, where N is

the number of samples in a given bin and Ntotal is the total number of samples

across all bins) is divided by the standard deviation, S(x). This ensures the area

under the PDF is constant.

Iso-contours of cf PDFs for a finite x-wise region on the upper airfoil surface

are plotted for each case. Figure 5.12 shows iso-contours of cf PDFs for the two-

dimensional case (top), case 3DF (bottom-left) and case 3DU (bottom-right).

The upper and lower PDF boundaries represent cf at three standard-deviations

from the mean, hence where the PDF is very narrow cf varies only little with

time, whereas where the PDF is wide cf varies strongly. Upstream of transition

cf displays little temporal variation in either case 3DF or case 3DU, confirming

that in this region the flow is effectively steady. Similarly, the two-dimensional

simulation exhibits little temporal variation upstream of the onset of vortex

shedding. Downstream of transition there is considerable variation in cf for all

cases, as illustrated in figure 5.12 by the comparatively large width of the PDF

distributions compared to cf . Although all cases exhibit large temporal variation

of cf over the aft section of the airfoil, the two-dimensional and three-dimensional

PDF distributions appear fundamentally different in this region. The three-

dimensional PDF distributions appear smooth and symmetric about the mean

cf , whereas the two-dimensional PDF exhibits greater temporal variation overall

and in certain locations has more than one maximum. For all cases, downstream

of transition (or onset of vortex shedding in the two-dimensional case) there is

no location where cf is positive for 100% of the time, or negative for 100% of the

time. That is to say, even where the time-averaged cf suggests the boundary

layer is attached, there will be some degree of reverse flow observed in the
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Figure 5.12: Iso-contours of the normalised cf PDF, n/(S(x)nt), for the two-dimensional case
(top), case 3DF (bottom-left) and case 3DU (bottom-right), using 12 levels exponentially
distributed over the range 2 to 1000.

instantaneous flowfield, and vice versa for separated boundary layer regions.

Plotting PDFs at the mean reattachment point (figure 5.13, left), i.e. where

cf = 0, illustrates the different distributions of the cf fluctuations. For both

three-dimensional cases the time dependent cf varies strongly over the range

±0.02 at this location, and for the two-dimensional case the variation is even

greater. To put this into context, the maximum time-averaged cf observed in the

attached turbulent boundary layer in any case was 7.6×10−3 (figure 5.11). Hence

at the reattachment point, where the time-averaged cf is zero, the instantaneous

cf reaches more than double the maximum cf observed after reattachment.

Downstream of transition (e.g. figure 5.13, right) the shape of the PDF dis-

tribution appears similar for both case 3DF and case 3DU; a symmetric distrib-

ution about the mean cf . The PDF distribution for the two-dimensional case is

markedly different at this location however, consisting of a skewed distribution

exhibiting two peaks at positive cf , and a plateau extending to another peak at

cf = −0.02. For the three-dimensional cases the cf PDF downstream of tran-

sition can be approximated by two parameters, cf (x) and S(x), with minimal

loss of information. The two-dimensional simulation appears to exhibit funda-

mentally different behaviour however, and cannot be modelled in this fashion.

Spanwise coherence can be determined by computing two-point spanwise cor-

relations of surface pressure, defined as
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Figure 5.13: Probability density functions of cf taken at reattachment (left), and at x = 0.85
(right) for the two-dimensional case (· · ·), case 3DF (−−) and case 3DU (—).

Cz1z2 =
Sz1z2

σz1σz2

, (5.5)

where Sz1z2 is the covariance of surface pressure for z1 and z2, and σzn is the

standard deviation of surface pressure at zn. Two-point spanwise correlations of

surface pressure taken at several x-locations for case 3DF are displayed in figure

5.14 (left). For x ≤ 0.2, Cz1z2 is close to 1 across the entire span, hence there is

strong positive spanwise correlation. The strong spanwise correlation suggests

that boundary layer fluctuations are primarily two-dimensional in this region.

By x = 0.4 there is strong negative correlation, with Cz1z2 ≈ −0.75. For case

3DF the spanwise wavenumber β = 2π/Lz was forced at double the amplitude of

higher wavenumber modes. The strong negative correlation observed at x = 0.4

can be attributed to the strong amplification within the separated shear layer of

perturbations with wavenumber β = 2π/Lz introduced by the volume forcing.

Downstream of x = 0.4, Cz1z2 decreases in amplitude until by x = 0.7 there is

minimal correlation. This would appear to justify the spanwise domain width

of z = 0.2 as being sufficiently large.

Case 3DU (figure 5.14, right) exhibits very different behaviour. For x < 0.3

the surface pressure appears perfectly correlated. In the region 0.3 ≤ x ≤ 0.5

surface pressure becomes slightly less correlated, however unlike case 3DF no

negative correlation is observed. This appears to confirm that the negative cor-

relation observed in case 3DF is caused by forcing the boundary layer. Down-

stream of transition surface pressure becomes less correlated, but Cz1z2 only de-

creases to around 0.3. Thus case 3DF exhibits significant correlation in surface

pressure downstream of transition. However, referring to instantaneous plots of

Q (figure 5.8), in case 3DU large structures are observed with strong spanwise

coherence that are not observed in case 3DF. The non-zero correlation observed
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Figure 5.14: Two-point spanwise correlations of surface pressure for case 3DF (left) and case
3DU (right), at x-locations 0.1 (¦), 0.2 (M), 0.3 (¤), 0.4 (◦), 0.5 (O), 0.6 (− · ·), 0.7 (· · ·), 0.8
(−−), and 0.9 (—).

Figure 5.15: Iso contours of K for case 3DF (left) and 3DU (right), using 20 levels over the
range 0 to 0.11.

in downstream of transition for case 3DU serves to confirm quantitatively that

the turbulence downstream of reattachment retains significant spanwise coher-

ence all the way to the trailing edge.

Iso contours of turbulent kinetic energy, K, are plotted in figure 5.15, and

the variation of the maximum K in the wall normal direction with x-location

is plotted in figure 5.16. Upon removal of forcing a significant increase in peak

K is observed (increasing from 0.074 to 0.124), thus it appears the transition

process in the unforced case is more energetic than in the forced case. In case

3DU the peak K occurs upstream of the time-averaged reattachment point,

whereas in case 3DF the peak K occurs in the direct vicinity of reattachment,

which may explain why the peak cf is lower in case 3DU (figure 5.11). At all

locations downstream of transition K is greater in magnitude for case 3DU than

for case 3DF by approximately 50%, hence the intensity of turbulent fluctuations

downstream of transition appears significantly greater for case 3DU.

Boundary layer profiles for the laminar region of case 3DF and case 3DU,

normalised by the displacement thickness and edge-velocity (defined as the max-

imum u(η) occurring at the corresponding x-location), are plotted in figure 5.17.

Visual inspection suggests that the amount of shear in boundary layer profiles

from case 3DU is greater than that of case 3DF. The amount of shear can be
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Figure 5.17: Time-averaged boundary layer profiles taken at selected x-locations within regions
of laminar flow, from case 3DF (left) and case 3DU (right), showing x = 0.1 (—-), x = 0.2
(−−), x = 0.3 (− ), x = 0.4 (− · ·) and x = 0.5 (· · ·).

quantified by considering the maximum du/dy observed, which for case 3DF is

1.38 (at x ≈ 0.4), compared to 2.20 (again at x ≈ 0.4) for case 3DU. Rist &

Maucher (2002) suggest that the shear-layer strength is a critical parameter for

the onset of absolute instability. This suggests that case 3DU should exhibit

increased tendency toward absolute instability, as well as increased convective

instability growth rates. This is confirmed by the linear stability analysis per-

formed in chapter 7.

Boundary layer profiles extracted from the turbulent regions of case 3DF and

case 3DU are plotted in figure 5.18, using wall-scaling. It is apparent that at

no point in either simulation does the boundary layer appear to be approaching

log-law behaviour. This is not surprising, since previous studies (e.g. Alam &

Sandham, 2000) suggest that relaxation to log-law behaviour takes of the order

of seven bubble lengths to occur. In the current study the flow reaches the

trailing edge less than two bubble lengths after reattachment, and the turbulent

boundary layer is formed under an adverse pressure gradient.
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Figure 5.18: Time-averaged boundary layer profiles taken at selected x-locations within regions
of turbulent flow, from case 3DF (left) and case 3DU (right), showing x = 0.6 (—-), x = 0.7
(−−), x = 0.8 (· − · ), x = 0.9 (− · ·) and x = 0.99 (· · ·). Red lines show u+ = y+ and
u+ = 1/0.41log(y+) + 5.

Reynolds stress profiles, plotted in wall-scaling for locations within the tur-

bulent region, are given for case 3DF in figure 5.19 and for case 3DU in figure

5.20. The Reynolds stress profiles for case 3DF appear qualitatively similar over

the range 0.7 ≤ x ≤ 0.99; u′u′ exhibits a clear peak near the wall, at y+ = 10,

and a broad ‘bulge’ in the region 30 < y+ < 90. Alam & Sandham (2000)

provide K budgets at three locations for a separation bubble induced on a flat

plate; near the reverse flow vortex all significant non-zero terms were located

within the free-shear layer, whereas far downstream of the bubble all activity

was located near the wall. At an intermediate location one bubble-length down-

stream of reattachment however, the budget displayed characteristics of both a

newly forming turbulent boundary layer (for y+ < 20) and a free-shear layer (for

y+ => 60). The u′u′ profiles for case 3DF suggest that the turbulent bound-

ary layer is at this intermediate stage; the near wall-peak is reminiscent of a

turbulent channel or boundary layer flow (e.g Kim et al., 1987; Spalart, 1988)

and the plateau for 30 < y+ < 90 appears associated with the mixing-layer type

behaviour observed by Alam & Sandham.

Case 3DU exhibits slightly different behaviour (figure 5.20). The first observa-

tion is that the Reynolds stress profiles are less smooth for case 3DU. Statistical

data was taken for the same period of time as for case 3DF, hence it appears

that the turbulent region exhibits more erratic or intermittent behaviour for

case 3DU. Secondly, both axes had to be re-scaled since both the magnitude of

Reynolds stresses and the wall-normal distance over which the turbulent behav-

iour occurs is greater. The skin-friction in the range 0.7 ≤ x ≤ 0.99 is similar

for cases 3DF and 3DU, hence differences in the magnitude of Reynolds stresses

will still be observed if wall-scaling is not employed. Unlike case 3DF, for which
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a well-defined peak and plateau were observed, for case 3DU two clear peaks

are observed in u′u′. The peak nearest the wall for case 3DU is broader and

less distinct than that of case 3DF, occurring in the range 10 < y+ < 40, and

does not appear to resemble that of a turbulent boundary layer so closely. For

case 3DF, u′u′ was observed to be significantly larger at the near-wall peak than

at any other location. In contrast, for case 3DU the outer peak is of a similar

amplitude to the inner peak, suggesting that turbulent fluctuations associated

with mixing-layer type behaviour are stronger here. It is also noticeable that in

contrast to turbulent boundary layers or channel flow, v′v′ and w′w′ appear of

similar amplitude to u′u′ for case 3DU. This would also suggest that the dom-

inant turbulent behaviour is relatively unaffected by the presence of the airfoil

surface. Indeed, mixing layer flow exhibits peak v′v′ and w′w′ values that are

closer in amplitude to u′u′ than for turbulent boundary layers or channel flow

(Rogers & Moser, 1994). These differences are likely to be related to the occur-

rence of large-scale events, appearing partially reminiscent of two-dimensional

vortex shedding events, that appear to be active in case 3DU but are not ob-

served for case 3DF.

5.6 Summary

DNS were conducted of a laminar separation bubble on a NACA-0012 airfoil at

five degrees incidence. The three-dimensional separation bubble was found to

be highly dependent on the presence of forcing. Compared to the unforced case,

the inclusion of forcing increases the lift-to-drag ratio by approximately 23%

and significantly reduces the intensity of turbulent/unsteady fluctuations over

the airfoil. In particular, the addition of forcing appears to reduce the intensity

of turbulent fluctuations away from the wall. Fluid structures downstream of

transition are found to exhibit increased spanwise coherency in the unforced

case. Forcing in a similar fashion could therefore potentially be used as a control

mechanism for improving low Reynolds number airfoil performance. Both of

the three-dimensional separation bubbles exhibited large temporal variation of

skin-friction. At no point downstream of transition was the flow either fully

attached or fully separated, suggesting that the concept of a reattachment ‘point’

is misleading. Comparison of skin-friction PDFs illustrates that time-dependent

behaviour of the two-dimensional separation bubble is fundamentally different

to that of the three-dimensional bubbles.

It is important to note that upon removal of forcing, although the bubble

properties change significantly, the bubble does not revert to two-dimensional
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behaviour. If the bubble were purely convectively unstable, one would expect

turbulent fluctuations to convect downstream and ultimately leave the flow over

the airfoil in an unperturbed state. This is clearly not the case, and some other

local or global instability mechanism must be present in order for the turbulence

to self-sustain. This issue will be studied in more detail in chapter 8.
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Figure 5.19: Reynolds-stresses for case 3DF, showing u′u′ (—), v′v′ (−−), w′w′ (− ·) and u′v′

(· · ·), taken at x-locations indicated on the upper airfoil surface.
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Figure 5.20: Reynolds-stresses for case 3DU, showing u′u′ (—), v′v′ (−−), w′w′ (− ·) and
u′v′ (· · ·), taken at x-locations indicated on the upper airfoil surface.
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Chapter 6

The effect of incidence on

separation bubble behaviour

6.1 Introduction

When an airfoil is subject to a change of incidence, the pressure distribution

and the structure of the boundary layer will change in a coupled fashion. Where

a laminar separation bubble is present, the system becomes more complex; the

separation and reattachment points will translate, the boundary layer stability

characteristics will alter and hence transition to turbulence will occur at a differ-

ent streamwise location. The effect of increasing incidence on separation bubble

behaviour is therefore complex.

Flat plate simulations have been proven able to reproduce experimental data

by using suitable viscous-inviscid interaction based boundary schemes (Maucher

et al., 2000), however non-dimensional parameters (e.g. inlet δ∗) and the pres-

sure distribution must be specified a priori and cannot vary significantly during

the simulation. The velocity distribution in the potential flow region must be

known beforehand and will be dependent not only on the airfoil geometry and in-

cidence, but also the boundary layer properties, which will in turn depend upon

transitional behaviour. Furthermore, any time-dependent behaviour related to

changes in circulation about the airfoil will not be captured.

In this chapter the effect of incidence on separation bubble behaviour will be

investigated by performing a further three-dimensional simulation at incidence

α = 7◦, and comparing results to those observed at α = 5◦.
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6.2 Simulation parameters

Similar methodology is employed for the simulation at α = 7◦, as for the three

dimensional simulations at α = 5◦ presented in chapter 5. The computational

domain is of the same dimensions, and the grid is generated with similar res-

olution and numbers of grid-points. The initial condition is generated in the

same way, i.e. by running a precursory two-dimensional simulation and extrud-

ing the flowfield in the z-direction, however three-dimensionality is introduced

in a different manner. The simulation is run at Rec = 5 × 104, M = 0.4, with

time-step ∆t = 1.4× 10−4; selected results from the precursory two-dimensional

simulation were given in chapter 4, section 4.4. The simulation is analogous to

case 3DU, where no explicitly added forcing was present, except the airfoil inci-

dence is α = 7◦. For the sake of conciseness the simulation will be referred to as

simulation 3D7 henceforth. Where comparisons are made to results at α = 5◦,

case 3DU is being referred to unless explicitly stated otherwise.

6.3 Grid properties

The grid used for simulation 3D7, denoted grid G7, was generated based on

experience producing grids for the three-dimensional simulations at incidence

α = 5◦ presented in chapter 5. Similar numbers of grid points and similar

resolution were employed, although the precise distribution of grid-points over

the airfoil surface has been modified to suit the differences in the flow at α = 7◦.

In particular, the resolution is increased slightly in the region where transition

is expected (0.2 < x < 0.4). Preliminary studies using XFoil Drela & Giles

(1987) suggest that the time-averaged skin-friction in the turbulent region at

α = 7◦ will not increase over that at α = 5◦, hence the grid-resolution will not

need to be increased in this region in order to achieve the same resolution in

wall-units. Grid parameters are given in tables 6.1, and the grid resolution at

specified control points is the same as that of grid G3, given in table 4.4 section

4.3.1.

As for simulations at α = 5◦, during the initial stages of the 3D simulation

flowfield properties were checked in order to confirm that all fluid structures ap-

peared resolved and a final confirmation of adequate spatial and temporal reso-

lution is provided by a posteriori statistical analysis of the DNS data. The max-

imum cf observed was approximately the same as that of case 3DU, and hence

the resolution in wall-units is approximately the same (section 5, table 5.1), and

compares favourably with that of well-resolved plane-channel flow (Sandham

et al., 2002).
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Nξ 2587
Nξ airfoil 1507
Nξ wake 753

Nη 692
Ntotal 1790204

Wake length - W 5
Radius - R 5.3

Buffer length 0.6
Buffer points 31

Total domain length 12.2
Total domain height 10.6

Table 6.1: Grid parameters for grid G7.
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Figure 6.1: Temporal power spectra of K (left), taken at x = 0.9 at the airfoil mid-span for
case 3D7 at y+ = 8.6, y+ = 101 and y+ = 238 moving from top-to-bottom, and spanwise
power spectra of K (right), integrated over the range 1 < y+ < 50, taken for the case at
α = 7◦ at x = 0.8 (−), x = 0.9 (−−), and x = 1.0 (− ·).

In order to confirm that turbulent behaviour is resolved over all time and

length scales, power spectra of turbulence kinetic energy, K, are computed in

the same manner specified in chapter 5, section 5.2. Figure 6.1 (left) displays

spanwise power spectra of K taken at three x-locations. A decreased magnitude

of roll-off is observed compared to cases at α = 5◦, however the spectra still

compare reasonably well with Spalart (1988). Temporal power spectra of K

at specific locations (figure 6.1, right) are computed using three segments and

Hanning windowing (as detailed in section 2.3), and display a minimum roll-off

of 106 with increasing frequency.

6.4 Simulation initialisation

The flowfield from the two-dimensional simulation at α = 7◦ presented in chap-

ter 4 is extruded in the z-direction and used as the initial condition. No ex-

plicitly added time-periodic forcing is introduced, instead a narrow strip of w-
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Figure 6.2: Iso-contours of spanwise vorticity for case 3D7, using 20 levels over the range
±200.

velocity perturbations in the form of white-noise is added at t = 0, at (x, y) =

(0.05, 0.153), and no further perturbations are added. Perturbations are added

over an area of 3 × 3 grid-points in ξ and η, and span the entire domain. The

simulation is progressed in time and behaviour is monitored by point readings

of w-velocity. In this manner, should the simulation be stable to the initial

perturbation, the simulation can be halted.

6.5 Time-dependent behaviour

Upon progressing the simulation the upper surface boundary layer is observed

to be unstable to the initial perturbation, undergoing transition to turbulence

within approximately two and a half non-dimensional time-units, and the tran-

sition process is observed to self-sustain as at α = 5◦. The structure of the

flow field, including turbulent behaviour, is clearly illustrated by plotting iso-

contours of vorticity (figure 6.2). Qualitative observations are that the bubble

appears shorter, and the turbulent boundary layer thicker, than for case 3DU.

