HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING AND APPLIED SCIENCE

School of Electronics and Computer Science

Implementation and Validation of Model-Based Multi-threaded Java

Applications and Web Services

Pengfei Xue

Thesis for the degree of Doctor of Philosophy

October 2008

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

IMPLEMENTATION AND VALIDATION OF MODEL-BASED
MULTI-THREADED JAVA APPLICATIONS AND WEB SERVICES

by Pengfei Xue

In the software engineering world, many modelling notations and languages have
been developed to aid application development. The technologies, Java and Web
services, play an increasingly important role in web applications. However,
because of issues of complexity, it is difficult to build multi-threaded Java
applications and Web Service applications, and even more difficult to model.
Furthermore, it is difficult to reconcile the directly-coded application with the
model-based application.

Based on the formal modelling system, RDT, the new work here covers: (i) a
translator, RDTtoJava, used to automatically convert an RDT model into an
executable multi-threaded Java application; (i7) the framework for developing an
RDT model into a Java synchronous distributed application that is supported by the
JAX-RPC Web Services; and, (iii) the framework for developing an RDT model
into a Java asynchronous distributed application that is supported by the JMS Web
services.

Experience was gained by building distributed computing models and client/server
models and generation of the application based on such models. This work is
helpful for the software developers and software researchers in formal software

development.

Table of Contents

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

2.2

23

3.1

INtrOdUCTION c.uucceeeiernrcrsniiineicsnnecstecsnnesssnnssseessssncsssnessssesssnssssseans 1
Models and Formal Modelling............cccoeeiieiiiniiiiiieniieiieeieeieeeee e 1
Lo1oT MOAEIS. .t 1
1.1.2 Business process modelccceevuieriiiiiieniiieiieeie et 3
1.1.3 Formal modelling..........ccccveeriiieiiiieciieeiee e e 4
1.1.4 Model CheCKING.......c.coecuiiiiieiieieeieeee et 4
1.1.5 Model ChECKETScueiiiiiiiiiiieiee e 5
1.1.6 Model-based approachcecceeeeiieiiiiiiiiniieiieee e 7
1.1.7 Model driven architeCturecooeerieiiiienieiiieeeeeee e 8
Distributed SYStEMS.....cccuiieiiiiiiieiieiie ettt ettt e 8
SYNCATONISATIONviieiiiieciie ettt e e e e e e enaeeenes 9
WED SEIVICES ...euiiiiiiieiieeiteteet ettt sttt s 9
1.4.1 JAX-RPC WED SEIVICE ..cuveeiuiiiiiiiiiiiieiieeiee ettt 10
LiA.2 JIMS ettt 12
1.4.3 Synchronous Web SEIVICE........ccvvuiieriieeriieeiee ettt vee e 13
1.4.4 Asynchronous Web SErviCe.........cocveruieriieriieniieiienieeieeeie et eee e 14
1.4.5 Web application SETVETSccc.eeeeueeeriieeiieeeiieeeieeesveeesieeeeveeeseveeeeneas 14
Software Testing and Verificationcccoeeeeveiierieniiienieeiieeeeeeee e 16
1.5.1 VerifiCationcocuuiiiiiiiiiiiie ettt 16
L.5.2 TSN, c..eeeuiieiieeiie ettt ettt et e te et e st e et esaae et e ssbeenteesabaenseesnneenseens 17
MY CONIIIDULION ...ttt ettt eae e e e eeree e enreeenneas 24
OVEIVIEBW .ttt ettt sttt sttt ettt ettt st s ae bt sbe e besanesbeeae s 26
Formal Modelling System RDTcccoevvuericcrssrnnncccssssnneeccssnnns 27
RDT Language and NOtationccccccveeeiiieeriieeeiee e eee e eevee e 27
2.1.1 PIOCESS .ottt 28
2.1.2 MOACL ..ottt 31
2.1.3 RDT t0oO] fRAtUIES.......eevieeiieiieiieeieeeie ettt 32
RDTEOSPIN ...ttt et st e nae e ae s 33
RIDX e ettt 33
I 23 D28 I (00 N R 34
Conversion: RDT Model to Multi-threaded Java Application....................... 34

il

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

43

5.1

52

53

5.4

5.5

5.6

5.7

Mapping of RDT t0 Javac.cooeviiieiiieeiieeceeeee et 35

3.2.1 MOEL it ettt 35
3.2.2 PIOCESS weeeeeieiiieeeiiiee e ettt ettt e et e e e et e e st e e s et e e e e e e e enaaeeeeeannes 36
3.2.3 BVENE ottt st 37
3.2.4 VAIUC ..ottt 41
3.2.5 Before state and After State.........ccocueeviierieiiiieiieeiiece et 42
3.2.6 Process INStANCEcceeiuviiiieiiiiee et 42
3.2.7 CONNECLION ...ttt etieeite ettt et e stee et esateesbeeseaeeseessaeenbeessseenseens 43
SYNCATONIZAtIONeiiiiiieiiiicciie ettt eeeaaeeeenaeeens 45
The Traceable GUISccoiieiiieiiieiieie ettt 48
Branching Execution of EVents..........ccccvieiiiiiiiiiiciiiceeeeeeeeeeee e 49
Exception Handling...........coeviiiiiiiiiiiiiciceceee et 54
(07070161 13 5510 o F RS 56
RDTHEOWS..coriiiiiniinnnnicnsnnicssnsisssnssesssnsscssssssssssssssssssesssssssssnns 58
Build Web Services based on RDT Models with JAX-RPC 58
4.1.1 Mapping of RDT language to JAX-RPC Web service source code58
4.1.2 DEPIOYMENL....ccuiiiiiiiiieiieeiieiee ettt et e et eae bt eseaeeseesaaeenseesnnes 67
Mapping of RDT Language to JMS-implemented Web Service Source

Rttt ettt ettt e e et eenae bt e snbeenaens 69
4.2.1 Develop from RDT to Java Message Service.........ceevrercreeenreeennreenne. 69
CONCIUSION. ...ttt ettt ettt et e st e e seeesaeebeessbeenseens 79
Experimental Results.......cccoueeiiciisrnriccssssnnniccssssnnnecssssnnsnsssssnnes 80
| F3 L g 0T L 1o 1o) s NS 80
The Experimental Modelscoooieiiiiiiiiiiiiieeceee e 81
The Cycle Election Model...........cooovieiiiieiiiieiieeeeeeeee e 86
5.3.1 The Cycle Election Model (Model 1)cccevviieiiiiiiinieiiieieeieeee 87
5.3.2 The Cycle Election Model (Model 2)cccoeevevieeciieinieeeieeciee e, 93
The Probe/Echo Model.........cc.coiiiiiiiiiieiieeceee et 96
AN ANt MOAEL ...t 99
Online Flight Ticket Booking System...........cccccveviieniienieniieiieeieeieeee 104
Model-based TeStINGcceciiieiiieeieecie et 107
5.7.1 State-based teStINGcccuierieriieiieeieeteeee e 107
5.7.2 Event-based teStINgcceeevviieiiieeiiieciieeeie et 108

il

5.7.3 Message-based teStINGccevuvieeriieeiiieeiieeeiee et e 108

5.7.4 Connection-based teStINGcceeveeriierieiiieiieeie et 108
5.8 CONCIUSION. ...eiitiiiiiiiiete ettt et 109
6 Conclusions and Further WorK........coeicseccseicsseccsseecsencen 110
0.1 MY WOTK .ot ettt ettt et 110
6.2 Further Work ..o 111
6.2.1 TMPIOVEMENL ...ccoiiiiiiiieiiiieeiee ettt et e e ee e 111
6.2.2 ENhancement.............coiuiiiiiiiiiiiieieeee et 112
Appendix A Source Code.....eeecreicsseecssnecssnecsssesssseessssecsssncssse 114
A.1 Promela Model for a Cycle Election Algorithm (Asynchronous
COMMUNICATION) 1.eeiuttieeiiieeiieeeiieeeireeeieeesteeessaeeesereeessaeeeaseessseeessseeessseesnns 114
A.2 A Cycle Election Algorithm in Java (Synchronous Communication)......... 114

A.3 Promela Model for the Bully Algorithm (Asynchronous Communication).115

A.4 The Bully Algorithm in Java (Asynchronous Communication).................. 116
A5 RDTHOJAVA..ceiiiiiiiiiiieee e 117
Appendix B Example Models in XMLccoveiiveicseecsnecsnnecnnee 128
B.1 The XML Generated by the RDT Tool for a Cycle Election Model

(01 (06) B) SRR 128
B.2 The XML Generated by the RDT Tool for a Cycle Election Model

(01 (076 1 150 ST 131
B.3 A BULLY MOEL.....ooiiiiiiieiiee et 133
B.4 A Probe/Echo Model.........cocooiiiiiiiiiiiiiiiiiiicnccceeececeeeeee e 134
B.5 An Agent MOdel.......cccuiiiiiiiiiiiieeeeee e 135
Appendix C Example Models in Promela........ccueeeeeecvnnecccscnnnns 137
C.1 A Cycle Election Model (Model 1 with Synchronous Communication).....137

C.2 A Cycle Election Model (Model 2 with Asynchronous Communication)...139

Appendix D Implementation in Java.......eeecccncvneeccssssnnneccssnnns 142

D.1 A Cycle Election Model (Model 1 with Synchronous Communication).....142

D.2 A Cycle Election Model (Model 1 with Asynchronous Communication)...154

Appendix E Distributed System Based on Cycle Election Model

using RPC-based Web Service.......ciicnccnrccssnncsscnnicsssnsncssnsecscnsnes 167
E.1 Trigger Application Implementation...........coceeeuereenienienieneenienieneeeeeee 167
E.2 ParticipantO AppliCation.........cccceevvieeiiieiiiieeriie ettt 169
E. 2.1 INtTTACE ..cuveiieiieiieiceee e 169
E.2.2 Implementationccccecuieeiiiieeiieeeiie e e e eeaee e 169
E.3 Participant] AppliCation..........ceccueeiiieiiiiiiiinieeiiese et 173
E.3.T INETfaCE ..o 173
E.3.2 IMplementationcccueeeiieriieiienie ettt 173
E.4 Participant2 APPliCation.........ccceeeiiieeiiieiiieeeiie ettt evee e e e 177
E.4.1 INteTTaCe ..ot 177
E.4.2 IMPlementationc.cccecuieeiiiieeiieeeiieeeieeereee e eiee e e e e seree e 178
E.5 Participant3 AppliCation.........cceccueeiuieriieiiieiieeiiecite ettt 181
E.5. 1 INETTACE ..o 181
E.5.2 IMpPlementationccccueeeiierieeiiieeie ettt 181
| 23 (3 4] 1 1oL 185

List of Figures

Figure 1: The activities in a software development life cyclecccccevveeeviennnenn. 18
Figure 2: Relationships between Unit Test, Test Suite and Test Case 20
Figure 3: Activities in the approach to my current Worki...........ccceeeveeriiienciieennenn. 24
Figure 4: Before state and After Statecceceeriieiieniiieiieceeee e 28
Figure 5: Notation where the state 1S revisitedcccceevveeriieiiiieniieeceeeciee e 29
Figure 6: A WIIE @VENLccvieiiiieiieeiie ettt ettt ettt et siae et eae e seesaaeene 29
FIigure 7: A Create @VENT......cc.eiiiiieeiiieeieeeieeeeieeesteeesveeeiteeeseaeeeaaeesaeeessseeesnseeens 30
Figure 8: A Read VeNt........coeiiiiiiiiiiiiiieiectee e 30
Figure 9: Channel and Valueccoooiiiieiiiiiiii et 31
Figure 10: An instance of the Barber process named Jack..........ccceceveeniriinennenn 31
Figure 11: Connection NOtAtIONeeeiiieeiieeeiiieenieeeeieeeeeeeseeeeeteeesaeeesreeenaseeens 32
Figure 12: Translation of the Model block in an RDT model into a Java object
TNOAEL ..ttt sttt sttt 36
Figure 13: Translation of system model specification in RDT into Java code........ 37
Figure 14: Translation of the Read event in RDT into Java code.............cccuveennen.n. 39
Figure 15: Translation of the Write event in RDT into Java code..........c.cccceenueennene 40
Figure 16: Translation of the Create event in RDT into Java code.......................... 41
Figure 17: Channels and CONNECLIONScccuieruieeriieniieiienie et 41
Figure 18: Java methods for a Create (or Write) event and its Before state............ 42
Figure 19: Java methods for a Read event and its Before state..........c.ccccceveeneenene 42
Figure 20: Translation of an Instance of one Process in RDT into Java code......... 43
Figure 21: Translation of the Connection in RDT into Java code..........c..cccuenueennenn 44
Figure 22: Connection in RDTccoiiiiiiiiiiiecieeee et 45

vi

Figure 23: Connection 1N JAVAcccuiieiiieeiieeciieeeieeeeiee e evee e s eesaeeesnreeens 45

Figure 24: Message queue for asynchronous communication............c.ceeverveneeennens 46
Figure 25: Message queue for synchronous communication.............ccecveeeeveeenenennn. 47
Figure 26: Java code for the multi-threaded process..........ccecveevieriieriienieeniiennene 48
Figure 27: The GUI for each instance of the processccceevveeecieercieencieeenieenns 48
Figure 28: An Example GUILL.......cccoooiiiiiiiiiiiiieie et 49
Figure 29: RDT model with branching events............ccccceeeviieeiiieniiieeie e 50
Figure 30: Path selection: Case 1.........ccceviieiiieniieiiienieeiteeee et 51
Figure 31: The solution t0 Case 1.......cccoviieiiieiiiieciee ettt 51
Figure 32: An example GUIL for Case 1.........ccceeviieiiiiiiieniieieeiece e 52
Figure 33: Path selection: Case 2........cccciieeiiieeiiieecieeeciee ettt eee e aee e sree e eas 52
Figure 34: The solution t0 Case 2........cccuieriiiiienieeiieeie ettt 53
Figure 35: An example GUI fOr Case 2........ceevvuiieiiieeriie et eeee e 53
Figure 36: Path selection: Case 3.........ccccueviieiiieiiieiiieeieeiteee et 54
Figure 37: The solution t0 Case 3.......ccccvieeiiieiiieeeiee ettt eee e e e 54
Figure 38: An example GUIL for Case 3.........ccceeviieiiieiiieiiecieetece e 54
Figure 39: Java code for the Read event eXceptions..........cccueeeeieeeciiienciieencieeennenns 55
Figure 40: Java code for the Write/Create event eXCeptionsccceveevverveneeennenn 55
Figure 41: The RDTtoJava WindOW..........cccoiiiiiiiieiiieeciee ettt 56
Figure 42: JAX-RPC-based Web Service Interfacecccceeevieviieniienieenienene, 60
Figure 43: Development of system model specification in RDT into Java Web
SCIVICES COUR ...uiuiiiiiieitieiierte ettt ettt ettt ettt ettt et sbe et e 61
Figure 44: Translation of the Read event in RDT into Java Web services code..... 64

Figure 45: Translation of the Write event in RDT into Java Web services code 64
Figure 46: Translation of the Create event in RDT into Java Web services code... 65

Figure 47: Channel and Connection in Web services codeccceecveveenereeneennens 67

vii

Figure 48: Service configuration using WSDLc.coooiiiiiiiiiiiieieeeee e 68
Figure 49: JMS-based Web Services Interface..........ccoceevvieniiiiieniiiiienieeie, 70

Figure 50: Development of system model specification in RDT into JMS-based
WED SETVICES COUEC ...oniniiiiiiieieeiteseee ettt 70

Figure 51: Translation of the Read event in RDT into JMS-implemented Web
SCIVICES COUR ...veuiiiiiiientieite sttt ettt ettt et sttt et sae et et 73

Figure 52: Translation of the Create event in RDT into JMS-implemented Java
WED SETVICES COUEC ...oniiniiiiiiieieeiteseee et 75

Figure 53: Java specification and the Promela model for the cycle election

ALOTTENIM ..ottt ettt et e e b 82
Figure 54: Java specification and the Promela model of the Bully algorithm......... 83
Figure 55: An agent model architeCturecccceeeeienieninienieninieneeceeeee 84
Figure 56: The cycle election model architecture (Model 1).......cccccveevevievciieennnennn. 87
Figure 57: The cycle model during execution (Model 1)cccceeveriiniininiincnnnns 88
Figure 58: Process view of participant 2 in the cycle election model 88
Figure 59: Process view of participant 3 in the cycle election model 89

Figure 60: Message sequence chart in XSPIN of asynchronous communication
of the cycle election model (Model 2)cocuieriieiiiiiiieiieeieeeeeeeeeee e 90

Figure 61: Message sequence chart in XSPIN of synchronous communication
of the cycle election model (Model 1)ccociiiiiiiiiiiiiiieieeeee e, 92

Figure 62: Process view of participant 1 in the cycle election model (Model 2) 94

Figure 63: The cycle election model architecture (Model 2)..........cccevveririeneennene 94
Figure 64: The cycle model during execution (Model 2)ccceeevieviiiiniieennenn. 94
Figure 65: The probe/echo model architecture...........coveeverienieneniieniencnieneeee 97

Figure 66: Message sequence chart in XSPIN of synchronous communication
in a probe/echo MOdEl........c.oooiiiiiiiiiiiiee e 97

Figure 67: Message sequence chart in XSPIN of asynchronous communication
in a probe/echo MOdel..........c.eeeeiiiiiiiieieeeee e 97

Figure 68: An agent model architecturecoceeeeveriinieneniieneeccesee 100

viii

Figure 69: Message sequence chart in XSPIN of synchronous communication

1N an a@ent MOAEl........coouiiiiiiiiiiiieiieeeee e 100
Figure 70: An agent model during eXecutionccceeeeveeerveeeiieeeciieeeee e, 101
Figure 71: Online flight ticket booking SYStemccceveeveriieniineniienienenene 104
Figure 72: Model view of a cycle election modelccccvveveiiiiciiinciiecieeeee. 130
Figure 73: The cycle election model during execution (Model 1)c.ccucueee. 131

Declaration of Authorship

I, Pengfei Xue, declare that the thesis entitled “Implementation and Validation of
Model-Based Multi-threaded Java Applications and Web Services” and work
presented in the thesis are both my own, and have been generated by me as the
result of my own original research. I confirm that:

e this work was done wholly or mainly while in candidature for a research
degree at this University;

e where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has
been clearly stated;

e where I have consulted the published work of others, this is always clearly
attributed;

e where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work;

e [have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed

myself.

Name: Pengfei Xue

Date: 21/03/2009

Acknowledgements

My main thanks and gratitude go to my supervisor Professor Peter Henderson. He
stimulated my research interest in software engineering. He also made many
helpful suggestions, and gave me important advice and constant encouragement

during my study.

Special thanks should go to my supervisor Dr Robert J Walters. He gave me
remarkable help when I was in difficulty. I could not finish my study without his

valuable instructions and advice.

Furthermore I am deeply indebted to Eric Cooke for his kindness, friendship and

help. I am honoured to show my respects to him.

I also would like to thank Dr Des Watson, the external examiner of my PhD
dissertation committee, for the valuable advice he provided in completing this

thesis.

Finally I want to thank my parents, Bingzhong Xue and Yuchun Liu, and my
brother Pengyu Xue, for their encouragement and support throughout my PhD
study in the UK. They are my powerful source of inspiration and energy. A special
thought is devoted to my wife Zhiqiang Xu for her never-ending support. It is to
them that I dedicate this thesis.

Southampton in Oct 2008

Pengfei Xue

Xi

Glossary

BDD
EJB
FSP
JCAT
JIMS
JNDI
JPF
PRC
RMI
SMV
SCR
TFG
WSDL

Binary Decision Diagram

Enterprise JavaBeans

Finite State Processes

Java Coordination And Transactions
Java Message Service

Java Naming and Directory Interface
Java PathFinder

Remote Procedure Calling

Remote Method Invocation
Symbolic Model Verifier

Software Cost Reduction

Trace Flow Graph

Web Service Definition Language

Xii

1 Introduction

1.1 Models and Formal Modelling

1.1.1 Models

It is difficult to study the real world, because of its complexity. The popular
approach to studying the world is to study an object or an issue in its simplest
situation, only considering those circumstances relevant to the problem and
ignoring irrelevant aspects, and then go on to study more complex problems. This
approach is thus through a model, where the model is a simplified representation of

the real world or the problem.

In software engineering, models of software are often based on finite state
machines or graphs with well-defined mathematics [Clarke, Grumberg, et al. 2000].
Both models and modelling in software engineering are extensive topics and have a

long history.

Before systematic knowledge of modelling was available, researchers built models
manually. This manual building process involved designing, building, analysis,
checking and verification. The notations used for the development of models has
attracted a lot of attention, and, having developed them, and researchers then used
them to build models. The most popular modelling notation used now is Unified
Modelling Language (UML) [Stevens and Pooley 2000]. UML modelling has been

a remarkable success in software engineering.

Notations help the software developers build formal models, but the developers
still need to put a lot of effort into learning the notation and building models in a
specific notation. Researchers and IT companies build powerful code-generation
tool, such as Eclipse [Eclipse 2007] and Microsoft Visual Studio [Microsoft 2005],
to assist the developers to build models. With the help of such tools, developers
take the code-only approach to develop software. The developers develop ideas of
what model they want to build, and then finish some high level work in the tool’s
development environment. This is a good approach for small sized software

development projects, but it could possibly handle larger projects.

An improved approach is to use visualization of the modelling process. The
powerful software development tool, IBM WebSphere Studio, is a modelling
environment, which allows the developers to build and analyse models through the
graphical notation and editable text. The benefit of this approach is to show the
developers the code view and the model view simultaneously, but this approach
requires that the diagrams are tightly coupled representations of the code. This
approach is a better choice for experienced developers who have deep

understanding in modelling notation and use of the development tools.

At a higher level, the model-centric approach can be employed when the system
model has sufficient details. The developers can then generate the full system
implementation, or the framework only, from the models themselves with the help
of the generation tools. The model, the tools and the generation rules must
correspond. This approach requires that the developers create a model with rich
information, and the implementation generation tool should be specified for these

models. But the generation process is sometimes complex.

The model-only approach requires that as the size and the complexity of the
software and application increases, the size of the developer team increases as well.
The developers may come from the single organisation, or multiple organisations.

The developers need an agreed model to keep the same understanding of the big

picture. They will discuss, demonstrate and analyse such models. A good example

can be found in the enterprise architecture.

As described above, the model and modelling are important for the developers and
for software development. Based on the model and the development requirements,
different approaches can be used. The developers will select the appropriate
approach based on their requirements, their skill and experience, and the

development tools available.

1.1.2 Business process model

Generally, a model can represent a set of components of a process, system or
subject area. A business process can be seen as a set of components that shows a

set of activities.

The definition of a business process first comes from the business world. It is “4
structured, measured set of activities designed to produce a specific output for a
particular customer or market” [Davenport 1992]. It has also been defined as “a
collection of activities that takes one or more kinds of input and creates an output
that is of value to the customer” [Hammer and Champy 2001]. A business process
model describes the tasks involved in the process, and the order in which those
tasks have to be carried out. A task is usually the smallest unit of action. Each task
is performed by a function within the model. A role is a group of entities that
performs one or more tasks. A role may be assigned to carry out any number of

tasks. An entity can act in any number of roles.

A large number of established techniques support business process modelling.
These techniques include: Process Mapping [Damelio 1996], Role Activity
Diagrams [Phalp, Henderson, et al. 1998], Integrated Definition for Function
Modelling (IDEF) [Kalian and Watson 2003], and Flowcharting [HCI 2008].
Regardless of the technique, their common goal is to provide a representation of

objects that perform some functions and implement the information system.

1.1.3 Formal modelling

Formal modelling means the development of a model using a formal language,
based on a grammar, or formal notation. The formal modelling languages and
self-describing mark-up languages such as XML (eXtensible Markup Language)
[Ahmed, Ancha, et al. 2001; Ozu, Anderson, et al. 2001] are usually used to build

software models formally, and are currently used especially for web applications.

BPEL4WS (or BPEL) [BEA, IBM, et al. 2003] defines a model and a grammar for
describing a Web service, which is the behaviour of a business process based on

interactions between the process and its partners.

JML, the Java Modelling Language [Cheon and Leavens 2002], is a formal
behavioural interface specification language, for Java only, which specifies the
behaviour and the detailed design of Java program modules, such as classes and
interfaces. JML is more suitable than the other languages for documenting the

detailed design of an existing Java program.

There are many other existing formal modelling languages, such as B [Leuschel
and Butler 2003], apart from the languages we have mentioned. Each of them uses
a different approach, and has distinct features and application area. However, all of
them share the same criteria:

1. They should be easy for the designer or modeller to use.

2. The level should be acceptable to the user.
3. They should describe the model exactly.
4

. It should be possible to check the implementation against the model.
1.1.4 Model checking

Model checking [Clarke, Grumberg, et al. 2000; Holzmann 1997; Visser, Havelund,
et al. 2000] usually deals with establishing whether the design of a finite system

satisfies some properties. It is automatic, fast and repeatable.

When the model has an error, model checking will produce a contradiction, which
can be used to detect the errors in the design. Some powerful model checkers have
a runtime analysis function to trace the execution history of a model and then to
perform static analysis on this history. When doing static analysis of an individual
execution history, the state space of the model is reduced and errors in the design
can be checked. But, as some paths may not be executed in an individual execution,
it is possible to miss checking the whole model. This approach is taken by the
Eraser algorithm [Savage, Nelson, et al. 1997] for detecting potential data traces,
and the LockTree [Visser, Havelund, et al. 2000] and GoodLock [Havelund 2000]

algorithms for detecting potential deadlocks.

1.1.5 Model checkers

As we know, the model checkers are the assistance tools for model checking. So, a
model checker should have the ability to detect whether a finite state satisfies some
properties. Or we can say, a model checker is a procedure that decides whether a

given structure is a model of a logical formula or not.

When the model checker analyses all the reachable states and finds no errors, or no
violations, the checking is passed, and the model has been qualified, at least in this
model checker environment. When the model checker detects a violation, it will
generate a counterexample. The counterexample is a sequence of reachable states,
beginning with an initial state and ending with the property violation. The model
developer can determine what the error is, where the error is, and why there is an
error through analysing the counterexample. A counterexample is always used as a

test to compute the expected outputs.
1.1.5.1 The SPIN model checker

SPIN [Holzmann 1990; 1997; 2003; Holzmann and Joshi 2004] is a model checker
that can help the user find and diagnose concurrency-related bugs, such as deadlock

errors, race-conditions, and some problems related to improper synchronization, in

multi-threaded and distributed software systems. SPIN also can be used to prove

sophisticated temporal properties of models of asynchronous processes.

But SPIN is only supported by its own input language Promela [Holzmann 1997,
2003], which is similar in style to the C programming language. Developers must
be familiar with Promela, build a model in this language for the target system, and

then run the model through SPIN.

Running SPIN will identify sequences of system behaviour. When it finds
counterexamples to a properties correctness claim, it displays the error trace
information using the graphical interface XSPIN. Simulation and verification are

tightly coupled in SPIN.

SPIN was selected by Walters as the target for the automated transformation of
RDT models, and as the tool applied to verify RDT models [Walters 2002a; b]. The
tool RDTtoSPIN, which generates Promela code for the SPIN model checker,
developed by Walters, will be introduced in 2.

1.1.5.2 Other model checkers

Other model checkers are introduced and their features are discussed below.

1. SMV’s description language is too low a level for widespread use. SMV
represents the reachable states symbolically as a BDD formula [McMillan
2000]. It captures system behaviour as combinatorial and sequential logic, and

captures systems requirements as statements in temporal logic.

2. FSP (Finite State Processes) is an algebraic notation used to describe process
models [Magee and Kramer 1999]. FSP combines ideas from both Hoare’s
CSP [Hoare 1985] and Milner’s CCS [Milner 1989], and is designed to be
easily machine-readable. The tool LTSA checks FSP models for a variety of
fundamental properties [Magee and Kramer 1999].

3. JPF, Java PathFinder, has been developed by the Automated Software
Engineering group at NASA Ames Research Centre to make model checking
technology part of the software process [Havelund 1999; 2000; Havelund and
Pressburger 2000; Visser, Havelund, et al. 2000]. It has the advantage of
combining model checking techniques with techniques for dealing with large
or infinite state spaces. JPF uses state compression to deal with enormous
numbers of states, and partial order reduction and runtime analysis techniques

to reduce state space.

4. JPF and VeriSoft [Godefroid 1997] operate directly on Java programs, and
systematically explore their state space to check correctness. Bandera [Corbett,
Dwyer, et al. 2000] and JCAT [Demartini, losif, et al. 1999] translate Java
programs into the input language of an existing model checker such as SPIN or

SMV [McMillan 2000].

1.1.6 Model-based approach

The model-based paradigm uses formal models to enhance the maintainability and
correctness of software and system development. It helps in the design phase of the
system lifecycle, and plays an important role in testing and verifying the developed

system.

Agarwal has presented a model-based approach for building web-based complex
information systems [Agarwal, Bruno, et al. 2001]. This approach can integrate

features of an information system at the model level.

A visual approach, based on the use of software models and graph transformations
is presented by Hausmann [Hausmann, Heckel, et al. 2005]. This approach enables
the seamless development of Web service descriptions in a standard model-based

context.

1.1.7 Model driven architecture

Model Driven Architecture (MDA) is an approach to software development that is
centred on the creation of a model itself, rather than program code [Frankel 2003;
Kleppe, Warmer, et al. 2003; OMG 2007]. The MDA approach is to build an
architecture that separates the specification of a system from its implementation.
The issues of portability, interoperability, and reusability throughout this process

are very important.

Schmit proposed a model-driven approach [Schmit and Dustdar 2005], which
introduces transactions into the design without increasing the complexity of the
basic UML diagram. This approach can assists designers reuse the model of the

system to specify the properties of Web service.

Gronmo presented a framework which supports the model-driven development of
Web services [Grenmo, Skogan, et al. 2004]. With the help of this framework, a
Web service implementation template can be generated, which is based on the
specification of a Web service. The web application then will be developed, based

on this template.

1.2 Distributed Systems

Distributed systems [Ahmed, Ancha, et al. 2001; IEEE 1987; Kalian, Watson, et al.
2004; Long and Strooper 2001; Mukhar, Weaver, et al. 2003; Stevens and Pooley
2000] encompasses many areas of computer science, such as computer
architecture, networking, operating systems, embedded devices and security. In
recent years, the maturity of principal theories of distributed systems has led to
great success in many application domains, such as e-Business and web
technologies. A typical definition of a distributed system is “ome in which
components located at networked computers communicate and coordinate their
actions” [Colouris, Dollimore, et al. 2001]. The meaning of the term of computers
in this definition is comprehensive. Any device whose behaviour is totally or

partially the same as the behaviour of a computer is included in this definition. For

example, a mobile telephone is not normally regarded as a computer, but with the
development of mobile technology, it can be used to browse web sites and receive
e-mails across a wireless network, and has therefore become part of a distributed

system.

1.3 Synchronisation

In distributed systems, communication between the sending process and receiving

process must be either synchronous or asynchronous.

In synchronous communication, the sending and receiving processes synchronize at
every message. Whenever a send is issued, the sending process is blocked until the
corresponding receive is issued. Whenever a receive is issued, the receiving

process suspends until a message arrives [Colouris, Dollimore, et al. 2001].

In the asynchronous form of communication, the use of the send is non-blocking in
that the sending process is allowed to proceed as soon as the message has been
copied to a local buffer. In distributed systems, most of applications are

asynchronous rather than synchronous.

In a Java system environment, the multiple threads mechanism in a single process
is efficient in handling both asynchronous and synchronous communication using

queues.

1.4 Web Services

Java Web applications are important feature of the Java 2 Platform Enterprise
Edition (J2EE). J2EE consists of application technologies for defining business
logic and accessing enterprise resources such as databases, Enterprise Resource

Planning (ERP) systems, messaging systems, e-mail servers, and so forth.

Web services is a new breed of web applications as a foundation for creating the next
generation of distributed applications [Gottschalk 2000]. Web services can be
developed and used by any language, using any component model, running on all
operating systems. HTTP is employed as the underlying transport to pass requests
through firewalls. XML is used to format the parameters of the request, and the
parameters of the feedback, so the request and its feedback are independent and are

not tied to any particular component technology or object calling convention.

1.4.1 JAX-RPC Web service

1.4.1.1 RPC

Distributed systems require that computations running in different address spaces,
potentially on different hosts, are able to communicate [Gottschalk 2000]. The
most popular programming abstraction for distributed computing is the remote
procedure call (RPC), using a middleware package such as CORBA [OMG 1993],
DCOM [Microsoft 1996], and Java RMI (Remote Method Invocation) [SUN 2003a;
b]. Java supports remote objects through RMI. RMI essentially allows remote Java
objects, that implement a remote interface, to be invoked by clients almost as
though they were invoking a local method [Harold 1997]. RMI provides
heterogeneity across operating systems and the Java vendor, but not across

languages.

Web services are components, which reside on the Internet, that have been
designed to be published, discovered, and invoked dynamically across various
platforms. The methods that reside in a specific Web service, may use Simple
Object Access Protocol (SOAP) to send or receive data in the form of XML
[Ruggiero 2003].

The following are the major technical reasons for choosing Web service applications

[Nagappan, Skoczylas, et al. 2003].

e Web services can be invoked through XML-based RPC mechanisms across

firewalls.

10

e Web services provide a cross-platform, cross-language solution based on
XML messaging.

e Web services facilitate ease of application integration using a lightweight
infrastructure without affecting scalability.

e Web services enable interoperability among heterogeneous applications.

1.4.1.2 SOAP

The fundamentals of SOAP (Simple Object Access Protocol), and the role of
SOAP in developing Web services architecture, and its implementation, will be

briefly introduced here.

Using XML notation, SOAP defines a lightweight protocol and encoding format to
represent data types, programming languages, and databases. SOAP can use a
variety of Internet standard protocols (such as HTTP) as its message transport, and
it provides conventions for communication models like RPCs and document-driven
messaging. This enables synchronous communication and asynchronous

communication over HTTP.

To enable SOAP messages to communicate with J2EE-based components and
messaging applications, most vendors provide SOAP messaging over Java
Messaging Service (JMS), with JMS-compliant MOM (Message-Oriented
Middleware) providers. This allows SOAP-based asynchronous messaging, and
enables the SOAP messages to achieve reliability and guaranteed message delivery

[SUN 2003c].
1.4.1.3 JAX-RPC

JAX-RPC stands for Java API for XML-based RPC. JAX-RPC uses the remote
procedure calls (RPC) and XML-based protocol, such as SOAP, to build Web
services and clients. It can be used to develop applications, in a distributed

client/server model, across platforms.

11

With JAX-RPC, clients and Web services have a big advantage: the platform
independence of the Java programming language. JAX-RPC uses technologies
defined by the World Wide Web Consortium (W3C): HTTP, SOAP, and the Web
Service Description Language (WSDL). WSDL is an XML-based language for

describing Web services and how to access them.

1.4.2 JMS

JMS (Java Message Service) is one important library in the J2EE, and includes a
set of interfaces and associated semantics, which define how a JMS client accesses
the facilities of an enterprise messaging product. JMS supplies an API for the Java
application to create, send, receive and read messages, and support a framework for

asynchronous messaging.

JMS provides two types of messaging models: point-to-point messaging and
publish-and-subscribe messaging. The characteristics of each model are covered

below.
1.4.2.1 Point-to-point messaging

The application, based on the point-to-point messaging model, is built around
message queues, and has a one-to-one relationship between sender and receiver.
Each sender posts the message to a queue, from where the receiver removes
messages. There is no mechanism to send a message to a particular receiver. Many
receivers can access the same queue, but only the first to pick up the message will
receive it. The sender may set a timeout on a message, after which it will be deleted

from the queue, but this is not mandatory.

JMS point-to-point messaging has the following characteristics:
e FEach message is produced by the sender and consumed by one and only one
receiver.
e Messages are either, consumed by the receiver, or they are timed out and

are deleted by the JMS provider, if a timeout on this message has been set.

12

e Receivers can consume the message only after it has been sent.

e The instance of the receiver is dependent on whether the message is
produced.

e The receiver cannot request a message.

e The receiver can acknowledge receipt of the message if required.
1.4.2.2 Publish/subscribe messaging

The JMS publish/subscribe messaging domain has a completely different
mechanism. With the publish/subscribe model, senders post messages to a topic;
many receivers can register interest in a topic by subscribing to it. Because of these
features, this messaging approach is not suitable to communication within RDT

models, so I selected the point-to-point model.

1.4.3 Synchronous Web service

The JAX-RPC runtime system runs on both the client side and the server side. It
automatically takes care of marshalling/un-marshalling messages between the
client and the server. These messages (basically SOAP messages) are sent using the
HTTP protocol. JAX-RPC also provides both Java-to-WSDL and WSDL-to-Java
mapping tools. The former generates a WSDL [W3C 2001] description of the
service from the service’s definition classes. However, this tool cannot handle
overloaded methods. The tool automatically renames an overloaded method by
appending some characters to it. For example, two methods, called “sendMessage”
in Java, in the WSDL document might be called “sendMessage” and

“sendMessage 1.

The WSDL-to-Java mapping tool works on the client side to generate references
(stubs) to the service’s methods from the WSDL document of the service. These
stubs are used by the client program to call the service’s methods. Unlike RMI
(Java’s version of RPC), the stubs are generated on the client side (and not on the

server) and thus are not downloaded at run time.

13

1.4.4 Asynchronous Web service

Many Web service frameworks, such as Apache Axis, only allow for synchronous
invocation. This is unacceptable, especially as the Internet has latency and
unexpected errors cause unpredictable invocations. In such cases, we require the
client to handle the invocation asynchronously. That means the client processes
should resume their work while the invocation is handled, no matter how long the
latency is. In addition, the time taken to process the Web service should be
tolerated. As mentioned before, most Web service frameworks are initially
designed for synchronous communication rather than for asynchronous
communication, so we need to provide the asynchronous behaviour on top of the
synchronous invocation layer, to handle all of cases. My work covers building a
framework using patterns for asynchronous invocation of Web services, and can

handle with both asynchronous communication and synchronous communication.

There are various approaches to integrating messaging protocols into Web services,
such as the use of Java Message Service (JMS) [Monson-Haefel and Chappell
2001] in Axis and WSIF [Apache 2007], JAXM [SUN 2007], and Reliable HTTP
(HTTPR) [Banks, Challenger, et al. 2002]. These protocols provide asynchrony at
the protocol level. They are more sophisticated than simple asynchronous
invocations and use a different communication paradigm than synchronous

protocols.

1.4.5 Web application servers

Because of the success of the Java platform, the term application server refers to a
J2EE application server. Many companies offer application servers; here the

features of some of them are introduced.
1.4.5.1 Apache Tomcat

Apache Tomcat is an open source implementation of Sun’s J2EE Web container
[Apache 2002]. It is designed to run on J2SE 5.0 and later, and requires

configuration to run on J2SE 1.4. Tomcat can be freely downloaded on any

14

operating systems and used in any organization for academic or commercial
purposes. Tomcat can function as a web server, and can also be integrated with

other web servers for open source application development.
1.4.5.2 IBM WebSphere

WebSphere is the IBM software product designed to help deliver dynamic
e-business quickly [BEA, IBM, et al. 2003]. The technology that powers
WebSphere products is Java. It contains full J2EE 1.4 support, but its limitation is

that only single-server environments are supported.
1.4.5.3 BEA WebLogic

BEA WebLogic server includes BEA WebLogic Express, which is a scalable
platform that serves dynamic content and data to web and wireless applications
[BEA 2003]. WebLogic offers many services and APIs, including JDBC, JSP, Java
servlets, RMI, and Web server functionality. WebLogic Express is different from
WebLogic Server in that the former does not provide EJB, JMS, or the two-phase

commit protocol for transactions.
1.4.5.4 JBoss

JBoss application server is the most widely used Java application server on the
market [JBoss 2003]. It is a J2EE certified platform for developing and deploying

enterprise Java applications, Web applications, and Portals.

JBoss application server has the following advantages:
e Open standards and open source
e Simple to use
e Clustering and high availability

e Pure Java
I chose Tomcat 5.5 and JBoss 4.0.2 as application servers. This decision was based
on the common features of both products as follows:

e Free software

15

e Open source
e Pure Java support
e JMS support

e (Queue management

1.5 Software Testing and Verification

Most software has faults. It is complicated to develop provably error-free software,

and there are no efficient testing approaches which can test all type of software.

It is important to make sure that the software can perform as expected, and its
functional and non-functional specifications are satisfied. This is the task of
software testing. As the size and the complexity of software increases, testing
becomes more challenging. Testing will cost a lot during the software development
life cycle. The cost of this assurance ranges between 50 and 75 percent of the total

development cost [Patton 2000].

The following section briefly describes the verification and testing technologies in
the different software development stages, and introduces some support tools as

well.

1.5.1 Verification

Verification consists of checking that a specification satisfies a property which may
be given by a temporal logic formula, algorithm or another more abstract definition.
The process of verification presents a lot of features: partial verification, on-the-fly
checking, reductions, etc., which are all relevant for the problem of test generation

from a formal specification.
Researchers have attempted to build tools to support automated verification.

Thompson presented a tool used to represent properties as deterministic finite state

automata over the TFG (Trace Flow Graph) language [Thompson 2000]. Although

16

this has so far not been a natural language template, clearly it will be helpful in
analysing finite state software. Tufarolo describes the design and implementation
of an RTI (Run Time Infrastructure) verification system (the Verifier) [Tufarolo,

Ives, et al. 1999; Tufarolo, Nielsen, et al. 1998].

1.5.2 Testing

Testing is obligatory for software validation during the software development
lifecycle. The principal purpose of testing is to detect the faults and errors in a
software system. The developers use commercial tools and testing approaches to

provide a solution to the problem of building fault-free systems.

The overall goal of testing is to provide confidence in the correctness of a program.
The only way to guarantee a program’s correctness is to execute it on all possible
inputs, but this is usually impossible. The most feasible alternative then is to build
a test set that has enough significance to reveal the maximum number of errors, so
that a test can give confidence to the programmer that the program meets its

specification as regards correctness.

The two most popular testing approaches are black box testing and white box
testing. The black box testing method (called behavioural testing) is an approach to
find errors in a program by validating its functionalities, without analyzing the
details of its code, but using the specifications of the system. The goal is to answer
the question “does a program satisfy its specification?” Black box testing is much
simpler than white box testing because it ignores the details of the structure, thus

testing at higher levels of abstraction.

