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This thesis is concerned with semi-active damping control for vibration isolation of 

base disturbances. The aim is to investigate the effectiveness and suitability of semi-

active damping control strategies for improving steady-state vibration isolation. A 

single-degree-of-freedom (SDOF) system, comprising a semi-active damper with a 

linear passive spring in parallel, is used to study the vibration isolation of base 

excitation. 

The semi-active control strategies investigated include on-off skyhook control, 

continuous skyhook control, on-off balance control and continuous balance control. 

Chatter and jerk problems are investigated, which can arise in numerical simulations 

and possibly in practice when using semi-active control strategies. Anti-chatter and 

anti-jerk control strategies are proposed. These control strategies are implemented 

numerically in Matlab/Simulink. Harmonic, periodic and random disturbances are 

considered in this thesis. The vibration isolation performance is evaluated in terms of 

Root-Mean-Square (RMS) acceleration transmissibility. 

The performance of these control strategies for the isolation of harmonic disturbances 

is firstly studied. The performance is compared with those of an adaptive-passive 

control strategy, a conventional and a skyhook passive damper. Results show that the 

semi-active control strategies can provide a better isolation than a conventional 

passive system with an equivalent damping level. The semi-active damper can 



provide isolation over the whole frequency range if the on-state damping of the semi-

active damper is big enough. The fraction of time when the damper is turned on or off 

is found to be frequency dependent.  

The effects of secondary frequency, which is a harmonic or subharmonic of the 

fundamental frequency on switching time of the semi-active damper for isolation of 

the primary harmonic are examined. Upper bounds are derived for fraction of time 

when the switching time for the fundamental frequency may be affected by the 

presence of a secondary frequency. The performance of the semi-active isolation 

system for periodic and random disturbances, where there is more than one harmonic 

in the disturbance spectrum is investigated. The results for square wave and triangular 

wave disturbances suggest that semi-active control strategies are promising for 

periodic disturbance. Three special cases are considered for random disturbances 

when the acceleration, velocity and displacement inputs have flat spectra. The semi-

active control strategies can provide some advantage in performance for random 

velocity and displacement disturbances with medium to high damping ratios. Only 

continuous skyhook control strategy can provide some benefit in isolation 

performance for random acceleration disturbances. 

 Following on from the numerical simulations, experimental work is carried out to 

validate the simulation results. The experimental set-up incorporates an 

electromagnetic device as a semi-active damper. The on-off skyhook control 

algorithm is chosen to be implemented using an analogue circuit. The damping of the 

electromagnetic semi-active damper is achieved by opening and closing the magnet-

coil circuit.  Numerical predictions are confirmed by experimental observation. The 

performance of the electromagnetic damper is limited by the achievable damping 

level. 
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Ch1. Introduction 

CHAPTER 1 

1. INTRODUCTION 

1.1 BACKGROUND 

The need for effective control of noise and vibration is very common in almost every 

dynamic system [1]. Excessive vibration and noise can cause premature structural and 

mechanical failure, increased maintenance requirements, human pain and discomfort. 

Among the various problems and issues associated with vibration, isolation of a piece 

of equipment from a vibrating base is a common one in the field of mechanical 

engineering [1-3]. For sensitive equipment where the motion is prescribed by the 

operating environment, then vibration reduction at source is often not feasible. The 

main improvements can be obtained using isolation, including the possibility of active 

as well as passive isolation [4]. A good general introduction to noise and vibration 

control is given by Bies and Hansen [5] and Beranek and Ver [6]. More specifically 

for vibration and shock isolation and detailed modelling of more complicated features 

are the definitive works by Snowdon [7] and Harris [1]. 

Vibration isolation can be achieved by passive, semi-active, and active means. Until 

about 1990, only passive control measures were generally considered for practical 

engineering systems, and the theory underlying these measures is well documented, 

for example [1]. Traditionally, engineers have solved the problem of vibration 

isolation by designing passive systems based on compliant materials, such as rubber, 

to decouple the equipment dynamics from the base dynamics [8]. Typically the base 

vibration has an unpredictable waveform and the passive isolators have to deal with 

broadband excitation spectra [4, 9]. However, the conventional passive form of 

isolation is generally a compromise for a single-degree-of-freedom system between (a) 

isolation at higher frequencies which requires low values of damping, and (b) control 

of vibration at resonance that requires high values of damping [2, 4, 5, 9-12]. There is 

inherent trade-off in performance of a passive isolation system. 

Although many vibration problems are solved in a simple and reliable way with 

passive devices, it is clear that there are distinct performance limitations when only 
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Ch1. Introduction 

passive devices are used [4, 9]. It has been established that isolation systems with 

parameters that can be adapted to changing excitation and response characteristics can 

provide better isolation performance than passive systems with fixed parameters [13, 

14]. Active control systems can be used when greater performance is required and 

passive techniques alone cannot perform adequately (or when accomplishing a task 

not even possible with passive devices). Active control uses actuators to both add and 

dissipate energy from the system based on signals obtained from various sensors. 

Active control systems have demonstrated superior performance than that of the best 

possible passive systems. But it is also known that the active systems in general are 

more costly, more complex and less reliable than passive systems. The primary 

limitation in the application of an active system for vibration isolation is the need for 

external power. Thus the implementation of active vibration systems has been limited 

to cases in which the performance gains outweigh the disadvantages of increased cost, 

complexity, and weight. By recognising both the performance benefits as well as the 

limitations of active systems the concept of semi-active vibration control has been 

developed [15]. 

Semi-active vibration control refers to the use of devices with variable properties to 

control or suppress vibrations of dynamic systems. This concept involves the 

application of a controllable device which does not require significant external power 

to operate. The semi-active device is able to respond to measured feedback signals 

from a vibrating system to control undesired vibrations. The dynamic properties of 

semi-active systems can be varied with time. But they can only dissipate energy, i.e. 

they cannot put energy into the system. Thus the device does not use significant 

external power compared with fully active systems. One can expect the performance 

to be more limited than the fully active system. 

Semi-active systems fall into three categories: variable stiffness, variable damping and 

variable mass. As the mass can not be changed in a short time, in most cases only the 

first two are considered. In the first category, the system’s stiffness is adjusted to 

establish a non-resonance condition. In the second category, semi-active devices are 

operated according to semi-active damping control strategies to generate a damping 

force passively. It is the isolation of vibrations from the base using semi-active 
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damping control that is the subject of this thesis. Before considering this in detail, 

however, various methods for vibration control are first reviewed. 

1.2 LITERATURE REVIEW 

Published literature on semi-active damping control for vibration isolation discusses 

control strategies and devices. This can be structured for easy comprehension in the 

manner shown in Figure 1.1. 

Vibration Isolation

Passive Semi-active Active

Damping controlMass control Stiffness control

StrategiesDevices

Adaptive-passive

 
 

Figure 1.1 Overview of vibration isolation methods in the literature 

Figure 1.1 shows that there are four established ways for vibration isolation [14]. The 

semi-active vibration isolation can be realised by mass control, stiffness control and 

damping control. Semi-active damping control for vibration isolation is the subject of 

this thesis. Since their inception in 1970s, semi-active dampers have found 

applications in many engineering areas, and have gained more and more attention 

these days due to their ability to attain superior performance over conventional 

passive dampers. In achieving this, the control algorithm by which the damper is 

adjusted is one of the crucial factors that ultimately determines the success or failure 

of a particular control strategy. The device by which variable damping is achieved is 

another key point to ensure the desired performance. Properties of the semi-active 
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damper such as the upper and the lower limits of the damping coefficients and how 

fast it can be switched are particularly important. This section provides an overview 

of the semi-active control algorithms and the devices proposed in the literature. 

1.2.1 SEMI-ACTIVE CONTROL STRATEGIES 

Semi-active control systems were proposed in the 1970s when patents were issued for 

shock absorbers which used an elastically supported mass to activate hydraulic 

valving (no power required) or used a solenoid valve for directing fluid flow (small 

amount of power required) [15]. Since then, a large amount of research on semi-active 

systems has actually been performed in the field of engineering for applications in 

automotive vibration, structural vibration and vibration isolation.  

(1) Control strategies based on skyhook damping 

The initial semi-active control strategy was designed to modulate the force generated 

by a passive device to approximate the force that would be generated by a damper 

connected to an inertial reference (“skyhook damper”) [2, 15-17]. Thus the control 

strategy was named skyhook semi-active control. With the “skyhook damper” 

configuration, the trade-off between resonance control and high-frequency isolation, 

which is inherent in passive isolation, is eliminated [18]. According to this control 

strategy, whenever the velocity and the relative velocity are of the same sign, the 

semi-active damper would supply a force with the desired value of a skyhook damper. 

Since the damping of the semi-active skyhook control is assumed to be continuously 

adjustable, the control strategy is called continuous skyhook control by some authors. 

Karnopp et al. studied the performance of the skyhook semi-active control strategy via 

computer simulations for harmonic and random disturbances [15]. The computer 

simulations were based on the assumption that the force provided by the semi-active 

damper can always be equal to the desired force, which is not always true in practice. 

Krasnicki also studied the vibration isolation performance of a single degree of 

freedom system with a prototype semi-active damper using the same skyhook semi-

active control strategy [16]. The study carried out computer simulations duplicating 

the results in [15]. A prototype of damper consisting of a hydraulic actuator with an 

electrohydraulic servo-valve modulating the controlling orifice area was tested. The 
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system was subjected to both sinusoidal and random vibration input. The experiment 

results failed to validate the numerical prediction although it showed that there was 

some improvement in the isolation performance. 

Another paper by Krasnicki [19] proposed a so called “on-off” type skyhook control 

strategy. It assumes either zero damping or a constant passive damping value between 

the semi-active damper. The on-off damper differs from the previous skyhook 

strategy in that the force generated by the damper is proportional to the relative 

velocity of the sprung and unsprung mass rather than the absolute velocity of the 

sprung mass. The on-off skyhook is evaluated experimentally using the prototype in 

[16]. The experimental results were not compared to any predictions and only showed 

some improvement near the resonance area compared with a conventional passive 

damper. 

In recent years, both the continuous and on-off skyhook control strategies have been 

studied for their applications in vehicle suspension systems. For example, Ahmadian 

[20] numerically studied the behaviour of the on-off and continuous skyhook control 

strategy in a car primary suspension system. The study used a pure-tone input, and 

compared the results with the vibration isolation due to a conventional passive damper. 

The results showed that both on-off and continuous skyhook semi-active suspensions 

exhibited the ability to lower the resonance peak without worsening the isolation at 

higher frequencies.  

In a recent paper by Yi and Song [21], the authors tried to improve the performance of 

the skyhook control strategy by adapting to the road surface. The proposed control 

law consists of a new adaptive skyhook damping algorithm and a road detection 

algorithm. The profiles of the road surface are detected and used to tune the gains to 

of the skyhook damping strategy. Simulation results showed that the performance is 

superior to that of the continuous skyhook control. However, this road detection 

algorithm is difficult to implement in practice. Sciulli and Symans [22, 23] modified 

the skyhook control strategy into the so called groundhook control, where the vehicle 

is modelled as a two degree-of-freedom system with one (unsprung) mass 

representing that of the tyre and one (sprung) mass that of the vehicle. The semi-

active damper is connected to the unsprung mass in the model. The results show that 

the skyhook configuration is ideal if the primary goal is isolating the sprung mass, 
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while the groundhook configuration excels at isolating the unsprung mass from the 

input excitation [22-24].  

(2) Control strategies based on balance control 

Both the continuous and on-off skyhook control strategies discussed previously 

require a measure of the absolute velocity as well as the relative velocity. Accurate 

measurement of the absolute velocity may be difficult to achieve. Rakheja [25] 

proposed a control strategy using the directly measurable relative position and relative 

velocity signals. The control strategy is based on the fact that the damper force causes 

an increase in the magnitude of the mass acceleration whenever the forces due to the 

spring and the damper have the same sign. The semi-active damper has two states: on 

and off. The semi-active damper is switched off when the damper force and spring 

force have the same sign, and is switched on when the damper and spring force are in 

the opposite direction so that the damper force opposes the spring force. This control 

strategy is termed “balance control” by later authors [26]. 

However, this control strategy has potential for improvement. During the on-state of 

the damper, the instantaneous damper force is seldom exactly equal in magnitude to 

the instantaneous spring force. In consequence, the surplus force will still accelerate 

the mass. Alanoly and Sankar [27] proposed a continuous control strategy, which can 

be considered as a further development of the preceding control strategy in [25]. If the 

spring force and the damping force are in the same direction, the damping coefficient 

should be a minimum value, ideally zero in order to reduce the acceleration of the 

mass. On the other hand, if the spring force and the damper force are in opposite 

directions, then the damping force should be adjusted in such a way that it should be 

equal to the spring force in magnitude so as to produce zero acceleration. However, 

the desired damping force may be beyond the range that the damper can provide. A 

similar control strategy is discussed in [28].  

Rakheja and Sanker [25] studied the vibration and shock isolation performance of the 

semi-active on-off balance control strategy using a orifice damper. The performance 

of the semi-active damper is compared with a conventional passive damper. 

Simulation results were provided but no physical interpretation given. Alanoly and 

Sanker [27] also studied the vibration isolation performance of the on-off balance 
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control and compared it with the performance of the continuous skyhook control. In 

another study by Rakheja and Sankar [29], the on-off balance control strategy was 

used to change the damping of a so-called Ruzicka isolator and Snowdon’s [7] two 

inertia vibration isolation system.  

Wu et al. [30] pointed out that the desired damping force may be beyond the range 

that the damper can supply for the continuous balance control strategy. In this case, a 

maximum possible damping coefficient should be applied. Furthermore, they 

developed a new control strategy. Instead of continuously adjusting the damping force, 

the damping is set at either a maximum value or a minimum value depending upon a 

threshold damping coefficient. The threshold damping coefficient was suggested to be 

30% of the critical damping coefficient of the system for that particular case. 

(3) Other semi-active control strategies 

There are numerous more complicated control strategies for vibration control with 

semi-active dampers. Many are applied to structural vibration [31-35] and others 

applied to vehicular vibration [26, 36, 37]. Sadek [34, 35] gave a detailed description 

of the recently proposed semi-active control algorithms for use with the 

magnetorheological (MR) damper. The control algorithms include a linear quadratic 

regulator (LQR) control algorithm, a generalized LQR control algorithms and a 

displacement-acceleration domain algorithm. Hrovat [38] pioneered the idea of using 

semi-active devices for control of wind induced vibrations. Numerical simulations 

showed the potential of this semi-active approach for reducing wind excited structural 

vibrations. 

Hodmann [39] numerically examined the use of different control algorithms for a 

semi-active suspension to improve the driving safety and ride comfort of a delivery 

truck, while Ahmadian et al. [40] examined the effectiveness of a semi-active 

suspension at improving the ride of a class 8 truck. Ahmadian found that the semi-

active system yielded an improved ride as compared to the passive suspension. 

Additionally, he found that this result could be achieved by using controllable 

dampers at only four of the six damper locations. Leih [41] showed that the switching 

time of a controllable damper used as part of a semi-active suspension can have an 

appreciable effect on the vehicle ride, suspension travel, and tyre deflection. These 
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conclusions are based on an analysis performed on a passenger car model with a full 

car body and four wheel-axle assemblies. 

Giua and Sanganta [42] presented a two-phase design technique for developing semi-

active suspension control algorithms. In the first phase of their design technique, they 

computed a target active control law that can be implemented by Optimal Gain 

Switching, and then, in the second phase, they approximated this target by controlling 

the variable damping coefficient of the semi-active suspension. They showed (by way 

of simulation results) that the performance of the semi-active suspension is close to 

the performance of the ideal active suspension when considering velocity input and 

acceleration response. Saxon et al. [43] confirmed that ride quality and stability are 

the greatest advantages of using a semi-active suspension through field-testing. Leigh 

[44] developed a control strategy for a semi-active damper from second-order 

equations and compared the simulated performance with that of a full-state system, 

again based on a quarter car model. He also investigated the effects of high damping 

levels and control valve switching time on the ride performance. 

Recently fuzzy logic control and neural network theory were introduced into semi-

active control area. For example, Sireteanu et al [26] studied fuzzy logic control 

algorithms for an MR damper in the control of vibration experienced by a tractor 

driver. Carter [45] studied the performance of a skyhook fuzzy logic control algorithm 

for the vibration control of vehicle suspensions. The fuzzy logic semi-active control 

strategy was better able to balance the body and axle dynamics than the conventional 

semi-active damping control strategies that are investigated. A different study by Fang 

and Chen [46] applied a fuzzy control strategy to a 4-DOF vehicle model. Ursu et al. 

[47] examined the development of control strategies for semi-active suspension 

systems using artificial intelligence. The results of their study are based on a 2-DOF 

quarter-car model.  

(4) Anti-jerk control strategies 

Generally, the acceleration response of an on-off damper exhibits discontinuities at 

the time of switching, thus a significant jerk may be experienced by the mass of the 

system. Chatter, which refers to the phenomenon in which the damper switches 

rapidly between the on and off states, is also associated with jerk [48]. Jerk and 
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chatter are undesirable for some practical applications. Various methods have been 

proposed to overcome these problems.  

Pan [49, 50] developed the method using a variable damping coefficient to smooth the 

on-off damper force at the time of switching. The time rate of the change of damping 

force and the time rate of change of acceleration were investigated and used to 

evaluate the smooth degree of the damping force and the acceleration. A shaping 

function was introduced by Ahmadian et al. [51] in a US patent to avoid the 

discontinuities of the semi-active damper force. The shaping function was a 

continuous function of the variables defining the condition functions, and it had a 

continuous first derivative for all values of the variables of a condition function. 

Miller [52] developed a method for eliminating jerk and noise in semi-active 

suspensions by reducing the magnitude of force discontinuities that can result from 

both on-off and continuous semi-active skyhook control strategies. In the method, he 

introduced relative acceleration into the condition function. The semi-active damper 

operates as a conventional passive damper when the relative velocity carries the same 

sign as relative acceleration. The damping coefficient is significantly reduced (ideally 

zero) when the relative velocity across the damper opposes the relative acceleration. 

Another method to cope with jerk and chatter problems is using sliding mode control. 

For example, Ursu et al. [53] carried out an investigation for using slide mode control 

to combat chatter. Numerical simulations were carried out on a model of a 2-DOF car 

suspension system. The effects of the Runge-Kutta integration step and sample time 

on chatter were studied. The results showed that chatter can be reduced via the 

proposed sliding mode control strategy. 

In most numerical studies, the off-state damping coefficient of the semi-active damper 

is assumed to be zero. However the actual damper constant is limited by the physical 

parameters of the conventional damper. This means that there is both an upper bound 

and a lower bound. Usually the on-state damping should be much greater than the off-

state damping and the off-state damping should be kept as small as possible. The 

effects of non-zero off-state damping were investigated in [54, 55]. The insertion of 

off-state damping has two effects compared to the system without off-state damping: 

(a) it reduces the RMS acceleration transmissibility at and around the natural 
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frequency; and (b) it increases the RMS acceleration transmissibility at frequencies 

greater than the natural frequency. 

Although in most analytical studies the semi-active damper is modelled as an ideal 

device without any delay, it has been shown that the real-time implementation of 

semi-active dampers can involve as much as 50ms of time delay [56]. The time delay 

is defined as the time lag that exists between the sensor signal and damper response. 

This lag is affected by the electrical and mechanical delays that exist in any practical 

system. Additional time delays can reduce the benefit of a semi-active strategy [56, 

57]. 

1.2.2 SEMI-ACTIVE DEVICES 

Semi-active devices are passive devices whose properties can change with time, and 

over time scales, which are comparable to the period of the vibration itself. For the 

purpose of semi-active damping control, various energy dissipating devices have been 

used to obtain the desired damping. These devices include hydraulic dampers, 

Electrorheological (ER) and Magnetorheological (MR) dampers, semi-active friction 

devices and electromagnetic devices. 

(1) Hydraulic dampers 

Semi-active hydraulic dampers typically consist of a hydraulic piston-cylinder 

arrangement with a control valve mechanism. Variable damping coefficients can be 

achieved by the modulation of the orifice area through which the fluid flows. The 

control valve may take the form of a solenoid valve for on-off control or a servovalve 

for continuously variable control. Fluid viscous dampers have found numerous 

applications in the vibration isolation of aerospace and seismic response control 

systems. 

Krasnicki [19] used a damper consisting of a hydraulic actuator in conjunction with an 

electro-hydraulic servovalve modulating the controlling orifice area. In the off-state 

the full command voltage was applied to the valve, while zero voltage was applied to 

the valve in the on-state. Patten, et al. [58], provided a primer on the important 

physical characteristics of a hydraulic semi-active vibration absorber. Karnopp [59] 

introduced semi-active isolators using the skyhook damper scheme. Practical 
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applications of skyhook dampers, namely extreme isolation for delicate 

manufacturing operations against seismic input and the automotive suspensions are 

discussed by Karnopp [24].  

(2) ER and MR dampers 

ER and MR dampers consist of a hydraulic cylinder containing micron-sized 

polarisable particles in a fluid (usually oil). Both the ER and MR materials have the 

ability to change from free flowing viscous fluids to a semi-solid state in a matter of 

milli-seconds when exposed to an electric or a magnetic field [60, 61]. These devices 

are mechanically reliable, since they do not contain any moving parts. More detailed 

information about the use of ER and MR dampers for vibration control can be found 

in [60, 62]. 

There are numerous published references on vibration control using ER and MR 

dampers. For example, Wu and Griffin [28] used an ER damper to reduce the severity 

of shocks caused by suspension seat end-stop impacts or high magnitude vibration. 

The ER damper was used to realise the required two-state damping. Jeon et al. [57] 

studied the vibration isolation performance of a MR damper under the control of the 

on-off skyhook control strategy. The damping constant and response time of the 

damper were measured. The time delay in the response of the MR damper was 

measured and incorporated into the control under harmonic disturbances. 

Experimental results show that on-off skyhook control strategy which includes the 

damper time delay performs less effectively than the one without the consideration of 

time delay. 

(3) Semi-active friction devices 

Semi-active friction devices use the force generated by surface friction to dissipate 

energy. An ideal friction damper may be considered to behave as a Coulomb element 

wherein the force is the product of friction coefficient and the normal force at the 

friction interface and the sign of the velocity of the motion. An isolation system 

incorporating semi-active friction controllable sliding bearing is described by Feng et 

al. [63]. The friction force on the sliding interface between the building and the 

foundation was controlled in order to limit the sliding displacement and minimise the 
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transmission of seismic force to the building. The simulation results showed that this 

type of system is effective for earthquakes with a broad range of intensity, compared 

to its conventional passive counterparts. 

(4) Electromagnetic dampers 

Electromagnetic dampers use the interaction between the movement of the coil and 

the magnetic field of a permanent magnet or electromagnet to provide a damping 

effect [64, 65]. When an electromagnetic damper coil is shorted or connected to an 

external resistor, the device becomes a linear mechanical damper. The damping level 

can be varied by changing the external resistance or the strength of the magnetic field. 

When the external resistance is varied, the damping coefficient is varied. In the open 

circuit state the coefficient vanishes, while when the coil is shorted the coefficient 

reaches a maximum value. Since effective resistance can be rapidly varied 

electronically, an electrical actuator can function as a semi-active damper in vehicle or 

vibration isolation suspension systems. In this thesis, an electromagnetic damper is 

used to achieve two-state damping required by the on-off control strategy. 

In a paper by Karnopp [64], the possibility was studied for using permanent magnet 

linear motors as variable mechanical dampers for vehicle suspensions. Two basic 

electromagnetic designs were analysed, namely the moving coil and the moving 

magnet approach. The electromagnetic damper studied consists of a tubular coil of 

wire situated within a radially-oriented constant magnetic field produced by a 

permanent magnet. The damping coefficient is varied by changing the external 

resistance. 

1.2.3 SUMMARY OF LITERATURE REVIEW 

The technologies available to tackle vibration isolation via semi-active damping 

control means have been briefly reviewed in the preceding sections. The literature 

review concentrates on the semi-active control strategies and semi-active damping 

devices.  

Significant research in the area of semi-active systems and controllable dampers has 

been carried out either numerically or experimentally by various researchers, but only 

in rare instances have researchers investigated both aspects. The majority of previous 
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research just carried out numerical simulations. They failed to provide physical 

interpretations to justify of the results obtained. There exists an abundance of research 

on the application of semi-active dampers for particular vibration control problems 

such as vehicle suspensions and building structural control, but relatively little 

research has focused on general aspects of vibration isolation [24, 37]. Although more 

complicated feedback control strategies offer great possibilities in many situations, it 

is probable that significant performance gains can be realised with basic control 

strategies. 