Upon transition to turbulence, large amplitude, high frequency fluctuations in

lift-coefficient associated with the irregular vortex shedding cease and the lift-

coefficient increases (figure 6.3, left). The drag coefficients remain approximately

the same (figure 6.3, right), although again the large amplitude, high frequency

fluctuations cease. The simulation is progressed until t ≈ 16, and statistical

data is captured over the final 7.7 time-units, as for cases 3DF and 3DU.

Pressure is monitored at specific locations within the airfoil boundary layer,

however point-pressure readings are unavailable for the first 2.8 time units, since

during this time w-velocity was monitored instead (discussed in chapter 8, sec-

tion 8.5). At x = 0.6 the pressure signal is appears random, and is characteristic

of the passage of turbulent flow. At x = 0.2, within the separated shear layer,
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Figure 6.3: Time-dependent lift-coefficient (left) and time-dependent drag coefficients (right)
for case 3D7. The shaded area indicates the period for which statistics were taken, right hand
image shows skin-friction drag (−·), pressure-drag (−−) and total drag (—).

pressure oscillates but with a seemingly more narrow frequency content.
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Figure 6.4: Time dependent pressure within the boundary layer at x = 0.2 (lower curve) and
x = 0.6 (upper curve) for case 3D7.

Fluid structures present in the transition region are illustrated by plotting

iso-surfaces of the second invariant of the velocity gradient tensor, Q (figure

6.5). Large structures are observed to break down very rapidly to small scale

turbulence. The large structures do not appear to be orientated in the spanwise

direction as for case 3DU. Interestingly, at t = 10.5 the largest structure present

appears oblique in nature, being aligned approximately φ = 14◦ to the z-axis.

Caution should be exercised before assuming this behaviour is always present

however, since if the same quantity is plotted at time t = 11.2 (figure 6.5, right),

the behaviour is not clearly observed. Upon breakdown to turbulence a variety

structure scales are visible, however the behaviour appears highly disordered

and no regularly occurring coherent structures are observed, e.g. Λ-vortices.
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Figure 6.5: Iso-surfaces of Q = 500 for case 3D7, taken in the transition region at time t = 10.5
(left) and t = 11.2 (right).

Case CL CD CDF CDP

2D 0.648 0.0498 0.0082 0.0416
3D7 0.694 0.0461 0.0083 0.0377
3DU 0.621 0.0358 0.0081 0.0278

Table 6.2: Time-averaged lift and drag coefficients for cases 3DU, 3D7, and the two-
dimensional simulation at α = 7◦.

6.6 Statistical analysis

The time-averaged lift and drag-coefficients for case 3D7 and 3DU are given

in table 6.2. The increased incidence over case 3DU results in increased lift-

coefficient and pressure drag-coefficient, and a reduction in the lift-to-drag ratio.

The time-averaged skin-friction coefficient and pressure-coefficient distributions

are plotted in figure 6.6. The time-averaged skin-friction coefficient distribu-

tion illustrates that increasing the incidence has decreased the length of the

separation bubble. The separation point has moved upstream from 0.099 to

x = 0.0489, and the reattachment point has moved upstream from 0.607 to

0.390, hence the total bubble length has decreased from 0.508 to 0.341. Ac-

cordingly, the time-averaged pressure coefficient distribution exhibits a shorter

pressure plateau associated with the separation bubble, which also possesses

greater pressure magnitude than for case 3DU. The negative skin-friction peak

just before reattachment is greater in magnitude than for case 3DU, suggesting

that the reverse-flow vortex is stronger in magnitude. The maximum reverse

flow observed in the time-averaged flowfield is 17.9%, significantly greater than

that observed at 5◦ (15.2%) which would appear to confirm that this is the case.

Visual inspection suggests that the skin-friction and pressure coefficient distri-

butions exhibit very slight local maxima at the rear of the separation bubble,

reminiscent of those observed for the two-dimensional simulation, at x = 0.275

for skin-friction, and x = 0.3 for pressure.
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Case xsep xreatt

2D 0.053 0.402
3D7 0.049 0.390
3DU 0.099 0.607

Table 6.3: Time-averaged separation and reattachment points for cases 3DU, 3D7, and the
two-dimensional simulation at α = 7◦.
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Figure 6.6: Time-averaged skin-friction coefficient distribution (left) and pressure coefficient
distribution (right) for cases 3DU (−−), 3D7 (—), and the two-dimensional simulation at
α = 7◦ (· · ·).

The time-averaged displacement thickness grows more rapidly with increasing

x-location at α = 7◦ than at α = 5◦ due to the stronger adverse pressure gra-

dient. This is true both for the laminar separated region, and for the turbulent

boundary layer. The peak displacement thickness before transition and reattach-

ment is larger at α = 5◦ however. Momentum thickness across the separated

shear-layer varies minimally from case to case. Upon transition the momentum

thickness increases rapidly and at an approximately similar rate with increasing

x for both case 3DU and case 3D7. The shape factor H = δ∗/θ increases more

rapidly over in the turbulent boundary layer for case 3D7 than for case 3DU, as

a result of the stronger adverse pressure gradient. This would imply a greater

tendency toward separation in this region.

Probability density functions of skin-friction were computed using the same

method as in 5, section 5.5.2, and are plotted in figure 6.8 for both the two and

three-dimensional cases at α = 7◦. The PDFs appear qualitatively similar to

those at α = 5◦, consisting of a smooth symmetric distribution about the mean

skin-friction. Again, the skin-friction is most unsteady in the transition region at

the rear of the separation bubble. The skin-friction PDF at reattachment (figure

6.8, left) again shows that comparatively large non-zero values of skin-friction

regularly occur here, even though the time averaged skin-friction is zero; the

time-averaged skin-friction coefficient varies over the range ±2×10−2, compared

to a peak value of 6.2×10−3 in the turbulent region. Both the size and shape of
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Figure 6.7: Time-averaged displacement-thickness distribution (left) and momentum-thickness
distribution (right) for cases 3DU (−−), 3D7 (—), and the two-dimensional simulation at
α = 7◦ (· · ·).

the skin-friction PDF at this location appear remarkably similar to case 3DU.

At x = 0.85, (figure 6.8, left) the skin-friction PDF is significantly narrower for

α = 7◦ than for α = 5◦, indicating that the time-dependent behaviour is more

steady. The time-averaged skin-friction (figure 6.6) is lower at this location for

α = 7◦, hence the skin-friction is negative at this location for a greater percentage

of time. Although the flow is attached in the mean, the stronger adverse pressure

gradient increases the probability that instantaneous separation will occur when

compared to the equivalent case at α = 5◦.

The skin-friction PDF of the two-dimensional simulation at α = 7◦ appears

different to that at α = 5◦. The PDF at α = 5◦ contained several regions where

there appeared to be two PDF maxima at a given x-location, and the PDF

exhibited a wave-like pattern similar to that observed in time-averaged skin-

friction distributions. At α = 7◦ there appear to be two maxima at x ≈ 0.35,

however downstream of the onset of vortex shedding there appears to be only one

maxima present at any given x-location, and no wave-like patterns are present.

The differences between the two-dimensional cases can probably be attributed to

the different vortex shedding behaviour observed; at α = 5◦ the vortex shedding

was regular and periodic, whereas at α = 7◦ the vortex shedding occurred at

a range of frequencies. Comparing the two-dimensional skin-friction PDF at

reattachment and at x = 0.65 to that of the three-dimensional simulation reveals

that although only one maximum is present for the two-dimensional case, the

PDF is fundamentally different in that it is significantly skewed at both locations.

Interestingly, the skin-friction PDF of the two-dimensional case indicates that

the separated shear-layer is much more unsteady than for the three-dimensional

simulation, as illustrated by the increased thickness in the region 0.1 ≥ x ≥ 0.2

(figure 6.8, top). It seems likely that the large-scale vortex shedding motion
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exerts greater influence on the laminar region than the smaller scale unsteadiness

present when vortex shedding is suppressed by transition to turbulence. A

similar tendency to increased unsteadiness can be observed at α = 5◦, however

the increase is only very slight at that incidence.

Figure 6.8: Iso-contours of the normalised cf PDF, n/(S(x)nt), both the two-dimensional (top)
and three-dimensional (bottom) case at α = 7◦, using 12 levels exponentially distributed over
the range 2 to 1000.
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Figure 6.9: Probability density functions of cf taken at reattachment (left), and at x = 0.85
(right) for cases 3DU (−−), 3D7 (—), and the two-dimensional simulation at α = 7◦ (· · ·).
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Two-point spanwise correlations of surface pressure are computed as de-

scribed in chapter 5, section 5.5.2, and are plotted in figure 6.10. At x = 0.1

there is strong spanwise correlation, suggesting that boundary layer fluctuations

are primarily two-dimensional in this region. At x = 0.2 less correlation is ob-

served, which is expected since three-dimensional perturbations are expected to

be amplified over the extent of the separated shear layer. At x = 0.3, how-

ever, there is significant negative spanwise correlation. Negative correlation was

observed throughout the separated region for case 3DF, and was attributed to

the presence of forcing with spanwise wavenumber equal to the domain width,

however no forcing was introduced for α = 7◦. By x = 0.4 the flow exhibits near

zero spanwise-correlation, indicating that the flow is fully three-dimensional and

that the domain is sufficiently wide such that the turbulence is not constrained

in the z-direction. Downstream of x = 0.4 the spanwise correlation increases

with increasing x-location.

The two unexpected features of the spanwise correlation are the negative

correlation observed at x = 0.3, and the tendency for the flow to become more

correlated with increasing x-location in the region 0.4 < x < 1. The presence of

negative correlation in the transition region perhaps suggests that in the early

stages of transition some form of disturbance mode is present with spanwise

wavelength λ = Lz. Three-dimensional plots of Q (figure 6.5) illustrate behav-

iour that, should it occur regularly, may explain the anti-correlation. Figure

6.5a displays oblique structures orientated at approximately 14◦ to the z-axis.

Since these structures are periodic in the z-direction, at a given x-location the

flow at z = 0 will be out of phase with the flow at the mid-span. Therefore,

if this behaviour occurs for an appreciable percentage of time, the phase differ-

ence will result in anti-correlation. The nature of boundary layer fluctuations in

the transition region was investigated by computing Fourier transforms of the

time-dependent surface pressure. Plotting the real coefficient for specific fre-

quencies revealed that in addition to predominantly two-dimensional boundary

layer disturbances, oblique modes are indeed also present. This is illustrated

in figure 6.11. Given three frequencies that differ only slightly, three distinct

perturbation forms are observed; an oblique mode with positive phase angle,

an oblique mode with negative phase angle and a mode with zero phase an-

gle. The occurrence of this behaviour is expected, since weakly oblique modes

are only marginally more stable than two-dimensional fluctuations (Dovgal, Ko-

zlov & Michalke, 1994). The finite spanwise domain width, in conjunction with

the presence of oblique modes appears responsible for the negative correlation

observed.
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Figure 6.10: Two-point spanwise correlations of surface pressure for the case at α = 7◦, at
x-locations 0.1 (¦), 0.2 (M), 0.3 (¤), 0.4 (◦), 0.5 (O), 0.6 (− · ·), 0.7 (· · ·), 0.8 (−−), and 0.9
(—).

The increased correlation with x-location in the region 0.4 < x < 1 may

interpreted two ways. It could be conceived that the increase in correlation is

in fact physical and that the turbulence is exhibiting increased spanwise coher-

ence as for case 3DU. The absence of large scale structures exhibiting spanwise

coherence, as observed for case 3DU (chapter 5), would not tend to support this

argument however. The second interpretation would be that the spanwise do-

main width is affecting the physics of the flow. The boundary layer is increasing

in thickness in this region due to the adverse pressure gradient present. This

means that the largest length scale associated with the turbulent boundary layer

is also increasing, hence it is possible that the computational domain begins to

constrain the turbulence in the z-direction in this region. At the trailing edge

the displacement thickness is δ∗ = 0.05, and hence the domain width is equal

to 4δ∗. It should be noted however that compared to simulations presented in

chapter 5, the ratio of spanwise domain width to separation bubble length has

in fact increased.

The time-averaged turbulent kinetic energy, K, is plotted in figure 6.12, and

the variation of y-maximum K with x-location is plotted in figure 6.13. The

peak K occurs at x = 0.33, just downstream of the vortex shedding location in

the two-dimensional simulation. The peak K observed is significantly greater

in amplitude than for case 3DU, however downstream of transition K decreases

more rapidly than for case 3DU. The decay rate of K decreases with increasing

x-location, and K appears to almost, but not quite, reach dK/dx = 0 at x = 1.

Boundary layer profiles for the laminar region of case 3D7, normalised by
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Figure 6.11: Iso-contours of the real-coefficient of the Fourier transformed surface pressure at
frequencies f = 11.04 (top), f = 11.17 (middle) and f = 11.29 (bottom), showing the range
±5× 10−3.

Figure 6.12: Iso-contours of turbulence kinetic energy, K, for case 3D7, using 20 levels over
the range 0 to 0.16.
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Figure 6.13: Variation of the y-maximum turbulent-kinetic energy, K, with x-location for case
3DU (−−)and 3D7 (—).

the displacement thickness and edge-velocity, are plotted in figure 6.14 (left). A

measure of the shear-layer strength is given by the maximum du/dy observed,

which for case 3D7 is 2.32 (at x ≈ 0.25), compared to 2.20 (at x ≈ 0.4) for
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Figure 6.14: Time-averaged boundary layer profiles taken at selected x-locations within regions
of laminar flow, non-dimensionalised with displacement thickness (left) showing x = 0.05 (—
-), x = 0.1 (−−), x = 0.2 (−·) and x = 0.3 (· · ·), and at selected x-locations within regions of
turbulent flow, scaled in wall-units (right) showing x = 0.5 (—-), x = 0.6 (−−), x = 0.7 (−·),
x = 0.8 (−− ·), x = 0.9 (− · ·) and x = 0.99 (· · ·) for case 3D7. Red lines show u+ = y+ and
u+ = 1/0.41log(y+) + 5.

case 3DU. This suggests that the laminar region will be slightly more unstable,

and exhibit a slight increase in tendency toward absolute instability (Rist &

Maucher, 2002). The effect of increasing incidence from α = 5◦ to α = 7◦

upon shear layer strength appears modest compared to the effect of adding

boundary layer disturbances however (chapter 5). As for case 3DF, velocity

profiles in the vicinity of the maximum reverse flow location exhibit decreased

shear-layer strength when compared to profiles located just upstream. Boundary

layer profiles extracted from the turbulent regions of case 3D7 are plotted in

figure 6.14 (right), using turbulent scaling. As for simulations at α = 5◦, at no

point does the boundary layer appear to be approaching log-law behaviour.

Reynolds stresses are plotted using wall-scaling in figure 6.15 at locations

within the turbulent region for case 3D7. For case 3DU two peaks were observed

in u′u′; one near the wall, at x+ ≈ 20, and one at y+ ≈ 100. For case 3D7 u′u′

appears greatest at y+ ≈ 70 at all locations, and the near-wall peak appears hard

to discern. In any event, u′u′ is noticeably lower in the vicinity of the wall than at

y+ ≈ 70. It appears that at this incidence turbulent fluctuations associated with

mixing-layer type behaviour are stronger than near-wall fluctuations associated

with a developing turbulent boundary layer, more so than for case 3DU.

6.7 Summary

The effect of incidence upon separation bubble behaviour was investigated by

performing a direct numerical simulation of the flow around a NACA-0012 airfoil

at seven degrees incidence in three-dimensions, thus complementing the simu-
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lations performed at five degrees presented in chapter 5. A low-amplitude pertur-

bation was introduced at initialisation, in order to introduce three-dimensionality,

and no further disturbances were added. The upper surface boundary layer was

observed to be unstable to the initial perturbation, undergoing transition to

turbulence, and the transition process was observed to self-sustain as at α = 5◦.

Although the transition process appears more energetic at α = 7◦, the turbulent

fluctuations appeared to decrease in intensity more rapidly in the streamwise

direction than at α = 5◦. Reynolds stress profiles taken in the turbulent region

suggest that near-wall fluctuations are weaker in amplitude than fluctuations

away from the wall. Oblique instability waves were observed in the transition

region, which led to negative correlation of surface pressure in this region.
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Figure 6.15: Reynolds-stresses for case 3D7, showing u′u′ (—), v′v′ (−−), w′w′ (− ·) and u′v′

(· · ·), taken at x-locations indicated on the upper airfoil surface.
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Chapter 7

Stability analysis of the

time-averaged flowfields

7.1 Introduction

Having performed simulations of both forced and unforced separation bubbles at

5◦ incidence in chapter 5, and of an unforced separation bubble at 7◦ incidence

in chapter 6, the time-averaged flowfields extracted from these simulations can

be investigated in terms of their stability characteristics. The goal of this chap-

ter is to determine the stability characteristics of the separation bubbles, and

to determine whether any regions of absolute instability are present that may

explain the self-sustaining turbulence observed at both 5◦ and 7◦. In order to

achieve this, a combination of linear stability analysis and forced Navier–Stokes

simulations is employed.

7.2 Linear stability analysis

Linear stability analysis of the time-averaged flowfield is comparatively inexpen-

sive and can be used to investigate both absolute and convective instability be-

haviour. The assumption of parallel flow is made in deriving the Orr–Sommerfeld

equation (the governing equation of the linear stability analysis performed here,

see section 2.4), however despite this it is commonplace to perform linear stabil-

ity analysis on nonparallel flows, including separation bubbles. Results from such

studies have been found to agree well with both numerical simulation (Bestek,

Gruber & Fasel, 1989) and experimental data (Lang, Rist & Wagner, 2004).

Performing convective stability analysis allows recovery of the so-called ‘N -

factor’, the maximum amplification ratio of instability waves across the separa-

tion bubble. This parameter is critical to the eN transition prediction model, as
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used in XFoil (Drela & Giles, 1987), and gives an indication of the sensitivity of

the bubble to background turbulence levels. The frequency of the most unsta-

ble disturbance waves may also be determined, which not only aids in selecting

forcing frequencies to promote transition to turbulence (as in section 5.4), but

may potentially be relevant to the frequency content of acoustic radiation at

the airfoil trailing edge (McAlpine et al., 1999). It has long been conjectured

as to whether regions of local absolute stability exist within separation bubbles,

hence it is of interest to determine whether any regions of absolute instability

are present, and whether absolute instability plays any role in the self-sustaining

transition to turbulence observed at both 5◦ and 7◦.

7.2.1 Convective stability characteristics

The convective stability characteristics of the three-dimensional separation bub-

bles presented in chapters 5 and 6, and the equivalent two-dimensional bubbles,

have been investigated by solving the spatial Orr–Sommerfeld problem (chapter

2, section 2.4) for velocity profiles extracted from the time-averaged flowfield,

starting at a location near the airfoil leading-edge and traversing to beyond the

reattachment point in each case. At each x-location a range of real disturbance

frequencies was specified, for which the code returns the associated complex

wavenumber (α), the imaginary part of which corresponds to the spatial growth

rate of the instability wave. Assuming an initial disturbance amplitude of 1

at x = 0.05, disturbances are then integrated spatially across the bubble using

an Euler method, to determine an ‘N -factor’ for each disturbance frequency, i.e.

ln(A/A0), where A0 is the initial disturbance amplitude and A is the disturbance

amplitude at some point of interest.

