HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

A FRAMEWORK FOR THE REAL-TIME ANALYSIS OF
MUSICAL EVENTS

By
John Bryan Ibbotson

A thesis submitted for the degree of Doctor of Philosophy

School of Electronics and Computer Science,
University of Southampton,

United Kingdom.

UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE
Doctor of Philosophy
A FRAMEWORK FOR THE REAL-TIME ANALYSIS OF MUSICAL EVENTS
by John Bryan Ibbotson

In this thesis | propose a framework for the real-time creation of a harmonic
structural model of music. Unlike most uses of computing in musicology which are
based on batch processing, the framework uses publish/subscribe messaging techniques
found in business systems to create an interconnected set of collaborating applications
within a network that process streamed events of the kind generated during a musical
performance. These applications demonstrate the transformation of data in the form of
MIDI commands into information and knowledge in the form of the music’s harmonic

structure represented as a model using semantic web techniques.

With such a framework, collaborative performances over the network become
possible with a shared representation of the music being performed accessible to all
performers both human and potentially software agents. The framework demonstrates
novel real-time implementations of pitch spelling, chord and key extraction algorithms
interacting with semantic web and database technologies in a collaborative manner. It
draws on relevant research in information science, musical cognition, semantic web and
business messaging technologies to implement a framework and set of software
components for the real-time analysis of musical events, the output of which is a
description of the music’s harmonic structure. Finally, it proposes a pattern based
approach to querying the generated model which suggests a visual query and

navigation paradigm.

Contents

Chapter 1 INEFOUCTION ... 9
1.1 IMOTIVALION ...ttt 9

1.2 CONLIDULIONS ... 11

1.3 TRESIS SIUCTUIE ... 11

1.4 DECIATALIONviiiietiteee et e 12
Chapter 2 BaCKGIrOUNdocviiiiiiie e e 13
2.1 INErOAUCTION ...ttt 13

2.2 The DIKW HIIarChycccoiioiiiieie e 13

2.3 MUSICAl COGNITION.c.iiiiiiiiiiiiiricett e 16
2.3.1 Competence, Knowledge and Language............cccooerveiveieeiienennnnnn 17

2.3.2 MuUsiCal COGNITION.......oiiiiiiiiirieieie e 19

2.3.3 MUSIiCal ANAIYSIS.......ccooiiiiiiiiiii e 19

2.3.4 DISCUSSION ..ottt 22

Chapter 3 Publish/Subscribe Messaging.........ccccveveieeveiieicie e 23
3L INEFOUUCTION. ...ttt 23

3.2 The Publish/Subscribe Messaging Pattern.............cccccevveveviiievecvececee, 23

3.3 Other Messaging Patternsc.covveiiiieieiieieie e 26
3.3.1 MESSaQE PASSING ...vevvereeivieiieiieie ettt 26

3.3.2 Remote Procedure Calls..........cccooeiiiiiiiinecceeeee e 26

3.3.3 NOLITICALIONS. ...t 27

3.3.4 Shared SPACEScceiuiriiriiierie e e 27

3.3.5 Message QUEUING......cciiiiririirieiteitesie et 28

3.3.6 SUMMAIY .eeiiiiiie ettt 29

3.4 Variants of the Publish/Subscribe Modelccoviniiiiiiiicc 29
3.4.1 Topic Based Publish/Subscribeccoovviiiiiiiiii 29

3.4.2 Content Based Publish/Subscribe ... 30

3.5 A Real-Time Analysis Frameworkcccocoveiriirniiniene e 31

3.6 The MQTT BrOKEr.....ccoi ittt 32
3.6.1 The Framework TOPIC SPACEcecereriirierierieieieie e 33

3.6.2 Connecting to the BroKer.........ccccooeiiiieii e 34

3.6.3 FrameWOrK EVENLSooiiieeeee e 36

3.7 Publishing ApPPlICALIONSccciiiiiiiiieiee e 37
3.7.1 File PUDIISNEIS. ..ot 38

372 MIDIINPUL...cooiiiiee e 39

3.8 Subscribing ApPlCAtIONS.........cccviieiiciece e 41
3.8. 1 MIDI OULPUL .ot 41

3.0 SUMIMAIY ..ottt ettt ettt e et e st e snneanee e 43
Chapter 4 PItCh SPelliNgooieeiie e 44
A1 INEFOAUCTION ...ttt 44
4.2 Tonality and Musical ANalysiSccocviiiiiiiiiie i 44
4.3 The Spiral Array MOccooiiiiiiiee e 49
4.3.1 Sounding, StartS and PreSENCEcccvuueruieiereeieneseeseseeseesee e 52

4.4 The IMpPIemMeNtationccocoviiiiiiiiire e 54
4.4.1 The Pitch Spelling Application..........cccoceieiiieniiieeseeesee 55
4.4.2 The EventCapture Applicationccceviiieiiiicie i 59

4.5 Testing and RESUITSoiuiiiiiiiieesee e 63
4.6 SUIMIMAIY ..otiiiiiieitee ittt sttt sttt be e sbe e sbe e nbe e s bt e st e et e sbe e enbeebeesneas 65
Chapter 5 Meter, Key, and Chord...........cccooooviiiiiiiiiceceeeee 67
5.1 INErOGUCTION ..ottt 67
5.2 MEtriCal ANAIYSIS ...c..iiiiiiiiieiieies et 67
5.3 KEY EXIFACHION ...ttt 71
5.4 CROMd EXIraCIONoviiiiiieiiiieiieii et 74
5.5 The IMpIEMENtAtioNccooiiiiiiiiii e 76
5.6 SUMIMANY ..ottt 80
Chapter 6 A Semantic Representation of Musical Harmony..............cc.c........ 81
6.1 INErOQUCTION ...ttt 81
6.2 The Semantic Web and the representation of Musical Harmony 81
6.3 The Representation Of TIMe.........ccccviiiiiiriineieie e 85
6.4 The Representation of Musical EVENTSccccoeiiieneneicieeceee 86
6.5 Semantic REPreSeNtation...........cccccveiuiieeiieiicicse e 88
6.6 The Harmony ONtolOgycccoovviriiiiiieiisieresee s 89
6.7 Inferencing using the OWL Modelccccovviiiiiiiiiniei e 92
6.8 Creating the Harmony Model ...t 96
6.9 The Triple Database.........ccccviiiiiiiie e 98

6.10 SUMIMANY ...ttt 100

Chapter 7 QUENY DY PatterNS.....ccvveieieieie e 101
7.1 INEFOQUCTION ... 101

7.2 Patterns as KNOWIBAQE.ooiviiiiiie e 101

7.3 ENCOding the PAtternccoiiiiiiiiiisesee s 104

7.4 The QUEIY @S SQL ...oooiiiiciect et 105

7.5 The Query as SPARQL......c.cccviiiiieie et 108

7.6 SUMIMAIY 1eiiiiiiiiiee ittt e e s ae et ae e sae et e st e e srbe e e nbbe e snbe e s streeesaeesnres 111
Chapter 8 CONCIUSIONS ...ttt 112
8.1 DISCUSSION ...evvivietieiteeie e e e ste et e et e et e e e ste s et e et e s taeseesreeneesreeneenneans 113

8.2 FULUIE WOTK ...t 115
8.2.1 Coordination with Music Ontology Research...............ccccceevennne. 115

8.2.2 Developing Temporal Rules of MUSIC..........ccccoovriineiieniinieniee 116

8.2.3 Developing an engineered FrameworkKcccocovevvninnviieniene 116

8.2.4 Developing a complete Visual Query Application.............ccc...... 116

LISt OF RETEIENCESc.eiiiiee et 117
Appendix A — Framework TOPIC SPACESccecverieieiieieeieie e 124
Appendix B — Example Graphs in GXLcccciiiiiiiiieneiese e 126
Appendix C — GXL to SQL Transformation...........c.cccceeererenineneneieeeeeeee 129
Appendix D — The Harmony Relational Modelccccooevvieiieiicie e 134
Appendix E - Musical Codes and Representationccoeovereineincneienennnnes 138

List of Figures

Figure 1: The DIKW HI€rarChyccocooieiiiiiic e 15
Figure 2: Transformation through Understandingcccccveveiieiiiieneceecc e, 16
Figure 3 Gestalt rules of PErCePtioN.........covviieriiieie e 20
Figure 4: Components of the Publish/Subscribe Messaging Model.............c.cccceevnenne. 24
Figure 5: Decoupling introduced by the Publish/Subscribe messaging model 25
Figure 6: A real-time analysis framework ... 31
Figure 7: Generic appliCation STIUCLUIE.ooiiiririeieiesie e 35
Figure 8: Shepherd's pitCh NEHIX........ccooviiiiiiiiii 46
Figure 9: Circle of fifthsc.oov i 47
Figure 10: The Harmonic Network or TONNELZccocoveviviieveiicicceecee e 48
Figure 11: The SPIral AITAYccoiiiieiiieie e e 49
Figure 12: Piano-roll representation Of fOUr NOLES..........cccovvveriiiiieiinieieseee e 52
Figure 13: The Pitch Spelling appliCationccocviieiiniieneeee e 55
Figure 14: The Event Capture appliCationccccveveiieriiiee e e 59
Figure 15: Event Capture and SynchroniSationc.cceveienenenenieieeesee e 60
Figure 16: The opening bars of Mozart's Sonata KVV332 - from [Temperley04] 68
Figure 17: Major and Minor key profiles from the Kostka-Payne corpus..................... 73
Figure 18: Key and Chord eXIraCtionccccovveierieiienieiie s 76
Figure 19: Objects of a Harmonic Ontology.........cccvvveieiiireiieieiiee e 86
Figure 20: Representation of @ SEmMantiC NEtcccovvveririieriiieere e 88
Figure 21: Harmony ODJECE TYPES.ciuiiiiiiirieiieiierie e 90
Figure 22: Harmony Note, Chord and Key ClaSsesccoceieiinereieieieesieeeeeeens 91
Figure 23: Semantic model CAptUec.coviiiiiiicce e 96
Figure 24: Patterns within the Harmony ontology...........cccocoveiicieiicicic e, 102
Figure 25: Mock-up of a Visual Query BUIlder..........ccovviieiiniiiiniee e 104
Figure 26: Examples from Figure 24 as complete graphsccccooevvieieiicneneennn 109
Figure 27: Alternative representations of the same chordcccccooveviiviiiiiennn, 114
Figure 28: Kern eNCOTINGccooiiiiiriiiiieie e 142
Figure 29: MuseData BNCOUINGcverurieieiieiieieieise ettt 143
FIQUIE 30: IMUSICXIMIL ...ttt 144

List of Tables

Table 1: MIDI Topic Space and EVENt CONENTS.........ccocvevieieeiiiieece e 34
Table 2: Spiral Array index VErsus NOE NAME...........ccveveieiiieieeieie e se e sre e sre e 56
Table 3: Test results for Pitch Spelling Application...........ccoccvvvviiiiiiiiiiiniercsee 65
Table 4: Section of Solomon's table of Pitch Class Sets...........ccoceieiiieiiiiiiiiie 75
Table 5: Base Temporal Relationshipscocoiiiieiiiieieieceesee e 85

Acknowledgements

I would like to thank my supervisor Prof. Dave De Roure for his supervision,
encouragement and direction over the last seven years. Other members of staff at
Southampton University | have worked with have always been encouraging and

supportive of my endeavours.

I’d also like to thank colleagues and friends at IBM Hursley for their support,
advice and comments whilst my research progressed. In particular Colin Bird for his

unofficial mentoring.

Finally, my thanks go to my wife Sharon and children Sophie and Will who have
put up with my decision to start a PhD in the first place. The incentive of becoming a
Doctor before one’s children is a powerful one; particularly when one of them is

studying medicine.

Chapter 1 Introduction

Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

T. S. Eliot. “The Rock”, Faber and Faber, 1934

1.1 Motivation

Writing in 1934, T. S. Eliot could not have anticipated the debates triggered by
his poem “The Rock” that have taken place in the Information Science research
community. In the lines quoted above, he links wisdom to knowledge and knowledge to
information with the suggestion that they are interdependent and interlinked. However,
in spite of the substantial research activities that have taken place in the intervening
years, the terms wisdom, knowledge and information and the relationships between

them are still unclear and often misunderstood.

Information enrichment, or the extraction of information and knowledge from
low level data, is a skill that musicians and musicologists apply to the performance and
analysis of music; musicians to inform their performance and musicologists to
understand the structure of music. In this thesis, | intend to investigate the creation of
knowledge in the form of a semantic model of musical harmony from low level data
using MIDI commands streamed during a musical performance either live or replayed
from a stored file. This motivation leads to the application of algorithmic, semantic and
messaging technologies in the enrichment of musical data in the form of MIDI message
streams into a semantic representation of musical knowledge in the form of an ontology

that models harmonic structure.

Real-time in the context of this thesis means that there is minimal delay
introduced by processing applications within the proposed framework. Unlike
conventional music analysis applications which operate on a batch processing principle,
the application architecture developed in this thesis responds to events propagated
throughout a network by a messaging system. These events trigger analysis
applications which in turn contribute other events. The structure of the analysis

algorithms is such that any processing delays are minimal.

Introducing an event messaging infrastructure to interconnect algorithmic and
semantic software applications within a network leads to a number of advanced

motivational use cases:

1. A shared knowledge of the structure of a performance amongst collaborating
performers interconnected via a network. Performers may include both human and
software agents that improvise in a particular musical style. This leads to the
concept of a musical Turing test to identify which performers are human and which
are machines.

2. A more substantial set of encoded music information retrieval (MIR) datasets for
research in musicology. Currently, these datasets are created manually by expert
musical researchers. If the automated generation of harmonic structure from
performance data is possible, then the creation of these datasets becomes easier.

3. Note extraction from digital audio, though not within the scope of this thesis, would
allow additional publishing applications to contribute to the framework. This then
makes audio files available as sources of data for generating harmonic structural

descriptions.

A former colleague at IBM who was working with digital library technologies in
the 1980s added an extra line to the T. S. Eliot poem:

Where is the information we have lost in the library?

But that’s another story.

10

1.2 Contributions

This thesis proposes an analysis framework based on publish/subscribe
messaging techniques commonly found in business quality messaging systems. The
musical events discussed in this thesis form a particular class of message event that
may be processed and analysed using applications built onto such a distributed

framework.

In particular, the research contributions developed in this thesis are:

1. The use of publish/subscribe messaging technology to create a framework where
independent, collaborating applications can be developed for the real-time analysis
of musical events.

2. An implementation of an event based version of Chew’s spiral array note naming
algorithm with improved results over those previously published.

3. A musical key and chord extraction algorithm using sampling based on metrical
analysis.

4. An ontology is presented that models musical harmony.

5. A visual pattern query paradigm is presented that allows users to construct queries
that may be applied to both relational and semantic models of the harmonic

structure.

1.3 Thesis Structure

Following this chapter, chapter 2 provides an overview of background work in
information theory and musical cognition. Chapter 3 introduces the publish/subscribe
messaging model and compares it with other messaging patterns. This is followed by
example applications of the model to MIDI command streams. Chapter 4 reviews
current research in note naming followed by the development of an event based
implementation of Chew’s spiral array note naming algorithm. Chapter 5 reviews key,
chord and meter extraction research followed by their application in a chord and key
extraction component of the framework. Chapter 6 describes the development of the
Harmony ontology for representing musical harmonic structure. Chapter 7 discusses the

navigation of the harmonic structure model using a visual pattern query which can be

11

transformed to either a relational or semantic database representation of the model.

Chapter 8 provides conclusions and identifies areas for further research.

1.4 Declaration

I declare that this thesis and the work presented in the thesis are both my own, and have

been generated by me as the result of my own original research. | confirm that:

e this work was done wholly or mainly while in candidature for a research degree at
this University;

e where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated:;

e where | have consulted the published work of others, this is always clearly
attributed,

e where | have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

e | have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, | have made
clear exactly what was done by others and what | have contributed myself;

e parts of this work have been published as:

o Ibbotson, J., DeRoure D. (2004). Record and Reuse using Publish/Subscribe
Messaging. Equator Record and Reuse Workshop, February 2004.
www.crg.cs.nott.ac.uk/~sdb/r&rworkshop/ibbotson.pdf

o Ibbotson, J. (2004). Using publish/subscribe messaging to distribute MIDI
commands, December 2004. Available from
http://www.ibm.com/developerworks/websphere/library/techarticles/0412_i
bbotson/0412_ibbotson.html

12

Chapter 2 Background

2.1 Introduction

This chapter discusses background research work related to the topic of this
thesis. It starts with a discussion of the DIKW hierarchy; a “philosophical framework”
for information enrichment which sets the scene for the work in this thesis. Finally, it
reviews issues related to musical cognition; in particular its position as a branch of
cognitive psychology which leads to the identification of characteristics that are

important in the human brain’s perception and understanding of music.

This chapter provides an overview of background research work. Subsequent
chapters will provide a more detailed review of current research work related to the

components of the architectural framework described in this thesis.

2.2 The DIKW Hierarchy

Recent research into the meaning of data, information, knowledge and wisdom is
based on Russell Ackoff’s Presidential address to the ISGSR in June 1988 [Ackoff89]
in which he discusses wisdom and what an information system that could generate it
would look like. He describes wisdom as being located at the top of a hierarchy of types
of content of the human mind; descending from wisdom, are understanding, knowledge,
information and at the bottom, data. He observes that each level in the hierarchy
includes the categories that lie below it. For example, there can be no wisdom without
understanding and no understanding without knowledge. Ackoff provides the following

definitions of data, information, knowledge and wisdom:

13

Data are symbols that represent properties of objects, events and their
environmental context. They are products of observation or sensing but are of no use
until they are in a useable or relevant form; the difference between data and
information is functional not structural.

Information is inferred from data and is contained in descriptions and answers to
questions that begin with such words as who, what, when and how many.

Knowledge is know-how and makes possible the transformation of information
into instructions. It is obtained either by transmission from another who has it, by
instruction, or by extracting it from experience.

Wisdom is the ability to increase effectiveness by adding value through the
mental function we call judgement. The ethical and aesthetic values that this implies

are inherent to humans and are unique and personal.

In parallel with the definition of wisdom, Ackoff defines intelligence as the
ability to increase effectiveness. Note that there seems to be no consensus on whether
wisdom and intelligence are synonymous. In Turing’s classic paper on machine
intelligence [Turing50], he refers to the Argument from Consciousness proposed by

Professor Jefferson from his 1949 Lister Oration:

"Not until a machine can write a Sonnet or compose a concerto because of
thoughts and emotions felt, and not by the chance fall of symbols, could we agree that
machine equals brain-that is, not only write it but know that it had written it. No
mechanism could feel (and not merely artificially signal, an easy contrivance) pleasure
at its successes, grief when its valves fuse, be warmed by flattery, be made miserable by
its mistakes, be charmed by sex, be angry or depressed when it cannot get what it

wants."

The aesthetic nature of the quotation from Lister would seem to be more closely

linked to Ackoff’s definition of wisdom rather than Turing’s views on intelligence.
In conclusion, Ackoff believes that wisdom is grounded on ethical and aesthetic

values that are uniquely human and lead to the pursuit of ideals; characteristics that

differentiate man from machines. Therefore he concludes that machine automata will

14

never be able to generate wisdom; though the creation of actionable information or

knowledge by machines is a realistic expectation.

Awad and Ghaziri [Awad04] amongst others consider the inclusion of
understanding in Ackoff’s hierarchy as un-necessary. The Data, Information,
Knowledge, Wisdom (DIKW) hierarchy is illustrated as a pyramid in Figure 1 with
data as the base. There is a common view that the higher elements in the hierarchy can
be explained in terms of the lower elements by identifying appropriate transformation
processes. A research challenge is still to understand and explain how these
transformations can be described. Rowley [Rowley07] in her review of representations
of the DIKW hierarchy suggests that an alternative representation would be to invert
the pyramid illustrating that data becomes increasingly more concentrated and

ultimately becomes wisdom.

Non-Algorithmic Non-Programmable

Wisdom

Knowledge
(actionable information)

Information
(data “in-formation”)

Data

Algorithmic Programmable

(Awad and Ghaziri)

Figure 1: The DIKW Hierarchy

Bellinger et al [Bellinger07] suggest that understanding is not a separate level as
proposed by Ackoff but is the process of transformation between layers of the DIKW
hierarchy. They suggest that transforming data to information involves an
understanding of the relationships that exist in the data. Similarly, knowledge is an
understanding of the patterns that exist in information and wisdom is an understanding
of the principles that exist in knowledge. Figure 2 illustrates Bellinger’s proposition

15

that understanding increases as the connectedness between objects in the hierarchy
increases. It also includes Rowley’s categorization of information system types that
correspond to levels in the DIKW hierarchy.

connectedness wisdom Expert Systems Semantic

A

1
1
1
1
1
understanding I
principles 1
1
1
Decision Support
Systems
A

knowledge

1
1
1
understanding :
patterns |
1
1
Management Information
Systems
A

information

relationships

1

I

1

understanding 1
1

1

1

Transaction Processing Algorithmic
Systems

data understanding

(Bellinger, Castro and Mills) (Rowley)

Figure 2: Transformation through Understanding

It is clear from this discussion of the DIKW hierarchy that the nature of the
transformations moving up the hierarchy changes. Transformation of data into
information is typically accomplished by algorithmic processing whereas the creation
of knowledge is achieved by mapping facts into a model that represents the domain of
knowledge being considered. This approach is becoming increasingly popular with the
development of Semantic Web technologies. Therefore we can assume a spectrum of
transformation techniques from the purely algorithmic to the purely semantic as we

ascend the hierarchy.

2.3 Musical Cognition

Hargreaves [Hargreaves86] positions musical cognition as a branch of cognitive
psychology. He defines this as:

16

The emphasis of cognitive psychology is upon the internalised rules, operations and
strategies that people employ in intelligent behaviour just as much as on the external

behavioural manifestations of these processes.

Musical cognition has been likened to information theory where music is
compared to the transmitted message that has some degree of uncertainty. In cases of
“simple” music, there is little uncertainty and too much redundancy. This type of music
is perceived as uninteresting. In cases of complex or randomly generated music with a

large amount of uncertainty, the listener perceives it as incomprehensible.

The methodology of cognitive psychology (and therefore musical cognition) is
primarily experimental. Subjects are provided with some stimuli and then asked to
perform a task or provide a report in response to the stimuli. The psychological
processes that take place in the set of subjects are then inferred from the experimental
results. Cognitive processes established through experimental procedures may then be
modelled computationally. Modelling may be at the neurological level where the
biological processes are mimicked in software. Alternatively, higher-level abstract
computational models of behaviour may be developed which ignore the detailed
neurological processes. Assuming the behavioural models exhibit the same response to

stimuli as the neurological models or experimental results, this is a valid approach.

2.3.1 Competence, Knowledge and Language

Musical competence combines knowledge of its mechanisms together with the

language of expression. Brinner [Brinner95] defines musical competence as:

Individualised mastery of the array of interrelated skills and knowledge that is
required of musicians within a particular tradition or musical community and is
acquired and developed in response to and in accordance with the demands and

possibilities of general and specific cultural, social and musical conditions

Brinner writes as an ethnomusicologist, so his definition of musical competence
embraces anthropological context in addition to purely technical skills. He classifies the

knowledge required for musical competence into two forms: declarative and

17

procedural. Declarative knowledge, or “Know that”, consists of hard musical facts such
as tuning and scale structure whereas procedural, or “Know how”, consists of the
knowledge that lets a musician apply declarative knowledge in a particular musical
context. Examples of these knowledge classifications are:

e Procedural
1. Sound Quality — vocal and instrumental techniques
2. Sound Patterns - structure
3. Social, religious, ritual performance contexts
4. Repertoire and ensemble context, rules of interaction
5. Meaning and symbolism
6. Symbolic representation
7. Transformation e.g. transposition, augmentation, variation
e Declarative
1. Sound Quality - loudness, timbre, manner of production, and pitch
2. Sound Patterns - brief ornaments, stock phrases to complete pieces

3. Orientation - tonal centre, chord progressions, time line, metrical cycle

There is also a view [Sloboda85] that similarities exist between musical structure
and natural language. Noam Chomsky, whose work in the 1960s formed the foundation
of computational linguistics, believed that all natural languages have the same inherent
structure and that understanding this structure informed us about the nature of human
intellect. In contrast, Heinrich Schenker an early 20™ century musicologist believed that
all good musical compositions have the same basic structures and that this structure
informed us about the nature of musical intuition. His work became known as
Schenkerian Analysis, which provided a mathematical technique for identifying
fundamental structures in music through a fusion of harmony and counterpoint.

Apparently, there is no reference to Schenker within Chomsky’s published work.

Sloboda [Sloboda85] also comments that we cannot assume that music and

language can be treated in the same way; that music is not just another form of natural

18

language. The analogies between them can be exploited in metaphysical ways such as
“Music is the language of the emotions”, which is not supportable from a scientific
viewpoint. He concludes that the analogy is something that can be evaluated, but not
assumed. A reasonable conclusion is that there is no problem in adopting techniques
developed by language researchers for use in analysing music. If so, techniques such as
finite state machines and automata developed for natural language analysis and

processing may be investigated for their applicability to music.

The cognitive abilities of the human brain provide clues as to how human

musicians understand musical performances.

2.3.2 Musical Cognition

Through research in musical cognition, Dowling [Dowling86] concludes that
there are four psychological qualities of sounds that are especially important in music:
pitch, duration, loudness and timbre. These fundamental qualities may be combined to
form second-order qualities such as rhythm (a combination of duration and loudness).
Also, connecting with the views of Schenker on the universality of music, he identifies

three underlying properties that are common to all musical traditions:

1. Discrete pitch intervals together with the concept of harmonic tonal centre
2. Octave equivalence

3. The presence of four to seven focal pitches in an octave

These properties and assumptions can form the motivational basis of a framework
for the analysis of musical event streams that includes the creation of a description of

the music’s harmonic structure..

2.3.3 Musical Analysis

Lerdahl and Jackendoff [Lerdahl83] proposed a set of preference rules for music
in their Generative Theory of Tonal Music (GTTM). Preference rules are criteria for
forming a preferred analysis of some input that may be static or dynamic. During the

analysis, many possible interpretations are considered and each preference rule

19

expresses an opinion as to how well it is satisfied by a given interpretation. The

opinions of each rule are then combined to form a preferred analysis.

000
000
000
000
Oo
Oo
[Jo
O

o] O O
© O O0O0 [Joo o
Similarity by size Similarity by shape
OOOCCO
000000,
OOOCCO
000000,
Proximity — two Continuity

Groups of two rows

Figure 3 Gestalt rules of perception

Preference rules owe some of their ancestry to the Gestalt rules of perception first
proposed by researchers in psychology in the 1920s. The Gestalt rules of particular
relevance are the similarity, proximity and continuity rules illustrated in Figure 3. The
similarity rule suggests that we tend to group things together that are similar. For
example given a set of geometric shapes, we would form groups of similar shapes
(squares, circles, triangles etc) or group similar shapes by their size. The proximity rule
suggests we group things that are close together (either in space or some other
dimension). Finally the continuity rule states that elements that follow each other in a
linear pattern can be grouped together. For example, we perceive an X as two crossing
lines rather than as a V over an inverted V. These rules are particularly useful when

segmenting a musical performance into phrases and other structural sections.

In their book, Lerdahl and Jackendoff proposed a set of structures and well-
formedness rules that identified legal structures. However, whilst proposing the
structures and rules, they offered no implementations that could be tested. Temperley
[Temperley01] however, has taken this work further by quantifying and implementing
a set of rules and expanding their applicability from Western Classical music to include
Rock and World music. Temperley proposes a set of six preference rule systems that

20

match and extend the fundamental psychological properties identified by Dowling.

These rule systems are:

1. Metrical Structure

2. Phrase Structure

3. Contrapuntal Structure

4. Tonal-Pitch-Class Structure
5. Harmonic Structure

6. Key Structure

Implementations of each of the rule based analysis components are available
from his Website. Temperley’s implementation of the rule systems makes use of
dynamic programming techniques. In dynamic programming, rather than evaluating all
possible interpretations then backtracking to evaluate the most optimal, the “best-so-

far” solution is evaluated and retained at each step in a forward direction. What
constitutes a “best-so-far” solution is established by the set of preference rules. Once

the input has been completely traversed, the final analysis or solution is complete.

The prime motivation for Temperley’s work [TemperleyO1] and that of others
[Huron97] is musicological analysis. For this, they have access to the complete piece of
music in some encoded form. This approach is not applicable for real-time analysis of
musical events since in this case at a given point in time, only historical data is

available.

Chew [Chew00] identifies computational music analysis as an interdisciplinary
study that links human perception and cognition, mathematical modelling and
computation with music theory. She identifies the need to determine the tonal centres
and their progression as of critical importance in the analysis and perception of music
since this forms the basis of an understanding of harmonic structure. Chew’s model of
tonal perception is grounded in the work of Temperley and Krumhansl [Krumhans|78]

which themselves are grounded in cognitive psychology.

21

2.3.4 Discussion

For a real-time analytical framework, analysis concentrates on classification in
Brinner’s declarative domain. Temperley’s work proposes a set of six rule systems that
provide techniques for extracting Metrical, Phrase, Contrapuntal, Tonal-Pitch-Class,
Harmonic and Key Structures from music. His rule sets provide a realisation of the
rules proposed, but not implemented, by Lerdahl and Jackendoff in their Generative
Theory of Tonal Music.

