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ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
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Doctor of Philosophy

by Anthony A. Demco

The discovery of drugs that can effectively treat disease and alleviate pain is one of the
core challenges facing modern medicine. The tools and techniques of machine learn-
ing have perhaps the greatest potential to provide a fast and efficient route toward the
fabrication of novel and effective drugs. In particular, modern structured kernel meth-
ods have been successfully applied to range of problem domains and have been recently
adapted for graph structures making them directly applicable to pharmaceutical drug
discovery. Specifically graph structures have a natural fit with molecular data, in that
a graph consists of a set of nodes that represent atoms that are connected by bonds. In
this thesis we use graph kernels that utilize three different graph representations: molec-
ular, topological pharmacophore and reduced graphs. We introduce a set of novel graph
kernels which are based on a measure of the number of finite walks within a graph. To
calculate this measure we employ a dynamic programming framework which allows us
to extend graph kernels so they can deal with non-tottering, soft-matching and allows
the inclusion of gaps. In addition we review several graph colouring methods and sub-
sequently incorporate colour into our graph kernels models. These kernels are designed
for molecule classification in general, although we show how they can be adapted to
other areas in drug discovery. We conduct three sets of experiments and discuss how
our augmented graph kernels are designed and adapted for these areas. First, we clas-
sify molecules based on their activity in comparison to a biological target. Second, we
explore the related problem of lead hopping. Here one set of chemicals is used to predict
another that is structurally dissimilar. We discuss the problems that arise due to the
fact that some patterns are filtered from the dataset. By analyzing lead hopping we
are able to go beyond the typical cross-validation approach and construct a dataset that
more accurately reflect real-world tasks. Lastly, we explore methods of integrating infor-
mation from multiple targets. We test our models as a multi-response problem and later
introduce a new approach that employs Kernel Canonical Correlation Analysis (KCCA)
to predict the best molecules for an unseen target. Overall, we show that graph kernels
achieve good results in classification, lead hopping and multiple target experiments.
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Chapter 1

Introduction

Drug discovery is a complex process which greatly benefits humanity by discovering
drugs capable of relieving symptoms of disease and prolonging life. An important prob-
lem in early phase drug discovery is the identification of the initial starting point or lead
molecule. One method for achieving this is to use machine learning approaches applied
to a set of known ligands. This molecule is found using the activity of a molecule with
a target. A ligand with a strong binding is labeled ‘active’ while others are labeled ‘not
active’ to form a binary classification problem. Using sets of classified molecules, learn-
ing algorithms are trained to produce models which can predict the activity of unseen
molecules. The unseen molecules classified as drugs are taken for further testing and
analysis. A drug must meet other requirements for their physicochemical and pharma-
ceutical properties to reach the site of action and to avoid unwanted side effects. The
best candidate from this analysis may be chosen for further testing and development for
use as a commercial drug.

In our research, we use Support Vector Machines (SVM)s and other kernel methods
in conjunction with graph kernels to build our classification models. Kernel methods
include a set of learning algorithms that use a positive-definite kernel function from
the data. A kernel function for graphs, or graph kernel, allows algorithms to learn
directly from the structure in a graph. This seems a sensible approach as graphs are the
most natural way to represent a molecule. The most well known representation is the
molecular graph consisting of a set of atoms (or vertices) which are connected by bonds
(or edges).

A graph kernel is calculated by finding matching features between two graphs. One
must decide which features give the best kernel between any two molecular graphs. In
our work, we use graph kernels that count the number of matching walks in each graph.
We describe how counting walks can be modified to include soft-matching and gappy
features. Furthermore, we describe how soft-matching can use molecular descriptors
such as topological pharmacophores in their computation. We analyze and explore these

1
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graph kernel choices using two publicly-available datasets. This analysis will describe
how graph kernel parameters including walk length, soft-matching and gappy weighting
parameters affect binary classification performance on molecular datasets.

In addition to this analysis, experiments are conducted to explore graph kernel efficacy
in classifying specific subsets of examples in the dataset. Besides overall classification
accuracy, we hope to understand whether graph kernels perform well in lead-hopping
experiments; a crucial property that allows the identification of leads from different
chemical families or chemotypes. We model the lead-hopping problem by splitting the
data into two very structurally different sets. The difference is measured using Tanimoto
similarity. By constructing a model with data from only one set, predicting the other
becomes a very difficult task. We evaluate graph kernel performance for this problem
and consider whether certain features can be used to overcome this challenge in order
to predict molecules from a separate lead series or structurally similar set of ligands.

Finally, we use graph kernels in experiments with multiple targets. Here, a set of
molecules have been evaluated for the interaction with several different targets. Each
example molecule is given real value numbers that quantify the interaction with each
target. These experiments are motivated by the fact that potential drugs must often
meet several constraints. The best drug candidate is one that interacts correctly with
several different targets. A drug must have a strong binding with some targets associated
with a disease, although a drug must also have no binding with other targets that may
cause undesirable or possibly deadly side effects. We first test our models as a multiple
response problem and later introduce a new method to predict the best molecules for
an unseen target using Kernel Canonical Correlation Analysis (KCCA).

Currently, a very popular descriptor used for learning models is the fingerprint descrip-
tor. A fingerprint is a binary feature vector or table of values consisting of 1 or 0 entries
that each describe the existence of certain sub-structural features. We provide a di-
rect comparison between fingerprint and graph kernel models for each of our problems.
Graph kernels appear to be a promising alternative to fingerprints, as no features have to
be manually defined. A graph kernel is calculated using any two graphs. Furthermore,
graph kernels can use features, such as gaps and soft-matching that are very hard to
represent with just a fingerprint, or table of values. As a result, graph kernels provide
an interesting alternative view of the data, potentially allowing new promising drugs to
be discovered.

This Chapter is outlined as follows: we begin by describing the stages involved in drug
discovery in Section 1.1. After, we describe how this is automated with computers
using virtual screening in Section 1.2. Then we will describe kernel methods and other
algorithms in Section 1.3. Finally, we will lay out our research question in Section 1.4
and the contributions and overview of this thesis in Section 1.5.
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1.1 Drug Discovery

Drug discovery is a process that involves several steps. We will review this process in
the following Sections. The first step is to identify the biological target that is involved
in a disease (Section 1.1.1). Next, the drug discovery cycle begins (Section 1.1.2) where
a number of drugs are screened through several phases against this target. Finally,
experiments are carried out to clinically validate its efficiency and safety in animals and
humans.