Results are summarised in figure 7.1 for cases at five degrees incidence noting

that, although only eight frequencies are plotted, calculations were performed

for sixteen frequencies in total, over the same range. Only half of the data is

plotted for the sake of clarity. Images on the left display the variation of spatial

growth rate, -αi, with x for all frequencies and hence indicate how the stability

of travelling waves varies. Images on the right display how the N -factor of

instability waves varies with x and frequency.

The maximum spatial growth rate of instability waves computed for case 3DF

and the two-dimensional case are similar at -αi ≈ 32, however for case 3DU the

maximum spatial growth rate is significantly larger at −αi ≈ 40, immediately

suggesting that the separated region in case 3DU is more unstable than either

the two-dimensional case or case 3DF. The frequency of the instability wave

with the largest spatial growth rate appears to vary from case to case. For the
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a) The two-dimensional case at α = 5◦
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Figure 7.1: Variation of spatial growth rate with x (left), and variation of N -factor with x
(right) for the two-dimensional simulation, case 3DF and case 3DU, at frequencies f = 4.24
(—), f = 6.37 (−−), f = 8.49 (−·), f = 10.61 (· · ·), f = 12.73 (¦), f = 14.85 (4), f = 16.98
(◦), and f = 19.10 (O).
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two-dimensional case the peak growth rate occurs for frequency f = 8.49. For

cases 3DF and 3DU the peak growth rate occurs for frequency f = 10.61. For all

frequencies computed αi is either zero or very small amplitude for all frequencies

at x = 0.05. This implies that N -factor across the bubble and the frequency

of the most amplified instability wave would not change if the starting point of

the stability analysis was moved further upstream. The neutral point as regards

convective instability appears to be x ≈ 0.06 for all cases.

Despite variations in the frequency of the instability wave with the maximum

αi, the frequency of the instability wave with the highest N -factor (i.e. the

most amplified instability wave across the bubble) is approximately f = 8.49

(ω = 53.3) for all cases. This justifies the selection of similar forcing frequencies

(f = 7.76 and 5.53, or ω = 48.76 and 53.6) for the simulation presented in

section 5. It can be seen that whilst case 3DF and the two-dimensional case

exhibit similar maximum N -factors of around 9.5, for case 3DU the maximum

N -factor is much larger at around 13. It appears then, that whilst case 3DF

and the two-dimensional case are comparatively similar in terms of convective

instability growth rates, case 3DU is significantly more unstable. Upon removing

the forcing, the stability characteristics of case 3DU actually deviate further from

both the two-dimensional simulation and case 3DF. It should be noted that the

frequency of the greatest N -factor disturbance wave for the two-dimensional

case at α = 5◦ (f = 8.49) is much higher than that of the vortex shedding which

occurs at f = 3.37. This suggests that the vortex shedding behaviour is not

caused by convective amplification of instability waves, in contrast with Pauley

et al. (1990) who, for a separation bubble induced on a flat plate, found the

frequency of the most-amplified instability wave to agree with that of the vortex

shedding present. It should be noted that, for all cases, the N -factors observed

are too small to amplify round-off error (∼ 1× 10−16) to non-linear amplitudes

(∼ 1 × 10−2). This appears to discount amplification of round-off error as a

possible route to transition to turbulence.

Amplification rates and N -factors for simulations at seven degrees incidence

are plotted in figure 7.2. Again, images on the left display the variation of

spatial growth rate, -αi, with x-location whilst images on the right display how

the N -factor of instability waves varies with x-location. It is apparent that at

α = 7◦ the maximum convective growth rate of instability waves is significantly

greater than at α = 5◦ (-αi ≈ 60, as opposed to -αi ≈ 40), and that higher

frequency disturbances are more unstable than at α = 5◦. The most unstable

disturbance frequency is f = 19.10 and the disturbance frequency with the

largest N -factor is f = 12.73, compared to f = 10.61 and f = 8.49 respectively
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for case 3DU. The increased growth rates may be attributed to the increased

velocity gradient within the separated shear layer at α = 7◦. The manner in

which convective stability characteristics change between the two-dimensional

simulation and case 3D7 appears qualitatively similar to that observed at α = 5◦;

the three-dimensional simulation exhibits increased instability growth rates and

an increased N -factor over the separated region. For both cases at α = 7◦ the

neutral point appears to be located at x ≈ 0.04.
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a) The two-dimensional case at α = 7◦
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Figure 7.2: Variation of spatial growth rate with x (left), and variation of N -factor with x
(right) for case 3D7 and the corresponding two-dimensional simulation, at frequencies f = 4.24
(—), f = 6.37 (−−), f = 8.49 (−·), f = 10.61 (· · ·), f = 12.73 (¦), f = 14.85 (4), f = 16.98
(◦), and f = 19.10 (O).

7.2.2 Cusp-map analysis

The time and span-averaged flowfields of cases 3DF, 3DU and 3D7, as well as

the time-average of the corresponding two-dimensional simulations, have been

analysed using the Orr-Sommerfeld solver in conjunction with the cusp-map
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method (chapter 2, section 2.4.5) in order to determine whether any regions

of local absolute instability are present. For each case the complex α plane

was swept with a resolution of ∆αr = ∆αi = 1. The corresponding resolution

in the complex ω plane is much higher in the vicinity of a branch-point, since

∂ω/∂α ≈ 0. Branch point singularities associated with zero group-velocity insta-

bility waves were then tracked, traversing the upper airfoil surface from x = 0.1

until it was no longer possible to locate any branch-point within the complex

ω plane. Imaginary parts of the complex frequency associated with cg = 0 are

plotted in figure 7.3 for cases 3DF and 3DU, and in figure 7.4 for case 3D7. In

all cases, as the cg = 0 instability wave is tracked downstream, ωi increases with

x, until a maximum value is reached toward the rear of the separation bubble.

After reaching this maximum value, ωi decays with further increase in x. For

all cases, at all locations analysed, ωi associated with the singularity is negative,

hence there is no evidence that absolute instability is present. Interestingly how-

ever, the location at which the strongest tendency towards absolute instability

is observed (i.e. when the cg = 0 wave is least damped) appears not to be the

location at which the reverse flow is strongest. For case 3DF the maximum ωi is

observed at x = 0.413, for case 3DF at x = 0.425 and for case 3D7 at x = 0.263.

For all cases the location of maximum ωi is significantly upstream of the max-

imum reverse flow location, but does however correspond (approximately) to

the region at which the maximum shear-layer strength was observed (chapter 5,

section 5.5.2 and chapter 6, section 6.6).
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Figure 7.3: Variation with x of ωi (left) and ωr (right) associated with cg = 0, for the two-
dimensional case at α = 5◦ (◦—◦), case 3DF (¦ − −¦) and case 3DU (M · · · M).

For each simulation, a branch point could not be located downstream of a

certain x-location, unique to that case. Downstream of this location, the Orr-

Sommerfeld solver returned trivial solutions for regions of the complex α sweep.

Contours of u′, defined as u′ = u− u, illustrate that for all cases the flowfield is

124



0.05 0.1 0.15 0.2 0.25 0.3
x

-80

-70

-60

-50

-40

-30

-20

-10

0

ω
i

0.05 0.1 0.15 0.2 0.25 0.3
x

0

40

80

120

ω
r

Figure 7.4: Variation with x of ωi (left) and ωr (right) associated with cg = 0, for the two-
dimensional case at α = 7◦ (◦—◦), and case 3D7 (M · · · M).

already highly unsteady at the x-position at which the solver fails (figure 7.5).

Depending on the case, u′ and v′ lie in the range 0.3-0.7 at the point where the

solver fails. The time-averaged velocity profiles in this region will therefore be

the average of a series of very different velocity profiles produced under unsteady

flow conditions, and hence will not necessarily be solutions to the Navier–Stokes

equations. This is not a problem in itself for the Orr–Sommerfeld solver; given

a velocity profile the solver should return all unstable modes, it is not affected

by whether the velocity profile is a solution of the Navier–Stokes or otherwise.

A problem does occur however if unexpected or unphysical behaviour exists in

the time-averaged velocity profile which causes the cusp-map method to fail.

By way of example, we shall consider the time-averaged velocity profile ex-

tracted at x = 0.53 (where the cusp-map method fails) from the two-dimensional

simulation at α = 5◦, illustrated in (figure 7.6, left). The velocity profile exhibits

near constant du/dy over a finite region, which results in d2u/dy2 crossing the

y-axis twice in quick succession at y ≈ 0.008 (figure 7.6, right). Behaviour such

as this may cause difficulties in performing the cusp-map method in this region;

if the velocity profile exhibits multiple inflection points in close proximity it may

be difficult to track individual eigenvalues numerically. The lack of smoothness

observed in d2u/dy2(figure 7.6, right) illustrates that although a smooth veloc-

ity profile can be recovered by summing unsteady velocity profiles, the second

derivative is much more sensitive and a very large number of samples must be

taken to achiever near analytic smoothness. Figure 7.6 was produced by sam-

pling every 10 iterations for a total of 4 × 105 iterations. This constitutes 40

non-dimensional time-steps (∆t = 1×10−4 was used for this case) or 134 vortex

shedding cycles. Despite this large number of samples and long capture period,

the second derivative is still not smooth. This problem may be surmounted by
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fitting analytic curves to the simulation data, however the motivation for this

analysis is to determine whether absolute instability profiles occur for ‘real’ ve-

locity profiles. Ultimately, the cusp-map analysis in this case is deemed to fail

because of limitations of the numerical method in solving for velocity profiles

that are time-averages of unsteady flow. It should be noted that in any case

the assumption of small amplitude linear perturbations on a steady baseflow is

violated under these conditions. The location of maximum reverse flow could

therefore not be analysed for any of the simulations, however the magnitude of

reverse flow observed in each simulation does allow qualitative discussion.

Figure 7.5: Iso-contours of |u′| for the two-dimensional simulation, taken at an arbitrary time
within the vortex shedding cycle (left), and for case 3DU taken at time t = 26.6 (right), using
ten levels over the range 0-1.

When normalised by the local boundary layer edge velocity, case 3DF exhibits

a maximum reverse flow magnitude of 12.3%. This is less than the critical

value of 17% determined necessary to sustain absolute instability by Alam &

Sandham (2000), for the associated Reδ∗ of 1050. Case 3DU exhibits an increased

maximum reverse flow of 15.2%. This is only slightly less than the critical

value of 16.5% for Reδ∗ = 1350, determined by Alam & Sandham. However,

Hammond & Redekopp (1998) determined a higher critical value of 20% for

Falkner-Skan type boundary layers and Rist & Maucher (2002) determined that,

even in the case of 20% reverse flow, the wall normal distance and intensity of
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Figure 7.6: Time-averaged velocity profile (left) and second derivative of the time-averaged
velocity profile (right), taken at x = 0.53 for the two-dimensional case at α = 5◦.
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the shear layer had to exceed a certain threshold before absolute instability

could be observed. The fact that dωi/dx < 0 at the point where the cusp-

map method fails suggests that absolute instability would be unlikely to be

observed by linear stability analysis if the cusp-map could be continued further

downstream. The two-dimensional simulation exhibited the largest magnitude

reverse flow of all cases, 22.2%. This is certainly above threshold values observed

by Alam & Sandham (2000) and Hammond & Redekopp (1998) however, as for

case 3DU, the results of Rist & Maucher (2002) suggest that caution should be

exercised before labelling the flow as absolutely unstable. On the one hand, it

could be conjectured that the vortex shedding observed is the result of absolute

instability, however it may be more useful to consider the shedding to be caused

by a global instability mode (Theofilis, 2003), resulting in highly unsteady flow

for which linear stability analysis is not valid.

The maximum reverse flow present at α = 7◦, equal to 29.5% in two di-

mensions and 17.9% in three-dimensions, is in both cases greater than threshold

values given by Alam & Sandham, and for the two-dimensional case greater than

that given by Hammond & Redekopp and Rist & Maucher. In contrast to the

simulations at α = 5◦, the cusp-map could be performed up to and slightly be-

yond the location of maximum reverse flow for case 3D7. However, as at α = 5◦

no evidence of absolute instability was observed when performing the cusp-map

analysis, although the two-dimensional simulation exhibited very marginal be-

haviour in that ωi very nearly crossed the x-axis. It should however be noted

that Hammond & Redekopp determined that an extended region of absolute

instability would be necessary before the global dynamics were affected.

7.3 Direct numerical simulations with forcing terms

No evidence of local-absolute instability was observed in section 7.2.2 when a

cusp-map analysis was performed on time-averaged flowfields of separation bub-

bles at α = 5◦ and α = 7◦ extracted from both two and three-dimensional

simulations. In order to determine whether nonparallel effects or limitations of

the numerical method have prevented the detection of absolute instability, simu-

lations have been performed using forcing terms to maintain the initial condition,

in order to investigate the behaviour of small perturbations on a given baseflow,

using the method described in chapter 3 section 3.4.3. Such simulations are

subject to less restrictive assumptions than linear stability analysis, and hence

may be used to both confirm the results of linear stability analysis, as well as

to check for behaviour not predictable by linear stability analysis. When forced
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Figure 7.7: Iso-contours of vorticity using ten levels over the range ±150 plotted for the
time-averaged flowfield of the two-dimensional case at α = 5◦.

Navier–Stokes simulations were performed on the time-averaged flowfield of the

two-dimensional simulation at α = 5◦, instability via an acoustic feedback loop

was observed. This simulation will be presented first, before other simulations

are discussed within the context of this finding.

7.3.1 An acoustic feedback instability of the flow around an airfoil

The two-dimensional simulation at α = 5◦ will be considered, before discussing

other simulations. The initial condition is specified as the time-averaged flowfield

of the two-dimensional simulation, illustrated in figure 7.7. A region of 3 × 3

grid-points about the location (x, y) = (0.25, 0.136), corresponding to a location

within the separated shear layer, is subject to an increment of 1 × 10−8 in u, v

and ρ. This effectively introduces a disturbance with a sharp-edged spatial

distribution, which will excite a range of frequencies at low amplitude. No

further perturbations are introduced, and the response of the flow is monitored

as the simulation is progressed. If the flow were only convectively unstable,

the initial perturbation would be expected to convect downstream growing in

amplitude, ultimately leaving the flow over the airfoil unperturbed. If the flow

were absolutely unstable, the initial perturbation would be expected to grow

exponentially in time at some location until saturation or the onset of some

secondary behaviour, ultimately affecting the flow-field over the entire airfoil

surface.

As in chapter 3 section 3.4.3, the response of the flowfield is monitored in two

ways; by recording time dependent pressure at a variety of x-locations within

the boundary layer, and analysing contour plots of perturbation quantities. In

this case we define the perturbation dilatation as O.U′ = O.Ut1−O.Ut=0, where

O.Ut1 is the dilatation rate at time t1 and O.Ut=0 is the dilatation rate at time

t = 0.

128



Figure 7.8 shows time series of dp/dt taken at several streamwise locations

within the upper surface boundary layer. Time t = 0 is the initialisation time,

at which the perturbation was introduced. Signals are plotted at an arbitrary

amplitude, however it should be noted that signals represented by dashed lines

are plotted at levels 50 times more sensitive than those represented by solid lines,

due to the difference in amplitude of hydrodynamic and acoustic waves. The x-

location of each signal is indicated on the vertical axis, hence upstream travelling

disturbances will move downwards with increasing t and downstream travelling

waves will move upwards with increasing t. The response to the perturbation is

as follows:

i) The initial response to the perturbation can be observed by considering

the time interval 0 < t < 1; the perturbation induces a single wavepacket which

convects downstream towards the trailing edge. It should be noted that at no

point does the wavepacket appear to trigger exponential temporal growth at

a fixed x-location that would indicate the onset of absolute instability (e.g. as

observed by Hannemann & Oertel, 1989).

ii) In the interval 1 < t < 2 the original wave has convected over the airfoil

trailing edge and no more downstream travelling waves are observed. However

the first six probes indicate that an upstream travelling pressure wave is present,

albeit at much lower amplitude.

iii) In the interval 2 < t < 3, after the upstream travelling pressure wave has

reached the leading edge of the airfoil, a further downstream travelling wave is

observed. By t = 3 this pressure wave has reached the airfoil trailing edge, and

a new upstream travelling pressure wave is subsequently observed.

This pattern of downstream travelling wave followed by upstream travel-

ling wave continues and, crucially, both upstream and downstream travelling

disturbances grow in amplitude at all x-locations. The cause of this behav-

iour is illustrated by plotting contours of O.U′. At t = 0.49 (figure 7.9a) the

wavepacket generated by the initial disturbance is visible as a multi lobed struc-

ture. By t = 0.98 (figure 7.9b) the wavepacket has convected downstream over

the trailing edge, whereupon scattering of the disturbances produces upstream

travelling acoustic waves (Ffowcs Williams & Hall, 1970). The acoustic waves

are more clearly visible at t = 1.47 (figure 7.9c). By t = 2.45 (figure 7.9d) an-

other wavepacket is observed. This second wavepacket has reached the trailing

edge of the airfoil by t = 2.94 (figure 7.9e), generating more upstream travelling

acoustic waves which are clearly observed at t = 3.43 (figure 7.9f). Another

wavepacket is generated at t = 4.41 (figure 7.9g), and the process continues

as the amplitude of both downstream-travelling hydrodynamic structures and
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Figure 7.8: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for two-dimensional case at α = 5◦. Solid lines have been multiplied by 2.5× 105 and dashed
lines by 1.25× 107.

upstream travelling acoustic waves increases.

From the time-series, it appears that the downstream travelling wavepacket

induced by the initial perturbation generates upstream travelling acoustic waves

when it convects over the trailing edge. These upstream travelling acoustic waves

then reach some location of receptivity, probably the airfoil leading edge, and

generate another downstream travelling wavepacket. The process repeats with

increasing amplitude at all x-locations and hence represents an instability of the

flow, via a combination of convective instability of hydrodynamic disturbances

and an acoustic feedback loop. The growth rate of the feedback loop is observed

to be exponential when longer time series of pressure signals are plotted (figure

7.10, left), with growth rate e0.25t. When absolute values are plotted on a log-

arithmic scale (figure 7.10, right) it can be seen that initially the disturbance

amplitude decays in time, before growing exponentially.

A schematic of the feedback loop is illustrated in figure 7.11, with the four

processes involved labelled A to D. During stage A, hydrodynamic disturbances

are amplified as they convect downstream. Upon reaching the airfoil trailing

edge, at stage B, upstream travelling pressure waves are generated via acoustic

scattering. The pressure waves generated at the trailing edge propagate up-

stream during stage C . When the pressure waves reach the vicinity of the

leading edge, at stage D, further downstream convecting disturbances are gener-
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a) t = 0.49 b) t = 0.98

c) t = 1.47 d) t = 2.45

e) t = 2.94 f) t = 3.43

g) t = 4.41

Figure 7.9: Iso-contours of perturbation OU′ (defined in section 7.3)for the two-dimensional
case at α = 5◦ taken at times indicated, using 10 levels over the range ±10−8

.

