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ABSTRACT
UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ENGINEERING SCIENCES

DOCTOR OF PHILOSOPHY
NUMERICAL STUDIES OF THE FLOW AROUND AN AIRFOIL AT LOW
REYNOLDS NUMBER
by Lloyd Edward Jones

A study of the flow around airfoils at low-Reynolds numbers has been performed,
by a combination of direct numerical simulation (DNS) and linear stability analy-
sis. The behaviour of laminar separation bubbles formed on a NACA-0012 airfoil
at Re, = 5 x 10* and incidence 5° is investigated. Initially volume forcing is
introduced in order to promote transition to turbulence. After obtaining suffi-
cient data from this forced case, the explicitly added disturbances are removed
and the simulation run further. With no forcing the turbulence is observed to
‘self-sustain’, with increased turbulence intensity in the reattachment region. A
comparison of the forced and unforced cases shows that the forcing improves the
aerodynamic performance whilst requiring little energy input. Linear stability
analysis of the time-averaged flowfield is performed, however no absolute insta-
bility is observed that could explain the presence of self sustaining turbulence.
A series of simplified DNS are presented that illustrate a three-dimensional in-
stability of the two-dimensional vortex shedding that occurs naturally. The in-
stability leads to exponential growth in time at fixed streamwise locations, and
a mechanism for its growth is proposed. The fact that this transition process
is independent of upstream disturbances has implications for modelling sepa-
ration bubbles. A further DNS, of a laminar separation bubble formed on a
NACA-0012 airfoil at incidence 7° clearly exhibits sustained transition to tur-
bulence via the proposed instability mechanism, and illustrates that the effect
of a modest increase in airfoil incidence upon separation bubble behaviour ap-
pears slight in comparison to that of the addition of forcing. For all airfoil flows
the transition/reattachment region of the separation bubble was observed to
be a significant contributor to airfoil self-noise. Numerical simulations of the
response of the time-averaged flowfield to small perturbations, intended to com-
plement linear stability analysis, illustrate that for two dimensional cases in the
range 5° < a < 8.5° the time-averaged flowfield is unstable due to an acoustic
feedback instability, whereby hydrodynamic disturbances convecting over the
trailing edge generate upstream traveling acoustic waves, which ultimately gen-
erate further downstream travelling hydrodynamic disturbances. As the cycle
repeats, the amplitude of both hydrodynamic instabilities and acoustic waves
increases. It is suggested that an acoustic feedback loop of this type may act as a
frequency selection mechanism for naturally occurring vortex shedding observed
in two-dimensions.
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Chapter 1

Introduction

1.1 Low Reynolds number aerodynamics

Interest in low Reynolds number aerodynamics has increased in recent years,
primarily due to the development of small autonomous aircraft commonly re-
ferred to as unmanned or micro air vehicles (UAV’s or MAV’s). Current goals
for the development of MAV’s are a maximum dimension of 15cm and an ex-
pected cruise velocity of 15-80km/h, yielding an operational Reynolds number
range of Re = 42,000 — 225,000 (Torres & Mueller, 2001). Larger UAV’s at
very high altitude will also tend to operate in a low Reynolds number regime
due to the increase in kinematic viscosity. For example, at an altitude of 24km
the kinematic viscosity of air will have reduced by a factor of 22 compared to
that at sea level, and the Reynolds number will have decreased by the same
factor. Wind turbines and turbine cascades also operate in the low Reynolds
number regime, since the velocity at the root of the blade will be substantially
lower than that at the tip, and represent another focus of low Reynolds number
research.

Historically, low Reynolds number aerodynamics has not received as much
interest as aerodynamics at higher Reynolds number, thus experimental and
numerical data are commonly only available for high to moderate Reynolds
number flow. For example, generating airfoil lift and drag data requires more
sensitive instrumentation at lower Reynolds number, and so the large amount
of experimental airfoil data publicly available does not typically extend to low
Reynolds number (Mueller, 1999). This problem is compounded by the fact that
low Reynolds number aerodynamics is dominated by different physical behav-
iour compared to aerodynamics at high Reynolds number, and hence knowledge
of the performance of an airfoil geometry at low Reynolds numbers does not

necessarily extrapolate well to high Reynolds number, and vice versa.



At low Reynolds numbers transitional behaviour and the effect of boundary
layer separation can be critical to airfoil performance. Airfoil boundary layers
will typically remain laminar for a large percentage of the airfoil chord, whereas
at high Reynolds numbers the boundary layer will undergo transition to tur-
bulence near the airfoil leading edge and the boundary layer will be mostly
turbulent. The transition process, and hence location, is more sensitive at low
Reynolds numbers and must be predicted accurately in order to determine aero-
dynamic performance. This contrasts with high Reynolds number flows where
transition is often not modelled at all, for example in traditional computational
fluid dynamics (CFD) based on the Reynolds-averaged Navier-Stokes (RANS)
equations. Since boundary layers remain laminar for a greater streamwise extent,
laminar separation is more common at low Reynolds numbers, and the resultant
separated shear-layer may also remain laminar for a significant extent before
transition to turbulence occurs. Upon transition the increased wall-normal mo-
mentum transfer typically means that the boundary layer reattaches, followed
by a developing turbulent boundary layer. The resultant structure formed by
laminar separation, transition to turbulence and reattachment is termed a lam-
inar separation bubble (LSB) and is a classic hallmark of low Reynolds number
flows.

Differences in behaviour between high Reynolds number and low Reynolds
number fluid flow are often significant. Critically, this means that the industry
standard tool for predicting fluid flows at high Reynolds numbers, RANS based
CFD, does not perform well in the low Reynolds number regime, since large re-
gions of laminar flow are often present. Additionally, the reattachment process is
highly dependent on transition and the subsequent turbulent behaviour, and has
been found to be difficult to model accurately with RANS based CFD (Yuan, Xu
& Khalid, 2004). Methods such as direct numerical simulation (DNS) and large
eddy simulation (LES), whilst accurately capturing the physics present, are not
suitable for use as design tools due to the high computational cost. Effectively,
the state of the art for low Reynolds number airfoil design currently consists
of viscous-inviscid interaction (VII) solvers (Selig, Gopalarathnam, Giguere &
Lyon, 2001), in particular the Profoil/Eppler code, and XFoil. Both programs
solve using a panel method for the potential flow, however they differ in their
approach when solving for the boundary layer. The Eppler code (Eppler &
Somers, 1980) uses a non-coupled integral boundary layer method, with em-
pirically derived transition criterion dependent on momentum thickness, shape
factor and local flow conditions. On the other hand, XFoil’s integral boundary

layer method is coupled to the potential flow solution and uses an empirically



derived e" transition criterion (Drela & Giles, 1987), hence XFoil represents a
more advanced approach. The Eppler code cannot predict separation at all,
whereas the XFoil code does attempt to predict limited separated regions but
cannot predict stall with any accuracy. Both codes essentially provide a steady-
state two-dimensional solution, thus unsteady effects will be ignored. More
recently efforts have also been made to integrate the e™ transition prediction
method into RANS based simulations (Yuan et al., 2007; Windte et al., 2006)
with some success, and the technique appears promising. Potential problems
with this method are that the reattachment behaviour, and the developing tur-
bulent boundary layer are difficult to model accurately, and will be sensitive
to the turbulence model used. Also, the ability of the technique to model the
experimentally observed sudden bubble ‘bursting’ is not yet proven.

It appears therefore, that current design tools for low Reynolds number aero-
dynamics are not entirely satisfactory, and that there is a lack of publicly avail-
able experimental data at low Reynolds number. This means that experimental
studies are still critically important for MAV development. Perhaps the biggest
challenge for low Reynolds number airfoil design is the accurate prediction of
laminar separation bubble behaviour. Whilst VII solvers may predict the pres-
ence of separation bubbles, the ‘bursting’ of bubbles into extended separated
regions, or the onset of sudden stall, is not predicted. Furthermore, separation
bubble models employed by VII solvers assume that the bubble is a fundamen-
tally steady structure, whereas studies have shown that separation bubbles are
far from steady. If advances can be made in understanding the physics of laminar
separation bubbles, they may potentially lead to improvements in low Reynolds

number design tools.

1.2 Separation bubbles

As outlined in section 1.1, the accurate modelling of their behaviour represents
a considerable challenge in predicting airfoil performance at low Reynolds num-
bers. The first recorded observation of a laminar separation bubble was by Jones
(1938), in a study of the stalling process of airfoils. The initial observation was
followed by a series of experimental studies of the fundamental structure of sep-
aration bubbles, as reviewed by Young & Horton (1966). Bubble behaviour at
near-stall conditions was subsequently investigated by Gault (1957), who defined
three types of stall depending upon the separation behaviour of the boundary
layer near stall; leading edge, trailing edge and thin airfoil stall. Gault observed

that the presence and behaviour of a separation bubble can potentially have a



strong influence on airfoil stalling characteristics. Horton (1968) was the first to
describe the time-averaged structure of a laminar separation bubble, resulting

in the classical model of a separation bubble illustrated in figure 1.1.
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Figure 1.1: The structure of a laminar separation bubble, as described by Horton (1968).

In the classical model a laminar separation bubble forms when, under the
influence of an adverse pressure gradient, the boundary layer separates, forming
a free shear layer which is highly unstable. The separated shear layer undergoes
rapid transition to turbulence, and subsequent reattachment. Just downstream
of the separation point, within the bubble, the fluid velocity is close to zero
and thus this region is denoted the ‘dead air’ region. Just upstream of the
reattachment point a vortical structure is present, associated with the circulation
of air within the bubble, called the ‘reverse-flow vortex’. This steady model of a
separation bubble, where the only time dependent behaviour is the transition to
turbulence and subsequent turbulent behaviour downstream, became the widely
accepted model.

Owen & Klanfer (1953) classified bubbles of this type as either ‘short” bub-
bles or ‘long’ bubbles. Short bubbles were defined as possessing bubble length
approximately 10? times the displacement thickness at the separation point,
whereas long separation bubbles were defined as being of order 10* times the
displacement thickness at the separation point. Perhaps more importantly, short
separation bubbles are defined as having little effect on the external potential
flow, whereas long bubbles have a marked impact, e.g completely altering the
circulation around an airfoil. Where a short separation bubble suddenly changes
state to that of a long separation bubble, or indeed to a fully separated state with
no reattachment, the process is termed bubble ‘bursting’ and is the mechanism
behind thin airfoil stall as defined by Gault (1957). Gaster (1966) investigated

a large number of bubbles on a flat surface, produced by placing an inverted air-



foil above the plate. This experimental configuration allowed the investigation of
separation bubbles formed under a variety of conditions, by varying the location
and incidence of the airfoil. From these experiments a two parameter bursting
criterion was produced. Gaster observed that bubble bursting can occur either
as a steady increase in bubble length with some change in free-stream conditions
or as a sudden near-discontinuous event, but the parameters governing this be-
haviour were not determined. Gaster’s experimental results were subsequently
used by Horton (1969), to produce a semi empirical model for bubble growth
and bursting, based upon the concept of a steady separation bubble. Horton’s
model gave predictions for the transition location and momentum thickness dis-
tribution, as well as overall bubble length, and provided a benchmark for the
development of subsequent models. However, despite refinements such as mod-
elling the dependency on background turbulence levels (Roberts, 1980), the use
of the e" transition prediction method (Ingen, 1985) and the modelling of low
Reynolds number effects (Shum & Marsdent, 1994), present day models do not
adequately predict bubble bursting or unsteady behaviour. More recently, ad-
vances in understanding the physics of separation bubbles have been made by

numerical studies.

1.2.1 Numerical separation bubble studies

Subsequent to Gaster’s experiments and Horton’s models, some of the most
important advances in the understanding of separation bubbles, particularly
with regard to unsteady behaviour, have been made via numerical methods,
primarily by directly solving the Navier—Stokes equations, with no modelling.
The first numerical simulations of separation bubbles were limited either to
two-dimensional analysis, or else only studied primary/linear instability and
did not resolve transition. Pauley, Moin & Reynolds (1990) conducted one of
the earliest attempts, and considered only the two-dimensional incompressible
Navier—Stokes equations. A separation bubble was induced on a flat plate via
the application of transpiration to an upper boundary, and at low adverse pres-
sure gradient the bubble produced was observed to be thin and steady. With
increasing adverse pressure gradient, oscillations were observed within the bub-
ble, and above a critical adverse pressure gradient periodic vortex shedding was
observed to occur from the separated shear layer. Despite the strong unsteadi-
ness, time-averaged velocity contours looked qualitatively similar to those of
Gaster and Horton. The length of the separated region was found to increase
with increasing adverse pressure gradient until the onset of vortex shedding, af-

ter which the length of the separated region was found to decrease with further



increase in adverse pressure gradient. Pauley et al. therefore suggested that the
short and long separation bubbles observed by Gaster may in fact be steady
and unsteady separation bubbles respectively. A study by Pauley (1994) inves-
tigated the development of three-dimensionality due to the introduction of 3D
velocity perturbations to the earlier case studied by Pauley et al. (1990). Only
the initial response to these disturbances was studied however, and the simula-
tions did not resolve transition to turbulence. Similarly, Rist (1994) performed
direct numerical simulations of a laminar separation bubble subject to combina-
tions of both two-dimensional and three-dimensional disturbances. The study
focused on instability behaviour, and it was found that oblique disturbances
yielded the most realistic flow parameters and transition behaviour. Again, full
transition to turbulence was not resolved. It was not until the studies of Alam
& Sandham (2000) and Spalart & Strelets (2000) that transition to turbulence
in a separation bubble was fully resolved.

Alam & Sandham (2000) investigated a short separation bubble on a flat
surface. The bubble was induced via suction on the upper boundary, and un-
steadiness was introduced by the addition of a disturbance strip upstream of the
separation point. The study found that, unlike three-dimensional simulations,
two-dimensional simulations could not adequately capture the characteristics
of the separation bubble. The three-dimensional simulations exhibited tran-
sition to turbulence, and thus the transition process could be investigated in
detail. Transition was found to occur within the shear layer, via amplification of
oblique modes followed by a A-vortex induced breakdown. The boundary layer
reattached as turbulent flow, with the turbulent behaviour being most energetic
away from the wall, and relaxation to log-law boundary layer profiles taking
several bubble lengths downstream. For the case in question, it was determined
that reverse flow greater than 15% would be required in order to sustain an
absolute instability, whereas reverse flow was actually only 4-8%. As a result,
it was stated that the transition process was entirely due to the presence of
convective instability.

In the same year Spalart & Strelets (2000) conducted DNS of a laminar
separation bubble, formed by the same method as Alam & Sandham, for the
purpose of assessing turbulence models. No unsteadiness was introduced and
inflow disturbances were less than 0.1%, however transition to turbulence was
still observed. As a result the study stated that entry-region disturbances (T'S-
waves) could be discarded as the mechanism behind transition, however the
study also stated that magnitude of reverse flow present was unlikely to be

sufficient to sustain absolute instability. Transition was observed by ‘wavering



of the separated shear layer, followed by the formation of Kelvin-Helmholtz
vortices, instantly becoming three-dimensional with no clear regions of primary,
secondary or tertiary instability’. No A-vortices were observed, and thus the
transition process was markedly different to that of Alam & Sandham. Spalart
& Strelets suggested that the flow is independent of upstream disturbances.

Subsequent to the first fully resolved studies in 2000 several further numerical
simulations of separation bubbles have been conducted. Yang & Voke (2001)
conducted LES of a separation bubble induced by a surface curvature change.
In contrast to previous three-dimensional studies, the bubble exhibited shedding
of spanwise-coherent vortices, appearing nominally similar to that observed by
Pauley et al. (1990) in two-dimensions. Two-dimensional unsteadiness was found
to originate in the free shear layer, and three-dimensional motions were found
to develop as a result of small spanwise disturbances. The instantaneous reat-
tachment position was observed to move over a distance of 50% of the mean
bubble length and thus, in contrast to classical models, the bubble was highly
unsteady. Wissink & Rodi (2002) also observed quasi-periodic vortex shedding,
in a DNS study of a separation bubble induced on a flat plate. As the vortices
travelled downstream they were observed to break down into smaller structures
and ultimately turbulence.

An alternative approach was carried out by Marxen, Lang, Rist & Wagner
(2003), who performed a combined DNS and experimental study (including par-
ticle image velocimetry and laser doppler anemometry), with flow parameters
chosen to enable comparison. Periodic two-dimensional disturbances were in-
troduced upstream of separation, and three-dimensionality was introduced via a
spanwise array of spacers. The separated shear layer was observed to roll up to
form vortices, appearing similar to the study of Wissink & Rodi (2002), which
subsequently broke down to turbulence. The same configuration was studied
further by Lang, Rist & Wagner (2004) and again by Marxen, Rist & Wagner
(2004) in order to quantify the respective roles of two-dimensional and three-
dimensional disturbances. Marxen et al. concluded that transition was driven by
convective amplification of a two-dimensional TS wave, which also determined
the length of the bubble, and that the dominant mechanism behind transition is
an absolute secondary instability in a manner first proposed by Maucher, Rist
& Wagner (1997).

Baragona (2004) also performed a combined numerical and experimental
study of separation bubbles including DNS, although the DNS did not resolve
the transition process and subsequent turbulence. Experimental results again

revealed laminar vortex shedding from a separated shear layer, undergoing tran-



sition to turbulence downstream of the shedding location. The vortex shedding
was found to strongly influence both the transition process and subsequent tur-
bulent boundary layer, however the study concluded that for the cases under
consideration the addition of TS-like disturbances was necessary in order to
reproduce experimental results.

More recently Marxen & Henninsdon (2007) attempted to investigate bub-
ble bursting behaviour via DNS. A separation bubble was induced on a flat
plate by means of an imposed pressure distribution and periodic disturbances
were introduced via a disturbance strip, resulting in transition to turbulence.
The bubble was observed to shorten significantly. Having formed a short bub-
ble the disturbance input was then removed, at which point the bubble grew
in length, achieving a ‘long’ bubble state. Transition was still observed how-
ever, and the transition location did not change significantly upon removal of
disturbances; the bubble length increased because the location of turbulent reat-
tachment moved downstream. The physical mechanism behind different forms
of separation bubble bursting as observed by Gaster (1966) was not investigated
in great detail, however the study implicitly illustrates that background turbu-
lence levels may play some role. Further studies by Wissink & Rodi (2003) and
Wissink, Michelassi & Rodi (2004) have investigated separation bubbles formed
under the influence of oscillating external flow, and in the case of Wissink et al.
with the addition of heat transfer. These studies are more relevant to turboma-
chinery, and will not be discussed in detail.

To summarise, it appears that separation bubble behaviour is complex and
far from universal in nature. Depending on the flow parameters separation bub-
bles may or may not exhibit vortex shedding or coherent structures, and studies
alternately attribute transition to convective instability, absolute instability or
to some form of secondary absolute instability. Furthermore, it has been sug-
gested both that the addition of T'S-type disturbances is necessary to accurately
reproduce experimental data (Baragona, 2004), and alternately that bubble be-
haviour is independent of upstream disturbances (Spalart & Strelets, 2000). It
is apparent that stability characteristics of separation bubbles are not well de-
fined in all cases, and hence better understanding of instability mechanisms
present may potentially help to explain the differences in behaviour observed in

numerical studies.

1.2.2 Hydrodynamic instability and separation bubbles

From the discussion of numerical separation bubble studies in section 1.2.1 it is

apparent that if the stability characteristics of separation bubbles were better



understood, it is likely that their physical behaviour could be better predicted.
A discussion of the role of instability mechanisms in separation bubbles follows.

The concepts of absolute and convective instability were first identified in the
context of fluid dynamics by Gaster (1963, 1968), and are fundamental to much
of the discussion regarding stability characteristics of separation bubbles (for a
review of absolute instability, including earlier studies see Huerre & Monkewitz,
1990). The difference between convective and absolute instability may be ex-
plained by considering a one-dimensional system, perturbed at location x = 0.
The perturbation may either grow or decay in time, and will convect as it does
so. The resultant behaviour is defined in three ways. If the perturbation decays
with time the system is stable. If the perturbation grows in time, but the convec-
tion of the perturbation is such that the perturbation amplitude at = 0 decays
in time, the system is said to be convectively unstable (figure 1.2, left). As time
increases the system will return to its initial condition in the vicinity of z = 0.
Convective instability is the mechanism by which Tollmien-Schlicting (TS) waves
are amplified. If the perturbation grows in time, and both the temporal growth
rate and perturbation velocity are such that the perturbation amplitude grows
temporally at © = 0, the system is said to be absolutely unstable (figure 1.2,
right). The perturbation will grow in amplitude and ultimately contaminate the
entire system. The presence of absolute instability has been confirmed both for
shear-layers (Huerre & Monkewitz, 1985) and bluff body wakes (Hannemann &
Oertel, 1989), and in the latter case has been found to trigger the onset of bluff
body vortex shedding.

Time
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Figure 1.2: X/T plot illustrating convective instability (left) and absolute instability (right).

It is well known that perturbations will be rapidly amplified by convective

instability in separated shear layers; convective growth rates for separation bub-



bles have been accurately reproduced via both linear stability analysis (Bestek,
Gruber & Fasel, 1989) and parabolic stability equation (PSE) analysis (The-
ofilis, 2000). The role of absolute instability in separation bubble flow is less
well defined however. Several studies have attempted to answer the question as
to whether absolute instability will occur in separation bubbles, and if so what
criteria govern its onset. One method of determining the stability characteris-
tics of separation bubbles is via linear stability analysis of time-averaged velocity
profiles, either constructed analytically or extracted from numerical simulations.
Hammond & Redekopp (1998) and Rist & Maucher (2002) both performed sta-
bility analysis of analytic profiles, and both studies found absolute instability to
occur, dependent on certain parameters. Hammond & Redekopp (1998) found
the onset of local absolute instability to be dependent on both the maximum re-
verse flow and the height of the reverse flow region, and found that for profiles at
Res« = 103, a minimum reverse flow velocity of 20% was required to observe lo-
cal absolute instability. Hammond & Redekopp further suggested that although
local absolute instability may be observed for reverse flow of 20%, a global re-
sponse would only be expected if reverse flow approaching 30% was present. Rist
& Maucher (2002) observed similar behaviour regarding the onset of local ab-
solute instability, and highlighted that both the height and intensity of the shear
layer are also important onset parameters. There is no guarantee however, that
analytic profiles sustaining absolute instability will occur in real situations. The
simulations of Alam & Sandham (2000) and Spalart & Strelets (2000) are a case
in point. Alam & Sandham performed linear stability velocity profiles fitted to
data extracted from DNS of a laminar separation bubble formed on a flat plate.
Alam & Sandham found that reverse flow greater than 15% would be required
in order to sustain absolute instability, compared to an observed reverse flow of
only 4-8%. As a result, it was concluded that the transition process was driven
by convective instability. Spalart & Strelets (2000) conducted DNS of a laminar
separation bubble induced on a flat plate, however again the authors suggested
that magnitude of reverse flow present was unlikely to be sufficient to sustain
absolute instability. Hence neither study observed reverse flow large enough to
sustain absolute instability as determined by analysis of analytic profiles. Simi-
larly, an earlier study by Allen & Riley (1995), performing stability analysis on
velocity profiles extracted from a RANS simulation, observed only convective
instability for all cases under investigation. A global self-sustained response was
observed by Marquillie & Ehrenstein (2003), from a separation bubble formed
behind a bump on a flat plate, although only when ‘geometrically stabilised’” by
adding a second bump at the rear of the bubble. Although such behaviour is
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of interest, the resultant bubble cannot be said to resemble that formed on, for
example, an airfoil however. In this configuration reverse flow approaching 30%
of the freestream velocity was observed, and the global response took the form
of periodic oscillation, originating at the rear of the bubble.

As well as classical linear stability analysis, recently advances have been made
with ‘global” (also termed ‘BiGlobal’) stability analysis (Theofilis, 2003). As ex-
plained in section 2.4, classical linear stability analysis considers the growth of
normal-mode perturbations on one-dimensional velocity profiles. For the spa-
tial problem, a perturbation frequency is specified, and a corresponding wave-
length and one-dimensional eigenvector, describing the disturbance structure, is
returned. When performing ‘BiGlobal’ analysis a spanwise wavenumber is spec-
ified, and a temporal growth-rate and two-dimensional eigenvector describing
the disturbance structure is returned. When applied to the case of a laminar
separation bubble (Theofilis, 2000) temporally unstable global modes have been
observed that are not predictable by classical linear stability analysis. However
the growth rates are small compared to that of convective instabilities present,
hence it is likely that transition will occur before such a global mode may amplify
significantly. It is suggested however that the presence of global modes may be
relevant to the phenomenon of vortex shedding observed in many simulations.

To summarise, it appears that unlike bluff body wakes the presence of local
absolute instability has not been rigorously proven for either a numerically or
experimentally produced separation bubble. Despite the lack of evidence for
the presence of absolute instability in experimentally or numerically produced
separation bubbles, self-sustained transition to turbulence has been observed
in the absence of explicitly added disturbances (e.g., Spalart & Strelets, 2000).
It is perhaps possible that the presence of absolutely unstable regions of flow
leads to some form of secondary behaviour, e.g. vortex shedding or transition to
turbulence, that prevents detection of the original absolute instability from time-
averaged data, however the question remains as to whether absolute instability
will occur in ‘real’ laminar separation bubbles, and if so what form the resultant

global behaviour will take.

1.3 Airfoil studies

A discussion of laminar separation bubbles, and the role of instability mech-
anisms in separation bubble behaviour has illustrated that separation bubble
behaviour appears to differ significantly from case to case, and that instability

mechanisms present in separation bubbles are not well understood in all cases.
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Continued advances in computing power mean that direct numerical simulations
of airfoil configurations are now possible. The advantage of studying full air-
foil configurations is that the bubble can interact strongly with the potential
flow (in particular via the Kutta condition at the trailing edge), as opposed
to subjecting the bubble to pre-determined flow conditions. The bubble will
be closer in nature to those observed under flight conditions, and the influence
of the bubble behaviour on the aerodynamic performance of the airfoil can be
observed directly. To date, direct numerical simulations of airfoil flow have
typically been limited either to two-dimensions, or else to very low Reynolds
numbers. The use of modelling, such as in LES or DES, has however enabled
studies of three-dimensional airfoil flow at moderate Reynolds numbers, with
mixed success. In the following paragraph a discussion of airfoil DNS studies
to date is presented, followed by a discussion of numerical studies of airfoil flow
utilizing other numerical methods, that are relevant to the current study.
Several DNS studies of airfoil flow exist, primarily investigating the funda-
mental fluid behaviour present. Bouhadji & Braza (2003) performed a two-part
DNS study of the two-dimensional flow around a NACA-0012 airfoil at zero de-
grees. In the first part of the study simulations were performed at a Reynolds
number of Re = 10* based on airfoil chord whilst varying the Mach number
from M = 0.2 to M = 0.98. The study found steady, symmetric flow around
the airfoil in the range M = 0.2 — 0.35. Above M = 0.35 the wake was found to
become unstable, and vortex shedding was observed downstream of the airfoil.
Additionally, in the Mach number range 0.75 — 0.8 a second lower frequency
oscillation was observed in the lift coefficient, described as a transonic buffet
effect. Above a critical Mach number in the range 0.9 — 0.95 vortex shedding
ceased, and the flow returned to a steady state. In the second part of the study
simulations were run at M = 0.85 for a variety of Reynolds numbers in the
range 500-10000, and the onset of wake vortex shedding was determined to be
at Re. = 2070. A further paper by Bourdet, Bouhadji, Braza & Thiele (2003)
presents two-dimensional results drawn from the previous studies and also ex-
tends the study to three dimensions. A spanwise perturbation of magnitude
1 x 10~* was introduced, and three-dimensional instability was observed by the
appearance and growth of w-velocity oscillations. Full transition to turbulence
was not, observed however, and only secondary instability was investigated. Hoa-
rau, Braza, Ventikos, Faghani & Tzabiras (2003a) and Hoarau, Faghani, Braza,
Perrin, Anne-Archard & Ruiz (2003b) both performed DNS of a NACA-0012
airfoil at 20° incidence. The study of Hoarau et al. (2003a) first documents

the behaviour of the flow over the airfoil in two-dimensions as the Reynolds
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number is increased. In the first regime, Re. = 800 — 2000, a von-Karman
type instability was observed, with periodic vortex shedding. In the second
regime, Re. = 2000 — 10000, a Kelvin-Helmholtz instability was observed in
the separated shear layer, upstream of the von-Karman vortex shedding. The
frequency of the Kelvin-Helmholtz instability was much higher than that as-
sociated with the von-Karman instability, and non-linear interaction between
the two modes resulted in a more complex frequency spectrum. The simulation
was extended to three-dimensions at Re. = 800, with the addition of random
perturbations in order to introduce three-dimensionality. A spanwise-periodic
disturbance structure was observed to develop, appearing qualitatively similar
to behaviour observed in bluff-body wakes, however full transition to turbulence
was not studied. The study of Hoarau et al. (2003b) appears to draw from the
same data and reaches primarily similar conclusions.

More recently DNS has been used as a tool to study the acoustic response
of the flow around airfoils. Hatakeyama & Inoue (2006) and Tam & Ju (2006)
performed two-dimensional DNS of airfoils at Re. = 5000 and Re. = 200000
respectively, and since a compressible formulation was employed acoustic behav-
iour could be observed directly. In both cases the fluid flow was characterized
by roll-up of the upper surface boundary layer into vortices, and sound waves
were generated by acoustic scattering (Ffowcs Williams & Hall, 1970), as the
vortices convected over the airfoil trailing edge. Tam & Ju however also observed
the vortices themselves to act as sources of acoustic radiation. Kim, Lee & Fu-
jisawa (2005) performed an incompressible LES of the three-dimensional flow
around a NACA-0018 airfoil at Re, = 1 x 10° in order to investigate sources
of tonal noise. The upper airfoil surface exhibited separation and transition,
but the fluid dynamics were not extensively investigated beyond the context of
explaining self-noise mechanisms. The results of the LES were used to predict
the farfield sound spectrum via an acoustic analogy, and the study concluded
that the primary source of tonal noise is expected to be interaction of periodic
vortex shedding on the pressure side of the airfoil with the turbulent flow on the
suction side.

The only three-dimensional DNS study of an airfoil at MAV flight conditions
to date was carried out by Shan, Jiang & Liu (2005), who simulated the flow
over a NACA-0012 airfoil at Re, = 10%, M = 0.2 and 4° incidence. A precursory
two-dimensional simulation exhibited boundary layer separation near the airfoil
leading edge, and vortex shedding from the separated shear layer. The two-
dimensional simulation was extended into three dimensions and progressed, with

no artificial noise or perturbations being added, and transition to turbulence was
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observed to subsequently take place. The primary purpose of the study was to
assess the use of pulsed jets as a separation control measure and, where unsteady
blowing was applied, bypass transition was observed to take place and the bubble
length reduced accordingly. The study did not study the fluid dynamics of the
separation bubble extensively however, and uses only eight times more grid-
points than Hoarau et al. (2003a) (6.9 x 10° c.f 8.7 x 10°), despite an increase
of a factor of 125 in Reynolds number. Other three-dimensional studies have
been performed at MAV-type Reynolds numbers and above, however they have
all employed some form of modelling in order to reduce the computational cost.

Mary & Sagaut (2002) performed LES of an ONERA ‘A-airfoil’ geometry
with a separation bubble at Reynolds number Re. = 2.1 x 10°, at M = 0.15
and incidence @ = 13.3°. The purpose was to demonstrate the ability of LES
to successfully replicate the flow in question. Results were found to be strongly
dependent on both the grid resolution and sub-grid scale (SGS) model used,
and although the results compared moderately well with experimental data,
significant differences were observed, particularly in root-mean-square (RMS)
boundary layer quantities. By the airfoil trailing edge the boundary layer thick-
ness was of similar size to the computational domain width however, which is
likely to have constrained the behaviour. Schmidt & Thiele (2003) performed a
detached-eddy simulation of the same case, alongside RANS based CFD studies.
Perhaps surprisingly the DES simulations did not perform significantly better
than the RANS simulations, and could not replicate unsteady behaviour, such
as the Reynolds stress profiles, observed in experimental studies. Yuan, Xu,
Khalid & Radespiel (2006) performed a parametric incompressible LES study
of the flow over an SD7003 airfoil at Re, = 6 x 10?*, investigating the influence
of both grid resolution and SGS model on results. The spanwise domain width
was only 1.2% of the airfoil chord however, and used only four grid-points. Since
the spanwise domain width was small in comparison to the separated boundary
layer thickness it is unsurprising that the study observed markedly different be-
haviour when compared to experimental results, including a separation bubble
that was 50% larger.

Kitsios, Kotapati, Mittal, Ooi, Soria & You (2006) performed a study of a
NACA-0015 airfoil at Re, = 3 x 10° with the addition of a wall-normal zero-
net-mass-flux jet at the leading edge. Both incompressible DNS and LES were
performed, and the results compared to experimental data. The majority of
discussion focuses on the two-dimensional case however, and certain differences
to experimental results were observed. A similar study that is perhaps of more
interest is that of You & Moin (2006). You & Moin performed LES of the
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flow around a NACA-0015 airfoil at the comparatively high Reynolds number of
Re, ~ 9 x 10%, both with and without the addition of synthetic jet control. Per-
forming a numerical simulation at this Reynolds number appears to have been
possible due to a combination of factors. Unstructured grids were employed,
allowing strong grid-stretching, in combination with a modest computational
domain size (6¢ x 2.5¢ x 0.2¢) chosen to match an experimental configuration.
In conjunction with LES this presumably led to the feasibility of using a com-
paratively low number of grid-points (~ 8 x 10°). Additionally, the use of an
incompressible code allowed an implicit time-marching scheme, and hence large
time-steps. The time-averaged pressure coefficient and wake-profiles appear to
compare well with experimental data, however unsteady behaviour and turbu-
lent statistics were not presented. The addition of periodic blowing and suction
was found to delay the onset of, presumably turbulent, separation due to in-
creased wall-normal momentum transfer, and to increase airfoil performance
significantly.

An alternative approach to modelling low Reynolds number airfoil flow was
employed by Windte, Scholz & Radespiel (2006). Windte et al. attempted to
predict transitional airfoil flow by coupling a RANS based solver to a transition
prediction model. Two transition prediction methods were employed. For the
first, boundary layer velocity profiles are analysed by a linear stability solver
and the corresponding disturbance growth-rates are used to construct a spatial
disturbance growth ‘N-factor’. When the N-factor reaches some empirically
defined threshold, transition is deemed to occur and the production terms of the
active turbulence model are activated. The second case differs in that instead
of performing linear stability analysis, the ¢ method is used to determine the
transition location. The test-case for the numerical method was an SD7003
airfoil geometry at Re, = 6 x 10*, and numerical predictions were compared to
experimental data for various angles of attack. Both methods proved to agree
well with experimental data, with respect to both the time-averaged flowfield
and force coefficients. A further study by Radespiel & Scholz (2007) used the
same coupled RANS-LST method to investigate flapping airfoil flow. In order to
account for changes in boundary layer stability characteristics due to unsteady
flow, frequency dependent N-factors were computed accounting for disturbance
history. Again, an SD7003 airfoil geometry was studied at Re. = 6x10%, however
this time the airfoil was subject to a sinusoidal plunge motion, and the numerical
results were compared to phase-locked experimental data. Discrepancies could
be observed in comparison to experimental results, particularly in the streamwise

transition location, and force-coefficients were predicted less accurately than
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for steady cases. Overall however, the results were far more accurate than
could be expected of traditional RANS based CFD and would not be able to be
reproduced by panel methods or VII solvers based on steady flow.

A similar numerical method was employed by Lian & Shyy (2006), who appar-
ently deemed the transition length, i.e. the distance between onset of secondary
instability and breakdown to turbulence, of greater importance than Windte
et al. (2006), since an empirical intermittency function was employed to model
this behaviour. In contrast, Windte et al. argue that appropriate selection of
the empirically determined transition N-factor makes such modelling unneces-
sary. The method was applied to the case of an airfoil in steady flow, and an
airfoil in an unsteady flow, however unlike Radespiel & Scholz, the temporal his-
tory of disturbance growth was not considered for unsteady cases. Lian & Shyy
instead argue that if the time taken for instability waves to be convectively am-
plified from the point of receptivity to transition is significantly smaller than the
time-scale of changes to the global flow, an instantaneous application of the eV
method is valid. For the case of a rigid wing in gust flow, the method predicted
hysteresis in the time-dependent force coefficients, and in the separation and
periodic streamwise oscillation of the separation and transition points. Unfor-
tunately the unsteady airfoil flow was not compared to experimental data, and
hence the accuracy of unsteady measurements is not quantified. The method
was also applied to the case of an airfoil where part of the surface was a flexible
membrane, which was observed to undergo self-sustained oscillations.

Given the range of numerical airfoil studies discussed here it is apparent then
that the application of DNS to airfoil flow is now feasible for two-dimensional
flow, and allows accurate representation of both hydrodynamic and acoustic
behaviour. Although LES has been performed of airfoils at Reynolds numbers
greatly exceeding MAV flight conditions, the accuracy of such studies varies.
Taking this into consideration, in conjunction with the dependency of the re-
sultant flow on the SGS model used, LES does not appear a suitable tool for
studying the fundamental fluid dynamics of separation bubbles. Coupled RANS-
LST approaches appear quite promising, and have been proven to model both
steady and unsteady transition with some success. It would be interesting to
see to what extent such an approach is able to predict bubble bursting. Studies
to date do not appear to have investigated the fundamental fluid dynamics of
low Reynolds number airfoil flows with transition to turbulence, and no study

of laminar separation bubbles on airfoils has yet been performed.
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1.4 The current study

At present the physics of laminar separation bubbles are not fully understood
and hence any improvement in understanding may potentially lead to improve-
ments in prediction tools. Advances in computing power mean that it is now
possible to perform direct numerical simulations of airfoil configurations, and
hence it is now possible to perform direct numerical simulations of separation
bubbles on airfoils. The focus of this study is therefore to investigate numeri-
cally the behavior of laminar separation bubbles formed on airfoils at incidence,
at MAV-type flight conditions, with a view to improved understanding of the

physics present. Particular aims of the study have been identified, as follows:

e To quantify the grid and domain requirements for DNS of airfoil geometries,

and provide a reference for further airfoil simulations

e To capture numerically a laminar separation bubble on an airfoil at MAV-

type flight conditions

e To investigate fully the physics of laminar separation bubbles formed on air-
foils at incidence, including the transition process and subsequent turbulent

behaviour, and the unsteady characteristics of the resultant flow.

e To investigate the effect of boundary layer disturbances on the transition

process and resultant flow.

e To investigate fully the absolute/convective stability characteristics of lam-
inar separation bubbles on airfoils at incidence, with a view to clarifying

the stability mechanisms present.

e To investigate the acoustic response of the flow over airfoils with laminar

separation bubbles.