White box testing (called structural testing) is to test the software from code level
to the functions level. Each line of source code will be executed, and each single
function will be tested. Parts of a program may be tested as well, but this is difficult

to design.

17

In practice, a single test design method has not proven effective to use to test all of
the software. A mixture of different methods should be used, so that we can expect

to detect more faults and errors. Such an approach is called grey-box testing.

Aystem Requirements

A
i
:
! Joftware Requirements [
!
]
i *
1 1
! : :
i i Analysis
1 1
! 1
] i
1 1
' i ¥
1 1
! H Design L
: : = (I b
i i w1 Verification
- r
! b e /
Static Testing S oon 'r'
---------------------- oding |
r"'— ’
-'.-"' Testing Testing by
-t - [&==mm- Exention
__________ e .
Debugging === A
o 4 €
----------- | Production’
Dreployment

Figure 1: The activities in a software development life cycle

Regression testing refers to the testing approach where a modified version of a
component or application is tested, in order to ensure that existing features are still
intact. This testing approach and other testing methods have been used by Beydeda
[Beydeba and Gruhn 2002] and Yamaura [Yamaura and Onoma 2002].

Integration testing for object-oriented and concurrent programs was introduced by
Chen [Chen, Chen, et al. 2002]. The paper reviews the common techniques for
program testing at four levels, namely the algorithms level, class level, cluster level,
and system level. Program testing includes state-based testing, event-based testing,
fault-based testing, deterministic and reachability techniques, and formal and

semi-formal techniques, at the cluster level.

18

System testing is designed to reveal defects that are not caused by individual
components, or that only happen during execution of the system. This approach
focuses on the issues and the behaviours that can only be exposed by executing the
whole system or a major part of the system. In practice, black-box testing is
predominantly used for system testing. The obvious reason is that the number of

possible paths that are required to structure test a system is far too large to handle.

When a partition testing approach is employed, first the testing criteria must be
decided. The input domain is then divided into two or more separate sub-domains
according to such criteria, and then test data are selected for each sub-domain.
Chan designed a partition schema that manages how the input domain can be
divided, and a test case allocation scheme that controls how to allocate test cases to
the sub-domains [Chan, Chen, et al. 1997]. Chen also used the partition test and

another testing technique, random testing [Chen, Tse, et al. 2000].

The lowest level of testing is called unit testing. Each function, module or class is
individually tested. Unit testing has the highest chance of controlling the execution
and observing unit faults, but it does not give any information about the correctness

of the behaviour of the whole system.

Another noticeable issue is that there are many claims for automatic test assistant
tools, such as JTest [Parasoft 2003]. Boyapati presents a novel framework, called
Korat, for automated testing of Java programs [Boyapati, Khurshid, et al. 2002].
Korat takes a given formal specification for a method, and uses the model
pre-conditions to generate test cases automatically. The method will be executed
for each test case, and the method post-conditions are checked against the

correctness of each expected output.
1.5.2.1 Model-based testing

Model-based testing is proposed as a technique to automatically verify that the

implementation of a system is matched to its specification. Apfelbaum and Doyle

19

introduced this technique generally [Apfelbaum and Doyle 1997]. Esser and Struss

presented the case study of model-based testing for embedded software system

[Esser and Struss 2006].

This technique is employed for my work, along with test case generation.

1.5.2.2 Test cases

The Test Case (see Figure 2) has been defined in several ways.

Uit Test Test Suite Test Case

Figure 2: Relationships between Unit Test, Test Suite and Test Case

Documentation specifying inputs, predicate results, and a set of execution
conditions for a test item [I[EEE 1998].

A set of test inputs, execution conditions, and expected results developed
for a particular objective, such as to exercise a particular program path or to
verify compliance with a specific requirement .

The specific inputs to try and the procedures to follow when testing the
software [Patton 2000].

A sequence of one of or more subtests executed as a sequence because the
outcome and/or final state of one subtest are the input and/or initial state of
the next. The word ‘test’ is used to include subtests, the test proper, and test

suites [Beizer 1995].

It is complicated to design suitable test cases, and the complexity comes from three

sources:

A specific type of test is efficient for some test targets. Increasing the
number of tests will increase the efficiency.

There are no specific test cases that are perfect for all tests. It is possible
that a specific test case is perfect in one or more tests, but it is impossible

that a specific test case is perfect for all of tests.

20

e Test cases are designed by the testers, so the experience, skill and style of

the testers will impact the quality of the test cases.

Model checking is applied to test case generation and coverage evaluation as a
popular formal verification technique for both software [Krichen and Tripakis
2004] and hardware [Lerda, Sinha, et al. 2003]. Model checking can be used to

compute the test outputs. It also can be used to create counterexamples.

Kansomkeat and Rivepiboon proposed a transformation method from UML state
chart diagrams, created by the Rational Rose tool, into intermediate diagrams,
which are used to generate test sequences [Kansomkeat and Rivepiboon 2003]. The
testing criterion used to guide the generation of test cases is the coverage of the
state and transition of the TFG (Trace Flow Graph). The measure of effectiveness
of test cases is their ability to detect faults. Simple test experiments show high
effectiveness of the generated test cases. However, extensive experiments are
needed for more confidence in the testing techniques and to compare them with
other techniques in terms of cost and effectiveness. Kansomkeat and Rivepiboon
evaluated the effectiveness of their test cases using a fault injection technique,
called mutation analysis. Mutation analysis is a fault-based strategy that starts with
a program to be tested and makes numerous small syntactic changes to the original

program (or the specification).

The model checker SMV is used to obtain a test sequence from a system property
and an SCR (Software Cost Reduction) requirement specification [Gargantini and

Heitmeyer 1999].

Testing remains a labour-intensive activity, thus error-prone. My work includes
automatically generating test cases from an RDT model. When testing the message
flows of a system, the processes, or changing states, the following are some of the
more frequently used testing techniques. The most important, and widely used,
testing techniques are based on path testing. This kind of testing uses the flow

graph, which is the Process View or Model View graphics that are shown on the

21

RDT. It compares the model executed behaviour with the desired behaviour.
Transaction flow graphs specify the high-level behaviour of a whole system. These
testing methods are the normal approaches for static model testing. This research
also uses them in testing RDT models and in the actual distributed system, with
automatic test case generation. Message passing in the distributed system is
important. An invocation of a particular test case can lead to one of the following

results [Goschl and Sneed 2002]:

e Passed

e Failed

e Crashed
e Obsolete

A test case fails if it does not fulfil all required post-conditions of the test. A test
case crashes if an exception is propagated out of the test case implementation. A
test case is obsolete if it is not used any longer [Sneed 1998]. The test cases in my

research will cover dynamic message passing.
1.5.2.3 Testing and verification of distributed systems

There is much published on testing traditional systems. There are a number of
proposals for concurrent and distributed systems, but it is not clear how they scale
up or how widely applicable they are. There are very few case studies on this topic,
and typically, they are not detailed enough to be of practical use [Long and
Strooper 2001]. In addition, very few papers on distributed systems testing deal
with the issue of concurrency. They assume that the middleware handles all

concurrency issues [Xing, Lyu, et al. 2000].

Distributed systems testing covers acceptable performance (latency), fault tolerance

(partial failure), concurrency, operating environment issues, and security.
Latency of responses between the server and its distributed components is an issue.

In the case of partial failure, components need to decide how long to wait to be

serviced before “giving up” and proceeding, or throwing an exception, or timing

22

out. Servers often handle multiple clients by using concurrent programming
techniques such as multiple threads. Hence, the existence and safety properties of
these concurrent systems need to be addressed. Due to the heterogeneous nature of
distributed system platforms and architectures, consistent behaviour across the
application cannot be guaranteed. Errors can occur when objects are serialised in
one environment and reconstructed in another environment. Security is a further
issue that may need to be addressed, since messages may be sent across a public

network.

Distributed applications (such as file sharing, web and mail service) are very
difficult to implement. Traditional testing methods alone are not suitable for
verifying the correctness of distributed applications, due to their significantly

higher complexity over local applications [Kaveh and Emmerich 2001].

Testing distributed systems usually follows the steps of single component test,

integration tests of components, and finally the system test.

Stoller described the multi-process approach to model checking and testing
distributed programs [Stoller and Liu 2001]. Their approach is to combine multiple
processes into a single process, to replace RMIs with local method invocations that
simulate RMIs, and to replace cryptographic operations with symbolic counterparts.
In my research, the local Java model is extended to the remote Java object model.

The testing covered both models.

Tsai proposes a scenario-based and object-oriented test framework to test

distributed systems [Tsai, Yu, et al. 2003].

Callahan and his colleagues show a formal testing approach based on model
checking to assess the impact of a specification change in terms of the proportion
of existing tests that are invalidated due to the change [Callahan, Schneider, et al.

1996].

23

My approach will provide automatic test case generation based on model checking
to support and cooperate with other technologies to test distributed applications
[Long and Strooper 2001; Tufarolo, Ives, et al. 1999; Tufarolo, Nielsen, et al.
1998].

1.6 My Contribution

The building of a Java multi-threaded application, and of Web services, and of a
distributed system based on a formal model, are still tough problems. Here I offer a

solution to both issues.

| JAX-RPC Web Sewvices | | Distributed System | JMS Web Services |
| p []
JBoss/J2EE ROTloWS ~ RDT RDTtoWS JBoss J2EE

+ +
| Synchronous Web Application | | RDT Model | Asynchionous Web Application |

ROTtodava RO ROTtoSPIN

‘| Promela Mode |

A - ¥
| Java Muktithreaded Application | = 7
. l Model Execution | SPIN
Java ~ : P
| Multi-threaded Application | | Model Checking/ Simulation |

Figure 3: Activities in the approach to my current work

The RDT tool [Walters 2002b] has been accepted as a formal model developing
tool. Based on RDT, I am trying to build a set of tools, elaborated in Figure 3. The
RDT tool is used to build up a model of the distributed system. The tools RDX and
RDTtoSPIN will help me analyse and evaluate the models I built, so that the
quality of model can be guaranteed. The tool RDTtoJava, which will run in a Java
environment, will translate the model into a Java threaded application
automatically and directly. The framework RDTtoWS will help me develop RDT
models into JAX-RPC Web service applications and JMS Web service applications.
The J2EE technology, the web application JBoss, and Apache Tomcat, will run

24

JAX-RPC Web service as a synchronous Web application, and run JMS Web

service as asynchronous Web service.

During the tool and the framework development, testing is an important issue.

The items in Figure 3 are specified thus.

e Distributed System (white box). The application or system will be built.

e RDT Model (grey box). A distributed system is described in a RDT model

e RDT, RDX and RDTtoSPIN (in green). Tools developed by Robert
Walters.

e RDTtoJava and RDTtoWS (in red). Tools developed by me.

e Java and SPIN (in blue). Free public software tools used in my work.

e Promela Model (light green box). A Promela model is translated from RDT
model by the tool RDTtoSPIN.

e JAX-RPC Web Service, IMS Web Service and Java Multi-threaded
Application (white box). Applications generated by my tools.

e Model Execution, Model Checking/Simulation, Multi-threaded Application,
Synchronous Web Application, Asynchronous Web Application (light blue
box). The implementations of web application and multi-threaded
application.

e Test Record (purple box). Test reports from the applications.

With the assistance of my tools, software developers can build applications directly

and quickly. Software engineering research will benefit as well.

The classic distributed communication models have been selected for investigation.
The RDT tool focuses on the business process model; this is the first time this tool
has been used to build up models of distributed systems. Special attention has been
paid to synchronous and asynchronous communication models. From my
experiments, developers can get some idea of the architecture and structure of the

system they can choose.

25

The automatic generation of test cases and model-based testing are also addressed.
As my tools can generate both the code and the whole application, the software

developer can undertake the simple code change work to design their test cases.

This is a development package, based on RDT, which starts from a model, through

creating the application, and on to acceptance testing.

1.7 Overview

2 gives an overview of the RDT, RDX and RDTtoSPIN in the RDT toolset
developed by Robert Walters. The language and the notation employed in RDT are
presented. The features of RDX and RDTtoSPIN are also introduced.

3 introduces a new tool, RDTtoJava, which is a translator for the conversion of an
RDT model into a Java multi-threaded application. In particular, the mapping from

the RDT language to the Java language and the deployed system are described.

4 introduces the framework to transform an RDT model to a synchronous
application using JAX-RPC Web service, and to an asynchronous application using

JMS Web service.

5 presents sample RDT models to illustrate my approach. The model generation
tool RDT builds the models and generates the XML files, which will be employed
by the RDX and RDTtoJava tools. The experimental results for these models are
given. RDTtoWS develops and deploys these RDT models into synchronous and

asynchronous Web services. The testing issue will be introduced as well.

6 summarises my work and discusses future work.

26

2 Formal Modelling System RDT

This chapter introduces the formal modelling system RDT developed by Walters
[Walters 2002a; b; 2005]. This system includes RDT modelling language and
notation, and three tools in the RDT toolset: RDT, RDX and RDTtoSPIN.

RDT is a graphic language for the description of processes and systems built from
communicating systems and instances of these processes [Walters 2002a]. As the
foundation of my work, RDT language along with the RDT notation will be
introduced in detail in this chapter. Generally speaking, RDT is a feasible tool with
which to build a model of a system. RDX is a RDT model execution tool.
RDTtoSPIN is a tool to translate an RDT model into a Promela model, “source
code to source code”, automatically; and then the model checker SPIN will run this
Promela model to check the RDT model. These tools are used in my work to

develop RDT models and model checking.

2.1 RDT Language and Notation

The tool RDT differs from traditional modelling languages in that models
constructed using the language, are built by drawing diagrams in place of normal
textual descriptions. It also generates a textual file in XML format. As a modelling
system, RDT gives the modeller a friendly diagrammatic interface to start building
a model, and it supplies a simple system for the modeller to build a model. The
modeller can define the behaviour and structure of the channel-based

communications system.

27

RDT language uses the pi-calculus as its foundation [Milner 1993]. The RDT
model is made up of some Instances of some type of Process. The Process is
defined by Before state, Event, Channel, Value and the After state. Communication
between pairs of Instances of Process is done by the Connection function, which
connects the Channels of one Instance of one Process to another. More details
about RDT language and notation are covered below, along with some features of

RDT tools.
2.1.1 Process

The basic component in the RDT system is a Process. Each Process is a type of
object. It has a public identifier. All events in the Process can be created and

identified by the modeller.
2.1.1.1 State

When a new process is created, the internal state is set to a value of “initial”.
Processes proceed from one state to another by taking part in events. For each
event, there is a Before state and an After state (see Figure 4). Where a state is

re-visited, its name is suffixed with an ‘=" character (see Figure 5) as a special case.

O Before state

Create event Val —3C

O Lfter state

Figure 4: Before state and After state

28

() iritiat
start election

EL —pouth

O iritial=
Figure 5: Notation where the state is revisited

2.1.1.2 Event

An RDT process may take part in three types of event, which are Read, Write and
Create. A Read event is an action where the process reads a message from a
channel; a Write event is an action where an object writes a message to a channel; a
Create event is a special type of Write event, where the value to be written to the
channel by the event is new and created as part of the event. A Write event is
shown as a clear square. A Create event is a special case of a Write event
distinguished in the diagram by a cross in its box. The Read event is drawn as a

black square. The conditions for these events are discussed below.

Four conditions for the Write event (Figure 6) must be true:
1. The named state of the process must be the Before state of the event.
2. The specified local channel name must be associated with a channel.
3. The specified process value name must be associated with a value.
4

The channel must be prepared to accept a new value.

2 Ready
1l.lr3|_..,|:
Write event
i Received

Figure 6: A Write event

29

Three conditions for a Create event (Figure 7) must be true:
1. The process must be in the stated Before state.
2. A new local channel is created.
3. The specified local channel name must be associated with a channel.
4

The channel must be prepared to accept a new value.

O Before state

Create event 74 —

O A fter state

Figure 7: A Create event

Three conditions for the Read event (Figure 8) must be true:
1. The name state of the process must be the Before state of the event.
2. The specified local channel name must be associated with a channel.

3. The specified channel must have a value available for the process to read.

Before state

Eead esrert.
val €

After state

Figure 8: A Read event

2.1.1.3 Channel and value

The communication between instances of the processes must be done through
channels. The instances of the same type of process can be connected with one or

more channels by exchanging the value. The value can be viewed as a message

30

which is passed from one process to another via a specified channel. A value is

written to a channel, and a value is read from a channel as well.

Walue -=Channel

Figure 9: Channel and Value

2.1.2 Model

After creating the processes, the modeller can create instances of them and can then

set up connections between them to form the complete model.
2.1.2.1 Instance of Process

A single Instance is one of a type of Process that has been defined. For all instances
of one type of Process, each one has an identification name and inherits all

functions of this type of Process.

Jack: Barber

Figure 10: An instance of the Barber process named Jack

2.1.2.2 Connection

The Connection describes the associations between pairs of Instances of Processes.
When the Connection is created, the Instances that have been connected can send
and receive messages from each other. In the example shown in Figure 11, an
Instance a of the Process Processl has a channel outbox, and an Instance b of the
Process Process2 has a channel inbox. When the Connection between inbox and
outbox is done, it means a and b is connected, and the messages could be passed

through this connection.

31

othox

a; Process] .
irbox

b Processs .

Figure 11: Connection notation

2.1.3 RDT tool features

The use of the RDT tool to build a model is covered in [Walters 2002b]. Here, I

present three major functions of the RDT tool.
2.1.3.1 Channel length

RDT offers the modeller the option to specify the length of Channels used in their.
When the length of a Channel is zero (the modeller just types 0 to make this
selection), then the communication is synchronous. However, when the length of
Channel is non-zero (an integer, which must be larger than 0), then the

communication is asynchronous.
2.1.3.2 Process View

Along with the Model View, Process View allows the modeller to look at the
Process during and after modelling. Process View will show all information for
each Process, but does not cover the information about the connection with other

Processes.
2.1.3.3 Model View

During the process of modelling, the modeller may view the current model from
time to time to confirm that the modelling process is acceptable or not. The RDT
tool supplies a Model View mechanism to look at interaction between the Instances

of all type of Processes. Here, the information within the Process is invisible.

32

2.2 RDTtoSPIN

The SPIN model checker is one of the most widely used in the world, and it is
selected as the model checker for the RDT model. The RDTtoSPIN tool takes the
XML file of a RDT model and transforms this into Promela, the input language for
the SPIN model checker. The modeller can then use SPIN to check this RDT

model.

2.3 RDX

RDX is the model execution tool. It takes the XML file of a model generated by
RDT and executes the model. The tool uses an interface inspired by that of the
RolEnact execution tool [Henderson, Howard, et al. 2001; Henderson and Walters
1999; Phalp, Henderson, et al. 1998]. A successful outcome of this tool is that the
modeller can see the dynamic asynchronous and synchronous communication
between the processes, the status of the processes, the event that the process will

execute next, and messages in the channels.

Each process instance in the model has its own window, in which the state of the
process, the channels, and the event for next action, are shown. Each channel has
its own window in which the values written to the channels and not yet read are

shown.

33

3 RDTtoJava

RDTtoJava transforms a RDT model to a Java multi-threaded application. This
chapter describes the approach of transforming RDT language into Java by
defining transformation rules and methods, and discusses some important ways to
enhance productivity and to reduce chances of making mistakes in system

development.

We can learn some lessons from the Java2Promela translator [Basin, Friedrich, et
al. 1999], which was designed to generate the Promela description of a Java
multi-threaded application. The RDTtoJava is developed in Visual Basic 6.0

[Halvorson 1998]. This tool can be run on any operating system by Microsoft.

3.1 Conversion: RDT Model to Multi-threaded Java Application

My work focuses on the translation not only from RDT language to Java code, but
also from RDT models to Java object models at the model level. As a completely
object-oriented programming language, Java develops models or applications using
analysis focusing on object classes and their relationships [Sommerville 2001]. All
classes in Java extend the class Object, either implicitly or explicitly. An object
class is an abstraction over a set of objects which identifies common attributes, and
the service or operations provided by each object. Objects are executable entities
with the attributes and services of the object class. Objects are instantiations of the

object class and many different objects may be created from a class.

34

The executable RDT models focus on the synchronous and asynchronous
communication among the instances of processes. Based on this, the Java thread
technique is used to develop communication between the objects within the Java
multi-threaded model. There are two basic points to guide this work:
1. At the model level, the translation should convert RDT models into Java
models.
2. At the implementation level, the translation should make the
implementation of the new model (Java threaded model) in Java as

expected.

The following section describes the rules for mapping an RDT model to a local

Java object model.

3.2 Mapping of RDT to Java

During the mapping, the XML file for the RDT model is not used directly, since
the XML describes the RDT model at a low level. The DTD (Document Type
Definition) defines the XML. I choose the DTD for the RDT XML file to build up
the rules for translating XML to Java, and then map the XML file to the detailed
Java code. This mapping principle is employed in both RDTtoJava and RDTtoWS.

3.2.1 Model

In RDT, the model definition consists of Instance and Process elements. Instance
provides a name that can be used to distinguish the instance from all other process
definitions within a model. An Instance definition requires this attribute to have a
value. The Process provides a name that can be used to distinguish the process
from all other process definitions. A process definition requires this attribute to
have a value. The DTD (Data Type Definition) definition syntax for an RDT model

definition is:

<IELEMENT Model (Instance, Process+)>
<IATTLIST Instance Name CDATA #REQUIRED>
<IELEMENT Process (Event+)>

35

In a Java program, the definition consists of one public class definition and two
class definitions. The public class contains a method named main (), which is the
only entry point for the application, that is, the point at which the program
execution starts. Each instance of a model in RDT will be translated into one Java
program, whose name is the same as the name of the instance. The combination of
all such Java programs will be the RDT model expected. Each process in RDT is
one object class, which is the entity that extends Java thread’s facility to

communicate.

An example of translation from model and process in RDT into classes in Java is

shown in Figure 12.

<Model> public class cycle_election {
<Instance Name="cycle_election"> | public static void main(String args[]) {
</Instance> -
<Process Name="participant0"> static class Process extends Thread {
</Process> e
</Model> }
static class participantO extends Process{
}
1

Figure 12: Translation of the Model block in an RDT model into a Java object model

In this chapter and the next, [use DTD files to explain how the RDT is translated
into applications. DTD is used to define the XML file, and all legal elements are
defined in the structure. The DTD structure is easy to understand, so I use DTD

rather than a specific XML example to explain my work.

3.2.2 Process

In RDT, a process definition consists of the Name attribute, which provides a name
that can be used to distinguish this type of process from all other processes in an
RDT model. A process definition requires this attribute to have a value. The DTD

definition syntax for a process definition is:

36

<IELEMENT Process (Event+)>
<IATTLIST Process Name (participantO | participant1 | participant2 |
participant3) #REQUIRED>

Each process in the RDT model is one class in the Java program. The Java
programs, like other object-oriented programs, use a separate class for each kind of
object. A class defines a collection of state variables, as well as the functionality
for working with those variables. Classes are like C struct or Pascal record
definitions that allow functions within them. Each type of process in RDT is
deployed to a class, which inherits from the Thread class in Java. Such a class
defines one built-in constructor, the variables and the methods which are ready to
support the future methods for the events within the process. The variable state is
for the object’s private state, and it is used to label the current state of the object.
Like any state machine, an object within the system has a sole state. In particular,
the class specifying the thread defines the name of the thread and the message
queues. A message queue is required to communicate with other processes and is

used for synchronous or asynchronous transactions. One example is shown below.

<Process Name="participant0">

</Process>

static class Process extends Thread{ }

MessageQueue inbox; String state="";

String name; public void run(){

public String toString(){ }

return this.name; ce

} public String getname(){
} return name;

static class participant0 extends Process{ | public void transformState(String s){

public participant(String name){ state=s;

inbox =new MessageQueue(10); System.out.printin(name +" : " + state);
this.name =name; }

this.start(); }

Figure 13: Translation of system model specification in RDT into Java code

3.2.3 Event

An RDT Event is an atomic activity. It provides the context for performing an
operation involving the exchange of messages with other processes. The Event is a

composition of the following attributes:

37

Attribute Description
Name The event name
Type The type of operation being performed
Before The pre-state
After The post-state
Channel A sender outputs a message to a channel, or a receiver
expects input from a channel
Value The outgoing or incoming message

The DTD definition syntax for the Event definition is:

<IELEMENT Event EMPTY>
<IATTLIST Event

Name (receive_election | receive_elected | receive_boss) #REQUIRED
Type (Create | Read | Write) #REQUIRED
Before (initial | election_start | send_election | election_send) #REQUIRED
After CDATA #REQUIRED
Channel (inbox | outbox) #REQUIRED
Value (election | elected | boss) #REQUIRED

The syntaxes for Create, Read and Write events are different and will be presented

below. In Java, the name of the method for any type of event is the same as the

name of the event in RDT.

3.2.3.1 Read event

The DTD definition syntax for the Read event definition is:

>

<IELEMENT Event EMPTY>
<IATTLIST Event

Name (receive_election | receive_elected | receive boss) #REQUIRED

Type (Read) #REQUIRED

Before (initial | election_start | send_election | election_send)
#REQUIRED

After CDATA #REQUIRED

Channel (inbox | outbox) #REQUIRED

Value (election | elected | boss) #REQUIRED

In Java, for the Read event, the translation is in two steps. The first step is to clarify

the conditions for a Read event to occur. The second step is to complete the action

for this Read event. The conditions are as follows:

38

1. the message queue that this event uses to receive the message is ready;

2. the Before state for this event should be satisfied, and

3. the message received should be the same as described in the RDT model.

The completion of the Read event is as follows:
1. call the method for this event, and then

2. change the object state from Before state to After state.

<Event Name="receive_election" Type="Read" Before="election_start"
After="election_receive" Channel="inbox" Value="election"/>

public void run(){
new Thread(){public void run()}{
try{for(;;X
Message m=(Message)inbox.receive();
if(m.type=="election" && state=="election_start")
receive_election(m.sender,m.type,"election_start");

}catch(exception e){System.out.printin(name + ": demultiplex error");}}}.start();
}
public void receive_election(Process from, String message, String current_state){
System.out.printin(name+"s Event is: "+ current_state +" and read " + message +"
from "+ from.name);
transformState("election_receive");

election_receive();
}

Figure 14: Translation of the Read event in RDT into Java code

An exception will be thrown when de-multiplex errors occur. The errors include:
1. no message received
2. unmatched receive channel

3. unmatched message received and the event state

3.2.3.2 Write event

The DTD definition syntax for the Write event definition is:

39

<IELEMENT Event EMPTY>
<IATTLIST Event
Name (receive_election | receive_elected | receive_boss) #REQUIRED
Type (Write) #REQUIRED
Before (initial | election_start | send_election | election_send) #REQUIRED
After CDATA #REQUIRED
Channel (inbox | outbox) #REQUIRED
Value (election | elected | boss) #REQUIRED

In Java, The Write event writes a message to a channel, and then changes the state
to After state. I will introduce how messages are transmitted in 3.2.4. Any

exception will be caught during the sending of the message.

<Event Name="send_election" Type="Write" Before="election_receive"
After="election_send" Channel="outbox" Value="elected"/>
public void send_election(){
System.out.printin(name+": send_election");
try{p1.inbox.send(new Message("elected",this,p1, "outbox"));
transformState("election_send");
}catch(Exception e){System.out.printin(name + " : send_election- send error");}

Figure 15: Translation of the Write event in RDT into Java code

3.2.3.3 Create event

The Create event is a special kind of Write event. The DTD definition syntax for

the Create event definition is:

<IELEMENT Event EMPTY>
<IATTLIST Event
Name (receive_election | receive_elected | receive_boss) #REQUIRED
Type (Create) #REQUIRED
Before (initial | election_start | send_election | election_send) #REQUIRED
After CDATA #REQUIRED
Channel (inbox | outbox) #REQUIRED
Value (election | elected | boss) #REQUIRED

When the model is implemented in Java, each process in RDT is a class executing
a thread with an initialisation state. The Before state is one condition which must
be satisfied to start the event. The After state is another condition indicating the
current state when the event is completed. For the Create event implemented in

Java, the channel and the message must be specified.

40

<Event Name="start_election" Type="Create" Before="initial" After="election_start"
Channel="outbox" Value="election"/>
public void start_election(){
System.out.printin(name+": start_election");
try{p1.inbox.send(new Message("election" this,p1,"outbox"));
transformState("election_start");

catch(Exception e){System.out.printin(name + " : start_election- send error");}

}

Figure 16: Translation of the Create event in RDT into Java code

Each Channel in RDT shown in Figure 17 is a message queue object in the newly
generated Java program. When the connection between a pair of channels is created,

such as channel 0 and channel A, a message could be sent from one channel to

another.
chanrel 0 channel &
FProcesss : : Processs
A B
charrel 1 charmel B
Figure 17: Channels and Connections
3.2.4 Value

The Value in RDT is translated into the information component in a Java message.

A message is an information unit which is composed of the following four fields:

m.sender The name of the process sending message m.

m.receiver | The name of the process receiving message m.

m.channel | The name of the channel through which the message m is passing.

m.type The information component of message m.

41

3.2.5 Before state and After state

The Before state is the condition or part of the condition which must be satisfied to
start the event. For a Create or Write event, the Before state is the condition which

must be satisfied to invoke the event.

public void RED2(){
if(state=="RED2")
S_ED_2();

}
public void S_ED_2()
try{p1.elected.send(new Message("V2" this,p1,"Ps_elected"));
transformState("Boss2");
} catch(Exception e){System.out.printin(name + " : S_ED_2- send
error");}

}

Figure 18: Java methods for a Create (or Write) event and its Before state

For a Read event, the Before state is a condition along with the other conditions.

public void run(){

new Thread(){public void run()}{

try{for(;

Message m=(Message)elected.receive();

if(m.type==" XXXX_XXXX " && state==null){ }

else if(m.type=="V1" && state =="initial")
R_Elected_1(m.writer,m.type,"R_Elected_1");

}} catch(Exception e){System.out.printin(name + ", d Itiplex

error");}}}.start(); }

public void R_Elected_1(Process from, Strihg message, String

current_state){

ifénsformState(“REm ");
RED1();
}

Figure 19: Java methods for a Read event and its Before state

After the successful completion of an event, the state will be translated from a

Before state to an After state.

3.2.6 Process Instance

Each instance of a type of process has a unique instance identifier. The DTD

definition syntax for a Process Instance definition is:

42

<IELEMENT Proclnstance EMPTY>
<IATTLIST Proclnstance
Name (pO | p1 | p2 | p3) #REQUIRED
Type (participantO | participant1 | participant2 | participant3) #REQUIRED>

A new object of a specified process is created by defining both the object name,
and its identifier value, the same as the instance name. This object is then ready to

start.

<Proclnstance Name="p0" Type="participant" />
participant pO=new participant("pQ");

Figure 20: Translation of an Instance of one Process in RDT into Java code

3.2.7 Connection

Two Channels build one Connection (see Figure 17) when they are connected. The

DTD definition syntax for the Connection definition is:

<IELEMENT Connection (End+)>
<IELEMENT End EMPTY>
<IATTLIST End
Proclinstance (p0 | p1 | p2 | p3) #REQUIRED
Channel (inbox | outbox) #REQUIRED

The connection is built in two steps by making a one-way connection for one
instance and then making another one-way connection for the other instance. So the
two-way connection is set. An example is given in Figure 21. Observed from the
RDT specification, we know that p0 is an instance of the process participant(); and
pl is an instance of the process participantl; p0 has one channel named outbox,
and p! has one channel named inbox; the channel inbox and the channel outbox are
connected, so the connection between p0 and p! is set up. This means that there
will be possible communication between p(and p/ via the connection set up by the
channel inbox and the channel outbox. Experience from the development of RDT
models suggests that two instances of the process can communicate via at least one
connection set up by two channels, but for one specified channel of one process

involved in this communication, it must be connected to a fixed channel, rather

43

than more than one channel, of another process. It is helpful to analyse
communication behaviour and also consider an intelligent mechanism which makes
the translation from the RDT model to a Java object model efficient and accurate.
In Java, a new object p0 of the participant(0 class is created and a new object p/ of
the participantl class is created in the main class. p0 calls up the connection pl()
method in the participant(class and refers to p/ as the argument, knowing that the
object pl in the participant(class is a referent of the instance p/ of the process
participant(. The connection from p0 to pl is set up, and p0 is ready to send
messages to p/. The connection from p/ to p0 can also be set up in the same way.
p0 knows that (if successful) some messages will only be received by p/’s channel
inbox and not other channel(s), if such messages are sent out to p/ through the

outbox channel successfully.

An example of implementation of Connection in Java is:

<Proclnstance Name="p0" Type="participant0"/>
<Proclnstance Name="p1" Type="participant1"/>
<Connection>
<End Proclnstance="p0" Channel="outbox"/>

<End Proclnstance="p1" Channel="inbox"/>
</Connection> C\

public static void main(String args[]}{

participant0 pO = new participantO("pQ");
participant1 p1 = new participant1(" :
pO.connection_ pTpR===""_~""""7""]
p1.connection_p0(p0);

}

static class participant0 extends Process {

Procesg p1;
EW@@ connection,_p1(Process temp){
}
lic void S_Elected_0(}
try{p1.inbox.send(Message A); }
catch(Exception eX }}}

Figure 21: Translation of the Connection in RDT into Java code

The above example provides further details of the differences in communication
using the RDT channel and using the Java message queue. In Figure 22, for p0, the
message will be send out by the channel inbox to pl’s outbox through the
connection between inbox and outbox. For pl, the message will be sent out by the

channel outbox to p0’s inbox through the connection between inbox and outbox.

44

irthox

Particip antlzp0

oufhox
Participantlzpl

Figure 22: Connection in RDT

In the generated Java, the object p0 calls the send () method of p/’s message
queue outbox and makes it produce a new message. The message queue outhox
holds this new message, and the object p/ reads it when it calls the receive ()
method of the message queue outbox. The object pl calls the send () method of
p0’s message queue inbox and makes it produce a new message. The message
queue inbox holds this new message, and the object p0 reads it when it calls the

receive () method of the message queue inbox.

Particpantipl TROE Te o s

Particpantlp TeCE Tve oo snd

Figure 23: Connection in Java

3.3 Synchronization

In RDTtoJava, the modeller can make the choice between synchronous and
asynchronous communication by setting different parameters for the length of the
buffer. When the length is set to 0, it means that communication will be
synchronous, the sender blocks until the message is sent, and the receiver is

suspended until the message is received. When the length of the message queue is

45

initialized to any positive value other than 0, the communication will be
asynchronous. If the communication is asynchronous, the receiver explicitly
fetches the messages from the destination by calling the receive method. The
receive method can block until a message arrives or can time out if a message does
not arrive within a specific time limit. RDTtoJava has two separate types of
message queue that support asynchronous communication and synchronous
communication. Asynchronous communication uses the produce-consume style
message queue. Synchronous communication uses the acquire-release style

message queue.

static class MessageQueue{ System.out.printin("send("+x+")");

int entries; notify();

int maxEntries;

String name;

Message[] elements; synchronized Message receive() throws
InterruptedException{

public MessageQueue(String n, int m){ | while(entries==0)wait();

name=n; Message x; x=elements|[0];

maxEntries=m); for(int i=1; i<entries; i++){

elements=new Message[maxEntries]; elements][i-1]=elements]i];

entries=0; }

} entries=entries-1;
System.out.printin("receive("+x+")");

synchronized void send(Message x) notify();

throws InterruptedException{ return x;

while(entries==maxEntries)wait(); }

elements[entries]=x; }

entries=entries+1;

Figure 24: Message queue for asynchronous communication

In asynchronous communication, the message queue (see Figure 24) is a buffer.
Each queue has a specified name and a stack whose size is defined and limited, so
it needs a counter to count how many messages are in the queue. The send ()
method is used to produce a new message, which should be kept in the message
queue. Once one new message is produced and accepted by the queue, the counter
will increase by one. If the queue is full, it will be blocked. The receive ()
method is used to consume messages. If one message is read from this queue, the
counter will decrease by one. If the queue is empty, it is blocked until it is woken

up. The message flow is in first-in-first-out (FIFO) order.

46

In synchronous communication, the message queue (see Figure 25) is controlled.
Each queue has a specified name. The mechanism of the send () method is as
follows. The new message is created first, and the message queue woken up to let
this message in, before the queue is blocked again. The mechanism of the
receive () method is as follows. The message queue is woken up and then reads

that message. After that, the message queue is blocked again.

static class MessageQueue{ System.out.printin("send("+x+")");
String name; while(IreceiveFlag) wait();
boolean sendFlag, receiveFlag; receiveFlag=false;
Message share; }
public MessageQueue(String n, int m){ synchronized Message
name=n; receive()throws InterruptedException{
sendFlag=false; receiveFlag=true;
receiveFlag=false; notifyAll();
} while(!sendFlag) wait();

Message x; x=share;
synchronized void send(Message x) System.out.printin("receive("+x+")");
throws InterruptedException{ sendFlag=false;
sendFlag=true;share=x; return x;
notifyAll(); }

}

Figure 25: Message queue for synchronous communication

The Java programming language has special support for multi-threaded
programming [Artho and Biere 2001]. Non-trivial multi-threaded programs require
synchronization between threads. The classic cases are a semaphore [Dijkstra
1965], and a monitor [Hansen 1975]. RDTtoJava supports the case that one process
has many threads that each receive and send messages. Figure 26 shows that a
couple of (synchronous or asynchronous) message queues will be used in this
system. For the process participant(, it has two message queues, which are

message queue election and message queue elected.

47

static class Process extends Thread { public void run(){

MessageQueue startElection; new Thread(){public void run(){
MessageQueue Ps_election; try{for(;;

MessageQueue election; Message m=(Message)election.receive();
MessageQueue Ps_elected;

MessageQueue elected; }catch(Exception e){ }}}.start();

}

new Thread(){public void run(){

static class participantO extends Process | try{for(;;{

Message m=(Message)elected.receive();
public participantO (String name){

election=new }-}c-:atch(Exception e }}}.start();
MessageQueue("election”,10); }
elected=new }

MessageQueue("elected",10);
this.name =name;
this.start();

}

Figure 26: Java code for the multi-threaded process

3.4 The Traceable GUIs

My design offers two ways to observe the behaviour of the model, one of which is
a Java GUI (see Figure 27) for single instance of the processes. The other is the

system output to the terminal window.

Instance brea

= Process brea
il aticiparit]
Possible Events
PB_Elected 3 Amea
il 1| he ofore state | Afer state 2hne alue
1 R_Elatiion_0 |[Raad |inilial REMD aleclion i -
1 S_FElection_0 |Creste |REMD initial= FassOn_eleclion M1 E
Events History
N Lrea
-|
— |

Figure 27: The GUI for each instance of the process

In the GUI, the model name is shown as the title. The process type is shown in the
Process area, and the instance name is shown in the Instance area. All possible
events that will happen next are listed as buttons, whose names are the same as the
event’s name, in the Possible Events area. In the Event History area, the events that

have been executed are listed in sequence. It is possible for the user to check the

48

trace of the events and all corresponding information for each event. The After
state listed in the last event is the current state for the instance. An example is given

in Figure 28.

2 eycleElection Z |E| |g|

pa paricipanta

Event Type |Before state| After state Channel

] F_Election_2 |Read initial REM2 election W2 -
1 S_Election3_2 |Create REM2Z initial= FassOn_election V3
2 F_Elected_3 |Read initial REDZ elected 3
3 S_Boss_3 Create RED3 finish PassOn_boss W3

l

Figure 28: An Example GUI

The system output to the terminal window is also supplied to show the model
process. As the information for each instance of the process is shown in the single
GUI, the window information shows all the information, such as the behaviour of
the single instance of the process, the messages passing, and the sequence of events

of the model, etc. An example is given below.

p2 : RED3

receive(V3 from p1 to p2 via Ps_elected)

p2's Eventis: R_Elected 3 and read V3 from p1
p2:S_ED_3

send(V3 from p2 to p3 via Ps_elected)

p2 : Boss3

receive(V3 from p2 to p3 via Ps_elected)

p3's Eventis: R_Elected_3 and read V3 from p2
p3 : IMBoss

3.5 Branching Execution of Events

The possible flows of the events in RDT models are: sequential and branching (see

Figure 29). Their behaviour and properties are:

49

1. Sequential events

e Only one event shares the same Before state;

e Execute all events in sequence, and

e An activity cannot start until previous events in sequence are complete.
2. Branching events

e Two or more events share the same Before state, and

e Execute the next activity in the flow which satisfies given conditions.

Cyinitial
receive_((1 <~ election_in
I receive_1 1 <~ election_in
ho_larger receive_3 34~ elected_in
Ilarger
[Esend 1 1 - election_out
xsend 3 3 -» elected_out

yinitial=

Figure 29: RDT model with branching events

The approach to supporting the sequential execution of activities is as follows. For
a single Read event, the conditions that must be satisfied are: the Before state and
the message the process receives. For a single Write event, the condition that must
be satisfied is the Before state. The condition for the Create event is the same as the

condition for the Write event.

The discussion on the branching execution of events within the process is based on
three types of case. In Case 1, the type of all events sharing the same Before state is
Read. In Case 2, the type of all events sharing the same Before state could be Write,
Create or both. Case 3 is a synthesis of Case 1 and Case2. This means that at least

one Read event and at least one Write or Create event share the same Before state.

The approach to Case 1 is to pick only one of all Read events according to the rules

as follows:

50

1. Only the Read event(s), for which the conditions are true, are listed on the
GUI;

2. The user can make the decision to implement only one event by pushing
one button, whose name is the same as the name of the corresponding

event.

0O Ready

Cl 4——0Orderl

Receive_Orderl

C2 #4——Order2

O Received

Receive_Order2

Figure 30: Path selection: Case 1

An example of Case 1 (see Figure 30) is given here. There is one possible Read
event Receive Orderl and another possible Read event Receive Order? both
sharing the same Before state initial. For Receive Orderl, a message orderl is
expected to be received through channel CI. For Receive Order2, a message
order?2 is expected to be received through channel C2. The solution to this case is

shown in Figure 31 and its GUI in Figure 32.

if (channel C1 ready & Before state=="Ready" && Message Order1)
goto Receive Order1;
if (channel C2 ready & Before state=="Ready" && Message Order2)

goto Receive Order2;

Figure 31: The solution to Case 1

51

Receire_Order1 Recenve_Order2
M. Event Type |Elefc|re sta..] Aﬂerstate| Channel | Walle

Figure 32: An example GUI for Case 1

The approach to Case 2 is to pick only one of all the Write and Create events
according to the rules as follows:
1. Only the Write or Create event(s), for which the conditions are true, are
listed on the GUI;
2. The user can make the decision to implement only one event by pushing
one button, whose name is the same as the name of the corresponding

event.

