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This thesis is concerned with semi-active damping control for vibration isolation of
base disturbances. The aim is to investigate the effectiveness and suitability of semi-
active damping control strategies for improving steady-state vibration isolation. A
single-degree-of-freedom (SDOF) system, comprising a semi-active damper with a
linear passive spring in parallel, is used to study the vibration isolation of base

excitation.

The semi-active control strategies investigated include on-off skyhook control,
continuous skyhook control, on-off balance control and continuous balance control.
Chatter and jerk problems are investigated, which can arise in numerical simulations
and possibly in practice when using semi-active control strategies. Anti-chatter and
anti-jerk control strategies are proposed. These control strategies are implemented
numerically in Matlab/Simulink. Harmonic, periodic and random disturbances are
considered in this thesis. The vibration isolation performance is evaluated in terms of

Root-Mean-Square (RMS) acceleration transmissibility.

The performance of these control strategies for the isolation of harmonic disturbances
is firstly studied. The performance is compared with those of an adaptive-passive
control strategy, a conventional and a skyhook passive damper. Results show that the
semi-active control strategies can provide a better isolation than a conventional

passive system with an equivalent damping level. The semi-active damper can



provide isolation over the whole frequency range if the on-state damping of the semi-
active damper is big enough. The fraction of time when the damper is turned on or off

is found to be frequency dependent.

The effects of secondary frequency, which is a harmonic or subharmonic of the
fundamental frequency on switching time of the semi-active damper for isolation of
the primary harmonic are examined. Upper bounds are derived for fraction of time
when the switching time for the fundamental frequency may be affected by the
presence of a secondary frequency. The performance of the semi-active isolation
system for periodic and random disturbances, where there is more than one harmonic
in the disturbance spectrum is investigated. The results for square wave and triangular
wave disturbances suggest that semi-active control strategies are promising for
periodic disturbance. Three special cases are considered for random disturbances
when the acceleration, velocity and displacement inputs have flat spectra. The semi-
active control strategies can provide some advantage in performance for random
velocity and displacement disturbances with medium to high damping ratios. Only
continuous skyhook control strategy can provide some benefit in isolation

performance for random acceleration disturbances.

Following on from the numerical simulations, experimental work is carried out to
validate the simulation results. The experimental set-up incorporates an
electromagnetic device as a semi-active damper. The on-off skyhook control
algorithm is chosen to be implemented using an analogue circuit. The damping of the
electromagnetic semi-active damper is achieved by opening and closing the magnet-
coil circuit. Numerical predictions are confirmed by experimental observation. The
performance of the electromagnetic damper is limited by the achievable damping

level.
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Ch1. Introduction

CHAPTER 1

1. INTRODUCTION

1.1 BACKGROUND

The need for effective control of noise and vibration is very common in almost every
dynamic system [1]. Excessive vibration and noise can cause premature structural and
mechanical failure, increased maintenance requirements, human pain and discomfort.
Among the various problems and issues associated with vibration, isolation of a piece
of equipment from a vibrating base is a common one in the field of mechanical
engineering [1-3]. For sensitive equipment where the motion is prescribed by the
operating environment, then vibration reduction at source is often not feasible. The
main improvements can be obtained using isolation, including the possibility of active
as well as passive isolation [4]. A good general introduction to noise and vibration
control is given by Bies and Hansen [5] and Beranek and Ver [6]. More specifically
for vibration and shock isolation and detailed modelling of more complicated features

are the definitive works by Snowdon [7] and Harris [1].

Vibration isolation can be achieved by passive, semi-active, and active means. Until
about 1990, only passive control measures were generally considered for practical
engineering systems, and the theory underlying these measures is well documented,
for example [1]. Traditionally, engineers have solved the problem of vibration
isolation by designing passive systems based on compliant materials, such as rubber,
to decouple the equipment dynamics from the base dynamics [8]. Typically the base
vibration has an unpredictable waveform and the passive isolators have to deal with
broadband excitation spectra [4, 9]. However, the conventional passive form of
isolation is generally a compromise for a single-degree-of-freedom system between (a)
isolation at higher frequencies which requires low values of damping, and (b) control
of vibration at resonance that requires high values of damping [2, 4, 5, 9-12]. There is

inherent trade-off in performance of a passive isolation system.

Although many vibration problems are solved in a simple and reliable way with

passive devices, it is clear that there are distinct performance limitations when only

-1-
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passive devices are used [4, 9]. It has been established that isolation systems with
parameters that can be adapted to changing excitation and response characteristics can
provide better isolation performance than passive systems with fixed parameters [13,
14]. Active control systems can be used when greater performance is required and
passive techniques alone cannot perform adequately (or when accomplishing a task
not even possible with passive devices). Active control uses actuators to both add and
dissipate energy from the system based on signals obtained from various sensors.
Active control systems have demonstrated superior performance than that of the best
possible passive systems. But it is also known that the active systems in general are
more costly, more complex and less reliable than passive systems. The primary
limitation in the application of an active system for vibration isolation is the need for
external power. Thus the implementation of active vibration systems has been limited
to cases in which the performance gains outweigh the disadvantages of increased cost,
complexity, and weight. By recognising both the performance benefits as well as the
limitations of active systems the concept of semi-active vibration control has been

developed [15].

Semi-active vibration control refers to the use of devices with variable properties to
control or suppress vibrations of dynamic systems. This concept involves the
application of a controllable device which does not require significant external power
to operate. The semi-active device is able to respond to measured feedback signals
from a vibrating system to control undesired vibrations. The dynamic properties of
semi-active systems can be varied with time. But they can only dissipate energy, i.e.
they cannot put energy into the system. Thus the device does not use significant
external power compared with fully active systems. One can expect the performance

to be more limited than the fully active system.

Semi-active systems fall into three categories: variable stiffness, variable damping and
variable mass. As the mass can not be changed in a short time, in most cases only the
first two are considered. In the first category, the system’s stiffness is adjusted to
establish a non-resonance condition. In the second category, semi-active devices are
operated according to semi-active damping control strategies to generate a damping

force passively. It is the isolation of vibrations from the base using semi-active
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damping control that is the subject of this thesis. Before considering this in detail,

however, various methods for vibration control are first reviewed.

1.2 LITERATURE REVIEW

Published literature on semi-active damping control for vibration isolation discusses
control strategies and devices. This can be structured for easy comprehension in the

manner shown in Figure 1.1.

Vibration Isolation

Passive | | Adaptive-passive || Semi-active Active
Y
Mass control Damping control Stiffness control
Devices Strategies

Figure 1.1 Overview of vibration isolation methods in the literature

Figure 1.1 shows that there are four established ways for vibration isolation [14]. The
semi-active vibration isolation can be realised by mass control, stiffness control and
damping control. Semi-active damping control for vibration isolation is the subject of
this thesis. Since their inception in 1970s, semi-active dampers have found
applications in many engineering areas, and have gained more and more attention
these days due to their ability to attain superior performance over conventional
passive dampers. In achieving this, the control algorithm by which the damper is
adjusted is one of the crucial factors that ultimately determines the success or failure
of a particular control strategy. The device by which variable damping is achieved is

another key point to ensure the desired performance. Properties of the semi-active
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damper such as the upper and the lower limits of the damping coefficients and how
fast it can be switched are particularly important. This section provides an overview

of the semi-active control algorithms and the devices proposed in the literature.
1.2.1 SEMI-ACTIVE CONTROL STRATEGIES

Semi-active control systems were proposed in the 1970s when patents were issued for
shock absorbers which used an elastically supported mass to activate hydraulic
valving (no power required) or used a solenoid valve for directing fluid flow (small
amount of power required) [15]. Since then, a large amount of research on semi-active
systems has actually been performed in the field of engineering for applications in

automotive vibration, structural vibration and vibration isolation.
(1) Control strategies based on skyhook damping

The initial semi-active control strategy was designed to modulate the force generated
by a passive device to approximate the force that would be generated by a damper
connected to an inertial reference (“skyhook damper”) [2, 15-17]. Thus the control
strategy was named skyhook semi-active control. With the “skyhook damper”
configuration, the trade-off between resonance control and high-frequency isolation,
which is inherent in passive isolation, is eliminated [18]. According to this control
strategy, whenever the velocity and the relative velocity are of the same sign, the
semi-active damper would supply a force with the desired value of a skyhook damper.
Since the damping of the semi-active skyhook control is assumed to be continuously

adjustable, the control strategy is called continuous skyhook control by some authors.

Karnopp et al. studied the performance of the skyhook semi-active control strategy via
computer simulations for harmonic and random disturbances [15]. The computer
simulations were based on the assumption that the force provided by the semi-active
damper can always be equal to the desired force, which is not always true in practice.
Krasnicki also studied the vibration isolation performance of a single degree of
freedom system with a prototype semi-active damper using the same skyhook semi-
active control strategy [16]. The study carried out computer simulations duplicating
the results in [15]. A prototype of damper consisting of a hydraulic actuator with an

electrohydraulic servo-valve modulating the controlling orifice area was tested. The
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system was subjected to both sinusoidal and random vibration input. The experiment
results failed to validate the numerical prediction although it showed that there was

some improvement in the isolation performance.

Another paper by Krasnicki [19] proposed a so called “on-off” type skyhook control
strategy. It assumes either zero damping or a constant passive damping value between
the semi-active damper. The on-off damper differs from the previous skyhook
strategy in that the force generated by the damper is proportional to the relative
velocity of the sprung and unsprung mass rather than the absolute velocity of the
sprung mass. The on-off skyhook is evaluated experimentally using the prototype in
[16]. The experimental results were not compared to any predictions and only showed
some improvement near the resonance area compared with a conventional passive

damper.

In recent years, both the continuous and on-off skyhook control strategies have been
studied for their applications in vehicle suspension systems. For example, Ahmadian
[20] numerically studied the behaviour of the on-off and continuous skyhook control
strategy in a car primary suspension system. The study used a pure-tone input, and
compared the results with the vibration isolation due to a conventional passive damper.
The results showed that both on-off and continuous skyhook semi-active suspensions
exhibited the ability to lower the resonance peak without worsening the isolation at

higher frequencies.

In a recent paper by Yi and Song [21], the authors tried to improve the performance of
the skyhook control strategy by adapting to the road surface. The proposed control
law consists of a new adaptive skyhook damping algorithm and a road detection
algorithm. The profiles of the road surface are detected and used to tune the gains to
of the skyhook damping strategy. Simulation results showed that the performance is
superior to that of the continuous skyhook control. However, this road detection
algorithm is difficult to implement in practice. Sciulli and Symans [22, 23] modified
the skyhook control strategy into the so called groundhook control, where the vehicle
is modelled as a two degree-of-freedom system with one (unsprung) mass
representing that of the tyre and one (sprung) mass that of the vehicle. The semi-
active damper is connected to the unsprung mass in the model. The results show that

the skyhook configuration is ideal if the primary goal is isolating the sprung mass,

-5-
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while the groundhook configuration excels at isolating the unsprung mass from the

input excitation [22-24].
(2) Control strategies based on balance control

Both the continuous and on-off skyhook control strategies discussed previously
require a measure of the absolute velocity as well as the relative velocity. Accurate
measurement of the absolute velocity may be difficult to achieve. Rakheja [25]
proposed a control strategy using the directly measurable relative position and relative
velocity signals. The control strategy is based on the fact that the damper force causes
an increase in the magnitude of the mass acceleration whenever the forces due to the
spring and the damper have the same sign. The semi-active damper has two states: on
and off. The semi-active damper is switched off when the damper force and spring
force have the same sign, and is switched on when the damper and spring force are in
the opposite direction so that the damper force opposes the spring force. This control

strategy is termed “balance control” by later authors [26].

However, this control strategy has potential for improvement. During the on-state of
the damper, the instantaneous damper force is seldom exactly equal in magnitude to
the instantaneous spring force. In consequence, the surplus force will still accelerate
the mass. Alanoly and Sankar [27] proposed a continuous control strategy, which can
be considered as a further development of the preceding control strategy in [25]. If the
spring force and the damping force are in the same direction, the damping coefficient
should be a minimum value, ideally zero in order to reduce the acceleration of the
mass. On the other hand, if the spring force and the damper force are in opposite
directions, then the damping force should be adjusted in such a way that it should be
equal to the spring force in magnitude so as to produce zero acceleration. However,
the desired damping force may be beyond the range that the damper can provide. A

similar control strategy is discussed in [28].

Rakheja and Sanker [25] studied the vibration and shock isolation performance of the
semi-active on-off balance control strategy using a orifice damper. The performance
of the semi-active damper is compared with a conventional passive damper.
Simulation results were provided but no physical interpretation given. Alanoly and

Sanker [27] also studied the vibration isolation performance of the on-off balance
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control and compared it with the performance of the continuous skyhook control. In
another study by Rakheja and Sankar [29], the on-off balance control strategy was
used to change the damping of a so-called Ruzicka isolator and Snowdon’s [7] two

inertia vibration isolation system.

Wu et al. [30] pointed out that the desired damping force may be beyond the range
that the damper can supply for the continuous balance control strategy. In this case, a
maximum possible damping coefficient should be applied. Furthermore, they
developed a new control strategy. Instead of continuously adjusting the damping force,
the damping is set at either a maximum value or a minimum value depending upon a
threshold damping coefficient. The threshold damping coefficient was suggested to be

30% of the critical damping coefficient of the system for that particular case.
(3) Other semi-active control strategies

There are numerous more complicated control strategies for vibration control with
semi-active dampers. Many are applied to structural vibration [31-35] and others
applied to vehicular vibration [26, 36, 37]. Sadek [34, 35] gave a detailed description
of the recently proposed semi-active control algorithms for use with the
magnetorheological (MR) damper. The control algorithms include a linear quadratic
regulator (LQR) control algorithm, a generalized LQR control algorithms and a
displacement-acceleration domain algorithm. Hrovat [38] pioneered the idea of using
semi-active devices for control of wind induced vibrations. Numerical simulations
showed the potential of this semi-active approach for reducing wind excited structural

vibrations.

Hodmann [39] numerically examined the use of different control algorithms for a
semi-active suspension to improve the driving safety and ride comfort of a delivery
truck, while Ahmadian et al. [40] examined the effectiveness of a semi-active
suspension at improving the ride of a class 8 truck. Ahmadian found that the semi-
active system yielded an improved ride as compared to the passive suspension.
Additionally, he found that this result could be achieved by using controllable
dampers at only four of the six damper locations. Leih [41] showed that the switching
time of a controllable damper used as part of a semi-active suspension can have an

appreciable effect on the vehicle ride, suspension travel, and tyre deflection. These
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conclusions are based on an analysis performed on a passenger car model with a full

car body and four wheel-axle assemblies.

Giua and Sanganta [42] presented a two-phase design technique for developing semi-
active suspension control algorithms. In the first phase of their design technique, they
computed a target active control law that can be implemented by Optimal Gain
Switching, and then, in the second phase, they approximated this target by controlling
the variable damping coefficient of the semi-active suspension. They showed (by way
of simulation results) that the performance of the semi-active suspension is close to
the performance of the ideal active suspension when considering velocity input and
acceleration response. Saxon et al. [43] confirmed that ride quality and stability are
the greatest advantages of using a semi-active suspension through field-testing. Leigh
[44] developed a control strategy for a semi-active damper from second-order
equations and compared the simulated performance with that of a full-state system,
again based on a quarter car model. He also investigated the effects of high damping

levels and control valve switching time on the ride performance.

Recently fuzzy logic control and neural network theory were introduced into semi-
active control area. For example, Sireteanu et al [26] studied fuzzy logic control
algorithms for an MR damper in the control of vibration experienced by a tractor
driver. Carter [45] studied the performance of a skyhook fuzzy logic control algorithm
for the vibration control of vehicle suspensions. The fuzzy logic semi-active control
strategy was better able to balance the body and axle dynamics than the conventional
semi-active damping control strategies that are investigated. A different study by Fang
and Chen [46] applied a fuzzy control strategy to a 4-DOF vehicle model. Ursu et al.
[47] examined the development of control strategies for semi-active suspension
systems using artificial intelligence. The results of their study are based on a 2-DOF

quarter-car model.
(4) Anti-jerk control strategies

Generally, the acceleration response of an on-off damper exhibits discontinuities at
the time of switching, thus a significant jerk may be experienced by the mass of the
system. Chatter, which refers to the phenomenon in which the damper switches

rapidly between the on and off states, is also associated with jerk [48]. Jerk and
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chatter are undesirable for some practical applications. Various methods have been

proposed to overcome these problems.

Pan [49, 50] developed the method using a variable damping coefficient to smooth the
on-off damper force at the time of switching. The time rate of the change of damping
force and the time rate of change of acceleration were investigated and used to
evaluate the smooth degree of the damping force and the acceleration. A shaping
function was introduced by Ahmadian et al. [51] in a US patent to avoid the
discontinuities of the semi-active damper force. The shaping function was a
continuous function of the variables defining the condition functions, and it had a

continuous first derivative for all values of the variables of a condition function.

Miller [52] developed a method for eliminating jerk and noise in semi-active
suspensions by reducing the magnitude of force discontinuities that can result from
both on-off and continuous semi-active skyhook control strategies. In the method, he
introduced relative acceleration into the condition function. The semi-active damper
operates as a conventional passive damper when the relative velocity carries the same
sign as relative acceleration. The damping coefficient is significantly reduced (ideally

zero) when the relative velocity across the damper opposes the relative acceleration.

Another method to cope with jerk and chatter problems is using sliding mode control.
For example, Ursu et al. [53] carried out an investigation for using slide mode control
to combat chatter. Numerical simulations were carried out on a model of a 2-DOF car
suspension system. The effects of the Runge-Kutta integration step and sample time
on chatter were studied. The results showed that chatter can be reduced via the

proposed sliding mode control strategy.

In most numerical studies, the off-state damping coefficient of the semi-active damper
is assumed to be zero. However the actual damper constant is limited by the physical
parameters of the conventional damper. This means that there is both an upper bound
and a lower bound. Usually the on-state damping should be much greater than the off-
state damping and the off-state damping should be kept as small as possible. The
effects of non-zero off-state damping were investigated in [54, 55]. The insertion of
off-state damping has two effects compared to the system without off-state damping:

(a) it reduces the RMS acceleration transmissibility at and around the natural
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frequency; and (b) it increases the RMS acceleration transmissibility at frequencies

greater than the natural frequency.

Although in most analytical studies the semi-active damper is modelled as an ideal
device without any delay, it has been shown that the real-time implementation of
semi-active dampers can involve as much as 50ms of time delay [56]. The time delay
is defined as the time lag that exists between the sensor signal and damper response.
This lag is affected by the electrical and mechanical delays that exist in any practical
system. Additional time delays can reduce the benefit of a semi-active strategy [56,

57].
1.2.2 SEMI-ACTIVE DEVICES

Semi-active devices are passive devices whose properties can change with time, and
over time scales, which are comparable to the period of the vibration itself. For the
purpose of semi-active damping control, various energy dissipating devices have been
used to obtain the desired damping. These devices include hydraulic dampers,
Electrorheological (ER) and Magnetorheological (MR) dampers, semi-active friction

devices and electromagnetic devices.
(1) Hydraulic dampers

Semi-active hydraulic dampers typically consist of a hydraulic piston-cylinder
arrangement with a control valve mechanism. Variable damping coefficients can be
achieved by the modulation of the orifice area through which the fluid flows. The
control valve may take the form of a solenoid valve for on-off control or a servovalve
for continuously variable control. Fluid viscous dampers have found numerous
applications in the vibration isolation of aerospace and seismic response control

systems.

Krasnicki [19] used a damper consisting of a hydraulic actuator in conjunction with an
electro-hydraulic servovalve modulating the controlling orifice area. In the off-state
the full command voltage was applied to the valve, while zero voltage was applied to
the valve in the on-state. Patten, et al. [58], provided a primer on the important
physical characteristics of a hydraulic semi-active vibration absorber. Karnopp [59]

introduced semi-active isolators using the skyhook damper scheme. Practical
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applications of skyhook dampers, namely extreme isolation for delicate
manufacturing operations against seismic input and the automotive suspensions are

discussed by Karnopp [24].
(2) ER and MR dampers

ER and MR dampers consist of a hydraulic cylinder containing micron-sized
polarisable particles in a fluid (usually oil). Both the ER and MR materials have the
ability to change from free flowing viscous fluids to a semi-solid state in a matter of
milli-seconds when exposed to an electric or a magnetic field [60, 61]. These devices
are mechanically reliable, since they do not contain any moving parts. More detailed
information about the use of ER and MR dampers for vibration control can be found

in [60, 62].

There are numerous published references on vibration control using ER and MR
dampers. For example, Wu and Griffin [28] used an ER damper to reduce the severity
of shocks caused by suspension seat end-stop impacts or high magnitude vibration.
The ER damper was used to realise the required two-state damping. Jeon et al. [57]
studied the vibration isolation performance of a MR damper under the control of the
on-off skyhook control strategy. The damping constant and response time of the
damper were measured. The time delay in the response of the MR damper was
measured and incorporated into the control under harmonic disturbances.
Experimental results show that on-off skyhook control strategy which includes the
damper time delay performs less effectively than the one without the consideration of

time delay.
(3) Semi-active friction devices

Semi-active friction devices use the force generated by surface friction to dissipate
energy. An ideal friction damper may be considered to behave as a Coulomb element
wherein the force is the product of friction coefficient and the normal force at the
friction interface and the sign of the velocity of the motion. An isolation system
incorporating semi-active friction controllable sliding bearing is described by Feng et
al. [63]. The friction force on the sliding interface between the building and the

foundation was controlled in order to limit the sliding displacement and minimise the
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transmission of seismic force to the building. The simulation results showed that this
type of system is effective for earthquakes with a broad range of intensity, compared

to its conventional passive counterparts.
(4) Electromagnetic dampers

Electromagnetic dampers use the interaction between the movement of the coil and
the magnetic field of a permanent magnet or electromagnet to provide a damping
effect [64, 65]. When an electromagnetic damper coil is shorted or connected to an
external resistor, the device becomes a linear mechanical damper. The damping level
can be varied by changing the external resistance or the strength of the magnetic field.
When the external resistance is varied, the damping coefficient is varied. In the open
circuit state the coefficient vanishes, while when the coil is shorted the coefficient
reaches a maximum value. Since effective resistance can be rapidly varied
electronically, an electrical actuator can function as a semi-active damper in vehicle or
vibration isolation suspension systems. In this thesis, an electromagnetic damper is

used to achieve two-state damping required by the on-off control strategy.