1.5 Thesis structure

Chapter 2 details the governing equations and numerical implementation of the
direct numerical simulations and stability solver used for the majority of re-
sults in this study. Chapters 3 and 4 present the results of preliminary two-
dimensional simulations at Re. = 10* and Re. = 5 x 10* respectively. Addi-

tionally, in chapter 3 stability analysis of a time averaged flow-field is performed
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which demonstrates the ability of the numerical methods to detect absolute
instability. Three dimensional separation bubbles formed on airfoils at inci-
dence are investigated in chapters 5 and 6. In chapter 5 the effect of explic-
itly adding boundary layer disturbances is investigated, whereas in chapter 6
the effect of a modest incidence change on separation bubble behaviour is in-
vestigated. In chapter 7 stability analysis is performed on the time-averaged
flowfields of all three-dimensional simulations, and in chapter 8 a mechanism
behind secondary absolute instability of vortex shedding, observed in three-
dimensional simulations, is described. In chapter 9 the acoustic characteristics
of all three-dimensional airfoil flows are discussed and, finally, conclusions and

recommendations for further study are presented in chapter 10.
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Chapter 2

Governing equations and

numerical method

2.1 Introduction

This chapter details the equations that govern the fluid flows of interest, and
the numerical methods employed to solve them. The numerical techniques em-
ployed may be broadly split into direct numerical simulations, and linear stability
analysis.

Direct numerical simulations are performed using a method fundamentally
similar to that employed by Lawal (2002), Morin (2002) and Krishnan (2005).
The primary difference between the current investigation and these earlier stud-
ies is the modification of the computational code to allow the use of complex
geometries; a C-type grid with data transfer across the wake cut is now used
instead of a rectangular computational domain. This means that the airfoil
trailing edge represents a singularity which must be treated in the appropri-
ate numerical fashion. Although MAV’s operate in the low Reynolds number
low Mach number regime, a compressible code is used in order to compute
the acoustic response of the flow. For the sake of completeness the numerical
method is described fully here, including airfoil-specific post-processing. Linear
stability analysis is performed using an incompressible Orr-Sommerfeld solver in
conjunction with the cusp-map technique to determine the presence of absolute
stability. An iterative method is employed to perform spatial stability analysis

where required.
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2.2 Direct numerical simulations

2.2.1 Governing equations

The compressible Navier—Stokes equations are written in curvilinear form as

0Q B _OF oG _om o8 _oT
o o9& om0z 0  On 0z

(2.1)

The conservative vector Q, inviscid flux vectors E, F and G, and the viscous

vector terms R, S and T are defined as

p pU
pu pul + p&,
Q= | pv |, E=| pvU+ p¢,
pw pwlU
E; (B +p)U
pV pw
puV + i puw
F=|pV+py |, G= pUW
pwV pww + p
(B¢ +p)V (E; +p)w
0 0

Toxa + Tayly

R=| née+mé |, S=
Toaba + Ty
Q& + Qy&,y

Teaz T TayMy

Texlz + TayTly
QN + Qyny

TyzTx + TyyTly y T =

(2.2)

(2.3)
0
sz

Tz | (2.4)
TZZ
Q-

where p is the fluid density, u, v and w are velocity components in the Cartesian

x,y and z directions, p is the pressure, and F; is the total energy per unit

volume, defined as

1
E; = pe + §p(uu + vv + ww),

where
T

G-

Primitive variables are non-dimensionalised as follows

Sy

P T i

U; = R T ) P —
* * *
pr T, c

P =

§|§

=N %

and
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oy Pr Uy Uy ¢

where the superscript * denotes dimensional variables, the subscript r denotes

[ ) (2.8)

reference (free-stream) values and ¢* is the airfoil chord.

Metric terms are defined as

Yn L Ye Lg

g:t:jy fy:_77 nl’:_ja ny:77 (29)
noting that terms &, and 7, are both equal to zero for computational grids with
no spanwise variation, as used in the current study, and the Jacobian J is defined

as

J = Teyn — wyYe. (2.10)

The contravariant velocities U and V are defined as

U==E&u+&u, V =nu+n, (2.11)
and, assuming a Newtonian fluid, the stress terms 7;; are defined as
o Ou; +8u]~ 2p 0uk5”
Re \ Ox; = Ou; 3 Redxy, 7

The terms @); comprise the conduction and work terms of the energy equation,

(2.12)

Tij =

Qi = —q; +u;Tj, (2.13)
where

— oT
v — 1)M?RePr dx;

Viscosity is calculated using Sutherland’s law (White, 1991),

q; = ( (2.14)

——— . C =0.3686, (2.15)

and finally, the perfect gas law relates p, p and T

_ T
- o

p (2.16)
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2.2.2 Discretisation

Spatial scheme

fourth-order accurate central differences utilising a five-point stencil are used for
spatial discretisation when evaluating interior derivatives, i.e. not at computa-

tional domain boundaries. First and second derivatives are given by

r_ fico — 8fic1 + 8fix1 — firo

/ 12As (2.17)
and
" o _fi*Q + 16fl'71 - 30f@ + 16fi+1 - fi+2
I= 12As? (2.18)
respectively, where As is a length scale defined as
As = ( l ) (2.19)
5= n—1" '

where n is the number of points in the curvilinear direction of interest, and [
is the domain length in the case of £ derivatives and the domain half-height
in the case of n derivatives. Fourth-order accuracy is extended to the domain
boundaries by use of a Carpenter boundary scheme (Carpenter, Nordstrom &
Gottlieb, 1999). The first derivative operator is D, written as

1
~ As
where As is defined in equation 2.19. For the fourth-order central difference

Du P 'Qu (2.20)

scheme used in this study, the matrices P and Q are

—(216b+2160a—2125) 81b+675a+415 — (72b+720a+445) — (108b+756a+421)
12960 540 1440 1296
(81b+675a+415) 7(4104b+32400a+11225) (1836b+14580a+7295) 7(216b+2160a+655)
540 4320 2160 4320
—(72b+720a+445) (1836b+14580a+7295) —(4104b+4-32400a+12785) (81b4+675a+335)
1440 2160 4320 540
_ (108b+756a+421) —(216b+2160a+655) (81b+675a+335) —(216b+2160a—12085)
1296 4320 540 12960
and
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—(864b+6480a+305) (216b+1620a+725) —(864b+6480a+3335) 0 0

N[ =

4320 540 4320
(864b+6480a-+305) 0 — (864b+6480a+2315) (108b+810a+415) 0 0
4320 1440 270
—(216b+1620a+725)  (864b+6480a-+2315) 0 —(864b+6480a4785)  —1
540 1440 4320 12
(864b+6480a+3335) —(108b+810a+415) (864b+6480a+785) 0 2 -1
4320 270 4320 3 12
(2.22)
where
—(2177v/295369 — 1166427) (2.23)
a= )
25488
and
- (66195v/53v/5573 — 35909375) (2.24)

101952
The derivative operator D is evaluated to machine accuracy at the start of
each calculation, by multiplying Q by the inverse of P. An analogous criterion
proposed by Carpenter et al. (1999) is used for the second derivative. For the
fourth-order central difference scheme used the second derivative operator may

be written explicitly as

35 _2 19 _14 1
12 3 2 3 12
D? b 2.25
TAS |l s o011 1| (2.25)
12 3 2 3 12

for the first two grid-points, noting that D? # D.D.

Temporal scheme

The explicit fourth-order accurate Runge-Kutta scheme is used for time step-

ping, typically written as

1
Q.1 =Q, + éAt (k1 + 2ko + 2k3 + ky) , (2.26)

_ (d(Qn) C(dQn+ )
kl — < dt )t:tna k2 - ( dt 2 )t:t +£a (227)
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d(Q, + & d(Q, + k
- < ( hd )> k= (—(Q - 3)> _ (2.28)
t=t,+At t=tn+At

The code uses a low storage implementation, requiring only three data arrays.
The array Qgq stores data from the previous time-step, and does not change
throughout the time-stepping procedure. The array Qgiore is used to effectively
sum the variables ki-k4. The array Quew is used to store the data needed to
calculate variables ki-k4. Starting from the condition Qgore = 0, the following

four steps comprise the time stepping procedure:

dQ, dQ,
1. Qstore = Qstore + Q 1d7 Qnew Qold + = At Q 4 (229)
dt dt
d new d new
2. Qstore = Qstore +2 Q ) Qnew Qold + = At Q (230)
dt dt
dQnew dQnew
. re — ‘{store 2 ) new — ‘o A 2.31
3 Qsto Q t, + dt Q Q d t+ t dt ( 3 )
dQneW dQs‘core
4. = = A 2.32
Qstore Qstore + dt ) Qnew Qold + = 6 t dt ( 3 )

where 92 refers to the derivative of Q with respect to time, as evaluated by the

at
DNS code. At the last step, Qgiore 1S equal to (k1 + 2ko + 2k3 + k4) and thus

the expression for Q. is equivalent to equatlon 2.26.

2.2.3 Entropy splitting

The split high-order-entropy-conserving-scheme (SHOEC) of Gerritsen & Olsson
(1996, 1998) is applied to the Euler fluxes, in order to improve stability. The

Euler fluxes in a curvilinear coordinate system are written as

dQ dF L dG
d§ dz’

with vector variables defined as in equations (2.2) and (2.3). The entropy vari-

(2.33)

able transformation
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W = W(Q) (2.34)

is introduced, where

dip

W = 2.35
et (2:35)
The entropy function 1 is defined as
¥ = ph(s), (2.36)
where
s=pp (2.37)

is the entropy. The choice of h(s) is restricted by a homogeneity requirement
and a positive definite condition on the matrix dQ/dW, which can be satisfied
by letting h(s) = K e(%ﬂ), where K and « are constants. With the homogeneity

condition satisfied, the vector W can be written as

* 1 T
W = % 3 1’ —pU, —pu, —pw, p ) (238>
where p and p* are related by
* -K s —-K - e

The split form of the Euler fluxes is then written as

dQ dE dF dG dE dW dFF dW  dG dW
+fi| == + fa =0

Q" aW dE AW dny | dW dz
(2.40)
where
p +7
=_" = ) 2.41
Upper triangular parts of the matrices E, F and G are defined as
dE 1 dF 1 dG 1
_ =K, — =L, (2.42)

dW — p AW pF dW  p*
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with matrix J written as

a1 pU a1pUu—p€y a1pUv+p€y a1 pUw [1 B+ (b1 —1)p]U
a1 pUw? +p(—=3ubs +v€,))  arpUuv+p(—vés+uéy)  onpUuw—pwés clUu—%[EH—p]Eﬂc
a1pUv? +p(—uée+30€y)  arpUvw+pwn, — ciUv—E[E+plé,

(arpw?=p)U a1 B+ (b—2)p]Uw

02U
(2.43)
matrix K written as
a1pV a1 pVu—pn, a1pVu+pny a1 pVw [a1 B+ (b1 —1)p]V

a1pVul+p(—=3unz+vny)  c1pVuv+p(—vne+uny)  a1pVuw+pwn, calVu—L[Ei+p]n.
a1pV v +p(—une+3vny)  arpVow—puwn,  c1Vo—E2[Ec+pl,

(apw®=p)V [ Ee+(b—2)p]Vw

CQV
(2.44)
and matrix L written as
a1 pw i puw a1 pvw a1 pw? —p [a1 B+ (b1 —1)plw
w(oa pu®—p) Q1 puvW wlaipw?—p)  [oa B+ (b1 —2)pluw
w(oapv®—p)  v(aipw?—p) |1 B4 (b —2)plow , (245)
w(aw?=3p)  crw’—(Ec+p)p/p
Cow
with coefficients
l—a-— 1
ay = —77 bi=—, a=a B+ (b —2)p, (2.46)
(0 (0
a B E, 1 2
= B0 20 — 1)?t — 5@ 40 +w?)] + %[bl(l +8) -2  (2.47)

The parameter 3 adjusts the weighting of the Euler fluxes between the original

and split formulations. As  — oo the original formulation of the Euler fluxes
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Boundary Physical description Applied boundary condition

£F Outflow boundary Zonal-characteristic
& Outflow boundary Zonal-characteristic
nt Freestream boundary Integral-characteristic
- Mixed: airfoil surface and wake connection  Adiabatic, no slip (airfoil)

Table 2.1: Description of domain boundaries, and details of applied boundary conditions.

is recovered. Preliminary airfoil simulations suggested a value of 5 = 2 provides

adequate stability, hence this value was used throughout the current study.

2.2.4 Simulation geometry

Topology of the curvilinear C-type grids used is given in Figure 2.1. The wake
length is denoted W and the domain radius is denoted R. The coordinate sys-
tem is defined such that the airfoil trailing edge is located at (z,y) = (1,0).
A NACA airfoil geometry is specified for two reasons. Firstly, the NACA-0012
airfoil geometry is commonly studied in the research community, and hence
the current study may be more readily compared to existing work. Use of a
‘standard’ geometry also means that the current study may provide a reference
point for future investigations of airfoil flow. Secondly, experiments investigat-
ing the acoustic response of the flow around a NACA-0012 airfoil are planned
at the Institute of Sound and Vibration research (ISVR) at the University of
Southampton, which will complement acoustic analysis of the simulations pre-

sented here.

2.2.5 Boundary conditions

Unphysical reflections from the domain boundaries can be reduced by the use
of appropriate boundary conditions. Definitions of the domain boundaries and
associated boundary conditions are given in table 2.1. At the freestream (n™)
boundary, where the only disturbances likely to reach the boundary will be
in the form of linear waves, an integral characteristic boundary condition is
applied. At the downstream exit boundary (£F ), which will be subject to the
passage of coherent fluid structures generated by instability in the wake, a zonal
characteristic boundary condition (ZCBC) is applied for increased effectiveness.
Additionally, in certain simulations a simple buffer was applied at the free-stream

boundary to further reduce reflections from linear (acoustic) waves.
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Figure 2.1: Domain topology for airfoil simulations.

Zonal characteristic boundary condition

The zonal characteristic boundary condition (Sandberg & Sandham, 2006) is
based on similar principles to the local characteristic boundary condition (or
LCBC, Thompson, 1987). The compressible Navier-Stokes equations are lin-
earised, neglecting viscous terms. Using the method of characteristics, eigenval-
ues with associated eigenvectors can be determined. The resultant eigenvalues
A; correspond to the characteristic velocities of pressure, vorticity or entropy
waves. The sign of )\; determines the direction of the associated wave, whether
it is incoming or outgoing with respect to the boundary in question. The left-
side eigenvectors L; correspond to the rate of change of the wave amplitude.
At the outflow boundary all incoming characteristic waves, those where \; < 0,
are effectively removed by setting L; to zero. All outgoing characteristic waves,
where \; > 0, are left unchanged. The primary difference between the ZCBC
and the LCBC is that for the local condition the treatment is applied only at
domain boundaries. For the zonal condition the treatment is applied for a finite
distance before the boundary, and is introduced with a smooth ramping func-
tion. The characteristic method is implemented as follows for the current code.
For an arbitrary normal direction, normal derivatives of the normal Euler fluxes

are defined as

dFy _ dFydf | dFy dy

- = — 2.4
dn d¢ dn ~ dn dn’ (248)
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where

Pl
PUUy + PNy
F,=| pvu, +pn, |. (2.49)
PWU
(Bt + p)un
The normal derivatives are then subtracted from the previously computed right

hand side of the Navier-Stokes equations,

dF,
dn
and the temporal derivatives of the characteristic waves, C;, are formed for the

RHS' = RHS —

(2.50)

normal direction as

Cy = (u, — c) {—pc (nzg—z - ny%) - %} S M =, —c (2.51)
Cy = u, (ny% — nx%> , A = Uy, (2.52)

C3 = u, (—02% + %) Az = Uy, (2.53)

Cy = ung—z:, Ay = Uy (2.54)

Cs = (u, +¢) [pc <n$% + ny%) + -

The sign of \; determines whether the wave is incoming or outgoing. The rate of

} , A = Uy +C. (2.55)

change of incoming characteristics is set to zero whilst outgoing characteristics
are left unchanged. In the standard LCBC this is carried out only at the domain

boundary, i.e.

)\i<07 C/ZIO

(2.56)
A > 0, C,i = OZ

LCBC:{

Using the current ZCBC method modification to the incoming characteristics
is introduced smoothly, over a finite region adjacent to the domain boundary,
using a cosine function,

Ai <0, ;= %Cl (1 —+ CosM)

(wout_xstart)

(2.57)
)\z' > 0, C,i = Cl

ZCBC:{
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Intermediate variables D;-Ds are then formed from the modified characteristics

C'1-C’5, that will be used to reform the normal Euler fluxes:

_ 300 = Cl+1C%

D, > (2.58)
: ny(C's — C"y)

D pu— 2-
2 C 2Ny + 2pC ( 59)
Dy — —Clyn, 4 M€= C) (2.60)

2pc
D,=C", (2.61)
Cl

4D5::?;; (2.62)

Using the intermediate variables, the normal Euler fluxes are reconstituted, in-

corporating the modified characteristics, with

D,
uDy + pDy
F,= vDy + pD3
wDy + pDy

/\0_21 + 3 (u? +v? + w?)| Dy + puDsy + pvDs + pwDy + %D5(2 63)

Finally, the modified normal Euler fluxes are added to the right hand side of the

Navier-Stokes equations using

dF’,,
dn
In comparison to a standard characteristic method, an increase in computational

RHS = RHS' + (2.64)

cost is incurred as the characteristic method is performed over a greater number
of grid-points. Additionally, the region over which the method is applied is
no longer physical and will no longer yield useful information. The method is
however advantageous in that it uses no coefficients that need to be tuned for

every application, and is proven to be more effective than alternative methods
(Sandberg & Sandham, 2006).
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2.2.6 Integral characteristic boundary condition

The integral characteristic boundary condition (Sandhu & Sandham, 1994) fol-
lows the same method as for the local characteristic boundary method, up until
the formulation of the modified normal Euler fluxes. At this point, the deriv-
atives of the normal Euler fluxes are integrated with respect to time using the
fourth-order Runge-Kutta scheme (section 2.2.2). The time-integrated normal
derivatives are then subtracted from target (freestream) values of the conserva-

tive variables, to enforce the freestream conditions on the boundary

dF’,,
F = Ffreestream - / dan dt. (265)

2.2.7 Freestream buffer

A simple buffer was applied at the free-stream boundary in certain cases, in order
to further reduce reflections from linear waves. The buffer is active only over
a finite region adjacent to the free-stream boundary, of width Lg. The buffer
ramps the conservative variables QQ towards the free-stream condition Q., and
varies in effectiveness from zero at the buffer onset to maximum effectiveness at

the free-stream boundary. The conservative variables are modified as follows;

Q=Q+ %A (1 - cos(waz_ Z)) (Qe — Q) (2.66)

B
where [ is the distance normal to the free-stream boundary, and Lpg the total
buffer length. The strength of the buffer is determined by the parameter A. In
all cases where a free-stream buffer was applied, A was specified as 0.05 and Lp
was specified as 1.

A different form of buffer was employed for forced Navier—Stokes simulations;
the buffer was applied ramping over a finite streamwise distance and ramps
the conservative variables to the specified initial condition, not the freestream

conditions. The conservative variables are modified in the following fashion;

Q=Q+ %A (1 — cos(wM)) (Qutore — Q), (2.67)

Lend — Tstart
where Qgore 18 the initial value of the conservative variables, 4.+ is the stream-
wise buffer onset and x.,4 is the end of the ramping function. For z < x4+ the
conservative variables are not modified, whereas for x > z.,4 the conservative

variables are modified as
, 1
Q = Q + §A(Q8t0’l"6 - Q) (268)
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2.2.8 Airfoil surface boundary condition

At the airfoil surface an adiabatic, no slip condition is applied. The variables,
u, v and w are set to zero, and the adiabatic thermal boundary condition is

enforced by adjusting E; such that
ar
dn
In order to enforce the adiabatic condition an iterative scheme is used. First,

0. (2.69)

the condition

ar _
dn—

is applied at all points on the airfoil surface. This is achieved by calculating the

0 (2.70)

temperature 1" from the conservative variables at all streamwise locations over
the airfoil surface, and six grid-points into the freestream. The derivative at the

airfoil surface may then be expressed as

dr
dnj=1

= D1/Tjm1 + DnTj—s + Ds1Tj—3 + D1 Tj—s + D51Tj—5 + D1 Tj—¢ (2.71)

where D;; refers to locations in the derivative operator matrix D defined in

section 2.2.2 as P7'Q, and Tj refers to the temperature at wall normal grid-

point j. Setting d;’% to zero and rearranging yields the expression for 7" at the
=

airfoil surface

-1
Tiz1 = D—(Dlejzz + D1 Tj—3+ Dy Tj—y + D51 Tj—5 + D61 Tj—6) (2.72)
1

This serves only as an initial estimate for the surface temperature, since the wall
normal derivative of temperature depends also on the £ derivative. New values

for the surface temperature are then calculated using the iterative scheme

AT G dTy

TR kS (273)
where
¢ 1 dx dy dn 1 dx dy
= 2o 2 — ), — == — - — 2.74
dn J( Mgy T dn) dn J("yd§+" a (2.74)

32



and

— do
ng = dot n, = dot (2.75)

@@ " e

Investigating the performance of the iterative scheme for airfoil flow at Re, = 10%
and M = 0.6 reveals that after 5 iterations d7'/dN < 107'2 at all locations on

the airfoil surface.

2.2.9 Initial condition

Each simulation is initialised by setting freestream conditions throughout the

domain,

T 1
p=1 pu=1 pv=0, pu=0, T=1, E, = P + =p(u® +v* +w?)

Yy —1DM? 2
(2.76)
and imposing a simple parabolic boundary layer over the airfoil to satisfy the
surface boundary condition. The simulation is then run until transient effects
are deemed to have passed, based on inspection of time dependent behaviour of

quantities such as lift-coefficient, before data capture and analysis begin.

2.2.10 Volume forcing

Low amplitude forcing is applied in certain simulations in order to excite insta-
bilities in the flow, and is implemented using the following method. Curvilinear
coordinate quantities &oree and neoree are defined as

e = o)y O ) (277

(fend - £start> (Uend - nstart)

where &gare and 7 are the coordinates specifying the beginning of the forcing
area, while &4 and 7ne,q are coordinates specifying the end of the forcing area.
Thus &torce and 7gorce both vary from zero to one. Ramping functions F¢ and Fj,
are then formulated such that, when differentiated with respect to the appropri-
ate curvilinear coordinate, a smooth cosine function results. Consider first the
function Fg, which defines the forcing amplitude in the £ direction and is only
differentiated in the { direction. Outside the region 0 < Ngoree < 1, F is defined
as zero whereas within the region 0 < Mgorce < 1, F¢ possesses finite values. This
creates a discontinuity in the n direction, but the function is differentiated only

with respect to & and there will be no discontinuity in dd%. Setting F¢ to zero
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. . . ) dF, .
outside the region 0 < N¢oce < 1 is necessary in order to ensure d—; = (0 outside

the forcing area. Within the region 0 < nge < 1 the function is defined as

Asin(27rft + ¢) (1 - COS(27T77force)>
2

gforce > ]-7 F§ = (278)

Asin(27 ft + @) (Sforce — %sin@ﬂ&orce)) (1 — cos(2mNorce) )

0<€force<17 F£: 9

(2.79)

Erorce < 0, Fg =0 (2.80)
where A is a user-specified coefficient controlling the forcing amplitude, f is the
temporal frequency of the forcing, ¢ is the non-dimensional time and 1 is the
phase of the forcing. This results in smooth variation of F¢ with &goree, With
resultant derivative % taking the form of a single cosine wave over the forcing

region, and being zero elsewhere (figure 2.2).

12; T T T =
02 -

0.1 -

dF

Figure 2.2: Variation of Fg with £rorce (left), and variation of % with &rorce (right).

An equivalent function F, defines the forcing amplitude in the 7 direction and
is formulated in a similar fashion. Everywhere outside the region 0 < &oree < 1,
the function F, is zero in order to ensure dd% is also zero. Within the region
0 < &orce < 1, F, is defined as follows:

ASiD(QTFft + Cb) (1 - COS<27T€force))
2

Nforce = ]-; Fn = (281)

Asin(27 ft + @) (1 — cos(27&sorce)) (nforce — %Sin(anﬁ)rce))

0<77f0rce< 1, Fn: 5

(2.82)

Tlforce < 07 Fn =0 (283>
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The function F; and derivative % are smooth functions that behave in the
same manner as the ¢ equivalent (figure 2.2), but in the 5 direction. Cartesian

derivatives of the ramping functions F, and F), are then formed by

dF  dF,dx  dFgdx

Sl Rt S 2.84
dy & dE dn 250
dF  dFedy dF,dy
= s _mnd 2.85
dx d¢ dn  dn d§ ( )
noting that
dFe  dF,  Asin(2mft + ¢) (1 — cos(27&orce)) (1 — cOS(2MNtorce) ) (2.586)

dé¢  dn 2

Finally, % is added to the right hand side of the x-momentum equation and %

is subtracted from the right hand side of the y-momentum equation, giving

dou dpu dF dpv dpv dF

—_— =t —, — = — - —. 2.87

i dt Tay dt T dt dn (287)
Where forcing is required in a 3D simulation, a spanwise dependency is intro-

duced, and the forcing amplitude varies as

k—1
2 2.88
cos(wnNZ_1>, (2.88)

where k is the spanwise grid-point, NN, is the total number of spanwise grid-

points and n is the spanwise wavenumber. When used in conjunction with
cartesian grids the method is divergence free. For the case of curvilinear grids,
as used here, the method is not identically divergence free, however in practice
the forcing method appears to produce negligible acoustic perturbations, espe-
cially when compared to those occurring naturally as a result of hydrodynamic

behaviour.

2.2.11 Validation

The code is based upon an existing code that has been previously validated for
compressible turbulent plane channel flow (Sandham et al., 2002), and more
recently has been demonstrated to accurately represent the development of hy-
drodynamic instabilities (Sandberg et al., 2006). The code used in the current
study is different in that it is applied to a curvilinear C-type grid with wake
connection, however the same metric terms were used in previous versions of the

code. The use of an airfoil geometry necessitates special treatment of grid-points
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in the vicinity of the trailing edge, for which the dependency of simulation results
on trailing edge treatment is quantified in section 2.2.15. The dependency of
simulation results on boundary conditions has previously been quantified (Jones
et al., 2006), and the influence of both grid resolution and domain size upon

simulation results has also been quantified in sections 4.3.1 and 4.3.2.

2.2.12 Parallel implementation

The computational domain is divided equally amongst the total number of
processors used, such that each processor is responsible for a unique sub-domain.
Each processor is denoted an integer identification number, ranging from 0 to
npe — 1, where n, is the total number of processors used. Processor 0 is located
at the £ = 0, n = 0 boundary. Further processors are then allocated moving first
in the ¢ direction, then the n direction as indicated in figure 2.3. In order to eval-
uate the fourth-order central difference scheme, given that a five point stencil is
used, each processor requires data from adjacent processors.Each processor sub-
domain is therefore extended in each direction by two grid-points. These extra
cells are denoted ‘halo’ cells, and are filled with data from the first and second
grid-points of adjacent processor sub-domains before evaluating derivatives, as

illustrated in figure 2.4.
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Figure 2.3: Distribution and numbering of processors within the computational domain.
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Figure 2.4: Ilustration of data transfer between halo cells.

2.2.13 Wake connection

In contrast to the standard processor sub-domain interface, a processor on the
wake dividing line will share the row of points on the dividing line with the
adjacent processor across the wake-cut, as illustrated in figure 2.5. The grid-
points on the dividing line are duplicated and the governing equations at these
points are calculated by both processors. In order to evaluate derivatives across
the wake, data transfer is employed using two halo cells, in a similar fashion as
for other processor boundaries. However, when performing data transfer across
the wake, halo cells will be filled with data from the second and third grid-points
of the adjacent processor, as illustrated in figure 2.6. This differs from non-wake
data transfer, where only the first and second grid-points are used. Since grid-
points on the wake dividing line are duplicated, if the flow quantities on one side
of the wake cut were to differ from those on the other side of the wake cut the
discrepancy would persist indefinitely, and each processor would effectively be
solving different equations for the same grid-points. In order to prevent this from
occurring, for example due to round-off error, data for grid-points on the wake
dividing line are averaged across the wake cut at specified intervals. Typically

the interval for wake-averaging is every 5000 iterations.

2.2.14 Metric terms

Metric terms are calculated to machine accuracy at the start of the simulation

using the spatial scheme described in section 2.2.2. When filling halo cells by
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Figure 2.5: Illustration of grid-points shared between adjacent processors across the wake cut.

~ 0000000

~ 000000 O— SRR

~ 00000 ®@— SRRV RN

H....... OOOOOOOJ1

o +——>000000O0

Fﬂﬁﬂ&mmmk—OOOOOOOW
Q000000 =

Figure 2.6: Illustration of the data transfer process across the wake cut.

transferring data across the wake dividing line, first derivative metric quantities
must be multiplied by —1 to account for the discontinuous change in direction

of £ and n with respect to x and y.

2.2.15 Trailing edge treatment

The first two physical locations downstream of the trailing edge each consist of
two grid-points, one on each side of the wake dividing line. When evaluating &
derivatives, each of these coincident grid-points will use data from different five-
point stencils. This can be observed in figure 2.7, where the points TE 4 1 and
TE + 2 use different derivative stencils depending on which side of the wake the
derivative is evaluated. The coincident grid-points clearly represent the same
physical location, and it would be unphysical to allow the possibility of the two
coincident points possessing differing fluid properties. Therefore, derivatives in
the direction at the two points downstream of the trailing edge, where the stencil
can encompass points on either side of the airfoil, are evaluated by averaging
data at points on the airfoil across both sides of the airfoil itself. This enforces
the same fluid properties for both grid points.

Attempts have been made to quantify the influence of the airfoil trailing edge
treatment. Grid refinement studies have been performed for two-dimensional

simulations in chapter 4, section 4.3.1 which included varying grid resolution in
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the vicinity of the trailing edge. Additionally, the effect of using an alternative
trailing edge treatment was investigated. The two-dimensional simulation at
Re. = 5 x 10*, M = 0.4 and o = 5° presented in chapter 4, section 4.4 was
selected as the test-case. After running the simulation for 40 non-dimensional
time units using the trailing-edge treatment outlined above, an alternative trail-
ing edge treatment was implemented and the simulation run further. The sim-
ulation was run for 15 non-dimensional time units to allow any transient effects
to pass, before taking statistical data for a further 10 time units, or 29 vortex-
shedding cycles. The alternative trailing-edge treatment consisted of applying
the Carpenter boundary scheme to the first four points downstream of the trail-
ing edge, and employing no averaging of derivatives across the wake cut. The
time-dependent lift-coefficient and the Fourier transformed lift coefficient are
plotted for both cases in figure 2.8. The global behaviour appears similar for
both cases; the mean-lift coefficient changes by less than 0.3%, and the Fourier
transformed lift-coefficient exhibits the same tonal structure and amplitudes,
although the spectrum is less distinct due to the shorter time-series used. Thus

the global behaviour appears to be independent of the trailing edge treatment.
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Figure 2.7: £ derivative stencils in the vicinity of the trailing edge point.

2.2.16 Grid generation

Grid generation for high-order non-dissipative codes is non-trivial, and achieved
by an iterative approach. The presence of under resolved flow phenomena re-
sults in numerical oscillations, particularly in sensitive quantities such as density
gradient. By analysing simulation results, locations of poor resolution may be
identified by such oscillations. A new grid is then generated, with the purpose
of improving the resolution in the necessary locations, and the flow-field data

are interpolated onto the new grid. The simulation is then run on the new grid
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Figure 2.8: Time-dependent lift-coefficient (left), and Fourier transformed lift-coefficient
(right) for the two-dimensional case at Re. = 5 x 10*, M = 0.4 and a = 5°, treating the trail-
ing edge with central differences and wake-cut averaging (—) and with a Carpenter scheme
and no averaging (——).

and the results are analysed in order to assess whether resolution issues have
been eliminated. The process can be repeated as often as necessary, and avoids
the need for continually starting simulations from scratch, with the associated
computational cost of waiting for transient effects to pass. In order to minimise
the possibility of discontinuities in the metric terms, the grid-point distribu-
tion for connectors such as the airfoil surface and the downstream boundary
are generated using a polynomial mapping technique. A connector specified
with NV control points will be mapped using N — 1 polynomial distributions of
grid-points. At the interfaces between polynomials, the second derivative metric
terms are always set to zero ensuring continuity in the second derivative metric

terms. All grids are generated using the program Gridgen by Pointwise™.

2.2.17 Calculation of aerodynamic coefficients

Aerodynamic coefficients are found by integrating the appropriate force over the

airfoil surface. The lift-coefficient is calculated as

1 S$=Stotal
Com o [ =Sl po)lsintlds (2.89)

%poougo s=0
where the subscript oo refers to free-stream conditions and the subscript n =0

refers to quantities taken at the airfoil surface. The local surface inclination
dy

dan
coordinate is denoted s. S is a function specified in order to maintain the correct

with respect to the cartesian axes, 6, is defined as tan™!( :0), and the surface

sign of the lift contribution depending on whether the expression is evaluated

on the upper or lower airfoil surface, and is defined as
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d d
S =1 for d—:§>0, S =—1 for d—z<0. (2.90)
The pressure-drag coefficient and skin-friction drag coefficient are calculated as
1 S$=Stotal
Cpp = ﬁ/ Pp=0sind ds (2.91)
EpOOU’oo s=0

and

1 S$=Stotal du dv
Cy = 2 0—5(— in6||ds (292
o= L () o s (G e e o

respectively, where S is defined in the same manner as for the lift-coefficient.

The total drag coefficient is found by summing the constituent coefficients,
Cp =Cpp +Cpy. (2.93)

2.2.18 Calculation of integral boundary layer parameters

Extracting integral boundary layer properties, such as momentum and displace-
ment thickness, from airfoil simulations is non-trivial. Boundary layer profiles
are likely to possess a local edge velocity exceeding the free-stream velocity, and
thus difficulties arise deciding on a reference velocity and integration limits. In
order to bypass these problems a method of deriving boundary layer parame-
ters from the mean vorticity field is used. First, a pseudo velocity is formed by

integrating spanwise vorticity in the wall normal direction,

i(n) = /0 " ndn. (2.94)

Outside the boundary layer, where the velocity gradient is zero, vorticity is
also zero and hence the pseudo velocity reaches a constant value in the free-
stream. Boundary layer parameters such as kinematic displacement thickness
and momentum thickness are then formed using the pseudo velocity instead of

using a true tangential velocity obtained from the simulation:

5 :/ ) (1 _ #) dn (2.95)
n=0 Uoo

0, — / R (1 - #) dn (2.96)
n=0 Uoo Uoo

The reference velocity, ., is the freestream pseudo velocity found by integrating
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spanwise vorticity into the freestream, not the true free-stream velocity. This
method does not require extraction of edge velocities or ad-hoc specification of
the boundary layer thickness. The only variable is the distance to which the
spanwise vorticity is integrated. In practice the method is robust to variation of
integration length, as illustrated in figure 2.9. Typically spanwise vorticity will
be integrated to 60% of the wall-normal number of grid-points when extracting

boundary layer parameters.

0.06 —————————————————————————————

Figure 2.9: Variation of time averaged §* distribution with wall normal integration distance,
Re. = 10x10%* M = 0.6, showing 6* integrated to 65 (o), 130 (¢) and 195 (V——V) grid-points.
Total number of wall normal grid-points is 259.

2.3 Fourier transforms

Fourier transforms of pressure series are computed at several points in this study.
In all cases the mean of the time-series is subtracted before computing the
spectra, and in certain cases windowing and segmenting is employed to improve
the quality of spectra. Segmenting is applied as follows. Given a time-series
of length T, an integer number of segments, N, is specified. The time series
is then divided into N segments, each overlapping by 50%, hence the segments
will be of length AT = 2T /(N + 1). Fourier transforms are performed for each
segment individually before ensemble averaging the resultant spectra. Hanning
windowing is another technique employed to improve the quality of spectra, and
essentially involves multiplying the time-series by a cosine function that ramps
to zero at either end of the time-series. For a time series of length 7', the Hanning

function is defined as
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f=05 {1 — cos (%tT)} . (2.97)

In order to compensate for the reduction in signal amplitude, the resultant
spectrum is multiplied by 1/f i.e. 2. When computing power spectra, the
spectra are multiplied by 1/f2 i.e. 8/3.

2.4 Linear stability analysis

2.4.1 Governing equations

Linear stability analysis is used to predict the response of boundary layer pro-
files to small amplitude perturbations. Assuming incompressible flow, which is
reasonable at the Mach numbers considered in this study, boundary layer distur-
bances are assumed to take the form of two-dimensional travelling waves such
that

uy = 1 (y)e! . (2.98)

The variable « is the complex wavenumber (defined as a@ = 27/A, where A is
the disturbance wavelength) and w is the complex frequency of the travelling
wave (defined as w = 27 f, where f is the disturbance frequency). Wall normal
variation is accounted for in the function ;(y), and the phase velocity is given

by ¢,n = w/a. The amplitude of instability waves varies as

gt (2.99)

found by expanding (2.98), hence the imaginary part of the wavenumber (-¢;)
corresponds to the spatial growth rate and the imaginary part of the frequency
(w;) corresponds to the temporal growth rate.