O initial

Armnounce Busy Announce Fead
Cl g tbusy ready g

]

Busy O O Beady

Figure 33: Path selection: Case 2

An example of Case 2, see Figure 33. There is one possible Write event
Announce Busy and another possible Create event Announce Ready, both sharing
the same Before state initial. For Announce Busy, a message busy is expected to be

sent out through channel C/. For Announce Ready, a message ready is expected to

52

be sent out through channel C2. The solution to this case is shown in Figure 34 and

its GUI in Figure 35.

if (channel C1 ready & Before state=="initial")
goto Announce_Busy;
if (channel C2 ready & Before state=="initial")

goto Announce_Ready;

Figure 34: The solution to Case 2

Announce_Busy Announce_Ready
Type |Elefnre st...|Aﬂerstate| Channel | Yalue

Figure 35: An example GUI for Case 2

Case 3 is one special and complex case of the branching execution of activities. In
this case, the Read events, the Create events and Write events could share the same
Before state. The rules to select one event among the events are as follows:
1. Only the Write, Create or Read event(s), for which the conditions are true,
are listed on the GUI,
2. The user can make the decision to implement only one event by pushing
one button, whose name is the same as the name of the corresponding

event.

An example of Case 3, see Figure 36. There is one possible Write event
Take Break and another possible Read event Continue both sharing the same
Before state initial. The solution to this case is shown in Figure 37 and its GUI in

Figure 38.

53

O inifial

Conti
Take Preak FHHIE
Becorder=hreak Cl=-golm
Ready mProc ess

@ O

Figure 36: Path selection: Case 3

if (channel Recorder ready & Before state=="initial")
goto Take_Break;
if (channel C1 ready & Before state=="initial" & (Message) goOn)

goto Continue;

Figure 37: The solution to Case 3

Take_Break Continue

M. Event Type Before state | After state | Channel Walue
1] StartRun Fead initial dalt C1 ready -
1 FunLoop Create dolt initial= Fecaorder |one

Figure 38: An example GUI for Case 3

3.6 Exception Handling

An exception will be raised when an error occurs during initiation or execution of a
communication action. The actions taken in exception handling communicate the

exception to the process.

54

For a specified Read event, the messages will be received through one channel,
which is a thread in the Java program. If an unexpected message has been received
through that channel, the process will refuse to accept it and will not start this Read
event. The system will display an error message. Any exceptions that might be

thrown will be caught.

new Thread(){public void run()}{

try{for(;;

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Elected_O(m.writer,m.type,"R_Elected_0");

}}.c.atch(Exception e){System.out.printin(name + ": demultiplex error");}}}.start();

Figure 39: Java code for the Read event exceptions

For a specified Write or Create event, the messages will be sent through one
channel, which is a thread in the Java program, to an expected process. If the
message is received by the receiver through a channel unsuccessfully, the system

will display an error message.

public void Send_Event_A()X
try{p1.elected.send(new Message("V0" this,p1,"Ps_elected"));
transformState("initial");

catch(Exception e){System.out.printin(name + " : Send_Event_A - send error");}

}

Figure 40: Java code for the Write/Create event exceptions

Another point should be noticed. In RDT, an instance of Process can send a
message to a channel, and it can receive this message through the same channel.
However, as Java thread does not support this, my solution to this problem is to use
another channel to receive this message. In the next part of this work, RDTtoWS,

the same method is used as it also uses Java.

55

3.7 Conclusion

This chapter presented the rules employed by the RDTtoJava tool, mapping an
RDT model to a Java threaded application. The RDTtoJava supports:

1. Java multi-threaded communication;

2. the complex branching paths of activities; and

3. asynchronous/synchronous communication.
The difference in behaviour between RDT and Java was discussed.

The user can complete the transformation after entering each required option (see

Figure 41).

EEX

....................................

Select Output

1

teszzagelueue Length]1 0

0

Figure 41: The RDTtoJava window

1. Select Input: The address of the XML file for the RDT model, which has
been built.

2. Select Output: A new Java file should be created to store the Java
multi-threaded application, which will be generated by the RDT model.

3. MessageQueue Length: The message queue length may be defined as any

non-negative integer. There are two types of communication available:

56

synchronous and asynchronous. If the queue length is set to 0, the
communication will be synchronous; if the queue length is set to a positive
integer, the communication will be asynchronous, and the length of the all
message queues used in the asynchronous communication will be that
positive number.

Go button: After entering the above options and pushing the button, the
user will successfully obtain the expected Java multi-threaded application,

but if one or more options are missing, an error message will be displayed.

57

4 RDTtoWS

This chapter focuses on how to build a distributed system based on the RDT model
using Web services technology. As we know, the RDT system can handle both
synchronous and asynchronous communication, and the current Web service
technologies, which can handle both communication, is limited as discussed in
section 1.4.3. My approach here is to build the system separately: one is to build
RPC Web services using JAX-RPC based on the RDT model; the other is to
convert an RDT model to an asynchronous communication application using JMS

Web service.

4.1 Build Web Services based on RDT Models with JAX-RPC

This section presents how to build a synchronous Web service based on the RDT
model. Synchronous services are characterized by the client invoking a service, and
then waiting for a response to the request. Web services that reply to synchronous
communication are usually RPC-oriented. Generally, I consider using an
RPC-oriented approach for synchronous Web services. I will introduce how to
translate the RDT language into Java code for synchronised Web services, and then

introduce the solution of some issues that occurred during system building.
4.1.1 Mapping of RDT language to JAX-RPC Web service source code

In RDT, a model includes at least one process, which sends messages to another

process, or receives messages from another process, or both. Web service is based

58

on the client/server model. So a process in the RDT model has the potential to be a
server, or a client, or both. The application architecture I design to develop an RDT

as a Web service is to make each process both a server-side and a client-side entity.

A typical JAX-RPC application architectural model consists of the server-side and
the client-side. JAX-RPC service represents a business component that can be
implemented in Java, or generated from existing Java classes, or from a WDSL
document. In a J2EE environment, it can be implemented as a servlet, a stateless
session bean, or a message-driven bean. During deployment, the JAX-RPC service is
assigned to one or more service endpoints and then is configured with a transport
protocol binding. For instance, a JAX-RPC can be bound to HTTP and all the
messages are exchanged as HTTP-based requests and responses using its assigned
endpoint. The JAX-RPC services do not dictate that it has to be accessed by a
JAX-RPC client and thus a non-Java client running on a heterogeneous environment

can access it.

JAX-RPC service client represents a JAX-RPC-based service client that can access a
service. The service clients are independent of the target implementation on the
service provider. This means that the accessed service can be a service implemented
using a Java platform, or a SOAP compliant service running on a non-Java platform.
To support these client scenarios, JAX-RPC defines a variety of client mechanisms,
dynamic proxies, and dynamic invocation. The JAX-RPC service clients can import
WSDL exposed by a service provider and can generate a Java-based client class to

access the service.

The key steps for creating a JAX-RPC-based Web service based on RDT model
using a Tomcat-based [Apache 2002] environment are as follows.
1. Develop the remote interface of the service
Create the implementation class of the remote interface
Configure the service

Set up the environment and compile the source code

M

Generate the server-side artefacts (ties) and the WSDL document

59

6. Package and deploy the service
7. Test the service deployment and the WSDL

8. Generate the client stubs and package as a client JAR.

The following section will describe how to get a JAX-RPC Web service from an
RDT model. The events trace GUI employed here is the same as in the RDTtoJava

tool, see Figure 38.
4.1.1.1 Interface and implementation

The programming model of JAX-RPC is like EJBs and Java RMI, in that the
details of the underlying protocols are hidden behind Web service stubs. A stub
implements the same interface as the Web service that exists remotely, and it
communicates with a Web service tie on the server. The tie calls the methods of a
Web service, and communicates the return value, and any exceptions encountered,

back to the client through the stub.

package participant3;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface participant3_IF extends Remote{
public void createMessage(String type, String writer, String reader, String channel) throws
RemoteException;

}

package participant3;

public class participant3 extends JFrame implements participant3_IF

{ /I the service method implementations

public void createMessage(String type, String writer, String reader, String channel) {
/Imessages sending

/I exception handling and a warning window exposed

}
}

Figure 42: JAX-RPC-based Web Service Interface
As illustrated in Figure 42, the first Java source file that we need to create is the

Web service interface for the model. The file is called participant3 IF.Java. In

this file, the public attributes and the public methods are defined. The method

60

createmessage () is defined here as the public method, and its function should
be clarified in the implementation file. The next file that we need to create is the
class that implements the Web service interface participant3_IF.Java. The

functions of the public method createMessage () is given.

4.1.1.2 Process

The DTD definition syntax for the definition of Process in RDT is:

<Process Name="participant0">
</Process>
static class participantO extends Process{...}

Figure 43: Development of system model specification in RDT into Java Web services code

A Process in RDT is a collection of clients and services. In a Process, an instance

of such a collection defines its behaviours and some of its properties.
4.1.1.3 Event

There are three types of Event in the RDT model: Create, Read and Write. In the
Web service, when the client calls the Web service method, the server side sends
out return values (messages), and any exceptions encountered, back to the client
through the stub. The client receives the messages. So the Create event and the
Write event occur on the server side, and the Read event occurs on the client side.
Since the RDT model is mostly a communication model, most Web services are

both server side and client side, and any side could perform a service to the others.

It is important to distinguish the different thinking behind RDT and Web service.
In RDT, for the Write event, an instance of a process creates a new channel and
then sends a value through this channel. For the Write event, an instance of a
process sends a value through an existing channel. For the Read event, an instance
of a process receives a value through a channel that is connected with another
channel through which the value came. In the Web service, the client should know
which service is available through the HTTP, and which port on the service side is

open for the client to call the Web service methods. This means that the service is

61

available first, and ready for the client to call its Web service methods. The server
side sends the return value, generated from the method call by the client, and the
exceptions encountered, back to the client. Here the client does not need to expose

a port to receive the return value and the exceptions.

4.1.1.3.1 Read event

In my Java Web service, for the Read event, the translation is completed in two
steps. The first step is to clarify the conditions for a Read event to occur. The
second step is to complete the action for this Read event. The conditions are as
follows:

1. the message queue that this event uses to receive the message is ready;

2. the Before state for this event should be satisfied; and

3. the message received should be as expected.

The completion of the Read event is as follows:
1. call the method for this event; and then

2. change the object state from Before state to After state.

If an instance of a Process has at least one Read event, this instance will consume
messages, and it is a client. This client must know where the message it will
consume is from. The connection issue will be discussed later. The

getMessage () method is called synchronously whenever a message arrives.

62

<Event Name="R_Election_0" Type="Read" Before="initial" After="RENQ"
Channel="election" Value="V0"/>

package participant0_pO0;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface participantO_IF extends Remote

{

public void getMessage(Message m) throws RemoteException;

}

package participantO_pO ;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;
import java.awt.*;

import java.awt.event.”;

import java.applet.”;

import java.awt.Font;

import java.awt.FontMetrics;

import javax.swing.”;

import java.awt.Graphics;

public class participant0_p0O_Impl extends JFrame implements participant0_IF

static class Message {
Message (String t, Process p, Process r, String c){
}

static class participant0 extends Process{
public void createConnection_Participant_Tr(){

try {
participant1_p1_factory = ServiceFactory.newlnstance();
participant1_p1_service = (Service)participant1_p1_factory.createService(new
QName(participant1_p1_gnameService));
participant1_p1_port = new QName(participant1_p1_qgnamePort);
participant1_p1_call = participant1_p1_service.createCall(participant1_p1_port);
participant1_p1_call.setTargetEndpointAddress("http://localhost:8080/participant1_p1-j
axrpc/participant_p1?wsdl");
participant1_p1_call.setProperty(Cal.SOAPACTION_USE_PROPERTY, new
Boolean(true));
participant1_p1_call.setProperty(Cal.SOAPACTION_URI_PROPERTY, ");
participant1_p1_call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);
participant1_p1_call.setReturnType(null);
participant1_p1_call.setOperationName(new QName(BODY_NAMESPACE_VALUE,
"getMessage"));
participant1_p1_call.invokeOneWay(null);
} catch (Exception ex) {
ex.printStackTrace();

}
}

public void getMessage(Message m) {
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")

63

R_Election_0(m.writer,m.type,"R_Election_0");

Figure 44: Translation of the Read event in RDT into Java Web services code

4.1.1.3.2 Write event

For the Write event, an instance of a Process will write a message over HTTP, and
then change the state to After state. Considering the characteristics of Java Web
service, a process sends a message over the HTTP. Here the definition of the
message is different from the message in the RDT model. The message here
includes the value, the channel in which the value is sent out, and other information.
I will discuss it later. Transition of the messages is in 3.2.1.7. If an instance of a

Process has a Write event, it supplies service that will send one or more messages.

<Event Name="S_Elected_0" Type="Write" Before="RENQ" After="initial"
Channel="outbox" Value="elected"/>

public void setMessage(Message m) {
message= m;
}

public void send_election(){
final Message m=new Message("outbox",this,p1,"elected");

ButtonS_send_election.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){

try{
transformState("initial");
catch(Exception f){System.out.printin(name + " : send_election.error");}

displayTrace("S_Elected_0", "Write", "RENOQ", "initial", "outbox", "elected");
ButtonS_send_election.setVisible(false);

}
»

}

Figure 45: Translation of the Write event in RDT into Java Web services code

4.1.1.3.3 Create event

64

<Event Name="start_election" Type="Create" Before="initial" After="election_start"
Channel="outbox" Value="election"/>

public void start_election(){

System.out.printin(name+" : start_election");

traceTable.center.add(Buttonstart_election);

final Message m=new Message("election",this,p1,"outbox");
Buttonstart_election.addActionListener(new ActionListener()}{
public void actionPerformed(ActionEvent e){

try{
transformState("election_start");

catch(Exception f){System.out.printin(name + " : p1- send error");}

displayTrace("start_election", "Create", "initial", "election_start", "outbox", "election");
Buttonstart_election.setVisible(false);

}
;s
}

Figure 46: Translation of the Create event in RDT into Java Web services code

The Create event will generate a message and a new channel in the RDT model. I
have mentioned that the message is passed over HTTP in Java Web service and
there is no thread-like approach employed here. So I only create a new message
and this message will be delivered to the client when this service is called. The
Before state is one condition which must be satisfied to start the event. The After

state is transformed by another method when the event is completed.
4.1.1.4 Channel

I will discuss this issue together with Connection in 4.1.1.8.

4.1.1.5 Value

The same code employed as in RDTtoJava. See 3.2.4.

4.1.1.6 Before state and After state

The same code employed as in RDTtoJava. See 3.2.5.

4.1.1.7 Process Instance

Based on understanding of the RDT model, we know that each process’s behaviour

is defined, and any instance of such process will do the same thing.

65

Correspondingly, in our Web service, each instance of a process will have the same
behaviour. If a Process has a Create event or a Write event, the instance of this
Process is a service. If a Process has a Read event, the instance of this process is a
service client. If a Process has a Read event and a Create or Write event, this
instance of this process is a server/client. This is a combined side which sends

messages and receives messages as well.
4.1.1.8 Connection

Two Channels build one Connection (see Figure 16) when they are connected. The

DTD definition syntax for the Connection definition is:

<IELEMENT Connection (End+)>
<IELEMENT End EMPTY>
<IATTLIST End
Proclinstance (p0 | p1 | p2 | p3) #REQUIRED
Channel (inbox | outbox) #REQUIRED

As we know, JAX-RPC communicates over HTTP. A service offers messages, and
a service client will consume the message transport over HTTP. The client should
know the remote location of the service. The client will connect the service over
HTTP to a specific port. For example, http://localhost:8080/ connects to
http://www.google.co.uk/, and http://localhost:8000/ connects to
http://www.ecs.soton.ac.uk/. When we use the RDT model to develop an
application using Web services, the information of the Channel is unnecessary. We
build the Channel information in the message, and the client will check this

message when it receives the message as important identification information.

66

<Proclnstance Name="p0" Type="participant0"/>
<Proclnstance Name="p1" Type="participant1"/>
<Connection>
<End Proclnstance="p0" Channel="Ps_election"/>
<End Proclnstance="p1" Channel="election"/>
</Connection>

public void createConnection_participant0_p0()}{

try {

participant0_pQ_factory = ServiceFactory.newlnstance();
participant0_pQ_service = (Service)participant0_p0_factory.createService(new
QName(participant0_p0_gnameService));

participant0_p0Q_port = new QName(participant0_p0O_gnamePort);
participant0_pQ_call = participant0_pO_service.createCall(participant0_p0_port);

participantO_p0_call.setTargetEndpointAddress
("http://localhost:8080/participant0_pO0-jaxrpc/participant0_p0?wsdI");
participant0_pQ_call.setProperty(Cal.SOAPACTION_USE_PROPERTY, new
Boolean(true));

participant0_pQ_call.setProperty(Cal. SOAPACTION_URI_PROPERTY, ");
participant0_pQ_call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);

} catch (Exception ex) {
ex.printStackTrace();

}
}

Figure 47: Channel and Connection in Web services code

For the Channel of an Instance of Process, the service client in Web service

corresponds to a specific port. For example, the channel outbox corresponds to the

port 8080, while the channel Ps_election corresponds to the port 8000.

The client throws an Exception when a JAX-RPC exception occurs. The exception

details the reasons for the failure, which are related to JAX-RPC runtime-specific

problems.

4.1.2 Deployment

4.1.2.1 Set up the environment and compile the source code

A CLASSPATH environment should be created that includes the JWSDP 1.0 class

libraries for JAX-RPC and its supporting packages. Use Javac and compile the

source code of the remote interface and the implementation.

67

4.1.2

.2 Generate server-side artefacts (ties) and WSDL

Using the xrpce tool, generate the service side artefacts and the WSDL document

associated with the service. As a result, this generates the following:

4.1.2

Top

Client-side stubs and server-side tie class

Serialization and deserialization classes representing the data-type
mappings between Java primitives and XML data types

A WSDL document

Property files associated with the service.
.3 Package and deploy the service

ack a JAX-RPC service as a Web application, we need to create a WAR file

that includes the following classes and other configuration files:

Remote interface to the service

Service implementation of the remote interface

Serializer and deserializer classes

Server-side classes created by xrpcc

Property files created by xrpcc

Other supporting classes required by the service implementation
WSDL document classes

Web application deployment description.

4.1.2.4 Test the service deployment and WSDL

To configure the service, a configuration file in XML, which provides information

abou

t the URL location of the WSDL, should be created. A sample code of a

configuration file is below:

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmIns="http://Java.sun.com/xml/ns/jax-rpc/ri/config">
<service name="trigger_Tr_Service" targetNamespace="urn:Foo"
typeNamespace="urn:Foo" packageName="trigger_Tr">

<interface name="trigger_Tr.trigger_IF"/>

</service>

</configuration>

Figure 48: Service configuration using WSDL

68

4.1.2.5 Generate client-side artefacts (stubs)

Use the xrpce tool to generate the stubs and tie classes, the WSDL document
associated with this service, and the property files required by the JAX-RPC
runtime environment. In the typical scenario, e.g. Windows, the xrpcc tool can be
executed as a command line utility as follows:

xrpe -classpath %CLASSPATHY -keep -both -d build\classes serviceconfig.xml

4.2 Mapping of RDT Language to JMS-implemented Web Service

Source Code

4.2.1 Develop from RDT to Java Message Service

This section will cover how asynchronous web applications are developed

JMS-based Web service, based on the RDT model.
4.2.1.1 Interface

Here is the interface definition for the remote class. The queue and the behaviour of

the queue are defined in the interface.

69

package participant3;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface participant3_IF extends MessageProducer{

Queue getQueue() throws JMSException;

public void send(Message message) throws JMSException, MessageFormatException,
InvalidDestinationException;

}

package participant3;

import java.util.StringTokenizer;

import java.util.Properties;

import javax.naming.InitialContext;

import javax.jms.TopicConnectionFactory;
import javax.jms.QueueConnectionFactory;
import javax.jms.Topic;

import javax.jms.Queue;

import javax.jms.QueueReceiver;

import javax.jms.Sessions;

import javax.jms.TextMessage;

public class participant3 extends JFrame implements participant3_IF,
javax.jms.Messagel.istener

{ /I the service method implementations

public void createMessage(javax.jms.Message message) {
/Imessages sending

/I exception handling and a warning window exposed

try{

}catch (javax.jms.JMSException jmse){

jmse.printStackTrace();

}
}
}

Figure 49: JMS-based Web Services Interface

4.2.1.2 Process

The DTD definition syntax for the definition of Process in RDT is:

<Process Name="participant0">
</Process>
public class participant0 implements javax.jms.MessageL.istener{...}

Figure 50: Development of system model specification in RDT into JMS-based Web services

code

For each Process, the MessageListener is implemented to send and invoke

messages.

70

4.2.1.3 Event

For the three types of Event, mapping from RDT to JMS Web service is discussed

below.

In JMS, the simplest type of message is the Javax . jms .Message, which serves
as the base interface for the other message types. There are other types of message,
which extends Message: TextMessage, ObjectMessage, BytesMessage,
StreamMessage, and MapMessage. An ObjectMessage object is used to
send a message that contains a serializable object in the Java programming
language [Monson-Haefel and Chappell 2001]. In RDT, the content of messages
passing between the instances of processes is defined in Value (see 2.1.1.3). In
RDTtoJava, the messages communicating between the objects are defined in the
self-defined object called Message. Instead of just the Value of RDT, this object
contains the information on the message sender, the expected receiver of the
message, the name of the channel through which the messages pass, and the Value.
In asynch-RDTtoWS, the ObjectMessage is used to define a JMS message. An
object of ObjectMessage, called Message, will be passed by the server to the

queue, and the receivers will get this object from the queue.

4.2.1.3.1 Read event
When an instance of the Process completes one Read event, it will receive a

message. In JMS, the receive (Read event) program performs the following steps:
1. Perform a JNDI API lookup of the QueueConnectionFactory and queue

Create a connection and a session

Create a QueucReceiver

Start the connection, message delivery begins

A

Receive the messages sent to the queue, until the end-of-message-stream
control message is received
6. Close the connection in a final block, automatically closing the session and

QueueReceiver.

71

The QueueSession is created by using the createQueueSession () method on
the QueueConnection object. A receiver is created by using the
createReceiver () method on the QueueSession object. When an instance of

a Process has one or more channels, corresponding queues will be created in JMS.

<Event Name="R_Election_0" Type="Read" Before="initial" After="RENQ"
Channel="election" Value="V0"/>

package participant3;

import java.util.StringTokenizer;

import java.util.Properties;

import javax.naming.InitialContext;

import javax.jms.TopicConnectionFactory;
import javax.jms.QueueConnectionFactory;
import javax.jms.Topic;

import javax.jms.Queue;

import javax.jms.QueueReceiver;

import javax.jms.Sessions;

import javax.jms.TextMessage;

import java.awt.*;

import java.awt.event.”;

import java.applet.”;

import java.awt.Font;

import java.awt.FontMetrics;

import javax.swing.”;

import java.awt.Graphics;

public class participant0_pO_Impl extends JFrame implements
javax.jms.Messagel.istener

static class Message {

Message (String t, Process p, Process r, String c){
}

static classs participantO extends Process{

private javax.jms.TopicConnection tConnect = null;

private javax.jms.TopicSession tSession = null;

private javax.jms.TopicPublisher tPublish = null;

private javax.jms.QueueConnection gConnect = null;

private javax.jms.QueueSession qSession = null;

private javax.jms.Queue receiveQueue = null;

private javax.jms.Topic messageTopic = null;

public static void main (String args [1)}{

try{
receiveMessage (message);

} catch (java.io.|[OException i) {
i.printStacktrace ();

72

}
}

public void createConnection_Participant_Tr()}{
try {

TopicConnection tFactory = null;

QueueConnectionFactory gFactory = null;

InitialContext jndi = null;

Properties env = new Properties();
jndi = new InitialContext(env);

tFactory = (TopicConnectionFactory)jndi.lookup();
messageTopic= (Topic) jndi.lookup("inbox");
tPublish = tSession.createPublisher(messageTopic);

QueueReceiver qReceiver = gSession.createReceiver (receiveQueue);
gReceiver.setMessagel.istener (this);

//start the connection;

gConnect.start();

tConnect.start();

} catch (Javax.jms.JMSException jmse)}{
jmse.printStackTrace();

System.exit(1);

} catch (Javax.naming.NamingException jne){
jne.printStackTrace();

System.exit(1);

}

public void receiveMessage(Message m) {
try
{

javax.jms.Stream Message m=tSession.createStreamMessage();
m.setJMSReplyTo(receiveQueue);

if(m.type==" XXXX_XXXX " && state==null){ }

else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");

} catch (javax.jms.JMSException jmse){
jmse.printStackTrace();

}
}

}

Figure 51: Translation of the Read event in RDT into JMS-implemented Web services code

4.2.1.3.2 Create event

The sending program performs the following steps:

73

A L T o

Perform a Java Naming and Directory Interface (JNDI) API lookup of the
QueueConnectionFactory and queue

Create a connection and a session

Create a QueueSender

Create an ObjectMessage

Send one or more messages to the queue

Send a control message to indicate the end of the message stream

Close the connection in a final block, automatically closing the session and

QueueSender.

<Event Name="start_election" Type="Create" Before="initial"
After="election_start" Channel="outbox" Value="election"/>

public void onMessage(javax.jms.Message m){

try{

ObjectMessage objectMessage= (ObjectMessage)m;
Message m=(Message)objectMessage.getObject();
if (state=="initial")

start_election(m);

else if (state=="elected")

}catch (java.lang.RuntimeException e){
e.printStackTrace();

}
}

private void start_election(javax.jms.Message message){

try{
System.out.printin(name+" : start_election");

traceTable.center.add(Buttonstart_election);
Message m=new Message("election",this,p1,"outbox");

ObjectMessage objectMessage= session.createMessage();
ObjectMessage.set(m);

Queue outbox=(Queue)message.getJMSReplyto();
outbox.send(objectMessage);

outbox_qgSendder =outbox_gSession.createSender(outbox);

outbox_gSender.send(objectMessage,
javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY,
1800000);

ButtonS_ start_election.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){

try{
transformState("election_send");

74

}

catch(javax.jms.JMSException €){System.out.printin(name + " :
start_election.error");}

displayTrace(" start_election”, "Create", "initial", " election_start",

"outbox", "election");
ButtonS_ send_election.setVisible(false);

}
1;

}catch(javax.jms.JMSException e){

}
}

Figure 52: Translation of the Create event in RDT into JMS-implemented Java Web services

code

4.2.1.3.3 Write event

Create event will create a new channel and then use this channel, and the Write

event will use the created channel. In JMS, we know the channel in RDT is the

queue. So, a Create event in JMS will create a new queue and use it until closed,

and a Write event in JMS will use an opened queue.

4.2.1.4 Channel

A channel in RDT, for both Receive and Write/Create, is a queue, and I will now

describe how to open, use and close a queue.

1. Declare a queue

75

<Proclnstance Name="p0" Type="participant0"/>
<Procinstance Name="p1" Type="participant1"/>
<Connection>
<End Proclnstance="p0" Channel="Ps_election"/>
<End Proclnstance="p1" Channel="election"/>
</Connection>

public class participant0 implements javax.jms.MessageL.istener{

private javax.jms.QueueConnection Ps_election_qConnect = null;
private javax.jms.QueueSession Ps_election_qSession = null;
private javax.jms.QueueSender Ps_election_qgSender = null;

private javax.jms.TopicConnection Ps_election_tConnect = null;
private javax.jms.TopicSession Ps_election_tSession = null;

private javax.jms.Topic messageTopic=null;
private javax.jms.TopicSubscriber Ps_election_tSubscriber = null

public participantO(){
try{
}
catch(javax.jms.JMSException jmse){
jmse.printStackTrace();
System.exit(1);
}catch(javx.jms.NamingException jne){

jne.printStackTrace();
System.exit(1);

As multiple queues could be used, so I name the queue corresponding to the

Channel, rules are followed. An example is shown here.

<End Proclnstance="p0" Channel="Ps_election"/>
javax.jms.QueueConnection Ps_election_qConnect;
javax.jms.QueueSession Ps_election_qgSession;
javax.jms.QueueSender Ps_election_qgSender;

javax.jms.TopicConnection Ps_election_tConnect;
javax.jms.TopicSession Ps_election_tSession;

ToicConnectionFactory Ps_election_tFactory;
QueueConnectionFactory Ps_election_gFactory;

2. Use the current queue
When a queue is ready to use, it means that connection is possible to other
receiver or sender. When a message is created, it will be ready to be sent

through the queue.

76

<Event Name="start_election" Type="Create" Before="initial" After="election_start"
Channel="outbox" Value="election"/>

public void onMessage(javax.jms.Message m)

try{

ObjectMessage objectMessage= (ObjectMessage)m;
Message m=(Message)objectMessage.getObject();
if (state=="initial")

start_election(m);

else if (state=="elected")

}catch (java.lang.RuntimeException e){
e.printStackTrace();

}
}

private void start_election(javax.jms.Message message){

try{
System.out.printin(name+" : start_election");

traceTable.center.add(Buttonstart_election);
Message m=new Message("election",this,p1,"outbox");

ObjectMessage objectMessage= session.createMessage();
ObjectMessage.set(m);

Queue outbox=(Queue)message.getJMSReplyto();
outbox.send(objectMessage);

outbox_gSender =outbox_qSession.createSender(outbox);

outbox_gSender.send(objectMessage,
Javax.jms.DeliveryMode.PERSISTENT,
Javax.jms.Message.DEFAULT_PRIORITY,
1800000);

ButtonS_start_election.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){

try{
transformState("election_send");

catch(javax.jms.JMSException e){System.out.printin(name + " :
start_election.error");}

displayTrace("start_election", "Create", "initial", "election_start", "outbox", "election");
ButtonS_send_election.setVisible(false);

}
D

}catch(javax.jms.JMSException e){

}
}

3. Close a queue

When all sessions on one queue is finished, this queue should be closed.

77

<End Proclnstance="p0" Channel="Ps_election"/>

private void exit(Strings){

try {if (s!=null && s.equalslgorecase("unsubscribe")){
Ps_election_tSubscriber.close();
Ps_election_tSession.unsubscribe("Ps_election Subscription");
}
Ps_election_tConnect.close();
Ps_election_qConnect.close();
}catch(Javax.jms.JMSException jmse){
jmse.printStackTrace();

}
System.exit(0);
}

4.2.1.5 Value

The same code is employed as in RDTtoJava (See 3.2.4). The Value is still part of
the Message.

4.2.1.6 Before state and After state
The same code is employed as in RDTtoJava. See 3.2.5.
4.2.1.7 Process Instance

As in RDTtoJava, one instance of Process is one application. In RDTtoWS, one
instance of Process is developed into one application as well. The identification or
the name of the instance is packaged in Message. When the message is passed to

others, the receiver will recognise the sender.
4.2.1.8 Connection

On the sender side, INDI is first created, and then the connection factory is looked
up and the queue is created. If either of these does not exist, then exit. Then create
the connection, and the session from the connection. Now the connection is ready,

the sender can create a message, and send it. Finally, close the connection.
The receiver side creates a JNDI InitialContext object, and then looks up the

connection factory and queue. It then creates a connection and session from the

connection. Message delivery is now started, and receive all messages from the

78

queue until a non-object message is receive indicating end of message stream.

Finally, close the connection.

The code is found in 4.2.1.3.1 and 4.2.1.3.2.

4.3 Conclusion

In this chapter, the framework of RDTtoWS is introduced in two parts: how to
transform an RDT model into a JAX-PRC Web service, synchronous Web service,
and one is how to transform a RDT model into JMS Web service, asynchronous
Web service. It includes the transformation of the RDT language and the system

configuration.

79

S Experimental Results

5.1 Introduction

This chapter presents the experimental results observed using the RDTtoJava and

RDTtoWS in the target environments. Test and analysis reports are given.

In order to validate my tools, my framework and my approach, many experimental
models and system have been researched. Five models of system are presented:
1. The cycle election algorithm
The Bully algorithm
The Probe/Echo algorithm

An agent model

A

Online flight ticket booking system

All experimental systems have been modelled with the RDT tool. All of the models
executed in RDX have been simulated in SPIN/XSPIN, using the model checking
technology with the help of the RDTtoSPIN tool, which translates the model into
Promela code. The RDTtoJava tool generated Java multi-threaded applications
from the RDT models. These Java programs are run in JEDPLUS, as this tool
requires us to do the configuration work. The web application, based on Web
services technology and JMS, was built using RDTtoWS, and is deployed and

implemented.

80

5.2 The Experimental Models

Current research in distributed computing encompasses two major and often
separate trends: distributed algorithms [Lynch 1996], and distributed programming
models. In the following sections, three well-studied distributed algorithms in the
theory of distributed computing will be specified, namely the ring-based election
algorithm [Chang and Roberts 1979], the Bully algorithm [Garcia-Molina 1982]
and the Probe/Echo algorithm [Andrews 1991], along with an example of the
client/server model. I describe these models and then make these models into

applications. In addition, I build two client/server examples.

5.2.1.1 The Cycle Election Algorithm

A ring-based election algorithm [Colouris, Dollimore, et al. 2001], called the cycle
election algorithm, requires exactly one processor in the ring to be chosen as leader.
A participant receives a message from his previous neighbour, and this participant
deals with the message, distinguishing the different conditions. Finally, the boss for
each participant is elected. When all of the participants know their own boss, the

program will finish. This occurs in such a way that

1. each participant eventually knows his boss
2. no message is left in the message queue, and

3. no matter which participant initiates, the result for all will be the same.

Only one processor performs an action at one time.

The communication of the cycle election algorithm is in the same direction as the
synchronous (or asynchronous) message-passing, unlike the bi-directional
communication with asynchronous message-passing applied in the Peterson
Leader-Election algorithm [Lynch 1996]. The Promela model of a cycle election
algorithm is given in Appendix A, and the Java program of this cycle election is
given in Appendix A. The correspondence between the Java program and the
Promela model in the activity mapping of sending and receiving messages is shown

in Figure 53.

81

Java specification Promela model
if(m.type=="election") :iin?election(value)->
if(m.candidate.value>value) ::n>value->
next.send(m); outlelection(n)
else if(m.candidate.value<value) :n<value->
next.send(new Message("election" this)); outlelection(value)
else ::n==value->
next.send(new Message("elected",this)); outlelected(n)

if (m.type=="elected"){ } :iin?elected(value)->
if(m.candidate.value==value) if

return; :n==value->break
else else->
next.send(m); outlelected(value)

Figure 53: Java specification and the Promela model for the cycle election algorithm

5.2.1.2 The Bully Algorithm

The Bully algorithm survives processes which crash during an election; although it
assumes that message delivery between processes is reliable. To begin an election,
each participant sends a message to every participant in the system to announce the
start. After the election begins, each participant receives messages from all, or
some (if crashes occur), of the other participants in the system. Each then compares
the participants’ received identifiers and records the highest one as the boss. Then
the process stops. In the ideal scenario, every participant should know the boss in

the system, and there should be one and only one boss.
The Promela model of the bully algorithm is given in Appendix A/B, and the Java
program of the bully algorithm is given in Appendix A/B. The correspondence

mapping the Java program to Promela model is given in Figure 54.

The experience of mapping from Promela to Java and from Java to Promela is

valuable for deploying tools and building models of distributed systems.

82

Java specification Promela model
for(int i=0;i<neighbour.length;i++)try{ do
neighbourfi].send(new Message(me)); i<N-> queuelil'lmynumber;
}catch(Exception e){ } i=i+1 ::i>=N->break
od;
try{ do
while(true){ :lin?value->
Message m=(Message)inbox.receive(); if
if(m.candidate.value>boss.value) ::max<value->max=value;
boss = m.candidate; ;.else->skip
}}catch(Exception e){ } fi
od;

Figure 54: Java specification and the Promela model of the Bully algorithm
5.2.1.3 The Probe/Echo Algorithm

This section discusses the probe/echo algorithm for distributed computations on
trees. A probe is a message sent by one node to its successor; an echo is the
subsequent reply. The probe paradigm is first illustrated by showing how
information is broadcast to all nodes in a network. The echo paradigm was then

added by developing an algorithm for discovering the topology of a network.

In a network, to get information about the utilization of the nodes, a Probe-Echo
algorithm can be used. The general idea is simple. The net is treated as a tree,
where the root asks all its subtrees for information about their trees; these continue
in a similar way and ask their children, etc. After having received the required
information from its children, the node sends the complete subtree information to

its parent.
5.2.1.4 An Agent Model

Distributed applications are often implemented using some kind of 2-tier or 3-tier
client/server model. For some servers, it may be satisfactory to accept one request
at a time, and to process each request to completion before accepting the next.
However, it is often necessary to process a number of requests in parallel.

Multi-threaded servers are commonly used in practice to achieve this. Parallelism

83

may be possible, because a set of clients can concurrently use different objects in
the same server process, or because some of the objects in the server process can be

concurrently used by a number of clients.

=N T
- e

o
T
-"__..-"‘ -h.__"h-.

- i
S

Figure 55: An agent model architecture

The agent model (see Figure 55), designed during this research, describes a
scenario where each customer try to buy an item from a couple of shops with the
help of an agent. First, each customer presents a request to the agent, and then
waits for a reply from the agent. After receiving the request from the customer, the
agent will intelligently make a decision, based on experience, to select one shop to
pass on the request from the customer, and then wait for a response from the shop.
The shop deals with the request passed by the agent, sends back the response to the
agent, and then stops. The agent passes the response to the customer who sent the

request, and then stops. The customer receives the response from the agent.
5.2.1.5 Online flight ticket booking system

This example most closely reflects the real world of the travel agent. Imagine there
are three online flight ticket booking websites, Expedia, Alitalia, and Omega, and
one travel agent. The customer will send a query to the travel agent. The travel
agent offers a service to consumers for planning flights. Each website will handle
the jobs sent from the travel agent, and generate responses back. The travel agent is
an intermediary acting on behalf of the consumer, and the consumer never interacts

directly with the booking websites.

Booking a flight in one business transaction includes a price comparison for the

flight portion through the websites Expedia.co.uk [Expedia 2008], Alitalia.co.uk

84

[Alitalia 2008], and Omegatravel.net [Omega 2008], subsequently confirming one

of the flight options, and informing the others of cancellation of bookings.

The whole process is discussed here in detail. First, the Consumer (Initiator)
creates a business transaction for the job (request) it wants to accomplish. It does
this through its Coordinator. The Initiator then makes a Service Requests to the
Travel Agent with the transaction details. The Travel Agent’s Coordinator receives
the request and then undertakes the task of creating and managing the

sub-transactions that make up the overall business transaction.

The Travel Agent’s Coordinator makes its Service Requests to Expedia.co.uk,
Alitalia.co.uk, and Omega.co.uk based on the Initiator’s request. These recipients
(Participants) all agree to participate in the transaction and confirm with the Travel
Agent’s Coordinator if each can meet the request, for example, the flight tickets are
still available on their sites. Once all the parties have agreed to participate in the
transaction, the Travel Agent’s Coordinator can agree to be part of the transaction
initiated by the Initiator. All parties also make a commitment to the Travel Agent’s
Coordinator with regard to the transaction (Prepared). The Travel Agent’s
Coordinator could also make a commitment (Prepared) to the Initiator when it
agrees to participate in the transaction (Enrol). In this case, however, the Travel
Agent’s Coordinator simply replies to the Initiator and agrees to participate in the

transaction (Enrol). Now the whole booking system is ready.

The Initiator now can decide to make the booking, or to cancel, depending upon the
information returned by the Travel Agent’s Coordinator. One of two actions will be
taken.
1. When the Initiator decides to not purchase the flight ticket offered (Cancel).
The Initiator’s Coordinator now asks Travel Agent to cancel the booking.
The Travel Agent, who has already received commitments from the
Participants, must now cancel with Expedia.co.uk, Alitalia.co.uk, and
Omega.co.uk. Once the Travel Agent has received confirmation of the

requests to cancel from all Participants, it can confirm the cancel operation

85

with the Initiator’s Coordinator, and that Coordinator in turn can confirm
the cancellation with the Initiator.

When the Initiator decides to purchase the flight ticket offered (Confirm).
The Initiator’s Coordinator now asks Travel Agent to confirm the booking.
The Travel Agent’s Coordinator, who has already received commitments
from the Participants, now confirms the booking, for example, with
Expedia.co.uk, and cancels the booking with Alitalia.co.uk, and
Omega.co.uk. Once the Travel Agent’s Coordinator has received
confirmation of the request to confirm one booking, and the requests to
cancel from other Participants, it can confirm the operation with the
Initiator’s Coordinator, and that Coordinator in turn can confirm the

booking with the Initiator.

When all transactions are accomplished, the coordination between the

Customer, travel agent and websites is finished as well.

Furthermore, I build other models to expand this system:

1.

System 1: Customer 1, Customer 2, Travel Agent, Expedia, Alitalia, and
Omega

System 2: Customer, Travel Agent, Expedia, Alitalia, Omega, and BAA
System 3: Customer 1, Customer 2, Travel Agent, Expedia, Alitalia,
Omega, and BAA

After checking the experimental results, I found that our framework and the system
generated by it have guaranteed the performance of this online flight booking
system. All such applications are working well, so I will only introduce the basic

system: Customer, Travel Agent, Expedia, Alitalia, and Omega.

5.3 The Cycle Election Model

Communication within the cycle election model is relatively simple. For instance,

the participant participant() only receives messages from participant participant3

86

and only sends messages to participant panticipantl. Two models were developed
based on cycle election algorithm. In the first (see Figure 56), every participant in
the cycle election is awake, and one process, which is not a participant in the
election, will send out the first message to one participant in the election to start the

election.

In the second model (see 5.3.2), every participant sends out the message to its

neighbour to start the election.