In a paper by Karnopp [64], the possibility was studied for using permanent magnet
linear motors as variable mechanical dampers for vehicle suspensions. Two basic
electromagnetic designs were analysed, namely the moving coil and the moving
magnet approach. The electromagnetic damper studied consists of a tubular coil of
wire situated within a radially-oriented constant magnetic field produced by a
permanent magnet. The damping coefficient is varied by changing the external

resistance.
1.2.3 SUMMARY OF LITERATURE REVIEW

The technologies available to tackle vibration isolation via semi-active damping
control means have been briefly reviewed in the preceding sections. The literature
review concentrates on the semi-active control strategies and semi-active damping

devices.

Significant research in the area of semi-active systems and controllable dampers has
been carried out either numerically or experimentally by various researchers, but only

in rare instances have researchers investigated both aspects. The majority of previous
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research just carried out numerical simulations. They failed to provide physical
interpretations to justify of the results obtained. There exists an abundance of research
on the application of semi-active dampers for particular vibration control problems
such as vehicle suspensions and building structural control, but relatively little
research has focused on general aspects of vibration isolation [24, 37]. Although more
complicated feedback control strategies offer great possibilities in many situations, it
is probable that significant performance gains can be realised with basic control

strategies.

The study presented in this thesis explores the feasibility, suitability and effectiveness
of using relatively simple control strategies for the purpose of vibration isolation.
Physical justifications are provided to enable a more complete understanding of the
application of semi-active damping control for vibration isolation. Experimental work

has been carried out to validate the numerical simulation results.

1.3 OBJECTIVES AND SCOPE

This thesis aims to address the application of semi-active damping in isolating
sensitive equipment from the surrounding vibration environments. The primary

objectives of the thesis are to:

e Evaluate the effectiveness and suitability of various basic semi-active control
strategies for the purpose of vibration isolation. Compare the performance

with that due to conventional and skyhook passive dampers;

e Provide physical interpretation of the results to enable a more complete
understanding of the applicability of semi-active damping control for vibration

isolation;

e Provide some guidelines for practical engineers when semi-active damping

control can be considered as an option; and

e Implement certain control strategies using a controllable device to validate

numerical simulations.
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This thesis is concerned with the use of a SDOF semi-active isolation system,
comprising a semi-active damper with a linear passive spring in parallel, for vibration
isolation of base excitation. The base-excited SDOF system is used to study the
vibration isolation performance of the semi-active dampers. Four basic control
strategies based on skyhook control and balance control were studied and the
effectiveness and suitability of each individual semi-active control algorithm are
studied. The four control algorithms are continuous skyhook control, on-off skyhook
control, on-off balance control and continuous balance control. Various base
disturbances, namely harmonic, periodic and random, are considered in this study.
The on-off skyhook control strategy was chosen to be implemented using an

electromagnetic device and the experimental results were presented.

1.4 CONTRIBUTIONS OF THE THESIS

The contributions of this thesis are as follows:

(1) A physical interpretation for skyhook and balance semi-active control

strategies are provided;

(2) Chatter and jerk problems associated with applications of the four semi-active
damping control strategies are investigated and anti-jerk control strategies are

proposed;

(3) The performance of the four semi-active control strategies for vibration
isolation of harmonic, periodic and random disturbances has been studied with
the following conclusions:

e The superior performance of the semi-active control strategies to
conventional passive damper with an equivalent damping has been
confirmed by simulation and experimental results for harmonic disturbances;

e Semi-active damping control strategies can provide better performance that
the conventional passive damper for square and triangular waves;

e An analytical solution to calculate the mean square response of a
conventionally damped SDOF system and a skyhook passive SDOF system

subject to random base excitation has been derived;
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e The performance for isolation of random disturbances has been studied
numerically for three special cases when the displacement, velocity and
acceleration excitation spectrum are assumed to be flat. Semi-active control
strategies are found useful for the cases when the inputs are displacement or
velocity.

(4) The condition functions of the semi-active control strategies were studied to

provide physical interpretations and insights;

(5) The on-off skyhook control strategy was implemented in the lab using an

analogue circuit.

1.5 LAYOUT OF THE THESIS

To conduct a theoretical and experimental study on semi-active damping control for
vibration isolation, a single-degree-of-freedom (SDOF) system subject to base

disturbances is considered throughout this thesis.

The background of this thesis is firstly introduced in Chapter 1. An overview of
different contributions in the area of semi-active damping control is presented. The
advantages and limitations are briefly discussed, and the motivation behind semi-

active damping control for vibration isolation is also presented in this chapter.

Chapter 2 contains information on the model development for numerical simulations
of a SDOF system incorporating a semi-active damper. Four control algorithms,
which are continuous skyhook control, on-off skyhook control, continuous balance
control and on-off balance control, are described. Also contained in this chapter is an
investigation into the chatter and jerk problems that arise in numerical simulations and
possibly in practice when using semi-active dampers. An anti-jerk implementation is
presented and anti-jerk control strategies are proposed. These control strategies are

implemented numerically in Matlab/Simulink.

In Chapter 3 the vibration isolation performance of the four control strategies for
harmonic disturbances are discussed. The performance is evaluated in terms of Root-
Mean-Square (RMS) acceleration and relative displacement transmissibility. The

vibration isolation performance of the semi-active dampers is compared with that due
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to the conventional passive and skyhook passive dampers. Experiments are conducted

to test the on-off skyhook control strategy.

Since the switching characteristics of the semi-active damper are frequency dependent,
the switching for the fundamental frequency might be affected due to the presence of
an extraneous frequency. Chapter 4 studies the effects of a secondary frequency on
the switch state of a semi-active damper for the fundamental frequency. Upper bounds
for fractions of time when the switching can be wrong are derived. A specific example
of excitation with multiple harmonics is periodic disturbances in which the frequency
components are integer multiples of the fundamental frequency. The effectiveness of
the semi-active damper in isolating square and triangular waves is also investigated in
this Chapter. Experimental work conducted to investigate the effects of a secondary
frequency on the switching time of the semi-active damper for the fundamental, and
the effectiveness of the on-off skyhook control algorithm in isolating square wave are

also presented.

Chapter 5 discusses the effectiveness of semi-active dampers in isolating random
disturbances. An analytical solution is derived for the RMS response of a SDOF
system with a conventional passive and a skyhook passive damper subject to random
base excitation with a constant power spectral density. The RMS responses are
simulated for a SDOF system incorporating the semi-active dampers for three special
cases when the spectra of displacement, velocity and acceleration are flat.
Experimental work conducted on the on-off skyhook damper to verify the results of

isolating random disturbances is also presented.

Finally, Chapter 6 summarises the main conclusions from this thesis and makes

recommendations for future work.

This thesis also contains four appendices to support the main structure of the thesis.
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CHAPTER 2

2. NONLINEAR CONTROL STRATEGIES FOR SEMI-
ACTIVE DAMPING CONTROL

2.1 INTRODUCTION

Chapter 1 described how semi-active control strategies have been developed and used
to control vibration. This chapter is concerned with model developments for
simulations of a base-excited SDOF system with a semi-active damper. Four basic
semi-active control strategies based on skyhook control and balance control will be
considered. It provides detailed information for numerical simulations carried out

throughout the thesis.

First, the semi-active damping concept is introduced and compared with conventional
passive damping. Detailed descriptions of four semi-active control algorithms, which
are continuous skyhook control, on-off skyhook control, continuous balance control,
and on-off balance control, are presented in the next section followed by discussion of
the numerical problems encountered when performing simulations with semi-active
dampers. A phenomenon often referred to as chatter occurs with semi-active dampers
at low excitation frequencies. The conditions for chatter to occur are demonstrated by
studying the dynamics of the system, and a modified control scheme is suggested to
avoid the chatter problem. Jerk is associated with chatter and is caused by switching
between different states of the damping. A detailed description of an anti-jerk
implementation is presented and anti-jerk control strategies are proposed. Finally the

results are summarised.
2.2 SEMI-ACTIVE DAMPING VS. CONVENTIONAL DAMPING

Semi-active dampers are the class of device whose damping properties can be varied
to reduce the vibration transmitted from the source to the receiver. Figure 2.1 shows
the schematic of a SDOF system with a conventional passive, semi-active and fully

active damper. In both passive and semi-active dampers, the magnitude of the damper
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force is dependent on the relative velocity across the damper. However, the force
versus velocity curve of each type is not identical. In passive damping, the damper has
a pre-defined characteristic in units of force/velocity as shown in Figure 2.2. A change

in the relative velocity across the damper, X — X, , will change the force exerted by the
damper, F,. Referring to Figure 2.2, the magnitude and direction of the force exerted

depend only on the relative velocity across the damper. In many applications, the
relationship between the force and the relative velocity for the damper is nonlinear,
and the gradient tends to decrease as the velocity increases [1]. However, in the

passive model considered in this report, the slope of the curve is constant.

® ® ®
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Figure 2.1 Schematic of a SDOF system with different type of dampers (a) conventional passive

damper; (b) semi-active damper; and (c) active device

(+
Fd A

Figure 2.2 Relationship between damping force and relative velocity for a conventional passive damper
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Although the direction of the damper force in semi-active dampers still depends on
the relative velocity across the damper, the magnitude of the damper force is
considered to be adjustable. The damping value can be adjusted by a controller that

can be programmed to any type of control strategy.

Semi-active dampers may be of the on-off type or of the continuously variable type. A
damper of the first type is switched, in accordance with a suitable control algorithm,
between alternate on and off damping states. In its on-state, the damping coefficient is
of a pre-selected relatively high magnitude. The term “damping coefficient” refers to
the ratio of the damper force generated by the damper to the relative velocity across
the damper, which is not necessarily a constant. In its off-state, the damping
coefficient of the damper is of relatively low magnitude. This may be almost zero, but
in many practical applications, a magnitude greater than zero is desired. A
continuously variable semi-active damper is also switched during operations between
on and off states. However, when a continuously variable damper is in its on-state, the
damping coefficient and corresponding damper force may be changed over a range of
magnitudes. The concept of semi-active damping is illustrated in Figure 2.3(a) and
(b). The shaded part of the graph in Figure 2.3(b) represents the range of possible
damping coefficients. The damping coefficient of a semi-active on-off type damper is
a discontinuous function in the time domain, which can be seen in Figure 2.4 (a). The
damping coefficient of a semi-active continuous type damper is a continuous function

as shown in Figure 2.4 (b).
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Figure 2.3 Semi-active damper concepts (a) on-off damper; (b) continuously variable damper
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Figure 2.4 Semi-active damper characteristics in time domain (a) on-off damper; (b) continuously

variable damper
2.3 SEMI-ACTIVE CONTROL STRATEGIES

In the initial numerical simulations, four basic strategies are studied. The semi-active
dampers investigated in this study can be classified into skyhook damping control and
balance damping control. All of these can be further divided into on-off and
continuously variable control strategies. As a comparison, an adaptive-passive

damping control strategy is also studied.
2.3.1 SKYHOOK CONTROL

The initial semi-active system was based on skyhook semi-active control, which was
first proposed by Karnopp [15] to emulate the skyhook damper. Forces were
generated in a hydraulic damper by modulating its fluid-flow orifices. The name
“skyhook” is derived from the fact it was a passive damper hooked to an imaginary
sky. Figure 2.5 (a) shows the arrangement of a SDOF system with a skyhook damper.
Considering the SDOF system with a skyhook damper in Figure 2.5(a), it can be
realised using fully active control by programming the active force shown in Figure

2.5(b) as

Fc:cskyXJrk(x—xO) (2.1)

where F_ is the active control force, k is the spring stiffness, and g, is the skyhook

damping coefficient.
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Figure 2.5 Skyhook system and its active equivalent (a) schematic of a SDOF system with a skyhook

o(t)

damper; (b) active system

The full active control strategy requires an actuator to provide the desired damping
force. To reduce the complexity and power requirements, the semi-active continuous
skyhook control algorithm was designed to modulate the force generated by a passive
device to approximate the force that would be generated by a skyhook damper. The
SDOF system with a semi-active damper is shown schematically in Figure 2.6. The
semi-active device is installed in the place of the conventional damper, and the device
is passive, but the force generated by the device is controllable. The excitation and

response signals are fed into a controller to provide a desired damping force.

X, X, X
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Figure 2.6 Schematic of a SDOF system with a semi-active damper

The passive device can only absorb vibration energy, so the product of the damper

force, F

sa?

and the relative velocity, X—X,, must be greater than or equal to zero
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F(X—%)>0 2.2)

i.e., the power associated with the semi-active damper force, F

sa ?

is always dissipated.
Thus, if the relative velocity is increasing, X—X, >0, F, must be positive, and if

X=X, <0, F, must be negative.

Defining the upwards direction as positive and downwards direction as negative,
consider first the case when the mass is moving upwards separating from the base.

Under the ideal skyhook configuration, the desired value of F is
sky — _Cskyx (23)

where F is the skyhook damper force. For the semi-active equivalent model, the

damper force due to the semi-active damper is
Fsa = _Csa(x - XO) (24)

where F_ is the semi-active force, and c, is the semi-active damping coefficient
required to achieve the desired skyhook damping force. In order for the semi-active
equivalent model to perform like the skyhook model, the damping forces must be
equal. The semi-active damping constant can thus be found by setting F, in equation
(2.3) to be equal to F, in equation (2.4). The semi-active damper force can then be

found for the case when both X and X—X, are positive, which gives

c .
Co=7T—2> 5 =20 (2.5)

and

>0 (2.6)

-22 -



Ch2. Semi-active control strategies

Next, consider the case when both X and X-X, are negative. Now the mass is

moving downwards. The skyhook damper force would be in the positive direction,

hence

F

1 = Co X 2.7)

sky

Following the same procedure as the first case, equating the damper forces reveals the
same semi-active damper force as the first case. Thus it can be concluded that when

the product of the X and X—X, is positive, the semi-active damping coefficient is

defined by equation (2.6) and the semi-active damper force is defined by equation

Q2.7).

Now consider the case when the mass is moving upwards and the mass and base are
moving towards each other. The skyhook damper would again apply a force on the
mass in the negative direction. In this case, the semi-active damper cannot apply a
force in the same direction as the skyhook damper. For this reason, the damping

should be set to zero thus minimising the force acting on the mass.

The final case to consider is the case when the mass is moving downwards and is
separating from the base. Again, in this condition, the skyhook damper force and the
semi-active damper force are not in the same direction. The skyhook damper force is
in the positive direction, while the semi-active damper force is in the negative
direction. The best that can be achieved is to set the damping in the semi-active

damper to zero.

Summarising these four conditions, the well-known semi-active skyhook control

algorithm is given by [15]

C X X(X=%)20

F. :{ (2.8)

0 X(x—%)<0

Whenever it is required to supply energy to the system to produce the effect of
skyhook damping, the best the device can do is to supply no force at all. Elsewhere
the device provides a force proportional to the absolute velocity of the mass. The

switching of the device can be controlled by the term X(X—X,), which is called the
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condition function. Condition function is different for different control strategies. If

the product of the absolute velocity of the mass, X, and the relative velocity X —X,

between the mass and the base is positive, the damper is switched on, so that a force is
generated to reduce the velocity of the mass. If this term is negative, the damper is
switched off so that no force is generated. This control scheme intends to simulate

closely an ideal skyhook damper. The theoretical semi-active damping required to

produce the damping force, F,,, is given by
Cyo X
— X(x=%,)20
C, =9 X=X, (2.9)
0 X ( X=X, ) <0

Figure 2.7 is a three-dimensional plot of the semi-active damping coefficient required
by a continuous variable skyhook damper in the above equation. It can be seen from

the figure that when the relative velocity X—X; is very small, the required damping

increases abruptly and tends to infinity, which cannot be provided by practical

hardware. The damper constant, C_ , is limited by the physical parameters of the semi-

sa?

active damper. This means that there is both an upper bound,c__ , and a lower bound,

max ?

c on C, . Considering the limitation of the practical hardware, the damping

min

coefficient in equation (2.9) can be rewritten as

. Csky X . .
max Cmin , 1N . .0 Cmax X(X - XO) 2 O
C, = X=X, (2.10)

X(X—%,) <0

C

min

The control algorithm given in equation (2.8) requires a continuous modification of
the damper coefficient. To simplify the operation, a simpler on-off version has been

proposed [19]. The the damper force is governed by

2.11)

where c_, is the on-state damping constant of the on-off damper.

n
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Csa

Figure 2.7 Required damping coefficient for continuous skyhook damping as a function of absolute and

relative velocity (equation (2.9))

In practice, zero damping coefficients are impossible when the damper is switched

off. Therefore, the damping coefficient is actually switched between a high value and

a low value. Considering the non-zero off-state damping, the control algorithm in

equation (2.11) can be restated as

(2.12)

. and c_. are the maximum and minimum coefficients of the on-off

where C_,

damper respectively. Usually the on-state damping €, is much greater than the off-

state damping C_. , and C_. should as small as possible.

Figure 2.8 shows the relationship between the damper states and condition function of

the skyhook control strategy. If the condition function is positive, the damper is
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switched on, so that a force is generated to reduce the velocity of the mass. Otherwise,
the damper is switched off. When the relative velocity across the damper is positive,
the damper force acts to pull down the suspended mass; when the relative velocity is
negative, the damper force acts to push up on the mass. Thus when the absolute
velocity of the mass is negative, it is travelling downwards and the on-state damping
is desired to push up on the mass. Once the relative velocity changes its direction
while the absolute velocity is still negative, minimum damping is desired to continue
pulling down on the mass. However, if the absolute velocity of the body mass is
positive and the mass is travelling upwards, the on-state damping is desired to pull
down on the mass, while the minimum value of damping is desired to further push the

mass upwards.

% A
X=X, =0
ON
OFF
|
OFF %
ON

Figure 2.8 Relationship between the velocity variables and the damper states

Both the continuous skyhook control and on-off skyhook control algorithms intend to
produce the effect of skyhook damping. However, there are differences between them,
which can be interpreted in terms of the amplitude and phase of the damper force. The
original expression for the continuous skyhook control in equation (2.8) can provide
the same amplitude and phase in its on-state as those of a skyhook damper. Due to the
practical limitation of physical systems, however, it can only provide the exact
amplitude and phase during part of the on-state period. By comparison, on-off

skyhook control can only ensure that the semi-active damping force is the same sign
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of the desired skyhook damping force. The magnitude is not representative of the
skyhook damper force anymore, although it is shown that it gives similar isolation

performance [66].
2.3.2 BALANCE CONTROL

Considering a passive SDOF system subject to base excitation, the acceleration

response of the suspended mass due to the base excitation can be expressed as
o 1
x=- —(F+F,) (2.13)
m

where F, and F; are the spring and damper forces respectively, which are given by

F = k(X- X,)

Fy = c(X- %)) 19

and k and C are the spring stiffness and damping coefficients respectively. The
amplitude of the acceleration of the mass due to harmonic base excitation can be

expressed in terms of the spring and damper forces [25]

t
t<t<t +—

|5<'|—|Fk|+|Fd| L (2.15)
m t+t—<t<t +3—t
0 2 0 4
t t

PRI A 216
m t0+37t<t<to+t

where t is the time at which spring force is zero, and t 1is the period of vibration.

Figure 2.9 shows the inertial force (mX), spring force and damper force of a passive
SDOF system subject to harmonic base excitation. Most of the time, it is desired for
the acceleration of the mass to be small, but it is evident from equation (2.15) and
Figure 2.9 that the damper force tends to increase the acceleration amplitude of the

mass during a part of vibration cycle. In the remaining part of a vibration cycle, the
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acceleration of the mass due to the damper force may be attenuated if F, and F, are

in the same order of quantity, which is demonstrated by equation (2.16) and Figure
2.9. Poor vibration isolation performance of heavily damped passive systems is
attributed to this phenomenon. Isolation performance of passive isolators with fixed
damping deteriorates at high excitation frequencies, when the magnitude of the

damper force is dominant.

Force

Figure 2.9 Relationship between the forces of a conventional passive SDOF system subject to a pure-

tone excitation: — damping force ( F, ); ---- spring force ( F, ); and -+ inertial force (mX )

An on-off damping mechanism may be realised, which operates as a conventional
passive damper during the part of the cycle to reduce the acceleration of the mass as
demonstrated in equation (2.16) and Figure 2.9. The damping mechanism assumes
zero damping during the portion of the cycle when a passive damper would normally
increase the amplitude of the acceleration of the mass. In reference [25], an on-off
hydraulic damper was implemented using a two position valve operated by a solenoid

relay.
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Based on the above discussion, the damper force will cause an increase in the
acceleration of the mass whenever forces due to the spring and the damper have the
same sign, or equivalently when the relative velocity and relative displacement have

the same sign. A control algorithm to ensure that this does not occur is [25]

2.17)

where C, is the on-state damping constant of the on-off damper.

The control algorithm shows that when the damper constructively adds to the
acceleration due to the spring, it is switched off. Whenever the damper force reacts
with the spring force, the damper is switched on. Since the purpose of the damping
force in this algorithm is to oppose the spring force, it is termed “balance control”.
This control algorithm may be relatively easy to implement in some applications such
as vehicle suspensions, as the relative displacement and the relative velocity can be

easily measured.

The corresponding semi-active damping considering non-zero off-state damping is

given by

(2.18)

where ¢ and c_ . are the maximum and minimum coefficients of the on-off

max

damper.

The control algorithm in equation (2.17) has the potential for improvement. During
the on-state of the damper, the instantaneous damper force is seldom exactly equal in
magnitude to the instantaneous spring force. Consequently, the surplus force will still
accelerate the mass. In reference [27], a damper with a continuously variable damping
force has been discussed, which can be considered as a further development of the
preceding control algorithm in equation (2.17). The damping coefficient is
continuously variable, depending on the relative displacement and the relative

velocity
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|:Sa:{—k(x—xo) (x=%,)(X=%)<0 .19)

0 (X=X, )(X—%)>0

This control algorithm shows that if the spring force and the damper force exerted on
the mass are in the same direction, to reduce the sprung mass acceleration, the damper
force should be minimum. On the other hand, if the spring force and the damper force
are in anti-phase, then the damper force should be adjusted in such a way that it equals
the spring force in magnitude so as to produce zero acceleration of the sprung mass.