A parallel baseflow is considered, for which @ = f(y), v = 0, du/dz = 0.
Velocity and pressure are decomposed into mean and fluctuating quantities, i.e.
u; = u; +ul,, p = p+p, and the incompressible Navier-Stokes equations are
written for the decomposed variables. The equations for the base flow (i.e. with
fluctuating quantities omitted) are subtracted, and fluctuating quantities are
considered to be small, hence multiples of fluctuating quantities are removed.
Assuming perturbations of the form given in (2.98), substituting into the Navier—
Stokes equations and rearranging leads to the well known Orr—Sommerfeld equa-

tion, which may be written as
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&0 e ; Eo dv
(@— Cyp) (7” - a2@> e/t <a4@ - 20427” + —”) . (2.100)

A full derivation of the Orr-Sommerfeld equation is given in Drazin & Reed
(1981). To solve the Orr-Sommerfeld equation, a velocity profile u = f(y) is
specified, hence u(y) and d*u/dy* are known. The Orr-Sommerfeld equation
then represents an eigenvalue problem of the form Av = Bo, with © as the
eigenvector, which yields non-trivial solutions for only certain values of a and
cpn- The eigenvalue problem can be solved in two ways. Either a real w can be
specified and a complex o computed, denoted spatial linear stability analysis,
or a real a can be specified and a complex w computed, denoted temporal
linear stability analysis. The code used throughout this study solves the Orr-
Sommerfeld equation as a temporal problem, however use of the iterative scheme

detailed in section 2.4.2 allows spatial analysis to be performed.

2.4.2 Numerical method

Grids and data fitting

Grids used for linear stability analysis are not required to be as fine as for DNS,
particularly in regions with little variation in mean fluid velocity. Therefore,
in order to avoid unnecessary computational cost, linear stability analysis are
performed upon computational grids that are not the same as that of the original
DNS. The grid-point distribution varies depending on whether the analysis is of a
wake or boundary layer profile, however in both cases the velocity profile is fitted
from the old (DNS) grid on to the new grid using cubic spline interpolation, thus
providing data values at locations between physical grid-points of the original

data set.

Spatial analysis algorithm

When considering external aerodynamics it is typically more relevant to con-
sider the spatial problem, where a frequency w is specified and a wavenumber
a computed, rather than the temporal problem. To solve the spatial problem
using a temporal code an iterative scheme is employed. First we specify the
complex frequency that we wish to solve for, w;,. We then try to find the appro-
priate complex wavenumber, a,,;, such that when the Orr-Sommerfeld equation
is solved using this value of a,,; we return our original complex frequency w;,.

The process is as follows. Given a complex frequency wj, for which we wish

to find the corresponding ., the first step is to make an approximate estimate

44



of aiys. In order to do this we first estimate a phase speed,

Con = 0.5, (2.101)

for example, and then the approximate wavenumber estimate, «ay, may be com-

puted as

Qa1 = Win/Cph- (2.102)

A second wavenumber, «s, is specified, by adding a small increment to the first,
as

Qg = Win/cpn + 1 x 1073(1 4 4). (2.103)

The associated complex frequencies for both a; and oy may then be found by

solving the Orr-Sommerfeld equation,

wr = fla,(y)), (2.104)

wy = flag,u(y)). (2.105)

We are now in a position to commence the iteration sequence. At the start of
the scheme we have two a/w pairs; (ag,w;), and (az,ws). At each iteration the
derivative dw/da is computed, and used to calculate a more accurate estimate
for a,y;. The new a/w pair are stored, and (a;,w;) discarded and the process
is repeated until wy = wy, to a specified level of accuracy. The method may be

written as follows:

while (|wy — wi| > €)
(f2) = 2=
da az—aq 1
Apew = (win - w2) (z_g) + Qo

Wnew = f(anewaﬂ(y))

a1 = Q3
w1 = W2
Qg = Qpey
W2 = Wnew

end while

The convergence criteria here is that |w — w;,| < €, where € is a user-specified

parameter. For the current study € = 107¢. The initial estimate for o given by
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(2.102) is quite crude hence, if analysis of a number of frequencies or velocity
profiles is being performed, the value of a from the previous computation will

instead be used as the initial estimate.

2.4.3 Numerics for boundary layer profiles

Discretisation

For boundary layer profiles, grid resolution is required to be fine in the vicinity of
y = 0, where strong velocity gradients are present, and is allowed to coarsen with
increasing y as freestream conditions are reached. A geometric discretisation is

specified in order to achieve this, of the form

Yjir1 =y T a(l+s), (2.106)

where a is the grid spacing at the first point, y = 0, and s determines the
percentage increase in cell size with distance from the wall. In all cases 200
grid-points were used, in conjunction with values s = 0.055 and a = 1.30 x 1074,
For validation purposes the most unstable eigenmode for a Blasius boundary
layer profile at Res« = 1500, a = 0.2 was determined, and the resultant value
for w was found to agree with the results of Gaster (1978) to the 5th digit for
the real part and the 6th digit for the imaginary part.

Derivative scheme

In all cases 6th order compact difference stencils are used (Lele, 1992) to com-
pute derivatives, including metric terms. Sufficient resolution for the derivative
scheme is indicated by smooth derivatives of velocity profiles, up to and includ-

ing the fourth derivative.

Spatial integration

When calculating the spatial growth of instability waves, wave amplitudes are
required to be integrated spatially. Given an initial disturbance amplitude Ay,

and a disturbance amplitude A, at an arbitrary downstream location, the dis-

Az
Aq

N = N,y — osx and —q; is the spatial growth rate of the N-factor. The N

factor is integrated using an Euler scheme, as

turbance N factor is defined as N = In < ) Hence, considering equation 2.99,

Nyine = Ny — asAx. (2.107)
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2.4.4 Numerics for wake profiles

For wake profiles, grid resolution is again required to be fine in the vicinity
of y = 0, where strong velocity gradients are present, and to coarsen with
increasing y. Additionally, metric terms must be smooth across the line y = 0
up to and including the fourth derivative. In order to achieve this, grid-points
are distributed using a cosh function.

First we consider only half of the wake. We define N, as the number of
grid-points in this half of the wake and L, as the half-height of the wake profile.
Hence we require y(0) = 0 and y(N,) = L,. The following function is used to

compute the cell size distribution of the grid,

Ay(j) = cosh K%(%@,———ll)))} : (2.108)

where r is a stretching parameter specified as r = 1.6 in order to provide a
desirable distribution of grid-points. Equation 2.108 yields arbitrary initial cell
sizes and so appropriate scaling must be applied to ensure y(N,) = L,. The
appropriate scaling factor is computed numerically by dividing the half-wake

height by the sum of all Ay, yielding

(2.109)

Coordinates are then defined as

y(j) = y(j — 1) + Aly(j), (2.110)

specifying y(0) = 0, hence y(N,) = L, as required. The opposite half of the wake
grid is a mirror image of the first. Since the cell size distribution is determined
by a cosh function, metric terms will be derivatives of a cosh function and
thus continuous across y = 0. The total number of grid-points is specified as
N = 2N, — 1, and the total height of the wake profile is 2L,. Hence only odd
numbers of grid-points are used. The coordinates of the grid are redefined such

that y(1) = —L,, y(N) = L,. In all cases 201 grid-points were used.

2.4.5 Cusp-map technique for locating absolute instability

A simple criterion for the presence of absolute instability is the existence of an
instability wave possessing zero group velocity, ¢, = 0, and a positive temporal
growth rate, w; > 0. The cusp-map technique is a method of looking for the
presence of absolute instability based on these criteria, and is the temporal

equivalent of Briggs method (Briggs, 1964). A full description of both Briggs
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method and the cusp-map method is found in Schmid, Henningson & Jankowski
(2002), a brief description necessary to interpret the results follows. Use of a
temporal method is preferable in order to avoid the additional computational
expense of using the iterative spatial scheme defined in section 2.4.2.

Given that a dispersion relation D, in this case the Orr-Sommerfeld equation,

relates o and w,

D(o,w) =0, (2.111)

points in the complex w plane will map to points in the complex « plane and
vice versa. The presence of a saddle point in the complex « plane represents a

point where ¢, = 0, since for a saddle point

D
D(a,w) =0, % =0 (2.112)
and hence
Ow 0D ,0D
Sl ) 2.11
“ Oa Oa' Ow 0 ( 3)

Where a saddle point occurs in the complex « plane, a branch point will occur
in the complex w plane. Essentially, the cusp-map method is a systematic pro-
cedure for locating saddle and branch point pairs, and hence instability waves
with ¢, = 0. Lines of constant «, are plotted in the complex « plane, and then
mapped via the dispersion relation to the complex w plane. A branch point in
the complex w plane may be readily observed as a ‘cusp’ where contours in the
complex w plane first cross themselves (figure 2.10). The presence of a branch
point represents an instability wave with ¢, = 0. If the branch point is in the
lower half of the complex w plane (i.e. w; < 0), the stationary wave is absolutely
stable. If the branch point is in the upper half of the complex w plane (i.e.
w; > 0), the stationary wave is absolutely unstable.

The method is employed in the current study as follows. First, for the profile
of interest, the Orr-Sommerfeld equation is solved for a range of real «, in
order to determine the envelope of unstable (real) wavenumbers. The upper
and lower limits of this envelope are denoted a,; and a,2. A second sweep is
then performed over a range of both «a, and «;, forming an equidistant grid
in the complex « plane (figure 2.10, left). The upper and lower «, values are
chosen as «,1 and «,5. The upper and lower limits of «; are chosen intuitively,
for the first attempt, and then refined. The associated map in the complex w
plane will either contain a cusp (figure 2.10, right), or else the process can be

repeated making adjustments to a in order to locate a cusp. Once a cusp is
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found, it may be tracked as the boundary layer profile slowly varies, and the

corresponding « and w noted.
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Figure 2.10: Equidistant grid in the complex a plane (left) and its corresponding map into the
complex w plane (right) , revealing a cusp associated with ¢, = 0 and w; > 0, as determined
for shear layer profile given by equation 2.114 with R=1.35.

Use of the Orr-Sommerfeld solver in conjunction with the cusp-map method
to determine the presence of absolute instability has been validated for analytic

wake profiles given in Huerre & Monkewitz (1985), described by the equation

u(y) = 1+ R tanh (%) . (2.114)

The variation of w; with R, determined using the Orr-Sommerfeld solver in
conjunction with the cusp-map method and setting the Reynolds number to
Rey = 106, is plotted in figure 2.11 in the vicinity of w; = 0. Transition from
convective to absolute instability was found to occur at R = 1.3156, compared
to R = 1.315 as reported by Huerre & Monkewitz using an inviscid approach.
For the profile R = 1.315, values w; = —1.266 x 10™* and w, = 1.921 x 10~! were
determined, compared to w; = 0 and w, = 1.92 x 10! as reported by Huerre &

Monkewitz.
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Figure 2.11: Variation with R of complex w associated with ¢, = 0, for profiles given in Huerre
& Monkewitz (1985).
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Chapter 3

Two-dimensional studies of the

flow around an airfoil at
Reynolds number 10,000’

3.1 Introduction

In this chapter the flow around an airfoil at Re, = 10* is investigated by both
numerical simulation and stability analysis. Although in reality no aircraft op-
erates at Re, = 10*, simulations at this Reynolds number allow validation of
the numerical method by comparison both to similar studies and alternative
prediction methods, whilst being comparatively cheap to run in terms of com-
putational time. Furthermore, the effect of the domain size on the potential flow
around the airfoil may be investigated cheaply at this Reynolds number. The
results of studies at Re, = 10* can then be used to plan simulations at higher

Reynolds numbers.

3.2 Domain size selection

Before simulations can be performed with confidence, an appropriate size for the
computational domain must be determined. The computational domain must
be sufficiently large not to constrain the potential flow around the airfoil, whilst
not being so large as to incur unnecessary computational expense.

Three comparatively cheap 2D airfoil simulations were run on three different
grids, denoted D1, D2 and D3, in order to quantify the effect of domain size.
The simulations were all Tun at zero degrees incidence, Re, = 10, M = 0.6,

and the size of the computational domain was varied. Details of the domains

1See also Jones et al. (2006)
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Grid D1 D2 D3

R 3.3 5.3  7.95
w 5 5 8
N¢ 1181 1181 2361
N, 245 259 274

Nyoyy 201 201 201
Nyake 982 982 2162

Table 3.1: Domain and grid dimensions for cases D1-D3.

90°

-90°

Figure 3.1: Azimuthal variation of pl at 3 chords radius from the trailing, over the range 0.99

oo

to 1.005 for grids D1 (---), D2 (——) and D3 (—)) (left) and time-averaged cy distributions
for grids D1 (v), D2 (——) and D3 (o) (right).

and grids used are given in table 3.1. The larger domain sizes were generated
by adding grid-points to grid D1, whilst leaving original grid-points unchanged.
Flowfield statistics were taken for 60 time units upon achieving a periodic state
of behaviour.

The azimuthal variation of mean pressure at a fixed radius of 3 chords about
the trailing edge is plotted in figure 4.8 (left). It can be seen that whilst there is
marked difference between grid D1 and D2, there is little difference in pressure
distribution between grids D2 and D3. Plotting time-averaged skin-friction (¢7)
distributions yields a similar result (figure 4.8, right). Any further increase in
domain size will incur even smaller changes.

It appears then that a minimum radius of 5.3 chords is adequate to capture
the potential flow of the test-case with the current code. Therefore all simula-
tions at Re, = 10* are run using grid D2 unless stated otherwise. For reference
purposes the resolution of grid D2 at specific control points is given in table 3.2.

Details of grids used at higher Reynolds number are given in chapter 4.

92



A€ An
1.5 x 1073 3 x 1072
1.75 x 1072 4.2 x 1074
3.1x 1072 1x10°3
0.2 31x1072 3.75x1073
1 3.1 x1072 2 x 1072
53 3.1x1072 195x 107!

x
Stagnation point 0
Trailing edge 1
Exit boundary 6
6

6

6

o O O

Exit boundary
Exit boundary
Exit/free stream boundary

Table 3.2: Grid resolution at selected control points for grid D2.

3.3 Direct numerical simulations

Having determined an appropriate computational domain size, simulations were
run at Re, = 10*, zero-degrees incidence, whilst varying the Mach number.
Simulations at five Mach numbers were performed; M = 0.2, 0.3, 0.4, 0.6, 0.7
and 0.8, although where results are presented not all simulations may be shown
for the sake of clarity. The simulations were progressed until transient effects
were deemed to have passed, and statistical data capture was performed for a

minimum of 40 non-dimensional time-units.

3.3.1 Time dependent behaviour

At Re, = 10* an unsteady wake is observed at all Mach numbers; downstream of
the airfoil trailing edge the wake becomes unstable and rolls up to form vortices,
characteristic of a von-Kérman instability. Both the size and intensity (in terms
of peak vorticity magnitude) of the wake vortices increases with Mach number,
and the onset of vortex shedding moves upstream toward the trailing edge (figure
3.2). As a result of the wake unsteadiness, the airfoil experiences an oscillating
lift-coefficient, with both amplitude and frequency varying with Mach number
(figure 3.3, left). The magnitude of lift-coefficient oscillations increases with
increasing Mach number, and the frequency decreases. Fourier transforms of
the time dependent lift-coefficient are shown plotted against Strouhal number
(figure 3.3, right), where the Strouhal number is defined as
f(26%)

=21 1
St =L, (3.1)

where f is the frequency of lift-coefficient oscillation, 0%, is the displacement
thickness at * = 0.99 (measured on one side of the airfoil) and w is the free-
stream velocity. The Strouhal numbers associated with the dominant oscillatory
mode collapse to St = 0.2 (£13%) in all cases.

In comparison to the similar study by Bouhadji & Braza (2003), several differ-

ences may be noted. Firstly the amplitude of ', oscillations is much lower in the
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Figure 3.2: Iso-contours of vorticity, using 20 levels over the range +50, for the case Re. = 104,
a = 0° at Mach numbers indicated.
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Figure 3.3: Time dependent Cp, (left) and direct Fourier transform of time dependent Cp,
(right) at Re. = 10 x 10*, showing Mach numbers 0.2 (---), 0.6 (——) and 0.8 (—).

current study, for some Mach numbers appearing as much as four times lower.
Secondly, Bouhadji & Braza report a secondary low frequency mode occurring in
the Mach number range 0.75-0.85 which was not observed in the current study
(but which was observed at higher Reynolds numbers; see section 4). Finally,
Bouhadji & Braza report a steady, small non-zero ( 6 x 107) lift-coefficient at
M = 0.2 whereas the current study observed a lift-coefficient oscillating about
zero with peak-to-peak amplitude approximately 1 x 10~%. It is likely however
that the differences observed are due to the much finer grids, especially in the
wake, which were used in the current study. The discrepancies between the stud-
ies do however raise the question as to whether the vortex shedding observed
at M = 0.2 is physical, or whether it is caused by an unphysical mechanism,
such as a feedback loop caused by fluid structures striking the outflow boundary.
This issue is addressed in section 3.4

The pressure drag coefficient (Cpp) increases with increasing Mach number
(figure 3.4, right), whilst the skin-friction drag coefficientCpr decreases slightly.
Drag coefficients predicted by XFoil (Drela & Giles, 1987) vary by as much as
9.5% from the DNS results, although similar Mach number trends are predicted
for both drag coefficients.

3.3.2 Time-averaged results

Time-averaged pressure-coefficient distributions (figure 3.5, left) indicate that
the location of minimum Cp moves downstream with increasing Mach number.
Also, the minimum C'p increases in magnitude with Mach number. When com-
pared to results generated using XFoil (Drela & Giles, 1987) there appears to
be a discrepancy regarding the location and magnitude of minimum Cp. XFoil

does not appear to predict the movement downstream of the minimum Cp with

95



0.006— -
v 4 0.06—

~0.004~ - [
| 1 a004F
o L

RMSC

0.002

0.02

Figure 3.4: Variation of RMS lift-coefficient with Mach number (left), variation of time-
averaged Cpp (¢), Cpy (V) and total drag (o) with Mach number (right), with lines illustrating
XFoil predictions.

increasing Mach number, and also predicts a minimum Cp that is overly large
in magnitude.

Skin friction coefficient distributions (figure 3.5, right) indicate that at all
Mach numbers the airfoil boundary layer stays attached until downstream of
the point of maximum thickness. Towards the trailing edge the boundary layer
separates and a region of recirculation is present; the separation point moves
upstream with increasing Mach number. The region of recirculation extends
downstream of the airfoil into the wake.

The momentum thickness distribution (figure 3.6, left) varies little with Mach
number, however the displacement thickness (figure 3.6, right) downstream of
separation clearly increases with Mach number. Similar trends are predicted by
XFoil.
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Figure 3.5: Time-averaged Cp at Mach numbers 0.2 (V), 0.6 (o) and 0.8 (¢) with lines illus-
trating showing XFoil predictions (left), and time-averaged C (right) at Mach numbers 0.2
(--+), 0.6 (——) and 0.8 (—).
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Figure 3.6: Time-averaged 0 (left) and 6* (right) distributions at Mach numbers 0.2 (v), 0.6
(o) and 0.8 (¢), with lines illustrating showing XFoil predictions.

3.4 An investigation of the vortex shedding behaviour at
M =102

Since vortex shedding was observed at M = 0.2 in the current study, but not
in the study of Bouhadji & Braza (2003), it is pertinent to determine whether
the vortex shedding is physical. In order to do this the development of wake
unsteadiness is monitored from a simulation with a symmetry condition applied

across the wake-cut, and then stability analysis of the airfoil wake is performed.

3.4.1 Onset of wake instability

Using grid D2 (defined in section 4.3.2), with wake length W = 5 airfoil chords,
a simulation was run at Mach 0.2 with the additional boundary condition of
v = 0 applied on the wake dividing line in order to obtain a symmetric solution.
Upon attaining a steady solution, the boundary condition was removed and the
simulation continued. Wake unsteadiness was then allowed to develop naturally
and, by measuring time dependent pressure at several locations in the wake, the
onset of the wake instability was investigated. Unfortunately a fully symmetric
solution could not be achieved, and a steady lift-coefficient of magnitude ap-
proximately 1 x 107% was observed. The grid used was subsequently found to
be asymmetric. The average difference between grid-point locations on opposite
sides of the airfoil is 7 x 107% in the z direction and 1 x 1075 in the y direction,
the asymmetry presumably being incurred during the grid generation process.
Despite the presence of a small non-zero lift-coefficient, the simulation appeared
steady and near-symmetric, as shown by vorticity contours in figure 3.7. Upon
removal of the v = 0 condition along the wake centre line the wake became
unsteady, in contrast to the study of Bouhadji & Braza (2003) where a steady

wake was observed.
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Figure 3.7: Iso-contours of vorticity for the case Re. = 10%, M = 0.2, a = 0°, with v = 0
condition applied to the wake dividing line, using 20 levels over the range £50.
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Figure 3.8: Derivative of time dependent pressure with respect to time, after the symmetry
condition was removed at t=0. Distance of the measurement location from the trailing edge
is given on the left hand x-axis. Left hand image illustrates the behaviour immediately after
the symmetry condition was released, right hand image illustrates the quasi-linear behaviour
over a longer period of time

The behaviour immediately after removing the symmetry condition is moni-
tored by recording time-dependent pressure at a number of streamwise locations
in the wake. Figure 3.8 illustrates the time-dependent behaviour of dp/dt with z-
location, in the form of an z/t plot. Immediately after the symmetry condition is
removed, pressure oscillations are observed to initiate and grow in amplitude at
locations 0.5 and 1 chord downstream of the trailing edge (figure 3.8, left). The
very sudden localised onset and growth of this oscillation suggests that the wake
is absolutely unstable at some location in the region 0 — 1 chords downstream
of the trailing edge, since the oscillation appears to be growing temporally and
does not appear to originate from an upstream location. After a short period
of time pressure oscillations are observed at all points in the wake downstream
of the trailing edge, and the amplitude of oscillation appears to increase with
downstream distance from the trailing edge (figure 3.9, right). The fact that
the amplitude of oscillation increases with downstream location suggests that
the wake may also be convectively unstable. Over time the wake instability

ultimately leads to roll-up and vortex shedding, at which point the pressure re-
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sponse increases dramatically in amplitude and becomes non-linear, illustrated
in figure 3.9 for the measurement location 1 chord downstream of the trailing

edge.

0.4

dp/dt

-0.2- —

Figure 3.9: Derivative of time dependent pressure with respect to time at 1 chord downstream
of the trailing edge.

The disturbance amplitude does not appear to follow a pure exponential enve-
lope, as would be expected for linear disturbance growth (Hannemann & Oertel,
1989). However, if the wake unsteadiness was caused by a feedback loop initi-
ated by unphysical reflections from the downstream exit boundary propagating
to some point of receptivity in the wake, this would be likely to cause periodic
behaviour in time dependent quantities. Fluctuations would be apparent with
period corresponding to the time taken for a fluid structure to convect from the
point of receptivity to the exit boundary, plus the time taken for a pressure
wave to propagate from the exit boundary to the point of receptivity. There is

no evidence for this kind of behaviour in the current simulation.

3.4.2 Cusp-map analysis of the airfoil wake

The time-averaged flowfield, instantaneous flowfield and the symmetrised flow-
field extracted from the case at Re. = 10*, M = 0.2 and o = 0° (figure 3.10)
have been analysed using the Orr-Sommerfeld solver in conjunction with the
cusp-map method (see section 2.4.5). The complex « plane was swept with a
minimum resolution of Aa,, = Aa; = 2. The corresponding resolution in the
complex w plane is much higher in the vicinity of a branch-point, since g—z R

Branch point singularities associated with zero group-velocity instability waves
have been tracked, traversing the wake over the region 0.01-0.5 chords down-
stream of the airfoil trailing edge. Imaginary parts of the complex frequency

associated with ¢, = 0 are plotted in figure 3.11 (left). For all cases, at 0.01
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chords downstream of the trailing edge the ¢, = 0 wave is growing temporally,
i.e. w; > 0, hence the flow is absolutely unstable. The temporal growth rate
decreases with increasing x, and at approximately 0.3 chords downstream of the
trailing edge w; = 0, hence the flow transitions from absolutely unstable to con-
vectively unstable. As x increases to 0.5 chords downstream of the trailing edge
w; decreases further. Results for the instantaneous and time-averaged flowfields
appear similar, however the symmetrised flowfield exhibits a greater tendency
toward absolute instability (i.e. w; is greater).

There is clear evidence then, of absolute instability in the near wake region
for these flow parameters. What is surprising is that absolute instability can
be observed not only in the time-averaged and symmetrised flow fields, but also
in the instantaneous flowfield. This is surprising because, although the near-
wake region appears similar over the region 0.01 — 0.5 chords downstream of
the airfoil trailing edge for all three cases (figure 3.10), by the definition of
absolute instability one would expect exponential temporal growth of normal-
mode perturbations in any region of absolute instability. This is not the case
in the fully-developed simulation, where limit-cycle behaviour is observed. It is
possible that whilst absolute instability may be observed in the instantaneous
flowfield, exponential temporal disturbance growth does not occur due to the
presence of nonparallel effects, i.e. the global undulation of the wake. Instead,
the near-wake reaches a limit-cycle oscillatory behaviour. It should also be
noted that the final stages of vortex roll-up occur significantly downstream of
the transition from absolute to convective instability. This suggests that the
final stages of vortex roll-up are caused by convective amplification of wake
perturbations generated by a region of absolute instability.

Real parts of the complex frequency associated with ¢, = 0 are plotted in
figure 3.11 (right). A simple criterion for predicting the saturation frequency
of wake shedding is Koch’s criterion (Koch, 1985), which states that the final
shedding frequency may be approximated as w, associated with the ¢, = 0 wave
at the location where transition from absolute to convective behavior occurs.
The corresponding value of w, computed from linear stability analysis of the
symmetrised wake is 16.6, corresponding to frequency f = 2.64. The frequency
of vortex shedding in the fully developed case is f = 2.52, providing approximate

agreement.

3.4.3 Direct numerical simulation with forcing terms

A simulation has been performed using forcing terms to maintain the initial

condition, in order to determine the response of the symmetrised flowfield to
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Figure 3.10: Iso-contours of vorticity using 20 levels over the range +50 for the time-averaged
flowfield (top), instantaneous flowfield (bottom-left) and symmetrised flowfield (bottom-right)
of the Re, = 10*, M = 0.2, oo = 0°.
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Figure 3.11: Variation with = of w; (left) and w, (right) associated with ¢, = 0, for the case
Re. = 10*, M = 0.2, o = 0°, with z-axis showing distance downstream from the airfoil
trailing edge, showing results for the time-averaged flowfield (o — —o), instantaneous flowfield
(A -+ A) and the flowfield with symmetry condition applied (0—¢).

low-amplitude perturbations. As well as confirming the linear stability analysis
results, this will validate the use of numerical simulations with forcing terms as
a tool to detect absolute instability.

The initial condition is specified as the symmetrised flowfield presented in
3.4.1. 1If the simulation were to be initialised in this fashion and progressed in
time, the flowfield would relax to the vortex shedding observed in the original
simulation. Instead, forcing terms are added to the governing equations, in
order to maintain the initial condition as the simulation is progressed. Assuming
there is no change to the flowfield, the initial condition will be maintained. The
behaviour of small perturbations on the initial condition (i.e. the symmetrised
flowfield) can then be determined. The process is performed as follows.

At initialisation, time ¢ = 0, temporal derivatives of the conservative variables
are calculated and stored. The simulation is then progressed in time as normal,

except wherever a temporal derivative is computed, the temporal derivative at
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t = 0 is subtracted, i.e.

dq dq

= RHS — o (3.2)
Where boundary conditions are applied, additional temporal derivatives are
computed that must be treated in the same fashion. The result is that, as-
suming there is no change or perturbation to the flowfield, the initial condition
can be maintained as a reference state, upon which the behaviour of small per-
turbations can be investigated.

The initial condition is specified as the time-averaged flowfield of the two-
dimensional simulation at Re, = 10*, M = 0.2, a = 0° with the symmetry
condition applied in the wake, illustrated in figure 3.10 (bottom-right). A region
of 3 x 3 grid-points about the location (z,y) = (1.00,0.05), corresponding to a
location within the upper surface boundary layer at the trailing edge, is subject
to an increment of 1x107% in u, v and p. This effectively introduces a disturbance
with a sharp-edged spatial distribution, which will excite a range of frequencies
at low amplitude. No further perturbations are introduced, and the response
of the flow is monitored as the simulation is progressed. If the flow were only
convectively unstable, the initial perturbation would be expected to convect
downstream growing in amplitude, ultimately leaving the flow over the airfoil
unperturbed. If the low were absolutely unstable, the initial perturbation would
be expected to grow exponentially in time at some location until saturation or
the onset of some secondary behaviour, ultimately affecting the entire flow-field.

The response of the flowfield is monitored in two ways; by recording the time-
dependent pressure at several x-locations within the wake, and by analysing
contour plots of flowfield quantities. If post-processed quantities were plotted
for the instantaneous flowfield, the perturbation and its subsequent response
would not be visible. This is because variations in the mean flowfield are much
larger in magnitude than those caused by the perturbation. In order to better
visualise perturbations to the mean field, iso-contours of the perturbation z-
vorticity rate are plotted, defined as w, = w,y—y, — ws4—g, Where w,;—y, is the
z-vorticity at time ¢; and w,,—( is the z-vorticity at time ¢t = 0.

Figure 3.12 shows time series of dp/dt taken at several streamwise locations
within the airfoil wake. Time ¢ = 0 is the initialisation time, at which the
perturbation was introduced. Signals are plotted at an arbitrary amplitude,
however all signals were scaled by the same factor. Considering first the inter-
val 0 < t < 2 (figure 3.12, left), the pressure is observed almost immediately
to begin to fluctuate at 0.5 chords downstream of the trailing edge. The am-

plitude of unsteadiness increases at 1 chord downstream of the trailing edge,
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however the onset of unsteadiness occurs at a later time. When plotted for the
interval 0 < t < 16 (figure 3.12, right) the pressure fluctuations are observed
to increase in amplitude temporally, in an exponential fashion, at all locations
downstream of the trailing edge. The amplitude of pressure fluctuations also
increases with distance from the trailing edge. No unsteadiness is observed in
the boundary layer directly at the trailing edge when plotted at these levels.
The behaviour observed in figure 3.12 (left) appears strikingly similar to that
observed in figure 3.9, where the onset of unsteadiness from the symmetrised
wake was observed. Iso-contours of w! (figure 3.13) reveal that these fluctua-
tions are associated with a vorticity perturbation that is oscillatory in x and
symmetric about the wake centre-line. The associated u-velocity perturbation
would be antisymmetric about the wake centre-line.

This behaviour, in conjunction with the results of both section 3.4.1 and sec-
tion 3.4.2, confirms that a region of absolute instability is present in the region
0 — 0.5 chords downstream of the trailing edge. It appears that unsteadiness
is generated in the region 0 — 0.5 chords downstream of the trailing edge via
absolute instability. Downstream of this location the perturbations are subse-
quently convectively amplified, ultimately leading to the vortex shedding be-
haviour observed. Furthermore, the method of performing forced Navier—Stokes
simulations to determine the flowfield response to small perturbations has been

proven capable of detecting absolute instability.

4 ——————————————————— G—_——

t

dp
>
indicated on the vertical axis, for time 0 < ¢ < 2 (left) and 0 < ¢ < 16 (right).

Figure 3.12: Time histories of with streamwise distance from the airfoil trailing edge

3.5 Summary

At Re. = 10* the flow is dominated by vortex shedding from an unstable wake.
An investigation into the effect of computational domain size suggests that a

domain radius of 5.3 airfoil chords is sufficient to capture the potential flow
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Figure 3.13: Iso-contours of w/ for the simulation with forcing terms at M = 0.2, using 20
levels over the range +2 x 1078,

about the airfoil. By forming a Strouhal number St, based on trailing edge
displacement thickness, frequencies have been found to collapse.

The nature of the wake unsteadiness has been investigated via both simulation
and stability analysis. Unsteadiness appears to develop naturally as the result
of a combination of absolutely and convectively unstable regions in the airfoil
wake; there is no evidence that boundary reflections are responsible for the
unsteadiness observed. The numerical method has proven capable of capturing
weakly unstable flows that may not be evident in simulations where artificial
viscosity or damping is introduced. Both the cusp-map method and numerical
simulations with forcing have proven to be able to detect regions of absolute

instability.
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Chapter 4

Two dimensional simulations at
Reynolds number 50,000

4.1 Introduction

Two-dimensional simulations have been performed of the flow around an airfoil
at Re. = 5 x 10*. At zero degrees incidence and low Mach number the flow is
found to be qualitatively similar to that observed at Re, = 10*, however as the
Mach number is increased a large-amplitude, low-frequency oscillation develops.

A grid study is performed at incidence av = 5° in order to ensure that the
flow is fully resolved. When the grid resolution is considered in terms of wall
units, using skin-friction predictions generated by XFoil (Drela & Giles, 1987),
the final grid appears suitable for use with three-dimensional simulations with
turbulence. A series of two-dimensional simulations at incidences over the range
a = 3° — 8.5° are then performed, with grids generated on similar principles to
that for the o = 5° case. The effect of incidence upon both the physics of the

flow around the airfoil and the aerodynamic performance of the airfoil is studied.

4.2 Simulations at zero degrees incidence

4.2.1 Grid parameters

Two-dimensional simulations at incidence a = 0° were performed upon a grid
generated by increasing the resolution of grid D2 specified in section 4.3.2, de-
noted grid GO. Important parameters for grid GO are given in table 4.1. Sim-
ulations at zero degrees incidence were run at five Mach numbers in the range
M=04-0.28.

1See also Jones et al. (2006)
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Ne 2001

N¢ airfoil 541
N¢ wake 741
N, 430
Niotal 305879
Wake length - W 5
Radius - R 5.3
Buffer length 9,465
Buffer points 31

Total domain length 12.2
Total domain height 10.6

Table 4.1: Grid parameters for grid GO.

4.2.2 Time dependent behaviour

At zero degrees incidence and Re. = 5 x 10* the lift-coefficient oscillates about
zero at all Mach numbers in the range 0.4 < M < 0.8. At M = 0.4, the lift-
coefficient is initially subject to a large amplitude fluctuation (figure 4.1, left),
presumably due to transient effects of the initialisation, that subsequently decays
to zero leaving only a higher frequency mode present (figure 4.1 left, insert). In
contrast to the Re. = 10% cases, in the range 0.5 < M < 0.8 a secondary
low frequency, high amplitude mode is present (figure 4.1, right). Vorticity
contours at M = 0.4 (figure 4.2) indicate that the higher frequency mode of
oscillation is caused by the presence of an unsteady wake with vortex shedding
in a similar fashion to the Re, = 10* cases. When the shedding frequency is
non-dimensionalised in the same manner as for the Re, = 10* cases, the Strouhal
number is found to collapse to a similar value of approximately St = 0.22. In
contrast, the low frequency mode of oscillation is up to an order of magnitude
larger in amplitude than oscillations associated with vortex shedding in the wake,
and two orders of magnitude lower in frequency. Associated Strouhal numbers
are in the range 0.004 - 0.008 based on the definition given in equation 3.1.

For all cases at zero-degrees incidence, upstream propagating pressure waves
are generated at the airfoil trailing edge (figure 4.3). At M = 0.4 the trailing
edge noise appears periodic and symmetric, whereas at M = 0.8 neither the
trailing edge noise nor the vortex shedding in the wake are periodic. Acoustic
scattering was also observed at Re. = 10%, albeit at very low amplitude. The
increased amplitude at Re, = 5 x 10* can be attributed to closer proximity of

the wake unsteadiness to the airfoil trailing edge.
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Figure 4.1: Time dependent Cy, at Re. = 5 x 10*, a = 0°, showing the high frequency mode
at M = 0.4 (left), and both high and low frequency response for M = 0.5 — 0.8 (right), where
the Mach number increases with amplitude.
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Figure 4.2: Iso-contours of z-vorticity using 20 levels over the range 50, at Re. = 5 x 10%,
M =0.4, a=0°.

4.2.3 Analysis of the low frequency (flapping) oscillation

Analysis of iso-contours of |V p| and u-velocity (figure 4.4) shows that the low fre-
quency mode of oscillation is caused by asymmetric boundary layer separation,
whereby the boundary layer over one airfoil surface appears stalled, whilst the
boundary layer on the opposing surface is fully attached. The airfoil boundary
layers periodically switch between stalled and unstalled states, and the behav-
iour is accompanied by local acceleration and deceleration of the flow. By cross
referencing animated images with instantaneous images taken at known points
of the low frequency cycle, a more detailed description is possible. Boundary
layer behaviour and local velocity at key points of the low frequency cycle are
shown in figure 4.4a-4.4d for the M = 0.8 case. Although some numerical oscil-
lation is present due to the high intensity pressure waves, the strong separation
at this Mach number makes the flapping easier to observe than at lower Mach
numbers. A summary of behaviour throughout the cycle follows.

For the purposes of this study, the start of the low frequency cycle will be
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Figure 4.3: Iso-contours V.U using 20 levels over the range +0.05, at Re. = 5 x 10%, M = 0.4
and a = 0°.

defined as the point where the lift-coefficient is at a maximum. At this point
in the cycle, with phase angle defined as ¢ = 0°, the velocity over the upper
surface is at a maximum, and the boundary layer separates at a location close
to the trailing edge. As the cycle progresses, the separation point slowly moves
upstream. Meanwhile the boundary layer on the lower surface is separated
but slowly reattaching. At around ¢ = 90° the upper boundary layer is fully
separated. Vortical structures are formed within the boundary layer and convect
downstream, generating upstream travelling pressure waves as they pass over
the trailing edge. At this point the lower boundary layer is fully attached.
The velocity over the upper surface is decreasing, and the velocity over the
lower surface is increasing, thus ¢ = 90° marks a median (i.e. approximately
zero) point in the lift-coefficient cycle, with the lift-coefficient decreasing. The
structures formed in the upper boundary layer ultimately convect downstream,
and no more structures are produced until the next cycle. After structures in
the upper boundary layer have convected downstream, the upper boundary layer
slowly begins to reattach. At ¢ = 180° the velocity over the lower surface is at
a maximum, and the lower boundary layer slowly begins to separate, starting
at the trailing edge in the same manner as for the upper surface. The lift-
coefficient is now at a minimum. Behaviour is the same as at ¢ = 0°, but
mirrored across the airfoil chord. At around ¢ = 270° the lower boundary layer is
fully separated. Structures form in the lower surface boundary layer and convect

downstream, as they did for the upper boundary layer at ¢ = 90°. The velocity
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over the lower surface decreases, and velocity over the upper surface increases.
The lift-coefficient is at a median point on the cycle (approximately zero) and
is increasing. The structures formed in the lower boundary layer ultimately
convect downstream, and the separated lower boundary layer starts to slowly
reattach. The upper boundary layer is fully attached. Essentially the behaviour
is the same as at ¢ = 90°, but mirrored across the airfoil chord. Acoustic waves
are produced at the airfoil trailing edge at all stages of the flapping cycle. In
particular, when the separated boundary layer becomes unstable and structures
are generated, strong acoustic waves are observed propagating away from the
opposing airfoil surface.

