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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

A FRAMEWORK FOR THE REAL-TIME ANALYSIS OF MUSICAL EVENTS  

by John Bryan Ibbotson 

 

In this thesis I propose a framework for the real-time creation of a harmonic 

structural model of music. Unlike most uses of computing in musicology which are 

based on batch processing, the framework uses publish/subscribe messaging techniques 

found in business systems to create an interconnected set of collaborating applications 

within a network that process streamed events of the kind generated during a musical 

performance. These applications demonstrate the transformation of data in the form of 

MIDI commands into information and knowledge in the form of the music’s harmonic 

structure represented as a model using semantic web techniques. 

 

With such a framework, collaborative performances over the network become 

possible with a shared representation of the music being performed accessible to all 

performers both human and potentially software agents. The framework demonstrates 

novel real-time implementations of pitch spelling, chord and key extraction algorithms 

interacting with semantic web and database technologies in a collaborative manner. It 

draws on relevant research in information science, musical cognition, semantic web and 

business messaging technologies to implement a framework and set of software 

components for the real-time analysis of musical events, the output of which is a 

description of the music’s harmonic structure. Finally, it proposes a pattern based 

approach to querying the generated model which suggests a visual query and 

navigation paradigm. 
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Chapter 1 Introduction 

Where is the Life we have lost in living? 
 
Where is the wisdom we have lost in knowledge? 
 
Where is the knowledge we have lost in information? 
 

T. S. Eliot. “The Rock”, Faber and Faber, 1934 

1.1 Motivation 

Writing in 1934, T. S. Eliot could not have anticipated the debates triggered by 

his poem “The Rock” that have taken place in the Information Science research 

community. In the lines quoted above, he links wisdom to knowledge and knowledge to 

information with the suggestion that they are interdependent and interlinked. However, 

in spite of the substantial research activities that have taken place in the intervening 

years, the terms wisdom, knowledge and information and the relationships between 

them are still unclear and often misunderstood. 

 

Information enrichment, or the extraction of information and knowledge from 

low level data, is a skill that musicians and musicologists apply to the performance and 

analysis of music; musicians to inform their performance and musicologists to 

understand the structure of music. In this thesis, I intend to investigate the creation of 

knowledge in the form of a semantic model of musical harmony from low level data 

using MIDI commands streamed during a musical performance either live or replayed 

from a stored file. This motivation leads to the application of algorithmic, semantic and 

messaging technologies in the enrichment of musical data in the form of MIDI message 

streams into a semantic representation of musical knowledge in the form of an ontology 

that models harmonic structure. 
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Real-time in the context of this thesis means that there is minimal delay 

introduced by processing applications within the proposed framework. Unlike 

conventional music analysis applications which operate on a batch processing principle, 

the application architecture developed in this thesis responds to events propagated 

throughout a network by a messaging system. These events trigger analysis 

applications which in turn contribute other events. The structure of the analysis 

algorithms is such that any processing delays are minimal. 

 

Introducing an event messaging infrastructure to interconnect algorithmic and 

semantic software applications within a network leads to a number of advanced 

motivational use cases: 

 

1. A shared knowledge of the structure of a performance amongst collaborating 

performers interconnected via a network. Performers may include both human and 

software agents that improvise in a particular musical style. This leads to the 

concept of a musical Turing test to identify which performers are human and which 

are machines. 

2. A more substantial set of encoded music information retrieval (MIR) datasets for 

research in musicology. Currently, these datasets are created manually by expert 

musical researchers. If the automated generation of harmonic structure from 

performance data is possible, then the creation of these datasets becomes easier. 

3. Note extraction from digital audio, though not within the scope of this thesis, would 

allow additional publishing applications to contribute to the framework. This then 

makes audio files available as sources of data for generating harmonic structural 

descriptions. 

 

A former colleague at IBM who was working with digital library technologies in 

the 1980s added an extra line to the T. S. Eliot poem: 

 
Where is the information we have lost in the library? 

 

But that’s another story. 
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1.2 Contributions 

This thesis proposes an analysis framework based on publish/subscribe 

messaging techniques commonly found in business quality messaging systems. The 

musical events discussed in this thesis form a particular class of message event that 

may be processed and analysed using applications built onto such a distributed 

framework. 

 

In particular, the research contributions developed in this thesis are: 

 

1. The use of publish/subscribe messaging technology to create a framework where 

independent, collaborating applications can be developed for the real-time analysis 

of musical events. 

2. An implementation of an event based version of Chew’s spiral array note naming 

algorithm with improved results over those previously published. 

3. A musical key and chord extraction algorithm using sampling based on metrical 

analysis. 

4. An ontology is presented that models musical harmony. 

5. A visual pattern query paradigm is presented that allows users to construct queries 

that may be applied to both relational and semantic models of the harmonic 

structure. 

1.3 Thesis Structure 

Following this chapter, chapter 2 provides an overview of background work in 

information theory and musical cognition. Chapter 3 introduces the publish/subscribe 

messaging model and compares it with other messaging patterns. This is followed by 

example applications of the model to MIDI command streams. Chapter 4 reviews 

current research in note naming followed by the development of an event based 

implementation of Chew’s spiral array note naming algorithm. Chapter 5 reviews key, 

chord and meter extraction research followed by their application in a chord and key 

extraction component of the framework. Chapter 6 describes the development of the 

Harmony ontology for representing musical harmonic structure. Chapter 7 discusses the 

navigation of the harmonic structure model using a visual pattern query which can be 
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transformed to either a relational or semantic database representation of the model. 

Chapter 8 provides conclusions and identifies areas for further research. 

  

1.4 Declaration 

I declare that this thesis and the work presented in the thesis are both my own, and have 

been generated by me as the result of my own original research.  I confirm that: 

 
• this work was done wholly or mainly while in candidature for a research degree at 

this University; 

• where any part of this thesis has previously been submitted for a degree or any 

other qualification at this University or any other institution, this has been clearly 

stated; 

• where I have consulted the published work of others, this is always clearly 

attributed; 

• where I have quoted from the work of others, the source is always given. With the 

exception of such quotations, this thesis is entirely my own work; 

• I have acknowledged all main sources of help; 

• where the thesis is based on work done by myself jointly with others, I have made 

clear exactly what was done by others and what I have contributed myself; 

• parts of this work have been published as:  

o Ibbotson, J., DeRoure D. (2004). Record and Reuse using Publish/Subscribe 

Messaging. Equator Record and Reuse Workshop, February 2004. 

www.crg.cs.nott.ac.uk/~sdb/r&rworkshop/ibbotson.pdf 

o Ibbotson, J. (2004). Using publish/subscribe messaging to distribute MIDI 

commands, December 2004. Available from  

http://www.ibm.com/developerworks/websphere/library/techarticles/0412_i

bbotson/0412_ibbotson.html 
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Chapter 2 Background 

2.1 Introduction 

This chapter discusses background research work related to the topic of this 

thesis. It starts with a discussion of the DIKW hierarchy; a “philosophical framework” 

for information enrichment which sets the scene for the work in this thesis. Finally, it 

reviews issues related to musical cognition; in particular its position as a branch of 

cognitive psychology which leads to the identification of characteristics that are 

important in the human brain’s perception and understanding of music.  

 

This chapter provides an overview of background research work. Subsequent 

chapters will provide a more detailed review of current research work related to the 

components of the architectural framework described in this thesis. 

2.2 The DIKW Hierarchy 

Recent research into the meaning of data, information, knowledge and wisdom is 

based on Russell Ackoff’s Presidential address to the ISGSR in June 1988 [Ackoff89] 

in which he discusses wisdom and what an information system that could generate it 

would look like. He describes wisdom as being located at the top of a hierarchy of types 

of content of the human mind; descending from wisdom, are understanding, knowledge, 

information and at the bottom, data. He observes that each level in the hierarchy 

includes the categories that lie below it. For example, there can be no wisdom without 

understanding and no understanding without knowledge. Ackoff provides the following 

definitions of data, information, knowledge and wisdom: 
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Data are symbols that represent properties of objects, events and their 

environmental context. They are products of observation or sensing but are of no use 

until they are in a useable or relevant form; the difference between data and 

information is functional not structural. 

Information is inferred from data and is contained in descriptions and answers to 

questions that begin with such words as who, what, when and how many. 

Knowledge is know-how and makes possible the transformation of information 

into instructions. It is obtained either by transmission from another who has it, by 

instruction, or by extracting it from experience. 

Wisdom is the ability to increase effectiveness by adding value through the 

mental function we call judgement. The ethical and aesthetic values that this implies 

are inherent to humans and are unique and personal. 

 

In parallel with the definition of wisdom, Ackoff defines intelligence as the 

ability to increase effectiveness. Note that there seems to be no consensus on whether 

wisdom and intelligence are synonymous. In Turing’s classic paper on machine 

intelligence [Turing50], he refers to the Argument from Consciousness proposed by 

Professor Jefferson from his 1949 Lister Oration: 

 

"Not until a machine can write a Sonnet or compose a concerto because of 

thoughts and emotions felt, and not by the chance fall of symbols, could we agree that 

machine equals brain-that is, not only write it but know that it had written it. No 

mechanism could feel (and not merely artificially signal, an easy contrivance) pleasure 

at its successes, grief when its valves fuse, be warmed by flattery, be made miserable by 

its mistakes, be charmed by sex, be angry or depressed when it cannot get what it 

wants."  

 

The aesthetic nature of the quotation from Lister would seem to be more closely 

linked to Ackoff’s definition of wisdom rather than Turing’s views on intelligence. 

 

In conclusion, Ackoff believes that wisdom is grounded on ethical and aesthetic 

values that are uniquely human and lead to the pursuit of ideals; characteristics that 

differentiate man from machines. Therefore he concludes that machine automata will 
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never be able to generate wisdom; though the creation of actionable information or 

knowledge by machines is a realistic expectation. 

 

Awad and Ghaziri [Awad04] amongst others consider the inclusion of 

understanding in Ackoff’s hierarchy as un-necessary. The Data, Information, 

Knowledge, Wisdom (DIKW) hierarchy is illustrated as a pyramid in Figure 1 with 

data as the base. There is a common view that the higher elements in the hierarchy can 

be explained in terms of the lower elements by identifying appropriate transformation 

processes. A research challenge is still to understand and explain how these 

transformations can be described. Rowley [Rowley07] in her review of representations 

of the DIKW hierarchy suggests that an alternative representation would be to invert 

the pyramid illustrating that data becomes increasingly more concentrated and 

ultimately becomes wisdom. 

 

Wisdom

Data

Knowledge
(actionable information)

Information
(data “in-formation”)

Non-Algorithmic Non-Programmable

Algorithmic Programmable

(Awad and Ghaziri)  

Figure 1: The DIKW Hierarchy 

Bellinger et al [Bellinger07] suggest that understanding is not a separate level as 

proposed by Ackoff but is the process of transformation between layers of the DIKW 

hierarchy. They suggest that transforming data to information involves an 

understanding of the relationships that exist in the data. Similarly, knowledge is an 

understanding of the patterns that exist in information and wisdom is an understanding 

of the principles that exist in knowledge. Figure 2 illustrates Bellinger’s proposition 
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that understanding increases as the connectedness between objects in the hierarchy 

increases. It also includes Rowley’s categorization of information system types that 

correspond to levels in the DIKW hierarchy. 

 

data

information

knowledge

wisdomconnectedness

understanding

understanding
relationships

understanding
patterns

understanding
principles

(Bellinger, Castro and Mills)

Expert Systems

Decision Support
Systems

Management Information
Systems

Transaction Processing
Systems

Semantic

Algorithmic

(Rowley)

 

Figure 2: Transformation through Understanding 

It is clear from this discussion of the DIKW hierarchy that the nature of the 

transformations moving up the hierarchy changes. Transformation of data into 

information is typically accomplished by algorithmic processing whereas the creation 

of knowledge is achieved by mapping facts into a model that represents the domain of 

knowledge being considered. This approach is becoming increasingly popular with the 

development of Semantic Web technologies. Therefore we can assume a spectrum of 

transformation techniques from the purely algorithmic to the purely semantic as we 

ascend the hierarchy. 

2.3 Musical Cognition 

Hargreaves [Hargreaves86] positions musical cognition as a branch of cognitive 

psychology. He defines this as: 
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The emphasis of cognitive psychology is upon the internalised rules, operations and 

strategies that people employ in intelligent behaviour just as much as on the external 

behavioural manifestations of these processes. 

 

Musical cognition has been likened to information theory where music is 

compared to the transmitted message that has some degree of uncertainty. In cases of 

“simple” music, there is little uncertainty and too much redundancy. This type of music  

is perceived as uninteresting. In cases of complex or randomly generated music with a 

large amount of uncertainty, the listener perceives it as incomprehensible. 

 

The methodology of cognitive psychology (and therefore musical cognition) is 

primarily experimental. Subjects are provided with some stimuli and then asked to 

perform a task or provide a report in response to the stimuli. The psychological 

processes that take place in the set of subjects are then inferred from the experimental 

results. Cognitive processes established through experimental procedures may then be 

modelled computationally. Modelling may be at the neurological level where the 

biological processes are mimicked in software. Alternatively, higher-level abstract 

computational models of behaviour may be developed which ignore the detailed 

neurological processes. Assuming the behavioural models exhibit the same response to 

stimuli as the neurological models or experimental results, this is a valid approach. 

 

2.3.1 Competence, Knowledge and Language 

Musical competence combines knowledge of its mechanisms together with the 

language of expression. Brinner [Brinner95] defines musical competence as: 

 

Individualised mastery of the array of interrelated skills and knowledge that is 

required of musicians within a particular tradition or musical community and is 

acquired and developed in response to and in accordance with the demands and 

possibilities of general and specific cultural, social and musical conditions 

 

Brinner writes as an ethnomusicologist, so his definition of musical competence 

embraces anthropological context in addition to purely technical skills. He classifies the 

knowledge required for musical competence into two forms: declarative and 
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procedural. Declarative knowledge, or “Know that”, consists of hard musical facts such 

as tuning and scale structure whereas procedural, or “Know how”, consists of the 

knowledge that lets a musician apply declarative knowledge in a particular musical 

context. Examples of these knowledge classifications are: 

• Procedural 

1. Sound Quality – vocal and instrumental techniques 

2. Sound Patterns - structure 

3. Social, religious, ritual performance contexts 

4. Repertoire and ensemble context, rules of interaction  

5. Meaning and symbolism 

6. Symbolic representation 

7. Transformation e.g. transposition, augmentation, variation 

• Declarative 

1. Sound Quality - loudness, timbre, manner of production, and pitch  

2. Sound Patterns - brief ornaments, stock phrases to complete pieces  

3. Orientation - tonal centre, chord progressions, time line, metrical cycle  

 

There is also a view [Sloboda85] that similarities exist between musical structure 

and natural language. Noam Chomsky, whose work in the 1960s formed the foundation 

of computational linguistics, believed that all natural languages have the same inherent 

structure and that understanding this structure informed us about the nature of human 

intellect. In contrast, Heinrich Schenker an early 20th century musicologist believed that 

all good musical compositions have the same basic structures and that this structure 

informed us about the nature of musical intuition. His work became known as 

Schenkerian Analysis, which provided a mathematical technique for identifying 

fundamental structures in music through a fusion of harmony and counterpoint. 

Apparently, there is no reference to Schenker within Chomsky’s published work. 

 

Sloboda [Sloboda85] also comments that we cannot assume that music and 

language can be treated in the same way; that music is not just another form of natural 
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language. The analogies between them can be exploited in metaphysical ways such as 

“Music is the language of the emotions”, which is not supportable from a scientific 

viewpoint. He concludes that the analogy is something that can be evaluated, but not 

assumed. A reasonable conclusion is that there is no problem in adopting techniques 

developed by language researchers for use in analysing music. If so, techniques such as 

finite state machines and automata developed for natural language analysis and 

processing may be investigated for their applicability to music. 

 

The cognitive abilities of the human brain provide clues as to how human 

musicians understand musical performances. 

2.3.2 Musical Cognition 

Through research in musical cognition, Dowling [Dowling86] concludes that 

there are four psychological qualities of sounds that are especially important in music: 

pitch, duration, loudness and timbre. These fundamental qualities may be combined to 

form second-order qualities such as rhythm (a combination of duration and loudness). 

Also, connecting with the views of Schenker on the universality of music, he identifies 

three underlying properties that are common to all musical traditions: 

 

1. Discrete pitch intervals together with the concept of harmonic tonal centre 

2. Octave equivalence 

3. The presence of four to seven focal pitches in an octave 

 

These properties and assumptions can form the motivational basis of a framework 

for the analysis of musical event streams that includes the creation of a description of 

the music’s harmonic structure.. 

2.3.3 Musical Analysis 

Lerdahl and Jackendoff [Lerdahl83] proposed a set of preference rules for music 

in their Generative Theory of Tonal Music (GTTM). Preference rules are criteria for 

forming a preferred analysis of some input that may be static or dynamic. During the 

analysis, many possible interpretations are considered and each preference rule 
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expresses an opinion as to how well it is satisfied by a given interpretation. The 

opinions of each rule are then combined to form a preferred analysis.  

Similarity by size Similarity by shape

Proximity – two 
Groups of two rows

Continuity

 

Figure 3 Gestalt rules of perception 

Preference rules owe some of their ancestry to the Gestalt rules of perception first 

proposed by researchers in psychology in the 1920s. The Gestalt rules of particular 

relevance are the similarity, proximity and continuity rules illustrated in Figure 3. The 

similarity rule suggests that we tend to group things together that are similar. For 

example given a set of geometric shapes, we would form groups of similar shapes 

(squares, circles, triangles etc) or group similar shapes by their size. The proximity rule 

suggests we group things that are close together (either in space or some other 

dimension). Finally the continuity rule states that elements that follow each other in a 

linear pattern can be grouped together. For example, we perceive an X as two crossing 

lines rather than as a V over an inverted V. These rules are particularly useful when 

segmenting a musical performance into phrases and other structural sections. 

 

In their book, Lerdahl and Jackendoff proposed a set of structures and well-

formedness rules that identified legal structures. However, whilst proposing the 

structures and rules, they offered no implementations that could be tested. Temperley 

[Temperley01] however, has taken this work further by quantifying and implementing 

a set of rules and expanding their applicability from Western Classical music to include 

Rock and World music. Temperley proposes a set of six preference rule systems that 
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match and extend the fundamental psychological properties identified by Dowling. 

These rule systems are: 

 

1. Metrical Structure 

2. Phrase Structure 

3. Contrapuntal Structure 

4. Tonal-Pitch-Class Structure 

5. Harmonic Structure 

6. Key Structure 

 

Implementations of each of the rule based analysis components are available 

from his Website. Temperley’s implementation of the rule systems makes use of 

dynamic programming techniques. In dynamic programming, rather than evaluating all 

possible interpretations then backtracking to evaluate the most optimal, the “best-so-

far” solution is evaluated and retained at each step in a forward direction. What 

constitutes a “best-so-far” solution is established by the set of preference rules. Once 

the input has been completely traversed, the final analysis or solution is complete. 

 

The prime motivation for Temperley’s work [Temperley01] and that of others 

[Huron97] is musicological analysis. For this, they have access to the complete piece of 

music in some encoded form. This approach is not applicable for real-time analysis of 

musical events since in this case at a given point in time, only historical data is 

available. 

 

Chew [Chew00] identifies computational music analysis as an interdisciplinary 

study that links human perception and cognition, mathematical modelling and 

computation with music theory. She identifies the need to determine the tonal centres 

and their progression as of critical importance in the analysis and perception of music 

since this forms the basis of an understanding of harmonic structure. Chew’s model of 

tonal perception is grounded in the work of Temperley and Krumhansl [Krumhansl78] 

which themselves are grounded in cognitive psychology.  
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2.3.4 Discussion 

For a real-time analytical framework, analysis concentrates on classification in 

Brinner’s declarative domain. Temperley’s work proposes a set of six rule systems that 

provide techniques for extracting Metrical, Phrase, Contrapuntal, Tonal-Pitch-Class, 

Harmonic and Key Structures from music. His rule sets provide a realisation of the 

rules proposed, but not implemented, by Lerdahl and Jackendoff in their Generative 

Theory of Tonal Music.  

 

Chew has developed this further by building on the work of Temperley and 

Krumhansl to provide a mathematical model of musical tonality that can form the basis 

of note identification and subsequent harmonic analysis. Her work and its development 

forms an important part of the real-time framework proposed by this thesis and will be 

discussed in more detail in later chapters. 
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Chapter 3 Publish/Subscribe Messaging 

3.1 Introduction 

This chapter describes the Publish/Subscribe messaging model (Pub/Sub) which 

underpins the framework described in this thesis. It first describes the messaging 

pattern which allows communication between applications to be decoupled in time, 

space and synchronisation. This is then followed by a comparison with other messaging 

patterns and descriptions of the basic publish and subscribe applications developed; file 

publishers, MIDI input and output applications. 

3.2 The Publish/Subscribe Messaging Pattern 

The pub/sub messaging pattern is one that is widely used in business event 

messaging since it provides a loosely coupled form of interaction that can be scaled to 

large numbers of applications distributed throughout a network. In this pattern, 

subscribing applications express their interest in a set of events using topics within a 

shared namespace and are notified of any event, generated by a publisher, which 

matches their registered interest. Events are asynchronously propagated to all 

subscribers that registered interest in the type(s) of event. The advantage of this type of 

interaction style lies in the decoupling in space, time and synchronisation between the 

publishing and subscribing applications. 

 

The pub/sub pattern is illustrated in Figure 4. The pattern relies on an event 

notification service (otherwise known as a publish/subscribe broker) which provides 

the storage and management of subscriptions and the efficient delivery of events to 

subscribers. 
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Figure 4: Components of the Publish/Subscribe Messaging Model 

In the simple (or topic based) model, the broker acts as a neutral intermediary 

between publishers, acting as producers of events, and subscribers acting as consumers 

of events. Subscribers register their interest in particular sets of events by invoking a 

subscribe() operation on the event service providing a set of topics within a global 

namespace that identifies the events they are interested in. This subscription 

information is stored by the event service and used to distribute events received by the 

broker from publishers. A subscription is terminated by a subscriber invoking the 

unsubscribe() operation on the event service. 

 

To generate events, a publishing application calls a publish() operation for an 

event. The event consists of two parts; message content and an associated topic 

contained within the global namespace. The publication notifies the event service that 

an event is available which it then propagates to all relevant subscribers that have 

registered an interest in events with the associated topic. The event service is acting as 

a proxy for the set of subscribers. Every subscriber will be notified of every event 

conforming to its interest. 

 

The introduction of an event service between publishers and subscribers provides 

decoupling between publishers and subscribers that can be described in three 

dimensions and is illustrated in the Figure 5. 
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Figure 5: Decoupling introduced by the Publish/Subscribe messaging model 

Decoupling in space. Publishers and subscribers do not need to know that each 

other exists. The publishers publish events to the event service and the subscribers 

receive the events indirectly through the event service. Publishers do not hold 

references to the subscribers and do not know how many subscribers are participating 

in the interaction. Conversely, subscribers do not hold references to the publishers, nor 

do they know how many of them are participating in the interaction. 

 

Decoupling in time. Publishers and subscribers do not need to be actively 

participating in an interaction at the same time. In particular, a publisher may publish 

events whilst subscribers are disconnected from the network. Conversely, a subscriber 

may be notified of an event whilst the publisher of that event is disconnected. The 

event is persisted by the event service and only forwarded to subscribers once they are 

connected to the broker. The sophistication of this store-and-forward functionality will 

vary depending on the implementation of the event service. 

 

Decoupling in synchronisation. Publishers are not blocked whilst producing 

events and subscribers can be asynchronously notified (through a callback mechanism) 

of the availability of an event whilst performing other concurrent activities. The 

production and consumption of events do not happen within the main control flow of 

publishing and subscribing applications which results in a non-blocking, asynchronous 
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communication model between publishers and subscribers. This decoupling increases 

the scalability of the messaging model by removing all dependencies between the 

participating publishers and subscribers and reduces the need for coordination and 

synchronisation between them. 

 

Decoupling of publishers and subscribers results in a communications 

infrastructure that is well adapted to distributed environments that are asynchronous in 

nature such as mobile environments [Huang01] and wireless based sensor networks 

[Bergamaschi07]. 

3.3 Other Messaging Patterns 

This section reviews other communications patterns; in particular, message 

passing, remote procedure calls (RPC), notifications, shared spaces and message 

queuing. From this review, it can be seen that they do not provide fully decoupled 

communication between participating applications of the kind provided by the 

publish/subscribe messaging model. 

3.3.1 Message Passing 

Message passing is a primitive communication pattern in which two participants 

(a sender and a receiver) communicate by sending messages to each other. This pattern 

is rarely used for developing distributed applications since physical addressing, data 

marshalling and flow control are made visible to the application layer. In this pattern, 

both sender and receiver are coupled in space and time since they must both be active 

for the communication to take place and the recipient of the message is known to the 

sender. 

3.3.2 Remote Procedure Calls 

Remote Procedure Calls (RPC) are a widely used pattern in distributed systems. 

They were first proposed for procedural languages [Birrell83] but have subsequently 

been widely used for remote method invocations for object-oriented systems. For 

example, they have formed the basis of the Java Remote Method Invocation 

[Sun00],CORBA [OMG02] and Microsoft’s DCOM [Horstmann97]. 
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RPCs make remote interactions between applications appear in the same way as 

local interactions. Remote invocation of this kind cannot, however be made completely 

transparent to the application because it can give rise to potential failures such as in the 

communications layer that have to be handled explicitly by the application. Unlike the 

publish/subscribe model, RPCs introduce strong coupling in space, time and 

synchronisation between the participating applications; the invoking object has to 

maintain a reference the remote object and the interaction is synchronous with the 

invoking object being blocked for the duration of the interaction. Attempts have been 

made (particularly with CORBA) to introduce asynchronous remote invocation but this 

has led to invocations with weak reliability guarantees because the sender does not 

receive any success or failure response to the invocation. This is often referred to as a 

fire-and-forget interaction. 

3.3.3 Notifications 

To achieve decoupling in synchronisation, a synchronous remote method 

invocation can be split into two asynchronous invocations. In this pattern, the sender 

invokes the receiver with the invocation arguments and a reference to a callback to 

itself. The receiver then invokes the original sender via its referenced callback. This 

pattern can be extended to a one-to-many pattern by the sender invoking many 

receivers each of which responds via a separate callback. Notification based 

interactions of this kind are often used to ensure the consistency of web caches where 

proxies are notified of any changes that occur in content on a web server. This 

implements a limited type of publish/subscribe mode, where the web proxies act as 

subscribers and the web server acts as a publisher. However, in this case, the publisher 

directly manages a set of subscriptions and is also responsible for sending events which 

removes the decoupling in space and time. In addition, the publisher is responsible for 

managing communications which limits the scalability for this system pattern. 