The study presented in this thesis explores the feasibility, suitability and effectiveness 

of using relatively simple control strategies for the purpose of vibration isolation. 

Physical justifications are provided to enable a more complete understanding of the 

application of semi-active damping control for vibration isolation. Experimental work 

has been carried out to validate the numerical simulation results.  

1.3 OBJECTIVES AND SCOPE 

This thesis aims to address the application of semi-active damping in isolating 

sensitive equipment from the surrounding vibration environments. The primary 

objectives of the thesis are to:  

• Evaluate the effectiveness and suitability of various basic semi-active control 

strategies for the purpose of vibration isolation. Compare the performance 

with that due to conventional and skyhook passive dampers; 

• Provide physical interpretation of the results to enable a more complete 

understanding of the applicability of semi-active damping control for vibration 

isolation;  

• Provide some guidelines for practical engineers when semi-active damping 

control can be considered as an option; and 

• Implement certain control strategies using a controllable device to validate 

numerical simulations. 
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This thesis is concerned with the use of a SDOF semi-active isolation system, 

comprising a semi-active damper with a linear passive spring in parallel, for vibration 

isolation of base excitation. The base-excited SDOF system is used to study the 

vibration isolation performance of the semi-active dampers. Four basic control 

strategies based on skyhook control and balance control were studied and the 

effectiveness and suitability of each individual semi-active control algorithm are 

studied. The four control algorithms are continuous skyhook control, on-off skyhook 

control, on-off balance control and continuous balance control. Various base 

disturbances, namely harmonic, periodic and random, are considered in this study. 

The on-off skyhook control strategy was chosen to be implemented using an 

electromagnetic device and the experimental results were presented. 

1.4 CONTRIBUTIONS OF THE THESIS 

The contributions of this thesis are as follows: 

(1) A physical interpretation for skyhook and balance semi-active control 

strategies are provided; 

(2) Chatter and jerk problems associated with applications of the four semi-active 

damping control strategies are investigated and anti-jerk control strategies are 

proposed; 

(3) The performance of the four semi-active control strategies for vibration 

isolation of harmonic, periodic and random disturbances has been studied with 

the following conclusions: 

• The superior performance of the semi-active control strategies to 

conventional passive damper with an equivalent damping has been 

confirmed by simulation and experimental results for harmonic disturbances; 

• Semi-active damping control strategies can provide better performance that 

the conventional passive damper for square and triangular waves; 

• An analytical solution to calculate the mean square response of a 

conventionally damped SDOF system and a skyhook passive SDOF system 

subject to random base excitation has been derived; 
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• The performance for isolation of random disturbances has been studied 

numerically for three special cases when the displacement, velocity and 

acceleration excitation spectrum are assumed to be flat. Semi-active control 

strategies are found useful for the cases when the inputs are displacement or 

velocity. 

(4) The condition functions of the semi-active control strategies were studied to 

provide physical interpretations and insights; 

(5) The on-off skyhook control strategy was implemented in the lab using an 

analogue circuit.  

1.5 LAYOUT OF THE THESIS 

To conduct a theoretical and experimental study on semi-active damping control for 

vibration isolation, a single-degree-of-freedom (SDOF) system subject to base 

disturbances is considered throughout this thesis.  

The background of this thesis is firstly introduced in Chapter 1. An overview of 

different contributions in the area of semi-active damping control is presented. The 

advantages and limitations are briefly discussed, and the motivation behind semi-

active damping control for vibration isolation is also presented in this chapter. 

Chapter 2 contains information on the model development for numerical simulations 

of a SDOF system incorporating a semi-active damper. Four control algorithms, 

which are continuous skyhook control, on-off skyhook control, continuous balance 

control and on-off balance control, are described. Also contained in this chapter is an 

investigation into the chatter and jerk problems that arise in numerical simulations and 

possibly in practice when using semi-active dampers. An anti-jerk implementation is 

presented and anti-jerk control strategies are proposed. These control strategies are 

implemented numerically in Matlab/Simulink. 

In Chapter 3 the vibration isolation performance of the four control strategies for 

harmonic disturbances are discussed. The performance is evaluated in terms of Root-

Mean-Square (RMS) acceleration and relative displacement transmissibility. The 

vibration isolation performance of the semi-active dampers is compared with that due 
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to the conventional passive and skyhook passive dampers. Experiments are conducted 

to test the on-off skyhook control strategy. 

Since the switching characteristics of the semi-active damper are frequency dependent, 

the switching for the fundamental frequency might be affected due to the presence of 

an extraneous frequency. Chapter 4 studies the effects of a secondary frequency on 

the switch state of a semi-active damper for the fundamental frequency. Upper bounds 

for fractions of time when the switching can be wrong are derived. A specific example 

of excitation with multiple harmonics is periodic disturbances in which the frequency 

components are integer multiples of the fundamental frequency. The effectiveness of 

the semi-active damper in isolating square and triangular waves is also investigated in 

this Chapter. Experimental work conducted to investigate the effects of a secondary 

frequency on the switching time of the semi-active damper for the fundamental, and 

the effectiveness of the on-off skyhook control algorithm in isolating square wave are 

also presented. 

Chapter 5 discusses the effectiveness of semi-active dampers in isolating random 

disturbances. An analytical solution is derived for the RMS response of a SDOF 

system with a conventional passive and a skyhook passive damper subject to random 

base excitation with a constant power spectral density. The RMS responses are 

simulated for a SDOF system incorporating the semi-active dampers for three special 

cases when the spectra of displacement, velocity and acceleration are flat. 

Experimental work conducted on the on-off skyhook damper to verify the results of 

isolating random disturbances is also presented. 

Finally, Chapter 6 summarises the main conclusions from this thesis and makes 

recommendations for future work. 

This thesis also contains four appendices to support the main structure of the thesis. 
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CHAPTER 2 

2. NONLINEAR CONTROL STRATEGIES FOR SEMI-

ACTIVE DAMPING CONTROL 

2.1 INTRODUCTION 

Chapter 1 described how semi-active control strategies have been developed and used 

to control vibration. This chapter is concerned with model developments for 

simulations of a base-excited SDOF system with a semi-active damper. Four basic 

semi-active control strategies based on skyhook control and balance control will be 

considered. It provides detailed information for numerical simulations carried out 

throughout the thesis.  

First, the semi-active damping concept is introduced and compared with conventional 

passive damping. Detailed descriptions of four semi-active control algorithms, which 

are continuous skyhook control, on-off skyhook control, continuous balance control, 

and on-off balance control, are presented in the next section followed by discussion of 

the numerical problems encountered when performing simulations with semi-active 

dampers. A phenomenon often referred to as chatter occurs with semi-active dampers 

at low excitation frequencies. The conditions for chatter to occur are demonstrated by 

studying the dynamics of the system, and a modified control scheme is suggested to 

avoid the chatter problem. Jerk is associated with chatter and is caused by switching 

between different states of the damping. A detailed description of an anti-jerk 

implementation is presented and anti-jerk control strategies are proposed. Finally the 

results are summarised. 

2.2 SEMI-ACTIVE DAMPING VS. CONVENTIONAL DAMPING 

Semi-active dampers are the class of device whose damping properties can be varied 

to reduce the vibration transmitted from the source to the receiver. Figure 2.1 shows 

the schematic of a SDOF system with a conventional passive, semi-active and fully 

active damper. In both passive and semi-active dampers, the magnitude of the damper 
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force is dependent on the relative velocity across the damper. However, the force 

versus velocity curve of each type is not identical. In passive damping, the damper has 

a pre-defined characteristic in units of force/velocity as shown in Figure 2.2. A change 

in the relative velocity across the damper, x 0x−& & , will change the force exerted by the 

damper, dF . Referring to Figure 2.2, the magnitude and direction of the force exerted 

depend only on the relative velocity across the damper. In many applications, the 

relationship between the force and the relative velocity for the damper is nonlinear, 

and the gradient tends to decrease as the velocity increases [1]. However, in the 

passive model considered in this report, the slope of the curve is constant. 
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(a)    (b)    (c) 

Figure 2.1 Schematic of a SDOF system with different type of dampers (a) conventional passive 

damper; (b) semi-active damper; and (c) active device 
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Figure 2.2 Relationship between damping force and relative velocity for a conventional passive damper 
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Although the direction of the damper force in semi-active dampers still depends on 

the relative velocity across the damper, the magnitude of the damper force is 

considered to be adjustable. The damping value can be adjusted by a controller that 

can be programmed to any type of control strategy. 

Semi-active dampers may be of the on-off type or of the continuously variable type. A 

damper of the first type is switched, in accordance with a suitable control algorithm, 

between alternate on and off damping states. In its on-state, the damping coefficient is 

of a pre-selected relatively high magnitude. The term “damping coefficient” refers to 

the ratio of the damper force generated by the damper to the relative velocity across 

the damper, which is not necessarily a constant. In its off-state, the damping 

coefficient of the damper is of relatively low magnitude. This may be almost zero, but 

in many practical applications, a magnitude greater than zero is desired. A 

continuously variable semi-active damper is also switched during operations between 

on and off states. However, when a continuously variable damper is in its on-state, the 

damping coefficient and corresponding damper force may be changed over a range of 

magnitudes. The concept of semi-active damping is illustrated in Figure 2.3(a) and 

(b). The shaded part of the graph in Figure 2.3(b) represents the range of possible 

damping coefficients. The damping coefficient of a semi-active on-off type damper is 

a discontinuous function in the time domain, which can be seen in Figure 2.4 (a). The 

damping coefficient of a semi-active continuous type damper is a continuous function 

as shown in Figure 2.4 (b). 
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(a)                            (b) 

Figure 2.3 Semi-active damper concepts (a) on-off damper; (b) continuously variable damper 
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  (a)       (b) 

Figure 2.4 Semi-active damper characteristics in time domain (a) on-off damper; (b) continuously 

variable damper 

2.3 SEMI-ACTIVE CONTROL STRATEGIES 

In the initial numerical simulations, four basic strategies are studied. The semi-active 

dampers investigated in this study can be classified into skyhook damping control and 

balance damping control. All of these can be further divided into on-off and 

continuously variable control strategies. As a comparison, an adaptive-passive 

damping control strategy is also studied. 

2.3.1 SKYHOOK CONTROL 

The initial semi-active system was based on skyhook semi-active control, which was 

first proposed by Karnopp [15] to emulate the skyhook damper. Forces were 

generated in a hydraulic damper by modulating its fluid-flow orifices. The name 

“skyhook” is derived from the fact it was a passive damper hooked to an imaginary 

sky. Figure 2.5 (a) shows the arrangement of a SDOF system with a skyhook damper. 

Considering the SDOF system with a skyhook damper in Figure 2.5(a), it can be 

realised using fully active control by programming the active force shown in Figure 

2.5(b) as 

  (2.1) 0c sky ( )F c x k x x= + −&

cF  is the active control force, k  is the spring stiffness, and where skyc  is the skyhook 

damping coefficient. 
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skyc

0( )cF k x x cx= − + &

 

(a)     (b) 
Figure 2.5 Skyhook system and its active equivalent (a) schematic of a SDOF system with a skyhook 

damper; (b) active system 

The full active control strategy requires an actuator to provide the desired damping 

force. To reduce the complexity and power requirements, the semi-active continuous 

skyhook control algorithm was designed to modulate the force generated by a passive 

device to approximate the force that would be generated by a skyhook damper. The 

SDOF system with a semi-active damper is shown schematically in Figure 2.6. The 

semi-active device is installed in the place of the conventional damper, and the device 

is passive, but the force generated by the device is controllable. The excitation and 

response signals are fed into a controller to provide a desired damping force.  
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Figure 2.6 Schematic of a SDOF system with a semi-active damper 

The passive device can only absorb vibration energy, so the product of the damper 

force, saF x, and the relative velocity, 0x−& & , must be greater than or equal to zero 
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 0sa ( ) 0F x x  (2.2) − ≥& &

i.e., the power associated with the semi-active damper force, saF , is always dissipated. 

Thus, if the relative velocity is increasing, x x0 0− ≥& & , saF must be positive, and if 

, 0 0x x− <& & saF must be negative. 

Defining the upwards direction as positive and downwards direction as negative, 

consider first the case when the mass is moving upwards separating from the base. 

Under the ideal skyhook configuration, the desired value of skyF  is 

 sky skyF c x= − &  (2.3) 

where skyF

)

 is the skyhook damper force. For the semi-active equivalent model, the 

damper force due to the semi-active damper is 

 0(sa saF c x x= − −& &  (2.4) 

where saF  is the semi-active force, and sac  is the semi-active damping coefficient 

required to achieve the desired skyhook damping force. In order for the semi-active 

equivalent model to perform like the skyhook model, the damping forces must be 

equal. The semi-active damping constant can thus be found by setting skyF  in equation 

(2.3) to be equal to saF  in equation (2.4). The semi-active damper force can then be 

found for the case when both x x&  and 0x−& &  are positive, which gives 

0 0

,    0sky
sa

xc
x x x x
c x

= ≥
− −

&

& & & &

&
  (2.5) 

and 

0
0 0

( ),    sky
sa

xF x x
x x x x

0
c x

= −
− −

&
& &

& & & &
≥

&
  (2.6) 
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x xNext, consider the case when both &  and 0x−& &  are negative. Now the mass is 

moving downwards. The skyhook damper force would be in the positive direction, 

hence 

 sky skyF c x= &  (2.7) 

Following the same procedure as the first case, equating the damper forces reveals the 

same semi-active damper force as the first case. Thus it can be concluded that when 

the product of the x x&  and 0x−& &  is positive, the semi-active damping coefficient is 

defined by equation (2.6) and the semi-active damper force is defined by equation 

(2.7). 

Now consider the case when the mass is moving upwards and the mass and base are 

moving towards each other. The skyhook damper would again apply a force on the 

mass in the negative direction. In this case, the semi-active damper cannot apply a 

force in the same direction as the skyhook damper. For this reason, the damping 

should be set to zero thus minimising the force acting on the mass. 

The final case to consider is the case when the mass is moving downwards and is 

separating from the base. Again, in this condition, the skyhook damper force and the 

semi-active damper force are not in the same direction. The skyhook damper force is 

in the positive direction, while the semi-active damper force is in the negative 

direction. The best that can be achieved is to set the damping in the semi-active 

damper to zero. 

Summarising these four conditions, the well-known semi-active skyhook control 

algorithm is given by [15] 

( )
( )

0

0

   0
 

0         0
sky

sa

c x x x x
F

x x x

− ≥⎧⎪= ⎨
− <⎪⎩

& & & &

& & &
  (2.8) 

Whenever it is required to supply energy to the system to produce the effect of 

skyhook damping, the best the device can do is to supply no force at all. Elsewhere 

the device provides a force proportional to the absolute velocity of the mass. The 

switching of the device can be controlled by the term x 0( )x x−& & & , which is called the 
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condition function. Condition function is different for different control strategies. If 

the product of the absolute velocity of the mass, x x& , and the relative velocity 0x−& &  

between the mass and the base is positive, the damper is switched on, so that a force is 

generated to reduce the velocity of the mass. If this term is negative, the damper is 

switched off so that no force is generated. This control scheme intends to simulate 

closely an ideal skyhook damper. The theoretical semi-active damping required to 

produce the damping force, saF , is given by 

( )

( )

0

0

x− ≥

− <

&

&

0

   0
 

0            0

sky

sa

c x
x x

x xc
x x x
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⎪
⎩

&
& &

& &

& &

 (2.9)  

Figure 2.7 is a three-dimensional plot of the semi-active damping coefficient required 

by a continuous variable skyhook damper in the above equation. It can be seen from 

the figure that when the relative velocity x 0x−& &  is very small, the required damping 

increases abruptly and tends to infinity, which cannot be provided by practical 

hardware. The damper constant, sac

c

c

, is limited by the physical parameters of the semi-

active damper. This means that there is both an upper bound, , and a lower bound, 

, on

max

csamin . Considering the limitation of the practical hardware, the damping 

coefficient in equation (2.9) can be rewritten as 

min max 0
0

min 0

max ,min ,        ( ) 0

                                                ( ) 0
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c x
c c x x

c x x

c x

⎧ ⎡ ⎤⎡ ⎤
x

x x
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  (2.10) 

The control algorithm given in equation (2.8) requires a continuous modification of 

the damper coefficient. To simplify the operation, a simpler on-off version has been 

proposed [19]. The the damper force is governed by 

( ) ( )
( )

0 0

0

     0
 

0                      0
on

sa

c x x x x x
F

x x x

− −⎧⎪= ⎨
− <⎪⎩

& & & & &

& & &

≥

c

 (2.11)  

where  is the on-state damping constant of the on-off damper. on
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Figure 2.7 Required damping coefficient for continuous skyhook damping as a function of absolute and 

relative velocity (equation (2.9)) 

In practice, zero damping coefficients are impossible when the damper is switched 

off. Therefore, the damping coefficient is actually switched between a high value and 

a low value. Considering the non-zero off-state damping, the control algorithm in 

equation (2.11) can be restated as 

 
( )
( )

max 0

min 0

             0
 

             0sa

c x x x
c

c x x x

− ≥⎧⎪= ⎨
− <⎪⎩

& & &

& & &
 (2.12) 

where  and  are the maximum and minimum coefficients of the on-off 

damper respectively. Usually the on-state damping c  is much greater than the off-

state damping c , and  should as small as possible. 

maxc c

c

min

max

min min

Figure 2.8 shows the relationship between the damper states and condition function of 

the skyhook control strategy. If the condition function is positive, the damper is 

0
0

0

sac

x&0x x−& &
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switched on, so that a force is generated to reduce the velocity of the mass. Otherwise, 

the damper is switched off. When the relative velocity across the damper is positive, 

the damper force acts to pull down the suspended mass; when the relative velocity is 

negative, the damper force acts to push up on the mass. Thus when the absolute 

velocity of the mass is negative, it is travelling downwards and the on-state damping 

is desired to push up on the mass.  Once the relative velocity changes its direction 

while the absolute velocity is still negative, minimum damping is desired to continue 

pulling down on the mass. However, if the absolute velocity of the body mass is 

positive and the mass is travelling upwards, the on-state damping is desired to pull 

down on the mass, while the minimum value of damping is desired to further push the 

mass upwards. 

x&

0x&

0 0x x− =& &

OFF

OFF

ON

ON

 

Figure 2.8 Relationship between the velocity variables and the damper states 

Both the continuous skyhook control and on-off skyhook control algorithms intend to 

produce the effect of skyhook damping. However, there are differences between them, 

which can be interpreted in terms of the amplitude and phase of the damper force. The 

original expression for the continuous skyhook control in equation (2.8) can provide 

the same amplitude and phase in its on-state as those of a skyhook damper. Due to the 

practical limitation of physical systems, however, it can only provide the exact 

amplitude and phase during part of the on-state period. By comparison, on-off 

skyhook control can only ensure that the semi-active damping force is the same sign 
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of the desired skyhook damping force. The magnitude is not representative of the 

skyhook damper force anymore, although it is shown that it gives similar isolation 

performance [66]. 

2.3.2 BALANCE CONTROL 

Considering a passive SDOF system subject to base excitation, the acceleration 

response of the suspended mass due to the base excitation can be expressed as 

 1 )( k dx F F
m

&&= - +  (2.13) 

where  and kF dF  are the spring and damper forces respectively, which are given by 

  (2.14) 0

0( )
k

dF c x x& &= -
( )F k x x= -

k cand  and  are the spring stiffness and damping coefficients respectively. The 

amplitude of the acceleration of the mass due to harmonic base excitation can be 

expressed in terms of the spring and damper forces [25] 
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 (2.16)  

where t  is the time at which spring force is zero, and t  is the period of vibration. 

Figure 2.9 shows the inertial force ( ), spring force and damper force of a passive 

SDOF system subject to harmonic base excitation. Most of the time, it is desired for 

the acceleration of the mass to be small, but it is evident from equation 

0

(2.15) and 

Figure 2.9 that the damper force tends to increase the acceleration amplitude of the 

mass during a part of vibration cycle. In the remaining part of a vibration cycle, the 
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acceleration of the mass due to the damper force may be attenuated if kF  and dF  are 

in the same order of quantity, which is demonstrated by equation (2.16) and Figure 

2.9. Poor vibration isolation performance of heavily damped passive systems is 

attributed to this phenomenon. Isolation performance of passive isolators with fixed 

damping deteriorates at high excitation frequencies, when the magnitude of the 

damper force is dominant. 
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Figure 2.9 Relationship between the forces of a conventional passive SDOF system subject to a pure-

tone excitation: ⎯ damping force ( dF kF); ---- spring force ( ); and ⋅⋅⋅⋅⋅⋅ inertial force ( ) mx&&

An on-off damping mechanism may be realised, which operates as a conventional 

passive damper during the part of the cycle to reduce the acceleration of the mass as 

demonstrated in equation (2.16) and Figure 2.9. The damping mechanism assumes 

zero damping during the portion of the cycle when a passive damper would normally 

increase the amplitude of the acceleration of the mass. In reference [25], an on-off 

hydraulic damper was implemented using a two position valve operated by a solenoid 

relay.  
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Based on the above discussion, the damper force will cause an increase in the 

acceleration of the mass whenever forces due to the spring and the damper have the 

same sign, or equivalently when the relative velocity and relative displacement have 

the same sign. A control algorithm to ensure that this does not occur is [25] 

( )( )
( )( )

0 0 0

0 0

( - )         0
  

0                 0
on

sa

c x x x x x x
F

x x x x

− − ≤⎧⎪= ⎨
− − >⎪⎩

& & & &

& &
 (2.17)  

where  is the on-state damping constant of the on-off damper. onc

The control algorithm shows that when the damper constructively adds to the 

acceleration due to the spring, it is switched off. Whenever the damper force reacts 

with the spring force, the damper is switched on. Since the purpose of the damping 

force in this algorithm is to oppose the spring force, it is termed “balance control”. 

This control algorithm may be relatively easy to implement in some applications such 

as vehicle suspensions, as the relative displacement and the relative velocity can be 

easily measured. 

The corresponding semi-active damping considering non-zero off-state damping is 

given by 

( )( )
( )( )

max 0 0

min 0 0

  0

  0sa

c x x x x
c

c x x x x

− − ≤⎧⎪= ⎨
− − >⎪⎩

& &

& &
  (2.18) 

where  and  are the maximum and minimum coefficients of the on-off 

damper. 

maxc cmin

The control algorithm in equation (2.17) has the potential for improvement. During 

the on-state of the damper, the instantaneous damper force is seldom exactly equal in 

magnitude to the instantaneous spring force. Consequently, the surplus force will still 

accelerate the mass. In reference [27], a damper with a continuously variable damping 

force has been discussed, which can be considered as a further development of the 

preceding control algorithm in equation (2.17). The damping coefficient is 

continuously variable, depending on the relative displacement and the relative 

velocity 
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( )( )
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This control algorithm shows that if the spring force and the damper force exerted on 

the mass are in the same direction, to reduce the sprung mass acceleration, the damper 

force should be minimum. On the other hand, if the spring force and the damper force 

are in anti-phase, then the damper force should be adjusted in such a way that it equals 

the spring force in magnitude so as to produce zero acceleration of the sprung mass. 

The semi-active damping required for this control algorithm is given by 
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 (2.20) 

It can be seen from equation (2.20) that the damping coefficient tends to infinity at 

, which cannot be implemented in practice. Figure 2.10 shows a three-

dimensional plot of the damping coefficient defined by equation (2.20). Similarly to 

equation (2.10), the damper constant sac  saturates at the upper and lower bounds 

imposed by the physical parameters of the damper. Considering the practical 

hardware constraints, the damping coefficient can be rewritten as 

0
min max 0 0
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min 0 0
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  (2.21) 

Both on-off and continuous balance control algorithms programme the damping force 

so that it can oppose the spring force whenever the damping force and the spring force 

have the opposite sign. The two control strategies attempt to make a damper behave 

like a spring by varying its damping coefficient in real time. According to equation 

(2.17) and (2.18), since the on-off balance damper can only produce a damping force 

proportional to the relative velocity across the damper in its on-state, it cannot ensure 

the damping force is exactly equal to the spring force. Depending on the dynamics of 

the system and the maximum damping, c , the spring force can partly be cancelled 

or even sometimes the spring force can be over cancelled. This might change the 

max
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static equilibrium of the system and even make the system to become unstable. The 

continuous balance can cancel the spring force in theory, but due to the hardware 

limitations, the required damping might be beyond the range the semi-active damper 

can provide during part of the on-state period. 