Chew has developed this further by building on the work of Temperley and
Krumhansl to provide a mathematical model of musical tonality that can form the basis
of note identification and subsequent harmonic analysis. Her work and its development
forms an important part of the real-time framework proposed by this thesis and will be

discussed in more detail in later chapters.

22

Chapter 3 Publish/Subscribe Messaging

3.1 Introduction

This chapter describes the Publish/Subscribe messaging model (Pub/Sub) which
underpins the framework described in this thesis. It first describes the messaging
pattern which allows communication between applications to be decoupled in time,
space and synchronisation. This is then followed by a comparison with other messaging
patterns and descriptions of the basic publish and subscribe applications developed; file

publishers, MIDI input and output applications.

3.2 The Publish/Subscribe Messaging Pattern

The pub/sub messaging pattern is one that is widely used in business event
messaging since it provides a loosely coupled form of interaction that can be scaled to
large numbers of applications distributed throughout a network. In this pattern,
subscribing applications express their interest in a set of events using topics within a
shared namespace and are notified of any event, generated by a publisher, which
matches their registered interest. Events are asynchronously propagated to all
subscribers that registered interest in the type(s) of event. The advantage of this type of
interaction style lies in the decoupling in space, time and synchronisation between the

publishing and subscribing applications.

The pub/sub pattern is illustrated in Figure 4. The pattern relies on an event
notification service (otherwise known as a publish/subscribe broker) which provides
the storage and management of subscriptions and the efficient delivery of events to

subscribers.

23

Event Notification Service -
(Publish/Subscribe Broker) / Subscriber
—— noty0
Subscription -
Management Subscriber
notify()

unsubscribe() "
Subscriber
] notify0 notify0

subscribe0 Subscriber

notify()

Subscriber
notify()

k Subscriber
notify()

Figure 4. Components of the Publish/Subscribe Messaging Model

In the simple (or topic based) model, the broker acts as a neutral intermediary
between publishers, acting as producers of events, and subscribers acting as consumers
of events. Subscribers register their interest in particular sets of events by invoking a
subscribe() operation on the event service providing a set of topics within a global
namespace that identifies the events they are interested in. This subscription
information is stored by the event service and used to distribute events received by the
broker from publishers. A subscription is terminated by a subscriber invoking the

unsubscribe() operation on the event service.

To generate events, a publishing application calls a publish() operation for an
event. The event consists of two parts; message content and an associated topic
contained within the global namespace. The publication notifies the event service that
an event is available which it then propagates to all relevant subscribers that have
registered an interest in events with the associated topic. The event service is acting as
a proxy for the set of subscribers. Every subscriber will be notified of every event

conforming to its interest.

The introduction of an event service between publishers and subscribers provides
decoupling between publishers and subscribers that can be described in three

dimensions and is illustrated in the Figure 5.

24

) Subscriber
notify()) , Broker Subscriber
notify() publish()
@ [1 notify() X [notifyo
Subscriber
Broker | mtio Supscrlber
) —& notify()
X notify()

notify()
(a) Decoupling in space (b) Decoupling in time

awn

Broker

i)

Subscriber
notify()

Publishers and Subscribers are not blocked
whilst publishing or being notified

(c) Decoupling in synchronisation

Figure 5: Decoupling introduced by the Publish/Subscribe messaging model

Decoupling in space. Publishers and subscribers do not need to know that each
other exists. The publishers publish events to the event service and the subscribers
receive the events indirectly through the event service. Publishers do not hold
references to the subscribers and do not know how many subscribers are participating
in the interaction. Conversely, subscribers do not hold references to the publishers, nor

do they know how many of them are participating in the interaction.

Decoupling in time. Publishers and subscribers do not need to be actively
participating in an interaction at the same time. In particular, a publisher may publish
events whilst subscribers are disconnected from the network. Conversely, a subscriber
may be notified of an event whilst the publisher of that event is disconnected. The
event is persisted by the event service and only forwarded to subscribers once they are
connected to the broker. The sophistication of this store-and-forward functionality will

vary depending on the implementation of the event service.

Decoupling in synchronisation. Publishers are not blocked whilst producing
events and subscribers can be asynchronously notified (through a callback mechanism)
of the availability of an event whilst performing other concurrent activities. The
production and consumption of events do not happen within the main control flow of

publishing and subscribing applications which results in a non-blocking, asynchronous

25

communication model between publishers and subscribers. This decoupling increases
the scalability of the messaging model by removing all dependencies between the
participating publishers and subscribers and reduces the need for coordination and

synchronisation between them.

Decoupling of publishers and subscribers results in a communications
infrastructure that is well adapted to distributed environments that are asynchronous in
nature such as mobile environments [Huang01] and wireless based sensor networks

[BergamaschiO7].

3.3 Other Messaging Patterns

This section reviews other communications patterns; in particular, message
passing, remote procedure calls (RPC), notifications, shared spaces and message
queuing. From this review, it can be seen that they do not provide fully decoupled
communication between participating applications of the kind provided by the

publish/subscribe messaging model.
3.3.1 Message Passing

Message passing is a primitive communication pattern in which two participants
(a sender and a receiver) communicate by sending messages to each other. This pattern
is rarely used for developing distributed applications since physical addressing, data
marshalling and flow control are made visible to the application layer. In this pattern,
both sender and receiver are coupled in space and time since they must both be active
for the communication to take place and the recipient of the message is known to the

sender.
3.3.2 Remote Procedure Calls

Remote Procedure Calls (RPC) are a widely used pattern in distributed systems.
They were first proposed for procedural languages [Birrell83] but have subsequently
been widely used for remote method invocations for object-oriented systems. For
example, they have formed the basis of the Java Remote Method Invocation
[Sun00],CORBA [OMGO02] and Microsoft’s DCOM [Horstmann97].

26

RPCs make remote interactions between applications appear in the same way as
local interactions. Remote invocation of this kind cannot, however be made completely
transparent to the application because it can give rise to potential failures such as in the
communications layer that have to be handled explicitly by the application. Unlike the
publish/subscribe model, RPCs introduce strong coupling in space, time and
synchronisation between the participating applications; the invoking object has to
maintain a reference the remote object and the interaction is synchronous with the
invoking object being blocked for the duration of the interaction. Attempts have been
made (particularly with CORBA) to introduce asynchronous remote invocation but this
has led to invocations with weak reliability guarantees because the sender does not
receive any success or failure response to the invocation. This is often referred to as a

fire-and-forget interaction.

3.3.3 Naotifications

To achieve decoupling in synchronisation, a synchronous remote method
invocation can be split into two asynchronous invocations. In this pattern, the sender
invokes the receiver with the invocation arguments and a reference to a callback to
itself. The receiver then invokes the original sender via its referenced callback. This
pattern can be extended to a one-to-many pattern by the sender invoking many
receivers each of which responds via a separate callback. Notification based
interactions of this kind are often used to ensure the consistency of web caches where
proxies are notified of any changes that occur in content on a web server. This
implements a limited type of publish/subscribe mode, where the web proxies act as
subscribers and the web server acts as a publisher. However, in this case, the publisher
directly manages a set of subscriptions and is also responsible for sending events which
removes the decoupling in space and time. In addition, the publisher is responsible for

managing communications which limits the scalability for this system pattern.

3.3.4 Shared Spaces

Shared spaces is a development of the distributed shared memory model
proposed in [Li89]. In this model, distributed applications have a common view of a

shared memory space with synchronisation and communication between participating

27

applications taking place through operations on the shared data. Linda [Gelernter85]
introduced the concept of tuple spaces which provided an abstraction for accessing
shared memory. A tuple space is a collection of ordered tuples accessible to
applications within a distributed system. Communication between applications takes

place through the insertion and removal of tuples from the shared space.

The shared space pattern provides time and space decoupling in that the
producers and consumers of tuples are anonymous with respect to each other. However,
the model is not decoupled with respect to synchronisation since consumers remove
tuples from the shared space in a synchronous manner. To compensate for this
deficiency, some applications of the shared spaces model such as JavaSpaces [Sun02]
and TSpaces [Lehman99] extend the tuple space model with asynchronous

notifications.

3.3.5 Message Queuing

Message queuing is often used to describe a family of commercial products
including those from IBM [IBM95], Digital [DEC94] and Oracle [Oracle02]. Message
queuing systems usually include some form of pub/sub type interaction and are
generically referred to Message Oriented Middleware (MOM). In message queuing,
messages are stored in a First In First Out (FIFO) queue. Producers append messages
asynchronously to the queue while consumers de-queue messages from the front of the
queue. Message queues have many of the interaction properties of tuple spaces in that
queues can be viewed as global spaces which are populated by messages from
producers. Functionally, commercial queuing systems provide transactional, timing,
ordering and reliable delivery guarantees which are not normally seen as properties of

tuple spaces.

As with tuple spaces, producers and consumers are decoupled in both time and
space in message queuing systems. However, message queues do not provide
synchronisation decoupling since consumers remove messages from the queue
synchronously. This lack of synchronisation decoupling is further reinforced when
queuing is being performed as part of a distributed transaction. Some commercial

systems do provide support for asynchronous message delivery but these mechanisms

28

do not scale well to large distributed systems because of the additional interactions

required to maintain transactional, timing and ordering guarantees.

3.3.6 Summary

In summary, the more traditional types of message passing do not have the same
degree of flexibility and scalability as the publish/subscribe messaging model. This is
due to their limited support for decoupling of producers and consumers in time, space

and synchronisation.

3.4 Variants of the Publish/Subscribe Model

Subscribing applications are usually selective and only interested in individual or
limited sets of events. Variants of the publish/subscribe model have emerged that
provide alternative ways of specifying the events of interest when applications
subscribe to the event service. The two major variants are topic and content based

subscriptions.

3.4.1 Topic Based Publish/Subscribe

The earliest forms of publish/subscribe messaging were based on the notion of
topics or subjects identified as a set of keywords associated with the event. Publishers
and subscribers can publish events and subscribe to individual topics which are
identified by the keywords. This variant of the publish/subscribe model has been
widely exploited in commercial products including Java [Altherr99], Tibco [TIBCO99]

and more recently, the Java Messaging Service [JIMS02].

Practically, topic based publish/subscribe systems provide a programming model
which maps individual topics into separate communications channels. The interfaces
are similar to those for the event service with the topic being provided as an argument
to the publish() method (in the case of publishers) or subscribe() (in the case of
subscribers). The topic abstraction usually allows platform independence by relying on
strings to identify the topics. Although a simple type, strings are used to group topics
into hierarchies as a further improvement to the variant. For example, a MIDI short

command Note On event may be identified using the topic Midi/Short/NoteOn to

29

differentiate it from a MIDI meta event such as a track name using the topic
Midi/Meta/TrackName. Wildcards may be used when subscribing to topics so that for
example, an application that only processes MIDI short commands can subscribe to the
topic Midi/Short/+ where + is a wildcard character. In this case, all sub-topics in the

Midi/Short hierarchy will be subscribed to.

The publish/subscribe broker used in the framework described in this thesis is an
example of this variant and more examples will be provided in later sections and

chapters.

3.4.2 Content Based Publish/Subscribe

In a publish/subscribe system, events are expressed as messages which have two
parts; content and an associated topic. The previous section has described a variant
which uses topics alone as the basis for identifying events. To overcome this limited
expressiveness, the content based [Rosenblum97] variant introduces a subscription
scheme based on the actual content of the event messages; the properties of the events
themselves rather than an externally assigned topic. These properties may be internal
elements of data structures as in Gryphon [Banavar99] or meta-data associated with

events as in the Java Messaging Service [Hapner02].

In this variant, subscribers specify filters using a subscription language which
define constraints that identify valid events. Constraints can be logically combined to
form more complex filter patterns. These patterns are used to identify sets of events of
interest for a given subscriber and propagate them accordingly. The patterns may be
specified as strings using some subscription grammar such as SQL or a proprietary

language, a template matching object or as an executable code module.

Content-based publish/subscribe is widely used in commercial systems where the
set of possible events are tightly designed and managed. The structure of an event
message and its contents are well known and available to application developers in
some standardised form such as XML Schemas through library systems. The
complexity of the event service supporting a content-based system is greater since it

now has the overhead of processing the content of each event message to apply the

30

subscription filter. This overhead is deemed acceptable when balanced against the

increased flexibility content-based systems provide for commercial infrastructures.

3.5 A Real-Time Analysis Framework

Publishers Subscribers
MIDI Input (3)) MIDI Output (3)
\ — e - -3
e [Sdemess
Visualisation:
MIDI File (3) 7Spiral Array
OPND File (3) Mind Map
Timeline

Publish/Subscribe
Messaging (3) ’

Database Capture:
>Algorithmic Results (4)

Harmonic Structure (5,6)

Pitch Spelling (4)
Beat, Chord, Key Extraction (5)

Numbers in () refer to
chapters where these
Are discussed

Publisher/Subscriber
Query (7)

Figure 6: A real-time analysis framework

Using a publish/subscribe messaging infrastructure together with distributed
applications, the kind of framework illustrated in Figure 6 becomes possible. MIDI
input devices such as keyboards may publish events as a performance takes place. In
addition, specialised file publishers can “play” MIDI or other formatted events into the
framework either in real-time (the events are published at their correct timestamp) or

with accelerated time for testing purposes.

Analysis applications are typically both subscribers and publishers. Applications
for pitch spelling and beat, chord and key extraction will be demonstrated, but

alternative algorithms may be implemented that contribute to the framework.

Subscribers to the framework may include MIDI output devices, database capture
and visualisation applications. MIDI output will be via a subscribing application that
transorms the event into commands output via a conventional MIDI interface.
Visualisation applications may, for example, include specific widgets for representation

31

of the spiral array pitch spelling algorithm, modified mind maps that show published
events within a subset of the global topic space and timeline widgets to illustrate the
relationship between objects within a Harmony ontology. The third class of
applications include the persisting of events within databases; these may be either
conventional relational databases or semantic databases or triple stores. With persisted
data, opportunities exist for further navigation and enrichment of the captured events
together with augmented visualisation tools to allow users to interact more fully with

musical events captured from the framework.

These types of applications are described in the following chapters.

3.6 The MQTT Broker

The publish/subscribe broker used in the framework described in this thesis is the
IBM Lotus Expeditor microbroker which supports the MQ Telemetry Transport
(MQTT) publish/subscribe protocol. Developed by colleagues [O'Connell07] at IBM
and used within UK e-Science projects [Robinson06], this broker is a small footprint
(less than 2MB of Java code) and is intended to be deployed on small devices such as
PDAs which may be communicating over low-bandwidth networks such as satellite

communications links.

In addition to providing implementations of the abstract methods described in
previous sections, the microbroker also supports different qualities of delivery service

between itself and connected applications. These are:

At most once delivery (QoS 0). Messages are delivered according to the best
efforts of the underlying TCP/IP network. No response is expected. No retry semantics
are defined in the protocol. Consequently, the message will arrive at the destination

broker either not at all or once. This is also known as fire and forget.

At least once delivery (QoS 1). The arrival of a QoS 1 message at the broker,
including its successful placement in a persistent store is acknowledged. In the event of
identifiable failure of the communications link, or of the sending device, or after some

period of time of non-receipt of the acknowledgement message, the sender will resend

32

a duplicate message. Consequently, the message is certain to arrive, but could arrive

more than once.

Exactly once delivery (QoS 2). For QoS 2, additional protocol flows are
employed above QoS 1 to ensure that duplicate messages are not delivered to the
receiving application. This is the highest level of service, and is used when duplicate
messages are undesirable. Of course, there is a price to be paid in terms of network

traffic, but often this is acceptable because of the importance of the message content.

The next sub-sections describe aspects of the microbroker use of relevance to the

framework described in this thesis.

3.6.1 The Framework Topic Space

All topics used within the framework are defined as Java Strings within the
EventConstants class. For example, the definitions for MIDI short events are shown in
the following code segment using the wildcard character as shorthand when subscribing

to all MIDI short events:

// Midi Short Events
String shortTopic
String noteOnTopic
String noteOffTopic
String chanPressTopic
String cntlChangeTopic
String pitchBendTopic
String pgmChangeTopic
String afterTouchTopic
String sysMessageTopic

"Midi/Short/+";
"Midi/Short/NoteOn"';
"Midi/Short/NoteOff";
"Midi/Short/ChannelPressure';
"Midi/Short/ControlChange";
"Midi/Short/PitchBendChange";
"Midi/Short/ProgramChange";
"Midi/Short/AfterTouch";
"Midi/Short/SystemMessage"';

The following table lists all MIDI topics within the framework together with the
parameters used to construct the event message content to be published. A full set of

topics and event contents can be found in Appendix A.

Topic Event Contents Description
Midi/Short/NoteOn Timestamp, Channel, Note, Velocity Note depressed
Midi/Short/NoteOff Timestamp, Channel, Note, Velocity Note released
Midi/Short/PolyKeyPressure Timestamp, Channel, Note, Pressure Note aftertouch — pressing a note after
“bottoming out”
Midi/Short/ControlChange Timestamp, Channel, Controller, Value Change in a controller value
Midi/Short/ProgramChange Timestamp, Channel, Program (Patch) Change to a program patch number
Midi/Short/KeyPressure Timestamp, Channel, Pressure Note aftertouch — pressing a note after
“bottoming out”
Midi/Short/PitchWheelChange | Timestamp, Channel, Value Change in pitch wheel setting
Midi/Short/SystemMessage Timestamp, Channel, Message Text System message
Midi/Meta/SeqNumber Timestamp, Sequence Number Change in a Midi sequence number
Midi/Meta/Text Timestamp, Text String Arbitrary text event

33

Midi/Meta/Copyright

Timestamp, Copyright Text String

Copyright text

Midi/Meta/TrackName Timestamp, Track Name String Track name
Midi/Meta/InstrumentName Timestamp, Instrument Name String Instrument name
Midi/Meta/Lyric Timestamp, Lyric String Lyric
Midi/Meta/Marker Timestamp, Marker String Marker
Midi/Meta/CuePoint Timestamp, CuePoint String Cue point

Midi/Meta/ChannelPrefix

Timestamp, Value

Channel prefix

Midi/Meta/EndOfTrack

Timestamp, Empty

The end of a Midi track

Midi/Meta/Tempo

Timestamp, Value

Time in microseconds per beat

Midi/Meta/SMPTE

Timestamp, Value[0..4]

SMPTE time information

Midi/Meta/TimeSig

Timestamp, Value[0..3]

Time signature and other timing information

Midi/Meta/KeySig

Timestamp, Value

Key signature including Major/Minor

Midi/Meta/Vendor

Timestamp, String

Vendor specific information

Midi/Meta/UnknownMeta

Timestamp, String

Unknown Meta Event

Midi/Sysex/SysExcl

Timestamp, Value

Extension and manufacturer specific info

Midi/Sysex/SysSpExcl

Timestamp, Value

Extension and manufacturer specific info

3.6.2 Connecting to the Broker

Publishing and subscribing applications connect to the MQTT broker using the
BrokerConnection class which implements an MgttCallback interface. The constructor
to this class includes the TCP/IP address (String) and port number (int) of the broker,
the name of the connecting publishing or subscribing client application (String), if a
subscriber, then the set of topics to subscribe to (String []) and the name of a Java
queue to that provides an asynchronous connection between the client and its
associated processing component. Typically, this queue is a Java BlockingQueue typed

to enqueue PubSubEvents. The interactions between the components of a generic client

application are illustrated in Figure 7.

34

Table 1: MIDI Topic Space and Event contents

Broker

— - Subscribe - creates
<— BrokerConnection

y
QueueMessageHandler |

ubSubEvents

Application

(main)
BlockingQueue
i runs

1 Processor [€

Figure 7: Generic application structure

When a client application instantiates a BrokerConnection, it connects to the
broker which may be on a local or remote machine and subscribes to a set of topics.
The broker then forwards all events that match the subscribed topic to the client. All
events generated within the framework have a super-class of PubSubEvent from which
all events are sub-classed. The BrokerConnection callback invokes the
QueueMessageHandler class which casts the PubSubEvent into the appropriate sub-
class based on the received topic. For example, a received PubSubEvent with a topic of
EventConstants.noteOnTopic will be cast into an object of type MidiNoteOnEvent. This

object will be placed on the BlockingQueue.

The purpose of the BlockingQueue is to synchronise the receipt of events by the
client from the broker with the processing of the event by the client application. The
application runs the processing class (such as note naming or metrical analysis) as a
separate Java thread with the queue as an interface to the main client thread. The
processing thread performs a blocking get() of objects from the queue which it can then
process. A blocking get() means that if the queue is empty, the application waits until a
new object is placed on the queue input. If the processor publishes events (such as the
results of some analysis), it can use the BrokerConnection.publish () method to publish

an event without impacting the main client thread.

35

The BrokerConnection class also includes methods for unsubscribing,

disconnecting from the broker and handling lost connections to the broker.
3.6.3 Framework Events

All events within the framework are subclassed from the PubSubEvent class. The
class constructor takes two arguments; the topic used to publish the event and a URI
that uniquely identifies the event instance. URIs are generated by a URIGenerator class
and their use is described in later chapters. The topic and URI are saved as class
variables which also include the Java byte[] array containing serialised event variables.
This byte array contains the contents of the message to be published. The class also
contains a publish() method which in turn invokes the BrokerConnection.publish
(String, byte[]) method to publish the event.

Events subclassed from the PubSubEvent class contain two constructors; one is
intended for publishing applications contains the event parameters as arguments and the
other for subscribing applications contains a single argument consisting of the
serialised byte array. For example, the NoteStartEvent which identifies when a note has
started during harmonic analysis has four arguments; the note’s URI, the time it started
(long), its name (String) and the octave it sounds in (int). These arguments are stored as
class variables which are serialised into a byte array for publication. The code to

serialise this set of variables is illustrated in the following code segment.

byte[] bytes;
ByteArrayOutputStream bos = new ByteArrayOutputStream(1024);
DataOutputStream dos = new DataOutputStream(bos);
try {
dos.writeUTF(noteURIStr);
dos.writeUTF(timelineURIStr);
dos.writeLong(startTime);
dos.writeUTF(noteName);
dos.writelnt(octave);
dos.close();
bytes = bos.toByteArray();
} catch (10Exception e) {
e.printStackTrace();
¥

36

The constructor used in subscribing applications takes a single argument; the byte
array. This is deserialised in the constructor to recover the event variables. Using the

above example, the variable deserialising is illustrated below.

ByteArraylnputStream bis = new ByteArraylnputStream(bytes);
DatalnputStream dis = new DatalnputStream(bis);

try {
noteURIStr = dis.readUTF(Q);
timelineURIStr = dis.readUTF(Q);
startTime = dis.readLong(Q);
noteName = dis.readUTF(Q);
octave = dis.readlnt();

} catch (10Exception el) {
el._printStackTrace();

}

Therefore the general pattern for the lifecycle of an event is:

1. A publishing application constructs an event of the correct type providing a set of
event variables as arguments

2. The event constructor serialises the arguments as a Java byte array and associates
the correct topic for the event type

3. The constructor publishes the event using the event topic and the serialised array

4. Once the event has been received by a subscribing application as a PubSubEvent
type, it is cast to the appropriate subclass based on its topic with a single
constructor argument; the byte array

5. The byte array is deserialised into the set of event variables which may be retrieved

by the subscribing application via a set of access methods.

3.7 Publishing Applications

This section describes two examples of publishing applications to illustrate how
events may be published. The first section describes the publication of events from files
— in particular from MIDI and OPND format files which form the testcase corpus for
this thesis. The second section describes a MIDI input application which allows
controllers such as a keyboard to be connected to the framework to allow real time

events to be generated and published.

37

3.7.1 File Publishers

The Java programming language provides comprehensive support for the MIDI
specification. Included in the specification are the Transmitter and Receiver classes
which allow MIDI devices to be programmatically interconnected in a similar way to
MIDI hardware using patch cables. Java MIDI Transmitters and Receivers are specified
as interfaces; therefore code can be developed to mimic the operation of a receiver or
transmitter. For event publication, a Receiver can be written which publishes the MIDI

event. This is the role of the MidiEventPublisher class within the framework.

To support the Java Receiver interface, the class must implement the interface
send() method which is invoked by a Transmitter to propagate a MIDI message from

one device to another. The implementation of this method is illustrated below.

public void send(MidiMessage message, long ITimeStamp) {

if (message instanceof ShortMessage) {
publishShortMessage(message);

} else if (message instanceof SysexMessage) {
publishSysExMessage(message) ;

} else if (message instanceof MetaMessage) {
publishMetaMessage(message) ;

¥

The Java MIDI specification subclasses the MidiMessage into one of three types
with each message type having a different structure. The MidiEventPublisher class has
separate methods to publish each type. For example, consider the publication of MIDI
Short messages which are typically used to control hardware devices. This is
implemented by the publishShortMessage() method which takes a single argument, the
MidiMessage. The method identifies the type of message by extracting the MIDI
command from the message structure, creates an appropriate event from the
ShortMessage and publishes it with the correct topic. For NoteOn and NoteOff events
that match the same note, the same URI is used to signify that these two events are
connected. This is achieved by managing an array of 128 MidiNoteOnEvents. When a
MidiNoteOnEvent occurs, its URI is inserted into the array at the index corresponding
to its MIDI note number before publishing. When a MidiNoteOffEvent occurs, its MIDI
note number is used to extract its MidiNoteOnEvent from the array and the URI is used
to publish the MidiNoteOffEvent. The entry in the array is then cleared in preparation

for the next event.

38

Given this implementation of the Receiver interface, applications such as a MIDI
file player can be implemented using the MidiEventPublisher to publish the MIDI

messages to subscribing applications.

The MidiEventPublisher class includes a second implementation of a send()
method. This implementation takes a single argument of type NoteEvent. The
NoteEvent class is used to publish note events that have been derived from other
sources. In particular from OPND structure files. OPND files are text files containing
note information in the format onset, pitch name and duration. Therefore a record in the
file such as 0, Bf2, 325 denotes a B flat in the second octave starting at time 0 and
lasting for 325 milliseconds. Given this information, a matching pair of
MidiNoteOnEvent and MidiNoteOffEvents can be created by computing the MIDI
number of the note named Bf2. Therefore the implementation of send() with a
NoteEvent argument publishes two events corresponding to the MIDI note on and off

events.

The OPND testcases used for this thesis have been derived from the
Musedata[Hewlett97] corpus and include the name of the note together with its octave.
The MidiNoteOnEvent and MidiNoteOffEvents can optionally include the name of the
note they represent which is not available in a pure MIDI environment. For algorithm
testing purposes, the name can be published as part of the note event and is used to

verify the correctness of the note naming algorithm described later in this thesis.
3.7.2 MIDI Input

Given a MidiEventPublisher class of the type described in the previous section,
an application which acts as a MIDI input can be easily created. An example is shown

in the following code fragment.

// Broker address, port and client name
private static String brokerAddress = "127.0.0.1";
private static int brokerPortNumber = 1883;

// Topics to subscribe to
private static final String[] topics = {EventConstants.shortTopic};

// Queue to receive published events

private static BlockingQueue<PubSubEvent>
subQueue = new ArrayBlockingQueue<PubSubEvent>(1000);

39

public static void main(String[] args) {
// Connect to the Broker
try {
brokerConnection = new BrokerConnection(brokerAddress,

brokerPortNumber,
“"Midiln", null, subQueue);

} catch (MgttException e) {

e.printStackTrace();
}

// Get a list of Midi output devices
MidiDeviceManager midiDeviceManager = new MidiDeviceManager();
ArrayList inputDevicelList = MidiDeviceManager.getlnputDevices();
for (int i = 0; i < inputDevicelList.size(); i++)

// Add a read to allow Midiln device to be selected

int mSelect = 0;

// Cet the selected device
MidiDevice inDevice = MidiDeviceManager.getMidiDevice((
(MidiDevice. Info)inputDevicelList.get(mSelect)));

try {
// .. open it

inDevice.open();

// .. get its transmitter
Transmitter t = inDevice.getTransmitter();

// .. and add the midiPublisher to it

MidiEventPublisher midiPublisher = new
MidiEventPublisher(qTime);

t.setReceiver(midiPublisher);

// Need to set up a loop to allow events to be
// published
while (true) {}

} catch (MidiUnavailableException el) {
el.printStackTrace();

}

The application first connects to the broker and then obtains a set of the currently
installed MIDI devices which may include a MIDI Input Port. Following selection of
the input device, it is opened and the device Transmitter is obtained. Following the
creation of a MidiEventPublisher, it is attached to the Transmitter of the input port. The
final while loop is a simple mechanism to allow the program to continue. Whilst the
loop is executing, any events that appear on the MIDI input port are propagated via the

Transmitter/Receiver connection and published by the MidiEventPublisher.

40

3.8 Subscribing Applications

Subscribing applications are more complex that publishing applications because
they require an asynchronous queuing interface to buffer the reception of events from
their processing. This is illustrated using a simple MIDI output application which

subscribes to MIDI events and outputs them to a connected MIDI port.
3.8.1 MIDI Output

The MIDI output application is similar in structure to the previously described

input application.