The semi-active damping required for this control algorithm is given by

—k(x=x%) —x ) (x=%)<0
NS ey (X=%)(X=%) < 220

0 (X=X, )(X—%,)>0

It can be seen from equation (2.20) that the damping coefficient tends to infinity at
X—=X=0, which cannot be implemented in practice. Figure 2.10 shows a three-
dimensional plot of the damping coefficient defined by equation (2.20). Similarly to

equation (2.10), the damper constant C,, saturates at the upper and lower bounds

imposed by the physical parameters of the damper. Considering the practical

hardware constraints, the damping coefficient can be rewritten as

max{cmm,min{w,cmx} } (X-X%X)(X=%,)<0
C, = X—X%,

C.. (X-X)(X=%,)>0

min

(2.21)

Both on-off and continuous balance control algorithms programme the damping force
so that it can oppose the spring force whenever the damping force and the spring force
have the opposite sign. The two control strategies attempt to make a damper behave
like a spring by varying its damping coefficient in real time. According to equation
(2.17) and (2.18), since the on-off balance damper can only produce a damping force
proportional to the relative velocity across the damper in its on-state, it cannot ensure
the damping force is exactly equal to the spring force. Depending on the dynamics of

the system and the maximum damping, Cc__ , the spring force can partly be cancelled

max

or even sometimes the spring force can be over cancelled. This might change the
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static equilibrium of the system and even make the system to become unstable. The
continuous balance can cancel the spring force in theory, but due to the hardware
limitations, the required damping might be beyond the range the semi-active damper

can provide during part of the on-state period.

sa

Figure 2.10 Required damping coefficient for continuous balance semi-active damping as a function of

relative displacement and relative velocity (equation (2.20))
2.3.3 ADAPTIVE-PASSIVE DAMPING CONTROL

The last control algorithm considered for harmonic analysis is an adaptive damping
method, which aims to adapt the damping constant according to the disturbance

frequency. The idea of this control algorithm is quite straightforward. A passive
SDOF system can only provide isolation in the frequency range @/, > V2, where

@ is the excitation frequency and w, is the natural frequency. Increasing the damping
coefficient in the frequency range @/, < V2 will reduce the resonance peak, while

the isolation performance in the frequency range w/w, > V2 will be degraded. As
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illustrated in Figure 2.11, the ideal case for harmonic vibration isolation is that when
o/o, < V2, the damping coefficient should have a big value, and when @ /®, > V2,

then the damping coefficient should have a small value. To achieve this, the following

control algorithm is proposed [13]

{cm RMS(X) > RMS(X,) 2.22)

C.. RMS(X) < RMS(X,)

max

min

>

V2 ol o,

Figure 2.11 Ideal damping characteristics for vibration isolation of harmonic disturbances

The quantities RMS(X) and RMS(X,) are calculated over a time period much longer

than the period of vibration of the system. The control algorithm uses RMS value of
the response as the condition function to adjust the damping. When the RMS value of
the response X is greater than the RMS of the base acceleration, no isolation occurs
and the damper is switched to its maximum value. Otherwise, the damper is switched
off so that only small damping is presented in the system. For this control algorithm,
the damper works in a bi-state (on-off) manner. It works as a common passive
damper, switching from one value to the other. This might be the simplest way to
implement a control algorithm since it does not need the damper to switch alternately
between the on and off states during one period. It is very useful for vibration
isolation of rotating machines such as washing machines [13]: the high damping value

C... 1s used when the drum is at low speed, i.e., during runup or rundown, while the

max

low damping value c_ is used at high speeds. The disadvantage of this control

'min

algorithm is that it is only applicable to harmonic disturbances.
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2.4 CHATTER OF SEMI-ACTIVE DAMPER AND ITS CURE

When performing numerical simulations with semi-active dampers the so-called
chatter problem occurs under certain dynamic conditions. To observe the onset and
persistence of chatter in a on-off skyhook semi-active system, consider the SDOF
system shown in Figure 2.6 and assume that at some time t, the spring is compressed,

the damper is off, and the base velocity, X,, is large and negative (downward). Since

there is currently no damper force, the compressed spring will begin to push the mass

upward, and X will become positive. With X >0and X—X, >0, the control strategy

in equation (2.11) indicates that the damper will turn on to a fixed value. The damper
force is tensile, and if the damper force pulling down is greater than the spring force,
then the damper force will decelerate the mass and reverse its direction. The mass

velocity will become negative while the relative velocity X—X, is still positive. The

damper will turn off with the process repeating itself as long as the spring is in
compression. This switching between the on-state and off-state, with X remaining

near zero is called chatter.

For semi-active on-off systems, those switches due to changes in the sign of the mass
velocity, X, are defined as “X switches”, while those due to changes in the sign of

X—X, are called “X—X, switches”. It is noted that only X switches are important with

respect to the potential of chatter. This is because X switches are associated with a

large relative velocity, X—X,, and thus a large damper force, while X—X, switches

are always associated with small damper forces. Also, chatter can only occur if the
damper and spring force are in opposition, and if the on-state damper force is of larger
magnitude than the instantaneous spring force. If the damper force is not larger than
the spring force, then the damper would not change the direction of the velocity and
would not initiate chatter. Figure 2.12 shows typical damping and spring forces when
chatter occurs. The conditions for chatter to occur are summarised in Table 2.1. If
these three conditions are met, chatter will be initiated and will continue until an

X—X, switch takes place; or either condition (2) or (3) in Table 2.1 is no longer met.

The same phenomenon can also occur in continuously variable skyhook control at

lower excitation frequencies, and has been studied in previous work by the author of
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this thesis [66]. The analysis is based on an investigation into the relationship between

the spring force and damping force when the relative velocity is nearly zero. Chatter

occurs when the relative velocity is nearly zero and the spring force is smaller than the

damping force in magnitude. Under these circumstances, the relative velocity will

change from positive to negative when the damper is turned to its on-state. According

to the condition function, the damper needs be turned to its off-state. But just after the

damper is switched off, the relative velocity becomes positive again. The damper will

be switched on accordingly. A limit cycle of oscillations exists until the conditions for

chatter to occur are not met.

Table 2.1 Conditions for the chatter of the semi-active skyhook control

(1) An X switch has taken place;
(2) The damper force, F,, if on, is of opposition sign to the spring force;

(3) The damper force is of larger amplitude than the instantaneous spring force.

Force

Figure 2.12 Spring force F, (dashed line) and damping force F; (solid line) during chatter
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Following the analysis in [48], a modified logic is proposed to eliminate the chatter,
which is given in Table 2.2. When X has just changed its sign, if the damper force is
of different sign to the spring force, and the magnitude of the damper force is larger
than that of spring force, do not switch the damper until the two conditions are not

met.

Table 2.2 Modified logic for cure of chatter in the semi-active skyhook control

(1) X has just changed sign;

(2) If the damper force is of the same sign as the spring force, then switch the damper according
to the switch condition. Otherwise, use (3);

(3) If the damper force magnitude, if on, is smaller than the spring force, then switch the damper
according to switch function. Otherwise, use (4)

(4) Do not switch the damper until (2) or (3) are not met

2.5 JERK AND ANTI-JERK MODIFICATION

Jerk is defined as sharp changes in the acceleration response of the system. It can be
seen from the discussion in section 2.4 that chatter will induce sharp changes in the
damping force, thus it will result in jerk. No matter what control algorithm is used, the
damper force exhibits discontinuities at the time of switching. Thus a significant
change in acceleration may be experienced by the suspended mass, which is
undesirable. Figures 2.13-2.16 show three-dimensional control surface plots of the

damping force F_ as a function of the variables in the condition function defined by

equations (2.8) for continuous skyhook control, equation (2.11) for on-off skyhook
control, equation (2.17) for on-off balance control, and equation (2.19) for continuous

balance control. A surface discontinuity is present in the control surface at Xx—X, =0

in Figure 2.13, a surface discontinuity in the control surface at X=0 in Figure 2.14, a

surface discontinuity in the control surface at x—X, =0 in Figure 2.15, and a surface
discontinuity in the control surface at X—X, =0 in Figure 2.16. All these surface

discontinuities may lead to undesirable jerk.

To reduce the jerk induced by the switching of semi-active dampers, the method

discussed in a US patent [51] is adopted. A shaping function, which can be a function
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of X—X,, X, X=X, 1is introduced. The shaping function F(X-X,,X,X—X,) will define

the overall shape of the three-dimensional control surface. Table 2.3 lists the
guidelines that should be observed in selecting the shaping function

F (X=X, % X=%,) [51].

Table 2.3 Guidelines for selecting shaping function

(1) F(x—=X,,X,X=X,) is a continuous function;

(2) F(x—=X,,X,X=X,) is equal to O at the points whenever a variable in the condition
function will result in the occurrence of surface discontinuities ;

(3) F(x—=X,,X,X—X,) and the control surface both include continuous first derivatives
for all values of X—X,, X and %— X,, where the conditions defined in equation 2.8,

2.11,2.17 and 2.19 are met;

(4) F(Xx=X,,X%, %X—X,) and the control surface both are devoid of discontinuities

Fsa

Figure 2.13 Three-dimensional control surface plot of desired force for continuous skyhook control

(equation (2.8))
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Three different shaping functions have been described in reference [51] for

continuous skyhook control. The first one of interest has a shaping function given by
F (X = Xg, X, X = %)) = [% = %, | (2.23)

For this shaping function the control strategy becomes:

(2.24)

G =% x X(k=%)20
= o X(X—%,) <0

where G is a gain factor, which has units of N /(m/s)’.

Fsa

Figure 2.14 Three-dimensional control surface plot of desired force for on-off skyhook control

(equation (2.11))
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Fsa

Figure 2.15 Three-dimensional control surface plot of desired force for on-off balance control (equation

2.17))

Figure 2.17 is a block diagram of the continuous skyhook control algorithm defined
by equation (2.8). This control algorithm requires measurements of the velocity of the

suspended mass, X, and relative velocity, X—X, across the damper. X is scaled by a

predefined damping coefficient Cy, to form the on-state desired damping force Cy X,

which is the first input to the switch block. The second input to the switch block is the
product of X and X—X,,X(X—X,), is tested in the switch block to decide whether the

first input Cy X or a zero constant force is passed through. If X(X—X,) =0, then cy X

is passed through, else, a constant zero force is passed through. Figure 2.18 is the
block diagram of the proposed anti-jerk algorithm for continuous skyhook control.
When compared with Figure 2.17 it can be found that the switching remains the same,
but the on-state damping coefficient has been modified by the introduction of the

shaping function.
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Figure 2.16 Three-dimensional control surface plot of desired force for continuous balance control

(equation (2.19))

Cmin

Csky

X
Product

Switch

Figure 2.17 Block diagram of continuous skyhook control

Product 2

F
Shaping
function

Cmin

.y
|

I
|

X

C2)
X—X,

Product 1

Switch

Figure 2.18 Block diagram of anti-jerk modification for continuous skyhook control
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Figure 2.19 is the three-dimensional control surface plot showing the resulting control
surface of the control algorithm described in equation (2.24). It can be seen that this

control algorithm is devoid of any surface discontinuity at X—X, =0 compared with

Figure 2.13, thus it can reduce the acceleration jerk. This anti-jerk control method is

used in the implementation of the semi-active control method in this thesis.

Figure 2.19 Three-dimensional control surface plot of desired damping force for continuous variable

skyhook control with anti-jerk modification (equation (2.34))

2.6 CONTROLLER DEVELOPMENT

This section is concerned with the development of the semi-active control algorithms.
Anti-jerk and limitations of practical hardware on achievable damping coefficient are
considered. In the original control algorithms shown in Table 2.1, zero damping is
assumed when the damper is switched off, which is not true in practice. When
implementing the damping force required by each control algorithm in Table 2.1
using a conventional damper, which can only provide a damping force proportional to

the relative velocity across it, there exists an upper and lower limit of the damping
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coefficients, ¢ and c_. . Continuous skyhook control, on-off skyhook, continuous

balance control, on-off balance control and adaptive damping control are employed.

Each control algorithm is implemented using Matlab/Simulink.
2.6.1 CONTINUOUS SKYHOOK CONTROL

Recalling the anti-jerk method described in equation (2.24) which defining the
damping force, and the control surface plot in Figure 2.19, the semi-active damping

coefficient required can be derived as following

G'|X_Xo|'x e
———— X(%=%)=0
C, = X=X, (2.25)

0 X(X—%,) <0

Notice that the damper is switched to its on-state whenever X and X—X, have the

same sign. When X—X, >0, X also needs to be greater or equal to zero, thus

M:GX:GM x>0 (2.26)
X=X,
When X—X, <0, X<0
—G‘|f"_f"°|'X=—G>'<=G|>'<| X<0 (2.27)
X=X,

Following this discussion and taking into consideration the constraints of practical
implementation, the following algorithm is proposed to implement the continuously

variable skyhook control algorithm

o | | X(X=%)20
X(X—%,) <0

(2.28)

max [Cmm ,min [G | X
Csa = C

'min

It can be seen from equation (2.28) that the semi-active damping coefficient c, is a

function of the gain factor G, and velocity X, which ensures that it has finite value

and is proportional to X. The maximum and minimum damping coefficients ¢ , and
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c . are applied as a constraint to semi-active damping. Figure 20 shows the control

algorithm block diagram for the new controller defined by equation (2.28). If the

product of X and X—X, is greater than or equal to zero, the damper force is

proportional to X ; otherwise, the damper force has the minimum value.
2.6.2 ON-OFF SKYHOOK CONTROL

Recall that the algorithm defining the on-off skyhook damper in (2.11) is a simplified
control algorithm to the continuously skyhook control. Using the anti-jerk method
described in the previous section, the shaping function for this control algorithm can

be chosen as
F (X=X, X, X— %)) =X (2.29)

Correspondingly, the damping force is given by

(2.30)

sa

G- [X|- (x—%,) X(X—%,)>0
Clnin(x-XO) X(X_Xo)<0

and the damping coefficient can be written in the same form as in equation (2.28) for
the continuously variable skyhook damper, i.e. this control algorithm is no longer on-
off, but is continuously variable and identical to the anti-jerk control algorithm for
continuous skyhook control after the anti-jerk modification. The control surface plot
of equation (2.30) is the same as in Figure 2.19. One can see there are no surface
discontinuities near X =0 compared to Figure 2.14. The anti-jerk control algorithm

block diagram for on-off skyhook controller is the same as in shown in Figure 2.20.

G e :
" I\ W=

SRR

Product 1 Switch F

- sa

Product 2

Figure 2.20 Block diagram of continuously skyhook control algorithm with anti-jerk modification
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After the anti-jerk modification, both the on-off skyhook and continuous skyhook
control can be implemented using the same control algorithm as described by

equation (2.28). The gain factor G is introduced, which is related to c, . In the anti-

jerk control algorithm, the semi-active damping force retains the same phase
information as that of the desired skyhook damping force when in its on-states.
However, the amplitude does not resemble that of the skyhook damping although the

damping force is still related to the absolute velocity.

Although jerk might occur with the simple on-off skyhook control algorithm, it is
much simpler and easier to implement since only two states of damping are assumed.
Also, the effects of delays in the controller and mechanical components may suppress
the occurrence of chatter. For these reasons, it is implemented numerically and
studied in this thesis. Figure 2.21 shows the block diagram for on-off skyhook control

algorithm without anti-jerk modification.

Cmax [
X I
e x4
5 D Product 1 Switch
X Xo roduc witc o Fsa

Product 2

Figure 2.21 Block diagram of on-off skyhook control algorithm

2.6.3 ON-OFF BALANCE CONTROL

Recalling the on-off balance control algorithm defined by equation (2.18), the control

surface exhibits discontinuities at X—x, =0 as shown in Figure 2.15. The shaping

function to avoid the control surface discontinuities is chosen as
F (X = Xg, X, X = %)) =[x = X, | (2.31)

The damping force for this control algorithm is given by

(2.32)

sa

G [x=X,|- (X=%) (X=X )(X—%)<0
Cmin(X_XO) (X'Xo)(x_xo) >0
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Figure 2.22 shows the control surface plot of equation (2.32). The surface

discontinuity at X—X, =0 is therefore avoided by the introduction of the shaping

function compared to Figure 15. The damping coefficient corresponding to equation

(2.32) can be written as

max [C min [G |X — X,

o | | (XX )(K=%) <0

'min ?

C_

@ = (2.33)
Cmin (X-XO)(X_XO)>O

Fsa

Figure 2.22 Three-dimensional control surface plot of desired damping force for on-off balance control

with anti-jerk modification (equation (2.36))

As for the on-off skyhook control algorithm, the anti-jerk control algorithm defined
by equation (2.33) for on-off balance control is no longer “on-off”. The damping
coefficient becomes continuously variable. Figure 2.23 shows the control algorithm
block diagram for this controller. It will be used in the analysis of the vibration
isolation performance of the semi-active damper, and it will be seen in section 3.4.4

that for the continuous balance control, the anti-jerk controller has the same form. For
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the same reason given for the skyhook semi-active damper, the control algorithm
described in equation (2.18) is much more simple and easy to implement since only
two states of damping are assumed. It is also implemented numerically and studied in
this report. The block diagram of the on-off balance control algorithm is defined by
equation (2.18) is shown in Figure 2.24.

D

X=X, Mbs ;T
T e
X — XO J [Cmin ’ cmax ]

Product 1 Switch F

| sa

Product 2

Figure 2.23 Block diagram of on-off balance control algorithm with anti-jerk modification (equation
(2.36))

Cmax R
X—X, > I
: H
X 1)
S B roauci i
X=X, wite - Fsa

Product 2

Figure 2.24 Block diagram of on-off balance algorithm without anti-jerk modification (equation (2.18))

2.6.4 CONTINUOUS BALANCE CONTROL

Recalling the algorithm defining the continuous balance control in equation (2.19),
and as shown in Figure 2.16, there exists surface discontinuities at X—X=0. When

the anti-jerk control is used, the shaping function is chosen as
F (X = Xg, X, X = %)) =% = %| (2.34)

The damping force therefore can be written as

sa

(2.35)

G X=X |- (X=%)  (X=X%)(X=%)<0
Cmin(X-XO) (X'Xo)(X_X0)>O
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and the damping coefficient is given by

—G X=X |- (X=%,) (X=X )(X=%,) <0
- L ! )< (2.36)

C.. (X-X)(X=%,)>0

min

The damper is switched to its on-state whenever X—X;, and X—X, have different

signs, i.e. when X—X, 20, x—X, <0, we have

—G (X=X, (X=X
[X=%]-€ ) — G(x-x,) = Glx—x,|(x- %, <0) (2.37)

X—X,

when X—X, <0, X—=X,20

=G [} = X,|- (X = %))
X=X,

=G(X—X,) =G |x =X, (X=X, > 0) (2.38)

Thus the damping coefficient can be further simplified as the same form as in

equation (2.33).

As with the two skyhook control algorithms, both on-off balance and continuous
balance control algorithms share the same anti-jerk implementation algorithm as
shown in equation (2.33). The gain factor G for balance control has the unit of
N / m’/s, which is different to the unit for skyhook control. The resulting semi-active
damping force after anti-jerk modification has the opposite sign of the spring force
when in the on-state, and it is proportional to the relative displacement, i.e. the

damper is behaving in a spring-like manner.
2.6.5 ADAPTIVE-PASSIVE DAMPING CONTROL

For the adaptive damping control algorithm discussed in section 2.3.3, the damper
works in a bi-state manner. It works as a common passive damper, which can be
switched from one value to the other. Since the switch time can be chosen to be when

the damping force equals zero, there is no jerk associated with this control algorithm.
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The Matlab/Simulink model of a semi-active SDOF system is shown in Figure 2.25.
Diagrams of semi-active control strategies can be used in the model to represent the

semi-active damper.

SDOF Systern with Semi-Active Dampers Subjected to Base Excitation
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Figure 2.25 Matlab/Simulink model of a semi-active SDOF system
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2.7 CONCLUSIONS

Details of four semi-active control strategies of interest and the adaptive-passive
control strategy have been presented in this chapter. The original control algorithms
and the theoretical semi-active damping coefficient required for the desired damping
force discussed in this section are summarised in Table 2.4. Considering the
constraints by the physical parameters of the conventional damper, the damping

coefficient of the semi-active damper must lay in the range [C . For the

min,Cmax]
continuous skyhook control and continuous balance control, the denominator in the

expressions of the damping equation will introduce high nonlinearity into the system.

Matlab/Simulink models for the four semi-active control algorithms are established
for numerical simulations of semi-active dampers. Both chatter and jerk associated
with the switches between on-state and off-states of a semi-active damper have been
studied. Modified control strategies have been proposed to avoid chatter and anti-jerk

control algorithms. As a summary, Table 2.5 lists the five control algorithms used in
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chapter 3 to study the vibration isolation performance of semi-active dampers. The
algorithms are referred to as SA-1 to SA-4, where SA denotes semi-active. It can be
seen from the previous discussion that both the two skyhook semi-active dampers can
be implemented by the same anti-jerk control strategy, which is referred to as SA-1
damper. A conventional on-off damper without anti-jerk is referred to as SA-2
damper. The anti-jerk implementation of the two balance control algorithms is
referred to SA-3 damper. The simple on-off balance controlled damper is referred to
as SA-4 damper. It should be pointed out that SA-2 and SA-4 are conventional on-off
damper without anti-jerk treatment. Although they might cause jerk during operation,
they are studied here since they are less complex and can provide comparison with
anti-jerk control algorithms. Vibration isolation performance of a SDOF system
comprising the four semi-active dampers together with the adaptive damping method

is studied in the following chapters.
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Table 2.4 Damping characteristics of a semi-active damper

Damper Type Original Control Algorithm Semi-Active Damping Required Semi-Active Damping In Practice
. . .. . Cskyx . . . cskyx . .
Continuous Cyy X X(X=%;)=0 — X(X—=%,)=0 max| C,;, ,min| ——,C_ X(X—%,) =0
skvhook Fsa= 0 X(X—X)<0 Ca =9 X=X, Co = X=Xy
y 0 0 X(X—%,) <0 C.. X(X—%,) <0
C,,(X—X% X(X—%,)=0 C X(X—=%,)=0 o X(X=%,)=0
On-off skyhook F,= o o) . (. . o) Co =19 .( . .0) C. = . .0)
0 X(X=%,)<0 0 X(X—X%,) <0 - X(X—=%)<0
Con(X=%)) (X=X )(X=%)<0 C., X=X, )(X=%,)<0 e (X=%)(%X=%,)<0
On-off balance F. ={ 0 0T C, = (=% _ .0) c, = ( 0)( '0
0 (X=%,)(%X=%) >0 0 (X=%)(X=%)>0 Con (X=% ) (X=%)>0
“K(X=%) (X=X )(X=%)<0 —K(x=x,) —k(x=x,)

i F. = —2" (X=X, )(X—=X,)<0 . min| ———2 - K —X )<
Continuous “a {O X)X %) >0 | ¢ =1 %%, (X=X)(X=%,) . = max| C_. ,min =%, 2Coonx (X=X)(X=%,)<0
balance o

(X=%)(X=%) >0 Coi (X=X, )(k=%) >0
_ o> o
Adaptive F - {Con(x %) RMS(X) = RMS(X,) . {con RMS(X) > RMS(X,) . {cm RMS(X) = RMS (X, )
200 RMS(X) < RMS(X s = o y @ =
damping ( ) ( 0) 0 RMS(X) < RMS(XO)

C..  RMS(X)<RMS(%,)
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Table 2.5 Anti-jerk control algorithms for semi-active damping control

Damper
T P Original Control Algorithm Semi-Active Damping In Practice Anti-jerk Implementation
ype
. . P . . Cskyx x .
Continuous E o Cyy X X(X=%,)20 o max C,,» Min n,cmax X(X—=%,)=0
skyhook @ 0 X(X—Xo) <0 = 0 . c = max':cmin’mln[G|X|’Cmax:| :| X(X_XO)ZO
Conin X(X—Xo) <0 N Cin X(X_Xo) <0
On-off c, (X—X X(X—%,)>0 Coo X(X— )
Fsa:{ n(X=%) - X(K=,) . - X(3=%)20 ) (SA-1)
skyhOOk 0 X(X_ XO) <0 Cmin X(X_ 0
On-off F = Con (X=%) - (X=%)(X=%) <0 Comx (X=X )(X=%,)<0
= o (X=X )(X=%,) > 0| Cea = (SA-4)
balance Coin  (X=%)(X=%)>0
min[G|x— - )(X=%,) <0
. - max[cmm,mm[ X=X, |.C | J (X=X )(X = %))
—K(X=%) (X=%,)(k—%) <0 K(x=x,) o (X=%)(k=%,) >0
Continuous * {0 (X=X)(X=%)>0] ¢ = Max| Coin » M X=X, »Cmax (X=%)(x=%,) <0 (SA-3)
balance Co (X=X)0k=%,) > 0
Adaptive - {Con(x' %) RMS(X) = RMS(X,) o o RMSGOZRMS(R)
damping 0 RMSCO <RMSGGL)) % Ze | RMS(0) < RMS(%,)
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CHAPTER 3

3. HARMONIC ANALYSIS OF SEMI-ACTIVE DAMPERS

3.1 INTRODUCTION

Chapter 2 described four basic control strategies for semi-active damping control
which are based on skyhook control and balanced control. These semi-active control
strategies combine a control algorithm together with a condition function. Chattering
and jerk were identified as potential problems when using semi-active dampers due to
abrupt changes of the damping force. Control algorithms with anti-chattering and anti-
jerk implementation were proposed, and implemented in Matlab/Simulink. This
chapter presents an evaluation of the performance and suitability of the four semi-

active control algorithms for isolation of harmonic disturbances.