Variation of flapping frequency and RMS amplitude of lift-coefficient with
Mach number, for cases at Re. = 5 x 10*, o = 0°, are shown in figure 4.5.
The amplitude of the low frequency oscillation rises dramatically with Mach
number after the initial onset at M = 0.5, suggesting that the mode only occurs
above a critical Mach number, and the amplitude saturates for M > 0.7. The
frequency of the oscillation increases with increasing Mach number, and hence
cannot be collapsed by forming a Strouhal number based on some measure of
boundary layer thickness, since both boundary layer thickness and the frequency
of oscillation increase with Mach number.

In order to further explore the onset of the low frequency mode, several
simulations were run across the range Re. = 10* — 5 x 10* and Mach number
range 0.4-0.8 in steps of 10* for Reynolds number and 0.1 for Mach number.
Figure 4.6 summarises the results of these simulations, illustrating that for a
constant Reynolds number the low frequency oscillation only occurs above a
certain Mach number, and vice versa. In the present study, the low frequency
oscillation was only found at Re, = 2 x 10* and above, whereas Bouhadji &
Braza (2003) reported similar behaviour at Re. = 10*. Although the onset of
the low frequency mode is Mach number dependent, it appears to be distinct
from transonic buffet, where the presence of an oscillating attached shockwave
(Lee, 1990) leads to low frequency oscillation of the lift-coefficient. In contrast,
the low frequency mode observed here is present at subsonic Mach numbers
where no local supersonic flow is present. The observation of acoustic waves at
the trailing edge suggests that an acoustic feedback mechanism may be present,
however animations at M = 0.6 and 0.8 display a marked difference in upstream
wave velocities but only minimal variation in the period of the low frequency
cycle. This appears to discount a simple (feedback) model based on downstream
convection of vortices followed upstream acoustic waves, which would predict

an increase in period with increasing Mach number. Instead, it is suggested
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Figure 4.4: Iso-contours of |Vp| (left) using six levels in the range 3.5-20 and iso-contours of
u-velocity (right) with levels marked, at Re, = 5 x 10*, M = 0.8, a = 0°. Four phases (¢) of
the low-frequency oscillation are shown.
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Figure 4.5: Frequency (left) and RMS (right) of Cp, vs. Mach number at Re. = 5 x 10* and
a=0°.
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Figure 4.6: Occurrence of low frequency (flapping) mode with Reynolds number and Mach
number. Points marked ¢ indicate cases where flapping was not observed, points marked
o indicate cases where flapping was observed. The dashed line indicates a possible onset
behaviour.

that a more complex viscous-acoustic mechanism is responsible for the observed
behaviour.

4.3 Simulations at incidence

Preliminary studies of the flow around a NACA-0012 airfoil at Re, = 5 x 104
using XFoil (Drela & Giles, 1987) suggest that separated regions of flow are
likely to occur over the upper airfoil surface. Simulations at these conditions
represent an opportunity to capture numerically a laminar separation bubble
on an airfoil at flight conditions similar to those of micro-air-vehicles. Although
the goal is ultimately to perform three-dimensional simulations, two-dimensional

simulations provide insight into mechanisms and behaviour which may persist or
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Grid G1 G2 G3
R 53 53 13
w 5 5 5
Ne 2001 2570 2570
N, 440 440 692

Ny 541 1066 1066

Nyake 1462 1506 1506

Table 4.2: Domain and grid dimensions for grid resolution investigation at Re. = 5 x 10%,
o =5°.

otherwise be relevant to the three-dimensional simulation case. It is also sensible
to use a fully developed two-dimensional flowfield as the initial condition for a
three-dimensional simulation, in order to reduce the time taken to achieve a

statistically stationary state.

4.3.1 Grid resolution at o = 5°

Resolution requirements for direct simulation of the flow around an airfoil at
incidence are complex, since a variety of fluid phenomena are present and must
be resolved. The iterative method of grid production (outlined in section 2.2.16)
is particularly useful for the current case, since a priori grid requirements are
not known for all regions. The iterative grid production process has been per-
formed for the case at Re. = 5 x 10*, M = 0.4, and o = 5°, in two dimensions.
Simulations were run on three grids in total, and sufficient data was recorded to
compare the performance of each grid. The first grid, G1, was generated by esti-
mating resolution requirements based on simulations at zero degrees incidence.
Two further grids, denoted G2 and G3 were subsequently produced in order to
improve the resolution of the simulation. Details of all grids are given in table
4.2.

Results from the two-dimensional simulation at Re, = 5 x 10*, M = 0.4 and
a = 5° are presented in full in section 4.4. Essentially, the upper airfoil boundary
layer is observed to separate near the leading edge of the airfoil and the separated
shear layer subsequently rolls-up to form vortices (figure 4.9¢). The system of
laminar separation, shear-layer roll-up and periodic vortex shedding gives rise
to a characteristic ¢y distribution and causes C7, to oscillate.

Time-averaged skin-friction and lift-coefficients are compared for grids G1-G3
in figure 4.7. When run using grid G1, C, oscillates in an almost perfectly peri-
odic fashion. The time-averaged c; distribution exhibits separation, secondary
separation (the small region of positive ¢; within the larger separated region)
and reattachment. Downstream of reattachment a wave-like ¢ distribution is

observed. This appears to be a characteristic feature of two-dimensional sepa-

72



t X

Figure 4.7: Time dependent Cp, (left) and time-averaged c; (right) for grids G1 (---), G2
(——) and G3 (—).

ration bubbles with vortex shedding, and is discussed further in section 4.4.2.
Some evidence of numerical oscillation was observed for grid G1 when iso-
contours of vorticity were plotted at sensitive levels, hence grid G2 was generated
with an increased streamwise grid resolution over the airfoil surface. When the
simulation was continued on grid G2, the mean lift-coefficient increased, and the
time dependent behaviour became slightly less regular. Numerical oscillations
could no longer be observed in hydrodynamic properties. The fundamental fre-
quency of the vortex shedding remained unchanged, however the reattachment
point, and hence by inference the vortex shedding location, moved upstream
slightly. This alters the wave-like ¢y distribution downstream of reattachment.
Grid G3 was generated with increased wall-normal resolution and a larger do-
main radius compared to grid G2. Only small differences are observed in C'y, and
¢r between grids G2 and G3. The behaviour of ¢; in the region of secondary sep-
aration changes very slightly, however elsewhere the ¢y distributions are nearly
identical. It appears that grid G2 adequately captures the vortex shedding
behaviour observed in two-dimensions, with no evidence of under-resolution,
however grid G3 will be more suited to three-dimensional simulations, since the
increased wall normal resolution is more appropriate for resolving turbulence.
Estimates of skin-friction using XFoil (Drela & Giles, 1987), with Re. = 5 x 10%,
M = 0., and a = 5°, suggest the maximum ¢y in the turbulent region will be
¢f = 525 x 107 at & = 0.6. The resultant resolution in wall-units for this
region for grid G3 would then be z* = 2.6, and the number of grid-points in
the region y™ < 10 would be 11, comparing favourably with the well resolved

plane-channel flow in Sandham et al. (2002).
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Figure 4.8: Azimuthal variation of p/p, over the range 0.99 to 1.005, at two chords (left) and
three chords (right) radius from the airfoil trailing edge, for grids G2 (——) and G3 (—).

4.3.2 Domain size

The effect of domain size upon the potential flow about the airfoil may be
investigated by considering simulations run using grids G2 and G3 (defined in
section 4.3.1); grid G2 is of radius R = 5.3, whereas grid G3 is of radius R = 7.3.
The azimuthal variation of p/p.., where p, is the free-stream pressure, is plotted
in figure 4.8 for both grids, at a radius of two chords (left) and three chords
(right) from the airfoil trailing edge.

At around 0° there is a difference of approximately p/ps = 1.5x 1072 between
the two grids, presumably caused by differences in resolution in the n direction
in the wake region, however this is the only significant difference observed. The
azimuthal pressure distribution in the potential flow region appears remarkably
similar for both cases, and at three chords radius the difference between grids in
this region is significantly less than p/ps, = 1 x 1073, If the radius of the domain
were increased beyond seven chords, further changes would be even smaller in
amplitude. It appears then that a domain radius of 5.3 airfoil chords adequately
captures the potential flow about the airfoil, and hence a domain radius of 7.3
chords is more than adequate. The characteristics based boundary conditions
appear sufficiently effective that a comparatively modest domain size is able to
capture the potential flow.

In light of grid resolution and domain size studies, all two-dimensional simu-
lations at o = 5° were performed on grid G3. For reference purposes important
parameters for grid G3 are given in table 4.3, and grid resolution at specified

control points is given in table 4.4. A series of grids at other non-zero inci-
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Ne 2570

N airfoil 1066

N¢ wake 753

N, 692

Niotal 1778440

Wake length - W b)
Radius - R 7.3
Buffer length 0.6
Buffer points 31

Total domain length 12.3
Total domain height 14.6

Table 4.3: Grid parameters for grid G3.

A An
1x107% 25x107*%
1x107% 38x10*
1.5x1072 1x1073
02 15x1072 2x1073
1 15x1072 8x1073
1.5 31x1072 5x1072

x
Stagnation point 0
Trailing edge 1
Exit boundary 6
6

6

6

o O Ol

Exit boundary
Exit boundary
Exit/free stream boundary

Table 4.4: Grid resolution at selected control points for grid G3.

dences were generated based on the requirements for the a = 5° case, using
similar numbers of grid points and similar resolution. These grids were used for

two-dimensional simulations only, and will not be discussed in detail.

4.4 Two-dimensional simulations at incidence, for Re. =
5x 104 M =04

Having generated grids with the appropriate resolution, a series of two-dimensional
simulations at incidence a = 3°,5°,7° and 8.5° were conducted. All simulations
were Tun at Re, = 5 x 10*, M = 0.4, with time-step At = 1.4 x 107%, and
statistics were taken over a minimum of 40 non-dimensional time-units after

achieving a statistically stationary flow.

4.4.1 Time-dependent behaviour

Iso-contours of vorticity illustrate the flow behaviour in the vicinity of the airfoil
for all cases, in figure 4.9. At a = 0° the flow over the airfoil is steady. The
boundary layer separates over the aft section of the airfoil, and the wake rolls-up
into von-Karman-type vortex shedding immediately downstream of the trailing-
edge. As the airfoil incidence is increased, the separation point on the upper

airfoil surface moves upstream. By a = 3°, vortex shedding from the separated
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shear layer over the upper surface is observed, as opposed to vortex shedding
from an unsteady wake, and the same-sign vortex shedding from the separated
shear layer occurs at approximately half the frequency of the antisymmetric wake
shedding. Both the separation point and the onset of vortex-shedding continue
to move further upstream with increasing incidence.

The time-dependent lift-coefficient oscillates due to the vortex shedding be-
haviour. For cases at 0° < a < 5° the lift-coefficient oscillates in a periodic
fashion, with a clear dominant frequency (figure 4.10). Above o = 5°, how-
ever, the time-dependent lift-coefficient oscillates in a more irregular fashion,
with a more complex frequency content. Plotting the direct Fourier transform
of the lift-coefficient for v = 3° and o = 7° confirms that this is the case (figure
4.11). The direct Fourier transform of the lift-coefficient at o = 3° (figure 4.11,
left) exhibits a clear peak, that of the dominant shedding frequency (f = 2.27),
and several lower amplitude peaks associated with higher-harmonics. At a = 7°,
however, the direct Fourier transform of the lift-coefficient exhibits a much more
broadband spectrum (figure 4.11, right). Hence it appears that at some value
of o in the range 5° < a < 6° the vortex shedding behaviour transitions from
being dominated by a single frequency, to a more broadband behaviour. Hoarau,
Braza, Ventikos, Faghani & Tzabiras (2003a) observed a similar transition to a
more complex shedding behaviour, and in the case of Hoarau et al. the increased
complexity was due to the onset of a Kelvin-Helmholtz instability in the free-
shear layer. Were a Kelvin-Helmholtz instability present one could reasonably
expect to observe small scale vortices to be generated within the shear layer, as
in the study of Hoarau et al., however no such fundamental change in behaviour
is observed here. In the current case the change in behaviour appears to be
associated with increased complexity of the vortex dynamics present at higher
incidence (for example, by a mechanism similar to the ‘period doubling’ also
observed by Hoarau et al. (2003a)). The dominant vortex shedding frequency
appears to increase almost linearly from a = 3° to a = 5° before broadband be-
haviour takes precedence at a > 6° (figure 4.12, left). No real conclusions can be
drawn on the dependency of f upon « however, since relatively few data points
are available. The RMS lift-coefficient varies little over the range @ = 4° to
a = 5°, but once broadband behaviour occurs at a = 6° the RMS lift-coefficient
increases dramatically (figure 4.12; right). The RMS lift-coefficient for cases
above o = 5° is approximately three times larger than at o = 5° and below.

Acoustic waves are generated by acoustic scattering as vortices convect over
the trailing edge (Ffowcs Williams & Hall, 1970), and the trailing edge noise

undergoes a similar behavioral change to the vortex shedding for o > 5°. For
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Figure 4.9: Iso-contours of vorticity, using 20 levels over the range +150, at Re. = 5 x 104,
M = 0.4, displaying four angles of attack as labeled.
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Figure 4.10: Time-dependent Cp for simulations at Re. = 5 x 10*, M = 0.4, displaying
incidence a = 7°, a = 5°, @ = 3° and a = 0°, moving from top-to-bottom.
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Figure 4.11: Direct Fourier transform of the time-dependent lift-coefficient at Re. = 5 x 10%,
M = 0.4, for incidence oo = 3° (left) and o = 7° (right)
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Figure 4.12: Variation with incidence of the dominant frequency observed in Cy, (left), and
variation of the RMS C, with incidence (right), at Re. = 5 x 104, M = 0.4. Points marked
o on the left hand image indicate cases with a clear dominant frequency, points marked ©
indicate cases with a more broadband frequency composition.
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a < 5°, where the vortex shedding is periodic, trailing edge noise is observed to
be tonal in nature, whereas for v > 5°, where the vortex shedding is irregular,
trailing edge noise is observed to be more broadband. This is illustrated by
plotting iso-contours of V.U for v = 5° (figure 4.13, left) and for o = 7° (figure
4.13, right). At o = 5° the trailing edge noise appears symmetric and near-
periodic. However, at a = 7°, the trailing edge noise appears asymmetric and
non-periodic; the amplitude of acoustic waves is greater above the airfoil, and
the frequency content appears more complex. There also appears to be more
than one acoustic source present on the upper airfoil surface at a = 7°. Acoustic
waves appear well-resolved to a radius of at least three airfoil chords from the
trailing edge for these grids. Further acoustic analysis of simulations presented

in this chapter is presented in Sandberg, Jones, Sandham & Joseph (2007)

Figure 4.13: Iso-contours of V.U over the range +0.1 for a = 5° (left), and a = 7° (right), at
Re, =5 x 104, M = 0.4.

4.4.2 Statistical analysis

The time-averaged lift-coefficient increases with incidence (figure 4.14, left), as
expected. When plotting the available results it does not appear possible to
link all data points by a straight line intersecting (Cr,a) = (0,0). It is likely
that the formation of a separation bubble at modest incidence increases the lift-
coefficient more rapidly in the range 0° < o < 3° than in the range 4° < a < 7°,
where a separation bubble is present for all values of a. The time-averaged
friction drag coefficient, Cpp (figure 4.14, right), varies little with incidence.
The time-averaged pressure drag coefficient (Cpp), however, and hence the total
drag-coefficient, increase modestly until @ = 5° and then more rapidly for o >
5°. This change in dCp/da appears to coincide with the behavioural change

observed in vortex shedding, discussed in section 4.4.1.
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Figure 4.14: Variation of time-averaged lift-coefficient (left) and drag coefficients (right) with
incidence at Re. = 5 x 10*, M = 0.4. Right hand image shows skin-friction drag coefficient
(A -+ A), pressure drag coefficient (o — —o), and total drag coefficient (0—o).

At a = 0° the time-averaged skin-friction is symmetric with both boundary
layers separating over the aft section of the airfoil. For all cases at o > 3° the
time-averaged skin-friction is characteristic of the presence of a separation bub-
ble, with an extended region of negative C_f present on the upper airfoil surface.
A region of positive C; is observed within all separation bubbles, associated
with the so-called secondary separation which occurs upstream of the reverse
flow vortex, itself located just upstream of the reattachment point. The case at
a = 5° exhibits a wave-like distribution of skin-friction coefficient over the upper
airfoil surface, in the region 0.6 < z < 1. The behaviour in this region does not
change when statistics are taken over a longer period of time (At = 60), and
similar wave-like behaviour may also be observed in other fluid properties, such
as z-vorticity. Alam & Sandham (2000) observed similar behaviour for a two-
dimensional separation bubble induced on a flat surface, which also exhibited
vortex shedding. This suggests that this behaviour is a characteristic of two-
dimensional separation bubbles with regular vortex shedding, and is not related
to the presence of a trailing edge. It should be noted that the wavelength of the
vortex shedding is of similar order of magnitude to that observed in the skin-
friction distribution. Above o = 5° a wave-like pattern cannot be observed in
flowfield properties, presumably because of the more complex frequency content
of vortex shedding. Below o = 5° there is only a comparatively short distance
between the reattachment point and airfoil trailing edge, hence the vortex shed-
ding wavelength is too long to produce noticeable wave-like behaviour.

The movement of the separation and reattachment points with incidence,
and the variation of the total separation bubble length, is plotted in figure
4.16. Both the separation point and reattachment point move upstream with

increasing incidence. The reattachment point moves upstream at a greater rate
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Figure 4.15: Time-averaged cy distribution at Re, = 5 x 104, M = 0.4, for several angles of
attack, as labeled.

than the separation point however, and hence the bubble length decreases with
increasing incidence. Thus the two-dimensional case does not exhibit the char-
acteristics of thin-airfoil stall, where the reattachment point moves downstream
and the separation bubble increases in length with increasing incidence (Mc-
Cullough & Gault, 1951). Characteristics of trailing-edge stall or leading-edge
stall are not observed either, however this may be because the airfoil incidence
is insufficient to observed such behaviour. Time-averaged pressure-coefficient
distributions illustrate the length and magnitude of the pressure-plateau caused
by the separation bubble (figure 4.17). As expected, the length and magnitude
of the pressure-plateau increase with incidence. A local maxima can clearly be
observed near the end of the pressure plateau for all separation bubbles. This
is a two-dimensional phenomenon which has been observed in flat plate simula-
tions (e.g. see Alam & Sandham, 2000; Pauley et al., 1990), and is not expected
to persist in cases with turbulence.

Time-averaged momentum and displacement thickness distributions are given
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Figure 4.16: Variation of time-averaged separation point (¢—), reattachment point (o — —o),
and total bubble length (A ---A) with incidence, at Re, = 5 x 10%, M = 0.4.
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Figure 4.17: Time-averaged Cp distribution at Re. = 5 x 10*, M = 0.4, displaying four angles
of attack, as labeled.
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Figure 4.18: Displacement thickness distribution (left) and momentum thickness distribution
(right) for the case at o = 3° (——) and the case at « = 7° (—), at Re, = 5 x 10*, M = 0.4.

in figure 4.18 for the case at a = 3° and at o = 7°. Displacement thickness
increases rapidly across the separated region, until reaching a local maxima.
Upon reaching this local maxima, the displacement thickness decreases slightly
before increasing steadily once more until the trailing edge is reached. Similar
behaviour is observed for all the two-dimensional separation bubbles, however
the growth rate of * across the bubble increases with incidence. The momentum
thickness increases only slowly, and does not vary significantly with incidence,
across the separated region. At the onset of vortex shedding the momentum
thickness rapidly increases by a factor of four or more over a comparatively
short distance, before increasing steadily until the trailing edge is reached.

The variation with « of the percentage reverse-flow observed in the time-
averaged flowfield, normalized by the local boundary layer edge velocity, is plot-
ted in figure 4.19. The percentage reverse flow increases with incidence over the
range 4° < o < 7°, and appears to saturate for a > 7°. At a = 3° the percentage
reverse flow is greater than at o = 4°. The reason why is not clear, however for
the case at e = 3° the separation occurs due to a combination of surface curva-
ture and adverse pressure gradient, whereas for o > 5 separation occurs solely
under the influence of an adverse pressure gradient. This may potentially have
an influence on the boundary layer characteristics in this region. For all cases
at positive incidence, the percentage reverse flow present is greater than that
found necessary to sustain local absolute instability (20%), as determined by
Hammond & Redekopp (1998) and Rist & Maucher (2002) for analytic profiles.

4.5 Summary

At Re, = 5x10%, a = 0° a low frequency oscillation was observed in conjunction

with vortex shedding from an unstable wake. The low frequency (flapping)
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Figure 4.19: Variation of the maximum reverse flow observed in the time-averaged flowfield
with o, at Re, = 5 x 10*, M = 0.4.

oscillation was found to be associated with asymmetric boundary-layer stall
periodically switching airfoil surfaces, accompanied by periodically alternating
accelerating and decelerating flow. The onset of this low frequency mode has
been determined over the range Re. = 10 —5 x 10* and M = 0.2—0.8. The low
frequency oscillation is distinct from transonic buffet, and the period appears
unrelated to upstream acoustic wave velocities.

A grid resolution study was performed for the two-dimensional case at Re. =
5x 10%, M = 0.4 and o = 5°. Further grids were then produced for several val-
ues of positive incidence, with similar resolution, and used to perform a series
of two-dimensional simulations at incidence. Vortex shedding from an unsteady
separation bubble was observed for all cases, and time-averaged skin-friction and
pressure-coefficient distributions were characteristic of two-dimensional separa-
tion bubbles. The vortex shedding appears to undergo a change in behaviour
when the airfoil incidence is increased above o« = 5°. For o« < 5° the vortex shed-
ding appears regular and near-periodic, and lift-coefficient spectra exhibit clear
tones. For a > 5° the vortex shedding is irregular, and lift-coefficient spectra
exhibits broadband behaviour. Both the RMS lift-coefficient and dCp/da also
exhibit sudden changes at a = 5°. The onset of this behavioural change does
not appear to coincide with the occurrence of any fundamentally different phys-
ical behaviour, apart from the increased complexity of vortex dynamics present.
Trailing edge noise was observed for all cases, and found to be dominated by the
characteristics of the vortex shedding behaviour. Where the vortex shedding is
periodic, trailing edge noise is observed to be tonal in nature. Where the vortex
shedding is irregular, trailing edge noise is observed to be more broadband. Ad-
ditionally, acoustic radiation appeared to be produced not only at the trailing

edge, but also at a secondary source located above the airfoil.
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Chapter 5

The effect of boundary layer

forcing on three-dimensional

separation bubble behaviour!

5.1 Introduction

In this chapter the simulation at Re, = 5 x 10*, M = 0.4, a = 5° is extended
into three-dimensions; the intention is to capture a separation bubble exhibiting
laminar separation and turbulent reattachment on an airfoil at MAV flight condi-
tions, and to investigate the effect of low-amplitude boundary layer disturbances
upon bubble behaviour.

Initially, forcing is introduced in order to promote transition to turbulence.
After obtaining sufficient data from this forced case, the explicitly added dis-
turbances are removed and the simulation run further. Upon removal of dis-
turbances, the turbulence is observed to self-sustain, with increased turbulence
intensity in the reattachment region. A comparison of the forced and unforced
cases shows that forcing may improve aerodynamic performance whilst requiring

little energy input.

5.2 Extension to three dimensions

In chapter 4 section 4.3.1, grid G3 was found capable of resolving of resolving
the turbulent boundary layer at Re, = 5 x 10*, M = 0.4 and o = 5°, based
on ¢y predictions from XFoil (Drela & Giles, 1987) and comparison to Sandham
et al. (2002). The spanwise domain width was selected based upon criteria de-

termined from simulations of the flow over a backward facing step (Terzi, 2004).

ISee also Jones et al. (2007a,b)
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Simulation Azt Azt Ayt N, :yt <10
Case 3DF 3.36  6.49 1.0 9
Sandham et al. (2002) 15 7.5 - 10

Table 5.1: Grid resolution in wall units at the maximum ¢y location for case 3DF.

A domain width of at least 4 times the step height (corresponding approximately
to the reattachment length), is necessary to resolve fully the case of flow over
a backwards facing step. Making an analogy with the maximum bubble height
based on displacement thickness, 0*, a domain width L, = 0.2 was chosen, be-
ing 9.6 times the maximum bubble height of §* = 2.09 x 1072 and 7.2 times §*
at the trailing edge. The number of spanwise grid-points was chosen to be 96,
again based on the resolution requirements of turbulent plane channel flow and
¢y predictions from XFoil.

During initial stages of three-dimensional simulations, flowfield properties
were checked in order to confirm that all fluid structures appeared resolved. A
final confirmation of adequate spatial and temporal resolution is provided by a
posteriori statistical analysis of the DNS data. Grid resolution in wall-units,
taken at the maximum turbulent ¢; location observed over all simulations, was
found to differ slightly from XFoil predictions, but was still found to be well
resolved based on turbulent plane channel flow criteria. Resolution in wall units
for case 3DF (defined in section 5.5), taken at x = 0.612 where the maximum
¢y of 7.60 x 107 is observed, is given in table 5.1.

In order to confirm that turbulent behaviour is resolved over all time and
length scales, power spectra of turbulence kinetic energy, defined as K = %(W—i—
v'v' + w'w'), are computed. To incorporate a reasonable number of samples,
spanwise spectra are integrated over the finite wall-normal distance 1 < y* < 50
as well as time-averaged, using nine flowfields taken at intervals of ¢ = 0.7.
Figure 5.1 displays spanwise power spectra of K taken at three z-locations for
case 3DF (left) and case 3DU (right, defined in section 5.5). A roll off of order
10% is observed with increasing wavenumber, comparable with the well-resolved
turbulent boundary layer DNS performed by Spalart (1988) using a fully spectral
method. Temporal power spectra of K at specific locations (figure 5.2) are
computed using three segments and Hanning windowing (as detailed in section

2.3), and display a minimum roll-off of 10¢ with increasing frequency.
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Figure 5.1: Spanwise power spectra of K, integrated over the range 1 < y* < 50, taken for
case 3DF (left) and case 3DU (right) at z = 0.8 (=), © =0.9 (——), and x = 1.0 (— ).
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Figure 5.2: Temporal power spectra of K, taken at x = 0.9 at the airfoil mid-span for case
3DF (left), at y© = 12.3, y© = 51 and y™ = 313 moving from top-to-bottom, for and case
3DU (right) taken at y* = 54, y* = 13.2 and y* = 335 moving from top-to-bottom.

5.3 The effect of compressibility

A compressible code is employed in order to capture the acoustic response of
the airfoil. This means that at low Mach numbers, due to the increased veloc-
ity of acoustic waves, very small time-steps must be used in order to capture
their propagation. This leads to dramatically increased computational cost at
low Mach numbers, and is clearly undesirable. Conversely, it is also undesirable
to perform these simulations at Mach numbers where compressibility effects
are pronounced, since aircraft operating at low Reynolds numbers will oper-
ate at very low Mach numbers. Therefore a Mach number of 0.4 was selected
as a compromise between computational requirements and the desire to min-
imise compressibility effects. The magnitude of compressibility effects present
in the simulation can be quantified a posteriori by comparing plots of Favre
averaged quantities, which include density weighting, to corresponding plots of
Reynolds averaged quantities for the fully developed three-dimensional flow. A

full discussion of Favre averaged quantities can be found in Huang et al. (1995).
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Figure 5.3: Comparison of time-averaged boundary layer profiles at 2 = 0.7 (—), = 0.8
(==),2=0.9 (=), 2 =0.99 (- - -) with Favre-averaged boundary layer profiles at z = 0.7 (o),
z=0.8(A), z=10.9 (o), x = 0.7 (V) for case 3DF.

Essentially, f refers to the ensemble average of f, frefers to the Favre average
of f, and

==, (5.1)
D
ul = u; — ug, (5.2)
i, P
wiuf = il — uf uf + > (5.3)

Comparing Reynolds and Favre averaged boundary layer profiles (figure 5.3) and
stresses (figure 5.4) for simulation 3DF (defined in section 5.5) clearly illustrates
that Reynolds averaged statistics are almost identical to Favre averaged statistics
for the current case. This suggests that compressibility effects are small, and
that plotting Reynolds averaged statistics, i.e. with no density weighting, is
sufficient. Additionally, linear stability analysis using an incompressible solver

will incur minimal error due to compressibility effects.

5.4 Volume forcing

Volume forcing is applied to the x and y momentum equations in the three-
dimensional simulation using the method outlined in section 2.2.10. The goal is
to introduce three-dimensional disturbances that are amplified in the free-shear
layer and subsequently break down to turbulence. Forcing is centred on the
location x = 0.1, y = 0.129, corresponding to a point within the boundary layer
of the time-averaged solution, and is periodic in both time and span. The forcing
is varied smoothly from a maximum at the centre of the forcing location to zero

at radius 5 x 1073 from the forcing location. Frequencies were chosen based
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Figure 5.4: Comparison of Reynolds stresses with Favre-averaged stresses for case 3DF at
x = 0.7 (left) and 2 = 0.9 (right), showing w/v/ (—), vv' (=), ww’ (=), w'v" (---), u'u”

(0), V0" (&), w'w" (o), W (V).

w g
48.76  31.42
53.60 94.24
53.60 125.66

Table 5.2: Forcing parameters used for case 3DF.

on linear stability analysis of the time-averaged flowfield extracted from the
two-dimensional simulation (presented in section 7), selecting the most unstable
modes observed. Forcing was applied at several spanwise wavenumbers, with the
total amplitude 0.1% of the freestream velocity. Details of forcing parameters
are given in table 5.2, where w = 27 f, with f the frequency, and 3 the spanwise

wavenumber.

5.5 DNS of forced and unforced laminar separation bub-
bles

Results from three DNS will be discussed, all run at Re, = 5 x 10%, M = 0.4
and o = 5°, with time-step At = 1 x 10™%, defined as follows:

Case 2D: The precursory two-dimensional simulation that was run in or-
der to provide a suitable initial condition for the subsequent three-dimensional
simulation, presented in section 4.3.

Case 3DF: The two-dimensional flowfield was extruded in the z-direction.
Three-dimensionality was then introduced by explicitly adding disturbances via
volume forcing, the goal being to excite unstable oblique modes which would

subsequently be amplified within the separated shear layer, leading to transition
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to turbulence.

Case 3DU: After an appropriate amount of statistical data was captured
from case 3DF, the simulation was progressed further in time with the explicitly
added forcing removed. The dependency of bubble behaviour on the addition of

disturbances could then be investigated.

5.5.1 Time dependent behaviour

In two-dimensions, the time dependent lift coefficient (C) exhibits periodic
oscillatory behaviour with frequency f = 3.37 and (Cp)rms = 0.0172. As out-
lined in section 4.3.1, the cause of this behaviour can be attributed to periodic
vortex shedding from the separated shear-layer present on the upper airfoil sur-
face (figure 4.9¢, section 4.3.1). This behaviour appears qualitatively similar
to that observed by Marxen et al. (2003) and Pauley et al. (1990) in flat plate
simulations, and results in the observed periodic oscillation in C';, and C'p.

Figure 5.5 shows a time-history of C';, and Cp starting at time ¢ = 0, the start
of case 3DF and the point at which forcing was introduced. The time dependent
(', initially displays oscillatory behaviour associated with two-dimensional vor-
tex shedding. This oscillatory behaviour ceases by time ¢ = 2, whereupon C,
increases significantly. At this stage in the flow development, time series of pres-
sure taken within the separated shear layer (figure 5.6, = 0.4) clearly exhibit
periodic oscillation, associated with the strongly amplified instability waves in-
duced by the forcing. Downstream of the vortex shedding location, at x = 0.8,
the pressure signal is seemingly random, characteristic of turbulent fluctuations
passing the measurement location. Instantaneous iso-contours of vorticity taken
at the mid-span (figure 5.7, top) illustrate that the separated shear layer under-
goes transition to turbulence, and that a developing turbulent boundary layer
is now present over the aft section of the airfoil. Iso-surfaces of the secondary
invariant of the velocity gradient tensor, (), illustrate structures present in the
transition region (figure 5.8, left). Structures within the boundary layer are
observed to break down to smaller scales, however no large-scale A-vortices are
observed here. After a transient lasting until approximately t = 6.3, case 3DF
settles to a stationary flow and statistics were taken for 6.3 < t < 14. Figure
5.5 illustrates the data capture period for both 3D simulations.

Case 3DF was then run further in time but with the forcing removed, and
the resultant simulation denoted 3DU. Upon removing the forcing, the turbu-
lent behaviour can be monitored by observing pressure fluctuations within the
boundary layer (figure 5.6). It can be seen that downstream of the separa-

tion bubble, at z = 0.8, the pressure fluctuations do not decrease. In fact,
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Figure 5.5: Left figure shows time dependent lift-coefficient, the dotted line indicates the
time at which forcing was removed (¢ = 14) and hatched areas indicate periods over which
statistical data capture was undertaken. Right figure shows time dependent skin friction drag
coefficient (——), pressure drag coefficient (-—), and total drag coefficient (—).

45 T T : T T T

4.4 h

Figure 5.6: Time dependent pressure within the boundary layer at = 0.4 (lower curve) and
x = 0.8 (upper curve). The dotted line indicates the time at which forcing was removed.

the maximum amplitude of pressure fluctuations increases slightly. Oscillations
are still observed within the separated shear layer at x = 0.4, however the sig-
nal is lower in amplitude, more intermittent, and no longer dominated by the
forcing frequencies as observed in case 3DF. Statistics for case 3DU were taken
for 189 < t < 26.6. At the end of this period of time turbulent fluctuations
have still not decreased in amplitude, and the transition to turbulence appears
to self-sustain. Instantaneous iso-contours of vorticity taken at the mid-span
(figure 5.7, bottom) suggest that the height of the separated shear layer has
increased. Iso-surfaces of () illustrate structures present in the transition region
(figure 5.8, right). In contrast to the forced case, much larger structures may be
observed, with clear spanwise orientation. These structures persist downstream
of the transition region of case 3DF, until they break down into turbulence that
still has a strong spanwise coherence. Animations of flowfield properties suggest

that the transition process is highly erratic for case 3DU; for example, large
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Figure 5.7: Iso contours of vorticity using 10 levels over the range +200 for case 3DF at ¢t = 14
(top) and case 3DU at t = 23.8 (bottom), taken at mid-span.

Figure 5.8: Iso-surfaces of the second invariant of the velocity gradient tensor at ¢ = 500, for
case 3DF at ¢t = 14 (left) and case 3DU at ¢ = 23.1 (right).

scale fluctuations reminiscent of two-dimensional vortex shedding are observed

to occur occasionally, which rapidly break down to turbulence.

5.5.2 Statistical analysis

Time dependent lift and drag coefficients are given in figure 5.5, with the asso-
ciated time-averaged values in table 5.3. It can be seen that whilst removal of

forcing leads to a slight increase in C, and a very slight decrease in friction drag
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Case

Cr Cp Cpr Cpp

2D
3DF
3DU

0.499 0.0307 0.0087 0.0220
0.615 0.0294 0.0095 0.0199
0.621 0.0358 0.0081 0.0278

Table 5.3: Time-averaged lift and drag coeflicients for all cases.

(Cpr), pressure drag (Cpp) is subject to a significant increase. The net effect
is to decrease the lift-to-drag ratio from 21.1 to 17.2, hence it appears that the
presence of forcing significantly improves the aerodynamic performance of the
airfoil while requiring little energy input. By way of comparison, the synthetic
jets employed by You & Moin (2006) at Re. ~ 9 x 10° operate with peak velocity
of the order 2u..

The displacement thickness across the separated region of case 3DF (fig-
ure 5.9, left) appears similar to that of the two-dimensional case in the region
0 < x < 0.35. It appears that transition to turbulence has decreased the bubble
length without significantly modifying the displacement thickness in the laminar
region. In contrast, the displacement thickness over the separated region of the
unforced case appears markedly different to that of either the two-dimensional
case or case 3DF; 0* increases much more rapidly with increasing x and reaches
a greater peak value at the rear of the bubble. The momentum thickness distri-
bution (figure 5.9, right) appears similar over the separated region for all three
cases. Given that the momentum thickness stays the same in this region, whilst
displacement thickness rises, this indicates that the separated shear layer in case
3DU has effectively increased in wall-normal distance from the airfoil. In the
turbulent region, both ¢* and # are larger in magnitude for case 3DU than for
case 3DF. By the airfoil trailing edge 0* and 6 appear to be growing at a similar

rate in both three-dimensional cases.
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Figure 5.9: Time-averaged displacement thickness distribution (left) and time-averaged mo-
mentum thickness distribution (right), for the two-dimensional case (- - -), case 3DF (——) and
case 3DU (— — -).
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Dividing the distance from the separation point to the transition location
(defined as the location at which the turbulent kinetic energy, K, is a max-
imum), denoted Ljum, by the momentum thickness at separation, 0., gives
a non-dimensional measure of bubble length. Plotting this parameter versus
Rey
studies (figure 5.10). The first observation that can be made is that the separa-

., allows a general comparison of the bubbles formed to those of existing
tion bubbles studied here are formed at a comparatively low Reynolds number
compared to those of Gaster (1966), formed on a flat plate. The second ob-
servation is that the bubbles appear ‘long’. All of the bubbles observed by

Gaster below Rey = 250, which are those that are closest in size and Regy

sep sep

to the current study, were deemed to have burst. However, Weibust, Bertelrud
& Ridder (1987) performed a study of separation bubbles formed on an airfoil
at Re. = 0.9 — 2.2 x 10°. The bubbles observed by Weibust et al. were all be-
low Reg,,, = 200 and appear similar in length to Gaster’s ‘burst’ bubbles. The
bubbles observed by Weibust et al. appear to be the most similar in nature to
those observed in the current study. In fact, the proximity of the two studies is
perhaps surprising given that the chordwise Reynolds numbers differ by a factor
of 20. Hence although the bubbles observed here would be classically termed
‘long’ or ‘burst’, they appear of realistic dimension when compared to the study
of Weibust et al.. The separation bubble studied by Spalart & Strelets (2000)
appears of similar length and Reynolds number to the burst bubbles observed
by Gaster, whereas the separation bubbles studied by Alam & Sandham appear
quite ‘short’, shorter in fact than any of Gaster’s bubbles.