1.1.1 Selecting a Biological Target

The goal of drug discovery is to find a small molecule that interferes with the metabolic
or signaling pathways, which are series of reactions, that correspond with a disease. This
interference occurs when the small molecule binds to a protein (enzyme, receptor, ion
channel, etc) and is a part of these pathways. The largest majority of these targets
(around 45%) are G-protein coupled cellular receptors (GPCRs) which carry the signal
from outside the cell membrane by conforming to a different shape when a ligand, or
small molecule, binds causing a metabolic product of the G-protein to be released and
used within the cell (Drews (2000)). The second largest class comprising around 28%
of targets for drugs are enzymes. A ligand may bind with an enzyme whereby the
activation causes an alteration of gene expression (Drews (2000)). When a ligand binds
to either of these targets the associated metabolic or signaling pathway associated with
the disease is disrupted.

A target is usually chosen rationally by a pharmaceutical programme team. In practice,
a selection of pathways may be used when finding the target for a disease. These
are recorded in several well-known databases for signalling pathways1 and metabolic
pathways2. One of the largest problem of finding a drug is that a designed molecule
may bind in other places producing usually undesired yet possibly beneficial results
(Apic et al. (2005)).

There are currently less than 500 molecular targets identified and a considerably smaller
amount, around 40, are used by pharmaceutical companies to target diseases, although
it is suggested that there are feasibly 10 times more (between 5,000 and 10,000) potential
targets that are not being used (Drews (2000)).

Drugs are tested in a number of ways including in vivo, in vitro, or in silico. In vivo and
in vitro describe experiments which are performed inside or outside a living organism
respectively. In vivo experiments are conducted in a living organism, such as genetically
modified animal (termed transgenic animal models). In vitro is used to measure a

1http://cgap.nci.nih.gov/Pathways/
2http://http://www.genome.jp/keg/kegg2.html
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response directly against the target of interest in a test tube, or via some secondary
response in a cell based assay. A third method, in silico, uses computers to test the
activity of the drugs, we delay this introduction to section 1.2.1.

1.1.2 Drug Discovery Process

Once the target has been identified, the next step is to find a small molecule, called
a ligand, that is able to bind to the target to alter its normal functioning. This is
achieved by testing a set of molecules for their activity with a certain target. This test
is known as a target or biological assay and quantifies the effect of the ligand for the
desired activity with the target. The potency of a drug is the measure of this activity
in a biological system. An example of a ligand binding to a protein is shown in figure
1.1. This image was originally generated by the CCP4 program, given as an example in
their documentation on their website3.

Figure 1.1: This figure show a ligand docking to a protein. The ligand is represented
by the blue and red atoms and bonds in the center, while the protein is shown as long
strands in green. Key interactions between ligands and protein atoms are shown by the

doted lines.

Following target identification, the drug discovery cycle begins which involves iterations
of selecting certain chemicals, synthesizing or physically creating the selected molecules
and after screening for the desired activity. A set of hits are identified in early stages
of this cycle. A hit is a molecule which achieves an adequate activity on a target assay
along with a low molecular weight (Drews (2000); Bleicher et al. (2003)). From these
hits a set of leads are chosen that meets other requirements.

Some of these requirements restrict properties of the hits to ones that are more drug-
like. A drug must be able to reach the target in vivo, which involves passing through

3http://www.ysbl.york.ac.uk/~ccp4mg/
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physiological barriers including the blood-brain barrier and cell membranes. The blood-
brain barrier is a cellular structure that restricts the passages of chemicals from the
bloodstream into the tissue. Furthermore, a drug must remain in a body for a certain
amount of time for the drug to take effect and then later it must be removed or excreted.
Also, the drug’s toxicity levels must be low enough to not cause damage (Leach and Gillet
(2003)). These properties are described by the term ADME (or ADMET) which stands
for absorption, distribution, metabolism, excretion and toxicity (Xu and Hagler (2002);
Boobis et al. (2002)). If the molecule has poor ADME properties, it will be precluded
from further processing.

These stages allows for a lead series to be selected. A lead series is a group of molecules
with similar molecular properties and activity with a target (Bleicher et al. (2003)). The
lead optimization phase is a further step usually carried out using a combination of in
vitro and in vivo experiments. This differs from earlier hit stages that use in vitro exper-
iments. The final step towards a commercial drug is clinical valuation. Usually, several
different lead series, or set of molecules with similar molecular structure, are selected for
clinical valuation as unforseen side effects only appear in later clinical validation stages.
This reduces the risk of starting the entire discovery process again, as an alternative
lead series may not exhibit this unforeseen side effect.

The final phase of drug discovery involves clinical trials, where the drug will be dosed in
human subjects. These trials usually take place over four phases. The first three occur
before large-scale production of the drug, and the fourth occurs after the drug goes to
market (Krogsgaard-Larsen et al. (2002)).

1.2 High-Throughput Methods

With the advent of high-throughput screening (HTS) technology, and ultra-HTS, hun-
dreds of thousands of molecules can be processed per day, producing volumes of data for
screens against a biological target. HTS utilizes robots that are capable of performing all
tasks including setting up and screening molecules. Similarly, combinatorial chemistry
allows for a large number of molecules to be synthesized, or physically created, at a low
cost and used in these screening experiments. These two technologies allow a far greater
number of molecules to be synthesized and processed which has greatly increased the
number of hits for a given target. Despite a large number of hits, the number of lead
series did not increase (Manly et al. (2001)). As a result, other approaches must be
considered to find drug-like molecules.

By using the data from HTS, computers continue the drug discovery process and help
reduce the number of false-positive hits. Using further computer screening, molecules
can be identified which not only have good target interaction, but also have other de-
sirable properties including ADME properties. This area of research has emerged into a
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new field called chemoinformatics. Chemoinformatics encompasses the representation,
storage, retrieval and analysis of chemical information. We refer the reader to the in-
troductory books on chemoinformatics including Leach and Gillet (2003) and Gasteiger
and Engel (2003).

1.2.1 Virtual Screening

Virtual screening or in silico screening is the process of using computers to analyze the
activity of a molecule for a specific target. This is used as a selection process prior to
wet-lab experiments with several advantages including the ability to analyze far greater
numbers of molecules, including virtual molecules, which have not yet been synthesized
(Gasteiger and Engel (2003)). To perform virtual screening, either the structure of the
target must be known, or the activity must be known for a set of molecules with the
target. Although the exact structure of the target would give the most information, it
is the most time-consuming and sometimes impossible to obtain. With targets, such
as G-Protein Coupled Receptors (GPCR)s, one would need to solve the protein-folding
problem which obtains a 3D orientation of the protein target. Research into protein-
folding is currently on-going, and it is known to be a difficult problem to solve. In
Fraenkel (1993), it is described that 3D conformation of a protein into it’s lowest energy
state is an NP-hard problem. As a result, most chemoinformatic research focuses on the
ligand and it’s structural information, along with activity information which quantifies
the interaction with the target.