// Broker address, port and client name
private static String brokerAddress = '"127.0.0.1";
private static int brokerPortNumber = 1883;

// Topics to subscribe to
private static final String[] topics = {EventConstants.shortTopic};

// Queue to receive published events
private static BlockingQueue<PubSubEvent>
subQueue = new ArrayBlockingQueue<PubSubEvent>(1000);

public static void main(String[] args) {
// Connect to the Broker
try {
brokerConnection = new BrokerConnection(brokerAddress,
brokerPortNumber,
"MidiOut", topics, subQueue);
} catch (MgttException e) {
e.printStackTrace();
3

// Get a list of Midi output devices
MidiDeviceManager midiDeviceManager = new MidiDeviceManager();
ArrayList outputDevicelList =
MidiDeviceManager .getOutputDevices();
for (int i = 0; i < outputDevicelList.size(); i++)
midiDeviceManager .printInfo((MidiDevice. Info)
outputDeviceList.get(i));
MidiDevice outDevice = MidiDeviceManager.getMidiDevice((
(MidiDevice.Info) outputDeviceList.get(0)));

// Create the output thread
MidiOutThread moThread = new MidiOutThread(outDevice,
subQueue);

// ... and run it
new Thread(moThread).start();

41

In this example, following the selection of an output port device (assuming it is

the first in the retrieved list) the application creates a MidiOutThread class and runs it.

The code for the MidiOutThread implements the Runnable interface and is listed
below.

public class MidiOutThread implements Runnable{
private static MidiDevice midiDevice = null;
private static Receiver outReceiver = null;
private static boolean closing = false;
private BlockingQueue<PubSubEvent> subscriberQueue;

public MidiOutThread(MidiDevice mD,BlockingQueue<PubSubEvent> q){
// Save the device and queue
midiDevice = mD;
subscriberQueue = q;

// Open the device and get its Receiver

try {
midiDevice.open();
outReceiver = midiDevice.getReceiver();
} catch (MidiUnavailableException e) {
e.printStackTrace();
}

}

public void run() {
PubSubEvent psE;
int id, x, y, r;
whille (Iclosing) {

try {
psE = subscriberQueue.take();
if (pstE instanceof MidiShortMessageEvent) {
MidiShortMessageEvent smE =
(MidiShortMessageEvent)psE;
smE.sendToMidiReceiver(outReceiver);

}
} catch (InterruptedException e) {

e.printStackTrace();
}

The class constructor saves the selected MidiDevice and the BlockingQueue
arguments. It then opens the MidiDevice and gets its receiver. Once the thread has been
started, the run() method is invoked. This method loops, halting on the
subscriberQueue.take() method call until a PubSubEvent appears on the queue as a
result of the BrokerConnection callback being invoked from the broker. Once this
occurs, the PubSubEvent is cast to a MidiShortMessageEvent which then sends the

message to the output receiver by invoking its send() method.

42

A combination of a Midiln application publishing messages from a MIDI
controller and a MidiOut application which subscribes to the published topics and
sending the messages to a MIDI output port will allow MIDI input devices such as a
keyboard and output devices such as a synthesiser to be connected to the framework.
Note that the properties of the publish/subscribe messaging model mean that the
Midiln, MidiOut and Broker applications can each reside on separate machines thereby

providing a mechanism for MIDI events to be distributed throughout a network.

3.9 Summary

This chapter has described the Publish/Subscribe messaging model and its
variants and compared them with other messaging techniques. It has described how the
messaging model has advantages in decoupling applications in space, time and
synchronisation. It has described the structure of published messages in that they
contain a topic used by subscribing applications to identify which messages they are
interested in together with the contents of the message. Within the context of the
framework described in this thesis, the components used to implement the
publish/subscribe messaging have been described together with example publishing and
subscribing applications to show how MIDI devices may be connected to the

framework.

43

Chapter 4 Pitch Spelling

4.1 Introduction

A fundamental aspect of human interpretation and understanding of music is the
concept of tonality. The term tonality was first introduced in the early 19" century and
is currently used to describe the structured relationships that exist between musical
pitches. These relationships exist between the pitch of a note and its associated key
which defines its harmonic context. This chapter reviews the background literature on
tonality leading to the introduction of Chew’s Spiral Array model as an algorithm for
pitch spelling. An implementation of this algorithm is then described using the
publish/subscribe messaging model. From this implementation, a simplified version is
described which has equivalent performance and accuracy when tested with a corpus of
around 200,000 notes.

The MIDI specification identifies notes played on a keyboard or sounded by a
synthesiser as an integer lying between 0 and 127. The first stage in producing a

harmonic representation of the musical data represented by the MIDI stream is to

assign a name to the note. Pitch spelling algorithms predict the note name (D#4, Bb 3,

A2 etc) given only the MIDI note number, the start (or onset) time and possibly the

duration of the note.

4.2 Tonality and Musical Analysis

Tonality refers to the underlying structures and principles of tonal music and is
sometimes synonymous with musical key. It denotes the relationships between the

subjective concept of musical pitches and more specifically a system of relationships

44

between pitches having a tonic or central pitch as its most important element. The
perceptual term pitch refers to a sound of some frequency and is usually expressed
using a subjective quality such as high or low. A note is a symbolic representation of

two properties; pitch and duration.

Pitched sounds usually consist of a complex waveform consisting of several
components or harmonics. The frequency of each component is a multiple of the lowest
(or fundamental) frequency. The complex waveforms are produced by some physical
mechanism as in the case of acoustic instruments or as a synthesized waveform as in
the case of electronic instruments. A spectral analysis of the complex waveform will
provide information about the fundamental and harmonic components of the waveform
but this is outside the scope of this thesis. For the purposes of this thesis, musical
streams of data are represented by MIDI commands where pitch is represented as a
number between O and 127. This represents (for example) which key has been
depressed on a MIDI keyboard. For a review of MIDI and other musical codes and

representations, see Appendix E,

Dowling has observed that music of all traditions has the properties of octave
equivalence together with a fixed (depending upon musical tradition) set of tones
within an octave. Since tones are perceived in a cyclic manner where the cycle repeats
every octave, Shepherd [Shepherd82] visualizes this perceptually as a pitch helix. This
represents pitch as two descriptors; height to show octave equivalence and chroma or
pitch class which identifies the rotational position of a given pitch within the helix.

This is illustrated in Figure 8.

45

Figure 8: Shepherd's pitch helix

Given the definition of pitch, melody and harmony can now be defined.
Britannica online defines melody as “..... the aesthetic product of a given succession of
pitches in musical time, implying rhythmically ordered movement from pitch to pitch”.
This definition implies that melody is monophonic and consists of a sequence of
pitches. Harmony by comparison is polyphonic. It denotes the simultaneous
combination of notes into chords which over time change into chord progressions. In
addition to describing notes and chords, harmony has its own corpus of knowledge
embodied in musical theory. In the context of this thesis, harmony will only be
considered in terms of harmonic content related to the combination of notes into chords
and their relationship to keys. Although defining melody as monophonic and harmony
as polyphonic, both refer to the combination of pitches into higher level musical

structures and as such, they both influence each other.

Most of the research work on tonality has been carried out on western music
[Krumhansl04]. Within this genre, a key is defined as a system of relationships between
a series of pitches having a tonic or central pitch class as its most important element.
Another important pitch class of a key is the dominant or fifth note of the scale starting
at the tonic of the key. A key can have two modes; major and minor. Each of them has

different orderings of the tones and semitones within their respective scales.

46

There exists a total of 24 keys when both major and minor modes are included,
one of each mode for the 12 semitones within the chromatic octave and including
enharmonic equivalence (where notes sound the same but have different names e.g. F#
and Gb). These 24 keys can be arranged in a circle of fifths where a tonic on the circle

is the fifth of the scale of the preceding tonic. This is shown in the following figure.

Major
Mode

F#/Gb

Figure 9: Circle of fifths

The circle of fifths also illustrates relationships between major and minor keys. A
key has a signature which indicates the set of sharps or flats contained within its scale.
A major key has a relative minor key indicated by the pairing within the circle of fifths.
A relative minor key has the same key signature as its major key; for example A minor
is the relative key to C major. Parallel keys share the same tonic but have different key

signatures. For example C major has a different key signature to C minor.

Given this foundation, there has been a large amount of research effort in
modeling human understanding of tonality. Early work included that by Winograd
[Winograd68] who applied linguistic analysis techniques to automatic musical analysis.
Later work has been influenced by the 19™ century musicologist Riemann who
observed that tonality derives from establishing significant relationships through chord

functions. His theory asserted that the most significant intervals are the perfect fifth and

47

major and minor thirds present in the triads based on the tonic of a key. Riemann
mapped these relationships onto a harmonic network or table of tonal relationships
known as a Tonnetz. Versions of this harmonic network have been traced to earlier
theories of Euler [Cohn97].

A#
D A E B F#
F c G D A
Db Ab Eb Bb F
Perfect 5th

Figure 10: The Harmonic Network or Tonnetz

In this network representation, there is a horizontal relationship between entries
of a perfect 5" (e.g. G is a perfect 5™ above C) with diagonal relationships representing
major and minor 3rds. It has been observed [Longuet-Higgins71] that pitches in a given
key tend to cluster in a particular area of this network. They propose a key finder based
on a shape matching algorithm. This was investigated further by Temperley
[Temperley01] who proposed a simple key profile model which identifies the
likelihood of the input set of pitches (comprising the musical score) matching a set of

key profile vectors.
Based on the work of Longuet-Higgins, Chew [ChewQO0] has proposed a three

dimensional representation of pitches formed from the harmonic network; this is

referred to as the Spiral Array Model.

48

Perfect
5th Bb

Figure 11: The Spiral Array

In this model, pitches are arranged along a spiral. Adjacent pitches are positioned
at each quarter turn and are a perfect 5" apart. The minor and major 3" intervals are
shown as vertical and diagonal relationships in the diagram. Note that the ordering of
pitches in the spiral array also reflects the ordering in the circle of fifths. Since the
circle of fifths is closed, then the spiral array is closed and maps onto the surface of a
toroid. However for computational purposes, the spiral array reflects linear distances

which are not present in the toroidal case.

The advantage of the spiral array is that it introduces a spatial component which
is not present in the two dimensional network array. In a later chapter, the use of the
spiral array to identify chords and keys will be discussed. The next section describes
Chew’s note naming algorithm based on the spiral array together with a simplified

version developed by the thesis author.

4.3 The Spiral Array Model

The note naming algorithm described in [Chew04] is based on the spiral array

model described in [Chew00]. The spiral array is described mathematically as

49

x| [rsin(kz/2)
P(k)=|y, |=|rcoskz/2) (4.1)
z, kh

Where r is the radius of the spiral and h is the vertical ascent per quarter turn and

the aspect ratior /h =+/15/2. In the model, any collection of notes generates a centre
of effect (CE). This is a point within the spiral array that is a convex combination of the
pitch positions weighted by their durations. If S is a set of notes in a piece of tonal

music, then the centre of effect CE(S) is defined as

2_d(n)p(n)
CE(S)="*——~— (4.2)

2. d(n)

nes

Where p(n) denotes the vector representing the position in the spiral array of
note n which has durationd(n). That is, the CE is the weighted centroid of the position

vectors of the notes in the spiral array with each note being weighted by its duration. In
the algorithm, the CE acts as a proxy for the key and that each note should be spelt so
that it is as close as possible in the spiral array to the notes that preceded it. This
approach is similar to that adopted by [Temperley01] except that Temperley uses a line

of 5ths rather than a spiral array representation.

In the spiral array algorithm, it is assumed that the input data gives the MIDI note
number together with the start time (onset) and duration of each note in milliseconds.
The data is divided into equal time slices called chunks. The algorithm then names the

notes one chunk at a time.

The algorithm adopts a bootstrapping and sliding window strategy whereby a set
of preceding chunks are used to compute the current CE which is then used to name the
notes in the current chunk. Naming consists of computing the nearest distance to the
CE of the potential names for a note. For example a note identified by its MIDI note
number may correspond to either B# C or Db b. Each of these three possible names

occupies a point in 3-D space on the spiral array. Given the current CE, the distance

50

between the CE and each of the three possible names is computed and the name with

the

the

are

nearest distance is assigned to the note.

According to [Chew04], there are two phases in the algorithm. Phase | consists of
following steps 1 and 2, Phase Il consists of steps 3 to 5. The following variables

used in the description

W(i, i) The set of notes that sound, start or are present in chunks i to j

CE ioba A global CE computed from the set of notes in a sliding global
context window consisting of the w, chunks preceding the jth
chunk

CE\oear | A local CE computed from the set of notes in a local context
window consisting of the chunk j together with the (w, —1)
preceding chunks

CE A cumulative CE computed from all notes preceding chunk j

CE\yria A hybrid CE which is a weighted version of the local and

cumulative CEs

The following steps are executed:

The global CE is computed from the value

CE =CEW(j-w,,j-1) (4.3)

global, j

The algorithm then names all notes in chunk j to be as close to CE as possible

global, j
in the spiral array
The local CE is computed from the value

CEpeu i =CEW(j—w, +1,j)) (4.4)

local, j

The algorithm computes a the cumulative CE from the value

CE,.; =CEW(1, j-1)) (4.5)

cum, j

The notes in chunk j are then re-spelt so that their names are as close as possible to

the hybrid CE where f is a parameter between 0 and 1 that determines the relative

weights
51

CEpyoria.; = f-CEjpea; + (01— f)CE

' local, j

(4.6)

cum, j

The algorithm adopts an initialising strategy of spelling the first chunk using a
CE corresponding to the Dn location on the spiral array. The reason for this is that it
biases the notation towards fewer sharps and flats. This is identical to the initialisation

strategy adopted by Temperley.
4.3.1 Sounding, Starts and Presence

The Chew Pitch Spelling algorithm describes two ways of computing the
duration of a note within a chunk; this is whether the note starts or sounds within a

chunk. This concept is illustrated using Figure 12.

w
A
r N\

\ 1 1 1 1
g 1 1 2 1 3 1 4 1
= 1 1 1 1
n,_|! ! ! !
1500 ms | X X |
1 1 1 1
n, 1 1 1 1
1250 ms T T I I
1 1 1 1
1 1 1 1
1 1 1 1
I n, 1 1 1
i 1 1
1200 ms | | |
1 1 1
1 1 1 1
1 1 1 1
1 1 n, 1 1
1 1 500 ms 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0 500 1000 1500 2000 Time (ms)

Figure 12: Piano-roll representation of four notes

In a piano-roll representation, the horizontal axis represents time in milliseconds,
the vertical axis represents pitch. Each note is represented as a horizontal line (n1 — na)
illustrating their start (onset) and end (offset) times and duration. The segment of music
is divided into four 500 ms chunks labelled 1 to 4. Taking note n, as an example, the
note starts in chunk 1 and ends in chunk 4. Once it starts, the note continues to sound
until it ends. Therefore we can say that the note starts in chunk 1 and sounds in chunks

2, 3 and 4. We can calculate CE(w) where w is the window consisting of chunks 2 and

52

3. We can further define a note that starts within a chunk as one whose start time is
greater than or equal to the start time of the chunk and less than the end time of the
chunk. We can also define a note that sounds in the chunk if its start time is less than

the end of the chunk and its end time is greater than the start time of the chunk.
If we consider the notes that start in window w, then
CE(w)=CE(W,,,(2,3))=CE({n,,n,})
Then from equation (4.2)

_ 500.p(n,)+500.p(n,)

CE (W) 1000

(4.7)

Alternatively, if we consider the notes that sound in window w, then
CE(W) = CE(Wsound (2'3)) = CE({nll n2 ’ n3 ’ n4})

Equation (4.2) evaluates to

CE(w)= 1250.p(n,)+1500. p(n§7);0500. p(n,)+500.p(n,)

(4.8)

In this evaluation, the note is weighted by its duration even if this is greater than
the duration of the window w. In personal communication, Chew has confirmed
however that in their implementation, the note is weighted by the duration for which it

sounds within the window. Therefore equation (4.2) should evaluate to

(w)= 750.p(n,)+1000.p(n,)+500.p(n,)+500.p(n,)

CE(w (4.9)
2500

These different evaluations highlight the importance of specifying in detail how
the CE should be calculated in the algorithm.

53

A further issue is related to weighting notes by their duration either within the
window or their complete duration. For a real time analysis, this requires a processing
delay either for the duration of a chunk time or in the worst case for the complete
duration of a note. An alternative is to ignore the duration and to weight simply on the
presence of a note within the window. This only requires the detection of a note’s onset
and does not require any delay in processing. If this strategy is adopted, then equation

(4.2) becomes

CE(S)="< (4.10)

Where N is the number of notes currently present in the window. Equation (4.9)

then simplifies to become

)= P02 B0,)2 50,50, i

This simplification of Chew’s algorithm forms the basis of the novel

implementation described in the following section.

4.4 The Implementation

This section describes the implementation of a pitch spelling application based on
a simplification of Chew’s spiral array algorithm as described in the preceding section.
It also describes how the results of the pitch spelling are captured using a subscribing
application linked to a relational database that persists the results for later analysis. It
also introduces the need for synchronisation between applications within the

framework and describes how this can be achieved by use of control messages.

54

4.4.1 The Pitch Spelling Application

Broker

noteOnTopic,
closingTopic, <€
filenameTopic

Subscribe BrokerConnection creates
| &————
L

y
ubSubEvents
— ;)l QueueMessageHandler | Pitchspeller

(main)

y

| BlockingQueue |
Publish |

- runs
| PitchSpellerProcessor |<7

noteTopic, .
psFinishedTopic

Figure 13: The Pitch Spelling application

The structure of the Pitch Spelling application is illustrated in Figure 13 which is
an instance of the generic application structure illustrated in Figure 7 of section 3.5.2.
Note that in the thesis figures, topics are referenced by their Java variable names. These
are defined as Java Strings which resolve to the hierarchic topic names listed in
Appendix A. The application subscribes to the noteOnTopic which identifies the start
of a note and is published either by a MIDI device client or for testing purposes, a
MIDI or OPND file publishing application. In addition, it subscribes to a filename topic
which identifies which testcase is being published and a closing topic used to

synchronise the pitch speller with other applications.

The pitch spelling application publishes two events using the noteTopic and
psFinishedTopic. The noteTopic is used to publish instances of the NamedNoteEvent.
This event contains the name of the note as a Java String in the format as the OPND
input file; that is the String “Cn3” identifies a C natural in the third octave. In addition
to the note name, the event includes the Chew algorithm Centre of Effect that was
active when the note was named. This is expressed as a point in three dimension space
using Java Float types for the X, y and z components. The event also includes a URI.

This URI is the same one as the input MidiNoteOnEvent that resulted in the output
55

NamedNoteEvent allowing the correctness of the spelling to be established as described
in a later section. The second event published using the psFinishedTopic generated by
the pitch spelling application is a confirmation that the application has completed and

its use is described in more detail in a later section.

The PitchSpellerProcessor Class

The PitchSpellerProcessor class implements the modified Chew pitch spelling
algorithm. Its constructor takes a BlockingQueue parameter which has been initialised
by the main thread and provides an asynchronous interface between the PitchSpeller
client and the processing thread. The constructor builds an instance of the Spiral Array
using the SpiralArrayBuilder class. In her algorithm, Chew identifies each pitch name
on the array using an index from -15 to +19. The mapping between the indices and the

pitch names are shown in the following table:

Index Pitch Index Pitch Index Pitch Index Pitch Index Pitch

Name Name Name Name Name
-15 Fff -8 Ff -1 F 6 Fs 13 Fss
-14 Cff -7 Cf 0 Cc 7 Cs 14 Css
-13 Gff -6 Gf 1 G 8 Gs 15 Gss
-12 Dff -5 Df 2 D 9 Ds 16 Dss
-11 Aff -4 Af 3 A 10 As 17 Ass
-10 Eff -3 Ef 4 E 11 Es 18 Ess
-9 Bff -2 Bf 5 B 12 Bs 19 Bss

Table 2: Spiral Array index versus note name

The PitchSpellerProcessor class constructor also initialises an array of possible
note names. For each of the 12 pitch classes, the array contains the indices of the three
possible names for the note. For example, the entry for pitch class 0, note C, contains
the indices for its three possible names B# (index 12), C (index 0) and Dbb (index -12).
The array is fully defined as:

private static final int[]J[] notelndexes = {
{12, 0, -12 '}, // B#, C, Dbb
{7, -5, 19 }, // C#, Db, B##
{14, 2, -10 }, // C##, D, Ebb
{9, -3, -15 }, // D#, Eb, Fbb
16, 4, -8 }, // D##, E, Fb
11, -1, -13 }, // E#, F, Gbb
18, 6, -6 }, // EB##, F#, Gb
13, 1, -11 }, // F##, G, Abb
8, -4, -999 }, // G#, Ab
15, 3, -9 }, // G##, A, Bbb
10, -2, -14 }, // A#, Bb, Chb

e e o o ey e

56

{17, 5, -7 } // A##, B, Cb
¥

The option of -999 for G# / Ab is because there is not a third optional name for
this note. The purpose of this array is to augment the information for an input note. The
note is updated with the three optional names given its pitch class before it is sent to the
spelling algorithm. This reduces the search space from the 35 possible names to only

the three possible options for each of the 12 pitch classes.

The algorithm described in section 4.3 spells notes contained within a chunk.
This approach is adopted in the implementation with the ChunkBuffer class managing
chunks consisting of a set of notes. Chunks are defined to be a given size in
milliseconds (500ms). The ChunkBuffer class is initialised through its constructor with
parameters that include the global and local context window sizes (8 and 2
respectively) and the relative weight applied between the local and cumulative centre of
effect (0.5). The final parameter is the spiral array centre of effect coordinates for the

key of D as an initial condition for the pitch spelling algorithm.

Having been initialised, the PitchSpellerProcessor.addNoteEvent() method
assembles notes as they are input into a Chunk based on the note onset time. Once a
chunk has been assembled (the current note onset is later than the end time of a Chunk),
it is passed to the ChunkBuffer for naming via the ChunkBuffer.addCurrentChunk()
method.

The ChunkBuffer class constructor initialises a pair of chunk windows
corresponding to the global and local windows with sizes set by the constructor
initialisation parameters. It also initialises an instance of the CentreOfEffect class which
computes and maintains the current centre of effect used in note pitch spelling. The
CentreOfEffect class is initialised to reflect the key of D; the initial condition for

Chew’s algorithm.

The pseudo code for the pitch spelling algorithm implemented within the

ChunkBuffer.addCurrentChunk method is as follows:

57

1. If the chunk is the first chunk, then name the notes in the chunk using the initial CE
(assuming key of D)
i. Compute the Global CE using the notes within the current chunk
ii. Name the notes within the current chunk using this CE
iii. Publish the chunk spellings as a set of NamedNoteEvent
2. If the chunk is not the first chunk
I. Compute the cumulative CE and shift the chunk windows
ii. Compute the global CE and name the current chunk using this CE
iii. Compute the local CE using the current chunk and the local chunks window
set
iv. Compute the hybrid CE consisting of a fraction of the local and cumulative
CEs
v. Name the notes using the hybrid CE

vi. Publish the chunk spellings as a set of NamedNoteEvent

When naming a note, the pitch spelling algorithm uses a CE represented as a Java
Point3f type. This type represents a point in 3D space with the X, y and z coordinates
represented as Float types. When a note is input to the PitchSpellerProcessor class, the
three possible names for the note are assigned as described earlier. Each note name
within the spiral array is represented as a point in 3d space. These points are computed
during the initialisation of the SpiralArrayBuilder class and are themselves of type
Point3f. Naming a note consists of computing the distance between each of the points
on the spiral array for the three possible note names and the current CE. The note name
with the minimum distance to the CE is then chosen as the name for the note. The name

of the note is then published as a NamedNoteEvent.

All events have a URI associated with them. In the cases of raw data such as
events published from MIDI input or file players, the URI is created by a
URIGenerator class. For the NamedNoteEvent, the URI contained within the matching
input MidiNoteOnEvent is reused. This allows the result of the pitch spelling to be
matched to a separate MIDI event within the results database. This is discussed further

in the next section.

58

4.4.2 The EventCapture Application

EventCapture is a database application that subscribes to events published by file
publisher and analysis applications and archives the events within a relational database.
The application is based on the Apache Derby database [Derby]. This is an open source
Java database with a small footprint that occupies around 2 Mbytes for the base engine
and embedded JDBC driver. It supports SQL standards and can operate in a

client/server mode as a network server.

The EventCapture application structure is illustrated in Figure 14. The
application subscribes to the following topics; noteOnTopic, noteOffTopic, noteTopic
and noteNameFinishedTopic. The EventDatabaseProcessor class constructor creates a
JDBC connection to an instance of the Derby database. Each event that needs to persist
itself within the database includes an insert() method which takes a JDBC Connection

object as an input parameter.

Broker

noteONnTopic,
noteOffTopic,
noteTopic,
pcFinishedTopic

creates

Subscribe

BrokerConnection

PubSubEvents

QueueMessageHandler | EventCapture

(main)

A4
BlockingQueue

S

Publish run
EventDatabaseProcessor |<—

dbFinishedTopic

Figure 14: The Event Capture application

The database contains a NOTES table whose schema is created by the following
SQL statement:

59

create table NOTES (

URI varchar(41) not null,
TESTNAME varchar(30) not null,
ONTIME bigint,

OFFTIME bigint,

DURATION bigint,

MIDINUMBER integer,

VELOCITY integer ,

NAME varchar(4),

NOTENAME varchar(4)

A complete row in the NOTES table is assembled by the application invoking the
insert() method for the MidiNoteOnEvent, MidiNoteOffEvent and NamedNoteEvent as
they each arrive asynchronously. The first two events are published by a testcase
generator or MIDI input device connected to an input port application. The

NamedNoteEvent event is generated by the pitch spelling application.

NamedNoteEvent

MidiNoteOffEvent

MidiNoteOnEvent l

| uri | TEsTnAmE | onTivE | oFFTivE | DURATION | miDINUMBER | vELociTy | name | noTEnAmE |

@

closingTopic psFinishedTopic

PitchSpeller —'1'

PublishOPNDTestCases EventCapture

[|

dbFinishedTopic
OPND |
Files (b)

@(_l

Figure 15: Event Capture and Synchronisation

Assembling results within a relational database

Figure 15(a) above illustrates how each event contributes columns to the NOTES
table. For a given note, the first event to be published will be the MidiNoteOnEvent
identified by the noteOnTopic. This will be followed in no particular order by the
MidiNoteOffEvent identified by the noteOffTopic and the NamedNoteEvent identified
by the noteTopic. The MidiNoteOnEvent.insert() method uses the SQL insert statement

60

to insert the URI, TESTNAME, ONTIME, MIDINUMBER, VELOCITY and NAME

columns using the following code example.

public void insert(Connection conn) {
PreparedStatement pStmt = null;
String stmtStr = “insert into notes values
*,?,7,0,0,?7,?7,?7,"NONE")"";
try {
pStmt = conn.prepareStatement(stmtStr);
pStmt.setString(l, eventURI.toString());
pStmt.setString(2, testName);
pStmt.setLong(3, timeStamp);
pStmt.setInt(4, midiNumber);
pStmt.setInt(5, velocity);
pStmt.setString(6, name);
pStmt.execute();
pStmt.close();

catch (SQLException sglExcept) {
sqlExcept.printStackTrace();

Subsequently, the SQL update statement is used to update the row when a
MidiNoteOffEvent and a NamedNoteEvent arrive with the same URI.

The code for the MidiNoteOffEvent.insert() method is:

public void insert(Connection conn) {
PreparedStatement pStmt = null;
String stmtStr = "update notes set OFFTIME=?, DURATION=?-ONTIME
WHERE URI=?";
try {
// Update notes table
pStmt = conn.prepareStatement(stmtStr);
pStmt.setLong(l, timeStamp);
pStmt.setLong(2, timeStamp);
pStmt.setString(3, eventURI.toString());
pStmt.executeUpdate();
pStmt.close();
} catch (SQLException sqglExcept) {
sqlExcept.printStackTrace();
}

Note that the DURATION is computed from the inserted ONTIME and the
OFFTIME to be inserted. The code for the NamedNoteEvent.insert() method is:

public void insert(Connection conn) {
String stmtStr = "update notes set NOTENAME=? WHERE
URI=?";
PreparedStatement pStmt = null;

try {
pStmt = conn.prepareStatement(stmtStr);

61

pStmt.setString(l, noteName);
pStmt.setString(2, eventURI.toString());
pStmt.executeUpdate();

pStmt.close();

}

catch (SQLException sglExcept) {
sqlExcept.printStackTrace();

}

The reason for the two VARCHAR(4) columns called NAME and NOTENAME
will be discussed in the next section.

Application Synchronisation

The testcase set for pitch spelling consists of some 216 files. Whilst it is possible
to construct a script consisting of 216 invocations of the OPND file publisher, the pitch
spelling and event capture applications, an alternative approach is to use additional
control messages to synchronise the three applications. In particular this is necessary
for the pitch spelling application since the algorithm must be initialised before a new

testcase can be processed.