Time-averaged pressure coefficient (C,) distributions are plotted in figure
5.11, left. In all cases a pronounced pressure plateau is visible on the upper air-
foil surface, illustrating the presence of a separation bubble. Comparing cases
3DF and 3DU, it can be seen that the length of the pressure plateau has in-
creased significantly in the unforced case, whereas downstream of the bubble the
C, distributions are similar. The slight C', increase observed in case 3DU is due
to the increased length of the pressure plateau. The increase in C'pp for case
3DU can also be attributed to the increase in length of the pressure plateau,
since pressure recovery is delayed downstream of the point of maximum air-
foil thickness, in conjunction with the reduced suction peak observed near the
leading edge.

Time-averaged skin friction coefficient (¢7) distributions (figure 5.11, right)
give a quantitative measure of bubble length (table 5.4). Comparing the two-
dimensional simulation to case 3DF it can be seen that the bubble length has

decreased in the forced three-dimensional case. Due to transition to turbulence
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Figure 5.10: Ligm /0sep versus Rejqy, showing Gaster (1966) series I (#) and series IT (H),
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Figure 5.11: Time-averaged distributions of C}, (left) and c¢s (right) for the two-dimensional
case (---), case 3DF (——) and case 3DU (—).

and hence increased wall normal mixing, the reattachment point has moved up-
stream from z = 0.582 to x = 0.504. The separation point has also moved
upstream slightly in the forced three-dimensional case. Comparing the three-
dimensional cases, it can be seen that removing the forcing has increased the
bubble length significantly. The reattachment point has moved from =z = 0.504
in case 3DF to = 0.607 in case 3DU. The ¢; peak downstream of transition de-
creases upon removal of forcing, resulting in the slight decrease in C'pr observed
in case 3DU.

The time-dependent nature of separation can be investigated by computing
probability density functions (PDFs) of ¢;. Ordinarily PDF's are constructed us-
ing a fixed number of ‘bins’ over a constant c; range. In the present study, time-

dependent c¢; behaviour was observed to vary dramatically with 2-wise location,
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Case xsep Treatt

2D 0.151 0.582
3DF  0.133 0.504
3DU 0.099 0.607

Table 5.4: Time-averaged separation and reattachment points for all cases.

making this approach unsatisfactory. Instead, for each x-location the PDF was
constructed using 30 bins equally spaced over three standard-deviations about

the mean c¢;. PDF bounds are thus given by the equation

1
Gi(x,1) = T(x) — 3S(z) + ZWGS(I), for i= 1,30, (5.4)

where S(z) is the standard deviation of ¢y at location x. Using different upper
and lower bounds for each z-wise location means that the area under the PDF
varies with x. To avoid this, the normalised PDF (i.e. N/Njyq, where N is
the number of samples in a given bin and N, is the total number of samples
across all bins) is divided by the standard deviation, S(z). This ensures the area
under the PDF is constant.

Iso-contours of ¢y PDF's for a finite z-wise region on the upper airfoil surface
are plotted for each case. Figure 5.12 shows iso-contours of ¢y PDF's for the two-
dimensional case (top), case 3DF (bottom-left) and case 3DU (bottom-right).
The upper and lower PDF boundaries represent cy at three standard-deviations
from the mean, hence where the PDF is very narrow c; varies only little with
time, whereas where the PDF is wide ¢y varies strongly. Upstream of transition
cy displays little temporal variation in either case 3DF or case 3DU, confirming
that in this region the flow is effectively steady. Similarly, the two-dimensional
simulation exhibits little temporal variation upstream of the onset of vortex
shedding. Downstream of transition there is considerable variation in ¢, for all
cases, as illustrated in figure 5.12 by the comparatively large width of the PDF
distributions compared to ¢;. Although all cases exhibit large temporal variation
of ¢y over the aft section of the airfoil, the two-dimensional and three-dimensional
PDF distributions appear fundamentally different in this region. The three-
dimensional PDF distributions appear smooth and symmetric about the mean
c¢, whereas the two-dimensional PDF exhibits greater temporal variation overall
and in certain locations has more than one maximum. For all cases, downstream
of transition (or onset of vortex shedding in the two-dimensional case) there is
no location where ¢ is positive for 100% of the time, or negative for 100% of the
time. That is to say, even where the time-averaged cy suggests the boundary

layer is attached, there will be some degree of reverse flow observed in the
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Figure 5.12: Iso-contours of the normalised ¢y PDF, n/(S(z)n;), for the two-dimensional case
(top), case 3DF (bottom-left) and case 3DU (bottom-right), using 12 levels exponentially
distributed over the range 2 to 1000.

instantaneous flowfield, and vice versa for separated boundary layer regions.
Plotting PDFs at the mean reattachment point (figure 5.13, left), i.e. where
¢; = 0, illustrates the different distributions of the ¢y fluctuations. For both
three-dimensional cases the time dependent c; varies strongly over the range
+0.02 at this location, and for the two-dimensional case the variation is even
greater. To put this into context, the maximum time-averaged c; observed in the
attached turbulent boundary layer in any case was 7.6 x 1072 (figure 5.11). Hence
at the reattachment point, where the time-averaged cy is zero, the instantaneous
cy reaches more than double the maximum ¢; observed after reattachment.
Downstream of transition (e.g. figure 5.13, right) the shape of the PDF dis-
tribution appears similar for both case 3DF and case 3DU; a symmetric distrib-
ution about the mean cy. The PDF distribution for the two-dimensional case is
markedly different at this location however, consisting of a skewed distribution
exhibiting two peaks at positive cy, and a plateau extending to another peak at
¢y = —0.02. For the three-dimensional cases the c¢; PDF downstream of tran-
sition can be approximated by two parameters, ¢;(z) and S(z), with minimal
loss of information. The two-dimensional simulation appears to exhibit funda-
mentally different behaviour however, and cannot be modelled in this fashion.
Spanwise coherence can be determined by computing two-point spanwise cor-

relations of surface pressure, defined as

97



1y ; T T 40

30+ = 30

10

0.02

Figure 5.13: Probability density functions of ¢y taken at reattachment (left), and at = = 0.85
(right) for the two-dimensional case (---), case 3DF (——) and case 3DU (—).

Sz

Ciizy = E7 (5.5)
where S,,,, is the covariance of surface pressure for z; and 29, and o, is the
standard deviation of surface pressure at z,. Two-point spanwise correlations of
surface pressure taken at several xz-locations for case 3DF are displayed in figure
5.14 (left). For z < 0.2, C,,., is close to 1 across the entire span, hence there is
strong positive spanwise correlation. The strong spanwise correlation suggests
that boundary layer fluctuations are primarily two-dimensional in this region.
By x = 0.4 there is strong negative correlation, with C,,,, ~ —0.75. For case
3DF the spanwise wavenumber = 27/ L, was forced at double the amplitude of
higher wavenumber modes. The strong negative correlation observed at x = 0.4
can be attributed to the strong amplification within the separated shear layer of
perturbations with wavenumber § = 27 /L, introduced by the volume forcing.
Downstream of x = 0.4, C,,, decreases in amplitude until by x = 0.7 there is
minimal correlation. This would appear to justify the spanwise domain width
of z = 0.2 as being sufficiently large.

Case 3DU (figure 5.14, right) exhibits very different behaviour. For z < 0.3
the surface pressure appears perfectly correlated. In the region 0.3 < z < 0.5
surface pressure becomes slightly less correlated, however unlike case 3DF no
negative correlation is observed. This appears to confirm that the negative cor-
relation observed in case 3DF is caused by forcing the boundary layer. Down-

stream of transition surface pressure becomes less correlated, but C, ., only de-

122
creases to around 0.3. Thus case 3DF exhibits significant correlation in surface
pressure downstream of transition. However, referring to instantaneous plots of
Q@ (figure 5.8), in case 3DU large structures are observed with strong spanwise

coherence that are not observed in case 3DF. The non-zero correlation observed
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Figure 5.14: Two-point spanwise correlations of surface pressure for case 3DF (left) and case
3DU (right), at x-locations 0.1 (¢), 0.2 (A), 0.3 (O), 0.4 (o), 0.5 (v), 0.6 (—--), 0.7 (---), 0.8
(—=—), and 0.9 (—).

Figure 5.15: Iso contours of K for case 3DF (left) and 3DU (right), using 20 levels over the
range 0 to 0.11.

in downstream of transition for case 3DU serves to confirm quantitatively that
the turbulence downstream of reattachment retains significant spanwise coher-
ence all the way to the trailing edge.

Iso contours of turbulent kinetic energy, K, are plotted in figure 5.15, and
the variation of the maximum K in the wall normal direction with x-location
is plotted in figure 5.16. Upon removal of forcing a significant increase in peak
K is observed (increasing from 0.074 to 0.124), thus it appears the transition
process in the unforced case is more energetic than in the forced case. In case
3DU the peak K occurs upstream of the time-averaged reattachment point,
whereas in case 3DF the peak K occurs in the direct vicinity of reattachment,
which may explain why the peak ¢; is lower in case 3DU (figure 5.11). At all
locations downstream of transition K is greater in magnitude for case 3DU than
for case 3DF by approximately 50%, hence the intensity of turbulent fluctuations
downstream of transition appears significantly greater for case 3DU.

Boundary layer profiles for the laminar region of case 3DF and case 3DU,
normalised by the displacement thickness and edge-velocity (defined as the max-
imum u(n) occurring at the corresponding z-location), are plotted in figure 5.17.
Visual inspection suggests that the amount of shear in boundary layer profiles

from case 3DU is greater than that of case 3DF. The amount of shear can be
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Figure 5.17: Time-averaged boundary layer profiles taken at selected xz-locations within regions
of laminar flow, from case 3DF (left) and case 3DU (right), showing z = 0.1 (—-), z = 0.2
(—),z=03(—),z=04(—--)and z=0.5 (--).

quantified by considering the maximum du/dy observed, which for case 3DF is
1.38 (at x ~ 0.4), compared to 2.20 (again at x ~ 0.4) for case 3DU. Rist &
Maucher (2002) suggest that the shear-layer strength is a critical parameter for
the onset of absolute instability. This suggests that case 3DU should exhibit
increased tendency toward absolute instability, as well as increased convective
instability growth rates. This is confirmed by the linear stability analysis per-
formed in chapter 7.

Boundary layer profiles extracted from the turbulent regions of case 3DF and
case 3DU are plotted in figure 5.18, using wall-scaling. It is apparent that at
no point in either simulation does the boundary layer appear to be approaching
log-law behaviour. This is not surprising, since previous studies (e.g. Alam &
Sandham, 2000) suggest that relaxation to log-law behaviour takes of the order
of seven bubble lengths to occur. In the current study the flow reaches the
trailing edge less than two bubble lengths after reattachment, and the turbulent

boundary layer is formed under an adverse pressure gradient.
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Figure 5.18: Time-averaged boundary layer profiles taken at selected x-locations within regions
of turbulent flow, from case 3DF (left) and case 3DU (right), showing z = 0.6 (—-), x = 0.7
(—),z2=08(—"),z=09(— ) and z = 0.99 (---). Red lines show vt = y* and
ut =1/0.41log(y™) + 5.

Reynolds stress profiles, plotted in wall-scaling for locations within the tur-
bulent region, are given for case 3DF in figure 5.19 and for case 3DU in figure
5.20. The Reynolds stress profiles for case 3DF appear qualitatively similar over
the range 0.7 < z < 0.99; w1/ exhibits a clear peak near the wall, at y* = 10,
and a broad ‘bulge’ in the region 30 < y* < 90. Alam & Sandham (2000)
provide K budgets at three locations for a separation bubble induced on a flat
plate; near the reverse flow vortex all significant non-zero terms were located
within the free-shear layer, whereas far downstream of the bubble all activity
was located near the wall. At an intermediate location one bubble-length down-
stream of reattachment however, the budget displayed characteristics of both a
newly forming turbulent boundary layer (for y™ < 20) and a free-shear layer (for
yt => 60). The w/u/ profiles for case 3DF suggest that the turbulent bound-
ary layer is at this intermediate stage; the near wall-peak is reminiscent of a
turbulent channel or boundary layer flow (e.g Kim et al., 1987; Spalart, 1988)
and the plateau for 30 < y* < 90 appears associated with the mixing-layer type
behaviour observed by Alam & Sandham.

Case 3DU exhibits slightly different behaviour (figure 5.20). The first observa-
tion is that the Reynolds stress profiles are less smooth for case 3DU. Statistical
data was taken for the same period of time as for case 3DF, hence it appears
that the turbulent region exhibits more erratic or intermittent behaviour for
case 3DU. Secondly, both axes had to be re-scaled since both the magnitude of
Reynolds stresses and the wall-normal distance over which the turbulent behav-
iour occurs is greater. The skin-friction in the range 0.7 < x < 0.99 is similar
for cases 3DF and 3DU, hence differences in the magnitude of Reynolds stresses

will still be observed if wall-scaling is not employed. Unlike case 3DF, for which
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a well-defined peak and plateau were observed, for case 3DU two clear peaks
are observed in w/u/. The peak nearest the wall for case 3DU is broader and
less distinct than that of case 3DF, occurring in the range 10 < y™ < 40, and
does not appear to resemble that of a turbulent boundary layer so closely. For
case 3DF, w/v/ was observed to be significantly larger at the near-wall peak than
at any other location. In contrast, for case 3DU the outer peak is of a similar
amplitude to the inner peak, suggesting that turbulent fluctuations associated
with mixing-layer type behaviour are stronger here. It is also noticeable that in
contrast to turbulent boundary layers or channel flow, v/v/ and ww’ appear of
similar amplitude to w/u’ for case 3DU. This would also suggest that the dom-
inant turbulent behaviour is relatively unaffected by the presence of the airfoil
surface. Indeed, mixing layer flow exhibits peak v'v/ and w'w’ values that are
closer in amplitude to v/« than for turbulent boundary layers or channel flow
(Rogers & Moser, 1994). These differences are likely to be related to the occur-
rence of large-scale events, appearing partially reminiscent of two-dimensional
vortex shedding events, that appear to be active in case 3DU but are not ob-

served for case 3DF.

5.6 Summary

DNS were conducted of a laminar separation bubble on a NACA-0012 airfoil at
five degrees incidence. The three-dimensional separation bubble was found to
be highly dependent on the presence of forcing. Compared to the unforced case,
the inclusion of forcing increases the lift-to-drag ratio by approximately 23%
and significantly reduces the intensity of turbulent/unsteady fluctuations over
the airfoil. In particular, the addition of forcing appears to reduce the intensity
of turbulent fluctuations away from the wall. Fluid structures downstream of
transition are found to exhibit increased spanwise coherency in the unforced
case. Forcing in a similar fashion could therefore potentially be used as a control
mechanism for improving low Reynolds number airfoil performance. Both of
the three-dimensional separation bubbles exhibited large temporal variation of
skin-friction. At no point downstream of transition was the flow either fully
attached or fully separated, suggesting that the concept of a reattachment ‘point’
is misleading. Comparison of skin-friction PDF's illustrates that time-dependent
behaviour of the two-dimensional separation bubble is fundamentally different
to that of the three-dimensional bubbles.

It is important to note that upon removal of forcing, although the bubble

properties change significantly, the bubble does not revert to two-dimensional
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behaviour. If the bubble were purely convectively unstable, one would expect
turbulent fluctuations to convect downstream and ultimately leave the flow over
the airfoil in an unperturbed state. This is clearly not the case, and some other
local or global instability mechanism must be present in order for the turbulence

to self-sustain. This issue will be studied in more detail in chapter 8.
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Figure 5.19: Reynolds-stresses for case 3DF, showing u/u/ (—), v/v/ (——), w'w’ (- -) and w/v’
(--+), taken at z-locations indicated on the upper airfoil surface.
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Figure 5.20: Reynolds-stresses for case 3DU, showing u/v’ (—), v'v/ (——), w'w’ (— -) and
w'v’ (), taken at z-locations indicated on the upper airfoil surface.
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Chapter 6

The effect of incidence on

separation bubble behaviour

6.1 Introduction

When an airfoil is subject to a change of incidence, the pressure distribution
and the structure of the boundary layer will change in a coupled fashion. Where
a laminar separation bubble is present, the system becomes more complex; the
separation and reattachment points will translate, the boundary layer stability
characteristics will alter and hence transition to turbulence will occur at a differ-
ent streamwise location. The effect of increasing incidence on separation bubble
behaviour is therefore complex.

Flat plate simulations have been proven able to reproduce experimental data
by using suitable viscous-inviscid interaction based boundary schemes (Maucher
et al., 2000), however non-dimensional parameters (e.g. inlet 0*) and the pres-
sure distribution must be specified a prior: and cannot vary significantly during
the simulation. The velocity distribution in the potential flow region must be
known beforehand and will be dependent not only on the airfoil geometry and in-
cidence, but also the boundary layer properties, which will in turn depend upon
transitional behaviour. Furthermore, any time-dependent behaviour related to
changes in circulation about the airfoil will not be captured.

In this chapter the effect of incidence on separation bubble behaviour will be
investigated by performing a further three-dimensional simulation at incidence

a = T7°, and comparing results to those observed at o = 5°.
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6.2 Simulation parameters

Similar methodology is employed for the simulation at o = 7°, as for the three
dimensional simulations at o = 5° presented in chapter 5. The computational
domain is of the same dimensions, and the grid is generated with similar res-
olution and numbers of grid-points. The initial condition is generated in the
same way, i.e. by running a precursory two-dimensional simulation and extrud-
ing the flowfield in the z-direction, however three-dimensionality is introduced
in a different manner. The simulation is run at Re, = 5 x 10*, M = 0.4, with
time-step At = 1.4 x 10~%; selected results from the precursory two-dimensional
simulation were given in chapter 4, section 4.4. The simulation is analogous to
case 3DU, where no explicitly added forcing was present, except the airfoil inci-
dence is o = 7°. For the sake of conciseness the simulation will be referred to as
simulation 3D7 henceforth. Where comparisons are made to results at a = 5°,

case 3DU is being referred to unless explicitly stated otherwise.

6.3 Grid properties

The grid used for simulation 3D7, denoted grid G7, was generated based on
experience producing grids for the three-dimensional simulations at incidence
a = H° presented in chapter 5. Similar numbers of grid points and similar
resolution were employed, although the precise distribution of grid-points over
the airfoil surface has been modified to suit the differences in the flow at o = 7°.
In particular, the resolution is increased slightly in the region where transition
is expected (0.2 < z < 0.4). Preliminary studies using XFoil Drela & Giles
(1987) suggest that the time-averaged skin-friction in the turbulent region at
a = 7° will not increase over that at o = 5°, hence the grid-resolution will not
need to be increased in this region in order to achieve the same resolution in
wall-units. Grid parameters are given in tables 6.1, and the grid resolution at
specified control points is the same as that of grid G3, given in table 4.4 section
4.3.1.

As for simulations at o = 5°, during the initial stages of the 3D simulation
flowfield properties were checked in order to confirm that all fluid structures ap-
peared resolved and a final confirmation of adequate spatial and temporal reso-
lution is provided by a posterior: statistical analysis of the DNS data. The max-
imum ¢y observed was approximately the same as that of case 3DU, and hence
the resolution in wall-units is approximately the same (section 5, table 5.1), and
compares favourably with that of well-resolved plane-channel flow (Sandham
et al., 2002).
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Ne 2587

N airfoil 1507

N¢ wake 753

N, 692

Niotal 1790204

Wake length - W b)
Radius - R 5.3
Buffer length 0.6
Buffer points 31

Total domain length 12.2
Total domain height 10.6

Table 6.1: Grid parameters for grid G7.
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Figure 6.1: Temporal power spectra of K (left), taken at = 0.9 at the airfoil mid-span for
case 3D7 at yT = 8.6, y* = 101 and y©™ = 238 moving from top-to-bottom, and spanwise
power spectra of K (right), integrated over the range 1 < y™ < 50, taken for the case at
a=Tatz=0.8(—), =09 (——),and x = 1.0 (— ).

In order to confirm that turbulent behaviour is resolved over all time and
length scales, power spectra of turbulence kinetic energy, K, are computed in
the same manner specified in chapter 5, section 5.2. Figure 6.1 (left) displays
spanwise power spectra of K taken at three z-locations. A decreased magnitude
of roll-off is observed compared to cases at o = 5°, however the spectra still
compare reasonably well with Spalart (1988). Temporal power spectra of K
at specific locations (figure 6.1, right) are computed using three segments and
Hanning windowing (as detailed in section 2.3), and display a minimum roll-off

of 10° with increasing frequency.

6.4 Simulation initialisation

The flowfield from the two-dimensional simulation at o = 7° presented in chap-
ter 4 is extruded in the z-direction and used as the initial condition. No ex-

plicitly added time-periodic forcing is introduced, instead a narrow strip of w-
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Figure 6.2: Iso-contours of spanwise vorticity for case 3D7, using 20 levels over the range
+200.

velocity perturbations in the form of white-noise is added at t = 0, at (z,y) =
(0.05,0.153), and no further perturbations are added. Perturbations are added
over an area of 3 x 3 grid-points in £ and 7, and span the entire domain. The
simulation is progressed in time and behaviour is monitored by point readings
of w-velocity. In this manner, should the simulation be stable to the initial

perturbation, the simulation can be halted.

6.5 Time-dependent behaviour

Upon progressing the simulation the upper surface boundary layer is observed
to be unstable to the initial perturbation, undergoing transition to turbulence
within approximately two and a half non-dimensional time-units, and the tran-
sition process is observed to self-sustain as at a = 5°. The structure of the
flow field, including turbulent behaviour, is clearly illustrated by plotting iso-
contours of vorticity (figure 6.2). Qualitative observations are that the bubble
appears shorter, and the turbulent boundary layer thicker, than for case 3DU.
Upon transition to turbulence, large amplitude, high frequency fluctuations in
lift-coefficient associated with the irregular vortex shedding cease and the lift-
coefficient increases (figure 6.3, left). The drag coefficients remain approximately
the same (figure 6.3, right), although again the large amplitude, high frequency
fluctuations cease. The simulation is progressed until ¢ ~ 16, and statistical
data is captured over the final 7.7 time-units, as for cases 3DF and 3DU.
Pressure is monitored at specific locations within the airfoil boundary layer,
however point-pressure readings are unavailable for the first 2.8 time units, since
during this time w-velocity was monitored instead (discussed in chapter 8, sec-
tion 8.5). At x = 0.6 the pressure signal is appears random, and is characteristic

of the passage of turbulent flow. At x = 0.2, within the separated shear layer,
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Figure 6.3: Time-dependent lift-coefficient (left) and time-dependent drag coefficients (right)
for case 3D7. The shaded area indicates the period for which statistics were taken, right hand
image shows skin-friction drag (—-), pressure-drag (——) and total drag (—).

pressure oscillates but with a seemingly more narrow frequency content.
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Figure 6.4: Time dependent pressure within the boundary layer at = 0.2 (lower curve) and
2z = 0.6 (upper curve) for case 3D7.

Fluid structures present in the transition region are illustrated by plotting
iso-surfaces of the second invariant of the velocity gradient tensor, @) (figure
6.5). Large structures are observed to break down very rapidly to small scale
turbulence. The large structures do not appear to be orientated in the spanwise
direction as for case 3DU. Interestingly, at t = 10.5 the largest structure present
appears oblique in nature, being aligned approximately ¢ = 14° to the z-axis.
Caution should be exercised before assuming this behaviour is always present
however, since if the same quantity is plotted at time ¢t = 11.2 (figure 6.5, right),
the behaviour is not clearly observed. Upon breakdown to turbulence a variety
structure scales are visible, however the behaviour appears highly disordered

and no regularly occurring coherent structures are observed, e.g. A-vortices.
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Figure 6.5: Iso-surfaces of @ = 500 for case 3D7, taken in the transition region at time ¢t = 10.5
(left) and ¢t = 11.2 (right).

Case Cp Cp Cpr Cpp

2D 0.648 0.0498 0.0082 0.0416
3D7 0.694 0.0461 0.0083 0.0377
3DU 0.621 0.0358 0.0081 0.0278

Table 6.2: Time-averaged lift and drag coefficients for cases 3DU, 3D7, and the two-
dimensional simulation at oo = 7°.

6.6 Statistical analysis

The time-averaged lift and drag-coefficients for case 3D7 and 3DU are given
in table 6.2. The increased incidence over case 3DU results in increased lift-
coefficient and pressure drag-coefficient, and a reduction in the lift-to-drag ratio.
The time-averaged skin-friction coefficient and pressure-coefficient distributions
are plotted in figure 6.6. The time-averaged skin-friction coefficient distribu-
tion illustrates that increasing the incidence has decreased the length of the
separation bubble. The separation point has moved upstream from 0.099 to
r = 0.0489, and the reattachment point has moved upstream from 0.607 to
0.390, hence the total bubble length has decreased from 0.508 to 0.341. Ac-
cordingly, the time-averaged pressure coefficient distribution exhibits a shorter
pressure plateau associated with the separation bubble, which also possesses
greater pressure magnitude than for case 3DU. The negative skin-friction peak
just before reattachment is greater in magnitude than for case 3DU, suggesting
that the reverse-flow vortex is stronger in magnitude. The maximum reverse
flow observed in the time-averaged flowfield is 17.9%, significantly greater than
that observed at 5° (15.2%) which would appear to confirm that this is the case.
Visual inspection suggests that the skin-friction and pressure coefficient distri-
butions exhibit very slight local maxima at the rear of the separation bubble,
reminiscent of those observed for the two-dimensional simulation, at x = 0.275

for skin-friction, and x = 0.3 for pressure.
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Case xsep Treatt

2D 0.053 0.402
3D7  0.049 0.390
3DU 0.099 0.607

Table 6.3: Time-averaged separation and reattachment points for cases 3DU, 3D7, and the
two-dimensional simulation at o« = 7°.

Figure 6.6: Time-averaged skin-friction coefficient distribution (left) and pressure coefficient
distribution (right) for cases 3DU (——), 3D7 (—), and the two-dimensional simulation at
a="T7°(--).

The time-averaged displacement thickness grows more rapidly with increasing
x-location at a = 7° than at a = 5° due to the stronger adverse pressure gra-
dient. This is true both for the laminar separated region, and for the turbulent
boundary layer. The peak displacement thickness before transition and reattach-
ment is larger at @ = 5° however. Momentum thickness across the separated
shear-layer varies minimally from case to case. Upon transition the momentum
thickness increases rapidly and at an approximately similar rate with increasing
x for both case 3DU and case 3D7. The shape factor H = §*/6 increases more
rapidly over in the turbulent boundary layer for case 3D7 than for case 3DU, as
a result of the stronger adverse pressure gradient. This would imply a greater
tendency toward separation in this region.

Probability density functions of skin-friction were computed using the same
method as in 5, section 5.5.2, and are plotted in figure 6.8 for both the two and
three-dimensional cases at o = 7°. The PDF's appear qualitatively similar to
those at a = 5°, consisting of a smooth symmetric distribution about the mean
skin-friction. Again, the skin-friction is most unsteady in the transition region at
the rear of the separation bubble. The skin-friction PDF at reattachment (figure
6.8, left) again shows that comparatively large non-zero values of skin-friction
regularly occur here, even though the time averaged skin-friction is zero; the
time-averaged skin-friction coefficient varies over the range £2 x 10~2, compared

to a peak value of 6.2 x 1073 in the turbulent region. Both the size and shape of
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Figure 6.7: Time-averaged displacement-thickness distribution (left) and momentum-thickness
distribution (right) for cases 3DU (——), 3D7 (—), and the two-dimensional simulation at
a="7°(--).

the skin-friction PDF at this location appear remarkably similar to case 3DU.
At x = 0.85, (figure 6.8, left) the skin-friction PDF is significantly narrower for
a = 7° than for a = 5°, indicating that the time-dependent behaviour is more
steady. The time-averaged skin-friction (figure 6.6) is lower at this location for
a = 7°, hence the skin-friction is negative at this location for a greater percentage
of time. Although the flow is attached in the mean, the stronger adverse pressure
gradient increases the probability that instantaneous separation will occur when
compared to the equivalent case at a = 5°.

The skin-friction PDF of the two-dimensional simulation at o = 7° appears
different to that at a = 5°. The PDF at o = 5° contained several regions where
there appeared to be two PDF maxima at a given z-location, and the PDF
exhibited a wave-like pattern similar to that observed in time-averaged skin-
friction distributions. At a = 7° there appear to be two maxima at = =~ 0.35,
however downstream of the onset of vortex shedding there appears to be only one
maxima present at any given z-location, and no wave-like patterns are present.
The differences between the two-dimensional cases can probably be attributed to
the different vortex shedding behaviour observed; at o = 5° the vortex shedding
was regular and periodic, whereas at o = 7° the vortex shedding occurred at
a range of frequencies. Comparing the two-dimensional skin-friction PDF at
reattachment and at x = 0.65 to that of the three-dimensional simulation reveals
that although only one maximum is present for the two-dimensional case, the
PDF is fundamentally different in that it is significantly skewed at both locations.
Interestingly, the skin-friction PDF of the two-dimensional case indicates that
the separated shear-layer is much more unsteady than for the three-dimensional
simulation, as illustrated by the increased thickness in the region 0.1 > = > 0.2

(figure 6.8, top). It seems likely that the large-scale vortex shedding motion
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exerts greater influence on the laminar region than the smaller scale unsteadiness
present when vortex shedding is suppressed by transition to turbulence. A
similar tendency to increased unsteadiness can be observed at a = 5°, however

the increase is only very slight at that incidence.

X

Figure 6.8: Iso-contours of the normalised ¢; PDF, n/(S(x)n;), both the two-dimensional (top)
and three-dimensional (bottom) case at o = 7°, using 12 levels exponentially distributed over
the range 2 to 1000.
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Figure 6.9: Probability density functions of ¢, taken at reattachment (left), and at « = 0.85
(right) for cases 3DU (——), 3D7 (—), and the two-dimensional simulation at o = 7° (---).
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Two-point spanwise correlations of surface pressure are computed as de-
scribed in chapter 5, section 5.5.2, and are plotted in figure 6.10. At x = 0.1
there is strong spanwise correlation, suggesting that boundary layer fluctuations
are primarily two-dimensional in this region. At z = 0.2 less correlation is ob-
served, which is expected since three-dimensional perturbations are expected to
be amplified over the extent of the separated shear layer. At xz = 0.3, how-
ever, there is significant negative spanwise correlation. Negative correlation was
observed throughout the separated region for case 3DF, and was attributed to
the presence of forcing with spanwise wavenumber equal to the domain width,
however no forcing was introduced for o« = 7°. By x = 0.4 the flow exhibits near
zero spanwise-correlation, indicating that the flow is fully three-dimensional and
that the domain is sufficiently wide such that the turbulence is not constrained
in the z-direction. Downstream of x = 0.4 the spanwise correlation increases
with increasing x-location.

The two unexpected features of the spanwise correlation are the negative
correlation observed at x = 0.3, and the tendency for the flow to become more
correlated with increasing xz-location in the region 0.4 < x < 1. The presence of
negative correlation in the transition region perhaps suggests that in the early
stages of transition some form of disturbance mode is present with spanwise
wavelength A = L,. Three-dimensional plots of @ (figure 6.5) illustrate behav-
iour that, should it occur regularly, may explain the anti-correlation. Figure
6.5a displays oblique structures orientated at approximately 14° to the z-axis.
Since these structures are periodic in the z-direction, at a given z-location the
flow at z = 0 will be out of phase with the flow at the mid-span. Therefore,
if this behaviour occurs for an appreciable percentage of time, the phase differ-
ence will result in anti-correlation. The nature of boundary layer fluctuations in
the transition region was investigated by computing Fourier transforms of the
time-dependent surface pressure. Plotting the real coefficient for specific fre-
quencies revealed that in addition to predominantly two-dimensional boundary
layer disturbances, oblique modes are indeed also present. This is illustrated
in figure 6.11. Given three frequencies that differ only slightly, three distinct
perturbation forms are observed; an oblique mode with positive phase angle,
an oblique mode with negative phase angle and a mode with zero phase an-
gle. The occurrence of this behaviour is expected, since weakly oblique modes
are only marginally more stable than two-dimensional fluctuations (Dovgal, Ko-
zlov & Michalke, 1994). The finite spanwise domain width, in conjunction with
the presence of oblique modes appears responsible for the negative correlation

observed.
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Figure 6.10: Two-point spanwise correlations of surface pressure for the case at o = 7°, at
a-locations 0.1 (¢), 0.2 (A), 0.3 (O), 0.4 (o), 0.5 (v), 0.6 (—--), 0.7 (--+), 0.8 (——), and 0.9
(—)-

The increased correlation with z-location in the region 0.4 < x < 1 may
interpreted two ways. It could be conceived that the increase in correlation is
in fact physical and that the turbulence is exhibiting increased spanwise coher-
ence as for case 3DU. The absence of large scale structures exhibiting spanwise
coherence, as observed for case 3DU (chapter 5), would not tend to support this
argument however. The second interpretation would be that the spanwise do-
main width is affecting the physics of the flow. The boundary layer is increasing
in thickness in this region due to the adverse pressure gradient present. This
means that the largest length scale associated with the turbulent boundary layer
is also increasing, hence it is possible that the computational domain begins to
constrain the turbulence in the z-direction in this region. At the trailing edge
the displacement thickness is 6* = 0.05, and hence the domain width is equal
to 40*. It should be noted however that compared to simulations presented in
chapter 5, the ratio of spanwise domain width to separation bubble length has
in fact increased.

The time-averaged turbulent kinetic energy, K, is plotted in figure 6.12, and
the variation of y-maximum K with z-location is plotted in figure 6.13. The
peak K occurs at x = 0.33, just downstream of the vortex shedding location in
the two-dimensional simulation. The peak K observed is significantly greater
in amplitude than for case 3DU, however downstream of transition K decreases
more rapidly than for case 3DU. The decay rate of K decreases with increasing
a-location, and K appears to almost, but not quite, reach dK/dx =0 at x = 1.

Boundary layer profiles for the laminar region of case 3D7, normalised by
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Figure 6.11: Iso-contours of the real-coefficient of the Fourier transformed surface pressure at
frequencies f = 11.04 (top), f = 11.17 (middle) and f = 11.29 (bottom), showing the range
+5 x 1073.
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Figure 6.12: Iso-contours of turbulence kinetic energy, K, for case 3D7, using 20 levels over
the range 0 to 0.16.
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Figure 6.13: Variation of the y-maximum turbulent-kinetic energy, K, with z-location for case
3DU (——)and 3D7 (—).

the displacement thickness and edge-velocity, are plotted in figure 6.14 (left). A
measure of the shear-layer strength is given by the maximum du/dy observed,
which for case 3D7 is 2.32 (at  ~ 0.25), compared to 2.20 (at z ~ 0.4) for
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Figure 6.14: Time-averaged boundary layer profiles taken at selected x-locations within regions
of laminar flow, non-dimensionalised with displacement thickness (left) showing x = 0.05 (—
-),z=01(——),z=0.2(—-) and z = 0.3 (--+), and at selected z-locations within regions of
turbulent flow, scaled in wall-units (right) showing + = 0.5 (—-), z =0.6 (——), + = 0.7 (— ),
z=08(——"),z=0.9(— ) and 2 =0.99 (---) for case 3D7. Red lines show u* = y* and
ut =1/0.41log(y™) + 5.

case 3DU. This suggests that the laminar region will be slightly more unstable,
and exhibit a slight increase in tendency toward absolute instability (Rist &
Maucher, 2002). The effect of increasing incidence from a = 5° to a@ = 7°
upon shear layer strength appears modest compared to the effect of adding
boundary layer disturbances however (chapter 5). As for case 3DF, velocity
profiles in the vicinity of the maximum reverse flow location exhibit decreased
shear-layer strength when compared to profiles located just upstream. Boundary
layer profiles extracted from the turbulent regions of case 3D7 are plotted in
figure 6.14 (right), using turbulent scaling. As for simulations at o = 5°, at no
point does the boundary layer appear to be approaching log-law behaviour.
Reynolds stresses are plotted using wall-scaling in figure 6.15 at locations
within the turbulent region for case 3D7. For case 3DU two peaks were observed
in u/u/; one near the wall, at 7 ~ 20, and one at y* ~ 100. For case 3D7 u/u’/
appears greatest at y* ~ 70 at all locations, and the near-wall peak appears hard
to discern. In any event, w4/ is noticeably lower in the vicinity of the wall than at
yt ~ 70. It appears that at this incidence turbulent fluctuations associated with
mixing-layer type behaviour are stronger than near-wall fluctuations associated

with a developing turbulent boundary layer, more so than for case 3DU.

6.7 Summary

The effect of incidence upon separation bubble behaviour was investigated by
performing a direct numerical simulation of the flow around a NACA-0012 airfoil

at seven degrees incidence in three-dimensions, thus complementing the simu-
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lations performed at five degrees presented in chapter 5. A low-amplitude pertur-
bation was introduced at initialisation, in order to introduce three-dimensionality,
and no further disturbances were added. The upper surface boundary layer was
observed to be unstable to the initial perturbation, undergoing transition to
turbulence, and the transition process was observed to self-sustain as at o = 5°.
Although the transition process appears more energetic at a = 7°, the turbulent
fluctuations appeared to decrease in intensity more rapidly in the streamwise
direction than at v = 5°. Reynolds stress profiles taken in the turbulent region
suggest that near-wall fluctuations are weaker in amplitude than fluctuations
away from the wall. Oblique instability waves were observed in the transition

region, which led to negative correlation of surface pressure in this region.
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Figure 6.15: Reynolds-stresses for case 3D7, showing w/u/ (—), v/ (——), w'w’ (- -) and w/v’
(+-+), taken at z-locations indicated on the upper airfoil surface.
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Chapter 7

Stability analysis of the

time-averaged flowfields

7.1 Introduction

Having performed simulations of both forced and unforced separation bubbles at
5° incidence in chapter 5, and of an unforced separation bubble at 7° incidence
in chapter 6, the time-averaged flowfields extracted from these simulations can
be investigated in terms of their stability characteristics. The goal of this chap-
ter is to determine the stability characteristics of the separation bubbles, and
to determine whether any regions of absolute instability are present that may
explain the self-sustaining turbulence observed at both 5° and 7°. In order to
achieve this, a combination of linear stability analysis and forced Navier—Stokes

simulations is employed.