In this chapter numerical and experimental investigations of the isolation performance
of the semi-active damping control strategies are described. A SDOF system
incorporating a semi-active damper is used to study the isolation performance. The
performance is evaluated in terms of Root-Mean-Square (RMS) acceleration
transmissibility and relative displacement transmissibility. The implementation of the
numerical simulations is first introduced. These are followed by an evaluation of each
semi-active control algorithm. The vibration isolation performances of the semi-active
system are compared with those of the conventional and skyhook passive damper
systems. Experiments carried out to investigate the isolation performance of the on-
off skyhook semi-active damper using an electromechanical damper are also
presented. The chapter ends with comparison and critical comments on performance

of the semi-active control strategies.
3.2 THE PERFORMANCE INDICES

The vibration isolation performance of a SDOF system with a semi-active damper due

to harmonic excitation is evaluated in terms of the following response parameters:
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Absolute Acceleration Transmissibility. Previous researchers have used
displacement transmissibility to characterise isolator performance [17, 67, 68]. In
practical applications, since the human body or suspended mass is sensitive to inertial
forces, the characterisation in terms of acceleration may be more appropriate [4, 24].
Since the system with a semi-active damper is nonlinear with step changes in damper
force, the acceleration response due to a harmonic input will not be harmonic. Thus
the ratio of the RMS value of the acceleration response to the RMS value of the
excitation acceleration is chosen as a performance index to evaluate the vibration

isolation performance. The acceleration transmissibility is defined by

_ RMS(X)

e — Equation Section 3(3.1)
RMS(X,)

Relative Displacement Transmissibility. The relative transmissibility is a measure
of the clearance required in an isolator, which usually includes a spring and a damper
in parallel. It is defined as the ratio of the RMS value of relative displacement
between the mass and the base to the RMS value of the displacement of the base, and

is given by

_ RMS(x-X,)

% = T RMS () (3.2)

3.3 MODEL DEVELOPMENT AND SOLUTION PROCEDURES
3.3.1 MODEL FORMULATION
The base excitation used for numerical simulations takes the form

%, = X, Re(e"") (3.3)

where @ is the excitation frequency and XO is the amplitude of the acceleration

excitation. All the simulations are run in the time-domain with discrete frequency

excitation over a range from 0.50, to 10w,, where @, is the natural frequency of the

system.
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The equation of motion for a base excited SDOF system with a conventional viscous

damper of variable damping coefficient can be generalised as
MX(t) + C(t) (X(t) — X, (1)) + K (X(t) =X, (1)) =0 (3.4)

where c(t) is the damping coefficient of the system, which is assumed to vary with

time. The damping coefficient for different types of dampers of interest are defined as

follows:

Conventional passive damper: C(t) =C
Skyhook damper: c(t) = Cy,,
RMS(X) =2 RMS(X,)

RMS(X) < RMS(X,)

SA-1 damper: c(t) = {maX[Cmm’mm[G |X ’CmaX] } X(X=%) =0
Chi X(X—X%,)<0

min

max

Adaptive-passive damper: C(t) = {

‘min

Cooax X(X—=%)=0
SA-2 damper: c(t) = X(X . ) <0
%o

'min

max[c min[G|x—x0,cmaX]J (X-%)(X=%,) <0

C.. (X-X)(X=%,)>0

min

'min ?

SA-3 damper: c(t) = {

X=X, )(X=%)<0

C
SA-4 damper: c(t) = { ™ (3.5)
C._.

min

(X_Xo)(x_xo)>0

It can be seen from equation (3.5) that the damping coefficients for the conventional
and skyhook passive damper are constant. But, the damping coefficient is time

varying for the adaptive-passive damper and semi-active damper.

For the conventional and skyhook passive system, analytical solutions to equation of
motion based on equation (3.4) are available. However, for semi-active systems,
analytical solutions are not possible since the damping coefficient of the system is
time varying. Instead, numerical simulations were carried out for this study. This
section describes the solution procedures deployed. The results are presented in terms
of the acceleration transmissibility, as defined in equation (3.1) although it should be
noted that for a nonlinear system this is not equal to the velocity or displacement

transmissibility as it would be for a linear system.
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Consider a SDOF system with a semi-active damper as shown in Figure 3.1. The

equation of motion describing this system can be written as

MR () + Cgy (1) (XA =%, (1) )+ k (x(1) =%, (1)) =0 (3.6)

where C, is the damping coefficient of the semi-active damper and is defined for

various control strategies as defined in equation (3.5).

Equation (3.6) is solved to establish the vibration isolation performance of harmonic
disturbances. The response of the system can be obtained by directly integrating
Equation (3.6). The fourth order Runge-Kutta method was chosen to integrate the

differential equation.

X, X, X

Command

X(t
© L m inputs

L
k § ;44— Controller

A
KOA

Figure 3.1 Schematic of a SDOF system with a semi-active damper

Numerical models of the semi-active SDOF systems subjected to base excitation have
been established in Matlab/Simulink to carry out numerical simulations. Figure 3.2
shows the Matlab/Simulink model for the simulation. The model comprises four parts.
The first one is the signal generator, which produces the excitation input into the
system. The second part is the representation of the system and the third part is the
semi-active controller, which produces the damper force according to different control
strategies. The semi-active damper block in the model can be programmed to any
control algorithm in principle. In this study, the block diagrams shown in Figures
2.10-2.14 can be inserted into this part to program a desired semi-active damping
force. The last part is the displaying and the post processing the results according to

the performance indices defined in section 3.2.
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Figure 3.2 Matlab/Simulink model of a semi-active SDOF system

3.3.2 SOLUTION PROCEDURES

The organisation of the solution procedures for simulation is shown in the flow chart
of Figure 3.3. As detailed in this flow chart, the procedure begins with a definition of
the constants of the system parameters. Next, the initial conditions (all zero for this
study) and inputs of the system are assigned. The time step for each iteration and final
time of the process are now defined, setting the total number of iterations to be
performed by the calculation loop of the procedure. The first part of the calculation
loop determines the damping coefficient of the semi-active damper. If passive
damping is applied, the damper is set to a constant, not changing within the loop. If
semi-active damping is applied, the relevant control algorithm is used to calculate the
current damper value based on the control algorithm applied. Once the damping
values have been determined, the definition of all components of the model will be

completed.

The next stage is calculating the responses of the system from the differential
equation. This computation is performed using fourth order Runge-Kutta method
since it does not require explicitly derivatives beyond the first [11]. For the solution of
a second order differential equation, we first reduce it to two first order equations.

Equation (3.6) can be rewritten as

5(':%[(kx0 +CX,) — (kx+cx)] = f(x,%,1) (3.7)
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Figure 3.3 Flow chart of the solution procedure

By defining X, = X and X, = X, the above second order differential equation can be

written as two first order equations
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X, =X, 1.8
Xz = f(Xl,Xz,t) ©.8)
By defining
ty=4 d fty=1" 3.9
X(t) = X, and f(t)= F(x %01 (3.9
So
X(t) =f(t) (3.10)

The following recurrence formula is used to find the values of X(t) at different times

t, according to the fourth order Runge-Kutta method

X(t+7)=x(t)+7[K, + 2k, + 2k, + k,]/6 (3.11)

k, =f(x,t)

k, =f(x+0.5zk,t+0.57)
k, =f(x+0.57k,,t +0.57)
k, =f(x+7k,t+7)

(3.12)

where 7 is the integration time step. In the simulation, 7 is chosen by error and trial,

which checks for the convergence of the results.

The next iteration is now ready to be calculated, continuing for a predefined number
of iterations. The number of iterations for this thesis was chosen so that steady-state

was reached.

It can be seen from equation (3.5) that the performance of the semi-active dampers
depend on the gain factor G and the minimum and maximum damping coefficients

C.i

1n

and ¢ . For a given system, there is a maximum value of the damping term

G|%| for SA-1 damper and G|x—x,| for SA-3 damper if G is set to a constant. To

make a relatively “fair” comparison between different types of dampers, a trial and

error method is used to select G such that the equivalent damping ratio corresponding
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to the maximum value of G|X| or G|X—X0| is equal to 0.25,0.5,0.707,1 for each

control algorithm.

The results presented in this section are based on the assumption that the off-state

damping, c_. =0. However, it may not be possible to achieve a damping coefficient

of zero when working with actual hardware. Therefore the semi-active damping
coefficients will actually be switched to a lower value. To achieve the desired
performance, the lower value of the off-state damping coefficient should be as low as
physically practical. The performance of the semi-active control strategy will be
slightly degraded from the ideal theoretical performance due to the non-zero off-state
damping coefficient. This has been pointed out in reference [55] and will be studied in

this chapter.
3.4 CONVENTIONAL AND SKYHOOK PASSIVE DAMPER

This section discusses the vibration isolation performance of a SDOF with a
conventional passive and skyhook passive damper. The analytical solutions for these
systems are provided and isolation characteristics are identified, which provide a
benchmark against which to evaluate the performance of semi-active control

strategies.
3.4.1 CONVENTIONAL PASSIVE DAMPER

A SDOF system with a conventional passive damper subjected to base excitation is
shown in Figure 3.4. It consists of a spring and a viscous damper. The differential

equation describing the motion of the passive system can be written as
MK+ C e (X- X K(X- %)= 0 (3.13)

where m is the mass of the system, C__ is the damping coefficient, K is the stiffness

pass

of the spring, X is instantaneous displacement of the mass, and X, is the

instantaneous displacement of the base. Defining the damping ratio { =c/2ma,,

natural frequency @, =+k/m , equation (3.13) becomes
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X+ 200 X+ 0, X = 20w X, + 0%, (3.14)

() X
M T

m

k i:j Cpass l l
% J Xo(1) K(X=%) C(X=%,)

Figure 3.4 Schematic of a SDOF system with a conventional passive damper

Vibration isolation can be characterised by absolute acceleration transmissibility and
relative displacement transmissibility as defined previous in Section 3.3. Since the
system is linear, it does not matter whether acceleration or displacement
transmissibility is used. For a conventional passive SDOF system, the absolute

transmissibility is given by [11]

>
=
VR
N
T\
ESES
—

%: (3.15)

2]
G (3.16)

SGINEH
a)n a)n

The acceleration and relative displacement transmissibility are shown in Figures 3.5

(a) and (b) respectively. In general, Figure 3.5(a) indicates attenuation of excitation at
frequencies @ > \/Ea)n , amplification at frequencies near resonance and almost unity

at low frequencies @ < 0.3w, . The isolation region can be extended by decreasing the



Ch3. Harmonic analysis

spring stiffness, k , or by increasing the mass m . Since the mass is usually

predetermined, the designer selects Kk to yield the desired natural frequency.

Transmissibility (dB)

Frequency ratio w/u)n

(a)

Relative transmissibility (dB)

10 10
Frequency ratio w/wn

(b)

Figure 3.5 Transmissibility of a conventional passive SDOF system (a) absolute transmissibility; (b)

relative transmissibility
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Control of the resonant amplitude is achieved by the damper. This reduction is
accompanied by decreased isolation above the resonance frequency in the isolation

region. Increasing damping reduces the resonance response, but it increases
transmissibility in the isolation range w/®, >/2 . If no damping were present, the

transmissibility at resonance would be infinite. The high frequency transmissibility in
this case would be asymptotic to a slope of -40dB/decade, giving superior isolation
there. This represents the well-known compromise between better control at
resonance and poor vibration isolation at high frequencies due to fixed damping.
Studying the relative displacement transmissibility curves in Figure 3.5(b), it can be
seen that a higher value of damping gives lower values of relative displacement

transmissibility at all frequencies.
3.4.2 SKYHOOK PASSIVE DAMPER

The equation of motion for a SDOF system with a skyhook damper can be written as

[15]

M+ Cy X+ K(X- X,)=0 (3.17)
where Cg, is the damping coefficient of the skyhook damper.
The above equation leads to the equation of motion of the mass as

X+20w %+ @," (X—%,)=0 (3.18)

The transmissibility of the SDOF system with a skyhook damper is given by

T = (3.19)

and the relative transmissibility is
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20 ——————

Transmissibility (dB)

10 10
Frequency ratio w/u)n

(a)

Relative transmissibility (dB)

10

Frequency ratio u)/(on

(b)
Figure 3.6 Transmissibility of a skyhook SDOF system (a) absolute transmissibility; (b) relative

transmissibility
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(&) =2)

T = 2 (3.20)
el
a)n a)n

The transmissibility and relative transmissibility of a SDOF system with a skyhook

damper are shown Figures 3.6 (a) and (b). From Figure 3.6 (a) it can be seen that the
compromise between resonance control and isolation that is inherent in conventional
passive system does not exist for the skyhook system. Increasing the damping reduces
both the resonance response and the transmissibility in the isolation range. Studying
the relative displacement transmissibility curves in Figure 3.6 (b), it can be seen that

an increase in damping leads to smaller relative displacement transmissibility for a

skyhook damper at frequencies w/w, = 1/ 2. The cross over point for the relative

transmissibility curves in Figure 3.6 (b) is l/ V2.

3.5 SEMI-ACTIVE DAMPERS

This section concerns the vibration isolation performance analysis of the four semi-
active dampers and the adaptive-passive damper defined in equation (3.5). Numerical
simulations are presented and the results are compared with those of the conventional

and skyhook passive damper.
3.5.1 ADAPTIVE-PASSIVE (AP) DAMPER

Figures 3.7 (a) and (b) show the RMS acceleration and relative displacement
transmissibility respectively for a SDOF system with an adaptive-passive damper. It

can be seen from the two figures that the response of the AP system is identical to the

passive system with the damping ratio { =¢___ at frequencies @/, < V2, and the

response is identical to the undamped passive system at frequencies @ /o, > V2. The

control of vibration at resonance is achieved by the on-state damping ratio £, while

higher frequency isolation maintains 40dB /decade . It retains the best performance of
the undamped passive system. Studying Figure 3.7 (b) , it can be seen that the relative

displacement transmissibility of the AP system is independent of the on-state damping
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¢ ... at frequencies @/ w, > V2, where the transmissibility is the same as a passive
system with zero damping. The AP control algorithm makes the relative displacement

worse beyond a frequency ratio of V2.
3.5.2 SA-1 SEMI-ACTIVE DAMPER

Figures 3.8 (a), (b) and (c) show the time history plot of the damping force, the
condition function and the acceleration response with G =185 for the SA-1 semi-
active damper. The SA-1 control strategy is the anti-jerk implementation of the
continuous skyhook control strategy, whose condition function is given in section
2.6.1. The plots in Figures 3.8 (a) to (c) correspond to the normalised frequency ratio

of w/®,=0.5,1.0 and 3.0. The system was allowed to run until steady state was

reached although only the last few cycles are plotted in the figures. The plots of
damping force versus time suggest that the damper is switched off for longer
durations at higher frequencies. The acceleration plots show somewhat non harmonic
response due to the nonlinear force generated by the semi-active damper. When

®/m,=3.0 as shown in Figure 3.8(c), the acceleration plot shows significant

attenuation of the base-induced acceleration disturbance.

The RMS acceleration transmissibility and RMS relative displacement
transmissibility of SA-1 system to various gains G under the same maximum

damping ¢ are shown in Figures 3.9 (a) and (b). As shown in Figure 3.9 (a),

increasing G improves the RMS acceleration transmissibility without worsening the
high frequency isolation. For a higher G, isolation can be obtained for frequencies at
and below the natural frequency of the system. Furthermore, the high frequency
performance was superior to a conventional passive damper. There is no compromise
between resonance control and high frequency isolation. The attenuation of base
disturbances at and below resonance is achieved without reducing the spring rate,
which is favourable from a static deflection point of view. However, there are limits

to the performance improvement. It was noted by Karnopp [15] that as G — «, the

high frequency performance approached that of a skyhook system with

®,=0.6vk/m and ¢ =1.0.
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Studying the relative displacement transmissibility in Figure 3.9 (b) shows that
increasing G improves the relative displacement transmissibility. Comparing Figure
3.9 (b) with Figure 3.6 (b) shows that there are no crossing points in Figure 3.9 (b).
This is due to the fact that the damper is turned off during part of the vibration period
and the amplitude of the damper force is not exactly the same as the ideal skyhook

damper when it is on.

It can be seen from equation (3.5) that the performance of the SA-1 damper depends

on the gain, G, as well as the minimum damping coefficient, c_. , and the maximum

‘min >

damping coefficient,c__ . The damping force attains its saturation level for longer as

max *

the gain, G, increases.
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3.5.3 SA-2 SEMI-ACTIVE DAMPER

Figures 3.10 (a), (b) and (c) show the time histories of the condition function, the
damper force and the acceleration responses for the SA-2 control algorithm with the
on-state damping ratio ¢ =1. The SA-2 control strategy is the on-off skyhook

control strategy, whose condition function is given in section 2.6.2. The plots in

Figure 3.10 (a) to (c) correspond to the normalised frequency ratio of @/@, =0.5,

1.0 and 3.0. The acceleration response of the on-off damper consistently reveals two
peaks during each vibration cycle irrespective of the excitation frequency. The two
peaks are associated with the switching between high and zero values of damping
ratio. With the increase of excitation frequency, the duration of the off cycle of SA-2

system increases.

The RMS acceleration and RMS relative displacement transmissibility of the SA-2
semi-active system are shown in Figures 3.11 (a) and (b). It can be seen from Figure
3.11(a) that the performance of the SDOF system with the SA-2 damper is very
similar to the performance of the system with the SA-1 damper. As the on-state

damping ratio ¢, increases, the performance at the frequencies near the natural

frequency of the system improves but with a slightly worse isolation performance at
higher frequencies. Figure 3.11(b) shows that increasing the damping reduces the

RMS relative displacement transmissibility of the system at all frequencies.

Both the on-off (SA-2) and continuously variable (SA-1) skyhook control strategies
exhibited the ability to lower the resonance peak without worsening isolation at higher
frequencies. However, there is some difference between the performances of these
two semi-active dampers. The RMS acceleration and relative displacement
transmissibility of the skyhook controlled semi-active dampers are compared with
those of passive and skyhook dampers. The results are shown in Figures 3.12 (a) and
(b). Studying the RMS acceleration transmissibility curves in Figures 3.12 (a) and (b),
it can be seen that both of semi-active dampers can provide better performance at
higher frequencies than passive dampers and their performance is comparable to the
skyhook damper at even higher frequencies. In the higher frequency range, the
performance of SA-1 damper is better than SA-2 damper, which meets earlier

expectations that it can more closely emulate the skyhook damper. However, one can
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see from the Figure 3.12(a) that the SA-1 semi-active damper exhibits a higher

resonance peak than the passive damper at the same damping level, which is a

disadvantage of the two dampers.
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Figure 3.10 Damping force, condition function and acceleration (acceleration of the mass (solid line)
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3.5.4 SA-3 SEMI-ACTIVE DAMPER

Figures 3.13 (a), (b), and (c) show the steady-state response of an SA-3 system at
three different frequencies for G =140, which corresponds to the maximum damping
ratio ¢, =0.5. The SA-3 control strategy is the anti-jerk implementation of the
continuous balance control strategy, whose condition function is given in section
2.6.3. The plots in Figures 3.13 (a) to (c) correspond to the normalised frequency ratio
of w/@w,=0.5,1.0 and 3.0.
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Figure 3.13 Damping force, condition function and accelerations (acceleration of the mass (solid line)

and acceleration of the base (dotted line)) of a SDOF system with an SA-3 damper (a) @/@, =0.5; (b)

olw,=1.0;(c) o/w, =3.0
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Figure 3.14 Transmissibility of a SDOF system with a SA-3 damper (a) acceleration transmissibility;

(b) relative displacement transmissibility

Figures 3.14 (a) and (b) show the RMS acceleration and relative displacement

transmissibility for various values of the gain G . As G is increased, the resonant
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peak decreases and the isolation performance improves. At higher frequencies, the
transmissibility jumps to very large values for larger G . The same trend can be found
in the relative displacement transmissibility. The reason for the discontinuity of the
transmissibility curves is that, although the on-state damping force has the opposite
sign as the spring force and is proportional to the relative displacement, it cannot
exactly oppose the spring force. At high frequencies, a large value of G can over-
cancel the spring force and effectively change the stiffness of the system, which

results a larger response.
3.5.5 SA-4 SEMI-ACTIVE DAMPER

The steady state response of the SA-4 system is shown in Figures 3.15 (a), (b) and (¢)

for three different excitation frequencies with ¢ =1.0. The SA-4 control strategy is

the on-off balance control strategy, whose condition function is given in section 2.6.4.
It can be seen that the damper assumes zero force whenever condition function is
greater than zero, i.e. the spring and the damper forces have the same sign. The
acceleration response reveals two peaks associated with the two switches of the
damping level per period of vibration. The mass vibrates about a new equilibrium
position although not shown in the figure. Under this circumstance, the relative
displacement does not change sign, such that the switch of the semi-active damper is

determined solely by the sign of relative velocity.