Figure 2.10 Required damping coefficient for continuous balance semi-active damping as a function of 

relative displacement and relative velocity (equation (2.20)) 

2.3.3 ADAPTIVE-PASSIVE DAMPING CONTROL 

The last control algorithm considered for harmonic analysis is an adaptive damping 

method, which aims to adapt the damping constant according to the disturbance 

frequency. The idea of this control algorithm is quite straightforward. A passive 

SDOF system can only provide isolation in the frequency range / nω ω > 2 , where 

ω  is the excitation frequency and nω  is the natural frequency. Increasing the damping 

coefficient in the frequency range / nω ω ≤ 2  will reduce the resonance peak, while 

the isolation performance in the frequency range / nω ω > 2  will be degraded. As 

0
0

0

sac

x

 

0x−& &0x x−
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illustrated in Figure 2.11, the ideal case for harmonic vibration isolation is that when 

/ nω ω ≤ 2 , the damping coefficient should have a big value, and when / 2nω ω > , 

then the damping coefficient should have a small value. To achieve this, the following 

control algorithm is proposed [13] 

  (2.22) max 0

min 0

         RMS( ) ( )
          RMS( ) ( )sa

c x RM
c

c x R
≥⎧

= ⎨ <⎩

&& &&

&& &&
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MS x

maxc

minc

2 nω ω  

Figure 2.11 Ideal damping characteristics for vibration isolation of harmonic disturbances 

The quantities ( )RMS x&&  and 0( )RMS x&&  are calculated over a time period much longer 

than the period of vibration of the system. The control algorithm uses RMS value of 

the response as the condition function to adjust the damping. When the RMS value of 

the response x&&  is greater than the RMS of the base acceleration, no isolation occurs 

and the damper is switched to its maximum value. Otherwise, the damper is switched 

off so that only small damping is presented in the system. For this control algorithm, 

the damper works in a bi-state (on-off) manner. It works as a common passive 

damper, switching from one value to the other. This might be the simplest way to 

implement a control algorithm since it does not need the damper to switch alternately 

between the on and off states during one period. It is very useful for vibration 

isolation of rotating machines such as washing machines [13]: the high damping value 

 is used when the drum is at low speed, i.e., during runup or rundown, while the 

low damping value c  is used at high speeds. The disadvantage of this control 

algorithm is that it is only applicable to harmonic disturbances. 

c max

min
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2.4 CHATTER OF SEMI-ACTIVE DAMPER AND ITS CURE 

When performing numerical simulations with semi-active dampers the so-called 

chatter problem occurs under certain dynamic conditions. To observe the onset and 

persistence of chatter in a on-off skyhook semi-active system, consider the SDOF 

system shown in Figure 2.6 and assume that at some time t , the spring is compressed, 

the damper is off, and the base velocity, 0x& , is large and negative (downward). Since 

there is currently no damper force, the compressed spring will begin to push the mass 

upward, and x& 0>& 0 will become positive. With x and 0x x− >& & , the control strategy 

in equation (2.11) indicates that the damper will turn on to a fixed value. The damper 

force is tensile, and if the damper force pulling down is greater than the spring force, 

then the damper force will decelerate the mass and reverse its direction. The mass 

velocity will become negative while the relative velocity 0x x−& &  is still positive. The 

damper will turn off with the process repeating itself as long as the spring is in 

compression. This switching between the on-state and off-state, with x&  remaining 

near zero is called chatter. 

For semi-active on-off systems, those switches due to changes in the sign of the mass 

velocity, x x& , are defined as “ &  switches”, while those due to changes in the sign of 

0x x−& &  are called “ 0x x−& &  switches”. It is noted that only x&  switches are important with 

respect to the potential of chatter. This is because x&  switches are associated with a 

large relative velocity, x 0x−& & x, and thus a large damper force, while 0x−& &  switches 

are always associated with small damper forces. Also, chatter can only occur if the 

damper and spring force are in opposition, and if the on-state damper force is of larger 

magnitude than the instantaneous spring force. If the damper force is not larger than 

the spring force, then the damper would not change the direction of the velocity and 

would not initiate chatter. Figure 2.12 shows typical damping and spring forces when 

chatter occurs. The conditions for chatter to occur are summarised in Table 2.1. If 

these three conditions are met, chatter will be initiated and will continue until an 

x 0x−& &  switch takes place; or either condition (2) or (3) in Table 2.1 is no longer met. 

The same phenomenon can also occur in continuously variable skyhook control at 

lower excitation frequencies, and has been studied in previous work by the author of 
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this thesis [66]. The analysis is based on an investigation into the relationship between 

the spring force and damping force when the relative velocity is nearly zero. Chatter 

occurs when the relative velocity is nearly zero and the spring force is smaller than the 

damping force in magnitude. Under these circumstances, the relative velocity will 

change from positive to negative when the damper is turned to its on-state. According 

to the condition function, the damper needs be turned to its off-state. But just after the 

damper is switched off, the relative velocity becomes positive again. The damper will 

be switched on accordingly. A limit cycle of oscillations exists until the conditions for 

chatter to occur are not met. 

Table 2.1 Conditions for the chatter of the semi-active skyhook control 

x&  switch has taken place;      (1) An 

dF     (2) The damper force, , if on, is of opposition sign to the spring force; 

     (3) The damper force is of larger amplitude than the instantaneous spring force. 
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kF dFFigure 2.12 Spring force  (dashed line) and damping force  (solid line) during chatter 
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Following the analysis in [48], a modified logic is proposed to eliminate the chatter, 

which is given in Table 2.2. When x&  has just changed its sign, if the damper force is 

of different sign to the spring force, and the magnitude of the damper force is larger 

than that of spring force, do not switch the damper until the two conditions are not 

met. 

Table 2.2 Modified logic for cure of chatter in the semi-active skyhook control 

x&(1)  has just changed sign; 

(2) If the damper force is of the same sign as the spring force, then switch the damper according 

to the switch condition. Otherwise, use (3); 

(3) If the damper force magnitude, if on, is smaller than the spring force, then switch the damper 

according to switch function. Otherwise, use (4) 

(4) Do not switch the damper until (2) or (3) are not met 

 

2.5 JERK AND ANTI-JERK MODIFICATION 

Jerk is defined as sharp changes in the acceleration response of the system. It can be 

seen from the discussion in section 2.4 that chatter will induce sharp changes in the 

damping force, thus it will result in jerk. No matter what control algorithm is used, the 

damper force exhibits discontinuities at the time of switching. Thus a significant 

change in acceleration may be experienced by the suspended mass, which is 

undesirable. Figures 2.13-2.16 show three-dimensional control surface plots of the 

damping force saF  as a function of the variables in the condition function defined by 

equations (2.8) for continuous skyhook control, equation (2.11) for on-off skyhook 

control, equation (2.17) for on-off balance control, and equation (2.19) for continuous 

balance control. A surface discontinuity is present in the control surface at 0 0x x− =& &

0x =&

0x x

 

in Figure 2.13, a surface discontinuity in the control surface at  in Figure 2.14, a 

surface discontinuity in the control surface at − 0 =

0

 in Figure 2.15, and a surface 

discontinuity in the control surface at x x− 0 =& &  in Figure 2.16. All these surface 

discontinuities may lead to undesirable jerk.  

To reduce the jerk induced by the switching of semi-active dampers, the method 

discussed in a US patent [51] is adopted. A shaping function, which can be a function 
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xof 0x− , x& x, 0x&  is , , )−&  introduced. The shaping function ( 0 0F x x x x x− −& & &  will d

0( , , )

efine 

the overall shape of the three-dimensional control surface. Table 2.3 lists the 

guidelines that should be observed in selecting the shaping function 

F 0x x x x− − &

0 )

x& &  [51]. 

Table 2.3 Guidelines for selecting shaping function 

0( , ,F x x x x x− −& & &  is a continuous function; (1) 

0( , , 0 )F x x x x x− −& & &(2)  is equal to 0 at the points whenever a variable in the condition 

function will result in the occurrence of surface discontinuities ;  

0( , , 0 )F x x x x x− −& & &  and the control surface both include continuous first derivatives 

for all values of 

(3) 

x&0x x− 0x x−& &,  and , where the conditions defined in equation 2.8, 

2.11, 2.17 and 2.19 are met;  

0( , , 0 )F x x x x x− −& & &(4)  and the control surface both are devoid of discontinuities 

0   
0

0F s
a 

0x x−& &
x&

 

Figure 2.13 Three-dimensional control surface plot of desired force for continuous skyhook control 

(equation (2.8)) 
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Three different shaping functions have been described in reference [51] for 

continuous skyhook control. The first one of interest has a shaping function given by 

 0 0( , , ) 0F x x x x x x x− − = −& & & & &  (2.23) 

For this shaping function the control strategy becomes: 

0 0

0

       ( ) 0
      

 0                       ( ) 0sa

G x x x x x x
F

x x x
⎧ ⋅ − ⋅ − ≥⎪= ⎨

− <⎪⎩

& & & & & &

& & &
 (2.24)  

where G is a gain factor, which has units of . 2/( / )N m s

 

Figure 2.14 Three-dimensional control surface plot of desired force for on-off skyhook control 

(equation (2.11)) 
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0
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0F s
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0x x−
0x x−& &

 

Figure 2.15 Three-dimensional control surface plot of desired force for on-off balance control (equation 

(2.17)) 

Figure 2.17 is a block diagram of the continuous skyhook control algorithm defined 

by equation (2.8). This control algorithm requires measurements of the velocity of the 

suspended mass, x x& , and relative velocity, 0x x−& &  across the damper. &  is scaled by a 

predefined damping coefficient skyc  to form the on-state desired damping force skyc , 

which is the first input to the switch block. The second input to the switch block is the 

product of 

x&

x x&  and 0x−& & ( )x, 0x x−& & & , is tested in the switch block to decide whether the 

first input skyc  or a zero constant force is passed through. If , then x& 0( )x x x& & & 0− ≥ skyc x  

is passed through, else, a constant zero force is passed through. Figure 2.18 is the 

block diagram of the proposed anti-jerk algorithm for continuous skyhook control. 

When compared with Figure 2.17 it can be found that the switching remains the same, 

but the on-state damping coefficient has been modified by the introduction of the 

shaping function. 

&
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Figure 2.16 Three-dimensional control surface plot of desired force for continuous balance control 

(equation (2.19)) 
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Figure 2.17 Block diagram of continuous skyhook control 
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Figure 2.18 Block diagram of anti-jerk modification for continuous skyhook control 
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Figure 2.19 is the three-dimensional control surface plot showing the resulting control 

surface of the control algorithm described in equation (2.24). It can be seen that this 

control algorithm is devoid of any surface discontinuity at x x 0− 0 =& &  compared with 

Figure 2.13, thus it can reduce the acceleration jerk. This anti-jerk control method is 

used in the implementation of the semi-active control method in this thesis. 

0F s
a 

0 0
0x x−& & x&

 

Figure 2.19 Three-dimensional control surface plot of desired damping force for continuous variable 

skyhook control with anti-jerk modification (equation (2.34)) 

2.6 CONTROLLER DEVELOPMENT 

This section is concerned with the development of the semi-active control algorithms. 

Anti-jerk and limitations of practical hardware on achievable damping coefficient are 

considered. In the original control algorithms shown in Table 2.1, zero damping is 

assumed when the damper is switched off, which is not true in practice. When 

implementing the damping force required by each control algorithm in Table 2.1 

using a conventional damper, which can only provide a damping force proportional to 

the relative velocity across it, there exists an upper and lower limit of the damping 
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coefficients, c  and . Continuous skyhook control, on-off skyhook, continuous 

balance control, on-off balance control and adaptive damping control are employed. 

Each control algorithm is implemented using Matlab/Simulink. 

max minc

2.6.1 CONTINUOUS SKYHOOK CONTROL 

Recalling the anti-jerk method described in equation (2.24) which defining the 

damping force, and the control surface plot in Figure 2.19, the semi-active damping 

coefficient required can be derived as following 

0
0

0

0

       ( ) 0
      

 0                        ( ) 0
sa

G x x x
x x x

c x x
x x x

⎧ ⋅ − ⋅
− ≥⎪= −⎨

⎪ − <⎩

& & &
& & &

& &

& & &

 (2.25)  

 Notice that the damper is switched to its on-state whenever x x&  and 0x−& &

x x− ≥

 have the 

same sign. When , x  also needs to be greater or equal to zero, thus 0 0& & &

0

0

   0
G x x x

Gx G x x
x x
⋅ − ⋅

= =
−
& & &

& & &
& &

≥

0x x− ≤& & 0x ≤&

  (2.26) 

When ,  0

0

0

   0
G x x x

Gx G x x
x x
⋅ − ⋅

= − = ≤
−
& & &

& & &
& &

  (2.27) 

Following this discussion and taking into consideration the constraints of practical 

implementation, the following algorithm is proposed to implement the continuously 

variable skyhook control algorithm 

min max 0

min 0

max ,min ,       ( ) 0

                                            ( ) 0
sa

c G x c x x x
c

c x

⎧ ⎡ ⎤

x x

⎡ ⎤ −⎪ ⎣ ⎦⎣ ⎦= ⎨
≥

− <⎪⎩

& & & &

& & &
  (2.28) 

It can be seen from equation (2.28) that the semi-active damping coefficient sac  is a 

function of the gain factor G , and velocity x& , which ensures that it has finite value 

and is proportional to x . The maximum and minimum damping coefficients c  and & max
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minc  are applied as a constraint to semi-active damping. Figure 20 shows the control 

algorithm block diagram for the new controller defined by equation (2.28). If the 

product of x x&  and 0x−& &  is greater than or equal to zero, the damper force is 

proportional to x& ; otherwise, the damper force has the minimum value. 

2.6.2 ON-OFF SKYHOOK CONTROL 

Recall that the algorithm defining the on-off skyhook damper in (2.11) is a simplified 

control algorithm to the continuously skyhook control. Using the anti-jerk method 

described in the previous section, the shaping function for this control algorithm can 

be chosen as 

 0 0( , , )F x x x x x x− − =& & & &  (2.29) 

Correspondingly, the damping force is given by 

0 0

min 0 0

( )           ( ) 0
    

( - )                 ( ) 0sa

G x x x x x x
F

c x x x x x
⎧ ⋅ ⋅ − − ≥⎪= ⎨

− <⎪⎩

& & & & & &

& & & & &
 (2.30)  

and the damping coefficient can be written in the same form as in equation (2.28) for 

the continuously variable skyhook damper, i.e. this control algorithm is no longer on-

off, but is continuously variable and identical to the anti-jerk control algorithm for 

continuous skyhook control after the anti-jerk modification. The control surface plot 

of equation (2.30) is the same as in Figure 2.19. One can see there are no surface 

discontinuities near x  compared to Figure 2.14. The anti-jerk control algorithm 

block diagram for on-off skyhook controller is the same as in shown in Figure 2.20. 

0=&

1 G

×

u
Abs

minc

x

2

&

0
1

Product 1 Switch
×[ ]min max,c cx x−& &

sF a

 Product 2

Figure 2.20 Block diagram of continuously skyhook control algorithm with anti-jerk modification 
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After the anti-jerk modification, both the on-off skyhook and continuous skyhook 

control can be implemented using the same control algorithm as described by 

equation . The gain factor G  is introduced, which is related to (2.28) skyc . In the anti-

jerk control algorithm, the semi-active damping force retains the same phase 

information as that of the desired skyhook damping force when in its on-states. 

However, the amplitude does not resemble that of the skyhook damping although the 

damping force is still related to the absolute velocity. 

Although jerk might occur with the simple on-off skyhook control algorithm, it is 

much simpler and easier to implement since only two states of damping are assumed. 

Also, the effects of delays in the controller and mechanical components may suppress 

the occurrence of chatter. For these reasons, it is implemented numerically and 

studied in this thesis. Figure 2.21 shows the block diagram for on-off skyhook control 

algorithm without anti-jerk modification. 

minc
x&

0x x−& & saF

maxc

 

Figure 2.21 Block diagram of on-off skyhook control algorithm 

2.6.3 ON-OFF BALANCE CONTROL 

Recalling the on-off balance control algorithm defined by equation (2.18), the control 

surface exhibits discontinuities at x x 0− =0  as shown in Figure 2.15. The shaping 

function to avoid the control surface discontinuities is chosen as 

 0 0( , , ) 0F x x x x x x x− − = −& & &  (2.31) 

The damping force for this control algorithm is given by 

0 0 0 0

min 0 0 0

( )       ( - )( ) 0
     

( - )                   ( - )( ) 0sa

G x x x x x x x x
F

c x x x x x x
⎧ ⋅ − ⋅ − − ≤⎪= ⎨

− >⎪⎩

& & & &

& & & &
 (2.32)  
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Figure 2.22 shows the control surface plot of equation (2.32). The surface 

discontinuity at x x  is therefore avoided by the introduction of the shaping 

function compared to Figure 15. The damping coefficient corresponding to equation 

0 0− =

(2.32) can be written as 

min 0 max 0 0

min 0 0

max ,min ,          ( - )( ) 0
     

                                                       ( - )( ) 0
sa

c G x x c x x x x
c

c x

⎧ ⎡ ⎤⎡ − ⎤ − ≤⎪ ⎣ ⎦⎣ ⎦= ⎨
− >⎪⎩

& &

& &
 

x x x
 (2.33) 

Figure 2.22 Three-dimensional control surface plot of desired damping force for on-off balance control 

with anti-jerk modification (equation (2.36)) 

As for the on-off skyhook control algorithm, the anti-jerk control algorithm defined 

by equation (2.33) for on-off balance control is no longer “on-off”. The damping 

coefficient becomes continuously variable. Figure 2.23 shows the control algorithm 

block diagram for this controller. It will be used in the analysis of the vibration 

isolation performance of the semi-active damper, and it will be seen in section 3.4.4 

that for the continuous balance control, the anti-jerk controller has the same form. For 

0
0

0

F s
a 

x 0x−
0x x−& &
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the same reason given for the skyhook semi-active damper, the control algorithm 

described in equation (2.18) is much more simple and easy to implement since only 

two states of damping are assumed. It is also implemented numerically and studied in 

this report. The block diagram of the on-off balance control algorithm is defined by 

equation (2.18) is shown in Figure 2.24. 

1 G

×
minc

2
1

Product 1 Switch

0x x−

0x x−& &

saF

u
Abs

×

Product 2

[ ]min max,c c

1−

 

Figure 2.23 Block diagram of on-off balance control algorithm with anti-jerk modification (equation 

(2.36)) 

minc
0x x−

0x x−& & saF

maxc

1−

 

Figure 2.24 Block diagram of on-off balance algorithm without anti-jerk modification (equation (2.18)) 

2.6.4 CONTINUOUS BALANCE CONTROL 

Recalling the algorithm defining the continuous balance control in equation (2.19), 

and as shown in Figure 2.16, there exists surface discontinuities at x x . When 

the anti-jerk control is used, the shaping function is chosen as 

0− =& &

 0 0( , , ) 0F x x x x x x x− − = −& & & & &  (2.34) 

The damping force therefore can be written as 

0 0 0 0

min 0 0 0

( )       ( - )( ) 0
     

( - )                      ( - )( ) 0sa

G x x x x x x x x
F

c x x x x x x
⎧− ⋅ − ⋅ − − ≤⎪= ⎨

− >⎪⎩

& & & &

& & & &
 (2.35)  
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and the damping coefficient is given by 

0 0
0 0

0

min 0 0

( )
       ( - )( ) 0

     
                                  ( - )( ) 0

sa

G x x x x
x x x x

c x x
c x x x

⎧− ⋅ − ⋅ −
− ≤⎪= −⎨

⎪ − >⎩

& &
& &

& &

& &

  (2.36) 
x

xThe damper is switched to its on-state whenever 0x x and − 0x−& &

0x x− ≥& & 0x x

 have different 

signs, i.e. when , , we have − ≤0 0

0 0
0 0 0

0

( )
( ) (

G x x x x
G x x G x x x x

x x
0)

− ⋅ − ⋅ −
= − − = − − ≤

−
& &

& &
  (2.37) 

when ,  0& & 0x x− ≤ 0x x− ≥0

0 0
0 0 0

0

( )
( ) (

G x x x x
G x x G x x x x

x x
0)

− ⋅ − ⋅ −
= − = − − ≥

−
& &

& &
 (2.38)  

Thus the damping coefficient can be further simplified as the same form as in 

equation (2.33). 

As with the two skyhook control algorithms, both on-off balance and continuous 

balance control algorithms share the same anti-jerk implementation algorithm as 

shown in equation . The gain factor G  for balance control has the unit of (2.33)
2N m s , which is different to the unit for skyhook control. The resulting semi-active 

damping force after anti-jerk modification has the opposite sign of the spring force 

when in the on-state, and it is proportional to the relative displacement, i.e. the 

damper is behaving in a spring-like manner.  

2.6.5 ADAPTIVE-PASSIVE DAMPING CONTROL 

For the adaptive damping control algorithm discussed in section 2.3.3, the damper 

works in a bi-state manner. It works as a common passive damper, which can be 

switched from one value to the other. Since the switch time can be chosen to be when 

the damping force equals zero, there is no jerk associated with this control algorithm. 
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The Matlab/Simulink model of a semi-active SDOF system is shown in Figure 2.25. 

Diagrams of semi-active control strategies can be used in the model to represent the 

semi-active damper. 

 

Figure 2.25 Matlab/Simulink model of a semi-active SDOF system 

2.7 CONCLUSIONS 

Details of four semi-active control strategies of interest and the adaptive-passive 

control strategy have been presented in this chapter. The original control algorithms 

and the theoretical semi-active damping coefficient required for the desired damping 

force discussed in this section are summarised in Table 2.4. Considering the 

constraints by the physical parameters of the conventional damper, the damping 

coefficient of the semi-active damper must lay in the range [ . For the 

continuous skyhook control and continuous balance control, the denominator in the 

expressions of the damping equation will introduce high nonlinearity into the system.  

min, max ]c c

Matlab/Simulink models for the four semi-active control algorithms are established 

for numerical simulations of semi-active dampers. Both chatter and jerk associated 

with the switches between on-state and off-states of a semi-active damper have been 

studied. Modified control strategies have been proposed to avoid chatter and anti-jerk 

control algorithms. As a summary, Table 2.5 lists the five control algorithms used in 
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chapter 3 to study the vibration isolation performance of semi-active dampers. The 

algorithms are referred to as SA-1 to SA-4, where SA denotes semi-active. It can be 

seen from the previous discussion that both the two skyhook semi-active dampers can 

be implemented by the same anti-jerk control strategy, which is referred to as SA-1 

damper. A conventional on-off damper without anti-jerk is referred to as SA-2 

damper. The anti-jerk implementation of the two balance control algorithms is 

referred to SA-3 damper. The simple on-off balance controlled damper is referred to 

as SA-4 damper. It should be pointed out that SA-2 and SA-4 are conventional on-off 

damper without anti-jerk treatment. Although they might cause jerk during operation, 

they are studied here since they are less complex and can provide comparison with 

anti-jerk control algorithms. Vibration isolation performance of a SDOF system 

comprising the four semi-active dampers together with the adaptive damping method 

is studied in the following chapters. 
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Table 2.4 Damping characteristics of a semi-active damper 

Damper Type Original Control Algorithm Semi-Active Damping Required Semi-Active Damping In Practice 
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Table 2.5 Anti-jerk control algorithms for semi-active damping control 

Damper 

Type 
Original Control Algorithm Semi-Active Damping In Practice Anti-jerk Implementation 
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CHAPTER 3 

3. HARMONIC ANALYSIS OF SEMI-ACTIVE DAMPERS 

3.1 INTRODUCTION 

Chapter 2 described four basic control strategies for semi-active damping control 

which are based on skyhook control and balanced control. These semi-active control 

strategies combine a control algorithm together with a condition function. Chattering 

and jerk were identified as potential problems when using semi-active dampers due to 

abrupt changes of the damping force. Control algorithms with anti-chattering and anti-

jerk implementation were proposed, and implemented in Matlab/Simulink. This 

chapter presents an evaluation of the performance and suitability of the four semi-

active control algorithms for isolation of harmonic disturbances. 

In this chapter numerical and experimental investigations of the isolation performance 

of the semi-active damping control strategies are described. A SDOF system 

incorporating a semi-active damper is used to study the isolation performance. The 

performance is evaluated in terms of Root-Mean-Square (RMS) acceleration 

transmissibility and relative displacement transmissibility. The implementation of the 

numerical simulations is first introduced. These are followed by an evaluation of each 

semi-active control algorithm. The vibration isolation performances of the semi-active 

system are compared with those of the conventional and skyhook passive damper 

systems. Experiments carried out to investigate the isolation performance of the on-

off skyhook semi-active damper using an electromechanical damper are also 

presented. The chapter ends with comparison and critical comments on performance 

of the semi-active control strategies. 