Despite the complexity involved in using the target alone, methods do exist. Methods
which use the structure of the target are termed structure-based approaches. This
type of approach can only be used if the structure of the target is known. The most
common approach is docking, which computes an activity score based on the optimal
position that a ligand can be positioned at a target (Jorgensen (2004)). The docking
approach uses both a search algorithm to identify the optimal alignment of the ligand
and target, along with an evaluation function which quantifies the resulting binding
of intramolecular forces. The search algorithm must take into account the flexibility
of a molecule. Often in a 3D space, a molecule can exhibit different structures (or
conformations) as rotatable bonds allow different orientations of the molecular structure.
The docking approach to virtual screening will attempt to dock all molecules from a
library of molecules and will select the top scored molecules as the most promising
candidates. A second type of virtual screening that uses the structure of the target
to choose potential drugs is de novo design. This approach builds a potential ligand
at the site of the target by iteratively adding drug fragments that fit well with the
target (Jorgensen (2004)). Typically, graphical modeling tools are used, although other
approaches are possible. One recent example of de novo design in Schneider et al.
(2000) used evolutionary algorithms to search a set of fragments. The fitness function
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was measured using a pharmacophore distance between a known molecule that was a
good thrombin inhibitor and the derived molecules.

Virtual screening can also be accomplished using approaches that do not use the infor-
mation from the structure of the target. A ligand-based approach only uses information
from the ligand along with a number to quantify the interaction with a target. The most
well-known ligand-based approach is similarity searching. Using a set of known actives, a
set of potential drugs are chosen by ranking these based on similarity between molecular
structures. The highest ranked are most structurally similar to known actives and are
chosen for further processing (Jorgensen (2004)). Similarity can also be measured using
pharmacophores that define the function of different areas within a molecule in a 3D
space. Not only can similarity searching be used to find the best candidate molecules,
but the lowest ranked molecules can be filtered or removed to produce a smaller more
useful set for further testing (Jorgensen (2004)).

Models which find patterns between the structure of the ligand and the class (either
‘active‘ or ‘not active‘) are categorized as Quantitative Structure-Activity Relationship
(QSAR) analysis and is discussed in the following Section. We note that similarity
searching does not fit into the typical SAR or machine learning framework. In QSAR
analysis and machine learning research, data is split into training and testing phases.
In the training phase, a model will learn patterns between a feature vector describing
a molecule and an associated class ‘active‘ or ‘not active‘. Next, predictions are made
in a testing phase, and the accuracy of the classification model is recorded. Although
some machine learning models only train using one class, such as Nearest Neighbour
algorithms and One-Class SVMs, these models are able to predict both the ‘active‘ and
‘not active‘ class. Similarity searching is only used to locate other similar ‘active‘ models,
so it can not be compared with other machine learning algorithms.

1.2.2 Quantitative Structure-Activity Relationship Analysis

Quantitative Structure-Activity Relationship (QSAR) analysis is a form of virtual screen-
ing that is used to find patterns between the structure of a molecule and its biological
activity. A related problem is to find patterns between molecular structure and pharma-
cokinetic properties such as ADME properties; this is termed Quantitative Structure-
Property Relationship (QSPR) analysis. The origins of QSAR/QSPR are found in the
pioneering work of Hansch (Hansch and Fujita (1964)), who found equations that de-
scribe a relationship between biological activity and molecular structure.

QSAR analysis follows the approach used often in machine learning. The data is split
into two sets, one for training known as the training set and a second test set. A model
is trained using data from the training set and later this model is used to predict the
activity of molecules in the test set. The accuracy, or number of correct predictions, is
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recorded and can be used to compare to other models of the same data. QSAR analysis
typically uses both classes to train (class ‘active‘ and class ‘not active‘) which forms a
binary classification problem.

In order to derive this binary classification some decisions must be made. The activity
is a real number quantifying the interaction between ligand and target. Some datasets
have ranges defined for the activity, where the values fall into a highly active, moderately
active or inactive class. A binary classification problem can then be modeled using two of
these classes, for example highly active vs. inactive. Although we focus on classification,
the activity is a real number, so QSAR can also be modeled using regression techniques.

A wide range of machine learning algorithms are available and can be performed for
QSAR analysis, including multiple linear regression, partial least square and artificial
neural networks. More recently Support Vector Machines (SVM)s have been applied. A
good introduction to machine learning which describes many of the learning algorithms
is given in the book Duda and Hart (2001).

1.2.3 SVMs for QSAR Analysis

Support Vector Machines (SVMs) have been applied to a wide variety of problems that
find patterns between the structure and activity (QSAR) as well as other properties
(QSPR). In this section we review recent literature that discusses several different appli-
cations of SVMs in drug discovery. This research is grouped into applications of SVMs
in QSAR, applications in QSPR, and other applications.

QSAR is an important task in drug discovery where SVMs have been applied successfully.
In many papers, SVMs were compared to neural networks and other classifiers. Byvatov
et al. (2003) found that SVMs outperformed neural networks using a number of different
molecular descriptors, and irrespective of training set size. Similarly, results in Zernov
et al. (2003) showed that SVMs could more accurately identify drug-like molecule from
non-drugs. Interestingly, when Glick et al. (2006a) added noise to the datasets SVMs still
outperform conventional classifiers. Learning from the structure of a molecule, SVMs
have been used to predict a number of different targets. These include COX-2 inhibitors
(Yao et al. (2004)), P450 3A4, 2D6 and 2C9 inhibitors (Yap and Chen (2005)) AP-1 and
NF-kB mediated gene expression inhibitors (Liu et al. (2003)) and the binding affinities
to human serum Albumin (Xue et al. (2004c)). Using 21 targets related to depression,
SVM models were analyzed for their ability to discover new lead series in Glick et al.
(2006b). SVMs have also been used in other QSAR research problems. Instead of using
the ranking formulation of an SVM, Jorissen and Gilson (2005) showed that actives
could be enriched so models will maximize the number of actives in the top 10% of the
results. In Warmuth et al. (2003), an active learning methodology is used to show how
SVMs can be used to choose the minimum batch of lab-tested molecules by increasing
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the training set size in subsequent iterations. Finally, Byvatov and Schneider (2004)
showed that SVMs could be used for feature selection by considering examples chosen
as support vectors. By only training with the most relevant features, similar accuracy
was achieved with models using all examples.