Figures 3.16 (a) and (b) show the acceleration transmissibility of SA-4 system with

different on-state damping ratios, ¢

e - 1t can be seen from Figure 3.16(a) that with
the increase of the on-state damping, the resonant responses are reduced, but the high
frequency isolation performance is also degraded. Increasing the damping reduces the
relative transmissibility at resonance, but the isolation performance at higher

frequencies is dramatically increased due to the offset of the equilibrium position.

A comparison of the acceleration and relative transmissibility of SA-3 and SA-4
systems with conventional and skyhook passive systems is shown in Figures 3.17 (a)
and (b). Compared to the conventional passive system, the SA-3 system has a far
superior performance at higher frequencies. The acceleration transmissibility curves

show that the SA-3 system can provide a better performance than a very lightly
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damped passive system or even an undamped system at higher frequencies. However,
there is a price to be paid in terms of inferior low frequency performance and relative
displacement transmissibility. The SA-4 damper system can also provide better
performance at higher frequencies when compared with the conventional passive
damper with the same damping level. However, the performance at lower frequencies
and around resonance is worse than the passive system. Both the SA-3 and SA-4
dampers were developed to minimise the RMS acceleration of the system instead of
the relative displacement. It was shown from the simulations that these strategies

might lead to the mass vibration about a new position, which indicates an offset of the

displacement.
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Figure 3.15 Damping force, condition function and accelerations (acceleration of the mass (solid line)

and acceleration of the base (dotted line)) of a SDOF system with an SA-4 damper (a) w/@, =0.5; (b)

olw,=1.0;(c) w/w,=3.0
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3.6 DISCUSSION

Figures 3.18 (a) and (b) show a comparison of the RMS acceleration transmissibility
for a SDOF system with a conventional damper, a skyhook passive damper and a

semi-active damper. It can be established that:

(1) The semi-active system almost always provides a better isolation than a
conventional passive system with an equivalent damping level. As the
damping ratio increases, the difference between the two systems becomes

more obvious;

(2) The compromise between resonance control and isolation that is inherent in a
conventional passive system does not exist for the semi-active systems. The
reduction in the resonance peak does not necessarily occur at the cost of
reduced isolation at high frequencies. In fact, with a sufficiently large
damping ratio, one can completely eliminate the resonance peak and actually
achieve better isolation across the whole frequency spectrum. This is
particularly useful for sensitive machinery that cannot tolerate any overshoot
in power-up or power-down, and yet must have good isolation during normal
operation. Conventional passive systems offer one or the other, whereas the

semi-active system offers both;

(3) The performance at very low frequencies deteriorates due to the abrupt

discontinuities in the damper force;

(4) The skyhook damper system nearly always provides the best performance but
it is only an ideal case. SA-1 and SA-2 system provide similar performance
and in terms of relative transmissibility, the SA-2 system is even better than

the SA-1 system, and is much simpler; and

(5) The SA-3 system can provide superior isolation performance at higher
frequencies at the cost of a large resonance peak and large relative
displacement transmissibility. Both SA-3 and SA-4 systems are not good for

relative displacement transmissibility reduction.
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Adaptive-passive control is possibly the simplest way to

algorithm for harmonic vibration isolation.
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3.7 EXPERIMENTAL WORK

This section presents the experimental work for the evaluation of the vibration
isolation performance of a semi-active base isolated system. An experiment was set
up to investigate the use of an electromagnetic device as a semi-active damper for
vibration isolation. The experiments were conducted with the following objectives:
(1) to investigate the possibility and effectiveness of using electromagnetic damping
as a semi-active damper; (2) to validate simulations of on-off skyhook control

strategy.
3.7.1 INTRODUCTION

Linear electromagnetic devices consisting of coils of metal wire interacting with
magnetic fields produced by a permanent magnet or an electromagnet can be used to
construct electromechanical dampers. The damping coefficient can be varied rapidly
by changing the external resistance connected to the coil. In the open circuit state the
electromechanical damping effect vanishes, while when the coil is short circuited the
damping coefficient reaches a maximum value. Since the effective resistance can be
rapidly varied electrically, an electromechanical damper can function as a semi-active

damper in vibration isolation systems. This principle is explained in Appendix A2.

The electromagnetic device used for the experiment is adopted from a loudspeaker
since it is expected to behave like a SDOF system at low frequencies. Additional mass

was added to the original system to place w, at desired frequency. The loudspeaker

was mounted on a shaker to provide base disturbances. A photograph of the system is

shown in Figure 3.19.

The on-off skyhook control strategy was chosen to be implemented due to its
simplicity while retaining superior performance to that of a conventional passive
damper. A analogue controller circuit board based on the on-off skyhook semi-active
control algorithm was designed, tested and used in the experiment. The acceleration
response of the base and the mass were the two inputs into the circuit board, which
were integrated and processed according to the control algorithm. There is a digital

switch installed in the circuit board, which was used to open and close the coil circuit
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of the SDOF system. Detailed information about the circuit board is listed in
Appendix A4.

A .
Figure 3.19 Photograph of the experimental rig

Figure 3.20 shows the experimental setup for the semi-active vibration isolation
system (a complete list of the equipment used can be found in Appendix A4). In this
setup, the vibration system composed of a semi-active electromagnetic damper was
mounted vertically on an electromagnetic shaker supplied with a signal from a
frequency analyser. Accelerometers were attached to the mass of the system and the
vibrating base, and the signals were conditioned by charge amplifiers. The
acceleration signals were input into the designed controller circuit board after passing
through a high pass filter with a cut-off frequency of 2Hz. The input signals were
manipulated in the controller board which then produce a signal to operate the switch
of the semi-active damper. The acceleration signals of the mass and the base together
with the switch signal from the circuit board were measured and processed using the

frequency analyser.
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Figure 3.20 Diagram of the experimental rig

3.7.2 CHARACTERISTICS OF THE EXPERIMENTAL RIG

The first series of tests involved identifying the dynamics characteristics of the
experimental rig. The frequency response of the system was measured with the
electromagnetic damper in the open and short circuit state, which provided the
minimum and the maximum damping ratio achievable by the system. When the
switch was in the off-state, the electrical circuit was open. Thus there was no
electromagnetic force exerted by the electromechanical damper. The damping
coefficient of the system was a minimum and was equal to the mechanical damping of
the system. The mechanical damping of the system is due to the damping in the
suspension of the loudspeaker. When the switch was in the on-state,
electromechanical damping was added to the system. The damping coefficient of the
system was of maximum value and was equal to the sum of the mechanical damping

of the system and the electromechanical damping.

A random signal in the frequency range 5-100Hz was used to excite the shaker. A
frequency analyser was used to measure the frequency response. Figures 3.21 and

3.22 show the frequency responses and coherences when electromagnetic damper was
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open and short circuited. Figures 3.23(a) and (b) show the magnitude and phase of the
measured acceleration transmissibility between the mass and the base excitation. A
comparison was made between the measured data and the numerical simulations of a
passive SDOF system, where the natural frequency and the damping ratios of the
model have been tuned by hand to match the measured results. The theoretical
prediction curves are shown by the dotted lines in the figure. It can be seen that the
system behaves as a conventional passive SDOF system when open or short circuited,
and that the measurement results agree reasonably well with the numerical simulation
results. However, it should be noted that there is some relatively significant difference
between the phases. The system resonance response was reduced by adding
electromechanical damping. It can also be seen from the measurement that the natural
frequency of the system is at about 15.2 Hz. From the peak value of the acceleration
transmissibility when the switch was off, the mechanical damping ratio of the system
was calculated to be 0.10, and the overall damping ratio with the electromechanical

damping ratio of the system was calculated to be 0.22 .
3.7.3 ADAPTIVE-PASSIVE CONTROL

The second measurement was conducted to implement the adaptive-passive control
algorithm using the experimental setup. Recalling the equation defining the AP
damping control algorithm, the control algorithm for the current case can be defined

as

e (3.21)

e RMS (%) > RMS (X,)
‘e RMS(X) < RMS(X,)

The condition function is the comparison of the RMS values of the acceleration
response of the mass and the base. The RMS values of the two acceleration signals
were measured using two digital volt meters. The operation of the switch was
conducted by hand. Measurements were conducted in the frequency range of 8Hz-
80Hz, with a frequency increment of 1Hz up to 30Hz and a frequency increment of

2Hz above 30Hz.
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Figure 3.21 Acceleration transmissibility and coherence of the experimental rig with the

electromagnetic damper in open circuit state: (a) acceleration transmissibility (—measurement results;

------ theoretical prediction); (b) coherence
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Figure 3.22 Acceleration transmissibility and coherence of the experimental rig with the

electromagnetic damper in short circuit state: (a) acceleration transmissibility (—measurement results;

------ theoretical prediction); (b) coherence
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Figure 3.23 Transmissibility of the experimental rig with the electromagnetic damper in open and short
circuit state: (a) acceleration transmissibility; (b) phase angle (—measurements result for open circuit;
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prediction for close circuit)
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Figure 3.24 shows the result of the acceleration transmissibility with the AP semi-
active control algorithm. It can be seen from the figure that the system behaves as a

heavily damped system at frequencies when the excitation frequency @ is smaller
than \/Ea)n , while it behaves as a lightly damped system at higher frequencies. The

adaptive damping control algorithm can greatly reduce the response at resonance

while retaining the higher frequency isolation performance.
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Figure 3.24 Transmissibility of the adaptive-passive system (— measured;--- - numerical simulation)

3.7.4 ON-OFF SKYHOOK CONTROL

The third series of tests was carried out to measure the RMS transmissibility of the
system with the semi-active damper in operation. The controller circuit board was
connected to the system. The measured acceleration signals were fed into the circuit
board. A digital switch was controlled by the measured signal to open or close the
circuit to provide the desired damping. The tests were carried out frequency by

frequency and the steady-state RMS acceleration transmissibility was calculated.

-87 -



Ch3. Harmonic analysis

Figure 3.25 shows the measured RMS acceleration transmissibility, compared with a
theoretical prediction. As a comparison, the two passive cases are also shown for the
two cases when the damping ratios are maximum and minimum as described in
section 3.7.2. It can be seen from the results that the semi-active damper gives a
marginally better performance than the conventional passive damper. It lowers the
transmissibility near resonance when compared to the conventional passive damper
with minimum damping ratio. The performance at higher frequencies is slightly better
than that of the conventional passive damper with maximum damping ratio. However,
the performance of the semi-active damper could be improved if the off-state damping
ratio (mechanical damping) could be made much smaller, and the on-state damping
ratio is larger enough. The performance of the semi-active electromagnetic damper
was limited by the dynamics properties of the inductance of the suspension in the

loudspeaker and also the inductance of the circuit.
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Figure 3.25 RMS transmissibility of the SDOF system with the semi-active damper in operation
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In order to understand the results fully, it is necessary to look at some of the time
traces and therefore verify that the semi-active damper is behaving as intended.
Figures 3.26 to 3.28 show the time traces for the acceleration response and the voltage
to operate the damper when subjected to a pure-tone excitation below resonance (10
Hz), near resonance (15Hz) and above resonance (30Hz) respectively. The input wave
form was used to synchronise the start time for the simulations and measurements. It
can be seen from the figures that the measured acceleration responses for the semi-
active system are reasonably close to those predicted. The semi-active damper can
provide somewhat better performance by switching the damper on and off alternately
during one vibration cycle. Figures 3.26 to 3.28 also show that the semi-active damper
switches on and off twice in one vibration period irrespective of the excitation
frequency. The jerk presented in the simulated response curves does not appear in the
measured data. This is because there are some time delays in the electromagnetic

damper which help to suppress the jerk.
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Figure 3.26 Measured acceleration responses and voltage across the digital switch at 10Hz (a)

acceleration; (b) voltage (— measured; - - numerical simulation)
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Figure 3.27 Measured acceleration responses and voltage across the digital switch at 15Hz (a)

acceleration; (b) voltage (— measured; - - numerical simulation)
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Figure 3.28 Measured acceleration responses and voltage across the digital switch at 30Hz (a)

acceleration; (b) voltage (— measured; - - numerical simulation)
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3.7.5 FRACTION OF ON-STATE TIME

The waveforms in section 3.7.4 suggest that the duration for which the damper is on is
a function of frequency. This can be further analysed by evaluating the fraction of
time for which the damper is on, and this is shown in Figure 3.29. Results from
numerical simulations of a semi-active system and results obtained by studying the
expression of the condition function using a conventional passive system are also

shown as a comparison.

It can be seen from the figure that the fraction of time when the damper is on is
frequency dependent. With increasing frequency, the duration of the on-state also
increases. At frequencies near resonance, the damper is on almost all the time. At
higher frequencies, both the analytical solution for a conventional passive system and
numerical solution for a semi-active system indicate that the damper is on for 50% of

the whole period. There are good physical reasons for this and they are discussed in

section 4.1.
1 T T T T T
------- Passive
- - = Simulated SA
0.9 —— Measured h

Fraction of time

0 10 20 30 40 50 60
Frequency (Hz)

Figure 3.29 Comparison of measured and simulated results for the fraction of time when the condition

function is on
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3.8 CONCLUSIONS

This chapter investigated the performance of four semi-active damping control
strategies for isolation of harmonic disturbances through numerical simulations and

experimental tests.

Numerical simulations were carried out in Matlab/Simulink to study the vibration
isolation performance of the semi-active damping control strategies. The isolation
performance was evaluated in terms of root-mean-square (RMS) transmissibility of
acceleration and relative displacement. The performances of the semi-active damping
control algorithms are compared with that of a conventional and skyhook passive
damper. The results showed that semi-active damping control can reduce the response

at resonance without worsening higher frequency isolation performance.

An experiment was set up to investigate the use of an electromagnetic device as a
semi-active damper for vibration isolation and verify the simulations. The on-off
skyhook control algorithm was chosen to be implemented in the laboratory because of
its simplicity and effectiveness. Four series of test were conducted to investigate the
dynamic characteristics of the electromagnetic damper. The measurement results
showed that by opening and closing the circuit of the coil system, the damping of the
system can be effectively changed. Thus, it can be used as a semi-active damper for

vibration isolation.

The measurement results agreed with the theoretical prediction reasonably well. By
varying the damping of the system a few times during one vibration period, the
acceleration response of the mass can be reduced. The measured result showed that
the semi-active damper gives a marginally better performance than the conventional
passive damper. This performance was limited by the dynamic properties of the
suspension in the loudspeaker. Better performance could be achieved if the off-state

damping ratio could be made much smaller and the on-state damping much larger.

The measurement results also showed that the fraction of time when the damper is on
is frequency dependent. This means that the switching of the damper may be
compromised if more than one frequency present at the same time, in the case of

general periodic excitations for example. This is the subject of the next chapter.
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CHAPTER 4

4. ISOLATION OF PERIODIC DISTURBANCES

4.1 INTRODUCTION

In the previous chapter, the performance of semi-active damping control strategies in
isolating harmonic disturbances has been presented. The results show that semi-active
damping systems can provide better performance than a conventional passively
damped system, especially at higher frequencies. However, in practice, disturbances
may comprise a number of harmonics. The purpose of this chapter is to study the
effectiveness of semi-active damping control strategies in isolating disturbances with

more than one frequency component.

A semi-active damper is switched on and off within an operating cycle according to
the condition function to suppress the responses of the system. This means that
switching time is an important issue for the success of a semi-active damper. Both the
theoretical and experimental results in Chapter 3 show that the switching of a semi-
active damper is frequency dependent. If only one frequency is present in the
excitation, a semi-active damper will be switched to suppress the response of the
system due to the excitation at that particular frequency. One can expect that
switching times may be less favourable for suppressing that particular frequency due

to the presence of extraneous frequency components.

The effects of multiple harmonics on the switching and performance of a semi-active
damper will be investigated. For simplicity, only the on-off skyhook semi-active
damper is considered in this chapter, which is relatively simple to implement whilst
maintaining better isolation performance than a conventional passive damper. A
specific example of multiple harmonic excitation is periodic disturbances in which the
frequency components are integer multiples of the fundamental frequency. Periodic
disturbances are commonly met in practice, for example the vibration of a cam-
follower system. The effectiveness of the semi-active damper in isolating periodic

disturbances will also be studied.

-905 -



Ch4. Periodic disturbances

Chapter 4 consists of four sections. Following the introduction section 4.2 describes
the effect on the switching time of the damper of introducing a secondary frequency
in addition to a fundamental frequency. The secondary frequencies are limited to be
harmonics or subharmonics of the fundamental frequency. Section 4.3 discusses the
effectiveness of the on-off skyhook damper in isolating two commonly met periodic
disturbances. Experimental work carried out to study the effects of multiple
harmonics on the switching time is also presented. The chapter ends with some
conclusions and comments on the effectiveness of using semi-active damping control

for isolating periodic disturbances.

4.2 EFFECTS OF MULTIPLE FREQUENCIES ON SWITCHING
OF A SEMI-ACTIVE DAMPER

Recalling from the previous chapter that the switching of a semi-active skyhook
damper is controlled by the product of the absolute velocity and the relative velocity,
then the instances at which a semi-active damper is required to switch will depend on
the frequencies present in the disturbance. If only one frequency is present in the
excitation, the damper will be switched according to the signs of the condition
function arising from that particular frequency. However, the switching of a semi-
active damper may be compromised for both frequencies if there is a second
frequency also present in the excitation. This section investigates the effects of a
disturbance with multiple frequencies on switching times of semi-active dampers. The
frequency dependent characteristics of the switching of an on-off skyhook semi-active
damper are first illustrated. The effect of a second frequency on the switching times
ideally required to attenuate the first frequency is studied in detail. General
conclusions on the effects of multiple frequencies on the switching of the semi-active

damper are then presented.

4.2.1 FREQUENCY DEPENDENCE OF THE SWITCHING FUNCTION FOR
A SEMI-ACTIVE SKYHOOK DAMPER

Recall that the on-off skyhook control algorithm is defined by

= Equation Section 4(4.1)

C.  X(X—%)<0

min
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When the semi-active damper is subjected to a pure-tone excitation, the percentages
of the time when the damper is switched on and off are frequency dependent. This can
be demonstrated using a conventional passive SDOF system by studying the phase
relationship between the two variables of the condition function, namely the velocity

and relative velocity. If the velocity response and the velocity of the base excitation in

the frequency domain are denoted by X and XO , then one has the following transfer

function relating X and X,

« 1+i2¢ 2
2 _ % (4.2)
X, @ 1)
1—[} +i2¢ —
a)n a)n
Using equation (4.2), one can get
1+ izg(“’]
- h (4.3)

The phase angle between the velocity and relative velocity can be expressed as

/-2 |20 2 (4.4)
X=X, ,

The result in equation (4.4) is shown in Figure 4.1 for various damping ratios, and the
fraction of time when the velocity and relative velocity have same sign is shown in
Figure 4.2. From Figures 4.1 and 4.2 one can see that for low frequency excitation,
the phase angle between the velocity and relative velocity is very small, and the

absolute velocity and relative velocity are nearly in phase. As the excitation frequency

increases, the phase difference increases and approaches 90° as w/w, — . It must

be emphasised that this is an approximate interpretation of what happens because a
conventional passive system is considered instead of a semi-active system. In a

conventional passive system, X and X,—X, are harmonic to harmonic excitation.
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However, although, X and X,—X, are non-harmonic responses to harmonic

excitations due to the non-linearity of the on-off skyhook semi-active damper, the
results are reasonably representative according to the experimental results in section

3.7.5.

©
o

Phase (degrees)
w B a D ~ (o0}
(@] o o o o (@]

N
o

10

0 2 4 6 8 10 12 14 16 18 20
Frequency ratio (u)/(nn)

O 1 1 1 1

Figure 4.1 Phase angle between absolute velocity and relative velocity for a base excited passive SDOF

system

Assuming that the waveforms of the velocity and relative velocity for the passive and
semi-active systems are not too dissimilar, one can draw qualitative conclusions
regarding the duration of the on-cycle. For an on-off skyhook semi-active system, one
would expect the damper to be on most of the time at low frequencies since X
and X — X, have the same sign most of the time. As the excitation frequency increases,
the damper would be on less of the time. It can be expected that the fraction of time
when the damper is on will approach 0.5 at higher frequencies. The actual frequency
dependent characteristics of a semi-active damper are illustrated through numerical

simulations in the next section.
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Figure 4.2 Fraction of the time when velocity and relative velocity have the same sign

422 SIMULATION OF EFFECT OF MULTIPLE FREQUENCIES ON
SWITCHING OF SDOF SEMI-ACTIVE SKYHOOK DAMPER

The interpretation in section 4.2.1 shows that when only one frequency is present in
the excitation, the percentage of time that a semi-active damper is switched on is
frequency dependent. It can be seen from Figure 4.2 that this observation is especially

true for the frequency range 0 < w/ @, <3, say, for moderate to high damping values
¢ >0.5. When another frequency is also present in the excitation, the switching times

may no longer be ideal for the first frequency. Numerical simulations have been
carried out on a SDOF system with a semi-active on-off skyhook damper subject to
base excitation to investigate the effects of an extraneous frequency component on the
switching for the fundamental frequency of interest. An example of the results is
shown in Figure 4.3, in which the fundamental frequency is chosen to be at the natural
frequency. The figure shows the time percentages for which the semi-active damper is
in the same state with and without the presence of other frequency components. The
on-state damping ratio of the semi-active on-off skyhook damper is 0.5, and the off-
state damping ratio is zero. The disturbance is generated by superposing unit

amplitudes of the various harmonics.
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% i Correctly off
£ / // / 7777 Correctly on

Figure 4.3 Effect of multiple input frequencies on the switching characteristics of an on-off semi-active
skyhook damper (correctly on: fraction of time when the damper is on as required by the fundamental
frequency; correctly off: fraction of time when the damper is off as required by the fundamental

frequency)

One can see from the first column in Figure 4.3 that when only frequency, @, , is

applied to the system, the percentage of time when the damper is in the on-state is
68% and the off-state is 32%. This is consistent with the corresponding result for a
passive SDOF system in Figure 4.2 ({ =0.5, frequency ratio=1, which shows that
the fraction of time when the velocity and relative velocity have same sign is 72% ).

This again indicates that the behaviour of the condition function is not significantly

affected by the nonlinearity in the system.