131



0 5 10 15
t

-4e-06

-2e-06

0

2e-06

4e-06

6e-06

dp
/d

t

0 5 10 15
t

1e-09

1e-08

1e-07

1e-06

1e-05

dp
/d

t

Figure 7.10: Time dependent dp
dt taken at x = 0.95 for the two-dimensional case at α = 5◦,

showing exponential disturbance growth at a rate of e0.25t (left), and the equivalent absolute
values plotted on a logarithmic scale (right).

Figure 7.11: Stylised schematic for the acoustic feedback loop.

ated within the boundary layer and the cycle repeats. In order for the feedback

loop to be unstable, the net gain of processes A to D must be greater than 1.

Process A represents the only point at which amplification takes place within

the loop, hence it appears likely that strong growth of hydrodynamic instabili-

ties is necessary to offset the losses incurred at all other stages of the cycle. The

mechanism is analogous to Rossiter modes observed in cavity flows (Rossiter,

1964), although in the current case it should be noted that the period of the

feedback loop is distinct from, and much longer than, the period of the repeating

hydrodynamic/acoustic disturbance.

In order to make sure that no temporal disturbance growth is present that is

independent of the acoustic feedback loop, a further simulation was run. The

time-averaged flowfield from the two-dimensional simulation at α = 5◦ was again

used as the initial condition, and the simulation was perturbed in exactly the

same way, but this time a weak buffer was applied (of the form detailed in chap-
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Figure 7.12: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at α = 5◦. A buffer was applied to damp trailing edge noise,
ramping from zero to full effectiveness over the range 0.65 < x < 1. Solid lines have been
multiplied by 2.5× 105 and dashed lines by 1.25× 107.

ter 2, section 2.2.7), ramping from zero to 0.05 over the range 0.65 < x < 1. The

onset of the buffer is downstream of the bubble, hence any region of absolute

instability present within the bubble should be unaffected whilst upstream trav-

elling waves originating at the trailing edge will be damped. Figure 7.12 shows

time series of dp/dt taken at several streamwise locations within the upper sur-

face boundary layer. Upon progressing the simulation the initial response to

the perturbation was the same; i.e. a downstream convecting wavepacket was

observed. Upon reaching the buffer onset the wavepacket decayed, and only min-

imal evidence of upstream travelling acoustic waves was observed. The acoustic

feedback loop was prohibited from developing, and no disturbance growth was

observed at any other location within the simulation. This appears to validate

the linear stability analysis performed in section 7.2.2; it appears that no re-

gion of absolute instability is present within the separation bubble, even when

a non-parallel baseflow is taken into account.

7.3.2 Frequency content

Perturbation frequencies observed in the simulation with no buffer applied can

be compared to the linear stability theory predictions of section 7.2.1 in or-

der to confirm that both methods yield similar results. Since statistics are not
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Figure 7.13: Time dependent dp
dt taken at x = 0.4 for the two-dimensional case at α = 5◦,

showing the initial response to the perturbation introduced at t = 0 (left), and the response
after several feedback loop cycles (right).

available for the forced simulation, analysis is limited to inspection of individual

wavepackets. The frequency content of the first wavepacket observed, i.e. that

produced by the initial perturbation, was found to differ from that of wavepack-

ets observed after one or more feedback-loop cycles. At x = 0.4, the initial

wavepacket is observed to possess f ≈ 10.8 (ω ≈ 67.9). This agrees reasonably

well with linear stability analysis, which predicts that the instability wave with

the maximum N -factor will be at f ≈ 9.6. After three feedback-loop cycles

however, the wavepacket at x = 0.4 is observed to possess f ≈ 4.0 (ω ≈ 25.1).

A similar drop in frequency is observed at x = 0.95; the initial wavepacket pos-

sesses f ≈ 6.9 (ω ≈ 43.4), but after three feedback-loop cycles the wavepacket

possesses f ≈ 4.0 (ω ≈ 25.1). The initial response to the perturbation agrees rea-

sonably well with linear stability theory in terms of the most amplified frequency,

however it appears that the most unstable frequency of the acoustic-feedback

loop is lower than that of the most convectively amplified instability wave over

the upper airfoil surface. This may explain the apparent decay in amplitude

of pressure fluctuations between the first and second wavepackets (figure 7.10,

right). A significant proportion of the energy of the first wavepacket will be

contained within frequencies which are not amplified efficiently by the feedback

loop. Energy contained within these frequencies, and hence the total energy

of the wavepacket, will decay initially, before the frequencies most efficiently

amplified by the feedback loop grow sufficiently to recoup the energy loss.

7.3.3 Receptivity process

Boundary layer receptivity is required to occur for the acoustic feedback loop

to be present, however boundary layer receptivity is in general not as well un-

derstood as boundary layer stability. It is known that regions of pronounced
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Figure 7.14: Time dependent dp
dt taken at x = 0.95 for the two-dimensional case at α = 5◦,

showing the initial response to the perturbation introduced at t = 0 (left), and the response
after four feedback loop cycles (right).

streamwise variation in boundary layer flow are receptive to free-stream distur-

bances, including in particular finite radius leading edges (Saric, Reed & Ker-

schen, 2002), and the variation of the efficiency of the receptivity process with

frequency has been quantified numerically for modified super-ellipses (Wanderley

& Corke, 2001). However, such data is difficult to relate to the current study,

where the airfoil leading edge differs in aspect ratio significantly and aerody-

namic loading is present. The response of the time-averaged flowfield of airfoil

flow to a free-stream (acoustic) disturbance, as opposed to a hydrodynamic dis-

turbance, is therefore investigated by running a further simulation. The aim

is to estimate, very approximately, at what frequencies the receptivity process

occurs.

The time-averaged flowfield of the two-dimensional case at α = 5◦ is speci-

fied as the initial condition, and the flowfield is perturbed in the same way as

previous simulations except at a location (x, y) = (2, 1), i.e. downstream of the

airfoil trailing edge. This will generate an acoustic pulse in the potential flow re-

gion, and the airfoil leading edge will experience an upstream travelling acoustic

wavepacket as would be expected due to the presence of trailing edge noise. Run-

ning the simulation and forming an x/t-plot illustrates the response of the flow

to the perturbation (figure 7.15). The upstream-travelling acoustic wavepacket

generated by the initial pulse can be observed in the interval 0.8 < t < 1.6, as

a very high-frequency pulse. Upon reaching the vicinity of the leading edge, a

downstream travelling hydrodynamic disturbance is generated, and the acoustic

feedback instability commences. In the current case, we are interested in the

first hydrodynamic disturbance generated by the receptivity of the leading edge

region to the freestream (acoustic) disturbance. Effectively it is desired to know,

when subject to a free-stream disturbance containing energy over a range of fre-
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Figure 7.15: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for two-dimensional case at α = 5◦ subject to an acoustic perturbation originating downstream
of the airfoil. Lines have been multiplied by 1× 105.

quencies, what is the resultant (self-selected) frequency of the hydrodynamic

disturbance following boundary layer receptivity.

At x = 0.5, the first hydrodynamic pulse is at frequency f ≈ 9.5 (figure 7.16,

left). Upstream of this location the hydrodynamic pulse appears to be higher

in frequency, e.g. f ≈ 11 at x = 0.3 (figure 7.16, right), however the signal is

less clear. Although this is based upon measurement of single wavepackets, and

although the initial acoustic pulse will not possess uniform energy across all fre-

quencies, this remains a useful result. Although it cannot be stated that f = 9.5

or f = 11 is the frequency at which boundary layer receptivity occurs most effi-

ciently, it appears that leading-edge receptivity occurs at frequencies similar to,

or slightly greater than, convective amplification for the current case. It should

be noted however that considering a wavepacket at a modest distance from the

receptivity location means that the stability characteristics of the boundary layer

will influence the frequency of the wavepacket. Unfortunately it is not possi-

ble to determine the frequency of the hydrodynamic wavepacket directly in the

vicinity of receptivity using the current technique.

From this simple analysis it appears that the combined receptivity and con-

vective amplification process appears to select frequencies of the order f ≈
9.5 − 11. From linear stability analysis the most convectively amplified fre-

quency is expected to be f = 8.49 (section 7.2), however the preferred frequency

of the acoustic feedback loop appears to be considerably lower, at f ≈ 4. This
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Figure 7.16: Time dependent dp
dt for the two-dimensional case at α = 5◦ subject to an acoustic

pulse downstream of the airfoil, showing the first hydrodynamic wavepacket observed at x =
0.5 (left) and x = 0.3 (right).

suggests that the preferred frequency of the acoustic scattering process is much

lower than that of either the boundary layer receptivity or convective amplifi-

cation of boundary layer instabilities, and that acoustic scattering at the airfoil

trailing edge plays a critical role in the frequency selection of the feedback loop.

7.3.4 Stability characteristics of two-dimensional simulations at in-

cidence

Having observed the feedback loop at α = 5◦ and M = 0.4, additional simu-

lations were conducted using the same procedure, and both the incidence and

Mach number were varied to see if the feedback loop persisted for other two-

dimensional flows. A brief summary of results is presented in table 7.1. All

relevant x/t-plots are included at the end of the chapter.

At 3◦ incidence the feedback loop is observed to be present, but stable (fig-

ure 7.21). Hydrodynamic disturbances were generated by upstream travelling

acoustic waves, as in figure 7.8, however the amplitude decreased from one cycle

to the next. At 5◦, 7◦ and 8.5◦ incidence (figures 7.87.23 and 7.22 respectively),

the feedback loop was present and unstable in each case. Linear stability analysis

suggests that the amplification rate of the most unstable wave over the sepa-

rated region does not vary significantly with incidence. For cases at incidence

3◦ < α < 7◦ the amplification factor varied over the range e9.2 − e9.6. The

reason the feedback loop is unstable at α ≥ 5◦ but not at α = 3◦ appears to

be because simulations at α ≥ 5◦ exhibited stronger disturbance amplification

over the aft section of the airfoil, due to the stronger adverse pressure gradient

present. Cases at α = 7◦ and α = 8.5◦ exhibit similar behaviour to that at

α = 5◦; the initial higher-frequency wavepacket appears to decay at first, before

pressure fluctuations assume a lower frequency and exponential growth is ob-
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Figure 7.17: Time dependent dp
dt taken at x = 0.95 for the two-dimensional case at α = 8.5◦,

showing exponential disturbance growth at a rate of e0.5t (left), and the equivalent absolute
values plotted on a logarithmic scale (right).

α
(degrees) M Feedback loop stability

3 0.4 Stable
5 0.4 Unstable
7 0.4 Unstable

8.5 0.4 Unstable
5 0.3 Stable

Table 7.1: Stability of the feedback loop for two-dimensional simulations for different angles
of incidence, α, and Mach number.

Case Growth rate Feedback loop f Dominant shedding f f for largest N -factor
α = 5◦ 0.25 4 3.37 8.45
α = 7◦ 0.24 1.9 2.43 12.73

α = 8.5◦ 0.5 1.7 2.00 -
3DU 0.21 3.3 - 8.49

Table 7.2: Growth rate and apparent preferred-frequency of the acoustic feedback instability
for unstable cases.

served (illustrated in figure 7.17 for α = 8.5◦). Growth rates for cases where an

unstable feedback-loop was observed are given in table 7.2.

The case at α = 8.5◦ exhibits clearly defined upstream and downstream

travelling waves, as at α = 5◦, and the growth rate of the feedback loop appears

to be greater than at α = 5◦. Pressure signals for the case at α = 7◦ are less clear

however. Upstream and downstream travelling waves appear to be present, but

the pressure signals at all x-locations exhibit constant unsteadiness, with none

of the ‘quiet’ regions that so clearly define the individual wavepackets at α = 5◦

and α = 8.5◦. In order to make sure that no temporal disturbance growth is

present that is independent of the acoustic feedback loop, a further simulation

was run. The time-averaged flowfield from the two-dimensional simulation at

α = 7◦ was again used as the initial condition, but this time a weak buffer was
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applied, ramping from zero to 0.05 over the range 0.45 < x < 1, as for the

simulation at α = 5◦ in section 7.3.1, to damp acoustic scattering at the trailing

edge. A fluctuating pressure signal is observed in the vicinity of x = 0.3, which

is lower in amplitude and higher in frequency than that associated with the

acoustic feedback loop, and the signal appears possess neutral stability (figure

7.24). The cusp-map analysis performed in section 7.2.2 suggests that this case is

only marginally absolutely stable. It is feasible then that this is a manifestation

of a very weak absolute instability. Certainly the behaviour is unrelated to the

acoustic feedback loop. A similar but more pronounced behaviour is observed for

the equivalent three-dimensional simulation in section 7.3.5 and the behaviour

is discussed in more detail.

In order to determine the influence of compressibility, the case at 5◦ incidence

was repeated whilst reducing the Mach number to M = 0.3 (figure 7.25). A

marginally stable feedback loop was observed, suggesting that the feedback loop

would become unstable with a modest increase in M . The effectiveness of the

acoustic scattering at the trailing edge reduces with Mach number, however the

reason the feedback loop at M = 0.3 is stable appears in this case to be due to

changes in the structure of the boundary layer over the aft section of the airfoil.

Comparison of the two cases reveals that, despite the change in Mach number,

the amplitude of acoustic waves generated is similar in both cases.

One would perhaps intuitively associate the presence of a feedback loop with

some form of global frequency selection, e.g. of the vortex shedding behaviour,

however periodic vortex shedding is observed in two-dimensions for α ≤ 5◦,

whereas an unstable acoustic feedback loop is only observed for α ≥ 5◦. Above

α = 5◦ a more broadband response occurs. Thus the only case exhibiting both

vortex shedding in a clearly periodic fashion and an acoustic feedback loop in the

time-average is the case at α = 5◦. However, for all two-dimensional cases there

was a clear tonal contribution to the lift coefficient and pressure readings in the

wake, even for simulations exhibiting a more broadband response (e.g. f ≈ 2,

figure 4.11, section 4.4). In all cases this tonal contribution lies in the range

1.5 < f < 4, which is considerably lower than the most convectively amplified

frequencies observed in section 7.2.1 (table 7.2).

It is feasible then, that the acoustic feedback loop may act as a frequency

selection mechanism where periodic vortex shedding occurs, and may be respon-

sible for selecting the dominant tonal content of more broadband vortex shedding

behaviour. Where this occurs, the preferred frequency would be dependent on

several factors. The efficiency of acoustic scattering at the trailing edge decreases

with increasing frequency (see also chapter 9, section 9.5.2). On the other hand,
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the convective amplification rate of boundary layer disturbances is greatest at

a relatively higher frequency, and decreases at low frequencies. If we define the

frequency dependent amplification ratio of boundary layer disturbances across

the boundary layer as N(f), and some measure of acoustic scattering efficiency

at the trailing edge as T (f), presumably the preferred frequency would be the

value of f for which N(f)T (f) is greatest. However, this hypothesis ignores

the receptivity mechanism occurring in the vicinity of the leading edge. The

receptivity process is not well defined, and itself may influence the frequency

selection process. At present then, it appears likely that the presence of an

acoustic feedback loop such as this will act to select global frequencies or tones

in airfoil flows with vortex shedding, however the frequency selection criteria

appears complex.

7.3.5 The stability characteristics of three-dimensional simulations

at incidence

Having performed forced simulations of a variety of time-averaged two-dimensional

flowfields, the process was repeated for the time-averaged flowfields of cases

3DF, 3DU and 3D7, perturbing the simulations in the same manner as for the

equivalent two-dimensional simulations. Case 3DF was found to be stable; no

acoustic feedback loop was observed (figure 7.26). Case 3D7 was marginally

stable, but exhibited a secondary behaviour that will be discussed later in this

section (figure 7.28). Case 3DU however, was found to be unstable (figure 7.27).

The differences in stability can be attributed to differences in N -factors across

the separation bubbles; N = 9.5 for case 3DU, N = 10.3 for case 3D7, and

N = 13 for case 3DU. Clearly a large N -factor is essential parameter defining

the onset of the feedback loop. It also appears that a larger N -factor is nec-

essary to sustain the feedback loop for three-dimensional simulations than for

two-dimensional simulations. The fact that the feedback loop has been found

present for the time-averaged flowfield of a three-dimensional simulation raises

the question as to whether such behaviour will be observed in the fully developed

time-dependent case. This is investigated in chapter 9, section 9.3.

For case 3D7 a secondary behaviour was observed, similar to that exhibited

by the two-dimensional simulation at α = 7◦; a fluctuating pressure signal is

observed in the vicinity of x = 0.3, that is lower in amplitude and higher in

frequency than that associated with the acoustic feedback loop (figure 7.28).

For case 3D7 the signal appears more prominent than in two-dimensions, with

a marginally positive growth rate. When a simulation is performed with a

simple buffer applied downstream of x = 0.45 the behavior persists figure (figure
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Figure 7.18: Direct Fourier transform of the pressure signal at x = 0.3 for case 3D7, computed
for the time interval 4 < t < 12.

7.29), and performing a direct Fourier transform of the time-series for the period

4 < t < 12 suggests that the frequency of this perturbation is centered about

f = 10 (figure 7.18). The fluid dynamics associated with this behavior are

illustrated by plotting iso-contours of perturbation ωz (figure 7.19); animations

of perturbation ωz suggest that disturbance waves are being generated at some

location within the bubble, and are recirculating within the bubble. Hence the

bubble is acting as an ‘oscillator’, and thus the behaviour represents a very

weak form of absolute instability. No such behaviour was predicted by the cusp-

map analysis performed in section 7.2.2. This may be because the behaviour

is only weakly unstable; although errors due to nonparallel effects are likely

to be small, a small error could potentially result in predicting a marginally

stable flow instead of a marginally unstable flow. The least damped cg = 0

wave as predicted by linear stability theory was observed at x = 0.26 for case

3D7, and the associated real frequency of this wave was f = 9 (ω = 56.7),

agreeing reasonably well with the dominant frequency of f = 10. This represents

circumstantial evidence that this behaviour is caused by a global instability.

7.4 Summary

Linear stability analysis of the time-averaged flowfields extracted from cases

3DF, 3DU and 3D7, as well as the corresponding two-dimensional simulations,

has been performed. The convective stability characteristics of the two-dimensional

case at α = 5◦ and case 3DF appear similar in that the N -factor across the sep-

aration bubble does not change significantly between cases. Case 3DU however

exhibits a much larger N -factor; upon removal of forcing the bubble appears
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Figure 7.19: Iso-contours of perturbation vorticity for case 3D7 at t = 8.4, showing 10 levels
over the range ±2× 10−8.

to become more unstable than either the two-dimensional case or the forced 3D

case. When the airfoil incidence is increased to α = 7◦ the frequency of the most

amplified instability wave increases, however the N -factor for case 3D7 actually

reduces compared to that of case 3DU. The frequency of the most amplified in-

stability wave has been identified for all cases, and appears significantly higher

than that of the vortex shedding behaviour observed in two-dimensions.