3.3.4 Shared Spaces 

Shared spaces is a development of the distributed shared memory model 

proposed in [Li89]. In this model, distributed applications have a common view of a 

shared memory space with synchronisation and communication between participating 
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applications taking place through operations on the shared data. Linda [Gelernter85] 

introduced the concept of tuple spaces which provided an abstraction for accessing 

shared memory. A tuple space is a collection of ordered tuples accessible to 

applications within a distributed system. Communication between applications takes 

place through the insertion and removal of tuples from the shared space. 

 

The shared space pattern provides time and space decoupling in that the 

producers and consumers of tuples are anonymous with respect to each other. However, 

the model is not decoupled with respect to synchronisation since consumers remove 

tuples from the shared space in a synchronous manner. To compensate for this 

deficiency, some applications of the shared spaces model such as JavaSpaces [Sun02] 

and TSpaces [Lehman99]  extend the tuple space model with asynchronous 

notifications. 

3.3.5 Message Queuing 

Message queuing is often used to describe a family of commercial products 

including those from IBM [IBM95],  Digital [DEC94] and Oracle [Oracle02]. Message 

queuing systems usually include some form of pub/sub type interaction and are 

generically referred to Message Oriented Middleware (MOM). In message queuing, 

messages are stored in a First In First Out (FIFO) queue. Producers append messages 

asynchronously to the queue while consumers de-queue messages from the front of the 

queue. Message queues have many of the interaction properties of tuple spaces in that 

queues can be viewed as global spaces which are populated by messages from 

producers. Functionally, commercial queuing systems provide transactional, timing, 

ordering and reliable delivery guarantees which are not normally seen as properties of 

tuple spaces. 

 

As with tuple spaces, producers and consumers are decoupled in both time and 

space in message queuing systems. However, message queues do not provide 

synchronisation decoupling since consumers remove messages from the queue 

synchronously. This lack of synchronisation decoupling is further reinforced when 

queuing is being performed as part of a distributed transaction. Some commercial 

systems do provide support for asynchronous message delivery but these mechanisms 
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do not scale well to large distributed systems because of the additional interactions 

required to maintain transactional, timing and ordering guarantees. 

3.3.6 Summary 

In summary, the more traditional types of message passing do not have the same 

degree of flexibility and scalability as the publish/subscribe messaging model. This is 

due to their limited support for decoupling of producers and consumers in time, space 

and synchronisation. 

3.4 Variants of the Publish/Subscribe Model 

Subscribing applications are usually selective and only interested in individual or 

limited sets of events. Variants of the publish/subscribe model have emerged that 

provide alternative ways of specifying the events of interest when applications 

subscribe to the event service. The two major variants are topic and content based 

subscriptions. 

3.4.1 Topic Based Publish/Subscribe 

The earliest forms of publish/subscribe messaging were based on the notion of 

topics or subjects identified as a set of keywords associated with the event. Publishers 

and subscribers can publish events and subscribe to individual topics which are 

identified by the keywords. This variant of the publish/subscribe model has been 

widely exploited in commercial products including Java [Altherr99], Tibco [TIBCO99] 

and more recently, the Java Messaging Service [JMS02]. 

 

Practically, topic based publish/subscribe systems provide a programming model 

which maps individual topics into separate communications channels. The interfaces 

are similar to those for the event service with the topic being provided as an argument 

to the publish() method (in the case of publishers) or subscribe() (in the case of 

subscribers). The topic abstraction usually allows platform independence by relying on 

strings to identify the topics. Although a simple type, strings are used to group topics 

into hierarchies as a further improvement to the variant. For example, a MIDI short 

command Note On event may be identified using the topic Midi/Short/NoteOn to 
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differentiate it from a MIDI meta event such as a track name using the topic 

Midi/Meta/TrackName. Wildcards may be used when subscribing to topics so that for 

example, an application that only processes MIDI short commands can subscribe to the 

topic Midi/Short/+ where + is a wildcard character. In this case, all sub-topics in the 

Midi/Short hierarchy will be subscribed to. 

 

The publish/subscribe broker used in the framework described in this thesis is an 

example of this variant and more examples will be provided in later sections and 

chapters. 

3.4.2 Content Based Publish/Subscribe 

In a publish/subscribe system, events are expressed as messages which have two 

parts; content and an associated topic. The previous section has described a variant 

which uses topics alone as the basis for identifying events. To overcome this limited 

expressiveness, the content based  [Rosenblum97] variant introduces a subscription 

scheme based on the actual content of the event messages; the properties of the events 

themselves rather than an externally assigned topic. These properties may be internal 

elements of data structures as in Gryphon [Banavar99] or meta-data associated with 

events as in the Java Messaging Service [Hapner02]. 

 

In this variant, subscribers specify filters using a subscription language which 

define constraints that identify valid events. Constraints can be logically combined to 

form more complex filter patterns. These patterns are used to identify sets of events of 

interest for a given subscriber and propagate them accordingly. The patterns may be 

specified as strings using some subscription grammar such as SQL or a proprietary 

language, a template matching object or as an executable code module. 

 

Content-based publish/subscribe is widely used in commercial systems where the 

set of possible events are tightly designed and managed. The structure of an event 

message and its contents are well known and available to application developers in 

some standardised form such as XML Schemas through library systems. The 

complexity of the event service supporting a content-based system is greater since it 

now has the overhead of processing the content of each event message to apply the 
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subscription filter. This overhead is deemed acceptable when balanced against the 

increased flexibility content-based systems provide for commercial infrastructures. 

3.5 A Real-Time Analysis Framework 

Publishers Subscribers
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Figure 6: A real-time analysis framework 

Using a publish/subscribe messaging infrastructure together with distributed 

applications, the kind of framework illustrated in Figure 6 becomes possible. MIDI 

input devices such as keyboards may publish events as a performance takes place. In 

addition, specialised file publishers can “play” MIDI or other formatted events into the 

framework either in real-time (the events are published at their correct timestamp) or 

with accelerated time for testing purposes. 

 

Analysis applications are typically both subscribers and publishers. Applications 

for pitch spelling and beat, chord and key extraction will be demonstrated, but 

alternative algorithms may be implemented that contribute to the framework.  

 

Subscribers to the framework may include MIDI output devices, database capture 

and visualisation applications. MIDI output will be via a subscribing application that 

transorms the event into commands output via a conventional MIDI interface. 

Visualisation applications may, for example, include specific widgets for representation 
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of the spiral array pitch spelling algorithm, modified mind maps that show published 

events within a subset of the global topic space and timeline widgets to illustrate the 

relationship between objects within a Harmony ontology. The third class of 

applications include the persisting of events within databases; these may be either 

conventional relational databases or semantic databases or triple stores. With persisted 

data, opportunities exist for further navigation and enrichment of the captured events 

together with augmented visualisation tools to allow users to interact more fully with 

musical events captured from the framework. 

 

These types of applications are described in the following chapters. 

3.6 The MQTT Broker 

The publish/subscribe broker used in the framework described in this thesis is the 

IBM Lotus Expeditor microbroker which supports the MQ Telemetry Transport 

(MQTT) publish/subscribe protocol. Developed by colleagues [O'Connell07] at IBM 

and used within UK e-Science projects [Robinson06], this broker is a small footprint 

(less than 2MB of Java code) and is intended to be deployed on small devices such as 

PDAs which may be communicating over low-bandwidth networks such as satellite 

communications links. 

 

In addition to providing implementations of the abstract methods described in 

previous sections, the microbroker also supports different qualities of delivery service 

between itself and connected applications. These are: 

 

At most once delivery (QoS 0). Messages are delivered according to the best 

efforts of the underlying TCP/IP network. No response is expected. No retry semantics 

are defined in the protocol. Consequently, the message will arrive at the destination 

broker either not at all or once. This is also known as fire and forget. 

 

At least once delivery (QoS 1). The arrival of a QoS 1 message at the broker, 

including its successful placement in a persistent store is acknowledged. In the event of 

identifiable failure of the communications link, or of the sending device, or after some 

period of time of non-receipt of the acknowledgement message, the sender will resend 
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a duplicate message. Consequently, the message is certain to arrive, but could arrive 

more than once. 

 

Exactly once delivery (QoS 2). For QoS 2, additional protocol flows are 

employed above QoS 1 to ensure that duplicate messages are not delivered to the 

receiving application. This is the highest level of service, and is used when duplicate 

messages are undesirable. Of course, there is a price to be paid in terms of network 

traffic, but often this is acceptable because of the importance of the message content. 

 

The next sub-sections describe aspects of the microbroker use of relevance to the 

framework described in this thesis. 

3.6.1 The Framework Topic Space 

All topics used within the framework are defined as Java Strings within the 

EventConstants class. For example, the definitions for MIDI short events are shown in 

the following code segment using the wildcard character as shorthand when subscribing 

to all MIDI short events: 

 
// Midi Short Events 
String shortTopic  = "Midi/Short/+"; 
String noteOnTopic  = "Midi/Short/NoteOn"; 
String noteOffTopic  = "Midi/Short/NoteOff"; 
String chanPressTopic  = "Midi/Short/ChannelPressure"; 
String cntlChangeTopic  = "Midi/Short/ControlChange"; 
String pitchBendTopic  = "Midi/Short/PitchBendChange"; 
String pgmChangeTopic  = "Midi/Short/ProgramChange"; 
String afterTouchTopic  = "Midi/Short/AfterTouch"; 
String sysMessageTopic = "Midi/Short/SystemMessage"; 

 

The following table lists all MIDI topics within the framework together with the 

parameters used to construct the event message content to be published. A full set of 

topics and event contents can be found in Appendix A. 
Topic Event Contents Description 

Midi/Short/NoteOn Timestamp, Channel, Note, Velocity Note depressed 
Midi/Short/NoteOff Timestamp, Channel, Note, Velocity Note released 
Midi/Short/PolyKeyPressure Timestamp, Channel, Note, Pressure Note aftertouch – pressing a note after 

“bottoming out” 
Midi/Short/ControlChange Timestamp, Channel, Controller, Value Change in a controller value 
Midi/Short/ProgramChange Timestamp, Channel, Program (Patch) Change to a program patch number 
Midi/Short/KeyPressure Timestamp, Channel, Pressure Note aftertouch – pressing a note after 

“bottoming out” 
Midi/Short/PitchWheelChange Timestamp, Channel, Value Change in pitch wheel setting 
Midi/Short/SystemMessage Timestamp, Channel, Message Text System message 
Midi/Meta/SeqNumber Timestamp, Sequence Number Change in a Midi sequence number 
Midi/Meta/Text Timestamp, Text String Arbitrary text event 
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Midi/Meta/Copyright Timestamp, Copyright Text String Copyright text 
Midi/Meta/TrackName Timestamp, Track Name String Track name 
Midi/Meta/InstrumentName Timestamp, Instrument Name String Instrument name 
Midi/Meta/Lyric Timestamp, Lyric String Lyric 
Midi/Meta/Marker Timestamp, Marker String Marker 
Midi/Meta/CuePoint Timestamp, CuePoint String Cue point 
Midi/Meta/ChannelPrefix Timestamp, Value Channel prefix 
Midi/Meta/EndOfTrack Timestamp, Empty The end of a Midi track 
Midi/Meta/Tempo Timestamp, Value Time in microseconds per beat 
Midi/Meta/SMPTE Timestamp, Value[0..4] SMPTE time information 
Midi/Meta/TimeSig Timestamp, Value[0..3] Time signature and other timing information 
Midi/Meta/KeySig Timestamp, Value Key signature including Major/Minor 
Midi/Meta/Vendor Timestamp, String Vendor specific information 
Midi/Meta/UnknownMeta Timestamp, String Unknown Meta Event 
Midi/Sysex/SysExcl Timestamp, Value Extension and manufacturer specific info 
Midi/Sysex/SysSpExcl Timestamp, Value Extension and manufacturer specific info 

Table 1: MIDI Topic Space and Event contents 

3.6.2 Connecting to the Broker 

Publishing and subscribing applications connect to the MQTT broker using the 

BrokerConnection class which implements an MqttCallback interface. The constructor 

to this class includes the TCP/IP address (String) and port number (int) of the broker, 

the name of the connecting publishing or subscribing client application (String), if a 

subscriber, then the set of topics to subscribe to (String []) and the name of a Java 

queue to that provides an asynchronous connection between the client and its 

associated processing component. Typically, this queue is a Java BlockingQueue typed 

to enqueue PubSubEvents. The interactions between the components of a generic client 

application are illustrated in Figure 7. 
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Figure 7: Generic application structure 

When a client application instantiates a BrokerConnection, it connects to the 

broker which may be on a local or remote machine and subscribes to a set of topics. 

The broker then forwards all events that match the subscribed topic to the client. All 

events generated within the framework have a super-class of PubSubEvent from which 

all events are sub-classed. The BrokerConnection callback invokes the 

QueueMessageHandler class which casts the PubSubEvent into the appropriate sub-

class based on the received topic. For example, a received PubSubEvent with a topic of 

EventConstants.noteOnTopic will be cast into an object of type MidiNoteOnEvent. This 

object will be placed on the BlockingQueue. 

 

The purpose of the BlockingQueue is to synchronise the receipt of events by the 

client from the broker with the processing of the event by the client application. The 

application runs the processing class (such as note naming or metrical analysis) as a 

separate Java thread with the queue as an interface to the main client thread. The 

processing thread performs a blocking get() of objects from the queue which it can then 

process. A blocking get() means that if the queue is empty, the application waits until a 

new object is placed on the queue input. If the processor publishes events (such as the 

results of some analysis), it can use the BrokerConnection.publish () method to publish 

an event without impacting the main client thread. 
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The BrokerConnection class also includes methods for unsubscribing, 

disconnecting from the broker and handling lost connections to the broker. 

3.6.3 Framework Events 

All events within the framework are subclassed from the PubSubEvent class. The 

class constructor takes two arguments; the topic used to publish the event and a URI 

that uniquely identifies the event instance. URIs are generated by a URIGenerator class 

and their use is described in later chapters. The topic and URI are saved as class 

variables which also include the Java byte[] array containing serialised event variables.  

This byte array contains the contents of the message to be published. The class also 

contains a publish() method which in turn invokes the BrokerConnection.publish 

(String, byte[]) method to publish the event. 

 

Events subclassed from the PubSubEvent class contain two constructors; one is 

intended for publishing applications contains the event parameters as arguments and the 

other for subscribing applications contains a single argument consisting of the 

serialised byte array. For example, the NoteStartEvent which identifies when a note has 

started during harmonic analysis has four arguments; the note’s URI, the time it started 

(long), its name (String) and the octave it sounds in (int). These arguments are stored as 

class variables which are serialised into a byte array for publication. The code to 

serialise this set of variables is illustrated in the following code segment. 

 

 
byte[] bytes; 
ByteArrayOutputStream bos = new ByteArrayOutputStream(1024); 
DataOutputStream dos = new DataOutputStream(bos); 
try { 

dos.writeUTF(noteURIStr); 
dos.writeUTF(timelineURIStr); 
dos.writeLong(startTime); 
dos.writeUTF(noteName); 
dos.writeInt(octave); 
dos.close(); 
bytes = bos.toByteArray(); 

} catch (IOException e) { 
e.printStackTrace(); 

} 
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The constructor used in subscribing applications takes a single argument; the byte 

array. This is deserialised in the constructor to recover the event variables. Using the 

above example, the variable deserialising is illustrated below. 

 
ByteArrayInputStream bis = new ByteArrayInputStream(bytes); 
DataInputStream dis = new DataInputStream(bis); 
try { 

noteURIStr = dis.readUTF(); 
timelineURIStr = dis.readUTF(); 
startTime = dis.readLong(); 
noteName = dis.readUTF(); 
octave = dis.readInt(); 

} catch (IOException e1) { 
e1.printStackTrace(); 

} 
 

Therefore the general pattern for the lifecycle of an event is: 

1. A publishing application constructs an event of the correct type providing a set of 

event variables as arguments 

2. The event constructor serialises the arguments as a Java byte array and associates 

the correct topic for the event type 

3. The constructor publishes the event using the event topic and the serialised array 

4. Once the event has been received by a subscribing application as a PubSubEvent 

type, it is cast to the appropriate subclass based on its topic with a single 

constructor argument; the byte array 

5. The byte array is deserialised into the set of event variables which may be retrieved 

by the subscribing application via a set of access methods. 

3.7 Publishing Applications 

This section describes two examples of publishing applications to illustrate how 

events may be published. The first section describes the publication of events from files 

– in particular from MIDI and OPND format files which form the testcase corpus for 

this thesis. The second section describes a MIDI input application which allows 

controllers such as a keyboard to be connected to the framework to allow real time 

events to be generated and published. 
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3.7.1 File Publishers 

The Java programming language provides comprehensive support for the MIDI 

specification. Included in the specification are the Transmitter and Receiver classes 

which allow MIDI devices to be programmatically interconnected in a similar way to 

MIDI hardware using patch cables. Java MIDI Transmitters and Receivers are specified 

as interfaces; therefore code can be developed to mimic the operation of a receiver or 

transmitter. For event publication, a Receiver can be written which publishes the MIDI 

event. This is the role of the MidiEventPublisher class within the framework. 

 

To support the Java Receiver interface, the class must implement the interface 

send() method which is invoked by a Transmitter to propagate a MIDI message from 

one device to another. The implementation of this method is illustrated below. 

 
public void send(MidiMessage message, long lTimeStamp) { 
 if (message instanceof ShortMessage) { 

publishShortMessage(message); 
 } else if (message instanceof SysexMessage) { 
  publishSysExMessage(message); 
 } else if (message instanceof MetaMessage) { 
  publishMetaMessage(message); 
 } 

} 
 

The Java MIDI specification subclasses the MidiMessage into one of three types 

with each message type having a different structure. The MidiEventPublisher class has 

separate methods to publish each type. For example, consider the publication of MIDI 

Short messages which are typically used to control hardware devices. This is 

implemented by the publishShortMessage() method which takes a single argument, the 

MidiMessage. The method identifies the type of message by extracting the MIDI 

command from the message structure, creates an appropriate event from the 

ShortMessage and publishes it with the correct topic. For NoteOn and NoteOff events 

that match the same note, the same URI is used to signify that these two events are 

connected. This is achieved by managing an array of 128 MidiNoteOnEvents. When a 

MidiNoteOnEvent occurs, its URI is inserted into the array at the index corresponding 

to its MIDI note number before publishing. When a MidiNoteOffEvent occurs, its MIDI 

note number is used to extract its MidiNoteOnEvent from the array and the URI is used 

to publish the MidiNoteOffEvent. The entry in the array is then cleared in preparation 

for the next event. 



 39

 

Given this implementation of the Receiver interface, applications such as a MIDI 

file player can be implemented using the MidiEventPublisher to publish the MIDI 

messages to subscribing applications. 

 

The MidiEventPublisher class includes a second implementation of a send() 

method. This implementation takes a single argument of type NoteEvent. The 

NoteEvent class is used to publish note events that have been derived from other 

sources. In particular from OPND structure files. OPND files are text files containing 

note information in the format onset, pitch name and duration. Therefore a record in the 

file such as 0, Bf2, 325 denotes a B flat in the second octave starting at time 0 and 

lasting for 325 milliseconds. Given this information, a matching pair of 

MidiNoteOnEvent and MidiNoteOffEvents can be created by computing the MIDI 

number of the note named Bf2. Therefore the implementation of send() with a 

NoteEvent argument publishes two events corresponding to the MIDI note on and off 

events.  

 

The OPND testcases used for this thesis have been derived from the 

Musedata[Hewlett97] corpus and include the name of the note together with its octave. 

The MidiNoteOnEvent and MidiNoteOffEvents can optionally include the name of the 

note they represent which is not available in a pure MIDI environment. For algorithm 

testing purposes, the name can be published as part of the note event and is used to 

verify the correctness of the note naming algorithm described later in this thesis. 

3.7.2 MIDI Input 

Given a MidiEventPublisher class of the type described in the previous section, 

an application which acts as a MIDI input can be easily created. An example is shown 

in the following code fragment. 
// Broker address, port and client name 
private static String brokerAddress = "127.0.0.1"; 
private static int brokerPortNumber = 1883; 

 
// Topics to subscribe to 
private static final String[] topics = {EventConstants.shortTopic}; 

 
// Queue to receive published events 
private static BlockingQueue<PubSubEvent>  

         subQueue = new  ArrayBlockingQueue<PubSubEvent>(1000); 
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public static void main(String[] args) { 

// Connect to the Broker 
try { 

brokerConnection = new BrokerConnection(brokerAddress,  
brokerPortNumber,                              
"MidiIn", null, subQueue); 

} catch (MqttException e) { 
e.printStackTrace(); 

} 
 
// Get a list of Midi output devices 
MidiDeviceManager midiDeviceManager = new MidiDeviceManager(); 
ArrayList inputDeviceList = MidiDeviceManager.getInputDevices(); 
for (int i = 0; i < inputDeviceList.size(); i++) 

// Add a read to allow MidiIn device to be selected 
int mSelect = 0; 

 
// Get the selected device ..... 
MidiDevice inDevice = MidiDeviceManager.getMidiDevice(( 

(MidiDevice.Info)inputDeviceList.get(mSelect))); 
try { 

     // ..... open it ..... 
       inDevice.open(); 
 
       // ..... get its transmitter ..... 
       Transmitter t = inDevice.getTransmitter(); 
 
       // ..... and add the midiPublisher to it 
       MidiEventPublisher midiPublisher = new  

MidiEventPublisher(qTime); 
       t.setReceiver(midiPublisher); 
 

// Need to set up a loop to allow events to be  
// published 

       while (true) {} 
    } catch (MidiUnavailableException e1) { 
       e1.printStackTrace(); 
    } 
 } 

} 
 

The application first connects to the broker and then obtains a set of the currently 

installed MIDI devices which may include a MIDI Input Port. Following selection of 

the input device, it is opened and the device Transmitter is obtained. Following the 

creation of a MidiEventPublisher, it is attached to the Transmitter of the input port. The 

final while loop is a simple mechanism to allow the program to continue. Whilst the 

loop is executing, any events that appear on the MIDI input port are propagated via the 

Transmitter/Receiver connection and published by the MidiEventPublisher. 
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3.8 Subscribing Applications 

Subscribing applications are more complex that publishing applications because 

they require an asynchronous queuing interface to buffer the reception of events from 

their processing. This is illustrated using a simple MIDI output application which 

subscribes to MIDI events and outputs them to a connected MIDI port. 

3.8.1 MIDI Output 

The MIDI output application is similar in structure to the previously described 

input application. 

 
// Broker address, port and client name 
private static String brokerAddress = "127.0.0.1"; 
private static int brokerPortNumber = 1883; 

 
// Topics to subscribe to 
private static final String[] topics = {EventConstants.shortTopic}; 

 
// Queue to receive published events 
private static BlockingQueue<PubSubEvent>  

subQueue = new  ArrayBlockingQueue<PubSubEvent>(1000); 
 

public static void main(String[] args) { 
// Connect to the Broker 
try { 

brokerConnection = new BrokerConnection(brokerAddress, 
                                brokerPortNumber,  
                                   "MidiOut", topics, subQueue); 
} catch (MqttException e) { 

e.printStackTrace(); 
} 
 
// Get a list of Midi output devices 
MidiDeviceManager midiDeviceManager = new MidiDeviceManager(); 
ArrayList outputDeviceList =  

MidiDeviceManager.getOutputDevices(); 
for (int i = 0; i < outputDeviceList.size(); i++) 

midiDeviceManager.printInfo((MidiDevice.Info)  
   outputDeviceList.get(i)); 

MidiDevice outDevice = MidiDeviceManager.getMidiDevice((               
                    (MidiDevice.Info) outputDeviceList.get(0))); 
 
     // Create the output thread ..... 
    MidiOutThread moThread = new MidiOutThread(outDevice,  

 subQueue); 
 
    // ..... and run it 
    new Thread(moThread).start(); 
 } 

} 
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In this example, following the selection of an output port device (assuming it is 

the first in the retrieved list) the application creates a MidiOutThread class and runs it. 

 

The code for the MidiOutThread implements the Runnable interface and is listed 

below. 

 
public class MidiOutThread implements Runnable{ 

private static MidiDevice midiDevice = null; 
private static Receiver outReceiver = null; 
private static boolean closing = false; 
private BlockingQueue<PubSubEvent> subscriberQueue; 
  
public MidiOutThread(MidiDevice mD,BlockingQueue<PubSubEvent> q){ 

// Save the device and queue 
      midiDevice = mD; 
      subscriberQueue = q; 
 
       // Open the device and get its Receiver 
      try {  
   midiDevice.open(); 
   outReceiver = midiDevice.getReceiver(); 
      } catch (MidiUnavailableException e) { 
   e.printStackTrace(); 
      } 
} 
 
public void run() { 

PubSubEvent psE; 
      int id, x, y, r; 
      while (!closing) { 
   try { 
      psE = subscriberQueue.take(); 
      if (psE instanceof MidiShortMessageEvent) { 
         MidiShortMessageEvent smE =  

(MidiShortMessageEvent)psE; 
         smE.sendToMidiReceiver(outReceiver); 
      } 
   } catch (InterruptedException e) { 
     e.printStackTrace(); 
   } 
      } 
} 

} 
 

The class constructor saves the selected MidiDevice and the BlockingQueue 

arguments. It then opens the MidiDevice and gets its receiver. Once the thread has been 

started, the run() method is invoked. This method loops, halting on the 

subscriberQueue.take() method call until a PubSubEvent appears on the queue as a 

result of the BrokerConnection callback being invoked from the broker. Once this 

occurs, the PubSubEvent is cast to a MidiShortMessageEvent which then sends the 

message to the output receiver by invoking its send() method.  
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A combination of a MidiIn application publishing messages from a MIDI 

controller and a MidiOut application which subscribes to the published topics and 

sending the messages to a MIDI output port will allow MIDI input devices such as a 

keyboard and output devices such as a synthesiser to be connected to the framework. 

Note that the properties of the publish/subscribe messaging model mean that the 

MidiIn, MidiOut and Broker applications can each reside on separate machines thereby 

providing a mechanism for MIDI events to be distributed throughout a network. 