5.3.1 The Cycle Election Model (Model 1)

This is the first model (see Figure 56) for the cycle election algorithm. In this
model, the election starts from the process participantl after it receives a message
from the process trigger. The message passing order is: participantl ->participant2

->participant3 ->participant() ->participant1, so that a cycle election is created.

participant] :pl

F 3

¥

Figure 56: The cycle election model architecture (Model 1)

This model is executed in the RDX tool in both asynchronous and synchronous
communication (see Figure 57). All the participants know the correct boss in the

system.

87

&) RDX: cycle.xml - participantQ

G
]
X

File Run Wiew Channel
ﬂJ pl: participanti : Ki:p2: participant2 Izl |ﬂ.|] Tr: trigger |zﬂ -qql__(:hﬂ"ﬂﬂl"ﬂ |§| S|
. A Channel 11 IX
.QJ Channel9 [X|
A) Channel1 (X
| election Channel 0 | | election Channel 2 | |l| startElection | Channel D e —
Pz _election | Channel 2 Ps_election |Channel 4 Wi Channel 8 A Channel 15 X
Pz elected |Channel3 % || Ps_elected |Channel 5 - — —:
R e j— — Al Channel 17 [X|
A p3: participantd [X| | A) p0; participantd. (X || A Channel 5 X —
. i | — Al Channel 16, |X| liE
et Al Channet12 %] —
o Al Channel B [X]
Rl Channel 10 [¥| e
- — B Al) Channel 18 [X]
Al Channel 6 (X S p—
Channel 4 & Channel B — 1) bk N
Channel B Channel 1 A) Channel 13 [X| IQI] Channel O |§|
| i = ot Channel 0 = ;
[\R) lchannet 14 [X| ' 5 BN A Channet3 [X| B Q) Channet7 [X]
|

Figure 57: The cycle model during execution (Model 1)

A Process View: participant2

W3 <~ election

Cinitial
F_Election_0 Wi <~ election
: F_Elzction_1 W1 <-- election
RENMD I Fi_Election_2 W2 ¢~ election
REM1 I F_Election_3

RENZ I R_Elected_2 W2 ¢~ elected
REN3 I F_Elected_3 w3 <-

elected
IMB oss I
RED3

EQS Election2_0| W2 -» Pz election
EQS Election2_1 W2 > Ps election
[EQS Elected_2 W2 > Ps_ elected
S_Election_3 W3 -» Ps election
S ED 3 W3- Ps elected
ﬁ@ &4

rinitial=

1 Bossd

| 4

Figure 58: Process view of participant 2 in the cycle election model

88

R Process View: participant3

Chinibial]
Fi_Election_0 Wi < election
I R_Election 1 W1 - election
REMD I Fi_Election_2 Wa - election
REM1 I Fi_Election_3 W3 < election
RENZ I F_Elected 3 W3 < electad

REMZ
I|MBDSS

[}g 5_Election3 0 W3 --» Pe_election
E@ S_Election3 1 W3- Pr_election
5_FElectiona_3 W3 --» Pe_elechon
[ﬁ@ Eg 5_Elected_3 W3 -» Pg_elected

rinitial= -

Figure 59: Process view of participant 3 in the cycle election model

Part of the asynchronous communication behaviour of this model in SPIN is as

follows (see also Figure 60) when the buffer length is 3;

155: proc 3 (participant2) line 165 "pan_in" (state 35) [Ps_elected!V3]
156: proc 3 (participant2) line 165 "pan_in" (state 36) [i =(i+1)]

157: proc 3 (participant2) line 166 "pan_in" (state 38) [goto Boss3]
158: proc 3 (participant2) line 170 "pan_in" (state 42) [(1)]

159: proc 4 (participant3) line 189 "pan_in" (state -) [values: 6732]

159: proc 4 (participant3) line 185 "pan_in" (state 15) [elected?V3]
160: proc 4 (participant3) line 189 "pan_in" (state 14) [goto IMBoss]
161: proc 4 (participant3) line 214 "pan_in" (state 38) [(1)]

161: proc 4 (participant3) terminates

161: proc 3 (participant2) terminates

161: proc 2 (participant1) terminates

161: proc 1 (participant0) terminates

161: proc 0 (:init:) terminates

5 processes created

89

=7]

a7]

Figure 60: Message sequence chart in XSPIN of asynchronous communication of the cycle
election model (Model 2)

There is no deadlock for asynchronous communication.

After participant? had sent out the message V3 successfully, its state was changed
to the state Boss3 and it was still alive at that moment. As expected, participant3
received the message V3 successfully from participant2, and then its state was
changed to the state IMBoss and it was still alive at that moment. The state Boss3 is
the termination state for the process participant?, and the state IMBoss is the
termination state for the process participant3. Now every participant in the election
knows the boss, and then the election stops. The trace history also shows that every

process terminates after all of them know the boss.

Part of the asynchronous communication behaviour of this model in Java is as

follows.

90

p2 : RED3

receive(V3 from p1 to p2 via Ps_elected)

p2's Eventis: R_Elected 3 and read V3 from p1
p2:S_ED_3

send(V3 from p2 to p3 via Ps_elected)

p2 : Boss3

receive(V3 from p2 to p3 via Ps_elected)

p3's Eventis: R_Elected_3 and read V3 from p2
p3 : IMBoss

An instance p2 of the process participant? received the message V3 from an
instance p/ of the process participantl through the channel Ps_elected. The event
S ED 3 occurred to send out the message V'3 to p3, which is an instance of the
process participant3, when its conditions have been satisfied. The state of p2 was
then changed to the state Boss3 which is the terminal state for the process
participant2. For p3, the state was changed to the state /MBoss after it received the
message V3 successfully through the channel Ps elected. By now, all processes
have reached final states and know the boss in the system, and there are no

messages that have not been received.

The synchronous communication of this model in Java was found to be almost the

same as asynchronous communication.

p2's Eventis: R_Elected 3 and read V3 from p1
p2 : RED3

p2:S_ED 3

send(V3 from p2 to p3 via PassOn_elected)

p2:3 Boss

receive(V3 from p2 to p3 via PassOn_elected)
p3's Eventis: R_Elected 3 and read V3 from p2
p3 : IMBoss

The synchronous communication of this model in SPIN is different from
asynchronous communication. Only the process trigger terminated, other processes

did not terminate, because of the timeout.

91

18:
30:

timeout

proc 5 (trigger) terminates
proc 2 (participant1) line 129 "pan_in" (state 51)

#processes: 5
30:
30:
30:
30:
30:

6 processes created

proc 4 (participant3) line 184 "pan_in" (state 11)
proc 3 (participant2) line 138 "pan_in" (state 13)
proc 2 (participant1) line 130 "pan_in" (state 52)
proc 1 (participant0) line 12 "pan_in" (state 17)
proc 0 (:init:) line 266 "pan_in" (state 7)

(1]

part Lcipan:-l_ri______._i-!-ﬂ'ﬂ"_—-

Figure 61: Message sequence chart in XSPIN of synchronous communication of the cycle

election model (Model 1)

In RPC Web service, the system is started from the command line. All processes or

clients and services should first be ready. This is different to a local Java

multi-threaded application. When the all of system is ready, the job is send out to

the customer. Controlled by the event selection on the GUI, the system works well.

Two scenarios:

92

when one participant goes offline before the system finishes the job, it is
impossible for any other participant to send the message to others, and the
system is idle.

when more than one participant goes offline before the system finishes the

job, the system is idle.

In JIMS Web service, the system is started from the command line and all queues

are created. Controlled on the GUI, the system works well. Some scenarios are:

1.

when one queue of one participant is shut down before expected, a
warning message will pop up.

when one queue of one participant is shut down, and will not be used any
more, it does not affect the system.

when one queue of one participant is not ready to use, and is expected to
receive a message which is already sent out by other participant, the
system is waiting.

after the frigger sends out the message and switches off, it will not affect

the whole system.

5.3.2 The Cycle Election Model (Model 2)

In this model, the election starts when each process sends a message out to

announce an election to its neighbour. In other words, the process participantl

receives messages from the process participant3 and sends out messages to the

process participant2; the process participant2 receives messages from the process

participant? and sends out messages to the process participant(), and so on. Then a

cycle election is created.

93

A Process View: participant1

iniitial

StartE lection

W1 < Ps_election

SE

W<

election

R_Election_1

W12

election

fﬂ Election_0 ‘
REND t

R_Election 2

WM2<-

election

REN1 A_Election_3
RENZ z

W3-

election

W1 e

elected

V2 <

elected

W3 <o

elected

R_Elected 1
RENZ F_Elected 2
z B_Elected 3
IMBoss REDZ z

REDZ
W1 - Ps_election
W1 --» Ps_elected
W2 > Ps_election
W3 -» Ps_election
W2 -» Ps_elected

[S ED_3 W3- Ps_elected

5 Election_0)
[=

[] S_Elected_1

L& Election_2
[,
LS Election 3
5 ED 2
[‘J [

2_BEuoss

SEl=

SE=

3 _Boss

Figure 62: Process view of participant 1 in the cycle election model (Model 2)

participant] pl

participantd: pi

¥
partcipantSipd |y participant: pd

Figure 63: The cycle election model architecture (Model 2)

A RDX: cycle9.xml - participant0

File Run Wiew Channel
) i) 1 1 2|
{) i 1
T {
; {
election Charnel 2 | |felection Channel 6 A anne
Ps_elected |Channel1 — | [|Ps_elected |Charnel3 ,
elected Charnel 3 % | [lelected Channel 7 % |H1 2] 0
oo i =
— ;
R p2: participant2 [X|
: : : -
" 0
1 n 4 A
Y2 Charingl 10 | || election Channel 4 &
Wi i — | P glected |Channel 7 =
il - ¥ | i elected Channel5 %
M|

Figure 64: The cycle model during execution (Model 2)

94

When the communication of this model is asynchronous in SPIN, every process

terminates. Part of the simulation in SPIN is shown below:

155: proc 3 (participant2) line 165 "pan_in" (state 35) [Ps_elected!V3]
156: proc 3 (participant2) line 165 "pan_in" (state 36) [i = (i+1)]

157: proc 3 (participant2) line 166 "pan_in" (state 38) [goto Boss3]
state 42) [(1)]

state -) [values: 6?32]

)
)
)
)
)
159: proc 4 (participant3) line 185 "pan_in" (state 15) [elected?V3]
)
)
)
)
)

158: proc 3 (participant2) line 170 "pan_in

159: proc 4 (participant3) line 189 "pan_in

(

(

(

(

(

(

160: proc 4 (participant3) line 189 "pan_in" (state 14) [goto IMBoss]
161: proc 4 (participant3) line 214 "pan_in" (state 38) [(1
161: proc 4 (participant3) terminates

161: proc 3 (participant2) terminates

161: proc 2 (participant1) terminates

161: proc 1 (participant0) terminates

161: proc 0 (:init:) terminates

5 processes created

When the communication of this model is asynchronous in Java, every process

terminates. Part of the implementation in Java is shown below:

receive(V3 from p0 to p2 via election)

p2's Eventis: R_Election_3 and read V3 from p0
p2 : REN3

p2 : S_Election_3

send(V3 from p2 to p3 via election)

p2: SE

receive(V3 from p0 to p2 via election)

p2's Eventis: R_Election_3 and read V3 from p0
p2 : REN3

p2 : S_Election_3

send(V3 from p2 to p3 via election)

p2: SE

p3:S Elected 3

95

In RPC Web service, the system is started from the command line. All the
processes or clients and services should first be ready. This is different to a local
Java multi-threaded application. When the all of system is ready, the job is sent out
by the customer. Controlled by the event selection on the GUI, the system works
well. Two scenarios:

1. when one participant goes offline before the system finishes the job, it is
impossible for any other participant to send the message to others, and the
system is idle.

2. when more than one participant goes offline before the system finishes the

job, the system is idle.

In JMS Web service, the system is started from the command line and all queues
are created. Controlled on the GUI, the system works well. Some scenarios are:
1. when one queue of one participant is shut down before expected, a
warning message will pop up.
2. when one queue of one participant is shut down, and will not be used any
more, it does not affect the system.
3. when one queue of one participant is not ready to use, and is expected to
receive a message which is already sent out by other participant, the

system is waiting.

5.4 The Probe/Echo Model

In this model (see Figure 65), p0 sends the message probe to pl and p3, and then
waits for the replies. After it receives the message probe from p0, pl passes the
message probe to p2, and then waits for the reply from p2. After it receives the
message probe from p0, p3 detects no child and then sends back the message echo
to p0. After it receives the message probe from pl, p2 detects no child and then
sends back the message echo to pl. After it receives the message echo from p2, pl
passes the message echo to p0. p0 receives the message echo from pl and p3 as

well. All of them then stop.

96

Participartd: pi

Figure 65: The probe/echo model architecture

b 4

A
&R
(3]

e O

Figure 66: Message sequence chart in XSPIN of synchronous communication in a probe/echo

model

Figure 67: Message sequence chart in XSPIN of asynchronous communication in a probe/echo

model

97

The synchronous communication (see Figure 66) and the asynchronous
communication (see Figure 67) of this model in SPIN are the same. Every process

is terminated.

p2's Event is: receive probe and | p2's Event is: receive probe and read probe
read probe from p1 from p1

p0 : probe_send p2 : probe_receive

send(probe from pO0 to p3 via | p2:send_echo

outbox) send(echo from p2 to p1 via outbox_1)

p2 : probe_receive p2 : initial

p2 : send_echo receive(echo from p3 to p0 via outbox_0)
send(echo from p2 to p1 via | p0's Eventis: receive_echo and read echo
outbox_1) from p3

receive(echo from p2 to p1 via | p0:initial

outbox_1) p0 : send_probe

p1's Event is: receive_echo and | send(probe from p0 to p1 via outbox)

read echo from p2
p1: echo_receive

p1:send_echo

p0 : probe_send
send(echo from p1 to p0 via inbox)

p1 :initial

send(echo from p1 to p0 via inbox) | receive(echo from p2 to p1 via outbox_1)

p2 : initial p1's Event is: receive_echo and read echo
from p2
p1: echo_receive

p1:send_echo

receive(probe from p0 to p1 via outbox)

The synchronous communication and the asynchronous communication of this
model in Java have the same feature of repetitive behaviour. In the asynchronous
communication, it is possible that some messages are still left in the message

queues when the process terminates.

In RPC Web service, the system is started from the command line. All processes or
clients and services should first be ready. This is different to a local Java
multi-threaded application. When the system is ready, the job is sent out by the
customer. Controlled by the event selection on the GUI, the system works well.

Some scenarios:

98

when participant() goes offline before the system finishes the job, the
system is idle.

when participant] goes offline before the system finishes the job, the
system sometimes continues the communication between particant() and
participant3, and pops up a warning message and sometimes breaks down.
when participant2 goes offline before the system finishes the job, the
system sometimes continues the communication between participant() and
participant3, and between participant() and participant3, or pops up a
warning message and sometimes breaks down.

when participant3 goes offline before the system finishes the job, the
system sometimes continues the communication between participant0,
participant] and participant2, and pops up a warning message and

sometimes breaks down.

In JMS Web service, the system is started from the command line and all queues

are created. Controlled on the GUI, the system works well. Some scenarios are:

1.

when one queue of one participant is shut down before expected, a
warning message will pop up.

when one queue of one participant is shut down and will not be used any
more, if does not affect the system.

when one queue of one participant is not ready to use, and is expected to
receive a message which is already sent out by other participant, the

system is waiting.

From these experiments, we can see that the JMS Web service can guarantee a

more stable performance for the communication than the RPC Web service.

5.5 An Agent Model

This model (see Figure 68) is an example of the classic client/server model. In this

model, there are two customer processes, two shop processes and one agent

process. The customer sends a request to the agent and then waits for a reply from

99

the agent. After it receives the request from the customer, the agent passes the
request to the shop, and then waits for a reply from the shop. After it receives the
request from the agent, the shop sends a reply to the agent, and then it terminates.
After it receives the reply from the shop, the agent passes the reply to the customer,
and then it terminates. The customer receives the reply from the agent and then

terminates.

™
LY
s -
T,
customer; ¢l - -~ shop sl

Figure 68: An agent model architecture

The model checker SPIN only implements the customer ->agent ->shop ->agent
->customer behaviour and does not repeat this behaviour to another customer and
another shop. After checking the simulation output of the synchronous
communication of this model in SPIN, it was found that the processes that have not
terminated have ended communication, but have just not reached terminal states.
As we know (see Figure 69), c0 has a relationship with a, and a has a relationship
with s0 and s/. The expected relationship between the instances, between the
process customer and the process shop, is not the relationship between c0 and s/,

but the relationship between c0 and s0.

cuftomes]: 1 |
2
.ﬁ.______.’iugent.: 3
2
H M\’ l
¥ shop : N
12
tpg———L 20
20
<dEoppei>
26
Cze
30-
[z]
custome 2
30
20]
timdt: c(0 |
[30 |

Figure 69: Message sequence chart in XSPIN of synchronous communication in an agent

model

100

FEX

R RDX: agent.xml - customer

File Run View Channel

: customer X[Alie1: customer

Frastami

linitial get_’send - target_receive
zend_target |target --» autbox zend_item |item --» outbox
outhox Channel 0 outbas Channel 0 & || inbox Channel 1 A
Channel 3 inbio Channel 32 |}| outbox Channel 2
g target Channel 4 1 target Channeld ™

inbow_c Charinel 0 ~ inbo Channel 1 ~
outbos_z Channel 1 — M outbox Channel 2 T
|inbow_z Channel 2 ™| |f{ target - B

| <

Figure 70: An agent model during execution

23: proc 5 (shop) terminates

24: proc 3 (agent) line 47 "pan_in" (state 23) [((i<3))]

25: proc 3 (agent) line 48 "pan_in" (state 21) [item = supp]i]]
26: proc 3 (agent) line 48 "pan_in" (state 19) [outbox_clitem]
26: proc 1 (customer) line 19 "pan_in" (state 9) [inbox?item]
26: proc 3 (agent) line 48 "pan_in" (state -) [values: 4!22]
26: proc 1 (customer) line 19 "pan_in" (state -)[values: 4?722]
27: proc 3 (agent) line 48 "pan_in" (state 20) [i = (i+1)]

28: proc 3 (agent) line 49 "pan_in" (state 22) [goto finish]

29: proc 1 (customer) line 22 "pan_in" (state 13) [(1)]

30: proc 3 (agent) line 52 "pan_in" (state 25) [(1)]

timeout

#processes: 5

30: proc 4 (shop) line 61 "pan_in" (state 3)

30: proc 3 (agent) line 53 "pan_in" (state 26)

30: proc 2 (customer) line 13 "pan_in" (state 3)

30: proc 1 (customer) line 23 "pan_in" (state 14)

30: proc 0 (:init:) line 98 "pan_in" (state 7)

6 processes created

The synchronous communication in this Java model is complete. Every process has
reached its terminal state. The implementation in Java reveals one problem which
also occurred in RDX (see Figure 70). When three or more processes work
together, it is possible to miss the relationships between their instances. In the

following Java implementation output, it was found that the message farget had

101

been sent from a to s0 (see the statement marked $$ below), as expected, and also
from a to s/ (see the statement marked ££ below), which was unexpected. The
reason for that is that the process agent always sends a message to the process shop
through the channel outbox s. In other words, the process shop receives the
messages from the channel outbox s of the process agent. So in this model, both
instances of the process shop inherit this feature. Once the agent sends a message
to s0, this message is also delivered to s/. The solution to this problem is to use
different channels to make the connections between the two processes, if one or
both of them has a complex connection between their instances. For example, for
the instance of the process agent a, it sends messages to s0, which is an instance of
the process agent, through the channel outbox s0, and in the meantime it sends the
messages to s/, which is another instance of the process agent, through the channel

outbox_sl. Part of the implementation history in Java is given below:

c0 : initial

c0 : send_target

send(target from c0 to a via outbox)

a : initial

s0 : initial

a : target_receive

a : send_target

send(target from a to sO via outbox_s) $$
a : target_send

send(target from a to s1 via outbox_s) ££
a : target_send

receive(target from a to sO via outbox_s)
sQ's Event is: receive_target and read target from a
s0 : target_receive

s0 : send_item

send(item from sO to a via outbox)
a:item_receive

a:send_item

send(item from a to c0 via outbox_c)

s0 : finish

send(item from s0 to a via outbox)

In RPC Web service, the system will start from the command line. All processes or
clients and services should first be ready. This is different to a local Java
multi-threaded application. When the system is ready, the job is sent from
customer. Controlled by the event selection on the GUI, the system works well.

Some scenarios are:

102

1. when customerl goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customer?, agent, shopl, and shop2 depending on the transaction.

2. when customer2 goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customer?2, agent, shopl, and shop2 depending on the transaction.

3. when shopl goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customerl, customer2, agent, and shop2 depending on the transaction.

4. when shop2 goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customerl, customer2, agent, and shopl depending on the transaction.

5. when agent goes offline before the system finishes the job, the system is

blocked.

In JMS Web service, the system is started from the command line and all queues
are created. Controlled on the GUI, the system works well. Some scenarios are:

1. when customerl goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customer?, agent, shopl, and shop2 depending on the transaction.

2. when customer2 goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customer?2, agent, shopl, and shop2 depending on the transaction.

3. when shopl goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customerl, customer2, agent, and shop2 depending on the transaction.

4. when shop2 goes offline before the system finishes the job, the system
sometimes blocks, and sometimes continues the process between
customerl, customer2, agent, and shopl depending on the transaction.

5. when agent goes offline before the system finishes the job, the system is

waiting, and no warning message is given.

103

From these experiments, we can see that the JMS Web service can supply tolerable

performance for the communication that RPC Web service.

5.6 Online Flight Ticket Booking System

Consunner Travel Agent Expedia
% 2 Service
Initiator . . ﬁ‘
Participant
| 3 |.) f B
Alitalia
/ | Service
L
‘5_7‘ ‘f'-'/“ |~ Fartcipant
Coordirator | .. \ Ornega

\ Service

Figure 71: Online flight ticket booking system

When modelling this system initially, three Processes are considered: Customer,
Travel Agent, and the Website. One instance of Customer, one instance of Travel
Agent, and three instances of Website, named as Expedia, Alitalia and Omega,
were modelled. In the testing, problems happened, so the design was changed and

the system was modelled by five Processes: Customer, Travel Agent, Expedia,

Alitalia, and Omega.

In SPIN, the system works well. All possible business processes were verified, and

there was no block, whether the communication was asynchronous or synchronous.

104

In Java, when communication is synchronous, the transaction between the Website
and Travel Agent, and the transaction between the Customer and Travel Agent are
implemented well. The system will start with a message sent by the Customer, and
the Customer will wait for the message from the 7Travel Agent. When the message
from the Travel Agent is received by the Customer, the system has accomplished

all its work, and the status of all processes are standby.

In RPC Web service, the system will start from the command line. All processes or
clients and services should first be ready. This is different to a local Java
multi-threaded application. When the system is ready, the job is sent by the
Customer. Controlled by the event selection on the GUI, the system works well.
Some scenarios are:

1. the system works well, when all clients and services are running well.

2. when Customer goes offline before the system finishes the job, the system
finishes also.

3. when Travel Agent goes offline before the system finishes the job, the
system sometime finishes. The Customer still is available, and can start a
new transaction.

4. when Expedia goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Expedia whatever
the transaction. The system is reduced to Customer, Travel Agent, Alitalia,
and Omega.

5. when Expedia goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Expedia whatever
the transaction. The system is reduced to Customer, Travel Agent, Alitalia,
and Omega.

6. when Alitalia goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Alitalia whatever
the transaction. The system is reduced to Customer, Travel Agent,
Expedia, and Omega.

7. when Omega goes offline before the system finishes the job, the system

still works. The Travel Agent will delete the link with Expedia whatever

105

the transaction. The system is reduced to Customer, Travel Agent, Alitalia,
and Expedia.

when Expedia and Alitalia are offline before the system finishes the job,
the system still works. The Travel Agent will delete the link with Expedia
and Alitalia whatever the transaction. The system is reduced to Customer,
Travel Agent, and Omega.

when Expedia, Alitalia and Omega are offline before the system finishes
the job, the system still works. The Travel Agent will delete the link with
Expedia, Alitalia and Omega whatever the transaction. The system will

send out a warning message.

In JMS Web service, the system is started from the command line and all queues

are created. Controlled on the GUI, the system works well. Some scenarios are:

1.
2.

the system works well, when all clients and services are running well.
when Customer goes offline before the system finishes the job, the system
finishes also.

when Travel Agent goes offline before the system finishes the job, the
system sometimes finishes. The Customer still is available, and can start a
new transaction.

when Expedia goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Expedia whatever
the transaction. The system is reduced to Customer, Travel Agent, Alitalia,
and Omega.

when Expedia goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Expedia whatever
the transaction. The system is reduced to Customer, Travel Agent, Alitalia,
and Omega.

when Alitalia goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Alitalia whatever
the transaction. The system is reduced to Customer, Travel Agent,

Expedia, and Omega.

106

7. when Omega goes offline before the system finishes the job, the system
still works. The Travel Agent will delete the link with Expedia whatever
the transaction. The system is reduced to Customer, Travel Agent, Alitalia,
and Expedia.

8. when Expedia and Alitalia are offline before the system finishes the job,
the system still works. The Travel Agent will delete the link with Expedia
and Alitalia whatever the transaction. The system is reduced to Customer,
Travel Agent, and Omega.

9. when Expedia, Alitalia and Omega are offline before the system finishes
the job, the system still works. The Travel Agent will delete the link with
Expedia, Alitalia and Omega whatever the transaction. The system will
wait. If any one or more of Expedia, Alitalia and Omega comes back

online, the system can re-start.

5.7 Model-based Testing

Here 1 discuss how the test cases are generated. The RDT language includes:
Process, Instance, Write event, Read event, Create event, Before state, After state,
Channel, Value, and Connection. The test cases generated are based on such

attributes.

As there is a separate trace for every participant in the system, it is possible to
check individual behaviour and the system behaviour also. When the system is
working stably, and has been validated against the RDT model, a record of
individual and system behaviour is made, and the code generation process

generates test cases to further test and validate our approach.

5.7.1 State-based testing

Before state is one of the conditions of the Event, and the Before state of Event A4 is
the After state for the next event, Event B, except the last event. When we change
the value of After state of Event 4 only, we should see that Event A’s After state is

different from Event B’s Before state, otherwise it is wrong. If the Before state of

107

Event A changed, the condition of Event A should not be satisfied, and Event A

could be executed.

5.7.2 Event-based testing

This kind of test can be executed by changing the name of the Event during the
code and application generation. An additional testing method is by changing the

type of Event during the code and application generation.

5.7.3 Message-based testing

When the code and application from RDT model is generated into Java application
and Web service, the Message object is important for communication and the
expanded Value in RDT. It includes more information than Value alone. The
Message includes: the name of sender (Name of Instance), the channel, the name of
receiver (Name of Instance), the information (Value). Any attribute of Message
that changes will involve a test case. Noticeably, the channel in Java application is
a queue of an object, and is a queue of a JMS receiver or sender, and is part of

message in PRC Web service.

5.7.4 Connection-based testing

As Java application and Web service are different at the implementation level, the
connection is translated differently as well. In a Java multi-threaded application,
the connection of two instances of processes is made through a queue. The message
sender will know (connect to) the message receiver. The message is sent by the
sender, not from the queue owned by this sender, to the receiver. And the receiver
will store the message in a specific queue. The message having been stored in the
correct (expected) queue, means that the connection is completed and the

communication is completed.

108

In RPC Web service, the communication is over HTTP. The name of the channel is
part of the message. When the message is passed over HTTP, it is received by the

client. The client will check the message details against those expected.

In JMS Web service, the communication is done by SOAP over JMS, and the
channel is the queue. The server will send a message through the queue, and the

client will receive a message from the queue.

As described above, when the connection changes, a test case will be generated.
This testing will involve complicated issues, to which more attention needs to be

addressed.

5.8 Conclusion

From the experiments, I discovered:

1. When modelling a system, the attention to the instance of process should be
put. In most cases, when more than one instance of process is involved in
the system, and could take different and complicated actions, it is better to
build another one or more separate processes to re-design the system.

2. The message should be an object containing useful information.

3. Loosely-coupled system design is better.

4. The model-based testing validates the application efficiently.

I demonstrated that the RDTtoJava tool has the following benefits:
1. synchronous communication and asynchronous communication;
state transition;
the condition of events checking;
event implementation;

exception handling; and

S

the integrated interaction of processes at the model level.

109

6 Conclusions and Further Work

6.1 My Work

In this part, I draw conclusions from the work that has been done. The goals of my
research are:

1. model-based generation of Java multi-threaded applications

synchronisation in the Java multi-threaded applications

model-based generation of Web service applications

synchronisation in the Web services

A

model-based generation of testing

A toolkit has been developed to extend the RDT tools that were developed by
Walters. Two tools have been developed. One is RDTtoJava, another one is
RDTtoWS. The synchronisation issue is resolved for both tools. The model based

test case generation has been applied.

The tool RDTtoJava has been fully developed to translate a RDT model directly
into a Java threaded application. The tool was developed in Visual Basic 6. Using
this tool, I built a synchronous local threaded application, (length of the queues
employed is zero), and also built an asynchronous local threaded application,
(Iength of the queues employed is not zero). After checking the test record and the
application behaviour against the model execution behaviour, I am confident that

the development mechanism employed is correct. The trace table I used is a good

110

method to trace the event and is a good testing method for test case generation and

error-finding.

The RDTtoJava can help developers build multi-threaded Java application in
minutes and guarantee the quality of the applications. The traceable process table

can help developers and testers validate the application.

The RDTtoWS was developed to transform the RDT model into a Web service. For
the synchronisation issue, two parts were considered. One was to develop RDT
model into a JAX-RPC Web service, the other as to develop RDT model into a
JMS Web service. It is difficult and complicated for the developer to build a Web
service, both synchronous and asynchronous. It is difficult to handle the SOAP
over JMS to build a Web service. Currently, most JAX-PRC Web services only
handle the pure HTTP communication; the queues within the application have only
been touched. The JMS developers only handle one queue for each application
most of the time, and do not give much attention to multiple queues. RDTtoWS
works, while more research effort is needed to extend this topic. It can help
developers build complicated Web services. This research contributes to academic’

and industrial web application development.
This is valuable work for the software developer and researchers. It can help
developers build models and generate applications quickly in hours rather than

months. The quality of applications generated is guaranteed by my tools. It is also

helpful to research on software engineering.

6.2 Further Work

6.2.1 Improvement

There are some ideas to improve the performance of tools and transformation.

111

6.2.1.1 Application test tool

As the complex Java threaded application and Web service can be developed with
these tools, the next target is to build bigger and more complicated applications.
Subsequently, testing will be more important to sort out the problems occurring.
One idea is to build testing and validation tools for Java threaded applications and

Web services.

The testing tool will read the source code of the application directly, and generate
the test cases. So the testing function will be separated from the current tools, and

the current tools only generate the pure application.
6.2.1.2 Configuration and deployment tool

After the framework assists the user develop the Web service, a deployment and
configuration tool is needed to complete the Web service deployment automatically.

Cross-platform and different versions of the operating system will be considered.

6.2.2 Enhancement

In the future, I will focus on the new techniques, and the new products, offered by

the vendors and .NET platform.
6.2.2.1 .NET Web service

The .NET Framework 2.0 and 3.8 are Microsoft’s managed code programming
model and runtime for building applications on the Windows platform [Microsoft
2008]. Web services are an evolutionary step in software development, and have
formed the foundation of Microsoft’s inter-operability efforts. A new feature in
the .NET Framework 3.0 used for Web Service is WF. WF is the programming
model engine, and includes tools for quickly building workflow-enabled
applications under Windows. I can use the new technology supported by WF to
build multi-tier applications. But, Java is not supported by the development

environment in Window Studio, leaving C# as the main language to use.

112

6.2.2.2 AJAX

Asynchronous JavaScript technology and XML (AJAX) [SUN 2007] is a new
technology to build asynchronous Web services in Java. These techniques have
been available to developers targeting Internet Explorer on the Windows platform
for many years. This technology can be used to develop Web applications based on

the RDT model.

113

Appendix A Source Code

A.1 Promela Model for a Cycle Election Algorithm (Asynchronous

Communication)
1./ 27. if
2.*cycle.Spin 28. :n==value->
3.7 20. printf("%d's boss is:%d\n",n,value);
4 30. break /*flow out of do-od loop*/
5 #define N 8 31. else->
6. mtype={election, elected}; 32. outlelected(value)
7. 33. fi
8. chan queue[N]=[0] of {mtype,int}; 34. od
9. 35. }
10. proctype participant(chan in ,out;int n) 36.
11. { 37. init{
12. int value=n; 38. int nr_participant;
13. Xrin; 39. atomic{
14. Xs out; 40. nr_participant=0;
15. outlelection(n); 41. do
16. end: do 42. :nr_participant<N->
17. :iin?election(value)-> 43. run
18. if participant(queue[nr_participant],queue[(nr_particip
19. :n>value-> ant+1)%N],nr_participant);
20. outlelection(n) 44, nr_participant++
21. ::n==value-> 45, :nr_participant>=N->
22. outlelected(n) 46. break
23. ::n<value-> 47. od
24. outlelection(value) 48. }
25, fi 49. }
26. :lin?elected(value)->

A.2 A Cycle Election Algorithm in Java (Synchronous

Communication)
import java.io.*; static class Message{
public class Cycle String type;
{ Participant candidate;

114

Message (String t, Participant p){
type=t;

candidate=p;

}

}

static class Participant extends Thread{
MessageQueue previous;
MessageQueue next;

int value;

Participant boss;

public void run()}{

try{while(true){

Message m=(Message)previous.receive();
System.out.printin(value + " receives " + m.type+
+ m.candidate.value);
if(m.type=="election"){
if(m.candidate.value>value)
next.send(m);

else if(m.candidate.value<value)
next.send(new Message("election",this));
else

next.send(new Message("elected" this));
}

if (m.type=="elected"){
boss=m.candidate;
if(m.candidate.value==value)

return;

else

next.send(m);

}
Hcatch(Exception e){ }

}
}

public static void main(String[] args) throws
IOException{

finalintn=29;

final int [] value = {5,12,31,47,53,72,85,90,35};
Participant[] part = new Participant[n];
MessageQueue[] q = new MessageQueue|n];
for(int i=0;i<n;i++)

part[i]=new Participant();
part[i].value=value[il;

qli]=new MessageQueue(0);

}

for(int i=0;i<n;i++){

part[i].previous=q[iJ;

part[i].next=q[(i+1)%n];

}

for(int i=0;i<n;i++){
System.out.printin(part[i].value + " next " +
part[(i+1)%n].value);
if(part[i].next!=part[(i+1)%n].previous)
System.out.printin("Connection Error");

}

for(int i=0;i<n;i++)

part[i].start();

Participant p=part[0];

try{

p.next.send(new Message("election",p));
Thread.sleep(1000);

}catch(Exception e){ }

for(int i=0;i<n;i++)

part[i].interrupt();

for(int i=0;i<n;i++)
System.out.printin(part[i].value + " boss is " +
part[i].boss.value);

static class MessageQueue{
boolean sendDone, receiveFlag;
Object share;

public MessageQueue(int i){
sendDone=false;
receiveFlag=false;

}

synchronized void send(Object x)throws
InterruptedException{

sendDone=true;

share=x;

notifyAll();

while(!receiveFlag)
wait();
receiveFlag=false;

}

synchronized Object receive()throws

InterruptedException{
receiveFlag=true; notifyAll();
while(!sendDone)wait();
Object x; x=share;
System.out.printin(x.toString());

sendDone=false;

return x;

}

1}

A.3 Promela Model for the Bully Algorithm (Asynchronous

Communication)
1./
2.* bully.Spin
3.%/
4,
5.
6.
7. #define N 4
8. chan queue[N]=[N] of {int};
9.

10. proctype participant(chan in;int mynumber)

12. int value,max;
13. Xrin;

14. end:

15. max=mynumber;
16. int i=0;

17. do

18. 2i<N->

19. queue[i]!mynumber;
queue®/

20. i=i+1

21. :i>=N->break
then stop*/

22. od;

23. do

24. ::in?value->
25. if

26. ::max<value->
27. max=value;
28. ::else->skip
29. fi

30. od;

31. printf("%d's boss
is:%d\n\n",mynumber,max)

32. }

/*messages in

[*counter*/
[*if i=>N

34. init

35. {

36. int nr_participant;

37. atomic{

38. nr_participant=0;

39. do

40 :nr_participant<N-> run

paﬁicipant(queue[nr_participant],nr_participant);
41.
nr_participant=nr_participant+1

42. :nr_participant>=N-> break
43. od

44, }

45. }

A.4 The Bully Algorithm in Java (Asynchronous

Communication)

import java.io.*;

public class Bully

{

static class Message{
Participant candidate;
Message(Participant p){
candidate=p;

}

}

static class MessageQueue({
int entries,maxEntries;
Object[] elements;
public MessageQueue(int m){
maxEntries=m;
elements=new Object[maxEntries];
entries=0;

synchronized void send(Object x)throws
InterruptedException{
while(entries==maxEntries)
wait();
elements[entries]=Xx;
entries=entries+1;
notifyAll();
}
synchronized Object receive()throws
InterruptedException{
while(entries==0)
wait();
Object x;
x=elements[0];
for(int i=1; i<entries; i++)
elements[i-1]=elements]i];
entries=entries-1;
notifyAll();
return x;

}

static class Participant extends Thread{
MessageQueue inbox;
MessageQueue[] neighbour;
int value;

116

Participant boss;
Participant me;
public void run(){
boss=this;
me=this;
for(int i=0;i<neighbour.length;i++)
try{neighbourfi].send(new
Message(me));
}catch(Exception e){ }
try{while(true){
Message m=(Message)inbox.receive();
System.out.printin(value + " receives
"+ m.candidate.value);
if(m.candidate.value>boss.value)
boss=m.candidate;
}catch(Exception e){ }

}
}
public static void main(String[] args) throws
I0Exception{
finalintn=29;

final int [] value =
{43,51,47,89,9,28,49,58,3};
Participant[] part = new Participant[n];
MessageQueue[] q = new
MessageQueueln];
for(int i=0;i<n;i++){
part[i]=new Participant();
part[i].value=valuel[il;
g[il=new MessageQueue(4);

for(int i=0;i<n;i++){
part[i].inbox=q[i];
part[i].neighbour=new
MessageQueueln];

for(int i=0;i<n;i++)
for(int j=0;j<n;j++)

part[i].neighbour[j]=part[j].in
}

for(int i=0;i<n;i++)

box;

part[i].start();

try{Thread.sleep(500);}catc
h(Exception e){ }
for(int i=0;i<n;i++)

part[i].interrupt();

A.5 RDTtoJava

I started this work from studying the work,
RDTtoPromela, of my supervisor Dr Robert Walters. 1
used his code for the following functions:

1. Openafile

2. Saveinto a file

3. Collect all information about RDT Model

Option Explicit

'global params

Public Channel_Length As Integer
Public Number_of_Channel As Integer
Public doc As DOMDocument

Private fileSysObject As Object

'params for the Process

Private Type process_type
Name As String

ports() As String

End Type

Private ptypes() As process_type

'params for the Instance

Private Type instance_type

Name As String 'Name of the process instance
type As String

ports() As String

channels() As String 'Global name of the channel
End Type

Private pinsts() As instance_type

'select a XML file for a model and then Open this file
Private Sub Command1_Click()
CommonDialog1.Filter = "All Files (*.*)|*.*|XML
Files(*.xml)|*.xml"

CommonDialog1.Filterindex = 2
CommonDialog1.ShowOpen

If CommonDialog1.FileName <> "" Then Text1.Text
= CommonDialog1.FileName

End Sub

Private Sub Command2_Click()

‘'save the model into a Java file
CommonDialog2.Filter = "All Files (*.*)|*.*|Java
Source(*.Java)|*.Java"

CommonDialog?2.Filterindex = 2
CommonDialog2.ShowOpen

If CommonDialog2.FileName <> "" Then Text2.Text
= CommonDialog2.FileName

End Sub

Private Sub Command3_Click()

117

for(int i=0;i<n;i++){
if(part[i].boss!=null)
System.out.printin(part[i].value + "
boss is " + part[i].boss.value);

}

'params- private and global

Dim txtStream As Object

Dim el As IXMLDOMEIlement

Dim el0 As IXMLDOMElement

Dim el1 As IXMLDOMElement

Dim el2 As IXMLDOMElement

Dim tmpel As IXMLDOMElement
Dim nodes0 As IXMLDOMNodeList
Dim nodes1 As IXMLDOMNodeList
Dim nodes2 As IXMLDOMNodeList
Dim nodes3 As IXMLDOMNodeList
Dim nodes4 As IXMLDOMNodeList
Dim nodes5 As IXMLDOMNodeList
Dim nodes6 As IXMLDOMNodeList
Dim nodes7 As IXMLDOMNodeList
Dim nodes8 As IXMLDOMNodeList
Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim | As Integer

Dim m As Integer

Dim n As Integer

Dim s As String

Dim s0 As String

Dim s1 As String

Dim s2 As String

Dim s3 As String

Dim s4 As String

Dim s5 As String

Dim s6 As String

Dim s7 As String

Dim s8 As String

Dim s9 As String

Dim s10 As String

Dim s11 As String

Dim s12 As String

Dim s13 As String

Dim s14 As String

Dim found As Boolean

Dim found1 As Boolean

Dim end1proc As Integer

Dim end1port As Integer

Dim end2proc As Integer

Dim end2port As Integer

Dim chs As Integer

Dim s_list As New State_thing

Call s_list.Reset

chs=0

'select a process file

If Text1.Text =" Then

Call MsgBox("Select a file to process")
Exit Sub

End If

' select output file

If Text2.Text ="" Then

Call MsgBox("Select output file name")

Exit Sub

End If

'Read the input file of a model

Set txtStream =
fileSysObject.OpenTextFile(CommonDialog1.FileN
ame, 1)

Set doc = New DOMDocument

doc.loadXML (txtStream.ReadAll)

txtStream.Close

'If there is more than one model in the file, the user
will pick one.