Research has shown that SVMs can also be used for Quantitative Structure-Property
Relationship (QSPR) analysis. Research has shown that a number of different properties
can be predicted with SVMs. These include the toxicity of phenols (Yao et al. (2004)),
the capacity factor (Liu et al. (2004a)), the isoelectric point (Liu et al. (2004b)), the
O-H bond dissociation energy (Xue et al. (2004d)), the aqueous solubility (Lind and
Maltseva (2003)) and finally the heat capacity (Xue et al. (2004a)).

SVMs have been applied to learn patterns between molecular structures and other re-
lationships. A model of Quantitative Structure-Mobility Relationship (QSMR) was in-
troduced in Xue et al. (2004b) where the electrophoretic mobilities of 58 aliphatic and
aromatic carboxylic acids were predicted. A Quantitative Structure-Retention Relation-
ship (QSRR) model was used in Song et al. (2002) to predict the retention behaviour of
24 proteins.

Some work has been done using graph kernels and SVMs to predict QSAR, although we
delay this discussion to Chapter 3.

1.3 Support Vector Machines and Kernel methods

In this Section, we will introduce Support Vector Machines and Kernel Methods. We
will use SVMs with graph kernels to perform virtual screening of molecules.

1.3.1 Support Vector Machines

Support Vector Machines (SVM) are a linear binary classification algorithm. A detailed
introduction describing how SVMs are derived is given in the book Cristianini and
Shawe-Taylor (2000). SVMs are a type of learning algorithm that fall into a group of
algorithms known as kernel methods. We refer the reader to the books on kernel methods
including Shawe-Taylor and Cristianini (2004) and Scholkopf and Smola (2002), although
they were first introduced in Boser et al. (1992).

We begin by describing how an SVM can be used for classification when the data is
linearly separable. A binary classification problem is one where the set of ` examples
has S = {(x1, y1), . . . , (x`, y`)} where x ∈ Rn and y ∈ {−1, 1}. When the training data
are linearly separable, then there exists a hyperplane that separates all of the positive
examples from the negative examples. In this case, a hard-margin SVM can be used,
which selects a hyperplane with the largest distance between the closest data point. See



Chapter 1 Introduction 10

Figure 1.2 for the case of a hard-margin SVM. If an example is positive then it will
have 〈w, x〉+ b ≥ 0, and negative will have 〈w, x〉+ b ≤ 0. Selecting the largest margin
will hopefully produce a model with good generalization abilities, or ability to predict
unseen data.

w

γ
γ

(a) hard-margin hyperplane

Misclassified

γ
γ

w

(b) soft-margin hyperplane

Figure 1.2: A hyperplane, is shown that separates two classes of data. w and b are
two parameters which define the slope and distance from the origin respectively. The
distance between the closest point(s) and the hyperplane is given by γ, the margin.
The left image shows a hard-margin SVM, where the data is linearly separable. The
right image shows a soft-margin SVM that allows examples to violate the margin; this

is essential as the data are not linearly separable.

With most real-world data, the data are not linearly separable and therefore slack vari-
ables are introduced which allow examples to cross the hyperplane. Now, the optimiza-
tion problem will involve both finding a hyperplane that has the smallest errors from
examples which violate the margin. This is termed the soft-margin SVM and is defined
by the following optimization problem.

(w∗, b∗) = argminw,b

1
2
||w||2 + C

∑

i

ξi (1.1)

s.t. yi[〈w, xi〉+ b] ≥ 1− ξi (1.2)

ξi ≥ 0, 1 ≤ i ≤ ` (1.3)

This results in the primal lagrangian:

L(w, b,α, ξ) =
1
2
||w||2 + C

∑

i

ξi −
∑

i

αi (yi[〈w, xi〉+ b]− 1 + ξi)−
∑

i

riξi (1.4)
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where αi ≥ 0 and ri ≥ 0 for 1 ≤ i ≤ `. Taking the partial derivatives with respect to
w, b and ξ gives:

∂L

∂w
= w −

∑

i

αiyixi = 0 (1.5)

∴ w =
∑

i

αiyixi (1.6)

∂L

∂b
=

∑

i

αiyi = 0 (1.7)

∂L

∂ξi
= C −αi − ri = 0 (1.8)

∴ C = ri + αi, 1 ≤ i ≤ ` (1.9)

Inserting these partial derivatives back into the primal gives the dual formulation:

(α∗) = argmaxα

∑

i

αi − 1
2

∑

i,j

αiαjyiyj 〈xi,xj〉 (1.10)

s.t. C ≥ αi ≥ 0, (1.11)∑

i

αiyi = 0 (1.12)

From Karush-Kuhn Tucker (KKT) conditions, only examples with a functional margin
of 1 have non-zero α∗

i , and are called the support vectors (SV). If the data are linearly
separable, all the SVs will lie on the margin, hence making the algorithm and decision
function efficient by only focusing on these examples. This efficiency will also exist in the
soft margin case, although examples which violate the margin are included. Predictions
are made only using the support vectors:

f(x) = sgn

(∑

SV s

α∗
i yi 〈xi, x〉+ b∗

)
(1.13)

Here, b∗ can be obtained from any support vector, xi:

b∗ =
yi∑`

j=1 α∗
j 〈xj , xi〉

(1.14)
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1.3.2 Kernel Methods

Kernel methods include a number of algorithm such as SVMs, Kernel Canonical Corre-
lation Analysis (KCCA), Kernel Partial Least Squares (KPLS) and others. In order for
an algorithm to use a kernel function, a dual form must be calculated where only inner
products between examples are required.

An SVM can be transformed into a kernel SVM by replacing all inner products with a
positive definite kernel function, κ. This transformation is termed the kernel trick. This
is equivalent to transforming all input vectors x1, . . . ,x` to φ(x1), . . . , φ(x`) ∈ H, where
φ is a mapping from the input space X to the feature space H (φ : X → H). Please see
Figure 1.3 for an example.

2

X H

HX2

1 1

Figure 1.3: Data located in an input space X (left) can be passed through a kernel
function, where they are linearly separable in the feature space H (right).

In the higher dimensional feature space, the SVM can be applied and solve non-linear
patterns (in the input space). With the inner product replaced by a kernel function, the
decision function for the SVM in (1.13) becomes:

f(xj) = sgn

(∑

SV s

α∗
i κ(xi, xj) + b∗

)
(1.15)

One of the key properties of a kernel function is that it is positive definite.