For the combinations of different frequencies, the percentage of time when the
switching state is the same as when only one frequency component is present is
shown. It can be seen that with the addition of an excitation at a frequency of 0.5
times the natural frequency of the system (2nd column), the switching characteristics

are far from the ideal for isolating the @, component. The percentage of time when

the damper is correctly on to isolate the excitation at just @, drops from 68% to 58%
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and the time when it is correctly off drops from 32% to 18%. When an excitation at a
frequency of five times the natural frequency of the system is added (3" column), the

switch characteristics for an excitation at about @, are not significantly affected. The

percentages of time when the damper are correctly on and off drop to 57% and 29%
respectively. When both an excitation at a frequency of 0.5 times and five times the
natural frequency of the system is added (4™ column), the switch characteristics for an

excitation at about @, are significantly affected. The percentage of time when the
damper is correctly on to isolate the excitation at just @, drops to 50% and the time

when it is correctly off drops to 21%. As can be seen from the 2" and 3 columns,
this is mainly due to the presence of the excitation at 0.5 times the natural frequency

of the system.

It can be expected that changes in the switching times due to extraneous frequency
components may adversely affect the response of the system at the primary
frequencies of interest, which is crucial to the application of semi-active damping
control. The effect of extraneous frequency components on switching times will be
studied firstly in the following section, and the consequences of this on isolation

performance will be studied afterwards.

423 ANALYSIS OF EFFECT OF MULTIPLE FREQUENCIES ON
SWITCHING TIME

The simulation results in section 4.2.2 show that switching times of the semi-active
damper may be adversely affected by extraneous frequency components. The analysis
in this section seeks to establish when this effect can be expected to be most
pronounced. Later, general results are applied to a conventional passive SDOF system

to study the skyhook condition function.

Assume that the velocity response of a system comprises two harmonics, Y,(t) and
y,(t), at frequencies @, and @,, and amplitudes Y, and Y, respectively. y,(t) and
Yy, (1) are synchronised to be in phase at the initial time. In the following context @,
is named fundamental frequency, and @, is named secondary frequency. A “velocity

switch” will occur when y,(t)+y,(t)=0, whereas without the second frequency
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component, the switch would have occurred at y,(t) = 0. Therefore, the signs of y,(t)
and y,(t)+Y,(t) can be compared to determine the effects on the switching times of
y,(t) by the addition of y,(t). In order to achieve a good performance in isolating
disturbance Yy, (t) in the presence of y,(t) it is desirable for the switch to be largely

unaffected by the presence of y,(t).

Two special cases when @, =nw, and @, =hw,, (N=1,2,3,...... ) are considered, i.c.
when @, is a harmonic or subharmonic of @,. In each case, there are two different

situations when comparing the amplitudes of y,(t) and y,(t),1.e. Y, <Y, and Y, 2Y,.

(1) Casel: w,=nw,, (n=1,2,3,......), i.e. harmonics of the fundamental frequency

Figures 4.4(a) and (b) illustrate how the sign of y,(t) will be affected by the addition
of y,(t) for the case when @, = ne,. Figure 4.4(a) shows the time histories of y,(t)
and -y, (t) for the case when Y, <Y, and o, =4w®,, and Figure 4.4(b) shows the time
histories for Y, 2Y, and @, =7®,. In both Figure 4.4(a) and (b), if only y,(t) is
present, then the sign of y,(t) changes at the points when y,(t)=0. However, the
sign of y,(t)+Y,(t) changes at points when y,(t) =-Y,(1), i.e. the crossing points of
y,(t) and -y, (t). Thus, the sign of y,(t) and y,(t)+y,(t) is different during some

parts of a cycle.

For the first case when Y, <Y, (as shown in Figure 4.4(a)), the addition of y,(t)
causes the switching to be alternately right and wrong for isolating Y, (t) . There are n

segments per fundamental period when it is right and n segments when it is wrong. It

can be observed from the figure that the portion of ‘right’ switching time when Yy, (t)
and y,(t)+Yy,(t) have the same sign is bigger than that the portion when Y, (t) and
y,(t)+Yy,(t) have the opposite sign. As n increases, the portion of ‘right’ switching
time will decrease until it reaches the limiting case when w, << ®, and Y, <<V, .

Under this circumstance, the portion of ‘right’ and ‘wrong’ switching time will be
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equal. So the upper bound when the sign of y,(t)+y,(t) and y,(t) is different is 1/2
of the period.

Velocity
i o
s

Velocity
o

Time

(b)
Figure 4.4 Effect of a secondary frequency on the damper state for the fundamental frequency (a)

®, =40, and Y, <Y, (b) o, =7w, and Y, 2Y, (= y,(t) when it has the same sign as y,(t)+y,(t); ---

- ¥,(t) when it has the opposite sign from y,(t)+y,(t) ; —— —Y,(t)) (‘" - right, and ‘W’ - wrong).
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For the second case when Y, >Y, (as shown in Figure 4.4b), there are two segments of
time when the sign of y,(t) is always right, i.e. when the instantaneous velocity
|yl (t)| >Y,. The two segments are equal due to the symmetry of the waveforms of

y,(t) and y,(t) . The fraction of the fundamental period that these two segments

together comprise can be written as

T, ~ A cos | 2] =2ost 2 (4.5)
T 27 Y,) &« Y,

It can be seen from equation (4.5) that when Y, =Y,, the fraction of time when the
sign of Y, (t) is guaranteed to be right becomes zero. In the remaining time, the
switching time for y,(t) is alternately right and wrong. Let the fraction of time when
the switching time of y (1) is possibly affected by the presence of Y, (t) be denoted

by T,,, - Then T, can be written as

T =1-T,, - Zeos | 2|2 2gin [ 2 (4.6)
’ ’ V2 Y,) &« Y,

One can also see from Figure 4.4 (b) that in the segments where the sign of y,(t) may
be affected by y,(t) the portion of ‘right’ time is larger than that the portion of
‘wrong’ time. With the increase of w,, the portion of ‘right’ switching time will

decrease until it reaches the worst case when @, >> @, . Under this circumstance, the

‘right’ portions and ‘wrong’ portions are equal, i.e. the damper has the wrong state for

a duration of half of T, . Let this fraction of time be denoted by T, ,. Then from

equation (4.6), T, can be written as

1 . (Y
T,, =—sin l(vzj 4.7)

T 1
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(2) Case IlI: w,=w/n,(n=1,2,3,.....) ,i.e. subharmonics of the fundamental

frequency

The same procedure can be used to find the upper bounds for the fraction of time

when Y, (t)+Y,(t) has the opposite sign from Yy, (t) for the case when w, is
subharmonics of @, . Figures 4.5(a) and (b) illustrate how the sign of y,(t) will be
affected by the addition of y,(t) when @, =w,/n. Figure 4.5(a) shows the time
histories of y,(t) and —y,(t) for the case when Y, <Y, and w, =®,/2, and Figure

4.5(b) shows the time histories for Y, >Y, and @, =®,/3.

For the first case when Y, <Y, (as shown in Figure 4.5(a)), it can be seen the
switching time for Yy, (t) is ‘right’ for at least half of the fundamental period. In the
other half of the period, the sign of y,(t) may be wrong. The worst case is that all of
the other half will be ‘wrong’, which is expected to happen when Y, is much bigger
than Y,. So the upper bound for the fraction of time when the sign of y,(t)+VY,(t) is

different to that of y,(t) is 1/2.

For the second case when Y, >2Y, (as shown in Figure 4.5(b)), the sign of y,(t) is

always right in the first half of its period. In the second half of its period the sign of

y,(t) is always right when the instantaneous velocity |y1 (t)| >Y, . So the total fraction
of time when the sign of y,(t) is always right can be written as

T, LN VT ILER T SV LY (4.8)
T Y ) T2

It can be seen from equation (4.8) that when Y, =Y,, the fraction of time when the
sign of y,(t) is always right becomes 1/2. In the remaining time, switching time for

y,(t) is wrong. If this fraction of time is denoted by T,

w,ll

T, =1-T,, =%—lcos‘1 (\Y(—zjzlsin‘1 (%} (4.9)
T 1 T 1

then T, can be written as
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The upper bounds for fraction of time when Yy, (t) has the opposite sign from
Y, () +Y,(t) for the two cases when @, =nw, and @, = /n are summarised in

Table 4.1. It can be seen from the table that when the amplitude of the second

harmonic vy, (t) is bigger than that of the y,(t), the upper bound is 1/2. The upper

bound is independent of whether the secondary frequency is a subharmonic or
harmonic of the fundamental frequency. The derived upper bounds for the case

@, = Nw, are shown graphically in Figure 4.6 as a function of the amplitude ratio
Y, /Y, . It should be noted here that the results in Table 4.1 and Figure 4.6 only provide
an upper bound for the fraction of time when the sign of y,(t)+ Y, (t) is different from
that of y,(t). The actual fraction of time when the sign of y,(t)+y,(t) is different

from that of y,(t) might be anywhere under the upper bound curve.

Table 4.1 Upper bounds for fraction of time when the sign of the sum of two harmonic velocities

Yy, (t)+Y, (1), is different from that of y,(t) alone

Frequency
Harmonics o, = nw, Subharmonics @, = @, /n
Amplitude
1 1
Y, <Y, — -
2 2
Y, 2V, lsin'] Y—z lsin'] Y—z
4 1 4 1

- 106 -



Ch4. Periodic disturbances

Velocity
o

(a)

Velocity
o

N ,
N . R ’
N - 2
N 4
N K :// r
W Always right
Time
(b)

Figure 4.5 Effect of a secondary frequency on the damper state for the fundamental frequency (a)
@, =w/2 and Y, <Y, (b) @, =®,/3 and Y, 2Y, (- y,(t) when it has the same sign as y,(t)+Y,(t);

---- Y, (t) when it has the opposite sign from Y,(t)+ Yy, (t); —— =Y, (t)) (‘r’ - right, and ‘w’ - wrong).
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Figure 4.6 Upper bound for the fraction of time when Yy, (t) has the opposite sign to y,(t)+ Y, (t)

424 EFFECT OF MULTIPLE HARMONICS ON THE SKYHOOK
CONDITION FUNCTION WHEN APPLIED TO A PASSIVE SDOF SYSTEM

In section 4.2.3, the effects of multiple harmonics on the switching time of the

condition function in equation (4.1) were investigated using two harmonics, Y,(t) and
Yy, (t). Upper bounds for the fraction of time when the sign of y,(t)+y,(t) is different
from that of y,(t) were derived. This section applies this understanding to the case
where Y, (t) and y,(t) arise from the velocity and relative velocity responses of a

passive SDOF system to different input frequencies, which will give some

understanding of real semi-active systems.

The condition function for the on-off skyhook semi-active damper in equation (4.1) is
composed of two parts: the velocity X; and the relative velocity X —X,. Changes in
the sign of the condition function are caused by either changes in the sign of the
velocity or the sign of the relative velocity. The following analysis uses the physical

behaviour of the pure passive system. Assume the two velocity inputs are
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Xor :|X01|Re(eiw‘t); Xoa =|)'(02|Re(ei”’2t) (4.10)
Correspondingly, the two velocity responses can be written as
G fiolRe(Hae™): % iolRe(H@ ) @

where H(w) is the transfer function between the output and input, and defined by

H(w) = — 1260 (4.12)
1-“_+i2¢w
a)n
So the amplitudes of X, and X, can be written as
1% | =% | [H @) %] = |%5.]|H (@,)] (4.13)

Using the analysis in Table 4.1 of section 4.2.3, the upper bound for the fraction of

time when the switching times arising from excitation X, + X,, have the wrong sign

from those for excitation X, is given by

(%] <[x])
(4.14)

) Nl’—‘

|X02||H(a)2)|

—sin”' (-
%] [H (@)

) (%] = %]

The results of equation (4.14) are shown for various damping ratios in Figures 4.7 (a)

and (b). In the figure, the damping ratio of the system is set to 0.5 and 1.0, and o, is
assumed to be varying from 0.1 to 10 times the natural frequency of the system. @, is
chosen to be a subharmonic (1/10,1/9,...,1/2) or harmonic (2,3,...,9,10) of @,. The

amplitude of the second input harmonic is equal to that of the first one.

- 109 -



Ch4. Periodic disturbances

0.5
0.45
0.4
0.35

o
w

0.25

o
(V)

Fraction of time

o Harmonics

Normalised fundamental Subharmonics10

frequency o, /o 10t -1
Ton 10 Frequency o/,

0.5
0.45
0.4
0.35

o
w

0.25

o
[N

Fraction of time

Harmonics

Normalised fundamental —— Subharmonicslo
frequency o, /o_ 10" 10
Frequency coZ/(o1

(b)

Figure 4.7 Upper bound for fraction of time when the velocity switch has incorrect state (a) { =0.5;

(b) £=1.0

It can be seen from Figures 4.7 (a) and (b) that the addition of the subharmonic

(w,/®, <1) may have a significant effect on the velocity switch for the first frequency
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for all excitation frequencies. The fraction of time when the damper has the wrong
state can be as large as 1/2. Harmonics (@, /@, > 1), however, will have less effect on
the velocity switch provided that the excitation frequency is above resonance. The
larger the damping ratio is, the wider the frequency range over which a secondary
harmonic will significantly affect the switching state of the fundamental frequency.
The reason for this is that the transmissibility curve for large damping ratio is
smoother than that for smaller damping ratio. This implies that the components of
response at different frequencies are not so different compared to the case when the

damping ratio is small.

The same procedure can be applied to study the effect of multiple harmonics on the
relative velocity switch. The relative velocity for only one excitation at individual

frequencies, @, and @, can be expressed as follows:
X, =X, = Xy |Re((H (@) =1)e™"); %, =%, =[¥,|Re((H(a,)-De™")  (4.15)

where H, and H, have the same meaning as in equations (4.11). The amplitudes of

X, —X,, and X, — X, can be further written as

|X1 _X01|:|X01||H(a)1)_1

; |X2—X02|=|X02||H(a)2)—1| (4.16)

The upper bound for the fraction of time when the relative velocity switch is wrong is

given by
1 .. , .
E (|X1_X01|S|X2_X02|)
) 4.17)
l .1 |X02||H(wz)_1| . .
”SIH (|)'(01||H(a)1)—1|) (|X1 X01|2|X2 X02|)

The results of equation (4.17) are shown graphically in Figures 4.8(a) and (b). In the

figure, the damping ratio of the system is set to 0.5 and 1.0, and @, is assumed to be
varying from 0.1 to 10 times the natural frequency of the system. @, is chosen to be a
subharmonic (1/10,1/9,...,1/2) or harmonic (2,3,...,9,10) of @, . The amplitude of the

second input harmonic is equal to that of the first one. One can see from the figure
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that the effect on relative velocity switching of the presence of harmonics of the
fundamental frequency is significant but subharmonics have little effect. This is true

except for the case when the fundamental frequency is close to resonance (@, = @,)

and the damping is very small.
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Figure 4.8 Upper bound for fraction of time when the relative velocity switch has incorrect state (a)

£=05;(b) £=1.0
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The conclusions from section 4.2.4 indicate that the time for which the damper has the
wrong state due to an extraneous frequency is amplitude dependent. For the actual
system, the velocity responses depend on the properties of the excitation and also the
characteristics of the system. Thus the effects are also frequency dependent. When the
secondary frequency is a subharmonic of the fundamental frequency, the effects will
be most on the velocity switch. Whilst when the secondary frequency is a harmonic of
the fundamental frequency, the effects will be mostly on the relative velocity switch.
If both harmonics and subharmonics are present then the total effects on the switching

time will be decided by both the velocity and relative velocity switch.

This general conclusion can be used to explain the simulation results of section 4.2.2
as shown in Figure 4.3 to some extent. With the addition of a secondary frequency

®, =0.5w, and/or o, =5m, to o, = ®,, both the velocity switch and relative velocity

switch are affected. Thus the fractions of time when the damper is correctly on and off

are affected.

425 EXPERIMENTAL STUDY OF THE EFFECT OF MULTIPLE
HARMONICS ON THE ON SWITCHING TIME OF A SEMI-ACTIVE ON-
OFF SKYHOOK DAMPER

Experimental work was carried out to study the effect of a secondary frequency on the
switching of fundamental frequency using the experimental set-up for semi-active
vibration isolation detailed in section 3.7 of the previous chapter. The fundamental
frequency was chosen as 10Hz, 15Hz and 30 Hz in turn to represent the whole
working frequency range of the experimental setup. Due to the limitation of the
working frequency range of the experimental rig the secondary frequency was varied
from 5Hz to 60 Hz in steps of 2Hz for each primary frequency instead of only looking
at harmonics or subharmonics. The two harmonics were of equal amplitude. The
system was run to reach steady state, and the acceleration response of the system, the

acceleration of the base and the voltage across the digital switch were measured.

The natural frequency of the system was identified to be about 15Hz in section 3.7.
Measured time histories for excitation at combinations of frequencies 10Hz and 15Hz,
10Hz and 30Hz, and 15Hz and 30Hz are shown in Figures 4.9, 4.10 and 4.11
respectively. Figures 4.9(a), 4.10(a) and 4.11(a) show the response time histories for
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each frequency combination. It can be seen from Figure 4.11(a) that the 30Hz
harmonic does not affect thelOHz harmonic waveform very much. The shape of the
response curve looks more like a harmonic. Figures 4.9(b), 4.10(b) and 4.11(b) show
the measured voltage across the digital switch. The time histories for each individual
frequency in the frequency combination are also shown in the figure as a comparison.
It can be seen that the switching time for an excitation at the fundamental frequency
has been affected by the presence of the extraneous frequency. There are times when
the damper is switched off when the fundamental frequency component wants it to be

on, and vice versa.
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Figure 4.9 Time histories showing the effect of a 15Hz frequency on the switching of the damper to a
10Hz frequency (a) acceleration response (b) measured voltage across the digital switch (— 10Hz and

15Hz; - 10Hz only; ——— 15Hz only)
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Figure 4.10 Time histories showing the effect of a 30Hz frequency on the switching of the damper to a

10Hz frequency (a) acceleration response (b) measured voltage across the digital switch (— 10Hz and

10Hz only; ——— 15Hz only)
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Figure 4.11 Time histories showing the effect of a 30Hz frequency on the switching of the damper to a

15Hz frequency (a) acceleration response (b) measured voltage across the digital switch (— 10Hz and

10Hz only; ——— 15Hz only)
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The switching time of the semi-active damper in one vibration period can be divided
into four parts by comparing the on and off-state of the excitation at the combination
of the excitation at secondary frequency and fundamental frequency and the
fundamental frequency: (1) the fraction when the damper is on and the excitation at
the primary frequency also required it to be on; (2) the fraction when the damper is on
while the excitation at primary frequency requires it to be off; (3) the fraction when
the damper is off and the excitation at the primary frequency also required it to be off;
(4) the fraction when the damper is off while the excitation at the primary frequency

requires it to be on.

Figures 4.12 to 4.14 show these four fractions for the primary frequencies of 10 Hz,
15Hz and 30 Hz respectively. It can be seen from Figures 4.12 to 4.14 that the
switching times associated with just the fundamental frequency were more or less
affected by the presence of the secondary frequency except when these two
frequencies are equal to each other. For all the cases, the frequencies of the secondary
harmonic in the range up to 30Hz have greater effects than others. By the presence of
the extraneous harmonic near the resonance frequency, the switching of the damper
for the primary harmonic will be greatly affected. For example, as shown in Figure
4.14, the fraction of the on-state time for the fundamental frequency at 30Hz is 0.48
and the off-state time is 0.52. However, with the presence of an extraneous frequency
at 15Hz, the damper is switched on for 86% of the period, of which only a fraction of
0.40 is correct according to the requirement by the harmonics at 30Hz. The remaining

fraction of 0.46 is completely opposite to the requirement.
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extraneous frequency in addition to a frequency at 30Hz

4.3 PERFORMANCE OF THE SEMI-ACTIVE DAMPER IN
ISOLATING PERIODIC DISTURBANCES

In this section the vibration isolation performance of the semi-active skyhook damper
for periodic disturbances is discussed. Two periodic waveforms which are commonly
studied in the literature are used as the excitation. The simulation results are compared
with the performance due to conventional and skyhook passive dampers.
Experimental work conducted using one of the periodic waveforms to investigate the

1solation performance of the semi-active damper is also presented.
4.3.1 FOURIER ANALYSIS

Although harmonic motion is simpler to analyse, the motion of many vibratory
systems is not harmonic. However, in many cases the vibrations are periodic. For
example, a wing panel adjacent to a propeller may vibrate periodically at a
fundamental frequency equal to the cyclic rate at which propeller blades pass the

panel and also at multiples of this blade-pass frequency. Any periodic function of time
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can be represented by a Fourier series as an infinite sum of sine and cosine terms. If

X(t) is a periodic function with period 7, its Fourier series representation is given by

X(t) = %4‘ Z (a, cosnwt +b, sin nwt) (4.18)

n=l1

where @w=2x/7 is the fundamental frequency. a, , a, and b, are constant

n

coefficients, and are given by

a, = [ x(dt (4.19)
V4 0
a, = [ x(t) cos nevtd (4.20)
T 0
b, =< [ x(t)sin netdt 4.21)
T 0

Although the series in equation (4.18) is an infinite sum, we can approximate most

periodic functions with only the first few harmonics.

4.3.2 EFFECTIVENESS OF THE SEMI-ACTIVE DAMPER IN ISOLATING
PERIODIC DISTURBANCES

Figure 4.15 shows a schematic of a semi-active system subject to periodic excitation.
To study the effectiveness of the semi-active damper in isolating periodic
disturbances, two commonly met periodic wave forms are chosen, which are shown in
Figures 4.16 (a) and (b). The Fourier series expansion of the square wave function

shown in Figure 4.16(a) can be written as

_AAS

Olt
() nl(2_)

sin(2n —1)w,t (4.22)

The Fourier series expansion of the triangular wave function shown in Figure 4.16(b)

can be written as

oz()_SAZ g 3; sin(2n — 1)t (4.23)
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where A is the amplitude and @, is the fundamental frequency of the Fourier series.

(t)
.

J Xo(?) -

Figure 4.15 Schematic of a semi-active system subject to periodic excitation

(b)

Figure 4.16 Wave forms of two periodic functions (a) square wave (b) triangular wave

It is required to compare the isolation performance of the semi-active damper in
isolating periodic disturbances with that of conventional passive dampers. For this

purpose, the following RMS acceleration transmissibility is defined

RMS(X)

AMS (%) (4.24)

A (@) =

where @ is the fundamental frequency of the periodic disturbance.
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Numerical simulations were carried out to calculate the RMS acceleration
transmissibility. Only the first three harmonics in equations (4.22) and (4.23) are used
to represent the periodic functions. The fundamental frequencies of the periodic

function are chosen to vary from 0.1 to 10 times the natural frequency of the system.