3.2 THE PERFORMANCE INDICES 

The vibration isolation performance of a SDOF system with a semi-active damper due 

to harmonic excitation is evaluated in terms of the following response parameters: 
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Absolute Acceleration Transmissibility. Previous researchers have used 

displacement transmissibility to characterise isolator performance [17, 67, 68]. In 

practical applications, since the human body or suspended mass is sensitive to inertial 

forces, the characterisation in terms of acceleration may be more appropriate [4, 24]. 

Since the system with a semi-active damper is nonlinear with step changes in damper 

force, the acceleration response due to a harmonic input will not be harmonic. Thus 

the ratio of the RMS value of the acceleration response to the RMS value of the 

excitation acceleration is chosen as a performance index to evaluate the vibration 

isolation performance. The acceleration transmissibility is defined by 

 
0( )x

R ( )MS xT
RMS x

=&& &&

&&
 Equation Section 3(3.1) 

Relative Displacement Transmissibility. The relative transmissibility is a measure 

of the clearance required in an isolator, which usually includes a spring and a damper 

in parallel. It is defined as the ratio of the RMS value of relative displacement 

between the mass and the base to the RMS value of the displacement of the base, and 

is given by 

 
0

0

0( )x x
R ( )MS x xT

RMS x−

−
=  (3.2) 

3.3 MODEL DEVELOPMENT AND SOLUTION PROCEDURES 

3.3.1 MODEL FORMULATION 

The base excitation used for numerical simulations takes the form 

0 0 Re( )i tx X e=&& ω&&  (3.3)  

where ω 0X is the excitation frequency and &&

0.5

 is the amplitude of the acceleration 

excitation. All the simulations are run in the time-domain with discrete frequency 

excitation over a range from  to 10 , where nω nω nω  is the natural frequency of the 

system. 
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The equation of motion for a base excited SDOF system with a conventional viscous 

damper of variable damping coefficient can be generalised as 

( ) ( ) =

( )c t

 0 0( ) ( ) ( ) ( ) ( ) ( ) 0mx t c t x t x t k x t x t+ − + −&& & &  (3.4) 

where  is the damping coefficient of the system, which is assumed to vary with 

time. The damping coefficient for different types of dampers of interest are defined as 

follows: 
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It can be seen from equation (3.5) that the damping coefficients for the conventional 

and skyhook passive damper are constant. But, the damping coefficient is time 

varying for the adaptive-passive damper and semi-active damper. 

For the conventional and skyhook passive system, analytical solutions to equation of 

motion based on equation (3.4) are available. However, for semi-active systems, 

analytical solutions are not possible since the damping coefficient of the system is 

time varying. Instead, numerical simulations were carried out for this study. This 

section describes the solution procedures deployed. The results are presented in terms 

of the acceleration transmissibility, as defined in equation (3.1) although it should be 

noted that for a nonlinear system this is not equal to the velocity or displacement 

transmissibility as it would be for a linear system. 
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Consider a SDOF system with a semi-active damper as shown in Figure 3.1. The 

equation of motion describing this system can be written as 

( ) ( ) =( ) ( ) ( ) ( )0 0( ) ( ) 0samx t c t x t x t k x t x t+ − + −&& & &  (3.6)  

where csa  is the damping coefficient of the semi-active damper and is defined for 

various control strategies as defined in equation (3.5). 

(3.6)Equation  is solved to establish the vibration isolation performance of harmonic 

disturbances. The response of the system can be obtained by directly integrating 

Equation (3.6). The fourth order Runge-Kutta method was chosen to integrate the 

differential equation. 

, ,x x x& &&

0 0 0, ,x x x& &&
0( )x t&&

( )x t&&

sac

 

Figure 3.1 Schematic of a SDOF system with a semi-active damper 

Numerical models of the semi-active SDOF systems subjected to base excitation have 

been established in Matlab/Simulink to carry out numerical simulations. Figure 3.2 

shows the Matlab/Simulink model for the simulation. The model comprises four parts. 

The first one is the signal generator, which produces the excitation input into the 

system. The second part is the representation of the system and the third part is the 

semi-active controller, which produces the damper force according to different control 

strategies. The semi-active damper block in the model can be programmed to any 

control algorithm in principle. In this study, the block diagrams shown in Figures 

2.10-2.14 can be inserted into this part to program a desired semi-active damping 

force. The last part is the displaying and the post processing the results according to 

the performance indices defined in section 3.2. 
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Figure 3.2 Matlab/Simulink model of a semi-active SDOF system  

3.3.2 SOLUTION PROCEDURES 

The organisation of the solution procedures for simulation is shown in the flow chart 

of Figure 3.3. As detailed in this flow chart, the procedure begins with a definition of 

the constants of the system parameters. Next, the initial conditions (all zero for this 

study) and inputs of the system are assigned. The time step for each iteration and final 

time of the process are now defined, setting the total number of iterations to be 

performed by the calculation loop of the procedure. The first part of the calculation 

loop determines the damping coefficient of the semi-active damper. If passive 

damping is applied, the damper is set to a constant, not changing within the loop. If 

semi-active damping is applied, the relevant control algorithm is used to calculate the 

current damper value based on the control algorithm applied. Once the damping 

values have been determined, the definition of all components of the model will be 

completed. 

The next stage is calculating the responses of the system from the differential 

equation. This computation is performed using fourth order Runge-Kutta method 

since it does not require explicitly derivatives beyond the first [11]. For the solution of 

a second order differential equation, we first reduce it to two first order equations. 

Equation (3.6) can be rewritten as 

[ ]0 0( ) ( ) ( ,1 , )x kx cx kx cx f x x t
m

= + − + =&& & & &  (3.7) 
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Figure 3.3 Flow chart of the solution procedure 

By defining  and 1x x= 2x x= & , the above second order differential equation can be 

written as two first order equations 
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1 2

2 1 2( , , )
x x
x f x x t
=
=

&

&
  (3.8) 

By defining  

1 2

2 1

( )    and   (t)
( , , )

x x
t

2x f x x t
⎧ ⎫ ⎧

= =
⎫

⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭

x f ⎬

( ) ( )t t

 (3.9) 

So 

 =x f&

( )t

t

( ) ( ) [ 2 2 ]/ 6t t

 (3.10) 

The following recurrence formula is used to find the values of x  at different times 

 according to the fourth order Runge-Kutta method  i

 1 2 3 4τ τ+ = + + + +x x k k k k

( , )t

 (3.11) 

1

2 1

3 2

4 1

( 0.5 , 0.5 )
( 0.5 , 0.5 )
( , )

t
t

t

τ τ
τ τ

τ τ

=
= + +
= + +
= + +

k f x k
k f x k
k f x k

k f x

 (3.12)  

where τ  is the integration time step. In the simulation, τ  is chosen by error and trial, 

which checks for the convergence of the results. 

The next iteration is now ready to be calculated, continuing for a predefined number 

of iterations. The number of iterations for this thesis was chosen so that steady-state 

was reached.  

It can be seen from equation (3.5) that the performance of the semi-active dampers 

depend on the gain factor G  and the minimum and maximum damping coefficients 

 and c . For a given system, there is a maximum value of the damping term minc max

G x&  for SA-1 damper and 0G x x−  for SA-3 damper if G is set to a constant. To 

make a relatively “fair” comparison between different types of dampers, a trial and 

error method is used to select G  such that the equivalent damping ratio corresponding 
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to the maximum value of  or G x& 0G x x−  is equal to 0.25  for each 

control algorithm. 

,0.5,0.707,1

The results presented in this section are based on the assumption that the off-state 

damping, c . However, it may not be possible to achieve a damping coefficient 

of zero when working with actual hardware. Therefore the semi-active damping 

coefficients will actually be switched to a lower value. To achieve the desired 

performance, the lower value of the off-state damping coefficient should be as low as 

physically practical. The performance of the semi-active control strategy will be 

slightly degraded from the ideal theoretical performance due to the non-zero off-state 

damping coefficient. This has been pointed out in reference [55] and will be studied in 

this chapter. 

min 0=

m

3.4 CONVENTIONAL AND SKYHOOK PASSIVE DAMPER 

This section discusses the vibration isolation performance of a SDOF with a 

conventional passive and skyhook passive damper. The analytical solutions for these 

systems are provided and isolation characteristics are identified, which provide a 

benchmark against which to evaluate the performance of semi-active control 

strategies. 

3.4.1 CONVENTIONAL PASSIVE DAMPER 

A SDOF system with a conventional passive damper subjected to base excitation is 

shown in Figure 3.4. It consists of a spring and a viscous damper. The differential 

equation describing the motion of the passive system can be written as 

  (3.13) ( ) ( )0 0 0passmx c x x k x x&& & &+ - + - =

where  is the mass of the system, c  is the damping coefficient, k  is the stiffness 

of the spring, 

pass

x  is instantaneous displacement of the mass, and 0x  is the 

instantaneous displacement of the base. Defining the damping ratio / 2c m nω=ζ , 

natural frequency /n k m , equation (3.13) becomes =ω
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2 2
002 2n n n nx x x xζω ω ζω ω+ + = +&& & & x  (3.14) 

0( )k x x−
0( )c x x−& &

x&&

passc

 

Figure 3.4 Schematic of a SDOF system with a conventional passive damper 

Vibration isolation can be characterised by absolute acceleration transmissibility and 

relative displacement transmissibility as defined previous in Section 3.3. Since the 

system is linear, it does not matter whether acceleration or displacement 

transmissibility is used. For a conventional passive SDOF system, the absolute 

transmissibility is given by [11] 

2

22 20

1 2

1 2

n
x

n n

XT
X

ωζ
ω

ω ωζ
ω ω

⎛ ⎞
+ ⎜ ⎟
⎝ ⎠= =

⎡ ⎤⎛ ⎞ ⎡ ⎤
− +⎢ ⎥⎜ ⎟ ⎢ ⎥

⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

&&

&&

&&
  (3.15) 

and the relative transmissibility can be expressed as 

0

0
22 20

1 2

n
x x

n n

X XT
X

ω
ω

ω ωζ
ω ω

−

⎛ ⎞
⎜ ⎟− ⎝ ⎠= =

⎡ ⎤⎛ ⎞ ⎡ ⎤
− +⎢ ⎥⎜ ⎟

2

⎢ ⎥
⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 (3.16)  

The acceleration and relative displacement transmissibility are shown in Figures 3.5 

(a) and (b) respectively. In general, Figure 3.5(a) indicates attenuation of excitation at 

frequencies 2 nω ω> , amplification at frequencies near resonance and almost unity 

at low frequencies . The isolation region can be extended by decreasing the 0.3ω nω<

- 59 - 



Ch3. Harmonic analysis 

spring stiffness, k , or by increasing the mass m . Since the mass is usually 

predetermined, the designer selects  to yield the desired natural frequency. k
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(b) 

Figure 3.5 Transmissibility of a conventional passive SDOF system (a) absolute transmissibility; (b) 

relative transmissibility 
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Control of the resonant amplitude is achieved by the damper. This reduction is 

accompanied by decreased isolation above the resonance frequency in the isolation 

region. Increasing damping reduces the resonance response, but it increases 

transmissibility in the isolation range 2nω ω ≥ . If no damping were present, the 

transmissibility at resonance would be infinite. The high frequency transmissibility in 

this case would be asymptotic to a slope of - 4 , giving superior isolation 

there. This represents the well-known compromise between better control at 

resonance and poor vibration isolation at high frequencies due to fixed damping. 

Studying the relative displacement transmissibility curves in Figure 3.5(b), it can be 

seen that a higher value of damping gives lower values of relative displacement 

transmissibility at all frequencies. 

0 / decadedB

3.4.2 SKYHOOK PASSIVE DAMPER 

The equation of motion for a SDOF system with a skyhook damper can be written as 

[15] 

  (3.17) ( )0 0skymx c x k x x&& &+ + - =

where skyc  is the damping coefficient of the skyhook damper. 

The above equation leads to the equation of motion of the mass as 

( )2 002 n nx x x xζω ω+ + − =&& &  (3.18)  

The transmissibility of the SDOF system with a skyhook damper is given by 

22 2

1 2

x

n n

T
ω ωζ
ω ω

=
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⎢ ⎥− +⎜ ⎟

1

⎢ ⎥
⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

&&  (3.19)  

and the relative transmissibility is 
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Figure 3.6 Transmissibility of a skyhook SDOF system (a) absolute transmissibility; (b) relative 

transmissibility 
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  (3.20) 

The transmissibility and relative transmissibility of a SDOF system with a skyhook 

damper are shown Figures 3.6 (a) and (b). From Figure 3.6 (a) it can be seen that the 

compromise between resonance control and isolation that is inherent in conventional 

passive system does not exist for the skyhook system. Increasing the damping reduces 

both the resonance response and the transmissibility in the isolation range. Studying 

the relative displacement transmissibility curves in Figure 3.6 (b), it can be seen that 

an increase in damping leads to smaller relative displacement transmissibility for a 

skyhook damper at frequencies 1 2nω ω = . The cross over point for the relative 

transmissibility curves in Figure 3.6 (b) is 1 2 . 

3.5 SEMI-ACTIVE DAMPERS 

This section concerns the vibration isolation performance analysis of the four semi-

active dampers and the adaptive-passive damper defined in equation (3.5). Numerical 

simulations are presented and the results are compared with those of the conventional 

and skyhook passive damper. 

3.5.1 ADAPTIVE-PASSIVE (AP) DAMPER 

Figures 3.7 (a) and (b) show the RMS acceleration and relative displacement 

transmissibility respectively for a SDOF system with an adaptive-passive damper. It 

can be seen from the two figures that the response of the AP system is identical to the 

passive system with the damping ratio maxζ ζ=  at frequencies / nω ω ≤ 2 , and the 

response is identical to the undamped passive system at frequencies / 2nω ω > . The 

control of vibration at resonance is achieved by the on-state damping ratio maxζ , while 

higher frequency isolation maintains . It retains the best performance of 

the undamped passive system. Studying Figure 3.7 (b) , it can be seen that the relative 

displacement transmissibility of the AP system is independent of the on-state damping 

40 / decadedB
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 at frequencies / nω ω > 2maxζ , where the transmissibility is the same as a passive 

system with zero damping. The AP control algorithm makes the relative displacement 

worse beyond a frequency ratio of 2 . 

3.5.2 SA-1 SEMI-ACTIVE DAMPER 

Figures 3.8 (a), (b) and (c) show the time history plot of the damping force, the 

condition function and the acceleration response with G 185=  for the SA-1 semi-

active damper. The SA-1 control strategy is the anti-jerk implementation of the 

continuous skyhook control strategy, whose condition function is given in section 

2.6.1. The plots in Figures 3.8 (a) to (c) correspond to the normalised frequency ratio 

of / 0.5ω nω = 1.0

/ 3.0

,  and 3.0 . The system was allowed to run until steady state was 

reached although only the last few cycles are plotted in the figures. The plots of 

damping force versus time suggest that the damper is switched off for longer 

durations at higher frequencies. The acceleration plots show somewhat non harmonic 

response due to the nonlinear force generated by the semi-active damper. When 

nω =

c

→∞

ω  as shown in Figure 3.8(c), the acceleration plot shows significant 

attenuation of the base-induced acceleration disturbance. 

The RMS acceleration transmissibility and RMS relative displacement 

transmissibility of SA-1 system to various gains G  under the same maximum 

damping , are shown in Figures 3.9 (a) and (b). As shown in Figure 3.9 (a), 

increasing G  improves the RMS acceleration transmissibility without worsening the 

high frequency isolation. For a higher G , isolation can be obtained for frequencies at 

and below the natural frequency of the system. Furthermore, the high frequency 

performance was superior to a conventional passive damper. There is no compromise 

between resonance control and high frequency isolation. The attenuation of base 

disturbances at and below resonance is achieved without reducing the spring rate, 

which is favourable from a static deflection point of view. However, there are limits 

to the performance improvement. It was noted by Karnopp [15] that as G , the 

high frequency performance approached that of a skyhook system with 

max

0.6 /kn mω =  and .  1.0ζ =
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Figure 3.7 Transmissibility of an adaptive-passive damper system: (a) acceleration; (b) relative 

displacement 
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Figure 3.8 Damping force, condition function and accelerations (acceleration of the mass (solid line) 

and acceleration of the base (dotted line)) of a SDOF system with an SA-1 damper (a) 0.5nω ω = ; (b) 

1.0nω ω = 3.0nω ω =; (c)  

Studying the relative displacement transmissibility in Figure 3.9 (b) shows that 

increasing G  improves the relative displacement transmissibility. Comparing Figure 

3.9 (b) with Figure 3.6 (b) shows that there are no crossing points in Figure 3.9 (b). 

This is due to the fact that the damper is turned off during part of the vibration period 

and the amplitude of the damper force is not exactly the same as the ideal skyhook 

damper when it is on. 

It can be seen from equation (3.5) that the performance of the SA-1 damper depends 

on the gain, G , as well as the minimum damping coefficient, , and the maximum 

damping coefficient, c . The damping force attains its saturation level for longer as 

the gain, G , increases. 

minc

max
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Figure 3.9 Transmissibility of a SA-1 SDOF system (a) acceleration transmissibility; (b) relative 

transmissibility 
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3.5.3 SA-2 SEMI-ACTIVE DAMPER 

Figures 3.10 (a), (b) and (c) show the time histories of the condition function, the 

damper force and the acceleration responses for the SA-2 control algorithm with the 

on-state damping ratio 1=maxζ . The SA-2 control strategy is the on-off skyhook 

control strategy, whose condition function is given in section 2.6.2. The plots in 

Figure 3.10 (a) to (c) correspond to the normalised frequency ratio of / 0.5=ω nω , 

 and . The acceleration response of the on-off damper consistently reveals two 

peaks during each vibration cycle irrespective of the excitation frequency. The two 

peaks are associated with the switching between high and zero values of damping 

ratio. With the increase of excitation frequency, the duration of the off cycle of SA-2 

system increases.    

1.0 3.0

The RMS acceleration and RMS relative displacement transmissibility of the SA-2 

semi-active system are shown in Figures 3.11 (a) and (b). It can be seen from Figure 

3.11(a) that the performance of the SDOF system with the SA-2 damper is very 

similar to the performance of the system with the SA-1 damper. As the on-state 

damping ratio maxζ  increases, the performance at the frequencies near the natural 

frequency of the system improves but with a slightly worse isolation performance at 

higher frequencies. Figure 3.11(b) shows that increasing the damping reduces the 

RMS relative displacement transmissibility of the system at all frequencies. 

Both the on-off (SA-2) and continuously variable (SA-1) skyhook control strategies 

exhibited the ability to lower the resonance peak without worsening isolation at higher 

frequencies. However, there is some difference between the performances of these 

two semi-active dampers. The RMS acceleration and relative displacement 

transmissibility of the skyhook controlled semi-active dampers are compared with 

those of passive and skyhook dampers. The results are shown in Figures 3.12 (a) and 

(b). Studying the RMS acceleration transmissibility curves in Figures 3.12 (a) and (b), 

it can be seen that both of semi-active dampers can provide better performance at 

higher frequencies than passive dampers and their performance is comparable to the 

skyhook damper at even higher frequencies. In the higher frequency range, the 

performance of SA-1 damper is better than SA-2 damper, which meets earlier 

expectations that it can more closely emulate the skyhook damper. However, one can 
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see from the Figure 3.12(a) that the SA-1 semi-active damper exhibits a higher 

resonance peak than the passive damper at the same damping level, which is a 

(a)   
Figure 3.10 Damping force, condition func

disadvantage of the two dampers.  

 (b)       (c) 
tion and acceleration (acceleration of the mass (solid line) 

and acceleration 
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0.5nω ω =of the base (dotted line)) of a SDOF system with an SA-2 damper (a) ; (b) 

1.0nω ω = ; (c) 3.0nω ω =  
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Figure 3.11 Transmissibility of a SDOF system with a SA-2 damper (a) acceleration transmissibility; 

(b) relative displacement transmissibility 
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Figure 3.12 Comparison of the transmissibility of a SA-1 and a SA-2 SDOF system (a) 25 max 0.=ζ  
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3.5.4 SA-3 SEMI-ACTIVE DAMPER 

Figures 3.13 (a), (b), and (c) show the steady-state response of an SA-3 system at 

three different frequencies for G 140= , which corresponds to the maximum damping 

ratio 0.5maxζ =

/ 0.5

. The SA-3 control strategy is the anti-jerk implementation of the 

continuous balance control strategy, whose condition function is given in section 

2.6.3. The plots in Figures 3.13 (a) to (c) correspond to the normalised frequency ratio 

of nω = 0 3.0, 1.  and .  ω
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                        (a)    (b)    (c) 

Figure 3.13 Damping force, condition function and accelerations (acceleration of the mass (solid line) 

and acceleration of the base (dotted line)) of a SDOF system with an SA-3 damper (a) 0.5nω ω = ; (b) 

1.0nω ω = 3.0nω ω =; (c)  
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(b) 

Figure 3.14 Transmissibility of a SDOF system with a SA-3 damper (a) acceleration transmissibility; 

(b) relative displacement transmissibility 

Figures 3.14 (a) and (b) show the RMS acceleration and relative displacement 

transmissibility for various values of the gain G . As G  is increased, the resonant 
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peak decreases and the isolation performance improves. At higher frequencies, the 

transmissibility jumps to very large values for larger G . The same trend can be found 

in the relative displacement transmissibility. The reason for the discontinuity of the 

transmissibility curves is that, although the on-state damping force has the opposite 

sign as the spring force and is proportional to the relative displacement, it cannot 

exactly oppose the spring force. At high frequencies, a large value of G  can over-

cancel the spring force and effectively change the stiffness of the system, which 

results a larger response. 

3.5.5 SA-4 SEMI-ACTIVE DAMPER 

The steady state response of the SA-4 system is shown in Figures 3.15 (a), (b) and (c) 

for three different excitation frequencies with 1.0=maxζ . The SA-4 control strategy is 

the on-off balance control strategy, whose condition function is given in section 2.6.4. 

It can be seen that the damper assumes zero force whenever condition function is 

greater than zero, i.e. the spring and the damper forces have the same sign. The 

acceleration response reveals two peaks associated with the two switches of the 

damping level per period of vibration. The mass vibrates about a new equilibrium 

position although not shown in the figure. Under this circumstance, the relative 

displacement does not change sign, such that the switch of the semi-active damper is 

determined solely by the sign of relative velocity. 

Figures 3.16 (a) and (b) show the acceleration transmissibility of SA-4 system with 

different on-state damping ratios, maxζ . It can be seen from Figure 3.16(a) that with 

the increase of the on-state damping, the resonant responses are reduced, but the high 

frequency isolation performance is also degraded. Increasing the damping reduces the 

relative transmissibility at resonance, but the isolation performance at higher 

frequencies is dramatically increased due to the offset of the equilibrium position. 

A comparison of the acceleration and relative transmissibility of SA-3 and SA-4 

systems with conventional and skyhook passive systems is shown in Figures 3.17 (a) 

and (b). Compared to the conventional passive system, the SA-3 system has a far 

superior performance at higher frequencies. The acceleration transmissibility curves 

show that the SA-3 system can provide a better performance than a very lightly 
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damped passive system or even an undamped system at higher frequencies. However, 

there is a price to be paid in terms of inferior low frequency performance and relative 

displacement transmissibility. The SA-4 damper system can also provide better 

performance at higher frequencies when compared with the conventional passive 

damper with the same damping level. However, the performance at lower frequencies 

and around resonance is worse than the passive system. Both the SA-3 and SA-4 

dampers were developed to minimise the RMS acceleration of the system instead of 

the relative displacement. It was shown from the simulations that these strategies 

might lead to the mass vibration about a new position, which indicates an offset of the 

                        (a)

displacement. 