3.9 Summary 

This chapter has described the Publish/Subscribe messaging model and its 

variants and compared them with other messaging techniques. It has described how the 

messaging model has advantages in decoupling applications in space, time and 

synchronisation. It has described the structure of published messages in that they 

contain a topic used by subscribing applications to identify which messages they are 

interested in together with the contents of the message. Within the context of the 

framework described in this thesis, the components used to implement the 

publish/subscribe messaging have been described together with example publishing and 

subscribing applications to show how MIDI devices may be connected to the 

framework. 
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Chapter 4 Pitch Spelling 

4.1 Introduction 

A fundamental aspect of human interpretation and understanding of music is the 

concept of tonality. The term tonality was first introduced in the early 19th century and 

is currently used to describe the structured relationships that exist between musical 

pitches. These relationships exist between the pitch of a note and its associated key 

which defines its harmonic context. This chapter reviews the background literature on 

tonality leading to the introduction of Chew’s Spiral Array model as an algorithm for 

pitch spelling. An implementation of this algorithm is then described using the 

publish/subscribe messaging model. From this implementation, a simplified version is 

described which has equivalent performance and accuracy when tested with a corpus of 

around 200,000 notes. 

 

The MIDI specification identifies notes played on a keyboard or sounded by a 

synthesiser as an integer lying between 0 and 127. The first stage in producing a 

harmonic representation of the musical data represented by the MIDI stream is to 

assign a name to the note. Pitch spelling algorithms predict the note name (D♯4, B♭3, 

A♮2 etc) given only the MIDI note number, the start (or onset) time and possibly the 

duration of the note. 

4.2 Tonality and Musical Analysis 

Tonality refers to the underlying structures and principles of tonal music and is 

sometimes synonymous with musical key. It denotes the relationships between the 

subjective concept of musical pitches and more specifically a system of relationships 
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between pitches having a tonic or central pitch as its most important element. The 

perceptual term pitch refers to a sound of some frequency and is usually expressed 

using a subjective quality such as high or low. A note is a symbolic representation of 

two properties; pitch and duration. 

 

Pitched sounds usually consist of a complex waveform consisting of several 

components or harmonics. The frequency of each component is a multiple of the lowest 

(or fundamental) frequency. The complex waveforms are produced by some physical 

mechanism as in the case of acoustic instruments or as a synthesized waveform as in 

the case of electronic instruments. A spectral analysis of the complex waveform will 

provide information about the fundamental and harmonic components of the waveform 

but this is outside the scope of this thesis. For the purposes of this thesis, musical 

streams of data are represented by MIDI commands where pitch is represented as a 

number between 0 and 127. This represents (for example) which key has been 

depressed on a MIDI keyboard. For a review of MIDI and other musical codes and 

representations, see Appendix E, 

 

Dowling has observed that music of all traditions has the properties of octave 

equivalence together with a fixed (depending upon musical tradition) set of tones 

within an octave. Since tones are perceived in a cyclic manner where the cycle repeats 

every octave, Shepherd [Shepherd82] visualizes this perceptually as a pitch helix. This 

represents pitch as two descriptors; height to show octave equivalence and chroma or 

pitch class which identifies the rotational position of a given pitch within the helix. 

This is illustrated in Figure 8. 
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E

 

Figure 8: Shepherd's pitch helix 

Given the definition of pitch, melody and harmony can now be defined. 

Britannica online defines melody as “..... the aesthetic product of a given succession of 

pitches in musical time, implying rhythmically ordered movement from pitch to pitch”. 

This definition implies that melody is monophonic and consists of a sequence of 

pitches. Harmony by comparison is polyphonic. It denotes the simultaneous 

combination of notes into chords which over time change into chord progressions. In 

addition to describing notes and chords, harmony has its own corpus of knowledge 

embodied in musical theory. In the context of this thesis, harmony will only be 

considered in terms of harmonic content related to the combination of notes into chords 

and their relationship to keys. Although defining melody as monophonic and harmony 

as polyphonic, both refer to the combination of pitches into higher level musical 

structures and as such, they both influence each other. 

 

Most of the research work on tonality has been carried out on western music 

[Krumhansl04]. Within this genre, a key is defined as a system of relationships between 

a series of pitches having a tonic or central pitch class as its most important element. 

Another important pitch class of a key is the dominant or fifth note of the scale starting 

at the tonic of the key. A key can have two modes; major and minor. Each of them has 

different orderings of the tones and semitones within their respective scales. 
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There exists a total of 24 keys when both major and minor modes are included; 

one of each mode for the 12 semitones within the chromatic octave and including 

enharmonic equivalence (where notes sound the same but have different names e.g. F♯ 

and G♭).  These 24 keys can be arranged in a circle of fifths where a tonic on the circle 

is the fifth of the scale of the preceding tonic. This is shown in the following figure. 
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Figure 9: Circle of fifths 

The circle of fifths also illustrates relationships between major and minor keys. A 

key has a signature which indicates the set of sharps or flats contained within its scale. 

A major key has a relative minor key indicated by the pairing within the circle of fifths. 

A relative minor key has the same key signature as its major key; for example A minor 

is the relative key to C major. Parallel keys share the same tonic but have different key 

signatures. For example C major has a different key signature to C minor. 

 

Given this foundation, there has been a large amount of research effort in 

modeling human understanding of tonality. Early work included that by Winograd 

[Winograd68] who applied linguistic analysis techniques to automatic musical analysis. 

Later work has been influenced by the 19th century musicologist Riemann who 

observed that tonality derives from establishing significant relationships through chord 

functions. His theory asserted that the most significant intervals are the perfect fifth and 



 48

major and minor thirds present in the triads based on the tonic of a key. Riemann 

mapped these relationships onto a harmonic network or table of tonal relationships 

known as a Tonnetz. Versions of this harmonic network have been traced to earlier 

theories of Euler [Cohn97]. 
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Perfect 5th

Majo
r 3

rdMinor 3rd

 

Figure 10: The Harmonic Network or Tonnetz 

In this network representation, there is a horizontal relationship between entries 

of a perfect 5th (e.g. G is a perfect 5th above C) with diagonal relationships representing 

major and minor 3rds. It has been observed [Longuet-Higgins71] that pitches in a given 

key tend to cluster in a particular area of this network. They propose a key finder based 

on a shape matching algorithm. This was investigated further by Temperley 

[Temperley01] who proposed a simple key profile model which identifies the 

likelihood of the input set of pitches (comprising the musical score) matching a set of 

key profile vectors. 

 

Based on the work of Longuet-Higgins, Chew [Chew00] has proposed a three 

dimensional representation of pitches formed from the harmonic network; this is 

referred to as the Spiral Array Model. 
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Figure 11: The Spiral Array 

In this model, pitches are arranged along a spiral. Adjacent pitches are positioned 

at each quarter turn and are a perfect 5th apart. The minor and major 3rd intervals are 

shown as vertical and diagonal relationships in the diagram. Note that the ordering of 

pitches in the spiral array also reflects the ordering in the circle of fifths. Since the 

circle of fifths is closed, then the spiral array is closed and maps onto the surface of a 

toroid. However for computational purposes, the spiral array reflects linear distances 

which are not present in the toroidal case. 

 

The advantage of the spiral array is that it introduces a spatial component which 

is not present in the two dimensional network array. In a later chapter, the use of the 

spiral array to identify chords and keys will be discussed. The next section describes 

Chew’s note naming algorithm based on the spiral array together with a simplified 

version developed by the thesis author. 

4.3 The Spiral Array Model 

The note naming algorithm described in [Chew04] is based on the spiral array 

model described in [Chew00]. The spiral array is described mathematically as 
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Where r is the radius of the spiral and h is the vertical ascent per quarter turn and 

the aspect ratio 2/15/ =hr .  In the model, any collection of notes generates a centre 

of effect (CE). This is a point within the spiral array that is a convex combination of the 

pitch positions weighted by their durations. If S is a set of notes in a piece of tonal 

music, then the centre of effect CE(S) is defined as 
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Where ( )np  denotes the vector representing the position in the spiral array of 

note n  which has duration ( )nd . That is, the CE is the weighted centroid of the position 

vectors of the notes in the spiral array with each note being weighted by its duration. In 

the algorithm, the CE acts as a proxy for the key and that each note should be spelt so 

that it is as close as possible in the spiral array to the notes that preceded it. This 

approach is similar to that adopted by [Temperley01] except that Temperley uses a line 

of 5ths rather than a spiral array representation. 

 

In the spiral array algorithm, it is assumed that the input data gives the MIDI note 

number together with the start time (onset) and duration of each note in milliseconds. 

The data is divided into equal time slices called chunks. The algorithm then names the 

notes one chunk at a time. 

 

The algorithm adopts a bootstrapping and sliding window strategy whereby a set 

of preceding chunks are used to compute the current CE which is then used to name the 

notes in the current chunk. Naming consists of computing the nearest distance to the 

CE of the potential names for a note. For example a note identified by its MIDI note 

number may correspond to either B♯ C or D♭♭. Each of these three possible names 

occupies a point in 3-D space on the spiral array. Given the current CE, the distance 
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between the CE and each of the three possible names is computed and the name with 

the nearest distance is assigned to the note. 

 

According to [Chew04], there are two phases in the algorithm. Phase I consists of 

the following steps 1 and 2, Phase II consists of steps 3 to 5. The following variables 

are used in the description 

 

( )jiW ,   The set of notes that sound, start or are present in chunks i to j 

jglobalCE ,  A global CE computed from the set of notes in a sliding global  

context window consisting of the sw  chunks preceding the jth  

chunk 

jlocalCE ,  A local CE computed from the set of notes in a local context  

window consisting of the chunk j together with the ( )1−rw   

preceding chunks 

jcumCE ,  A cumulative CE computed from all notes preceding chunk j  

jhybridCE ,  A hybrid CE which is a weighted version of the local and  

cumulative CEs 

 

The following steps are executed: 

1. The global CE is computed from the value 

( )( )1,, −−= jwjWCECE sjglobal     (4.3) 

2. The algorithm then names all notes in chunk j to be as close to jglobalCE , as possible 

in the spiral array 

3. The local CE is computed from the value 

( )( )jwjWCECE rjlocal ,1, +−=      (4.4) 

4. The algorithm computes a the cumulative CE from the value 

( )( )1,1, −= jWCECE jcum      (4.5) 

5. The notes in chunk j are then re-spelt so that their names are as close as possible to 

the hybrid CE where f is a parameter between 0 and 1 that determines the relative 

weights 
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( ) jcumjlocaljhybrid CEfCEfCE ,,, .1. −+=     (4.6) 

 

The algorithm adopts an initialising strategy of spelling the first chunk using a 

CE corresponding to the Dn location on the spiral array. The reason for this is that it 

biases the notation towards fewer sharps and flats. This is identical to the initialisation 

strategy adopted by Temperley. 

4.3.1 Sounding, Starts and Presence 

The Chew Pitch Spelling algorithm describes two ways of computing the 

duration of a note within a chunk; this is whether the note starts or sounds within a 

chunk. This concept is illustrated using Figure 12. 
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Figure 12: Piano-roll representation of four notes 

In a piano-roll representation, the horizontal axis represents time in milliseconds, 

the vertical axis represents pitch. Each note is represented as a horizontal line (n1 – n4) 

illustrating their start (onset) and end (offset) times and duration. The segment of music 

is divided into four 500 ms chunks labelled 1 to 4. Taking note n2 as an example, the 

note starts in chunk 1 and ends in chunk 4. Once it starts, the note continues to sound 

until it ends. Therefore we can say that the note starts in chunk 1 and sounds in chunks 

2, 3 and 4. We can calculate CE(w) where w is the window consisting of chunks 2 and 
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3. We can further define a note that starts within a chunk as one whose start time is 

greater than or equal to the start time of the chunk and less than the end time of the 

chunk. We can also define a note that sounds in the chunk if its start time is less than 

the end of the chunk and its end time is greater than the start time of the chunk. 

 

If we consider the notes that start in window w, then 

 

( ) ( )( ) ( )},{3,2 43 nnCEWCEwCE start ==  

 

Then from equation (4.2) 

 

( ) ( ) ( )
1000

.500.500 43 npnpwCE +
=     (4.7) 

 

Alternatively, if we consider the notes that sound in window w, then 

 

( ) ( )( ) ( )},,,{3,2 4321 nnnnCEWCEwCE sound ==  

 

Equation (4.2) evaluates to 

 

( ) ( ) ( ) ( ) ( )
3750

.500.500.1500.1250 4321 npnpnpnpwCE +++
=  (4.8) 

 

In this evaluation, the note is weighted by its duration even if this is greater than 

the duration of the window w. In personal communication, Chew has confirmed 

however that in their implementation, the note is weighted by the duration for which it 

sounds within the window. Therefore equation (4.2) should evaluate to 

 

( ) ( ) ( ) ( ) ( )
2500

.500.500.1000.750 4321 npnpnpnpwCE +++
=  (4.9) 

 

These different evaluations highlight the importance of specifying in detail how 

the CE should be calculated in the algorithm. 
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A further issue is related to weighting notes by their duration either within the 

window or their complete duration. For a real time analysis, this requires a processing 

delay either for the duration of a chunk time or in the worst case for the complete 

duration of a note. An alternative is to ignore the duration and to weight simply on the 

presence of a note within the window. This only requires the detection of a note’s onset 

and does not require any delay in processing. If this strategy is adopted, then equation 

(4.2) becomes 

 

( )
( )

N

np
SCE Sn

∑
∈=       (4.10) 

 

Where N is the number of notes currently present in the window. Equation (4.9) 

then simplifies to become 

 

( ) ( ) ( ) ( ) ( )
4

4321 npnpnpnpwCE +++
=     (4.11) 

 

This simplification of Chew’s algorithm forms the basis of the novel 

implementation described in the following section. 

4.4 The Implementation 

This section describes the implementation of a pitch spelling application based on 

a simplification of Chew’s spiral array algorithm as described in the preceding section. 

It also describes how the results of the pitch spelling are captured using a subscribing 

application linked to a relational database that persists the results for later analysis. It 

also introduces the need for synchronisation between applications within the 

framework and describes how this can be achieved by use of control messages. 
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4.4.1 The Pitch Spelling Application 
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Figure 13: The Pitch Spelling application 

The structure of the Pitch Spelling application is illustrated in Figure 13 which is 

an instance of the generic application structure illustrated in Figure 7 of section 3.5.2. 

Note that in the thesis figures, topics are referenced by their Java variable names. These 

are defined as Java Strings which resolve to the hierarchic topic names listed in 

Appendix A. The application subscribes to the noteOnTopic which identifies the start 

of a note and is published either by a MIDI device client or for testing purposes, a 

MIDI or OPND file publishing application. In addition, it subscribes to a filename topic 

which identifies which testcase is being published and a closing topic used to 

synchronise the pitch speller with other applications. 

 

The pitch spelling application publishes two events using the noteTopic and 

psFinishedTopic. The noteTopic is used to publish instances of the NamedNoteEvent. 

This event contains the name of the note as a Java String in the format as the OPND 

input file; that is the String “Cn3” identifies a C natural in the third octave. In addition 

to the note name, the event includes the Chew algorithm Centre of Effect that was 

active when the note was named. This is expressed as a point in three dimension space 

using Java Float types for the x, y and z components. The event also includes a URI. 

This URI is the same one as the input MidiNoteOnEvent that resulted in the output 
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NamedNoteEvent allowing the correctness of the spelling to be established as described 

in a later section. The second event published using the psFinishedTopic generated by 

the pitch spelling application is a confirmation that the application has completed and 

its use is described in more detail in a later section. 

 

The PitchSpellerProcessor Class 

The PitchSpellerProcessor class implements the modified Chew pitch spelling 

algorithm. Its constructor takes a BlockingQueue parameter which has been initialised 

by the main thread and provides an asynchronous interface between the PitchSpeller 

client and the processing thread. The constructor builds an instance of the Spiral Array 

using the SpiralArrayBuilder class. In her algorithm, Chew identifies each pitch name 

on the array using an index from -15 to +19. The mapping between the indices and the 

pitch names are shown in the following table: 

 
Index Pitch 

Name 

Index Pitch 

Name 

Index Pitch 

Name 

Index Pitch 

Name 

Index Pitch 

Name 

-15 Fff -8 Ff -1 F 6 Fs 13 Fss 

-14 Cff -7 Cf 0 C 7 Cs 14 Css 

-13 Gff -6 Gf 1 G 8 Gs 15 Gss 

-12 Dff -5 Df 2 D 9 Ds 16 Dss 

-11 Aff -4 Af 3 A 10 As 17 Ass 

-10 Eff -3 Ef 4 E 11 Es 18 Ess 

-9 Bff -2 Bf 5 B 12 Bs 19 Bss 

Table 2: Spiral Array index versus note name 

The PitchSpellerProcessor class constructor also initialises an array of possible 

note names. For each of the 12 pitch classes, the array contains the indices of the three 

possible names for the note. For example, the entry for pitch class 0, note C, contains 

the indices for its three possible names B# (index 12), C (index 0) and Dbb (index -12). 

The array is fully defined as: 

 
private static final int[][]  noteIndexes = {  

{ 12, 0, -12 },  // B#,  C,  Dbb 
{ 7, -5, 19 },   // C#,  Db, B## 
{ 14, 2, -10 },  // C##, D,  Ebb 
{ 9, -3, -15 },  // D#,  Eb, Fbb 
{ 16, 4, -8 },   // D##, E,  Fb 
{ 11, -1, -13 }, // E#,  F,  Gbb 
{ 18, 6, -6 },   // E##, F#, Gb 
{ 13, 1, -11 },  // F##, G,  Abb 
{ 8, -4, -999 }, // G#,  Ab 
{ 15, 3, -9 },   // G##, A,  Bbb 
{ 10, -2, -14 }, // A#,  Bb, Cbb 
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{ 17, 5, -7 }    // A##, B, Cb 
}; 

 

The option of -999 for G# / Ab is because there is not a third optional name for 

this note. The purpose of this array is to augment the information for an input note. The 

note is updated with the three optional names given its pitch class before it is sent to the 

spelling algorithm. This reduces the search space from the 35 possible names to only 

the three possible options for each of the 12 pitch classes. 

 

The algorithm described in section 4.3 spells notes contained within a chunk. 

This approach is adopted in the implementation with the ChunkBuffer class managing 

chunks consisting of a set of notes. Chunks are defined to be a given size in 

milliseconds (500ms). The ChunkBuffer class is initialised through its constructor with 

parameters that include the global and local context window sizes (8 and 2 

respectively) and the relative weight applied between the local and cumulative centre of 

effect (0.5). The final parameter is the spiral array centre of effect coordinates for the 

key of D as an initial condition for the pitch spelling algorithm. 

 

Having been initialised, the PitchSpellerProcessor.addNoteEvent()  method 

assembles notes as they are input into a Chunk based on the note onset time. Once a 

chunk has been assembled (the current note onset is later than the end time of a Chunk), 

it is passed to the ChunkBuffer for naming via the ChunkBuffer.addCurrentChunk() 

method. 

 

The ChunkBuffer class constructor initialises a pair of chunk windows 

corresponding to the global and local windows with sizes set by the constructor 

initialisation parameters. It also initialises an instance of the CentreOfEffect class which 

computes and maintains the current centre of effect used in note pitch spelling. The 

CentreOfEffect class is initialised to reflect the key of D; the initial condition for 

Chew’s algorithm. 

 

The pseudo code for the pitch spelling algorithm implemented within the 

ChunkBuffer.addCurrentChunk method is as follows: 
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1. If the chunk is the first chunk, then name the notes in the chunk using the initial CE 

(assuming key of D) 

i. Compute the Global CE using the notes within the current chunk 

ii. Name the notes within the current chunk using this CE 

iii. Publish the chunk spellings as a set of NamedNoteEvent 

2. If the chunk is not the first chunk 

i. Compute the cumulative CE and shift the chunk windows 

ii. Compute the global CE and name the current chunk using this CE 

iii. Compute the local CE using the current chunk and the local chunks window 

set 

iv. Compute the hybrid CE consisting of a fraction of the local and cumulative 

CEs 

v. Name the notes using the hybrid CE 

vi. Publish the chunk spellings as a set of NamedNoteEvent 

 

When naming a note, the pitch spelling algorithm uses a CE represented as a Java 

Point3f type. This type represents a point in 3D space with the x, y and z coordinates 

represented as Float types. When a note is input to the PitchSpellerProcessor class, the 

three possible names for the note are assigned as described earlier. Each note name 

within the spiral array is represented as a point in 3d space. These points are computed 

during the initialisation of the SpiralArrayBuilder class and are themselves of type 

Point3f. Naming a note consists of computing the distance between each of the points 

on the spiral array for the three possible note names and the current CE. The note name 

with the minimum distance to the CE is then chosen as the name for the note. The name 

of the note is then published as a NamedNoteEvent. 

 

All events have a URI associated with them. In the cases of raw data such as 

events published from MIDI input or file players, the URI is created by a 

URIGenerator class. For the NamedNoteEvent, the URI contained within the matching 

input MidiNoteOnEvent is reused. This allows the result of the pitch spelling to be 

matched to a separate MIDI event within the results database. This is discussed further 

in the next section. 
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4.4.2 The EventCapture Application 

EventCapture is a database application that subscribes to events published by file 

publisher and analysis applications and archives the events within a relational database. 

The application is based on the Apache Derby database [Derby]. This is an open source 

Java database with a small footprint that occupies around 2 Mbytes for the base engine 

and embedded JDBC driver. It supports SQL standards and can operate in a 

client/server mode as a network server. 

 

The EventCapture application structure is illustrated in Figure 14. The 

application subscribes to the following topics; noteOnTopic, noteOffTopic, noteTopic 

and noteNameFinishedTopic. The EventDatabaseProcessor class constructor creates a 

JDBC connection to an instance of the Derby database. Each event that needs to persist 

itself within the database includes an insert() method which takes a JDBC Connection 

object as an input parameter. 

 

BrokerBroker

BrokerConnection
noteOnTopic,
noteOffTopic,
noteTopic,
pcFinishedTopic

QueueMessageHandler

Subscribe

PubSubEvents

EventDatabaseProcessor

BlockingQueue

EventCapture
(main)

creates

runsPublish
dbFinishedTopic

Derby

 

Figure 14: The Event Capture application 

The database contains a NOTES table whose schema is created by the following 

SQL statement: 
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create table NOTES ( 
URI  varchar(41) not null, 
TESTNAME varchar(30) not null, 
ONTIME  bigint, 
OFFTIME  bigint, 
DURATION bigint, 
MIDINUMBER integer, 
VELOCITY integer , 
NAME  varchar(4),   
NOTENAME varchar(4) 

); 
 

A complete row in the NOTES table is assembled by the application invoking the 

insert() method for the MidiNoteOnEvent, MidiNoteOffEvent and  NamedNoteEvent as 

they each arrive asynchronously. The first two events are published by a testcase 

generator or MIDI input device connected to an input port application. The 

NamedNoteEvent event is generated by the pitch spelling application.  

 

NOTENAMENAMEVELOCITYMIDINUMBERDURATIONOFFTIMEONTIMETESTNAMEURI

MidiNoteOnEvent

MidiNoteOffEvent

NamedNoteEvent

(a)

PublishOPNDTestCases

PitchSpeller

EventCapture

OPND
Files

Derby

closingTopic psFinishedTopic

dbFinishedTopic

(b)

 

Figure 15: Event Capture and Synchronisation 

Assembling results within a relational database 

Figure 15(a) above illustrates how each event contributes columns to the NOTES 

table. For a given note, the first event to be published will be the MidiNoteOnEvent 

identified by the noteOnTopic. This will be followed in no particular order by the 

MidiNoteOffEvent identified by the noteOffTopic and the NamedNoteEvent identified 

by the noteTopic. The MidiNoteOnEvent.insert() method uses the SQL insert statement 
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to insert the URI, TESTNAME, ONTIME, MIDINUMBER, VELOCITY and NAME 

columns using the following code example. 

 
public void insert(Connection conn) { 

PreparedStatement pStmt = null; 
String stmtStr = "insert into notes values  

     (?,?,?,0,0,?,?,?,'NONE')"; 
try { 

  pStmt = conn.prepareStatement(stmtStr); 
  pStmt.setString(1, eventURI.toString()); 
  pStmt.setString(2, testName); 
  pStmt.setLong(3, timeStamp); 
  pStmt.setInt(4, midiNumber); 
  pStmt.setInt(5, velocity); 
  pStmt.setString(6, name); 
  pStmt.execute(); 
  pStmt.close(); 
 } 
 catch (SQLException sqlExcept) { 
  sqlExcept.printStackTrace(); 
 } 
} 

 

Subsequently, the SQL update statement is used to update the row when a 

MidiNoteOffEvent and a NamedNoteEvent arrive with the same URI.  

 

The code for the MidiNoteOffEvent.insert() method is: 
public void insert(Connection conn) { 

PreparedStatement pStmt = null; 
 String stmtStr = "update notes set OFFTIME=?, DURATION=?-ONTIME  

WHERE URI=?"; 
 try { 
  // Update notes table 
  pStmt = conn.prepareStatement(stmtStr); 
  pStmt.setLong(1, timeStamp); 
  pStmt.setLong(2, timeStamp); 
  pStmt.setString(3, eventURI.toString()); 
  pStmt.executeUpdate(); 
  pStmt.close(); 
 } catch (SQLException sqlExcept) { 
  sqlExcept.printStackTrace(); 
 } 
} 

 

Note that the DURATION is computed from the inserted ONTIME and the 

OFFTIME to be inserted. The code for the NamedNoteEvent.insert() method is: 

 
public void insert(Connection conn) { 

String stmtStr = "update notes set NOTENAME=? WHERE  
URI=?"; 

 PreparedStatement pStmt = null; 
 try { 
  pStmt = conn.prepareStatement(stmtStr); 



 62

  pStmt.setString(1, noteName); 
  pStmt.setString(2, eventURI.toString()); 
  pStmt.executeUpdate(); 
  pStmt.close(); 
 } 
 catch (SQLException sqlExcept) { 
  sqlExcept.printStackTrace(); 
 } 
} 

 

The reason for the two VARCHAR(4) columns called NAME and NOTENAME 

will be discussed in the next section. 

 

Application Synchronisation 

The testcase set for pitch spelling consists of some 216 files. Whilst it is possible 

to construct a script consisting of 216 invocations of the OPND file publisher, the pitch 

spelling and event capture applications, an alternative approach is to use additional 

control messages to synchronise the three applications. In particular this is necessary 

for the pitch spelling application since the algorithm must be initialised before a new 

testcase can be processed. 

 

For all the applications, the processing classes implement the Java Runnable 

interface; part of the Java Threads support. Inserting a wait(condition) statement in the 

application’s run() method will cause the application to halt until the condition is 

satisfied. The Figure 15 (b) illustrates how the three applications are synchronised: 

 

1. The PublishOPNDTestCases application publishes the contents of an OPND file 

terminating the publication with a closingTopic event. Following the publication of 

the closing event, it will halt with the wait condition set to false. 

