
 

 

Working Paper M09/08 
Methodology 

Proportional Hazards Models With Discrete Frailty  
Chrys Caroni, Martin Crowder, Alan Kimber 

 

Abstract 

We extend proportional hazards frailty models for lifetime data to allow a negative bi- 

nomial, Poisson, Geometric or other discrete distribution of the frailty variable. This might 

represent, for example, the unknown number of flaws in an item under test. Zero frailty 

corresponds to a limited failure model containing a proportion of units that never fail (long- 

term survivors). Ways of modifying the model to avoid this are discussed. The models are 

applied to a previously published set of data on failures of printed circuit boards and to new 

data on breaking strengths of samples of cord. 

 



1

Proportional hazards models with discrete frailty

Chrys Caroni1, Martin Crowder2 and Alan Kimber3

1. National Technical University of Athens, Greece

2. Imperial College London, England

3. University of Southampton, England

Address for correspondence:

C.Caroni, Dept of Mathematics

National Technical University of Athens

Tel: +30 210 7721707

Email: ccar@math.ntua.gr

Abstract

We extend proportional hazards frailty models for lifetime data to allow a negative bi-

nomial, Poisson, Geometric or other discrete distribution of the frailty variable. This might

represent, for example, the unknown number of flaws in an item under test. Zero frailty

corresponds to a limited failure model containing a proportion of units that never fail (long-

term survivors). Ways of modifying the model to avoid this are discussed. The models are

applied to a previously published set of data on failures of printed circuit boards and to new

data on breaking strengths of samples of cord.

Keywords: reliability analysis; lifetime data; proportional hazards; frailty models; discrete

distribution; limited failure model



2

NOTATION

ci censoring indicator for unit i

D likelihood ratio statistic summed across groups

E s-expectation

Gz probability generating function of random variable Z

hb baseline hazard function

`, `′, `′′ log-likelihood function and its first and second derivatives, respectively

nc number of censored observations in the sample

nu number of uncensored observations in the sample

qk probability that a unit has frailty (such as number of flaws) equal to k

S unconditional survival or reliability function

Sb baseline survival or reliability function

tc fixed (Type I) censoring time

var s-variance

x,x′ vector of covariates and its transpose

Z frailty (such as the number of flaws in a unit)

β parameter vector of coefficients associated with covariate vector x

λ parameter of Poisson distribution

λ̂ maximum likelihood estimator of λ

ν, π parameters of the negative binomial distribution

ξ scale parameter of Weibull distribution

τ shape parameter of Weibull distribution
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1 Introduction

A substantial part of the extensive literature on lifetime data analysis concerns so-called

frailty models, which introduce heterogeneity between the lifetime distributions of individual

units by means of an unobserved individual random effect, the frailty. In the standard

proportional hazards framework that we shall adopt here, the effect of an individual frailty

z is to change a baseline hazard function hb(t) to zhb(t) for that unit. The corresponding

survivor or reliability function, conditional on z, becomes

S(t | z) := P(T > t | z) = exp

{

−z

∫ t

0
hb(s)ds

}

= Sb(t)
z (1.1)

where Sb(t) is the baseline survivor function. The unconditional survivor function, S(t), can

be obtained by integrating (1.1) over the distribution of Z, once a frailty distribution has

been specified. Published work on these models generally assumes that Z is a non-negative,

continuous random variable. Frequently-used frailty distributions include the gamma [1] and

positive stable [2].

In some circumstances, it is appropriate to consider discretely-distributed frailty, for ex-

ample, when heterogeneity in lifetimes arises because of the presence of a random number

of flaws in a unit or because of exposure to damage on a random number of occasions. Al-

though the possibility of a discrete frailty distribution has been mentioned in the literature,

it has not been investigated in detail. For example, Xue and Brookmeyer [3] stated that

their main result also holds for discrete frailty distributions, as well as continuous ones, but

did not pursue that line any further. Moreover, most such references turn out to consider

finite mixtures, in which Z is a group or stratum indicator taking just a few values, rather

than having a probability distribution over a wider range as we envisage here.

We have presented some initial work on discrete frailty distributions elsewhere [4, 5]. In

this context we suppose that Z can take non-negative integer values, i.e. Z has a discrete
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distribution on {0, 1, 2, . . .} rather than a continuous distribution on (0,∞). The propor-

tional hazards model then gives hazard function khb(t) for a unit with Z = k. For example,

for a unit subject to flaws, this supposes that the flaws act independently each with the same

hazard, hb(t). The well-known Jelinski and Moranda [6] model for software reliability has

this structure.