    (b)                      (c) 
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Figure 3.16 Transmissibility of a SDOF system with a SA-4 damper (a) acceleration transmissibility; 

(b) relative displacement transmissibility 
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Figure 3.17 Comparison of the transmissibility of a SA-3 and a SA-4 SDOF system (a) max 0.25ζ =  

and (b) max 1.0ζ =  
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3.6 DISCUSSION 

Figures 3.18 (a) and (b) show a comparison of the RMS acceleration transmissibility 

for a SDOF system with a conventional damper, a skyhook passive damper and a 

semi-active damper. It can be established that: 

(1) The semi-active system almost always provides a better isolation than a 

conventional passive system with an equivalent damping level. As the 

damping ratio increases, the difference between the two systems becomes 

more obvious; 

(2) The compromise between resonance control and isolation that is inherent in a 

conventional passive system does not exist for the semi-active systems. The 

reduction in the resonance peak does not necessarily occur at the cost of 

reduced isolation at high frequencies. In fact, with a sufficiently large 

damping ratio, one can completely eliminate the resonance peak and actually 

achieve better isolation across the whole frequency spectrum. This is 

particularly useful for sensitive machinery that cannot tolerate any overshoot 

in power-up or power-down, and yet must have good isolation during normal 

operation. Conventional passive systems offer one or the other, whereas the 

semi-active system offers both; 

(3) The performance at very low frequencies deteriorates due to the abrupt 

discontinuities in the damper force; 

(4) The skyhook damper system nearly always provides the best performance but 

it is only an ideal case. SA-1 and SA-2 system provide similar performance 

and in terms of relative transmissibility, the SA-2 system is even better than 

the SA-1 system, and is much simpler; and 

(5) The SA-3 system can provide superior isolation performance at higher 

rge rela

displacement transmissibility. Both SA-3 and SA-4 systems are not good for 

relative displacement transmissibility reduction. 

frequencies at the cost of a large resonance peak and la tive 
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Adaptive-passive control is possibly the simplest way to implement a control 

algorithm for harmonic vibration isolation. 
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.18 Comparison of the transmissibility of a SDOF system withFigure 3  different types of dampers (a) 

moderate damping; (b) critical damping 
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3.7 EXPERIMENTAL WORK 

This section presents the experimental work for the evaluation of the vibration 

isolation performance of a semi-active base isolated system. An experiment was set 

up to investigate the use of an electromagnetic device as a semi-active damper for 

vibration isolation. The experiments were conducted with the following objectives: 

(1) to investigate the possibility and effectiveness of using electromagnetic damping 

as a semi-active damper; (2) to validate simulations of on-off skyhook control 

strategy. 

3.7.1 INTRODUCTION 

Linear electromagnetic devices consisting of coils of metal wire interacting with 

magnetic fields produced by a permanent magnet or an electromagnet can be used to 

construct electromechanical dampers. The damping coefficient can be varied rapidly 

by changing the external resistance connected to the coil. In the open circuit state the 

electromechanical damping effect vanishes, while when the coil is short circuited the 

damping coefficient reaches a maximum e. Since the effective resistance can be 

rapidly varied electrically, an electromechanical damper can function as a semi-active 

damper in vibration isolation systems. This principle is explained in Appendix A2.  

The electromagnetic device used for the experiment is adopted from a loudspeaker 

since it is expected to behave like a SDOF system at low frequencies. Additional mass 

was added to the original system to place 

 valu

nω  at desired frequency. The loudspeaker 

was mounted on a shaker to provide base disturbances. A photograph of the system is 

shown in Figure 3.19. 

The on-off skyhook control strategy was chosen to be implemented due to its 

simplicity while retaining superior performance to that of a conventional passive 

damper. A analogue controller circuit board based on the on-off skyhook semi-active 

control algorithm was designed, tested and used in the experiment. The acceleration 

response of the base and the mass were the two inputs into the circuit board, which 

were integrated and processed according to the control algorithm. There is a digital 

switch installed in the circuit board, which was used to open and close the coil circuit 

- 80 - 



Ch3. Harmonic analysis 

of the SDOF system. Detailed information about the circuit board is listed in 

Appendix A4. 

 
Figure 3.19 Photograph of the experimental rig 

Figure 3.20 shows the experimental setup for the semi-active vibration isolation 

system (a complete list of the equipment used can be found in Appendix A4). In this 

setup, the vibration system composed of a semi-active electromagnetic damper was 

mounted vertically on an electromagnetic shaker supplied with a signal from a 

frequency analyser. Accelerometers were attached to the mass of the system and the 

vibrating base, and the signals were conditioned by charge amplifiers. The 

acceleration signals were input into the designed controller circuit board after passing 

through a high pass filter with a cut-off frequency of 2Hz. The input signals were 

manipulated in the controller board which then produce a signal to operate the switch 

of the semi-active damper. The acceleration signals of the mass and the base together 

with the switch signal from the circuit board were measured and processed using the 

frequency analyser. 
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Figure 3.20 Diagram of the experimental rig 

3.7.2 CHARACTERISTICS OF THE EXPERIMENTAL RIG 

The first series of tes characteristics of the

experimental rig. The frequency response of the system was measured with the 

the frequency range 5-100Hz was used to excite the shaker. A 

frequency analyser was used to measure the frequency response. Figures 3.21 and 

3.22 show the frequency responses and coherences when electromagnetic damper was 

ts involved identifying the dynamics  

electromagnetic damper in the open and short circuit state, which provided the 

minimum and the maximum damping ratio achievable by the system. When the 

switch was in the off-state, the electrical circuit was open. Thus there was no 

electromagnetic force exerted by the electromechanical damper. The damping 

coefficient of the system was a minimum and was equal to the mechanical damping of 

the system. The mechanical damping of the system is due to the damping in the 

suspension of the loudspeaker. When the switch was in the on-state, 

electromechanical damping was added to the system. The damping coefficient of the 

system was of maximum value and was equal to the sum of the mechanical damping 

of the system and the electromechanical damping. 

A random signal in 
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open and short circuited. Figures 3.23(a) and (b) show the magnitude and phase of the 

measured acceleration transmissibility between the mass and the base excitation. A 

comparison was made between the measured data and the numerical simulations of a 

passive SDOF system, where the natural frequency and the damping ratios of the 

model have been tuned by hand to match the measured results. The theoretical 

prediction curves are shown by the dotted lines in the figure. It can be seen that the 

system behaves as a conventional passive SDOF system when open or short circuited, 

and that the measurement results agree reasonably well with the numerical simulation 

results. However, it should be noted that there is some relatively significant difference 

between the phases. The system resonance response was reduced by adding 

electromechanical damping. It can also be seen from the measurement that the natural 

frequency of the system is at about 15.2  Hz. From the peak value of the acceleration 

transmissibility when the switch w  the mechanical damping ratio of the system 

was calculated to be 0.10 ping ratio with the electromechanical

damping ratio of the system was calculated to be 0.22 .  

0Hz and a frequency increment of 

2Hz above 30Hz. 

as off,

, and the overall dam  

3.7.3 ADAPTIVE-PASSIVE CONTROL 

The second measurement was conducted to implement the adaptive-passive control 

algorithm using the experimental setup. Recalling the equation defining the AP 

damping control algorithm, the control algorithm for the current case can be defined 

as 

 max 0

min 0

             ( ) ( )
             ( ) ( )

c RMS x RMS x
c

c RMS x RMS x
≥⎧

= ⎨ <⎩

&& &&

&& &&
 (3.21) 

The condition function is the comparison of the RMS values of the acceleration 

response of the mass and the base. The RMS values of the two acceleration signals 

were measured using two digital volt meters. The operation of the switch was 

conducted by hand. Measurements were conducted in the frequency range of 8Hz-

80Hz, with a frequency increment of 1Hz up to 3
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Figure 3.21 Acceleration transmissibility and coherence of the experimental rig with the 

electromagnetic damp
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(b) 

Figure 3.22 Acceleration transmissibility and coherence of the experimental rig with the 

electromagnetic damper in short circuit state: (a) acceleration transmissibility (––measurement results; 

ּּּּּּ theoretical prediction); (b) coherence 
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(b) 

Figure 3.23 Transmissibility of the experimental rig with the electromagnetic damper in open and short 

circuit state: (a) acceleration transmissibility; (b) phase angle (––measurements result for open circuit; 

−−− theoretical prediction for open circuit; measurement result for close circuit;  −·−· theoretical 

prediction for close circuit) 
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Figure 3.24 shows the result of the acceleration transmissibility with the AP semi-

active control algorithm. It can be seen from the figure that the system behaves as a 

heavily damped system at frequencies when the excitation frequency ω  is smaller 

than 2 nω , while it behaves as a lightly damped system  

adaptive damping control algorithm can greatly reduce the response at resonance 

while retaining the higher frequency isolation performance. 
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Figure 3.24 Transmissibility of the adaptive-passive system (–– measured;ּּּּּּ  numerical simulation) 

3.7.4 ON-OFF SKYHOOK CONTROL 

The third series of tests was carried out to measure the RMS transmissibility of the 

system with the semi-active damper in operation. The controller circuit board was 

connected to the system. The measured acceleration signals were fed into the circuit 

board. A digital switch was controlled by the measured signal to open or close the 

circuit to provide the desired damping. The tests were carried out frequency by 

frequency and the steady-state RMS acceleration transmissibility was calculated. 
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Figure 3.25 shows the measured RMS acceleration transmissibility, compared with a 

theoretical prediction. As a comparison, the two passive cases are also shown for the 

two cases when the damping ratios are maximum and minimum as d scribed in 

section 3.7.2. It can be seen from the results that the semi-active damper gives a 

marginally better performance than the conventional passive damper. It lowers the 

transmissibility near resonance when compared to the con

e

ventional passive damper 

with minimum damping ratio. The performance at higher frequencies is slightly better 

than that of the conventional passive damper with maximum damping ratio. However, 

the performance of the semi-active damper could be improved if the off-state damping 

ratio (mechanical damping) could be made much smaller, and the on-state damping 

ratio is larger enough. The performance of the semi-active electromagnetic damper 

was limited by the dynamics properties of the inductance of the suspension in the 

loudspeaker and also the inductance of the circuit. 
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Figure 3.25 RMS transmissibility of the SDOF system with the semi-active damper in operation 
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In order to understand the results fully, it is necessary to look at some of the time 

traces and therefore verify that the semi-active damper is behaving as intended. 

Figures 3.26 to 3.28 show the time traces for the acceleration response and the voltage 

to operate the damper when subjected to a pure-tone excitation below resonance (10 

Hz), near resonance (15Hz) and above resonance (30Hz) respectively. The input wave 

form was used to synchronise the start time for the simulations and measurements. It 

can be seen from the figures that the measured acceleration responses for the semi-

active system are reasonably close to those predicted. The semi-active damper can 

provide somewhat better performance by switching the damper on and off alternately 

during one vibration cycle. Figures 3.26 to 3.28 also show that the semi-active damper 

switches on and off twice in one vibration period irrespective of the excitation 

frequency. The jerk presented in the simulated response curves does not appear in the 

measured data. This is because there are some time delays in the electromagnetic 

damper which help to suppress the jerk. 
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(b) 

Figure 3.26 Measured acceleration responses and voltage across the digital switch at 10Hz (a) 

acceleration; (b) voltage ( –– measured; ּּּּּּ numerical simulation)  
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Figure 3.27 Measured acceleration responses and voltage across the digital switch at 15Hz (a) 

acceleration; (b) voltage ( –– measured; ּּּּּּ numerical simulation) 
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(b) 

Figure 3.28 Measured acceleration responses and voltage across the digital switch at 30Hz (a) 

acceleration; (b) voltage ( –– measured; ּּּּּּ numerical simulation) 

 

- 92 - 



Ch3. Harmonic analysis 

3.7.5 FRACTION OF ON-STATE TIME 

The waveforms in section 3.7.4 suggest that the duration for which the damper is on is 

a function of frequency. This can be further analysed by evaluating the fraction of 

time for which the damper is on, and this is shown in Figure 3.29. Results from 

numerical simulations of a semi-active system and results obtained by studying the 

expression of the condition function using a conventional passive system are also 

shown as a comparison.  

It can be seen from the figure that the fraction of time when the damper is on is 

frequency dependent. With increasing frequency, the duration of the on-state also 

increases. At frequencies near resonance, the damper is on almost all the time. At 

higher frequencies, both the analytical solution for a conventional passive system and 

numerical solution for a semi-active system indicate that the damper is on for 50% of 

the whole period. There are good physical reasons for this and they are discussed in 

section 4.1. 
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igure 3.29 Comparison of measured and simulated results for the fraction of time when the condition 

function is on 
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3.8 CONCLUSIONS 

This chapter investigated the performance of four semi-active damping control 

strategies for isolation of harmonic disturbances through numerical simulations and 

experimental tests. 

Numerical simulations were carried out in Matlab/Simulink to study the vibration 

isolation performance of the semi-active damping control strategies. The isolation 

performance was evaluated in terms of root-mean-square (RMS) transmissibility of 

damper for vibration isolation and verify the simulations. The on-off 

skyhook control algorithm was chosen to be implemented in the laboratory because of 

its simplicity and effectiveness. Four series of test were conducted to investigate the 

dynamic characteristics of the electromagnetic damper. The measurement results 

showed that by opening and closing the circuit of the coil system, the damping of the 

system can be effectively changed. Thus, it can be used as a semi-active damper for 

vibration isolation.  

The measurement results agreed with the theoretical prediction reasonably well. By 

varying the damping of the system a few times during one vibration period, the 

acceleration response of the mass can be reduced. The measured result showed that 

the semi-active damper gives a marginally better performance than the conventional 

passive damper. This performance was limited by the dynamic properties of the 

suspension in the loudspeaker. Better performance could be achieved if the off-state 

damping ratio could be made much smaller and the on-state damping much larger. 

The measurement results also showed that the fraction of time when the damper is on 

is frequency dependent. This means that the switching of the damper may be 

general periodic excitations for example. This is the subject of the next chapter.

acceleration and relative displacement. The performances of the semi-active damping 

control algorithms are compared with that of a conventional and skyhook passive 

damper. The results showed that semi-active damping control can reduce the response 

at resonance without worsening higher frequency isolation performance. 

An experiment was set up to investigate the use of an electromagnetic device as a 

semi-active 

compromised if more than one frequency present at the same time, in the case of 
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CHAPTER 4 

4.1 INTRODUCTION 

rbances with 

excitation at that particular frequency. One can expect that 

the 

4. ISOLATION OF PERIODIC DISTURBANCES 

In the previous chapter, the performance of semi-active damping control strategies in 

isolating harmonic disturbances has been presented. The results show that semi-active 

damping systems can provide better performance than a conventional passively 

damped system, especially at higher frequencies. However, in practice, disturbances 

may comprise a number of harmonics. The purpose of this chapter is to study the 

effectiveness of semi-active damping control strategies in isolating distu

more than one frequency component. 

A semi-active damper is switched on and off within an operating cycle according to 

the condition function to suppress the responses of the system. This means that 

switching time is an important issue for the success of a semi-active damper. Both the 

theoretical and experimental results in Chapter 3 show that the switching of a semi-

active damper is frequency dependent. If only one frequency is present in the 

excitation, a semi-active damper will be switched to suppress the response of the 

system due to the 

switching times may be less favourable for suppressing that particular frequency due 

to the presence of extraneous frequency components. 

The effects of multiple harmonics on the switching and performance of a semi-active 

damper will be investigated. For simplicity, only the on-off skyhook semi-active 

damper is considered in this chapter, which is relatively simple to implement whilst 

maintaining better isolation performance than a conventional passive damper. A 

specific example of multiple harmonic excitation is periodic disturbances in which 

frequency components are integer multiples of the fundamental frequency. Periodic 

disturbances are commonly met in practice, for example the vibration of a cam-

follower system. The effectiveness of the semi-active damper in isolating periodic 

disturbances will also be studied. 
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Chapter 4 consists of four sectio troduction section 4.2 describes 

the effect on the switching time of the dam

ited to be 

discusses the 

effectiveness of the on-off skyhook damper in isolating two commonly met periodic 

work carried out to study the effects of multiple 

 that the switching of a semi-active skyhook 

damper is controlled by the product of the absolute velocity and the relative velocity, 

itching times 

c x x x
c x x x

ns. Following the in

per of introducing a secondary frequency 

in addition to a fundamental frequency. The secondary frequencies are lim

harmonics or subharmonics of the fundamental frequency. Section 4.3 

disturbances. Experimental 

harmonics on the switching time is also presented. The chapter ends with some 

conclusions and comments on the effectiveness of using semi-active damping control 

for isolating periodic disturbances. 

4.2 EFFECTS OF MULTIPLE FREQUENCIES ON SWITCHING 

OF A SEMI-ACTIVE DAMPER 

Recalling from the previous chapter

then the instances at which a semi-active damper is required to switch will depend on 

the frequencies present in the disturbance. If only one frequency is present in the 

excitation, the damper will be switched according to the signs of the condition 

function arising from that particular frequency. However, the switching of a semi-

active damper may be compromised for both frequencies if there is a second 

frequency also present in the excitation. This section investigates the effects of a 

disturbance with multiple frequencies on switching times of semi-active dampers. The 

frequency dependent characteristics of the switching of an on-off skyhook semi-active 

damper are first illustrated. The effect of a second frequency on the sw

ideally required to attenuate the first frequency is studied in detail. General 

conclusions on the effects of multiple frequencies on the switching of the semi-active 

damper are then presented. 

4.2.1 FREQUENCY DEPENDENCE OF THE SWITCHING FUNCTION FOR 

A SEMI-ACTIVE SKYHOOK DAMPER 

Recall that the on-off skyhook control algorithm is defined by 

 sac max 0

min 0

     ( ) 0
     ( ) 0

− ≥⎧
⎨= − <⎩

& & &

& & &
 Equation Section 4(4.1) 

- 96 - 



Ch4. Periodic disturbances 

When the semi-active damper is subjected to a pure-tone excitation, the percentages 

of the time when the damper is switched on and off are frequency dependent. This can 

be demonstrated using a conventional passive SDOF system by studying the phase 

relationship between the two variables of the condition function, namely the velocity 

and relative velocity. If the velocity response and the velocity of the base excitation in 

the frequency domain are denoted by X&  and 0X& , then one has the following transfer 

function relating X&  and 0X&  

 2
0X

1 2

n

1 2
X

n n

i

i

ωζ
ω

ω ωζ
ω ω

+

⎟
⎠

&
=

⎛ ⎞
− +⎜
⎝

&
 (4.2) 

Using equation (4.2), one can get 

 2
0

1 2
X

X X
n

n

i ωζ
ω

ω
ω

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠=
− ⎛ ⎞

⎜ ⎟
⎝ ⎠

&

& &
 (4.3) 

The phase angle between the velocity and relative velocity can be expressed as 

 1

0

X tan 2
X X n

ωζ
ω

− ⎛ ⎞
∠ = ⎜ ⎟− ⎝ ⎠

&

& &
 (4.4) 

The result in equation (4.4) is shown in Figure 4.1 for various damping ratios, and the 

fraction of time when the velocity and relative velocity have same sign is shown in 

Figure 4.2. From Figures 4.1 and 4.2 one can see that for low frequency excitation, 

the phase angle between the velocity and relative velocity is very small, and the 

 approaches o  as

absolute velocity and relative velocity are nearly in phase. As the excitation frequency 

increases, the phase difference increases and  / nω ω →∞90 . It must 

hat happens because a 

conventional passive system is considered instead of a semi-active system. In a 

, 

be emphasised that this is an approximate interpretation of w

xconventional passive system &  and 0 0x x−& &  are harmonic to harmonic excitation. 
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However, although, x&  and 0 0x x−& &  are non-harmonic responses to harmonic 

excitations due to the non-linearity of the on-off skyhook semi-active damper, the 

results are reasonably representative according to the experimental results in section 

3.7.5. 
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e SDOF 

system 

ssuming that the waveforms of the velocity and relati

semi-active systems are not too dissimilar, one can draw qualitative conclusions 

Figure 4.1 Phase angle between absolute velocity and relative velocity for a base excited passiv

A ve velocity for the passive and 

regarding the duration of the on-cycle. For an on-off skyhook semi-active system, one 

would expect the damper to be on most of the time at low frequencies since x&  

and 0x x−& &  have the same sign most of the time. As the excitation frequency increases, 

the damper would be on less of the time. It can be expected that the fraction of time 

when the damper is on will approach 0.5 at higher frequencies. The actual frequency 

dependent characteristics of a semi-active damper are illu umerical 

simulations in the next section. 

strated through n
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Figure 4.2 Fraction of the time when velocity and relative velocity have the same sign 

4.2.2 SIMULATION OF EFFECT OF MULTIPLE FREQUENCIES ON 

SWITCHING OF SDOF SEMI-ACTIVE SKYHOOK DAMPER 

The interpretation in section 4.2.1 shows that when only one frequency is present in 

cy dependent. It can be seen from Figure 4.2 that this observation is especially 

the excitation, the percentage of time that a semi-active damper is switched on is 

frequen

true for the frequency range 0 / 3nω ω≤ ≤ , say, for moderate to high damping values 

0.5ζ > . When another frequency is also present in the excitation, the switching times 

may no longer be ideal for the first frequency. Numerical simulations have been 

carried out on a SDOF system with a semi-active on-off skyhook damper subject to 

base excitation to investigate the effects of an extraneous frequency component on the 

switching for the fundamental frequency of interest. An example of the results is 

shown in Figure 4.3, in which the fundamental frequency is chosen to be at the natural 

frequency. The figure shows the time percentages for which the semi-active damper is 

in the same state with and without the presence of other frequency components. The 

on-state damping ratio of the semi-active on-off skyhook damper is 0.5, and the off-

state damping ratio is zero. The disturbance is generated by superposing unit 

amplitudes of the various harmonics. 
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nω 0.5n nω ω+ 5n nω ω+ 0.5 5n n nω ω ω+ +  

 the fundamental 

frequency) 

Figure 4.3 Effect of multiple input frequencies on the switching characteristics of an on-off semi-active 

skyhook damper (correctly on: fraction of time when the damper is on as required by the fundamental 

frequency; correctly off: fraction of time when the damper is off as required by

One can see from the first column in Figure 4.3 that when only frequency, nω , is 

applied to the system, the percentage of time when the damper is in the on-state is 

68% and the off-state is 32%. This is consistent with the corresponding result for a 

 SDOF system in Figure 4.2 ( 0.5passive ζ = , frequency ratio 1= , which shows that 

the fraction of time when the velocity and relative velocity have same sign is 72% ). 

This again indicates that the behaviour of the condition function is not significantly 

affected by the nonlinearity in the system. 

For the combinations of different frequencies, the percentage of time when the 

switching state is the same as when only one frequency component is present is 

shown. It can be seen that with the addition of an excitation at a frequency of 0.5 

times the natural frequency of the system (2nd column), the switching characteristics 

are far from the ideal for isolating the nω  component. The percentage of time when 

the damper is correctly on to isolate t  drops from 68% to 58% h citation at just e ex nω
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and the time when it is correctly off drops from 32% to 18%. When an excitation at a 

frequency of five times the natural frequency of the system is added (3rd column), the 

switch characteristics for an excitation at about nω  are not significantly affected. The 

percentages of time when the damper are correctly on and off drop to 57% and 29% 

respectively. When both an excitation at a frequency of 0.5 times and five times the 

natural frequency of the system is added (4th co ), the switch characteristics for an 

excitation at about 

lumn

nω  are significantly affected. The percentage of time when the 

damper is correctly on to isolate the excitation at just nω  drops to 50% and the time 

when it is correctly off drops to 21%. As can be seen om the 2nd and 3rd columns, 

this is mainly due to the presence of the excitation at 0.5 times the natural frequency 

of the system. 

It can be expected that changes in the switching times due to extraneous frequency 

components may adversely affect the resp  at the primary 

ce will be studied afterwards. 

 show es

o

 fr

onse of the system

frequencies of interest, which is crucial to the application of semi-active damping 

control. The effect of extraneous frequency components on switching times will be 

studied firstly in the following section, and the consequences of this on isolation 

performan

4.2.3 ANALYSIS OF EFFECT OF MULTIPLE FREQUENCIES ON 

SWITCHING TIME 

The simulation results in section 4.2.2 that switching tim  of the semi-active 

damper may be adversely affected by extraneous frequency components. The analysis 

in this section seeks to establish when this effect can be expected to be m st 

pronounced. Later, general results are applied to a conventional passive SDOF system 

to study the skyhook condition function. 

Assume that the velocity response of a system comprises two harmonics, 1( )y t  and 

2 ( )y t , at frequencies 1ω  and 2ω , and amplitudes 1Y  and 2Y  respectively. 1( )y t  and 

2 ( )y t  are synchronised to be in phase at the initial time. In the following context 1ω  

is named fundamental frequency, and 2ω  is named secondary frequency. A “velocity 

switch” will occur when 1 2( ) ( ) 0y t y t+ = , whereas without the second frequency 
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component, the switch would have occurred at 1( ) 0y t = . Therefore, the signs of 1( )y t  

and 1 2( ) ( )y t y t+  can be compared to determine the effects on the switching times of 

( )y t  by the addition of ( )y t . In order to achieve a good performance in isolating 

disturbance 1( )y t  in the presence of 2 ( )y t  it is desirable for the switch to be largely 

unaffected by the presence of 2 ( )y t . 

Two special cases when 2 1n

1 2

ω ω=  and 1 2nω ω= , ( 1, 2,3,......n = ) are considered, i.e. 

2  is a harmonic or subharmonic of . In each case, thwhen ω 1ω ere are two different

,      ( ......)n n

 

situations when comparing the amplitudes of 1( )y t  and 2 ( )y t , i.e. 1 2Y Y≤  and 1 2Y Y≥ .  