For all the applications, the processing classes implement the Java Runnable
interface; part of the Java Threads support. Inserting a wait(condition) statement in the
application’s run() method will cause the application to halt until the condition is

satisfied. The Figure 15 (b) illustrates how the three applications are synchronised:

1. The PublishOPNDTestCases application publishes the contents of an OPND file
terminating the publication with a closingTopic event. Following the publication of
the closing event, it will halt with the wait condition set to false.

2. The PitchSpeller application will process the set of events from the first OPND file
and publishes the appropriate note naming events. When it has received the closing
event, it completes the spelling by publishing any remaining note information and
initialises the algorithm to wait for the next set of OPND generated events. It also
publishes an event using the psFinishedTopic.

3. The EventCapture application uses events from the PublishOPNDTestCases and
EventCapture applications to assemble the NOTE table within the database. Once it
has received an event with the psFinishedTopic, it can then perform any cleanup
processes and wait for the next set of events it has subscribed to and publish an
event using the dbFinishedTopic to signal that it has completed.

62

4. The publication of an event using the dbFinishedTopic by the EventCapture
application causes the wait condition halting the PublishOPNDTestCases

application to be set to true causing the next OPND file to be published.

4.5 Testing and Results

Testing and verification of the pitch spelling algorithm used 216 test files
containing nearly 200,000 notes. The files were in the OPND format which consists of
a set of triples for the note onset, pitch name and duration. The following opening of
the bachbgcant000905m testcase illustrates the format for the first 2 seconds. The first
triple 0, An2, 243 encodes an A natural in the second octave starting at time 0 and

lasting for 243 milliseconds.

0,An2,243
0,En5,118
125,Fs5,118
250,En5,118
375,Dn5,118
500,Cs3,243
500,En5,118
625,Cs5,118
750,Bn4,118
875,An4,118
1000,Dn3,243
1000,An4,118
1000,Fs5,1243
1125,Bn4,118
1250,An4,118
1375,Gs4,118
1500,Dn4,243
1500,An4,118
1625,Fs4,118
1750,En4,118
1875,Dn4,118
2000,Gs3,243
2000,Bn4,1243

The testcase set originates from the Musedata corpus and has been generated
from the Humdrum **kern format by David Meredith. They are the same testcase set
used in his PhD thesis [Meredith07] allowing the performance of this implementation
of the spiral array algorithm to be compared with the results contained within his thesis.
The initial part of the **kern description from which the OPND file was generated is

shown below.

63

11ICOM: Bach, Johann Sebastian

I11I0PR: Es ist das Heil uns kommen her

I1I0TL: Duetto

11I0MV: 5

T1ISCT: BWV 9

I111SCA: Thematisch-systematisches Verzeichnis der musikalischen Werke Johann Sebastian
Bach: Bach-Werke-Verzeichnis (Schmieder)

111YOR: Bach Gesellschaft Edition 1,9

I1IEED: Steven Rasmussen

ITTIENC: Steven Rasmussen

111CDT: 1685/3//-1750/7/28/

1110CY: Deutschland

T1IYEC: Copyright (c) 1994, 2000 Center for Computer Assisted Research in the
Humanities

T11YEM: Rights to all derivative editions reserved

T11YEM: Refer to licensing agreement for further details

T1IYEN: United States of America

**kern **dynam **kern **dynam **kern **silbe **kern **silbe **kern **dynam

*1:Flauto traverso *1:Flauto traverso *1:0boe d"amore *1:0boe d"amore
*1:SOPRANO *1:SOPRANO *1zALTO *I1:ALTO *I:Continuo *1:Continuo
*clefG2 * *clefG2 * *clefG2 * *clefG2 * *clefF4 *
*k[FHc#Hga#] * *k[FHcHg#] * *k [FHc#Hg#] * *k [F#c#Hga#] *
*Kk [F#cHo#] *
*M2/4 * *M2/4 * *M2/4 * *M2/4 * *M2/4 *
=1- =1- =1- =1- =1- =1- =1- =1- =1- =1-
(16ee\LL T 2r . 2r - 2r B 8AA/ T
16FF#\ - . . R R . . -
16ee\ . - 8r
16dd\JJ) - . . R R R R -
(16ee\LL - - - - - - - 8C#/
16cc#\ - . . R R R R -
16b\ - - . . . R . 8r
16a\JJ) R R R R .
=2 =2 =2 =2 =2 =2 =2 =2 =2 =2
[2FF#\ . (16a/LL F 2r R 2r R 8D\
. - 16b/ . . R . .
16a/ . . R R R 8r
16g#/3J) . R R . .
(16a/LL . . R R R 8d\

Given an OPND triplet, it is possible to compute the MIDI note number for the
note in a given octave. This is combined with the note onset to generate a
MidiNoteOnEvent and the duration to compute the note off time to generate a
MidiNoteOffEvent both of which are published. Both events use the same generated
URI to signify they refer to the same note. The MidiNoteOnEvent contains an
additional variable. This is a String containing the name of the note as contained in the
OPND triplet. It is this value that is inserted into the relational database row in the
NAME column. The pitch spelling application subscribes to the MidiNoteOnEvent,
spells the note given the MIDI note number contained within the event and publishes a
corresponding NamedNoteEvent containing the calculated spelling together with the
URI of the input note event. The NamedNoteEvent provides the NOTENAME column
entry in the database table. A row in the NOTES table now includes both the expected
(NAME) and calculated (NOTENAME) spellings for each note in the testcase.
Statistics can then be extracted from the NOTES table using appropriate SQL queries.

64

Initialisation settings within the pitch spelling implementation allow the
algorithm to behave as described by pseudo code in Meredith’s thesis which itself is an
implementation of Chew’s work. When running in this mode, the implementation
described in this thesis gave the same set of results as reported by Meredith and
tabulated in the table below. The table lists the notes that were not spelled correctly.
Meredith does not supply sufficient detail to establish whether the same notes were
incorrectly spelled. With the simplified algorithm (section 4.3.1), there was an
improvement in the spelling accuracy of 0.09% over the published results for the same

testcase corpus.

Bach Beethoven Corelli Handel Haydn Mozart | Telemann | Vivaldi Total
24505 24493 24493 24500 24490 24494 24500 24497 195972
Meredith | 175 311 152 136 365 230 149 147 1665
(99.15%)
Simplified | 117 317 100 125 366 206 127 127 1485
(99.24%)

Table 3: Test results for Pitch Spelling Application

4.6 Summary

This chapter has addressed the real-time spelling of notes given only their MIDI
note number using a simplified version of Chew’s algorithm based on the spiral array.
An event based implementation has been described together with applications to
capture the published events in a relational database for later analysis. Synchronisation

of the applications using control events has been discussed.

The implementation of the pitch spelling algorithm has been tested using a corpus
contributed by a previous researcher and the simplified algorithm has been shown to

perform marginally better than previously published results.

Current implementations of pitch spelling algorithms by Temperley, Meredith
and others are based on batch methods whereby the entire encoded piece of music is
analysed in its entirety. The benefit of a real-time, event based implementation is that
the algorithm only requires historical data; the notes that have been played up to the
current point in time. In addition, the implementation described in this chapter does not

rely on the duration of the notes being played thereby eliminating any additional

65

processing delay. These two properties, historical data and delay elimination, lead to an

effective real-time implementation of the spiral array pitch spelling algorithm.

66

Chapter 5 Meter, Key, and Chord

5.1 Introduction

Given the naming of notes described in the previous chapter, the next stage in
developing a harmonic model of music is the identification of chord structures within
the music and their relationship to the sounding notes. In order to identify and correctly
name the chords, it is necessary to detect the underlying key in which the chord sounds.
Since the key signature may change during a musical performance, significant points
within the music must be identified to delineate musical segments within which the key
can be extracted; metrical analysis of the music is used to identify these significant
points. Having identified the current key and sounding chords, these provide data for
published events which form the basis of the harmonic description described in later

chapters.

In this chapter I first review current literature in metrical analysis, key and chord
extraction. This is followed by a description of the implementation of the key and chord
extraction component of the publish/subscribe framework which includes metrical
analysis to segment the music, key and chord identification. Details of the events
generated by the component are also provided. Finally, the results obtained are

analysed and the chapter summarised.

5.2 Metrical Analysis

Metrical analysis is the identification of the metrical structure of a musical piece.
This structure consists of a series of points in time, beats, which relate to events in the
music. Beats do not necessarily coincide with events in the music but it is widely

accepted that all cognitively significant events within a musical piece occur at a beat.

67

Perception of metrical structure as an area of research draws contributions from music
theory, cognitive psychology and artificial intelligence. Computation models of
metrical structure can be distinguished between those that assume their input is taken
from a symbolic input and those that operate directly on audio. Temperley
[Temperley04]lists some 25 studies that present models of metrical analysis; 4 assume
input is from audio, the rest are symbolic This thesis assumes that input to the metrical

analysis contains symbolic information; a set of notes which have already been named.

. . .
. . . . :
et et et et et et et et et et et et et e
o] 1 I - -
pa= = 1= ! f =z —
| e, T B T r] r | 1 T I]
o s T —
O] I
- - -
? - e’ - R R pfe o ul a8
) b Sl e e e e e S e e e s o | r' 1
A0 A2) (30 i4) (5h {6)
Notelist Beatlist Note-Address List
Note 2882 3935 65 Boar 2002 1 aNoto 2882 3935 65 10000
Note 2903 3159 53 e8] Best 3060 © ANote 2903 3159 53 10000 iy
Note 3122 3402 57 2} Beat 3132 1 ANote 3132 3402 57 1001C i2)
Note 3397 3652 60) | Best 3267 & ANote 3397 3652 60 10106 in
Note 3645 3877 57) Beat 3392 2 ANote 3645 3877 57 1011C a
Note 3888 4452 69 Beat 3500 © ANote 3888 4452 69 10200
Note 3800 4125 60 5 Beat 3635 1 ANote 390C 4125 &0 1020C i)
Note 4133 4385 57 6] Beat 3750 © ANote 4133 4385 57 1021C i6)
Note £412 5277 72 peat 2060 2 ANote 1412 5477 72 11000
Note 4413 4694 53 Beat 4010 ¢ ANote 4413 4694 53 11000
2685 4948 0 Pest 4133 1 ANote 4689 4945 60 1101
36 5164 63 Beat 4270 Aote 4536 5164 63 11100
51 sa1e g0 peat 4112 3 ANote 5191 5118 60 1112
47 6011 69 Besat 4550 0 ANote 5447 €011 69 11200
Note 5456 5677 632 Beat 4689 1 ANote B456 5677 63 11200
Note 5688 5954 &0 Beat 4810 ¢ INote 5688 5954 €0 1121C
. peat 4936 2 .
Beat 5060 ©
Beat 5194 1
Beat 5320 ¢
Beat 5447 2
Beat 5570 ©
Rest 5688 1
Beal 5810 ¢

Figure 16: The opening bars of Mozart's Sonata KVV332 - from [Temperley04]

Figure 16 illustrates the objective of metrical analysis. Metrical analysis produces
a representation of beats aligned with the music that was given as input. Beats occur at
points in time and can have different strengths corresponding to the perception of their
strength by a listener. Perceptively strong beats exist at higher levels, whereas weaker
beats occur at lower levels. In the figure above, the metrical structure is shown above
the music as dots representing 5 strength levels (0 — 4). Further reference to this figure

will be made later in this chapter.

Metrical analysis has historically been divided into two problems; quantisation
and higher-level meter extraction. In quantisation, notes of a performance are adjusted
so that the start and end times of notes are multiples of a common time interval thereby

eliminating any timing jitter between notes that sound at (nearly) the same time. The

68

second problem starts with a quantised set of notes and develops a multi-level metrical

model consisting of a set of different strength beats.

Desain and Honing [Desain92] provide the most important grounding in
quantisation. They propose a model which consists of basic units with activation levels
representing the inter-onset interval (the time interval between the start of one note and
the start of the following note). Interaction units connect adjacent basic units and adjust
their relative activation levels so that they are related by simple ratios. This causes the
activation levels to converge to multiples of a common value. They introduce the
concept of a “sum cell” which sums the activation levels of several basic units which

allows a single unit to represent a time interval containing several notes.

More research focus has been on the second problem of metrical analysis; that of
developing a multi-level model consisting of a set of different strength beats. Lee
[Lee91] proposes a model that ignores note pitch and only considers the music’s
rhythmic pattern. The model initialises by finding the interval between the first two
note start times. It then generates a second interval of the same length to provide a
hypothesis rhythmic level which can be adjusted if necessary. Lee’s model in common
with many other ones, only considers a single analysis which is adjusted or discarded as
necessary. Other approaches have considered multiple hypotheses of an entire excerpt
which are evaluated by different criteria. Simple examples of this type of approach

have been reported by Povel and Essens [Povel85] and Parncutt [Parncutt94].

Recent studies incorporate both quantisation and metrical analysis. Examples of
these include Chafe [Chafe82] which forms part of a digital audio editing suite,
Rosenthal [Rosenthal92] who ranks multiple hypotheses by salience criteria and Large
[Large94] who introduces a connectionist model driven by an oscillator which tracks
the period and phase of the input.

The work of Temperley and Sleator [Temperley99] forms the basis for the
metrical analysis implementation described in this thesis. Their work on preference
rules builds on the earlier work by Lerdahl and Jackendoff [Lerdahl83]. The input to
this analysis is in the form of a notelist. This is illustrated in Figure 16 and for each

note there is an entry which includes its pitch (assuming MIDI note numbers, middle C

69

= 60) together with the note’s start and end times. Lerdahl and Jackendoff’s model
assumes that the metrical structure consists of several beat levels and propose four

well-formedness rules that define the set of permissible metrical structures. They are:

Every note onset (start) must be marked with a beat
Every beat at one level must also be a beat at a lower level

Every second or third beat must be a beat at the next level up

P Wb oe

Beats must be evenly spaced at the tactus level. This pulse is typically what
listeners entrain to as they tap their foot or dance along with a piece of music
(Handel, 1989), and is also colloquially termed the 'beat," or more technically the
‘tactus’ [Lerdahl83]

They also propose a set of preference rules that state the criteria where listeners infer
the correct structure; for example whether there is a duple or triple relationship between

the beats. These are:

Prefer structures that align strong beats with note onsets (Event Rule)
Prefer structures that align strong beats with the onset of longer notes (Length Rule)
Prefer beats at each level to be maximally evenly spaced (Regularity Rule)

Prefer to locate strong beats near the beginning of groups (Grouping Rule)

o &~ w Dh e

Prefer duple over triple relationships between levels (Duple Bias Rule)

Sleator’s implementation strategy for preference rules is described in [Temperley01]
and uses principles of dynamic programming to produce an efficient search strategy for
the preference rule models used for metrical analysis in their Melisma music analyser.
Their algorithms, implemented in C, read an entire notelist file which encodes the
music to be analysed. The output of the analysis is a beat list containing a list of beat
strengths and the times they occur together with a note address list. The note address
list contains the same information as the input note list but with the addition of a note
address; a number representing the note’s position in a metrical grid. These are

illustrated in the earlier figure.

The dynamic programming approach allows an efficient left-to-right realisation

of a preference rule system. This means that at each point in time, the system has a

70

preferred analysis of the music heard so far. This approach of reaching a preferred
analysis based only on “historical” notes heard is analogous to the process of human
appreciation of music. The implementation developed in Java for this thesis is a
modification of this approach to provide an event based implementation. This is

described in a later section.

5.3 Key Extraction

Musical key provides the contextual framework for western tonal music within
which notes, chords and harmonies are understood. Musical key supports the
perception of elements within a performance providing stability of note pitches and
chords. It also increases the perception of melody and through modulation conveys a
sense of motion and drama. When analysing music, identifying the key is a precursor to
accurately naming the sounding notes and the chords they are part of. In the previous
chapter on note naming, the centre of effect within Chew’s spiral array algorithm acts
as a proxy for the musical key. In this section, the key has to be accurately identified so
that the harmonic structure in the form of named chords can be successfully

documented.

Models for identifying musical keys have long been a subject of research by the
computational musicology community. An early model was proposed by Longuet-
Higgins and Steedman [Longuet-Higgins71] for monophonic music. This algorithm
processes music in a left-to-right manner eliminating all scales that do not include any
pitch it encounters. When it is left with only one key, that is the preferred key. The
algorithm has the capability of back-tracking and re-evaluating for cases when all
possible keys are eliminated. A similar algorithm was developed by Holtzmann
[Holtzmann77] which worked solely on melodies instead of using individual pitches

and eliminating keys.

The previously cited work did not however handle modulation when more than
one key is present in a musical work. Vos and Van Geenen [V0s96] proposed a model
for monophonic music which supports modulation with limited success. More recent
research work in modulated key finding has concentrated on a two stage process;

segmentation and key finding by the use of key-profiles.

71

Key profiles are a prototypical pattern of pitches expected in major and minor
keys and are represented as a vector of 12 values. Profiles have been proposed based on
psychological hearing assessment tests or analysis of large music corpuses. For
example, if a piece of music is in C major, then one would expect the notes within the
piece to be made up of notes from the C major scale (C,D,E,F,G,A,B) and not expect
many notes outside of the scale (C#,D#F#,G#,A#). The Krumhansl-Schmuckler
algorithm [Krumhansl90] uses profiles based on data from experiments by Krumhansl|
and Kessler [Krumhansl82] where subjects were asked to rate how well a pitch class

fitted with a previously defined key established by either a cadence or scale.

Instead of deriving a set of key profiles from psychological tests, an alternative
approach is to use actual compositions. The Kostka-Payne corpus is one such set of
compositions consisting of 46 excerpts (9057 notes) from the common practice
repertoire. It is taken from a workbook accompanying their textbook [Kostka95]. Using
its associated instructors manual, Temperley [Temperley07] has derived profiles for
major and minor keys using the corpus. The generic profiles are illustrated in Figure
17. The data is interpreted as for example, the note of scale degree 1 (the tonic) occurs
in 0.748 (74.8%) of segments in major keys and 0.712 (71.2%) of segments in minor
keys. Temperley proposes a Bayesian process to match the set of notes within a music
segment to one of 24 major and minor profiles — one of each of the 12 major and minor

keys.

72

Major Key Profile

0.8

\ »
07
06 AN
05
04 aN ~
03 A\
02
01 - v AV ~

0 : : : : : : : : : : :

1 #1/b2 2 #2/b3 3 4 #4/b5 5 #5/b6 6 #6/b7 7

Minor Key Profile
0.8

0.7 - A

0.6 -

05

04 / A \

0.3 —

0.2

0.1 ¥ v \/ \‘//0/

0
1 #1/b2 2 #2/b3 3 4 #4/b5 5 #5/b6 6 #6/b7 7

Degree 1 #1/b2 2 #2/b3 3 4 #41b5 5 #5106 6 #6/b7 7
Major | 0748 | 0060 | 0488 | 0082 | 0670 | 0460 | 0096 | 0.715 | 0104 | 0366 | 0057 | 0.400
Minor | 0712 | 0084 | 0474 | 0618 | 0049 | 0460 | 0105 | 0747 | 0404 | 0067 | 0133 | 0330

Figure 17: Major and Minor key profiles from the Kostka-Payne corpus

Key finding using profiles assumes that there is a single key within the segment
of music being analysed. In a longer piece, this may not be the case due to keys
modulating as the music progresses. To overcome this problem, the approach is to
segment the music into shorter sections with the assumption that these shorter sections
contain a single key allowing the key finding algorithm to be applied. Examples of
segmentation approaches include Pardo and Birmingham [Pardo00] who propose a
segmentation scheme based on matching tonal structures to a template based on Forte’s

pitch class representation of chords.

A second segmentation strategy is the one proposed by Temperley [Temperley07]
based on the metrical analysis described in an earlier section. Temperley observes that
all events within a musical piece occur on a beat and that the more significant events
such as modulation occur at stronger beats. Therefore if a metrical analysis is
performed on the music, then the times at which higher level beats (levels 3 and 4)
occur are the boundaries of meaningful segments. These segments can then be analysed

to identify the key within that segment.

73

5.4 Chord Extraction

Within western music, a chord is a set of different notes that sound
simultaneously or occur within a time interval. The identification of chords within a
piece of music is fundamental to understanding its harmonic structure and forms the
basis of any subsequent processing in the form of arranging, accompaniment and

phrasing.

Numerous techniques have been investigated for performing harmonic analysis of
music including linguistics [Winograd68], expert systems [Maxwell92], neural
networks [Laden89], [Tsui02], hidden Markov models [Raphael03] and structural
analysis [Smaill93]. Usually, this work does not consider the segmentation of a musical
piece preferring to work with notations that are already segmented. Segmentation prior

to harmonic analysis has been addressed by [Pardo02] and [Temperley99].

The work cited so far in this section has concentrated on western tonal music.
Tonal music is the organisation of music and harmony around a single, central pitch or
key that grew out of renaissance modal music in the 17th century. Music that lacks this
tonal centre is referred to as atonal music and became a feature of 20" century
composition with composers such as Bartok, Hindemith and Prokofiev creating
compositions that musicologists have described as atonal. The analysis of atonal music
builds on the work of Forte [Forte73] who proposed the use of a Pitch Class Set (PCS)
notation for identifying chords in atonal music. In western music there are 12 pitch
classes (0..11) in an octave that can be used to identify pitches independently of octave

displacement or enharmonic spelling (C#, Db equivalent in pitch).

A PCS is a list of pitch class numbers enclosed in square brackets that represent
the set of sounding pitches; the chord. For example, the PCS [0,3,7] represents a C
minor triad and [7,11,2] a G major triad. Some PCS are similar, for example [0,1,4] is a
transposed version of [3,4,7]. PCSs that are related through inversion and
transformation belong to the same class and can be converted to a prime or canonical
form. Therefore the PCS for a C minor triad [0,3,7] is the canonical form for all minor
triads irrespective of the key or chord root. Solomon [Solomon82] has proposed a
simpler approach to PCSs based on Forte’s original work and has generated tables of

relationships and properties for all PCSs which is available on the web [Solomon].

74

Nelson [Nelson04] provides further background to the mathematics underpinning pitch
class sets. Table 4 illustrates the first 20 entries in Solomon’s table of pitch class sets.
The complete table contains 351 entries and includes all chords, not just the unison,
intervals and triads listed in Table 4. The table lists Forte’s set name, the PCS prime
form, its interval vector (a set of numbers that summarise the intervals within the

chord) and a description of the chord.

Forte cross-referenced Prime Interval Descriptive name/properties
Set-name Vector

0 0-1 Empty 000000 Null set

1 0-1* 0 000000 Unison

2 2-1* 01 100000 Semitone

3 2-2* 02 010000 Whole-tone

4 2-3* 03 001000 Minor Third

5 2-4* 04 000100 Major Third

6 2-5* 05 000010 Perfect Fourth

7 2-6%(6) 06 000001 Tritone

8 3-1* 012 210000 BACH /Chromatic Trimirror

9 3-2 013 111000 Phrygian Trichord

10 3-2B 023 111000 Minor Trichord

11 3-3 014 101100 Major-minor Trichord.1

12 3-3B 034 101100 Major-minor Trichord.2

13 34 015 100110 Incomplete Major-seventh Chord.1

14 3-4B 045 100110 Incomplete Major-seventh Chord.2

15 3-5 016 100011 Rite chord.2, Tritone-fourth.1

16 3-5B 056 100011 Rite chord.1, Tritone-fourth.2

17 3-6* 024 020100 Whole-tone Trichord

18 3-7 025 011010 Incomplete Minor-seventh Chord

19 3-7B 035 011010 Incomplete Dominant-seventh Chord.2

Table 4: Section of Solomon's table of Pitch Class Sets

The prime form of a PCS may produce confusing results. For example, the prime
form for both a major triad [0,4,7] and a minor triad [0,3,7] both map to the same prime
form (037). However, both triads are inversions of each other so that they do indeed
map to the same prime form. Solomon observes that if the final matrix inversion is
omitted when computing the prime form, then the major and minor triads together are
distinguishable as are other inversion equivalences. This fact is used in the

implementation described in the following section.

75

5.5 The Implementation

BeatNoteEvent sampling points
(shown only for Beat Strengths 2, 3 and 4)

Chord C, C,
n .
| 17 s I e ?

B i

; o2 o, #C2f plelel o e, e
gt g SEE===
Beat Strength E

0.4 ® m m s @ s 2 = m s @ = ® @s @ s 8 s a wowmowonmmo®u@BG@®@E@B&:

NamedNoteEvent —>{ Beat Extraction BeatNoteEvent ——| Keéx?p:ctci:r?rd [—> HarmonicEvents

Figure 18: Key and Chord extraction

Extracting key and chord information is a two-step approach involving two
applications. The first is an event based version of Temperley’s meter application
which subscribes to NamedNoteEvents published by a pitch spelling application or
simulated by the OPND testcase publisher. The application publishes BeatNoteEvents
which contain three pieces of information:

1. The beat time in milliseconds from the start of the piece
2. The strength of the beat in a range from 0 to 4

3. The set of notes that are sounding when the beat occurs

The BeatNoteEvent may therefore be thought of as a sample at a point in time
containing all the notes that are currently sounding in the piece. BeatNoteEvents are
published for each beat though for clarity, only the sampling points for beats of strength
2 to 4 are shown in Figure 18. The key and chord extraction application subscribes to
the published BeatNoteEvents.

The second application establishes the key(s) and identified chords. As described

in section 5.3, key extraction is a two stage process. Firstly the piece must be

76

partitioned into segments with the assumption that the key does not change within a
segment. Given a segmented piece, the key can then be identified for each segment
using an appropriate algorithm. The segmentation strategy adopted in this
implementation is that proposed by Temperley [Temperley07] with segments identified
by high beat strength. A high beat strength (strength >= 3) assumes that the beat occurs

at a cognitively important event; one which may signify a modulation.

With reference to Figure 18, the structure of the key and chord extraction

implementation is as follows:

1. Segment Sy starts at time t = 0 and ends when a BeatNoteEvent arrives with strength
>= 3. The final segment Ssina €nds when the beat extraction application signals the
end of the piece by publishing a ClosingEvent. Otherwise segments start and end
when a BeatNoteEvent arrives with strength >= 3.

2. A segment S, is assembled by storing the set of BeatNoteEvents contained within it.
This will include all notes sounding within the segment. An empty segment S, is
also initialised with the key identified for the previous segment S;.1, Kn.; and the
chord sounding at the end of the previous segment.

3. When the end of a segment S, is identified by the arrival of a BeatNoteEvent with
strength >= 3 or the end of the piece, the segment is processed to identify the

segment key K, and the set of chords present within the segment.

Key extraction uses the Bayesian matching technique proposed by Temperley of
the notes present within a segment to key profiles generated from the Kostka-Payne
corpus. The start and end times for a key are identified by detecting when the current
key changes and KeyStartEvent and KeyEndEvents are published. A key may exist for a
period longer than a single segment so initialising a segment with the key identified in
the previous segment allows only changes in key within the piece to generate published

events.

Chord identification uses a modified PCS approach as described by Forte. A
PitchSet class has been developed which given a vector of note pitch classes, computes
the Forte normal form. In addition, the semi-normal form (the Forte normal form

without the final inversion) is also computed to allow for example, major and minor

77

triads to be differentiated. The PitchSet class also includes a method to return the root
pitch class of the chord. The operation of the PitchSet class is illustrated by the

following test code.

public class Test3 {
public static void main(String[] args) {
int[] notes = new int[]{2,5,10};

printArray("'notes = "', notes);

PitchSet ps = new PitchSet(notes);

PitchSet nForm = ps.getNormalForm();

PitchSet pForm = ps.getPrimeForm(Q);

PitchSet spForm = ps.getSemiPrimeForm();

int root = ps.getRoot();

printArray(""normal form = ", nForm.noteArray);
printArray("'prime form = ", pForm.noteArray);
printArray('semi-prime form = ", spForm.noteArray);
System.out.printin("root pc = " + root);

¥
private static void printArray(String preA, int[] iA) {
int aL = 1A.length;
System.out.print(preA);
for (int i =0; i <alL; i++) {
System.out.print(iA[i] + " ™);
}

System.out.printin();

Consider a Bb major triad consisting of the notes Bb, D and F but re-ordered into
D, F, Bb. The set of pitch classes for these three notes is (2, 5, 10). Given this triplet,
represented as a Java int array, we would like to know the different forms of the chord

and its root pitch class. Running this test produces the following output:

notes = 2 5 10

normal form = 10 2 5
prime form = 0 3 7
semi-prime form = 0 4 7
root pc = 10

Given the input array, it identifies the normalized form (10 2 5), the prime form
[0,3,7] which identifies a minor triad and the semi-prime form [0,4,7] which
disambiguates the pitch set to a major triad. The root of the triad is identified as pitch
class 10, the Bb. Given the semi-prime form and the root for set of notes within a

segment, the chord name can then be identified.

78

Chord names are identified using the ChordDescriptionTable class. This Java
class is a lookup on a hash table keyed on the semi-prime form. The hash table contains
entries of the Java ChordDescription type whose private variables are strings
containing the chord’s semi-prime form, Forte number, interval vector, name, quality

and a description generated from Solomon’s table published on the web.

The output of the chord identification can be illustrated by the following segment
information generated by the application. Note that this is a single segment from a

longer running testcase.