Let the probability distribution of Z be specified by P(Z = k) = qk for k = 0, 1, 2, . . ..

Then, assuming proportional hazards, the unconditional survivor function of T is given by

S(t) = E{Sb(t)
Z} =

∞
∑

k=0

qkSb(t)
k = GZ{Sb(t)} (1.2)

where GZ is the probability generating function of Z. The case k = 0, which entails

P(T > t | Z = 0) = 1 for all t, will be addressed in detail below. As is usual, we as-

sume here that the frailty of a unit does not change over time, i.e. Z is fixed ‘at birth’. Also,

we consider mostly parametric models for the qk.

Standard discrete distributions such as the geometric, Poisson or negative binomial can

be considered as models for the number of flaws in a unit. For the geometric distribution,

with parameter π ∈ (0, 1), qk = πk(1− π), which gives

S(t) = (1− π)/{1− πSb(t)} (1.3)

For the Poisson distribution, with parameter λ > 0, qk = e
−λλk/k! and then

S(t) = exp [−λ{1− Sb(t)}] (1.4)

For the negative binomial distribution, with parameters ν > 0 and π ∈ (0, 1),

qk =





k + ν − 1

k



πk(1− π)ν

and then

S(t) = [(1− π)/{1− πSb(t)}]
ν (1.5)
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Taking ν = 1 in (1.5) gives the geometric distribution (1.3), and the Poisson form (1.4) is

recovered when ν → ∞ with π = λ/ν. Thus, the negative binomial can be applied as an

extended model in assessing goodness-of-fit of the geometric and Poisson distributions. Also

worth noting when applying these models is that the geometric distribution has a heavier

tail than the Poisson distribution: for the former, qk+1/qk = π (fixed), whereas for the latter,

qk+1/qk = (k + 1)
−1λ→ 0 as k →∞.

The preliminary work [4, 5] drew attention to the difficulty of obtaining models in which

the case of homogeneous frailty is a natural special case of the general model in which frailty

varies randomly across units. Consider for a moment the continuous case. To achieve iden-

tifiability with the form zhb(t) it is often convenient to fix the mean of Z at 1 by a suitable

constraint on the parameters of the frailty distribution. This is a reasonable choice because

then the unit with mean frailty is the ‘standard unit’ whose hazard is hb. Then, allowing

var(Z) to tend to zero, with E(Z) fixed at 1, gives the no-frailty model. This is possible

when the continuous distribution has a scale parameter that governs the variance. However,

in general, discrete distributions on the integers do not have scale parameters and so the

same approach cannot be applied.

The purpose of the present note is to set out some tractable discrete-frailty models. In

Section 2, maximum likelihood estimation of discrete frailty models is outlined. In Section

3 various ways of accomodating zero frailty are considered. Some numerical results for two

applications are presented in Sections 4 and 5. Concluding remarks are made in Section 6.

2 Estimation

Suppose that the data consists of a random sample {(ti, ci) : i = 1, . . . , n}, where ci is the

censoring indicator, taking value 1 for an observed lifetime and 0 for a right-censored one;

we assume here that the censoring is uninformative. Then the log-likelihood function for a
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model of specified form with parameter vector θ is

`(θ) =
n
∑

i=1

{ci log f(ti) + (1− ci) logS(ti)}, (2.1)

where f(t) = −dS(t)/dt is the probability density function of T . Maximum likelihood es-

timates can be obtained by applying a standard function-optimisation routine to `(θ). In

the applications described below a Matlab program to implement the BFGS algorithm [7]

has been employed; derivatives were computed by differencing rather than relying on code

to reflect their algebraic forms.

Standard errors for the parameters may be derived from the inverse Hessian matrix evalu-

ated at the maximum likelihood estimate, `′′(θ̂)−1. An alternative form, which is often more

reliable numerically, is {
∑n

i=1 `
′

i(θ̂)`
′

i(θ̂)
T}−1, where `i(θ̂) is the log-likelihood contribution

from the ith case; this is guaranteed to be positive semi-definite in spite of rounding errors.

In some situations information might be more directly available on the frailty distribu-

tion. For example, suppose that frailty is the number of flaws in a unit. It might be possible

to ascertain Z for a sample of units before or after failure. The contribution to the log-

likelihood from a unit known to have k flaws is log{qkSb(t)
k} if still unfailed at time t, and

log{qkfk(t)} if it failed at time t, where fk(t) = −dSb(t)
k/dt.