(1) Case I: 1, 2,3,2 1ω , i.e. harmonics of the fundamental frequency = =ω

Figures 4.4(a) and (b) illustrate how the sign of 1( )y t  will be affected by the addition 

of 2 ( )y t  for the case when 2 1nω ω= . Figure 4.4(a) shows the time histories of 1( )y t  

and 2 ( )y t−  for the case when 1 2Y Y≤  and 2 14ω ω= , and Figure 4.4(b) shows the time 

histories for 1 2Y Y≥  and 2 17ω ω= . In both Figure 4.4(a) and (b), if only 1( )y t  is 

present, then the sign o  when ( ) 0y t =1( )y t  changes at the points . However, the f 1

sign of 1 2( ) ( )y t y t+  changes at points when 1 2( ) ( )y t y t= − , i.e. the crossing points of 

( )y t  and ( )y t− . Thus, ( )y t  and 1 2( ) ( )y t y t+the sign of  is different during some 1 2 1

parts of a cycle.  

For the first case when 1 2Y Y≤  (as shown in Figure 4.4(a)), the addition of 2 ( )y t  

causes the switching to be alternately right and wrong for isolating 1( )y t . There are n  

segments per fundamental period when it is right and n  segments when it is wrong.  It 

can be observed from the figure that the portion of ‘right’ sw e when 

and ( ) ( )y t y t+  have the sam y t

( ) ( )y t y t+  have the opposite sign. As n  increases, the portion of ‘right’ switching 

se until it reaches the limiting case when 

itching tim 1

1 2

2

1 2

( )y t  

e sign is bigger than that the portion when ( )  and 1

1

ω ω<<  and Y Ytime will decrea 1 2<< . 

 portion of ‘riUnder this circumstance, the ght’ and ‘wrong’ switching time will be 
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equal. So the upper bound when the sign of 1 2 )y ( ) (t y t  and 1( )y t  is different is 1 2+  

of the period. 
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Figure 4.4 Eff h

ω ω=  and 1 2Y Y≤  (b) 2 17ω ω=  and 1 2Y Y≥  (− 1( )y t  when it has the sam 1( )e sign as ( )2y t + -

- 1( )y t  when it has the opposite sign from 1 2( ) ( )

y t ; --

y t y t+ ; −·−· 2 ( )y t− ) (‘r’ - right, and ‘w’ - wrong). 
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For the second case when 1 2Y Y≥  (as shown in Figure 4.4b), there are two segments of 

time when the sign of is always right, i.e. when the instantaneous velocity 1( )y t  

1 2( )y t Y

1( )y t  and 

≥ . The two segments are equal due to the symmetry of the waveforms of 

( )y t . The fraction of the fundamental period that these two segments 

r comprise can b itten as 

 

2

togethe e wr

1 12 2
,

1 1

4 2cos cos
2r I

Y YT
Y Yπ π

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.5) 

It can be seen from equation (4.5) that when Y Y2 1= , the fraction of time when the 

sign of ( )y t  is guaranteed to be right becomes zero. In the remaining time, the 

switching time for ( )y t  is alternately right and wrong. Let the fraction of time when 

the switching tim ( )y t  is possibly affected by the presence of  ( )y t  be denoted 

by T . Then T  can be written as 

 

1

1

e of 1 2

,pw I ,pw I

1 12 2
, ,

1 1

2 21 1 cos sinpw I r I
Y YT T
Y Yπ π

− −⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.6) 

One can also see from Figure 4.4 (b) that in the segments where the sign of ( )y t  may 

be affected by ( )y t  the portion of ‘right’ time is larger than that the portion of 

‘wrong’ time. With the increase of 

1

2

2ω , the portion of ‘right’ switching time will 

decrease until it reaches the worst case when 2 1ω ω>> . Under this circumstance, the 

‘right’ portions and ‘wrong’ portions are equa per has the wrong state for 

a duration of half of T . Let this fraction of time be denoted by T . Then from 

equation (4.6), T  can be written as 

 

l, i.e. the dam

,pw I ,w I

,w I

1 2
,

1Yπ ⎝ ⎠

1
w I

YT
⎛ ⎞

= ⎜ ⎟  (4.7) sin−
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(2) Case II: 2 1 / , 2,3,......)n ( 1,nω ω= =  ,i.e. subharmonics of the fundamental 

frequency 

 procedure can be used to find the upper bounds for the fraction of time 

 1 2( ) ( )y t t  has the opposite sign from 1( )y t  for the case when 2

The same

when y+ ω  is 

subharmonics of 1ω . Figures 4.5(a) and (b) illu  the sign of ( )y t be 

n of ( )y t  when 

strate how  will 1

affected by the additio 2 12 nω ω= . Figure 4.5(a) shows the time 

histories of ( )y t ( )y t−  for the case when Y Y and 1 2 1 2  and ≤ 2 1 2ω= , and Figure ω

4.5(b) shows the time histories for 1 2Y Y≥  and 2 1 3ω ω= . 

For the case when 1 2Y Yfirst ≤  (as shown in Figure 4.5(a)), it can be seen the 

switching time for  is ‘right’ for at least half of the fundamental period. In the 

other half of the period, the sign of ( )y t  may be wrong. The worst case is that all of 

the r half w e ‘wrong’, which 

1( )y t

1

othe ill b is expected to happen when Y  is much bigger 

than Y . So the upper bound for the fraction of time when the sign of ( ) ( )y t y t+  is 

ifferent to that of  is 

2

1 21

1 2 .  1( )y td

For the second case when 1 2Y Y≥  (as shown in Figure 4.5(b)), the sign o t  is 

always right in the first half of its period. In the second half of its period the sign of 

1( )y t  is always right when the instanta ous velocity 

 1( )yf

ne 1 2( )y t Y≥ . So the total fraction 

of time when the sign of 1( )y t  is always right c itten as 

 

an be wr

1 12 21 2 1 1cos cos
2 2 2

Y YT
Y Yπ π

− −⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.8) ,

1 1
r II =

It can be seen from equation (4.8) that when Y Y2 1= , the fraction of time when the 

gn of is always right becomes  1( )y t  si 1 2  In the r

 is wrong. If this fraction of time is denoted by T , then T  can be written as 

 

. emaining time, switching time for 

1( )y t ,w II ,w II

1 12 2
, ,

1 1

1 1 11 cos sin
2w II r II

Y YT T
Y Yπ π

− −⎛ ⎞ ⎛ ⎞
= − = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4.9) 
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The upper bou when 1( )y t  has the opposite sign from 

1 2( ) (y t y t+

nds for fraction of time 

)  for the two cases when n2 1  and =ω ω 2 1 nω ω=  are summarised in 

( )y t  is b

Table 4.1. It can be seen from the table that when the amplitude of the second 

harmon igger than that of the 1( )y t , the upper bound is ic 2 1 2 . The upper 

bound is independent of whether the secondary frequency is a subharmonic or 

n

harm mental frequency. The derived upper bounds for the case onic of the funda

2 1ω ω=  are shown graphical  Figure 4.6 as a function of the amplitude ratio ly in

2 1Y Y . It should be noted here that the results in Ta  and  only provide 

an upper bound for the fraction of t y

ble 4.1 Figure 4.6

im ( ) ( )t y te when the sign of 1 2+  is different from 

ight

when

    

Amplitude 
Harmonics 2 1

that of 1( )y t . The actual fraction of time when the sign of 1 2( ) ( )y t y t+  is different 

from that of 1( )y t  m  be anywhere under the upper bound curve. 

Table 4.1 Upper bounds for fraction of time  the sign of the sum of two harmonic velocities 

1 2( ) ( )y t y t+ , is different from that of 1( )y t  alone 

                Frequency 
nω ω=  Subharmonics 2 1 nω ω=  

1 2Y Y≤  
2
1

 
2
1

 

1 2Y Y≥  1 2

1

1 Y− 1 2

1

1 sin Y
Yπ

−  sin
Yπ
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(b) 

igure 4.5 Effect of a secondary frequency on the damper state for the fundamental frequency (a) F

2 1 2ω ω=  and  (b)1 2Y Y≤  2 1 3ω ω=  and  (− when it has the same sign as 1 2Y Y≥  1( )y t  1 2( ) ( )y t y t+ ; 

----  when it has the opposite sign from1( )y t  1 2( ) ( )y t y t+ ; −·−· 2 ( )y t− ) (‘r’ - right, and ‘w’ - wrong). 
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Figure 4.6 Upper bound for the fraction of time when 1( )y t  has the opposite sign to 1 2( ) ( )y t y t+  

4.2.4 EFFECT OF MULTIPLE HARMONICS ON THE SKYHOOK 

CONDITION FUNCTION WHEN APPLIED TO A PASSIVE SDOF SYSTEM 

In section 4.2.3, the effects of multiple harmonics on the switching time of the 

condition function in equation (4.1) were investigated using two harmonics, ( )y t  and 

( )y t . Upper bounds for the fraction of time when the sign of ( ) ( )y t y t+  is different 

from that of ( )y t  were derived. This section applies this understanding to the case 

where ( )y t  and ( )y t  arise from the velocity and relative velocity responses of a 

passive SDOF system to different input frequencies, which will give some 

understanding of real semi-active systems. 

composed of two parts: the velocity 

1

2 1 2

1

1 2

The condition function for the on-off skyhook semi-active damper in equation (4.1) is 

x& ;  theand  relative velocity 0x x−& & . Changes in 

the sign of the condition function are caused anges in the sign of the by either ch  

velocity or the sign of the relative velocity. The following analysis uses the physical 

behaviour of the pure passive system. Assume the two velocity inputs are 
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( ) ( )1 2
01 01 02 02Re ; Rex x e x x e= =& & & & i t i tω ω  (4.10) 

Correspondingly, the two velocity responses can be written as 

 ( ) ( )i t i tω ω  (4.11) 

where ( )H

1 2
1 01 1 2 02 2Re ( ) ; Re ( )x x H e x x H eω ω= =& & & &

ω  is the transfer function between the output and input, and defined by 

 2

2

( )
1 2

n

H
i

1 2i ζωω
ω ζω
ω

+
=

− +
 (4.12) 

So the amplitudes of 1x&  and x2&  can be written as 

 1 01 1 2 02 2( ) ; ( )x x H x x Hω ω= =  (4.13) 

U , th e fraction f 

time when the switching times arising from excitation 

& & & &

sing the analysis in Table 4.1 of section 4.2.3 e upper bound for th  o

01 02x x+& &  have the wrong sign 

from those for excitation 01x&  is given by 

 
1 2

02 21
1 2

01 1

1                                  ( )
2

( )1 sin ( )     ( )
( )

x x

x H
x x

x H
ω

π ω
−

⎧ ≤⎪⎪
⎨
⎪ ≥
⎪⎩

& &

&
& &

&

 .14) 

The results of equation 

(4

(4.14) are shown for various damping ratios in Figures 4.7 (a) 

and (b). In the figure, the damping ratio of the system is set to 0.5 and 1.0, and 1ω  is 

assumed to be varying from 0.1 to 10 times the natural frequency of the system. 2ω  is 

chosen to be a subharmonic (1 10,1 9,...,1 2 ) or harmonic ( ) of 2,3,...,9,10 1ω . The 

amplitude of the second input harmonic is equal to that of the first one. 
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Figure 4.7 Upper bound for fraction of time when the velocity switch has incorrect state (a) 0.5ζ = ; 

(b) 1.0ζ =  

It can be seen from Figures 4.7 (a) and (b) that the addition of the subharmonic 

( 2 1 1ω < ) may have a significant effect on the velocity switch for the first frequency ω
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for all excitation frequencies. The fraction of time when the damper has the wrong 

state can be as large as 1 2 . Harmonics ( 2 1 1ω ω > ), however, will have less effect on 

the velocity switch provided y is above resonance. The 

larger the damping ratio is, the wider the frequency range over which a secondary 

harmonic will significantly af the fundamental frequency. 

The reason for this is that the transm or large damping ratio is 

smoother than that for smaller damp plies that the components of 

response at different frequenc pared to the case when the 

damping ratio is small.  

The same procedure can be applied e effect of multiple harmonics on the 

relative velocity switch. The relative velocity for only one excitation at individual 

frequencies, 

that the excitation frequenc

fect the switching state of 

issibility curve f

ing ratio. This im

ies are not so different com

 to study th

 and 1ω 2ω  can be expressed as follows: 

 ( ) ( )1 2
1 01 01 1 2 02 02 2Re ( ( ) 1) ; Re ( ( ) 1)x x x H ei t i tx x H eω ωω ω− = − − = −& & & & &  (4.15) 

where H  and H  have the same meaning as in equations (4.11). The amplitudes of 

1

x&

1 2

1 0x x−& &  and 22 0x x−& & can be further written as 

 1 01 01 1 2 02 02 2( ) 1 ; ( ) 1x x x H x x x Hω ω− = − − = −& & & & & &  (4.16) 

The upper bound for the fraction of time when the relative velocity switch is wrong is 

given by  

 
1 01 2 02

02 21
1 01 2 02

01 1

1                                         ( )
2

( ) 11 sin ( )     ( )
( ) 1

x x x x

x H
x x x x

x H
ω

π ω
−

⎧ − ≤ −⎪⎪
⎨ −⎪ − ≥ −
⎪ −⎩

& & & &

&
& & & &

&

 (4.17) 

The results of equation (4.17) are shown graphically in Figures 4.8(a) and (b). In the 

figure, the damping ratio of the system is set to 0.5 and 1.0, and 1ω  is assumed e 

vary ro

 to b

ing f m 0.1 to 10 times the natural frequency of the system. 2ω  is chosen to be a 

subharmonic (1 10,1 9,...,1 2 ) or harmonic ( 2,3,...,9,10 ) of 1ω . The amplitude of the 

second input harmonic is equal to that of the first one. One can see from the figure 
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that the effect on relative velocity switching of the presence of harmonics of the 

fundamental frequency is significant but subharmonics have little effect. This is true 

except for the case when the fundamental frequency is close to resonance ( 1 nω ω≈ ) 

and the damping is very small. 
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Figure 4.8 Upper bound for fraction of time when the relative velocity switch has incorrect state (a) 

ζ = ; (b) 1.0ζ =  
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The conclusions from section 4.2.4 indicate that the time for which the damper has the 

wrong state due to an extraneous frequency is amplitude dependent. For the actual 

system, the velocity responses depend on the properties of the excitation and also the 

characteristics of the system. Thus the effects are also frequency dependent. When the 

secondary frequency is a subharmonic of the fundamental frequency, the effects will 

be most on the velocity switch. Whilst when the secondary frequency is a harmonic of 

the fundamental frequency, the effects will be mostly on the relative velocity switch. 

If both harmonics and subharmonics are present then the total effects on the switching 

time will be decided by both the velocity and relative velocity switch.  

This general conclusion can be used to explain the simulation results of section 4.2.2 

as shown in Figure 4.3 to some extent. With the addition of a secondary frequency 

0.52 nω=  and/or 5ω 2 nω=  to ω 1 n=ω ω , both the velocity switch and relative velocity 

switch are affected. Thus the fraction  of time when the damper is correctly on and off 

are affected. 

4.2.5 EXPERIMENTAL STUDY OF THE EFFECT OF MULTIPLE 

HARMONICS ON THE ON SWITCHING TIME OF A SEMI-ACTIVE ON-

OFF SKYHOOK DAMPER 

Experimental work was carried out to study the effect of a secondary frequency on the 

switching of fundamental frequency using the experimental set-up for semi-active 

vibration isolation detailed in section 3.7 of the previous chapter. The fundamental 

frequency was chosen as 10Hz, 15Hz and 30 Hz in turn to represent the whole 

working frequency range of the experimental setup. Due to the limitation of the 

working frequency range of the experimental rig the secondary frequency was varied 

from 5Hz to 60 Hz in steps of 2Hz for each primary frequency instead of only looking 

at harmonics or subharmonics. The two harmonics were of equal amplitude. The 

system was run to reach steady state, and the acceleration response of the system, the 

acceleration of the base and the voltage across the digital switch were measured. 

The natural frequency of the system was identified to be about 15Hz in section 3.7. 

Measured time histories for excitation at c binations of frequencies 10Hz and 15Hz, 

respectively. Figures 4.9(a), 4.10(a) and 4.11(a) show the response time histories for 

s

om

10Hz and 30Hz, and 15Hz and 30Hz are shown in Figures 4.9, 4.10 and 4.11 
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each frequency combination. It can be seen from Figure 4.11(a) that the 30Hz 

harmonic does not affect the10Hz harmonic waveform very much. The shape of the 

response curve looks more like a harmonic. Figures 4.9(b), 4.10(b) and 4.11(b) show 

the measured voltage across the digital switch. The time histories for each individual 

frequency in the frequency combination are also shown in the figure as a comparison. 

It can be seen that the switching time for an excitation at the fundamental frequency 

has been affected by the presence of the extraneous frequency. There are times when 

the damper is switched off when the fundamental frequency component wants it to be 

on, and vice versa. 
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(b) 

Figure 4.9 Time histories showing the effect of a 15Hz frequency on the switching of the damper to a 

10Hz frequency (a) acceleration response (b) measured voltage across the digital switch (− 10Hz and 

15Hz; ······ 10Hz only; −·−·−· 15Hz only) 
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Figure 4.10 Time histories showing the effect of a 30Hz frequency on the switching of the damper to a 

10Hz frequency (a) acceleration response (b) measured voltage across the digital switch (− 10Hz and 

15Hz; ······ 10Hz only; −·−·−· 15Hz only) 
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(b) 

Figure 4.11 Time histories showing the effect of a 30Hz frequency on the switching of the damper to a 

15Hz frequency (a) acceleration response (b) measured voltage across the digital switch (− 10Hz and 

15Hz; ······ 10Hz only; −·−·−· 15Hz only) 
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The switching time of the semi-active damper in one vibration period can be divided 

into four parts by comparing the on and off-state of the excitation at the combination 

of the excitation at secondary frequency and fundamental frequency and the 

fundamental frequency: (1) the fraction when the damper is on and the excitation at 

the primary frequency also required it to be on; (2) the fraction when the damper is on 

while the excitation at primary frequency requires it to be off; (3) the fraction when 

the damper is off and the excitation at the primary frequency also required it to be off; 

(4) the fraction when the damper is off while the excitation at the primary frequency 

requires it to be on.  

Figures 4.12 to 4.14 show these four fractions for the primary frequencies of 10 Hz, 

15Hz and 30 Hz respectively. It can be seen from Figures 4.12 to 4.14 that the 

switching times associated with just the fundamental frequency were more or less 

affected by the presence of the secondary frequency except when these two 

frequencies are equal to each other. For a e cases, the frequencies of the secondary 

harmonic in the range up to 30Hz have greater effects than others. By the presence of 

the extraneous harmonic near the resonance frequency, the switching of the damper 

for the primary harmonic will be greatly affected. For example, as shown in Figure 

4.14, the fraction of the on-state time for the fundamental frequency at 30Hz is 0.48 

and the off-state time is 0.52. However, with the presence of an extraneous frequency 

at 15Hz, the damper is switched on for 86% of the period, of which only a fraction of 

0.40 is correct according to the requirement by the harmonics at 30Hz. The remaining 

fraction of 0.46 is completely opposite to the requirement. 

ll th
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Figure 4.12 Fractions of times for different switch states of the damper with the presence of an 

extraneous tone in addition to a 10Hz tone 
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Figure 4.13 Fractions of times for different switch states of the damper with the presence of an 

extraneous tone in addition to a 15Hz tone 
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Figure 4.14 Fractions of times for difference switching states of the damper with the presence of an 

extraneous frequency in addition to a frequency at 30Hz 

4.3 PERFORMANCE OF THE SEMI-ACTIVE DAMPER IN 

ISOLATING PERIODIC DISTURBANCES 

In this section the vibration isolation performance of the semi-active skyhook damper 

for periodic disturbances is discussed. Two periodic waveforms which are commonly 

studied in the literature are used as the excitation. The simulation results are compared 

with the performance due to conventional and skyhook passive dampers. 

Experimental work conducted using one of the periodic waveforms to investigate the 

isolation performance of the semi-active damper is also presented. 

4.3.1 FOURIER ANALYSIS 

Although harmonic motion is simpler to analyse, the motion of many vibratory 

systems is not harmonic. However, in many cases the vibrations are periodic. For 

example, a wing panel adjacent to a propeller may vibrate periodically at a 

ade-pass frequency. Any periodic function of time 

fundamental frequency equal to the cyclic rate at which propeller blades pass the 

panel and also at multiples of this bl
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can be represented by a Fourier series as an infinite sum of sine and cosine terms. If 

( )t  is a periodic function with period τx , its Fourier series representation is given by 

 0

1

( ) ( cos sin )
2 n n

n

ax t a n t b n tω ω
=

= + +∑
∞

 (4.18) 

where 2 /ω π τ=  is the fundamental frequency. a , a  and b  are constant 

coefficients, and are given by 

 

n n0

0 0
( )a x t dt

τω
π

= ∫  (4.19) 

 
0

( ) cosna x t n tdt
τω ω

π
= ∫  (4.20) 

 
0

( )sinnb x t n tdt
τω ω

π
= ∫  (4.21) 

Although the series in equation (4.18) is an infinite sum, we can approximate most 

4.3.2 EFFECTIVENESS OF THE SEMI-ACTIVE DAMPER IN ISOLATING 

are wave function 

shown in Figure 4.16(a) can be written as 

 

periodic functions with only the first few harmonics. 

PERIODIC DISTURBANCES 

Figure 4.15 shows a schematic of a semi-active system subject to periodic excitation. 

To study the effectiveness of the semi-active damper in isolating periodic 

disturbances, two commonly met periodic wave forms are chosen, which are shown in 

Figures 4.16 (a) and (b). The Fourier series expansion of the squ

01 0
1 (2 1)n

4 1( ) sin(2 1)Ax t n t
n

ω
π = −

The Fourier series expansion of the triangular wave function shown in Figure 4.16(b) 

can be written as 

∞

= − −∑&&  (4.22) 

 
18 ( 1)nA

02 02 2
1

( ) sin(2 1)
(2 1)n

x t n t
n

ω
π =

= −
−∑&&  (4.23) 

−∞ −
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where A  is the amplitude and 0ω  is the fundamental frequency of the Fourier series. 

 

Figure 4.15 Schematic of a semi-active system subject to periodic excitation 

 

A−

A

τ0

 
(a) 

τ

A−

A

0

 
(b) 

Figure 4.16 Wave forms of two periodic functions (a) square wave (b) triangular wave 

It is required to compare the isolation performance of the semi-active damper in 

olating periodic disturbances with that of conventional pa

purpose, the following RMS acceleration transmissibility is defined 

is ssive dampers. For this 

 
0

( )
( )TR

R ( )MS xa
RMS x

ω =
&&

&&
 (4.24) 

here w ω  is the fundamental frequency of the periodic disturbance.  
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N

transmissibility. Only the first three harmonics in equations (4.22) and (4.23) are used 

to represent the periodic functions. The fundamental frequencies of the periodic 

function are chosen to vary from 0.1 to 10 times the natural frequency of the system. 

Figures 4.17 and 4.19 show the acceleration transmissibility of the semi-active system 

to the square wave and triangular wave as shown in Figure 4.16 (a) and (b) 

respectively with various damping ratios. Both Figures 4.17 and 4.19 show that the 

isolation performance at frequencies near resonance improves with the increase of 

damping while retaining the higher frequencies performance. For both the two 

periodic ex nge lower 

than the natural frequency of the system. These are due to the odd harmonics in the 

periodic excitations. For this particular case, when the fundamental frequency is 

umerical simulations were carried out to calculate the RMS acceleration 

citations there are some clear peaks present at the frequency ra

1 3 

or 1 5  of the resonance frequency, then the 2nd and 3rd term of the odd series will be at 

ce frequency, which will induce a much greater response than at the 

fundamental frequency. 

Figures 4.18(a) to (c) and 4.20(a) to (c) mpare the isolation performance of the 

semi-active damper at three different damping levels with those due to a conventional 

and a skyhook passive damper. It can be seen from both Figures 4.19 and Figures 4.20 

that if the damping ratio of the system is very small, for example, as shown in Figure 

4.19(a) and Figure 4.20(a) then the performance of the semi-active system, 

conventional passive system and the skyhook system are almost the same. With the 

increase of damping, the difference between the passive and semi-active becomes 

more apparent. The performance improvement of the semi-active system

conventional passive system

e results indicate 

that semi-active damping control is promising for periodic disturbances. 