Definition 1.1 (Positive Definite Kernel). κ is said to be a positive definite kernel if
and only if, for all positive integers ` and for all x1, . . . ,x` ∈ X , the square `× ` matrix
K = (κ(xi, xj))1<=i,j<=` is positive semi-definite which means that all eigenvalues are
nonnegative.

If a kernel function can be defined between two examples, then it can be used with any
kernel method. An example of a kernel that maps data into a higher dimensional space
is the polynomial kernel :

κ(xi, xj) = (〈xi, xj〉+ R)d (1.16)
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where R ≥ 0 and d are integers.

Often, the kernel is normalized using the following:

κ̂(xi,xj) =
κ(xi,xj)√

κ(xi, xi)κ(xj , xj)
(1.17)

This normalization ensure that the data lies on the unit hypersphere. We will use this
with graph kernels as it removes the bias from larger graphs.

One of the most remarkable properties of kernel methods is their ability to handle
structured data. Structured data exists in two types: either each example contains an
inherent structure and cannot readily be described by explicit feature vectors (i.e. docu-
ments, images, graphs) or the input space is structured (i.e. dependencies exist between
examples). A method to calculate structured kernels by using successive comparisons
of smaller parts of the structure was proposed in Haussler (1999). Independently, string
kernels for biological sequences were proposed in Watkins (2000). More recently, rational
kernels, a general framework that allows most kernels to be calculated from a weighted
state transducer, is given in Cortes et al. (2004).

One type of structured kernel is the string kernel. Strings are sequences of characters
from a given alphabet. String kernels were first proposed using a dynamic programming
approach to allow insertions and deletions in strings as given in Watkins (2000). A
similar kernel, termed the n-gram kernel, allows gaps in the strings and was used for text
categorization (Lodhi et al. (2001)). Many efficient implementations of string kernels
have been proposed including using suffix arrays as discussed in Leslie and Kuang (2004).
The computational performance of this suffix array implementation was later improved
in other work (Teo and Vishwanathan (2006)).

A tree kernel is another type of structured kernel. A tree is a hierarchical data structure
composed of root nodes and branches to lower edge nodes. Tree kernels were first
proposed in Collins and Duffy (2002), using a recursive calculation, that compares each
subtree at a given leaf. A fast implementation was proposed in Vishwanathan and Smola
(2003) by calculating the kernel using a suffix tree.

More recently, a third type of structured kernels for graphs have been proposed. We
postpone a review of graph kernels to Chapter 3, as we give a detailed description of
each kernel.

1.4 Research Questions

In this thesis, we will be analyzing several issues that incorporate both chemoinformatics
and machine learning topics. We will use kernel methods for graphs in order to analyze
molecular data. Specifically, we will address the following research questions.
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1. What is best graph representation for a molecule? What methods should be used
to colour vertices of this graph?

2. What is the best graph kernel to accurately classify molecular data?

3. What is the best graph kernel to classify molecular data for lead hopping?

4. What is the best graph kernel for experiments that use multiple targets?

1.5 Contributions of Thesis

In the course of this thesis, our research has been presented in the following publications:

1. A presentation at 6th IARP-TC-15 Workshop on Graph-based Representations in
Pattern Recognition in Alicante, Spain (Demco and Saunders (2007b)).

2. A poster at UK-QSAR and Chemoinformatics Group, Spring meeting at As-
traZeneca (Alderley Park, UK) (Demco and Saunders (2007a)).

3. A book chapter in Perspectives of Neural-Symbolic Integration that reviews tree
and graph kernels (Saunders and Demco (2007)).

4. A technical report that introduces finite-length graph kernels and extensions Demco
and Saunders (2009), under preparation.

We review the contributions of the thesis in the following sections.

1.5.1 Finite-Length Graph kernels

We present Finite-length graph kernels in Chapter 4. These kernels extend the work of
Gärtner et al. (2003), although it is calculated efficiently via dynamic programming. Our
framework allows the inclusion of expert knowledge. We describe how one can include
two new extensions: soft-matching and gaps. Finally, we show how non-tottering walks,
previously introduced in Mahé et al. (2004) are included.

1.5.2 Graph Kernels using Reduced and TP Graphs

The classic representation of a molecule is a molecular graph where the vertices are atoms
connected by edges (bonds). In this thesis, we will use this standard representation
along with two other graph representations: topological pharmacophore and reduced
graphs. The first is the topological pharmacophore (TP) graph. The TP graph has
the same structure as the molecular graph although each vertex label is replaced with
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a label representing the nearest topological pharmacophore descriptor to each atom.
The TP descriptor defines functional areas of the molecule related to binding with a
target. A second representation we use is reduced graphs. A reduced graph is a compact
representation of a molecular graph. Such reductions as collapsing carbon rings to a
single node are used to create a reduced graph from a molecular graph. We will show
results that includes walks which soft-match between atom labels and TP labels, along
with reduced graphs in Chapter 5.

At the time of writing this thesis, only limited work with reduced graphs has been
analyzed with optimal assignment graph kernels (Fröhlich et al. (2005)). No research
using TP graphs has previously been presented.

1.5.3 Lead Hopping

Lead hopping is the term used to describe learning from one lead series of molecules
(group of molecules with similar molecular structure) in order to find actives in a different
set of lead molecules. Most other research that has used graph kernels has measured
results with a cross-validation using all examples. In practice, drug discovery ideally
wants to learn a model that returns a diverse set of molecules for further testing. By
finding molecules that are from other chemical series, allows more flexibility in later
stages if one lead has undesired side-effects. Lead Hopping is a relatively hard problem
as typically the features used for learning are 2D features, so using a model built from
one group which is dissimilar in a 2D sense is not trivial. We will describe how we model
this problem in Chapter 6 and present new results using the graph kernels along with
several graph representations. To our knowledge, no other research has been presented
using graph kernels to analyze the lead hopping problem.

1.5.4 Multiple Targets

In practice, a drug candidate must often meet several requirements. The best candidate
may be one which has a strong binding with certain targets associated with a disease
and no binding with targets that cause undesired side-effects. We performed two sets
of experiments with multiple targets in Chapter 7. We first used a publicly-available
dataset which has over seven thousand compounds along with activity data for 36 targets.
We test several graph kernels and also several graph-based representations. In our first
test, we tried a binary-classification of 1 target that uses information from both the
remaining 35 targets and from the structure of the molecule with a graph kernel. Next,
we used kernel PLS to predict all 36 targets. Our second set of experiments used Kernel
Canonical Correlation Analysis (KCCA). We used string kernels to represent the targets
and graph kernels to represent molecules. Using this approach, we can predict molecules
that may bind with a target using a model that did not train on any examples that bind
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with the target. This could be useful in drug discovery if a new target is generated
although no training data is available.