7.2 Linear stability analysis

Linear stability analysis of the time-averaged flowfield is comparatively inexpen-
sive and can be used to investigate both absolute and convective instability be-
haviour. The assumption of parallel flow is made in deriving the Orr—Sommerfeld
equation (the governing equation of the linear stability analysis performed here,
see section 2.4), however despite this it is commonplace to perform linear stabil-
ity analysis on nonparallel flows, including separation bubbles. Results from such
studies have been found to agree well with both numerical simulation (Bestek,
Gruber & Fasel, 1989) and experimental data (Lang, Rist & Wagner, 2004).
Performing convective stability analysis allows recovery of the so-called ‘N-
factor’, the maximum amplification ratio of instability waves across the separa-

tion bubble. This parameter is critical to the " transition prediction model, as
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used in XFoil (Drela & Giles, 1987), and gives an indication of the sensitivity of
the bubble to background turbulence levels. The frequency of the most unsta-
ble disturbance waves may also be determined, which not only aids in selecting
forcing frequencies to promote transition to turbulence (as in section 5.4), but
may potentially be relevant to the frequency content of acoustic radiation at
the airfoil trailing edge (McAlpine et al., 1999). It has long been conjectured
as to whether regions of local absolute stability exist within separation bubbles,
hence it is of interest to determine whether any regions of absolute instability
are present, and whether absolute instability plays any role in the self-sustaining

transition to turbulence observed at both 5° and 7°.

7.2.1 Convective stability characteristics

The convective stability characteristics of the three-dimensional separation bub-
bles presented in chapters 5 and 6, and the equivalent two-dimensional bubbles,
have been investigated by solving the spatial Orr—Sommerfeld problem (chapter
2, section 2.4) for velocity profiles extracted from the time-averaged flowfield,
starting at a location near the airfoil leading-edge and traversing to beyond the
reattachment point in each case. At each z-location a range of real disturbance
frequencies was specified, for which the code returns the associated complex
wavenumber («), the imaginary part of which corresponds to the spatial growth
rate of the instability wave. Assuming an initial disturbance amplitude of 1
at x = 0.05, disturbances are then integrated spatially across the bubble using
an Euler method, to determine an ‘ N-factor’ for each disturbance frequency, i.e.
In(A/Ay), where Ay is the initial disturbance amplitude and A is the disturbance
amplitude at some point of interest.

Results are summarised in figure 7.1 for cases at five degrees incidence noting
that, although only eight frequencies are plotted, calculations were performed
for sixteen frequencies in total, over the same range. Only half of the data is
plotted for the sake of clarity. Images on the left display the variation of spatial
growth rate, -4, with z for all frequencies and hence indicate how the stability
of travelling waves varies. Images on the right display how the N-factor of
instability waves varies with x and frequency.

The maximum spatial growth rate of instability waves computed for case 3DF
and the two-dimensional case are similar at -a; ~ 32, however for case 3DU the
maximum spatial growth rate is significantly larger at —a; ~ 40, immediately
suggesting that the separated region in case 3DU is more unstable than either
the two-dimensional case or case 3DF. The frequency of the instability wave

with the largest spatial growth rate appears to vary from case to case. For the
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Figure 7.1: Variation of spatial growth rate with x (left), and variation of N-factor with x
(right) for the two-dimensional simulation, case 3DF and case 3DU, at frequencies f = 4.24
(—), f=637(—=), f =849 (—), f=10.61 (---), f =12.73 (o), f =14.85 (A), f =16.98
(o), and f =19.10 (V).
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two-dimensional case the peak growth rate occurs for frequency f = 8.49. For
cases 3DF and 3DU the peak growth rate occurs for frequency f = 10.61. For all
frequencies computed ¢ is either zero or very small amplitude for all frequencies
at x = 0.05. This implies that N-factor across the bubble and the frequency
of the most amplified instability wave would not change if the starting point of
the stability analysis was moved further upstream. The neutral point as regards
convective instability appears to be x ~ 0.06 for all cases.

Despite variations in the frequency of the instability wave with the maximum
o, the frequency of the instability wave with the highest N-factor (i.e. the
most amplified instability wave across the bubble) is approximately f = 8.49
(w = 53.3) for all cases. This justifies the selection of similar forcing frequencies
(f = 7.76 and 5.53, or w = 48.76 and 53.6) for the simulation presented in
section 5. It can be seen that whilst case 3DF and the two-dimensional case
exhibit similar maximum N-factors of around 9.5, for case 3DU the maximum
N-factor is much larger at around 13. It appears then, that whilst case 3DF
and the two-dimensional case are comparatively similar in terms of convective
instability growth rates, case 3DU is significantly more unstable. Upon removing
the forcing, the stability characteristics of case 3DU actually deviate further from
both the two-dimensional simulation and case 3DF. It should be noted that the
frequency of the greatest N-factor disturbance wave for the two-dimensional
case at a« = 5° (f = 8.49) is much higher than that of the vortex shedding which
occurs at f = 3.37. This suggests that the vortex shedding behaviour is not
caused by convective amplification of instability waves, in contrast with Pauley
et al. (1990) who, for a separation bubble induced on a flat plate, found the
frequency of the most-amplified instability wave to agree with that of the vortex
shedding present. It should be noted that, for all cases, the N-factors observed
are too small to amplify round-off error (~ 1 x 1071%) to non-linear amplitudes
(~ 1 x 1072). This appears to discount amplification of round-off error as a
possible route to transition to turbulence.

Amplification rates and N-factors for simulations at seven degrees incidence
are plotted in figure 7.2. Again, images on the left display the variation of
spatial growth rate, -o;, with xz-location whilst images on the right display how
the N-factor of instability waves varies with x-location. It is apparent that at
a = 7° the maximum convective growth rate of instability waves is significantly
greater than at a = 5° (-4 ~ 60, as opposed to -a; =~ 40), and that higher
frequency disturbances are more unstable than at a = 5°. The most unstable
disturbance frequency is f = 19.10 and the disturbance frequency with the
largest N-factor is f = 12.73, compared to f = 10.61 and f = 8.49 respectively
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for case 3DU. The increased growth rates may be attributed to the increased
velocity gradient within the separated shear layer at & = 7°. The manner in
which convective stability characteristics change between the two-dimensional
simulation and case 3D7 appears qualitatively similar to that observed at a = 5°;
the three-dimensional simulation exhibits increased instability growth rates and
an increased N-factor over the separated region. For both cases at a = 7° the

neutral point appears to be located at x ~ 0.04.

a) The two-dimensional case at o = 7°

60 - — - . - 14 T T T T T T T

12 -

b) Case 3D7

Figure 7.2: Variation of spatial growth rate with x (left), and variation of N-factor with x
(right) for case 3D7 and the corresponding two-dimensional simulation, at frequencies f = 4.24

(—), f =637 (—=), f =849 (=), f =10.61 (---), f = 12.73 (o), f = 14.85 (A), f = 16.98
(o), and f =19.10 (V).

7.2.2 Cusp-map analysis

The time and span-averaged flowfields of cases 3DF, 3DU and 3D7, as well as
the time-average of the corresponding two-dimensional simulations, have been

analysed using the Orr-Sommerfeld solver in conjunction with the cusp-map
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method (chapter 2, section 2.4.5) in order to determine whether any regions
of local absolute instability are present. For each case the complex a plane
was swept with a resolution of Aa, = Aa; = 1. The corresponding resolution
in the complex w plane is much higher in the vicinity of a branch-point, since
Ow/0a =~ 0. Branch point singularities associated with zero group-velocity insta-
bility waves were then tracked, traversing the upper airfoil surface from x = 0.1
until it was no longer possible to locate any branch-point within the complex
w plane. Imaginary parts of the complex frequency associated with ¢, = 0 are
plotted in figure 7.3 for cases 3DF and 3DU, and in figure 7.4 for case 3D7. In
all cases, as the ¢, = 0 instability wave is tracked downstream, w; increases with
z, until a maximum value is reached toward the rear of the separation bubble.
After reaching this maximum value, w; decays with further increase in x. For
all cases, at all locations analysed, w; associated with the singularity is negative,
hence there is no evidence that absolute instability is present. Interestingly how-
ever, the location at which the strongest tendency towards absolute instability
is observed (i.e. when the ¢, = 0 wave is least damped) appears not to be the
location at which the reverse flow is strongest. For case 3DF the maximum wj is
observed at x = 0.413, for case 3DF at x = 0.425 and for case 3D7 at x = 0.263.
For all cases the location of maximum wj is significantly upstream of the max-
imum reverse flow location, but does however correspond (approximately) to
the region at which the maximum shear-layer strength was observed (chapter 5,

section 5.5.2 and chapter 6, section 6.6).

0

Figure 7.3: Variation with x of w; (left) and w, (right) associated with ¢, = 0, for the two-
dimensional case at o« = 5° (o—o), case 3DF (¢ — —¢) and case 3DU (A --- A).

For each simulation, a branch point could not be located downstream of a
certain z-location, unique to that case. Downstream of this location, the Orr-
Sommerfeld solver returned trivial solutions for regions of the complex « sweep.

Contours of u/, defined as v’ = u — 1, illustrate that for all cases the flowfield is
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Figure 7.4: Variation with x of w; (left) and w, (right) associated with ¢, = 0, for the two-
dimensional case at & = 7° (o—o0), and case 3D7 (A --- A).

already highly unsteady at the x-position at which the solver fails (figure 7.5).
Depending on the case, v’ and ¢’ lie in the range 0.3-0.7 at the point where the
solver fails. The time-averaged velocity profiles in this region will therefore be
the average of a series of very different velocity profiles produced under unsteady
flow conditions, and hence will not necessarily be solutions to the Navier—Stokes
equations. This is not a problem in itself for the Orr-Sommerfeld solver; given
a velocity profile the solver should return all unstable modes, it is not affected
by whether the velocity profile is a solution of the Navier—Stokes or otherwise.
A problem does occur however if unexpected or unphysical behaviour exists in
the time-averaged velocity profile which causes the cusp-map method to fail.
By way of example, we shall consider the time-averaged velocity profile ex-
tracted at z = 0.53 (where the cusp-map method fails) from the two-dimensional
simulation at o = 5°, illustrated in (figure 7.6, left). The velocity profile exhibits
near constant du/dy over a finite region, which results in d?u/dy* crossing the
y-axis twice in quick succession at y & 0.008 (figure 7.6, right). Behaviour such
as this may cause difficulties in performing the cusp-map method in this region;
if the velocity profile exhibits multiple inflection points in close proximity it may
be difficult to track individual eigenvalues numerically. The lack of smoothness
observed in d*u/dy?(figure 7.6, right) illustrates that although a smooth veloc-
ity profile can be recovered by summing unsteady velocity profiles, the second
derivative is much more sensitive and a very large number of samples must be
taken to achiever near analytic smoothness. Figure 7.6 was produced by sam-
pling every 10 iterations for a total of 4 x 10° iterations. This constitutes 40
non-dimensional time-steps (At = 1 x 10™* was used for this case) or 134 vortex
shedding cycles. Despite this large number of samples and long capture period,

the second derivative is still not smooth. This problem may be surmounted by
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fitting analytic curves to the simulation data, however the motivation for this
analysis is to determine whether absolute instability profiles occur for ‘real’ ve-
locity profiles. Ultimately, the cusp-map analysis in this case is deemed to fail
because of limitations of the numerical method in solving for velocity profiles
that are time-averages of unsteady flow. It should be noted that in any case
the assumption of small amplitude linear perturbations on a steady baseflow is
violated under these conditions. The location of maximum reverse flow could
therefore not be analysed for any of the simulations, however the magnitude of

reverse flow observed in each simulation does allow qualitative discussion.

Figure 7.5: Iso-contours of |u| for the two-dimensional simulation, taken at an arbitrary time
within the vortex shedding cycle (left), and for case 3DU taken at time ¢ = 26.6 (right), using
ten levels over the range 0-1.

When normalised by the local boundary layer edge velocity, case 3DF exhibits
a maximum reverse flow magnitude of 12.3%. This is less than the critical
value of 17% determined necessary to sustain absolute instability by Alam &
Sandham (2000), for the associated Reg- of 1050. Case 3DU exhibits an increased
maximum reverse flow of 15.2%. This is only slightly less than the critical
value of 16.5% for Res- = 1350, determined by Alam & Sandham. However,
Hammond & Redekopp (1998) determined a higher critical value of 20% for
Falkner-Skan type boundary layers and Rist & Maucher (2002) determined that,

even in the case of 20% reverse flow, the wall normal distance and intensity of
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Figure 7.6: Time-averaged velocity profile (left) and second derivative of the time-averaged
velocity profile (right), taken at « = 0.53 for the two-dimensional case at o = 5°.
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the shear layer had to exceed a certain threshold before absolute instability
could be observed. The fact that dw;/dxr < 0 at the point where the cusp-
map method fails suggests that absolute instability would be unlikely to be
observed by linear stability analysis if the cusp-map could be continued further
downstream. The two-dimensional simulation exhibited the largest magnitude
reverse flow of all cases, 22.2%. This is certainly above threshold values observed
by Alam & Sandham (2000) and Hammond & Redekopp (1998) however, as for
case 3DU, the results of Rist & Maucher (2002) suggest that caution should be
exercised before labelling the flow as absolutely unstable. On the one hand, it
could be conjectured that the vortex shedding observed is the result of absolute
instability, however it may be more useful to consider the shedding to be caused
by a global instability mode (Theofilis, 2003), resulting in highly unsteady flow
for which linear stability analysis is not valid.

The maximum reverse flow present at a = 7°, equal to 29.5% in two di-
mensions and 17.9% in three-dimensions, is in both cases greater than threshold
values given by Alam & Sandham, and for the two-dimensional case greater than
that given by Hammond & Redekopp and Rist & Maucher. In contrast to the
simulations at a = 5°, the cusp-map could be performed up to and slightly be-
yond the location of maximum reverse flow for case 3D7. However, as at o = 5°
no evidence of absolute instability was observed when performing the cusp-map
analysis, although the two-dimensional simulation exhibited very marginal be-
haviour in that w; very nearly crossed the x-axis. It should however be noted
that Hammond & Redekopp determined that an extended region of absolute

instability would be necessary before the global dynamics were affected.

7.3 Direct numerical simulations with forcing terms

No evidence of local-absolute instability was observed in section 7.2.2 when a
cusp-map analysis was performed on time-averaged flowfields of separation bub-
bles at @ = 5° and a = 7° extracted from both two and three-dimensional
simulations. In order to determine whether nonparallel effects or limitations of
the numerical method have prevented the detection of absolute instability, simu-
lations have been performed using forcing terms to maintain the initial condition,
in order to investigate the behaviour of small perturbations on a given baseflow,
using the method described in chapter 3 section 3.4.3. Such simulations are
subject to less restrictive assumptions than linear stability analysis, and hence
may be used to both confirm the results of linear stability analysis, as well as

to check for behaviour not predictable by linear stability analysis. When forced
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Figure 7.7: Iso-contours of vorticity using ten levels over the range £150 plotted for the
time-averaged flowfield of the two-dimensional case at o = 5°.

Navier—Stokes simulations were performed on the time-averaged flowfield of the
two-dimensional simulation at o = 5°, instability via an acoustic feedback loop
was observed. This simulation will be presented first, before other simulations

are discussed within the context of this finding.

7.3.1 An acoustic feedback instability of the flow around an airfoil

The two-dimensional simulation at o = 5° will be considered, before discussing
other simulations. The initial condition is specified as the time-averaged flowfield
of the two-dimensional simulation, illustrated in figure 7.7. A region of 3 x 3
grid-points about the location (z,y) = (0.25,0.136), corresponding to a location
within the separated shear layer, is subject to an increment of 1 x 1078 in w,v
and p. This effectively introduces a disturbance with a sharp-edged spatial
distribution, which will excite a range of frequencies at low amplitude. No
further perturbations are introduced, and the response of the flow is monitored
as the simulation is progressed. If the flow were only convectively unstable,
the initial perturbation would be expected to convect downstream growing in
amplitude, ultimately leaving the flow over the airfoil unperturbed. If the flow
were absolutely unstable, the initial perturbation would be expected to grow
exponentially in time at some location until saturation or the onset of some
secondary behaviour, ultimately affecting the flow-field over the entire airfoil
surface.

As in chapter 3 section 3.4.3, the response of the flowfield is monitored in two
ways; by recording time dependent pressure at a variety of xz-locations within
the boundary layer, and analysing contour plots of perturbation quantities. In
this case we define the perturbation dilatation as V.U’ = v.U,, — V.U;—q, where
V.U, is the dilatation rate at time ¢; and V.U, is the dilatation rate at time
t=0.
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Figure 7.8 shows time series of dp/dt taken at several streamwise locations
within the upper surface boundary layer. Time ¢ = 0 is the initialisation time,
at which the perturbation was introduced. Signals are plotted at an arbitrary
amplitude, however it should be noted that signals represented by dashed lines
are plotted at levels 50 times more sensitive than those represented by solid lines,
due to the difference in amplitude of hydrodynamic and acoustic waves. The z-
location of each signal is indicated on the vertical axis, hence upstream travelling
disturbances will move downwards with increasing ¢ and downstream travelling
waves will move upwards with increasing ¢. The response to the perturbation is
as follows:

i) The initial response to the perturbation can be observed by considering
the time interval 0 < ¢ < 1; the perturbation induces a single wavepacket which
convects downstream towards the trailing edge. It should be noted that at no
point does the wavepacket appear to trigger exponential temporal growth at
a fixed z-location that would indicate the onset of absolute instability (e.g. as
observed by Hannemann & Oertel, 1989).

ii) In the interval 1 < t < 2 the original wave has convected over the airfoil
trailing edge and no more downstream travelling waves are observed. However
the first six probes indicate that an upstream travelling pressure wave is present,
albeit at much lower amplitude.

iii) In the interval 2 < ¢ < 3, after the upstream travelling pressure wave has
reached the leading edge of the airfoil, a further downstream travelling wave is
observed. By t = 3 this pressure wave has reached the airfoil trailing edge, and
a new upstream travelling pressure wave is subsequently observed.

This pattern of downstream travelling wave followed by upstream travel-
ling wave continues and, crucially, both upstream and downstream travelling
disturbances grow in amplitude at all x-locations. The cause of this behav-
iour is illustrated by plotting contours of V.U’. At ¢t = 0.49 (figure 7.9a) the
wavepacket generated by the initial disturbance is visible as a multi lobed struc-
ture. By t = 0.98 (figure 7.9b) the wavepacket has convected downstream over
the trailing edge, whereupon scattering of the disturbances produces upstream
travelling acoustic waves (Ffowcs Williams & Hall, 1970). The acoustic waves
are more clearly visible at ¢ = 1.47 (figure 7.9¢). By t = 2.45 (figure 7.9d) an-
other wavepacket is observed. This second wavepacket has reached the trailing
edge of the airfoil by ¢ = 2.94 (figure 7.9¢), generating more upstream travelling
acoustic waves which are clearly observed at ¢t = 3.43 (figure 7.9f). Another
wavepacket is generated at ¢ = 4.41 (figure 7.9g), and the process continues

as the amplitude of both downstream-travelling hydrodynamic structures and
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Figure 7.8: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for two-dimensional case at a = 5°. Solid lines have been multiplied by 2.5 x 10° and dashed
lines by 1.25 x 107.

upstream travelling acoustic waves increases.

From the time-series, it appears that the downstream travelling wavepacket
induced by the initial perturbation generates upstream travelling acoustic waves
when it convects over the trailing edge. These upstream travelling acoustic waves
then reach some location of receptivity, probably the airfoil leading edge, and
generate another downstream travelling wavepacket. The process repeats with
increasing amplitude at all xz-locations and hence represents an instability of the
flow, via a combination of convective instability of hydrodynamic disturbances
and an acoustic feedback loop. The growth rate of the feedback loop is observed
to be exponential when longer time series of pressure signals are plotted (figure
7.10, left), with growth rate €®?*. When absolute values are plotted on a log-
arithmic scale (figure 7.10, right) it can be seen that initially the disturbance
amplitude decays in time, before growing exponentially.

A schematic of the feedback loop is illustrated in figure 7.11, with the four
processes involved labelled A to D. During stage A, hydrodynamic disturbances
are amplified as they convect downstream. Upon reaching the airfoil trailing
edge, at stage B, upstream travelling pressure waves are generated via acoustic
scattering. The pressure waves generated at the trailing edge propagate up-
stream during stage C . When the pressure waves reach the vicinity of the

leading edge, at stage D, further downstream convecting disturbances are gener-
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Figure 7.9: Iso-contours of perturbation VU’ (defined in section 7.3)for the two-dimensional
case at o = 5° taken at times indicated, using 10 levels over the range #1078
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Figure 7.10: Time dependent Z—’t’ taken at x = 0.95 for the two-dimensional case at @ = 5°,
showing exponential disturbance growth at a rate of €25 (left), and the equivalent absolute
values plotted on a logarithmic scale (right).

Figure 7.11: Stylised schematic for the acoustic feedback loop.

ated within the boundary layer and the cycle repeats. In order for the feedback
loop to be unstable, the net gain of processes A to D must be greater than 1.
Process A represents the only point at which amplification takes place within
the loop, hence it appears likely that strong growth of hydrodynamic instabili-
ties is necessary to offset the losses incurred at all other stages of the cycle. The
mechanism is analogous to Rossiter modes observed in cavity flows (Rossiter,
1964), although in the current case it should be noted that the period of the
feedback loop is distinct from, and much longer than, the period of the repeating
hydrodynamic/acoustic disturbance.

In order to make sure that no temporal disturbance growth is present that is
independent of the acoustic feedback loop, a further simulation was run. The
time-averaged flowfield from the two-dimensional simulation at o = 5° was again
used as the initial condition, and the simulation was perturbed in exactly the

same way, but this time a weak buffer was applied (of the form detailed in chap-
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Figure 7.12: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at a = 5°. A buffer was applied to damp trailing edge noise,
ramping from zero to full effectiveness over the range 0.65 < z < 1. Solid lines have been
multiplied by 2.5 x 10° and dashed lines by 1.25 x 107.

ter 2, section 2.2.7), ramping from zero to 0.05 over the range 0.65 < < 1. The
onset of the buffer is downstream of the bubble, hence any region of absolute
instability present within the bubble should be unaffected whilst upstream trav-
elling waves originating at the trailing edge will be damped. Figure 7.12 shows
time series of dp/dt taken at several streamwise locations within the upper sur-
face boundary layer. Upon progressing the simulation the initial response to
the perturbation was the same; i.e. a downstream convecting wavepacket was
observed. Upon reaching the buffer onset the wavepacket decayed, and only min-
imal evidence of upstream travelling acoustic waves was observed. The acoustic
feedback loop was prohibited from developing, and no disturbance growth was
observed at any other location within the simulation. This appears to validate
the linear stability analysis performed in section 7.2.2; it appears that no re-
gion of absolute instability is present within the separation bubble, even when

a non-parallel baseflow is taken into account.

7.3.2 Frequency content

Perturbation frequencies observed in the simulation with no buffer applied can
be compared to the linear stability theory predictions of section 7.2.1 in or-

der to confirm that both methods yield similar results. Since statistics are not

133



6e-08
1e-06- - 4e-08

5e-07 2e-08

dpldt
o
dp/dt
o

5607 -26-08-

-4e-08

-1e-06

S S S S N E oo L N U E S S SR SR SRR
0 0.2 04 0.6 0.8 1 6e-08 86 88 Sti 9.2 94

t

Figure 7.13: Time dependent ‘;—It’ taken at = 0.4 for the two-dimensional case at a = 5°,
showing the initial response to the perturbation introduced at ¢t = 0 (left), and the response
after several feedback loop cycles (right).

available for the forced simulation, analysis is limited to inspection of individual
wavepackets. The frequency content of the first wavepacket observed, i.e. that
produced by the initial perturbation, was found to differ from that of wavepack-
ets observed after one or more feedback-loop cycles. At x = 0.4, the initial
wavepacket is observed to possess f &~ 10.8 (w ~ 67.9). This agrees reasonably
well with linear stability analysis, which predicts that the instability wave with
the maximum N-factor will be at f ~ 9.6. After three feedback-loop cycles
however, the wavepacket at x = 0.4 is observed to possess f =~ 4.0 (w =~ 25.1).
A similar drop in frequency is observed at x = 0.95; the initial wavepacket pos-
sesses f &~ 6.9 (w = 43.4), but after three feedback-loop cycles the wavepacket
possesses f ~ 4.0 (w & 25.1). The initial response to the perturbation agrees rea-
sonably well with linear stability theory in terms of the most amplified frequency,
however it appears that the most unstable frequency of the acoustic-feedback
loop is lower than that of the most convectively amplified instability wave over
the upper airfoil surface. This may explain the apparent decay in amplitude
of pressure fluctuations between the first and second wavepackets (figure 7.10,
right). A significant proportion of the energy of the first wavepacket will be
contained within frequencies which are not amplified efficiently by the feedback
loop. Energy contained within these frequencies, and hence the total energy
of the wavepacket, will decay initially, before the frequencies most efficiently

amplified by the feedback loop grow sufficiently to recoup the energy loss.

7.3.3 Receptivity process

Boundary layer receptivity is required to occur for the acoustic feedback loop
to be present, however boundary layer receptivity is in general not as well un-

derstood as boundary layer stability. It is known that regions of pronounced
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Figure 7.14: Time dependent ‘é—ft’ taken at x = 0.95 for the two-dimensional case at a = 5°,
showing the initial response to the perturbation introduced at ¢t = 0 (left), and the response
after four feedback loop cycles (right).

streamwise variation in boundary layer flow are receptive to free-stream distur-
bances, including in particular finite radius leading edges (Saric, Reed & Ker-
schen, 2002), and the variation of the efficiency of the receptivity process with
frequency has been quantified numerically for modified super-ellipses (Wanderley
& Corke, 2001). However, such data is difficult to relate to the current study,
where the airfoil leading edge differs in aspect ratio significantly and aerody-
namic loading is present. The response of the time-averaged flowfield of airfoil
flow to a free-stream (acoustic) disturbance, as opposed to a hydrodynamic dis-
turbance, is therefore investigated by running a further simulation. The aim
is to estimate, very approximately, at what frequencies the receptivity process
occurs.

The time-averaged flowfield of the two-dimensional case at o = 5° is speci-
fied as the initial condition, and the flowfield is perturbed in the same way as
previous simulations except at a location (z,y) = (2, 1), i.e. downstream of the
airfoil trailing edge. This will generate an acoustic pulse in the potential flow re-
gion, and the airfoil leading edge will experience an upstream travelling acoustic
wavepacket as would be expected due to the presence of trailing edge noise. Run-
ning the simulation and forming an z/t-plot illustrates the response of the flow
to the perturbation (figure 7.15). The upstream-travelling acoustic wavepacket
generated by the initial pulse can be observed in the interval 0.8 < ¢ < 1.6, as
a very high-frequency pulse. Upon reaching the vicinity of the leading edge, a
downstream travelling hydrodynamic disturbance is generated, and the acoustic
feedback instability commences. In the current case, we are interested in the
first hydrodynamic disturbance generated by the receptivity of the leading edge
region to the freestream (acoustic) disturbance. Effectively it is desired to know,

when subject to a free-stream disturbance containing energy over a range of fre-
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Figure 7.15: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for two-dimensional case at & = 5° subject to an acoustic perturbation originating downstream
of the airfoil. Lines have been multiplied by 1 x 10°.

quencies, what is the resultant (self-selected) frequency of the hydrodynamic
disturbance following boundary layer receptivity.

At x = 0.5, the first hydrodynamic pulse is at frequency f ~ 9.5 (figure 7.16,
left). Upstream of this location the hydrodynamic pulse appears to be higher
in frequency, e.g. f ~ 11 at = = 0.3 (figure 7.16, right), however the signal is
less clear. Although this is based upon measurement of single wavepackets, and
although the initial acoustic pulse will not possess uniform energy across all fre-
quencies, this remains a useful result. Although it cannot be stated that f = 9.5
or f = 11 is the frequency at which boundary layer receptivity occurs most effi-
ciently, it appears that leading-edge receptivity occurs at frequencies similar to,
or slightly greater than, convective amplification for the current case. It should
be noted however that considering a wavepacket at a modest distance from the
receptivity location means that the stability characteristics of the boundary layer
will influence the frequency of the wavepacket. Unfortunately it is not possi-
ble to determine the frequency of the hydrodynamic wavepacket directly in the
vicinity of receptivity using the current technique.

From this simple analysis it appears that the combined receptivity and con-
vective amplification process appears to select frequencies of the order f =~
9.5 — 11. From linear stability analysis the most convectively amplified fre-
quency is expected to be f = 8.49 (section 7.2), however the preferred frequency
of the acoustic feedback loop appears to be considerably lower, at f ~ 4. This
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Figure 7.16: Time dependent 2£ for the two-dimensional case at & = 5° subject to an acoustic

suggests that the preferred frequency of the acoustic scattering process is much
lower than that of either the boundary layer receptivity or convective amplifi-
cation of boundary layer instabilities, and that acoustic scattering at the airfoil

trailing edge plays a critical role in the frequency selection of the feedback loop.

7.3.4 Stability characteristics of two-dimensional simulations at in-

cidence

Having observed the feedback loop at @ = 5° and M = 0.4, additional simu-
lations were conducted using the same procedure, and both the incidence and
Mach number were varied to see if the feedback loop persisted for other two-
dimensional flows. A brief summary of results is presented in table 7.1. All
relevant x/t-plots are included at the end of the chapter.

At 3° incidence the feedback loop is observed to be present, but stable (fig-
ure 7.21). Hydrodynamic disturbances were generated by upstream travelling
acoustic waves, as in figure 7.8, however the amplitude decreased from one cycle
to the next. At 5°, 7° and 8.5° incidence (figures 7.87.23 and 7.22 respectively),
the feedback loop was present and unstable in each case. Linear stability analysis
suggests that the amplification rate of the most unstable wave over the sepa-
rated region does not vary significantly with incidence. For cases at incidence
3° < a < T7° the amplification factor varied over the range e%2 — e”¢. The
reason the feedback loop is unstable at a > 5° but not at a = 3° appears to
be because simulations at o > 5° exhibited stronger disturbance amplification
over the aft section of the airfoil, due to the stronger adverse pressure gradient
present. Cases at @ = 7° and o = 8.5° exhibit similar behaviour to that at
a = 5°; the initial higher-frequency wavepacket appears to decay at first, before

pressure fluctuations assume a lower frequency and exponential growth is ob-
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Figure 7.17: Time dependent % taken at x = 0.95 for the two-dimensional case at o = 8.5°,
showing exponential disturbance growth at a rate of e*-5¢ (left), and the equivalent absolute
values plotted on a logarithmic scale (right).

o
(degrees) M  Feedback loop stability
3 0.4 Stable
5 0.4 Unstable
7 0.4 Unstable
8.5 0.4 Unstable
5 0.3 Stable

Table 7.1: Stability of the feedback loop for two-dimensional simulations for different angles
of incidence, «, and Mach number.

Case Growth rate Feedback loop f Dominant shedding f f for largest N-factor

oa=>5° 0.25 4 3.37 8.45

a=T° 0.24 1.9 2.43 12.73

o =8.5° 0.5 1.7 2.00 -
3DU 0.21 3.3 - 8.49

Table 7.2: Growth rate and apparent preferred-frequency of the acoustic feedback instability
for unstable cases.

served (illustrated in figure 7.17 for o = 8.5°). Growth rates for cases where an
unstable feedback-loop was observed are given in table 7.2.

The case at a = 8.5° exhibits clearly defined upstream and downstream
travelling waves, as at a = 5°, and the growth rate of the feedback loop appears
to be greater than at o = 5°. Pressure signals for the case at a = 7° are less clear
however. Upstream and downstream travelling waves appear to be present, but
the pressure signals at all xz-locations exhibit constant unsteadiness, with none
of the ‘quiet’ regions that so clearly define the individual wavepackets at o = 5°
and a = 8.5°. In order to make sure that no temporal disturbance growth is
present that is independent of the acoustic feedback loop, a further simulation
was run. The time-averaged flowfield from the two-dimensional simulation at

a = T7° was again used as the initial condition, but this time a weak buffer was

138



applied, ramping from zero to 0.05 over the range 0.45 < x < 1, as for the
simulation at o = 5° in section 7.3.1, to damp acoustic scattering at the trailing
edge. A fluctuating pressure signal is observed in the vicinity of x = 0.3, which
is lower in amplitude and higher in frequency than that associated with the
acoustic feedback loop, and the signal appears possess neutral stability (figure
7.24). The cusp-map analysis performed in section 7.2.2 suggests that this case is
only marginally absolutely stable. It is feasible then that this is a manifestation
of a very weak absolute instability. Certainly the behaviour is unrelated to the
acoustic feedback loop. A similar but more pronounced behaviour is observed for
the equivalent three-dimensional simulation in section 7.3.5 and the behaviour
is discussed in more detail.

In order to determine the influence of compressibility, the case at 5° incidence
was repeated whilst reducing the Mach number to M = 0.3 (figure 7.25). A
marginally stable feedback loop was observed, suggesting that the feedback loop
would become unstable with a modest increase in M. The effectiveness of the
acoustic scattering at the trailing edge reduces with Mach number, however the
reason the feedback loop at M = 0.3 is stable appears in this case to be due to
changes in the structure of the boundary layer over the aft section of the airfoil.
Comparison of the two cases reveals that, despite the change in Mach number,
the amplitude of acoustic waves generated is similar in both cases.

One would perhaps intuitively associate the presence of a feedback loop with
some form of global frequency selection, e.g. of the vortex shedding behaviour,
however periodic vortex shedding is observed in two-dimensions for a < 5°,
whereas an unstable acoustic feedback loop is only observed for a@ > 5°. Above
a = 5° a more broadband response occurs. Thus the only case exhibiting both
vortex shedding in a clearly periodic fashion and an acoustic feedback loop in the
time-average is the case at o = 5°. However, for all two-dimensional cases there
was a clear tonal contribution to the lift coefficient and pressure readings in the
wake, even for simulations exhibiting a more broadband response (e.g. f =~ 2,
figure 4.11, section 4.4). In all cases this tonal contribution lies in the range
1.5 < f < 4, which is considerably lower than the most convectively amplified
frequencies observed in section 7.2.1 (table 7.2).

It is feasible then, that the acoustic feedback loop may act as a frequency
selection mechanism where periodic vortex shedding occurs, and may be respon-
sible for selecting the dominant tonal content of more broadband vortex shedding
behaviour. Where this occurs, the preferred frequency would be dependent on
several factors. The efficiency of acoustic scattering at the trailing edge decreases

with increasing frequency (see also chapter 9, section 9.5.2). On the other hand,
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the convective amplification rate of boundary layer disturbances is greatest at
a relatively higher frequency, and decreases at low frequencies. If we define the
frequency dependent amplification ratio of boundary layer disturbances across
the boundary layer as N(f), and some measure of acoustic scattering efficiency
at the trailing edge as T'(f), presumably the preferred frequency would be the
value of f for which N(f)T(f) is greatest. However, this hypothesis ignores
the receptivity mechanism occurring in the vicinity of the leading edge. The
receptivity process is not well defined, and itself may influence the frequency
selection process. At present then, it appears likely that the presence of an
acoustic feedback loop such as this will act to select global frequencies or tones
in airfoil flows with vortex shedding, however the frequency selection criteria

appears complex.

7.3.5 The stability characteristics of three-dimensional simulations

at incidence

Having performed forced simulations of a variety of time-averaged two-dimensional
flowfields, the process was repeated for the time-averaged flowfields of cases
3DF, 3DU and 3D7, perturbing the simulations in the same manner as for the
equivalent two-dimensional simulations. Case 3DF was found to be stable; no
acoustic feedback loop was observed (figure 7.26). Case 3D7 was marginally
stable, but exhibited a secondary behaviour that will be discussed later in this
section (figure 7.28). Case 3DU however, was found to be unstable (figure 7.27).
The differences in stability can be attributed to differences in N-factors across
the separation bubbles; N = 9.5 for case 3DU, N = 10.3 for case 3D7, and
N = 13 for case 3DU. Clearly a large N-factor is essential parameter defining
the onset of the feedback loop. It also appears that a larger N-factor is nec-
essary to sustain the feedback loop for three-dimensional simulations than for
two-dimensional simulations. The fact that the feedback loop has been found
present for the time-averaged flowfield of a three-dimensional simulation raises
the question as to whether such behaviour will be observed in the fully developed
time-dependent case. This is investigated in chapter 9, section 9.3.

For case 3D7 a secondary behaviour was observed, similar to that exhibited
by the two-dimensional simulation at a = 7°; a fluctuating pressure signal is
observed in the vicinity of z = 0.3, that is lower in amplitude and higher in
frequency than that associated with the acoustic feedback loop (figure 7.28).
For case 3D7 the signal appears more prominent than in two-dimensions, with
a marginally positive growth rate. When a simulation is performed with a

simple buffer applied downstream of x = 0.45 the behavior persists figure (figure
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Figure 7.18: Direct Fourier transform of the pressure signal at « = 0.3 for case 3D7, computed
for the time interval 4 < ¢ < 12.