It can be seen from Figure 4.19 and Figure 4.20 that the isolation performance of the 

on-off skyhook damper does not have apparent deterioration due to the presence of 

s concluded from 

the resonan

 co

 over the 

 is mainly in the frequency range beyond the natural 

frequency of the system. The higher the damping is, the greater the improvement in 

the performance. The skyhook system can always provide the best performance; 

however, the performance of semi-active system is comparable. Th

the three frequency components in the periodic function although it i
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section 4.2 that the extraneous multiple harmonics will affect the switching time of 

the damper for the fundamental frequency. But this is not contrary to the previous 

conclusion. This is because higher order harmonics of the periodic functions occur 

with descending amplitudes. The amplitude of the harmonic with the fundamental 

frequency is dominant. 
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Figure 4.17 Acceleration transmissibility of a SDOF system with an on-off semi-active skyhook 

damper to square wave excitation in Figure 4.16(a) 
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(b) Acceleration transmissibility of the semi-active damper when max 0.5ζ =  
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Figure 4.18 Comparison of acceleration transmissibility of a semi-active damper with those due to a 

conventional and skyhook passive damper for square wave excitation (a) max 0.01ζ = max 0.5ζ = (b)  (c) 
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Figure 4.19Acceleration transmissibility of a SDOF system with an on-off sem e skyho per i-activ ok dam

to triangular wave excitation in Figure 4.16(b) 
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(c) Acceleration transmissibility of the semi-active damper when max 1.0ζ =  

Figure 4.20 Comparison of acceleration transmissibility of a semi-active damper to with those due to a 

conventional and skyhook passive damper for triangular wave excitation (a) max 0.01ζ = ) max 0.5ζ =   (b

max 1.0ζ =  (c) 

 

- 128 - 



Ch4. Periodic disturbances 

4.3.4 EXPERIMENTAL WORK 

Experimental work was also conducted to investigate the isolation performance of the 

on-off skyhook damper in isolating periodic disturbances using the same experimental 

setup as detailed in section 3.7. A square wave from a signal generator was used in the 

experiment. The fundamental frequency of the square wave was chosen from 5 Hz to 

60 Hz, and the time traces at each discrete frequency were measured to obtain the 

RMS acceleration transmissibility according to equation (4.24). 

Figures 4.21 (a) to (c) show the acceleration response of the system and the voltage 

across the switch when the fundamental frequency of the square wave is chosen to be 

10Hz, 15Hz and 30 Hz respectively. The figures show that the acceleration response 

is obviously mainly at the fundamental frequency. This is because the amplitude of 

the harmonic at the fundamental frequency is largest. The switching of the damper is 

consistent w off twic a per d. 

The RMS acceleration transmissibility of the semi-active system was evaluated and 

plotted in Figure 4.22. The two measured curves when the circuit is open and short 

circuited are also plotted in the figure. From Figure 4.22 it can be seen that the latter 

are very similar in the frequency range beyond 20Hz. This is because 

ith just the fundamental frequency. It switches on and e io

 and onζ offζ  are 

similar for the experimental setup. The semi-active damper can provide as m ch as 

about 6dB improvement over the system with open circuit in the resonance area. The 

improvement at higher frequencies over the system with short circuit does not appear 

to be very much. Only a marginal benefit can be gained in the frequency range above 

30Hz  using semi-active damping control. This is due to the fact that the m um 

ing ratio (0.22) of the experimental setup does not have a large enough effect 

and the minimum damping ratio (0.10) is not small enough. However, a greater 

improvement of the performance may be obtained if the on-state damping is much 

bigger than the off-state dam

u

axim

damp

ping. 
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(a) Time histories at 10Hz 

10

31.6 31.65 31.7 31.75 31.8 31.85 31.9 31.95 32
−10

−5

0

5

10

Time (s)

V
ol

ta
ge

 (
v)

31.6 31.65 31.7 31.75 31.8 31.85 31.9 31.95 32
−10

−5

0

5

Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 )

 
(b) Time histories at 15Hz 
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(c) Time histories at 30Hz 

 

Figure 4.21 Measured time histories of the semi-active system subjected to a square wave at (a) 10Hz; 

(b) 15 Hz; and (c) 30Hz 
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Figure 4.22 Measured RMS acceleration transmissibility of the semi-active system to square wave 

excitation (− measured SA; --- measured short circuit; ······ measured open circuit; −·−·−· simulated SA) 
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4.4 CONCLUSIONS 

This chapter has studied the vibration isolation performance of semi-active damping 

control for periodic disturbances. The effect of a secondary frequency which is a 

harmonic or subharmonic of the fundamental frequency on the switching of the semi-

active damper was studied. Since the switching of a semi-active damper to harmonic 

excitation is frequency dependent, the addition of harmonics or subharmonics to the 

fundamental frequency in the excitation will affect the switching of the semi-active 

damper for the fundamental frequency. The study shows that for a SDOF system with 

an on-off skyhook semi-active damper, both the velocity switch and the relative 

velocity switch will be greatly affected due to the addition of a secondary frequency. 

The addition of harmonics of the fundamental frequency will largely affect the 

relative velocity switch, while addition of subharmonics will largely affect the 

velocity switch. 

he vibration isolation performance of the semi-active system to periodic excitation 

performance of the conventional passive and skyhook system. The numerical results 

show that the semi-active damper can provide better isolation performance than the 

conventional passive damper and the performance is comparable to that of a skyhook 

damper. Measurement results show a marginal improvement on the performance 

using the semi-active electromagnetic damper. However, the performance is limited 

by the achievable damping of the experimental rig.  

The conclusions of this chapter indicate that the effects of multiple harmonics on the 

switching time depend on the amplitude and frequency of the harmonics. For the two 

periodic disturbances studied in this chapter, the frequency components are integer 

multiples of the natural frequency of the system, and the first harmonic is dominant in 

amplitude. However, greater improvement in the performance may be expected if the 

on-state damping can be made large and the off-state damping can be made very 

small. Semi-active damping control is promising for isolating periodic disturbances. 

For the random excitations, there are many frequency components present at the same 

T

was studied numerically and experimentally. The results are compared with the 

time with random amplitudes and phases, so the semi-active damper might fail to 
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work properly. The vibration isolation performance of semi-active damping control 

for random disturbances will be studied in the next chapter. 
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CHAPTER 5  

5. ISOLATION OF RANDOM DISTURBANCES 

5.1 INTRODUCTION 

Chapters 3 and 4 investigated the vibration isolation performance of semi-active 

active damping control strategies for harmonic and periodic disturbances. The results 

show that semi-active dampers can provide superior performance than the 

conventional passive damper with same damping level. However, in some practical 

cases, the excitation is random. For random excitation there are many frequency 

components present at the same time with random amplitude and phase. The semi-

active damper may not work as well as for other excitations. This chapter studies the 

effectiveness of using semi-active damping for isolation of random disturbances. 

Following the introduction, the relationship between the Fourier integral and spectral 

densities is described. From this relationship an analytical solution is derived for the 

RMS response of a single degree of freedom (SDOF) system with a conventional and 

a skyhook passive damper subject to random base excitation with a constant power 

spectral density. The root-mean-square (RMS) responses are numerically simulated 

for a SDOF system with semi-active dampers for three special cases when the spectra 

of displacement, velocity and acceleration are flat. The results are compared with 

those of the conventional and skyhook passive damping and interpreted physically. 

Experimental work to verify the numerical simulation results is also presented, and 

finally conclusions are drawn. 

5.2 RESPONSE OF A PASSIVE SDOF SYSTEM TO A RANDOM 

BASE EXCITATION 

5.2.1 USING POWER SPECTRAL DENSITIE (PSD) TO CHARACTERISTIC 

RANDOM VIBRATION 

In reference [69], the mean square response for a SDOF system to random force 

excitation has been derived and an analytical solution is given. In this section, the 
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mean square response of a SD to random base excitation is 

investigated and an analytical solu

 of a periodic 

function by representing it as an infinite series of harmonic components. Transient or 

described in a similar manner, but their aperiodicity 

requires that their frequency domain descriptions be in terms of continuous spectra 

OF system subject 

tion is derived. 

The Fourier integral is used to obtain a frequency domain description

aperiodic functions can be 

rather than discrete spectra. The pair of Fourier integrals used to relate a real-time 

function, ( )y t ,with its corresponding frequency domain representation ( )Y iω  are 

given by the Fourier transform [69] 

 ( ) 1 ( )
2

i tY i y t e dtωω
π

∞
−

−∞

= ∫  Equation Section 5(5.1) 

and the inverse Fourier transform [69] 

 ( ) ( ) i ty t Y i e dωω ω
−∞

= ∫  (5.2) 

Any time history ( )y t  of finite length can be described in terms of a Fourier 

spectrum. The Fourier integral in equation (5.2) is finite only if ( )y t  is zero at 

±∞ [12]. The equation relating the mean square value of ( )y t  to its power spectral 

density function can be written as 

 

∞

2 ( ) ( )yy t S dω ω
∞

−∞

= ∫
 (5.3) 

where in equation (5.3) 

2( )
( ) lim T

y T

Y i
S E

T
ω

ω π
→∞

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
  (5.4) 

( )yS ω  is the power spectral density of . Equation (5.3) can be simply interpreted  ( )y t

as follows. If a random variable is thought of as a summation of an infinite number of 

infinitely small, randomly phased, sinusoidal components of continuously distributed 
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frequencies, ( )S ω  can then be interpreted as the mean square value of these 

components having angular frequencies within one radian/second bandwidth centered 

on the angular frequency ω . Thus for a continuous frequency distribution from −∞  

to +∞ , the mean square value of the random variable ( )y t  is equal to the integral of 

its power spectral density ( )yS ω  over the entire frequency range. Equation (5.4) can 

be used to determine the power spectral density of the response of a system to random 

excitations. 

5.2.2 APPLICATION OF FLAT INPU

 base excitation as shown in Figure 5.1, the 

quation of motion can be itten as 

 ( ) ( ) ( ) ( ) ( )mx t cx t kx t cx t kx t

T PSDS TO A SDOF SYSTEM 

For the SDOF system subject to random

e  wr

0 0  (5.5) + + = +&& & &

where ( )t  is the base displacement excitation and ( )0x x t  is the system displacement 

sponse. The relationship between the power spectrre al densities of 0 ( )x t  and ( )x t  can 

be written as [69] 

 
0

2( ) ( ) ( )x xS H Sω ω ω=  (5.6) 

where ( )xS ω  and 
0
( )xS ω  are the power spectral densities of 0 ( )t  and ( )x x t  

respec ( )Htively.  ω is the transfer function between the displacement response and 

the displacem nt excitation. 

Equation (5.6) states that the power spectral density of the displacement response is 

ral density of the base excitation multiplied by the square of 

the modulus of the transfer function between the base and the vibrating mass.  

 the modulus of the transfer function and the po

displacement base excitation are known for a given system, the mean square response 

can be

e

equal to the power spect

If wer spectral density of the 

 written as 

 
0

22 ( ) ( ) ( )xx t H i S dω ω ω
∞

= ∫  (5.7) 
−∞
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For a displace  excitation having a constant spectral density (‘white noise’), 
0

ment xS  is 

a constant, the mean square displacement response can be obtained as 

 
0

2 ( ) ( )

( ) ( )

x

x

x t S d

H S d

ω ω

2

2
0 ( )S H d

ω ω ω

∞

−∞

∞

−∞

=

=

∫

∫  (5.8) 

ω ω
∞

= ∫
−∞

where 0S  is the constant spectral density. 

x(t)
m

k c

x0(t)

 

Figure 5.1 Schematic of a passive SDOF system subject to base excitation 

For the conventional passive SDOF system in Figure 5.1, the transfer function is 

5.2.3 MEAN SQUARE REPONSE OF A CONVENTIONAL PASSIVE SDOF 

SYSTEM 

given by 

 2( ) k icH
k m ic

ωω
ω ω
+

=  (5.9) 
− +

Substituting equation (5.9) into equation (5.8) gives 
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0

2
2

2( )con x
ic kx t S d

m ic k
ω

0

2 2

2 2 2

2

( )
( ) ( )

( )

x
k cS d

k m c

c mk
cm

ω
ω ω

ω ω
ω ω

π

∞

−∞

+
=

− +

+
=

∫

∫  (5.10) 

If written in terms of 

∞

−∞

+
=

− + +

 and nω ζ , one has  

 
0

2
2 (4 1)( )

2x nconx t S ζπω
ζ
+

=  (5.11) 

where n k mω =  is the natural frequency of the system, and 2 nc mζ ω=

 has been derived on the 

ent excitation is a constant from 

n that for forced vibration this 

 is the 

damping ratio. The analytical result in equation (5.10)

assumption that the spectral density of the displacem

frequency −∞  to ∞ . Crandall and Mark [70] have show

ation to practical situations providing that the 

bandwidth of tion is wide in comparison with the bandwidth of the system 

( 2

‘infinite’ result is a close approxim

 the excita

nζω e history of the response takes the form of a randomly modulated 

“sine” wave, whose period is 2 /

). The tim

π nω  and the modulation “period” is proportional to 

1/( )nζω . Th on are very 

N SQUARE RESPONSE OF A SKYHOOK PASSIVE SDOF 

OF system with a skyhook damper as shown in Figure 5.2, the transfer 

function can be written as 

 

erefore for small damping the typical periods in the modulati

long [70]. The same is true for the base excitation system studied in this section. 

5.2.4 MEA

SYSTEM 

For a SD

2( )H kω
k m icω ω

=  (5.12) 

Using equation (5.8), the mean square response can be written as  

− +
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0

0

0

2
2

2

2 2 2

( )

( ) ( )

xsky

x

x

kx t S d
m ic k

kS
k m c

k S
c

2

d

ω
ω ω

ω
ω ω

π

−∞

∞

−∞

=
− + +

=
− +

=

∫

∫

∞

f 

 (5.13)  

If written in the form o nω  and ζ , one has 

 
0

2 ( )
2n xskyx t Sπω 1
ζ

=  (5.14) 

m

skyc

x(t)

k
x0(t)

 

Figure 5.2 Schematic of a skyhook SDOF system subject to base excitation 

MPARISON OF MEAN SQUARE RESPONSES OF A 

CONVENTIONAL AND SKYHOOK PASSIVE SDOF SYSTEM 

esponse as a function of damping ratio for a SDOF system 

with a conventional and a skyhook passive damper subject to a random base 

xcitation with a unity spectrum. It can be seen

conventional SDOF system decreases initially with increasing damping ratio, and 

5.2.5 CO

Figure 5.3 shows the MS r

e  that the MS response of the 

reaches a minimum value when 0.5ζ = . After that point, the RMS response rises up 

gradually. The damping ratio 0.5ζ =  
. Equation 

when the MS response is minimum can also be 

derived from equation (5.11) (5.11) can be rewritten as  
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0

2 ( ) (2 )
2x nconx t S πω ζ 1
ζ

= +  (5.15) 
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Figure 5.3 Mean square response of a SDOF system with a conventional and a skyhook passive damper 

subject to random base excitation 

According to the limitation theory, the minimum value of equation (5.15) happens

when 

 

 12     ( >0)
2

ζ ζ
ζ

=  (5.16) 

i.e. when 0.5ζ = . 

It can also be derived from equation (5.11) that for small damping ratio ζ , the mean 

square response tends to 
0

2x nSπ ω ζ . The slope of the curve is -3dB per doubling of 

ζ . For large value of ζ  the mean square response tends to 
0

2 x nSπ ω ζ . The slope of 

the curve is 3dB per doubling of .  ζ
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A re 5.3 that the MS response s for the skyhook system, one can see from Figu

decreases monotonically with increase in damping ratio. It can also be seen from the 

figure that with the increase of the damping ratio, the difference between the MS 

response of the conventional and skyhook passive systems increases. It can be derived 

from equation (5.14) that the gradient of the mean square response is -3dB per 

doubling of ζ .  

If one takes the ratio of the mean square response of a conventional SDOF system to 

that of a skyhook passive system as defined in equation (5.11) and (5.14), one gets 

 
2

2

2

( ) 4 1
( )

con

sky

x t
x t

ζ= +  (5.17) 

Equation (5.17) tends to 1 for smaller damping ratios, i.e. 2 ( )conx t  and 2 ( )skyx t

rves are very 

 are 

almost the same, which was clearly shown in Figure 5.3 that the two cu

close. For large damping ratios, equation (5.17) tends to 24ζ . The difference of the 

two mean square response tends to 6dB per doubling of ζ . 

The frequency dependence of a random excitation may be such that it appears 

generally flat in the frequency range of interest when viewed as displacement, 

y and acceleration excitation spectra are assumed to be flat will be studied in 

this section, and the results will be compared with those of the conventional and 

yhook passive systems.  

Since the skyhook semi-active dampers considered attempt to emulate skyhook 

the per rmance of the conventional passive and skyhook systems provide 

lower and the upper bounds between which the semi-active may perform. The semi-

ac c

 f tions for a SDOF system with passive skyhook 

damping. The transfer functions in the two tables can be substituted into equation 

(5.8) to obtain the RMS response due to a particular type of excitation. 

velocity, acceleration or none of these. The three special cases when the displacement, 

velocit

sk

damping, fo

active damper can only be expected to provide an intermediate level of performance. 

Table 5.1 lists the transfer functions between the response (displacement, velocity and 

celeration) and the ex itation for a conventionally damped SDOF system. Table 5.2 

shows the corresponding transfer unc
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Table 5.1 Transfer functions of a conventional SDOF system 

Response 

Excitation 
Displacement Velocity Acceleration 

Displacement 2

ic k
m ic k

ω
ω ω

+
− + +

 2

( )i ic k
m ic k
ω ω
ω ω

+
− + +

 
2

2

( )ic k
m ic k
ω ω
ω ω

− +
− + +

 

2( )
ic k

i m ic k
ω

ω ω ω
+

− + +
 

2

ic k
m ic 2

( )i ic k
m ick

ω
ω ω

+
− + +

 
k

ω ω
ω ω

+
− + +

 Velocity 

Acceleration 
ic k

2 2( )m ic k
ω

ω ω ω
+

− − + +
 ic k

2( )i m ic k
ω

ω ω ω
+

− + +
 

2

ic k
m ic k

ω
ω ω

+
− + +

 

 

able 5.2 Transfer functions of a skyhook passive SDOF syst

Response 

Excitation 
Displacement Velocity Acceleration 

T em 

Displacement 2

k
m ic kω ω− + +

 2

ik
m ic k

ω
ω ω− + +

2

 
2m ic kω ω− + +

kω−  

Velocity 2( )
k

i m ic kω ω ω− + +
 

2

k
m icω ω k− + +

 2

ik
m ic k

ω
ω ω− + +

 

Acceleration 2 2( )m ic kω ω ω− − + +
k  

k
2( )i m ic kω ω ω 2

k
− + +

m ic kω ω− + +
 

 

 

The three cases in the sub-diagonal elements of Tables 5.1 and 5.2 represent 

displacement response due to velocity excitation, and displacement and velocity 

responses due to acceleration excitation. It can be seen that the transfer functions for 

these three cases tend to infinity as the frequency ratio tends to zero. From equation 

(5.8), the RMS responses of the system are unbounded because the integral tends to 

infinity at low frequency. These three cases will not be considered. The three diagonal 

cells in the table are the cases where both the response and the excitation are the same 

quantity. The three cases in the super-diagonal elements and the diagonal elements 

will be studied in the following section for both passive and semi-active systems. 
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5.3 EFFECTIVENESS OF SEMI-ACTIVE DAMPERS FOR 

ISOL  OF R DISTURBA  

Figure 5.4 shows the schematic of stem with a semi-active damper subject 

to random disturbances. This section studies the performance of the three semi-active 

dam shown in Table 5.3 or random disturbances through numerical 

simulations. The performance of the three semi-active control strategies is compared 

with those of the conventional and skyhook passive damping for base isolation. 

Physical interpretation is presented to explain the comparison of results. In the 

simulation, the models established in Chapter 2 are used. The random excitation is 

ugh a 10th order Butterworth 

low-pass fi a cut-off frequency of ten times the natural frequency of the 

hus the random excitation has a power spectral density which is flat up to 

ten ural frequency of t e system. The RMS responses of the system re 

calculated up to ten times the natural frequency of the system. 

Table 5.3 Damping characteristics of the semi-active dampers studied 

pe Semi-Active Dam ing  

ATION ANDOM NCES

a SDOF sy

pers as f

formulated by passing a Gaussian random signal thro

lter with 

system. T

times the nat h  a

Damper Ty p

min max 0

min 0

max ,min ,         ( ) 0

                                             ( ) 0
sa

c G x c x x x
c

c x

⎧ ⎡ ⎤

x x

⎡ ⎤ −⎪ ⎣ ⎦⎣ ⎦= ⎨
− <⎪⎩

& & & &

& & &
 ≥

Continuous skyhook (SA-1) 

On-off skyhook (SA-2) 
( )
( )

max 0

min 0

             0
 

             0sa

c x x x
c

c x x x

− ≥⎧⎪= ⎨
− <⎪⎩

& & &

& & &
 

On-off balance (SA-3) 
( )( )
( ) ( )

max 0 0

min 0 0

  0

  0sa

c x x x x
c

c x x x x

− − ≤⎧⎪= ⎨
− − >⎪⎩

& &

& &
 

 

5.3.1 ACCELERATION TRANSMISSIBILITY SIMULATIONS 

Numerical simulations have been carried out to investigate the acceleration 

transmissibility of a SDOF system with a semi-active damper subject to random 

acceleration of the base. Figure 5.5 compares the RMS transmissibility of the SA-2 

(on-off skyhook) semi-active damper to random and harmonic acceleration 

disturbances with the maximum damping ratio of the semi-active system, maxζ , set to 

0.5. For harmonic disturbances, the transmissibility curve is obtained by running the 

- 143 - 



Ch5. Random disturbances 

simulation at each discrete frequency. One can see from the figure that the RMS 

transmissibility for random disturbances is worse than the harmonic cases over the 

whole frequency range. The study in section 4.2 of the effect of multiple harmonics 

on the switching of the semi-active damper suggests this is because the semi-active 

damper cannot handle many harmonic components simultaneously. 

x(t)
m

k
x0(t)

Semi-active 
damper

 

Figure 5.4 Schematic of a semi-active SDOF system subject to base excitation 

urbances, many frequency 

components are applied to the system simultaneo  damper cannot 

ensu r every frequency is right. Referring back to Figure 5.5, 

for lower frequencies ( 0.5

When the semi-active system is subject to random dist

usly. The semi-active

re that the switch time fo

ω nω≤ ), for example 0.51 nω = ω , it can be expected from 

the conclusions in the previous chapter that e relative velocity 

switches will be greatly affected. But since this frequency range is not damping 

control ility is not affected very much. For the frequency range 

near resonance, the lower frequency will largely affect the velocity switch and the 

igher frequency will largely affect the relative velocity switch, thus the 

for the higher 

frequencies, the best the semi-active damper can do is turned off for half of the time to 

both the velocity and th

led, the transmissib

h

transmissibility near resonance will be greatly increased. As 

provide the desired performance. But due to the addition of multiple harmonics at 

lower frequencies, the semi-active damper will be turned on for quite a lot of time. 

Thus the transmissibility at higher frequencies will also be very high due to the 

addition of the damping. 
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Figure 5.6 RMS acceleration transmissibility of semi-active dampers to white acceleration input 
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Figure 5.6 shows the RMS acceleration transmissibility of the three semi-active 

dampers to random acceleration excitation as functions of the damping ratio. As a 

comparison, the RMS response of both conventional and skyhook passive systems are 

also shown. It can be seen from the figure that at lower to moderate damping ratios, 

the performance of the semi-active damper is worse than the conventional passive 

system for all the three control strategies. For high damping ratios ( 1.0ζ ≥ ) some 

modest benefit is apparent for the SA-2 damper. SA-1 and SA-3 dampers are still 

worse. The results in Figure 5.6 suggest that semi-active dampers fail to isolate 

random acceleration excitations effectively.  

5.3.2 RANDOM VELOCITY AND DISPLACEMENT EXCITATION 

The other two special cases when considering random disturbances are random 

velocity and displacement inputs with flat spectra. The former is often considered 

when looking at the isolation of vehicles from road disturbances. The simulation 

s looking at the velocity response and Figure 5.8 looks at the 

acceleration response. It can be seen from Figure 5.7 that with the increase of the 

damping ratio, both the SA-1 and SA-2 damper can provide some improvement in the 

response over conventional passive damping. When the damping ratio is 1.5, the 

improvement for both of the two semi-active dampers is about 6dB. At lower 

frequencies, the SA-3 damper is even worse than the conventional passive case, but at 

higher frequencies, it is slightly better. 