Start = 19985 End = 21000 # notes = 13 Key = An +

19985(4) Fs2 Cs5 [1,6] (0,5) <0,0,0,0,1,0> 2-5Cs Perfect Fourth
20125(0) Gs2 Bn4 En5 [4,8,11] (0,4,7) <0,0,1,1,1,0> 3-11B En Major Triad
20265(1) Bn2 Dn5 [2,11] (0,3) <0,0,1,0,0,0> 2-3 Bn Minor Third
20370(0) Bn2 Dn5 [2,11] (0,3) <0,0,1,0,0,0> 2-3Bn Minor Third
20510(2) En2 Gs5 [4,8] (0,4) <0,0,0,1,0,0> 2-4 En Major Third
20615(0) En2 Gs5 [4,8] (0,4) <0,0,0,1,0,0> 2-4 En Major Third
20755(1) Gs5 Dn3 [2,8] (0,6) <0,0,0,0,0,1> 2-6 Dn Tritone
20860(0) Gs5 Dn3 [2,8] (0,6) <0,0,0,0,0,1> 2-6 Dn Tritone
21000(3) Gs5 Cs3En4 [1,4,8](0,3,7) <0,0,1,1,1,0> 3-11Cs Minor Triad

This segment starts at time 19985ms and ends at 21000ms and contains 13
different notes whose profile indicates a key for the segment of A natural major. The
plus sign following the key shows that this segment’s key is a continuation of the key
from the previous segment. There then follows a detailed listing of each beat within the
segment. Each beat has strength from 0 to 4. This is shown within brackets following
the beat time in milliseconds; the segment is defined from the higher strength beats at
times 19985ms (strength = 4) and 21000ms (strength = 3).

Taking the beat at 20125ms as an example we see that three notes are sounding at
the beat time. These notes define the pitch class set [4,8,11] which resolves to the semi-
prime form (0,4,7) and interval vector <0,0,1,1,1,0> corresponding to the Forte number
3-11B. Although the note name includes an octave, this is irrelevant when identifying
the chord and we can establish that the root of the chord is E natural. Using the semi-

prime form as the hash lookup into the ChordDescriptionTable, this chord is identified

79

as a major triad. Re-ordering the three sounding notes into En, Gs and Bn shows that
this is the case.

The application together with other publishers results in a set of events that
identify:

The start and end of the piece of music
The start and end of notes including the name of the note

The start and end of keys including the name and mode

A w b e

The start and end of chords including its type, root and links to the notes contained
within the chord.

These events will be described in more detail in the next chapter where the semantic

description of the music’s harmonic structure is addressed.

5.6 Summary

In this chapter | have discussed the relevant supporting work for metrical
analysis, key identification and chord extraction. These form the basis of two
applications to extract metrical beats and from these determine the keys within the
piece and associated chords. The applications use a novel sampling approach based on
the extracted beats to establish which notes are sounding simultaneously thereby
allowing chords to be identified. Techniques for manipulating pitch class sets have
been discussed which allow hash table lookups to be used to identify the properties of

the sounding chords.

There is a problem in identifying high quality test data to validate the key and
chord identification algorithms developed in this chapter. For testing, test data that
includes the notes together with chord and key information annotated by an expert
musicologist is needed so that the algorithm results may be compared with expert

analysis.

80

Chapter 6 A Semantic Representation of

Musical Harmony

6.1 Introduction

Previous chapters have described the naming of notes and the identification of
keys and chords. This chapter describes how these musical objects and their
relationships are captured and represented within a semantic model of musical
harmony. Starting with a description of semantic web technologies, this chapter
continues with a review of current techniques for representing musical structure using
semantic web languages; notably the Resource Description Framework (RDF) and the
Web Ontology Language (OWL). It then develops a semantic representation of musical
harmony that is constructed from events generated by the applications described in

earlier chapters of this thesis.

6.2 The Semantic Web and the representation of Musical Harmony

The World Wide Web has evolved from its original form as a web of documents
to be consumed by humans into a web of data that can be consumed by machines. This
evolving Web, the Semantic Web [Berners-Lee01], can now be thought of as a
repository of knowledge rather than as an information store consisting of different
document types. Berners-Lee, Hendler and Lassila have described the Semantic Web as
an extension of the current web in which information is given well-defined meaning,

better enabling computers and people to work in cooperation.

81

From a knowledge management point of view, current web technologies, when
applied to weakly structured documents such as text, audio and video, suffer from

limitations[Antoniou08]:

1. Searching for information is based on keywords; a technique with known
limitations

2. Extracting information is time consuming since any retrieved documents have to be
examined for relevant information

3. Maintaining information is problematic due to inconsistencies in terminology and
failure to remove outdated information

4. Uncovering information that implicitly exists in documents can be extracted using
text and data mining but this is difficult for information in weakly structured
collections of documents

5. Viewing information by groups of users is easily managed when the information is

contained within a database but is harder to manage over a web based infrastructure

The objectives of the Semantic Web through its tools, organisation and

descriptive languages are to enable more advanced knowledge management through:

1. Organising knowledge within semantic, or conceptual, domains according to its
meaning

2. Developing tools to automate the extraction of knowledge and checking for
conceptual inconsistencies

3. Replacing keyword based searching by query answering whereby knowledge can
be retrieved and presented in a way that is semantically meaningful. This will be
through semantically relevant entities (e.g. notes, keys and chords in the musical
domain) and their inter-relationships

4. Developing techniques for inferencing and reasoning across multiple semantic

domains. These domains are represented as ontologies.
The emergence of the Semantic Web like other research domains has given rise

to its own terms, technologies and tools. Many of these terms will be used later in this

thesis so for completeness they are defined here:

82

. An Ontology is a semantic model consisting of entities and the relationships
between them. Both entities and relationships may have attributes assigned to them.
. A Triple is a fact consisting of a subject, predicate and object. The predicate defines
the relationship between the subject and object. For example “John knows Dave” is
a Triple; John is the subject, Dave is the object and knows is the predicate.

. A Triple Store is a database of facts. The term Triple Store has wider meaning in
the context of the semantic web than simply a database of triples in that it is also
able to process the rules inherent in a semantic representation such as OWL. In this
thesis, a relational database is used to store triples generated by the music analysis.
This database will be referred to as a triple database to differentiate it from a Triple
Store.

Inference or Entailment is a logical process in which rules are applied to a set of
facts in order to deduce (or infer) additional facts. For example, if “John knows
Dave”, then it may be inferred that there is an inverse relationship “Dave knows
John”.

. The Resource Description Framework (RDF) [RDFO04] is an activity by the World
Wide Web Consortium W3C which completed in 2004. The RDF specifications
provide syntax for a lightweight ontology system to support the exchange of
knowledge on the Web. Included in the framework is the RDF Vocabulary
Description Language RDF-Schema (RDFS) which forms the basis of other
ontology languages and is expressed in XML.

. The Web Ontology Language (OWL) [OWLO04] builds on RDF and RDF Schema
and provides a more extensive vocabulary for describing properties and classes:
among others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly
one"), equality, richer typing of properties, characteristics of properties (e.g.
symmetry), and enumerated classes.

. The SPARQL Protocol And RDF Query Language (SPARQL) [SPARQLO07] can be
used to express queries across diverse information sources, whether the data is
stored natively as RDF or viewed as RDF via middleware. SPARQL contains
capabilities for querying required and optional graph patterns along with their
conjunctions and disjunctions. The results of SPARQL queries can be results sets or
RDF graphs.

Logical rules may be expressed in a number of different formats including the
Semantic Web Rules Language (SWRL) [SWRL04].

83

9. Several tools frameworks have been developed in Java to support the Semantic
Web. The most popular in research communities are the Protégé Ontology Editor
[Protege] and the Jena Semantic Framework [Jena].

10. To support the tools frameworks, there are a number of inferencing (or reasoning
engines) in widespread use. The most popular ones being Pellet [Pellet], FaCT
[FaCT] and Racer [Racer].

With the maturity of semantic web technologies, their use for annotating music
through metadata is becoming widespread. Musicbrainz [Swartz02] provides an open
source repository of information about artists, albums and song titles using RDF. The
openness of the RDF representation allows the metadata to be re-purposed so that other
applications and websites can link to the Musicbrainz metadata to enhance their own

information which could include where to purchase the albums.

A more widespread approach to music metadata using ontologies has been
described in [Raimond2006] and developed further in [Raimond2007a] and
[Raimond2007b] as the Music Ontology. This addresses metadata which includes
editorial, cultural and acoustic information. The ontology contains three levels of
expressiveness which cater for the wide range of granularity required to document
musical events. Level 1 deals with purely editorial material matters such as relating
artists to albums and albums to tracks. Level 2 introduces the concept of an event
which allows the workflow associated with a musical work such as its composition,
arrangement, performance and recording to be documented. Finally, level 3 introduces
event decomposition to allow finer granularity events and sub-events to be
documented. These events could include characteristics of an audio signal (waveform,
spectral etc), settings used throughout a recording session or harmonic events resulting
from an analysis and encoding of the musical score. To support levels 2 and 3, specific
Event [Raimond07d] and Timeline[Raimond07c] ontologies are defined together with
the use of the Friend-of-a-friend (FOAF) ontology [FOAF05] to reuse its concepts of
person and group. The representation of musical harmony presented in this chapter

could be considered as part of level 3 in the music ontology.

84

6.3 The Representation of Time

The need to represent time in a consistent way is a recurring problem in any
application domain. The music ontology timeline adopts Allen’s [Allen83] approach
and is a compromise that makes a formalism which reflects the way time is actually
used in natural language. It assumes that events are expressed as time intervals of

various sizes rather than explicit time points.

Relation Symbol Inverse Endpoint Representation
Symbol Relationships
X before Y < > X+ < Y- XXXX YYYY
X equal Y = = X- =Y-) & XXXX
X+ = Y4) YYYY
X meets Y m mi X+ = Y- XXXXYYYY
X overlaps Y 0 oi X- <Y-) & XXXX
X+ > Y-) & YYYY
X+ < Y+)
X during Y d di (X=->Y-) & XXXX
O+ <= Y9)) | | YYYYYYYY
X starts Y S Si (X- >=Y-) & XXXX
X+ < Y4)) YYYYYYYY
X finished Y f fi XXXX
YYYYYYYY

Table 5: Base Temporal Relationships

It also assumes that our perception of temporal knowledge is relative and

identifies thirteen possible relationships; these are identified in tabular form.

Relationships exist between two events X and Y. Each event has a start time and
an end time denoted by — and +. In the table, an event X starts at time X- and ends at
time X+. A relationship and its inverse are each assigned a symbol. An expression in
terms of the event endpoints is provided together with a pictorial example. For
example, in the case of the X before Y relationship where the start of event Y occurs
after the end of event X, the inverse may be interpreted as Y follows X. The three

during relationships during, starts and finishes can be collapsed into a single during

85

relationship. This can be represented by a single expression as illustrated in the table.
However this does not preclude the three separate relationships being used for finer
granularity qualification of event relationships. The inverse of the three during
relationships provide three containment relationships which may be collapsed into a

single contains relationship.

6.4 The Representation of Musical Events

The temporal relationships identified in the previous section can be used to

formally express the relationships between harmonic objects in a musical piece.

timeline:beginsAtint

K

Timeline

timelinezendsAtint

/‘

Key,

Key,

Chord,

Chord,

Chord{

Cthrdk

Chord, Chord,

Chord,

:% -ﬁt_’

time

Figure 19: Objects of a Harmonic Ontology

Each musical piece is represented as a Timeline with specified starting and
ending times. It consists of an ordered set of Keys, Keyx where k = 1.K. The

relationships between these Keys and the Piece are defined as:

Piece starts Key; (5.2)
Piece finishes Keygk (5.3)
Keyk during Piece (1 <k <K) (5.4)
Keyy meets Keyi:1 (1 <=k <K) (5.5)

86

These describe the temporal relationships between a Piece and its constituent
Keys. The first Key starts at the same time as the Piece (5.2) with the final Key ending
at the same time as the Piece (5.3). All other Keys are contained within the Piece (5.4).
The final relationship (5.5) states that Key changes occur instantaneously at an explicit
time point; the end of Keyy occurs at the start of Keyg.1. The start and end times for
each Key are defined as events occurring within the Piece Timeline (startsAtint and

endsAtint expressed as integer time points).

A Key can contain an ordered set of Chords Chord. where ¢ = 1..C; it is assumed
that an instance of a Chord cannot be contained within more than one Key. If so, then a

similar set of relationships (5.2 to 5.5) exist between a Key and its constituent Chords.

Key starts Chord; (5.6)
Key finishes Chordc (5.7)
Chord. during Key (1<c<0C) (5.8)
Chord, meets Chordc.+1 (1<=c<0C) (5.9)

Notes do not have such strict containment relationships with their parent Chords
and Pieces. We can assert that a Piece consists of an ordered set of Notes, Note, where
n = 1..N. There are no starts or finishes relationship between a Note and a Piece since
rests may occur at the start and end of a Piece. Similarly the relationships do not exist
between a Note and its parent Chord since a Note may be sustained between multiple

Chords. A single composite relationship between a Note and a Chord is expressed as:

(Note, equal Chordc) |
(Note, overlaps Chord;) |
(Note, during Chordc) (5.10)

Expression (5.10) states that a Note can exist for the same time as a parent Chord
through the equal relationship, be shared with another Chord through the overlaps
relationship or sound during a Chord through the during relationship. A similar set of

relationships can be asserted between Notes to establish their temporal links.

(Noten equal Notey) |

87

(Notey, overlaps Notey) |
(Noten, during Note,) (5.11)

6.5 Semantic Representation

In the previous discussion, the objects having relationships can be thought of as
resources, each having a unique identifier. This identifier is typically a URI or
Universal Resource Identifier. A URI does not imply any access mechanism to the
resource in a web context; it is simply an identifier for a resource. In the context of the

Semantic Web, the URI is the identifier of a Web resource.

URI StartTime | EndTime | Name Midi
o

“““““ Note101 1025 1300 F# 67

""""""""""""" >| Note10s 1025 10300 D 63

Chord3

finishes
@ overlaps

meets
starts @ overlaps

b) A semantic net .@

Figure 20: Representation of a Semantic Net

The building block of a semantic description is the relationship between two
resources. This is illustrated in the Figure 20 (a). In this example, two Notes start and
finish at the same times; therefore they are related by the temporal equal relationship.
The Notes are each identified by a URI Note101 and Note105 which are represented as
nodes on a graph. The equal relationship is the arc connecting the two nodes. This
triple (x, P, y) can be thought of as a logical formula P(x,y) where the binary predicate
P relates the resource x to the resource y. The graph illustrated is known as a Semantic
Net and forms the basis of the Resource Description Framework; an XML vocabulary

for describing Semantic Nets.

88

As stated previously, each resource is identified by a URI. In the model
developed as part of this project, the URI corresponds to a unique key in the data model
that describes the different harmonic objects that have been extracted from the MIDI
stream. In the illustrated example, Note101 and Note105 are unique database keys into
the URI column of a table of Notes. By selecting the rows corresponding to these URIs,
further information about the Notes can be accessed such as its name, MIDI number,

start and end times.

Part b) of the figure illustrates how a more complex graph can be assembled that
describes the relationships between a Part, and its constituent Keys, Chords and Notes.

The graph can be interpreted as:

A Part contains a single Key (Key1) that occurs within the start and end time
of the Part. Keyl contains three Chords (Chordl, Chord2 and Chord3) with
Chordl starting at the same time as the Key, Chord 2 follows immediately then
Chord3 which finishes at the end of the Key. Chord1 contains three Notes (Notel,
Note2 and Note3). Note3 is sustained so that it also contributes to Chord2. No

Notes are shown for Chord3.

The representation of harmonic objects using RDF can permit queries of the
graph to identify particular harmonic structures. For example, a Plagal cadence is a IV
chord followed by a I (root) chord. This may be represented by a query of the form

(Chord1 meets Chord2) where ((Chordl type 1V) and (Chord2 type 1))

6.6 The Harmony Ontology

The Harmony OWL ontology developed in this thesis uses simpler temporal
relationships between Keys and Chords.

89

harmony:pitchClass N
temenpiictes)
harmony:natural
harmony:NoteType String | A", "B, "C" D", “E", “F", “G"
harmony:modifier)
[harmony:modifier o o, g o5

harmony:description
harmony:forteNumber -
R En
harmony:intervalVector N
e
harmony:name N
harmony:ChordType String
harmony:pitchClassSet N
R
harmony:quality
[ramonzaualty o]

harmony:keyMode) . .
major, minor
harmony:KeyType
harmony:keyRoot
—_— harmony:NoteType

Figure 21: Harmony object types

It has been developed using the Protégé ontology editor and consists of six
classes separated into three type classes, NoteType, ChordType and KeyType and three

objects Note, Chord and Key. The three type classes are shown in the figure above.

The NoteType class has three data properties; pitchClass, natural and modifier.
The pitchClass property contains the pitch class of the note which is an integer ranging
from 0 to 11 with C = 0 and B = 11. Note that this does not take into account whether
for example the B is harmonically a Cb or A##. The natural property is the name of the
note as a String restricted to the values “A” to “G”. The third property is the note
modifier which identifies whether the note is a flat, double flat, natural, sharp or double
sharp. The ontology defines 35 individuals (or instances of) NoteTypes; one for each of
the 7 naturals with 5 modifiers. For example, the C natural NoteType individual has its
properties set to (0, “C”, “n”) and the G sharp individual has the properties (8, “G”,

“s”).

Chords have a more complex set of properties reflecting the Forte number, pitch
class set and interval vector described in the previous chapter. To these are added the
description, name and quality properties to further describe the chord. As with the
NoteType, a set of ChordType individuals have been defined in the ontology. One
ChordType individual has been defined for each of the 351 chord types identified by

90

Solomon. Each ChordType has been named using its pitch class set prefixed with C so
that the ChordType for a major triad (pitch class set “0,4,7”) is named C047. Therefore
this individual will have the properties forteNumber = “3-11B”, intervalVector =
“001110”, name = “Triad”, pitchClassSet = “0,4,7”, quality = “Major” and description
= “Major Chord”. Only a common subset of the chord types has been fully defined;
chords such as C02348, an Augmented Pentacluster, have still to have their name and

quality assigned.

The KeyType has a simpler set of properties. The keyRoot property is a NoteType
with the keyMode property set to either “major” or “minor”. The ontology does not
include any individuals for KeyTypes.

timeline:beginsAtint El
timeline:endsAtlnt El
harmony:chordRoot
harmony:NoteType
harmony:chordType
harmony:Chord harmony:ChordType
harmony:chordContains
harmony:Note
harmony:chordPartOf -
—
harmony:chordFollows
harmony:Chord
timeline:beginsAtint El
harmony:chordPrecedes int
harmony:Chord
timeline:endsAtint
—————————| inl

timeline:beginsAtint - harmony:noteType
4’“ harmony:NoteType
timeline:endsAtlnt harmony:Note harmony:octave

harmony:keyType ,
y:KeyType narmony:KeyType harmony:midi
harmony:keyFollows harmony:notePartOf
harmony:Chord
harmony:keyPrecedes -

harmony:keyContains
ykeyc harmony:Chord

Figure 22: Harmony Note, Chord and Key classes

The Note, Chord and Key classes are subclassed from the Event class cited in
section 6.2 allowing them to be tied to a Timeline. Each Event’s start and end times are
defined by their timeline:beginsAtint and timeline:endsAtint properties. Also, each of

the Note, Chord and Key classes have their own property type as described earlier.

Notes have a midi property which specifies the note’s MIDI pitch and an octave
property in addition to their type. This allows for example, a Note to be defined as A

flat in the 5th octave. The Note class also includes a notePartOf property which links

91

the Note to a particular Chord. The complex temporal relationships between Notes are
not reflected in this ontology though inferencing based on Allen’s approach is a subject

for future research.

Chords and Keys have simpler temporal relationships. The ontology assumes that
key changes (or modulation) in a way that one key follows another. This is reflected by
the keyFollows property and its inverse keyPrecedes. Similarly, chord changes are
reflected by the chordFollows and chordPrecedes properties. Keys and Chords are
related through containment relationships. A Key will have a set of keyContains
properties to define the set of Chords present in that Key. The inverse property
chordPartOf links the Chord to its parent Key. Similar relations exist between Chords
and Notes. The set of chordContains properties identify the constituent Notes in a

Chord with the inverse notePartOf property of Note identifying its parent Chord.

6.7 Inferencing using the OWL Model

Inferencing (or reasoning) means that we can derive additional facts from
instance descriptions and an associated ontology. The Harmony ontology contains
relationships that connect objects temporally or through containment. An example of
the temporal relationship is the chordFollows relationship which links two chords. The

relationship is expressed as:

Chord2 chordFollows Chord1

There is an inverse relationship within the model called chordPrecedes.

Therefore the inverse relationship is expressed as:

Chord1 chordPrecedes Chord?2

In OWL, the two relationships are connected using the owl:inverseOf construct as

shown in the following snippet of the ontology file.

owl:ObjectProperty rdf:about="urn:x-phd:harmony/ChordPrecedes">
<owl:inverseOf>
<owl:ObjectProperty rdf:about="urn:x-phd:harmony/ChordFollows"/>
</owl :inverseOf>
<rdfs:domain rdf:resource="urn:x-phd:harmony/Chord"/>

92

<rdfs:range rdf:resource="urn:x-phd:harmony/Chord"/>
</owl :ObjectProperty>

<owl:ObjectProperty rdf:about="urn:x-phd:harmony/ChordFollows">
<owl :inverseOf rdf:resource=""urn:x-phd:harmony/ChordPrecedes'"/>
<rdfs:domain rdf:resource="urn:x-phd:harmony/Chord"/>
<rdfs:range rdf:resource="urn:x-phd:harmony/Chord"/>

</owl :ObjectProperty>

This means that an application only needs to assert one of the relationships by
adding it to the model. The inverse relationship is inferred from the ontology and

returned in response to a query against the model.

Inferencing using the harmonic model can be illustrated using the following code
sample. In this sample, the harmony ontology is used to generate a Jena schema model
(1) in addition to the model to be used for the instance data (2). An OWL reasoner is
created (3) which is specialised to the schema and applied to the data model to obtain
an inference model (4). A URI generator is created and some URIs to identify the key

and three chords are produced (5).

In the inference model we create three chords and one key as resources (6)
together with two properties to represent the chordFollows and keyContains
relationships (7). The example then asserts that chord c1 follows chord c0 (8), chord c2
follows chord cl1 (9) and key kO contains chord c0, c1 and c2 (10). The resources
representing chord cl1 and key kO are then retrieved from the model (11) and printed
using the printStatements() method (12). Finally, the model is serialized and output as
an RDF file (13).

public class ITest3 {
private final static String rdfDir =
"C:\\EclipseWorkspace\\Real TimeMusicAnalyser\\RDF\\"';
private final static String ontFName =
"C:\\EclipseWorkspace\\Real TimeMusicAnalyser\\Harmony.owl"";
private final static String rdfName = rdfDir + "itest3.rdf";

public static void main(String[] args) {
// Create the Jena schema model (¢H)
Model schema = FileManager.get() .loadModel (ontFName);

// Create the Jena model for the data)
Model data = ModelFactory.createOntologyModel();

// Create the OWL reasoner specialised to the schema (€))
Reasoner reasoner = ReasonerRegistry.getOWLReasoner();
reasoner = reasoner.bindSchema(schema);

// Create the inference model applying the reasoner to the

93

// data (C))
InfModel infModel = ModelFactory.createlnfModel (reasoner,
data);

// Create the URI Generator and some URIs B)
new URIGenerator('jenatest");

String cO0Str = URIGenerator.getChordURl().toString();

String clStr = URIGenerator.getChordURI().toString();

String c2Str URIGenerator.getChordURl () -toString(Q);

String kOStr = URIGenerator.getKeyURI() .toString();

try {
// Create some chords and the key (6)

Resource cO0 = infModel.createResource(cOStr,

HARMONY .Chord);
infModel .createResource(clStr,

HARMONY .Chord) ;
infModel .createResource(c2Str,

HARMONY .Chord) ;
infModel .createResource(kOStr, HARMONY.Key);

Resource cl

Resource c2

Resource kO

// Create relationship properties a
Property cFollows =

nfModel . createProperty (HARMONY .ChordFol lows.toString());
Property kContains =

nfModel .createProperty (HARMONY .KeyContains.toString());

// cl follows cO (8)
cl.addProperty(cFollows, cO);

// c2 follows cl €©))
c2.addProperty(cFollows, cl);

// kO contains cO, cl, c2 (10)
kO.addProperty(kContains, c0);
kO.addProperty(kContains, cl);
kO.addProperty(kContains, c2);

// Now query the inference model

// Get Resource for c2 and kO..... (11)
Resource rCl = infModel.getResource(clStr);

Resource rKO = infModel.getResource(kOStr);

// Print statements for cl and kO (12)
System.out.printIin("’Chord " + clStr + ":");
printStatements(infModel, rCl, null, null);
System.out.printIn(C"\nKey " + kOStr + ":");
printStatements(infModel, rkKO, null, null);

// Output the model as RDF (13)
FileOutputStream fos = new FileOutputStream(rdfName);
data.write(fos);
fos.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (10Exception e) {
e.printStackTrace();

94

The following example shows the RDF serialization of the model written from
line (13). It correctly shows the three chords and one key with the ChordFollows
relationships expressed for chords 1 and 2 in addition to the KeyContains relationship
for the key and the contained chords. Note that the model serialization does not show

the inverse relationships ChordPrecedes and ChordDuring.

<rdf:RDF
xmIns:owl="http://www.w3.0rg/2002/07/owl#"
xmIns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmIns:j.0="urn:x-phd:harmony/"
xmIns:daml="http://www.daml .org/2001/03/daml+oi I1#"
xmIns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" >
<rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Chord/0">
<rdf:type rdf:resource="urn:x-phd:harmony/Chord"/>
</rdf:Description>
<rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Chord/1">
<j.0:ChordFollows rdf:resource="urn:x-
phd:harmony/jenatest/Chord/0"/>
<rdf:type rdf:resource="urn:x-phd:harmony/Chord"/>
</rdf:Description>
<rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Chord/2">
<j.0:ChordFollows rdf:resource="urn:x-
phd:harmony/jenatest/Chord/1"/>
<rdf:type rdf:resource="urn:x-phd:harmony/Chord"/>
</rdf:Description>
<rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Key/0">
<j.0:KeyContains rdf:resource="urn:x-
phd:harmony/jenatest/Chord/2"/>
<j.0:KeyContains rdf:resource="urn:x-
phd:harmony/jenatest/Chord/1"/>
<j .0:KeyContains rdf:resource="urn:x-
phd:harmony/jenatest/Chord/0"/>
<rdf:type rdf:resource=""urn:x-phd:harmony/Key"/>
</rdf:Description>
</rdf:RDF>

If we now look at the output for chord 1 and key O generated by the
printStatements() method at (12) we can now see additional inferred relationships for

chord 1; that it precedes chord 2 and is during key 0.

Chord urn:x-phd:harmony/jenatest/Chord/1:

- (urn:x-phd:harmony/jenatest/Chord/1 urn:x-phd:harmony/ChordFollows
urn:x-phd:harmony/jenatest/Chord/0)

- (urn:x-phd:harmony/jenatest/Chord/1 rdf:type urn:x-
phd:harmony/Chord)

- (urn:x-phd:harmony/jenatest/Chord/1 rdf:type owl:Thing)

- (urn:x-phd:harmony/jenatest/Chord/1 urn:x-phd:harmony/ChordPrecedes
urn:x-phd:harmony/jenatest/Chord/2)

- (urn:x-phd:harmony/jenatest/Chord/1 rdf:type rdfs:Resource)

- (urn:x-phd:harmony/jenatest/Chord/1 urn:x-phd:harmony/ChordDuring
urn:x-phd:harmony/jenatest/Key/0)

- (urn:x-phd:harmony/jenatest/Chord/1 owl:sameAs urn:x-
phd:harmony/jenatest/Chord/1)

95

Key urn:x-phd:harmony/jenatest/Key/0:
- (urn:x-phd:harmony/jenatest/Key/0
urn:x-phd:harmony/jenatest/Chord/2)
- (urn:x-phd:harmony/jenatest/Key/0
urn:x-phd:harmony/jenatest/Chord/1)
- (urn:x-phd:harmony/jenatest/Key/0
urn:x-phd:harmony/jenatest/Chord/0)
- (urn:x-phd:harmony/jenatest/Key/0
- (urn:x-phd:harmony/jenatest/Key/0
- (urn:x-phd:harmony/jenatest/Key/0
- (urn:x-phd:harmony/jenatest/Key/0
phd:harmony/jenatest/Key/0)

urn:

urn

urn:

rdf:
rdf:

rdf
owl

X-phd:harmony/KeyContains
:x-phd:harmony/KeyContains
X-phd:harmony/KeyContains
type urn:x-phd:harmony/Key)
type rdfs:Resource)

stype owl:Thing)
:sameAs urn:x-

Therefore with a sufficiently rich description such as the Harmony ontology it is

unnecessary to assert all facts about a music sample’s structure. Additional facts can be

asserted from the model structure which may also be extended by use of other rules

engines. This is currently outside the scope of this thesis.

6.8 Creating the Harmony Model

The SemanticCapture application structure follows the structure described earlier

in the thesis for subscribing applications. This is illustrated in Figure 23.