There is no difficulty in introducing covariates into the models. Thus, qk and Sb(t) can

be modified to qk(x) and Sb(t;x), where x is the vector of covariates. For example, in the

geometric frailty distribution π may be expressed in logit-linear form: log{π/(1−π)} = xTα.

Likewise, a log-linear model, log ξ = xTβ, may be used in a baseline exponential survival

model of mean ξ.
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3 Accommodating zero frailty

The unconditional survivor function (1.2) can be written as

S(t) = q0 +
∞
∑

k=1

qkSb(t)
k. (3.1)

Frailty distributions that allow q0 > 0 can thus generate units with zero frailty. For such

units, the proportional hazards model entails zero hazard, i.e. Sb(t)
0 = 1 for all t. This can

be taken to describe long-term survivors, units that will never fail. In the medical context,

such individuals are immune from or cured of the illness in question. Lifetime models with

this feature have been used widely [8]. They are also known as limited failure models [9] and

as split-population models [10].

Depending on the context, a model that allows zero risk of failure for some units might

be unrealistic. We might take the pragmatic viewpoint that the model will be applied to

data over a limited time span, so ‘immortality’ just means that such units have a negligible

chance of failing within this period. However, with a parametric model for the qk, such as

the Poisson, the ratio of q0 to other qk is constrained and might then be inappropriate for

the data. We now present some alternative strategies for dealing with this problem.

In certain circumstance it might be reasonable to modify the frailty distribution to exclude

Z = 0, i.e. force q0 = 0. One simple way of achieving this is to take Z = 1 +W , where W

is distributed on {0, 1, 2, . . .}, say with probabilities P(W = k) = rk; e.g. rk = e
−λλk/k!.

Then, with qk = P(Z = k) as before,

q0 = 0 and qk = rk−1 for k = 1, 2, . . . (3.2)

Alternatively, one can simply truncate the distribution:

q0 = 0 and qk = rk/(1− r0) for k = 1, 2, . . . (3.3)

However, forcing q0 = 0 is sometimes too drastic since it means that all units, without

exception, must have at least one flaw. This can be avoided by treating q0 essentially as a
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separate parameter:

P(Z = 0) = q0 and qk = (1− q0)rk−1 for k = 1, 2, . . . (3.4)

A different type of strategy for accommodating Z = 0 as a separate case is to introduce a

distinct hazard function, h0(t). It can be used in one of two ways, so that the hazard function

for a unit with k flaws becomes either

h0(t) + khb(t) for k = 0, 1, 2, . . . (3.5)

or

h0(t) for k = 0, khb(t) for k = 1, 2, . . . (3.6)

In (3.5) we assume that all units, those with flaws and those without, are susceptible to

an additional cause of failure that operates independently of the flaws: the model is one

of independent competing risks. In (3.6) the failure mechanisms for units with and without

flaws are quite separate. When h0(t) = 0 both (3.5) and (3.6) reduce to the basic form khb(t)

for k = 0, 1, 2, . . .. When h0(t) = hb(t) the ‘zero-flaws hazard’ is the same as the hazard per

fault and then (3.5) gives S∗

k(t) = {Sb(t)}
k+1, which is equivalent to replacing Z by 1 +W ,

as in (3.2). The conditional survivor functions resulting from (3.5) and (3.6) are

S∗

k(t) := P(T > t | k) = S0(t)Sb(t)
k for k = 0, 1, 2, . . .

and

S∗

0(t) = S0(t), S∗

k(t) = Sb(t)
k for k = 1, 2, . . . ,

where S0(t) is the survivor function corresponding to h0(t), and the corresponding uncondi-

tional survivor functions are

S0(t)GZ{Sb(t)} and q0{S0(t)− 1}+GZ{Sb(t)}
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4 Application 1

Meeker and LuValle [11] presented data on an accelerated test of circuit boards. They stated

that these printed circuit boards fail because of the growth of conductive filaments through

what should be insulating material. The data comprise four groups of circuit boards, tested at

different relative humidities, with hours to failure (short-circuit) recorded under accelerated-

life conditions. In Table 1 rh% is the relative humidity, nu and nc are the numbers of

observed (uncensored) and right-censored failure times, and tc is the fixed (Type I) censoring

time in hours.