1.5.5 SVMLight for graphs

The software used to compute these kernels presented in this thesis has been implemented
using a significantly modified version of SVMLight4 (Joachims (1999)). This software
allows any graph to be used as input, and any combination of our Finite-length graph
kernel to be computed. We plan to release this software publicly and will offer it as a
separate package, similar to another package, SVMLight for trees by Alessandro Moschitti5.
We chose to develop our kernels in SVMLight as it has built in features to work with large
datasets by using approximations when solving the SVM optimization problem. SVMLight

was initially developed to work with large datasets of strings, another class of structured
data. Internally, the kernel matrix is not pre-computed which allows large datasets to
be computed, which would otherwise require a large amount of memory for storage of
the kernel matrix.

1.6 Summary and Overview of Thesis

In this Chapter we have described one of the primary motivations for designing kernel
methods for graphs: drug discovery. This led to a review of virtual screening and
QSAR analysis. We describe a key tool in this thesis: kernel methods and support
vector machines. Lastly, we discussed our research questions and the contributions of
the thesis.

This thesis will be organized in the following manner. In Chapter 2, we will describe
different descriptors and graphs that can be used to represent molecules. We also discuss
other issues involved in representing molecules as graphs. In Chapter 3, we will review
kernel methods for graph structures. Following this, we will introduce new Finite-Length
graph kernels and extensions in Chapter 4. In Chapter 5, results are given for the Finite-
Length graph kernel on two publicly available datasets. We give results for a number
of graph kernel parameters and test three graph-based representations. In Chapter 6,
we describe a way of modeling the lead-hopping problem using two publicly available
datasets. We give results for a number of Finite-Length graph kernels and parameters
along with three graph representations. In Chapter 7, we give results that use our graph
kernels with multiple targets. We use kernel PLS and SVMs to understand how this
extra target information benefits our models. Also, we use KCCA to predict the activity
of molecules for an unseen target. Finally, in Chapter 8, we conclude and give future
directions.

4http://svmlight.joachims.org/
5http://ai-nlp.info.uniroma2.it/moschitti/TK1.2-software/Tree-Kernel.htm



Chapter 2

Molecular Representations

Molecules are complex real-world objects. In order to build models from this data, a
consistent representation must be chosen. There are many features that can be used
from a molecule, ranging from it’s physicochemical properties, to structural features
in two and three dimensions. A QSAR and machine learning model can only provide
patterns as good as the information that is used to describe the molecule. Ideally, we
want to choose a representation that will give the model enough information to find
patterns that distinguish between drugs and non-drugs.

Molecular descriptors are numerical values that characterize properties of molecules.
Descriptors can be considered features in a machine learning sense. In QSAR research,
descriptors are categorized into three types: 1D, 2D or 3D descriptors. Although this
categorization is consistent throughout QSAR literature (such as reviews given in Leach
and Gillet (2003) and Gasteiger and Engel (2003)), the naming convention for these
categories may at first be confusing to the reader as 1D refers to the dimension of the
descriptor and 2D, 3D refer to the dimension from which the descriptor is derived. A
1D descriptor, is a single real value which describes overall properties of the molecule.
A 2D descriptor, is a feature vector (table of values) that is derived from the molecular
graph (a two dimensional structure). A 3D descriptor, is a feature vector that describes
properties derived only from a 3D view of the molecule (such as distances between
molecules). An example of several types of structural representations of an Aspirin
molecule is illustrated in Figure 2.1.

In our research, we use graph kernels which can learn directly from the structure of
a graph. Graphs are given as input to the learning algorithm. As a result, all of the
structural information originally in the graph is available. Graph kernels do not discard
any structural information in early data processing steps. Only once the graph kernel is
chosen are certain features selected and implicitly given a feature vector representation.
This approach allows different graph kernels and parameters to be used that choose
different features without re-processing the original input feature vectors.

17
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Figure 2.1: These images show several different molecular representations of aspirin.
The first image is a 1D representation. In the first image, we give the chemical name
for Aspirin as a 1D descriptors are single values describing global chemical and struc-
tural properties of the molecule. 2D descriptors are derived from structural features in
the molecular graph. 3D descriptors are derived from the molecules shape and repre-
sentation in a 3D space, including its 3D coordinates. The atoms in 2.1(b) have been
coloured in the same manner as 2.1(c) to show the relationship between these two views.

2.1 Descriptors

Descriptors are numerical values that describe properties of molecules. Using 1D de-
scriptors we are able to differentiate between most molecules, although descriptors from
greater dimensions, 2D and 3D, provide more information about its shape and function.
Ultimately, we hope to encode information about the molecule in order to differentiate
between classes such as ‘active’, ‘not active’ or ‘toxic’ and ‘not toxic’. Potentially a
specific part of a molecule, only described by 2D or 3D features, may be key to the
interaction with a target associated with a disease. Introductory books on chemoinfor-
matics, including Leach and Gillet (2003) and Gasteiger and Engel (2003), give detailed
reviews of many different descriptors. In this section, we will describe some of the most
prevalent ones.

2.1.1 1D Descriptors

Descriptors from 1D contain the least amount of information. A 1D descriptor is a single
value which describes physicochemical properties and counts of features of a molecule.
This can include counts of atom types, bond types, aliphatic and aromatic rings. Other
types of 1D descriptors include physicochemical properties of a molecule. For example, a
useful 1D descriptor is the hydrophobicity which measures the ability to pass through a
cell membrane (Gasteiger and Engel (2003)). Finally, values that summarize properties
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of a molecular graph are considered 1D descriptors. Several examples of these are
described in Gasteiger and Engel (2003) including the Wiener index (Kier and Hall
(1986)) which is a sum of the distances (in bonds) between any two atoms in a molecule.
Another type is the Molar Refractivity which is a proportion of the molecular weight to
density.

2.1.2 2D Descriptors

2D descriptors give a much more expressive representation of molecules. This category of
descriptor gives a feature vector that describes structural elements from the molecular
graph. It is called a 2D descriptor as the molecular graph is a 2D structure. The
molecular graph is one of the most natural representations of a molecule.