Subscribe

harmonyTopics

Broker

e Creates
l BrokerConnection

creates

A

/\ PubSubEvents

QueueMessageHandler |

SemanticCapture

Publish

ssFinishedTopic

Vocabularies

BlockingQueue

SemanticProcessor

A (main)

Jena Model

J

OWL
—

Derby

Triple
Datastore

Derby
RDB

w
O
@

Figure 23: Semantic model capture

The set of harmonyTopics subscribed to by the application correspond to a topic

for each of the significant events published by the key and chord extraction application

described in the previous chapter. In addition, the application subscribes to the

96

filenameTopic that identifies the testcase (or other filename) so that the model can be
linked to the file or musical piece that created it. The psFinished event is used for

synchronisation. The set of Harmony topics is shown in the following Java code

segment.

// Harmony Ontology
String
String

timelineStartTopic
timelineEndTopic

""Harmony/Ontology/TimelineStart";
""Harmony/Ontology/TimelineEnd";

String noteStartTopic = "Harmony/Ontology/NoteStart";
String noteEndTopic = "Harmony/Ontology/NoteEnd";
String chordStartTopic = "Harmony/Ontology/ChordStart';
String chordEndTopic = "Harmony/Ontology/ChordEnd™;
String chordContainsTopic = "Harmony/Ontology/ChordContains';
String keyStartTopic = "Harmony/Ontology/KeyStart™;
String keyEndTopic = "Harmony/Ontology/KeyEnd";

String[] harmonyTopics = {

EventConstants.
EventConstants.
EventConstants.
EventConstants.
.chordStartTopic,
EventConstants.
EventConstants.
EventConstants.
EventConstants.
.closingTopic,
EventConstants.
EventConstants.

EventConstants

EventConstants

timelineStartTopic,
timelineEndTopic,
noteStartTopic,
noteEndTopic,

chordEndTopic,
keyStartTopic,
keyEndTopic,

filenameTopic,

chordContainsTopic,
psFinishedTopic};

The Harmony ontology was created using the Protege ontology editor. The editor
can export a vocabulary definition for the ontology which complies with the Jena
ontology and model interfaces. This allows a Jena model to be constructed for each
testcase which is then serialised as an OWL file. Jena models can be persisted to a
relational database using the semantic database (SDB) component of Jena or serialised

from the model as an OWL file.

The serialised model is verbose, so for brevity, the three main entities Key, Chord

and Note descriptions are illustrated in the following OWL segments:

<rdf:Description rdf:about="harmony:mozartbhqrtetsk08003mKey562" >
<timeline:endsAtint
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"'>
43015
</timeline:endsAtint>
<harmony : keyMode>major</harmony : keyMode>
<harmony:keyRoot rdf:resource="harmony:Gn"/>
<timeline:beginsAtint
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"'>
0]
</timeline:beginsAtint>

97

<timeline:onTimeLine>
mozartbhgrtetsk08003mTimelinel43
</timeline:onTimeLine>
<rdf:type rdf:resource="harmony:Key"/>
</rdf:Description>

<rdf:Description rdf:about="harmony:mozartbhqrtetsk08003mChord42700"">
<timeline:endsAtint
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"'>

43015

</timeline:endsAtint>

<harmony:chordContains>
harmony:mozartbhqrtetsk08003mNotel34681

</harmony:chordContains>

<harmony:chordPartOf>
harmony:mozartbhqgrtetsk08003mKey562

</harmony:chordPartOf>

<harmony:chordType rdf:resource="harmony:C0"/>

<harmony:chordRoot rdf:resource="harmony:Dn"/>

<timeline:beginsAtint

rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"'>

42840

</timeline:beginsAtint>

<timeline:onTimeLine>
mozartbhgrtetsk08003mTimelinel43

</timeline:onTimeLine>

<rdf:type rdf:resource="harmony:Chord"/>

</rdf:Description>

<rdf:Description rdf:about="harmony:mozartbhgrtetsk08003mNotel34790">

<timeline:endsAtint
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"'>
51664
</timeline:endsAtint>
<harmony:midi rdf:datatype="http://www.w3.0rg/2001/XMLSchema#int">
24
</harmony:midi>
<harmony:octave
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"'>
2
</harmony:octave>
<timeline:beginsAtint
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#int"''>
51333
</timeline:beginsAtint>
<timeline:onTimeLine>
mozartbhqgrtetsk08003mTimelinel43
</timeline:onTimeLine>
<harmony:noteType rdf:resource="harmony:Cn"/>
<rdf:type rdf:resource="harmony:Note"/>
</rdf:Description>

6.9 The Triple Database

An alternative approach is to use a triple database schema implemented within a

Derby relational database to persist the model as a set of triples; the triple database.

98

This approach was to take advantage of existing tools for the visual querying of triples.
This will be described further in the next chapter.

Each of the published harmony events have two insert methods each with
different signatures. The first adds the event to the Jena model whilst the second adds
the event as a set of triples to the triple database. Taking the NoteStartEvent as an

example, the event is added to the Jena model using the following method.

public void insert (Model model) ({

Literal 1;

// Create the Note

model .createResource (noteURIStr, HARMONY.Note) ;

model . createResource (noteURIStr) .addProperty (HARMONY . noteType,
NoteTable.getIndividual (noteName)) ;

model.createResource (noteURIStr) .addProperty (TIMELINE. onTimeLine
, timelineURIStr) ;

1 = model.createTypedLiteral (new Integer ((int) startTime)) ;

model.createResource (noteURIStr) .addProperty (TIMELINE. beginsAtIn

t, 1);
1 = model.createTypedLiteral (new Integer (octave)) ;
model.createResource (noteURIStr) .addProperty (HARMONY.octave, 1);

In this code, the static variables indicated by HARMONY and TIMELINE are
created by the vocabulary exported from Protege. The Note is first created with the URI
contained within the NoteStartEvent. The NoteType individual is looked up in a table
given the event noteName and added as a Note property. The Timeline is linked via its
URI and the Note start time is added using the beginsAtint property. Finally the octave
property is added. The beginsAtint and octave properties are encoded as typed literals

via the Jena model API.

In contrast, the following Java method is used to insert the event into the triple
database.

public void insert (Connection conn, String tcName)

insertTriple (conn, reducedStr (noteURIStr), "Note", -1, -1, null,
noteName, "string", -1, -1, null, "noteType",
tcName) ;

insertTriple (conn, reducedStr (noteURIStr), "Note", -1, -1, null,
Integer.toString(octave), "int", -1, -1, null,
"octave", tcName) ;

insertTriple (conn, reducedStr (noteURIStr), "Note", -1, -1, null,
Integer.toString((int)startTime), "int", -1, -1
null, "timeline:beginsAtInt", tcName) ;

99

The insertTriple method assembles a java.sql.PreparedStatement from the
method arguments and executes it to insert the triple as a row into the database. The
tcName argument is the testcase name which corresponds to the Jena model. Storing
this name in each row of the triple database allows the serialised OWL file to be linked
to the triples for subsequent display as part of any subsequent query and retrieval. The
relational data model for the triple database is shown in Appendix D and discussed in

more detail in the next chapter.

6.10 Summary

In this chapter | have reviewed current semantic web languages and technologies
and their use in documenting metadata for music. | have discussed how time can be
represented and illustrated this in the context of temporally related objects in music; in
particular Notes, Chords and Keys. | have illustrated how OWL descriptions and
associated inferencing can derive facts not asserted by applications. Finally | have
defined an ontology for describing harmonic structure and shown how this ontology (or
model) can be assembled as OWL files and triples in a triple database using the events

generated by the applications described in earlier chapters.

100

Chapter 7 Query by Patterns

7.1 Introduction

The previous chapter described how musical objects, in particular keys, chords
and notes, could be represented as a triple in the form of a subject, object and predicate.
This representation could be serialised in the form of an OWL description or
alternatively as rows within a relational database table. This chapter discusses how
these representations may be queried by taking into account the inherent patterns that
exist within harmonic structures. It describes how these patterns may be visualised and
transformed into SQL and SPARQL queries appropriate to different database

technologies.

7.2 Patterns as knowledge

In chapter 2 | described the Data, Information, Knowledge and Wisdom (DIKW)
hierarchy and how it has motivated this research. In that chapter, | cited the work of
Bellinger et al [Bellinger07] who suggest that understanding is not a separate layer in
the hierarchy as proposed by Ackoff but is the process of transformation between layers
of the DIKW hierarchy. They suggest that transforming data to information involves an
understanding of the relationships that exist in the data. Similarly, knowledge is an
understanding of the patterns that exist in information and wisdom is an understanding
of the principles that exist in knowledge. It is this hypothesis that patterns that exist in
information guide our knowledge that has motivated the database search and retrieval

approach described here.

101

keyPrecedes chordPrecedes keyContains chordContains

keyFollows chordFollows chordPartOf notePartOf

(@) (b) (© (d)

Key
Root =Cn
Mode = major,

Key
Root =Cn
Mode = major,

Key
Root = Cn
Mode = major,

Key
Root =Cn
Mode = major,

chordPartOf chordPartOf chordPartOf chordPartOf

©

Chord
Name = C047
(Major Triad)
Root = Cn

Chord
Name = C047
(Major triad)

Chord
Name = C047
(Major triad)

Root =Cn

chordPrecedes Chord
Name = C07

(Perfect fifth)

Key
Root = Cn
Mode = major,

chordContains

Note
Name =Gn

(9

chordPartOf

miail (h)

Chord
Name = C047
(Major Triad)
Root = Cn

0}

Figure 24: Patterns within the Harmony ontology

The subject, object, and predicate of a triple is an inherent pattern with the
predicate defining the relationship or association between a subject and an object. This
can be thought of as two nodes of a directed graph; one representing the subject and
one the object. The edge connecting the two nodes represents the predicate. In the
Harmony ontology, two generic forms of pattern between entities can be identified;
temporal and containment. Temporal relationships exist between entities of the same
type and are identified by the precedes and follows predicates whose names are
augmented depending on whether the relationship is between keys or chords. Therefore
the keyPrecedes and its inverse keyFollows define temporal relationships between Keys
and chordPrecedes and its inverse chordFollows define the relationships between
Chords. It is assumed that only a single Key or Chord is present at a given point in time
therefore a 1:1 relationship exits between the two entities. A similar pair of
relationships have not been defined for Notes since the temporal relationships between
notes are more complex. Clarification of these inter-note relationships remains a future

research task.

Containment relationships exist between entities of different types. Chords sound
within the context of a Key and individual Notes make up sounding Chords. These are
defined by the partOf and contains relationships. Therefore the Chords that sound in a

particular Key are identified by the “Key contains Chord” relationship and its inverse,

102

(€)
()

(9)

(h)

the “Chord partOf Key” relationship. Once again, these generic relationships are
augmented with Chord, Key and Note to give the chordPartOf and notePartOf
relationships together with their inverse keyContains and chordContains. These

relationships are illustrated as (a) to (d) in Figure 24.

Extending this concept further means that we can represent more complex
structures within music as directed graphs with the nodes representing entities (Key,
Chord and Note) and the graph edges as relationships between them. If we can
represent these strucures by means of a graph, then by extension the graph itself can
become the representation of a query against a database containing the harmonic
structure of testcases represented using the same set of entities and their relationships.
This is illustrated in (e) to (i) in Figure 24. Note that for ease of notation, some
properties (for example chord and key root, key mode and chord name) are shown as
annotations of a graph node. In the harmony ontology, these are also triples with

predicates such as chordRoot, chordName and keyMode etc.

The first four examples can be interpreted as follows:

A query for all C major keys returning the URI of all C major keys in the database

A query for all major triads (C047) in the key of C major returning the URIs of all
major triads together with the URIs of the C major keys they are contained within.

A query for all major triads in the key of C major with a root of C natural returning
the URIs of all major keys in C major with a root of C natural. The URI of the C
major key containing the triads would also be returned.

A query for all major triads with a root of C natural followed by a perfect fifth in the
key of C major. The perfect fifth must contain a G natural. This would return the
URIs of the major triad and its following perfect fifth. The URI of the C major key

containing the triad and perfect fifth would also be returned.

The fifth example (i) introduces an additional node to represent MIDI files. This
may be interpreted as the same query as example (g) but in addition, identify all MIDI
files where this pattern is present. Alternative nodes can be introduced for other media
sources such as the OWL file containing the harmonic description where the pattern is
present.

103

» & Hep: ffiacaihost BES vabfmusk-gu *FIG)

1 goc vews) provensnce 3 17acs M Gaoole |) TiacnaTen: Welcoms B Tracnees W tirstsy - one] apssffsseirs esss. B0 Comindty Senrce T4
Cigar | Submit Gusry

Guery

Cn
major

chordPartOf chor®RartOf

chordPrecedes
- : 3

C047 Co7,
Cn
chordContains

Gn

Figure 25: Mock-up of a Visual Query Builder

Figure 25 shows a mock-up of a browser based visual query builder being
developed using Web 2.0 techniques that allows a user to draw and annotate a query in
the form of a directed graph. The query is then submitted to a triple database or

semantic model of the kind described in the previous chapter.

7.3 Encoding the Pattern

The Graph Exchange Language [GXL02] is an XML vocabulary designed to be a
standard exchange format for graphs. Structurally, GXL represents a typed, attributed
directed graph which can be used to represent schemas in addition to instances of
graphs. Its flexibility means that it has wide use in applications that need to exchange

data in the form of graphs; particularly between software engineering tools.

The graphs illustrated in Figure 24 (e) to (h) can be represented in GXL with
three node types of Key, Chord and Note. Each node type has its own specific set of
attributes including a position attribute that denotes its location corrdinates on the
drawing canvas. In the initial version of the query builder, the Key node type has
attributes for the key root and mode. The Chord and Note nodes types each have a
single attribute called name. Graph edges have a type sub-element which documents

the relationship between the edge “from” and “to” nodes. Note that a full

104

implementation of the query builder should include all entity properties from the
Harmony ontology. These would include entity start and end times which would allow
a rich querying environment to navigate the database of harmonic structures. The GXL
for the five examples in Figure 24 are shown in Appendix B. Given that GXL is a
vocabulary of XML, alternative representations (in particular SQL and SPARQL) can
be generated from GXL using appropriate XSL [XSLO08] transformations.

7.4 The Query as SQL

The Structured Query Language (SQL) is the language designed for the retrieval
and management of data in relational database systems. Using SQL, the subject, object
and predicate of a triple can be represented as columns in a database table called
TRIPLES. The schema for this table is:

CREATE TABLE TRIPLES (
TRANS INTEGER,
HEAD VARCHAR(100),
HEAD_TYPE VARCHAR (40),
BODY VARCHAR (100),
BODY_TYPE VARCHAR (40),
SOURCE_DOC [INTEGER,
TIMESTAMP TIMESTAMP,
ASSOCIATION VARCHAR (200)

With HEAD containing the subject URL, HEAD TYPE its type, BODY
containing the object, BODY_TYPE its type and ASSOCIATION the predicate. A
transaction id is also stored together with a timestamp and a link to a source document
which identifies where the triple originated. This could also be the testcase that

generated the triple.

For Note and Chord entities, a single row in the table can can be used to identify
their types. Therefore the SQL.:

SELECT * FROM TRIPLES
WHERE ASSOCIATION = “noteType”
AND BODY = “Cn~”;

would identify all C natural notes. The HEAD column contains the URL of such notes.
The SQL:

105

SELECT * FROM TRIPLES
WHERE ASSOCIATION = “chordName’
AND BODY = “C0477;

would identify all major triads. Keys however, cannot be uniquely identified from a
single row since they are identified by the combination of their root and mode.
Therefore an SQL view is created. In SQL, a view consists of a stored query accessible
as a virtual table created whenever a select from that table is processed. The Key view

is created:

CREATE VIEW KEY_VIEW (K_URL, K_ROOT, K_MODE) AS
SELECT T1.HEAD AS K_URL, T1.BODY AS K_ROOT,
T2.BODY AS K_MODE
FROM
TRIPLES T1,
TRIPLES T2
WHERE T1.ASSOCIATION = "keyRoot"
AND T2.ASSOCIATION = "keyMode"
AND T1.HEAD = T2.HEAD;

Queries can now select from the created view which conceptually joins two instances
of the TRIPLES based on the HEAD (Key URL) being the same for both root and

mode associations. The following query can then be performed:

SELECT * FROM KEY_VIEW
WHERE K_ROOT = “Cn”
AND K_MODE = “major”;

This would identify all keys in C major.

Views can also be used to model the subject, object, predicate triple in SQL
where the subject and object are both entities; in particular the forward and backward
associations between entities illustrated in Figure 24 (a) to (d). By modeling these
relationships as views, we can combine the views in order to search for the more
complex patterns illustrated in Figure 24 (e) to (i). In this case, the views model the
edges of the graph between two nodes. A set of these views are joined in order to query

the complete graph.

106

Consider the temporal relationships between two keys. In the forward direction
key K1 precedes key K2 and for the inverse K2 follows K1 (assuming the start of K2
occurs after the end of K1). These relationships can be modeled by the two VIEWS
K2K_FORWARD_VIEW and K2K_BACKWARD_VIEW.

-- K2 follows K1
CREATE VIEW K2K_FORWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,
K2_ROOT, K2_MODE) AS
SELECT K1.K_URL AS K1_URL, K1.K_ROOT AS K1_ROOT,
K1.K_MODE AS K1_MODE,
K2.K_URL AS K2_URL, K2.K ROOT AS K2_ROOT,
K2.K_MODE AS K2_MODE
FROM
TRIPLES T1,
KEY_VIEW K1,
KEY_VIEW K2
WHERE T1.ASSOCIATION = "keyPrecedes”
AND T1.HEAD = K1.K_URL
AND T1.BODY K2.K_URL;

-- K2 precedes K1
CREATE VIEW K2K_BACKWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,
K2_ROOT, K2_MODE) AS
SELECT K1.K_URL AS K1_URL, K1.K_ROOT AS K1_ROOT,
K1.K_MODE AS K1_MODE,
K2_K_URL AS K2_URL, K2_.K_ROOT AS K2_ROOT,
K2._.K_MODE AS K2_MODE
FROM
TRIPLES T1,
KEY_VIEW K1,
KEY_VIEW K2
WHERE T1.ASSOCIATION = "keyFollows*”
AND T1.HEAD = K1.K_URL
AND T1.BODY = K2_.K_URL;

Both views provide a virtual table with the URL, root and mode of both Key
entities. Similar views can be generated for other pairings of entities such as Chords

and Notes using CHORD_VIEW which provides a simpler view of a Chord,.

-- Chord to Note
CREATE VIEW C2N_VIEW (C_URL, C_NAME, C_ROOT, N_URL, N_TYPE) AS
SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME,
C1.C_ROOT AS C_ROOT,
T2_HEAD AS N_URL, T2_.BODY AS N_TYPE
FROM
TRIPLES T1,
TRIPLES T2,
CHORD_VIEW C1
WHERE T1.ASSOCIATION = "chordContains”
AND T1.HEAD = C1.C_URL
AND T2_ASSOCIATION = "noteType-*
AND T2_.HEAD = T1.BODY;

-- Note to Chord
CREATE VIEW N2C_VIEW (N_URL, N_TYPE, C_URL, C_NAME, C_ROOT) AS

107

SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME,
C1.C_ROOT AS C_ROOT,
T2.HEAD AS N_URL, T2.BODY AS N_TYPE
FROM
TRIPLES T1,
TRIPLES T2,
CHORD_VIEW C1
WHERE T1.ASSOCIATION = "notePartOf"
AND T1.BODY = C1.C_URL
AND T2.ASSOCIATION = "noteType"
AND T2_HEAD = T1.HEAD;

A complete set of views is provided in the Harmony relational model in
Appendix D. The efficient use of SQL views depends upon the sophistication of the
SQL parser optimiser provided with the database software. Logically, the KEY_VIEW
is performing a Cartesian product of joins between two instances of the TRIPLES table.
In cases where the number of rows in the table is large, this can take a very long time.
Optimisers implement algorithms that operate on table indexes which radically improve
performance but their efficiency (such as the number of joins they can support) varies
between different database implementations. Apache Derby as an open source
relational database implementation does not have as efficient optimisation as for
example, a commercial relational database such as IBM’s DB2. Therefore there may
need to be an alternative approach to overcome inefficient optimisations of SQL views

and joins.

One approach is the use of temporary tables instead of views. Creating a
temporary table for each edge in the graph may rely on some of the simpler views but it
obviates the need for complex joins and the associated reduction in query performance.
This approach is illustrated in the early example of GXL to SQL transformation shown
in Appendix C.

7.5 The Query as SPARQL

SPARQL is emerging as the equivalent to SQL for semantic databases where the
data is expressed as RDF graphs whose schema is defined by an OWL ontology. It
queries the data within the semantic model but does not in itself perform any
inferencing or trigger any rules associated with the model. Rule interpretation and
inferencing are roles of the underlying database or triple store which are reflected in the

result set returned from the query.

108

The previous section discussed the querying of a triple database where the
harmonic model is stored as a set of triples within a relational database. A visual
paradigm for describing the query was presented in which the query graph was
represented by a model serialised as GXL. The representation was transformed to SQL
in order to query the triple datastore using an XSL transformation. In addition to the
triple datastore, figure 23 in chapter 6 also shows the harmonic structure optionally
being captured as a semantic model using the Jena semantic framework. Once in this
model form, the structure can be queried using SPARQL generated by an alternative
XSL transform which converts the GXL representation to SPARQL.

harmony:keyRoot

harmony:keyMode

harmony:Chord

harmony:keyMode
ordPartof harmony:chordPartOf

harmony:chordRod

harmony:noteType

Figure 26: Examples from Figure 24 as complete graphs

If the examples (e) to (h) in Figure 24 are fully expanded as RDF graphs, their
structures can be used to generate equivalent query patterns in SPARQL. These
expanded graphs are shown in Figure 25. Note that in this expansion, Note and Chords
are typed as objects such as harmony:Cn and harmony:C047 which reflects the Protege
defined individuals in the Harmony ontology. There exists in the ontology an individual
for each Note type (NoteType) and Chord type (ChordType). A NoteType defines the
Note’s natural (A..G), its modifier (n, s, f, ss, ff), pitchClass and tonalPitchClass; there
are 35 NoteType Individuals. The 352 ChordType individuals include information such
as the forteNumber, pitchClassSet and IntervalVector together with a name and
description. These type properties have not been used in the example queries shown in

109

this section but could be used in a richer retrieval application which traverses the stored

harmonic structure.

The SPARQL for example (e) retrieves the URLSs for instances of the Key of C

major:

PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#>
SELECT ?kurl
WHERE {

?kurl harmony:keyRoot harmony:Cn.

?kurl harmony:keyMode "major™.

The SPARQL for example (f) retrieves the URLSs for the Keys of C major and the
URLSs of Chords that are part of the Key and a major triad (type C047):

PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#>
SELECT ?kurl ?curl
WHERE {

?kurl harmony:keyRoot harmony:Cn.

?kurl harmony:keyMode "major™.

?curl harmony:chordPartOf ?kurl.

?curl harmony:chordType harmony:C047.

The SPARQL for example (g) is similar to that for example (f), but the Chord
also has a root of C natural:

PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony .owl#>
SELECT ?kurl ?curl
WHERE {

?kurl harmony:keyRoot harmony:Cn.

?kurl harmony:keyMode "major™.

?curl harmony:chordPartOf ?kurl.

?curl harmony:chordType harmony:C047.

?curl harmony:chordRoot harmony:Cn.

Finally, the SPARQL for example (h) retrieves the URLs for the Key, the two

Chords and the Note contained within the second Chord:

PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#>
SELECT ?kurl ?clurl ?c2url ?nurl
WHERE {

?kurl harmony:keyRoot harmony:Cn.

?kurl harmony:keyMode "major™.

?clurl harmony:chordPartOf ?kurl.

?clurl harmony:chordType harmony:C047.

?clurl harmony:chordRoot harmony:Cn.

110

?clurl harmony:chordPrecedes ?c2url.
?c2url harmony:chordPartOf ?kurl.
?c2url harmony:chordType harmony:CO07.
?c2url harmony:chordContains ?nurl.
?nurl harmony:noteType harmony:Cn.

7.6 Summary

In this chapter | have discussed the retrieval of harmonic patterns from a stored
representation of the music harmonic structure in line with the work of Bellinger et al
who view knowledge as patterns of information. | have identified directed graphs as a
structural model for querying patterns held within either a relational or semantic
database. A visual query interface may be constructed which uses a graphical
representation of the query to access either types of database using SQL or SPARQL.
The query is generated from a serialisation in GXL of the directed graph using

appropriate XSL transformations.

111

Chapter 8 Conclusions

This thesis has investigated the use of publish/subscribe messaging and how it
can provide an interconnection framework for distributed, independent applications that
collaborate to create a description of musical harmonic structure. Such a framework
may take a data stream of MIDI commands and generate information by the naming of
notes and the extraction of key and chord structure. By use of semantic web techniques,
this information may be stored within databases and retrieved using pattern based
mechanisms which may be mapped into the query syntax appropriate for the database.
These processes mirror the Data, Information, Knowledge and Wisdom (DIKW)

hierarchy proposed by Ackoff and elaborated by Bellinger and others.

It has demonstrated how this framework can operate by presenting a novel event
based implementation of Chew’s spiral array note naming algorithm. The results of this
implementation have been favourably compared with other published implementations.
A key and chord extraction application has been described which uses metrical analysis
to provide sampling points within the musical stream where segments for key finding
can be identified and notes can be grouped into chords using a technique based on

Forte’s pitch class set theory.

An ontology for musical harmonic structure has been defined which uses the
standardised Web Ontology Language OWL. In this ontology, musical note, chord and
key objects together with their relationships are described. Instances of the ontology
have been created from messaging events generated by the note naming and extraction
applications and stored in either a semantic or relational database using appropriate

schemas.

112

Finally, a user model of database interaction based on visual graph patterns has
been presented. Given the graph serialisation, queries in SQL and SPARQL may be
generated to access the harmonic structure model stored in different database
technologies.

8.1 Discussion

The publish/subscribe messaging model allows applications to be distributed
between processors within a network. This provides benefits in that analysis and other
applications are not as resource constrained as if they were all running within a single
processor. The downside is that the applications are distributed with inherent network
latency (or delay) as events are distributed between publishers, the broker and
subscribers. Latency within a network may be thought of as having two parts:
propagation and application latency. Propagation latency is the latency in moving
network packets from one node to another and is a function of the capacity of the
network link. Application latency is the latency induced by general network traffic and
is subject to the type of applications connected to the network and the quantity of traffic
they generate; this is more random. MIDI connections between devices are via a serial
connection which preserves the real time nature of the interface with predictable and
acceptable latency. For the analysis framework to perform with minimal degradation
due to latency, the applications should be deployed on a dedicated sub-net to minimise
both propagation and application latency. The investigation of latency and the
requirements for the real time analysis framework is however, outside the scope of this
thesis.

Recently, there have been more music structure descriptions published by groups
active in computer musicological research. In addition to MusicXML [MXMLDef],
ontologies have been published for symbolic music [SMusic], key [KOnt] and chord
[ChOnt] ontologies. Whilst not providing a complete set of descriptive formats for
harmonic structure, these are starting to address some aspects of semantic musical
description. The Harmony ontology presented in this thesis is intended to illustrate how
fundamental musical objects (Key, Chord and Note) are inter-related and provides a
mechanism that illustrates how a high level semantic model can be created from lower
level algorithmic applications. Further work is required to take the contribution of the
Harmony ontology and assess how it complements other published musical

113

descriptions. It may be that the Harmony ontology is subsumed by this published work.
In that case, the Harmony events published by the analysis applications presented in
this thesis may be re-structured to support the creation of descriptions in one or more of

the published formats.

The chord identification application presented in chapter 5 of this thesis identifies
chords from notes that are co-sounding at the same beat. There are, however, many
different combinations of notes that constitute the same chord as illustrated in the

following figure.

@) (b) ©

Figure 27: Alternative representations of the same chord

For example, a C major triad consists of three notes (C, E and G) sounding
simultaneously (a), separately (b) or as a single note followed by a minor third (c). The
chord identification described in this thesis would correctly identify (a) as a C major
triad but would identify (b) as three unison notes and (c) as a unison followed by a
minor third. A further layer of semantic inferencing is needed to correctly identify all
three possibilities as forms of the same chord. The definition of temporal rules needed
to infer higher level chord structures from sequences of notes and chords has not been
addressed in this thesis. This problem of inferring higher level chord structured from

sequences within music maps to a more generic problem of applying temporal rules to

114

streams of events and is an ongoing research activity within the semantic web research

community.

In music, a suspension is one or more notes temporarily held before the harmony
is resolved to a particular chord. Suspensions are important indicators of particular
musical styles. Correct chord extraction will identify suspensions and ignore them
before identifying the resolved chord type. The chord extraction algorithm developed in

this thesis does not support the identification of suspensions.

In addition to the inference of higher level chord structures, the techniques
described in this thesis do not address the ongoing research topic of genre
classification. A harmonic structural description alone will not differentiate between
musical styles. Other characteristics of the audio signal are better discriminators. For
example, much 1972s progressive rock was heavily influenced by classical music and
used many of its motifs and harmonic structures. Analysis of its harmonic structure
would not clearly differentiate it from classical forms; however, the instruments used in

the performance would clearly identify the genre.