No evidence of local absolute instability was observed for any of the cases

investigated when a cusp-map analysis was performed. This was confirmed for

simulations at α = 5◦ by performing forced Navier–Stokes simulations, however

at α = 7◦ a very weakly unstable mode was observed that the cusp-map method

did not predict. Forced Navier–Stokes simulations determined that for two di-

mensional cases in the range 5◦ ≤ α ≤ 8.5 the time-averaged flowfield is unstable

due to an acoustic feedback instability, in which instability waves convecting over

the trailing edge of the airfoil generate acoustic waves that propagate upstream

to some location of receptivity, and generate further instability waves within

the boundary layer. As the cycle repeats, the amplitude of both hydrodynamic

instabilities and acoustic waves increases. The resultant behavior may be de-

fined as globally unstable, although no local absolute instability is present. It

is suggested that an acoustic feedback loop of this type may act as a frequency

selection mechanism for the vortex shedding observed in two-dimensions. At

higher Reynolds numbers, the feedback loop may potentially be responsible for

the generation of discrete tones of sound radiation in a similar fashion to behav-

iour observed by McAlpine et al. (1999), although their mechanism was limited

to separated flow in the trailing edge region. The lack of a clear absolute insta-

bility of the time-averaged flow suggests that another mechanism is needed to

explain the self-sustained turbulence observed for simulations 3DU and 3D7 in

chapters 5 and 6. This is the subject of the next chapter.
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Figure 7.20: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Rec = 5× 104, M = 0.4, α = 5◦. A region of 1× 1 grid-points
was perturbed at (x, y) = (0.05, 0.119). Solid lines have been multiplied by 2.5 × 105 and
dashed lines by 1.25× 107.
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Figure 7.21: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Rec = 5× 104, M = 0.4, α = 3◦. A region of 3× 3 grid-points
was perturbed at (x, y) = (0.3, 0.1). Solid lines have been multiplied by 2.5× 105 and dashed
lines by 1.25× 107.
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Figure 7.22: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Rec = 5×104, M = 0.4, α = 8.5◦. A region of 3×3 grid-points
was perturbed at (x, y) = (0.025, 0.209). Solid lines have been multiplied by 2.5 × 105 and
dashed lines by 1.25× 107.
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Figure 7.23: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Rec = 5× 104, M = 0.4, α = 7◦. A region of 3× 3 grid-points
was perturbed at (x, y) = (0.2, 0.175).Solid lines have been multiplied by 2.5× 107.
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Figure 7.24: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Rec = 5× 104, M = 0.4, α = 7◦. A region of 3× 3 grid-points
was perturbed at (x, y) = (0.2, 0.175), and a buffer was applied for x > 0.45. Solid lines have
been multiplied by 2.5× 107.

0 2 4 6
t

0

0.2

0.4

0.6

0.8

1

x

Figure 7.25: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Rec = 5× 104, M = 0.3, α = 5◦. A region of 3× 3 grid-points
was perturbed at (x, y) = (0.25, 0.136). Solid lines have been multiplied by 2.5 × 105 and
dashed lines by 1.25× 107.
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Figure 7.26: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the time-average of case 3DF (Rec = 5 × 104, M = 0.4, α = 5◦). A region of 3 × 3
grid-points was perturbed at (x, y) = (0.25, 0.136). Solid lines have been multiplied by 1×106

and dashed lines by 4× 107.
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Figure 7.27: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the time-average of case 3DU (Rec = 5 × 104, M = 0.4, α = 5◦). A region of 3 × 3
grid-points was perturbed at (x, y) = (0.25, 0.136). Solid lines have been multiplied by 1×106

and dashed lines by 4× 107.
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Figure 7.28: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the three-dimensional case at Rec = 5×104, M = 0.4, α = 7◦. A region of 3×3 grid-points
was perturbed at (x, y) = (0.2, 0.175). Lines have been multiplied by 2.5× 107.
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Figure 7.29: Time histories ofdp/dt, with streamwise location indicated on the vertical axis,
for the three-dimensional case at Rec = 5×104, M = 0.4, α = 7◦. A region of 3×3 grid-points
was perturbed at (x, y) = (0.2, 0.175), and a buffer was applied for x > 0.45. Lines have been
multiplied by 2.5× 107.
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Chapter 8

A mechanism for self-sustaining

turbulence1

The persistence of turbulence upon removal of forcing, observed in chapters 5

and 6, suggests that some mechanism other than convective disturbance growth

is present. Stability characteristics of the time-averaged flowfield have been in-

vestigated in chapter 7. The time-averaged flowfield of case 3DU was found

to be unstable via an acoustic feedback loop, however it could not be deter-

mined whether such behaviour occurs in the fully developed flow. Although the

time-averaged flowfield of case 3D7 was found to exhibit a very weak temporal

instability, the growth rate was close to zero. In this chapter an alternative insta-

bility of the unsteady two-dimensional vortex shedding flow to three-dimensional

perturbations is investigated.

8.1 Numerical method

A three-dimensional simulation is initialised in the same manner as case 3DF.

Grid G3 (defined in section 4.3.1) is used, specifying a small number of spanwise

points (Nz = 16) over the same spanwise domain width (Lz = 0.2). No time

periodic forcing is added, but w-perturbations are superposed onto the initial

condition in the form of white noise. The w-perturbations are 1×10−8 in ampli-

tude, and only the boundary layer over the upper surface of the airfoil is seeded

in this fashion. The simulation is progressed from this initial condition and no

further disturbances are added. The stability characteristics of the unsteady

two-dimensional separation bubble with vortex shedding may then be deter-

mined. The perturbations will either convect downstream ultimately leaving

the flow over the airfoil unperturbed, or the perturbations will grow temporally

1See also Jones et al. (2007b)
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a) t = 0.49 b) t = 0.98

c) t = 1.47 d) t = 1.96

Figure 8.1: Iso contours of |w| velocity in the vicinity of the airfoil, using 20 contours ex-
ponentially distributed over the range 10−10 to 10−2, showing development with time after
initialisation.

as in absolute instability. Effectively the method may be considered equivalent

to a Floquet analysis, however the current method differs in that the baseflow

is not perfectly periodic in time.

8.2 Time dependent behaviour

The resultant behaviour is illustrated by plotting absolute values of w-velocity

in the vicinity of the airfoil at intervals of t = 0.49 (figure 8.1). It can be seen

that the initial disturbances do not convect downstream leaving the source un-

perturbed, but grow in amplitude temporally until nonlinear magnitudes are

reached. The w-perturbations grow in amplitude within individual vortices as

they convect downstream. Additionally, in the vicinity of the vortex shedding lo-

cation the perturbations exhibit growth in amplitude without convecting down-

stream. Temporal growth occurs immediately upon initialisation, and hence

the onset is far too rapid to be explained by an acoustic feedback mechanism

involving the trailing edge. The N -factor across the separated region has been

computed via linear stability analysis to be N = 9.5. This precludes amplifi-

cation of round of error as a route to transition, since a much larger N -factor

would be required to amplify round-off error (∼ 10−16) to non-linear amplitudes.

Having observed rapid temporal perturbation growth for the case with two-

dimensional vortex shedding at five degrees incidence, the simulation was re-

peated at other angles of attack.The simulations all exhibited two-dimensional

vortex shedding. Absolute values of w-velocity taken in the vicinity of the onset

of vortex shedding are plotted in figure 8.2. Although erratic, due to variations
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during the shedding cycle, the amplitude of w-velocity perturbations appears

to grow exponentially with time, and the temporal growth rate increases with

incidence.
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Figure 8.2: Time series of absolute w-velocity taken in the vicinity of vortex shedding at 5◦

(− ·), 7◦ (−−) and 8.5◦ (—)incidence.

8.3 Spatial onset

In order to isolate the spatial onset of the instability, a simulation was run using a

different initial disturbance input, and an increased number of w-probes. Instead

of seeding the entire upper airfoil boundary with white noise, a narrow ‘strip’ of

white noise is used, centred at (x, y) = (0.25, 0.136), and spanning the width of

the domain. The evolution of the initial disturbance may then be tracked both

spatially and temporally. Figure 8.3 shows an x/t plot of disturbance growth

for this case. Due to the large growth rates present the probe readings were

multiplied by e−σt, where σ = 4 is the temporal growth rate observed in the

vicinity of vortex shedding, in order to better visualise the data. Therefore,

where a probe signal appears constant in amplitude in figure 8.3, it is in fact

growing at the rate of e4t. The response to the perturbation varies with the

x-location, as follows:

i) For x ≤ 0.2 no perturbations are observed using this scaling.

ii) For 0.3 ≤ x ≤ 0.45 the initial pulse generates a wavepacket in the boundary

layer, which convects downstream. After t = 0.3 no further disturbances are

visible for x ≤ 0.4 using this scaling.

iii) For 0.5 ≤ x ≤ 0.55 the initial wavepacket is observed to trigger distur-

bances that are lower in frequency than the initial disturbance, and are subse-

quently observed to grow exponentially in time.
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iv) For x ≥ 0.6 it is difficult to detect whether the initial wavepacket is present

or not. Periodic disturbances are observed to occur, with a frequency the same

as that of the vortex shedding (f = 3.37). The amplitude of disturbances at any

fixed x-location appears to grow at the approximate rate e4t, and the amplitude

of disturbances also appears to increase with increasing x-wise location.

Rapid, sustained temporal disturbance growth first occurs in the region 0.5 ≤
x ≤ 0.55, suggesting that some form of instability is sustained in the vicinity of

the vortex shedding region. The temporal growth rate of perturbations appears

approximately constant at all locations (σ ≈ 4), however the increase in ampli-

tude of perturbations with x-wise location for x ≥ 0.6 suggests that the flow is

also convectively unstable. The rapid onset of sustained temporal disturbance

growth, and the absence of intermittent behaviour over long time-scales, suggest

that this behaviour cannot be explained by an acoustic feedback loop similar to

that observed in section 7.3.
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Figure 8.3: Time series of w scaled by multiplying with e−4t, taken at several locations within
the boundary layer, the dashed line indicates the wave-packet envelope.

8.4 Instability mechanism

The preceding section has identified a region instability in the vicinity of the vor-

tex shedding location. Because the instability is subject to exponential growth,

plots of perturbation quantities such as streamwise vorticity, ωx, or w-velocity,

for example, will vary markedly in amplitude depending on the time at which

they are taken. To surmount this problem, the quantity ω∗x is instead plotted,

defined as

ω∗x = ωxA0e
−σt, (8.1)
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a) φ = 0 b) φ = 2π
5

c) φ = 4π
5 d) φ = 6π

5

e) φ = 8π
5

Figure 8.4: Iso-surfaces of ω∗x taken at five phases of the vortex shedding cycle. The far
xy-plane displays iso-contours of ωz, using ten levels over the range ±150.
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a) φ = 0

b) φ = 2π
5

c) φ = 4π
5

d) φ = 6π
5

e) φ = 8π
5

Figure 8.5: The left-hand image shows iso-contours of ωz, using 20 contours over the range
±150, with lines of constant u-velocity superposed using 4 levels over the range −0.7 < u < 0.
The right-hand image shows iso-contours of ω∗x using 20 levels over the range 5 − 100 with
lines of constant ωz superposed using 10 levels over the range ±150. From top to bottom, five
phases within the vortex shedding cycle are shown.
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where A0 is a constant chosen as 1× 10−8 and σ = 4 is the exponential distur-

bance growth rate at x = 0.5. Plotting iso surfaces of ω∗x in the vicinity of vortex

shedding at five phases, φ, of the shedding cycle (figure 8.4) reveals spanwise-

periodic structures that are associated with the instability. Depending on the

phase of the vortex cycle, the structures appear both within and also wrapped

around the spanwise vortices. Although only one shedding cycle is illustrated,

the behaviour of the instability appears qualitatively similar from one cycle to

the next.

The production and behaviour of ωx is illustrated more clearly in figure 8.5,

again for five phases within the shedding cycle. Images on the left of figure 8.5 il-

lustrate the two-dimensional vortex shedding upon which the three-dimensional

perturbations are growing, as well as regions of upstream fluid flow. Images

on the right illustrate the spanwise root-mean-square (RMS) of ω∗x, and hence

indicate the magnitude of three-dimensional perturbations. Over the course of

the shedding cycle a vortex is generated at the rear of the separation bubble be-

fore being released downstream. As the vortex begins to convect downstream,

the magnitude of ωx increases within the vortex core at a rate faster than the

overall instability growth rate, as indicated by the increase in ω∗x from figure

8.5a to 8.5e. This confirms the findings of section 8.3, that vortices convecting

downstream are subject to convective perturbation growth. A second region of

ω∗x growth is observed during the shedding cycle, just upstream of the develop-

ing vortex, in the so called ‘braid’ region of high strain rate between successive

vortices. At φ = 4π
5

a growing perturbation is clearly observed; it is orientated

parallel to the x-axis and is the region exhibiting the largest magnitude of ωx. As

the developing vortex is shed and begins to convect downstream, the structure

increases in length and vorticity magnitude and is wrapped around the vortex,

forming an S-shape visible at φ = 8π
5

just upstream of the downstream travelling

vortex. Again, ωx increases at a rate faster than the overall instability growth

rate. These regions of pronounced perturbation growth appear to closely match

regions of instability growth identified in mixing layers and bluff body wakes;

namely the vortex cores and the braid region between vortices (Williamson,

1996). The current case appears perhaps to hold a stronger analogy to shear-

layer flow, however the mechanisms responsible for instability growth in braid

regions and vortex cores are more extensively discussed in the literature for bluff

body wakes. In the context of bluff body wakes, short wavelength perturbations

within vortex cores are commonly attributed to elliptic instability, whereas two

forms of instability growth have been observed within the braid region, denoted

mode-A and mode-B. A brief summary of each mode follows, necessary to cat-
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egorise observations of the current case.

Elliptic instability is the name given to the instability of two-dimensional

elliptical streamlines to three-dimensional perturbations, for which a review is

given in Kerswell (2002). The physical mechanism of instability is vortex stretch-

ing, and the instability manifests itself as a spanwise periodic deformation of the

vortex core. Leweke & Williamson (1998b) suggest that the spanwise wavelength

of the most amplified instability mode is of the order λ = 3D, where D is the

diameter of the region of elliptical flow, comparing favourably with the results

of Leweke & Williamson (1998a). Floquet analysis by Barkley & Henderson

(1996) suggests a spanwise wavelength of λ = 4D at onset. The presence of el-

liptic streamlines in the current case (figure 8.6) suggests that elliptic instability

is likely to occur.

Instability growth within the braid region between vortices has been observed

experimentally, both for bluff body wakes Williamson (1992) and free shear lay-

ers (Corcos & Lin, 1984; Bernal & Roshko, 1986). In bluff body wakes, two

distinct instabilities have been observed in the braid region, denoted mode-A

and mode-B (Williamson, 1996). Both forms of instability occur as spanwise

periodic, streamwise ‘tubes’ of vorticity, formed in the braid region and extend-

ing between neighbouring two-dimensional vortices, that appear qualitatively

similar to the structures observed in figure 8.4. Mode-A instability is associated

with spanwise wavelength approximately the same as that of elliptic instability,

i.e. 3 to 4D, and occurs in conjunction with deformation of the vortex core,

whereas mode-B is associated with spanwise wavelength approximately λ = D

and occurs with no deformation of the vortex core (Williamson, 1996). In the

light of these differences it has been suggested that mode-A is caused by el-

liptic instability (Thompson, Leweke & Williamson, 2001), and that mode-B is

in fact a manifestation of the instability of two-dimensional hyperbolic stream-

lines, analogous to that of elliptic instability (Leweke & Williamson, 1998b),

denoted hyperbolic instability. For bluff body wakes mode-A is first observed at

Red > 190, where Red is the Reynolds number based on cylinder diameter, and

mode B is first observed at Red > 240.

Having identified similar regions of instability growth to those observed in

bluff body vortex shedding, the spanwise wavelength of three-dimensional per-

turbations can be compared. The diameter, D, of vortices in the current case

is approximately 0.05. The corresponding spanwise wavelengths for elliptic and

mode-A instability are therefore expected to be in the range 0.15 < λ < 0.2,

and the corresponding wavelength for mode-B instability is expected to be of the

order λ = 0.05. In figure 8.4 the most prominent structures present in the braid
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regions are streaks of ωx, which possess a spanwise wavelength of on average

λ = 0.05. This wavelength appears to correspond to that expected for mode-

B instability, and is too small to be associated with either elliptic or mode-A

instability. The spatial distribution of Floquet modes associated with mode-B

instability in the study of Barkley & Henderson (1996) appears to closely match

regions outside vortex cores where growth is observed in the current case, hence

the streamwise vortices produced in braid regions appear similar in nature to

mode-B instability observed in bluff body wakes. Plotting streamlines at φ = 4π
5

(figure 8.6) illustrates the presence of hyperbolic flow in the braid region up-

stream of each developing vortex. In order to detect any elliptic instability,

perturbations within the vortex cores must be analysed. It is difficult to observe

the vortex cores in three-dimensional plots, since they are masked by the ωx

structures wrapped around the vortices. Instead, iso-contours of ω∗x are plotted

for an x − z plane through the vortex core at φ = 8π
5

in figure 8.7. The vortex

core exhibits pronounced perturbations with the same spanwise wavelength as

observed outside the vortex core, i.e. 0.05. However, in contrast to perturba-

tions outside the core which are uniform in amplitude across the span, ω∗x is

much larger in magnitude over the range 0.16 < z < 0.2 (ω∗x ≈ 100) than at

0.05 < z =< 0.1 (ω∗x ≈ 50). Contours of perturbation z-vorticity taken at mid-

span for φ = 8π
5

, formed by subtracting the span-averaged z-vorticity from the

instantaneous z-vorticity, are illustrated in figure 8.8. The structure within the

vortex core appears similar to the localised perturbation solutions presented by

Waleffe (1990) for unbounded elliptical flow, and is orientated along the axis of

strain associated with the vortex deformation. The vortex core therefore ap-

pears perturbed at two distinct spanwise wavelengths with similar amplitude,

λ1 ≈ 0.05 and λ2 ≈ 0.2. The first wavelength corresponds to that exhibited by

ωx structures outside the vortex core, i.e. mode-B instability, however the second

wavelength is significantly larger and is comparable to wavelengths associated

with elliptic instability. The structure of the perturbation within the vortex core

appears similar to that associated with elliptic instability.

Evidence suggests then, that the production of ωx occurs due to a combina-

tion of instabilities within the vortex cores and braid regions, appearing similar

to elliptic and mode-B instabilities respectively, as observed in bluff body wakes

(Williamson, 1996). It seems that the combination of elliptic and mode-A/B in-

stabilities has not been considered in terms of its absolute or convective nature

for bluff body wakes. In the current case, although the instability mechanism

differs from the classical definition of absolute instability for disturbances on par-

allel baseflows, at a given x-location exponential temporal growth occurs. Hence
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Figure 8.6: Iso-contours of ωz taken at φ = 4π
5 , using 20 levels over the range ±150, with

streamlines superposed illustrating both the presence of both hyperbolic streamlines upstream
of a developing vortex and elliptic streamlines within the vortex itself.

Figure 8.7: Iso-contours of ωx taken across the centre of the vortex at φ = 8π
5 , using 10 levels

over the range ±100.

Figure 8.8: Iso-contours of perturbation z-vorticity at t = 1.96 after initialisation, correspond-
ing to φ = 8π

5 , using ten levels over the range ±5× 10−3.
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the term absolute instability is still useful to describe the behaviour present. Ef-

fectively the mechanism acts as an ‘oscillator’ as opposed to an ‘amplifier’.