Before describing how 2D descriptors are extracted from a molecular graph, we mention
how molecular graphs are physically stored on a computer. The standard representation
for molecular graphs is the MOL (or SDF) file format. In this format the graph is
described using a connection table which consists of a list of atoms followed by a list
of bonds (or connections) between each of the atoms. So for example, a single line
of a connection table may contain atom 1 is connected to atoms 3 and 5. The next
line may contain atom 2 is connected to atom 4 and so on. In our research, we use
an adjacency matrix representation, used often in graph theory. The same information
is contained in the connection table and adjacency matrix, although it is expressed in
a different format. For a molecular graph consisting of ` atoms, an adjacency matrix
A is an ` by ` matrix where entry Ai,j is 0 if no bond exists and Ai,j > 0 if a bond
exists. Converting from the connection table in the MOL format to an adjacency matrix
is straightforward. A matrix of size ` is filled with zeros, iterating through each bond
connection the corresponding adjacency entry is updated. Both Leach and Gillet (2003)
and Gasteiger and Engel (2003) give a more detailed description of the MOL file format.

After constructing a molecular graph, one must choose a 2D descriptor which defines
specific subgraphs and features which represent the graph in a fixed table of values. As
graphs are of different sizes, we cannot directly use the adjacency matrix as a descriptor.
Even if every graph had the same number of atoms, and therefore had the same size
adjacency matrix. To build an adjacency matrix, an ordering of the vertices must be
given, so a certain atom in a molecule corresponds to the first row and column of the
adjacency matrix, and so on. If the same molecule was given, although a different order
was used, a different adjacency matrix would be created. As a result, directly using the
adjacency matrix is not a good descriptor. We must choose counts of sub-graphs and
features in order to create a consistent descriptor for each molecule.
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A fingerprint is a binary feature vector, where each entry indicates the presence of a
fragment (or small sub-structure). For example, a small fragment, C − O, is a Carbon
atom singly bonded to an Oxygen atom.

There are two types of fingerprints. The first type uses a set of predefined structural
keys which define each element in the fingerprint. Each entry corresponds to a specific
fragment. An example of this type is the MDL MACCS keys (McGregor and Pallai
(1997)) which use 166 predefined fragments. A second type of fingerprint uses open-
hashing allowing each entry to correspond to more than one fragment. Starting with a
single atom, consecutively larger fragments are built in each iteration of an algorithm
up to a certain depth. Each of these fragments is hashed into the fingerprint. The
proprietary Daylight1 fingerprints use up to eight atoms in a fragment. The length of
each fingerprint is usually restricted to a size of 1,024 entries. Please see Figure 2.2 for
an example of the fingerprinting process. As an entry in the second type of fingerprints
may define the presence of more than one fragment (or collisions), one cannot easily
map from a fingerprint to a molecule.
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Figure 2.2: This figure shows the process of how a fingerprint is generated. Fragments,
or sub-graphs, from a molecular graph are selected and represented in a binary-value
fingerprint. On the left of the diagram the stages of the fingerprinting process are given.
On the right, the corresponding stages are shown for an Aspirin molecule. Examples of
a few possible fragments are given below the original molecule. Below these fragments,
an example of a fingerprint of these fragments is shown. A 1 indicates the presence of

the fragment and 0 otherwise.

The Tanimoto coefficient measures the similarity between two molecules (Willet et al.
(1986)). For example, if we have a fingerprint F1 and F2, it is calculated as follows:

1http://www.daylight.com
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T (F1, F2) =
〈F1,F2〉

〈F1, F1〉+ 〈F2,F2〉 − 〈F1,F2〉 (2.1)

The Tanimoto score is a value between 0 and 1, where 0 indicates no similarity and 1
indicates a high 2D similarity . As all features used in the fingerprints are pulled from
the 2D molecular graph, this Tanimoto value defines a 2D similarity measure for two
molecules.

Topological Pharmacophores (TP) are functional areas of the molecule. TPs are 2D,
based on the bond count between features (Schneider et al. (1999a)) which is the 1UPAC
definition of a pharmacophore (Böhm and Schneider (2003)). We will describe how
reduced graphs and TP graphs can be constructed using Topological Pharmacophores
in Section 2.2.3.

2.1.3 3D Descriptors

3D descriptors have the most information about the structure of a molecule. Basic 3D
descriptors are calculated using three dimensional properties of molecules such as surface,
shape and volume properties. Brown and Martin (1997) compared several basic 3D
descriptors to both types of 2D fingerprints: non-hashed fingerprints (MACCS keys) and
hashed fingerprints. They found that 2D descriptors, specifically non-hashed MACCS
keys, outperformed both basic 3D descriptors such as distance between atoms in pairs
and triplets as well as hashed 2D fingerprints. Despite these results, many other types
of 3D descriptors have been studied.

One type of 3D descriptor is calculated using molecular alignment, which compares
two molecules to find a common 3D orientation. The best alignment is used and a
scoring function returns the degree of similarity of two molecules. A review of molecular
alignment techniques is given in Lemmen and Lengauer (2000).

One of the most recent approaches to building 3D descriptors uses TPs. A TP fingerprint
can be generated using the spatial locations of the TPs of a molecule (Pickett et al.
(1996)). An extensive review of 3D pharmacophores in Mason et al. (2001) describes
other approaches to building 3D descriptors including ones generated from both the
ligand and target sites. Mason et al. (2001) also reviews 3D pharmacophores that
account for flexibility (or conformations) in the molecule as well as methods of obtaining
TP fingerprints.



Chapter 2 Molecular Representations 22

2.2 Graph Representations

In this Section, we discuss several ways to represent a molecule as a graph. In our
research, we use several graph representations with graph kernels. Using this approach,
features are extracted from the graphs when the graph kernel model is computed, instead
of during earlier data-processing stages. We will discuss three representations including
molecular, reduced and topological pharmacophore graphs.

2.2.1 Molecular Graph

A molecular graph is a natural way to represent a molecule. In a molecular graph each
vertex represents an atom, and the edges represent bond types. A molecular graph, G,
is a type of labeled, directed graph consisting of a set of vertices (atom types), V, and
edges (bond types), E , of size |V| and |E|. We describe molecules as directed rather than
undirected graphs as this is required for graph kernels that count walks in the graph.
This adjustment is made by inserting two opposing, directed edges for each edge (bond).
The adjacency matrix, A, of graph G is a |V| by |V| matrix. An entry in Ai,j > 0 (and
consequently Aj,i > 0) if there is an edge from vertex vi to vj and 0 otherwise. The type
of bond (or edge label) is stored in Ai,j , by setting Ai,j = 1 for single bonds, 2 for double
bonds and 3 for aromatic bonds. All of the information needed to describe a molecular
graph is given in the adjacency matrix augmented with edge labels, along with a list of
vertex labels.