2. The PitchSpeller application will process the set of events from the first OPND file 

and publishes the appropriate note naming events. When it has received the closing 

event, it completes the spelling by publishing any remaining note information and 

initialises the algorithm to wait for the next set of OPND generated events. It also 

publishes an event using the psFinishedTopic. 

3. The EventCapture application uses events from the PublishOPNDTestCases and 

EventCapture applications to assemble the NOTE table within the database. Once it 

has received an event with the psFinishedTopic, it can then perform any cleanup 

processes and wait for the next set of events it has subscribed to and publish an 

event using the dbFinishedTopic to signal that it has completed. 
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4. The publication of an event using the dbFinishedTopic by the EventCapture 

application causes the wait condition halting the PublishOPNDTestCases 

application to be set to true causing the next OPND file to be published. 

4.5 Testing and Results 

Testing and verification of the pitch spelling algorithm used 216 test files 

containing nearly 200,000 notes. The files were in the OPND format which consists of 

a set of triples for the note onset, pitch name and duration. The following opening of 

the bachbgcant000905m testcase illustrates the format for the first 2 seconds. The first 

triple 0, An2, 243 encodes an A natural in the second octave starting at time 0 and 

lasting for 243 milliseconds. 

 
0,An2,243 
0,En5,118 
125,Fs5,118 
250,En5,118 
375,Dn5,118 
500,Cs3,243 
500,En5,118 
625,Cs5,118 
750,Bn4,118 
875,An4,118 
1000,Dn3,243 
1000,An4,118 
1000,Fs5,1243 
1125,Bn4,118 
1250,An4,118 
1375,Gs4,118 
1500,Dn4,243 
1500,An4,118 
1625,Fs4,118 
1750,En4,118 
1875,Dn4,118 
2000,Gs3,243 
2000,Bn4,1243 

 

The testcase set originates from the Musedata corpus and has been generated 

from the Humdrum **kern format by David Meredith. They are the same testcase set 

used in his PhD thesis [Meredith07] allowing the performance of this implementation 

of the spiral array algorithm to be compared with the results contained within his thesis. 

The initial part of the **kern description from which the OPND file was generated is 

shown below. 
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!!!COM: Bach, Johann Sebastian 
!!!OPR: Es ist das Heil uns kommen her 
!!!OTL: Duetto 
!!!OMV: 5 
!!!SCT: BWV 9 
!!!SCA: Thematisch-systematisches Verzeichnis der musikalischen Werke Johann Sebastian 
Bach: Bach-Werke-Verzeichnis (Schmieder) 
!!!YOR: Bach Gesellschaft Edition i,9 
!!!EED: Steven Rasmussen 
!!!ENC: Steven Rasmussen 
!!!CDT: 1685/3//-1750/7/28/ 
!!!OCY: Deutschland 
!!!YEC: Copyright (c) 1994, 2000 Center for Computer Assisted Research in the 
Humanities 
!!!YEM: Rights to all derivative editions reserved 
!!!YEM: Refer to licensing agreement for further details 
!!!YEN: United States of America 
**kern **dynam **kern **dynam **kern **silbe **kern **silbe **kern **dynam 
*I:Flauto traverso *I:Flauto traverso *I:Oboe d'amore *I:Oboe d'amore
 *I:SOPRANO *I:SOPRANO *I:ALTO *I:ALTO *I:Continuo *I:Continuo 
*clefG2 * *clefG2 * *clefG2 * *clefG2 * *clefF4 * 
*k[f#c#g#] * *k[f#c#g#] * *k[f#c#g#] * *k[f#c#g#] *
 *k[f#c#g#] * 
*A: * *A: * *A: * *A: * *A: * 
*M2/4 * *M2/4 * *M2/4 * *M2/4 * *M2/4 * 
=1- =1- =1- =1- =1- =1- =1- =1- =1- =1- 
(16ee\LL f 2r . 2r . 2r . 8AA/ f 
16ff#\ . . . . . . . . . 
16ee\ . . . . . . . 8r . 
16dd\JJ) . . . . . . . . . 
(16ee\LL . . . . . . . 8C#/ . 
16cc#\ . . . . . . . . . 
16b\ . . . . . . . 8r . 
16a\JJ) . . . . . . . . . 
=2 =2 =2 =2 =2 =2 =2 =2 =2 =2 
[2ff#\ . (16a/LL f 2r . 2r . 8D\ . 
. . 16b/ . . . . . . . 
. . 16a/ . . . . . 8r . 
. . 16g#/JJ) . . . . . . . 
. . (16a/LL . . . . . 8d\ . 

 

Given an OPND triplet, it is possible to compute the MIDI note number for the 

note in a given octave. This is combined with the note onset to generate a 

MidiNoteOnEvent and the duration to compute the note off time to generate a 

MidiNoteOffEvent both of which are published. Both events use the same generated 

URI to signify they refer to the same note. The MidiNoteOnEvent contains an 

additional variable. This is a String containing the name of the note as contained in the 

OPND triplet. It is this value that is inserted into the relational database row in the 

NAME column. The pitch spelling application subscribes to the MidiNoteOnEvent, 

spells the note given the MIDI note number contained within the event and publishes a 

corresponding NamedNoteEvent containing the calculated spelling together with the 

URI of the input note event. The NamedNoteEvent provides the NOTENAME column 

entry in the database table. A row in the NOTES table now includes both the expected 

(NAME) and calculated (NOTENAME) spellings for each note in the testcase. 

Statistics can then be extracted from the NOTES table using appropriate SQL queries. 
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Initialisation settings within the pitch spelling implementation allow the 

algorithm to behave as described by pseudo code in Meredith’s thesis which itself is an 

implementation of Chew’s work. When running in this mode, the implementation 

described in this thesis gave the same set of results as reported by Meredith and 

tabulated in the table below. The table lists the notes that were not spelled correctly. 

Meredith does not supply sufficient detail to establish whether the same notes were 

incorrectly spelled. With the simplified algorithm (section 4.3.1), there was an 

improvement in the spelling accuracy of 0.09% over the published results for the same 

testcase corpus. 
 Bach 

24505 

Beethoven 

24493 

Corelli 

24493 

Handel 

24500 

Haydn 

24490 

Mozart 

24494 

Telemann 

24500 

Vivaldi 

24497 

Total 

195972 

Meredith 175 311 152 136 365 230 149 147 1665 

(99.15%) 

Simplified 117 317 100 125 366 206 127 127 1485 

(99.24%) 

Table 3: Test results for Pitch Spelling Application 

4.6 Summary 

This chapter has addressed the real-time spelling of notes given only their MIDI 

note number using a simplified version of Chew’s algorithm based on the spiral array. 

An event based implementation has been described together with applications to 

capture the published events in a relational database for later analysis. Synchronisation 

of the applications using control events has been discussed.  

 

The implementation of the pitch spelling algorithm has been tested using a corpus 

contributed by a previous researcher and the simplified algorithm has been shown to 

perform marginally better than previously published results. 

 

Current implementations of pitch spelling algorithms by Temperley, Meredith 

and others are based on batch methods whereby the entire encoded piece of music is 

analysed in its entirety. The benefit of a real-time, event based implementation is that 

the algorithm only requires historical data; the notes that have been played up to the 

current point in time. In addition, the implementation described in this chapter does not 

rely on the duration of the notes being played thereby eliminating any additional 
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processing delay. These two properties, historical data and delay elimination, lead to an 

effective real-time implementation of the spiral array pitch spelling algorithm. 
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Chapter 5 Meter, Key, and Chord 

5.1 Introduction 

Given the naming of notes described in the previous chapter, the next stage in 

developing a harmonic model of music is the identification of chord structures within 

the music and their relationship to the sounding notes. In order to identify and correctly 

name the chords, it is necessary to detect the underlying key in which the chord sounds. 

Since the key signature may change during a musical performance, significant points 

within the music must be identified to delineate musical segments within which the key 

can be extracted; metrical analysis of the music is used to identify these significant 

points. Having identified the current key and sounding chords, these provide data for 

published events which form the basis of the harmonic description described in later 

chapters. 

 

In this chapter I first review current literature in metrical analysis, key and chord 

extraction. This is followed by a description of the implementation of the key and chord 

extraction component of the publish/subscribe framework which includes metrical 

analysis to segment the music, key and chord identification. Details of the events 

generated by the component are also provided. Finally, the results obtained are 

analysed and the chapter summarised. 

5.2 Metrical Analysis 

Metrical analysis is the identification of the metrical structure of a musical piece. 

This structure consists of a series of points in time, beats, which relate to events in the 

music. Beats do not necessarily coincide with events in the music but it is widely 

accepted that all cognitively significant events within a musical piece occur at a beat. 
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Perception of metrical structure as an area of research draws contributions from music 

theory, cognitive psychology and artificial intelligence. Computation models of 

metrical structure can be distinguished between those that assume their input is taken 

from a symbolic input and those that operate directly on audio. Temperley 

[Temperley04]lists some 25 studies that present models of metrical analysis; 4 assume 

input is from audio, the rest are symbolic This thesis assumes that input to the metrical 

analysis contains symbolic information; a set of notes which have already been named. 

 

Figure 16: The opening bars of Mozart's Sonata KV332 - from [Temperley04] 

Figure 16 illustrates the objective of metrical analysis. Metrical analysis produces 

a representation of beats aligned with the music that was given as input. Beats occur at 

points in time and can have different strengths corresponding to the perception of their 

strength by a listener. Perceptively strong beats exist at higher levels, whereas weaker 

beats occur at lower levels. In the figure above, the metrical structure is shown above 

the music as dots representing 5 strength levels (0 – 4). Further reference to this figure 

will be made later in this chapter. 

 

Metrical analysis has historically been divided into two problems; quantisation 

and higher-level meter extraction. In quantisation, notes of a performance are adjusted 

so that the start and end times of notes are multiples of a common time interval thereby 

eliminating any timing jitter between notes that sound at (nearly) the same time. The 
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second problem starts with a quantised set of notes and develops a multi-level metrical 

model consisting of a set of different strength beats. 

 

Desain and Honing [Desain92] provide the most important grounding in 

quantisation. They propose a model which consists of basic units with activation levels 

representing the inter-onset interval (the time interval between the start of one note and 

the start of the following note). Interaction units connect adjacent basic units and adjust 

their relative activation levels so that they are related by simple ratios. This causes the 

activation levels to converge to multiples of a common value. They introduce the 

concept of a “sum cell” which sums the activation levels of several basic units which 

allows a single unit to represent a time interval containing several notes. 

 

More research focus has been on the second problem of metrical analysis; that of 

developing a multi-level model consisting of a set of different strength beats. Lee 

[Lee91] proposes a model that ignores note pitch and only considers the music’s 

rhythmic pattern. The model initialises by finding the interval between the first two 

note start times. It then generates a second interval of the same length to provide a 

hypothesis rhythmic level which can be adjusted if necessary. Lee’s model in common 

with many other ones, only considers a single analysis which is adjusted or discarded as 

necessary. Other approaches have considered multiple hypotheses of an entire excerpt 

which are evaluated by different criteria. Simple examples of this type of approach 

have been reported by Povel and Essens [Povel85]  and Parncutt [Parncutt94]. 

 

Recent studies incorporate both quantisation and metrical analysis. Examples of 

these include Chafe [Chafe82] which forms part of a digital audio editing suite, 

Rosenthal [Rosenthal92] who ranks multiple hypotheses by salience criteria and Large 

[Large94] who introduces a connectionist model driven by an oscillator which tracks 

the period and phase of the input. 

 

The work of Temperley and Sleator [Temperley99] forms the basis for the 

metrical analysis implementation described in this thesis. Their work on preference 

rules builds on the earlier work by Lerdahl and Jackendoff [Lerdahl83]. The input to 

this analysis is in the form of a notelist. This is illustrated in Figure 16 and for each 

note there is an entry which includes its pitch (assuming MIDI note numbers, middle C 



 70

= 60) together with the note’s start and end times. Lerdahl and Jackendoff’s model 

assumes that the metrical structure consists of several beat levels and propose four 

well-formedness rules that define the set of permissible metrical structures. They are: 

 

1. Every note onset (start) must  be marked with a beat 

2. Every beat at one level must also be a beat at a lower level 

3. Every second or third beat must be a beat at the next level up 

4. Beats must be evenly spaced at the tactus level. This pulse is typically what 

listeners entrain to as they tap their foot or dance along with a piece of music 

(Handel, 1989), and is also colloquially termed the 'beat,' or more technically the 

'tactus' [Lerdahl83] 

 

They also propose a set of preference rules that state the criteria where listeners infer 

the correct structure; for example whether there is a duple or triple relationship between 

the beats. These are: 

 

1. Prefer structures that align strong beats with note onsets (Event Rule) 

2. Prefer structures that align strong beats with the onset of longer notes (Length Rule) 

3. Prefer beats at each level to be maximally evenly spaced (Regularity Rule) 

4. Prefer to locate strong beats near the beginning of groups (Grouping Rule) 

5. Prefer duple over triple relationships between levels (Duple Bias Rule) 

 

Sleator’s implementation strategy for preference rules is described in [Temperley01] 

and uses principles of dynamic programming to produce an efficient search strategy for 

the preference rule models used for metrical analysis in their Melisma  music analyser. 

Their algorithms, implemented in C, read an entire notelist file which encodes the 

music to be analysed. The output of the analysis is a beat list containing a list of beat 

strengths and the times they occur together with a note address list. The note address 

list contains the same information as the input note list but with the addition of a note 

address; a number representing the note’s position in a metrical grid. These are 

illustrated in the earlier figure. 

 

The dynamic programming approach allows an efficient left-to-right realisation 

of a preference rule system. This means that at each point in time, the system has a 
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preferred analysis of the music heard so far. This approach of reaching a preferred 

analysis based only on “historical” notes heard is analogous to the process of human 

appreciation of music. The implementation developed in Java for this thesis is a 

modification of this approach to provide an event based implementation. This is 

described in a later section. 

5.3 Key Extraction 

Musical key provides the contextual framework for western tonal music within 

which notes, chords and harmonies are understood. Musical key supports the 

perception of elements within a performance providing stability of note pitches and 

chords. It also increases the perception of melody and through modulation conveys a 

sense of motion and drama. When analysing music, identifying the key is a precursor to 

accurately naming the sounding notes and the chords they are part of. In the previous 

chapter on note naming, the centre of effect within Chew’s spiral array algorithm acts 

as a proxy for the musical key. In this section, the key has to be accurately identified so 

that the harmonic structure in the form of named chords can be successfully 

documented. 

 

Models for identifying musical keys have long been a subject of research by the 

computational musicology community. An early model was proposed by Longuet-

Higgins and Steedman [Longuet-Higgins71] for monophonic music. This algorithm 

processes music in a left-to-right manner eliminating all scales that do not include any 

pitch it encounters. When it is left with only one key, that is the preferred key. The 

algorithm has the capability of back-tracking and re-evaluating for cases when all 

possible keys are eliminated. A similar algorithm was developed by Holtzmann 

[Holtzmann77] which worked solely on melodies instead of using individual pitches 

and eliminating keys. 

 

The previously cited work did not however handle modulation when more than 

one key is present in a musical work. Vos and Van Geenen [Vos96] proposed a model 

for monophonic music which supports modulation with limited success. More recent 

research work in modulated key finding has concentrated on a two stage process; 

segmentation and key finding by the use of key-profiles. 
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Key profiles are a prototypical pattern of pitches expected in major and minor 

keys and are represented as a vector of 12 values. Profiles have been proposed based on 

psychological hearing assessment tests or analysis of large music corpuses. For 

example, if a piece of music is in C major, then one would expect the notes within the 

piece to be made up of notes from the C major scale (C,D,E,F,G,A,B) and not expect 

many notes outside of the scale (C#,D#,F#,G#,A#). The Krumhansl-Schmuckler 

algorithm [Krumhansl90] uses profiles based on data from experiments by Krumhansl 

and Kessler [Krumhansl82] where subjects were asked to rate how well a pitch class 

fitted with a previously defined  key established by either a cadence or scale. 

 

Instead of deriving a set of key profiles from psychological tests, an alternative 

approach is to use actual compositions. The Kostka-Payne corpus is one such set of 

compositions consisting of 46 excerpts (9057 notes) from the common practice 

repertoire. It is taken from a workbook accompanying their textbook [Kostka95]. Using 

its associated instructors manual, Temperley [Temperley07] has derived profiles for 

major and minor keys using the corpus. The generic profiles are illustrated in Figure 

17. The data is interpreted as for example, the note of scale degree 1 (the tonic) occurs 

in 0.748 (74.8%) of segments in major keys and 0.712 (71.2%) of segments in minor 

keys. Temperley proposes a Bayesian process to match the set of notes within a music 

segment to one of 24 major and minor profiles – one of each of the 12 major and minor 

keys. 



 73

0.3300.1330.0670.4040.7470.1050.4600.0490.6180.4740.0840.712Minor

0.4000.0570.3660.1040.7150.0960.4600.6700.0820.4880.0600.748Major

7#6/b76#5/b65#4/b543#2/b32#1/b21Degree

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 #1/b2 2 #2/b3 3 4 #4/b5 5 #5/b6 6 #6/b7 7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 #1/b2 2 #2/b3 3 4 #4/b5 5 #5/b6 6 #6/b7 7

Major Key Profile

Minor Key Profile

 

Figure 17: Major and Minor key profiles from the Kostka-Payne corpus 

Key finding using profiles assumes that there is a single key within the segment 

of music being analysed. In a longer piece, this may not be the case due to keys 

modulating as the music progresses. To overcome this problem, the approach is to 

segment the music into shorter sections with the assumption that these shorter sections 

contain a single key allowing the key finding algorithm to be applied. Examples of 

segmentation approaches include Pardo and Birmingham [Pardo00] who propose a 

segmentation scheme based on matching tonal structures to a template based on Forte’s 

pitch class representation of chords. 

 

A second segmentation strategy is the one proposed by Temperley [Temperley07] 

based on the metrical analysis described in an earlier section. Temperley observes that 

all events within a musical piece occur on a beat and that the more significant events 

such as modulation occur at stronger beats. Therefore if a metrical analysis is 

performed on the music, then the times at which higher level beats (levels 3 and 4) 

occur are the boundaries of meaningful segments. These segments can then be analysed 

to identify the key within that segment. 
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5.4 Chord Extraction 

Within western music, a chord is a set of different notes that sound 

simultaneously or occur within a time interval. The identification of chords within a 

piece of music is fundamental to understanding its harmonic structure and forms the 

basis of any subsequent processing in the form of arranging, accompaniment and 

phrasing. 

 

Numerous techniques have been investigated for performing harmonic analysis of 

music including linguistics [Winograd68], expert systems [Maxwell92], neural 

networks [Laden89], [Tsui02], hidden Markov models [Raphael03]  and structural 

analysis [Smaill93]. Usually, this work does not consider the segmentation of a musical 

piece preferring to work with notations that are already segmented. Segmentation prior 

to harmonic analysis has been addressed by [Pardo02] and [Temperley99]. 

 

The work cited so far in this section has concentrated on western tonal music. 

Tonal music is the organisation of music and harmony around a single, central pitch or 

key that grew out of renaissance modal music in the 17th century. Music that lacks this 

tonal centre is referred to as atonal music and became a feature of 20th century 

composition with composers such as Bartok, Hindemith and Prokofiev creating 

compositions that musicologists have described as atonal. The analysis of atonal music 

builds on the work of Forte [Forte73] who proposed the use of a Pitch Class Set (PCS) 

notation for identifying chords in atonal music. In western music there are 12 pitch 

classes (0..11) in an octave that can be used to identify pitches independently of octave 

displacement or enharmonic spelling (C#, Db equivalent in pitch).  

 

A PCS is a list of pitch class numbers enclosed in square brackets that represent 

the set of sounding pitches; the chord. For example, the PCS [0,3,7] represents a C 

minor triad and [7,11,2] a G major triad. Some PCS are similar, for example [0,1,4] is a 

transposed version of [3,4,7]. PCSs that are related through inversion and 

transformation belong to the same class and can be converted to a prime or canonical 

form. Therefore the PCS for a C minor triad [0,3,7] is the canonical form for all minor 

triads irrespective of the key or chord root. Solomon [Solomon82] has proposed a 

simpler approach to PCSs based on Forte’s original work and has generated tables of 

relationships and properties for all PCSs which is available on the web [Solomon]. 
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Nelson [Nelson04] provides further background to the mathematics underpinning pitch 

class sets. Table 4 illustrates the first 20 entries in Solomon’s table of pitch class sets. 

The complete table contains 351 entries and includes all chords, not just the unison, 

intervals and triads listed in Table 4. The table lists Forte’s set name, the PCS prime 

form, its interval vector (a set of numbers that summarise the intervals within the 

chord) and a description of the chord. 

 
# Forte cross-referenced 

Set-name 

Prime Interval 

Vector 

Descriptive name/properties 

0 0-1 Empty 000000 Null set 

1 0-1* 0 000000 Unison 

2 2-1* 01 100000 Semitone 

3 2-2* 02 010000 Whole-tone 

4 2-3* 03 001000 Minor Third 

5 2-4* 04 000100 Major Third 

6 2-5* 05 000010 Perfect Fourth 

7 2-6*(6) 06 000001 Tritone 

8 3-1* 012 210000 BACH /Chromatic Trimirror 

9 3-2 013 111000 Phrygian Trichord 

10 3-2B 023 111000 Minor Trichord 

11 3-3 014 101100 Major-minor Trichord.1 

12 3-3B 034 101100 Major-minor Trichord.2 

13 3-4 015 100110 Incomplete Major-seventh Chord.1 

14 3-4B 045 100110 Incomplete Major-seventh Chord.2 

15 3-5 016 100011 Rite chord.2, Tritone-fourth.1 

16 3-5B 056 100011 Rite chord.1, Tritone-fourth.2 

17 3-6* 024 020100 Whole-tone Trichord 

18 3-7 025 011010 Incomplete Minor-seventh Chord 

19 3-7B 035 011010 Incomplete Dominant-seventh Chord.2 

Table 4: Section of Solomon's table of Pitch Class Sets 

The prime form of a PCS may produce confusing results. For example, the prime 

form for both a major triad [0,4,7] and a minor triad [0,3,7] both map to the same prime 

form (037). However, both triads are inversions of each other so that they do indeed 

map to the same prime form. Solomon observes that if the final matrix inversion is 

omitted when computing the prime form, then the major and minor triads together are 

distinguishable as are other inversion equivalences. This fact is used in the 

implementation described in the following section. 
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5.5 The Implementation 

S0K0 S1K1 S2K2 S3K3 S4K4Segment/Key

Beat Strength
0 .. 4

BeatNoteEvent sampling points
(shown only for Beat Strengths 2, 3 and 4)

Chord C0 Cn

Beat Extraction Key and Chord
ExtractionNamedNoteEvent BeatNoteEvent HarmonicEvents

 

Figure 18: Key and Chord extraction 

Extracting key and chord information is a two-step approach involving two 

applications. The first is an event based version of Temperley’s meter application 

which subscribes to NamedNoteEvents published by a pitch spelling application or 

simulated by the OPND testcase publisher. The application publishes BeatNoteEvents 

which contain three pieces of information: 

 

1. The beat time in milliseconds from the start of the piece 

2. The strength of the beat in a range from 0 to 4 

3. The set of notes that are sounding when the beat occurs 

 

The BeatNoteEvent may therefore be thought of as a sample at a point in time 

containing all the notes that are currently sounding in the piece. BeatNoteEvents are 

published for each beat though for clarity, only the sampling points for beats of strength 

2 to 4 are shown in Figure 18. The key and chord extraction application subscribes to 

the published BeatNoteEvents. 

 

The second application establishes the key(s) and identified chords. As described 

in section 5.3, key extraction is a two stage process. Firstly the piece must be 
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partitioned into segments with the assumption that the key does not change within a 

segment. Given a segmented piece, the key can then be identified for each segment 

using an appropriate algorithm. The segmentation strategy adopted in this 

implementation is that proposed by Temperley [Temperley07] with segments identified 

by high beat strength. A high beat strength (strength >= 3) assumes that the beat occurs 

at a cognitively important event; one which may signify a modulation.  

 

With reference to Figure 18, the structure of the key and chord extraction 

implementation is as follows: 

 

1. Segment S0 starts at time t = 0 and ends when a BeatNoteEvent arrives with strength 

>= 3. The final segment Sfinal ends when the beat extraction application signals the 

end of the piece by publishing a ClosingEvent. Otherwise segments start and end 

when a BeatNoteEvent arrives with strength >= 3. 

2. A segment Sn is assembled by storing the set of BeatNoteEvents contained within it. 

This will include all notes sounding within the segment. An empty segment Sn is 

also initialised with the key identified for the previous segment Sn-1, Kn-1 and the 

chord sounding at the end of the previous segment. 

3. When the end of a segment Sn is identified by the arrival of a BeatNoteEvent with 

strength >= 3 or the end of the piece, the segment is processed to identify the 

segment key Kn and the set of chords present within the segment. 

 

Key extraction uses the Bayesian matching technique proposed by Temperley of 

the notes present within a segment to key profiles generated from the Kostka-Payne 

corpus. The start and end times for a key are identified by detecting when the current 

key changes and KeyStartEvent and KeyEndEvents are published. A key may exist for a 

period longer than a single segment so initialising a segment with the key identified in 

the previous segment allows only changes in key within the piece to generate published 

events. 

 

Chord identification uses a modified PCS approach as described by Forte. A 

PitchSet class has been developed which given a vector of note pitch classes, computes 

the Forte normal form. In addition, the semi-normal form (the Forte normal form 

without the final inversion) is also computed to allow for example, major and minor 
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triads to be differentiated. The PitchSet class also includes a method to return the root 

pitch class of the chord. The operation of the PitchSet class is illustrated by the 

following test code. 

 
public class Test3 { 

public static void main(String[] args) { 
int[] notes = new int[]{2,5,10}; 

   
  printArray("notes = ", notes); 
   
  PitchSet ps = new PitchSet(notes); 
  PitchSet nForm = ps.getNormalForm(); 
  PitchSet pForm = ps.getPrimeForm(); 
  PitchSet spForm = ps.getSemiPrimeForm(); 
  int root = ps.getRoot(); 
  printArray("normal form = ", nForm.noteArray); 
  printArray("prime form = ", pForm.noteArray); 
  printArray("semi-prime form = ", spForm.noteArray); 
  System.out.println("root pc = " + root); 
   
} 
  
private static void printArray(String preA, int[] iA) { 
  int aL = iA.length; 
  System.out.print(preA); 
  for (int i = 0; i < aL; i++) { 
   System.out.print(iA[i] + " "); 
  } 
  System.out.println(); 
} 

} 
 

Consider a Bb major triad consisting of the notes Bb, D and F but re-ordered into 

D, F, Bb. The set of pitch classes for these three notes is (2, 5, 10). Given this triplet, 

represented as a Java int array, we would like to know the different forms of the chord 

and its root pitch class. Running this test produces the following output: 

 
notes = 2 5 10  
normal form = 10 2 5  
prime form = 0 3 7  
semi-prime form = 0 4 7  
root pc = 10 
 
 

Given the input array, it identifies the normalized form (10 2 5), the prime form 

[0,3,7] which identifies a minor triad and the semi-prime form [0,4,7] which 

disambiguates the pitch set to a major triad. The root of the triad is identified as pitch 

class 10, the Bb. Given the semi-prime form and the root for set of notes within a 

segment, the chord name can then be identified. 