8.2 Future Work

Whilst this thesis has concentrated on a particular set of contributions, the work

has identified some interesting directions for future research.

8.2.1 Coordination with Music Ontology Research

Raimond’s Music Ontology (MO) is gaining widespread acceptance within the
Music Information Retrieval (MIR) research community. The Harmony ontology
developed as part of this thesis includes some of Raimond’s work (the Timeline and
Event ontologies) but has not been designed as an ontology derived from the broader
MO. Further work should investigate how linkages can be made between the work of

this thesis and the MO and other published musical structure descriptions..

115

8.2.2 Developing Temporal Rules of Music

The chord extraction technique presented in this thesis can identify a chord from
the notes that are concurrently sounding at the sampling point. This is a restricted view
of chord identification since separately sounding notes over a period of time also
contribute to chords which may last for several measures in the music. Inferencing
rules within OWL are limited, but the development of temporal rules based on Allen’s
work and musicological theory is feasible. A temporal rule inferencing engine, possibly
based on Prolog, would allow the current ontology to be enriched further by identifying

these longer lasting chord structures.

8.2.3 Developing an engineered Framework

The framework described in this thesis has been demonstrated by a small number
of separate applications interconnected by a publish/subscribe messaging infrastructure.
For an engineered implementation of the framework, a full design and test process
needs to be completed. This implementation would include designed programming
interfaces to allow new applications to be developed, management processes to allow
components to be distributed throughout a network, and the addition of further topics

and events to the framework.

8.2.4 Developing a complete Visual Query Application

The visual query paradigm presented in this thesis has not been hardened into a
complete browser based application. Web 2.0 techniques allow a complex
browser/server based application to be developed which involves query drawing,

submission and results management to be created.
For such an application, a full design process should be adopted which identifies

use cases from the computer musicology and information retrieval research community

to motivate the implementation of the application.

116

List of References

[Ackoff89] Ackoff, R. L. (1989). "From Data to Wisdom." Journal of Applied Systems
Analysis 16: 3 - 9.

[Allen83] Allen, J. F. (1983). "Maintaining knowledge about temporal intervals.”
Communications of the ACM 26(11): 832 - 843.

[Altherr99] Altherr, M., M. Erzberger, et al. (1999). iBus - A software bus middleware
for the Java platform. Proceedings of the International Workshop on Reliable
Middleware Systems.

[Antoniou08] Antoniou, G. and F. van Harmelen (2008). A Semantic Web Primer.
Cambridge, Massachusetts, The MIT Press.

[Awad04] Awad, E. M. and H. M. Ghaziri (2004). Knowledge Management. Upper
Saddle City, NJ, Pearson Educational International.

[Banavar99] Banavar, G., T. Chandrra, et al. (1999). An efficient multicast protocol for
content-based publish-subscribe systems. Proceedings of the 19th International
Conference on Distributed Computing Systems (ICDCS'99).

[Bellinger07] Bellinger, G., D. Castro, et al. "Data, Information, Knowledge and
Wisdom." Retrieved 26/07/2007, from http://www.systems-
thinking.org/dikw/dikw.htm.

[BergamaschiO7] Bergamaschi, F., D. Conway-Jones, et al. (2007). A Distributed Test
Framework for the Validation of Experimental Algorithms Using Real and
Simulated Sensors. Annual Conference of ITA, University of Maryland, USA.

[Berners-Lee01] Berners-Lee, T., J. Hendler, et al. (2001). "The Semantic Web."
Scientific American 284: 34 - 43.

[Birrell83] Birrell, A. D. and B. J. Nelson (1983). Implementing remote procedure
calls. Proceedings of the ACM Symposium on Operating System Principles,
Bretton Woods, NH, ACM Press, New York.

[Brinner95] Brinner, B. (1995). Knowing music, making music: Javanese gamelan and
the theory of musical competence and interaction, The University of Chicago
Press.

[Chafe82] Chafe, C., B. Mont-Reynaud, et al. (1982). "Toward an intelligent editor of
digital audio: Recognition of musical constructs.”" Computer Music Journal
6(1): 30 - 41.

[Chew00] Chew, E. (2000). Towards a Mathematical Model of Tonality. Operations
Research Center, MIT. Cambridge, MA, MIT. PhD.

117

[Chew04] Chew, E. and Y.-C. Chen (2004). "Real Time Pitch Spelling Using the Spiral
Array." Computer Music Journal 20(2).

[ChOnt]. "The Chord Ontology." from http://www.omras2.org/ChordOntology.

[Cohn97] Cohn, R. (1997). "Neo-riemann operations, parsimonious trichords, and their
tonnetz representation.” Journal of Music Theory 41(1): 1 - 66.

[Cooper97] Cooper, D., K.-C. Ng, et al. (1997). MIDI extensions for musical notation
(2): Expressive MIDI. Beyond MIDI: The Handbook of Musical Codes. E.
Selfridge-Field, MIT Press: 80-98.

[DEC94] DEC (1994). DECMessageQ: Introduction to Message Queuing, DEC;
Hewlett Packard, Palo Alto, CA.

[Derby]. "Apache Derby." from http://db.apache.org/derby/.

[Desain92] Desain, P. and H. Honing (1992). Music, Mind, and Machine: Studies in
Computer Music, Music Cognition, and Artificial Intelligence
(Kennistechnologie), Thesis Pub.

[Dowling86] Dowling, W. J. and D. L. Harwood (1986). Music Cognition.

[FaCT] "FaCT (Fast Classification of Terminologies)."

[FOAFO05] Brickley, D. and L. Miller. (2005). "FOAF vocabulary specification." 2008,
from http://xmlins.com/foaf/0.1.

[Forte73] Forte, A. (1973). The Structure of Atonal Music, Yale University Press.

[Gelernter85] Gelernter, D. (1985). "Generative communication in Linda." ACM
Transactions in Programming Language Systems 7: 80 - 112.

[Good01] Good, M. (2001). "MusicXML: An Internet-Friendly Format for Sheet
Music." Proceedings of XML 2001.

[Good02] Good, M. (2002). MusicXML in Practice: Issues in Translation and Analysis.
MAX 2002 Conference on Musical Applications of XML, Milan.

[GXLO02]. "Graph Exchange Language (GXL)." from http://www.gupro.de/GXL/.

[Hapner02] Hapner, M., R. Burridge, et al. (2002). Java Messaging Service, Sun
Microsystems Inc, Santa Clara CA.

[Hargreaves86] Hargreaves, D. J. (1986). Developmental Psychology of Music,
Cambridge University Press.

[Hewlett97] Hewlett, W. B. (1997). MuseData: multipurpose representation. Beyond
MIDI: The Handbook of Musical Codes. E. Selfridge-Field, MIT Press: 402 -
447.

118

[Hewlett97b] Hewlett, W. B. (1997). MIDI extensions for musical notation (3):
MIDIPlus. Beyond MIDI: The Handbook of Musical Codes. E. Selfridge-Field,
MIT Press: 99-104.

[Hewlett97c] Hewlett, W. B. (1997). MuseData: multipurpose representation. Beyond
MIDI: The Handbook of Musical Codes. E. Selfridge-Field, MIT Press: 402-
447.

[Holtzmann77] Holtzmann, S. R. (1977). "A program for key determination.” Interface
6: 29 - 56.

[Horstmann97] Horstmann, M. and M. Kirtland. (1997). "DCOM Architecture.” from
http://www.microsoft.com/com/tech/DCOM.asp.

[Howard97] Howard, J. (1997). Plaine and Easie Code: a code for music bibliography.
Beyond MIDI: The Handbook of Musical Codes. E. Selfridge-Field, MIT Press:
362-372.

[Huang01] Huang, Y. and H. Garcia-Molina (2001). Publish/subscribe in a mobile
environment. Proceedings of MobiDE.

[Huron97] Huron, D. (1997). Humdrum and Kern: selective feature coding. Beyond
MIDI: The Handbook of Musical Codes. E. Selfridge-Field, MIT Press: 375-
401.

[IBM95] IBM (1995). MQSeries: An introduction to messaging and queuing, Technical
Report GC33-0805-01, IBM Corporation, Yorktown Heights, NY.

[Jena]. "Jena — A Semantic Web Framework for Java." from
http://jena.sourceforge.net/.

[JMS02] JMS. (2002). "Java Message Service Specifcation version 1.1." from
http://java.sun.com/products/jms/docs.html.

[KOnt]. "The Key Ontology." from http://motools.sourceforge.net/keys/keys.owl.

[Kostka95] Kostka and D. Payne (1995). Tonal Harmony. New York, McGraw-Hill.

[Krumhansl04] Krumhansl, C. L. (2004). "The cognition of tonality as we know it
today." Journal of New Music Research 33(3): 253 - 268.

[Krumhansl78] Krumhansl, C. L. (1978). The Psychological Representation of Musical
Pitch in a Tonal Context. Stanford University. Stanford, CA, Stanford
University. PhD.

[KrumhansI82] Krumhansl, C. L. and E. F. Kessler (1982). "Tracing the dynamic
changes iin perceived tonal organization in a spatial representation of musical
keys." Psychological Review 89: 334 - 68.

119

[Krumhansl90] Krumhansl, C. L. (1990). Cognitive Foundations of Musical Pitch. New
York, OUP.

[Laden89] Laden, B. and D. H. Keefe (1989). "The Representation of Pitch in a Neural
Net Model of Chord Classification.” Computer Music Journal 13(4): 12 - 26.

[Large94] Large, E. W. and J. F. Kolen (1994). "Resonance and the perception of
musical meter." Connection Science 6: 177 - 208.

[Lee91] Lee, C. (1991). The perception of musical structure:Experimental evidence and
a model. Representing Musical Structure. P. Howell, R. West and |. Cross.
London, Academic Press: 59 - 127.

[Lehman99] Lehman, T., S. M. Laughry, et al. (1999). TSpaces: The next wave.
Proceedings of the Hawaii International Conference on System Sciences.

[Lerdahl83] Lerdahl, F. and R. Jackendoff (1983). A Generative Theory of Tonal
Music, MIT Press.

[Li89] Li, K. and P. Hudak (1989). "Memory coherence in shared memory systems."
ACM Transactions of Computing Systems 7(4): 321 - 359.

[Longuet-Higgins71] Longuet-Higgins, H. C. and M. J. Steedman (1971). "On
interpreting Bach." Machine Intelligence 6: 221 - 241.

[MacMillan02] MacMillan, K. (2002). Common Music Notation as a Source for Music
Information Retrieval. Workshop on the Creation of Standardized Test
Collections, Tasks, and Metrics for Music Information Retrieval (MIR) and
Music Digital Library (MDL) Evaluation, Portland, Oregon.

[Mathews97a] Mathews, M. V. (1997). MIDI extensions for sound control: Augmented
MIDI. Beyond MIDI: The Handbook of Musical Codes. E. Selfridge-Field,
MIT Press: 105-108.

[Maxwell92] Maxwell, J. H. (1992). An Expert System for Harmonizing Analysis of
Tonal Music. Understanding Music with Al: Perspectives on Music Cognition.
M. Balaban, K. Ebcioglu and O. Laske. Cambridge, Massachusetts, MIT Press.

[Meredith07] Meredith, D. (2007). Computing Pitch Names in Tonal Music: A
Comparative Analysis of Pitch Spelling Algorithms (Early Draft). Faculty of
Music. Oxford, University of Oxford. DPhil.

[MMAO1] MMA. (2001). "The Complete MIDI 1.0 Detailed Specification.” from
http://www.midi.org/about-midi/specinfo.shtml.

[MXMLDef]. "MusicXML Definition." from http://www.musicxml.org/xml.html.

[Nelson04] Nelson, P. (2004). "Pitch Class Sets."” Retrieved 2008, from
http://composertools.com/Theory/PCSets/.

120

[Nordli97] Nordli, K. E. (1997). MIDI extensions for musical notation (1): NoTAMIDI
meta-events. Beyond MIDI: The Handbook of Musical Codes. E. Selfridge-
Field, MIT Press: 73 - 79.

[O'Connell07] O'Connell, B., A. Stanford-Clark, et al. (2007). "Using the IBM Lotus
Expeditor micro broker MQTT client to publish messages." from
http://www.ibm.com/developerworks/lotus/library/expeditor-mqtt/index.html.

[OMG02] OMG (2002). The Common Object Request Broker: Core Specification,
Object Management Group, Needham, MA.

[Oracle02] Oracle (2002). Oracle9i Application Developer's Guide - Advanced
Queuing, Oracle, Redwood Shores, CA.

[OWLO04]. "Web Ontology Language (OWL)." from http://www.w3.0rg/2004/OWL/.

[Pardo00] Pardo, B. and W. Birmingham (2000). Automated Partitioning of Tonal
Music. Proceedings of the 13th International FLAIRS Conference,, Orlando,
Florida.

[Pardo02] Pardo, B. and W. Birmingham (2002). "Algorithms for Chordal Analysis."
Computer Music Journal, 26(2): 27 - 49.

[Parncutt94] Parncutt, R. (1994). "A perceptual model of pulse salience and metrical
accent in musical rhythms." Music Perception 11: 409 - 464.

[Pellet]. "Pellet: The Open Source OWL DL Reasoner." from
http://clarkparsia.com/pellet.

[Povel85] Povel, D.-J. and P. Essens (1985). "Perception of temporal patterns." Music
Perception 2: 411 - 440.

[Protege]. "Protege Ontology Editor." from http://protege.stanford.edu/.

[Racer]. "Racer (Renamed Abox and Concept Expression Reasoner).” from
http://www.sts.tu-harburg.de/~r.f.moeller/racer/.

[Raimond07c] Raimond, Y. and S. Abdallah. (2007). "The Timeline Ontology."
Retrieved 17th November, 2008, from
http://motools.sourceforge.net/timeline/timeline.html.

[Raimond07d] Raimond, Y. and S. Abdallah. (2007). *The Event Ontology."
Retrieved 17th November, 2008, from
http://motools.sourceforge.net/event/event.html.

[Raimond2006] Raimond, Y., S. Abdallah, et al. (2006). An ontology-based approach
to information management for music analysis systems. 120th AES Convention.

[Raimond2007a] Raimond, Y., S. Abdallah, et al. (2007). The Music Ontology. Proc.
8th International Conference on Music Information Retrieval, ISMIR 2007.

121

[Raimond2007b] Raimond, Y., C. Sutton, et al. (2007). A distributed data-space for
music related information. WMS °07, ACM Multimedia, International
Workshop on Multimedia Semantics, Augsberg, Germany.

[Raphael03] Raphael, C. and J. Stoddard (2003). Harmonic analysis with probabilistic
graphical models. ISMIR 2003.

[RDF04]. "Resource Description Framework (RDF)." from http://www.w3.0org/RDF/.

[Robinson06] Robinson, J. M., J. G. Frey, et al. (2006). "The Combechem MQTT
LEGO Microscope." from
http://www.allhands.org.uk/2006/proceedings/papers/670.pdf.

[Rosenblum97] Rosenblum, D. and A. Wolf (1997). A design framework for Internet-
scale event observation and notification. Proceedings of the 6th European
Software Engineering Conference / ACM SIG-SOFT 5th Symposium on the
Foundations of Software Engineering, ACM Press, New York, NY.

[Rosenthal92] Rosenthal, D. (1992). "Emulation of human rhythm perception."
Computer Music Journal 16(1): 64 - 76.

[Rowley07] Rowley, J. (2007). "The wisdom hierarchy: representations of the DIKW
hierarchy." Journal of Information Science 33(2): 163-180.

[Schaffrath97] Schaffrath, H. (1997). The Essen Associative Code: a code for folksong
analysis. Beyond MIDI: The Handbook of Musical Codes. E. Selfridge-Field,
MIT Press: 343-361.

[Shepherd82] Shepherd, R. N. (1982). Structural representation of musical pitch. The
Psychology of Music. D. D, Swets and Zeitlinger.

[Sloboda85] Sloboda, J. A. (1985). The Musical Mind: The Cognitive Psychology of
Music, Oxford University Press.

[Smaill93] Smaill, A., G. Wiggins, et al. (1993). "Hierarchical music representation for
composition and analysis." Computers and the Humanties 93: 7 - 17.

[SMusic]. "Symbolic Music Ontology." from http://purl.org/ontology/symbolic-music/.

[Smythe03] Smythe, T. (2003). "Player Piano Rebirth." 2007, from
http://members.shaw.ca/smythe/rebirth.htm.

[Solomon]. "Table of Pitch Class Sets." from http://solomonsmusic.net/pcsets.htm
[Solomon82] Solomon, L. (1982). “The List of Chords, Their Properties and Use in
Analysis." Interface 11: 61-107.

[SPARQLO7]. "The SPARQL Query Language for RDF." from
http://www.w3.0rg/2001/sw/DataAccess/.

[Sun00] Sun (2000). Java Remote Method Invocation Specification, Sun Microsystems,
Santa Clara, CA

122

[Sun02] Sun (2002). JavaSpaces Service Specification, Sun Microsystems, Santa Clara
CA.

[Swartz02] Swartz, A. (2002). "Musicbrainz: A semantic web service." IEEE
Intelligent Systems 17(1): 76 - 77.

[SWRLO04]. "The Semantic Web Rule Language." from
http://www.w3.0rg/Submission/SWRL/.

[Temperley01] Temperley, D. (2001). The Cognition of Basic Musical Structures, MIT
Press.

[Temperley04] Temperley, D. (2004). "An Evaluation System for Metrical Models."
Computer Music Journal 28(3): 28 - 44.

[Temperley07] Temperley, D. (2007). Music and Probability, MIT Press.

[Temperley99] Temperley, D. and D. Sleator (1999). "Modeling Meter and Harmony:
A Peference Rule Approach.” Computer Music Journal 23(1): 19 - 27.

[TIBCO99] TIBCO (1999). TIB/Rendezvous, TIBCO, Palo Alto, CA.

[Tsui02] Tsui, W. S. V. (2002). Harmonic Analysis Using Neural Networks. Graduate
Department of Electrical and Computer Engineering. Toronto, University of
Toronto. Master of Applied Science.

[Turing50] Turing, A. (1950). "Computing Machinery and Intelligence.” MIND: A
Quarterly Review of Psychology and Philosophy L 1X(236): 433 - 460.

[V0s96] Vos, P. G. and E. W. Van Geenen (1996). "A parallel-processing key-finding
model." Music Perception 14: 185 - 224.

[Winograd68] Winograd, T. (1968). "Linguistics and the computer analysis of tonal
harmony." Journal of Music Theory 12(1).

[XSLO08]. "The Extensible Stylesheet Language (XSL)." from
http://www.w3.0org/Style/XSL/.

123

Appendix A — Framework Topic Spaces

MIDI topic space and event contents

Topic

Event Contents

Description

Midi/Short/NoteOn

Timestamp, Channel, Note, Velocity

Note depressed

Midi/Short/NoteOff

Timestamp, Channel, Note, Velocity

Note released

Midi/Short/PolyKeyPressure

Timestamp, Channel, Note, Pressure

Note aftertouch — pressing a note after
“bottoming out”

Midi/Short/ControlChange

Timestamp, Channel, Controller, Value

Change in a controller value

Midi/Short/ProgramChange

Timestamp, Channel, Program (Patch)

Change to a program patch number

Midi/Short/KeyPressure

Timestamp, Channel, Pressure

Note aftertouch — pressing a note after
“bottoming out”

Midi/Short/PitchWheelChange

Timestamp, Channel, Value

Change in pitch wheel setting

Midi/Short/SystemMessage

Timestamp, Channel, Message Text

System message

Midi/Meta/SeqgNumber

Timestamp, Sequence Number

Change in a Midi sequence number

Midi/Meta/Text

Timestamp, Text String

Arbitrary text event

Midi/Meta/Copyright Timestamp, Copyright Text String Copyright text
Midi/Meta/TrackName Timestamp, Track Name String Track name
Midi/Meta/InstrumentName Timestamp, Instrument Name String Instrument name
Midi/Meta/Lyric Timestamp, Lyric String Lyric
Midi/Meta/Marker Timestamp, Marker String Marker
Midi/Meta/CuePoint Timestamp, CuePoint String Cue point

Midi/Meta/ChannelPrefix

Timestamp, Value

Channel prefix

Midi/Meta/EndOfTrack

Timestamp, Empty

The end of a Midi track

Midi/Meta/Tempo

Timestamp, Value

Time in microseconds per beat

Midi/Meta/SMPTE

Timestamp, Value[0..4]

SMPTE time information

Midi/Meta/TimeSig

Timestamp, Value[0..3]

Time signature and other timing information

Midi/Meta/KeySig

Timestamp, Value

Key signature including Major/Minor

Midi/Meta/Vendor

Timestamp, String

Vendor specific information

Midi/Meta/UnknownMeta

Timestamp, String

Unknown Meta Event

Midi/Sysex/SysExcl

Timestamp, Value

Extension and manufacturer specific info

Midi/Sysex/SysSpExcl

Timestamp, Value

Extension and manufacturer specific info

Harmony topic space and event contents

Topic Event Contents Description
Harmony/Note CCNote Event contains note named using Chew Chen
Harmony/OPNDNote OPNDNote Event contains note defined by its offset, pitch
class, name and duration (OPND)
Harmony/Beat Timestamp, Strength Beat strength and time

Harmony/CentreOfEffect

Point3f

X, Y, Z value of Chew Chen Centre of Effect in
3D space

Harmony Ontology topic space and event contents

Topic

Event Contents

Description

Harmony/Ontology/TimelineStart

URI, Timestamp

Start of Timeline

Harmony/Ontology/TimelineEnd

URI, Timestamp

End of Timeline

Harmony/Ontology/NoteStart

URI, Timestamp, Name, Octave

Start of Note

Harmony/Ontology/NoteEnd

URI, Timestamp

End of Note

Harmony/Ontology/ChordStart URI, Chord, URI Start of Chord and link to previous Chord
Harmony/Ontology/ChordEnd Timestamp End of Chord
Harmony.Ontology/ChordContains URI Chord contains Note with given URI
Harmony/Ontology/KeyStarts Timestamp, Root, Mode Start of Key with given Root and Mode
Harmony/Ontology/KeyEnds Timestamp End of Key

Framework control topics

Topic

Event Contents

Description

Control/Closing

URI, Timestamp

An application is terminating. Timestamp is the
final event time generated by the publishing
application e.g. a final MIDI Off command.

124

Control/PitchSpellingFinished URI Signals that the Pitch Spelling application has
finished

Control/DatabaseFinished URI Signals that the database results capture
application has finished

Control/TriplestoreFinished URI Signals that the triplestore capture application
has finished

Control/Filename URI, String Identifies the testcase that is about to be

published

125

Appendix B — Example Graphs in GXL

GXL for Figure 24 (e):

<?xml version="1.0" encoding="UTF-8"?>
<gxl xmIns="http://www.gupro.de/GXL/gxl1-1.0.dtd"
xmIns:xlink="http://www.w3.0rg/1999/xlink">
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="Zz1"
pos="1170,611"">
<type xlink:href="Key"/>
<attr name="root''><string>Cn</string></attr>
<attr name="mode''><string>major</string</attr>
</node>
</gxl>

GXL for Figure 24 (f):

<?xml version="1.0" encoding=""UTF-8"?>
<gxl xmIns="http://www.gupro.de/GXL/gxl1-1.0.dtd"
xmIns:xlink="http://www.w3.0rg/1999/xlink">
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="z1"
pos="1170,611">
<type xlink:href="Key"/>
<attr name="root"><string>Cn</string></attr>
<attr name="'mode''><string>major</string></attr>
</node>
<node xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd" id=""z3"
pos="'1195,882">
<type xlink:href="Chord"/>
<attr name="name"><string>C047</string></attr>
</node>
<edge xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="2z3"
to="Z1" id="E4">
<type xlink:href="chordPartOf'/>
</edge>
</gxl>

GXL for Figure 24 (g):

<?xml version="1.0" encoding="UTF-8"?>
<gxl xmIns="http://www.gupro.de/GXL/gxl1-1.0.dtd"
xmIns:xlink="http://www.w3.0rg/1999/xlink">
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="z1"
pos="'1170,611">
<type xlink:href="Key"/>
<attr name="root''><string>Cn</string></attr>
<attr name="mode''><string>major</string></attr>
</node>
<node xmlIns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="z3"
pos="1195,882">
<type xlink:href="Chord"/>
<attr name="root"><string>Cn</string></attr>
<attr name="name'><string>C047</string></attr>
</node>
<edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"

126

to="Z1" id="E4">
<type xlink:href="chordPartOf'/>
</edge>

</gxl>

GXL for Figure 24 (h):

<?xml version="1.0" encoding="UTF-8"?>
<gxl xmIns="http://www.gupro.de/GXL/gxl1-1.0.dtd"

xmIns:xlink="http://www.w3.0rg/1999/xlink">
<node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id=""z3"
pos="1195,882">
<type xlink:href="Chord"/>
<attr name="name"><string>C047</string></attr>
<attr name="root'><string>Cn</string></attr>
</node>
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="2z9"
pos="1475,868">
<type xlink:href="Chord"/>
<attr name="name''><string>C07</string></attr>
</node>
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="26"
pos="1575,932">
<type xlink:href="Note"/>
<attr name="name'><string>Gn</string></attr>
</node>
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="z1"
pos="1315,594"">
<type xlink:href="Key"/>
<attr name="root"><string>Cn</string></attr>
<attr name="'mode''><string>major</string></attr>
</node>
<edge xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="2Z3"
to="7Z1" id="E4">
<type xlink:href="chordPartOf'/>
</edge>
<edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"
to=""79" id="E10">
<type xlink:href="chordPrecedes"/>
</edge>
<edge xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z9"
to="7Z1" id="E11">
<type xlink:href="chordPartOf'/>
</edge>
<edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"” from="Z9"
to="26" id="E7">
<type xlink:href="chordContains"/>
</edge>

</gxl>

GXL for Figure 24 (i):

<?xml version="1.0" encoding="UTF-8"?>
<gxl xmIns="http://www.gupro.de/GXL/gxl1-1.0.dtd"

xmIns:xlink="http://www.w3.0rg/1999/xlink">
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="z1"
pos="'1170,611">
<type xlink:href="Key"/>
<attr name="root'><string>Cn</string></attr>
<attr name="'mode''><string>major</string></attr>
</node>

127

</gxI>

<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="2z3"
pos="1195,882">
<type xlink:href="Chord"/>
<attr name="root''><string>Cn</string></attr>
<attr name="name"><string>C047</string></attr>

</node>

<node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id=""26"
pos="1250,950"">
<type xlink:href="MIDI"/>

</node>

<edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="2Z3"
to="Z1" id="E4">
<type xlink:href="chordPartOf'/>

</edge>

<edge xmlns="http://www.gupro.de/GXL/gx1-1.0.dtd" from="2Z3"
to=""26" id="E5">
<type xlink:href="unknown"/>

</edge>

<edge xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="z1"
to="26" id="E6">
<type xlink:href="unknown"/>

</edge>

128

Appendix C — GXL to SQL

Transformation

This appendix illustrates an early version of the GXL2SQL transform which
converts a GXL graph description into SQL. The GXL structure does not include

separate attributes for nodes and edges which were included in later versions.