Figure 5.8 shows that the improvement of the semi-active damping over conventional 

passive damping is more pronounced if one looks at the acceleration response due to 

the velocity input. With the increase of damping ratio, there is significant benefit from 

both SA-1 and SA-2 semi-active damping control strategies. When the damping ratio 

1.5

results for a semi-active damper with random velocity excitation are shown in Figures 

5.7 and 5.8. Figure 5.7 i

ζ＝ , the performance improvement for SA-1 is 10dB, for SA-2 13dB. The SA-3 

er only has 3dB improvement at 1.5damp ζ＝ . Similar conclusions are reached by 

Karnopp to address the superi  skyhook damping control to 

conventional passive damper in reference [15], in which he studied the acceleration 

res

ority of continuous variable

ponse spectrum due to random velocity excitation with a flat spectrum. 
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Figure 5.7 RMS velocity transmissibility to random velocity excitation 
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Figure 5.8 RMS acceleration transmissibility to random velocity excitation 
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The RMS transmissibility of displacement, velocity and acceleration response to 

random displacement excitation are shown in Figure 5.9-5.11 respectively. Figure 5.9 

shows that all of the three semi-active strategies can provide some improvement for 

the displacement response when the damping ratio is greater than 0.5 . Figures 5.10 

and 5.11 show that SA-3 semi-active damper can hardly provide any improvement on 

the performance, and at lower damping ratio, it is even worse than conventional 

passive damping. For the displacement and velocity responses due to the random 

displacement excitation, both SA-1 and SA-2 dampers can provide significant 

improvement with high damping ratio. Only the SA-1 semi-active damper can provide 

significant improvement on the acceleration performance to random displacement 

excitation. 
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Figure 5.9 RMS displacement transmissibility to random displacement excitation 
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Figure 5.10 RMS velocity transmissibility to random displacement excitation 
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Figure 5.11 RMS acceleration transmissibility to random displacement excitation 
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5.3.3 EXPERIMENTAL WORK 

Experimental work was also carried out to study the vibration isolation performance 

of the semi-active control algorithm for random disturbances. The experimental set-up 

used is the same as detailed in Section 3.7. A random acceleration excitation with a 

flat spectrum within the frequency range 5-100Hz was used for the experiment, and 

the frequency range 5-60Hz was plotted. 

Figure 5.12 shows the time histories of the acceleration response of the system and the 

random base disturbances. It is obvious that a frequency that is equal to the natural 

frequency of the system is dominating the acceleration response. 
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Figure 5.12 Measured time histories of accelerations (− acceleration response of the system; ······ base 

excitation) 

 Figure 5.13 shows the measured transmissibility curve of the SDOF system with the 

on-off skyhook damper in operation. As a comparison, the acceleration 

transmissibility curve measured under harmonic disturbances is also shown. The

figure su orse for 

random disturbances except in the frequency range close to resonance. However, this 

 

ggests that the on-off skyhook semi-active control strategy is no w
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observation is based on the fact that the on-state damping of the system is not big 

enough, which is limited by the properties of the experimental rig. The difference in 

the performance of the semi-active damper for random and harmonic disturbances 

will be much greater if the on-state damping of the system can be made large enough.  
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Figure 5.13 Measured acceleration transmissibility to random disturbances (− measured random; ······ 

simulated random; −·−· measured harmonic) 

Figure 5.14 compares the RMS responses of the semi-active damper with those of the 

passive system with a closed and open circuit. It can be seen from both Figure 5.13 

and Figure 5.14 that the performance of the semi-active damper for random 

disturbance is worse than that for the harmonic disturbances, and it is even worse than 

the passive case with close circuit. However, there is some advantage if one looks at

 damping coefficients. 

 

displacement transmissibility and velocity transmissibility as suggested by Figure 5.7 

and Figure 5.9 for larger
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Figure 5.14 Comparison of the RMS responses of the semi-active system  

5.4 CONCLUSIONS 

This chapter studied the vibration isolation performance of semi-active damping 

s for isolation of random disturbances has been 

studied numerically for three special cases when the displacement, velocity and 

y benefit on isolation of random 

disturbances. Both on-off and continuously skyhook semi-active control can provide 

performance improvements over the conventional passive damper for the cases when 

the inputs are displacement and velocity, i.e. velocity in/velocity out, velocity 

in/acceleration out, displacement in/displacement out , displacement in/velocity out 

and displacement in/acceleration out.  

control algorithms for isolation of random disturbances. The performance of three 

semi-active damping control strategie

acceleration excitation spectrum are assumed to be flat. An analytical solution to 

calculate the RMS responses of the conventionally damped SDOF system and the 

skyhook SDOF system subject to base excitation has been derived. Physical 

interpretation has been described to explain why semi-active dampers fail to isolate 

certain types of random excitation using purely passive damping. The simulation 

results show that the skyhook damper always provides the best performance, and on-

off relative control can hardly provide an
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CHAPTER 6 

6. GENERAL CONCLUSIONS 

6.1 CONCLUSIONS 

This chapter contains the general conclusions of this thesis. Detailed conclusions are 

included in each chapter, so only the salient points will be recorded here. Throughout 

the thesis, the work has covered aspects involving the use of semi-active damping 

control for vibration isolation of sensitive equipment from various base disturbances. 

Following the introduction and literature review in Chapter 1, Chapter 2 detailed the 

model development of four semi-active control algorithms, which are continuous 

skyhook control, on-off skyhook control, continuous balance control and on-off 

balance con ussed w h 

clear physical interpretation. A phenomenon often referred to as chatter occurs with 

ol at low excitation frequencies. The conditions for chatter 

e to oppose the spring force whenever the 

trol. The derivation of these four control algorithms was disc it

semi-active damping contr

to occur were discussed by studying the dynamics of the system, and a modified 

control scheme was suggested to avoid the chatter problem. Jerk, which is defined as 

abrupt changes in the acceleration, was identified as the other problem when using 

semi-active dampers. Jerk is caused by the abrupt change in the damping force. A 

shaping function was introduced to smooth the abrupt change in the damping force, 

and anti-jerk semi-active control strategies were proposed. Both the continuous 

skyhook control and on-off skyhook control algorithms intend to produce the effect of 

skyhook damping when the damper is on. The original expression for the continuous 

skyhook control can provide the same amplitude and phase for damping force in its 

on-state as those of a skyhook damper. Due to the practical limitation of physical 

systems, however it can only provide the same amplitude and phase during part of the 

on-state period. The on-off skyhook control can only ensure that the semi-active 

damping force is the same sign of the desired skyhook damping force. The magnitude 

is not representative of the skyhook damper force anymore, although it is shown that 

it gives similar isolation performance. Both on-off and continuous balance control 

algorithms require the damping forc
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damping force and the spring for sign. The on-off balance control 

cannot ensure that the damping force is exac ng force since it can 

locity across the damper 

the system and the damping coefficient, 

the spring force can partly be cancelled or even sometimes the spring force can be 

y cause the system become unstable. Matlab/Simulink 

 

ce have the opposite 

tly equal to the spri

only produce a damping force proportional to the relative ve

in its on-state. Depending on the dynamics of 

over cancelled which ma

models of the four control algorithms were established. Numerical simulations were 

carried out in chapters 3-5 using these models. 

Chapter 3 investigated the performance of the four semi-active damping control 

algorithms for isolation of harmonic disturbance through numerical simulations and

experimental tests. Numerical simulations were carried out in Matlab/Simulink to 

study the vibration isolation performance of the semi-active damping control 

strategies. The isolation performance was evaluated in terms of root-mean-square 

(RMS) transmissibility of acceleration and relative displacement. The performance of 

the semi-active damping control algorithms are compared with that of a conventional 

passive damper and skyhook damper. The results showed that the semi-active 

damping control strategies can reduce the response at resonance without worsening 

higher frequency isolation performance. It can be concluded that getting the phase 

right is the first priority by comparing the isolation performance of the continuous and 

on-off skyhook control strategies shows that. An experiment was set up to investigate 

the use of an electromagnetic device as a semi-active damper for vibration isolation. 

The on-off skyhook control algorithm was chosen to be implemented in the 

laboratory. A series of tests was conducted to investigate the dynamic characteristics 

of the electromagnetic damper. The measurement results showed that by opening and 

closing the circuit of the coil system, the damping of the system can be effectively 

changed. Thus, it can be used as a semi-active damper for vibration isolation. The 

measurement results agreed with the theoretical prediction reasonably well. Although 

the measurement results only showed the semi-active damper gave a marginally better 

performance than the conventional passive damper, better performance could be 

achieved if the off-state damping ratio could be made much smaller and on-state 

damping larger. 
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Both the theoretical and measurement results in Chapter 3 also showed that 

percentages of time when the semi-active damper is on are frequency dependent, 

which means that the switching of the damper may be comprised if more than one 

frequency is present at the same time. Chapter 4 studied the effects of a secondary 

frequency which is a harmonic or subharmonic of the fundamental frequency on the 

switch state of the semi-active damper for the fundamental frequency. It was shown 

that for a SDOF system with an on-off skyhook semi-active damper, both the velocity 

switch and the relative velocity switch will be greatly affected due to the addition of 

the secondary frequency. The secondary frequency which is a harmonic of the 

trol can hardly provide any benefit on isolation of random 

disturbances. Both on-off and continuously skyhook semi-active control can provide 

fundamental frequency would largely affect the relative velocity switch, and a 

secondary frequency which is a subharmonic of the fundamental frequency would 

largely affect the velocity switch. The vibration isolation performance of the semi-

active system to periodic excitation was studied numerically and experimentally. For 

the square and triangular waves studied in chapter 4, the frequency components are 

integer multiples of the natural frequency of the system, and the first harmonic with 

the fundamental frequency is dominant in amplitude. The results show that the semi-

active damper can provide better isolation performance than the conventional passive 

damper. Experimental results were limited by achievable damping of the suspension 

of the loudspeaker. 

For random excitations, there are many frequency components present at the same 

time and since the amplitudes and phases are arbitrary, the semi-active damper might 

fail to work properly. Chapter 5 discussed the effectiveness of semi-active dampers in 

isolating random disturbances. An analytical solution is derived for the RMS response 

of a SDOF system with a conventional passive and a skyhook damper subject to 

random base excitation with a flat spectrum. The RMS responses of a SDOF system 

incorporating the semi-active dampers for three special cases when the spectra of 

displacement, velocity and acceleration are flat are numerically simulated. Physical 

interpretation has been described to explain why semi-active dampers fail to isolate 

certain types of random excitation using purely passive dampers. The simulation 

results show that the skyhook damper always provides the best performance, and on-

off relative con
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performance improvements over the conventional passive damper for the cases when 

the inputs are displacement and velocity, i.e. velocity in/velocity out, velocity 

in/acceleration out, displacement in/displacement out , displacement in/velocity out 

and displacement in/acceleration out. 

Overall, the thesis has demonstrated the benefits and the limitations in using basic 

semi-active damping control strategies for vibration isolation of various base 

disturbances. Significant isolation performance could be achieved using semi-active 

dampers for harmonic and some periodic disturbances. The performance may be not 

so pronounced for random disturbances with arbitrary spectrum. 
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6.2 RECOMMENDATIONS FOR FUTURE WORK 

This thesis studied the vibration isolation performance of the semi-active control 

strategies for harmonic, periodic and random disturbances. The work could be 

extended to study the isolation performance for shock. Shock is normally classified as 

e. It would be useful 

e practical applications to study the effectiveness of the semi-active control 

strategies for shock isolation. 

Research into implementing the control strategy employed using alternative semi-

active devices could prove worthwhile. A device with higher on-state damping and 

lower off-state damping would work best. 

A logical extension of the research into the effectiveness and suitability of the semi-

active control strategies in this thesis is an investigation into the performance of the 

semi-active control strategies in controlling of multimode vibratory systems. 

 

a transient phenomenon in contrast to vibration that is normally a steady-state 

phenomenon. Shock differs from vibration as the load can be relatively large but the 

duration relatively short. For shock disturbances it is normally the maximum 

acceleration response that can result in damage. The relative displacement may be of 

concern if the relative motion is expected to exceed the clearanc

for som

- 157 - 



Appendices 

APPENDICES 

A1 ISOLATION PROPERTIES OF SEMI-ACTIVE DAMPERS 

From the results in chapter 5, it can be seen that semi-active damper is capable of 

providing better isolation across the whole spectrum as compared to a passive damper. 

The primary purpose of this appendix is to investigate thoroughly the isolation 

properties of semi-active systems. Specifically the following question will be 

answered: Why are semi-active dampers able to isolate at frequencies well below that 

which is possible with a passive damper, even though, similar to passive dampers, 

they do not add any energy to the system. 

To answer this question, consider a base excited SDOF system. The response of a 

passive system to a harmonic base-excitation, such as 

 0 0
i tx X e ω=  Equation Section  1(A.1) 

is given by 

 ( )
0 ( ) i tx X H e ω φω +=  (A1.2) 

where 
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and 
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 (A1.4) 

The variables ( )H ω  and φ represent the transmissibility amplitude and phase shift 
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between the output and input. ζ  and ωn are the damping ratio and natural frequency 

of the system, respectively. 

es is 

shown in Figure A1.1. It can be seen that increasing the damping reduces the 

The behaviour of the system for different damping ratios and input frequenci

resonance response, but it deteriorates the isolation performance in the isolation range 

where / 2nω ω > . This represents the well-known compromise between better 

control of resonance and poorer vibration isolation at higher frequencies due to 

damping. The phase diagram in Figure A1.2 indicates that increasing damping 

contributes to a lower phase difference between the base and the sprung mass. Further 

discussions on this subject can be found in most vibration text books, for example 

[11].  
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Figure A1.1 Acceleration transmissibility of a passive SDOF system 

To determine the reason for the above, and also why semi-active dampers are able to 

olate at frequencies far below the fixed frequency of syst

the transmissibility equation for the system in Figure A1.6 is derived. Unlike the 

passive system, it is not possible to derive the transmissibility equation for the semi-

consider its equivalent where the damper is connected between the mass and an 

is em with passive dampers, 

active system because the damping coefficient is time dependent. Alternatively, we 
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imaginary sky, as shown in Figure A1.5. 
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Figure A1.2 Transmissibility phase of a passive SDOF system 

For this system, the transmissibility amplitude and phase are: 

 1
2 222

1( )

1 2
n n

H ω

ω ωζ
ω ω

=
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥− +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

 (A1.5) 
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tan
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n

n

ωζ
ωφ
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ω

−= −
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (A1.6) 

The amplitude re shown in  and phase of the transmissibility of the skyhook system a

Figure A1.3 and Figure A1.4. Comparing equations of (A1.5)and (A1.6) provides the 

insight as follows. The transmissibility amplitudes have the same denominators but 

different numerators. For a passive system, the numerator is a function of damping 

ratio,ζ , where as for a skyhook system, it is a constant. Table A1.1 shows the effect 

of ζ  on transmissibility in different frequency ranges for a conventional passive 

system. The table is derived from evaluating the numerator and denominator of 
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equation (A1.3), which shows that the frequency range in which amplification, direct 

transmission and attenuation occurs is independent of the damping ratio . ζ
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Figure A1.4 Transmissibility phase of a skyhook system 

Examining equation (A1.5)-(A1.6) shows that a skyhook damper yields completely 
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different results. The numerator is a constant, and therefore the transmissibility is 

relative to unity depends whether the denominator is less than, greater, r o equal to 1. 

Evaluating the denominator for one of the three possibilities will allow us to make 

conclusions on the effect of ζ on the transmissibility magnitude. Consider the 

frequency range where some isolation is achieved. For this to happen, the frequency 

ratio must be such that: 

 

2 22

1 2
n n

ω ωζ
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 (A1.7) 

which will reduce to 

 
2

22 4
n

ω ζ
ω
⎛ ⎞

≥ −⎜ ⎟
⎝ ⎠

 (A1.8) 

Table A1.1 Effect of ζ  on transmissibility for a passive conventionally damped SDOF system 

22

1
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ω
ω

 ω ⎤⎛ ⎞ ( )H ω   
nω

⎢ − ⎥⎜ ⎟
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<1 <1 >1 Amplification 
=1 =0 >1 Amplification 

<1 >1 Amplification 1 2< • <  
=1 =1 Direct transmission 2=  

Isolation 1>  1<  2>  

 

The above equation shows that for a passive skyhook damper, as ζ  increases, 

attenuation occurs at lower frequencies, unlike a passive system tion 

is independent of

 in which the isola

 ζ . Two special cases exist in the equation, the first of which is 

when , the equation reduces to 0ζ = 2nω ω ≥ . This indicates that when no 

damping is present, isolation stars at 2 nω ω= , the fixed frequency of the passive 

system. For , isolation starts at frequencies smaller than 0ζ > 2 nω , thus we can 

conclude that for a given ζ , a skyhook system behaving as a skyhook system can 

always provide better isolation performance than passive ones. 

The second case is when 
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 22 4 0ζ− =  (A1.9) 

or  

 2
2

This is the minimum damping ratio at wh

0.707ζ = =  (A1.10) 

ich the skyhook system provides isolation at 

all frequencies. Therefore, it is possible to tune a skyhook system such that it can 

rovide isolation across the whole frequency. 

The passive representation of the semi-active system assumes that the off-state 

practice, however, it is not possible and may not desirable. In 

most cases, is a small portion of the on-state damping. Therefore, in reality, the 

passive representation of the semi-active system dampers appears as shown in Figure 

A1.5. 

p

damping is zero. In 

offc

onc

offc

 

Figure A1.5 Actual representation of a skyhook system 

This modifies the transmissibility equation to: 
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 frequency; (2) it increases the RMS acceleration ratio at frequencies greater 

than natural frequency. 

= =  (A1.13) 

Figures A1.6 and A1.7 show the transmissibility and phase angle of the skyhook 

system with non-zero off-state damping. Comparing Figure A1.6 with Figure A1.3 

shows that the insertion of off-state damping has two effects compared to the system 

without off-state damping: (1) it reduces the RMS acceleration ratio at and around the 
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Figure A1.6 Transmissibility magnitude of an actual skyhook damper system 
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Figure A1.7 Transmissibility phase of an actual skyhook damper system 
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A2 ANALYSIS OF ELECTROMAGNETIC DAMPING 

Figure A2.1 shows a SDOF base isolation system model using an electromechanical 

damper. In the model, the magnet is arranged to move together with the base and the 

coil is attached to and moves together with the mass to be controlled. When the coil is 

moving in the magnetic field, a voltage called the back electromotive force (emf) is 

induced in the coil, which is governed by Lenz’s Law. If the strength of the magnetic 

field is , the coil moves with a velocity of B  x&  0x&and the base velocity is , then the 

induced voltage in the coil can be expressed as 

 0( )bemfE BL x x= −& &  Equation Section  12(A2.1) 

where L ln=  is the effective length of the wire; is the length of the coil per turn and 

 is the number of effective coil turns. 

l  

n

m

2
k

2
mec

2
k

2
mec

0 ( )x t

( )x t

Coil

Magnet

Variable resistor

Inductor

 

Figure A2.1 Model of a base isolation system using an electromechanical damper 

If the circuit is closed, there will be a current flowing in the coil, and there will be an 

electromechanical force emF on the coil. This force is developed by the interaction 

between the ma that exists across the gap and the magnetic 

field due to current flowing in the coil. The resulting force is 

 

gnetic field of strength B  

emF BLI=  (A2.2) 

Assuming the resistance of the coil is cR  and is connected to an external resistance 

, then the current related to the induced back emf is given by extR
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R R
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 (A2.3) 

The electromechanical force emF  therefore can be written as 

 ( )
2

0
( )

em
c ext

BLF x x
R R

= −
+

& &  (A2.4) 

For the SDOF system with an electromechanical damper subject to base excitation, 

the equation of the motion can be written as 

 ( )0( )memx c x x k x 0 0emx F+ − + −&& & & + =  (A2.5) 

here is a spring constant and is the mech ical

system. Substituting equation (A2.4) into (A2.5), gives 

 

w an  damping coefficient of the  k  mec  

( )0 0( )(me emmx c c x ) 0x k x x+ +&& − + − =& &  (A2.6) 

where 
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+

 

er. It can be seen from

of two parts, one is the m

is the electromechanical damping due to the electromechanical 

damp  equation (A2.6) that the damping of the system consists 

echanical damping , and the other is the 

electromechanical damping . The mechanical damping is fixed for a given system, 

while the electromechanical damping can be changed by varying the external 

resistance or simp e circuit. The maximum damping coefficient 

of the system occurs when 

mec

emc

ly opening or closing th

0extR = , which is given by  
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The damping ratios corresponding to the mechanical damping and electromechanical 

damping are given by 
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A  EXPERIMENTS 3 LIST OF EQUIPMENT USED FOR

Equipment Serial

HP 35655A Analyser 2911A01088 1 

325 1 

TPA series Professional 

Power Amplifier 
8252 

4 1 

B&K 4393 Accelerometer 
1697354 

1697154 

&K 2635 Ch
1474190 

Wavetek DM25XT Digital Meter 60405182 1 

ters 0302 2 

PCB Conditioner 

24953 

ly LT3-1 2×0-30V 

1A 
0619 1 

 

 Number  Quantity 

Derritron Vibrator Type VP.4 

1 

Colossus 12 MB  

Loudspeaker Driver 
1431

2 

B arge Amplifier 
943130 

2 

HM 303-6 Analog Oscilloscope 25620 1 

Kemo Type VBF8 Dual Variable Filter 

0.01Hz-100kHz 
56198 1 

PCB accelerome 307A 1

13287 1 

Hmeg Signal generator 
04110 

2 

Stabilised power supp
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A4 THE CONTROLLER CIRCUIT 

The on-off skyhook control strategy was chosen to be implemented due to its 

simplicity and effectiveness. The block diagram of control strategy is shown in Figure 

A4.1. The measured acceleration signals x d 0x&&  are passed &&  an through ator 

blocks 1 and 2 respectively to get the corresponding velocity signal, 

the integr

x&  and 0x& . The 

relative velocity, x 0x−& & , is obtained using the sum ock 3. The velocity response x bl &  is 

multip ignal xlied by the relative velocity s 0x−& &  in ltiplier bloc  to rm the 

condition

a mu k 4  fo

 function 0( )x x x−& & &  as defined in chapter  velocity produc ign is 

 the logic test block is used to control the 

switch. The k is either unity (or or zero (or “false”). 

The electrical circuit diagram of the control strategy is shown in Figure A4.2, and a 

picture  shown in Figu

2. The t s al 

input to a logic test block 5, and the output of

output of logic bloc “true”) 

of the actual circuit board is re A4.3. 

1

 

x&&

0x&&

x

Sum
+
-

∫
Integrator

∫
Integrator

&

0x&

5

Multiplier

1

0 Co
Switch
ntrolled

Logic

2

3 4 6

 

iagram of on-off sky trol strategy 

 

Figure A4.1 Block d hook con

 - 169 -



Appendices 

 
Figure A4.2 Circuit diagram of on-off skyhook control strategy 

 

 

Figure A4.3 Picture of the actual circuit board 
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GLOSSARY OF TERMS 

= Fourier series constant 

 = damping coefficient 

= maximum damping coefficient 

= minimum damping coefficient 

= on-state damping coefficient 

= off-state damping coefficient 

= passive damping coefficient 

0 , ,n na a b  

c

maxc  

minc  

onc  

offc  

passc  

skyc  = skyhook damping coefficient 

sac  = semi-active damping coefficient 

2

2,d d
dt dt

 = first and second derivatives 

cF  = active control force 

dF  = damping force 

kF  = stiffness force 

saF  = semi-active damping force 

skyF  = skyhook damping force 

= stiffness coefficient 

= transfer function 

= imaginary and real part of complex variable 

4 = functions for the fourth Runge-Kutta method 

= gain factor 

 = mass 

= start time 

k  

1 2, ,H H H  

Im, Re  

1 2 3, ,  ,  K K K K  

G  

m

0t  

0
( ), ( )x xS Sω ω  = power spectral density 

= time difference tΔ  

st  = Switching time 

T  τ , = period of vibration 

xT&&  = acceleration transmissibility 

0x xT −  = relative displacement transmissibility 
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1 2, ,ω ω ω  = frequency of excitation 

nω  = natural frequency 

1 2, ,x x x  = displacement response 

1 2, ,x x x& & &  = 

,

velocity response 

x 1 2, x x&& && &&  = acceleration response 

0 01 02, ,x x x  = base displacement 

0 01 02, ,x x x& & &  = base velocity 

0 01 02, ,x x x&& && &&  = base acceleration 

1 2( ), ( ), ( ), ( )x t y t y t y t = time series  

2 ( ) , 
2 ( )Tx t  mean square value of ( )x t  and ( )Tx t  x t = 

( )Tx t  = periodic time series 

X ( )i Fourier transform of ( )x t  ω   

0X&&  = amplitude of acceleration of the excitation 

ζ  = damping ratio 

maxζ  = tio maximum Damping ra

minζ  = ing ratio 

 

minimum Damp
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