PickModelFrm.Show (vbModal)

If PickModelFrm.Selection =" Then Exit Sub
ReDim ptypes(10)

Set nodes1 =
doc.getElementsByTagName("Process")

i=0

While i < nodes1.length

Ifi + 1 > UBound(ptypes) Then ReDim Preserve
ptypes(UBound(ptypes) + 10)

Set el = nodes1.ltem(i)

Set nodes2 = el.getElementsByTagName("Event")
ReDim ptypes(i).ports(10)

ptypes(i).Name = el.getAttribute("Name")

j=0

While j < nodes2.length 'for each Event of the
Process

If j + 3 > UBound(ptypes(i).ports) Then

ReDim Preserve
ptypes(i).ports(UBound(ptypes(i).ports) + 10)
End If

k=0

Set tmpel = nodes2.ltem(j)

Call s_list. AddState(tmpel.getAttribute("Before"),
ptypes(i).Name)

Call s_list.AddState(tmpel.getAttribute("After"),
ptypes(i).Name)

s = tmpel.getAttribute("Channel")

While ptypes(i).ports(k) <> s And ptypes(i).ports(k)
<>""'k < UBound(ptypes(i).ports)

Set tmpel = nodes2.ltem(j)

s = tmpel.getAttribute("Channel")

k=k+1

Wend

ptypes(i).ports(k) = s

k=0

Set tmpel = nodes2.ltem(j)

s = tmpel.getAttribute("Value")

While ptypes(i).ports(k) <> s And ptypes(i).ports(k)
<>""'k < UBound(ptypes(i).ports)

Set tmpel = nodes2.ltem(j)

s = tmpel.getAttribute("Value")

k=k+1

Wend

ptypes(i).ports(k) = s 'Doesn't matter if we found it -
just overwrite with the same string

=i+
Wend
i=i+1
Wend

118

Set nodes1 =
doc.getElementsByTagName("Instance")
i=0

Set el = nodes1(i)

s = el.getAttribute("Name")

While s <> PickModelFrm.Selection And i <
nodes1.length

i=i+1

Set el = nodes1(i)

s = el.getAttribute("Name")

Wend

Set el = nodes1(i)

Set nodes1 =
el.getElementsByTagName("Proclnstance")
ReDim pinsts(nodes1.length + 2)

i=0

While i < nodes1.length

Set el2 = nodes1.ltem(i)

pinsts(i).Name = el2.getAttribute("Name")
pinsts(i).type = el2.getAttribute("Type")

j=0

While j < UBound(ptypes) And ptypes(j).Name <>
pinsts(i).type

j=j+1

If ptypes(j).Name <> pinsts(i).type Then

Call MsgBox("Error finding process type, "™ " &
pinsts(i).type)

Exit Sub 'No point in proceeding further

End If

ReDim pinsts(i).ports(UBound(ptypes(j).ports))
ReDim pinsts(i).channels(UBound(ptypes(j).ports))
k=0

While k < UBound(ptypes(j).ports)
pinsts(i).ports(k) = ptypes(j).ports(k)

k=k+1

Wend

i=i+1

Wend

Set nodes1 =
el.getElementsByTagName("Connection")

i=0

While i < nodes1.length

Set el2 = nodes1.ltem(i)

Set nodes2 = el2.getElementsByTagName("End")
If nodes2.length <> 2 Then

Call MsgBox("Connection with wrong number of
ends!")

Exit Sub

End If

Set tmpel = nodes2.ltem(0)

s = tmpel.getAttribute("Proclnstance")
end1proc =0

While pinsts(end1proc).Name <> s
end1proc = end1proc + 1

Wend

s = tmpel.getAttribute("Channel")
end1port=0

While pinsts(end1proc).ports(end1port) <> s
end1port = end1port + 1

Wend

Set tmpel = nodes2.ltem(1)

s = tmpel.getAttribute("Proclnstance")
end2proc = 0

While pinsts(end2proc).Name <> s

end2proc = end2proc + 1
Wend

s = tmpel.getAttribute("Channel")

end2port =0

While pinsts(end2proc).ports(end2port) <> s
end2port = end2port + 1

Wend

If pinsts(end1proc).channels(end1port) <> "" And
pinsts(end2proc).channels(end2port) <> "™ Then
Call MsgBox("Not able to connect channels
properly")

End If

If pinsts(end1proc).channels(end1port) = " And
pinsts(end2proc).channels(end2port) = "" Then
pinsts(end1proc).channels(end1port) = "ch" & chs
pinsts(end2proc).channels(end2port) = "ch" & chs
chs =chs + 1

End If

If pinsts(end1proc).channels(end1port) <> "" And
pinsts(end2proc).channels(end2port) = ™" Then
pinsts(end2proc).channels(end2port) =
pinsts(end1proc).channels(end1port)

End If

If pinsts(end1proc).channels(end1port) = " And
pinsts(end2proc).channels(end2port) <> " Then
pinsts(end1proc).channels(end1port) =
pinsts(end2proc).channels(end2port)

End If

i=i+1

Wend

'Now write out to a Java file...

Set txtStream =
fileSysObject.OpenTextFile(Text2.Text, 2, True)
txtStream.write "/* Generated from file " &
Text1.Text & " */" & vbNewLine & vbNewLine

txtStream.write "import Java.io.*;" & vbNewLine
txtStream.write "import Java.awt.*;" & vbNewLine
txtStream.write "import Java.math.*;" & vbNewLine
txtStream.write "import Java.util.*;" & vbNewLine
txtStream.write "import Javax.swing.*;" &
vbNewLine

txtStream.write "import Java.awt.event.*;" &
vbNewLine

txtStream.write "import Javax.swing.text.*;" &
vbNewLine

txtStream.write "import Javax.swing.table.*;" &
vbNewLine & vbNewLine

Set nodes0 =
doc.getElementsByTagName("Model")

'First the Model type

'Set nodes0 =
doc.getElementsByTagName("Model")
txtStream.write ("public class " &
el.getAttribute("Name") & "{" & vbNewLine &
vbNewLine)

'txtStream.write (" static myGUI traceTable;" &
vbNewLine)

'Message class
txtStream.write ("static class Message {" &
vbNewLine)

119

txtStream.write (" String type; Process writer;
Process reader; String channel; " & vbNewLine &
vbNewLine)

txtStream.write (" Message (String t, Process p,
Process r, String c){" & vbNewLine)
txtStream.write (" type=t; writer=p; reader=r;
channel=c; " & vbNewLine)

txtStream.write (" }" & vbNewLine & vbNewLine)

txtStream.write (" public String toString()}{" &
vbNewLine)

txtStream.write (" return type + " from "™ +
writer.toString() + "" to " + reader.toString() + " via
"" +channel; " & vbNewLine)

txtStream.write (" }" & vbNewLine)

txtStream.write ("}" & vbNewLine & vbNewLine)

'MyGUI class

txtStream.write ("static class myGUI extends
JFrame{" & vbNewL.ine)

txtStream.write (" String[] headerStr =
{""No."™",""Event™, ""Type"", ""Before state"", ""After
state™, ""Channel™, ""Value"};" & vbNewLine)
txtStream.write (" DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);" & vbNewLine)
txtStream.write (" JTable table = new JTable(dm);"
& vbNewLine)

txtStream.write (" JPanel center=new JPanel();" &
vbNewLine & vbNewLine)

txtStream.write (" JLabel instanceLabel;" &
vbNewLine)

txtStream.write (" JTextField instanceField;" &
vbNewLine & vbNewLine)

txtStream.write (" JLabel eventsLabel;" &
vbNewLine)

txtStream.write (" JLabel processLabel;" &
vbNewLine)

txtStream.write (" JTextField processField;" &
vbNewLine & vbNewLine)

txtStream.write (" myGUI(String a, String b){" &
vbNewLine)

txtStream.write (" setTitle("™" &
el.getAttribute("Name") & "™);" & vbNewLine)
txtStream.write (" setLocation(200,200);" &
vbNewLine)

txtStream.write (" setSize(30,30);" & vbNewLine &
vbNewLine)

'NORTH Panel

txtStream.write (" JPanel top =new JPanel();" &
vbNewLine)

txtStream.write (" top.setBackground(Color.gray);"
& vbNewLine)

txtStream.write (" instanceLabel= new
JLabel(""Instance™);" & vbNewLine)
txtStream.write (" top.add(instanceLabel);" &
vbNewLine & vbNewLine)

txtStream.write (" instanceField=new
JTextField(a,15);" & vbNewLine)
txtStream.write (" Font g =new
Font(""Roman™,Font.PLAIN,12);" & vbNewLine)
txtStream.write (" top.setFont(g);" & vbNewLine)
txtStream.write (" top.add(instanceField);" &
vbNewLine & vbNewLine)

txtStream.write (" processLabel= new
JLabel(""Process™);" & vbNewLine)

txtStream.write (" top.add(processLabel);" &
vbNewLine & vbNewLine)

txtStream.write (" processField=new
JTextField(b,15);" & vbNewLine)

txtStream.write (" Font h =new
Font(""Roman™,Font.ITALIC,12);" & vbNewLine)
txtStream.write (" top.setFont(h);" & vbNewLine)
txtStream.write (" top.add(processField);" &
vbNewLine & vbNewLine)

txtStream.write (" getContentPane().add(top,
BorderLayout. NORTH);" & vbNewLine &
vbNewLine)

'WEST Panel

txtStream.write (" JPanel middle =new JPanel();" &
vbNewLine)

txtStream.write ("
middle.setBackground(Color.green);" & vbNewLine)
txtStream.write (" eventsLabel= new
JLabel(""Possible event(s):"");" & vbNewLine)
txtStream.write (" middle.add(eventsLabel);" &
vbNewLine)

txtStream.write (" getContentPane().add(middle,
BorderLayout. WEST);" & vbNewLine & vbNewLine)

'CETER Panel

txtStream.write ("
center.setBackground(Color.gray);" & vbNewLine)
txtStream.write (" getContentPane().add(center,
BorderLayout. CENTER);" & vbNewLine &
vbNewLine)

'SOUTH Panel

txtStream.write (" JPanel record =new JPanel();" &
vbNewLine)

txtStream.write ("
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));" & vbNewLine)
txtStream.write (" getContentPane().add(new
JScrollPane(table), BorderLayout. SOUTH);" &
vbNewLine & vbNewLine)

txtStream.write (" pack(); " & vbNewLine)
txtStream.write (" setVisible(true);" & vbNewLine &
vbNewLine)

txtStream.write (" }" & vbNewLine & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)

'MessageQueue class

If (Channel_Length > 0) Then

txtStream.write ("static class MessageQueue{ " &
vbNewLine)

txtStream.write (" int entries;" & vbNewLine)
txtStream.write (" int maxEntries; " & vbNewLine)
txtStream.write (" String name; " & vbNewLine)
txtStream.write (" Message][] elements; " &
vbNewLine & vbNewLine)

txtStream.write (" public MessageQueue(String n,
int mY" & vbNewL.ine)

txtStream.write (" name=n; " & vbNewLine)
txtStream.write (" maxEntries=m; " & vbNewLine)
txtStream.write (" elements=new
Message[maxEntries]; " & vbNewLine)
txtStream.write (" entries=0; " & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)

txtStream.write (" synchronized void send(Message
x) throws InterruptedException{ " & vbNewL.ine)
txtStream.write (" while(entries==maxEntries)wait();
" & vbNewLine)

txtStream.write (" elements[entries]=x; " &
vbNewLine)

120

txtStream.write (" entries=entries+1; " & vbNewLine)
txtStream.write ("
System.out.printin(""'send(""+x+"")""); " &
vbNewLine)

txtStream.write (" notify(); " & vbNewLine)
txtStream.write (" } " & vbNewLine & vbNewLine)

txtStream.write (" synchronized Message receive()
throws InterruptedException{ " & vbNewLine)
txtStream.write (" while(entries==0)wait();" &
vbNewLine)

txtStream.write (" Message x; x=elements[0]; " &
vbNewLine)

txtStream.write (" for(int i=1; i<entries; i++) {" &
vbNewLine)

txtStream.write (" elements][i-1]=elementsi]; " &
vbNewLine)

txtStream.write (" } " & vbNewLine)

txtStream.write (" entries=entries-1; " & vbNewLine)
txtStream.write ("
System.out.printin(
vbNewLine)
txtStream.write (" notify(); " & vbNewLine)
txtStream.write (" return x; " & vbNewLine)
txtStream.write (" } " & vbNewLine)
txtStream.write ("} " & vbNewLine & vbNewLine)

receive("+x+")™); " &

End If

If Channel_Length = 0 Then

txtStream.write ("static class MessageQueue{ " &
vbNewLine)

txtStream.write (" String name; " & vbNewLine)
txtStream.write (" boolean sendFlag, receiveFlag; "
& vbNewLine)

txtStream.write (" Message share; " & vbNewLine &
vbNewLine)

txtStream.write (" public MessageQueue(String n,
int mY{" & vbNewLine)

txtStream.write (" name=n; " & vbNewLine)
txtStream.write (" sendFlag=false; " & vbNewLine)
txtStream.write (" receiveFlag=false; " &
vbNewLine)

txtStream.write (" }" & vbNewLine & vbNewLine)

txtStream.write (" synchronized void send(Message
x) throws InterruptedException{ " & vbNewLine)
txtStream.write (" sendFlag=true; " & vbNewLine)
txtStream.write (" share=x; " & vbNewLine)
txtStream.write (" notifyAll(); " & vbNewLine)
txtStream.write ("
System.out.printin(""send(""+x+"")""); " &
vbNewLine)

txtStream.write (" while(!receiveFlag) wait(); " &
vbNewLine)

txtStream.write (" receiveFlag=false;" & vbNewLine)
txtStream.write (" } " & vbNewLine & vbNewLine)

txtStream.write (" synchronized Message receive()
throws InterruptedException{ " & vbNewLine)
txtStream.write (" receiveFlag=true;" & vbNewLine)
txtStream.write (" notifyAll(); " & vbNewLine)
txtStream.write (" while(!sendFlag) wait();" &
vbNewLine)

txtStream.write (" Message x; x=share; " &
vbNewLine)
txtStream.write ("
System.out.printin(
vbNewLine)
txtStream.write (" sendFlag=false; " & vbNewLine)
txtStream.write (" return x; " & vbNewLine)
txtStream.write (" } " & vbNewLine)

receive("+x+"™)™); " &

txtStream.write ("} " & vbNewLine & vbNewLine)

End If

'Process class
txtStream.write ("static class Process extends
Thread { " & vbNewLine)

Set nodes2 = doc.getElementsByTagName("End")
j=0

While j < nodes2.length

Set el2 = nodes2.ltem(j)

s2 = el2.getAttribute("Channel")

found = False

'search the same one in the END blocks

I=j+1
While | < nodes2.length

Set el2 = nodes2.ltem(l)

If el2.getAttribute("Channel") = s2 Then
found = True

End If

I=1+1
Wend

If found = False Then

txtStream.write (" MessageQueue " & s2 & ";" &
vbNewLine)

Else

End If

j=j+1

Wend

=i+
‘Wend

txtStream.write (" String name; " & vbNewLine)
txtStream.write (" public String toString(){ " &
vbNewLine)

txtStream.write (" return this.name; " & vbNewLine)
txtStream.write (" } " & vbNewLine)

txtStream.write ("} " & vbNewLine & vbNewLine)

'Second the process types

Set nodes1 =
doc.getElementsByTagName("Process")

i=0

While i < nodes1.length 'for each process: write the
start line, write each event, and write the end

Set el = nodes1(i)

s4 = el.getAttribute("Name")

txtStream.write ("static class " &
el.getAttribute("Name") & " extends Process {" &
vbNewLine)

txtStream.write (" static myGUI traceTable;" &
vbNewLine)

txtStream.write (" public " & el.getAttribute("Name")
& " (String name){" & vbNewLine)

txtStream.write (" this.name =name;" & vbNewLine)
txtStream.write (" traceTable=new myGUI(name,""
& el.getAttribute("Name") & "™);" & vbNewLine)

‘all channels for each process

Set nodes2 = el.getElementsByTagName("Event")
j=0

While j < nodes2.length

121

Set el2 = nodes2.ltem(j)
found = False
If el2.getAttribute("Type") = "Read" Then

s2 = el2.getAttribute("Channel")
s3 = el2.getAttribute("Value")

k=j+1
While k < nodes2.length
Set el = nodes2.ltem(k)

If el.getAttribute("Channel") = s2 And
el2.getAttribute("Type") = "Read" Then
found = True

End If

k=k+1
Wend

If found = False Then

txtStream.write (" " & s2 & "=new
MessageQueue("" & s2 & "," & Channel_Length
& ");" & vbNewLine)

Else

End If

End If
j=j+1
Wend

txtStream.write (" this.start();" & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)

j=0

While j < nodes2.length

Set el2 = nodes2.ltem(j)

'Buttons for the events

txtStream.write (" JButton Button" &
el2.getAttribute("Name") & " = new JButton(""")
txtStream.write (el2.getAttribute("Name") & "™);" &
vbNewLine)

j=j+1

Wend

txtStream.write (vbNewLine & " public String
state="""";" & vbNewLine)

txtStream.write (" int noOfevents=0;" & vbNewLine
& vbNewLine)

txtStream.write (" public void run(){ " & vbNewLine)
txtStream.write (" transformState(""initial""); " &
vbNewLine)

'check the type of the event labelled with the initial
state

j=0

While j < nodes2.length

Set el2 = nodes2.ltem(j)

found = False

If el2.getAttribute("Type") <> "Read" And
el2.getAttribute("Before") = "initial" Then
txtStream.write (" initial(); " & vbNewLine)
End If

j=j+1

Wend

'find the Read Event

j=0

While j < nodes2.length

Set el2 = nodes2.ltem(j)

found = False

If el2.getAttribute("Type") = "Read" Then

s2 = el2.getAttribute("Channel")
s3 = el2.getAttribute("Value")

k=j+1
While k < nodes2.length
Set el = nodes2.ltem(k)

If el.getAttribute("Channel") = s2 And
el2.getAttribute("Type") = "Read" Then
found = True

End If

k=k+1
Wend

If found = False Then

txtStream.write (" new Thread(){public void run(){" &
vbNewLine)

txtStream.write (" try{for(;;{" & vbNewLine)
txtStream.write (" Message m=(Message)" & s2 &
".receive();" & vbNewLine)

txtStream.write (" if(m.type=="" XXXX_XXXX"" &&
state==null){ }" & vbNewLine)

=0

While | < nodes2.length
Set el2 = nodes2.ltem(l)
found1 = False

If el2.getAttribute("Channel") = s2 Then
s1 = el2.getAttribute("Name")
s3 = el2.getAttribute("Value")

k=1+1
While k < nodes2.length
Set el = nodes2.ltem(k)

If el.getAttribute("Name") = s1 And
el.getAttribute("Value") = s3 Then
found1 = True

End If

k=k+1
Wend

If found1 = False Then

txtStream.write (" else if(m.type==""" &
el2.getAttribute("Value") & ")

txtStream.write (" && state =="" &
el2.getAttribute("Before") & """ & ") " & vbNewLine)
txtStream.write (" " & el2.getAttribute("Name") &
"(m.writer,m.type,"" & el2.getAttribute("Name") &
"");" & vbNewLine)

Else

End If

End If

I=1+1
Wend

txtStream.write (" }}catch(Exception
e){System.out.printin(name + "": demultiplex
error");}}}.start();" & vbNewLine & vbNewLine)

Else
End If

End If

j=j+1

Wend

txtStream.write (" }" & vbNewLine & vbNewLine)

122

'all Before states used of the Write and Create
events

j=0

While j < nodes2.length

Set el2 = nodes2.ltem(j)

found = False

If el2.getAttribute("Type") = "Write" Then

s2 = el2.getAttribute("Name")

s3 = el2.getAttribute("Before")

k=j+1
While k < nodes2.length
Set el = nodes2.ltem(k)

If el.getAttribute("Name") = s2 And
el.getAttribute("Before") = s3 And s3 = "initial" Then
found = True

End If

k=k+1
Wend

If found = False Then

txtStream.write (" public void " & s3 & "({ " &
vbNewLine)

txtStream.write (" if(state=="" & s3 & ") " &
vbNewLine)

txtStream.write (" " & s2 & "(); " & vbNewLine)
txtStream.write (" } " & vbNewLine & vbNewLine)
Else

End If

End If

found = False

If el2.getAttribute("Type") = "Create" Then
s2 = el2.getAttribute("Name")

s3 = el2.getAttribute("Before")

k=j+1
While k < nodes2.length
Set el = nodes2.ltem(k)

If el.getAttribute("Name") = s2 And
el.getAttribute("Before") = s3 And s3 = "initial" Then
found = True

End If

k=k+1
Wend

If found = False Then

txtStream.write (" public void " & s3 & "(){ " &
vbNewLine)

txtStream.write (" if(state=="" & s3 & """) " &
vbNewLine)

txtStream.write (" " & s2 & "(); " & vbNewLine)
txtStream.write (" } " & vbNewLine & vbNewLine)
Else

End If

End If
j=j+1
Wend

s2 = el2.getAttribute("Name")

k=j

While k < nodes2.length

Set el2 = nodes2.ltem(k)

If el2.getAttribute("Name") = s2 Then

Else
End If

k=k+1
Wend

j=0

Do While j < nodes2.length

Set el2 = nodes2.ltem(j)

If el2.getAttribute("Type") = "Read" And
el2.getAttribute("Channel") =
el2.getAttribute("Value") Then
'txtStream.write ("chan tmp;" & vbNewLine)
Exit Do

End If

j=j+1

Loop

mm———e o -0 2 6l ayent™TT

'Read event

j=0

While j < nodes2.length
Set el2 = nodes2.ltem(j)

found = False

If el2.getAttribute("Name") <> "" And
el2.getAttribute("Type") = "Read" Then
s2 = el2.getAttribute("Before")

s3 = el2.getAttribute("After")

'New code

s1 = el2.getAttribute("Name")

| = InStr(s3, "=")

If1 >0 Then s3 = Left(s3, | - 1) Else s3 =s3
s8 = el2.getAttribute("Name")

k=j+1
While k < nodes2.length
Set el = nodes2.ltem(k)

If el.getAttribute("Type") = "Read" And
el.getAttribute("Before") = s2 And
el.getAttribute("After") = s3 And
el.getAttribute("Name") = s3 Then
found = True

End If

k=k+1
Wend

If found = False Then

txtStream.write (" public void " & s1)
txtStream.write ("(Process from, String message,
String current_state){" & vbNewLine)
'txtStream.write (" System.out.printin(name+
Event is: ")

'txtStream.write ("+ current_state + " and read ")
'txtStream.write ("+ message + "" from ""™)
'txtStream.write ("+ from.name);" & vbNewLine)

S

txtStream.write (" traceTable.center.add(Button" &
el2.getAttribute("Name") & ");" & vbNewLine)
txtStream.write (" Button" & s1 &
".addActionListener(new ActionListener(){" &
vbNewLine)

txtStream.write (" public void
actionPerformed(ActionEvent e){" & vbNewL.ine)

123

txtStream.write (" transformState("™")
txtStream.write (s3 & "™); " & vbNewLine)

txtStream.write (" displayTrace(")

txtStream.write (el2.getAttribute("Name") & "™, ")
txtStream.write (el2.getAttribute("Type") & "™, ")
txtStream.write (s2 & "™, ")

txtStream.write (el2.getAttribute("After") & "™, "™

txtStream.write (el2.getAttribute("Channel") & ",
txtStream.write (el2.getAttribute("Value") & "™); " &
vbNewLine)

k=0

found = False

While k < nodes2.length
Set el2 = nodes2.ltem(k)

'found = False

If el2.getAttribute("Type") <> "Read" And
el2.getAttribute("Before") = s3 Then
found = True

End If

k=k+1
Wend

If found = True Then
txtStream.write (" " & s3 & "();" & vbNewLine)

End If

txtStream.write (" Button" & s1 & ".setVisible(false);"
& vbNewLine)

txtStream.write (" }" & vbNewLine)

txtStream.write (" });" & vbNewLine)

txtStream.write (" }" & vbNewLine & vbNewLine)
End If

End If

j=j+1

Wend

'Create event

j=0

While j < nodes2.length
Set el2 = nodes2.ltem(j)

found = False

If el2.getAttribute("Name") <> "" And
el2.getAttribute("Type") = "Create" Then
s1 = el2.getAttribute("Name")

s2 = el2.getAttribute("Before")

s3 = el2.getAttribute("After")

s14 = el2.getAttribute("After")

| = InStr(s3, "=")

If 1 >0 Then s3 = Left(s3, | - 1) Else s3 =s3
k=j+1

While k < nodes2.length

Set el = nodes2.ltem(k)

If el.getAttribute("Type") = "Create" And
el.getAttribute("Before") = s2 And
el.getAttribute("After") = s3 Then

found = True

End If

k=k+1
Wend

If found = False Then
s5 = el2.getAttribute("Channel")
s6 = el2.getAttribute("Value")

'txtStream.write (" public void " &
el2.getAttribute("Name") & "(){")
txtStream.write (" public void " & s1 & "()}{")

' txtStream.write (vbNewLine & "
System.out.printin(name+" : " &
el2.getAttribute("Name") & "");" & vbNewLine)

Set nodes6 =
doc.getElementsByTagName("Instance")
k=0

While k < nodes6.length

Set el = nodes6(k)

Set nodes7 =
el.getElementsByTagName("Procinstance")
=0

While | < nodes7.length

Set el2 = nodes7.ltem(l)

s7 = el2.getAttribute("Name")

s8 = el2.getAttribute("Type")

If s4 = s8 Then

Set nodes8 = el.getElementsByTagName("End")
m=0

While m < nodes8.length

Set el0 = nodes8.ltem(m)

s9 = el0.getAttribute("Proclnstance")

s10 = el0.getAttribute("Channel")

n=m+1

Set el1 = nodes8.Iltem(n)

'txtStream.write (el2.getAttribute("Procinstance") &
"); " & vbNewLine)

s11 = el1.getAttribute("ProcInstance")

s12 = el1.getAttribute("Channel")

'txtStream.write (s11 & " " & s12 & vbNewLine)

If s7 =s9 And s5 =s10 Then

txtStream.write (vbNewLine & "
traceTable.center.add(Button" & s1 & ");" &
vbNewLine)

txtStream.write (" final Message m=new
Message("™")

txtStream.write (s6 & """ this," & s11 & ","" & s5 &
"");" & vbNewLine)

txtStream.write (" Button" & s1 &
".addActionListener(new ActionListener(){" &
vbNewLine)

txtStream.write (" public void
actionPerformed(ActionEvent e){" & vbNewL.ine)

txtStream.write (" try{" & s11 & "." & s12 &
".send(m);" & vbNewLine)

txtStream.write (" transformState("™")
txtStream.write (s3 & "); " & vbNewLine & " }")
txtStream.write (vbNewLine & " catch(Exception
f){System.out.printin(name + " : " & s1 & "- send
error™);}" & vbNewLine)

End If
If s7 =511 And s5 =s12 Then
txtStream.write (vbNewLine & "

traceTable.center.add(Button" & s1 & ");" &
vbNewLine)

124

txtStream.write (" final Message m=new
Message("")

txtStream.write (s6 & """ this," & s9 & """ & s5 &
""");" & vbNewLine)

txtStream.write (" Button" & s1 &
".addActionListener(new ActionListener(){" &
vbNewLine)

txtStream.write (" public void
actionPerformed(ActionEvent e){" & vbNewLine)

txtStream.write (" try{" & s9 & "." & s10 &
".send(new Message(m);" & vbNewL.ine)
txtStream.write (" transformState(""")
txtStream.write (s3 & ""'); " & vbNewLine & " }")
txtStream.write (vbNewLine & " catch(Exception
f){System.out.printin(name + "™ : " & s1 & "- send
error");}" & vbNewLine)

End If

m=m+2
Wend

End If
I=1+1

Wend
k=k+1
Wend

k=0

found = False

While k < nodes2.length
Set el2 = nodes2.Iltem(k)

‘found = False

If el2.getAttribute("Type") <> "Read" And
el2.getAttribute("Before") = s3 Then
found = True

End If

k=k+1
Wend

If found = True Then

txtStream.write (" " & s3 & "();" & vbNewLine)
End If

txtStream.write (vbNewlLine & " displayTrace(")

txtStream.write (s1 & "™, """)
txtStream.write ("Create™" & ", ")
txtStream.write (s2 & "™, """)
txtStream.write (s14 & "™, ")
txtStream.write (s5 & "™, ")

txtStream.write (s6 & "™); " & vbNewLine)

txtStream.write (" Button" & s1 & ".setVisible(false);"
& vbNewLine)

txtStream.write (" }" & vbNewLine & vbNewLine)
txtStream.write (" });" & vbNewLine & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)
End If

End If

j=j+1

Wend

"Write event™™™

j=0

While j < nodes2.length
Set el2 = nodes2.ltem(j)

found = False

If el2.getAttribute("Name") <> "" And
el2.getAttribute("Type") = "Write" Then
s2 = el2.getAttribute("Before")

s3 = el2.getAttribute("After")

s14 = el2.getAttribute("After")

s1 = el2.getAttribute("Name")

k=j+1

While k < nodes2.length

Set el = nodes2.ltem(k)

If el.getAttribute("Type") = "Write" And
el.getAttribute("Before") = s2 And
el.getAttribute("After") = s3 Then
found = True

End If

k=k+1
Wend

If found = False Then

txtStream.write (" public void " &
el2.getAttribute("Name") & "(X")
txtStream.write (vbNewLine & "
System.out.printin(name+"" : " &
el2.getAttribute("Name") & "");" & vbNewLine)

s5 = el2.getAttribute("Channel")
s6 = el2.getAttribute("Value")

| = InStr(s3, "=")
If1>0 Then s3 = Left(s3, | - 1) Else s3 =s3

Set nodes6 =
doc.getElementsByTagName("Instance")
k=0

While k < nodes6.length

Set el = nodes6(k)

Set nodes7 =
el.getElementsByTagName("Procinstance")
=0

While | < nodes7.length

Set el2 = nodes7.ltem(l)

s7 = el2.getAttribute("Name")

s8 = el2.getAttribute("Type")

If s4 = s8 Then

Set nodes8 = el.getElementsByTagName("End")
m=0

While m < nodes8.length

Set el0 = nodes8.ltem(m)

s9 = el0.getAttribute("Proclnstance")

s10 = el0.getAttribute("Channel")

n=m+1
Set el1 = nodes8.ltem(n)

s11 = el1.getAttribute("ProcInstance")
s12 = el1.getAttribute("Channel")

If s7 =s9 And s10 = s5 Then

txtStream.write (vbNewLine & "
traceTable.center.add(Button" & s1 & ");" &
vbNewLine)

txtStream.write (" final Message m=new
Message("™")

125

txtStream.write (s6 & """ this," & s11 & ","" & s12 &
""");" & vbNewLine)

txtStream.write (" Button" & s1 &
".addActionListener(new ActionListener(){" &
vbNewLine)

txtStream.write (" public void
actionPerformed(ActionEvent e){" & vbNewLine)

txtStream.write (" try{" & s11 & "." & s12 &
".send(m);" & vbNewLine)

'txtStream.write (s6 & """ this," & s11 & """ & s12 &
"");" & vbNewLine)

txtStream.write (" transformState(""")
txtStream.write (s3 & ""'); " & vbNewLine & " }")
txtStream.write (vbNewLine & " catch(Exception
f)}{System.out.printin(name + " : " &
el2.getAttribute("Name") & "- send error");}")

End If
If s7 =s11 And s12 = s5 Then

txtStream.write (vbNewLine & "
traceTable.center.add(Button" & s1 & ");" &
vbNewLine)

txtStream.write (" final Message m=new
Message("")

txtStream.write (s6 & " this," & s9 & """ & s10 &
""");" & vbNewLine)

txtStream.write (" Button" & s1 &
".addActionListener(new ActionListener(){" &
vbNewLine)

txtStream.write (" public void
actionPerformed(ActionEvent e){" & vbNewLine)

txtStream.write (" try{" & s9 & "." & s10 & ".send(m);"
& vbNewLine)

' txtStream.write (s6 & "™ this," & s9 & ","" & s10 &
"");" & vbNewLine)

txtStream.write (" transformState(""")
txtStream.write (s3 & ""'); " & vbNewLine & " }")
txtStream.write (vbNewLine & " catch(Exception
f)}{System.out.printin(name + "™ : " &
el2.getAttribute("Name") & "- send error");}")

End If

m=m+2
Wend

End If
I=1+1

Wend
k=k+1
Wend

k=0

found = False

While k < nodes2.length
Set el2 = nodes2.Iltem(k)

If el2.getAttribute("Type") <> "Read" And
el2.getAttribute("Before") = s3 Then
found = True

End If

k=k+1

Wend

If found = True Then
txtStream.write (" " & s3 & "();")
End If

txtStream.write (vbNewLine & " displayTrace(")

txtStream.write (s1 & "™, ")
txtStream.write ("Write"™™" & ", ")
txtStream.write (s2 & "™, ")
txtStream.write (s14 & """, ")
txtStream.write (s5 & "™, ")

txtStream.write (s6 & "™); " & vbNewLine)

txtStream.write (" Button" & s1 & ".setVisible(false);"
& vbNewLine)

txtStream.write (" }" & vbNewLine & vbNewLine)
txtStream.write (" });" & vbNewLine & vbNewLine)

txtStream.write (vbNewLine & " }" & vbNewLine &
vbNewLine)
End If

End If
j=j+1
Wend

j=0
While j < nodes2.length
Set el2 = nodes2.ltem(j)

s2 = el2.getAttribute("Before")

k=j
While k < nodes2.length
Set el2 = nodes2.ltem(k)

If el2.getAttribute("Before") = s2 Then
If el2.getAttribute("Before") = "initial" Then

Call s_list.MarkUsed(el2.getAttribute("Type"),
el.getAttribute("Name"))

End If

'Remove any trailing "=" from the new state name...
| = InStr(el2.getAttribute("After"), "=")

If1 >0 Then s = Left(el2.getAttribute("After"), | - 1)
Else s = el2.getAttribute("After")

'txtStream.write (vbNewLine & " " & s & "();" &
vbNewLine)

Call el2.setAttribute("Name", ")

End If

k=k+1

Wend

j=j+1

Wend

'add connection to the potential processes
Set nodes3 =
doc.getElementsByTagName("Instance")
k=0

While k < nodes3.length

Set el = nodes3(k)

Set nodes4 =
el.getElementsByTagName("ProclInstance")

126

While | < nodes4.length
Set el2 = nodes4.ltem(l)
s2 = el2.getAttribute("Name")

txtStream.write (" Process " & s2 & ";" & vbNewLine)
txtStream.write (" public void connection_" & s2 &
"(Process temp){" & vbNewL.ine)

txtStream.write (" " & s2 & "=temp;" & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)
I=1+1

Wend

k=k+1

Wend

txtStream.write (" public String getname(){" &
vbNewLine)

txtStream.write (" return name;" & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)

txtStream.write (" public void displayTrace(String
ev, String ty, String be, String af, String ch, String
va){" & vbNewLine)

txtStream.write (" traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0); " &
vbNewLine)

txtStream.write (" traceTable.table.setValueAt(ev,
noOfevents,1); " & vbNewLine)

txtStream.write (" traceTable.table.setValueAt(ty,
noOfevents,2); " & vbNewLine)

txtStream.write (" traceTable.table.setValueAt(be,
noOfevents,3);" & vbNewLine)

txtStream.write (" traceTable.table.setValueAt(af,
noOfevents,4);" & vbNewLine)

txtStream.write (" traceTable.table.setValueAt(ch,
noOfevents,5);" & vbNewLine)

txtStream.write (" traceTable.table.setValueAt(va,
noOfevents,6);" & vbNewLine)

txtStream.write (" noOfevents++;" & vbNewLine)
txtStream.write (" }" & vbNewLine & vbNewLine)

txtStream.write (" public void transformState(String
s)}" & vbNewLine)

txtStream.write (" state=s;" & vbNewLine)
txtStream.write (" System.out.printin(name +"" : "" +
state);" & vbNewLine)

txtStream.write (" }" & vbNewLine)

txtStream.write ("}" & vbNewLine & vbNewLine)

i=i+1
Wend

'here it is the main method

txtStream.write ("public static void main(String
args[]) { " & vbNewLine)

Set nodes1 =
doc.getElementsByTagName("Instance")
k=0

While k < nodes1.length

Set el = nodes1(k)

Set nodes1 =
el.getElementsByTagName("Proclnstance")

i=0
While i < nodes1.length
Set el2 = nodes1.ltem(i)

txtStream.write (" " & el2.getAttribute("Type") & " " &
el2.getAttribute("Name") & " = new ")
txtStream.write (el2.getAttribute("Type") & "("" &
el2.getAttribute("Name") & "™); " & vbNewLine)
i=i+1

Wend

txtStream.write (vbNewLine)

‘one.connection(another)
'

Set nodes1 = el.getElementsByTagName("End")
i=0

While i < nodes1.length

Set el2 = nodes1.ltem(i)

s2 = el2.getAttribute("Proclnstance")

k=i+1

Set el2 = nodes1.ltem(k)

s3 = el2.getAttribute("Proclnstance")
txtStream.write (" " & s2 & ".connection_" & s3 & "("
&s3&")")

txtStream.write (" " & s3 & ".connection_" & s2 & "("
& s2 &");" & vbNewLine)

i=i+2

Wend

k=k+1

Wend

txtStream.write ("} " & vbNewLine & vbNewLine &

1)

txtStream.Close
Call MsgBox("Done!")