Table 1: Summary data on printed circuit board failures [11]

Group rh % nu nc tc

1 49.5 22 48 4078

2 62.8 57 11 3067

3 75.4 70 0 –

4 82.4 70 0 –

One of the models fitted in [11] was a limited-failure population model, that is, a mixture

of a proportion p of defective units with a Weibull distribution of lifetimes and a proportion

1−p of non-defective units that are not susceptible to failure. That paper went on to develop

a more elaborate model of the processes involved, but when fitting the limited-failure model

the authors suggested that the postulated defective units could be units with cracks. In

that case a model in which the discrete frailty is the unknown number cracks in a circuit

board appears to be worth considering. In particular, we will compare results between

geometric, Poisson and negative binomial frailty distributions, in conjunction with a Weibull

baseline survival distribution. Table 2 gives the resulting maximised log-likelihoods, for the

three frailty distributions. Incidentally, the observed failure times given in [11] are interval-
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censored in relatively narrow intervals. Our computations were performed both by treating

the times as observed values falling at the mid-points of the intervals and, more precisely, by

replacing the densities in the likelihood function by differences in the survivor functions at

the end points. The two methods gave effectively the same results.

Table 2: Maximised log-likelihoods for three frailty models with Weibull baseline survival

Group Frailty distribution

Geometric Poisson Neg. binomial

1 -177.525 -177.694 -176.070

2 -357.914 -360.253 -353.645

3 -309.790 -303.320 -303.320

4 -247.007 -240.857 -240.857

The results in Table 2 do not give an immediate indication of which model fits best. For

groups 1 and 2 the geometric log-likelihood is slightly better than that for the Poisson, but for

groups 3 and 4 the Poisson is substantially better; for groups 1 and 2 the negative binomial

looks better than the Poisson, but loses this advantage for groups 3 and 4. A standard log-

likelihood ratio test between the geometric and negative binomial models yields χ2
4 = 36.69

(p < 0.001) for the four groups combined. In the comparison between Poisson and negative

binomial models, it must be taken into account that the parameter value giving the Poisson

case (ν = ∞) is on the boundary of the parameter space. For one group, minus twice the

difference in maximized log-likelihoods should be assessed by reference to 1
2χ

2
1 because it

takes the value zero with probability 1
2 and has a χ

2
1 distribution with probability

1
2 [12].

Adding these statistics over the four groups gives sum D = 16.46. The associated p-value can

be found by observing that D takes value 0 with probability ( 12)
4 and has a χ2

j distribution
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with binomial probability





4

j





(

1
2

)4
. Consequently,

P(D > d) =
4
∑

j=1





4

j



P(χ2
j > d);

in this application P(D > 16.46) = 0.0005. On this basis the negative binomial has the most

support. However, this result is almost solely determined by group 2. Further, a Poisson

process for the occurrence of conductive filaments over time seems credible, in the sense that

they occur in different places on the circuit board. Finally, the plots referred to below appear

to support the simpler model. For these reasons we will adopt the Poisson/Weibull model.

The parameter vector for the Poisson/Weibull fit is θ = (λ, ξ, τ), where Sb(t) = e
−(t/ξ)τ

is the baseline Weibull survivor function. Maximum likelihood estimates are given in Table

3 with standard errors in parentheses. (Log-transformed parameters allow unconstrained

optimisation and can improve asymptotic normal approximations for maximum likelihood

estimators.) Some of the standard errors for groups 3 and 4 are large, reflecting a rather

flat likelihood surface. Figure 4 shows the Kaplan-Meier survivor functions with a 95%

pointwise confidence band along with the estimated reliability functions from the negative

binomial/Weibull fits. The fits look quite good for all four groups: in fact, the fits shown

here in Figure 1 for groups 1, 2 and 3 are somewhat better than those shown in Figure 5 of

[11], where group 4 was omitted from the analyses.

For this set of data, the estimated proportions of units without flaws, the q̂0-values, are

0.20, 0.35, 0.00 and 0.09 for the four groups; the last two figures must be regarded as suspect

because of the large standard errors associated with the corresponding λ̂-values. In cases

where a high proportion of units is not susceptible to failure, our model will be practically

indistinguishable from a simple mixture model of defective and non-defective units. An ex-

treme example is provided by the data used by Meeker [9] to introduce the limited failure

model. In a life test of 4156 integrated circuits, only 28 failed up to 593 hours and the test
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Figure 1: Estimated reliability function (continuous curve) compared to Kaplan-Meier estimate

(step function) with 95 % pointwise confidence band (broken curves), in each experimental group

of circuit boards.

was stopped at 1370 hours with all the remaining 4128 times right-censored at this point.