The absolute nature of this instability can be explained by referring back to

figure 8.5. At φ = 8π
5

, in the region of hyperbolic flow upstream of the vortex a

comparatively long S-shaped perturbation with large ωx magnitude is observed,

attributed to the presence of mode-B instability. This perturbation extends into

a region of strong upstream fluid flow (u ≈ −0.7) as illustrated in figure 8.5e, left.

Hence ωx perturbations present in the braid region, amplified in the vicinity of

hyperbolic flow, are convected upstream with comparatively large velocity and,

critically, into the braid region associated with the next developing vortex. This

can be clearly seen in figures 8.5a-8.5c. The long thin ωx perturbation near

to the airfoil surface in the region 0.45 < x < 0.55 in figure 8.5a, that is a

remnant of the previous shedding cycle, convects into a region of hyperbolic

flow and generates the streamwise orientated structure clearly visible in figure

8.5c. This behaviour is also illustrated in three dimensions in figure 8.4. Clearly

the absolute mechanism is driven by instability growth within the braid region

of vortices. Instability growth within vortex cores, whilst exhibiting similar

temporal growth rate, appears to exhibit little upstream influence.

A schematic for the absolute instability mechanism is given in figure 8.9.

Perturbations are amplified in braid regions, forming streamwise vortices, and

extend into regions of high magnitude reverse flow. These streamwise vortices

are convected upstream and into the braid region of the next developing spanwise

vortex. The process then repeats with increasing amplitude. The absolute na-

ture of the instability is sustained due to the existence of local regions of reverse

flow for which the velocity magnitude greatly exceeds that of the time-average,

in conjunction with large instability growth rates observed in hyperbolic regions

of fluid flow. This instability mechanism is clearly not predictable via linear sta-

bility analysis of the time-averaged flowfield. Case 3DF may thus be described as

exhibiting transition driven by convective instability and case 3DU by absolute

instability of two-dimensional vortex shedding, by a combination instabilities

similar to elliptic and mode-B instability observed in bluff body wakes. There

is clear evidence that the secondary absolute instability of a forced separation

bubble observed by Maucher et al. (1998) is driven by the same mechanism;

the behaviour observed by Maucher et al. appears similar in many respects,

including similar transitional structures. The instability mechanism may also

be responsible for the rapid breakdown to turbulence observed by Spalart &

Strelets (2000) in the absence of added disturbances. Laminar reattachment is

not possible for the current case, due to the presence of this absolute instability.
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Figure 8.9: Schematic of the manner in which fluid exiting the braid region developed behind
one vortex, subject to mode-B instability growth, enters the braid region associated with the
subsequent vortex. Hyperbolic regions of fluid flow, where mode-B instability is observed to
occur, are shaded.

8.5 Confirmation at α = 7◦

Having proposed an instability mechanism that appears responsible for the self-

sustaining turbulence, it is useful to confirm the presence of this mechanism for a

well-resolved simulation. The three-dimensional simulation at α = 7◦, presented

in chapter 6, was performed with a priori knowledge of the instability mecha-

nism proposed in this chapter, and hence was initialised in a manner allowing

investigation of the transition process. Details of the initialisation process are

given in section 6.4. Essentially the laminar vortex shedding flow was subject

to a three-dimensional perturbation near the leading edge at the start of the

simulation, and the subsequent was behaviour monitored.

When the simulation is progressed in time, the upper surface boundary layer

appears unstable to the initial perturbation, and behaves in a similar fashion

to that presented in section 8.2; perturbations grow in amplitude exponentially

until non-linear amplitudes are reached. Figure 8.10 shows an x/t plot of w-

velocity disturbance growth for this case, plotted in a similar fashion to that in

section 8.3. Due to the large growth rates the probe readings were multiplied

by e−σt, where σ = 11 is the temporal growth rate observed in the vicinity

of vortex shedding, in order to better visualise the data. Therefore, where a

probe signal appears constant in amplitude in figure 8.10, it is in fact growing

at the rate of e11t. The behaviour appears qualitatively similar to that observed

at α = 5◦. During the period 0 < t < 0.4, a wavepacket induced by the

initial perturbation is observed to convect downstream. When the wavepacket

reaches x = 0.3, sustained temporal disturbance growth is observed in the region

0.3 < x < 0.35, corresponding to the region at which vortex shedding takes

place. Plotting iso-surfaces of ωx in the vortex shedding region (figure 8.11)
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illustrates the presence of spanwise periodic disturbances that appear similar to

those identified in section 8.4, at α = 5◦. The spanwise wavelength appears to

be λ = 0.67, slightly larger than that observed at α = 5◦.

It appears that the secondary absolute-instability of the vortex shedding be-

haviour to three-dimensional perturbations is also observed at α = 7◦, hence

the presence of the instability mechanism has been confirmed for a well-resolved

simulation. Since the simulation is well resolved in the z-direction (in contrast

to the simulation at α = 5◦ in this chapter), it can be progressed further in time

upon reaching nonlinear disturbance amplitudes. This is performed in chapter

6. Upon doing so transition to turbulence is observed, which confirms that the

instability mechanism represents a route to transition, and the transition process

is again observed to self-sustain.
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Figure 8.10: Time series of w-velocity scaled by multiplying with e−11t, taken at several
locations within the boundary layer, for case 3D7.

8.6 Summary

A series of three-dimensional simulations, resolving the linear response to three-

dimensional perturbations, suggest that the two-dimensional vortex shedding

behaviour is absolutely unstable to three-dimensional perturbations. The in-

stability is associated with the production of streamwise vortices located in the

braid regions between successive spanwise vortices, with spanwise wavenumber

comparable to that of mode-B instability as observed in bluff body wakes. A

mechanism by which the instability can self sustain is proposed, dependent on

strong local reverse flow and large instability growth rates in braid regions. The

temporal growth rate of the instability increases with airfoil incidence, presum-
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Figure 8.11: Iso-surfaces of streamwise vorticity for case 3D7 at t = 0.7, showing surfaces at
±1× 10−5.

ably due to the larger magnitude of reverse flow present in the two-dimensional

separation bubble. This instability mechanism is unrelated to the acoustic feed-

back instability observed in section 7.3.

It appears therefore, that in the absence of convectively driven transition

within the shear layer, transition will take place by absolute instability of the

two-dimensional vortex shedding in a manner not predicted by classical linear

stability analysis of the time-averaged flowfield. This has important implications

for the modelling of laminar separation bubbles, suggesting that if freestream

turbulence levels drop below a certain value, the time-averaged transition and

reattachment locations will be fixed and not vary with further decreases in

freestream turbulence levels.

161



Chapter 9

Acoustic and spectral analysis of

separation bubbles on airfoils at

incidence

9.1 Introduction

Historically, much of the effort in reducing aircraft noise has been focused on

that produced by the engines. Continued reductions in engine noise now mean

that the contribution of airframe noise, including that produced by turbulent

flow over lifting surfaces, is now becoming important. Solving the compressible

Navier–Stokes equations allows both the hydrodynamic field and the acoustic

response of the airfoil to be studied, and can potentially provide insight to

mechanisms of sound generation.

For the current case of the flow over an airfoil with a separation bubble, the

dominant acoustic source is expected to be acoustic scattering at the airfoil trail-

ing edge. Turbulent fluctuations in free-space are inefficient radiators of noise

in low speed flows, since the radiated acoustic intensity scales as M8, (Lighthill,

1952) however when turbulent fluctuations pass a sharp edge, the acoustic radi-

ation scales as M5 (Ffowcs Williams & Hall, 1970). Hence at low Mach numbers

(e.g. during take-off and landing) trailing edge noise will contribute significant

amount to the total noise generated by an aircraft.

In this chapter the acoustic response of the three airfoil flows presented in

chapters 5 and 6 will be compared in terms of their frequency-dependent behav-

iour.
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9.2 General observations

Acoustic waves present in the three-dimensional simulations may readily be ob-

served by plotting iso-contours of the divergence of velocity, ∇.U. The diver-

gence of velocity is plotted for all three-dimensional simulations in figure 9.1.

In comparison to the two-dimensional simulation at α = 5◦, cases 3DF and

3DU exhibit a more broadband frequency content, with more high-frequencies

present. The acoustic response appears to be somewhat asymmetric, in that

acoustic waves above the airfoil appear to possess more high-frequency content

than those below the airfoil, as well as being slightly larger in amplitude. The

amplitude of the acoustic radiation appears larger for case 3DU than for case

3DF, and the asymmetry appears more pronounced. Case 3D7 appears similar

in nature to the three-dimensional simulations at α = 5◦, with a similar asym-

metry in noise amplitude and frequency content. The amplitude of the acoustic

radiation appears greater than for case 3DU, and the asymmetry appears more

noticeable still. Acoustic waves appear resolved for at least three chords radius

from the airfoil trailing edge.

At this point it should be noted that the acoustic field of case 3DF is of

lesser quality than that of cases 3DU and 3D7. Case 3DF was initialised with

a two-dimensional baseflow, and hence at the start of the simulation trailing

edge noise produced by the two-dimensional vortex shedding flow was present

in the domain (figure 9.2). When this transient acoustic radiation reached the

freestream boundary, reflections were produced that propagated back into the

domain, ultimately contaminating the near-airfoil region. The problem appears

to have been exacerbated because the two-dimensional radiation is much greater

in amplitude than three-dimensional radiation. By the time the forcing was

removed, and case 3DU progressed, the contamination appears to have reduced

significantly. Case 3D7 was performed using a simple buffer at the free-stream

boundary in order to avoid this problem (as described in chapter 2, section

2.2.7), and hence the acoustic data from case 3D7 is the highest quality of all

the three-dimensional simulations.

A simple measure of the amplitude of acoustic radiation generated by the

airfoil flow is p′p′. Iso-contours of p′p′ for all three-dimensional simulations are

plotted in figure 9.3. The most striking observation is that pressure fluctuations

in the potential flow region appear significantly lower in amplitude for case

3DF than for cases 3DU and 3D7. This suggests that the addition of forcing

has reduced the amplitude of acoustic waves generated by the flow around the

airfoil. Low-frequency unsteadiness associated with the hydrodynamic field will

also cause pressure fluctuations however, hence the frequency specific behaviour
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Figure 9.1: Instantaneous iso-contours of ∇.U over the range ±5×10−2 for case 3DF (top-left)
case 3DU (top-right), and case 3D7 (bottom).

should be considered before making too bold a conclusion. Iso-contours of p′p′

for case 3D7 appear to be a similar order of magnitude to those of case 3DU.

The azimuthal variation of p′p′ at three differing radii from the airfoil trailing

edge is plotted in figure 9.4 for case 3DU and case 3D7. Case 3DF is omitted

as transient effects, outlined above, corrupted the directivity plot. Two large

lobes, one above and one below the airfoil, are observed for both cases. At three

airfoil chords from the trailing edge case 3D7 exhibits a greater amplitude of p′p′

than case 3DU, and the directivity appears to have changed slightly. Radiation

below the airfoil exhibits a more pronounced upstream directivity, at 140◦, and

radiation above the airfoil exhibits more pronounced directivity at 100◦.
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Figure 9.2: ∇.U over the range ±5 × 10−2 for case 3DF at time t = 5.6 (left), and t = 7.1
(right), showing the effect of residual two-dimensional pressure waves.

Figure 9.3: Iso-contours of p′p′ for case 3DF (top-left), case 3DU (top-right) and case 3D7
(bottom), using 15 exponentially distributed levels over the range 5× 10−7 to 1× 10−2.

9.3 Point pressure spectra

Pressure power-spectra were computed at several locations within the upper

surface boundary layer and potential flow region for all the three-dimensional
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Figure 9.4: Azimuthal variation of p′p′ at one (· · ·), two (−−) and three (—) chords radius
from the airfoil trailing edge, for case 3DU (left) and case 3D7 (right)
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Figure 9.5: Illustration of point pressure probe locations for cases 3DF and 3DU (left), and
case 3D7 (right).

cases, to allow comparison of frequency-dependent behaviour. Spectra were

computed over an interval of 7.7 time units, using three overlapping segments

with Hanning windowing applied (as detailed in section 2.3). For reference,

figure 9.5 illustrates point pressure probe locations for cases 3DF, 3DU and

3D7, while table 9.1 gives a qualitative description of the fluid behaviour at

each location. Specific x/y-locations are given under the relevant figure.

Pressure power-spectra computed at six locations for case 3DF are plotted

in figure 9.6 Case 3DF was subject to explicitly added forcing at frequencies

f = 7.76 and f = 8.53 in order to promote transition. The effect of the forcing

can be observed in the laminar region (figures 9.6a-9.6c) as a double-peak at

the forcing frequencies. The effect of the forcing can be seen most clearly at

x = 0.4 (figure 9.6c), by which time the explicitly added disturbances have been
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Probe Description
a) Upper surface boundary layer
b) Upper surface separated shear-layer
c) Upper surface separated shear-layer
d) Vortex shedding onset (in two-dimensions)
e) Upper surface turbulent boundary
f) Airfoil near-wake
g) Upper potential flow
h) Lower potential flow

Table 9.1: Description of point pressure-probe locations.

amplified significantly via convective instability, and cause a broad peak in the

power-spectra with amplitude of the order ∼ 10−2. The peak associated with

the forcing frequencies clearly persists downstream of transition, at x = 0.6,

(figure 9.6d) and is just visible at x = 0.85, (figure 9.6e). The effect of forcing

does not persist into the wake however, (e.g. x = 1.5, figure 9.6f), and is

not observed for either of the probes in the potential flow region (figures 9.6g-

9.6f). Pressure power-spectra taken in the potential flow region illustrate clear

differences between acoustic noise present above and below the airfoil (figure

9.6g-9.6f). The amplitude of pressure fluctuations is similar in the range 0 <

f < 10, but for f > 15 the amplitude of pressure fluctuations observed in the

potential flow above the airfoil is significantly greater than that observed below

the airfoil.

In addition to the explicitly added forcing, additional tones are present at

x = 0.1 (figure 9.6a) and x = 0.17 (figure 9.6b). The fundamental tone appears

to be at frequency f = 11.2, and at least three higher harmonics are observed

at x = 0.1. This additional tone is larger in amplitude than the forcing at

x = 0.1, however the amplitude has decreased by x = 0.17 and the tone cannot

be observed downstream of transition, unlike the explicitly added forcing. That

a tone of this frequency should be present at all is surprising, since no frequen-

cies were introduced that can explain its presence. Subharmonics and higher

harmonics of the forcing frequencies may reasonably expected to occur (Dovgal

et al., 1994), as would the difference and sum of the forcing frequencies (e.g.

f1 + f2 and f2 − f1), however this would not explain the occurrence of a tone

at f = 11.2. When pressure power-spectra are plotted for the two-dimensional

simulation at α = 5◦, no tone is observed at f = 11.2 (figure 9.7, left).

No explicitly added disturbances were present for case 3DU, and hence the

peaks observed in the laminar region for case 3DF at f ≈ 8 are not present

for case 3DU (figures 9.8a-9.8c). The additional tone observed at f = 11.2

for case 3DF persists however, and can clearly be observed at x = 0.1 (figure
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9.8a), x = 0.17 (figure 9.8b), and x = 0.4 (figure 9.8b). The amplitude of this

additional tone is larger than for case 3DF at all x-locations. If we were to

assume the peak in the spectra is caused by an instability wave, the increase

in amplitude over case 3DF is likely to be because case 3DU exhibits larger

convective growth rates across the bubble than case 3DU (see section 7.2.1).

The presence of the additional tone for both cases confirms that its presence is

unrelated to the explicitly added forcing. Spectra at x = 0.6 and x = 0.85 are

broadly similar in amplitude to those for case 3DF, although case 3DU exhibits

increased amplitude at low frequencies. At x = 1.5 case 3DU exhibits power-

spectra approximately two orders of magnitude larger in amplitude than case

3DF over the range 0.13 < f < 50, despite similar spectra at x = 0.85. Assuming

the pressure fluctuations at x = 0.6 and x = 0.85 are primarily caused by the

passage of turbulent structures, it would appear that turbulence in the boundary

layer of case 3DF is decaying more rapidly than that of case 3DU. The probe

located in the upper potential flow exhibits slightly greater amplitude than that

of case 3DF across all frequencies plotted. For the probe in the lower potential

flow an even larger increase in amplitude is observed for case 3DU. Similar

differences in behaviour between the upper and lower potential-flow probes are

observed for case 3DU as for case 3DF; again the upper probe exhibits greater

amplitude at higher frequencies.

In chapter 7, section 7.3.5 an acoustic/hydrodynamic feedback loop was ob-

served for the time-averaged flowfield of case 3DU. The fact that the feed-

back loop has been found present for the time-averaged flowfield of a three-

dimensional simulation raises the question as to whether such behaviour will be

observed in the fully developed time-dependent case. Given that the effect of

explicitly adding forcing at f ≈ 8 can still be observed at x = 0.85 in pressure

spectra within the boundary layer for case 3DF (figure 9.6e), it seems feasible

that a tonal contribution to the turbulent fluctuations, and hence also to the

acoustic response, could occur if an acoustic feedback loop is present. It could

be argued that pressure spectra at x = 0.6 and x = 0.85 exhibit a local maxima

at f ≈ 4 for case 3DU (figures 9.8d and 9.8e), which would be of similar order to

that expected for the feedback loop, however the maxima is not distinct, and no

such maxima is observed for pressure spectra taken in the potential flow region.

There is therefore no strong evidence of acoustic-feedback-related phenomena

for case 3DU, however the possibility that such a mechanism may generate a

tonal response in turbulent airfoil flows cannot be ruled out. If pressure spectra

could be obtained for much longer time series the low frequency behaviour of

case 3DU could be investigated with more confidence.
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The topology of the flow around the airfoil at α = 7◦ is different to that

at α = 5◦, hence direct comparisons of spectra taken at individual x-locations

are less meaningful, so probes have been placed in locations where similar fluid

phenomena is occurring as for the probes in cases 3DU and 3DF. Again, no

explicitly added disturbances were present for case 3D7, however an additional

tone is still observed in the laminar region (figures 9.9a-9.9c), along with higher

harmonics. Surprisingly the tone is at the same frequency as for cases 3DF

and 3DU, and again the additional tone is not observed for the equivalent two-

dimensional simulation (figure 9.7, right). The tone persists until the transition

region (x = 0.3, figure 9.9d), but is not present in any other spectra. Spectra at

x = 0.6 (figure 9.9e) appear remarkably similar to those taken at x = 0.85 for

cases 3DF and 3DU, where boundary layer properties are similar (e.g. cf , δ∗).

The same asymmetry between upper and lower sides of the airfoil is observed for

probes in the potential flow, with the upper probe exhibiting greater amplitude

at for higher frequencies.

9.4 Surface pressure spectra

Surface pressure spectra are computed in order to describe the frequency content

of fluctuations present in the airfoil boundary layer. Spectra are computed

for all points on the airfoil surface before being span-averaged. No windowing

or segmenting is performed, since span averaging already improves the quality

of the spectra. Iso-contours of the pressure-spectra modulus are then plotted

against S, where S is the airfoil surface coordinate, defining the leading edge

as S = 0. By plotting S instead of x-location the leading-edge region can be

observed more clearly. Surface pressure spectra are plotted in this fashion for

case 3DF, 3DU and 3D7 in figures 9.10, 9.11 and 9.12 respectively.