127

End Sub

Private Sub Form_Load()
Set fileSysObject =
CreateObject("Scripting.FileSystemObject")

Channel_Length = 10
Text3.Text = Channel_Length

End Sub

Private Sub MnuChannel_Length_Click()
Dim str As String

str = InputBox("Enter the required length of
MessageQueue" & vbNewLine & "Present length: "
& Channel_Length, "MessageQueue Length", 10)

If str =™ Then Exit Sub 'Assume cancel has been
used

If Val(str) < 0 Or (Val(str) = 0 And str <> "10") Then
Call MsgBox(str & " is not a valid value, Message
queue length will be set to 10", vboOKOnly, "Error")
Channel_Length =10

Else

Channel_Length = Val(str)

Text3.Text = str

End If

End Sub

Private Sub Text3_Change()
Channel_Length = Val(Text3.Text)
End Sub

Appendix B Example Models in

XML

B.1 The XML Generated by the RDT Tool for a Cycle Election

Model (Model 1)

<Model>
<Instance Name="cycle">
<Proclnstance Name="p0"
Type="participant0"/>
<Proclnstance Name="p1"
Type="participant1"/>
<Proclnstance Name="p2"
Type="participant2"/>
<Proclnstance Name="p3"
Type="participant3"/>

<ProcInstance Name="Tr" Type="trigger"/>

<Connection>
<End Proclnstance="Tr"
Channel="startElection"/>
<End Proclnstance="p3"
Channel="election"/>
</Connection>
<Connection>
<End ProclInstance="p0"
Channel="Ps_election"/>
<End Proclnstance="p2"
Channel="election"/>
</Connection>
<Connection>
<End ProclInstance="p0"
Channel="Ps_elected"/>
<End Proclnstance="p2"
Channel="elected"/>
</Connection>
<Connection>
<End ProclInstance="p1"
Channel="Ps_election"/>
<End Proclnstance="p0"
Channel="election"/>
</Connection>
<Connection>
<End ProclInstance="p1"
Channel="Ps_elected"/>
<End Proclnstance="p0"
Channel="elected"/>
</Connection>

128

<Connection>
<End Proclnstance="p2"
Channel="Ps_election"/>
<End Proclnstance="p3"
Channel="election"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="Ps_elected"/>
<End Proclnstance="p3"
Channel="elected"/>
</Connection>
<Connection>
<End Proclnstance="p3"
Channel="Ps_election"/>
<End Proclnstance="p1"
Channel="election"/>
</Connection>
<Connection>
<End Proclnstance="p3"
Channel="Ps_elected"/>
<End Proclnstance="p1"
Channel="elected"/>
</Connection>
</Instance>
<Process Name="participant0">
<Event Name="R_Election_0"
Type="Read" Before="initial" After="RENQ"
Channel="election" Value="V0"/>
<Event Name="S_Elected_0" Type="Write"
Before="RENQ" After="initial="
Channel="Ps_elected" Value="V0"/>
<Event Name="R_Election_1"
Type="Read" Before="initial" After="REN1"
Channel="election" Value="V1"/>
<Event Name="S_Election_1"
Type="Write" Before="REN1" After="initial="
Channel="Ps_election" Value="V1"/>
<Event Name="R_Election_2"
Type="Read" Before="initial" After="REN2"
Channel="election" Value="V2"/>

<Event Name="S_Election_2"
Type="Write" Before="REN2" After="initial="
Channel="Ps_election" Value="V2"/>

<Event Name="R_Election_3"
Type="Read" Before="initial" After="REN3"
Channel="election" Value="V3"/>

<Event Name="S_Election_3"
Type="Create" Before="REN3" After="initial="
Channel="Ps_election" Value="V3"/>

<Event Name="R_Elected_0"
Type="Read" Before="initial" After="IMBoss"
Channel="elected" Value="V0"/>

<Event Name="R_Elected_1"
Type="Read" Before="initial" After="RED1"
Channel="elected" Value="V1"/>

<Event Name="S_ED_1" Type="Write"
Before="RED1" After="Boss1"
Channel="Ps_elected" Value="V1"/>

<Event Name="R_Elected_2"
Type="Read" Before="initial" After="RED2"
Channel="elected" Value="V2"/>

<Event Name="S_ED_2" Type="Write"
Before="RED2" After="Boss2"
Channel="Ps_elected" Value="Vv2"/>

<Event Name="R_Elected_3"
Type="Read" Before="initial" After="RED3"
Channel="elected" Value="V3"/>

<Event Name="S_ED_3" Type="Create"
Before="RED3" After="Boss3"
Channel="Ps_elected" Value="V3"/>

</Process>
<Process Name="participant1">

<Event Name="R_Election_0"
Type="Read" Before="initial" After="RENQ"
Channel="election" Value="VQ"/>

<Event Name="S_Election1_0"
Type="Create" Before="RENOQ" After="initial="
Channel="Ps_election" Value="V1"/>

<Event Name="R_Election_1"
Type="Read" Before="initial" After="REN1"
Channel="election" Value="V1"/>

<Event Name="S_Elected_1" Type="Write"
Before="REN1" After="initial="
Channel="Ps_elected" Value="V1"/>

<Event Name="R_Election_2"
Type="Read" Before="initial" After="REN2"
Channel="election" Value="V2"/>

<Event Name="S_Election_2"
Type="Write" Before="REN2" After="initial="
Channel="Ps_election" Value="V2"/>

<Event Name="R_Election_3"
Type="Read" Before="initial" After="REN3"
Channel="election" Value="V3"/>

<Event Name="S_Election_3"
Type="Write" Before="REN3" After="initial="
Channel="Ps_election" Value="V3"/>

<Event Name="R_Elected_1"
Type="Read" Before="initial" After="IMBoss"
Channel="elected" Value="V1"/>

<Event Name="R_Elected_2"
Type="Read" Before="initial" After="RED2"
Channel="elected" Value="V2"/>

<Event Name="S_ED_2" Type="Write"
Before="RED2" After="Boss2"
Channel="Ps_elected" Value="V2"/>

<Event Name="R_Elected_3"
Type="Read" Before="initial" After="RED3"
Channel="elected" Value="V3"/>

<Event Name="S_ED_3" Type="Create"
Before="RED3" After="Boss3"
Channel="Ps_elected" Value="V3"/>

129

</Process>
<Process Name="participant2">
<Event Name="R_Election_0"
Type="Read" Before="initial" After="RENQ"
Channel="election" Value="V0"/>
<Event Name="S_Election2_0"
Type="Write" Before="RENQ" After="initial="
Channel="Ps_election" Value="V2"/>
<Event Name="R_Election_1"
Type="Read" Before="initial" After="REN1"
Channel="election" Value="V1"/>
<Event Name="S_Election2_1"
Type="Create" Before="REN1" After="initial="
Channel="Ps_election" Value="V2"/>
<Event Name="R_Election_2"
Type="Read" Before="initial" After="REN2"
Channel="election" Value="V2"/>
<Event Name="S_Elected_2" Type="Write"
Before="REN2" After="initial="
Channel="Ps_elected" Value="Vv2"/>
<Event Name="R_Election_3"
Type="Read" Before="initial" After="REN3"
Channel="election" Value="V3"/>
<Event Name="S_Election_3"
Type="Write" Before="REN3" After="initial="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Elected_2"
Type="Read" Before="initial" After="IMBoss"
Channel="elected" Value="V2"/>
<Event Name="R_Elected_3"
Type="Read" Before="initial" After="RED3"
Channel="elected" Value="V3"/>
<Event Name="S_ED_3" Type="Create"
Before="RED3" After="Boss3"
Channel="Ps_elected" Value="V3"/>
</Process>
<Process Name="participant3">
<Event Name="R_Election_0"
Type="Read" Before="initial" After="RENOQ"
Channel="election" Value="V0"/>
<Event Name="S_Election3_0"
Type="Create" Before="RENO0" After="initial="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Election_1"
Type="Read" Before="initial" After="REN1"
Channel="election" Value="V1"/>
<Event Name="S_Election3_1"
Type="Write" Before="REN1" After="initial="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Election_2"
Type="Read" Before="initial" After="REN2"
Channel="election" Value="V2"/>
<Event Name="S_Election3_2"
Type="Write" Before="REN2" After="initial="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Election_3"
Type="Read" Before="initial" After="REN3"
Channel="election" Value="V3"/>
<Event Name="S_Elected_3"
Type="Create" Before="REN3" After="initial="
Channel="Ps_elected" Value="V3"/>
<Event Name="R_Elected_3"
Type="Read" Before="initial" After="IMBoss"
Channel="elected" Value="V3"/>
</Process>
<Process Name="trigger">
<Event Name="start_election"
Type="Create" Before="initial" After="finish"
Channel="startElection" Value="V0"/>
</Process>
</Model>

Al Model View: cycle

Model Mew Delete View

pi : participantd election —
Pz_elected

Psz_election

elected

pl : participantl election
Pz election

Psz_elected

elected

p2 : participant? election
F= election

Pz elected

elected

p3 : participant3 election
Psz_election

Pz _elected

elected

| Tr: trigger ztartE lection -

Figure 72: Model view of a cycle election model

130

A RDX: cycle.xml - participant0

File Rum Wiew Channel

ﬂ_._..'_l._ph participant1 [X| ﬂ...'l p2: participant2 [X| .-QJ_.‘Chanrrel 0

{ititial initial =

| AJ Channel 1 x
A Channel 2 [

| election Channel 0 o~ ||| election Channel2 ,Q‘] Channel 5 |§|

Pz election | Channel 2 =0 Pz election |Channel 4 —_ . —

| Pz_elected Channel 3 N Pe_elected Channel 5 i m Channal & I'E

A p3: participani3 x| 1A p0: participant0 x| A) Channel 7 |§|

Bl D > Ps_elected

initial

x|

.QEI_C hannel B

XI

| election Charnel 4 ~
| P=_election | Channel B -y
|Pz elected |Channel? %)

Chantel 0

ztartElection
: Channel 8

X/

election Channel & o 8] 5000 I
Pz _elected |Channel 1 — =
Pz election | Channel 0 o

ﬂj Channel 14

Channel 10 -IX|

A Channel 3 |§|

AJ Channel 12

A .-Chanl_'l_e_l 4

Eq

Figure 73: The cycle election model during execution (Model 1)

B.2 The XML Generated by the RDT Tool for a Cycle Election

Model (Model 2)

<Model>
<Instance Name="cycle">
<Proclnstance Name="p0"
Type="participant0"/>
<Proclnstance Name="p1"
Type="participant1"/>
<Proclnstance Name="p2"
Type="participant2"/>
<Proclnstance Name="p3"
Type="participant3"/>
<Connection>
<End Proclnstance="p0"
Channel="Ps_election"/>
<End Proclnstance="p2"
Channel="election"/>
</Connection>
<Connection>
<End ProclInstance="p0"
Channel="Ps_elected"/>
<End Proclnstance="p2"
Channel="elected"/>
</Connection>
<Connection>
<End Proclnstance="p1"
Channel="Ps_election"/>

<End Proclnstance="p0"
Channel="¢election"/>
</Connection>
<Connection>
<End Proclnstance="p1"
Channel="Ps_elected"/>
<End Proclnstance="p0"
Channel="elected"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="Ps_election"/>
<End Proclnstance="p3"
Channel="¢election"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="Ps_elected"/>
<End Proclnstance="p3"
Channel="elected"/>
</Connection>
<Connection>
<End Proclnstance="p3"
Channel="Ps_election"/>
<End Proclnstance="p1"

131

Channel="election"/>
</Connection>
<Connection>
<End ProclInstance="p3"
Channel="Ps_elected"/>
<End ProclInstance="p1"
Channel="elected"/>
</Connection>
</Instance>
<Process Name="participant0">
<Event Name="SE_Q0" Type="Create"
Before="initial" After="SE" Channel="Ps_election"
Value="V0"/>
<Event Name="R_Election_0"
Type="Read" Before="SE" After="RENOQ"
Channel="election" Value="VQ"/>
<Event Name="S_Elected_0" Type="Write"
Before="RENQ" After="SE=" Channel="Ps_elected"
Value="V0"/>
<Event Name="R_Election_1"
Type="Read" Before="SE" After="REN1"
Channel="election" Value="V1"/>
<Event Name="S_Election_1"
Type="Write" Before="REN1" After="SE="
Channel="Ps_election" Value="V1"/>
<Event Name="R_Election_2"
Type="Read" Before="SE" After="REN2"
Channel="election" Value="V2"/>
<Event Name="S_Election_2"
Type="Write" Before="REN2" After="SE="
Channel="Ps_election" Value="V2"/>
<Event Name="R_Election_3"
Type="Read" Before="SE" After="REN3"
Channel="election" Value="V3"/>
<Event Name="S_Election_3"
Type="Write" Before="REN3" After="SE="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Elected_0"
Type="Read" Before="SE" After="IMBoss"
Channel="elected" Value="V0"/>
<Event Name="R_Elected_1"
Type="Read" Before="SE" After="RED1"
Channel="elected" Value="V1"/>
<Event Name="S_ED_1" Type="Write"
Before="RED1" After="Boss1"
Channel="Ps_elected" Value="V1"/>
<Event Name="R_Elected_2"
Type="Read" Before="SE" After="RED2"
Channel="elected" Value="V2"/>
<Event Name="S_ED_2" Type="Write"
Before="RED2" After="Boss2"
Channel="Ps_elected" Value="Vv2"/>
<Event Name="R_Elected_3"
Type="Read" Before="SE" After="RED3"
Channel="elected" Value="V3"/>
<Event Name="S_ED_3" Type="Create"
Before="RED3" After="Boss3"
Channel="Ps_elected" Value="V3"/>
</Process>
<Process Name="participant1">
<Event Name="SE_1" Type="Create"
Before="initial" After="SE" Channel="Ps_election"
Value="V1"/>
<Event Name="R_Election_0"
Type="Read" Before="SE" After="RENOQ"
Channel="election" Value="V0"/>
<Event Name="S_Election1_0"
Type="Write" Before="RENQ" After="SE="
Channel="Ps_election" Value="V1"/>
<Event Name="R_Election_1"
Type="Read" Before="SE" After="REN1"
Channel="election" Value="V1"/>
<Event Name="S_Elected_1" Type="Write"

132

Before="REN1" After="SE=" Channel="Ps_elected"
Value="V1"/>
<Event Name="R_Election_2"
Type="Read" Before="SE" After="REN2"
Channel="election" Value="V2"/>
<Event Name="S_Election_2"
Type="Write" Before="REN2" After="SE="
Channel="Ps_election" Value="V2"/>
<Event Name="R_Election_3"
Type="Read" Before="SE" After="REN3"
Channel="election" Value="V3"/>
<Event Name="S_Election_3"
Type="Write" Before="REN3" After="SE="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Elected_1"
Type="Read" Before="SE" After="IMBoss"
Channel="elected" Value="V1"/>
<Event Name="R_Elected_2"
Type="Read" Before="SE" After="RED2"
Channel="elected" Value="V2"/>
<Event Name="S_ED_2" Type="Write"
Before="RED2" After="Boss2"
Channel="Ps_elected" Value="Vv2"/>
<Event Name="R_Elected_3"
Type="Read" Before="SE" After="RED3"
Channel="elected" Value="V3"/>
<Event Name="S_ED_3" Type="Create"
Before="RED3" After="Boss3"
Channel="Ps_elected" Value="V3"/>
</Process>
<Process Name="participant2">
<Event Name="SE_2" Type="Create"
Before="initial" After="SE" Channel="Ps_election"
Value="V2"/>
<Event Name="R_Election_0"
Type="Read" Before="SE" After="RENO"
Channel="election" Value="V0"/>
<Event Name="S_Election2_0"
Type="Write" Before="RENOQ" After="SE="
Channel="Ps_election" Value="v2"/>
<Event Name="R_Election_1"
Type="Read" Before="SE" After="REN1"
Channel="election" Value="V1"/>
<Event Name="S_Election2_1"
Type="Write" Before="REN1" After="SE="
Channel="Ps_election" Value="Vv2"/>
<Event Name="R_Election_2"
Type="Read" Before="SE" After="REN2"
Channel="election" Value="V2"/>
<Event Name="S_Elected_2" Type="Write"
Before="REN2" After="SE=" Channel="Ps_elected"
Value="V2"/>
<Event Name="R_Election_3"
Type="Read" Before="SE" After="REN3"
Channel="election" Value="V3"/>
<Event Name="S_Election_3"
Type="Write" Before="REN3" After="SE="
Channel="Ps_election" Value="V3"/>
<Event Name="R_Elected_2"
Type="Read" Before="SE" After="IMBoss"
Channel="elected" Value="V2"/>
<Event Name="R_Elected_3"
Type="Read" Before="SE" After="RED3"
Channel="elected" Value="V3"/>
<Event Name="S_ED_3" Type="Create"
Before="RED3" After="Boss3"
Channel="Ps_elected" Value="V3"/>
</Process>
<Process Name="participant3">
<Event Name="SE_3" Type="Create"
Before="initial" After="SE" Channel="Ps_election"
Value="V3"/>
<Event Name="R_Election_0"

Type="Read" Before="SE" After="RENOQ"
Channel="election" Value="VQ"/>

<Event Name="S_Election3_0"
Type="Write" Before="RENQ" After="SEI="
Channel="Ps_election" Value="V3"/>

<Event Name="R_Election_1"
Type="Read" Before="SE" After="REN1"
Channel="election" Value="V1"/>

<Event Name="S_Election3_1"
Type="Write" Before="REN1" After="SE="
Channel="Ps_election" Value="V3"/>

<Event Name="R_Election_2"
Type="Read" Before="SE" After="REN2"
Channel="election" Value="V2"/>

B.3 A Bully Model

<Model>
<Instance Name="bully">
<Proclnstance Name="p0"
Type="participant0"/>
<Proclnstance Name="p1"
Type="participant1"/>
<Proclnstance Name="p2"
Type="participant2"/>
<Proclnstance Name="p3"
Type="participant3"/>

<ProcInstance Name="sink" Type="Sink"/>

<Connection>
<End Proclnstance="p0"
Channel="info"/>
<End Proclnstance="sink"
Channel="inbox"/>
</Connection>
<Connection>
<End ProclInstance="p1"
Channel="info"/>
<End Proclnstance="sink"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="info"/>
<End Proclnstance="sink"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="p3"
Channel="info"/>
<End Proclnstance="sink"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="p0"
Channel="election"/>
<End ProclInstance="p1"
Channel="inbox_0"/>
</Connection>
<Connection>
<End Proclnstance="p0"
Channel="election"/>
<End ProclInstance="p2"
Channel="inbox_0"/>
</Connection>
<Connection>
<End Proclnstance="p0"

133

<Event Name="S_Election3_2"
Type="Write" Before="REN2" After="SE="
Channel="Ps_election" Value="V3"/>

<Event Name="R_Election_3"
Type="Read" Before="SE" After="REN3"
Channel="election" Value="V3"/>

<Event Name="S_Elected_3"
Type="Create" Before="REN3" After="SE="
Channel="Ps_elected" Value="V3"/>

<Event Name="R_Elected_3"
Type="Read" Before="SE" After="IMBoss"
Channel="elected" Value="V3"/>

</Process>

</Model>

Channel="election"/>
<End Proclnstance="p3"
Channel="inbox_0"/>
</Connection>
<Connection>
<End Proclnstance="p1"
Channel="election"/>
<End Proclnstance="p0"
Channel="inbox_1"/>
</Connection>
<Connection>
<End Proclnstance="p1"
Channel="election"/>
<End Proclnstance="p2"
Channel="inbox_1"/>
</Connection>
<Connection>
<End Proclnstance="p1"
Channel="election"/>
<End Proclnstance="p3"
Channel="inbox_1"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="election"/>
<End Proclnstance="p0"
Channel="inbox_2"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="election"/>
<End Proclnstance="p1"
Channel="inbox_2"/>
</Connection>
<Connection>
<End Proclnstance="p2"
Channel="election"/>
<End Proclnstance="p3"
Channel="inbox_2"/>
</Connection>
<Connection>
<End Proclnstance="p3"
Channel="election"/>
<End Proclnstance="p0"
Channel="inbox_3"/>
</Connection>
<Connection>
<End Proclnstance="p3"
Channel="election"/>

<End ProclInstance="p1"
Channel="inbox_3"/>
</Connection>
<Connection>
<End ProclInstance="p3"
Channel="election"/>
<End ProclInstance="p2"
Channel="inbox_3"/>
</Connection>
</Instance>
<Process Name="participant0">
<Event Name="send_0" Type="Create"
Before="initial" After="wait_receive"
Channel="election" Value="VQ"/>
<Event Name="receive_0" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_0" Value="V0"/>
<Event Name="receive_1" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_1" Value="V1"/>
<Event Name="receive_2" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_2" Value="V2"/>
<Event Name="receive_3" Type="Read"
Before="wait_receive" After="received3"
Channel="inbox_3" Value="V3"/>
<Event Name="get_boss" Type="Create"
Before="received3" After="finish" Channel="info"
Value="boss"/>
</Process>
<Process Name="participant1">
<Event Name="send_1" Type="Create"
Before="initial" After="wait_receive"
Channel="election" Value="V1"/>
<Event Name="receive_0" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_0" Value="V0"/>
<Event Name="receive_1" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_1" Value="V1"/>
<Event Name="receive_2" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_2" Value="Vv2"/>
<Event Name="receive_3" Type="Read"
Before="wait_receive" After="received3"
Channel="inbox_3" Value="V3"/>
<Event Name="get_boss" Type="Create"
Before="received3" After="finish" Channel="info"

B.4 A Probe/Echo Model

<Model>
<Instance Name="probeEcho">
<Proclnstance Name="grandF"
Type="parent"/>
<Proclnstance Name="father"
Type="child1"/>
<Proclnstance Name="brother"
Type="child2"/>
<ProcInstance Name="uncle"
Type="child2"/>
<Proclnstance Name="sister"
Type="child2"/>
<Connection>
<End Proclnstance="grandF"
Channel="down"/>
<End Proclnstance="father"

134

Value="boss"/>
</Process>
<Process Name="participant2">
<Event Name="send_2" Type="Create"
Before="initial" After="wait_receive"
Channel="election" Value="V2"/>
<Event Name="receive_0" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_0" Value="V0"/>
<Event Name="receive_1" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_1" Value="V1"/>
<Event Name="receive_2" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_2" Value="V2"/>
<Event Name="receive_3" Type="Read"
Before="wait_receive" After="received3"
Channel="inbox_3" Value="V3"/>
<Event Name="get_boss" Type="Create"
Before="received3" After="finish" Channel="info"
Value="boss"/>
</Process>
<Process Name="participant3">
<Event Name="send_3" Type="Create"
Before="initial" After="wait_receive"
Channel="election" Value="V3"/>
<Event Name="receive_0" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_0" Value="V0"/>
<Event Name="receive_1" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_1" Value="V1"/>
<Event Name="receive_2" Type="Read"
Before="wait_receive" After="wait_receive="
Channel="inbox_2" Value="V2"/>
<Event Name="receive_3" Type="Read"
Before="wait_receive" After="received3"
Channel="inbox_3" Value="V3"/>
<Event Name="get_boss" Type="Create"
Before="received3" After="finish" Channel="info"
Value="boss"/>
</Process>
<Process Name="Sink">
<Event Name="know_boss" Type="Read"
Before="initial" After="initial=" Channel="inbox"
Value="boss"/>
</Process>
</Model>

Channel="inbox_parent"/>
</Connection>
<Connection>
<End Proclnstance="grandF"
Channel="down"/>
<End Proclnstance="uncle"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="father"
Channel="down"/>
<End Proclnstance="brother"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="father"

Channel="down"/>
<End Proclnstance="sister"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="sister"
Channel="up"/>
<End Proclnstance="father"
Channel="inbox_child"/>
</Connection>
<Connection>
<End Proclnstance="brother"
Channel="up"/>
<End Proclnstance="father"
Channel="inbox_child"/>
</Connection>
<Connection>
<End Proclnstance="father"
Channel="up"/>
<End Proclnstance="grandF"
Channel="inbox"/>
</Connection>
<Connection>
<End ProclInstance="uncle"
Channel="up"/>
<End Proclnstance="grandF"
Channel="inbox"/>
</Connection>
</Instance>
<Process Name="parent">

B.5 An Agent Model

<Model>
<Instance Name="Agent">
<ProcInstance Name="c0"
Type="customer"/>
<ProcInstance Name="c1"
Type="customer"/>
<Proclnstance Name="a" Type="agent"/>
<Proclnstance Name="s0" Type="shop"/>
<Proclnstance Name="s1" Type="shop"/>
<Connection>
<End Proclnstance="c0"
Channel="outbox"/>
<End Proclnstance="a"
Channel="inbox_c"/>
</Connection>
<Connection>
<End Proclnstance="c1"
Channel="outbox"/>
<End Proclnstance="a"
Channel="inbox_c"/>
</Connection>
<Connection>
<End Proclnstance="a"
Channel="outbox_s"/>
<End Proclnstance="s0"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="a"
Channel="outbox_s"/>
<End Proclnstance="s1"
Channel="inbox"/>
</Connection>
<Connection>

135

<Event Name="send_probe"
Type="Create" Before="initial" After="probe_send"
Channel="down" Value="probe"/>
<Event Name="receive_echo"
Type="Read" Before="probe_send" After="initial="
Channel="inbox" Value="echo"/>
</Process>
<Process Name="child1">
<Event Name="receive_probe"
Type="Read" Before="initial" After="probe_receive"
Channel="inbox_parent" Value="probe"/>
<Event Name="send_probe"
Type="Create" Before="probe_receive"
After="initial=" Channel="down" Value="probe"/>
<Event Name="receive_echo"
Type="Read" Before="initial" After="echo_receive"
Channel="inbox_child" Value="echo"/>
<Event Name="send_echo" Type="Write"
Before="echo_receive" After="initial="
Channel="up" Value="echo"/>
</Process>
<Process Name="child2">
<Event Name="receive_probe"
Type="Read" Before="initial" After="probe_receive"
Channel="inbox" Value="probe"/>
<Event Name="send_echo" Type="Create"
Before="probe_receive" After="initial="
Channel="up" Value="echo"/>
</Process>
</Model>

<End Proclnstance="s0"
Channel="outbox"/>
<End Proclnstance="a"
Channel="inbox_s"/>
</Connection>
<Connection>
<End Proclnstance="s1"
Channel="outbox"/>
<End Proclnstance="a"
Channel="inbox_s"/>
</Connection>
<Connection>
<End Proclnstance="a"
Channel="outbox_c"/>
<End Proclnstance="c0"
Channel="inbox"/>
</Connection>
<Connection>
<End Proclnstance="a"
Channel="outbox_c"/>
<End Proclnstance="c1"
Channel="inbox"/>
</Connection>
</Instance>
<Process Name="customer">
<Event Name="send_target"
Type="Create" Before="initial" After="target_send"
Channel="outbox" Value="target"/>
<Event Name="receive_item" Type="Read"
Before="target_send" After="finish"
Channel="inbox" Value="item"/>
</Process>
<Process Name="agent">
<Event Name="receive_target"

Type="Read" Before="initial" After="target_receive"
Channel="inbox_c" Value="target"/>

<Event Name="send_target"
Type="Create" Before="target_receive"
After="target_send" Channel="outbox_s"
Value="target"/>

<Event Name="receive_item" Type="Read"
Before="target_send" After="item_receive"
Channel="inbox_s" Value="item"/>

<Event Name="send_item" Type="Create"
Before="item_receive" After="finish"
Channel="outbox_c" Value="item"/>

136

</Process>
<Process Name="shop">
<Event Name="receive_target"
Type="Read" Before="initial" After="target_receive"
Channel="inbox" Value="target"/>
<Event Name="send_item" Type="Create"
Before="target_receive" After="finish"
Channel="outbox" Value="item"/>
</Process>
</Model>

Appendix C Example Models in

Promela

C.1 A Cycle Election Model (Model 1 with Synchronous

Communication)

/* Generated from file C:\Documents and
Settings\pfx01r\My
Documents\Report\cycle8\1\cycle.xml */

#define CHLEN 0

#define CHNO 3

proctype participantO(chan election, V0,
Ps_elected, V1, Ps_election, V2, V3, elected)

{

inti=0;

chan supp[CHNO] = [CHLEN] of {chan};

initial:

if
:: election?V0; goto RENO;
:: election?V1; goto REN1;
:: election?V2; goto REN2;
:: election?V3; goto RENS;
:: elected?V0; goto IMBoss;
:: elected?V1; goto RED1;
:: elected?V2; goto RED2;
:: elected?V3; goto REDS;
fi;

RENO:

if

:: Ps_elected!VO0; goto initial;
fi;

REN1:

if

:: Ps_election!V1; goto initial;
fi;

REN2:
if
1 Ps_election!VV2; goto initial;

137

fi;

RENS:

if

:5i < CHNO; atomic { V3 = suppli]; Ps_election!V3; i
=i+1}

goto initial;

fi;

RED1:

if

:: Ps_elected!V1; goto Boss1;
fi;

RED2:

if

:: Ps_elected!V2; goto Boss2;
fi;

RED3:

if

::i < CHNO; atomic { V3 = supp]i]; Ps_elected!V3; i =
i+1}

goto Boss3;

fi;

IMBoss: skip;

Boss1: skip;
Boss2: skip;

Boss3: skip
}

proctype participant1(chan election, V0,
Ps_election, V1, Ps_elected, V2, V3, elected)
inti=0;

chan supp[CHNO] = [CHLEN] of {chan};

initial:

if
:: election?V0; goto RENO;
:: election?V1; goto REN1;
:: election?V2; goto REN2;
:: election?V3; goto REN3;
:: elected?V1; goto IMBoss;
:: elected?V2; goto RED2;
:: elected?V3; goto RED3;
fi;

RENO:

if

;i < CHNO; atomic { V1 = suppli]; Ps_election!V1; i
=i+1}

goto initial;

fi;

REN1:

if

:: Ps_elected!V1; goto initial;
fi;

REN2:

if

1 Ps_election!VV2; goto initial;
fi;

RENS:

if

:: Ps_election!V3; goto initial;
fi;

RED2:

if

:: Ps_elected!V2; goto Boss2;
fi;

RED3:

if

i < CHNO; atomic { V3 = supp]i]; Ps_elected!V3; i =
i+1}

goto Boss3;

fi;

IMBoss: skip;
Boss2: skip;
Boss3: skip

}

proctype participant2(chan election, V0,
Ps_election, V2, V1, Ps_elected, V3, elected)

{

inti=0;

chan supp[CHNO] = [CHLEN] of {chan};

initial:
if
:: election?V0; goto RENO;
:: election?V1; goto REN1;
:: election?V2; goto REN2;
:: election?V3; goto RENS;
:: elected?V2; goto IMBoss;
:: elected?V3; goto RED3;
fi;

RENO:

138

if
:: Ps_election!V2; goto initial;
fi;

REN1:

if

:5i < CHNO; atomic { V2 = suppli]; Ps_election!V2; i
=i+1}

goto initial;

fi;

REN2:

if

:: Ps_elected!V2; goto initial;
fi;

REN3:

if

:: Ps_election!V3; goto initial;
fi;

RED3:

if

::i < CHNO; atomic { V3 = supp]i]; Ps_elected!V3; i =
i+1}

goto Boss3;

fi;

IMBoss: skip;
Boss3: skip
}

proctype participant3(chan election, VO,
Ps_election, V3, V1, V2, Ps_elected, elected)

{
inti=0;
chan supp[CHNO] = [CHLEN] of {chan};

initial:
if
:: election?V0; goto RENO;
. election?V1; goto RENT;
. election?V2; goto REN2;
:: election?V3; goto RENS;
:: elected?V3; goto IMBoss;
fi;

RENO:

if

:: Ps_election!V3; goto initial;
fi;

REN1:

if

:: Ps_election!V3; goto initial;
fi;

REN2:

if

:ii < CHNO; atomic { V3 = supp]i]; Ps_election!V3; i
=i+1}

goto initial;

fi;

RENS3:

if

::i < CHNO; atomic { V3 = supp]i]; Ps_elected!V3; i =
i+1}

goto initial;

fi;

IMBoss: skip
}

proctype trigger(chan startElection, VO0)
{

inti=0;
chan supp[CHNO] = [CHLEN] of {chan};

initial:

if

;i < CHNO; atomic { VO = suppli]; startElection!V0; i
=i+1}

goto finish;

fi;

finish: skip
}

init

{ atomic {

chan ch0 = [CHLEN] of {chan};
chan ch1 = [CHLEN] of {chan};
chan ch2 = [CHLEN] of {chan};
chan ch3 = [CHLEN] of {chan};
chan ch4 = [CHLEN] of {chan};
chan ch5 = [CHLEN] of {chan};
chan ch6 = [CHLEN] of {chan};
chan ch7 = [CHLEN] of {chan};
chan nchO = [0] of {chan};
chan nch1 = [0] of {chan};

chan nch2 = [0] of {chan};
chan nch3 = [0] of {chan};
chan nch4 = [0] of {chan};
chan nch5 = [0] of {chan};
chan nch6 = [0] of {chan};
chan nch7 = [0] of {chan};
chan nch8 = [0] of {chan};
chan nch9 = [0] of {chan};
chan nch10 = [0] of {chan};
chan nch11 = [0] of {chan};
chan nch12 = [0] of {chan};
chan nch13 = [0] of {chan};
chan nch14 = [0] of {chan};
chan nch15 = [0] of {chan};
chan nch16 = [0] of {chan};

run participantO(ch6, nchO, ch1, nch1, ch0, nch2,
nch3, ch7);

run participant1(chO, nch4, ch2, nch5, ch3, nch6,
nch7, ch1);

run participant2(ch2, nch8, ch4, nch9, nch10, ch5,
nch11, ch3);

run participant3(ch4, nch12, ch6, nch13, nch14,
nch15, ch7, ch5);

run trigger(ch0, nch16);

b

C.2 A Cycle Election Model (Model 2 with Asynchronous

Communication)

/* Generated from file C:\Documents and
Settings\pfx01r\My

Documents\Report\cyle9\cycle9.xml */

#define CHLEN 10
#define CHNO 3

proctype participantO(chan Ps_election, VO,
election, Ps_elected, V1, V2, V3, elected)

{
inti=0;
chan supp[CHNO] = [CHLEN] of {chan};

initial:

if

i < CHNO; atomic { VO = supp]i]; Ps_election!VO0; i
=i+1}

goto SE;

fi;

SE:
if
:: election?V3; goto RENS;

:: elected?V3; goto RED3;
fi;

RENO:

if

:: Ps_elected!VO0; goto SE;
fi;

139

REN1:

if

:: Ps_election!V1; goto SE;
fi;

RENZ2:

if

:: Ps_election!V2; goto SE;
fi;

RENS:

if

:: Ps_election!V3; goto SE;
fi;

RED1:

if

:: Ps_elected!V1; goto Boss1;
fi;

RED2:

if

:: Ps_elected!V2; goto Boss2;
fi;

RED3:

if

::i < CHNO; atomic { V3 = supp]i]; Ps_elected!V3; i =
i+1}

goto Boss3;

fi;

IMBoss: skip;
Boss1: skip;
Boss2: skip;
Boss3: skip

}

proctype participanti(chan Ps_election, V1,
election, VO, Ps_elected, V2, V3, elected)

{

inti=0;

chan supp[CHNO] = [CHLEN] of {chan};

initial:

if

i < CHNO; atomic { V1 = suppli]; Ps_election!V1; i
=i+1}

goto SE;

fi;

SE:

if

:: election?V0; goto RENO;
:: election?V3; goto REN3;

:: elected?V3; goto REDS;
fi;

RENO:

if

1 Ps_election!V1; goto SE;
fi;

REN1:

if

. Ps_elected!V1; goto SE;
fi;

REN2:

if

1 Ps_election!V2; goto SE;
fi;

RENS:

if

:: Ps_election!V3; goto SE;
fi;

RED2:

if

:: Ps_elected!V2; goto Boss2;
fi;

RED3:

if

i < CHNO; atomic { V3 = supp]i]; Ps_elected!V3; i =
i+1}

goto Boss3;

fi;

IMBoss: skip;
Boss2: skip;
Boss3: skip

}

proctype participant2(chan Ps_election, V2,
election, VO, V1, Ps_elected, V3, elected)

{

inti=0;

chan supp[CHNO] = [CHLEN] of {chan};

initial:
if

:5i < CHNO; atomic { V2 = suppli]; Ps_election!V2; i
=i+1}

goto SE;

fi;

SE:
if

i election?V1; goto RENT;
:: election?V3; goto RENS;

:: elected?V3; goto REDS;
fi;

RENO:

if

:: Ps_election!V2; goto SE;
fi;

REN1:

if

:: Ps_election!V2; goto SE;
fi;

REN2:

if

:: Ps_elected!V2; goto SE;
fi;

RENS:

if

:: Ps_election!V3; goto SE;
fi;

RED3:

if

::i < CHNO; atomic { V3 = suppli]; Ps_elected!V3; i =
i+1}

goto Boss3;

fi;

IMBoss: skip;
Boss3: skip

}

proctype participant3(chan Ps_election, V3,
election, VO, V1, V2, Ps_elected, elected)

{
inti=0;
chan supp[CHNO] = [CHLEN] of {chan};

initial:

if

:ii < CHNO; atomic { V3 = supp]i]; Ps_election!V3; i
=i+1}

goto SE;

fi;

SE:
if

i election?V2; goto REN2;
.. election?V3; goto RENS;
:: elected?V3; goto IMBoss;
fi;

RENO:

if

:: Ps_election!V3; goto SEI;
fi;

REN1:

if
:: Ps_election!V3; goto SE;
fi;

REN2:

if

:: Ps_election!V3; goto SE;
fi;

RENS3:

if

;i < CHNO; atomic { V3 = suppli]; Ps_elected!V3; i =
i+1}

goto SE;

fi;

SEl: skip;
IMBoss: skip
}

init

{ atomic {

chan ch0 = [CHLEN] of {chan};
chan ch1 = [CHLEN] of {chan};
chan ch2 = [CHLEN] of {chan};
chan ch3 = [CHLEN] of {chan};
chan ch4 = [CHLEN] of {chan};
chan ch5 = [CHLEN] of {chan};
chan ch6 = [CHLEN] of {chan};

141

chan ch7 = [CHLEN] of {chan};
chan nch0 = [0] of {chan};
chan nch1 = [0] of {chan};
chan nch2 = [0] of {chan};
chan nch3 = [0] of {chan};
chan nch4 = [0] of {chan};
chan nch5 = [0] of {chan};
chan nch6 = [0] of {chan};
chan nch7 = [0] of {chan};
chan nch8 = [0] of {chan};
chan nch9 = [0] of {chan};
chan nch10 = [0] of {chan};
chan nch11 = [0] of {chan};
chan nch12 = [0] of {chan};
chan nch13 = [0] of {chan};
chan nch14 = [0] of {chan};
chan nch15 = [0] of {chan};

run participantO(chO, nchO, ch2, ch1, nch1, nch2,
nch3, ch3);

run participant1(ch2, nch4, ch6, nch5, ch3, nché,
nch7, ch7);

run participant2(ch4, nch8, ch0, nch9, nch10, ch5,
nch11, ch1);

run participant3(ch6, nch12, ch4, nch13, nch14,
nch15, ch7, ch5);

|3

Appendix D Implementation in

Java

D.1 A Cycle Election Model (Model 1 with Synchronous

Communication)

/* Generated from file C:\Documents and
Settings\pfx01r\My Documents\Report\cycle.xml */

import java.io.*;

import java.awt.*;

import java.math.*;

import java.util.*;

import javax.swing.*;
import java.awt.event.*;
import javax.swing.text.*;
import javax.swing.table.*;

public class cycle{

static class Message {
String type; Process writer; Process reader; String
channel;

Message (String t, Process p, Process r, String c){
type=t; writer=p; reader=r; channel=c;

public String toString(){
return type + " from " + writer.toString() + "to " +
reader.toString() + " via " +channel;

}

static class myGUI extends JFrame{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel;
JLabel processLabel;
JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instanceLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);

top.add(instanceField);

processLabel= new JLabel("Process");
top.add(processLabel);

processField=new JTextField(b,15);

Font h =new Font("Roman",Font.ITALIC,12);
top.setFont(h);

top.add(processField);

getContentPane().add(top, BorderLayout. NORTH);

JPanel middle =new JPanel();
middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);

getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));
getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();
setVisible(true);

}
}

static class MessageQueue{
String name;

boolean sendFlag, receiveFlag;
Message share;

public MessageQueue(String n, int m){
name=n;

sendFlag=false;

receiveFlag=false;

}

synchronized void send(Message x) throws
InterruptedException{

sendFlag=true;

share=x;

notifyAll();
System.out.printin("send("+x+")");
while(!receiveFlag) wait();
receiveFlag=false;

}

synchronized Message receive() throws
InterruptedException{
receiveFlag=true;

notifyAll();

while(!sendFlag) wait();

Message x; x=share;
System.out.printin("receive("+x+")");
sendFlag=false;

return x;

}

}

static class Process extends Thread {
MessageQueue startElection;
MessageQueue PassOn_election;
MessageQueue election;
MessageQueue PassOn_elected;
MessageQueue elected;

String name;

public String toString(){

return this.name;

}

}

static class participantO extends Process {
static myGUI traceTable;

public participantO (String name){

this.name =name;

traceTable=new myGUI(name,"participant0");
election=new MessageQueue("election",0);
elected=new MessageQueue("elected",0);
this.start();

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Elected_0 = new
JButton("S_Elected_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election_1 = new
JButton("S_Election_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election_2 = new
JButton("S_Election_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_0 = new
JButton("R_Elected_0");

JButton ButtonR_Elected_1 = new
JButton("R_Elected_1");

JButton ButtonS_ED_1 = new JButton("S_ED_1");
JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonS_ED_2 = new JButton("S_ED_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");
public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run(){

try{for(;; {

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

new Thread(){public void run()}{

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Elected_0(m.writer,m.type,"R_Elected_0");
else if(m.type=="V1" && state =="initial")
R_Elected_1(m.writer,m.type,"R_Elected_1");
else if(m.type=="V2" && state =="initial")
R_Elected_2(m.writer,m.type,"R_Elected_2");
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENO")
S_Elected_0();

}

public void REN1(){
if(state=="REN1")
S_Election_1();

public void REN2(}{
if(state=="REN2")
S_Election_2();

}

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED1(){
if(state=="RED1")
S_ED_1();

}

public void RED2()}{
if(state=="RED2")
S_ED_2();

}

public void RED3(){
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election", "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

%

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}

%

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election”, "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

%

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);

ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

RENS3();
ButtonR_Election_3.setVisible(false);

}

;

}

public void R_Elected_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_0);
ButtonR_Elected_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_0", "Read", "initial",
"IMBoss", "elected", "V0");
ButtonR_Elected_0.setVisible(false);

}
W
}

public void R_Elected_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_1);
ButtonR_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED1");

displayTrace("R_Elected_1", "Read", "initial",
"RED1", "elected", "V1");

RED1();

ButtonR_Elected_1.setVisible(false);

}
W
}

public void R_Elected_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED2");

displayTrace("R_Elected_2", "Read", "initial",
"RED2", "elected", "V2");

RED2();

ButtonR_Elected_2.setVisible(false);

}
W
}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

}
W
}

public void S_Election_3(){
traceTable.center.add(ButtonS_Election_3);

final Message m=new

Message("V3" this,p1,"PassOn_election");
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election_3- send error");}

displayTrace("S_Election_3", "Create", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

»;
}

public void S_ED_3()
traceTable.center.add(ButtonS_ED_3);

final Message m=new
Message("V3",this,p1,"PassOn_elected");
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}

s
}

public void S_Elected_0(){
System.out.printin(name+" : S_Elected_0");

traceTable.center.add(ButtonS_Elected_0);
final Message m=new
Message("V0",this,p1,"elected");
ButtonS_Elected_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_Elected_0", "Write", "RENOQ",
"initial=", "PassOn_elected", "V0");
ButtonS_Elected_0.setVisible(false);

}
»;

}

public void S_Election_1(){
System.out.printin(name+" : S_Election_1");

traceTable.center.add(ButtonS_Election_1);
final Message m=new
Message("V1",this,p1,"election");

145

ButtonS_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_Election_1", "Write", "REN1",
"initial=", "PassOn_election", "V1");
ButtonS_Election_1.setVisible(false);

}

»

}

public void S_Election_2(){
System.out.printin(name+" : S_Election_2");

traceTable.center.add(ButtonS_Election_2);
final Message m=new
Message("V2",this,p1,"election");
ButtonS_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_Election_2", "Write", "REN2",
"initial=", "PassOn_election", "V2");
ButtonS_Election_2.setVisible(false);

}

»

}

public void S_ED_1(X
System.out.printin(name+" : S_ED_1");

traceTable.center.add(ButtonS_ED_1);

final Message m=new
Message("V1",this,p1,"elected");
ButtonS_ED_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("1_Boss");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_ED_1", "Write", "RED1",
"1_Boss", "PassOn_elected", "V1");
ButtonS_ED_1.setVisible(false);

}
»

}

public void S_ED_2(X
System.out.printin(name+" : S_ED_2");

traceTable.center.add(ButtonS_ED_2);
final Message m=new
Message("V2",this,p1,"elected");

ButtonS_ED_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("2_Boss");

catch(Exception f){System.out.printin(name + " : pO-
send error");}

displayTrace("S_ED_2", "Write", "RED2",
"2_Boss", "PassOn_elected", "V2");
ButtonS_ED_2.setVisible(false);

}
»;

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s)
state=s;

System.out.printin(name +" : " + state);
}

}

static class participant1 extends Process {
static myGUI traceTable;

public participant1 (String name){

this.name =name;

traceTable=new myGUI(name,"participant1");
election=new MessageQueue("election",0);
elected=new MessageQueue("elected",0);

146

this.start();
}

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election1_0 = new
JButton("S_Election1_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Elected_1 = new
JButton("S_Elected_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election_2 = new
JButton("S_Election_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_1 = new
JButton("R_Elected_1");

JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonS_ED_2 = new JButton("S_ED_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");

public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run()}{

try{for(;;X

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX" && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

new Thread(){public void run()}

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V1" && state =="initial")
R_Elected_1(m.writer,m.type,"R_Elected_1");
else if(m.type=="V2" && state =="initial")
R_Elected_2(m.writer,m.type,"R_Elected_2");
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENQ")
S_Election1_0();

}

public void REN1(){
if(state=="REN1")
S_Elected_1();

public void REN2(}{
if(state=="REN2")
S_Election_2();

}

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED2(){
if(state=="RED2")
S_ED_2();

}

public void RED3()}{
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election", "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

b

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election", "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}

b

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election", "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

b

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

147

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

RENS3();

ButtonR_Election_3.setVisible(false);

}
W
}

public void R_Elected_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_1);
ButtonR_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_1", "Read", "initial",
"IMBoss", "elected", "V1");
ButtonR_Elected_1.setVisible(false);

}

i

}

public void R_Elected_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED2");

displayTrace("R_Elected_2", "Read", "initial",
"RED2", "elected", "V2");

RED2();

ButtonR_Elected_2.setVisible(false);

}

D;

}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

}

D;

}

public void S_Election1_0(){
traceTable.center.add(ButtonS_Election1_0);
final Message m=new
Message("V1",this,p2,"PassOn_election");
ButtonS_Election1_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election1_0- send error");}

displayTrace("S_Election1_0", "Create", "RENOQ",

"initial=", "PassOn_election", "V1");
ButtonS_Election1_0.setVisible(false);
}

»;