Figures 4.17 and 4.19 show the acceleration transmissibility of the semi-active system
to the square wave and triangular wave as shown in Figure 4.16 (a) and (b)
respectively with various damping ratios. Both Figures 4.17 and 4.19 show that the
isolation performance at frequencies near resonance improves with the increase of
damping while retaining the higher frequencies performance. For both the two
periodic excitations there are some clear peaks present at the frequency range lower
than the natural frequency of the system. These are due to the odd harmonics in the

periodic excitations. For this particular case, when the fundamental frequency is 1/3
or 1/5 of the resonance frequency, then the 2™ and 3" term of the odd series will be at

the resonance frequency, which will induce a much greater response than at the

fundamental frequency.

Figures 4.18(a) to (c¢) and 4.20(a) to (c) compare the isolation performance of the
semi-active damper at three different damping levels with those due to a conventional
and a skyhook passive damper. It can be seen from both Figures 4.19 and Figures 4.20
that if the damping ratio of the system is very small, for example, as shown in Figure
4.19(a) and Figure 4.20(a) then the performance of the semi-active system,
conventional passive system and the skyhook system are almost the same. With the
increase of damping, the difference between the passive and semi-active becomes
more apparent. The performance improvement of the semi-active system over the
conventional passive system is mainly in the frequency range beyond the natural
frequency of the system. The higher the damping is, the greater the improvement in
the performance. The skyhook system can always provide the best performance;
however, the performance of semi-active system is comparable. The results indicate

that semi-active damping control is promising for periodic disturbances.

It can be seen from Figure 4.19 and Figure 4.20 that the isolation performance of the
on-off skyhook damper does not have apparent deterioration due to the presence of

the three frequency components in the periodic function although it is concluded from
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section 4.2 that the extraneous multiple harmonics will affect the switching time of
the damper for the fundamental frequency. But this is not contrary to the previous
conclusion. This is because higher order harmonics of the periodic functions occur
with descending amplitudes. The amplitude of the harmonic with the fundamental

frequency is dominant.
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Figure 4.17 Acceleration transmissibility of a SDOF system with an on-off semi-active skyhook

damper to square wave excitation in Figure 4.16(a)
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4.3.4 EXPERIMENTAL WORK

Experimental work was also conducted to investigate the isolation performance of the
on-off skyhook damper in isolating periodic disturbances using the same experimental
setup as detailed in section 3.7. A square wave from a signal generator was used in the
experiment. The fundamental frequency of the square wave was chosen from 5 Hz to
60 Hz, and the time traces at each discrete frequency were measured to obtain the

RMS acceleration transmissibility according to equation (4.24).

Figures 4.21 (a) to (c) show the acceleration response of the system and the voltage
across the switch when the fundamental frequency of the square wave is chosen to be
10Hz, 15Hz and 30 Hz respectively. The figures show that the acceleration response
is obviously mainly at the fundamental frequency. This is because the amplitude of
the harmonic at the fundamental frequency is largest. The switching of the damper is

consistent with just the fundamental frequency. It switches on and off twice a period.

The RMS acceleration transmissibility of the semi-active system was evaluated and
plotted in Figure 4.22. The two measured curves when the circuit is open and short
circuited are also plotted in the figure. From Figure 4.22 it can be seen that the latter

are very similar in the frequency range beyond 20Hz. This is because ¢, and ¢ are

similar for the experimental setup. The semi-active damper can provide as much as
about 6dB improvement over the system with open circuit in the resonance area. The
improvement at higher frequencies over the system with short circuit does not appear
to be very much. Only a marginal benefit can be gained in the frequency range above
30Hz using semi-active damping control. This is due to the fact that the maximum
damping ratio (0.22) of the experimental setup does not have a large enough effect
and the minimum damping ratio (0.10) is not small enough. However, a greater
improvement of the performance may be obtained if the on-state damping is much

bigger than the off-state damping.
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Figure 4.21 Measured time histories of the semi-active system subjected to a square wave at (a) 10Hz;
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4.4 CONCLUSIONS

This chapter has studied the vibration isolation performance of semi-active damping
control for periodic disturbances. The effect of a secondary frequency which is a
harmonic or subharmonic of the fundamental frequency on the switching of the semi-
active damper was studied. Since the switching of a semi-active damper to harmonic
excitation is frequency dependent, the addition of harmonics or subharmonics to the
fundamental frequency in the excitation will affect the switching of the semi-active
damper for the fundamental frequency. The study shows that for a SDOF system with
an on-off skyhook semi-active damper, both the velocity switch and the relative
velocity switch will be greatly affected due to the addition of a secondary frequency.
The addition of harmonics of the fundamental frequency will largely affect the
relative velocity switch, while addition of subharmonics will largely affect the

velocity switch.

The vibration isolation performance of the semi-active system to periodic excitation
was studied numerically and experimentally. The results are compared with the
performance of the conventional passive and skyhook system. The numerical results
show that the semi-active damper can provide better isolation performance than the
conventional passive damper and the performance is comparable to that of a skyhook
damper. Measurement results show a marginal improvement on the performance
using the semi-active electromagnetic damper. However, the performance is limited

by the achievable damping of the experimental rig.

The conclusions of this chapter indicate that the effects of multiple harmonics on the
switching time depend on the amplitude and frequency of the harmonics. For the two
periodic disturbances studied in this chapter, the frequency components are integer
multiples of the natural frequency of the system, and the first harmonic is dominant in
amplitude. However, greater improvement in the performance may be expected if the
on-state damping can be made large and the off-state damping can be made very

small. Semi-active damping control is promising for isolating periodic disturbances.

For the random excitations, there are many frequency components present at the same

time with random amplitudes and phases, so the semi-active damper might fail to
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work properly. The vibration isolation performance of semi-active damping control

for random disturbances will be studied in the next chapter.
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CHAPTER 5

5. ISOLATION OF RANDOM DISTURBANCES

5.1 INTRODUCTION

Chapters 3 and 4 investigated the vibration isolation performance of semi-active
active damping control strategies for harmonic and periodic disturbances. The results
show that semi-active dampers can provide superior performance than the
conventional passive damper with same damping level. However, in some practical
cases, the excitation is random. For random excitation there are many frequency
components present at the same time with random amplitude and phase. The semi-
active damper may not work as well as for other excitations. This chapter studies the

effectiveness of using semi-active damping for isolation of random disturbances.

Following the introduction, the relationship between the Fourier integral and spectral
densities is described. From this relationship an analytical solution is derived for the
RMS response of a single degree of freedom (SDOF) system with a conventional and
a skyhook passive damper subject to random base excitation with a constant power
spectral density. The root-mean-square (RMS) responses are numerically simulated
for a SDOF system with semi-active dampers for three special cases when the spectra
of displacement, velocity and acceleration are flat. The results are compared with
those of the conventional and skyhook passive damping and interpreted physically.
Experimental work to verify the numerical simulation results is also presented, and

finally conclusions are drawn.

5.2 RESPONSE OF A PASSIVE SDOF SYSTEM TO A RANDOM
BASE EXCITATION

5.2.1 USING POWER SPECTRAL DENSITIE (PSD) TO CHARACTERISTIC
RANDOM VIBRATION

In reference [69], the mean square response for a SDOF system to random force

excitation has been derived and an analytical solution is given. In this section, the
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mean square response of a SDOF system subject to random base excitation is

investigated and an analytical solution is derived.

The Fourier integral is used to obtain a frequency domain description of a periodic
function by representing it as an infinite series of harmonic components. Transient or
aperiodic functions can be described in a similar manner, but their aperiodicity
requires that their frequency domain descriptions be in terms of continuous spectra
rather than discrete spectra. The pair of Fourier integrals used to relate a real-time

function, y(t) ,with its corresponding frequency domain representation Y (i@) are

given by the Fourier transform [69]
. 1 7 iot . :
Y (iw) :2—I y(t)e"“dt Equation Section 5(5.1)
7 —o0
and the inverse Fourier transform [69]
wuzjvammmdw (5.2)

Any time history y(t) of finite length can be described in terms of a Fourier
spectrum. The Fourier integral in equation (5.2) is finite only if y(t) is zero at
too12]- The equation relating the mean square value of y(t) to its power spectral

density function can be written as

V0= [ S,(@)do
“ (5.3)

where in equation (53)
S (w)=lim7E —|YT (I )|2 54
y( ) Tlaoo T ( . )

S, (@) is the power spectral density of y(t). Equation (5.3) can be simply interpreted

as follows. If a random variable is thought of as a summation of an infinite number of

infinitely small, randomly phased, sinusoidal components of continuously distributed
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frequencies, S(w) can then be interpreted as the mean square value of these

components having angular frequencies within one radian/second bandwidth centered
on the angular frequency @. Thus for a continuous frequency distribution from —oo

to 400, the mean square value of the random variable y(t) is equal to the integral of
its power spectral density S (@) over the entire frequency range. Equation (5.4) can

be used to determine the power spectral density of the response of a system to random

excitations.
5.2.2 APPLICATION OF FLAT INPUT PSDS TO A SDOF SYSTEM

For the SDOF system subject to random base excitation as shown in Figure 5.1, the

equation of motion can be written as
mX(t) + cxX(t) + kx(t) = X, (t) + kx, (t) (5.5)

where X,(t) is the base displacement excitation and X(t) is the system displacement
response. The relationship between the power spectral densities of X, (t) and X(t) can

be written as [69]
S(@)=[H(@)S, () (5.6)

where S,(w) and S, (w) are the power spectral densities of X,(t) and x(t)

respectively. H(w) is the transfer function between the displacement response and

the displacement excitation.

Equation (5.6) states that the power spectral density of the displacement response is
equal to the power spectral density of the base excitation multiplied by the square of

the modulus of the transfer function between the base and the vibrating mass.

If the modulus of the transfer function and the power spectral density of the
displacement base excitation are known for a given system, the mean square response

can be written as
X'(t) = [|H(io)S, (@)do (5.7)
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For a displacement excitation having a constant spectral density (‘white noise’), S, is

a constant, the mean square displacement response can be obtained as
2 o0
X2 (t) = j S (o)dw

= j H(@)|' S, (0)dw (5.8)

where S, is the constant spectral density.

X(t)
. 1]

‘ % C Xo(t)
[ 1

Figure 5.1 Schematic of a passive SDOF system subject to base excitation

5.2.3 MEAN SQUARE REPONSE OF A CONVENTIONAL PASSIVE SDOF
SYSTEM

For the conventional passive SDOF system in Figure 5.1, the transfer function is

given by

k+icw

H(w) = — "%
(@) k—mao’ +icw

(5.9)

Substituting equation (5.9) into equation (5.8) gives
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—— < f| icotk [
X2 ()eon =S | d
eon XU_J;o|—ma)2+iCa)+k| @
7 k* +(cw)’
=S 5.10
XO_J;O (k-ma*)’ +(cw)’ .10
_ z(c® + mk)
cm
If written in terms of @, and &, one has
2
X () = S, 70, @ (5.11)

where @, =,/k/m is the natural frequency of the system, and ¢ =c/2me, is the

damping ratio. The analytical result in equation (5.10) has been derived on the
assumption that the spectral density of the displacement excitation is a constant from
frequency —o to oo. Crandall and Mark [70] have shown that for forced vibration this
‘infinite’ result is a close approximation to practical situations providing that the
bandwidth of the excitation is wide in comparison with the bandwidth of the system

(26w, ). The time history of the response takes the form of a randomly modulated
“sine” wave, whose period is 27 /@, and the modulation “period” is proportional to
1/({w,) . Therefore for small damping the typical periods in the modulation are very

long [70]. The same is true for the base excitation system studied in this section.

5.24 MEAN SQUARE RESPONSE OF A SKYHOOK PASSIVE SDOF
SYSTEM

For a SDOF system with a skyhook damper as shown in Figure 5.2, the transfer

function can be written as

k

H(@)z=——
(@) k—meo’ +icw

(5.12)

Using equation (5.8), the mean square response can be written as
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R ® k 2
Xz(t)sky — Sxo J'| |

w|—ma)z+iCa)+k|

=S, do 5.13
[c (k—maw ) +(cw) (>-13)
kg,

C
If written in the form of @, and ¢, one has

2 _ S 1

X" (U gy = 70,3, Z (5.14)
LLLLLL
Csky

J Xo(t)

Figure 5.2 Schematic of a skyhook SDOF system subject to base excitation

5.25 COMPARISON OF MEAN SQUARE RESPONSES OF A
CONVENTIONAL AND SKYHOOK PASSIVE SDOF SYSTEM

Figure 5.3 shows the MS response as a function of damping ratio for a SDOF system
with a conventional and a skyhook passive damper subject to a random base
excitation with a unity spectrum. It can be seen that the MS response of the
conventional SDOF system decreases initially with increasing damping ratio, and
reaches a minimum value when ¢ =0.5. After that point, the RMS response rises up

gradually. The damping ratio ¢ = 0.5 when the MS response is minimum can also be

derived from equation (5.11). Equation (5.11) can be rewritten as
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X' (t)

con

1
=S, 79,(2{ +Z) (5.15)
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Figure 5.3 Mean square response of a SDOF system with a conventional and a skyhook passive damper

subject to random base excitation

According to the limitation theory, the minimum value of equation (5.15) happens

when
1
24’_2 (£>0) (5.16)

i.e. when £ =0.5.

It can also be derived from equation (5.11) that for small damping ratio ¢ , the mean

square response tends to 75, @, / 2¢ . The slope of the curve is -3dB per doubling of
¢ . For large value of ¢ the mean square response tends to 275, @,¢ . The slope of

the curve is 3dB per doubling of ¢ .
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As for the skyhook system, one can see from Figure 5.3 that the MS response
decreases monotonically with increase in damping ratio. It can also be seen from the
figure that with the increase of the damping ratio, the difference between the MS
response of the conventional and skyhook passive systems increases. It can be derived
from equation (5.14) that the gradient of the mean square response is -3dB per

doubling of £ .

If one takes the ratio of the mean square response of a conventional SDOF system to

that of a skyhook passive system as defined in equation (5.11) and (5.14), one gets

%:452” (5.17)
X2 (t)sky

Equation (5.17) tends to 1 for smaller damping ratios, i.e. X’(t)., and x*(t), are

con sky

almost the same, which was clearly shown in Figure 5.3 that the two curves are very
close. For large damping ratios, equation (5.17) tends to 4¢°. The difference of the

two mean square response tends to 6dB per doubling of ¢ .

The frequency dependence of a random excitation may be such that it appears
generally flat in the frequency range of interest when viewed as displacement,
velocity, acceleration or none of these. The three special cases when the displacement,
velocity and acceleration excitation spectra are assumed to be flat will be studied in
this section, and the results will be compared with those of the conventional and

skyhook passive systems.

Since the skyhook semi-active dampers considered attempt to emulate skyhook
damping, the performance of the conventional passive and skyhook systems provide
lower and the upper bounds between which the semi-active may perform. The semi-
active damper can only be expected to provide an intermediate level of performance.
Table 5.1 lists the transfer functions between the response (displacement, velocity and
acceleration) and the excitation for a conventionally damped SDOF system. Table 5.2
shows the corresponding transfer functions for a SDOF system with passive skyhook
damping. The transfer functions in the two tables can be substituted into equation

(5.8) to obtain the RMS response due to a particular type of excitation.

- 141 -



Ch5. Random disturbances

Table 5.1 Transfer functions of a conventional SDOF system

Response ) . .
o Displacement Velocity Acceleration
Excitation
. icw+k io(icw+k —o’ (i
Displacement I T — (2—) M
-Me” +ico+k —-me” +icw+k —me* +icow+k
) ico+k ico+k iw(ico+k
Velocity : T T Ee— %
io(-me’ +ico+k) —mw’ +ico+k -mo” +icow+k
) icw+k ico+k ico+k
Acceleration 5 > - T T Ere—
—o" (—-mw’ +icw+Kk) io(-mew” +ico+k) —me” +ico+k

Table 5.2 Transfer functions of a skyhook passive SDOF system

Response ) . .
o Displacement Velocity Acceleration
Excitation
) k ik ke’
Displacement — s —
—-M@” +icow+k Mo’ +icw+k Mm@’ +icow+k
Velocit k k ik
eloci - - - -
Y io(—-me’ +ico+k) -me’ +ico+k -ma” +ico+k
k
Accelerati K io(-ma” +ico+k) K
ceeleration @’ (—-M’” +icw+K) -me’ +icw+k

The three cases in the sub-diagonal elements of Tables 5.1 and 5.2 represent
displacement response due to velocity excitation, and displacement and velocity
responses due to acceleration excitation. It can be seen that the transfer functions for
these three cases tend to infinity as the frequency ratio tends to zero. From equation
(5.8), the RMS responses of the system are unbounded because the integral tends to
infinity at low frequency. These three cases will not be considered. The three diagonal
cells in the table are the cases where both the response and the excitation are the same
quantity. The three cases in the super-diagonal elements and the diagonal elements

will be studied in the following section for both passive and semi-active systems.

142 -



Ch5. Random disturbances

5.3 EFFECTIVENESS OF SEMI-ACTIVE DAMPERS FOR
ISOLATION OF RANDOM DISTURBANCES

Figure 5.4 shows the schematic of a SDOF system with a semi-active damper subject
to random disturbances. This section studies the performance of the three semi-active
dampers as shown in Table 5.3 for random disturbances through numerical
simulations. The performance of the three semi-active control strategies is compared
with those of the conventional and skyhook passive damping for base isolation.
Physical interpretation is presented to explain the comparison of results. In the
simulation, the models established in Chapter 2 are used. The random excitation is
formulated by passing a Gaussian random signal through a 10th order Butterworth
low-pass filter with a cut-off frequency of ten times the natural frequency of the
system. Thus the random excitation has a power spectral density which is flat up to
ten times the natural frequency of the system. The RMS responses of the system are

calculated up to ten times the natural frequency of the system.

Table 5.3 Damping characteristics of the semi-active dampers studied

Damper Type Semi-Active Damping
max| c . ,min| G|X|,C .. X(X=%,)=0
Continuous skyhook (SA-1) C, = [ [ | | ] ] ’

Coin X(X—%,) <0
Con X(X—%)=0

On-off skyhook (SA-2) Csa = Sl
C.i X(X—=%)<0
Cox (X=X )(X=%,)<0

On-off balance (SA-3) C, = )
Coin (X=X )(X=%)>0

5.3.1 ACCELERATION TRANSMISSIBILITY SIMULATIONS

Numerical simulations have been carried out to investigate the acceleration
transmissibility of a SDOF system with a semi-active damper subject to random
acceleration of the base. Figure 5.5 compares the RMS transmissibility of the SA-2
(on-off skyhook) semi-active damper to random and harmonic acceleration

disturbances with the maximum damping ratio of the semi-active system, ¢ ., set to

ax 2

0.5. For harmonic disturbances, the transmissibility curve is obtained by running the
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simulation at each discrete frequency. One can see from the figure that the RMS
transmissibility for random disturbances is worse than the harmonic cases over the
whole frequency range. The study in section 4.2 of the effect of multiple harmonics
on the switching of the semi-active damper suggests this is because the semi-active

damper cannot handle many harmonic components simultaneously.

X(t)
a1

/ Semi-active
k § 4 damper
J Xo(t)

Figure 5.4 Schematic of a semi-active SDOF system subject to base excitation

When the semi-active system is subject to random disturbances, many frequency
components are applied to the system simultaneously. The semi-active damper cannot
ensure that the switch time for every frequency is right. Referring back to Figure 5.5,

for lower frequencies (@ < 0.5®, ), for example @, =0.5®,, it can be expected from

the conclusions in the previous chapter that both the velocity and the relative velocity
switches will be greatly affected. But since this frequency range is not damping
controlled, the transmissibility is not affected very much. For the frequency range
near resonance, the lower frequency will largely affect the velocity switch and the
higher frequency will largely affect the relative velocity switch, thus the
transmissibility near resonance will be greatly increased. As for the higher
frequencies, the best the semi-active damper can do is turned off for half of the time to
provide the desired performance. But due to the addition of multiple harmonics at
lower frequencies, the semi-active damper will be turned on for quite a lot of time.
Thus the transmissibility at higher frequencies will also be very high due to the
addition of the damping.
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Figure 5.5 RMS transmissibility of a SA-2 damper to harmonic and random disturbances for white

acceleration input spectrum
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Figure 5.6 RMS acceleration transmissibility of semi-active dampers to white acceleration input
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Figure 5.6 shows the RMS acceleration transmissibility of the three semi-active
dampers to random acceleration excitation as functions of the damping ratio. As a
comparison, the RMS response of both conventional and skyhook passive systems are
also shown. It can be seen from the figure that at lower to moderate damping ratios,
the performance of the semi-active damper is worse than the conventional passive

system for all the three control strategies. For high damping ratios (£ >1.0) some

modest benefit is apparent for the SA-2 damper. SA-1 and SA-3 dampers are still
worse. The results in Figure 5.6 suggest that semi-active dampers fail to isolate

random acceleration excitations effectively.
5.3.2 RANDOM VELOCITY AND DISPLACEMENT EXCITATION

The other two special cases when considering random disturbances are random
velocity and displacement inputs with flat spectra. The former is often considered
when looking at the isolation of vehicles from road disturbances. The simulation
results for a semi-active damper with random velocity excitation are shown in Figures
5.7 and 5.8. Figure 5.7 is looking at the velocity response and Figure 5.8 looks at the
acceleration response. It can be seen from Figure 5.7 that with the increase of the
damping ratio, both the SA-1 and SA-2 damper can provide some improvement in the
response over conventional passive damping. When the damping ratio is 1.5, the
improvement for both of the two semi-active dampers is about 6dB. At lower
frequencies, the SA-3 damper is even worse than the conventional passive case, but at

higher frequencies, it is slightly better.

Figure 5.8 shows that the improvement of the semi-active damping over conventional
passive damping is more pronounced if one looks at the acceleration response due to
the velocity input. With the increase of damping ratio, there is significant benefit from
both SA-1 and SA-2 semi-active damping control strategies. When the damping ratio
¢=1.5, the performance improvement for SA-1 is 10dB, for SA-2 13dB. The SA-3

damper only has 3dB improvement at {=1.5. Similar conclusions are reached by

Karnopp to address the superiority of continuous variable skyhook damping control to
conventional passive damper in reference [15], in which he studied the acceleration

response spectrum due to random velocity excitation with a flat spectrum.
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Figure 5.7 RMS velocity transmissibility to random velocity excitation
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Figure 5.8 RMS acceleration transmissibility to random velocity excitation
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The RMS transmissibility of displacement, velocity and acceleration response to
random displacement excitation are shown in Figure 5.9-5.11 respectively. Figure 5.9
shows that all of the three semi-active strategies can provide some improvement for
the displacement response when the damping ratio is greater than 0.5. Figures 5.10
and 5.11 show that SA-3 semi-active damper can hardly provide any improvement on
the performance, and at lower damping ratio, it is even worse than conventional
passive damping. For the displacement and velocity responses due to the random
displacement excitation, both SA-1 and SA-2 dampers can provide significant
improvement with high damping ratio. Only the SA-1 semi-active damper can provide
significant improvement on the acceleration performance to random displacement

excitation.