Surface pressure spectra from case 3DF clearly illustrate the presence of the

explicitly added forcing at f = 7.76 and f = 8.53 on the upper airfoil surface.

The forcing at f = 7.76, β = 2π/Lz appears to be more strongly amplified than

that at f = 8.53, which was forced at β = 6π/Lz and β = 8π/Lz. The higher

harmonic f = 15.52 can be observed, and a ‘ladder’ structure of tones appears

present around the two primary forcing frequencies; additional tones appear with

frequency spacing the difference of the two explicitly added forcing frequencies,

i.e. ∆f = 8.53 − 7.76. Upstream of transition the only significant fluctuations

appear to be either low frequency in nature in the region 0. ≤ x ≤ 0.3 or

fluctuations at the forcing frequencies. Little other unsteadiness is present. In

the vicinity of transition, x = 0.45, the modulus of all frequencies increases
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Figure 9.6: Temporal pressure spectra for case 3DF, taken at x-locations indicated.
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Figure 9.7: Temporal pressure spectra for the two-dimensional case at α = 5◦, taken at
x = 0.17, y = 0.134 (left), and for the two-dimensional case at α = 7◦, taken at x = 0.15,
y = 0.17 (right).

dramatically. Downstream of transition the amplitude of fluctuations decreases

with increasing x-location, with the amplitude of high frequency fluctuations

decreasing more rapidly than that of the low frequencies. The additional tone

at f = 11.2 is also visible in surface spectra, and appears largest in amplitude

at x ≈ 0.1. The tone appears small in amplitude in comparison to the forcing

frequencies.

On the lower airfoil surface the behaviour is markedly different. There appear

to be very few fluctuations at mid to high frequencies. Pressure fluctuations are

observed at low frequencies however, and appear to increase in amplitude both

with proximity to the airfoil trailing edge and with decreasing frequency. The

lower surface boundary layer is subject to a favourable pressure gradient until

around the mid-chord, and hence no instability wave growth is expected in this

region. It appears that the pressure fluctuations on the lower airfoil surface are

caused by the passage of acoustic waves generated at the trailing edge, and hence

for case 3DF trailing edge-noise appears to be significant primarily for f < 10.

As expected, case 3DU (figure 9.11) exhibits no clear tones in the transi-

tion region. Although local maxima may be observed in the transition region,

they are not significantly larger in amplitude than at other similar frequencies.

Compared to case 3DF, frequencies in the range 1 < f < 8 appear significantly

larger in amplitude in the transition region. The amplitude of fluctuations in

the range 1 < f < 4 over the separated region is also greater than for case 3DF,

suggesting that the entire bubble is more unsteady, as well as the transition

process being more energetic. The additional tone is observed to be present, at

greater amplitude than for case 3DF, and reveals itself to consist of two closely

spaced peaks, at f = 10.9 and f = 11.3. Although the amplitude of the tone is

significant, it does not reach levels similar to those observed during transition

at lower frequencies, and hence is unlikely to play a primary role in instigating
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Figure 9.8: Temporal pressure spectra for case 3DU, taken at x-locations indicated.
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Figure 9.9: Temporal pressure spectra for case 3D7, taken at x-locations indicated.
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transition. As for case 3DF, the acoustic scattering appears to be significant

primarily for 1 < f < 10, based on the amplitude of pressure fluctuations on the

lower airfoil surface, however the amplitude of fluctuations on the lower airfoil

surface is much greater for case 3DU. This would appear to be due to the in-

creased amplitude of fluctuations in the range 1 < f < 8 over the upper airfoil

surface, and the closer proximity of the transition location to the trailing edge.

Case 3D7 also exhibits a clear maximum at the frequency of the additional

tone, f = 11.2 (figure 9.12). The additional tone appears to take the form of

a single peak, and is the largest amplitude fluctuation present. The spectral

behaviour of the additional tone appears qualitatively similar to that of the

explicitly added forcing of case 3DF; almost as if a single-frequency instability

wave has been introduced and is strongly convectively amplified. The additional

tone reaches peak amplitude at x ≈ 0.3. The laminar region shows increased

amplitude of fluctuations at all frequencies compared to the cases at α = 5◦.

Pressure spectra on the lower airfoil surface again show that trailing-edge scat-

tering is most effective for f < 10. Visual inspection suggests that the amplitude

of spectra on the lower surface is of a similar order of magnitude to that of case

3DU.

For cases 3DF and 3DU, and to a very limited extent for case 3D7, unusual

behaviour can be observed near the leading edge on the upper airfoil surface.

Most noticeably for case 3DF, there appears to be a local maxima in the spec-

tra occurring across a range of frequencies, located directly in the vicinity of

the leading edge but biased slightly toward the upper airfoil surface. Acoustic

scattering is known to occur at the leading edge of airfoils (Roger & Moreau,

2005), however due to the finite leading-edge radius one would expect it to be

predominant only for even lower frequencies than trailing edge noise. Certainly,

Roger & Moreau (2005) suggest that leading-edge back-scattering will be sig-

nificant only for kc < 10, where k is the acoustic wavenumber and c the airfoil

chord. For case 3DF the speed of sound in the vicinity of the leading edge is

∼ 1.1, suggesting that leading-edge scattering will be significant for f < 1.75.

The local maxima appears at significantly higher frequencies than 1.75, hence is

unlikely to be caused by leading-edge scattering, based on the criteria of Roger

& Moreau.

A further possibility is that the local maxima represents a location of bound-

ary layer receptivity to free-stream (acoustic) disturbances. The receptivity

process was observed numerically in section 7.3.1, and found to be a critical

stage in the observed acoustic feedback instability. Where boundary layer re-

ceptivity does occur, the resultant hydrodynamic disturbances will either decay

174



or amplify dependent on the local boundary layer stability characteristics. Lin-

ear stability analysis (section 7.2) suggests that boundary layer disturbances will

not convectively amplify until x > 0.05, hence boundary layer receptivity and

subsequent decay of the hydrodynamic disturbances may potentially be respon-

sible for the maxima observed at airfoil the leading edge. Certainly, boundary

layer receptivity is expected to occur over a range of frequencies (Wanderley &

Corke, 2001), and in section 7.3.1 was observed to take place for frequencies as

low as f = 1.7 and as high as f = 11. It is therefore felt that leading-edge

receptivity is a more likely explanation for the presence of the local maxima

than leading-edge back-scattering.

9.5 Free-stream pressure spectra

In order to study the frequency dependent-behaviour of the acoustic response

of the airfoil, temporal pressure spectra were computed for the potential flow

region for every fourth point in both the ξ and η directions, at the airfoil mid-

span. The spectra are presented in two ways. First, the real coefficient of the

Fourier transformed pressure field is plotted for specific frequencies. This clearly

illustrates the directivity of acoustic radiation at specific frequencies. Secondly,

the modulus of the spectra is averaged over finite frequency ranges and plotted.

This illustrates more general trends of frequency dependent behaviour.

9.5.1 Real coefficient of the Fourier transformed pressure field

The real coefficient of the direct Fourier transform of pressure is plotted at

four frequencies for each three-dimensional simulation. Plotting the real co-

efficient illustrates clearly the directivity and origin of pressure fluctuations.

The frequencies were chosen for their possible physical significance. Frequency

f = 3.37 corresponds to the frequency of the naturally occurring vortex shedding

at α = 5◦, frequency f = 7.76 corresponds to the dominant forcing frequency

of case 3DF, frequency f = 11.2 corresponds to the additional tone observed in

point pressure spectra (section 9.3) and surface pressure spectra (section 9.4),

and frequency f = 15 is an arbitrarily selected higher frequency.

The real part of the Fourier transformed pressure field is plotted for case

3DF, case 3DU and case 3D7 in figures 9.13, 9.14 and 9.15 respectively. The

behaviour of individual frequencies varies strongly both with frequency and from

case-to-case. For cases 3DF and 3D7, the real coefficient at frequency f = 3.37

appears indicative of trailing edge noise. The real-coefficient takes the form of

periodic waves originating at the airfoil trailing edge, with primarily upstream
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Figure 9.10: Modulus of the span-averaged Fourier transform of surface pressure for case 3DF
showing frequencies 1 < f < 16 (left), plotted using 15 levels exponentially distributed over
the range 1×10−4−4×10−2, and frequencies 1 < f < 50 (right), plotted using levels similarly
distributed over the range 1× 10−5 − 4× 10−2.

Figure 9.11: Modulus of the span-averaged Fourier transform of surface pressure for case 3DF
showing frequencies 1 < f < 16 (left), plotted using 15 levels exponentially distributed over
the range 1×10−4−4×10−2, and frequencies 1 < f < 50 (right), plotted using levels similarly
distributed over the range 1× 10−5 − 4× 10−2.

Figure 9.12: Modulus of the span-averaged Fourier transform of surface pressure for case 3DF
showing frequencies 1 < f < 16 (left), plotted using 15 levels exponentially distributed over
the range 1×10−4−4×10−2, and frequencies 1 < f < 50 (right), plotted using levels similarly
distributed over the range 1× 10−5 − 4× 10−2.
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directivity. Iso-contours of the real coefficient for case 3D7 in particular appear

visually similar to the trailing edge noise observed in two-dimensions, at α = 5◦

(section 4.4.1), with similar out-of-phase behaviour above and below the airfoil.

Pressure-field spectra for case 3DF are of lesser quality, however qualitatively

similar behaviour can still be observed. For case 3DU there is still evidence of

trailing edge noise, but the real-coefficient appears asymmetric, as though the

acoustic radiation over the upper airfoil surface is stronger.

Frequency f = 7.76 exhibits different behaviour depending on the airfoil

incidence. At α = 5◦ (i.e for cases 3DF and 3DU) trailing-edge noise appears

to be the dominant acoustic source, although there is a slight kink in wave

fronts above the airfoil for case 3DF, and an upstream pointing lobe of higher

amplitude at x ≈ 0.5 for case 3DU. At α = 7◦ there is almost no trailing-

edge noise present. Instead, the acoustic radiation appears to originate from

a second acoustic source. This secondary source appears to be located on the

upper airfoil surface, at around x = 0.4, and possesses clear upstream directivity.

The presence of forcing at f = 7.76 cannot be detected by visual inspection of

case 3DF, hence the forcing appears ‘quiet’ in comparison to naturally occurring

acoustic events.

Frequency f = 11.2 corresponds to the additional tone observed in point pres-

sure spectra (section 9.3), and surface pressure spectra (section 9.4). The real

coefficient at this frequency exhibits unexpected behaviour; the real coefficient

is large above and close to the airfoil, but does not seem to be representative of

pressure waves propagating into the freestream. Taking the Fourier transformed

pressure field, performing an inverse transform for the single frequency f = 11.2

and animating the real part of the fluctuating pressure signal allows the direc-

tion of wave propagation to be determined. The pressure field for case 3DU at

f = 11.2 is plotted in figure 9.16 for three phases, φ = 0, φ = π/2 and φ = 3π/2,

however the resultant behaviour is most clearly illustrated in animations. In light

of animated data it is apparent that the pressure fluctuations at f = 11.2 take

the form of upstream travelling waves that rapidly decay in amplitude upstream

of the airfoil leading edge. Measuring as close to the airfoil surface as possible,

the disturbance wavelength appears to lie in the range 0.2 − 0.29, which cor-

responds to a propagation velocity in the range 2.24 < c < 3.25. Conversely,

above the airfoil the streamwise velocity varies over the range 1.1 < u < 1.5, and

given a Mach number M = 0.4 this would suggest upstream wave propagation

velocities in the range 1 < c < 2.1. Furthermore, trailing edge noise is apparent

below the airfoil at low amplitudes in figure 9.16, and the wavelength of the

trailing edge noise below the airfoil appears significantly smaller than that of
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the pressure waves above the airfoil, despite the fact that the freestream velocity

is lower below the airfoil hence the wavelength should be longer. Effectively the

radiation above the airfoil possesses a wavelength longer than that expected for

pressure waves propagating upstream at the speed of sound at f = 11.2. It

should be noted that the structures observed are very large in comparison to

the grid spacing, and hence do not appear to be grid-dependent. In light of this

unusual behaviour, the additional tone observed at f = 11.2 is discussed in more

detail in section 9.6.

At frequency f = 15, for all cases, the dominant source of acoustic radiation

does not appear to be the airfoil trailing edge, but at some location on the upper

airfoil surface. The apparent source of acoustic radiation appears to be located

slightly further upstream for case 3D7 than for cases 3DF and 3DU, and the

wave-front pattern suggests that the transition/reattachment region is generat-

ing acoustic radiation. The directivity of acoustic waves is primarily upstream,

although for case 3D7 and, to a lesser extent, case 3DU there is evidence of

radiation with downstream directivity. The production of acoustic radiation in

the transition/reattachment region appears to be an entirely separate phenom-

enon to that of acoustic scattering at the trailing edge, and hence would not be

predicted by classical trailing-edge theory (Amiet, 1976).

It appears that for the airfoil flow investigated here, there two main sources

of acoustic radiation present. Acoustic waves are generated both by scatter-

ing at the airfoil trailing edge, and also in the transition/reattachment region.

The trailing edge noise appears to possess primarily upstream directivity, and

appears approximately symmetric in both amplitude and directivity. Acoustic

waves generated in the transition region appear to possess both upstream and

downstream directivity and, being produced solely on the upper airfoil surface,

the directivity is highly asymmetric. At f = 11.2 unusual behaviour is observed

in time-dependent pressure above the airfoil. Upstream travelling pressure waves

are present, with wavelength longer than that expected for acoustic waves trav-

elling at the speed of sound, that decay rapidly upstream of the airfoil trailing

edge.

9.5.2 Frequency-averaged modulus of the Fourier transformed pres-

sure field

In section 9.5.1 the real coefficient of the Fourier transformed pressure field was

plotted for four individual frequencies, revealing the directivity and apparent

origin of acoustic waves in each case. Having identified what appear to be the

dominant sources of acoustic radiation, general trends of the frequency depen-
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a) f = 3.37 b) f = 7.76

c) f = 11.2 d) f = 15

Figure 9.13: Iso-contours of the real part of Sp for case 3DF, plotted over the range ±3×10−4,
for frequencies indicated.

dent acoustic behaviour will now be studied. In order to do this, the frequency-

averaged modulus of the Fourier transformed pressure field is plotted for four

frequency intervals; 1 ≤ f ≤ 4, 4 ≤ f ≤ 9, 9 ≤ f ≤ 12 and 12 ≤ f ≤ 16, for all

three-dimensional simulations. The frequency averaged modulus is formed by

summing the modulus over all available frequencies then dividing by the number

of frequencies, e.g.

Sp(f) = Σn=N
n=1

Sp(f)

N
, (9.1)

where N is the total number of frequencies averaged, hence the amplitude of

each frequency range may be compared directly.
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a) f = 3.37 b) f = 7.76

c) f = 11.2 d) f = 15

Figure 9.14: Iso-contours of the real part of Sp for case 3DU, plotted over the range ±3×10−4,
for frequencies indicated.

Pressure spectra computed for the acoustic field for case 3DF are unfortu-

nately slightly corrupted due to the transient behaviour described in section

9.2, hence spectra for case 3DU will be discussed first, plotted in figure 9.17.

The amplitude of pressure spectra computed for case 3DU appears in general

to decrease with increasing frequency. The frequency-averaged modulus for the

interval 1 ≤ f ≤ 4 exhibits much greater amplitude than the other frequency

intervals; in the range 4 ≤ f ≤ 9 the frequency-averaged modulus is slightly

lower in amplitude, and over intervals 9 ≤ f ≤ 12 and 12 ≤ f ≤ 16 the mod-

ulus is lower still. The directivity of the pressure spectra also changes with

frequency. For 1 ≤ f ≤ 4 the frequency-averaged modulus appears to exhibit
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a) f = 3.37 b) f = 7.76

c) f = 11.2 d) f = 15

Figure 9.15: Iso-contours of the real part of Sp for case 3D7, plotted over the range ±3×10−4,
for frequencies indicated.

upstream directivity and, for y > 1 at least, appears to possess approximately

the same amplitude above and below the airfoil. The modulus is a maximum at

the airfoil trailing edge, and the iso-contour distribution suggests that the airfoil

trailing edge is the dominant source of pressure fluctuations propagating into the

free-stream. Indeed, the directivity appears comparatively similar to that of the

trailing edge scattering observed clearly in two-dimensions at α = 5◦ (section

4.4.1), and to trailing edge noise identified for specific frequencies in section 9.5.1.

For the higher frequency intervals 9 ≤ f ≤ 12 and 12 ≤ f ≤ 16, spectra ex-

hibit dramatically different behaviour. At 9 ≤ f ≤ 12 there is some evidence of

trailing edge noise production below the airfoil, however the frequency-averaged
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a) φ = 0 b) φ = π/2 c) φ = 3π/2

Figure 9.16: Iso-contours of fluctuating pressure, p′, plotted for case 3DF at the single fre-
quency f = 11.2, showing levels over the range ±5× 10−4.

modulus is greatest in amplitude at approximately x = 0.5 on the upper airfoil

surface. The directivity is highly asymmetric, with the amplitude of the mod-

ulus in the freestream being significantly greater above the airfoil than below.

The behaviour is even more pronounced at 12 ≤ f ≤ 16; almost no trailing-edge

noise is observed at these contour levels, and the asymmetry of the spectra is

even more striking. The frequency-averaged modulus appears to suggest that

over these frequency ranges acoustic waves are primarily being produced in the

transition/reattachment region, as observed for f = 15 in section 9.5.1. For

4 ≤ f ≤ 9 the spectra exhibits a combination of behaviours. There appears to

be significant trailing edge noise present and the amplitude of the frequency-

averaged modulus appears to be a similar order of magnitude above and below

the airfoil, however the directivity appears to be asymmetric.

Case 3DF appears to display the similar trends to case 3DU, however the

amplitude of pressure spectra appears smaller for all frequencies. This appears to

confirm that the addition of forcing reduces the amplitude of acoustic radiation

produced by the flow around the airfoil for this case. Trailing edge noise appears

present at significant amplitudes for f < 10. As for case 3DF, however, above

f = 10 the dominant source of pressure fluctuations propagating into the free-

stream appears to be located on the upper airfoil surface at approximately x =

0.5, i.e. the transition/reattachment region, and above f = 10 the directivity

appears highly asymmetric. Pressure spectra for case 3DF appear corrupted for

1 ≤ f ≤ 9, where the effect of the acoustic transient described in section 9.2 can

be observed upstream of the airfoil.

Pressure spectra computed from case 3D7 are a similar order of magnitude to

those computed from case 3DU, suggesting that a modest increase of incidence

affected the amplitude of acoustic radiation far less then the addition of forcing.

Again, similar behaviour is observed as for cases 3DU and 3DF, with trailing
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a) 1 ≤ f ≤ 4 b) 4 ≤ f ≤ 9

c) 9 ≤ f ≤ 12 d) 12 ≤ f ≤ 16

Figure 9.17: Iso-contours of the frequency-averaged modulus of Sp for case 3DU, plotted for
frequencies indicated.

edge noise apparently dominant for 1 ≤ f ≤ 4 and noise generated in the tran-

sition/reattachment region apparently dominant for 9 ≤ f ≤ 16. For case 3D7

the second acoustic source appears to be located slightly further upstream com-

pared to case 3DU, perhaps providing further evidence that this second source of

acoustic radiation is indeed associated with the transition/reattachment region.