The input GXL description:

<?xml version="1.0" ?>
<IDOCTYPE gxl [<IELEMENT gxl (node | edge)*>
<IELEMENT edge ANY>
<IELEMENT node ANY>
<IATTLIST node id ID #REQUIRED>
<IATTLIST edge id ID #REQUIRED>]>
<gxl xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd"
xmIns:xlink="http://www.w3.0rg/1999/xlink">
<node xmlns="http://www.gupro.de/GXL/gx1-1.0.dtd" id="z1"
pos="871,623">
<type xlink:href="#KEY_TYPE"/>
<attr name="'name''>
<string>GMajor</string>
</attr>
</node>
<node xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="z3"
pos="744,816">
<type xlink:href="#CHORD_TYPE"/>
<attr name="name'>
<string>C</string>
</attr>
</node>
<node xmlns="http://www.gupro.de/GXL/gxl1-1.0.dtd" id="2z5"
pos="1118,898">
<type xlink:href="#CHORD_TYPE"/>
<attr name="name'>
<string>D</string>
</attr>
</node>
<edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"
from="73" to="Z5" id="'E6'">
<type xlink:href="unknown"/>
</edge>
<edge xmlns="http://www.gupro.de/GXL/gx1-1.0.dtd"
from="73" to="7Z1" id="E7'>
<type xlink:href="unknown"/>
</edge>
<edge xmIns="http://www.gupro.de/GXL/gxl-1.0.dtd"
from="75" to=""7Z1" id="E8">
<type xlink:href="unknown"/>
</edge>
</gxl>

129

The generated SQL.:

DECLARE GLOBAL TEMPORARY TABLE E6(HEAD VARCHAR(100), BODY
VARCHAR(100) , SOURCE_DOC INTEGER)
NOT LOGGED ON COMMIT PRESERVE ROWS;

insert into SESSION.E6(HEAD, BODY) select distinct HEAD, BODY from
new com.ibm.db2j.GaianTable("TRIPLES") GT
where HEAD_TYPE = “harmony:Chord”
and HEAD like "%C%"
and BODY_TYPE = "harmony:Chord*®
and BODY like "%D%";

DECLARE GLOBAL TEMPORARY TABLE E7(HEAD VARCHAR(100), BODY
VARCHAR(100), SOURCE_DOC INTEGER)
NOT LOGGED ON COMMIT PRESERVE ROWS;

insert into SESSION.E7(HEAD, BODY) select distinct HEAD, BODY from
new com.ibm.db2j.GaianTable("TRIPLES") GT
where HEAD_TYPE = “harmony:Chord~
and HEAD like "%C%"
and BODY_TYPE = "harmony:Key"
and BODY like "%GMajor%";

DECLARE GLOBAL TEMPORARY TABLE ES8(HEAD VARCHAR(100), BODY
VARCHAR(100) , SOURCE_DOC INTEGER)
NOT LOGGED ON COMMIT PRESERVE ROWS:

insert into SESSION.E8(HEAD, BODY) select distinct HEAD, BODY from
new com.ibm.db2j.GaianTable("TRIPLES") GT
where HEAD_TYPE = “harmony:Chord”
and HEAD like "%D%"
and BODY_TYPE = "harmony:Key~
and BODY like "%GMajor%";

SELECT DISTINCT
SESSION.E7.BODY as Z1, SESSION.E6.HEAD as Z3, SESSION.E6.BODY as Z5
FROM
SESSION.E6,
SESSION.E7,
SESSION.ES8
WHERE
SESSION.E7.BODY != SESSION.E6.HEAD and SESSION.E7.BODY I=
SESSION.E6.BODY and SESSION.E6.HEAD != SESSION.E6.BODY
and SESSION.E6.HEAD = SESSION.E7.HEAD
and SESSION.E6.BODY = SESSION.E8.HEAD
and SESSION.E7.BODY = SESSION.E8.BODY

The GXL2SQL transform:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmIns:gxI="http://www.gupro.de/GXL/gxl-1.0._dtd"
xmIns:xlink="http://www.w3.0rg/1999/xlink"
version="1.0">

130

<xsl:output method="text" encoding="utf-8" />
<xsl:variable name="lookup" select="document(” lookup.xml*)" />

<xsl:template match="/">

<xsl:apply-templates select="//gxl:edge' mode=""table" />
SELECT DISTINCT

<xsl:apply-templates select="//gxl:node" mode="'select” />
FROM

<xsl:apply-templates select="//gxl:edge" mode="from" />
WHERE

<xsl:apply-templates select="//gxl:node" />

<xsl:apply-templates select="//gxl:edge" />

</xsl:template>

<xsl:template match="gxl:edge"™ mode=""table'>
<xsl:variable name="fmNode" select="1d(@from)" />
<xsl:variable name="toNode" select="id(@to)" />

<xsl:variable name="typeFm" select="$lookup//entry[@nodeType
substring-after($fmNode/gxl :type/@xlink:href, "#")]/@entityType" />

<xsl:variable name="typeTo" select="$lookup//entry[@nodeType
substring-after($toNode/gxl :type/@xlink:href, "#")]/@entityType" />

<xsl:value-of select="$typeFm" /></xsl:message>
<xsl:value-of select="$typeTo" /></xsl:message>

DECLARE GLOBAL TEMPORARY TABLE <xsl:value-of select="@id" />(HEAD
VARCHAR(100), BODY VARCHAR(100), SOURCE_DOC INTEGER)
NOT LOGGED ON COMMIT PRESERVE ROWS;

insert into SESSION.<xsl:value-of select="@id" />(HEAD, BODY) select
distinct HEAD, BODY from
new com.ibm.db2j.GaianTable("TRIPLES") GT
where HEAD_TYPE = "<xsl:value-of select="$typeFm" />*
and HEAD like "%<xsl:value-of select="$fmNode"/>%"
and BODY_TYPE = "<xsl:value-of select="$typeTo"/>"
and BODY like "%<xsl:value-of select="$toNode"/>%";

</xsl:template>

<xsl:template match="gxl:node" mode="'select'>
<xsl:variable name="colName'>
<xsl:call-template name="getTableAndColumnForNode'/>
</xsl:variable>
<xsl:variable name="entityType"

select="substring-after(gxl:type/@xlink:href, "#")"/>

<xsl:variable name="entityName'>
<xsl:choose>
<xsl:when test= "$entityType = "DOCUMENT_TYPE"''>
<xsl:value-of select=""concat("DOCUMENT_",@id)"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="0@id"/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>

<xsl:value-of select="$colName"/> as
<xsl:value-of select="$entityName"/>

<xsl:if test="not(position() = last())'">
<xsl:text>, </xsl:text>

131

</xsl:if>
</xsl:template>

<xsl:template match="gxl:edge'" mode="from'">
SESSION.<xsl:value-of select=""0id"/>
<xsl:if test="not(position() = last())">
<xsl:text>, </xsl:text>
</xsl:if>
</xsl:template>

<xsl:template match="gxl:node">
<xsl:if test="not(position() = 1 or position() = last())">
<xsl:text> and </xsl:text>
</xsl:if>
<xsl:variable name="colNameA'>
<xsl:call-template name=""getTableAndColumnForNode'"/>
</xsl:variable>
<xsl:for-each select="following-sibling::gxl:node'>
<xsl:variable name="colNameB'>
<xsl:call-template name="getTableAndColumnForNode"/>
</xsl:variable>
<xsl:value-of select="$colNameA"/> 1=
<xsl:value-of select="$colNameB"/>
<xsl:if test=""not(position() = last())'">
<xsl:text> and </xsl:text>
</xsl:if>
</xsl:for-each>
</xsl:template>

<xsl:template match="gxl:edge'" mode="from">
SESSION.<xsl :value-of select="@id"/>
<xsl:if test="not(position() = last())">
<xsl:text>, </xsl:text>
</xsl:if>
</xsl:template>

<xsl:template match="gxl:edge'>
<xsl:variable name="thisEdge" select="@id"/>
<xsl:variable name="fmNode" select="@from"/>
<xsl:variable name="toNode" select="@to"/>

<xsl:for-each select="following-sibling::gxl:edge[($fmNode =
-/@From)]">
and SESSION.
<xsl:value-of select="$thisEdge"/>_HEAD = SESSION.
<xsl:value-of select="@id"/>_HEAD
</xsl:for-each>
<xsl:for-each select="following-sibling::gxl:edge[($fmNode =
./@to)]">
and SESSION.
<xsl:value-of select="$thisEdge"/>_HEAD = SESSION.
<xsl:value-of select="@id"/>.BODY
</xsl:for-each>
<xsl:for-each select="following-sibling::gxl:edge[($toNode =
/@From)]">
and SESSION.
<xsl:value-of select="$thisEdge’"/>_.BODY = SESSION.
<xsl:value-of select="@id"/>_.HEAD
</xsl:for-each>
<xsl:for-each select="following-sibling::gxl:edge[($toNode =
./@to)]">
and SESSION.
<xsl:value-of select="$thisEdge'/>_.BODY = SESSION.

132

<xsl:value-of select="@id"/>.BODY
</xsl:for-each>
</xsl:template>

<xsl:template name="getTableAndColumnForNode'>
<xsl:variable name="anEdge" select="//gxl:edge[(./@from =
current()/@id) or (./@to = current()/@id)]1[1]"/>
<xsl:variable name="whichEnd">

<xsl:choose>
<xsl:when test="$anEdge/@from = @id">
<xsl:value-of select=""HEAD""/>
</xsl :when>
<xsl:otherwise>
<xsl:value-of select=""BODY""/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:value-of
select="concat("SESSION. " ,$anEdge/@id, " . " ,$whichEnd)" />
</xsl:template>
</xsl:stylesheet>

133

Appendix D — The Harmony Relational
Model

- database name - tripleDB
- database system : DERBY
- creation date : 26-03-2008

drop table TRIPLES;
drop table DOC_TABLE;

- Table : DOC_TABLE

create table DOC_TABLE (
DOC_HASH integer,
DOC_NAME varchar(200)

);

-— Table : TRIPLES

create table TRIPLES (

TRANS integer,

HEAD varchar(100),

HEAD_TYPE varchar(40),

BODY varchar(100),

BODY_TYPE varchar(40),

SOURCE_DOC integer,

TIMESTAMP timestamp,

ASSOCIATION varchar(200)

)
create unique index il on TRIPLES(TRANS);
create index i2 on TRIPLES(head);
create index i3 on TRIPLES(association);
create index head on TRIPLES(head asc);
create index body on TRIPLES(body asc);
create index head_type on TRIPLES(head_type asc);
create index body_ type on TRIPLES(body_ type asc);
create index hh on TRIPLES(head asc, head_type asc);
create index bb on TRIPLES(body asc, body type asc);
create index source on TRIPLES(source_doc asc);

-- Drop Views

DROP VIEW K2K_FORWARD_VIEW;
DROP VIEW K2K_BACKWARD_VIEW;
DROP VIEW C2C_FORWARD_VIEW;
DROP VIEW C2C_BACKWARD_VIEW;
DROP VIEW K2C_VIEW;
DROP VIEW C2K_VIEW;
DROP VIEW C2N_VIEW;
DROP VIEW N2C_VIEW;
DROP VIEW KEY_VIEW;

134

DROP VIEW CHORD_VIEW;

-- Create Key View

CREATE VIEW KEY_VIEW (K_URL, K_ROOT, K_MODE) AS
SELECT T1.HEAD AS K_URL, T1.BODY AS K_ROOT,T2.BODY AS K_MODE
FROM
TRIPLES T1,
TRIPLES T2
WHERE T1.ASSOCIATION = "keyRoot"
AND T2.ASSOCIATION = "keyMode"
AND T1.HEAD = T2.HEAD;

-- K2 follows K1
CREATE VIEW K2K_FORWARD_VIEW (K1_URL, K1 _ROOT, K1_MODE, K2_URL,
K2_ROOT, K2_MODE) AS
SELECT K1.K_URL AS K1_URL, K1.K ROOT AS K1_ROOT, K1.K_MODE AS
K1 _MODE, K2.K URL AS K2_URL, K2.K_ROOT AS K2_ROOT,
K2.K_MODE AS K2_MODE
FROM
TRIPLES T1,
KEY_VIEW K1,
KEY_VIEW K2
WHERE T1.ASSOCIATION = “keyPrecedes”
AND T1.HEAD = K1.K_URL
AND T1.BODY = K2.K URL;

-- K2 precedes K1
CREATE VIEW K2K_BACKWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,
K2_ROOT, K2_MODE) AS
SELECT K1.K_URL AS K1_URL, K1.K ROOT AS K1_ROOT, K1.K_MODE AS
K1 _MODE, K2.K_URL AS K2_URL, K2.K ROOT AS K2_ROOT,
K2.K_MODE AS K2_MODE
FROM
TRIPLES T1,
KEY_VIEW K1,
KEY_VIEW K2
WHERE T1.ASSOCIATION = "keyFollows*
AND T1.HEAD = K1.K_URL
AND T1.BODY = K2.K_URL;

-- Create Chord Views

CREATE VIEW CHORD_VIEW (C_URL, C_NAME, C_ROOT) AS
SELECT T1.HEAD AS C_URL, T1.BODY AS C_NAME, T2.BODY AS C_ROOT
FROM
TRIPLES T1,
TRIPLES T2
WHERE T1.ASSOCIATION = "chordName"
AND T2.ASSOCIATION = "chordRoot"
AND T1.HEAD = T2.HEAD;

-— C2 follows C1
CREATE VIEW C2C_FORWARD_VIEW (C1_URL, C1_NAME, C1_ROOT, C2_URL,
C2_NAME, C2_ROOT) AS
SELECT C1.C_URL AS C1 _URL, C1.C_NAME AS C1_NAME, C1.C_ROOT AS
C1 ROOT, C2.C_URL AS C2 URL, C2.C_NAME AS C2_NAME,
C2.C_ROOT AS C2_ROOT
FROM
TRIPLES T1,
CHORD_VIEW C1,

135

CHORD_VIEW C2
WHERE T1.ASSOCIATION = "chordPrecedes”
AND T1.HEAD = C1.C_URL
AND T1.BODY = C2.C_URL;

-- C2 precedes C1
CREATE VIEW C2C_BACKWARD_VIEW (C1_URL, C1_NAME, C1_ROOT, C2_URL,
C2_NAME, C2_R0OOT) AS
SELECT C1.C_URL AS C1_URL, C1.C_NAME AS C1_NAME, C1.C_ROOT AS
C1_ROOT, C2.C_URL AS C2_URL, C2.C_NAME AS C2_NAME,
C2.C_ROOT AS C2_ROOT
FROM
TRIPLES T1,
CHORD_VIEW C1,
CHORD_VIEW C2
WHERE T1.ASSOCIATION = “chordFollows*”
AND T1.HEAD = C1.C_URL
AND T1.BODY = C2.C_URL;

-- Create Key-Chord Views

CREATE VIEW K2C_VIEW (K_URL, K_ROOT, K_MODE, C_URL, C_NAME, C_ROOT) AS
SELECT K1.K_URL AS K_URL, K1.K_ROOT AS K_ROOT, K1.K_MODE AS
K_MODE, C1.C_URI AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT
AS C_ROOT
FROM
TRIPLES T1,
CHORD_VIEW C1,
KEY_VIEW K1
WHERE T1.ASSOCIATION = "keyContains”
AND T1.HEAD = K1.K_URL
AND T1.BODY = C1.C_URL;

CREATE VIEW C2K_VIEW (C_URL, C_NAME, C_ROOT, K_URL, K_ROOT, K_MODE) AS
SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT AS
C_ROOT, K1.K _URL AS K_URL, K1.K_ROOT AS K_ROOT, K1.K_MODE
AS K_MODE
FROM
TRIPLES T1,
CHORD_VIEW C1,
KEY_VIEW K1
WHERE T1.ASSOCIATION = "chordPartOf"
AND T1.HEAD = C1.C_URL
AND T1.BODY = K1.K_URL;

-- Create Chord-Note Views

CREATE VIEW C2N_VIEW(C_URL, C _NAME, C _ROOT, N_URL, N_TYPE) AS
SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT AS
C_ROOT, T2.HEAD AS N_URL, T2.BODY AS N _TYPE
FROM
TRIPLES T1,
TRIPLES T2,
CHORD_VIEW C1
WHERE T1.ASSOCIATION = "chordContains*
AND T1.HEAD = C1.C_URL
AND T2.ASSOCIATION = "noteType*
AND T2_.HEAD = T1.BODY;

CREATE VIEW N2C_VIEW(N_URL, N_TYPE, C_URL, C_NAME, C_ROOT) AS
SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT AS

136

C_ROOT, T2.HEAD AS N_URL, T2.BODY AS N_TYPE
FROM
TRIPLES T1,
TRIPLES T2,
CHORD_VIEW C1
WHERE T1.ASSOCIATION = "notePartOf*
AND T1.BODY = C1.C_URL
AND T2_ASSOCIATION = "noteType-*
AND T2_HEAD = T1.HEAD;

137

Appendix E - Musical Codes and

Representation

This appendix formed part of the MPhil transfer thesis and is provided here as
background information for the choice of MIDI as the low level representation of music
used in this thesis.

Musical information has traditionally been communicated by the musical score
through a process known as common musical notation (CMN). This is a visual
representation of music composed of graphical symbols arranged in a two-dimensional
space; the printed or hand written page. Interpreting the symbols to form music
involves the analysis of the graphical and logical structure of the document. This
involves both a descriptive and conceptual interpretation of the music through
interpretation of the musical events to be performed together with abstract musical

concepts that contribute towards an artist’s performance of the work [MacMillan02].

CMN has evolved over the years as a system of symbols for the purpose of
describing and disseminating consistent musical practice. It is a system that is
relatively, but not completely, self-consistent and stable. Music itself is evolving as
new styles and genres emerge and CMN’s inherent flexibility and extensibility has
allowed it to adapt to new demands. The adaptability of CMN means that it is not a
perfect guide for the reproduction of sounds either computationally of by human
performers. The apparent continuity of graphical representation does not guarantee the
same continuity in interpretation and practice. However, CMN is the basis of all
attempts to preserve and publish the corpus of music we know today. This corpus owes

its existence to a generally understood system of graphical communication.

The desire to encode music for mechanical or electronic reproduction has given
rise to alternative representations of music. For example, the rolls used by player pianos
provided a means to mechanically capture a performance using a graphical code using a

bar and line representation that is not dissimilar to the notation provided in modern

138

music sequencer software. This process has developed further in that the piano rolls
produced in the early 20" century are now being scanned and archived on the Web as
MIDI files [Smythe03].

The purpose of this section is to review and comment on the music encoding
techniques used to represent CMN within a computer system. The discussion at the end
of this section addresses the applicability of the encoding techniques for describing

music in a real-time analysis framework.

MIDI and derivatives

The Musical Instrument Digital Interface (MIDI) specification was first published
in 1982 and has been regularly updated [MMAO1]. It was the first musical encoding
scheme to describe a transfer protocol by which electronic musical instruments could
communicate with each other. Its major use is still for the control of synthesisers and
other instruments but it has also been adopted as a file format for the distribution of
compositions. The specification has generally remained unchanged since its first
introduction but there have been many extensions proposed and some implemented

over the years.

MIDI is a serial protocol running at 31.25 Kbaud to form a daisy chain through
all connected instruments. The protocol is optimised using a binary representation that
ensures the events specified by the protocol arrive at the instruments in a timely
manner. MIDI allows a total of 16 logical channels and instruments may be set up to

receive information on a particular channel.

A MIDI message is called an event and contains commands such as NoteOn,
which specifies both the pitch and amplitude of the note being played. In MIDI, a
note’s pitch is defined by a number between 0 and 127 where O represents CO (5
octaves below middle C) and 127 represents G10 (5 octaves above middle C). Other
MIDI events include NoteOff and after touch (the modification of a note currently being

played), specifying a different sound and system messages.

Each track in a MIDI file is stored as a binary representation of the event

messages together with a time stamp for each event. The time stamp ensures events are

139

delivered sequentially to the attached instruments causing trigger events on their
selected channel. This temporal ordering of the events means that the MIDI protocol

may be considered a data stream for the purposes of this thesis.

A problem with the MIDI protocol is that it was designed for the interconnection
and control of electronic musical instruments and not as a musical notation standard to
represent CMN. Other encoding schemes described in this section have been designed
to represent musical scores and therefore include richer descriptions of musical notation
and performance than the MIDI specifications. Proposals have been made to extend the
MIDI specification to make it suitable for printing scores. NoTAMIDI [Nordli97]
suggests meta-events within MIDI to facilitate a more complete representation of
attributes for musical printing using data captures by an electronic keyboard.
Expressive MIDI [Cooper97] was designed to make data capture by OCR from a
printed score more practical for generating MIDI output. Hewlett [Hewlett97b]
proposes extensions to allow conversion of MIDI note numbers for generating accurate
enharmonic notation for harmonic analysis which is otherwise missing from MIDI file
information. Augmented MIDI [Mathews97a] includes extensions for more articulate
control of MIDI devices in a real-time controller environment. This could include
allowing a user to vary the degree of staccato as well as the degree of accentuation and

other nuances from note to note.

Monophonic Encoding

Monophonic music is easier to handle and represent than polyphonic music and
therefore its use in research applications has been much greater. The codes cited in the
following section have generally been held within a single field within a relational
database allowing combined access to the music and associated text that is valuable in

the management of information about musical sources.

The Essen Associative Code (ESAC) [Schaffrath97] was developed in the early
1980s for representing monophonic music — in particular folk music. ESAC consists
entirely of ASCII characters and was designed to run on DOS machines. It was
designed to occupy one field of a relational database to allow studies of musical and
associated contextual attributes. As of 1994, more than 14,000 folk songs have been

encoded with ESAC. The “associative” aspect of ESAC is its simplicity, allowing the

140

association between sight-reading and sight-singing. Its pitch encoding uses scale-

degree numbers corresponding to the moveable symbols of the tonic sol-fah scale.
Chromatic alterations are also included for sharps and flats and phrasing is

included in the encoding. A suite of analysis tools are included to support the encoded

music allowing analysis and comparison of melodies contained within the archives.

The Plaine and Easie Code [Howard97] was developed as a means of
representing musical notation with ordinary typewriter symbols for use in bibliographic
applications such as card catalogues and indexes for encoding musical incipits; this

means the first few words of a book — in this case means a short phrase of music.

Polyphonic Encoding

Since the 1980s and the widespread availability of computing memory and
processing speed attention has moved to the encoding of polyphonic notation and the
subsequent processing of musical repertoire. This processing is intended primarily for

sound production, notation and analysis.

The purpose of the Humdrum Toolkit [Huron97] and its associated encoding,
Kern, is to allow the posing and answering of musicological questions. These questions
are typically placed against collections of encoded music. The toolkit is a set of utilities
written in AWK, C and YACC. These utilities are applied to a set of files using shell
scripts in @ UNIX environment. Humdrum files are standard ASCII files that use the
Kern notation. The Kern representation allows musical pitch, duration, articulation,
ornamentation and timbre to be documented in addition to editorial and other notational
marks such as barlines, bowing direction, beams and stem direction. Kern may be
combined with other symbol-schemes within Humdrum to permit other encoding
schemes such as musical dynamics, visual layout of scores and sound synthesis. Each
stave of the score is represented by a separate column of text in Kern that gives the
impression of a musical score (normally read from left to right) being read from top to
bottom of the page. The following example illustrates the first four bars of the Mozart
Clarinet Quintet encoded in the Kern format. The example shows the five instrumental
staves together with a column (or spine) used to capture dynamics for all the
instruments.

141

!l Mozart: Trio II from Clarinet Quintet

**kern **xkern **kern **kern **kern **dyn
lviolon- !viola !violino !violino lclarinet
lcello ! [1T lin A
!*Tcello *Iviola *Iviolin *Iviolin *Iclarinet *
*ICstr *ICstr *ICstr *ICstr *ICww &
*sysil *sysl *sysl *sysl *sysi *sysl
*staffs *staff4 *staff3 *staff2 *staffl *staff*
*clefF4 *clefC3 *clefG2 *clefG2 *clefG2 &
*M3 /4 *M3 /4 *M3/4 *M3 /4 *M3 /4 &
*k [f#cH#g#] *k [f#cH#gi] *k [f#cH#gi] *k [f#cHgH] *k [f#cHgtt] &
*A: *A: *A: *A: *A: &7
* * * * *Tr+2d+3cC *
4r 4r 4r 4r (8a\ o)
. . . . 8cc#\ .
=1 =1 =dl =i =1 =1
4A\ 4r 4r 4r 8ee\ .
. . 8cc#\
4r 4c#\ 4e/ 4a/ 4aa\
4r 4c#\ 4e/ 4a/ (8ee\
. . . . 8cc#\ .
= =2 =2 =2 =2 =2
4D\ 4r 4r 4r 8b\ .
. . . . 8dd\
4r 4B/ 4f#/ 4a/ 4ff#\)
ar 4B/ af#/ 4a/ (8ad\
. . . . 8b\ .
= =3 =3 =3 =3 =3
4E\ 4r 4r 4r 8a\ .
. . . . 8g#\
4r 4B/ 44/ ag# 8cc#\
. . . . 8b\
4r 4B/ 44/ ag# gee\
. . . . 8dd\) .
= = = =4 =4 =4
4F#\ 4r 4r 4r (4b#\ .
4r 4n/ 4c#/ 4a/ 4cc#\)
4r 4a/ 4c#/ 4a/ (8a\

8cc#\

Figure 28: Kern encoding

MuseData [Hewlett97c] is intended to encode the logical content of musical
scores and captures both notational and sound information. The representation is not
intended to be complete since it is expected that MuseData files would serve as source
files for generating graphics files and MIDI sound files. The reasoning for this is that
when music is encoded, there is often more information contained within the file than a
composer intended to convey. Additionally, since MuseData was used with other
processing software, other packages will add specific information about how a graphic
rendering of the data should look or how a realisation of the data should sound. The
organisation of files is an integral part of the MuseData representation. Each file
represents the encoding of a single musical part from a movement or piece. The
individual files may then be organised into a hierarchical directory structure within a
database. For a given musical work, MuseData files are divided into two types. The
first type contains data for pitch and duration of notes. The second type includes large
amounts of additional information to support printing, interpretive and analytical
applications. This information will support sound generation through MIDI, full and
short score printing, separate part printing, analysis, MIDI specific data (channel and
instrument assignments) and other management data. The format of single files consists
of a set of time-ordered, variable length ASCII records organised as header records,

142

musical attributes, note records and an end of file marker. The following example
illustrates the first four bars of the clarinet part from the Mozart Clarinet Quintet in

MuseData format.

04/16/93 E. Correia

WK#:581 MV#:3c

Breitkopf & H,rtel, Vol. 13

Clarinet Quintet

Trio II

Clarinet in A

10

Group memberships: sound, score

sound: part 1 of 5

score: part 1 of 5

S K:0 Q:6 T:3/4 X:-11 C:
(

C5 3 e d [&0p
E5 3 e d 1
measure 1

G5 3 e d I

E5 3 e d 1

ce 6 q d)
G5 3 e d I (
E5 3 e d 1
measure 2

D5 3 e d I

F5 3 e d 1

A5 6 q d)
F5 3 e a I (
D5 3 e d

measure 3

C5 3 e d [

B4 3 e d =

E5 3 e d =

D5 3 e d =

G5 3 e d =

F5 3 e da 1)
measure 4

D#5 6 q # d (
E5 6 q d)
C5 3 e d [(
E5 3 e d 1]

Figure 29: MuseData encoding

MusicXML [GoodO1] is becoming a widely used interchange format for
representing sheet music and musical notation. It is intended to act as an intermediate
encoding to allow translation between the proprietary binary codes used in many
popular sheet music editors. Some publishing packages make use of MIDI as an
interchange format, but MIDI is unable to represent many of the features needed for
successful musical score publication. MusicXML is intended to overcome these

deficiencies.

MusicXML builds on the earlier development of the MuseData and Humdrum
formats and represents scores either partwise (measures within parts) or timewise (parts
within measures). This dual approach recognises that musical scores are inherently
two-dimensional. Since XML is hierarchical in structure, MusicXML provides two
DTDs (one for each representation) with XSLT transformations to move between the

two representations.

The following example is a trivial piece of MusicXML representing a single note.

143

<?xml version="1.0" standalone="no"?>
<!DOCTYPE score-partwise PUBLIC
"-//Recordare//DTD MusicXML 0.6b Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">
<score-partwise>
<part-list>
<score-part id="P1">
<part-name>Music</part-name>
</score-part>
</part-list>
<part id="P1">
<measure number="1">
<attributess>
<divisions>1l</divisions>
<key>
<fifths>0</fifths>
</key>
<time>
<beats>4</beats>
<beat-types>4</beat-type>
</time>
<clefs>
<sign>G</sign>
<line>2</line>
</clef>
</attributes>
<note>
<pitch>
<step>C</step>
<octaves>4</octaves>
</pitch>
<durations>4</durations>
<type>whole</type>
</note>
</measures>
</parts>
</score-partwise>

Figure 30: MusicXML

MusicXML supports a superset of the MuseData features and supports a number
of translators into and out of popular music publishing packages [Good02]. Since
MusicXML is a vocabulary of XML, analysis and manipulation of musical scores
encoded with MusicXML can make use of other XML standards. XSLT has already
been mentioned for transformation between different representations of MusicXML
and demonstrations of using XML Query to formulate queries against MusicXML
encoded scores have been reported. Translators between MIDI and MusicXML have

also been produced.

Discussion

With the exception of MIDI, the music encoding schemes reviewed in these
sections are used as file descriptions for the purposes of score printing, static
musicological analysis or musical information retrieval. MIDI may be used for this
purpose, but it was designed for real-time control of electronic instruments in both
recording and performance environments. Its structure is based on events occurring at
known times and so it may be considered a form of data that is suitable for streaming

and processing in real-time.

144

MIDI control streams have limited capability when compared to other polyphonic
representations such as MuseData, Kern and MusicXML. However, these
representations contain much richer encoding allowing full score printing (in the case
of MusicXML) or analysis using the Humdrum toolkit (as in the case of Kern). Kern
relies on the expertise of an author in capturing the richness of the musical score using

the language syntax.

The question arises whether such a rich musical representation is needed for real-
time analysis. The input format to Temperley’s [Temperley01] preference rule based
analysis is simply a list of note start and end times (in milliseconds). This is equivalent
to the MIDI NoteOn and NoteOff events with an associated timestamp. The purpose of
any analysis is to enrich the event stream; therefore requiring a richly encoded input

(whilst advantageous) defeats the purpose of this thesis.

The conclusion reached in this section is that whilst the richer encoding
techniques (particularly Kern) reviewed might be appropriate for describing
information extracted from a real-time musical stream, MIDI remains the best
candidate for representing raw musical events. The elements of its compact structure
contain the basic data needed as input to analysis components that can extract higher-
level information about the harmonic structure of the musical performance with the
objective of approximating to the level of harmonic description provided by other
representations such as MuseData and Kern. The only additional information required
would be an accurate timestamp associated with the MIDI event. This information is
readily obtained, but provides an added complication if the analysis and performance
framework is deployed on a distributed processing infrastructure where timing

information may be skewed due to different processor clocks and network latency.

145