N Conventional passive

_10,

RMS displacement transmissibility (dB)
&

-14 : ‘
0 0.5 1 15

Damping ratio

Figure 5.9 RMS displacement transmissibility to random displacement excitation
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Figure 5.10 RMS velocity transmissibility to random displacement excitation
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Figure 5.11 RMS acceleration transmissibility to random displacement excitation
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5.3.3 EXPERIMENTAL WORK

Experimental work was also carried out to study the vibration isolation performance
of the semi-active control algorithm for random disturbances. The experimental set-up
used is the same as detailed in Section 3.7. A random acceleration excitation with a
flat spectrum within the frequency range 5-100Hz was used for the experiment, and

the frequency range 5-60Hz was plotted.

Figure 5.12 shows the time histories of the acceleration response of the system and the
random base disturbances. It is obvious that a frequency that is equal to the natural

frequency of the system is dominating the acceleration response.

2 T T T T T T T T T
1.5¢ ]
1
« 05
£
E
c 0
8
<
o© —-0.5}:
q]
[&]
(@]
<
-1.5
_2 - -
_25 | | | | | | | | |
31 311 312 313 314 315 316 317 318 319 32
Time (s)
Figure 5.12 Measured time histories of accelerations (— acceleration response of the system; - base
excitation)

Figure 5.13 shows the measured transmissibility curve of the SDOF system with the
on-off skyhook damper in operation. As a comparison, the acceleration
transmissibility curve measured under harmonic disturbances is also shown. The
figure suggests that the on-off skyhook semi-active control strategy is no worse for

random disturbances except in the frequency range close to resonance. However, this
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observation is based on the fact that the on-state damping of the system is not big
enough, which is limited by the properties of the experimental rig. The difference in
the performance of the semi-active damper for random and harmonic disturbances

will be much greater if the on-state damping of the system can be made large enough.

15 T T T T T

RMS acceleration transmissibility (dB)

_20 I I I
0 10 20 30 40 50 60
Frequency (Hz)

Figure 5.13 Measured acceleration transmissibility to random disturbances (— measured random; -+

simulated random; —— measured harmonic)

Figure 5.14 compares the RMS responses of the semi-active damper with those of the
passive system with a closed and open circuit. It can be seen from both Figure 5.13
and Figure 5.14 that the performance of the semi-active damper for random
disturbance is worse than that for the harmonic disturbances, and it is even worse than
the passive case with close circuit. However, there is some advantage if one looks at
displacement transmissibility and velocity transmissibility as suggested by Figure 5.7

and Figure 5.9 for larger damping coefficients.
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Figure 5.14 Comparison of the RMS responses of the semi-active system
5.4 CONCLUSIONS

This chapter studied the vibration isolation performance of semi-active damping
control algorithms for isolation of random disturbances. The performance of three
semi-active damping control strategies for isolation of random disturbances has been
studied numerically for three special cases when the displacement, velocity and
acceleration excitation spectrum are assumed to be flat. An analytical solution to
calculate the RMS responses of the conventionally damped SDOF system and the
skyhook SDOF system subject to base excitation has been derived. Physical
interpretation has been described to explain why semi-active dampers fail to isolate
certain types of random excitation using purely passive damping. The simulation
results show that the skyhook damper always provides the best performance, and on-
off relative control can hardly provide any benefit on isolation of random
disturbances. Both on-off and continuously skyhook semi-active control can provide
performance improvements over the conventional passive damper for the cases when
the inputs are displacement and velocity, i.e. velocity in/velocity out, velocity
in/acceleration out, displacement in/displacement out , displacement in/velocity out

and displacement in/acceleration out.
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CHAPTER 6

6. GENERAL CONCLUSIONS

6.1 CONCLUSIONS

This chapter contains the general conclusions of this thesis. Detailed conclusions are
included in each chapter, so only the salient points will be recorded here. Throughout
the thesis, the work has covered aspects involving the use of semi-active damping

control for vibration isolation of sensitive equipment from various base disturbances.

Following the introduction and literature review in Chapter 1, Chapter 2 detailed the
model development of four semi-active control algorithms, which are continuous
skyhook control, on-off skyhook control, continuous balance control and on-off
balance control. The derivation of these four control algorithms was discussed with
clear physical interpretation. A phenomenon often referred to as chatter occurs with
semi-active damping control at low excitation frequencies. The conditions for chatter
to occur were discussed by studying the dynamics of the system, and a modified
control scheme was suggested to avoid the chatter problem. Jerk, which is defined as
abrupt changes in the acceleration, was identified as the other problem when using
semi-active dampers. Jerk is caused by the abrupt change in the damping force. A
shaping function was introduced to smooth the abrupt change in the damping force,
and anti-jerk semi-active control strategies were proposed. Both the continuous
skyhook control and on-off skyhook control algorithms intend to produce the effect of
skyhook damping when the damper is on. The original expression for the continuous
skyhook control can provide the same amplitude and phase for damping force in its
on-state as those of a skyhook damper. Due to the practical limitation of physical
systems, however it can only provide the same amplitude and phase during part of the
on-state period. The on-off skyhook control can only ensure that the semi-active
damping force is the same sign of the desired skyhook damping force. The magnitude
is not representative of the skyhook damper force anymore, although it is shown that
it gives similar isolation performance. Both on-off and continuous balance control

algorithms require the damping force to oppose the spring force whenever the
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damping force and the spring force have the opposite sign. The on-off balance control
cannot ensure that the damping force is exactly equal to the spring force since it can
only produce a damping force proportional to the relative velocity across the damper
in its on-state. Depending on the dynamics of the system and the damping coefficient,
the spring force can partly be cancelled or even sometimes the spring force can be
over cancelled which may cause the system become unstable. Matlab/Simulink
models of the four control algorithms were established. Numerical simulations were

carried out in chapters 3-5 using these models.

Chapter 3 investigated the performance of the four semi-active damping control
algorithms for isolation of harmonic disturbance through numerical simulations and
experimental tests. Numerical simulations were carried out in Matlab/Simulink to
study the vibration isolation performance of the semi-active damping control
strategies. The isolation performance was evaluated in terms of root-mean-square
(RMS) transmissibility of acceleration and relative displacement. The performance of
the semi-active damping control algorithms are compared with that of a conventional
passive damper and skyhook damper. The results showed that the semi-active
damping control strategies can reduce the response at resonance without worsening
higher frequency isolation performance. It can be concluded that getting the phase
right is the first priority by comparing the isolation performance of the continuous and
on-off skyhook control strategies shows that. An experiment was set up to investigate
the use of an electromagnetic device as a semi-active damper for vibration isolation.
The on-off skyhook control algorithm was chosen to be implemented in the
laboratory. A series of tests was conducted to investigate the dynamic characteristics
of the electromagnetic damper. The measurement results showed that by opening and
closing the circuit of the coil system, the damping of the system can be effectively
changed. Thus, it can be used as a semi-active damper for vibration isolation. The
measurement results agreed with the theoretical prediction reasonably well. Although
the measurement results only showed the semi-active damper gave a marginally better
performance than the conventional passive damper, better performance could be
achieved if the off-state damping ratio could be made much smaller and on-state

damping larger.
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Both the theoretical and measurement results in Chapter 3 also showed that
percentages of time when the semi-active damper is on are frequency dependent,
which means that the switching of the damper may be comprised if more than one
frequency is present at the same time. Chapter 4 studied the effects of a secondary
frequency which is a harmonic or subharmonic of the fundamental frequency on the
switch state of the semi-active damper for the fundamental frequency. It was shown
that for a SDOF system with an on-off skyhook semi-active damper, both the velocity
switch and the relative velocity switch will be greatly affected due to the addition of
the secondary frequency. The secondary frequency which is a harmonic of the
fundamental frequency would largely affect the relative velocity switch, and a
secondary frequency which is a subharmonic of the fundamental frequency would
largely affect the velocity switch. The vibration isolation performance of the semi-
active system to periodic excitation was studied numerically and experimentally. For
the square and triangular waves studied in chapter 4, the frequency components are
integer multiples of the natural frequency of the system, and the first harmonic with
the fundamental frequency is dominant in amplitude. The results show that the semi-
active damper can provide better isolation performance than the conventional passive
damper. Experimental results were limited by achievable damping of the suspension

of the loudspeaker.

For random excitations, there are many frequency components present at the same
time and since the amplitudes and phases are arbitrary, the semi-active damper might
fail to work properly. Chapter 5 discussed the effectiveness of semi-active dampers in
isolating random disturbances. An analytical solution is derived for the RMS response
of a SDOF system with a conventional passive and a skyhook damper subject to
random base excitation with a flat spectrum. The RMS responses of a SDOF system
incorporating the semi-active dampers for three special cases when the spectra of
displacement, velocity and acceleration are flat are numerically simulated. Physical
interpretation has been described to explain why semi-active dampers fail to isolate
certain types of random excitation using purely passive dampers. The simulation
results show that the skyhook damper always provides the best performance, and on-
off relative control can hardly provide any benefit on isolation of random

disturbances. Both on-off and continuously skyhook semi-active control can provide

- 155 -



Ch6. Conclusions

performance improvements over the conventional passive damper for the cases when
the inputs are displacement and velocity, i.e. velocity in/velocity out, velocity
in/acceleration out, displacement in/displacement out , displacement in/velocity out

and displacement in/acceleration out.

Overall, the thesis has demonstrated the benefits and the limitations in using basic
semi-active damping control strategies for vibration isolation of various base
disturbances. Significant isolation performance could be achieved using semi-active
dampers for harmonic and some periodic disturbances. The performance may be not

so pronounced for random disturbances with arbitrary spectrum.
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6.2 RECOMMENDATIONS FOR FUTURE WORK

This thesis studied the vibration isolation performance of the semi-active control
strategies for harmonic, periodic and random disturbances. The work could be
extended to study the isolation performance for shock. Shock is normally classified as
a transient phenomenon in contrast to vibration that is normally a steady-state
phenomenon. Shock differs from vibration as the load can be relatively large but the
duration relatively short. For shock disturbances it is normally the maximum
acceleration response that can result in damage. The relative displacement may be of
concern if the relative motion is expected to exceed the clearance. It would be useful
for some practical applications to study the effectiveness of the semi-active control

strategies for shock isolation.

Research into implementing the control strategy employed using alternative semi-
active devices could prove worthwhile. A device with higher on-state damping and

lower off-state damping would work best.

A logical extension of the research into the effectiveness and suitability of the semi-
active control strategies in this thesis is an investigation into the performance of the

semi-active control strategies in controlling of multimode vibratory systems.
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APPENDICES

Al ISOLATION PROPERTIES OF SEMI-ACTIVE DAMPERS

From the results in chapter 5, it can be seen that semi-active damper is capable of
providing better isolation across the whole spectrum as compared to a passive damper.
The primary purpose of this appendix is to investigate thoroughly the isolation
properties of semi-active systems. Specifically the following question will be
answered: Why are semi-active dampers able to isolate at frequencies well below that
which is possible with a passive damper, even though, similar to passive dampers,

they do not add any energy to the system.

To answer this question, consider a base excited SDOF system. The response of a

passive system to a harmonic base-excitation, such as

X, = X & Equation Section 1(A.1)
is given by
X=X, |H (o) (A1.2)
where
_ -1
) 2
1+ (24 “’]
a)n
H(w)|= — - (A1.3)
a)n a)n
and

2{@}
¢=—tan"' " -
1_{a)j +[2§ a)]
o, o,

The variables ‘H(a))‘ and ¢ represent the transmissibility amplitude and phase shift

(A1.4)

- 158 -



Appendices

between the output and input. £ and o, are the damping ratio and natural frequency

of the system, respectively.

The behaviour of the system for different damping ratios and input frequencies is
shown in Figure Al.l1. It can be seen that increasing the damping reduces the
resonance response, but it deteriorates the isolation performance in the isolation range
where o/, > V2 . This represents the well-known compromise between better
control of resonance and poorer vibration isolation at higher frequencies due to
damping. The phase diagram in Figure Al.2 indicates that increasing damping

contributes to a lower phase difference between the base and the sprung mass. Further

discussions on this subject can be found in most vibration text books, for example

[11].
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Figure A1.1 Acceleration transmissibility of a passive SDOF system

To determine the reason for the above, and also why semi-active dampers are able to
isolate at frequencies far below the fixed frequency of system with passive dampers,
the transmissibility equation for the system in Figure A1.6 is derived. Unlike the
passive system, it is not possible to derive the transmissibility equation for the semi-
active system because the damping coefficient is time dependent. Alternatively, we

consider its equivalent where the damper is connected between the mass and an

- 159 -



Appendices

imaginary sky, as shown in Figure A1.5.
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Figure A1.2 Transmissibility phase of a passive SDOF system

For this system, the transmissibility amplitude and phase are:

H(@)|= . 1 7 (AL5)
SIREES
a)n a)n
w?
$=—tan" — P (AL6)

The amplitude and phase of the transmissibility of the skyhook system are shown in
Figure A1.3 and Figure A1.4. Comparing equations of (Al.5)and (A1.6) provides the
insight as follows. The transmissibility amplitudes have the same denominators but
different numerators. For a passive system, the numerator is a function of damping
ratio, ¢, where as for a skyhook system, it is a constant. Table Al.1 shows the effect

of £ on transmissibility in different frequency ranges for a conventional passive

system. The table is derived from evaluating the numerator and denominator of
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equation (A1.3), which shows that the frequency range in which amplification, direct

transmission and attenuation occurs is independent of the damping ratio{ .
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Figure A1.3 Acceleration transmissibility of a skyhook damper system
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Figure A1.4 Transmissibility phase of a skyhook system

Examining equation (A1.5)-(A1.6) shows that a skyhook damper yields completely
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different results. The numerator is a constant, and therefore the transmissibility is
relative to unity depends whether the denominator is less than, greater, or equal to 1.
Evaluating the denominator for one of the three possibilities will allow us to make

conclusions on the effect of { on the transmissibility magnitude. Consider the

frequency range where some isolation is achieved. For this to happen, the frequency

1—(ﬁj {2; [ﬁﬂ > (A1.7)
o, o,

ratio must be such that;:

which will reduce to

[ﬁj > 24> (A1.8)

@,

Table Al1.1 Effect of { on transmissibility for a passive conventionally damped SDOF system

o Hﬂj } He)
n a,

<1 <1 >1 Amplification
=1 = >1 Amplification
l<eo< \/5 <1 >1 Amplification
=2 =1 =1 Direct transmission
>2 >1 <1 Isolation

The above equation shows that for a passive skyhook damper, as { increases,

attenuation occurs at lower frequencies, unlike a passive system in which the isolation

is independent of . Two special cases exist in the equation, the first of which is
when ¢ =0, the equation reduces to o/, >/2 . This indicates that when no
damping is present, isolation stars at @ = ﬁwn , the fixed frequency of the passive

system. For ¢ >0, isolation starts at frequencies smaller than \/Ea)n, thus we can
conclude that for a given £, a skyhook system behaving as a skyhook system can

always provide better isolation performance than passive ones.

The second case is when
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2-4¢2=0 (AL9)

or

NG

§==-=0707 (A1.10)

This is the minimum damping ratio at which the skyhook system provides isolation at
all frequencies. Therefore, it is possible to tune a skyhook system such that it can

provide isolation across the whole frequency.

The passive representation of the semi-active system assumes that the off-state
damping is zero. In practice, however, it is not possible and may not desirable. In

most cases, Cy is a small portion of the on-state damping. Therefore, in reality, the

passive representation of the semi-active system dampers appears as shown in Figure

AlS.

@
.

(= e

J x,(1)

Figure A1.5 Actual representation of a skyhook system

This modifies the transmissibility equation to:

r —1/2

2
1{2% “’}
a)n

2T ]

|H(w)|= (Al1.11)
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2 (é,on +§off )a)g_éloff a)g+§off (2)}

n

¢=—tan”' > > (A1.12)

w 1)

1_(J + 4(§on + goﬁ )goﬁ (]
a)n a)n
where
C Coff
=Nl =—— Al1.13

Son 2Mmaw, ot 2mw, ( )

Figures A1.6 and A1.7 show the transmissibility and phase angle of the skyhook
system with non-zero off-state damping. Comparing Figure A1.6 with Figure Al.3
shows that the insertion of off-state damping has two effects compared to the system
without off-state damping: (1) it reduces the RMS acceleration ratio at and around the
natural frequency; (2) it increases the RMS acceleration ratio at frequencies greater

than natural frequency.
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Figure A1.6 Transmissibility magnitude of an actual skyhook damper system
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A2 ANALYSIS OF ELECTROMAGNETIC DAMPING

Figure A2.1 shows a SDOF base isolation system model using an electromechanical
damper. In the model, the magnet is arranged to move together with the base and the
coil is attached to and moves together with the mass to be controlled. When the coil is
moving in the magnetic field, a voltage called the back electromotive force (emf) is
induced in the coil, which is governed by Lenz’s Law. If the strength of the magnetic

field is B, the coil moves with a velocity of X and the base velocity is X,, then the

induced voltage in the coil can be expressed as

Eiene = BL(X=X,) Equation Section 12(A2.1)

bemf

where L =In is the effective length of the wire; | is the length of the coil per turn and

N is the number of effective coil turns.

m J X(t)

chme Variable resistor
/2—@

—

Inductor

Figure A2.1 Model of a base isolation system using an electromechanical damper

If the circuit is closed, there will be a current flowing in the coil, and there will be an

electromechanical force F,, on the coil. This force is developed by the interaction

between the magnetic field of strength B that exists across the gap and the magnetic

field due to current flowing in the coil. The resulting force is
F,, = BLI (A2.2)

Assuming the resistance of the coil is R, and is connected to an external resistance

R.. > then the current related to the induced back emf is given by

ext ?
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E
bemf (A23)

| =
RC + REXI

The electromechanical force F,, therefore can be written as

__(BLY

= X — X A2.4
o= mrp () (x29

For the SDOF system with an electromechanical damper subject to base excitation,

the equation of the motion can be written as

MX + Cppe (X — %)+ K (X=X, )+ F,, =0 (A2.5)

m

where Kk is a spring constant and c_, is the mechanical damping coefficient of the

system. Substituting equation (A2.4) into (A2.5), gives

MK+ (Cp +Co (X = %) +K (X =%, ) =0 (A2.6)

(BL)’

R +R

C ext

where C,, = is the electromechanical damping due to the electromechanical

damper. It can be seen from equation (A2.6) that the damping of the system consists

of two parts, one is the mechanical damping c, , and the other is the
electromechanical damping c,,. The mechanical damping is fixed for a given system,

while the electromechanical damping can be changed by varying the external
resistance or simply opening or closing the circuit. The maximum damping coefficient

of the system occurs when R, =0, which is given by

+&

C

c.=C

max me

(A2.7)

The damping ratios corresponding to the mechanical damping and electromechanical

damping are given by

Cme
é/me - 2m(0n (A2 8)
o C., _ (BL? 1 '
™ 2mw, R.+R, 2ma,
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A3 LIST OF EQUIPMENT USED FOR EXPERIMENTS

Equipment

HP 35655A Analyser

Derritron Vibrator Type VP .4

TPA series Professional
Power Amplifier
Colossus 12 MB

Loudspeaker Driver

B&K 4393 Accelerometer

B&K 2635 Charge Amplifier

Wavetek DM25XT Digital Meter

HM 303-6 Analog Oscilloscope

Kemo Type VBF8 Dual Variable Filter
0.01Hz-100kHz

PCB accelerometers

PCB Conditioner

Hmeg Signal generator

Stabilised power supply LT3-1 2x0-30V
1A
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2911A01088

325

8252

14314

1697354
1697154
943130
1474190

60405182

25620

56198
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A4 THE CONTROLLER CIRCUIT

The on-off skyhook control strategy was chosen to be implemented due to its
simplicity and effectiveness. The block diagram of control strategy is shown in Figure

A4.1. The measured acceleration signals X and X, are passed through the integrator
blocks 1 and 2 respectively to get the corresponding velocity signal, X and X,. The
relative velocity, X —X,, is obtained using the sum block 3. The velocity response X is
multiplied by the relative velocity signal X—X, in a multiplier block 4 to form the
condition function X(X—X,) as defined in chapter 2. The velocity product signal is

input to a logic test block 5, and the output of the logic test block is used to control the

switch. The output of logic block is either unity (or “true”) or zero (or “false”).

The electrical circuit diagram of the control strategy is shown in Figure A4.2, and a

picture of the actual circuit board is shown in Figure A4.3.

O J
Integrator
3 @ ©
v 5 ; 1
Sum®
@ 0o
Multioli Controlled
ultiplier Logi Switch
gic
O [
X, X
Integrator

Figure A4.1 Block diagram of on-off skyhook control strategy
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Figure A4.3 Picture of the actual circuit board
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GLOSSARY OF TERMS

a.a.b

02 n>™n

max
'min
on
Coff
pass
sky

d d>
dt’ dt?

tO
5, (@),S, (@)
At

Fourier series constant
damping coefficient

maximum damping coefficient

minimum damping coefficient

on-state damping coefficient

off-state damping coefficient

passive damping coefficient

skyhook damping coefficient

semi-active damping coefficient

first and second derivatives

active control force

damping force

stiffness force

semi-active damping force

skyhook damping force

stiffness coefficient

transfer function

imaginary and real part of complex variable

functions for the fourth Runge-Kutta method

gain factor

mass
start time

power spectral density
time difference
Switching time

period of vibration

acceleration transmissibility

relative displacement transmissibility
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w, ), W, = frequency of excitation
, = natural frequency
X, X;5 X, = displacement response
X, Xl , Xz = velocity response
X, Xl , Xz = acceleration response
Xo» Xo15 Xp2 = base displacement
XO , XOl , X02 = base velocity
XO . XOI . XOZ = base acceleration
X(t), y(t), Y (t), Y, (t) = time series
Xz_(t) , m = mean square value of X(t) and X; (t)
X; (t) = periodic time series
X (Ia)) Fourier transform of X(t)
0 = amplitude of acceleration of the excitation
é/ = damping ratio
é’ max = maximum Damping ratio
é/ min = minimum Damping ratio
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