7.29), and performing a direct Fourier transform of the time-series for the period
4 <t < 12 suggests that the frequency of this perturbation is centered about
f = 10 (figure 7.18). The fluid dynamics associated with this behavior are
illustrated by plotting iso-contours of perturbation w, (figure 7.19); animations
of perturbation w, suggest that disturbance waves are being generated at some
location within the bubble, and are recirculating within the bubble. Hence the
bubble is acting as an ‘oscillator’, and thus the behaviour represents a very
weak form of absolute instability. No such behaviour was predicted by the cusp-
map analysis performed in section 7.2.2. This may be because the behaviour
is only weakly unstable; although errors due to nonparallel effects are likely
to be small, a small error could potentially result in predicting a marginally
stable flow instead of a marginally unstable flow. The least damped ¢, = 0
wave as predicted by linear stability theory was observed at x = 0.26 for case
3D7, and the associated real frequency of this wave was f = 9 (w = 56.7),
agreeing reasonably well with the dominant frequency of f = 10. This represents

circumstantial evidence that this behaviour is caused by a global instability.

7.4 Summary

Linear stability analysis of the time-averaged flowfields extracted from cases
3DF, 3DU and 3D7, as well as the corresponding two-dimensional simulations,
has been performed. The convective stability characteristics of the two-dimensional
case at a = 5° and case 3DF appear similar in that the N-factor across the sep-
aration bubble does not change significantly between cases. Case 3DU however

exhibits a much larger N-factor; upon removal of forcing the bubble appears
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Figure 7.19: Iso-contours of perturbation vorticity for case 3D7 at ¢ = 8.4, showing 10 levels
over the range +2 x 1078,

to become more unstable than either the two-dimensional case or the forced 3D
case. When the airfoil incidence is increased to a = 7° the frequency of the most
amplified instability wave increases, however the N-factor for case 3D7 actually
reduces compared to that of case 3DU. The frequency of the most amplified in-
stability wave has been identified for all cases, and appears significantly higher
than that of the vortex shedding behaviour observed in two-dimensions.

No evidence of local absolute instability was observed for any of the cases
investigated when a cusp-map analysis was performed. This was confirmed for
simulations at o = 5° by performing forced Navier—Stokes simulations, however
at a = 7° a very weakly unstable mode was observed that the cusp-map method
did not predict. Forced Navier—Stokes simulations determined that for two di-
mensional cases in the range 5° < a < 8.5 the time-averaged flowfield is unstable
due to an acoustic feedback instability, in which instability waves convecting over
the trailing edge of the airfoil generate acoustic waves that propagate upstream
to some location of receptivity, and generate further instability waves within
the boundary layer. As the cycle repeats, the amplitude of both hydrodynamic
instabilities and acoustic waves increases. The resultant behavior may be de-
fined as globally unstable, although no local absolute instability is present. It
is suggested that an acoustic feedback loop of this type may act as a frequency
selection mechanism for the vortex shedding observed in two-dimensions. At
higher Reynolds numbers, the feedback loop may potentially be responsible for
the generation of discrete tones of sound radiation in a similar fashion to behav-
iour observed by McAlpine et al. (1999), although their mechanism was limited
to separated flow in the trailing edge region. The lack of a clear absolute insta-
bility of the time-averaged flow suggests that another mechanism is needed to
explain the self-sustained turbulence observed for simulations 3DU and 3D7 in

chapters 5 and 6. This is the subject of the next chapter.
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Figure 7.20: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Re, = 5 x 10*, M = 0.4, a« = 5°. A region of 1 x 1 grid-points
was perturbed at (z,y) = (0.05,0.119). Solid lines have been multiplied by 2.5 x 10° and
dashed lines by 1.25 x 107.

Figure 7.21: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Re, = 5 x 10*, M = 0.4, a« = 3°. A region of 3 x 3 grid-points
was perturbed at (z,y) = (0.3,0.1). Solid lines have been multiplied by 2.5 x 10° and dashed
lines by 1.25 x 107.
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Figure 7.22: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Re, = 5x10%, M = 0.4, a = 8.5°. A region of 3 x 3 grid-points
was perturbed at (z,y) = (0.025,0.209). Solid lines have been multiplied by 2.5 x 105 and
dashed lines by 1.25 x 107.

Figure 7.23: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Re, = 5 x 10*, M = 0.4, a = 7°. A region of 3 x 3 grid-points
was perturbed at (x,y) = (0.2,0.175).Solid lines have been multiplied by 2.5 x 107.
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Figure 7.24: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Re, = 5 x 10*, M = 0.4, a = 7°. A region of 3 x 3 grid-points
was perturbed at (z,y) = (0.2,0.175), and a buffer was applied for x > 0.45. Solid lines have
been multiplied by 2.5 x 107.
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Figure 7.25: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the two-dimensional case at Re, = 5 x 10*, M = 0.3, @ = 5°. A region of 3 x 3 grid-points
was perturbed at (z,y) = (0.25,0.136). Solid lines have been multiplied by 2.5 x 10° and
dashed lines by 1.25 x 107.
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Figure 7.26: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the time-average of case 3DF (Re. = 5 x 10, M = 0.4, a = 5°). A region of 3 x 3
grid-points was perturbed at (z,y) = (0.25,0.136). Solid lines have been multiplied by 1 x 10°
and dashed lines by 4 x 107.
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Figure 7.27: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the time-average of case 3DU (Re. = 5 x 10*, M = 0.4, a = 5°). A region of 3 x 3

grid-points was perturbed at (z,y) = (0.25,0.136). Solid lines have been multiplied by 1 x 10°
and dashed lines by 4 x 107.
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Figure 7.28: Time histories of dp/dt, with streamwise location indicated on the vertical axis,
for the three-dimensional case at Re, = 5x 10%, M = 0.4, a = 7°. A region of 3 x 3 grid-points
was perturbed at (x,y) = (0.2,0.175). Lines have been multiplied by 2.5 x 107.

Figure 7.29: Time histories ofdp/dt, with streamwise location indicated on the vertical axis,
for the three-dimensional case at Re, = 5x 10%, M = 0.4, a = 7°. A region of 3 x 3 grid-points
was perturbed at (z,y) = (0.2,0.175), and a buffer was applied for > 0.45. Lines have been
multiplied by 2.5 x 107,
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Chapter 8

A mechanism for self-sustaining

turbulence!

The persistence of turbulence upon removal of forcing, observed in chapters 5
and 6, suggests that some mechanism other than convective disturbance growth
is present. Stability characteristics of the time-averaged flowfield have been in-
vestigated in chapter 7. The time-averaged flowfield of case 3DU was found
to be unstable via an acoustic feedback loop, however it could not be deter-
mined whether such behaviour occurs in the fully developed flow. Although the
time-averaged flowfield of case 3D7 was found to exhibit a very weak temporal
instability, the growth rate was close to zero. In this chapter an alternative insta-
bility of the unsteady two-dimensional vortex shedding flow to three-dimensional

perturbations is investigated.

8.1 Numerical method

A three-dimensional simulation is initialised in the same manner as case 3DF.
Grid G3 (defined in section 4.3.1) is used, specifying a small number of spanwise
points (N, = 16) over the same spanwise domain width (L, = 0.2). No time
periodic forcing is added, but w-perturbations are superposed onto the initial
condition in the form of white noise. The w-perturbations are 1 x 10~% in ampli-
tude, and only the boundary layer over the upper surface of the airfoil is seeded
in this fashion. The simulation is progressed from this initial condition and no
further disturbances are added. The stability characteristics of the unsteady
two-dimensional separation bubble with vortex shedding may then be deter-
mined. The perturbations will either convect downstream ultimately leaving

the flow over the airfoil unperturbed, or the perturbations will grow temporally

1See also Jones et al. (2007b)
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Figure 8.1: Iso contours of |w| velocity in the vicinity of the airfoil, using 20 contours ex-
ponentially distributed over the range 107!° to 10~2, showing development with time after
initialisation.

as in absolute instability. Effectively the method may be considered equivalent
to a Floquet analysis, however the current method differs in that the baseflow

is not perfectly periodic in time.

8.2 Time dependent behaviour

The resultant behaviour is illustrated by plotting absolute values of w-velocity
in the vicinity of the airfoil at intervals of ¢ = 0.49 (figure 8.1). It can be seen
that the initial disturbances do not convect downstream leaving the source un-
perturbed, but grow in amplitude temporally until nonlinear magnitudes are
reached. The w-perturbations grow in amplitude within individual vortices as
they convect downstream. Additionally, in the vicinity of the vortex shedding lo-
cation the perturbations exhibit growth in amplitude without convecting down-
stream. Temporal growth occurs immediately upon initialisation, and hence
the onset is far too rapid to be explained by an acoustic feedback mechanism
involving the trailing edge. The N-factor across the separated region has been
computed via linear stability analysis to be N = 9.5. This precludes amplifi-
cation of round of error as a route to transition, since a much larger N-factor
would be required to amplify round-off error (~ 107!%) to non-linear amplitudes.

Having observed rapid temporal perturbation growth for the case with two-
dimensional vortex shedding at five degrees incidence, the simulation was re-
peated at other angles of attack.The simulations all exhibited two-dimensional
vortex shedding. Absolute values of w-velocity taken in the vicinity of the onset

of vortex shedding are plotted in figure 8.2. Although erratic, due to variations
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during the shedding cycle, the amplitude of w-velocity perturbations appears
to grow exponentially with time, and the temporal growth rate increases with

incidence.
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Figure 8.2: Time series of absolute w-velocity taken in the vicinity of vortex shedding at 5°
(=), 7° (=) and 8.5° (—)incidence.

8.3 Spatial onset

In order to isolate the spatial onset of the instability, a simulation was run using a
different initial disturbance input, and an increased number of w-probes. Instead
of seeding the entire upper airfoil boundary with white noise, a narrow ‘strip’ of
white noise is used, centred at (z,y) = (0.25,0.136), and spanning the width of
the domain. The evolution of the initial disturbance may then be tracked both
spatially and temporally. Figure 8.3 shows an x/t plot of disturbance growth
for this case. Due to the large growth rates present the probe readings were
multiplied by e~ where o = 4 is the temporal growth rate observed in the
vicinity of vortex shedding, in order to better visualise the data. Therefore,
where a probe signal appears constant in amplitude in figure 8.3, it is in fact
growing at the rate of e*. The response to the perturbation varies with the
z-location, as follows:

i) For < 0.2 no perturbations are observed using this scaling.

ii) For 0.3 < z < 0.45 the initial pulse generates a wavepacket in the boundary
layer, which convects downstream. After ¢ = 0.3 no further disturbances are
visible for x < 0.4 using this scaling.

iii) For 0.5 <z < 0.55 the initial wavepacket is observed to trigger distur-
bances that are lower in frequency than the initial disturbance, and are subse-

quently observed to grow exponentially in time.
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iv) For > 0.6 it is difficult to detect whether the initial wavepacket is present
or not. Periodic disturbances are observed to occur, with a frequency the same
as that of the vortex shedding (f = 3.37). The amplitude of disturbances at any
fixed a-location appears to grow at the approximate rate e*, and the amplitude
of disturbances also appears to increase with increasing x-wise location.

Rapid, sustained temporal disturbance growth first occurs in the region 0.5 <
x < 0.55, suggesting that some form of instability is sustained in the vicinity of
the vortex shedding region. The temporal growth rate of perturbations appears
approximately constant at all locations (o &~ 4), however the increase in ampli-
tude of perturbations with x-wise location for x > 0.6 suggests that the flow is
also convectively unstable. The rapid onset of sustained temporal disturbance
growth, and the absence of intermittent behaviour over long time-scales, suggest
that this behaviour cannot be explained by an acoustic feedback loop similar to

that observed in section 7.3.

=

Figure 8.3: Time series of w scaled by multiplying with e~%f, taken at several locations within
the boundary layer, the dashed line indicates the wave-packet envelope.

8.4 Instability mechanism

The preceding section has identified a region instability in the vicinity of the vor-
tex shedding location. Because the instability is subject to exponential growth,
plots of perturbation quantities such as streamwise vorticity, w,, or w-velocity,
for example, will vary markedly in amplitude depending on the time at which
they are taken. To surmount this problem, the quantity w; is instead plotted,
defined as

Wk = w,Age™ ", (8.1)
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Figure 8.4: Iso-surfaces of w} taken at five phases of the vortex shedding cycle. The far
zy-plane displays iso-contours of w,, using ten levels over the range +150.
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Figure 8.5: The left-hand image shows iso-contours of w,, using 20 contours over the range
4150, with lines of constant u-velocity superposed using 4 levels over the range —0.7 < u < 0.
The right-hand image shows iso-contours of w} using 20 levels over the range 5 — 100 with
lines of constant w, superposed using 10 levels over the range +150. From top to bottom, five
phases within the vortex shedding cycle are shown.
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where A is a constant chosen as 1 x 107 and ¢ = 4 is the exponential distur-
bance growth rate at = 0.5. Plotting iso surfaces of w} in the vicinity of vortex
shedding at five phases, ¢, of the shedding cycle (figure 8.4) reveals spanwise-
periodic structures that are associated with the instability. Depending on the
phase of the vortex cycle, the structures appear both within and also wrapped
around the spanwise vortices. Although only one shedding cycle is illustrated,
the behaviour of the instability appears qualitatively similar from one cycle to
the next.

The production and behaviour of w, is illustrated more clearly in figure 8.5,
again for five phases within the shedding cycle. Images on the left of figure 8.5 il-
lustrate the two-dimensional vortex shedding upon which the three-dimensional
perturbations are growing, as well as regions of upstream fluid flow. Images

on the right illustrate the spanwise root-mean-square (RMS) of w?, and hence

)
indicate the magnitude of three-dimensional perturbations. Over the course of
the shedding cycle a vortex is generated at the rear of the separation bubble be-
fore being released downstream. As the vortex begins to convect downstream,
the magnitude of w, increases within the vortex core at a rate faster than the
overall instability growth rate, as indicated by the increase in w] from figure
8.ba to 8.5e. This confirms the findings of section 8.3, that vortices convecting
downstream are subject to convective perturbation growth. A second region of
w} growth is observed during the shedding cycle, just upstream of the develop-
ing vortex, in the so called ‘braid’ region of high strain rate between successive
vortices. At ¢ = 4?” a growing perturbation is clearly observed; it is orientated
parallel to the z-axis and is the region exhibiting the largest magnitude of w,. As
the developing vortex is shed and begins to convect downstream, the structure
increases in length and vorticity magnitude and is wrapped around the vortex,
forming an S-shape visible at ¢ = %’T just upstream of the downstream travelling
vortex. Again, w, increases at a rate faster than the overall instability growth
rate. These regions of pronounced perturbation growth appear to closely match
regions of instability growth identified in mixing layers and bluff body wakes;
namely the vortex cores and the braid region between vortices (Williamson,
1996). The current case appears perhaps to hold a stronger analogy to shear-
layer flow, however the mechanisms responsible for instability growth in braid
regions and vortex cores are more extensively discussed in the literature for bluff
body wakes. In the context of bluff body wakes, short wavelength perturbations
within vortex cores are commonly attributed to elliptic instability, whereas two
forms of instability growth have been observed within the braid region, denoted

mode-A and mode-B. A brief summary of each mode follows, necessary to cat-
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egorise observations of the current case.

Elliptic instability is the name given to the instability of two-dimensional
elliptical streamlines to three-dimensional perturbations, for which a review is
given in Kerswell (2002). The physical mechanism of instability is vortex stretch-
ing, and the instability manifests itself as a spanwise periodic deformation of the
vortex core. Leweke & Williamson (1998b) suggest that the spanwise wavelength
of the most amplified instability mode is of the order A = 3D, where D is the
diameter of the region of elliptical flow, comparing favourably with the results
of Leweke & Williamson (1998a). Floquet analysis by Barkley & Henderson
(1996) suggests a spanwise wavelength of A = 4D at onset. The presence of el-
liptic streamlines in the current case (figure 8.6) suggests that elliptic instability
is likely to occur.

Instability growth within the braid region between vortices has been observed
experimentally, both for bluff body wakes Williamson (1992) and free shear lay-
ers (Corcos & Lin, 1984; Bernal & Roshko, 1986). In bluff body wakes, two
distinct instabilities have been observed in the braid region, denoted mode-A
and mode-B (Williamson, 1996). Both forms of instability occur as spanwise
periodic, streamwise ‘tubes’ of vorticity, formed in the braid region and extend-
ing between neighbouring two-dimensional vortices, that appear qualitatively
similar to the structures observed in figure 8.4. Mode-A instability is associated
with spanwise wavelength approximately the same as that of elliptic instability,
i,e. 3 to 4D, and occurs in conjunction with deformation of the vortex core,
whereas mode-B is associated with spanwise wavelength approximately A = D
and occurs with no deformation of the vortex core (Williamson, 1996). In the
light of these differences it has been suggested that mode-A is caused by el-
liptic instability (Thompson, Leweke & Williamson, 2001), and that mode-B is
in fact a manifestation of the instability of two-dimensional hyperbolic stream-
lines, analogous to that of elliptic instability (Leweke & Williamson, 1998b),
denoted hyperbolic instability. For bluff body wakes mode-A is first observed at
Rey > 190, where Re, is the Reynolds number based on cylinder diameter, and
mode B is first observed at Rey; > 240.

Having identified similar regions of instability growth to those observed in
bluff body vortex shedding, the spanwise wavelength of three-dimensional per-
turbations can be compared. The diameter, D, of vortices in the current case
is approximately 0.05. The corresponding spanwise wavelengths for elliptic and
mode-A instability are therefore expected to be in the range 0.15 < A < 0.2,
and the corresponding wavelength for mode-B instability is expected to be of the

order A = 0.05. In figure 8.4 the most prominent structures present in the braid
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regions are streaks of w,, which possess a spanwise wavelength of on average
A = 0.05. This wavelength appears to correspond to that expected for mode-
B instability, and is too small to be associated with either elliptic or mode-A
instability. The spatial distribution of Floquet modes associated with mode-B
instability in the study of Barkley & Henderson (1996) appears to closely match
regions outside vortex cores where growth is observed in the current case, hence
the streamwise vortices produced in braid regions appear similar in nature to
mode-B instability observed in bluff body wakes. Plotting streamlines at ¢ = 4?”
(figure 8.6) illustrates the presence of hyperbolic flow in the braid region up-
stream of each developing vortex. In order to detect any elliptic instability,
perturbations within the vortex cores must be analysed. It is difficult to observe
the vortex cores in three-dimensional plots, since they are masked by the w,

structures wrapped around the vortices. Instead, iso-contours of w} are plotted

8
5

core exhibits pronounced perturbations with the same spanwise wavelength as

for an x — z plane through the vortex core at ¢ = < in figure 8.7. The vortex
observed outside the vortex core, i.e. 0.05. However, in contrast to perturba-
tions outside the core which are uniform in amplitude across the span, w} is
much larger in magnitude over the range 0.16 < z < 0.2 (w} ~ 100) than at
0.05 < z =< 0.1 (w} ~ 50). Contours of perturbation z-vorticity taken at mid-
span for ¢ = 8{, formed by subtracting the span-averaged z-vorticity from the
instantaneous z-vorticity, are illustrated in figure 8.8. The structure within the
vortex core appears similar to the localised perturbation solutions presented by
Waleffe (1990) for unbounded elliptical flow, and is orientated along the axis of
strain associated with the vortex deformation. The vortex core therefore ap-
pears perturbed at two distinct spanwise wavelengths with similar amplitude,
A1 ~ 0.05 and Ay =~ 0.2. The first wavelength corresponds to that exhibited by
w, structures outside the vortex core, i.e. mode-B instability, however the second
wavelength is significantly larger and is comparable to wavelengths associated
with elliptic instability. The structure of the perturbation within the vortex core
appears similar to that associated with elliptic instability.

Evidence suggests then, that the production of w, occurs due to a combina-
tion of instabilities within the vortex cores and braid regions, appearing similar
to elliptic and mode-B instabilities respectively, as observed in bluff body wakes
(Williamson, 1996). It seems that the combination of elliptic and mode-A /B in-
stabilities has not been considered in terms of its absolute or convective nature
for bluff body wakes. In the current case, although the instability mechanism
differs from the classical definition of absolute instability for disturbances on par-

allel baseflows, at a given z-location exponential temporal growth occurs. Hence
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Figure 8.6: Iso-contours of w, taken at ¢ = %’T, using 20 levels over the range £150, with

streamlines superposed illustrating both the presence of both hyperbolic streamlines upstream
of a developing vortex and elliptic streamlines within the vortex itself.
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Figure 8.7: Iso-contours of w, taken across the centre of the vortex at ¢ = 8?“, using 10 levels
over the range £100.

Figure 8.8: Iso-contours of perturbation z-vorticity at ¢ = 1.96 after initialisation, correspond-

ing to ¢ = 8?”, using ten levels over the range +5 x 1072,
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the term absolute instability is still useful to describe the behaviour present. Ef-
fectively the mechanism acts as an ‘oscillator’ as opposed to an ‘amplifier’.

The absolute nature of this instability can be explained by referring back to
figure 8.5. At ¢ = 8?”, in the region of hyperbolic flow upstream of the vortex a
comparatively long S-shaped perturbation with large w, magnitude is observed,
attributed to the presence of mode-B instability. This perturbation extends into
a region of strong upstream fluid flow (u &~ —0.7) as illustrated in figure 8.5e, left.
Hence w, perturbations present in the braid region, amplified in the vicinity of
hyperbolic flow, are convected upstream with comparatively large velocity and,
critically, into the braid region associated with the next developing vortex. This
can be clearly seen in figures 8.5a-8.5c. The long thin w, perturbation near
to the airfoil surface in the region 0.45 < x < 0.55 in figure 8.5a, that is a
remnant of the previous shedding cycle, convects into a region of hyperbolic
flow and generates the streamwise orientated structure clearly visible in figure
8.5¢. This behaviour is also illustrated in three dimensions in figure 8.4. Clearly
the absolute mechanism is driven by instability growth within the braid region
of vortices. Instability growth within vortex cores, whilst exhibiting similar
temporal growth rate, appears to exhibit little upstream influence.

A schematic for the absolute instability mechanism is given in figure 8.9.
Perturbations are amplified in braid regions, forming streamwise vortices, and
extend into regions of high magnitude reverse flow. These streamwise vortices
are convected upstream and into the braid region of the next developing spanwise
vortex. The process then repeats with increasing amplitude. The absolute na-
ture of the instability is sustained due to the existence of local regions of reverse
flow for which the velocity magnitude greatly exceeds that of the time-average,
in conjunction with large instability growth rates observed in hyperbolic regions
of fluid flow. This instability mechanism is clearly not predictable via linear sta-
bility analysis of the time-averaged flowfield. Case 3DF may thus be described as
exhibiting transition driven by convective instability and case 3DU by absolute
instability of two-dimensional vortex shedding, by a combination instabilities
similar to elliptic and mode-B instability observed in bluff body wakes. There
is clear evidence that the secondary absolute instability of a forced separation
bubble observed by Maucher et al. (1998) is driven by the same mechanism;
the behaviour observed by Maucher et al. appears similar in many respects,
including similar transitional structures. The instability mechanism may also
be responsible for the rapid breakdown to turbulence observed by Spalart &
Strelets (2000) in the absence of added disturbances. Laminar reattachment is

not possible for the current case, due to the presence of this absolute instability.
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Figure 8.9: Schematic of the manner in which fluid exiting the braid region developed behind
one vortex, subject to mode-B instability growth, enters the braid region associated with the
subsequent vortex. Hyperbolic regions of fluid flow, where mode-B instability is observed to
occur, are shaded.

8.5 Confirmation at o = 7°

Having proposed an instability mechanism that appears responsible for the self-
sustaining turbulence, it is useful to confirm the presence of this mechanism for a
well-resolved simulation. The three-dimensional simulation at o = 7°, presented
in chapter 6, was performed with a priori knowledge of the instability mecha-
nism proposed in this chapter, and hence was initialised in a manner allowing
investigation of the transition process. Details of the initialisation process are
given in section 6.4. Essentially the laminar vortex shedding flow was subject
to a three-dimensional perturbation near the leading edge at the start of the
simulation, and the subsequent was behaviour monitored.

When the simulation is progressed in time, the upper surface boundary layer
appears unstable to the initial perturbation, and behaves in a similar fashion
to that presented in section 8.2; perturbations grow in amplitude exponentially
until non-linear amplitudes are reached. Figure 8.10 shows an x/t plot of w-
velocity disturbance growth for this case, plotted in a similar fashion to that in
section 8.3. Due to the large growth rates the probe readings were multiplied

9t where ¢ = 11 is the temporal growth rate observed in the vicinity

by e~
of vortex shedding, in order to better visualise the data. Therefore, where a
probe signal appears constant in amplitude in figure 8.10, it is in fact growing

at the rate of e

. The behaviour appears qualitatively similar to that observed
at @« = 5° During the period 0 < t < 0.4, a wavepacket induced by the
initial perturbation is observed to convect downstream. When the wavepacket
reaches x = 0.3, sustained temporal disturbance growth is observed in the region
0.3 < x < 0.35, corresponding to the region at which vortex shedding takes

place. Plotting iso-surfaces of w, in the vortex shedding region (figure 8.11)
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illustrates the presence of spanwise periodic disturbances that appear similar to
those identified in section 8.4, at o = 5°. The spanwise wavelength appears to
be A = 0.67, slightly larger than that observed at o = 5°.

It appears that the secondary absolute-instability of the vortex shedding be-
haviour to three-dimensional perturbations is also observed at a = 7°, hence
the presence of the instability mechanism has been confirmed for a well-resolved
simulation. Since the simulation is well resolved in the z-direction (in contrast
to the simulation at ov = 5° in this chapter), it can be progressed further in time
upon reaching nonlinear disturbance amplitudes. This is performed in chapter
6. Upon doing so transition to turbulence is observed, which confirms that the
instability mechanism represents a route to transition, and the transition process

is again observed to self-sustain.

1
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Figure 8.10: Time series of w-velocity scaled by multiplying with e ''*, taken at several
locations within the boundary layer, for case 3D7.

8.6 Summary

A series of three-dimensional simulations, resolving the linear response to three-
dimensional perturbations, suggest that the two-dimensional vortex shedding
behaviour is absolutely unstable to three-dimensional perturbations. The in-
stability is associated with the production of streamwise vortices located in the
braid regions between successive spanwise vortices, with spanwise wavenumber
comparable to that of mode-B instability as observed in bluff body wakes. A
mechanism by which the instability can self sustain is proposed, dependent on
strong local reverse flow and large instability growth rates in braid regions. The

temporal growth rate of the instability increases with airfoil incidence, presum-
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Figure 8.11: Iso-surfaces of streamwise vorticity for case 3D7 at ¢ = 0.7, showing surfaces at
+1 x 1075,

ably due to the larger magnitude of reverse flow present in the two-dimensional
separation bubble. This instability mechanism is unrelated to the acoustic feed-
back instability observed in section 7.3.

It appears therefore, that in the absence of convectively driven transition
within the shear layer, transition will take place by absolute instability of the
two-dimensional vortex shedding in a manner not predicted by classical linear
stability analysis of the time-averaged flowfield. This has important implications
for the modelling of laminar separation bubbles, suggesting that if freestream
turbulence levels drop below a certain value, the time-averaged transition and
reattachment locations will be fixed and not vary with further decreases in

freestream turbulence levels.
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Chapter 9

Acoustic and spectral analysis of
separation bubbles on airfoils at

incidence

9.1 Introduction

Historically, much of the effort in reducing aircraft noise has been focused on
that produced by the engines. Continued reductions in engine noise now mean
that the contribution of airframe noise, including that produced by turbulent
flow over lifting surfaces, is now becoming important. Solving the compressible
Navier—Stokes equations allows both the hydrodynamic field and the acoustic
response of the airfoil to be studied, and can potentially provide insight to
mechanisms of sound generation.

For the current case of the flow over an airfoil with a separation bubble, the
dominant acoustic source is expected to be acoustic scattering at the airfoil trail-
ing edge. Turbulent fluctuations in free-space are inefficient radiators of noise
in low speed flows, since the radiated acoustic intensity scales as M®, (Lighthill,
1952) however when turbulent fluctuations pass a sharp edge, the acoustic radi-
ation scales as M® (Ffowes Williams & Hall, 1970). Hence at low Mach numbers
(e.g. during take-off and landing) trailing edge noise will contribute significant
amount to the total noise generated by an aircraft.

In this chapter the acoustic response of the three airfoil flows presented in
chapters 5 and 6 will be compared in terms of their frequency-dependent behav-

iour.
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9.2 General observations

Acoustic waves present in the three-dimensional simulations may readily be ob-
served by plotting iso-contours of the divergence of velocity, V.U. The diver-
gence of velocity is plotted for all three-dimensional simulations in figure 9.1.
In comparison to the two-dimensional simulation at @ = 5°, cases 3DF and
3DU exhibit a more broadband frequency content, with more high-frequencies
present. The acoustic response appears to be somewhat asymmetric, in that
acoustic waves above the airfoil appear to possess more high-frequency content
than those below the airfoil, as well as being slightly larger in amplitude. The
amplitude of the acoustic radiation appears larger for case 3DU than for case
3DF, and the asymmetry appears more pronounced. Case 3D7 appears similar
in nature to the three-dimensional simulations at o = 5°, with a similar asym-
metry in noise amplitude and frequency content. The amplitude of the acoustic
radiation appears greater than for case 3DU, and the asymmetry appears more
noticeable still. Acoustic waves appear resolved for at least three chords radius
from the airfoil trailing edge.

At this point it should be noted that the acoustic field of case 3DF is of
lesser quality than that of cases 3DU and 3D7. Case 3DF was initialised with
a two-dimensional baseflow, and hence at the start of the simulation trailing
edge noise produced by the two-dimensional vortex shedding flow was present
in the domain (figure 9.2). When this transient acoustic radiation reached the
freestream boundary, reflections were produced that propagated back into the
domain, ultimately contaminating the near-airfoil region. The problem appears
to have been exacerbated because the two-dimensional radiation is much greater
in amplitude than three-dimensional radiation. By the time the forcing was
removed, and case 3DU progressed, the contamination appears to have reduced
significantly. Case 3D7 was performed using a simple buffer at the free-stream
boundary in order to avoid this problem (as described in chapter 2, section
2.2.7), and hence the acoustic data from case 3D7 is the highest quality of all
the three-dimensional simulations.

A simple measure of the amplitude of acoustic radiation generated by the
airfoil flow is p/p’. Iso-contours of p'p’ for all three-dimensional simulations are
plotted in figure 9.3. The most striking observation is that pressure fluctuations
in the potential flow region appear significantly lower in amplitude for case
3DF than for cases 3DU and 3D7. This suggests that the addition of forcing
has reduced the amplitude of acoustic waves generated by the flow around the
airfoil. Low-frequency unsteadiness associated with the hydrodynamic field will

also cause pressure fluctuations however, hence the frequency specific behaviour
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Figure 9.1: Instantaneous iso-contours of V.U over the range £5x 102 for case 3DF (top-left)
case 3DU (top-right), and case 3D7 (bottom).

should be considered before making too bold a conclusion. Iso-contours of p/p/
for case 3D7 appear to be a similar order of magnitude to those of case 3DU.
The azimuthal variation of p'p’ at three differing radii from the airfoil trailing
edge is plotted in figure 9.4 for case 3DU and case 3D7. Case 3DF is omitted
as transient effects, outlined above, corrupted the directivity plot. Two large
lobes, one above and one below the airfoil, are observed for both cases. At three
airfoil chords from the trailing edge case 3D7 exhibits a greater amplitude of p/p/
than case 3DU, and the directivity appears to have changed slightly. Radiation
below the airfoil exhibits a more pronounced upstream directivity, at 140°, and

radiation above the airfoil exhibits more pronounced directivity at 100°.
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Figure 9.2: V.U over the range 5 x 1072 for case 3DF at time ¢ = 5.6 (left), and ¢ = 7.1
(right), showing the effect of residual two-dimensional pressure waves.

05F

-05F

Figure 9.3: Iso-contours of p/p/ for case 3DF (top-left), case 3DU (top-right) and case 3D7
(bottom), using 15 exponentially distributed levels over the range 5 x 10~7 to 1 x 1072,

9.3 Point pressure spectra

Pressure power-spectra were computed at several locations within the upper

surface boundary layer and potential flow region for all the three-dimensional
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Figure 9.4: Azimuthal variation of p'p’ at one (---), two (——) and three (—) chords radius
from the airfoil trailing edge, for case 3DU (left) and case 3D7 (right)
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Figure 9.5: Tllustration of point pressure probe locations for cases 3DF and 3DU (left), and
case 3D7 (right).

cases, to allow comparison of frequency-dependent behaviour. Spectra were
computed over an interval of 7.7 time units, using three overlapping segments
with Hanning windowing applied (as detailed in section 2.3). For reference,
figure 9.5 illustrates point pressure probe locations for cases 3DF, 3DU and
3D7, while table 9.1 gives a qualitative description of the fluid behaviour at
each location. Specific z/y-locations are given under the relevant figure.
Pressure power-spectra computed at six locations for case 3DF are plotted
in figure 9.6 Case 3DF was subject to explicitly added forcing at frequencies
f=7.76 and f = 8.53 in order to promote transition. The effect of the forcing
can be observed in the laminar region (figures 9.6a-9.6¢c) as a double-peak at
the forcing frequencies. The effect of the forcing can be seen most clearly at

x = 0.4 (figure 9.6¢), by which time the explicitly added disturbances have been
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Probe Description
a) Upper surface boundary layer
Upper surface separated shear-layer
Upper surface separated shear-layer
Vortex shedding onset (in two-dimensions)
Upper surface turbulent boundary
Airfoil near-wake
Upper potential flow
Lower potential flow

= RN I PN e Vi)
S S N N e N

Table 9.1: Description of point pressure-probe locations.

amplified significantly via convective instability, and cause a broad peak in the
power-spectra with amplitude of the order ~ 1072. The peak associated with
the forcing frequencies clearly persists downstream of transition, at x = 0.6,
(figure 9.6d) and is just visible at = = 0.85, (figure 9.6e). The effect of forcing
does not persist into the wake however, (e.g. x = 1.5, figure 9.6f), and is
not observed for either of the probes in the potential flow region (figures 9.6g-
9.6f). Pressure power-spectra taken in the potential flow region illustrate clear
differences between acoustic noise present above and below the airfoil (figure
9.6g-9.6f). The amplitude of pressure fluctuations is similar in the range 0 <
f < 10, but for f > 15 the amplitude of pressure fluctuations observed in the
potential flow above the airfoil is significantly greater than that observed below
the airfoil.

In addition to the explicitly added forcing, additional tones are present at
x = 0.1 (figure 9.6a) and x = 0.17 (figure 9.6b). The fundamental tone appears
to be at frequency f = 11.2, and at least three higher harmonics are observed
at * = 0.1. This additional tone is larger in amplitude than the forcing at
x = 0.1, however the amplitude has decreased by x = 0.17 and the tone cannot
be observed downstream of transition, unlike the explicitly added forcing. That
a tone of this frequency should be present at all is surprising, since no frequen-
cies were introduced that can explain its presence. Subharmonics and higher
harmonics of the forcing frequencies may reasonably expected to occur (Dovgal
et al., 1994), as would the difference and sum of the forcing frequencies (e.g.
fi+ fo and fy — f1), however this would not explain the occurrence of a tone
at f = 11.2. When pressure power-spectra are plotted for the two-dimensional
simulation at o = 5°, no tone is observed at f = 11.2 (figure 9.7, left).

No explicitly added disturbances were present for case 3DU, and hence the
peaks observed in the laminar region for case 3DF at f ~ 8 are not present
for case 3DU (figures 9.8a-9.8c). The additional tone observed at f = 11.2

for case 3DF persists however, and can clearly be observed at x = 0.1 (figure
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9.8a), x = 0.17 (figure 9.8b), and = = 0.4 (figure 9.8b). The amplitude of this
additional tone is larger than for case 3DF at all x-locations. If we were to
assume the peak in the spectra is caused by an instability wave, the increase
in amplitude over case 3DF is likely to be because case 3DU exhibits larger
convective growth rates across the bubble than case 3DU (see section 7.2.1).
The presence of the additional tone for both cases confirms that its presence is
unrelated to the explicitly added forcing. Spectra at x = 0.6 and x = 0.85 are
broadly similar in amplitude to those for case 3DF, although case 3DU exhibits
increased amplitude at low frequencies. At x = 1.5 case 3DU exhibits power-
spectra approximately two orders of magnitude larger in amplitude than case
3DF over the range 0.13 < f < 50, despite similar spectra at z = 0.85. Assuming
the pressure fluctuations at = 0.6 and x = 0.85 are primarily caused by the
passage of turbulent structures, it would appear that turbulence in the boundary
layer of case 3DF is decaying more rapidly than that of case 3DU. The probe
located in the upper potential flow exhibits slightly greater amplitude than that
of case 3DF across all frequencies plotted. For the probe in the lower potential
flow an even larger increase in amplitude is observed for case 3DU. Similar
differences in behaviour between the upper and lower potential-flow probes are
observed for case 3DU as for case 3DF; again the upper probe exhibits greater
amplitude at higher frequencies.

In chapter 7, section 7.3.5 an acoustic/hydrodynamic feedback loop was ob-
served for the time-averaged flowfield of case 3DU. The fact that the feed-
back loop has been found present for the time-averaged flowfield of a three-
dimensional simulation raises the question as to whether such behaviour will be
observed in the fully developed time-dependent case. Given that the effect of
explicitly adding forcing at f ~ 8 can still be observed at x = 0.85 in pressure
spectra within the boundary layer for case 3DF (figure 9.6¢), it seems feasible
that a tonal contribution to the turbulent fluctuations, and hence also to the
acoustic response, could occur if an acoustic feedback loop is present. It could
be argued that pressure spectra at z = 0.6 and = = 0.85 exhibit a local maxima
at f = 4 for case 3DU (figures 9.8d and 9.8¢), which would be of similar order to
that expected for the feedback loop, however the maxima is not distinct, and no
such maxima is observed for pressure spectra taken in the potential flow region.
There is therefore no strong evidence of acoustic-feedback-related phenomena
for case 3DU, however the possibility that such a mechanism may generate a
tonal response in turbulent airfoil flows cannot be ruled out. If pressure spectra
could be obtained for much longer time series the low frequency behaviour of

case 3DU could be investigated with more confidence.
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The topology of the flow around the airfoil at o = 7° is different to that
at a = 5°, hence direct comparisons of spectra taken at individual z-locations
are less meaningful, so probes have been placed in locations where similar fluid
phenomena is occurring as for the probes in cases 3DU and 3DF. Again, no
explicitly added disturbances were present for case 3D7, however an additional
tone is still observed in the laminar region (figures 9.9a-9.9¢), along with higher
harmonics. Surprisingly the tone is at the same frequency as for cases 3DF
and 3DU, and again the additional tone is not observed for the equivalent two-
dimensional simulation (figure 9.7, right). The tone persists until the transition
region (z = 0.3, figure 9.9d), but is not present in any other spectra. Spectra at
x = 0.6 (figure 9.9¢) appear remarkably similar to those taken at x = 0.85 for
cases 3DF and 3DU, where boundary layer properties are similar (e.g. ¢f, 6*).
The same asymmetry between upper and lower sides of the airfoil is observed for
probes in the potential flow, with the upper probe exhibiting greater amplitude

at for higher frequencies.