 79

 

Chord names are identified using the ChordDescriptionTable class. This Java 

class is a lookup on a hash table keyed on the semi-prime form. The hash table contains 

entries of the Java ChordDescription type whose private variables are strings 

containing the chord’s semi-prime form, Forte number, interval vector, name, quality 

and a description generated from Solomon’s table published on the web. 

 

The output of the chord identification can be illustrated by the following segment 

information generated by the application. Note that this is a single segment from a 

longer running testcase. 

 
Start = 19985 End = 21000 # notes = 13 Key = An + 

19985(4) Fs2 Cs5  [1,6] (0,5) <0,0,0,0,1,0>  2-5 Cs   Perfect Fourth 

20125(0) Gs2 Bn4 En5  [4,8,11] (0,4,7) <0,0,1,1,1,0>  3-11B En  Major Triad 

20265(1) Bn2 Dn5  [2,11] (0,3) <0,0,1,0,0,0>  2-3 Bn   Minor Third 

20370(0) Bn2 Dn5  [2,11] (0,3) <0,0,1,0,0,0>  2-3 Bn   Minor Third 

20510(2) En2 Gs5  [4,8] (0,4) <0,0,0,1,0,0>  2-4 En   Major Third 

20615(0) En2 Gs5  [4,8] (0,4) <0,0,0,1,0,0>  2-4 En   Major Third 

20755(1) Gs5 Dn3  [2,8] (0,6) <0,0,0,0,0,1>  2-6 Dn   Tritone 

20860(0) Gs5 Dn3  [2,8] (0,6) <0,0,0,0,0,1>  2-6 Dn   Tritone 

21000(3) Gs5 Cs3 En4  [1,4,8] (0,3,7) <0,0,1,1,1,0>  3-11 Cs  Minor Triad 

 

This segment starts at time 19985ms and ends at 21000ms and contains 13 

different notes whose profile indicates a key for the segment of A natural major. The 

plus sign following the key shows that this segment’s key is a continuation of the key 

from the previous segment. There then follows a detailed listing of each beat within the 

segment. Each beat has strength from 0 to 4. This is shown within brackets following 

the beat time in milliseconds; the segment is defined from the higher strength beats at 

times 19985ms (strength = 4) and 21000ms (strength = 3). 

 

Taking the beat at 20125ms as an example we see that three notes are sounding at 

the beat time. These notes define the pitch class set [4,8,11] which resolves to the semi-

prime form (0,4,7) and interval vector <0,0,1,1,1,0> corresponding to the Forte number 

3-11B. Although the note name includes an octave, this is irrelevant when identifying 

the chord and we can establish that the root of the chord is E natural. Using the semi-

prime form as the hash lookup into the ChordDescriptionTable, this chord is identified 
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as a major triad. Re-ordering the three sounding notes into En, Gs and Bn shows that 

this is the case. 

 

The application together with other publishers results in a set of events that 

identify: 

 

1. The start and end of the piece of music 

2. The start and end of notes including the name of the note 

3. The start and end of keys including the name and mode 

4. The start and end of chords including its type, root and links to the notes contained 

within the chord. 

 

These events will be described in more detail in the next chapter where the semantic 

description of the music’s harmonic structure is addressed. 

5.6 Summary 

In this chapter I have discussed the relevant supporting work for metrical 

analysis, key identification and chord extraction. These form the basis of two 

applications to extract metrical beats and from these determine the keys within the 

piece and associated chords. The applications use a novel sampling approach based on 

the extracted beats to establish which notes are sounding simultaneously thereby 

allowing chords to be identified. Techniques for manipulating pitch class sets have 

been discussed which allow hash table lookups to be used to identify the properties of 

the sounding chords. 

 

There is a problem in identifying high quality test data to validate the key and 

chord identification algorithms developed in this chapter. For testing, test data that 

includes the notes together with chord and key information annotated by an expert 

musicologist is needed so that the algorithm results may be compared with expert 

analysis. 
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Chapter 6 A Semantic Representation of 

Musical Harmony 

6.1 Introduction 

Previous chapters have described the naming of notes and the identification of 

keys and chords. This chapter describes how these musical objects and their 

relationships are captured and represented within a semantic model of musical 

harmony. Starting with a description of semantic web technologies, this chapter 

continues with a review of current techniques for representing musical structure using 

semantic web languages; notably the Resource Description Framework (RDF) and the 

Web Ontology Language (OWL). It then develops a semantic representation of musical 

harmony that is constructed from events generated by the applications described in 

earlier chapters of this thesis. 

6.2 The Semantic Web and the representation of Musical Harmony 

The World Wide Web has evolved from its original form as a web of documents 

to be consumed by humans into a web of data that can be consumed by machines. This 

evolving Web, the Semantic Web [Berners-Lee01], can now be thought of as a 

repository of knowledge rather than as an information store consisting of different 

document types. Berners-Lee, Hendler and Lassila have described the Semantic Web as  

an extension of the current web in which information is given well-defined meaning, 

better enabling computers and people to work in cooperation.  
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From a knowledge management point of view, current web technologies, when 

applied to weakly structured documents such as text, audio and video, suffer from 

limitations[Antoniou08]: 

 

1. Searching for information is based on keywords; a technique with known 

limitations 

2. Extracting information is time consuming since any retrieved documents have to be 

examined for relevant information 

3. Maintaining information is problematic due to inconsistencies in terminology and 

failure to remove outdated information 

4. Uncovering information that implicitly exists in documents can be extracted using 

text and data mining but this is difficult for information in weakly structured 

collections of documents 

5. Viewing information by groups of users is easily managed when the information is 

contained within a database but is harder to manage over a web based infrastructure 

 

The objectives of the Semantic Web through its tools, organisation and 

descriptive languages are to enable more advanced knowledge management through: 

 

1. Organising knowledge within semantic, or conceptual, domains according to its 

meaning 

2. Developing tools to automate the extraction of knowledge and checking for 

conceptual inconsistencies 

3. Replacing keyword based searching by query answering whereby knowledge can 

be retrieved and presented in a way that is semantically meaningful. This will be 

through semantically relevant entities (e.g. notes, keys and chords in the musical 

domain) and their inter-relationships 

4. Developing techniques for inferencing and reasoning across multiple semantic 

domains. These domains are represented as ontologies. 

 

The emergence of the Semantic Web like other research domains has given rise 

to its own terms, technologies and tools. Many of these terms will be used later in this 

thesis so for completeness they are defined here: 
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1. An Ontology is a semantic model consisting of entities and the relationships 

between them. Both entities and relationships may have attributes assigned to them. 

2. A Triple is a fact consisting of a subject, predicate and object. The predicate defines 

the relationship between the subject and object. For example “John knows Dave” is 

a Triple; John is the subject, Dave is the object and knows is the predicate. 

3. A Triple Store is a database of facts. The term Triple Store has wider meaning in 

the context of the semantic web than simply a database of triples in that it is also 

able to process the rules inherent in a semantic representation such as OWL. In this 

thesis, a relational database is used to store triples generated by the music analysis. 

This database will be referred to as a triple database to differentiate it from a Triple 

Store. 

4. Inference or Entailment is a logical process in which rules are applied to a set of 

facts in order to deduce (or infer) additional facts. For example, if “John knows 

Dave”, then it may be inferred that there is an inverse relationship “Dave knows 

John”. 

5. The Resource Description Framework (RDF) [RDF04] is an activity by the World 

Wide Web Consortium W3C which completed in 2004. The RDF specifications 

provide syntax for a lightweight ontology system to support the exchange of 

knowledge on the Web. Included in the framework is the RDF Vocabulary 

Description Language RDF-Schema (RDFS) which forms the basis of other 

ontology languages and is expressed in XML. 

6. The Web Ontology Language (OWL) [OWL04] builds on RDF and RDF Schema 

and provides a more extensive vocabulary for describing properties and classes: 

among others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly 

one"), equality, richer typing of properties, characteristics of properties (e.g. 

symmetry), and enumerated classes. 

7. The SPARQL Protocol And RDF Query Language (SPARQL) [SPARQL07] can be 

used to express queries across diverse information sources, whether the data is 

stored natively as RDF or viewed as RDF via middleware. SPARQL contains 

capabilities for querying required and optional graph patterns along with their 

conjunctions and disjunctions. The results of SPARQL queries can be results sets or 

RDF graphs. 

8. Logical rules may be expressed in a number of different formats including the 

Semantic Web Rules Language (SWRL) [SWRL04]. 
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9. Several tools frameworks have been developed in Java to support the Semantic 

Web. The most popular in research communities are the Protégé Ontology Editor 

[Protege] and the Jena Semantic Framework [Jena]. 

10. To support the tools frameworks, there are a number of inferencing (or reasoning 

engines) in widespread use. The most popular ones being Pellet [Pellet], FaCT 

[FaCT] and Racer [Racer]. 

 

With the maturity of semantic web technologies, their use for annotating music 

through metadata is becoming widespread. Musicbrainz [Swartz02] provides an open 

source repository of  information about artists, albums and song titles using RDF. The 

openness of the RDF representation allows the metadata to be re-purposed so that other 

applications and websites can link to the Musicbrainz metadata to enhance their own 

information which could include where to purchase the albums. 

 

A more widespread approach to music metadata using ontologies has been 

described in [Raimond2006] and developed further in [Raimond2007a] and 

[Raimond2007b] as the Music Ontology. This addresses metadata which includes 

editorial, cultural and acoustic information. The ontology contains three levels of 

expressiveness which cater for the wide range of granularity required to document 

musical events. Level 1 deals with purely editorial material matters such as relating 

artists to albums and albums to tracks. Level 2 introduces the concept of an event 

which allows the workflow associated with a musical work such as its composition, 

arrangement, performance and recording to be documented. Finally, level 3 introduces 

event decomposition to allow finer granularity events and sub-events to be 

documented. These events could include characteristics of an audio signal (waveform, 

spectral etc), settings used throughout a recording session or harmonic events resulting 

from an analysis and encoding of the musical score. To support levels 2 and 3, specific 

Event [Raimond07d] and Timeline[Raimond07c] ontologies are defined together with 

the use of the Friend-of-a-friend (FOAF) ontology [FOAF05] to reuse its concepts of 

person and group. The representation of musical harmony presented in this chapter 

could be considered as part of level 3 in the music ontology.  
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6.3 The Representation of Time 

The need to represent time in a consistent way is a recurring problem in any 

application domain. The music ontology timeline adopts Allen’s [Allen83] approach 

and is a compromise that makes a formalism which reflects the way time is actually 

used in natural language. It assumes that events are expressed as time intervals of 

various sizes rather than explicit time points.  

 

Relation Symbol Inverse 

Symbol 

Endpoint 

Relationships 

Representation 

X before Y < > X+ < Y- XXXX YYYY 

X equal Y = = (X- = Y-) &  

(X+ = Y+) 

XXXX 

YYYY 

X meets Y m mi X+ = Y- XXXXYYYY 

X overlaps Y o oi (X- < Y-) &  

(X+ > Y-) &  

(X+ < Y+) 

XXXX 

   YYYY 

X during Y d di   XXXX 

YYYYYYYY 

X starts Y s si XXXX 

YYYYYYYY 

X finished Y f fi 

((X- > Y-) & 

 (X+ <= Y+)) | 

((X- >= Y-) & 

 (X+ < Y+)) 

XXXX 

YYYYYYYY 

Table 5: Base Temporal Relationships 

It also assumes that our perception of temporal knowledge is relative and 

identifies thirteen possible relationships; these are identified in tabular form. 

 

Relationships exist between two events X and Y. Each event has a start time and 

an end time denoted by – and +. In the table, an event X starts at time X- and ends at 

time X+. A relationship and its inverse are each assigned a symbol. An expression in 

terms of the event endpoints is provided together with a pictorial example. For 

example, in the case of the X before Y relationship where the start of event Y occurs 

after the end of event X, the inverse may be interpreted as Y follows X. The three 

during relationships during, starts and finishes can be collapsed into a single during 
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relationship. This can be represented by a single expression as illustrated in the table. 

However this does not preclude the three separate relationships being used for finer 

granularity qualification of event relationships. The inverse of the three during 

relationships provide three containment relationships which may be collapsed into a 

single contains relationship. 

6.4 The Representation of Musical Events 

The temporal relationships identified in the previous section can be used to 

formally express the relationships between harmonic objects in a musical piece.  

 

timeNoten

Timeline

Key1 Key2 Key3

Chord1 Chord2 Chord3 Chord1 Chord2 Chord3 Chord4 Chord1 Chord2

timeline:beginsAtInt timeline:endsAtInt

 

Figure 19: Objects of a Harmonic Ontology 

Each musical piece is represented as a Timeline with specified starting and 

ending times. It consists of an ordered set of Keys, Keyk where k = 1..K. The 

relationships between these Keys and the Piece are defined as: 

 

 Piece starts Key1     (5.2) 

 Piece finishes KeyK      (5.3) 

 Keyk during Piece (1 < k < K)   (5.4) 

 Keyk meets Keyk+1 (1 <= k < K)   (5.5) 
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These describe the temporal relationships between a Piece and its constituent 

Keys. The first Key starts at the same time as the Piece (5.2) with the final Key ending 

at the same time as the Piece (5.3). All other Keys are contained within the Piece (5.4). 

The final relationship (5.5) states that Key changes occur instantaneously at an explicit 

time point; the end of Keyk occurs at the start of Keyk+1. The start and end times for 

each Key are defined as events occurring within the Piece Timeline (startsAtInt and 

endsAtInt expressed as integer time points). 

 

A Key can contain an ordered set of Chords Chordc where c = 1..C; it is assumed 

that an instance of a Chord cannot be contained within more than one Key. If so, then a 

similar set of relationships (5.2 to 5.5) exist between a Key and its constituent Chords. 

 

 Key starts Chord1     (5.6) 

 Key finishes ChordC      (5.7) 

 Chordc during Key  (1 < c < C)  (5.8) 

 Chordc meets Chordc+1 (1 <= c < C)  (5.9) 

 

Notes do not have such strict containment relationships with their parent Chords 

and Pieces. We can assert that a Piece consists of an ordered set of Notes, Noten where 

n = 1..N. There are no starts or finishes relationship between a Note and a Piece since 

rests may occur at the start and end of a Piece. Similarly the relationships do not exist 

between a Note and its parent Chord since a Note may be sustained between multiple 

Chords. A single composite relationship between a Note and a Chord is expressed as: 

 

 (Noten equal Chordc)  |   

(Noten overlaps Chordc)  | 

(Noten during Chordc)      (5.10) 

 

Expression (5.10) states that a Note can exist for the same time as a parent Chord 

through the equal relationship, be shared with another Chord through the overlaps 

relationship or sound during a Chord through the during relationship. A similar set of 

relationships can be asserted between Notes to establish their temporal links. 

 

 (Notem equal Noten)  |   
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(Notem overlaps Noten)  | 

(Notem during Noten)      (5.11) 

6.5 Semantic Representation 

In the previous discussion, the objects having relationships can be thought of as 

resources, each having a unique identifier. This identifier is typically a URI or 

Universal Resource Identifier. A URI does not imply any access mechanism to the 

resource in a web context; it is simply an identifier for a resource. In the context of the 

Semantic Web, the URI is the identifier of a Web resource. 

 

Note105 Note101equal

............

63D103001025Note105

............

............

67F#13001025Note101

............

Midi 
Number

NameEndTimeStartTimeURI

a) Graph representation of a triple

b) A semantic net

Part_URI Key1during

Chord1

Chord2

Chord3

starts

during

finishes

Note1

Note2

Note3

during

during

overlaps

overlaps

meets

meets

 

Figure 20: Representation of a Semantic Net 

The building block of a semantic description is the relationship between two 

resources. This is illustrated in the Figure 20 (a). In this example, two Notes start and 

finish at the same times; therefore they are related by the temporal equal relationship. 

The Notes are each identified by a URI Note101 and Note105 which are represented as 

nodes on a graph. The equal relationship is the arc connecting the two nodes. This 

triple (x, P, y) can be thought of as a logical formula P(x,y) where the binary predicate 

P relates the resource x to the resource y. The graph illustrated is known as a Semantic 

Net and forms the basis of the Resource Description Framework; an XML vocabulary 

for describing Semantic Nets. 
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As stated previously, each resource is identified by a URI. In the model 

developed as part of this project, the URI corresponds to a unique key in the data model 

that describes the different harmonic objects that have been extracted from the MIDI 

stream. In the illustrated example, Note101 and Note105 are unique database keys into 

the URI column of a table of Notes. By selecting the rows corresponding to these URIs, 

further information about the Notes can be accessed such as its name, MIDI number, 

start and end times. 

 

Part b) of the figure illustrates how a more complex graph can be assembled that 

describes the relationships between a Part, and its constituent Keys, Chords and Notes. 

The graph can be interpreted as: 

 

A Part contains a single Key (Key1) that occurs within the start and end time 

of the Part. Key1 contains three Chords (Chord1, Chord2 and Chord3) with 

Chord1 starting at the same time as the Key, Chord 2 follows immediately then 

Chord3 which finishes at the end of the Key. Chord1 contains three Notes (Note1, 

Note2 and Note3). Note3 is sustained so that it also contributes to Chord2. No 

Notes are shown for Chord3. 

 

The representation of harmonic objects using RDF can permit queries of the 

graph to identify particular harmonic structures. For example, a Plagal cadence is a IV 

chord followed by a I (root) chord. This may be represented by a query of the form 

(Chord1 meets Chord2) where ((Chord1 type IV) and (Chord2 type I)) 

6.6 The Harmony Ontology 

The Harmony OWL ontology developed in this thesis uses simpler temporal 

relationships between Keys and Chords.  
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harmony:ChordType

String

String

harmony:intervalVector

harmony:name

harmony:pitchClassSet

harmony:quality

String

String

String

String

harmony:description

harmony:forteNumber

harmony:NoteType

int

String

harmony:pitchClass

harmony:natural

harmony:modifier
String “f”, “ff”, “n”, “s”, “ss”

“A”, ”B”, ”C”, ”D”, “E”, “F”, “G”

harmony:KeyType
String

harmony:keyMode
major, minor

harmony:NoteType
harmony:keyRoot

 

Figure 21: Harmony object types 

It has been developed using the Protégé ontology editor and consists of six 

classes separated into three type classes, NoteType, ChordType and KeyType and three 

objects Note, Chord and Key. The three type classes are shown in the figure above. 

 

The NoteType class has three data properties; pitchClass, natural and modifier. 

The pitchClass property contains the pitch class of the note which is an integer ranging 

from 0 to 11 with C = 0 and B = 11. Note that this does not take into account whether 

for example the B is harmonically a Cb or A##. The natural property is the name of the 

note as a String restricted to the values “A” to “G”. The third property is the note 

modifier which identifies whether the note is a flat, double flat, natural, sharp or double 

sharp. The ontology defines 35 individuals (or instances of) NoteTypes; one for each of 

the 7 naturals with 5 modifiers. For example, the C natural NoteType individual has its 

properties set to (0, “C”, “n”) and the G sharp individual has the properties (8, “G”, 

“s”). 

 

Chords have a more complex set of properties reflecting the Forte number, pitch 

class set and interval vector described in the previous chapter. To these are added the 

description, name and quality properties to further describe the chord. As with the 

NoteType, a set of ChordType individuals have been defined in the ontology. One 

ChordType individual has been defined for each of the 351 chord types identified by 
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Solomon. Each ChordType has been named using its pitch class set prefixed with C so 

that the ChordType for a major triad (pitch class set “0,4,7”) is named C047. Therefore 

this individual will have the properties forteNumber = “3-11B”, intervalVector = 

“001110”, name = “Triad”, pitchClassSet = “0,4,7”, quality = “Major” and description 

= “Major Chord”. Only a common subset of the chord types has been fully defined; 

chords such as C02348, an Augmented Pentacluster, have still to have their name and 

quality assigned. 

 

The KeyType has a simpler set of properties. The keyRoot property is a NoteType 

with the keyMode property set to either “major” or “minor”. The ontology does not 

include any individuals for KeyTypes. 
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Figure 22: Harmony Note, Chord and Key classes 

The Note, Chord and Key classes are subclassed from the Event class cited in 

section 6.2 allowing them to be tied to a Timeline. Each Event’s start and end times are 

defined by their timeline:beginsAtInt and timeline:endsAtInt properties. Also, each of 

the Note, Chord and Key classes have their own property type as described earlier. 

 

Notes have a midi property which specifies the note’s MIDI pitch and an octave 

property in addition to their type. This allows for example, a Note to be defined as A 

flat in the 5th octave. The Note class also includes a notePartOf property which links 
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the Note to a particular Chord. The complex temporal relationships between Notes are 

not reflected in this ontology though inferencing based on Allen’s approach is a subject 

for future research. 

 

Chords and Keys have simpler temporal relationships. The ontology assumes that 

key changes (or modulation)  in a way that one key follows another. This is reflected by 

the keyFollows property and its inverse keyPrecedes. Similarly, chord changes are 

reflected by the chordFollows and chordPrecedes properties. Keys and Chords are 

related through containment relationships. A Key will have a set of keyContains 

properties to define the set of Chords present in that Key. The inverse property 

chordPartOf links the Chord to its parent Key. Similar relations exist between Chords 

and Notes. The set of chordContains properties identify the constituent Notes in a 

Chord with the inverse notePartOf property of  Note identifying its parent Chord. 

6.7 Inferencing using the OWL Model 

Inferencing (or reasoning) means that we can derive additional facts from 

instance descriptions and an associated ontology. The Harmony ontology contains 

relationships that connect objects temporally or through containment. An example of 

the temporal relationship is the chordFollows relationship which links two chords. The 

relationship is expressed as: 

 

Chord2 chordFollows Chord1 

 

There is an inverse relationship within the model called chordPrecedes. 

Therefore the inverse relationship is expressed as: 

 

Chord1 chordPrecedes Chord2 

 

In OWL, the two relationships are connected using the owl:inverseOf construct as 

shown in the following snippet of the ontology file. 
 

owl:ObjectProperty rdf:about="urn:x-phd:harmony/ChordPrecedes"> 
    <owl:inverseOf> 
      <owl:ObjectProperty rdf:about="urn:x-phd:harmony/ChordFollows"/> 
    </owl:inverseOf> 
    <rdfs:domain rdf:resource="urn:x-phd:harmony/Chord"/> 
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    <rdfs:range rdf:resource="urn:x-phd:harmony/Chord"/> 
</owl:ObjectProperty> 
 
<owl:ObjectProperty rdf:about="urn:x-phd:harmony/ChordFollows"> 
    <owl:inverseOf rdf:resource="urn:x-phd:harmony/ChordPrecedes"/> 
    <rdfs:domain rdf:resource="urn:x-phd:harmony/Chord"/> 
    <rdfs:range rdf:resource="urn:x-phd:harmony/Chord"/> 
</owl:ObjectProperty> 

 

This means that an application only needs to assert one of the relationships by 

adding it to the model. The inverse relationship is inferred from the ontology and 

returned in response to a query against the model. 

 

Inferencing using the harmonic model can be illustrated using the following code 

sample. In this sample, the harmony ontology is used to generate a Jena schema model 

(1) in addition to the model to be used for the instance data (2). An OWL reasoner is 

created (3) which is specialised to the schema and applied to the data model to obtain 

an inference model (4).  A URI generator is created and some URIs to identify the key 

and three chords are produced (5). 

 

In the inference model we create three chords and one key as resources (6) 

together with two properties to represent the chordFollows and keyContains 

relationships (7). The example then asserts that chord c1 follows chord c0 (8), chord c2 

follows chord c1 (9) and key k0 contains chord c0, c1 and c2 (10). The resources 

representing chord c1 and key k0 are then retrieved from the model (11) and printed 

using the printStatements() method (12). Finally, the model is serialized and output as 

an RDF file (13). 

 
public class ITest3 { 
    private final static String rdfDir =  
        "C:\\EclipseWorkspace\\RealTimeMusicAnalyser\\RDF\\"; 
    private final static String ontFName =  
        "C:\\EclipseWorkspace\\RealTimeMusicAnalyser\\Harmony.owl"; 
    private final static String rdfName = rdfDir + "itest3.rdf"; 
 
    public static void main(String[] args) { 
        // Create the Jena schema model          (1) 
        Model schema = FileManager.get().loadModel(ontFName); 
 
        // Create the Jena model for the data         (2) 
        Model data = ModelFactory.createOntologyModel(); 
 
        // Create the OWL reasoner specialised to the schema (3) 
        Reasoner reasoner = ReasonerRegistry.getOWLReasoner(); 
        reasoner = reasoner.bindSchema(schema); 
      
        // Create the inference model applying the reasoner to the  
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        // data         (4) 
        InfModel infModel = ModelFactory.createInfModel(reasoner,  
                                                        data); 
   
        // Create the URI Generator and some URIs        (5) 
        new URIGenerator("jenatest"); 
        String c0Str = URIGenerator.getChordURI().toString(); 
        String c1Str = URIGenerator.getChordURI().toString(); 
        String c2Str = URIGenerator.getChordURI().toString(); 
        String k0Str = URIGenerator.getKeyURI().toString(); 
 
        try { 
            // Create some chords and the key    (6) 
           Resource c0 = infModel.createResource(c0Str,  
                                                  HARMONY.Chord); 
       Resource c1 = infModel.createResource(c1Str,  
                                                  HARMONY.Chord); 
         Resource c2 = infModel.createResource(c2Str,  
                                                  HARMONY.Chord); 
       Resource k0 = infModel.createResource(k0Str, HARMONY.Key); 
    
       // Create relationship properties    (7) 
       Property cFollows =  
              nfModel.createProperty(HARMONY.ChordFollows.toString()); 
       Property kContains =  
              nfModel.createProperty(HARMONY.KeyContains.toString()); 
    
       // c1 follows c0 .....       (8) 
       c1.addProperty(cFollows, c0); 
    
       // c2 follows c1 .....      (9) 
        c2.addProperty(cFollows, c1); 
    
       // k0 contains c0, c1, c2     (10) 
       k0.addProperty(kContains, c0); 
       k0.addProperty(kContains, c1); 
       k0.addProperty(kContains, c2); 
    
       // Now query the inference model ...... 
       // Get Resource for c2 and k0.....    (11) 
       Resource rC1 = infModel.getResource(c1Str); 
       Resource rK0 = infModel.getResource(k0Str); 
    
       // Print statements for c1 and k0    (12) 
       System.out.println("Chord " + c1Str + ":"); 
       printStatements(infModel, rC1, null, null); 
       System.out.println("\nKey " + k0Str + ":"); 
       printStatements(infModel, rK0, null, null); 
 
       // Output the model as RDF     (13) 
       FileOutputStream fos = new FileOutputStream(rdfName); 
       data.write(fos); 
       fos.close(); 
        } catch (FileNotFoundException e) { 
       e.printStackTrace(); 
        } catch (IOException e) { 
       e.printStackTrace(); 
    } 
} 
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The following example shows the RDF serialization of the model written from 

line (13). It correctly shows the three chords and one key with the ChordFollows 

relationships expressed for chords 1 and 2 in addition to the KeyContains relationship 

for the key and the contained chords. Note that the model serialization does not show 

the inverse relationships ChordPrecedes and ChordDuring. 