The proportion of non-defectives must be close to 4128/4156 (99.3%), giving an estimated

Poisson parameter of 0.00676 in our model and hence the expected number of units with two

or more flaws is only 0.09 even in this very large sample.
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Table 3: Parameter estimates for Poisson/Weibull model

group log ξ̂ log τ̂ log λ̂

1 0.472 (0.17) 0.365 (0.26) -0.945 (0.22)

2 0.041 (0.11) 0.402 (0.12) 0.646 (0.15)

3 3.721 (3.97) 0.433 (0.11) 8.762 (6.08)

4 0.887 (2.68) 1.013 (0.10) 9.171 (7.34)

5 Application 2

The data here come from a consultancy problem and full details may not be given for reasons

of confidentiality. Briefly, the observations are of strengths of a type of braided cord used

in safety netting. In practice, the cord spends much of its working life in the open air. The

purpose of the study was to investigate the effects of weathering, or ageing, on the strengths

of three different types of cord denoted here as white, red and yellow. A large number of

pieces of cord were involved; some were left to weather naturally and others were kept in

store throughout the trial. At the end of a specified period the cords were strength-tested to

destruction. The data used here correspond to the strengths (in coded units) of cords kept in

store. An understanding of the properties of these control data is an important preliminary

to a full analysis of the cords weathered in the open air. A simple weakest-link argument,

together with previous experience of such materials, suggests that a Weibull baseline distri-

bution is a reasonable assumption. However, two types of heterogeneity were envisaged. In

one the occurrence of flaws in a cord will weaken its capacity for load-bearing. In the other,

there is variability in quality between cords arising from variations in thickness, poor braid-

ing and so on. It was expected that the yellow cord would not suffer from these problems

because it was manufactured to high standards, but the white and red cords might suffer

from one or more of these problems. Exploratory analysis of the data showed mild curvature
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of the log-cumulative hazazd plots for white and red cord but not for yellow.

The first type of heterogeneity may be modelled by a discrete frailty model such as (3.5).

The second type of heterogeneity may be modelled using a standard continuous frailty model.

A general test for frailty where the frailty distribution has finite variance [13] yielded statis-

tically significant results (p < 0.05) for white and red cord but not for yellow. Table 4 shows

maximised log-likelihoods resulting from fitting standard Weibull models without frailty and

models of type (3.5) with Poisson frailty and Weibull forms for S0 and Sb. Evidently, model

(3.5) only achieves an improvement in fit for the red cord, though even in this case twice the

log-likelihood difference is a modest 2.34.

Thus, on the basis of these initial analyses, as expected there is no evidence of a departure

from a Weibull model for the yellow cord. There is no evidence of flaws in the white cord

but there appears to be variability in quality. However, for the red cord there is a weak

indication of the occurrence of flaws along with more general variability in quality.

Table 4: Maximised log-likelihoods for cord data

Group Model

Weibull (3.5)

white 254.964 254.964

red 253.983 255.154

yellow 245.008 245.008
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6 Conclusion

The models considered here provide a basis for frailty models when heterogeneity can be

attributed partly to unmeasured discrete-valued factors. In certain circumstances sensible

modelling considerations lead to discrete frailty rather than continuous frailty or finite mix-

tures, the latter having a fixed upper bound on the number of flaws. As suggested in the

Introduction, likely situations include cases where a variable number of flaws are present in

a unit, or where variable numbers of exposures have caused damage. Another situation is

when a variable number of contacts takes place; this might be applicable to times to infection

after a disease enters a closed population.

There may be another reason for considering discrete frailty models. For example, frailty

is often revealed by the presence of upper outliers relative to a fitted no-frailty survival model

such as the Weibull [14]. The full impact of observations with zero flaws may be hidden by

right censoring but observations with a relatively large number of flaws will tend to have

surpisingly short lifetimes relative to the baseline distribution. In effect, the discrete frailty

model can explain apparent lower outliers in the data.

It has to be said that fitting models like (3.5) is not entirely trouble-free. We have run

some simulations and found that the likelihood surface can tend to be rather flat, giving rise

to numerical problems such as near-singularity of the Hessian matrix. Overall, Nelder-Mead

optimisation seems to be more suited to this type of likelihood than quasi-Newton methods

such as BFGS [7]: the former seems to be less likely to give up the search prematurely be-

cause the gradients are small.
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