To summarise, all three cases display similar general trends of behaviour. It

appears that for 1 ≤ f ≤ 4 trailing edge noise is the dominant acoustic source,

whereas for f > 9 noise generated in the transition/reattachment region appears

to be dominant. For 4 ≤ f ≤ 9 trailing edge noise is still the dominant acoustic

source, however the effect of the second noise source can still be observed as a
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change in directivity. The nature of the mechanism by which acoustic radiation

is produced in the transition/reattachment region is not known beyond doubt,

however it appears likely that the highly unsteady wall shear-stress present in

the transition region (see 5, figure 5.12) is likely to be an important source of

radiation, as has been found for turbulent channel flow at low Mach number

(Hu, Morfey & Sandham, 2003). It would be of interest to determine how

the amplitude of acoustic radiation produced in this region scales with Mach

number. This would not only help to determine the nature of the acoustic source

(e.g. scattering or free-space turbulent fluctuations), but also help to determine

the significance of this source in terms of its contribution to airfoil self-noise at

different Mach numbers.

a) 1 ≤ f ≤ 4 b) 4 ≤ f ≤ 9

c) 9 ≤ f ≤ 12 d) 12 ≤ f ≤ 16

Figure 9.18: Iso-contours of the frequency-averaged modulus of Sp for case 3DF, plotted for
frequencies indicated.
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a) 1 ≤ f ≤ 4 b) 4 ≤ f ≤ 9

c) 9 ≤ f ≤ 12 d) 12 ≤ f ≤ 16

Figure 9.19: Iso-contours of the frequency-averaged modulus of Sp for case 3D7, plotted for
frequencies indicated.

9.6 Discussion of the additional tone at f = 11.2

Pressure spectra taken within both the airfoil boundary layer and on the airfoil

surface reveal a tonal contribution at f ≈ 11.2 for all three-dimensional cases.

Spectra taken in the acoustic field at this frequency also display unusual behav-

iour; upstream travelling pressure waves are observed, with wavelength longer

than that expected for acoustic waves, which do not appear to be propagating

into the free-stream. The origin of this tone appears unclear, and hence will be

subject to brief discussion.

It is feasible that additional tones could be caused by an acoustic feedback-
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loop mechanism involving communication between the airfoil leading-edge and

the trailing-edge, as observed in section 7.3. If this were the case, however,

one could reasonably expect the frequency of the tone to vary from case to case.

Also, the acoustic feedback loop observed in section 7.3 was observed to occur for

f ≤ 4, and evidence in this chapter appears to suggest that acoustic scattering

at the trailing edge is most efficient for low frequencies. This appears to discount

a leading-edge/trailing-edge acoustic feedback loop, since the additional tones

observed occur at higher frequencies than expected for a leading-edge/trailing-

edge feedback loop.

A second possibility is that some other form of acoustic feedback loop is

present, different to that suggested in section 7.3, for example involving commu-

nication between the transition region and the airfoil leading edge. Certainly,

acoustic waves are observed to be generated in the vicinity of transition (e.g.

see figure 9.15b) and receptivity of the leading edge has been documented for

the current case (section 7.3.1). The receptivity process itself will occur most

efficiently at a certain frequency, and the energy content of the transitional noise

will also be frequency dependent. This could give rise to a preferred frequency

that would differ from that associated with a leading-edge/trailing-edge feed-

back loop. In section 7.3.1 the boundary layer receptivity process was observed

to be significant until at least f = 11, a value very close to the frequency of

the additional tone at f = 11.2. If the additional tone were to be the result of

a leading-edge/transition feedback loop, this would also explain the noticeable

asymmetry observed in the fluctuating pressure field at f = 11.2, since the tonal

contribution to self-noise would occur only on the upper surface. Furthermore,

some similarities exist between noise generated in the transition region and the

spatial structure of the additional tone. In particular, noise generated in the

transition region appears to propagate in a direction almost normal to the air-

foil, and is small in amplitude upstream of the airfoil leading edge (figure 9.15d);

in this respect the transitional noise is similar to the additional tone. However,

the hypothesis of a leading-edge/transition feedback loop does not explain the

comparatively long wavelength of pressure fluctuations associated with the ad-

ditional tone, and one would still expect the frequency of the tone to vary from

case to case, since the structure of the boundary layer in the leading edge region,

and hence the receptivity process, will vary.

A third possibility is that the upper airfoil boundary layer exhibits some reg-

ularly occurring motion at this frequency, such as a ‘global’ wall-normal flapping

of the shear layer, which results in pressure fluctuations in the near-airfoil region.

Stability analysis of the time-averaged flowfield of case 3D7 (presented in chap-
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Figure 9.20: Iso-contours of ∇U′ for the time-averaged flowfield of case 3D7 as described in
section 7.3.5, at t = 8.4, showing 10 levels over the range ±2× 10−10.

ter 7, section 7.3.5) revealed a very weak form of absolute instability in which

the separated region appears to act as an ‘oscillator’, which could potentially

generate a tonal response in the fully developed flow. The oscillatory behaviour

observed in section 7.3.5 occurs over a broader frequency range than the tonal

contribution observed for three-dimensional simulations however, and when iso-

contours of ∇U′ are plotted (figure 9.20), the flowfield appears dissimilar to that

associated with the tone at f = 11.2 (e.g. figure 9.14c).

To summarise, the origin of the additional tone appears difficult to deter-

mine, however it appears unlikely to be generated by a leading-edge/trailing-

edge feedback loop. The concept of a leading-edge/transition feedback-loop

appears attractive, however it does not explain the unusual spatial structure of

pressure fluctuations at f = 11.2 and the resultant implications for wave prop-

agation velocities. At present these phenomena remain unexplained, although

it is suggested that the superposition of multiple sources of pressure fluctua-

tions, for example trailing-edge noise, transition noise and pressure fluctuations

associated with hydrodynamic behaviour, may result in unexpected behaviour

in the Fourier transformed pressure field. It is conceivable, for example, that a

standing-wave pattern could be formed under appropriate conditions. Attempts

to generate patterns exhibiting long disturbance wavelengths via model prob-

lems, e.g. superposing sinusoidal travelling waves and computing the Fourier

transform, have not been successful however. It is felt that such studies are

inconclusive though, since in the ‘real’ airfoil flow the free-stream velocity (and

hence wave propagation velocity) varies in two-dimensions, and the directivity

and phase will vary between acoustic sources. In light of the available evidence,

the hypothesis of a leading-edge/transition acoustic feedback loop remains the

most feasible mechanism for the additional tones.
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9.7 Summary

The acoustic response of three airfoils with separation bubbles has been com-

pared. The overall intensity of sound radiation from the airfoil was found to be

a similar order of magnitude for unforced cases at α = 5◦ and α = 7◦, however

when forcing is introduced at α = 5◦ the overall intensity of sound radiation

decreases by approximately an order of magnitude. This appears to be because

the presence of forcing suppresses low frequency events in the turbulent region,

which are more effectively scattered than events occurring at high frequency.

Hence it appears that the presence of forcing appears to affect the acoustic

response of the airfoil more significantly than a modest change of incidence.

Surface pressure spectra suggest that trailing edge noise is significant only

for f ≤ 10, and this appears corroborated by acoustic spectra taken in the

free-stream. As well as the expected acoustic scattering at the trailing-edge, a

second noise source appears present for all cases; above f = 10 trailing edge

noise becomes less significant, however acoustic waves continue to be produced

in the transition/reattachment region. Noise produced in this region appears to

propagate with different directivity to trailing edge noise observed for f < 10

and is entirely asymmetric, being produced over only the upper airfoil surface.

This second noise source would not be predicted by classical trailing edge theory,

and appears an entirely different phenomenon.

Point pressure probes and surface spectra illustrate the presence of discrete

tones for all cases. In particular, an additional tone is present at f = 11.2 that

becomes large in amplitude for α = 7◦. This tone a associated with unusual

pressure-spectra behaviour in the near-airfoil region, that does not correspond

to acoustic wave propagation. This additional tone does not appear to generated

by the mechanism outlined in section 7.3, and the reason for its presence is not

clear.
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Chapter 10

Conclusions and future work

The flow around a NACA-0012 airfoil at low Reynolds number has been in-

vestigated numerically, in both two and three-dimensions, via a combination of

linear stability analysis and direct solution of the compressible Navier–Stokes

equations. The application of DNS to complex geometries such as that of airfoil

flow has only recently begun to be undertaken, and the current study repre-

sents the first comprehensive investigation of airfoil flow at MAV-type Reynolds

numbers by direct numerical simulation. Primary topics that have been studied

include:

• Investigations of the two-dimensional flow around airfoils at both Rec = 104

and Rec = 5× 104

• A study of the effect of forcing upon the behaviour of a separation bubble

formed on an airfoil at incidence

• An investigation of the effect of a modest incidence change upon separation

bubble behaviour

• A thorough investigation of the convective and absolute stability charac-

teristics of both forced and unforced separation bubbles formed on airfoils

at incidence

• Determination of the mechanism for self-sustaining turbulence observed in

unforced separation bubble simulations

• An investigation of the acoustic response of the flow around airfoils with

both forced and unforced separation bubbles
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10.1 Summary of principal findings

10.1.1 Important results from two-dimensional simulations

At Rec = 104 the wake was found to be unstable, ultimately resulting in von-

Karman type vortex shedding. At Rec = 5 × 104, a low frequency flapping

oscillation was observed at α = 0◦ over the range 0.5 ≤ M ≤ 0.8, which was

found to cause fluctuations in the lift-coefficient much greater in amplitude than

for the vortex shedding. A series of simulations at varying incidence, at Rec =

5 × 104, M = 0.4, illustrated the presence of a laminar separation bubble with

vortex shedding. The vortex shedding undergoes a behavioural change at α ≤ 5◦.

For α ≤ 5◦ the vortex shedding is near-periodic, and occurs at a single frequency.

For α > 5◦ the vortex shedding is more irregular.

10.1.2 The effect of boundary layer forcing upon separation bubble

behaviour

A separation bubble was formed on a NACA-0012 airfoil at Rec = 5 × 105,

M = 0.4 and α = 5◦, with explicitly added low-amplitude disturbances to trig-

ger transition to turbulence. When the disturbances are turned off, transition

to turbulence was observed to self-sustain for the unforced case, however the

presence of forcing was found to significantly alter the behaviour of the laminar

separation bubble. The presence of forcing reduces the length of the separation

bubble and improves the lift-to-drag ratio by 23%. The turbulence intensity

downstream of transition appears to be reduced in the forced case, with lower

frequency fluctuations in particular being reduced in amplitude. As a result

the acoustic radiation observed in the forced case was around an order of mag-

nitude smaller than for the unforced case. The presence of forcing also alters

the developing turbulent boundary layer behaviour; the unforced case exhibited

an increased amplitude of fluctuations away from the wall, and the turbulence

possessed increased spanwise coherence. Both of the three-dimensional separa-

tion bubbles exhibited large variations in skin-friction. At no point downstream

of transition was the flow either fully attached or fully separated, suggesting

that the concept of a reattachment ‘point’ is misleading. Comparison of skin-

friction PDF’s illustrates that time-dependent behaviour of the two-dimensional

separation bubble is fundamentally different to that of the three-dimensional

bubbles.
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10.1.3 The effect of incidence upon separation bubble behaviour

A separation bubble was formed on a NACA-0012 airfoil at Rec = 5×105, M =

0.4 and α = 7◦ in order to investigate the effect of a modest incidence change on

separation bubble behaviour. A low amplitude perturbation was introduced at

initialisation, but no further disturbances were added. Transition to turbulence

was observed to occur, and the transition to turbulence self-sustained as at

α = 5◦. The intensity of turbulent fluctuations is similar to the unforced case at

α = 5◦, and the acoustic radiation produced by the flow over the airfoil appears

a similar order of magnitude also. Turbulent fluctuations in the developing

boundary layer were significantly greater away from the wall than near the wall.

For the cases considered, it appears that the addition of forcing affects the

characteristics of the turbulence and acoustic radiation more significantly than

a modest incidence change.

10.1.4 Stability characteristics of separation bubbles formed on air-

foils at incidence

No evidence of local absolute instability could be detected for any of the three-

dimensional simulations when performing linear stability analysis of the time-

averaged flow field. The same was found to be true of the corresponding two-

dimensional simulations. In order to confirm the results of the linear stability

analysis, whilst accounting for non-parallel effects, Navier–Stokes simulations

were performed using forcing terms to determine the response of the time-

averaged flowfield to low-amplitude perturbations. A very weak oscillatory be-

haviour was observed for simulations at α = 7◦, however no evidence of absolute

instability could be observed that would explain the self sustained transition to

turbulence at α = 5◦. Convective stability characteristics were also investigated.

For all cases the most amplified instability wave across the separation bubble

was found to be much higher in frequency than the naturally occurring vortex

shedding observed in two-dimensions.

10.1.5 An acoustic feedback instability of flow over an airfoil with a

laminar separation bubble

Forced Navier–Stokes simulations, investigating the response of time-averaged

flowfields extracted from airfoil simulations to low amplitude perturbations, il-

lustrated the presence of an acoustic feedback loop. The resultant behavior

may be defined as globally unstable, although no local absolute instability or

‘BiGlobal’ instability was observed. The feedback loop was found to be present
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for the time-averaged flowfield of two-dimensional simulations at α = 5◦, 7◦,

and 8.5◦, and for the unforced three-dimensional simulation at α = 5◦. The pre-

ferred frequency of the feedback loop is lower than that of the most convectively

amplified instability wave over the upper airfoil surface, hence it is suggested

that an acoustic feedback loop of this type may potentially act as a frequency

selection mechanism for the vortex shedding observed in two-dimensions.

10.1.6 A mechanism for self-sustaining turbulence

A mechanism for the self-sustaining transition to turbulence observed to take

place for unforced separation bubbles has been proposed. The mechanism is

essentially a secondary instability of the naturally occurring vortex shedding to

three-dimensional perturbations, and is driven primarily by two mechanisms.

Firstly, three-dimensional perturbations are strongly amplified when they con-

vect into regions of high strain, associated with hyperbolic streamlines, between

adjacent vortices. Secondly, perturbations leaving the regions of high strain

then extend into regions of strong reverse flow, where the magnitude of re-

verse flow greatly exceeds that of the time-averaged field. The perturbations

are then convected rapidly upstream, and into the strain field associate with

the subsequent developing vortex. The instability amplification rates and up-

stream convection velocities are such that the instability manifests itself in an

absolute fashion. The instability appears analogous to behaviour observed in

wakes, and may explain self-sustaining transition to turbulence observed in pre-

vious studies of separation bubbles. The instability mechanism has important

implications for the modelling of laminar separation bubbles, suggesting that

if freestream turbulence levels drop below a certain value, the time-averaged

transition and reattachment locations will be fixed and not vary with further

decreases in freestream turbulence levels.

10.1.7 Acoustic characteristics of separation bubbles formed on an

airfoil at incidence

Trailing-edge noise is clearly observed for all three-dimensional simulations, and

is found to be the dominant source of acoustic radiation for frequencies below

f = 10. In addition to the expected trailing edge noise, acoustic radiation was

observed to be generated in the transition/reattachment region for all cases.

Although evidence of this secondary source is present at lower frequencies, the

contribution of the secondary source to radiation generated by the airfoil appears

more significant at higher frequencies. For f > 10 the secondary source was

observed to be the dominant source of acoustic radiation. The second source
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appears to generate primarily upstream propagating acoustic waves, although

there is some evidence that waves with downstream directives are also produced.

The second source of acoustic radiation appears unrelated to trailing edge noise,

and hence would not be predicted by classical trailing edge theory, however the

second source is a significant contributor to airfoil self-noise for the cases studied.

10.2 Recommendations for further study

The present study represents a thorough investigation of the behavior of laminar

separation bubbles on airfoils at low Reynolds number, however in performing

this study several avenues of further study have been identified.

• The behaviour of short separation bubbles formed on a thin airfoil should

be investigated. For such geometries separation bubbles typically grow in

length with increased incidence near stall, whereas the bubbles observed in

this study decrease in length. Simulating a separation bubble an a geometry

exhibiting thin-airfoil type behaviour under similar conditions, e.g similar

Reθsep or Rel, would allow any differences in the physics to be investigated.

• Although the presence of forcing dramatically altered the separation bub-

ble behaviour, the forcing was low in amplitude compared to, for example,

Alam & Sandham (2000). The amplitude of forcing should be increased by

an order of magnitude, and the simulation progressed, in order to deter-

mine also the effect of the amplitude of forcing. The transitional behaviour

should be monitored in order to determine whether Λ-vortices or other

coherent structures are present as for Alam & Sandham.

• Low-frequency flapping of laminar separation bubbles has been observed

for Rec = 1.3 × 105 for a NACA-0012 airfoil at α = 11.5◦, and appears to

take the form of periodic bubble growth and bursting (Rinoie & Takemura,

2004). Ideally an attempt should be made to capture this behaviour via

numerical simulation as soon as computationally feasible. The phenomenon

of bubble bursting is difficult to capture numerically, since it typically oc-

curs as a dynamic process. The low-frequency flapping appears to manifest

itself as periodic bubble bursting, and hence if this behaviour could be cap-

tured numerically the physics of the bursting process could be scrutinised

in detail for the first time.
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• As computational power increases simulations with increased complexity

will be possible. Micro-air-vehicles typically employ low aspect-ratio wing

planforms, and hence it appears likely that direct numerical simulations

of an entire MAV wing planform may become feasible within the next few

years. A more fundamental study however would an investigation of the

effect of aspect ratio upon separation bubble behavior, for a rectangular

wing planform. The influence of the finite span upon the fluid dynamics of

the separation bubble can be studied, with potential for improving aircraft

performance at MAV-type Reynolds numbers.

• The mechanism of boundary layer receptivity to acoustic waves should be

investigated. A first step would be to determine if the propagation direction

of the acoustic waves influences the receptivity process; if only upstream

travelling waves generate boundary layer disturbances this may suggest that

‘back-scattering’ of acoustic waves is integral to the receptivity process. By

subjecting the airfoil flow to single acoustic waves of specified frequency

and amplitude, the manner in which the efficiency of the receptivity process

varies with frequency may be determined.

• The origin of the unexplained tone observed in three-dimensional simula-

tions at f ≈ 11.2 should be investigated. Some form of ‘BiGlobal’ stability

analysis could potentially determine whether any global response of the

shear layer is responsible for this behaviour, however in the absence of ex-

isting BiGlobal code this would not be trivial to perform. In the event

of further airfoil simulations being performed, the presence of naturally

occurring tones should be investigated.

• The mechanism of noise production in the transition/reattachment region

should be investigated. Performing a simulation at similar conditions, but

varying the Mach number, would allow the Mach-scaling of the acoustic

intensity to be determined. This will potentially enable the nature of the

acoustic source to be identified, and will help to determine under what flight

conditions the acoustic source is important. Two-dimensional simulations

at α > 5◦ also appear to exhibit more than one acoustic source, hence it is

sensible to perform a precursory study in two-dimensions before repeating

in three-dimensions as the mechanisms may be similar.
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