 
<rdf:RDF 
    xmlns:owl="http://www.w3.org/2002/07/owl#" 
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
    xmlns:j.0="urn:x-phd:harmony/" 
    xmlns:daml="http://www.daml.org/2001/03/daml+oil#" 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" >  
    <rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Chord/0"> 
        <rdf:type rdf:resource="urn:x-phd:harmony/Chord"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Chord/1"> 
        <j.0:ChordFollows rdf:resource="urn:x-
phd:harmony/jenatest/Chord/0"/> 
        <rdf:type rdf:resource="urn:x-phd:harmony/Chord"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Chord/2"> 
        <j.0:ChordFollows rdf:resource="urn:x-
phd:harmony/jenatest/Chord/1"/> 
        <rdf:type rdf:resource="urn:x-phd:harmony/Chord"/> 
    </rdf:Description> 
    <rdf:Description rdf:about="urn:x-phd:harmony/jenatest/Key/0"> 
        <j.0:KeyContains rdf:resource="urn:x-
phd:harmony/jenatest/Chord/2"/> 
        <j.0:KeyContains rdf:resource="urn:x-
phd:harmony/jenatest/Chord/1"/> 
        <j.0:KeyContains rdf:resource="urn:x-
phd:harmony/jenatest/Chord/0"/> 
        <rdf:type rdf:resource="urn:x-phd:harmony/Key"/> 
    </rdf:Description> 
</rdf:RDF> 

 

If we now look at the output for chord 1 and key 0 generated by the 

printStatements() method at (12) we can now see additional inferred relationships for 

chord 1; that it precedes chord 2 and is during key 0. 

 
Chord urn:x-phd:harmony/jenatest/Chord/1: 
 - (urn:x-phd:harmony/jenatest/Chord/1 urn:x-phd:harmony/ChordFollows 
urn:x-phd:harmony/jenatest/Chord/0) 
 - (urn:x-phd:harmony/jenatest/Chord/1 rdf:type urn:x-
phd:harmony/Chord) 
 - (urn:x-phd:harmony/jenatest/Chord/1 rdf:type owl:Thing) 
 - (urn:x-phd:harmony/jenatest/Chord/1 urn:x-phd:harmony/ChordPrecedes 
urn:x-phd:harmony/jenatest/Chord/2) 
 - (urn:x-phd:harmony/jenatest/Chord/1 rdf:type rdfs:Resource) 
 - (urn:x-phd:harmony/jenatest/Chord/1 urn:x-phd:harmony/ChordDuring 
urn:x-phd:harmony/jenatest/Key/0) 
 - (urn:x-phd:harmony/jenatest/Chord/1 owl:sameAs urn:x-
phd:harmony/jenatest/Chord/1) 
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Key urn:x-phd:harmony/jenatest/Key/0: 
 - (urn:x-phd:harmony/jenatest/Key/0 urn:x-phd:harmony/KeyContains 
urn:x-phd:harmony/jenatest/Chord/2) 
 - (urn:x-phd:harmony/jenatest/Key/0 urn:x-phd:harmony/KeyContains 
urn:x-phd:harmony/jenatest/Chord/1) 
 - (urn:x-phd:harmony/jenatest/Key/0 urn:x-phd:harmony/KeyContains 
urn:x-phd:harmony/jenatest/Chord/0) 
 - (urn:x-phd:harmony/jenatest/Key/0 rdf:type urn:x-phd:harmony/Key) 
 - (urn:x-phd:harmony/jenatest/Key/0 rdf:type rdfs:Resource) 
 - (urn:x-phd:harmony/jenatest/Key/0 rdf:type owl:Thing) 
 - (urn:x-phd:harmony/jenatest/Key/0 owl:sameAs urn:x-
phd:harmony/jenatest/Key/0) 

 

Therefore with a sufficiently rich description such as the Harmony ontology it is 

unnecessary to assert all facts about a music sample’s structure. Additional facts can be 

asserted from the model structure which may also be extended by use of other rules 

engines. This is currently outside the scope of this thesis. 

6.8 Creating the Harmony Model 

The SemanticCapture application structure follows the structure described earlier 

in the thesis for subscribing applications. This is illustrated in Figure 23. 
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Figure 23: Semantic model capture 

The set of harmonyTopics subscribed to by the application correspond to a topic 

for each of the significant events published by the key and chord extraction application 

described in the previous chapter. In addition, the application subscribes to the 
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filenameTopic that identifies the testcase (or other filename) so that the model can be 

linked to the file or musical piece that created it. The psFinished event is used for 

synchronisation. The set of Harmony topics is shown in the following Java code 

segment. 

 
// Harmony Ontology 
String timelineStartTopic = "Harmony/Ontology/TimelineStart"; 
String timelineEndTopic  = "Harmony/Ontology/TimelineEnd"; 
String noteStartTopic  = "Harmony/Ontology/NoteStart"; 
String noteEndTopic  = "Harmony/Ontology/NoteEnd"; 
String chordStartTopic  = "Harmony/Ontology/ChordStart"; 
String chordEndTopic  = "Harmony/Ontology/ChordEnd"; 
String chordContainsTopic = "Harmony/Ontology/ChordContains"; 
String keyStartTopic  = "Harmony/Ontology/KeyStart"; 
String keyEndTopic  = "Harmony/Ontology/KeyEnd"; 
String[] harmonyTopics = { 

EventConstants.timelineStartTopic,  
EventConstants.timelineEndTopic, 
EventConstants.noteStartTopic,  
EventConstants.noteEndTopic, 
EventConstants.chordStartTopic,  
EventConstants.chordEndTopic, 
EventConstants.keyStartTopic,  
EventConstants.keyEndTopic, 
EventConstants.filenameTopic,  
EventConstants.closingTopic, 
EventConstants.chordContainsTopic, 
EventConstants.psFinishedTopic}; 
 

The Harmony ontology was created using the Protege ontology editor. The editor 

can export a vocabulary definition for the ontology which complies with the Jena 

ontology and model interfaces. This allows a Jena model to be constructed for each 

testcase which is then serialised as an OWL file. Jena models can be persisted to a 

relational database using the semantic database (SDB) component of Jena or serialised 

from the model as an OWL file.  

 

The serialised model is verbose, so for brevity, the three main entities Key, Chord 

and Note descriptions are illustrated in the following OWL segments: 

 
<rdf:Description rdf:about="harmony:mozartbhqrtetsk08003mKey562"> 
    <timeline:endsAtInt  
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        43015 
    </timeline:endsAtInt> 
    <harmony:keyMode>major</harmony:keyMode> 
    <harmony:keyRoot rdf:resource="harmony:Gn"/> 
    <timeline:beginsAtInt  
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        0 
    </timeline:beginsAtInt> 
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    <timeline:onTimeLine> 
        mozartbhqrtetsk08003mTimeline143 
    </timeline:onTimeLine> 
    <rdf:type rdf:resource="harmony:Key"/> 
</rdf:Description> 

 

<rdf:Description rdf:about="harmony:mozartbhqrtetsk08003mChord42700"> 
    <timeline:endsAtInt  
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        43015 
    </timeline:endsAtInt> 
    <harmony:chordContains> 
        harmony:mozartbhqrtetsk08003mNote134681 
    </harmony:chordContains> 
    <harmony:chordPartOf> 
        harmony:mozartbhqrtetsk08003mKey562 
    </harmony:chordPartOf> 
    <harmony:chordType rdf:resource="harmony:C0"/> 
    <harmony:chordRoot rdf:resource="harmony:Dn"/> 
    <timeline:beginsAtInt   
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        42840 
    </timeline:beginsAtInt> 
    <timeline:onTimeLine> 
        mozartbhqrtetsk08003mTimeline143 
    </timeline:onTimeLine> 
    <rdf:type rdf:resource="harmony:Chord"/> 
</rdf:Description> 

 

<rdf:Description rdf:about="harmony:mozartbhqrtetsk08003mNote134790"> 

    <timeline:endsAtInt  
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        51664 
    </timeline:endsAtInt> 
    <harmony:midi rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        24 
    </harmony:midi> 
    <harmony:octave   
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        2 
    </harmony:octave> 
    <timeline:beginsAtInt  
     rdf:datatype="http://www.w3.org/2001/XMLSchema#int"> 
        51333 
    </timeline:beginsAtInt>     
    <timeline:onTimeLine> 
        mozartbhqrtetsk08003mTimeline143 
    </timeline:onTimeLine> 
    <harmony:noteType rdf:resource="harmony:Cn"/> 
    <rdf:type rdf:resource="harmony:Note"/> 
</rdf:Description> 

 

6.9 The Triple Database 

An alternative approach is to use a triple database schema implemented within a 

Derby relational database to persist the model as a set of triples; the triple database. 
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This approach was to take advantage of existing tools for the visual querying of triples. 

This will be described further in the next chapter. 

 

Each of the published harmony events have two insert methods each with 

different signatures. The first adds the event to the Jena model whilst the second adds 

the event as a set of triples to the triple database. Taking the NoteStartEvent as an 

example,  the event is added to the Jena model using the following method. 

 
public void insert(Model model) { 

Literal l; 
 
 // Create the Note 
 model.createResource(noteURIStr, HARMONY.Note); 
 model.createResource(noteURIStr).addProperty(HARMONY.noteType,              
          NoteTable.getIndividual(noteName)); 
 model.createResource(noteURIStr).addProperty(TIMELINE.onTimeLine 

    , timelineURIStr); 
 l = model.createTypedLiteral(new Integer((int) startTime)); 
 model.createResource(noteURIStr).addProperty(TIMELINE.beginsAtIn 
                                                   t, l); 
 l = model.createTypedLiteral(new Integer(octave)); 
 model.createResource(noteURIStr).addProperty(HARMONY.octave, l); 
} 

 
 

In this code, the static variables indicated by HARMONY and TIMELINE are 

created by the vocabulary exported from Protege. The Note is first created with the URI 

contained within the NoteStartEvent. The NoteType individual is looked up in a table 

given the event noteName and added as a Note property. The Timeline is linked via its 

URI and the Note start time is added using the beginsAtInt property. Finally the octave 

property is added. The beginsAtInt and octave properties are encoded as typed literals 

via the Jena model API. 

 

In contrast, the following Java method is used to insert the event into the triple 

database. 

 
public void insert(Connection conn, String tcName) { 

insertTriple(conn, reducedStr(noteURIStr), "Note", -1, -1, null,  
         noteName, "string", -1, -1, null, "noteType",  
    tcName); 
 insertTriple(conn, reducedStr(noteURIStr), "Note", -1, -1, null,  
    Integer.toString(octave), "int", -1, -1, null,  
    "octave", tcName); 
 insertTriple(conn, reducedStr(noteURIStr), "Note", -1, -1, null,  

Integer.toString((int)startTime), "int", -1, -1   
null, "timeline:beginsAtInt", tcName);   

} 
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The insertTriple method assembles a java.sql.PreparedStatement from the 

method arguments and executes it to insert the triple as a row into the database. The 

tcName argument is the testcase name which corresponds to the Jena model. Storing 

this name in each row of the triple database allows the serialised OWL file to be linked 

to the triples for subsequent display as part of any subsequent query and retrieval. The 

relational data model for the triple database is shown in Appendix D and discussed in 

more detail in the next chapter. 

6.10 Summary 

In this chapter I have reviewed current semantic web languages and technologies 

and their use in documenting metadata for music. I have discussed how time can be 

represented and illustrated this in the context of temporally related objects in music; in 

particular Notes, Chords and Keys. I have illustrated how OWL descriptions and 

associated inferencing can derive facts not asserted by applications. Finally I have 

defined an ontology for describing harmonic structure and shown how this ontology (or 

model) can be assembled as OWL files and triples in a triple database using the events 

generated by the applications described in earlier chapters. 
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Chapter 7 Query by Patterns 

7.1 Introduction 

The previous chapter described how musical objects, in particular keys, chords 

and notes, could be represented as a triple in the form of a subject, object and predicate. 

This representation could be serialised in the form of an OWL description or 

alternatively as rows within a relational database table. This chapter discusses how 

these representations may be queried by taking into account the inherent patterns that 

exist within harmonic structures. It describes how these patterns may be visualised and 

transformed into SQL and SPARQL queries appropriate to different database 

technologies. 

7.2 Patterns as knowledge 

In chapter 2 I described the Data, Information, Knowledge and Wisdom (DIKW) 

hierarchy and how it has motivated this research. In that chapter, I cited the work of 

Bellinger et al [Bellinger07] who suggest that understanding is not a separate layer in 

the hierarchy as proposed by Ackoff but is the process of transformation between layers 

of the DIKW hierarchy. They suggest that transforming data to information involves an 

understanding of the relationships that exist in the data. Similarly, knowledge is an 

understanding of the patterns that exist in information and wisdom is an understanding 

of the principles that exist in knowledge. It is this hypothesis that patterns that exist in 

information guide our knowledge that has motivated the database search and retrieval 

approach described here. 
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Figure 24: Patterns within the Harmony ontology 

The subject, object, and predicate of a triple is an inherent pattern with the 

predicate defining the relationship or association between a subject and an object. This 

can be thought of as two nodes of a directed graph; one representing the subject and 

one the object. The edge connecting the two nodes represents the predicate. In the 

Harmony ontology, two generic forms of pattern between entities can be identified; 

temporal and containment. Temporal relationships exist between entities of the same 

type and are identified by the precedes and follows predicates whose names are 

augmented depending on whether the relationship is between keys or chords. Therefore 

the keyPrecedes and its inverse keyFollows define temporal relationships between Keys 

and chordPrecedes and its inverse chordFollows define the relationships between 

Chords. It is assumed that only a single Key or Chord is present at a given point in time 

therefore a 1:1 relationship exits between the two entities. A similar pair of 

relationships have not been defined for Notes since the temporal relationships between 

notes are more complex. Clarification of these inter-note relationships remains a future 

research task. 

 

Containment relationships exist between entities of different types. Chords sound 

within the context of a Key and individual Notes make up sounding Chords. These are 

defined by the partOf and contains relationships. Therefore the Chords that sound in a 

particular Key are identified by the “Key contains Chord” relationship and its inverse, 



 103

the “Chord partOf Key” relationship. Once again, these generic relationships are 

augmented with Chord, Key and Note to give the chordPartOf and notePartOf 

relationships together with their inverse keyContains and chordContains. These 

relationships are illustrated as (a) to (d) in Figure 24. 

 

Extending this concept further means that we can represent more complex 

structures within music as directed graphs with the nodes representing entities (Key, 

Chord and Note) and the graph edges as relationships between them. If we can 

represent these strucures by means of a graph, then by extension the graph itself can 

become the representation of a query against a database containing the harmonic 

structure of testcases represented using the same set of entities and their relationships. 

This is illustrated in (e) to (i) in Figure 24. Note that for ease of notation, some 

properties (for example chord and key root, key mode and chord name) are shown as 

annotations of a graph node. In the harmony ontology, these are also triples with 

predicates such as chordRoot, chordName and keyMode etc. 

 

The first four examples can be interpreted as follows: 

(e) A query for all C major keys returning the URI of all C major keys in the database 

(f) A query for all major triads (C047) in the key of C major returning the URIs of all 

major triads together with the URIs of the C major keys they are contained within. 

(g) A query for all major triads in the key of C major with a root of C natural returning 

the URIs of all major keys in C major with a root of C natural. The URI of the C 

major key containing the triads would also be returned. 

(h) A query for all major triads with a root of C natural followed by a perfect fifth in the 

key of C major. The perfect fifth must contain a G natural. This would return the 

URIs of the major triad and its following perfect fifth. The URI of the C major key 

containing the triad and perfect fifth would also be returned. 

 

The fifth example (i) introduces an additional node to represent MIDI files. This 

may be interpreted as the same query as example (g) but in addition, identify all MIDI 

files where this pattern is present. Alternative nodes can be introduced for other media 

sources such as the OWL file containing the harmonic description where the pattern is 

present. 
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Figure 25: Mock-up of a Visual Query Builder 

Figure 25 shows a mock-up of a browser based visual query builder being 

developed using Web 2.0 techniques that allows a user to draw and annotate a query in 

the form of a directed graph. The query is then submitted to a triple database or 

semantic model of the kind described in the previous chapter. 

7.3 Encoding the Pattern 

The Graph Exchange Language [GXL02] is an XML vocabulary designed to be a 

standard exchange format for graphs. Structurally, GXL represents a typed, attributed 

directed graph which can be used to represent schemas in addition to instances of 

graphs. Its flexibility means that it has wide use in applications that need to exchange 

data in the form of graphs; particularly between software engineering tools. 

 

The graphs illustrated in Figure 24 (e) to (h) can be represented in GXL with 

three node types of Key, Chord and Note. Each node type has its own specific set of 

attributes including a position attribute that denotes its location corrdinates on the 

drawing canvas. In the initial version of the query builder, the Key node type has 

attributes for the key root and mode. The Chord and Note nodes types each have a 

single attribute called name. Graph edges have a type sub-element which documents 

the relationship between the edge “from” and “to” nodes. Note that a full 
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implementation of the query builder should include all entity properties from the 

Harmony ontology. These would include entity start and end times which would allow 

a rich querying environment to navigate the database of harmonic structures. The GXL 

for the five examples in Figure 24 are shown in Appendix B. Given that GXL is a 

vocabulary of XML, alternative representations (in particular SQL and SPARQL) can 

be generated from GXL using appropriate XSL [XSL08] transformations. 

7.4 The Query as SQL 

The Structured Query Language (SQL) is the language designed for the retrieval 

and management of data in relational database systems. Using SQL, the subject, object 

and predicate of a triple can be represented as columns in a database table called 

TRIPLES. The schema for this table is: 

 
CREATE TABLE TRIPLES ( 

TRANS INTEGER, 
 HEAD VARCHAR(100), 
 HEAD_TYPE VARCHAR (40), 
 BODY VARCHAR (100), 
 BODY_TYPE VARCHAR (40), 
 SOURCE_DOC INTEGER, 
 TIMESTAMP TIMESTAMP, 
 ASSOCIATION VARCHAR (200) 
); 

 

With HEAD containing the subject URL, HEAD_TYPE its type, BODY 

containing the object, BODY_TYPE its type and ASSOCIATION the predicate. A 

transaction id is also stored together with a timestamp and a link to a source document 

which identifies where the triple originated. This could also be the testcase that 

generated the triple. 

 

For Note and Chord entities, a single row in the table can can be used to identify 

their types. Therefore the SQL: 

 
SELECT * FROM TRIPLES  

WHERE ASSOCIATION = ‘noteType’ 

AND BODY = ‘Cn’; 

 

would identify all C natural notes. The HEAD column contains the URL of such notes. 

The SQL: 
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SELECT * FROM TRIPLES 

 WHERE ASSOCIATION = ‘chordName’ 

 AND BODY = ‘C047’; 

 

would identify all major triads. Keys however, cannot be uniquely identified from a 

single row since they are identified by the combination of their root and mode. 

Therefore an SQL view is created. In SQL, a view consists of a stored query accessible 

as a virtual table created whenever a select from that table is processed. The Key view 

is created: 

 
CREATE VIEW KEY_VIEW (K_URL, K_ROOT, K_MODE) AS 

SELECT T1.HEAD AS K_URL, T1.BODY AS K_ROOT, 
       T2.BODY AS K_MODE 
FROM 
 TRIPLES T1, 
 TRIPLES T2 
WHERE T1.ASSOCIATION = 'keyRoot' 
AND T2.ASSOCIATION = 'keyMode' 
AND T1.HEAD = T2.HEAD; 
 

Queries can now select from the created view which conceptually joins two instances 

of the TRIPLES based on the HEAD (Key URL) being the same for both root and 

mode associations. The following query can then be performed: 

 
SELECT * FROM KEY_VIEW 

 WHERE K_ROOT = ‘Cn’ 

 AND K_MODE = ‘major’; 

 

This would identify all keys in C major. 

 

Views can also be used to model the subject, object, predicate triple in SQL 

where the subject and object are both entities; in particular the forward and backward 

associations between entities illustrated in Figure 24 (a) to (d). By modeling these 

relationships as views, we can combine the views in order to search for the more 

complex patterns illustrated in Figure 24 (e) to (i). In this case, the views model the 

edges of the graph between two nodes. A set of these views are joined in order to query 

the complete graph. 

 



 107

Consider the temporal relationships between two keys. In the forward direction 

key K1 precedes key K2 and for the inverse K2 follows K1 (assuming the start of K2 

occurs after the end of K1). These relationships can be modeled by the two VIEWS 

K2K_FORWARD_VIEW and K2K_BACKWARD_VIEW.  
 

-- K2 follows K1 
CREATE VIEW K2K_FORWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,  

                         K2_ROOT, K2_MODE) AS 
SELECT K1.K_URL AS K1_URL, K1.K_ROOT AS K1_ROOT,  
       K1.K_MODE AS K1_MODE, 
       K2.K_URL AS K2_URL, K2.K_ROOT AS K2_ROOT,  
       K2.K_MODE AS K2_MODE 
FROM 
       TRIPLES T1, 
       KEY_VIEW K1, 
  KEY_VIEW K2 
WHERE T1.ASSOCIATION = 'keyPrecedes' 
  AND T1.HEAD = K1.K_URL 
  AND T1.BODY = K2.K_URL; 
 

-- K2 precedes K1 
CREATE VIEW K2K_BACKWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,  

                          K2_ROOT, K2_MODE) AS 
SELECT K1.K_URL AS K1_URL, K1.K_ROOT AS K1_ROOT,  
       K1.K_MODE AS K1_MODE, 
       K2.K_URL AS K2_URL, K2.K_ROOT AS K2_ROOT,  
       K2.K_MODE AS K2_MODE 
FROM 
       TRIPLES T1, 
       KEY_VIEW K1, 
       KEY_VIEW K2 
WHERE T1.ASSOCIATION = 'keyFollows' 
AND T1.HEAD = K1.K_URL 
AND T1.BODY = K2.K_URL; 
 

Both views provide a virtual table with the URL, root and mode of both Key 

entities. Similar views can be generated for other pairings of entities such as Chords 

and Notes using CHORD_VIEW which provides a simpler view of a Chord,. 

 
-- Chord to Note 
CREATE VIEW C2N_VIEW (C_URL, C_NAME, C_ROOT, N_URL, N_TYPE) AS 

SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME,  
       C1.C_ROOT AS C_ROOT, 
       T2.HEAD AS N_URL, T2.BODY AS N_TYPE 
FROM 
  TRIPLES T1, 
  TRIPLES T2, 
  CHORD_VIEW C1 
WHERE T1.ASSOCIATION = 'chordContains' 
AND T1.HEAD = C1.C_URL 
AND T2.ASSOCIATION = 'noteType' 
AND T2.HEAD = T1.BODY; 
 

-- Note to Chord 
CREATE VIEW N2C_VIEW (N_URL, N_TYPE, C_URL, C_NAME, C_ROOT) AS 
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SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME,  
       C1.C_ROOT AS C_ROOT, 
       T2.HEAD AS N_URL, T2.BODY AS N_TYPE 
FROM 
  TRIPLES T1, 
  TRIPLES T2, 
  CHORD_VIEW C1 
WHERE T1.ASSOCIATION = 'notePartOf' 
AND T1.BODY = C1.C_URL 
AND T2.ASSOCIATION = 'noteType' 
AND T2.HEAD = T1.HEAD; 
 

A complete set of views is provided in the Harmony relational model in 

Appendix D. The efficient use of SQL views depends upon the sophistication of the 

SQL parser optimiser provided with the database software. Logically, the KEY_VIEW 

is performing a Cartesian product of joins between two instances of the TRIPLES table. 

In cases where the number of rows in the table is large, this can take a very long time. 

Optimisers implement algorithms that operate on table indexes which radically improve 

performance but their efficiency (such as the number of joins they can support) varies 

between different database implementations. Apache Derby as an open source 

relational database implementation does not have as efficient optimisation as for 

example, a commercial relational database such as IBM’s DB2. Therefore there may 

need to be an alternative approach to overcome inefficient optimisations of SQL views 

and joins. 

 

One approach is the use of temporary tables instead of views. Creating a 

temporary table for each edge in the graph may rely on some of the simpler views but it 

obviates the need for complex joins and the associated reduction in query performance. 

This approach is illustrated in the early example of GXL to SQL transformation shown 

in Appendix C. 

7.5 The Query as SPARQL 

SPARQL is emerging as the equivalent to SQL for semantic databases where the 

data is expressed as RDF graphs whose schema is defined by an OWL ontology. It 

queries the data within the semantic model but does not in itself perform any 

inferencing or trigger any rules associated with the model. Rule interpretation and 

inferencing are roles of the underlying database or triple store which are reflected in the 

result set returned from the query. 
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The previous section discussed the querying of a triple database where the 

harmonic model is stored as a set of triples within a relational database. A visual 

paradigm for describing the query was presented in which the query graph was 

represented by a model serialised as GXL. The representation was transformed to SQL 

in order to query the triple datastore using an XSL transformation. In addition to the 

triple datastore, figure 23 in chapter 6 also shows the harmonic structure optionally 

being captured as a semantic model using the Jena semantic framework. Once in this 

model form, the structure can be queried using SPARQL generated by an alternative 

XSL transform which converts the GXL representation to SPARQL. 
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harmony:Cn

“major”

harmony:keyRoot

harmony:keyMode

(e)

harmony:Key

harmony:Cn

“major”

harmony:keyRoot
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harmony:chordName
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(f)harmony:Key
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Figure 26: Examples from Figure 24 as complete graphs 

If the examples (e) to (h) in Figure 24 are fully expanded as RDF graphs, their 

structures can be used to generate equivalent query patterns in SPARQL. These 

expanded graphs are shown in Figure 25. Note that in this expansion, Note and Chords 

are typed as objects such as harmony:Cn and harmony:C047 which reflects the Protege 

defined individuals in the Harmony ontology. There exists in the ontology an individual 

for each Note type (NoteType) and Chord type (ChordType). A NoteType defines the 

Note’s natural (A..G), its modifier (n, s, f, ss, ff), pitchClass and tonalPitchClass; there 

are 35 NoteType Individuals. The 352 ChordType individuals include information such 

as the forteNumber, pitchClassSet and IntervalVector together with a name and 

description. These type properties have not been used in the example  queries shown in 
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this section but could be used in a richer retrieval application which traverses the stored 

harmonic structure. 