9.4 Surface pressure spectra

Surface pressure spectra are computed in order to describe the frequency content
of fluctuations present in the airfoil boundary layer. Spectra are computed
for all points on the airfoil surface before being span-averaged. No windowing
or segmenting is performed, since span averaging already improves the quality
of the spectra. Iso-contours of the pressure-spectra modulus are then plotted
against S, where S is the airfoil surface coordinate, defining the leading edge
as S = 0. By plotting S instead of x-location the leading-edge region can be
observed more clearly. Surface pressure spectra are plotted in this fashion for
case 3DF, 3DU and 3D7 in figures 9.10, 9.11 and 9.12 respectively.

Surface pressure spectra from case 3DF clearly illustrate the presence of the
explicitly added forcing at f = 7.76 and f = 8.53 on the upper airfoil surface.
The forcing at f = 7.76, 3 = 27/ L, appears to be more strongly amplified than
that at f = 8.53, which was forced at § = 67/L, and § = 8x/L,. The higher
harmonic f = 15.52 can be observed, and a ‘ladder’ structure of tones appears
present around the two primary forcing frequencies; additional tones appear with
frequency spacing the difference of the two explicitly added forcing frequencies,
ie. Af =853 —7.76. Upstream of transition the only significant fluctuations
appear to be either low frequency in nature in the region 0. < z < 0.3 or
fluctuations at the forcing frequencies. Little other unsteadiness is present. In

the vicinity of transition, x = 0.45, the modulus of all frequencies increases
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Figure 9.6: Temporal pressure spectra for case 3DF, taken at z-locations indicated.
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dramatically. Downstream of transition the amplitude of fluctuations decreases
with increasing z-location, with the amplitude of high frequency fluctuations
decreasing more rapidly than that of the low frequencies. The additional tone
at f = 11.2 is also visible in surface spectra, and appears largest in amplitude
at x = 0.1. The tone appears small in amplitude in comparison to the forcing
frequencies.

On the lower airfoil surface the behaviour is markedly different. There appear
to be very few fluctuations at mid to high frequencies. Pressure fluctuations are
observed at low frequencies however, and appear to increase in amplitude both
with proximity to the airfoil trailing edge and with decreasing frequency. The
lower surface boundary layer is subject to a favourable pressure gradient until
around the mid-chord, and hence no instability wave growth is expected in this
region. It appears that the pressure fluctuations on the lower airfoil surface are
caused by the passage of acoustic waves generated at the trailing edge, and hence
for case 3DF trailing edge-noise appears to be significant primarily for f < 10.

As expected, case 3DU (figure 9.11) exhibits no clear tones in the transi-
tion region. Although local maxima may be observed in the transition region,
they are not significantly larger in amplitude than at other similar frequencies.
Compared to case 3DF, frequencies in the range 1 < f < 8 appear significantly
larger in amplitude in the transition region. The amplitude of fluctuations in
the range 1 < f < 4 over the separated region is also greater than for case 3DF,
suggesting that the entire bubble is more unsteady, as well as the transition
process being more energetic. The additional tone is observed to be present, at
greater amplitude than for case 3DF, and reveals itself to consist of two closely
spaced peaks, at f = 10.9 and f = 11.3. Although the amplitude of the tone is
significant, it does not reach levels similar to those observed during transition

at lower frequencies, and hence is unlikely to play a primary role in instigating
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Figure 9.8: Temporal pressure spectra for case 3DU, taken at z-locations indicated.
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173



transition. As for case 3DF, the acoustic scattering appears to be significant
primarily for 1 < f < 10, based on the amplitude of pressure fluctuations on the
lower airfoil surface, however the amplitude of fluctuations on the lower airfoil
surface is much greater for case 3DU. This would appear to be due to the in-
creased amplitude of fluctuations in the range 1 < f < 8 over the upper airfoil
surface, and the closer proximity of the transition location to the trailing edge.

Case 3DT7 also exhibits a clear maximum at the frequency of the additional
tone, f = 11.2 (figure 9.12). The additional tone appears to take the form of
a single peak, and is the largest amplitude fluctuation present. The spectral
behaviour of the additional tone appears qualitatively similar to that of the
explicitly added forcing of case 3DF; almost as if a single-frequency instability
wave has been introduced and is strongly convectively amplified. The additional
tone reaches peak amplitude at x = 0.3. The laminar region shows increased
amplitude of fluctuations at all frequencies compared to the cases at a = 5°.
Pressure spectra on the lower airfoil surface again show that trailing-edge scat-
tering is most effective for f < 10. Visual inspection suggests that the amplitude
of spectra on the lower surface is of a similar order of magnitude to that of case
3DU.

For cases 3DF and 3DU, and to a very limited extent for case 3D7, unusual
behaviour can be observed near the leading edge on the upper airfoil surface.
Most noticeably for case 3DF, there appears to be a local maxima in the spec-
tra occurring across a range of frequencies, located directly in the vicinity of
the leading edge but biased slightly toward the upper airfoil surface. Acoustic
scattering is known to occur at the leading edge of airfoils (Roger & Moreau,
2005), however due to the finite leading-edge radius one would expect it to be
predominant only for even lower frequencies than trailing edge noise. Certainly,
Roger & Moreau (2005) suggest that leading-edge back-scattering will be sig-
nificant only for kc < 10, where k is the acoustic wavenumber and c the airfoil
chord. For case 3DF the speed of sound in the vicinity of the leading edge is
~ 1.1, suggesting that leading-edge scattering will be significant for f < 1.75.
The local maxima appears at significantly higher frequencies than 1.75, hence is
unlikely to be caused by leading-edge scattering, based on the criteria of Roger
& Moreau.

A further possibility is that the local maxima represents a location of bound-
ary layer receptivity to free-stream (acoustic) disturbances. The receptivity
process was observed numerically in section 7.3.1, and found to be a critical
stage in the observed acoustic feedback instability. Where boundary layer re-

ceptivity does occur, the resultant hydrodynamic disturbances will either decay
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or amplify dependent on the local boundary layer stability characteristics. Lin-
ear stability analysis (section 7.2) suggests that boundary layer disturbances will
not convectively amplify until z > 0.05, hence boundary layer receptivity and
subsequent decay of the hydrodynamic disturbances may potentially be respon-
sible for the maxima observed at airfoil the leading edge. Certainly, boundary
layer receptivity is expected to occur over a range of frequencies (Wanderley &
Corke, 2001), and in section 7.3.1 was observed to take place for frequencies as
low as f = 1.7 and as high as f = 11. It is therefore felt that leading-edge
receptivity is a more likely explanation for the presence of the local maxima

than leading-edge back-scattering.

9.5 Free-stream pressure spectra

In order to study the frequency dependent-behaviour of the acoustic response
of the airfoil, temporal pressure spectra were computed for the potential flow
region for every fourth point in both the £ and 7 directions, at the airfoil mid-
span. The spectra are presented in two ways. First, the real coefficient of the
Fourier transformed pressure field is plotted for specific frequencies. This clearly
illustrates the directivity of acoustic radiation at specific frequencies. Secondly,
the modulus of the spectra is averaged over finite frequency ranges and plotted.

This illustrates more general trends of frequency dependent behaviour.

9.5.1 Real coefficient of the Fourier transformed pressure field

The real coefficient of the direct Fourier transform of pressure is plotted at
four frequencies for each three-dimensional simulation. Plotting the real co-
efficient illustrates clearly the directivity and origin of pressure fluctuations.
The frequencies were chosen for their possible physical significance. Frequency
f = 3.37 corresponds to the frequency of the naturally occurring vortex shedding
at a = 5°, frequency f = 7.76 corresponds to the dominant forcing frequency
of case 3DF, frequency f = 11.2 corresponds to the additional tone observed in
point pressure spectra (section 9.3) and surface pressure spectra (section 9.4),
and frequency f = 15 is an arbitrarily selected higher frequency.

The real part of the Fourier transformed pressure field is plotted for case
3DF, case 3DU and case 3D7 in figures 9.13, 9.14 and 9.15 respectively. The
behaviour of individual frequencies varies strongly both with frequency and from
case-to-case. For cases 3DF and 3D7, the real coefficient at frequency f = 3.37
appears indicative of trailing edge noise. The real-coefficient takes the form of

periodic waves originating at the airfoil trailing edge, with primarily upstream
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Figure 9.10: Modulus of the span-averaged Fourier transform of surface pressure for case 3DF
showing frequencies 1 < f < 16 (left), plotted using 15 levels exponentially distributed over
the range 1 x 107 —4x 1072, and frequencies 1 < f < 50 (right), plotted using levels similarly
distributed over the range 1 x 107° — 4 x 1072.

Figure 9.11: Modulus of the span-averaged Fourier transform of surface pressure for case 3DF
showing frequencies 1 < f < 16 (left), plotted using 15 levels exponentially distributed over
the range 1 x 10~* —4 x 1072, and frequencies 1 < f < 50 (right), plotted using levels similarly
distributed over the range 1 x 107° — 4 x 1072.

Figure 9.12: Modulus of the span-averaged Fourier transform of surface pressure for case 3DF
showing frequencies 1 < f < 16 (left), plotted using 15 levels exponentially distributed over
the range 1 x 107* —4 x 1072, and frequencies 1 < f < 50 (right), plotted using levels similarly
distributed over the range 1 x 107° — 4 x 1072,
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directivity. Iso-contours of the real coefficient for case 3D7 in particular appear
visually similar to the trailing edge noise observed in two-dimensions, at o = 5°
(section 4.4.1), with similar out-of-phase behaviour above and below the airfoil.
Pressure-field spectra for case 3DF are of lesser quality, however qualitatively
similar behaviour can still be observed. For case 3DU there is still evidence of
trailing edge noise, but the real-coefficient appears asymmetric, as though the
acoustic radiation over the upper airfoil surface is stronger.

Frequency f = 7.76 exhibits different behaviour depending on the airfoil
incidence. At o = 5° (i.e for cases 3DF and 3DU) trailing-edge noise appears
to be the dominant acoustic source, although there is a slight kink in wave
fronts above the airfoil for case 3DF, and an upstream pointing lobe of higher
amplitude at x =~ 0.5 for case 3DU. At a = 7° there is almost no trailing-
edge noise present. Instead, the acoustic radiation appears to originate from
a second acoustic source. This secondary source appears to be located on the
upper airfoil surface, at around x = 0.4, and possesses clear upstream directivity.
The presence of forcing at f = 7.76 cannot be detected by visual inspection of
case 3DF, hence the forcing appears ‘quiet’ in comparison to naturally occurring
acoustic events.

Frequency f = 11.2 corresponds to the additional tone observed in point pres-
sure spectra (section 9.3), and surface pressure spectra (section 9.4). The real
coefficient at this frequency exhibits unexpected behaviour; the real coefficient
is large above and close to the airfoil, but does not seem to be representative of
pressure waves propagating into the freestream. Taking the Fourier transformed
pressure field, performing an inverse transform for the single frequency f = 11.2
and animating the real part of the fluctuating pressure signal allows the direc-
tion of wave propagation to be determined. The pressure field for case 3DU at
f = 11.2/is plotted in figure 9.16 for three phases, ¢ =0, ¢ = 7/2 and ¢ = 37/2,
however the resultant behaviour is most clearly illustrated in animations. In light
of animated data it is apparent that the pressure fluctuations at f = 11.2 take
the form of upstream travelling waves that rapidly decay in amplitude upstream
of the airfoil leading edge. Measuring as close to the airfoil surface as possible,
the disturbance wavelength appears to lie in the range 0.2 — 0.29, which cor-
responds to a propagation velocity in the range 2.24 < ¢ < 3.25. Conversely,
above the airfoil the streamwise velocity varies over the range 1.1 < u < 1.5, and
given a Mach number M = 0.4 this would suggest upstream wave propagation
velocities in the range 1 < ¢ < 2.1. Furthermore, trailing edge noise is apparent
below the airfoil at low amplitudes in figure 9.16, and the wavelength of the

trailing edge noise below the airfoil appears significantly smaller than that of

177



the pressure waves above the airfoil, despite the fact that the freestream velocity
is lower below the airfoil hence the wavelength should be longer. Effectively the
radiation above the airfoil possesses a wavelength longer than that expected for
pressure waves propagating upstream at the speed of sound at f = 11.2. It
should be noted that the structures observed are very large in comparison to
the grid spacing, and hence do not appear to be grid-dependent. In light of this
unusual behaviour, the additional tone observed at f = 11.2 is discussed in more
detail in section 9.6.

At frequency f = 15, for all cases, the dominant source of acoustic radiation
does not appear to be the airfoil trailing edge, but at some location on the upper
airfoil surface. The apparent source of acoustic radiation appears to be located
slightly further upstream for case 3D7 than for cases 3DF and 3DU, and the
wave-front pattern suggests that the transition/reattachment region is generat-
ing acoustic radiation. The directivity of acoustic waves is primarily upstream,
although for case 3D7 and, to a lesser extent, case 3DU there is evidence of
radiation with downstream directivity. The production of acoustic radiation in
the transition/reattachment region appears to be an entirely separate phenom-
enon to that of acoustic scattering at the trailing edge, and hence would not be
predicted by classical trailing-edge theory (Amiet, 1976).

It appears that for the airfoil flow investigated here, there two main sources
of acoustic radiation present. Acoustic waves are generated both by scatter-
ing at the airfoil trailing edge, and also in the transition/reattachment region.
The trailing edge noise appears to possess primarily upstream directivity, and
appears approximately symmetric in both amplitude and directivity. Acoustic
waves generated in the transition region appear to possess both upstream and
downstream directivity and, being produced solely on the upper airfoil surface,
the directivity is highly asymmetric. At f = 11.2 unusual behaviour is observed
in time-dependent pressure above the airfoil. Upstream travelling pressure waves
are present, with wavelength longer than that expected for acoustic waves trav-
elling at the speed of sound, that decay rapidly upstream of the airfoil trailing
edge.

9.5.2 Frequency-averaged modulus of the Fourier transformed pres-

sure field

In section 9.5.1 the real coefficient of the Fourier transformed pressure field was
plotted for four individual frequencies, revealing the directivity and apparent
origin of acoustic waves in each case. Having identified what appear to be the

dominant sources of acoustic radiation, general trends of the frequency depen-
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Figure 9.13: Iso-contours of the real part of S, for case 3DF, plotted over the range £3 x 1074,
for frequencies indicated.

dent acoustic behaviour will now be studied. In order to do this, the frequency-
averaged modulus of the Fourier transformed pressure field is plotted for four
frequency intervals; 1 < f<4,4< <9, 9< f<12and 12 < f <16, for all
three-dimensional simulations. The frequency averaged modulus is formed by
summing the modulus over all available frequencies then dividing by the number
of frequencies, e.g.

Sp(f) =2y S’}E]f), (9.1)

where N is the total number of frequencies averaged, hence the amplitude of

each frequency range may be compared directly.
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Figure 9.14: Iso-contours of the real part of S, for case 3DU, plotted over the range £3x 1074,
for frequencies indicated.

Pressure spectra computed for the acoustic field for case 3DF are unfortu-
nately slightly corrupted due to the transient behaviour described in section
9.2, hence spectra for case 3DU will be discussed first, plotted in figure 9.17.
The amplitude of pressure spectra computed for case 3DU appears in general
to decrease with increasing frequency. The frequency-averaged modulus for the
interval 1 < f < 4 exhibits much greater amplitude than the other frequency
intervals; in the range 4 < f < 9 the frequency-averaged modulus is slightly
lower in amplitude, and over intervals 9 < f < 12 and 12 < f < 16 the mod-
ulus is lower still. The directivity of the pressure spectra also changes with

frequency. For 1 < f < 4 the frequency-averaged modulus appears to exhibit

180



1.5

05F

b) f =17.76
1'5,_ 1.57— ,7/»

=

Z
) 2 osf ~
“'«LMWA : \f’/&'e:&,@*

05

-
| —
-
N\

> of @ >,0:_ g;j:l
0.5 0.5
1+ 1
-1.57—“‘|““|“| —1.5;“‘|““|““|
1 0 X 1 2 -1 0 X 1 2
¢) f=11.2 d) f=15
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upstream directivity and, for y > 1 at least, appears to possess approximately
the same amplitude above and below the airfoil. The modulus is a maximum at
the airfoil trailing edge, and the iso-contour distribution suggests that the airfoil
trailing edge is the dominant source of pressure fluctuations propagating into the
free-stream. Indeed, the directivity appears comparatively similar to that of the
trailing edge scattering observed clearly in two-dimensions at a = 5° (section
4.4.1), and to trailing edge noise identified for specific frequencies in section 9.5.1.
For the higher frequency intervals 9 < f < 12 and 12 < f < 16, spectra ex-
hibit dramatically different behaviour. At 9 < f < 12 there is some evidence of

trailing edge noise production below the airfoil, however the frequency-averaged
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Figure 9.16: Iso-contours of fluctuating pressure, p’, plotted for case 3DF at the single fre-
quency f = 11.2, showing levels over the range 5 x 1074.

modulus is greatest in amplitude at approximately x = 0.5 on the upper airfoil
surface. The directivity is highly asymmetric, with the amplitude of the mod-
ulus in the freestream being significantly greater above the airfoil than below.
The behaviour is even more pronounced at 12 < f < 16; almost no trailing-edge
noise is observed at these contour levels, and the asymmetry of the spectra is
even more striking. The frequency-averaged modulus appears to suggest that
over these frequency ranges acoustic waves are primarily being produced in the
transition/reattachment region, as observed for f = 15 in section 9.5.1. For
4 < f <9 the spectra exhibits a combination of behaviours. There appears to
be significant trailing edge noise present and the amplitude of the frequency-
averaged modulus appears to be a similar order of magnitude above and below
the airfoil, however the directivity appears to be asymmetric.

Case 3DF appears to display the similar trends to case 3DU, however the
amplitude of pressure spectra appears smaller for all frequencies. This appears to
confirm that the addition of forcing reduces the amplitude of acoustic radiation
produced by the flow around the airfoil for this case. Trailing edge noise appears
present at significant amplitudes for f < 10. As for case 3DF, however, above
f = 10 the dominant source of pressure fluctuations propagating into the free-
stream appears to be located on the upper airfoil surface at approximately x =
0.5, i.e. the transition/reattachment region, and above f = 10 the directivity
appears highly asymmetric. Pressure spectra for case 3DF appear corrupted for
1 < f <9, where the effect of the acoustic transient described in section 9.2 can
be observed upstream of the airfoil.

Pressure spectra computed from case 3D7 are a similar order of magnitude to
those computed from case 3DU, suggesting that a modest increase of incidence
affected the amplitude of acoustic radiation far less then the addition of forcing.

Again, similar behaviour is observed as for cases 3DU and 3DF, with trailing
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Figure 9.17: Iso-contours of the frequency-averaged modulus of S, for case 3DU, plotted for
frequencies indicated.

edge noise apparently dominant for 1 < f < 4 and noise generated in the tran-
sition/reattachment region apparently dominant for 9 < f < 16. For case 3D7
the second acoustic source appears to be located slightly further upstream com-
pared to case 3DU, perhaps providing further evidence that this second source of
acoustic radiation is indeed associated with the transition/reattachment region.

To summarise, all three cases display similar general trends of behaviour. It
appears that for 1 < f < 4 trailing edge noise is the dominant acoustic source,
whereas for f > 9 noise generated in the transition/reattachment region appears
to be dominant. For 4 < f < 9 trailing edge noise is still the dominant acoustic

source, however the effect of the second noise source can still be observed as a
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change in directivity. The nature of the mechanism by which acoustic radiation
is produced in the transition/reattachment region is not known beyond doubt,
however it appears likely that the highly unsteady wall shear-stress present in
the transition region (see 5, figure 5.12) is likely to be an important source of
radiation, as has been found for turbulent channel flow at low Mach number
(Hu, Morfey & Sandham, 2003).

the amplitude of acoustic radiation produced in this region scales with Mach

It would be of interest to determine how

number. This would not only help to determine the nature of the acoustic source
(e.g. scattering or free-space turbulent fluctuations), but also help to determine
the significance of this source in terms of its contribution to airfoil self-noise at

different Mach numbers.
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Figure 9.19: Iso-contours of the frequency-averaged modulus of .S, for case 3D7, plotted for
frequencies indicated.

9.6 Discussion of the additional tone at f = 11.2

Pressure spectra taken within both the airfoil boundary layer and on the airfoil
surface reveal a tonal contribution at f ~ 11.2 for all three-dimensional cases.
Spectra taken in the acoustic field at this frequency also display unusual behav-
iour; upstream travelling pressure waves are observed, with wavelength longer
than that expected for acoustic waves, which do not appear to be propagating
into the free-stream. The origin of this tone appears unclear, and hence will be
subject to brief discussion.

It is feasible that additional tones could be caused by an acoustic feedback-
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loop mechanism involving communication between the airfoil leading-edge and
the trailing-edge, as observed in section 7.3. If this were the case, however,
one could reasonably expect the frequency of the tone to vary from case to case.
Also, the acoustic feedback loop observed in section 7.3 was observed to occur for
f <4, and evidence in this chapter appears to suggest that acoustic scattering
at the trailing edge is most efficient for low frequencies. This appears to discount
a leading-edge/trailing-edge acoustic feedback loop, since the additional tones
observed occur at higher frequencies than expected for a leading-edge/trailing-
edge feedback loop.

A second possibility is that some other form of acoustic feedback loop is
present, different to that suggested in section 7.3, for example involving commu-
nication between the transition region and the airfoil leading edge. Certainly,
acoustic waves are observed to be generated in the vicinity of transition (e.g.
see figure 9.15b) and receptivity of the leading edge has been documented for
the current case (section 7.3.1). The receptivity process itself will occur most
efficiently at a certain frequency, and the energy content of the transitional noise
will also be frequency dependent. This could give rise to a preferred frequency
that would differ from that associated with a leading-edge/trailing-edge feed-
back loop. In section 7.3.1 the boundary layer receptivity process was observed
to be significant until at least f = 11, a value very close to the frequency of
the additional tone at f = 11.2. If the additional tone were to be the result of
a leading-edge/transition feedback loop, this would also explain the noticeable
asymmetry observed in the fluctuating pressure field at f = 11.2, since the tonal
contribution to self-noise would occur only on the upper surface. Furthermore,
some similarities exist between noise generated in the transition region and the
spatial structure of the additional tone. In particular, noise generated in the
transition region appears to propagate in a direction almost normal to the air-
foil, and is small in amplitude upstream of the airfoil leading edge (figure 9.15d);
in this respect the transitional noise is similar to the additional tone. However,
the hypothesis of a leading-edge/transition feedback loop does not explain the
comparatively long wavelength of pressure fluctuations associated with the ad-
ditional tone, and one would still expect the frequency of the tone to vary from
case to case, since the structure of the boundary layer in the leading edge region,
and hence the receptivity process, will vary.

A third possibility is that the upper airfoil boundary layer exhibits some reg-
ularly occurring motion at this frequency, such as a ‘global” wall-normal flapping
of the shear layer, which results in pressure fluctuations in the near-airfoil region.

Stability analysis of the time-averaged flowfield of case 3D7 (presented in chap-
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Figure 9.20: Iso-contours of VU’ for the time-averaged flowfield of case 3D7 as described in
section 7.3.5, at ¢t = 8.4, showing 10 levels over the range +2 x 10710,

ter 7, section 7.3.5) revealed a very weak form of absolute instability in which
the separated region appears to act as an ‘oscillator’, which could potentially
generate a tonal response in the fully developed flow. The oscillatory behaviour
observed in section 7.3.5 occurs over a broader frequency range than the tonal
contribution observed for three-dimensional simulations however, and when iso-
contours of VU’ are plotted (figure 9.20), the flowfield appears dissimilar to that
associated with the tone at f = 11.2 (e.g. figure 9.14c).

To summarise, the origin of the additional tone appears difficult to deter-
mine, however it appears unlikely to be generated by a leading-edge/trailing-
edge feedback loop. The concept of a leading-edge/transition feedback-loop
appears attractive, however it does not explain the unusual spatial structure of
pressure fluctuations at f = 11.2 and the resultant implications for wave prop-
agation velocities. At present these phenomena remain unexplained, although
it is suggested that the superposition of multiple sources of pressure fluctua-
tions, for example trailing-edge noise, transition noise and pressure fluctuations
associated with hydrodynamic behaviour, may result in unexpected behaviour
in the Fourier transformed pressure field. It is conceivable, for example, that a
standing-wave pattern could be formed under appropriate conditions. Attempts
to generate patterns exhibiting long disturbance wavelengths via model prob-
lems, e.g. superposing sinusoidal travelling waves and computing the Fourier
transform, have not been successful however. It is felt that such studies are
inconclusive though, since in the ‘real” airfoil flow the free-stream velocity (and
hence wave propagation velocity) varies in two-dimensions, and the directivity
and phase will vary between acoustic sources. In light of the available evidence,
the hypothesis of a leading-edge/transition acoustic feedback loop remains the

most feasible mechanism for the additional tones.
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9.7 Summary

The acoustic response of three airfoils with separation bubbles has been com-
pared. The overall intensity of sound radiation from the airfoil was found to be
a similar order of magnitude for unforced cases at a« = 5° and o = 7°, however
when forcing is introduced at o = 5° the overall intensity of sound radiation
decreases by approximately an order of magnitude. This appears to be because
the presence of forcing suppresses low frequency events in the turbulent region,
which are more effectively scattered than events occurring at high frequency.
Hence it appears that the presence of forcing appears to affect the acoustic
response of the airfoil more significantly than a modest change of incidence.

Surface pressure spectra suggest that trailing edge noise is significant only
for f < 10, and this appears corroborated by acoustic spectra taken in the
free-stream. As well as the expected acoustic scattering at the trailing-edge, a
second noise source appears present for all cases; above f = 10 trailing edge
noise becomes less significant, however acoustic waves continue to be produced
in the transition/reattachment region. Noise produced in this region appears to
propagate with different directivity to trailing edge noise observed for f < 10
and is entirely asymmetric, being produced over only the upper airfoil surface.
This second noise source would not be predicted by classical trailing edge theory,
and appears an entirely different phenomenon.

Point pressure probes and surface spectra illustrate the presence of discrete
tones for all cases. In particular, an additional tone is present at f = 11.2 that
becomes large in amplitude for a« = 7°. This tone a associated with unusual
pressure-spectra behaviour in the near-airfoil region, that does not correspond
to acoustic wave propagation. This additional tone does not appear to generated
by the mechanism outlined in section 7.3, and the reason for its presence is not

clear.
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Chapter 10

Conclusions and future work

The flow around a NACA-0012 airfoil at low Reynolds number has been in-
vestigated numerically, in both two and three-dimensions, via a combination of
linear stability analysis and direct solution of the compressible Navier—Stokes
equations. The application of DNS to complex geometries such as that of airfoil
flow has only recently begun to be undertaken, and the current study repre-
sents the first comprehensive investigation of airfoil flow at MAV-type Reynolds
numbers by direct numerical simulation. Primary topics that have been studied

include:

e Investigations of the two-dimensional flow around airfoils at both Re, = 10*
and Re, = 5 x 104

e A study of the effect of forcing upon the behaviour of a separation bubble

formed on an airfoil at incidence

e An investigation of the effect of a modest incidence change upon separation
bubble behaviour

e A thorough investigation of the convective and absolute stability charac-
teristics of both forced and unforced separation bubbles formed on airfoils

at incidence

e Determination of the mechanism for self-sustaining turbulence observed in

unforced separation bubble simulations

e An investigation of the acoustic response of the flow around airfoils with

both forced and unforced separation bubbles
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10.1 Summary of principal findings

10.1.1 TImportant results from two-dimensional simulations

At Re. = 10* the wake was found to be unstable, ultimately resulting in von-
Karman type vortex shedding. At Re. = 5 x 10%, a low frequency flapping
oscillation was observed at a = 0° over the range 0.5 < M < 0.8, which was
found to cause fluctuations in the lift-coefficient much greater in amplitude than
for the vortex shedding. A series of simulations at varying incidence, at Re. =
5 x 10%, M = 0.4, illustrated the presence of a laminar separation bubble with
vortex shedding. The vortex shedding undergoes a behavioural change at av < 5°.
For av < 5° the vortex shedding is near-periodic, and occurs at a single frequency.

For a > 5° the vortex shedding is more irregular.

10.1.2 The effect of boundary layer forcing upon separation bubble

behaviour

A separation bubble was formed on a NACA-0012 airfoil at Re, = 5 x 10°,
M = 0.4 and o = 5°, with explicitly added low-amplitude disturbances to trig-
ger transition to turbulence. When the disturbances are turned off, transition
to turbulence was observed to self-sustain for the unforced case, however the
presence of forcing was found to significantly alter the behaviour of the laminar
separation bubble. The presence of forcing reduces the length of the separation
bubble and improves the lift-to-drag ratio by 23%. The turbulence intensity
downstream of transition appears to be reduced in the forced case, with lower
frequency fluctuations in particular being reduced in amplitude. As a result
the acoustic radiation observed in the forced case was around an order of mag-
nitude smaller than for the unforced case. The presence of forcing also alters
the developing turbulent boundary layer behaviour; the unforced case exhibited
an increased amplitude of fluctuations away from the wall, and the turbulence
possessed increased spanwise coherence. Both of the three-dimensional separa-
tion bubbles exhibited large variations in skin-friction. At no point downstream
of transition was the flow either fully attached or fully separated, suggesting
that the concept of a reattachment ‘point’ is misleading. Comparison of skin-
friction PDF’s illustrates that time-dependent behaviour of the two-dimensional
separation bubble is fundamentally different to that of the three-dimensional
bubbles.
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10.1.3 The effect of incidence upon separation bubble behaviour

A separation bubble was formed on a NACA-0012 airfoil at Re, = 5 x 10°, M =
0.4 and o« = 7° in order to investigate the effect of a modest incidence change on
separation bubble behaviour. A low amplitude perturbation was introduced at
initialisation, but no further disturbances were added. Transition to turbulence
was observed to occur, and the transition to turbulence self-sustained as at
a = 5°. The intensity of turbulent fluctuations is similar to the unforced case at
a = 5°, and the acoustic radiation produced by the flow over the airfoil appears
a similar order of magnitude also. Turbulent fluctuations in the developing
boundary layer were significantly greater away from the wall than near the wall.
For the cases considered, it appears that the addition of forcing affects the
characteristics of the turbulence and acoustic radiation more significantly than

a modest incidence change.

10.1.4 Stability characteristics of separation bubbles formed on air-

foils at incidence

No evidence of local absolute instability could be detected for any of the three-
dimensional simulations when performing linear stability analysis of the time-
averaged flow field. The same was found to be true of the corresponding two-
dimensional simulations. In order to confirm the results of the linear stability
analysis, whilst accounting for non-parallel effects, Navier—Stokes simulations
were performed using forcing terms to determine the response of the time-
averaged flowfield to low-amplitude perturbations. A very weak oscillatory be-
haviour was observed for simulations at o = 7°, however no evidence of absolute
instability could be observed that would explain the self sustained transition to
turbulence at @ = 5°. Convective stability characteristics were also investigated.
For all cases the most amplified instability wave across the separation bubble
was found to be much higher in frequency than the naturally occurring vortex

shedding observed in two-dimensions.

10.1.5 An acoustic feedback instability of flow over an airfoil with a

laminar separation bubble

Forced Navier—Stokes simulations, investigating the response of time-averaged
flowfields extracted from airfoil simulations to low amplitude perturbations, il-
lustrated the presence of an acoustic feedback loop. The resultant behavior
may be defined as globally unstable, although no local absolute instability or
‘BiGlobal’ instability was observed. The feedback loop was found to be present
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for the time-averaged flowfield of two-dimensional simulations at a = 5°, 7°,
and 8.5°, and for the unforced three-dimensional simulation at e = 5°. The pre-
ferred frequency of the feedback loop is lower than that of the most convectively
amplified instability wave over the upper airfoil surface, hence it is suggested
that an acoustic feedback loop of this type may potentially act as a frequency

selection mechanism for the vortex shedding observed in two-dimensions.

10.1.6 A mechanism for self-sustaining turbulence

A mechanism for the self-sustaining transition to turbulence observed to take
place for unforced separation bubbles has been proposed. The mechanism is
essentially a secondary instability of the naturally occurring vortex shedding to
three-dimensional perturbations, and is driven primarily by two mechanisms.
Firstly, three-dimensional perturbations are strongly amplified when they con-
vect into regions of high strain, associated with hyperbolic streamlines, between
adjacent vortices. Secondly, perturbations leaving the regions of high strain
then extend into regions of strong reverse flow, where the magnitude of re-
verse flow greatly exceeds that of the time-averaged field. The perturbations
are then convected rapidly upstream, and into the strain field associate with
the subsequent developing vortex. The instability amplification rates and up-
stream convection velocities are such that the instability manifests itself in an
absolute fashion. The instability appears analogous to behaviour observed in
wakes, and may explain self-sustaining transition to turbulence observed in pre-
vious studies of separation bubbles. The instability mechanism has important
implications for the modelling of laminar separation bubbles, suggesting that
if freestream turbulence levels drop below a certain value, the time-averaged
transition and reattachment locations will be fixed and not vary with further

decreases in freestream turbulence levels.

10.1.7 Acoustic characteristics of separation bubbles formed on an

airfoil at incidence

Trailing-edge noise is clearly observed for all three-dimensional simulations, and
is found to be the dominant source of acoustic radiation for frequencies below
f = 10. In addition to the expected trailing edge noise, acoustic radiation was
observed to be generated in the transition/reattachment region for all cases.
Although evidence of this secondary source is present at lower frequencies, the
contribution of the secondary source to radiation generated by the airfoil appears
more significant at higher frequencies. For f > 10 the secondary source was

observed to be the dominant source of acoustic radiation. The second source
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appears to generate primarily upstream propagating acoustic waves, although
there is some evidence that waves with downstream directives are also produced.
The second source of acoustic radiation appears unrelated to trailing edge noise,
and hence would not be predicted by classical trailing edge theory, however the

second source is a significant contributor to airfoil self-noise for the cases studied.

10.2 Recommendations for further study

The present study represents a thorough investigation of the behavior of laminar
separation bubbles on airfoils at low Reynolds number, however in performing

this study several avenues of further study have been identified.

e The behaviour of short separation bubbles formed on a thin airfoil should
be investigated. For such geometries separation bubbles typically grow in
length with increased incidence near stall, whereas the bubbles observed in
this study decrease in length. Simulating a separation bubble an a geometry
exhibiting thin-airfoil type behaviour under similar conditions, e.g similar

Rey,. or Re;, would allow any differences in the physics to be investigated.

sep
e Although the presence of forcing dramatically altered the separation bub-
ble behaviour, the forcing was low in amplitude compared to, for example,
Alam & Sandham (2000). The amplitude of forcing should be increased by
an order of magnitude, and the simulation progressed, in order to deter-
mine also the effect of the amplitude of forcing. The transitional behaviour
should be monitored in order to determine whether A-vortices or other

coherent structures are present as for Alam & Sandham.

e Low-frequency flapping of laminar separation bubbles has been observed
for Re. = 1.3 x 10° for a NACA-0012 airfoil at o = 11.5°, and appears to
take the form of periodic bubble growth and bursting (Rinoie & Takemura,
2004). Ideally an attempt should be made to capture this behaviour via
numerical simulation as soon as computationally feasible. The phenomenon
of bubble bursting is difficult to capture numerically, since it typically oc-
curs as a dynamic process. The low-frequency flapping appears to manifest
itself as periodic bubble bursting, and hence if this behaviour could be cap-
tured numerically the physics of the bursting process could be scrutinised

in detail for the first time.
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e As computational power increases simulations with increased complexity
will be possible. Micro-air-vehicles typically employ low aspect-ratio wing
planforms, and hence it appears likely that direct numerical simulations
of an entire MAV wing planform may become feasible within the next few
years. A more fundamental study however would an investigation of the
effect of aspect ratio upon separation bubble behavior, for a rectangular
wing planform. The influence of the finite span upon the fluid dynamics of
the separation bubble can be studied, with potential for improving aircraft

performance at MAV-type Reynolds numbers.

e The mechanism of boundary layer receptivity to acoustic waves should be
investigated. A first step would be to determine if the propagation direction
of the acoustic waves influences the receptivity process; if only upstream
travelling waves generate boundary layer disturbances this may suggest that
‘back-scattering’ of acoustic waves is integral to the receptivity process. By
subjecting the airfoil flow to single acoustic waves of specified frequency
and amplitude, the manner in which the efficiency of the receptivity process

varies with frequency may be determined.

e The origin of the unexplained tone observed in three-dimensional simula-
tions at f ~ 11.2 should be investigated. Some form of ‘BiGlobal’ stability
analysis could potentially determine whether any global response of the
shear layer is responsible for this behaviour, however in the absence of ex-
isting BiGlobal code this would not be trivial to perform. In the event
of further airfoil simulations being performed, the presence of naturally

occurring tones should be investigated.

e The mechanism of noise production in the transition/reattachment region
should be investigated. Performing a simulation at similar conditions, but
varying the Mach number, would allow the Mach-scaling of the acoustic
intensity to be determined. This will potentially enable the nature of the
acoustic source to be identified, and will help to determine under what flight
conditions the acoustic source is important. Two-dimensional simulations
at a > 5° also appear to exhibit more than one acoustic source, hence it is
sensible to perform a precursory study in two-dimensions before repeating

in three-dimensions as the mechanisms may be similar.
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