}

public void S_ED_3(){
traceTable.center.add(ButtonS_ED_3);

final Message m=new

Message("V3" this,p2,"PassOn_elected");
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.elected.send(m);
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}
»;
}

public void S_Elected_1(){
System.out.printin(name+" : S_Elected_1");

traceTable.center.add(ButtonS_Elected_1);
final Message m=new
Message("V 1" this,p2,"elected");
ButtonS_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Elected_1", "Write", "REN1",
"initial=", "PassOn_elected", "V1");
ButtonS_Elected_1.setVisible(false);

}

s

}

public void S_Election_2(){
System.out.printin(name+" : S_Election_2");

traceTable.center.add(ButtonS_Election_2);
final Message m=new

Message("V2" this,p2,"election");
ButtonS_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Election_2", "Write", "REN2",
"initial=", "PassOn_election", "V2");
ButtonS_Election_2.setVisible(false);

}

s

}

public void S_Election_3(){
System.out.printin(name+" : S_Election_3");

148

traceTable.center.add(ButtonS_Election_3);
final Message m=new

Message("V3" this,p2,"election");
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Election_3", "Write", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

W

}

public void S_ED_2(){
System.out.printin(name+" : S_ED_2");

traceTable.center.add(ButtonS_ED_2);

final Message m=new

Message("V2" this,p2,"elected");
ButtonS_ED_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.elected.send(m);
transformState("2_Boss");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_ED_2", "Write", "RED2",
"2_Boss", "PassOn_elected", "V2");
ButtonS_ED_2.setVisible(false);

}

W

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s){
state=s;

System.out.printin(name +" : " + state);
}

}

static class participant2 extends Process {
static myGUI traceTable;

public participant2 (String name){

this.name =name;

traceTable=new myGUI(name,"participant2");
election=new MessageQueue("election",0);
elected=new MessageQueue("elected",0);
this.start();

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election2_0 = new
JButton("S_Election2_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election2_1 = new
JButton("S_Election2_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Elected_2 = new
JButton("S_Elected_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");
public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run(){

try{for(;; X

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

149

new Thread(){public void run()}{

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX" && state==null){ }
else if(m.type=="V2" && state =="initial")
R_Elected_2(m.writer,m.type,"R_Elected_2");
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENO")
S_Election2_0();

public void REN1(){
if(state=="REN1")
S_Election2_1();

}

public void REN2(){
if(state=="REN2")
S_Elected_2();

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED3(){
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO", "election”, "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}
W
}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}
W
}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election", "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

%

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election", "V3");

REN3();

ButtonR_Election_3.setVisible(false);

}

%

}

public void R_Elected_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_2", "Read", "initial",
"IMBoss", "elected", "V2");
ButtonR_Elected_2.setVisible(false);

}
;
}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

}

b

}

public void S_Election2_1()X
traceTable.center.add(ButtonS_Election2_1);
final Message m=new
Message("V2",this,p3,"PassOn_election");
ButtonS_Election2_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election2_1- send error");}

displayTrace("S_Election2_1", "Create", "REN1",
"initial=", "PassOn_election", "V2");
ButtonS_Election2_1.setVisible(false);

}

s

150

}

public void S_ED_3()
traceTable.center.add(ButtonS_ED_3);

final Message m=new
Message("V3",this,p3,"PassOn_elected");
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.elected.send(m);
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}

»
}

public void S_Election2_0(){
System.out.printin(name+" : S_Election2_0");

traceTable.center.add(ButtonS_Election2_0);
final Message m=new

Message("V2" this,p3,"election");
ButtonS_Election2_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
send error");}

displayTrace("S_Election2_0", "Write", "RENO",
"initial=", "PassOn_election", "V2");
ButtonS_Election2_0.setVisible(false);

}

W

}

public void S_Elected_2(){
System.out.printin(name+" : S_Elected_2");

traceTable.center.add(ButtonS_Elected_2);
final Message m=new
Message("V2",this,p3,"elected");
ButtonS_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
send error");}

displayTrace("S_Elected_2", "Write", "REN2",
"initial=", "PassOn_elected", "V2");
ButtonS_Elected_2.setVisible(false);

}

W

p2-

p2-

public void S_Election_3(){
System.out.printin(name+" : S_Election_3");

traceTable.center.add(ButtonS_Election_3);
final Message m=new
Message("V3",this,p3,"election");
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p2-
send error");}

displayTrace("S_Election_3", "Write", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

»;

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s)
state=s;

System.out.printin(name +" : " + state);
}

static class participant3 extends Process {

151

static myGUI traceTable;

public participant3 (String name){

this.name =name;

traceTable=new myGUI(name,"participant3");
election=new MessageQueue("election",0);
elected=new MessageQueue("elected",0);
this.start();

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election3_0 = new
JButton("S_Election3_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election3_1 = new
JButton("S_Election3_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election3_2 = new
JButton("S_Election3_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Elected_3 = new
JButton("S_Elected_3");

JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run()}{

try{for(;;X

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX" && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

new Thread(){public void run()}

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENO")
S_Election3_0();

public void REN1(){
if(state=="REN1")
S_Election3_1();

}

public void REN2(){
if(state=="REN2")
S_Election3_2();

}

public void REN3(){
if(state=="REN3")
S_Elected_3();

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election”, "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

%

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}

%

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election”, "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

b

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

REN3();

ButtonR_Election_3.setVisible(false);

}

b

}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

152

displayTrace("R_Elected_3", "Read", "initial",
"IMBoss", "elected", "V3");
ButtonR_Elected_3.setVisible(false);

}

D;

}

public void S_Election3_2(){
traceTable.center.add(ButtonS_Election3_2);
final Message m=new
Message("V3",this,p0,"PassOn_election");
ButtonS_Election3_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election3_2- send error");}

displayTrace("S_Election3_2", "Create", "REN2",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_2.setVisible(false);

}

»
}

public void S_Elected_3(){
traceTable.center.add(ButtonS_Elected_3);
final Message m=new
Message("V3",this,p0,"PassOn_elected");
ButtonS_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Elected_3- send error");}

displayTrace("S_Elected_3", "Create", "REN3",
"initial=", "PassOn_elected", "V3");
ButtonS_Elected_3.setVisible(false);

}

W
}

public void S_Election3_0(}
System.out.printin(name+" : S_Election3_0");

traceTable.center.add(ButtonS_Election3_0);
final Message m=new
Message("V3",this,p0,"election");
ButtonS_Election3_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p3-

send error");}

displayTrace("S_Election3_0", "Write", "RENO",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_0.setVisible(false);

}

»

}

public void S_Election3_1()X
System.out.printin(name+" : S_Election3_1");

traceTable.center.add(ButtonS_Election3_1);
final Message m=new

Message("V3" this,p0,"election");
ButtonS_Election3_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p3-
send error");}

displayTrace("S_Election3_1", "Write", "REN1",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_1.setVisible(false);

}

»;

}

Process pO0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s){
state=s;

System.out.printin(name +" : " + state);
}

}

153

static class trigger extends Process {
static myGUI traceTable;

public trigger (String name){

this.name =name;

traceTable=new myGUI(name,"trigger");
this.start();

JButton Buttonstart_election = new
JButton("start_election");

public String state="";
int noOfevents=0;

public void run()
transformState("initial");
initial();

public void initial(){
if(state=="initial")
start_election();

}

public void start_election(){
traceTable.center.add(Buttonstart_election);
final Message m=new

Message("V0" this,p1,"startElection");
Buttonstart_election.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("finish");

catch(Exception f){System.out.printin(name + " :
start_election- send error");}
displayTrace("start_election", "Create", "
"finish", "startElection", "V0");
Buttonstart_election.setVisible(false);

}
»
}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){

initial",

return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s){
state=s;

System.out.printin(name +" : " + state);
}

}

public static void main(String argsl[]) {
participantO p0 = new participant0("p0")
participant1 p1 = new participant1("p1");
participant2 p2 = new participant2("p2");
participant3 p3 = new participant3("p3")
trigger Tr = new trigger("Tr");

Tr.connection_p1(p1); p1.connection_Tr(Tr);

p0.connection_p1(p1); p1.connection_p0(p0);
p0.connection_p1(p1); p1.connection_p0(p0);
p1.connection_p2(p2); p2.connection_p1(p1);
p1.connection_p2(p2); p2.connection_p1(p1);
p2.connection_p3(p3); p3.connection_p2(p2);
p2.connection_p3(p3); p3.connection_p2(p2);
p3.connection_p0(p0); p0.connection_p3(p3);
p3.connection_p0(p0); p0.connection_p3(p3);

}
}

D.2 A Cycle Election Model (Model 1 with Asynchronous

Communication)

/* Generated from file C:\Documents and
Settings\pfx01r\My Documents\Report\cycle.xml */

import java.io.”;

import java.awt.*;

import java.math.*;

import java.util.”;

import javax.swing.*;
import java.awt.event.*;
import javax.swing.text.*;
import javax.swing.table.*;

public class cycle{

static class Message {
String type; Process writer; Process reader; String
channel;

Message (String t, Process p, Process r, String c){
type=t; writer=p; reader=r; channel=c;

public String toString(){
return type + " from " + writer.toString() + "to " +
reader.toString() + " via " +channel;

}
}

static class myGUI extends JFrame{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel;
JLabel processLabel;

154

JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instancelLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);

top.add(instanceField);

processLabel= new JLabel("Process");
top.add(processLabel);

processField=new JTextField(b,15);

Font h =new Font("Roman",Font.ITALIC,12);
top.setFont(h);

top.add(processField);

getContentPane().add(top, BorderLayout. NORTH);

JPanel middle =new JPanel();
middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);
getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));

getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();
setVisible(true);

}
}

static class MessageQueue{
int entries;

int maxEntries;

String name;

Message[] elements;

public MessageQueue(String n, int m){
name=n;

maxEntries=m;

elements=new Message[maxEntries];
entries=0;

}

synchronized void send(Message x) throws
InterruptedException{
while(entries==maxEntries)wait();
elements[entries]=x;

entries=entries+1;
System.out.printin("send("+x+")");

notify();

}

synchronized Message receive() throws
InterruptedException{
while(entries==0)wait();

Message x; x=elements[0];

for(int i=1; i<entries; i++) {
elements[i-1]=elements]i];

entries=entries-1;
System.out.printin("receive("+x+")");
notify();

return x;

}

}

static class Process extends Thread {
MessageQueue startElection;
MessageQueue PassOn_election;
MessageQueue election;
MessageQueue PassOn_elected;
MessageQueue elected;

String name;

public String toString(){

return this.name;

}

}

static class participantO extends Process {
static myGUI traceTable;

public participantO (String name){

this.name =name;

traceTable=new myGUI(name,"participant0");
election=new MessageQueue("election",3);
elected=new MessageQueue("elected",3);
this.start();

JButton ButtonR_Election_0 = new
JButton("R_Election_0");
JButton ButtonS_Elected_0 = new
JButton("S_Elected_0");

155

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election_1 = new
JButton("S_Election_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election_2 = new
JButton("S_Election_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_0 = new
JButton("R_Elected_0");

JButton ButtonR_Elected_1 = new
JButton("R_Elected_1");

JButton ButtonS_ED_1 = new JButton("S_ED_1");
JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonS_ED_2 = new JButton("S_ED_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");

public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run()}

try{for(;;X

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

new Thread(){public void run()}

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Elected_0(m.writer,m.type,"R_Elected_0");
else if(m.type=="V1" && state =="initial")
R_Elected_1(m.writer,m.type,"R_Elected_1");
else if(m.type=="V2" && state =="initial")
R_Elected_2(m.writer,m.type,"R_Elected_2");
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENO0")
S_Elected_0();

}

public void REN1(){
if(state=="REN1")
S_Election_1();

}

public void REN2(){
if(state=="REN2")

S_Election_2();
}

public void REN3(){
if(state=="REN3")
S_Election_3();

}

public void RED1(){
if(state=="RED1")
S_ED_1();

}

public void RED2(){
if(state=="RED2")
S_ED_2();

}

public void RED3()}{
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election”, "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

b

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election", "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}

b

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election", "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

b

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

156

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

REN3();

ButtonR_Election_3.setVisible(false);

}

W

}

public void R_Elected_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_0);
ButtonR_Elected_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_0", "Read", "initial",
"IMBoss", "elected", "V0");
ButtonR_Elected_0.setVisible(false);

}
3
}

public void R_Elected_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_1);
ButtonR_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED1");

displayTrace("R_Elected_1", "Read", "initial",
"RED1", "elected", "V1");

RED1();

ButtonR_Elected_1.setVisible(false);

}

D;

}

public void R_Elected_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED2");

displayTrace("R_Elected_2", "Read", "initial",
"RED2", "elected", "V2");

RED2();

ButtonR_Elected_2.setVisible(false);

!

;

}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

!

i

}

public void S_Election_3(){
traceTable.center.add(ButtonS_Election_3);
final Message m=new
Message("V3",this,p1,"PassOn_election");

ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election_3- send error");}

displayTrace("S_Election_3", "Create", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

s
}

public void S_ED_3(){
traceTable.center.add(ButtonS_ED_3);

final Message m=new

Message("V3" this,p1,"PassOn_elected");
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}

»;
}

public void S_Elected_0(}{
System.out.printin(name+" : S_Elected_0");

traceTable.center.add(ButtonS_Elected_0);
final Message m=new
Message("V0",this,p1,"elected");
ButtonS_Elected_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : pO-
send error");}

displayTrace("S_Elected_0", "Write", "RENOQ",
"initial=", "PassOn_elected", "V0");
ButtonS_Elected_0.setVisible(false);

}

s

}

public void S_Election_1(){
System.out.printin(name+" : S_Election_1");

traceTable.center.add(ButtonS_Election_1);
final Message m=new
Message("V1",this,p1,"election");
ButtonS_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

157

try{p1.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_Election_1", "Write", "REN1",
"initial=", "PassOn_election", "V1");
ButtonS_Election_1.setVisible(false);

}

»

}

public void S_Election_2(){
System.out.printin(name+" : S_Election_2");

traceTable.center.add(ButtonS_Election_2);
final Message m=new
Message("V2",this,p1,"election");
ButtonS_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_Election_2", "Write", "REN2",
"initial=", "PassOn_election", "V2");
ButtonS_Election_2.setVisible(false);

}

»

}

public void S_ED_1(X
System.out.printin(name+" : S_ED_1");

traceTable.center.add(ButtonS_ED_1);

final Message m=new
Message("V1",this,p1,"elected");
ButtonS_ED_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);
transformState("1_Boss");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_ED_1", "Write", "RED1",
"1_Boss", "PassOn_elected", "V1");
ButtonS_ED_1.setVisible(false);

}
»

}

public void S_ED_2()X
System.out.printin(name+" : S_ED_2");

traceTable.center.add(ButtonS_ED_2);

final Message m=new
Message("V2",this,p1,"elected");
ButtonS_ED_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.elected.send(m);

transformState("2_Boss");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_ED_2", "Write", "RED2",
"2_Boss", "PassOn_elected", "V2");
ButtonS_ED_2.setVisible(false);

}
»;

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s)
state=s;

System.out.printin(name +" : " + state);
}

}

static class participant1 extends Process {
static myGUI traceTable;

public participant1 (String name){

this.name =name;

traceTable=new myGUI(name,"participant1");
election=new MessageQueue("election",3);
elected=new MessageQueue("elected",3);
this.start();

158

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election1_0 = new
JButton("S_Election1_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Elected_1 = new
JButton("S_Elected_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election_2 = new
JButton("S_Election_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_1 = new
JButton("R_Elected_1");

JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonS_ED_2 = new JButton("S_ED_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");

public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run(){

try{for(;;

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX" && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + "
demultiplex error");}}}.start();

new Thread(){public void run()}

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V1" && state =="initial")
R_Elected_1(m.writer,m.type,"R_Elected_1");
else if(m.type=="V2" && state =="initial")
R_Elected_2(m.writer,m.type,"R_Elected_2");
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENQ")
S_Election1_0();

}

public void REN1(){
if(state=="REN1")
S_Elected_1();

}

public void REN2(){
if(state=="REN2")
S_Election_2();

}

public void REN3(){
if(state=="REN3")
S_Election_3();

}

public void RED2(){
if(state=="RED2")
S_ED_2();

}

public void RED3()}{
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election", "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

b

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election", "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}

b

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election", "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

b

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election", "V3");

REN3();

ButtonR_Election_3.setVisible(false);

159

}
38
}

public void R_Elected_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_1);
ButtonR_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_1", "Read", "initial",
"IMBoss", "elected", "V1");
ButtonR_Elected_1.setVisible(false);

}

D;

}

public void R_Elected_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED2");

displayTrace("R_Elected_2", "Read", "initial",
"RED2", "elected", "V2");

RED2();

ButtonR_Elected_2.setVisible(false);

}

D;

}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

!

;

}

public void S_Election1_0(}
traceTable.center.add(ButtonS_Election1_0);
final Message m=new
Message("V1",this,p2,"PassOn_election");
ButtonS_Election1_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election1_0- send error");}

displayTrace("S_Election1_0", "Create", "RENOQ",
"initial=", "PassOn_election", "V1");
ButtonS_Election1_0.setVisible(false);

}

W
}

public void S_ED_3(){
traceTable.center.add(ButtonS_ED_3);

final Message m=new

Message("V3" this,p2,"PassOn_elected");
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.elected.send(m);
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}
»;
}

public void S_Elected_1(){
System.out.printin(name+" : S_Elected_1");

traceTable.center.add(ButtonS_Elected_1);
final Message m=new
Message("V 1" this,p2,"elected");
ButtonS_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Elected_1", "Write", "REN1",
"initial=", "PassOn_elected", "V1");
ButtonS_Elected_1.setVisible(false);

}

s

}

public void S_Election_2(){
System.out.printin(name+" : S_Election_2");

traceTable.center.add(ButtonS_Election_2);
final Message m=new

Message("V2" this,p2,"election");
ButtonS_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Election_2", "Write", "REN2",
"initial=", "PassOn_election", "V2");
ButtonS_Election_2.setVisible(false);

}

s

}

public void S_Election_3(){
System.out.printin(name+" : S_Election_3");

traceTable.center.add(ButtonS_Election_3);

final Message m=new
Message("V3",this,p2,"election");
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Election_3", "Write", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

»

}

public void S_ED_2(X
System.out.printin(name+" : S_ED_2");

traceTable.center.add(ButtonS_ED_2);

final Message m=new

Message("V2" this,p2,"elected");
ButtonS_ED_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p2.elected.send(m);
transformState("2_Boss");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_ED_2", "Write", "RED2",
"2_Boss", "PassOn_elected", "V2");
ButtonS_ED_2.setVisible(false);

}
W

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s){
state=s;

System.out.printin(name +" : " + state);
}

static class participant2 extends Process {
static myGUI traceTable;

public participant2 (String name){

this.name =name;

traceTable=new myGUI(name,"participant2");
election=new MessageQueue("election",3);
elected=new MessageQueue("elected",3);
this.start();

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election2_0 = new
JButton("S_Election2_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election2_1 = new
JButton("S_Election2_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Elected_2 = new
JButton("S_Elected_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");
public String state="";

int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run(){

try{for(;;{

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

new Thread(){public void run(){
try{for(;;{

161

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX" && state==null){ }
else if(m.type=="V2" && state =="initial")
R_Elected_2(m.writer,m.type,"R_Elected_2");
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENO")
S_Election2_0();

}

public void REN1(){
if(state=="REN1")
S_Election2_1();

}

public void REN2(){
if(state=="REN2")
S_Elected_2();

}

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED3(){
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO", "election”, "V0");

RENO();

ButtonR_Election_0.setVisible(false);

!

;

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();

ButtonR_Election_1.setVisible(false);

!

i

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election", "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

b

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election", "V3");

REN3();

ButtonR_Election_3.setVisible(false);

}

b

}

public void R_Elected_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_2", "Read", "initial",
"IMBoss", "elected", "V2");
ButtonR_Elected_2.setVisible(false);

}

%

}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

}

%

}

public void S_Election2_1(}{
traceTable.center.add(ButtonS_Election2_1);
final Message m=new

Message("V2" this,p3,"PassOn_election");
ButtonS_Election2_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election2_1- send error");}

displayTrace("S_Election2_1", "Create", "REN1",
"initial=", "PassOn_election", "V2");
ButtonS_Election2_1.setVisible(false);

}

»;
}

162

public void S_ED_3()
traceTable.center.add(ButtonS_ED_3);

final Message m=new
Message("V3",this,p3,"PassOn_elected");
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.elected.send(m);
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}
»
}

public void S_Election2_0(}
System.out.printin(name+" : S_Election2_0");

traceTable.center.add(ButtonS_Election2_0);
final Message m=new

Message("V2" this,p3,"election");
ButtonS_Election2_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p2-
send error");}

displayTrace("S_Election2_0", "Write", "RENO",
"initial=", "PassOn_election", "V2");
ButtonS_Election2_0.setVisible(false);

}

W

}

public void S_Elected_2(){
System.out.printin(name+" : S_Elected_2");

traceTable.center.add(ButtonS_Elected_2);
final Message m=new

Message("V2" this,p3,"elected");
ButtonS_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + "
send error");}

displayTrace("S_Elected_2", "Write", "REN2",
"initial=", "PassOn_elected", "V2");
ButtonS_Elected_2.setVisible(false);

}

W

1 p2-

}

public void S_Election_3(){
System.out.printin(name+" : S_Election_3");

traceTable.center.add(ButtonS_Election_3);
final Message m=new

Message("V3" this,p3,"election");
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p3.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p2-
send error");}

displayTrace("S_Election_3", "Write", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

s

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s){
state=s;

System.out.printin(name +" : " + state);
}

}

static class participant3 extends Process {
static myGUI traceTable;
public participant3 (String name){

163

this.name =name;

traceTable=new myGUI(name,"participant3");
election=new MessageQueue("election",3);
elected=new MessageQueue("elected",3);
this.start();

}

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election3_0 = new
JButton("S_Election3_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election3_1 = new
JButton("S_Election3_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election3_2 = new
JButton("S_Election3_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Elected_3 = new
JButton("S_Elected_3");

JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

public String state="";
int noOfevents=0;

public void run(){

transformState("initial");

new Thread(){public void run(){

try{for(;; {

Message m=(Message)election.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V0" && state =="initial")
R_Election_0(m.writer,m.type,"R_Election_0");
else if(m.type=="V1" && state =="initial")
R_Election_1(m.writer,m.type,"R_Election_1");
else if(m.type=="V2" && state =="initial")
R_Election_2(m.writer,m.type,"R_Election_2");
else if(m.type=="V3" && state =="initial")
R_Election_3(m.writer,m.type,"R_Election_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

new Thread(){public void run()}{

try{for(;;X

Message m=(Message)elected.receive();
if(m.type==" XXXX_XXXX " && state==null){ }
else if(m.type=="V3" && state =="initial")
R_Elected_3(m.writer,m.type,"R_Elected_3");
}catch(Exception e){System.out.printin(name + ":
demultiplex error");}}}.start();

}

public void RENO(){
if(state=="RENQ")
S_Election3_0();

}

public void REN1(){
if(state=="REN1")
S_Election3_1();

public void REN2(){
if(state=="REN2")
S_Election3_2();

}

public void REN3(){

if(state=="REN3")
S_Elected_3();

public void R_Election_0(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election", "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

%

}

public void R_Election_1(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election", "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}

%

}

public void R_Election_2(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election”, "V2");

REN2();

ButtonR_Election_2.setVisible(false);

}

%

}

public void R_Election_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

REN3();

ButtonR_Election_3.setVisible(false);

}

%

}

public void R_Elected_3(Process from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_3", "Read", "initial",
"IMBoss", "elected", "V3");

164

ButtonR_Elected_3.setVisible(false);
}

D;

}

public void S_Election3_2(}
traceTable.center.add(ButtonS_Election3_2);
final Message m=new
Message("V3",this,p0,"PassOn_election");
ButtonS_Election3_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election3_2- send error");}

displayTrace("S_Election3_2", "Create", "REN2",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_2.setVisible(false);

}

»
}

public void S_Elected_3(){
traceTable.center.add(ButtonS_Elected_3);
final Message m=new
Message("V3",this,p0,"PassOn_elected");
ButtonS_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.elected.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Elected_3- send error");}

displayTrace("S_Elected_3", "Create", "REN3",
"initial=", "PassOn_elected", "V3");
ButtonS_Elected_3.setVisible(false);

}

W
}

public void S_Election3_0(){
System.out.printin(name+" : S_Election3_0");

traceTable.center.add(ButtonS_Election3_0);
final Message m=new
Message("V3",this,p0,"election");
ButtonS_Election3_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " : p3-

send error");}

displayTrace("S_Election3_0", "Write", "RENO",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_0.setVisible(false);

}

W

public void S_Election3_1(}{
System.out.printin(name+" : S_Election3_1");

traceTable.center.add(ButtonS_Election3_1);
final Message m=new
Message("V3",this,p0,"election");
ButtonS_Election3_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p0.election.send(m);
transformState("initial");

catch(Exception f){System.out.printin(name + " :
send error");}

displayTrace("S_Election3_1", "Write", "REN1",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_1.setVisible(false);

}

»;

}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String

be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}
public void transformState(String s)

state=s;
System.out.printin(name +" : " + state);

}

static class trigger extends Process {

165

static myGUI traceTable;

public trigger (String name){

this.name =name;

traceTable=new myGUI(name,"trigger");
this.start();

}

JButton Buttonstart_election = new
JButton("start_election");

public String state="";
int noOfevents=0;

public void run(){
transformState("initial");
initial();

public void initial(){
if(state=="initial")
start_election();

public void start_election(){
traceTable.center.add(Buttonstart_election);
final Message m=new
Message("V0",this,p1,"startElection");
Buttonstart_election.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{p1.election.send(m);
transformState("finish");

catch(Exception f){System.out.printin(name + " :
start_election- send error");}

displayTrace("start_election", "Create", "initial",
"finish", "startElection", "V0");
Buttonstart_election.setVisible(false);

}
W
}

Process p0;

public void connection_pO(Process temp){
pO=temp;

}

Process p1;

public void connection_p1(Process temp){
p1=temp;

}

Process p2;

public void connection_p2(Process temp){
p2=temp;

}

Process p3;

public void connection_p3(Process temp){
p3=temp;

}

Process Tr;

public void connection_Tr(Process temp){
Tr=temp;

}

public String getname(){
return name;

}

participantO pO = new participantO("p0");

public void displayTrace(String ev, String ty, String participant1 p1 = new participant1("p1");
be, String af, String ch, String va){ participant2 p2 = new participant2("p2");
traceTable.table.setValueAt((new participant3 p3 = new participant3("p3");
Integer(noOfevents)).toString(), noOfevents,0); trigger Tr = new trigger("Tr");
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2); Tr.connection_p1(p1); p1.connection_Tr(Tr);
traceTable.table.setValueAt(be, noOfevents,3); p0.connection_p1(p1); p1.connection_p0(p0);
traceTable.table.setValueAt(af, noOfevents,4); p0.connection_p1(p1); p1.connection_p0(p0);
traceTable.table.setValueAt(ch, noOfevents,5); p1.connection_p2(p2); p2.connection_p1(p1);
traceTable.table.setValueAt(va, noOfevents,6); p1.connection_p2(p2); p2.connection_p1(p1);
noOfevents++; p2.connection_p3(p3); p3.connection_p2(p2);
} p2.connection_p3(p3); p3.connection_p2(p2);
p3.connection_p0(p0); p0.connection_p3(p3);
public void transformState(String s){ p3.connection_p0(p0); p0.connection_p3(p3);
state=s; }
System.out.printin(name +" : " + state);
}
}

public static void main(String args[]) {

166

Appendix E Distributed System
Based on Cycle Election Model
using RPC-based Web Service

E.1 Trigger Application Implementation

/*
The Cycle Election Service

the participating Trigger
*/
package trigger;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;
import java.awt.*;

import java.awt.event.*;

import java.applet.;

import java.awt.Font;

import java.awt.FontMetrics;

import javax.swing.*;

import java.awt.Graphics;

import javax.swing.text.*;

import javax.swing.table.*;

public class trigger extends JFrame

public String name = "trigger";

public static String BODY_NAMESPACE_VALUE =
"urn:Foo";

public static String
ENCODING_STYLE_PROPERTY =
"Javax.xml.rpc.encodingstyle.namespace.uri";
public static String NS_XSD =
"http://www.w3.0rg/2001/XMLSchema";

public static String URI_ENCODING =
"http://schemas.xmlsoap.org/soap/encoding/";

public static String participant1_p1_gnameService =
"participant1_p1_Service";

public static String participant1_p1_gnamePort =
"participant1_IF";

167

public Call participant1_p1_call;

public ServiceFactory participant1_p1_factory;
public Service participant1_p1_service;

public QName participant1_p1_port;

static myGUI traceTable;
public String state="";
private int noOfevents=0;
private Message message;
JButton Buttonstart_election = new
JButton("start_election");

static class myGUI extends JFrame{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel;
JLabel processLabel;
JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instanceLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);
top.add(instanceField);

processLabel= new JLabel("Process");
top.add(processLabel);

processField=new JTextField(b,15);

Font h =new Font("Roman",Font.ITALIC,12);
top.setFont(h);

top.add(processField);

getContentPane().add(top, BorderLayout. NORTH);

JPanel middle =new JPanel();
middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);
getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));
getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();
setVisible(true);

}
}

static class Message {
String type; String writer; String reader; String
channel;

Message (String t, String p, String r, String c){
type=t; writer=p; reader=r; channel=c;

public String toString(){

return type + " from " + writer.toString() + " to "

+ reader.toString() + " via " +channel;

}
}

public String name;

public String toString(){
return this.name;

}

}

public trigger(String n) {

this.name =name;
traceTable=new myGUI(name,"trigger");
state="initial";
initial();

}

private void send(String messageName,String

currentName,String participantName,String state)

{

168

try {

currentName = name;
participant1_p1_factory =
ServiceFactory.newlnstance();
participant1_p1_service =
(Service)participant1_p1_factory.createService(ne
w QName(participant1_p1_gnameService));
participant1_p1_port = new
QName(participant1_p1_gnamePort);

participant1_p1_call =
participant1_p1_service.createCall(participant1_p1
_port);
participant1_p1_call.setTargetEndpointAddress("htt
p://localhost:8080/cycle1-jaxrpc/participant1?wsdl");
participant1_p1_call.setProperty(Cal. SOAPACTIO
N_USE_PROPERTY, new Boolean(true));
participant1_p1_call.setProperty(Cal. SOAPACTIO
N_URI_PROPERTY, ");
participant1_p1_call.setProperty(ENCODING_STY
LE_PROPERTY, URI_ENCODING);
participant1_p1_call.setOperationName(new
QName(BODY_NAMESPACE_VALUE,
"createMessage"));
participant1_p1_call.addParameter("String_1", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant1_p1_call.addParameter("String_2", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant1_p1_call.addParameter("String_3", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant1_p1_call.addParameter("String_4", new
QName(NS_XSD, "string"), ParameterMode.IN);

participant1_p1_call.setReturnType(null);

Object [] params =

{ messageName,currentName,participantName,stat
e}

participant1_p1_call.invokeOneWay(params);

} catch (Exception ex) {
ex.printStackTrace();

}

}

public void createMessage(String type, String writer,
String reader, String channel) {
if(type==" XXXX_XXXX " && state==null){ }
else if(type=="V0" && state =="initial"){
}

else

/*it will be a warnning window exposed*/
System.out.printin("sdsdfsadfas");

}

public void initial(){
if(state.equals("initial"))
start_election();

}

public void start_election(){
traceTable.center.add(Buttonstart_election);
Buttonstart_election.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{

send("V0",name,"p1","startElection");

transformState("finish");

catch(Exception f){System.out.printin(name + " :
start_election- send error");}

displayTrace("start_election", "Create",
"finish", "startElection", "V0");
Buttonstart_election.setVisible(false);

}
»;
}

initial",

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);

E.2 Participant0) Application

E2.1 Interface

package participantO;

import java.rmi.Remote;
import java.rmi.RemoteException;

E.2.2 Implementation

package participantO;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;
import java.awt.*;

import java.awt.event.”;

import java.applet.*;

import javax.swing.*;

import java.awt.Font;

import java.awt.FontMetrics;

import javax.swing.text.*;

import javax.swing.table.*;

public class participant0 extends JFrame
implements participantO_IF

public String name = "p0";
public static String BODY_NAMESPACE_VALUE =
"urn:Foo";

169

traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}
public void transformState(String s){
state=s;
System.out.printin(name +" : " + state);
}

public static void main(String[] args) throws
Exception

{

trigger Tr= new trigger ("Tr");

}

}

public interface participant0_IF extends Remote

{

public void createMessage(String type, String writer,
String reader, String channel) throws
RemoteException;

}

public static String
ENCODING_STYLE_PROPERTY =
"Javax.xml.rpc.encodingstyle.namespace.uri";
public static String NS_XSD =
"http://www.w3.0rg/2001/XMLSchema";
public static String URI_ENCODING =
"http://schemas.xmlsoap.org/soap/encoding/";

[*this is the first participant*/

public static String participant_p1_gnameService =
"participant1_p1_Service";

public static String participant1_p1_gnamePort =
"p1articipant1_IF";

public Call participant1_p1_call;

public ServiceFactory participant1_p1_factory;
public Service participant1_p1_service;

public QName participant1_p1_port;

JButton ButtonR_Election_0 = new
JButton("R_Election_0");
JButton ButtonS_Elected_0 = new
JButton("S_Elected_0");
JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election_1 = new
JButton("S_Election_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election_2 = new
JButton("S_Election_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_0 = new
JButton("R_Elected_0");

JButton ButtonR_Elected_1 = new
JButton("R_Elected_1");

JButton ButtonS_ED_1 = new JButton("S_ED_1");
JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonS_ED_2 = new JButton("S_ED_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");

/*the variables for Process*/
static myGUI traceTable;
public String state="";
private int noOfevents=0;
/lprivate Message message;

public participantO(String name){
this.name =name;
traceTable=new
myGUIl(name,"participant0");
state="initial";

}

static class myGUI extends JFrame

{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel;
JLabel processLabel;
JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instanceLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);

top.add(instanceField);

processLabel= new JLabel("Process");
top.add(processLabel);

processField=new JTextField(b,15);
Font h =new Font("Roman",Font.ITALIC,12);
top.setFont(h);

170

top.add(processField);
getContentPane().add(top, BorderLayout.NORTH);

JPanel middle =new JPanel();
middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);
getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));
getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();
setVisible(true);

}
}

private void send(String messageName,String
currentName,String participantName,String state)
{
try {

currentName = name;
participant1_p1_factory =
ServiceFactory.newlnstance();
participant1_p1_service =
(Service)participant1_p1_factory.createService(ne
w QName(participant_p1_gnameService));
participant1_p1_port = new
QName(participant1_p1_gnamePort);

participant1_p1_call =
participant1_p1_service.createCall(participant1_p1
_port);
participant1_p1_call.setTargetEndpointAddress("htt
p://localhost:8080/cycle1-jaxrpc/participant1?wsdl");
participant1_p1_call.setProperty(Cal. SOAPACTIO
N_USE_PROPERTY, new Boolean(true));
participant1_p1_call.setProperty(Call. SOAPACTIO
N_URI_PROPERTY, ");
participant1_p1_call.setProperty(ENCODING_STY
LE_PROPERTY, URI_ENCODING);

participant1_p1_call.addParameter("String_1", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant1_p1_call.addParameter("String_2", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant1_p1_call.addParameter("String_3", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant1_p1_call.addParameter("String_4", new
QName(NS_XSD, "string"), ParameterMode.IN);

participant1_p1_call.setReturnType(null);
participant1_p1_call.setOperationName(new
QName(BODY_NAMESPACE_VALUE,
"createMessage"));

Object [] params =
{ messageName,currentName,participantName,stat
e};

participant1_p1_call.invokeOneWay(params);

} catch (Exception ex) {
ex.printStackTrace();

}

}

public void createMessage(String type, String writer,

String reader, String channel) {
if(type.equals(" XXXX_XXXX ") && state==null){ }

else if(type.equals("V0") && state.equals("initial"))

R_Election_0(writer,type,"R_Election_0");

else if(type.equals("V1") && state.equals("initial"))

R_Election_1(writer,type,"R_Election_1");

else if(type.equals("V2") && state.equals("initial"))

R_Election_2(writer,type,"R_Election_2");

else if(type.equals("V3") && state.equals("initial"))

R_Election_3(writer,type,"R_Election_3");

else if(type.equals("V0") && state.equals("initial"))

R_Elected_O(writer,type,"R_Elected_0");

else if(type.equals("V1") && state.equals("initial"))

R_Elected_1(writer,type,"R_Elected_1");

else if(type.equals("V2") && state.equals("initial"))

R_Elected_2(writer,type,"R_Elected_2");

else if(type.equals("V3") && state.equals("initial"))

R_Elected_3(writer,type,"R_Elected_3");

else

/*it will be a warnning window exposed*/
System.out.printin("sdsdfsadfas");

}

public void RENO(){
if(state=="RENOQ")
S_Elected_0();

public void REN1(}{
if(state=="REN1")
S_Election_1();

}

public void REN2(){
if(state=="REN2")
S_Election_2();

}

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED1()
if(state=="RED1")
S_ED_1();

}

public void RED2(){
if(state=="RED2")
S_ED_2();

}

public void RED3(){
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);

171

ButtonR_Election_0.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){

transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO", "election”, "V0");

RENO();

ButtonR_Election_0.setVisible(false);

}

i

}

public void R_Election_1(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();

ButtonR_Election_1.setVisible(false);

}
W
}

public void R_Election_2(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election”, "V2");

REN2();

ButtonR_Election_2.setVisible(false);

!