 

The SPARQL for example (e) retrieves the URLs for instances of the Key of C 

major: 

 
PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#> 
SELECT ?kurl 
WHERE { 

?kurl harmony:keyRoot harmony:Cn. 
?kurl harmony:keyMode "major". 

} 
 

The SPARQL for example (f) retrieves the URLs for the Keys of C major and the 

URLs of Chords that are part of the Key and a major triad (type C047): 

 
PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#> 
SELECT ?kurl ?curl 
WHERE { 

?kurl harmony:keyRoot harmony:Cn. 
?kurl harmony:keyMode "major". 
?curl harmony:chordPartOf ?kurl. 
?curl harmony:chordType harmony:C047. 

} 
 

The SPARQL for example (g) is similar to that for example (f), but the Chord 

also has a root of C natural: 

 
PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#> 
SELECT ?kurl ?curl 
WHERE { 

?kurl harmony:keyRoot harmony:Cn. 
?kurl harmony:keyMode "major". 
?curl harmony:chordPartOf ?kurl. 
?curl harmony:chordType harmony:C047. 
?curl harmony:chordRoot harmony:Cn. 

} 
 

Finally, the SPARQL for example (h) retrieves the URLs for the Key, the two 

Chords and the Note contained within the second Chord: 
 
PREFIX harmony: <http://localhost:8080/ontology/Harmony/Harmony.owl#> 
SELECT ?kurl ?c1url ?c2url ?nurl 
WHERE { 

?kurl harmony:keyRoot harmony:Cn. 
?kurl harmony:keyMode "major". 
?c1url harmony:chordPartOf ?kurl. 
?c1url harmony:chordType harmony:C047. 
?c1url harmony:chordRoot harmony:Cn. 
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?c1url harmony:chordPrecedes ?c2url. 
?c2url harmony:chordPartOf ?kurl. 
?c2url harmony:chordType harmony:C07. 
?c2url harmony:chordContains ?nurl. 
?nurl harmony:noteType harmony:Cn. 

} 

7.6 Summary 

In this chapter I have discussed the retrieval of harmonic patterns from a stored 

representation of the music harmonic structure in line with the work of Bellinger et al 

who view knowledge as patterns of information. I have identified directed graphs as a 

structural model for querying patterns held within either a relational or semantic 

database. A visual query interface may be constructed which uses a graphical 

representation of the query to access either types of database using SQL or SPARQL. 

The query is generated from a serialisation in GXL of the directed graph using 

appropriate XSL transformations. 
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Chapter 8 Conclusions  

This thesis has investigated the use of publish/subscribe messaging and how it 

can provide an interconnection framework for distributed, independent applications that 

collaborate to create a description of musical harmonic structure. Such a framework 

may take a data stream of MIDI commands and generate information by the naming of 

notes and the extraction of key and chord structure. By use of semantic web techniques, 

this information may be stored within databases and retrieved using pattern based 

mechanisms which may be mapped into the query syntax appropriate for the database. 

These processes mirror the Data, Information, Knowledge and Wisdom (DIKW) 

hierarchy proposed by Ackoff and elaborated by Bellinger and others. 

 

It has demonstrated how this framework can operate by presenting a novel event 

based implementation of Chew’s spiral array note naming algorithm. The results of this 

implementation have been favourably compared with other published implementations. 

A key and chord extraction application has been described which uses metrical analysis 

to provide sampling points within the musical stream where segments for key finding 

can be identified and notes can be grouped into chords using a technique based on 

Forte’s pitch class set theory. 

 

An ontology for musical harmonic structure has been defined which uses the 

standardised Web Ontology Language OWL. In this ontology, musical note, chord and 

key objects together with their relationships are described. Instances of the ontology 

have been created from messaging events generated by the note naming and extraction 

applications and stored in either a semantic or relational database using appropriate 

schemas. 
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Finally, a user model of database interaction based on visual graph patterns has 

been presented. Given the graph serialisation, queries in SQL and SPARQL may be 

generated to access the harmonic structure model stored in different database 

technologies. 

8.1 Discussion 

The publish/subscribe messaging model allows applications to be distributed 

between processors within a network. This provides benefits in that analysis and other 

applications are not as resource constrained as if they were all running within a single 

processor. The downside is that the applications are distributed with inherent network 

latency (or delay) as events are distributed between publishers, the broker and 

subscribers. Latency within a network may be thought of as having two parts: 

propagation and application latency. Propagation latency is the latency in moving 

network packets from one node to another and is a function of the capacity of the 

network link. Application latency is the latency induced by general network traffic and 

is subject to the type of applications connected to the network and the quantity of traffic 

they generate; this is more random. MIDI connections between devices are via a serial 

connection which preserves the real time nature of the interface with predictable and 

acceptable latency. For the analysis framework to perform with minimal degradation 

due to latency, the applications should be deployed on a dedicated sub-net to minimise 

both propagation and application latency. The investigation of latency and the 

requirements for the real time analysis framework is however, outside the scope of this 

thesis. 

 

Recently, there have been more music structure descriptions published by groups 

active in computer musicological research. In addition to MusicXML [MXMLDef], 

ontologies have been published for symbolic music [SMusic], key [KOnt] and chord 

[ChOnt] ontologies. Whilst not providing a complete set of descriptive formats for 

harmonic structure, these are starting to address some aspects of semantic musical 

description. The Harmony ontology presented in this thesis is intended to illustrate how 

fundamental musical objects (Key, Chord and Note) are inter-related and provides a 

mechanism that illustrates how a high level semantic model can be created from lower 

level algorithmic applications. Further work is required to take the contribution of the 

Harmony ontology and assess how it complements other published musical 
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descriptions. It may be that the Harmony ontology is subsumed by this published work. 

In that case, the Harmony events published by the analysis applications presented in 

this thesis may be re-structured to support the creation of descriptions in one or more of 

the published formats. 

 

The chord identification application presented in chapter 5 of this thesis identifies 

chords from notes that are co-sounding at the same beat. There are, however, many 

different combinations of notes that constitute the same chord as illustrated in the 

following figure. 

 

(a) (b) (c)

 

Figure 27: Alternative representations of the same chord 

For example, a C major triad consists of three notes (C, E and G) sounding 

simultaneously (a), separately (b) or as a single note followed by a minor third (c). The 

chord identification described in this thesis would correctly identify (a) as a C major 

triad but would identify (b) as three unison notes and (c) as a unison followed by a 

minor third. A further layer of semantic inferencing is needed to correctly identify all 

three possibilities as forms of the same chord. The definition of temporal rules needed 

to infer higher level chord structures from sequences of notes and chords has not been 

addressed in this thesis. This problem of inferring higher level chord structured from 

sequences within music maps to a more generic problem of applying temporal rules to 



 115

streams of events and is an ongoing research activity within the semantic web research 

community. 

 

In music, a suspension is one or more notes temporarily held before the harmony 

is resolved to a particular chord. Suspensions are important indicators of particular 

musical styles. Correct chord extraction will identify suspensions and ignore them 

before identifying the resolved chord type. The chord extraction algorithm developed in 

this thesis does not support the identification of suspensions. 

 

In addition to the inference of higher level chord structures, the techniques 

described in this thesis do not address the ongoing research topic of genre 

classification. A harmonic structural description alone will not differentiate between 

musical styles. Other characteristics of the audio signal are better discriminators. For 

example, much 1972s progressive rock was heavily influenced by classical music and 

used many of its motifs and harmonic structures. Analysis of its harmonic structure 

would not clearly differentiate it from classical forms; however, the instruments used in 

the performance would clearly identify the genre. 

8.2 Future Work 

Whilst this thesis has concentrated on a particular set of contributions, the work 

has identified some interesting directions for future research. 

8.2.1 Coordination with Music Ontology Research 

Raimond’s Music Ontology (MO) is gaining widespread acceptance within the 

Music Information Retrieval (MIR) research community. The Harmony ontology 

developed as part of this thesis includes some of Raimond’s work (the Timeline and 

Event ontologies) but has not been designed as an ontology derived from the broader 

MO. Further work should investigate how linkages can be made between the work of 

this thesis and the MO and other published musical structure descriptions.. 
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8.2.2 Developing Temporal Rules of Music 

The chord extraction technique presented in this thesis can identify a chord from 

the notes that are concurrently sounding at the sampling point. This is a restricted view 

of chord identification since separately sounding notes over a period of time also 

contribute to chords which may last for several measures in the music. Inferencing 

rules within OWL are limited, but the development of temporal rules based on Allen’s 

work and musicological theory is feasible. A temporal rule inferencing engine, possibly 

based on Prolog, would allow the current ontology to be enriched further by identifying 

these longer lasting chord structures. 

8.2.3 Developing an engineered Framework 

The framework described in this thesis has been demonstrated by a small number 

of separate applications interconnected by a publish/subscribe messaging infrastructure. 

For an engineered implementation of the framework, a full design and test process 

needs to be completed. This implementation would include designed programming 

interfaces to allow new applications to be developed, management processes to allow 

components to be distributed throughout a network, and the addition of further topics 

and events to the framework. 

8.2.4 Developing a complete Visual Query Application 

The visual query paradigm presented in this thesis has not been hardened into a 

complete browser based application. Web 2.0 techniques allow a complex 

browser/server based application to be developed which involves query drawing, 

submission and results management to be created. 

 

For such an application, a full design process should be adopted which identifies 

use cases from the computer musicology and information retrieval research community 

to motivate the implementation of the application. 
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Appendix A – Framework Topic Spaces 

MIDI topic space and event contents 
Topic Event Contents Description 

Midi/Short/NoteOn Timestamp, Channel, Note, Velocity Note depressed 
Midi/Short/NoteOff Timestamp, Channel, Note, Velocity Note released 
Midi/Short/PolyKeyPressure Timestamp, Channel, Note, Pressure Note aftertouch – pressing a note after 

“bottoming out” 
Midi/Short/ControlChange Timestamp, Channel, Controller, Value Change in a controller value 
Midi/Short/ProgramChange Timestamp, Channel, Program (Patch) Change to a program patch number 
Midi/Short/KeyPressure Timestamp, Channel, Pressure Note aftertouch – pressing a note after 

“bottoming out” 
Midi/Short/PitchWheelChange Timestamp, Channel, Value Change in pitch wheel setting 
Midi/Short/SystemMessage Timestamp, Channel, Message Text System message 
Midi/Meta/SeqNumber Timestamp, Sequence Number Change in a Midi sequence number 
Midi/Meta/Text Timestamp, Text String Arbitrary text event 
Midi/Meta/Copyright Timestamp, Copyright Text String Copyright text 
Midi/Meta/TrackName Timestamp, Track Name String Track name 
Midi/Meta/InstrumentName Timestamp, Instrument Name String Instrument name 
Midi/Meta/Lyric Timestamp, Lyric String Lyric 
Midi/Meta/Marker Timestamp, Marker String Marker 
Midi/Meta/CuePoint Timestamp, CuePoint String Cue point 
Midi/Meta/ChannelPrefix Timestamp, Value Channel prefix 
Midi/Meta/EndOfTrack Timestamp, Empty The end of a Midi track 
Midi/Meta/Tempo Timestamp, Value Time in microseconds per beat 
Midi/Meta/SMPTE Timestamp, Value[0..4] SMPTE time information 
Midi/Meta/TimeSig Timestamp, Value[0..3] Time signature and other timing information 
Midi/Meta/KeySig Timestamp, Value Key signature including Major/Minor 
Midi/Meta/Vendor Timestamp, String Vendor specific information 
Midi/Meta/UnknownMeta Timestamp, String Unknown Meta Event 
Midi/Sysex/SysExcl Timestamp, Value Extension and manufacturer specific info 
Midi/Sysex/SysSpExcl Timestamp, Value Extension and manufacturer specific info 

 

Harmony topic space and event contents 
Topic Event Contents Description 

Harmony/Note CCNote Event contains note named using Chew Chen 
Harmony/OPNDNote OPNDNote Event contains note defined by its offset, pitch 

class, name and duration (OPND) 
Harmony/Beat Timestamp, Strength Beat strength and time 
Harmony/CentreOfEffect Point3f X, Y, Z value of Chew Chen Centre of Effect in 

3D space 

 

Harmony Ontology topic space and event contents 
Topic Event Contents Description 

Harmony/Ontology/TimelineStart URI, Timestamp Start of Timeline 
Harmony/Ontology/TimelineEnd URI, Timestamp End of Timeline 
Harmony/Ontology/NoteStart URI, Timestamp, Name, Octave Start of Note 
Harmony/Ontology/NoteEnd URI, Timestamp End of  Note 
Harmony/Ontology/ChordStart URI, Chord, URI Start of Chord and link to previous Chord 
Harmony/Ontology/ChordEnd Timestamp End of Chord 
Harmony.Ontology/ChordContains URI Chord contains Note with given URI 
Harmony/Ontology/KeyStarts Timestamp, Root, Mode Start of Key with given Root and Mode 
Harmony/Ontology/KeyEnds Timestamp End of Key 

 

Framework control topics 
Topic Event Contents Description 

Control/Closing URI, Timestamp An application is terminating. Timestamp is the 
final event time generated by the publishing 
application e.g. a final MIDI Off command. 
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Control/PitchSpellingFinished URI Signals that the Pitch Spelling application has 
finished 

Control/DatabaseFinished URI Signals that the database results capture 
application has finished 

Control/TriplestoreFinished URI Signals that the triplestore capture application 
has finished 

Control/Filename URI, String Identifies the testcase that is about to be 
published 
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Appendix B – Example Graphs in GXL 

GXL for Figure 24 (e): 
<?xml version="1.0" encoding="UTF-8"?> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
     xmlns:xlink="http://www.w3.org/1999/xlink"> 

<node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z1"  
          pos="1170,611"> 

<type xlink:href="Key"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="mode"><string>major</string</attr> 
   </node> 
</gxl> 

 

GXL for Figure 24 (f): 
<?xml version="1.0" encoding="UTF-8"?> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"    
     xmlns:xlink="http://www.w3.org/1999/xlink"> 

<node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z1"    
      pos="1170,611"> 

      <type xlink:href="Key"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="mode"><string>major</string></attr> 
   </node> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z3"  

      pos="1195,882"> 
      <type xlink:href="Chord"/> 
      <attr name="name"><string>C047</string></attr> 
   </node> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"  

      to="Z1" id="E4"> 
      <type xlink:href="chordPartOf"/> 
   </edge> 
</gxl> 

 

GXL for Figure 24 (g): 
<?xml version="1.0" encoding="UTF-8"?> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
     xmlns:xlink="http://www.w3.org/1999/xlink"> 

<node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z1"  
      pos="1170,611"> 

      <type xlink:href="Key"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="mode"><string>major</string></attr> 
   </node> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z3"  

pos="1195,882"> 
      <type xlink:href="Chord"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="name"><string>C047</string></attr> 
   </node> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"  
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to="Z1" id="E4"> 
      <type xlink:href="chordPartOf"/> 
   </edge> 
</gxl> 

 

GXL for Figure 24 (h): 
<?xml version="1.0" encoding="UTF-8"?> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
     xmlns:xlink="http://www.w3.org/1999/xlink"> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z3"  

pos="1195,882"> 
      <type xlink:href="Chord"/> 
      <attr name="name"><string>C047</string></attr> 
      <attr name="root"><string>Cn</string></attr> 
   </node> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z9"  

pos="1475,868"> 
      <type xlink:href="Chord"/> 
      <attr name="name"><string>C07</string></attr> 
   </node> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z6"  

pos="1575,932"> 
      <type xlink:href="Note"/> 
      <attr name="name"><string>Gn</string></attr> 
   </node> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z1"  

pos="1315,594"> 
      <type xlink:href="Key"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="mode"><string>major</string></attr> 
   </node> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"  

to="Z1" id="E4"> 
      <type xlink:href="chordPartOf"/> 
   </edge> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"  

to="Z9" id="E10"> 
      <type xlink:href="chordPrecedes"/> 
   </edge> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z9"  

to="Z1" id="E11"> 
      <type xlink:href="chordPartOf"/> 
   </edge> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z9"  

to="Z6" id="E7"> 
      <type xlink:href="chordContains"/> 
   </edge> 
</gxl> 

 

GXL for Figure 24 (i): 
<?xml version="1.0" encoding="UTF-8"?> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
     xmlns:xlink="http://www.w3.org/1999/xlink"> 

<node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z1"  
pos="1170,611"> 

      <type xlink:href="Key"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="mode"><string>major</string></attr> 
   </node> 
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   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z3"  
pos="1195,882"> 

      <type xlink:href="Chord"/> 
      <attr name="root"><string>Cn</string></attr> 
      <attr name="name"><string>C047</string></attr> 
   </node> 
   <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z6"  

pos="1250,950"> 
      <type xlink:href="MIDI"/> 
   </node> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"  

to="Z1" id="E4"> 
      <type xlink:href="chordPartOf"/> 
   </edge> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z3"  

to="Z6" id="E5"> 
      <type xlink:href="unknown"/> 
   </edge> 
   <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" from="Z1"  

to="Z6" id="E6"> 
      <type xlink:href="unknown"/> 
   </edge> 
</gxl> 
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Appendix C – GXL to SQL 

Transformation 

This appendix illustrates an early version of the GXL2SQL transform which 

converts a GXL graph description into SQL. The GXL structure does not include 

separate attributes for nodes and edges which were included in later versions. 

 

The input GXL description: 
 
<?xml version="1.0" ?> 
<!DOCTYPE gxl [<!ELEMENT gxl (node | edge)*> 
<!ELEMENT edge ANY> 
<!ELEMENT node ANY> 
<!ATTLIST node id ID #REQUIRED> 
<!ATTLIST edge id ID #REQUIRED>]> 
<gxl xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
     xmlns:xlink="http://www.w3.org/1999/xlink"> 
  <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z1"  
        pos="871,623"> 
      <type xlink:href="#KEY_TYPE"/> 
      <attr name="name"> 
          <string>GMajor</string> 
      </attr> 
  </node> 
  <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z3"  
        pos="744,816"> 
      <type xlink:href="#CHORD_TYPE"/> 
      <attr name="name"> 
          <string>C</string> 
      </attr> 
  </node> 
  <node xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd" id="Z5"  
        pos="1118,898"> 
      <type xlink:href="#CHORD_TYPE"/> 
      <attr name="name"> 
          <string>D</string> 
      </attr> 
  </node> 
  <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
        from="Z3" to="Z5" id="E6"> 
      <type xlink:href="unknown"/> 
  </edge> 
  <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
        from="Z3" to="Z1" id="E7"> 
      <type xlink:href="unknown"/> 
  </edge> 
  <edge xmlns="http://www.gupro.de/GXL/gxl-1.0.dtd"  
        from="Z5" to="Z1" id="E8"> 
      <type xlink:href="unknown"/> 
  </edge> 
</gxl> 
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The generated SQL: 

 
DECLARE GLOBAL TEMPORARY TABLE E6(HEAD VARCHAR(100), BODY 
VARCHAR(100), SOURCE_DOC INTEGER) 
  NOT LOGGED ON COMMIT PRESERVE ROWS; 
 
insert into SESSION.E6(HEAD, BODY) select distinct HEAD, BODY from 
  new com.ibm.db2j.GaianTable('TRIPLES' ) GT 
  where HEAD_TYPE = 'harmony:Chord'  
  and HEAD like '%C%'  
  and BODY_TYPE = 'harmony:Chord'  
  and BODY like '%D%'; 
 
DECLARE GLOBAL TEMPORARY TABLE E7(HEAD VARCHAR(100), BODY 
VARCHAR(100), SOURCE_DOC INTEGER) 
  NOT LOGGED ON COMMIT PRESERVE ROWS; 
 
insert into SESSION.E7(HEAD, BODY) select distinct HEAD, BODY from 
  new com.ibm.db2j.GaianTable( 'TRIPLES' ) GT 
  where HEAD_TYPE = 'harmony:Chord'  
  and HEAD like '%C%'  
  and BODY_TYPE = 'harmony:Key'  
  and BODY like '%GMajor%'; 
  
DECLARE GLOBAL TEMPORARY TABLE E8(HEAD VARCHAR(100), BODY 
VARCHAR(100), SOURCE_DOC INTEGER) 
  NOT LOGGED ON COMMIT PRESERVE ROWS; 
 
insert into SESSION.E8(HEAD, BODY) select distinct HEAD, BODY from 
  new com.ibm.db2j.GaianTable( 'TRIPLES' ) GT 
  where HEAD_TYPE = 'harmony:Chord'  
  and HEAD like '%D%'  
  and BODY_TYPE = 'harmony:Key'  
  and BODY like '%GMajor%'; 
 
SELECT DISTINCT 
SESSION.E7.BODY as Z1, SESSION.E6.HEAD as Z3, SESSION.E6.BODY as Z5 
FROM 
 SESSION.E6,  
 SESSION.E7,  
 SESSION.E8 
WHERE 
SESSION.E7.BODY != SESSION.E6.HEAD and SESSION.E7.BODY != 
SESSION.E6.BODY and SESSION.E6.HEAD != SESSION.E6.BODY 
 and SESSION.E6.HEAD = SESSION.E7.HEAD 
 and SESSION.E6.BODY = SESSION.E8.HEAD 
 and SESSION.E7.BODY = SESSION.E8.BODY 
; 

 

The GXL2SQL transform: 

 
<?xml version="1.0"?> 
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
                xmlns:gxl="http://www.gupro.de/GXL/gxl-1.0.dtd"  
                xmlns:xlink="http://www.w3.org/1999/xlink" 
                version="1.0"> 
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    <xsl:output method="text" encoding="utf-8" /> 
    <xsl:variable name="lookup" select="document('lookup.xml')" /> 
 
    <xsl:template match="/"> 
        <xsl:apply-templates select="//gxl:edge" mode="table" /> 
SELECT DISTINCT 
        <xsl:apply-templates select="//gxl:node" mode="select" /> 
FROM 
        <xsl:apply-templates select="//gxl:edge" mode="from" /> 
WHERE 
        <xsl:apply-templates select="//gxl:node" /> 
        <xsl:apply-templates select="//gxl:edge" /> 
; 
    </xsl:template> 
 
    <xsl:template match="gxl:edge" mode="table"> 
        <xsl:variable name="fmNode" select="id(@from)" /> 
        <xsl:variable name="toNode" select="id(@to)" /> 
 
        <xsl:variable name="typeFm" select="$lookup//entry[@nodeType = 
substring-after($fmNode/gxl:type/@xlink:href,'#')]/@entityType" /> 
        <xsl:variable name="typeTo" select="$lookup//entry[@nodeType = 
substring-after($toNode/gxl:type/@xlink:href,'#')]/@entityType" /> 
 
        <xsl:value-of select="$typeFm" /></xsl:message> 
        <xsl:value-of select="$typeTo" /></xsl:message> 
 
DECLARE GLOBAL TEMPORARY TABLE <xsl:value-of select="@id" />(HEAD 
VARCHAR(100), BODY VARCHAR(100), SOURCE_DOC INTEGER) 
  NOT LOGGED ON COMMIT PRESERVE ROWS; 
 
insert into SESSION.<xsl:value-of select="@id" />(HEAD, BODY) select 
distinct HEAD, BODY from 
  new com.ibm.db2j.GaianTable( 'TRIPLES' ) GT 
  where HEAD_TYPE = '<xsl:value-of select="$typeFm" />'  
  and HEAD like '%<xsl:value-of select="$fmNode"/>%'  
  and BODY_TYPE = '<xsl:value-of select="$typeTo"/>'  
  and BODY like '%<xsl:value-of select="$toNode"/>%'; 
 
    </xsl:template> 
 
    <xsl:template match="gxl:node" mode="select"> 
        <xsl:variable name="colName"> 
            <xsl:call-template name="getTableAndColumnForNode"/> 
        </xsl:variable> 
        <xsl:variable name="entityType"  
                  select="substring-after(gxl:type/@xlink:href,'#')"/> 
        <xsl:variable name="entityName"> 
            <xsl:choose> 
                <xsl:when test= "$entityType = 'DOCUMENT_TYPE'"> 
                    <xsl:value-of select="concat('DOCUMENT_',@id)"/> 
                </xsl:when> 
                <xsl:otherwise> 
                    <xsl:value-of select="@id"/> 
                </xsl:otherwise> 
            </xsl:choose> 
        </xsl:variable> 
 
        <xsl:value-of select="$colName"/> as  
        <xsl:value-of select="$entityName"/> 
 
        <xsl:if test="not(position() = last())"> 
            <xsl:text>, </xsl:text>  
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        </xsl:if> 
    </xsl:template> 
 
    <xsl:template match="gxl:edge" mode="from"> 
 SESSION.<xsl:value-of select="@id"/> 
        <xsl:if test="not(position() = last())"> 
            <xsl:text>, </xsl:text>  
        </xsl:if> 
    </xsl:template> 
 
    <xsl:template match="gxl:node"> 
        <xsl:if test="not(position() = 1 or position() = last())"> 
            <xsl:text> and </xsl:text>  
        </xsl:if> 
        <xsl:variable name="colNameA"> 
            <xsl:call-template name="getTableAndColumnForNode"/> 
        </xsl:variable> 
        <xsl:for-each select="following-sibling::gxl:node"> 
            <xsl:variable name="colNameB"> 
                <xsl:call-template name="getTableAndColumnForNode"/> 
            </xsl:variable> 
            <xsl:value-of select="$colNameA"/> !=  
            <xsl:value-of select="$colNameB"/> 
            <xsl:if test="not(position() = last())"> 
                <xsl:text> and </xsl:text>  
            </xsl:if> 
        </xsl:for-each> 
    </xsl:template> 
 
    <xsl:template match="gxl:edge" mode="from"> 
 SESSION.<xsl:value-of select="@id"/> 
        <xsl:if test="not(position() = last())"> 
            <xsl:text>, </xsl:text>  
        </xsl:if> 
    </xsl:template> 
 
    <xsl:template match="gxl:edge"> 
        <xsl:variable name="thisEdge" select="@id"/> 
        <xsl:variable name="fmNode" select="@from"/> 
        <xsl:variable name="toNode" select="@to"/> 
 
        <xsl:for-each select="following-sibling::gxl:edge[($fmNode = 
./@from)]"> 
 and SESSION. 
            <xsl:value-of select="$thisEdge"/>.HEAD = SESSION. 
            <xsl:value-of select="@id"/>.HEAD 
        </xsl:for-each> 
        <xsl:for-each select="following-sibling::gxl:edge[($fmNode = 
./@to)]"> 
 and SESSION. 
            <xsl:value-of select="$thisEdge"/>.HEAD = SESSION. 
            <xsl:value-of select="@id"/>.BODY 
        </xsl:for-each> 
        <xsl:for-each select="following-sibling::gxl:edge[($toNode = 
./@from)]"> 
 and SESSION. 
            <xsl:value-of select="$thisEdge"/>.BODY = SESSION. 
            <xsl:value-of select="@id"/>.HEAD 
        </xsl:for-each> 
        <xsl:for-each select="following-sibling::gxl:edge[($toNode = 
./@to)]"> 
 and SESSION. 
            <xsl:value-of select="$thisEdge"/>.BODY = SESSION. 
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            <xsl:value-of select="@id"/>.BODY 
        </xsl:for-each> 
    </xsl:template> 
 
    <xsl:template name="getTableAndColumnForNode"> 
        <xsl:variable name="anEdge" select="//gxl:edge[(./@from = 
current()/@id) or (./@to = current()/@id)][1]"/> 
        <xsl:variable name="whichEnd"> 
   
        <xsl:choose> 
            <xsl:when test="$anEdge/@from = @id"> 
                <xsl:value-of select="'HEAD'"/> 
            </xsl:when> 
            <xsl:otherwise> 
                <xsl:value-of select="'BODY'"/> 
            </xsl:otherwise> 
        </xsl:choose> 
        </xsl:variable> 
        <xsl:value-of 
select="concat('SESSION.',$anEdge/@id,'.',$whichEnd)" /> 
    </xsl:template> 
</xsl:stylesheet> 
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Appendix D – The Harmony Relational 

Model 

-- ============================================================ 
--   database name    :  tripleDB                             
--   database system  :  DERBY                                    
--   creation date    :  26-03-2008   
-- ============================================================ 
drop table TRIPLES; 
drop table DOC_TABLE; 
 
-- ============================================================ 
--   Table : DOC_TABLE 
-- ============================================================ 
create table DOC_TABLE ( 
 DOC_HASH integer, 
 DOC_NAME varchar(200) 
); 
 
-- ============================================================ 
--   Table : TRIPLES 
-- ============================================================ 
create table TRIPLES ( 
 TRANS integer, 
 HEAD varchar(100), 
 HEAD_TYPE varchar(40), 
 BODY varchar(100), 
 BODY_TYPE varchar(40), 
 SOURCE_DOC integer, 
 TIMESTAMP timestamp, 
 ASSOCIATION varchar(200) 
 ); 
create unique index i1 on TRIPLES(TRANS); 
create index i2 on TRIPLES(head); 
create index i3 on TRIPLES(association); 
create index head on TRIPLES(head asc); 
create index body on TRIPLES(body asc); 
create index head_type on TRIPLES(head_type asc); 
create index body_type on TRIPLES(body_type asc); 
create index hh on TRIPLES(head asc, head_type asc); 
create index bb on TRIPLES(body asc, body_type asc); 
create index source on TRIPLES(source_doc asc); 
 
-- ============================================================ 
-- Drop Views 
-- ============================================================ 
DROP VIEW K2K_FORWARD_VIEW; 
DROP VIEW K2K_BACKWARD_VIEW; 
DROP VIEW C2C_FORWARD_VIEW; 
DROP VIEW C2C_BACKWARD_VIEW; 
DROP VIEW K2C_VIEW; 
DROP VIEW C2K_VIEW; 
DROP VIEW C2N_VIEW; 
DROP VIEW N2C_VIEW; 
DROP VIEW KEY_VIEW; 
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DROP VIEW CHORD_VIEW; 
  
-- ============================================================ 
-- Create Key View 
-- ============================================================ 
CREATE VIEW KEY_VIEW (K_URL, K_ROOT, K_MODE) AS 
 SELECT T1.HEAD AS K_URL, T1.BODY AS K_ROOT,T2.BODY AS K_MODE 
 FROM 
  TRIPLES T1, 
  TRIPLES T2 
 WHERE T1.ASSOCIATION = 'keyRoot' 
 AND T2.ASSOCIATION = 'keyMode' 
 AND T1.HEAD = T2.HEAD; 
 
-- K2 follows K1 
CREATE VIEW K2K_FORWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,  
                              K2_ROOT, K2_MODE) AS 
 SELECT K1.K_URL AS K1_URL, K1.K_ROOT AS K1_ROOT, K1.K_MODE AS  
             K1_MODE, K2.K_URL AS K2_URL, K2.K_ROOT AS K2_ROOT,  
             K2.K_MODE AS K2_MODE 
 FROM 
  TRIPLES T1, 
  KEY_VIEW K1, 
  KEY_VIEW K2 
 WHERE T1.ASSOCIATION = 'keyPrecedes' 
 AND T1.HEAD = K1.K_URL 
 AND T1.BODY = K2.K_URL; 
 
-- K2 precedes K1 
CREATE VIEW K2K_BACKWARD_VIEW (K1_URL, K1_ROOT, K1_MODE, K2_URL,  
                               K2_ROOT, K2_MODE) AS 
 SELECT K1.K_URL AS K1_URL, K1.K_ROOT AS K1_ROOT, K1.K_MODE AS  
             K1_MODE, K2.K_URL AS K2_URL, K2.K_ROOT AS K2_ROOT,  
             K2.K_MODE AS K2_MODE 
 FROM 
  TRIPLES T1, 
  KEY_VIEW K1, 
  KEY_VIEW K2 
 WHERE T1.ASSOCIATION = 'keyFollows' 
 AND T1.HEAD = K1.K_URL 
 AND T1.BODY = K2.K_URL; 
  
-- ============================================================ 
-- Create Chord Views 
-- ============================================================ 
CREATE VIEW CHORD_VIEW (C_URL, C_NAME, C_ROOT) AS 
 SELECT T1.HEAD AS C_URL, T1.BODY AS C_NAME, T2.BODY AS C_ROOT  
 FROM 
  TRIPLES T1, 
  TRIPLES T2 
 WHERE T1.ASSOCIATION = 'chordName' 
 AND T2.ASSOCIATION = 'chordRoot' 
 AND T1.HEAD = T2.HEAD; 
 
 -- C2 follows C1 
CREATE VIEW C2C_FORWARD_VIEW (C1_URL, C1_NAME, C1_ROOT, C2_URL,  
                              C2_NAME, C2_ROOT) AS 
 SELECT C1.C_URL AS C1_URL, C1.C_NAME AS C1_NAME, C1.C_ROOT AS  
             C1_ROOT, C2.C_URL AS C2_URL, C2.C_NAME AS C2_NAME,  
             C2.C_ROOT AS C2_ROOT 
 FROM 
  TRIPLES T1, 
  CHORD_VIEW C1, 
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  CHORD_VIEW C2 
 WHERE T1.ASSOCIATION = 'chordPrecedes' 
 AND T1.HEAD = C1.C_URL 
 AND T1.BODY = C2.C_URL; 
 
-- C2 precedes C1 
CREATE VIEW C2C_BACKWARD_VIEW (C1_URL, C1_NAME, C1_ROOT, C2_URL,  
                               C2_NAME, C2_ROOT) AS 
 SELECT C1.C_URL AS C1_URL, C1.C_NAME AS C1_NAME, C1.C_ROOT AS  
             C1_ROOT, C2.C_URL AS C2_URL, C2.C_NAME AS C2_NAME,  
             C2.C_ROOT AS C2_ROOT 
 FROM 
  TRIPLES T1, 
  CHORD_VIEW C1, 
  CHORD_VIEW C2 
 WHERE T1.ASSOCIATION = 'chordFollows' 
 AND T1.HEAD = C1.C_URL 
 AND T1.BODY = C2.C_URL; 
 
-- ============================================================ 
-- Create Key-Chord Views 
-- ============================================================ 
CREATE VIEW K2C_VIEW (K_URL, K_ROOT, K_MODE, C_URL, C_NAME, C_ROOT) AS 
 SELECT K1.K_URL AS K_URL, K1.K_ROOT AS K_ROOT, K1.K_MODE AS  
             K_MODE, C1.C_URl AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT  
             AS C_ROOT 
 FROM 
  TRIPLES T1, 
  CHORD_VIEW C1, 
  KEY_VIEW K1 
 WHERE T1.ASSOCIATION = 'keyContains' 
 AND T1.HEAD = K1.K_URL 
 AND T1.BODY = C1.C_URL; 
  
CREATE VIEW C2K_VIEW (C_URL, C_NAME, C_ROOT, K_URL, K_ROOT, K_MODE) AS 
 SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT AS  
             C_ROOT, K1.K_URL AS K_URL, K1.K_ROOT AS K_ROOT, K1.K_MODE  
             AS K_MODE 
 FROM 
  TRIPLES T1, 
  CHORD_VIEW C1, 
  KEY_VIEW K1 
 WHERE T1.ASSOCIATION = 'chordPartOf' 
 AND T1.HEAD = C1.C_URL 
 AND T1.BODY = K1.K_URL; 
  
-- ============================================================ 
-- Create Chord-Note Views 
-- ============================================================ 
CREATE VIEW C2N_VIEW(C_URL, C_NAME, C_ROOT, N_URL, N_TYPE) AS 
 SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT AS  
             C_ROOT, T2.HEAD AS N_URL, T2.BODY AS N_TYPE 
 FROM 
  TRIPLES T1, 
  TRIPLES T2, 
  CHORD_VIEW C1 
 WHERE T1.ASSOCIATION = 'chordContains' 
 AND T1.HEAD = C1.C_URL 
 AND T2.ASSOCIATION = 'noteType' 
 AND T2.HEAD = T1.BODY; 
 
CREATE VIEW N2C_VIEW(N_URL, N_TYPE, C_URL, C_NAME, C_ROOT) AS 
 SELECT C1.C_URL AS C_URL, C1.C_NAME AS C_NAME, C1.C_ROOT AS  
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             C_ROOT, T2.HEAD AS N_URL, T2.BODY AS N_TYPE 
 FROM 
  TRIPLES T1, 
  TRIPLES T2, 
  CHORD_VIEW C1 
 WHERE T1.ASSOCIATION = 'notePartOf' 
 AND T1.BODY = C1.C_URL 
 AND T2.ASSOCIATION = 'noteType' 
 AND T2.HEAD = T1.HEAD; 
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Appendix E - Musical Codes and 

Representation 

This appendix formed part of the MPhil transfer thesis and is provided here as 

background information for the choice of MIDI as the low level representation of music 

used in this thesis. 

 

Musical information has traditionally been communicated by the musical score 

through a process known as common musical notation (CMN).  This is a visual 

representation of music composed of graphical symbols arranged in a two-dimensional 

space; the printed or hand written page. Interpreting the symbols to form music 

involves the analysis of the graphical and logical structure of the document. This 

involves both a descriptive and conceptual interpretation of the music through 

interpretation of the musical events to be performed  together with abstract musical 

concepts that contribute towards an artist’s performance of the work [MacMillan02]. 

 

CMN has evolved over the years as a system of symbols for the purpose of 

describing and disseminating consistent musical practice. It is a system that is 

relatively, but not completely, self-consistent and stable. Music itself is evolving as 

new styles and genres emerge and CMN’s inherent flexibility and extensibility has 

allowed it to adapt to new demands. The adaptability of CMN means that it is not a 

perfect guide for the reproduction of sounds either computationally of by human 

performers. The apparent continuity of graphical representation does not guarantee the 

same continuity in interpretation and practice. However, CMN is the basis of all 

attempts to preserve and publish the corpus of music we know today. This corpus owes 

its existence to a generally understood system of graphical communication. 

 

The desire to encode music for mechanical or electronic reproduction has given 

rise to alternative representations of music. For example, the rolls used by player pianos 

provided a means to mechanically capture a performance using a graphical code using a 

bar and line representation that is not dissimilar to the notation provided in modern 
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music sequencer software.  This process has developed further in that the piano rolls 

produced in the early 20th century are now being scanned and archived on the Web as 

MIDI files [Smythe03]. 

 

The purpose of this section is to review and comment on the music encoding 

techniques used to represent CMN within a computer system. The discussion at the end 

of this section addresses the applicability of the encoding techniques for describing 

music in a real-time analysis framework. 

 

MIDI and derivatives 
 

The Musical Instrument Digital Interface (MIDI) specification was first published 

in 1982 and has been regularly updated [MMA01]. It was the first musical encoding 

scheme to describe a transfer protocol by which electronic musical instruments could 

communicate with each other. Its major use is still for the control of synthesisers and 

other instruments but it has also been adopted as a file format for the distribution of 

compositions. The specification has generally remained unchanged since its first 

introduction but there have been many extensions proposed and some implemented 

over the years. 

 

MIDI is a serial protocol running at 31.25 Kbaud to form a daisy chain through 

all connected instruments. The protocol is optimised using a binary representation that 

ensures the events specified by the protocol arrive at the instruments in a timely 

manner. MIDI allows a total of 16 logical channels and instruments may be set up to 

receive information on a particular channel. 

 

A MIDI message is called an event and contains commands such as NoteOn, 

which specifies both the pitch and amplitude of the note being played. In MIDI, a 

note’s pitch is defined by a number between 0 and 127 where 0 represents C0 (5 

octaves below middle C) and 127 represents G10 (5 octaves above middle C). Other 

MIDI events include NoteOff and after touch (the modification of a note currently being 

played), specifying a different sound and system messages. 

 

Each track in a MIDI file is stored as a binary representation of the event 

messages together with a time stamp for each event. The time stamp ensures events are 
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delivered sequentially to the attached instruments causing trigger events on their 

selected channel.  This temporal ordering of the events means that the MIDI protocol 

may be considered a data stream for the purposes of this thesis. 

 

A problem with the MIDI protocol is that it was designed for the interconnection 

and control of electronic musical instruments and not as a musical notation standard to 

represent CMN. Other encoding schemes described in this section have been designed 

to represent musical scores and therefore include richer descriptions of musical notation 

and performance than the MIDI specifications. Proposals have been made to extend the 

MIDI specification to make it suitable for printing scores. NoTAMIDI [Nordli97] 

suggests meta-events within MIDI to facilitate a more complete representation of 

attributes for musical printing using data captures by an electronic keyboard. 

Expressive MIDI [Cooper97] was designed to make data capture by OCR from a 

printed score more practical for generating MIDI output. Hewlett [Hewlett97b] 

proposes extensions to allow conversion of MIDI note numbers for generating accurate 

enharmonic notation for harmonic analysis which is otherwise missing from MIDI file 

information. Augmented MIDI [Mathews97a] includes extensions for more articulate 

control of MIDI devices in a real-time controller environment. This could include 

allowing a user to vary the degree of staccato as well as the degree of accentuation and 

other nuances from note to note. 

 

Monophonic Encoding 
 

Monophonic music is easier to handle and represent than polyphonic music and 

therefore its use in research applications has been much greater. The codes cited in the 

following section have generally been held within a single field within a relational 

database allowing combined access to the music and associated text that is valuable in 

the management of information about musical sources. 

 

The Essen Associative Code (EsAC) [Schaffrath97] was developed in the early 

1980s for representing monophonic music – in particular folk music. EsAC consists 

entirely of ASCII characters and was designed to run on DOS machines. It was 

designed to occupy one field of a relational database to allow studies of musical and 

associated contextual attributes. As of 1994, more than 14,000 folk songs have been 

encoded with EsAC. The “associative” aspect of EsAC is its simplicity, allowing the 
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association between sight-reading and sight-singing. Its pitch encoding uses scale-

degree numbers corresponding to the moveable symbols of the tonic sol-fah scale. 

Chromatic alterations are also included for sharps and flats and phrasing is 

included in the encoding. A suite of analysis tools are included to support the encoded 

music allowing analysis and comparison of melodies contained within the archives. 

 

The Plaine and Easie Code [Howard97] was developed as a means of 

representing musical notation with ordinary typewriter symbols for use in bibliographic 

applications such as card catalogues and indexes for encoding musical incipits;  this 

means the first few words of a book – in this case means a short phrase of music. 

 

Polyphonic Encoding 
 

Since the 1980s and the widespread availability of computing memory and 

processing speed attention has moved to the encoding of polyphonic notation and the 

subsequent processing of musical repertoire. This processing is intended primarily for 

sound production, notation and analysis. 

 

The purpose of the Humdrum Toolkit [Huron97] and its associated encoding, 

Kern, is to allow the posing and answering of musicological questions. These questions 

are typically placed against collections of encoded music. The toolkit is a set of utilities 

written in AWK, C and YACC. These utilities are applied to a set of files using shell 

scripts in a UNIX environment. Humdrum files are standard ASCII files that use the 

Kern notation. The Kern representation allows musical pitch, duration, articulation, 

ornamentation and timbre to be documented in addition to editorial and other notational 

marks such as barlines, bowing direction, beams and stem direction. Kern may be 

combined with other symbol-schemes within Humdrum to permit other encoding 

schemes such as musical dynamics, visual layout of scores and sound synthesis. Each 

stave of the score is represented by a separate column of text in Kern that gives the 

impression of a musical score (normally read from left to right) being read from top to 

bottom of the page. The following example illustrates the first four bars of the Mozart 

Clarinet Quintet encoded in the Kern format. The example shows the five instrumental 

staves together with a column (or spine) used to capture dynamics for all the 

instruments. 
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!! Mozart: Trio II from Clarinet Quintet      
**kern  **kern  **kern  **kern  **kern  **dyn  
!violon- !viola  !violino !violino !clarinet   
!cello  !  !II  !I  !in A    
!*Icello *Iviola  *Iviolin *Iviolin *Iclarinet *  
*ICstr  *ICstr  *ICstr  *ICstr  *ICww  *  
*sys1  *sys1  *sys1  *sys1  *sys1  *sys1  
*staff5  *staff4  *staff3  *staff2  *staff1  *staff* 
*clefF4  *clefC3  *clefG2  *clefG2  *clefG2  *  
*M3/4  *M3/4  *M3/4  *M3/4  *M3/4  *  
*k[f#c#g#] *k[f#c#g#] *k[f#c#g#] *k[f#c#g#] *k[f#c#g#] *  
*A:  *A:  *A:  *A:  *A:  *  
*  *  *  *  *Tr+2d+3c *  
4r  4r  4r  4r  (8a\  p  
.  .  .  .  8cc#\  .  
=1  =1  =1  =1  =1  =1  
4A\  4r  4r  4r  8ee\  .  
.  .  .  .  8cc#\  .  
4r  4c#\  4e/  4a/  4aa\)  .  
4r  4c#\  4e/  4a/  (8ee\  .  
.  .  .  .  8cc#\  .  
=2  =2  =2  =2  =2  =2  
4D\  4r  4r  4r  8b\  .  
.  .  .  .  8dd\  .  
4r  4B/  4f#/  4a/  4ff#\)  .  
4r  4B/  4f#/  4a/  (8dd\  .  
.  .  .  .  8b\  .  
=3  =3  =3  =3  =3  =3  
4E\  4r  4r  4r  8a\  .  
.  .  .  .  8g#\  .  
4r  4B/  4d/  4g#  8cc#\  .  
.  .  .  .  8b\  .  
4r  4B/  4d/  4g#  8ee\  .  
.  .  .  .  8dd\)  .  
=4  =4  =4  =4  =4  =4  
4F#\  4r  4r  4r  (4b#\  .  
4r  4A/  4c#/  4a/  4cc#\)  .  
4r  4a/  4c#/  4a/  (8a\  .  
.  .  .  .  8cc#\  . 
*-  *-  *-  *-  *-  *-  

Figure 28: Kern encoding 

MuseData [Hewlett97c] is intended to encode the logical content of musical 

scores and captures both notational and sound information. The representation is not 

intended to be complete since it is expected that MuseData files would serve as source 

files for generating graphics files and MIDI sound files. The reasoning for this is that 

when music is encoded, there is often more information contained within the file than a 

composer intended to convey. Additionally, since MuseData was used with other 

processing software, other packages will add specific information about how a graphic 

rendering of the data should look or how a realisation of the data should sound. The 

organisation of files is an integral part of the MuseData representation. Each file 

represents the encoding of a single musical part from a movement or piece.  The 

individual files may then be organised into a hierarchical directory structure within a 

database. For a given musical work, MuseData files are divided into two types. The 

first type contains data for pitch and duration of notes. The second type includes large 

amounts of additional information to support printing, interpretive and analytical 

applications. This information will support sound generation through MIDI, full and 

short score printing, separate part printing, analysis, MIDI specific data (channel and 

instrument assignments) and other management data. The format of single files consists 

of a set of time-ordered, variable length ASCII records organised as header records, 



 143

musical attributes, note records and an end of file marker. The following example 

illustrates the first four bars of the clarinet part from the Mozart Clarinet Quintet in 

MuseData format. 
04/16/93 E. Correia 
WK#:581       MV#:3c 
Breitkopf & H„rtel, Vol. 13 
Clarinet Quintet 
Trio II 
Clarinet in A 
1 0 
Group memberships: sound, score 
sound: part 1 of 5 
score: part 1 of 5 
$  K:0   Q:6   T:3/4   X:-11   C:4 
C5     3        e     d  [     (&0p 
E5     3        e     d  ] 
measure 1 
G5     3        e     d  [ 
E5     3        e     d  ] 
C6     6        q     d        ) 
G5     3        e     d  [     ( 
E5     3        e     d  ] 
measure 2 
D5     3        e     d  [ 
F5     3        e     d  ] 
A5     6        q     d        ) 
F5     3        e     d  [     ( 
D5     3        e     d  ] 
measure 3 
C5     3        e     d  [ 
B4     3        e     d  = 
E5     3        e     d  = 
D5     3        e     d  = 
G5     3        e     d  = 
F5     3        e     d  ]     ) 
measure 4 
D#5    6        q #   d        ( 
E5     6        q     d        ) 
C5     3        e     d  [     ( 
E5     3        e     d  ] 

Figure 29: MuseData encoding 

MusicXML [Good01] is becoming a widely used interchange format for 

representing sheet music and musical notation. It is intended to act as an intermediate 

encoding to allow translation between the proprietary binary codes used in many 

popular sheet music editors. Some publishing packages make use of MIDI as an 

interchange format, but MIDI is unable to represent many of the features needed for 

successful musical score publication. MusicXML is intended to overcome these 

deficiencies. 

 

MusicXML builds on the earlier development of the MuseData and Humdrum 

formats and represents scores either partwise (measures within parts) or timewise (parts 

within measures). This dual approach recognises that musical scores are inherently 

two-dimensional. Since XML is hierarchical in structure, MusicXML provides two 

DTDs (one for each representation) with XSLT transformations to move between the 

two representations. 

 

The following example is a trivial piece of MusicXML representing a single note. 
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<?xml version="1.0" standalone="no"?> 
<!DOCTYPE score-partwise PUBLIC  
  "-//Recordare//DTD MusicXML 0.6b Partwise//EN" 
  "http://www.musicxml.org/dtds/partwise.dtd"> 
<score-partwise> 
  <part-list> 
    <score-part id="P1"> 
      <part-name>Music</part-name> 
    </score-part> 
  </part-list> 
  <part id="P1"> 
    <measure number="1"> 
      <attributes> 
        <divisions>1</divisions> 
        <key> 
          <fifths>0</fifths> 
        </key> 
        <time> 
          <beats>4</beats> 
          <beat-type>4</beat-type> 
        </time> 
        <clef> 
          <sign>G</sign> 
          <line>2</line> 
        </clef> 
      </attributes> 
      <note> 
        <pitch> 
          <step>C</step> 
          <octave>4</octave> 
        </pitch> 
        <duration>4</duration> 
        <type>whole</type> 
      </note> 
    </measure> 
  </part> 
</score-partwise> 

Figure 30: MusicXML 

MusicXML supports a superset of the MuseData features and supports a number 

of translators into and out of popular music publishing packages [Good02]. Since 

MusicXML is a vocabulary of XML, analysis and manipulation of musical scores 

encoded with MusicXML can make use of other XML standards. XSLT has already 

been mentioned for transformation between different representations of MusicXML 

and demonstrations of using XML Query to formulate queries against MusicXML 

encoded scores have been reported.  Translators between MIDI and MusicXML have 

also been produced. 

 

Discussion 
 

With the exception of MIDI, the music encoding schemes reviewed in these 

sections are used as file descriptions for the purposes of score printing, static 

musicological analysis or musical information retrieval. MIDI may be used for this 

purpose, but it was designed for real-time control of electronic instruments in both 

recording and performance environments. Its structure is based on events occurring at 

known times and so it may be considered a form of data that is suitable for streaming 

and processing in real-time. 
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MIDI control streams have limited capability when compared to other polyphonic 

representations such as MuseData, Kern and MusicXML. However, these 

representations contain much richer encoding allowing full score printing (in the case 

of MusicXML) or analysis using the Humdrum toolkit (as in the case of Kern). Kern 

relies on the expertise of an author in capturing the richness of the musical score using 

the language syntax.  

 

The question arises whether such a rich musical representation is needed for real-

time analysis. The input format to Temperley’s [Temperley01] preference rule based 

analysis is simply a list of note start and end times (in milliseconds). This is equivalent 

to the MIDI NoteOn and NoteOff events with an associated timestamp. The purpose of 

any analysis is to enrich the event stream; therefore requiring a richly encoded input 

(whilst advantageous) defeats the purpose of this thesis. 

 

The conclusion reached in this section is that whilst the richer encoding 

techniques (particularly Kern) reviewed might be appropriate for describing 

information extracted from a real-time musical stream, MIDI remains the best 

candidate for representing raw musical events. The elements of its compact structure 

contain the basic data needed as input to analysis components that can extract higher-

level information about the harmonic structure of the musical performance with the 

objective of approximating to the level of harmonic description provided by other 

representations such as MuseData and Kern. The only additional information required 

would be an accurate timestamp associated with the MIDI event. This information is 

readily obtained, but provides an added complication if the analysis and performance 

framework is deployed on a distributed processing infrastructure where timing 

information may be skewed due to different processor clocks and network latency.  

 

 

 

 