;

}

public void R_Election_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

REN3();

ButtonR_Election_3.setVisible(false);

}

W

}

public void R_Elected_0(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_0);
ButtonR_Elected_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("IMBoss");

displayTrace("R_Elected_0", "Read", "initial",
"IMBoss", "elected", "V0");
ButtonR_Elected_0.setVisible(false);

}

;
}

public void R_Elected_1(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_1);
ButtonR_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("RED1");

displayTrace("R_Elected_1", "Read", "initial",
"RED1", "elected", "V1");

RED1();

ButtonR_Elected_1.setVisible(false);

}

7}

}

public void R_Elected_2(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("RED2");

displayTrace("R_Elected_2", "Read", "initial",
"RED2", "elected", "V2");

RED2();

ButtonR_Elected_2.setVisible(false);

}

b

}

public void R_Elected_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();

ButtonR_Elected_3.setVisible(false);

}

b

}

public void S_Election_3(){
traceTable.center.add(ButtonS_Election_3);
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

try{

send("V3",name,"p1","PassOn_election");
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election_3- send error");}

displayTrace("S_Election_3", "Create", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

;

}

172

public void S_ED_3(){
traceTable.center.add(ButtonS_ED_3);
ButtonS_ED_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{
send("V3",name,"p1","PassOn_elected");
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :

S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}

W
}

public void S_Elected_0(){
System.out.printin(name+" : S_Elected_0");

traceTable.center.add(ButtonS_Elected_0);
ButtonS_Elected_0.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V0",name,"p1","elected");
transformState("initial");

catch(Exception f){System.out.printin(name + " :

send error");}

displayTrace("S_Elected_0", "Write", "RENO",
"initial=", "PassOn_elected", "V0");
ButtonS_Elected_0.setVisible(false);

}

W

}

public void S_Election_1(){
System.out.printin(name+" : S_Election_1");

traceTable.center.add(ButtonS_Election_1);
ButtonS_Election_1.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V1",name,"p1","election");
transformState("initial");

catch(Exception f){System.out.printin(name + " :

send error");}

displayTrace("S_Election_1", "Write", "REN1",
"initial=", "PassOn_election", "V1");
ButtonS_Election_1.setVisible(false);

}

W

}

public void S_Election_2(){
System.out.printin(name+" : S_Election_2");

traceTable.center.add(ButtonS_Election_2);
ButtonS_Election_2.addActionListener(new
ActionListener(){

pO-

pO-

public void actionPerformed(ActionEvent e){
try{

send("V2",name,"p1","election");
transformState("initial");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_Election_2", "Write", "REN2",
"initial=", "PassOn_election", "V2");
ButtonS_Election_2.setVisible(false);

}

»;

}

public void S_ED_1(X
System.out.printin(name+" : S_ED_1");

traceTable.center.add(ButtonS_ED_1);
ButtonS_ED_1.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V1",name,"p1","elected");
transformState("1_Boss");

catch(Exception f){System.out.printin(name + " : pO-
send error");}

displayTrace("S_ED_1", "Write", "RED1", "1_Boss",
"PassOn_elected", "V1");
ButtonS_ED_1.setVisible(false);

}

s

}

public void S_ED_2(){
System.out.printin(name+" : S_ED_2");

traceTable.center.add(ButtonS_ED_2);

ButtonS_ED_2.addActionListener(new
ActionListener(){

E.3 Participantl Application

E.3.1 Interface

package participant1_p1;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface participant1_p1_IF extends Remote

E.3.2 Implementation

173

public void actionPerformed(ActionEvent e){
try{

send("V1",name,"p1","elected");
transformState("2_Boss");

catch(Exception f){System.out.printin(name + " : p0-
send error");}

displayTrace("S_ED_2", "Write", "RED2", "2_Boss",
"PassOn_elected", "V2");
ButtonS_ED_2.setVisible(false);

}
»

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s){
state=s;
System.out.printin(name +" : " + state);

public static void main(String[] args) throws
Exception

{
participant0 pO= new participant0 ("p0");
}

public void createMessage(String type, String writer,
String reader, String channel) throws
RemoteException;

}

package participant1;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

import java.awt.*;

import java.awt.event.*;
import javax.swing.*;
import java.awt.Font;
import javax.swing.text.*;
import javax.swing.table.*;

public class participant1 extends JFrame
implements participant1_IF

public String name ="p1";

public static String BODY_NAMESPACE_VALUE =
"urn:Foo";

public static String
ENCODING_STYLE_PROPERTY =
"Javax.xml.rpc.encodingstyle.namespace.uri";
public static String NS_XSD =
"http://www.w3.0rg/2001/XMLSchema";

public static String URI_ENCODING =
"http://schemas.xmlsoap.org/soap/encoding/";

/*this is the first participant*/

public static String participant2_p2_gnameService =
"participant2_p2_Service";

public static String participant2_p2_gnamePort =
"participant2_IF";

public Call participant2_p2_call;

public ServiceFactory participant2_p2_factory;
public Service participant2_p2_service;

public QName participant2_p2_port;

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election1_0 = new
JButton("S_Election1_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Elected_1 = new
JButton("S_Elected_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election_2 = new
JButton("S_Election_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Election_3 = new
JButton("S_Election_3");

JButton ButtonR_Elected_1 = new
JButton("R_Elected_1");

JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");

JButton ButtonS_ED_2 = new JButton("S_ED_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

JButton ButtonS_ED_3 = new JButton("S_ED_3");

/*the variables for Process*/
static myGUI traceTable;
public String state="";
private int noOfevents=0;
public String name;

174

/lprivate Message message;

public participant1 (String name){

this.name= name;

traceTable=new myGUI(name,"participant1");
state="initial";

}

static class myGUI extends JFrame{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel,;
JLabel processLabel;
JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instanceLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);

top.add(instanceField);

processLabel= new JLabel("String ");
top.add(processLabel);

processField=new JTextField(b,15);

Font h =new Font("Roman",Font.ITALIC,12);
top.setFont(h);

top.add(processField);

getContentPane().add(top, BorderLayout. NORTH);

JPanel middle =new JPanel();
middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);
getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));
getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();
setVisible(true);

}
}

private void send(String messageName,String
currentName,String participantName, String state)
{

try {

participant2_p2_factory =
ServiceFactory.newlnstance();
participant2_p2_service =
(Service)participant2_p2_factory.createService(ne
w QName(participant2_p2_gnameService));
participant2_p2_port = new
QName(participant2_p2_gnamePort);

participant2_p2_call =
participant2_p2_service.createCall(participant2_p2
_port);
participant2_p2_call.setTargetEndpointAddress("htt
p:/localhost:8080/cycle2-jaxrpc/participant2?wsdl");
participant2_p2_call.setProperty(Call. SOAPACTIO
N_USE_PROPERTY, new Boolean(true));
participant2_p2_call.setProperty(Call. SOAPACTIO
N_URI_PROPERTY, ");
participant2_p2_call.setProperty(ENCODING_STY
LE_PROPERTY, URI_ENCODING);

participant2_p2_call.addParameter("String_1", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant2_p2_call.addParameter("String_2", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant2_p2_call.addParameter("String_3", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant2_p2_call.addParameter("String_4", new
QName(NS_XSD, "string"), ParameterMode.IN);

participant2_p2_call.setReturnType(null);
participant2_p2_call.setOperationName(new
QName(BODY_NAMESPACE_VALUE,
"createMessage"));

Object [] params =

{ messageName,currentName,participantName,stat
e}

participant2_p2_call.invokeOneWay(params);

} catch (Exception ex) {
ex.printStackTrace();

}

}

public void createMessage(String type, String writer,

String reader, String channel)

{

if(type.equals(" XXXX_XXXX ") && state==null){ }
else if(type.equals("V0") && state.equals("initial"))
R_Election_0(writer,type,"R_Election_0");
else if(type.equals("V1") && state.equals("initial"))
R_Election_1(writer,type,"R_Election_1");
else if(type.equals("V2") && state.equals("initial"))
R_Election_2(writer,type,"R_Election_2");
else if(type.equals("V3") && state.equals("initial"))
R_Election_3(writer,type,"R_Election_3");

else if(type.equals("V1") && state.equals("initial"))
R_Elected_1(writer,type,"R_Elected_1");
else if(type.equals("V2") && state.equals("initial"))
R_Elected_2(writer,type,"R_Elected_2");
else if(type.equals("V3") && state.equals("initial"))
R_Elected_3(writer,type,"R_Elected_3");

175

else

/*it will be a warnning window exposed*/
System.out.printin("sdsdfsadfas");

}

/I public void setMessage(Message m) {
1/ message= m;
1}

public void RENO(){
if(state=="RENO")
S_Election1_0();

}

public void REN1(){
if(state=="REN1")
S_Elected_1();

}

public void REN2(){
if(state=="REN2")
S_Election_2();

}

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED2(){
if(state=="RED2")
S_ED_2();

}

public void RED3(){
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO", "election”, "V0");

RENO();
ButtonR_Election_0.setVisible(false);

}
W
}

public void R_Election_1(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();
ButtonR_Election_1.setVisible(false);

}
W
}

public void R_Election_2(String from, String
message, String current_state){

traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election", "V2");

REN2();
ButtonR_Election_2.setVisible(false);

}

%

}

public void R_Election_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election", "V3");

REN3();
ButtonR_Election_3.setVisible(false);

}

)%

}

public void R_Elected_1(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_1);
ButtonR_Elected_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_1", "Read", "initial",
"IMBoss", "elected", "V1");
ButtonR_Elected_1.setVisible(false);

}

b

}

public void R_Elected_2(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED2");

displayTrace("R_Elected_2", "Read", "initial",
"RED2", "elected", "V2");

RED2();
ButtonR_Elected_2.setVisible(false);

}

b

}

public void R_Elected_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();
ButtonR_Elected_3.setVisible(false);

}

b

}

public void S_Election1_0()X

176

traceTable.center.add(ButtonS_Election1_0);
ButtonS_Election1_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{
send("V1",name,"p2","PassOn_election");
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election1_0- send error");}

displayTrace("S_Election1_0", "Create", "RENOQ",
"initial=", "PassOn_election", "V1");
ButtonS_Election1_0.setVisible(false);

}

»
}

public void S_ED_3(X
traceTable.center.add(ButtonS_ED_3);
ButtonS_ED_3.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p2","PassOn_elected");
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}
»
}

public void S_Elected_1(){
System.out.printin(name+" : S_Elected_1");

traceTable.center.add(ButtonS_Elected_1);
ButtonS_Elected_1.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V1",name,"p2","elected");
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Elected_1", "Write", "REN1",
"initial=", "PassOn_elected", "V1");
ButtonS_Elected_1.setVisible(false);

}
W

}

public void S_Election_2(){
System.out.printin(name+" : S_Election_2");

traceTable.center.add(ButtonS_Election_2);
ButtonS_Election_2.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V2",name,"p2","election");

transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Election_2", "Write", "REN2",
"initial=", "PassOn_election", "V2");
ButtonS_Election_2.setVisible(false);

}

»;

}

public void S_Election_3(){
System.out.printin(name+" : S_Election_3");

traceTable.center.add(ButtonS_Election_3);
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p2","election");
transformState("initial");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_Election_3", "Write", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

s

}

public void S_ED_2()
System.out.printin(name+" : S_ED_2");

traceTable.center.add(ButtonS_ED_2);
ButtonS_ED_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){

try{
send("V2",name,"p2","elected");

E.4 Participant2 Application

E 4.1 Interface

package participant2;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface participant2_IF extends Remote

177

transformState("2_Boss");

catch(Exception f){System.out.printin(name + " : p1-
send error");}

displayTrace("S_ED_2", "Write", "RED2", "2_Boss",
"PassOn_elected", "V2");
ButtonS_ED_2.setVisible(false);

}
»

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va)}{
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s)¥{
state=s;
System.out.printin(name +" : " + state);

public static void main(String[] args) throws
Exception

{
participant1 p1= new participant1 ("p1");
}

public void createMessage(String type, String writer,
String reader, String channel) throws
RemoteException;

}

E.4.2 Implementation

package participant2;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCEXxception;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

import java.awt.*;

import java.awt.event.”;
import java.awt.FontMetrics;
import javax.swing.*;

import javax.swing.text.*;
import javax.swing.table.*;

public class participant2 extends JFrame
implements participant2_IF

{

public String name = "p2";

public static String BODY_NAMESPACE_VALUE =
"urn:Foo";

public static String
ENCODING_STYLE_PROPERTY =
"Javax.xml.rpc.encodingstyle.namespace.uri";
public static String NS_XSD =
"http://www.w3.0rg/2001/XMLSchema";

public static String URI_ENCODING =
"http://schemas.xmlsoap.org/soap/encoding/";

/*this is the first participant*/

public static String participant3_p3_gnameService =
"participant3_p3_Service";

public static String participant3_p3_gnamePort =
"participant3_IF";

public Call participant3_p3_call;

public ServiceFactory participant3_p3_factory;
public Service participant3_p3_service;

public QName participant3_p3_port;

JButton ButtonR_Election_0 = new
JButton("R_Election_0");
JButton ButtonS_Election2_0 = new
JButton("S_Election2_0");
JButton ButtonR_Election_1 = new
JButton("R_Election_1");
JButton ButtonS_Election2_1 = new
JButton("S_Election2_1");
JButton ButtonR_Election_2 = new
JButton("R_Election_2");
JButton ButtonS_Elected_2 = new
JButton("S_Elected_2");
JButton ButtonR_Election_3 = new
JButton("R_Election_3");
JButton ButtonS_Election_3 = new
JButton("S_Election_3");
JButton ButtonR_Elected_2 = new
JButton("R_Elected_2");
JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");
JButton ButtonS_ED_3 = new JButton("S_ED_3");

/*the variables for Process™/
static myGUI traceTable;
public String state="";
private int noOfevents=0;

178

/lprivate Message message;

public participant2(String name) {

this.name =name;
traceTable=new

myGUIl(name,"participant2");
state = "initial";

}

static class myGUI extends JFrame{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel,;
JLabel processLabel;
JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instancelLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);

top.add(instanceField);

processLabel= new JLabel("Process");
top.add(processLabel);

processField=new JTextField(b,15);

Font h =new Font("Roman",Font.ITALIC,12);
top.setFont(h);

top.add(processField);

getContentPane().add(top, BorderLayout. NORTH);

JPanel middle =new JPanel();
middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);
getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));
getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();

setVisible(true);

}
}

private void send(String messageName,String
currentName,String participantName,String state)
{
try {

currentName = name;
participant3_p3_factory =
ServiceFactory.newlnstance();
participant3_p3_service =
(Service)participant3_p3_factory.createService(ne
w QName(participant3_p3_gnameService));
participant3_p3_port = new
QName(participant3_p3_gnamePort);

participant3_p3_call =
participant3_p3_service.createCall(participant3_p3
_port);
participant3_p3_call.setTargetEndpointAddress("htt
p://localhost:8080/cycle3-jaxrpc/participant3?wsdl");
participant3_p3_call.setProperty(Call. SOAPACTIO
N_USE_PROPERTY, new Boolean(true));
participant3_p3_call.setProperty(Call. SOAPACTIO
N_URI_PROPERTY, "™);
participant3_p3_call.setProperty(ENCODING_STY
LE_PROPERTY, URI_ENCODING);

participant3_p3_call.addParameter("String_1", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant3_p3_call.addParameter("String_2", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant3_p3_call.addParameter("String_3", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant3_p3_call.addParameter("String_4", new
QName(NS_XSD, "string"), ParameterMode.IN);

participant3_p3_call.setReturnType(null);
participant3_p3_call.setOperationName(new
QName(BODY_NAMESPACE_VALUE,
"createMessage"));

Object [] params =

{ messageName,currentName,participantName,stat
e}

participant3_p3_call.invokeOneWay(params);

} catch (Exception ex) {
ex.printStackTrace();

}

public void createMessage(String type, String writer,

String reader, String channel)

{

if(type==" XXXX_XXXX " && state==null){ }

else if(type.equals("V0") && state.equals("initial"))
R_Election_0(writer,type,"R_Election_0");

else if(type.equals("V1") && state.equals("initial"))
R_Election_1(writer,type,"R_Election_1");

else if(type.equals("V2") && state.equals("initial"))
R_Election_2(writer,type,"R_Election_2");

else if(type.equals("V3") && state.equals("initial"))
R_Election_3(writer,type,"R_Election_3");

else if(type.equals("V2") && state.equals("initial"))
R_Elected_2(writer,type,"R_Elected_2");

179

else if(type.equals("V3") && state.equals("initial"))

R_Elected_3(writer,type,"R_Elected_3");

else

/*it will be a warnning window exposed*/
System.out.printin("sdsdfsadfas");

}

public void RENO(){
if(state=="RENO")
S_Election2_0();

}

public void REN1(){
if(state=="REN1")
S_Election2_1();

}

public void REN2(){
if(state=="REN2")
S_Elected_2();

public void REN3(){
if(state=="REN3")
S_Election_3();

public void RED3(){
if(state=="RED3")
S_ED_3();

}

public void R_Election_0(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO", "election”, "V0");

RENO();
ButtonR_Election_0.setVisible(false);

}
W
}

public void R_Election_1(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();
ButtonR_Election_1.setVisible(false);

}
W
}

public void R_Election_2(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election”, "V2");

REN2();
ButtonR_Election_2.setVisible(false);

}
s
}

public void R_Election_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election", "V3");

REN3();
ButtonR_Election_3.setVisible(false);

}

%

}

public void R_Elected_2(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_2);
ButtonR_Elected_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_2", "Read", "initial",
"IMBoss", "elected", "V2");
ButtonR_Elected_2.setVisible(false);

}

%

}

public void R_Elected_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RED3");

displayTrace("R_Elected_3", "Read", "initial",
"RED3", "elected", "V3");

RED3();
ButtonR_Elected_3.setVisible(false);

}

b

}

public void S_Election2_1()X
traceTable.center.add(ButtonS_Election2_1);
ButtonS_Election2_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{
send("V2",name,"p3","PassOn_election");
transformState("initial");

catch(Exception f){System.out.printin(name + " :

S_Election2_1- send error");}

displayTrace("S_Election2_1", "Create", "REN1",

"initial=", "PassOn_election", "V2");
ButtonS_Election2_1.setVisible(false);
}

;

}

public void S_ED_3()
traceTable.center.add(ButtonS_ED_3);

ButtonS_ED_3.addActionListener(new
ActionListener(){

180

public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p3","PassOn_elected");
transformState("3_Boss");

catch(Exception f){System.out.printin(name + " :
S_ED_3- send error");}

displayTrace("S_ED_3", "Create", "RED3",
"3_Boss", "PassOn_elected", "V3");
ButtonS_ED_3.setVisible(false);

}
98
}

public void S_Election2_0(}
System.out.printin(name+" : S_Election2_0");

traceTable.center.add(ButtonS_Election2_0);
ButtonS_Election2_0.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V2",name,"p3","election");
transformState("initial");

catch(Exception f){System.out.printin(name + " : p2-
send error");}

displayTrace("S_Election2_0", "Write", "RENO",
"initial=", "PassOn_election", "V2");
ButtonS_Election2_0.setVisible(false);

}

W

}

public void S_Elected_2(){
System.out.printin(name+" : S_Elected_2");

traceTable.center.add(ButtonS_Elected_2);
ButtonS_Elected_2.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V2",name,"p3","elected");
transformState("initial");

catch(Exception f){System.out.printin(name + " : p2-
send error");}

displayTrace("S_Elected_2", "Write", "REN2",
"initial=", "PassOn_elected", "V2");
ButtonS_Elected_2.setVisible(false);

}
»

}

public void S_Election_3(){
System.out.printin(name+" : S_Election_3");

traceTable.center.add(ButtonS_Election_3);
ButtonS_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p3","election");
transformState("initial");

catch(Exception f){System.out.printin(name + " : p2-
send error");}

displayTrace("S_Election_3", "Write", "REN3",
"initial=", "PassOn_election", "V3");
ButtonS_Election_3.setVisible(false);

}

s

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);

E.5 Participant3 Application

E.5.1 Interface

package participant3;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface participant3_IF extends Remote

E.5.2 Implementation

package participant3;

import javax.xml.rpc.Call;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

import java.awt.*;

import java.awt.event.”;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.table.*;

public class participant3 extends JFrame
implements participant3_IF

{
public String name ="p3";

public static String BODY_NAMESPACE_VALUE =
"urn:Foo";

181

traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}

public void transformState(String s)¥
state=s;
System.out.printin(name +" : " + state);

public static void main(String[] args) throws
Exception

{
participant2 p2= new participant2 ("p2");
}
}

public void createMessage(String type, String writer,
String reader, String channel) throws
RemoteException;

}

public static String
ENCODING_STYLE_PROPERTY =
"Javax.xml.rpc.encodingstyle.namespace.uri";
public static String NS_XSD =
"http://www.w3.0rg/2001/XMLSchema";
public static String URI_ENCODING =
"http://schemas.xmlsoap.org/soap/encoding/";

[*this is the first participant*/

public static String participant0_p0_gnameService =
"participant0O_p0Q_Service";

public static String participant0_p0_gnamePort =
"participant0_IF";

public Call participant0_p0_call;

public ServiceFactory participant0_p0_factory;
public Service participant0_p0_service;

public QName participant0_p0_port;

/*the variables for Process*/
static myGUI traceTable;

public String state="";
private int noOfevents=0;
/lprivate Message message;

JButton ButtonR_Election_0 = new
JButton("R_Election_0");

JButton ButtonS_Election3_0 = new
JButton("S_Election3_0");

JButton ButtonR_Election_1 = new
JButton("R_Election_1");

JButton ButtonS_Election3_1 = new
JButton("S_Election3_1");

JButton ButtonR_Election_2 = new
JButton("R_Election_2");

JButton ButtonS_Election3_2 = new
JButton("S_Election3_2");

JButton ButtonR_Election_3 = new
JButton("R_Election_3");

JButton ButtonS_Elected_3 = new
JButton("S_Elected_3");

JButton ButtonR_Elected_3 = new
JButton("R_Elected_3");

public participant3(String name) {

this.name =name;
traceTable=new

myGUI(name,"participant3");
state="initial";

}

static class myGUI extends JFrame{

String[] headerStr = {"No.","Event", "Type", "Before
state", "After state", "Channel", "Value"};
DefaultTableModel dm = new
DefaultTableModel(headerStr, 60);

JTable table = new JTable(dm);

JPanel center=new JPanel();

JLabel instancelLabel;
JTextField instanceField;

JLabel eventsLabel;
JLabel processLabel;
JTextField processField;

myGUI(String a, String b){
setTitle("cycle");
setLocation(200,200);
setSize(30,30);

JPanel top =new JPanel();
top.setBackground(Color.gray);
instanceLabel= new JLabel("Instance");
top.add(instanceLabel);

instanceField=new JTextField(a,15);

Font g =new Font("Roman",Font.PLAIN,12);
top.setFont(g);

top.add(instanceField);

processLabel= new JLabel("Process");
top.add(processLabel);

processField=new JTextField(b,15);
Font h =new Font("Roman",Font.ITALIC,12);

top.setFont(h);
top.add(processField);

getContentPane().add(top, BorderLayout. NORTH);

JPanel middle =new JPanel();

182

middle.setBackground(Color.green);
eventsLabel= new JLabel("Possible event(s):");
middle.add(eventsLabel);
getContentPane().add(middle,

BorderLayout. WEST);

center.setBackground(Color.gray);
getContentPane().add(center,
BorderLayout. CENTER);

JPanel record =new JPanel();
table.setPreferredScrollableViewportSize(new
Dimension(200, 150));
getContentPane().add(new JScrollPane(table),
BorderLayout.SOUTH);

pack();
setVisible(true);

}
}

private void send(String messageName,String
currentName,String participantName,String state)
{
try {

currentName = name;
participant0_p0_factory =
ServiceFactory.newlnstance();
participantO_pQ_service =
(Service)participant0_p0_factory.createService(ne
w QName(participant0_p0_gnameService));
participantO_pOQ_port = new
QName(participant0_p0_gnamePort);

participantO_p0Q_call =
participant0_p0_service.createCall(participant0_p0
_port);
participantO_pO_call.setTargetEndpointAddress("htt
p://localhost:8080/cycle0-jaxrpc/participant0?wsdl");
participantO_p0_call.setProperty(Call. SOAPACTIO
N_USE_PROPERTY, new Boolean(true));
participant0_p0_call.setProperty(Cal. SOAPACTIO
N_URI_PROPERTY, ");
participantO_pO_call.setProperty(ENCODING_STY
LE_PROPERTY, URI_ENCODING);

participantO_pO_call.addParameter("String_1", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant0_p0_call.addParameter("String_2", new
QName(NS_XSD, "string"), ParameterMode.IN);
participant0_p0_call.addParameter("String_3", new
QName(NS_XSD, "string"), ParameterMode.IN);
participantO_pO_call.addParameter("String_4", new
QName(NS_XSD, "string"), ParameterMode.IN);

participantO_p0O_call.setReturnType(null);
participant0_p0_call.setOperationName(new
QName(BODY_NAMESPACE_VALUE,
"createMessage"));

Object [] params =

{ messageName,currentName,participantName,stat
e};

participantO_p0O_call.invokeOneWay(params);

} catch (Exception ex) {
ex.printStackTrace();

}
}

public void createMessage(String type, String writer,
String reader, String channel) {

if(type==" XXXX_XXXX" && state==null){ }

else if(type.equals("V0") && state.equals("initial"))
R_Election_0(writer,type,"R_Election_0");

else if(type.equals("V1") && state.equals("initial"))
R_Election_1(writer,type,"R_Election_1");

else if(type.equals("V2") && state.equals("initial"))
R_Election_2(writer,type,"R_Election_2");

else if(type.equals("V3") && state.equals("initial"))
R_Election_3(writer,type,"R_Election_3");

else if(type.equals("V3") && state.equals("initial"))

R_Elected_3(writer,type,"R_Elected_3");

else

/*it will be a warnning window exposed*/
System.out.printin("sdsdfsadfas");

}

public void RENO(){
if(state=="RENO")
S_Election3_0();

public void REN1(){
if(state=="REN1")
S_Election3_1();

public void REN2(}{
if(state=="REN2")
S_Election3_2();

}

public void REN3(){
if(state=="REN3")
S_Elected_3();

}

public void R_Election_0(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_0);
ButtonR_Election_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("RENQ");

displayTrace("R_Election_0", "Read", "initial",
"RENO0", "election”, "V0");

RENO();
ButtonR_Election_0.setVisible(false);

}

%

}

public void R_Election_1(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_1);
ButtonR_Election_1.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN1");

displayTrace("R_Election_1", "Read", "initial",
"REN1", "election”, "V1");

REN1();
ButtonR_Election_1.setVisible(false);

}

%

}

183

public void R_Election_2(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_2);
ButtonR_Election_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN2");

displayTrace("R_Election_2", "Read", "initial",
"REN2", "election”, "V2");

REN2();
ButtonR_Election_2.setVisible(false);

}

;

}

public void R_Election_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Election_3);
ButtonR_Election_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("REN3");

displayTrace("R_Election_3", "Read", "initial",
"REN3", "election”, "V3");

REN3();
ButtonR_Election_3.setVisible(false);

}

D;

}

public void R_Elected_3(String from, String
message, String current_state){
traceTable.center.add(ButtonR_Elected_3);
ButtonR_Elected_3.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
transformState("IMBoss");

displayTrace("R_Elected_3", "Read", "initial",
"IMBoss", "elected", "V3");
ButtonR_Elected_3.setVisible(false);

}
W
}

public void S_Election3_2(}
traceTable.center.add(ButtonS_Election3_2);
ButtonS_Election3_2.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{

send("V3", name ,"p0","PassOn_election");
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Election3_2- send error");}

displayTrace("S_Election3_2", "Create", "REN2",

"initial=", "PassOn_election", "V3");
ButtonS_Election3_2.setVisible(false);
}

»
}

public void S_Elected_3(){
traceTable.center.add(ButtonS_Elected_3);
ButtonS_Elected_3.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p0","PassOn_elected");
transformState("initial");

catch(Exception f){System.out.printin(name + " :
S_Elected_3- send error");}

displayTrace("S_Elected_3", "Create", "REN3",
"initial=", "PassOn_elected", "V3");
ButtonS_Elected_3.setVisible(false);

}

»;
}

public void S_Election3_0(}{
System.out.printin(name+" : S_Election3_0");

traceTable.center.add(ButtonS_Election3_0);
ButtonS_Election3_0.addActionListener(new
ActionListener(){

public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p0","election");
transformState("initial");

catch(Exception f){System.out.printin(name + " :
send error");}

displayTrace("S_Election3_0", "Write", "RENO0",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_0.setVisible(false);

}

;

}

public void S_Election3_1(}{
System.out.printin(name+" : S_Election3_1");

traceTable.center.add(ButtonS_Election3_1);
ButtonS_Election3_1.addActionListener(new
ActionListener(){
public void actionPerformed(ActionEvent e){
try{

send("V3",name,"p0","election");
transformState("initial");

p3-

184

catch(Exception f){System.out.printin(name + " : p3-
send error");}

displayTrace("S_Election3_1", "Write", "REN1",
"initial=", "PassOn_election", "V3");
ButtonS_Election3_1.setVisible(false);

}

»

public String getname(){
return name;

}

public void displayTrace(String ev, String ty, String
be, String af, String ch, String va){
traceTable.table.setValueAt((new
Integer(noOfevents)).toString(), noOfevents,0);
traceTable.table.setValueAt(ev, noOfevents,1);
traceTable.table.setValueAt(ty, noOfevents,2);
traceTable.table.setValueAt(be, noOfevents,3);
traceTable.table.setValueAt(af, noOfevents,4);
traceTable.table.setValueAt(ch, noOfevents,5);
traceTable.table.setValueAt(va, noOfevents,6);
noOfevents++;

}
public void transformState(String s){

state=s;
System.out.printin(name +" : " + state);

public static void main(String[] args) throws
Exception

{
participant3 p3= new participant3 ();
}

References

Agarwal, R., G. Bruno and M. Torchiano (2001). Model based Web Applications.

In Proceeding of 4th International Conference on Information Technology (CIT),

Gopalpur-on-Sea, India.

Ahmed, K., S. Ancha and A. Cioroianu (2001). "Professional Java XML".
Birmingham, Wrox Press Ltd. 186100401X:(1st edition).

Alitalia (2008). "Alitalia.com". from http://www.alitalia.com/.

Andrews, G. (1991). "Paradigms for Process Interaction in Distributed Programs".

ACM Computing Surveys 23(1): 49-90.

Apache (2002). "Apache Tomcat". from http://tomcat.apache.org/.

Apache (2007). "WSIF: Web Service Invocation Framework". from

http://ws.apache.org/wsif/.

Apfelbaum, L. and J. Doyle (1997). Model Based Testing. In Proceeding of 10th

International Software Quality Week Conference, San Francisco, California, USA.

Artho, C. and A. Biere (2001). Applying Static Analysis to Large-scale,

Multi-threaded Java Programs. In Proceeding of 13th Australian Software

185

Engineering Conference (ASWEC’01), Canberra, Australia. IEEE Computer

Society.

Banks, A., J. Challenger, P. Clarke, D. Davis, R. P. King, K. Witting, A. Donoho,
T. Holloway, J. Ibbotson and S. Todd (2002). Specification: HTTPR Specification.

from ftp://wwwb.software.ibm.com/software/developer/library/ws-httprspec.pdf.

Basin, D., S. Friedrich, J. Posegga and H. Vogt (1999). Java ByteCode Verification
by Model Checking System Abstract. "Computer Aided Verification". Heidelberg,
Springer Berlin. 978-3-540-66202-0: 1633/1999: 681.

BEA (2003). "BEA WebLogic Server". from
http://www.bea.com/framework.jsp? CNT=index.htm&FP=/content/products/weblo

gic/server.

BEA, IBM, Microsoft, SAP-AG and Siebel-Systems (2003). "Business Process
Execution Language for Web Services Specification". from

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.p
df.

Beizer, B. (1995). "Black-Box Testing: Techniques for Functional Testing of
Software and Systems", John Wiley & Sons. 0471120944.

Beydeba, S. and V. Gruhn (2002). Class Specification Implementation Graphs and
their Application in Regression Testing. In Proceeding of 26th Annual International
Computer Software and Applications Conference (COMPSAC 2002), Oxford,
England, UK.

Boyapati, C., S. Khurshid and D. Marinov (2002). Korat: Automated Testing Based
on Java Predicates. In Proceeding of 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA), Rome, Italy. ACM.

186

Callahan, J., F. Schneider and S. Easterbrook (1996). Automated Software Testing
Using Model-Checking. In Proceeding of 1996 SPIN Workshop, Rutgers, USA.

Chan, F., T. Y. Chen and T. H. Tse (1997). "On the Effectiveness of Test Case
Allocation Schemes in Partition Testing". Information and Software Technology

39(10): 719-726.

Chang, E. and R. Roberts (1979). "An Important Algorithm for Decentralized
Extrema-finding in Circular Configurations of Processors". IEEE Transactions on

Computers 22(5): 281-283.

Chen, H. Y., T. Y. Tse and Y. T. Deng (2000). "ROCS: An Object-oriented
Class-level testing System based on the Relevant Observable ContextS technique".

Information and Software Technology 42(10): 677-686.

Chen, W. K., T. Y. Chen and T. H. Tse (2002). An Overview of Integration testing

techniques for Object-Oriented Programs. In Proceeding of 2nd ACIS Annual

International Conference on Computer and Information Science (ICIS 2002), Mt.
Pleasure, Michigan, USA. International Association for Computer and Information

Science.

Cheon, Y. and G. Leavens (2002). A Runtime Assertion Checker for the Java

Modelling Language (JML). In Proceeding of International Conference on
Software Engineering Research and Practice (SERP’02), Las Vegas, Nevada, USA.
CSREA Press.

Clarke, E., O. Grumberg and D. Peled (2000). "Model Checking", The MIT Press.
0-262-03270-8.

Colouris, G., J. Dollimore and T. Kindberg (2001). "Distributed Systems Concepts
and Design", Addison-Wesley. 0201619180:(3rd edition).

187

Corbett, J., M. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu and R. H. Zheng
(2000). Bandera: Extracting Finite-state Models from Java Source Code. In

Proceeding of 2000 International Conference on Software Engineering, Limerick,

Ireland.

Damelio, R. (1996). "Basics of Process Mapping", Productivity Press.
0527763160:(1st edition).

Davenport, T. (1992). "Process Innovation: Reengineering Work through
Information Technology", Boston: Harvard Business School Press. 0875843662.

Demartini, C., R. Iosif and R. Sisto (1999). "A Deadlock Detection Tool for

Concurrent Java Programs". Software: Practice and Experience 29(7): 577-603.

Dijkstra, E. W. (1965). "Co-Operating Sequential Processes". Technical Report
EWD-123: 43-112. Academic Press, New York, USA.

Eclipse (2007). "Ecipse IDE for Java Developers". from www.eclipse.org.

Esser, M. and P. Struss (2006). Fault-model-based Test Generation for Embedded

Software. In Proceeding of 20th International Joint conference on Artificial

Intelligence IJCAI-07, Hyderabad, India.

Expedia (2008). "Expedia.co.uk". from http://www.expedia.co.uk/Default.aspx.

Frankel, D. (2003). "Model Driven Architecture: Applying MDA to Enterprise
Computing", Wiley Publishing, Inc. 0471319201.

Garcia-Molina, H. (1982). "Elections in Distributed Computer Systems". IEEE
Transactions on Computer 31(1): 48-59.

188

Gargantini, A. and C. Heitmeyer (1999). Using Model Checking to Generate Tests

from Requirements Specifications. In Proceeding of Joint 7th European Software

Engineering Conference and 7th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Toulouse, France. Springer-Verlag.

Godefroid, P. (1997). "VeriSoft: A tool for the automatic analysis of concurrent
reactive software ". Computer Aided Verification: 476-479.

Goschl, S. and H. Sneed, Eds. (2002). A Case Study of Testing a Distributed
Internet-System. "Software Testing, Verification and Reliability".77-92.

Gottschalk, K. (2000). Web Services Architecture Overview: The next stage of
evolution for e-business. from

http://www.ibm.com/developerworks/web/library/w-ovr/.

Grenmo, R., D. Skogan, I. Solheim and J. Oldevik (2004). Model-Driven Web

Services Development. In Proceeding of 2004 IEEE International Conference on

e-Technology, e-Commerce and e-Service (EEE’04), Taipei, China. IEEE

Computer Society.

Halvorson, M. (1998). "Microsoft Visual Basic Professional 6.0 Step by Step",
Microsoft Press. 1-57231-809-0.

Hammer, M. and J. Champy (2001). "Reengineering the Corporation", Nicholas
Prealey Publishing Ltd. 1857880978:(3rd Revised edition).

Hansen, B. (1975). "The Programming Language Concurrent Pascal". IEEE
Transactions on Software Engineering 1(2): 199-207.

Harold, E. R. (1997). "Java Network Programming", O’Reilly & Associates, Inc.
0596007213:(3rd edition).

189

Hausmann, J. H., R. Heckel and M. Lohmann (2005). "Model-Based Development
of Web Services Descriptions Enabling a Precise Matching Concept". Web
Services Research 2(2): 67-84.

Havelund, K. (1999). Java PathFinder A Translator from Java to PROMELA.
"Theoretical and Practical Aspects of SPIN Model Checking". Berlin, Springer
LNCS 1680: 152.

Havelund, K. (2000). Using Runtime Analysis to Guide Model Checking of Java

Programs. In Proceeding of 7th SPIN Workshop, California, USA.

Havelund, K. and T. Pressburger (2000). "Model Checking Java Programs Using
Java PathFinder". International Journal on Software Tools for Technology Transfer

2(4).

HCI (2008). "Flow Charting". from

http://www.hci.com.au/hcisite2/toolkit/flowchar.htm.

Henderson, P., Y. Howard and R. Walters (2001). "A Tool for Evaluation of the
Software Development Process". Journal of Systems and Software 59(3): 355-362.

Henderson, P. and R. Walters (1999). Component Based systems as an aid to

Design Validation. In Proceeding of 14th IEEE Conference on Automated

Software Engineering, ASE’99. IEEE Computer Society Press.

Hoare, C. (1985). "Communication Sequential Processes", Prentice Hall.

0-13-153271-5.

Holzmann, G. J. (1990). "Design and Validation of Computer Protocols".
Englewood Cliffs, NJ, Prentice Hall. 0135399254.

190

Holzmann, G. J. (1997). "The Model Checker SPIN". IEEE Transactions on
Software Engineering 23(5).

Holzmann, G. J. (2003). "The Spin Model Checker: Primer and Reference
Manual", Addison-Wesley. 0321228626.

Holzmann, G. J. and R. Joshi (2004). Model-Driven Software Verification. "Model
Checking Software". Berlin, Springer LNCS 2989: 76-91.

IEEE (1987). "IEEE Standard 610-1987 IEEE Standard for Computer Applications
Terminology", IEEE Computer Society. 9789998267978.

I[EEE (1998). "IEEE 829-1998 Standard for Software Test Documentation".
9780738157477.

JBoss (2003). "JBoss Enterprise Application Platform". from

http://www.jboss.com/products/platforms/application.

Kalian, A. and A. Watson (2003). "Modelling the building cladding attainment

process". Business Process Managent Journal 10.

Kalian, A., A. Watson, E. Agbasi, C. Anumba and A. Gibb (2004). "Modelling the
Building Cladding Attainment Process". Business Process Managent Journal 10(6):

712-723.

Kansomkeat, S. and W. Rivepiboon (2003). Automated-generating test case using

UML statechart diagrams. In Proceeding of 2003 annual research conference of the

South African Institute of Computer Scientists and Information Technologists on

Enablement through technology. SAICSIT.

191

Kaveh, N. and W. Emmerich (2001). Deadlock Detection in Distributed Object

Systems. In Proceeding of Joint 8th European Software Engineering Conference
(ESEC) and the 9th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-9), Vienna, Austria. ACM Press.

Kleppe, A., J. Warmer and W. Bast (2003). "MDA Explained: The Model Driven
Architecture - Practice and Promise", Addison-Wesley. 032119442X.

Krichen, M. and S. Tripakis (2004). Black-box Conformance Testing for Real-time

Systems. In Proceeding of 11th International SPIN Workshop on Model Checking
of Software (SPIN’04), Barcelona, Spain. Springer Verlag.

Lerda, F., N. Sinha and M. Theobald (2003). "Symbolic Model Checking of

Software". Electronic Notes in Theoretical Computer Science 89(3).

Leuschel, M. and M. J. Butler (2003). ProB: A Model Checker for B. "FME 2003:
Formal Methods". Berlin, Springer. 978-3-540-40828-4: LNCS 2805: 855-874.

Long, B. and P. Strooper (2001). A Case Study in Testing Distributed Systems. In

Proceeding of Third International Symposium on Distributed Objects and

Applications, Rome, Italy. IEEE Computer Society.

Lynch, N. A. (1996). '"Distributed Algorithms", Morgan Kaufmann.
1558603484:(1st edition).

Magee, J. and J. Kramer (1999). "Concurrency: State Models and Java Programs",
John Wiley & Sons. 0471987107:(1st edition).

McMillan, K. (2000). "The SMV System". from

http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.ps.

192

Microsoft (1996). "DCOM". from

http://msdn.microsoft.com/en-us/library/ms809340.aspx.

Microsoft (2005). "Visual Studio 2005". from

http://msdn.microsoft.com/en-us/library/ms950416.aspx.

Microsoft (2008). ".NET Framework". from

http://msdn.microsoft.com/en-us/netframework/default.aspx.

Milner, R. (1989). "Communication and Concurrency", Prentice Hall. 0131149849.

Milner, R. (1993). The Polyadic Pi-calculus: a tutorial. "Logic and Algebra of
Specification", Springer-Verlag. 0387558136: 203-246.

Monson-Haefel, R. and D. Chappell (2001). "Java Message Service", O’Reilly &
Associates, Inc. 284177208X.

Mukhar, K., J. Weaver, R. Phillips and J. Crume (2003). "Beginning J2EE 1.4:
From Novice to Professional", Wrox Press Ltd. 1-86100-833-3.

Nagappan, R., R. Skoczylas and R. Sriganesh (2003). "Developing Java Web
Service: Architecting and Developing Secure Web service Using Java", Wiley

Publishing, Inc. 0-471-23640-3.

Omega (2008). "Omegatravel.net". from http://www.omegatravel.net/.

OMG (1993). "The Common Object Request Broker: Architecture and
Specification", QED Publish Co. 0471587923.

OMG (2007). "Model Driven Architecture". from http://www.omg.org/mda.

193

Ozu, N., R. Anderson and W. A. Team (2001). "Professional XML (Programmer to
Programmer)", Wrox Press Inc. 1861005059:(2nd edition).

Parasoft (2003). "Parasoft JTest". from

http://www.parasoft.com/jsp/products/home.jsp?product=Jtest.

Patton, R. (2000). "Software Testing". Indianapolis, USA, SAMS. 0672319837.

Phalp, K., P. Henderson, G. Abeysinghe and R. Walters (1998). "RolEnact - Role
Based Enactable Models of Business Processes". Information and Software

Technology 40(3): 123-133.

Ruggiero, R. (2003). IMS/Web Services/WS-Reliability. from

http://www.creativematch.co.uk/viewnews/?88460.

Savage, S., G. Nelson, P. Sobalvarro and T. Anderson (1997). Eraser: A Dynamic

Data Race Detector for Multi-Threaded Programs. In Proceeding of 16th ACM

Symposium on Operating System Principles, St. Malo, France.

Schmit, B. A. and S. Dustdar (2005). Model-driven Development of Web Service

Transactions. In Proceeding of Second GI-Workshop XML for Business Process

Management, Karlsruhe, Germany.

Sneed, H. (1998). Automated Test Case Specification for Integration Testing of

Distributed Objects. In Proceeding of EuroStar98, Miinchen, Germany.

Sommerville, I. (2001). "Software Engineering", Addison-Wesley.
0201398151:(6th edition).

Stevens, P. and R. Pooley (2000). "Using UML Software Engineering with Objects
and Components", Addison-Wesley. 0201648601:(Revised edition).

194

Stoller, S. D. and Y. A. Liu (2001). Transformations for Model Checking

Distributed Java Programs. In Proceeding of 8th International SPIN Workshop on

Model Checking of Software, Toronto, Ontario. Springer-Verlag.

SUN (2003a). "Java Remote Invocation- Distributed Computing for Java (White

paper)". from http://java.sun.com/marketing/collateral/javarmi.html.

SUN (2003b). "RMI: Remote Method Invocation". from

http://java.sun.com/products/jdk/rmi/index.html.

SUN (2003c¢). "Sun’s Java Tutorials". from

http://java.sun.com/docs/books/tutorial/.

SUN (2007). "Java API for XML Messaging (JAXM)". from

http://java.sun.com/webservices/jaxm/index.jsp.

Thompson, S. (2000). A Survey on Model Checking Java Programs. from
www.cs.toronto.edu/~chechik/courses99/csc2108/projects/5.ps. Technical Report

CSRG-407.

Tsai, W. T., L. Yu and A. Saimi (2003). "Scenario-based Object-Oriented Test
Frameworks for Testing Distributed Systems". Distributed Computing Systems:

288-294.

Tufarolo, J., J. Ives and T. Hyon (1999). Automated Distributed System Testing:

Application of an RTI Verification System. In Proceeding of 1999 Winter

Simulation Conference.

Tufarolo, J., J. Nielsen, S. Symington, R. Weatherly, A. Wilson and T. Hyon
(1998). Automated Distributed System Testing: designing an RTI Verification

195

System. In Proceeding of 31st conference on Winter simulation: Simulation - a

bridge to the future, Phoenix, Arizona, USA.

Visser, W., K. Havelund, G. Brat and S. Park (2000). Model Checking Programs.

In Proceeding of 15th IEEE International Conference on Automated Software

Engineering (ASE’00), Grenoble, France.

W3C (2001). "WSDL: Web Service Definition Language". from
http://www.w3.org/TR/wsdl.

Walters, R. (2002a). A Graphically Based Language for Communicating,

Executing and Analysing Models of Software Systems. In Proceeding of 26th

Annual Internation Computer Software and Applications Conference (COPSA

2002), Oxford, England.

Walters, R. (2002b). "A Graphically based Language for Constructing, Executing
and Analysing Models of Software Systems", PhD thesis.

Walters, R. (2005). "Automating Checking of Models built using a Graphically
Based Formal Modelling Language". Journal of Systems and Software 76: 55-64.

Xing, G., M. R. Lyu and N. T. Shatin (2000). Testing, Reliable, and

Interoperability issues in the CORBA Programming Paradigm. In Proceeding of
1999 Asia-Pacific Software Engineering Conference (APSEC’99), Takamatsu,

Kagawa, Japan.

Yamaura, T. and A. Onoma (2002). Hypothesis Testing for Module Test in

Software Development. In Proceeding of 26th Annual International Computer

Software and Applications Conference (COMPSAC 2002), Oxford, England, UK.

196