In Figure 2.3, we show two molecular graphs of an Aspirin molecule: one without hy-
drogen and one with hydrogen. The Simplified Molecular Input Line Entry System
(SMILES) representation is a string representation of a molecular graph (Leach and
Gillet (2003)). The SMILES representation and MOL files often do not include hydro-
gen atoms as they are implicitly represented. We show examples of molecular graphs
with and without hydrogen atoms, as we consider both types in our research. By adding
Hydrogen molecules to the molecular graph the size has increased. The pharmacophore
features discussed in the previous section capture the role of hydrogens in the molecule.

2.2.2 Reduced Graph

Reduced graphs are another representation of molecules as a graph. A reduced graph
presents a functional view of a molecular graph, by collapsing groups of atoms into single
nodes that represent binding groups within the molecule. Reduced graphs were originally
developed for structure and substructure searching of generic chemical structures (Gillet
et al. (1991)). Later, reduced graphs have been used in similarity searching (Takahashi
et al. (1992); Gillet et al. (2003)) and QSAR (Birchall et al. (2008b,a)).
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Figure 2.3: This figure shows the molecular graph of an aspirin molecule without
hydrogen atoms on the left, and with hydrogen atoms on the right. It is drawn as a
labeled, directed graph. Vertex labels consists of atom types C (Carbon), O (Oxygen)
and H (Hydrogen). The hydrogen atoms are coloured blue to highlight the difference

between the two graphs.

We first introduce some chemical terms used to describe Topological Pharmacophores.
An Aromatic ring is a planar ring of six Carbon atoms known as Benzene. It consists
of alternating single and double bonds. Other types of ring are Aliphatic rings. Finally,
another type is a 5 atom ring which contains a heteroatom (which is not a Carbon or
Hydrogen atom) such as Furan which contains a single Oxygen and 4 Carbon atoms.
positively ionizable and negatively ionizable refer to atoms that have a positive or neg-
ative charge, which means each atom has an extra electron or is missing an electron.
A donor or acceptor feature is an area of the molecule which has an extra electron or
requires an electron that is used in a hydrogen bond.

There are several different variations of reduced graphs. We use the reduced graph defini-
tion of Harper et al. (2004) that is based on the Ar/F(4) definition in Gillet et al. (2003).
The Ar/F(4) definition gives the most specificity among other reduced graph definitions
given in Gillet et al. (2003). Both aromatic and aliphatic rings in a molecular graphs are
collapsed into a single aromatic or aliphatic vertex type. Also, other functional areas of
the molecule (composed of several vertices) are collapsed into a single vertex. Further
features are built into each reduced graph vertex by defining whether it is hydrogen bond
donor, hydrogen bond acceptor, donor and acceptor, or neither. Harper et al. (2004)
extend this definition by including positively and negatively ionizable features, allowing
each vertex to be further distinguished based on this feature. The full range of possible
combinations is given in Table 2.1. A further possible vertex type is the linker node
(named Zn in Table 2.1). It is an area of the molecule that does not match any of these
features but connects them and so it is useful in defining some structural information in
the reduced graph. Each of the possible combinations is assigned a unique label. The
naming convention in Harper et al. (2004) uses atom names to describe combinations of
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features. Using atom names for vertex labels allows these reduced graphs to be used in
chemical graphing software such as ACD/3D Viewer2 and ISIS/Draw3. Furthermore, we
use this naming convention as the reduced graphs were generated from molecular graph
SMILES strings, using GSK’s proprietary software built with the Daylight4 toolkit.

Pos. Neg. Aromatic Aliphatic Donor Acceptor Name
• Sc
• • Ti
• • V
• • • Cr

• • Mn
• • Fe

• Hf
• • Ta
• • W
• • • Re

• • Y
• • Zr

• Co
• Ni

• • Cu
• Nb

• Mo
Zn

Table 2.1: Definitions for names used to represent features in topological pharma-
cophore and reduced graphs consistent with Harper et al. (2004).

As the reduced graph collapses several vertices in a single vertex, the size of reduced
graph is much smaller than the molecular graph. An illustration of an Aspirin molecule
as both a molecular and reduced graph is given in Figure 2.4. An Aspirin molecular
graph contains 13 vertices (atoms), while the reduced graph only contains 3. Clearly,
the reduced graph is a fraction of the size of the molecular graph, when counting both
the number of vertices and edges. Despite removing a large amount of structural infor-
mation, the reduced graph is designed to retain the most information about functional
areas involved in binding with the target. As we will discuss in Chapter 4, the computa-
tion of the graph kernel is quite expensive. As the reduced graph is much smaller, their
is a large computational benefit, especially when using large datasets.

As described in Section 2.2.1, we use an adjacency matrix and vector label to store the
structure and labels of molecular graph. We use this same structure to store reduced
graph. We note that the set of vertices and edges is entirely different from the molecular
graph. The label types for the reduced graph are given in Table 2.1.

2http://www.acdlabs.com
3http://www.mdli.com
4http://www.daylight.com
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Figure 2.4: This figure shows a molecular graph (on the left) and a reduced graph
(on the right) for an Aspirin molecule. The areas in dashed regions of the molecular
graph show an area which is compacted into a single node in the reduced graph. A set
of unique vertex label are used in the reduced graph to describe which combination of
features are used. The meaning of the vertex labels is given in Table 2.1. Edge labels in
reduced graphs are set to 1, except for fused rings such as Naphalene (containing two
fused 6-atom Carbon rings), where edge labels are set to 2 for a double bond (Sc-Sc).

2.2.3 Topological Pharmacophore Graph

An alternative representation for a molecule as a graph is given by the Topological
Pharmacophore (TP) graph. A Topological Pharmacophore is an area of a molecule
which describe important functional aspects that may be involved in binding with a
desired target. We use the same TPs that are used for the reduced graphs given in
Table 2.1. The features used are: positively ionizable group, negatively ionizable group,
aromatic ring, aliphatic ring, hydrogen bond donor, hydrogen bond acceptor.

The TP graph has the same structure of a molecular graph, although the vertex and
edge labels are different. We note that although we described molecular graphs that
include hydrogen atoms in Section 2.2.1, the implicit hydrogen atoms are not used in
the TP graph though used in the feature definition. The standard view, in the SMILES
format for a molecule does not include hydrogen atoms, so no modification is needed to
the data.

Given a molecular graph, one can obtain a TP graph by iterating through each vertex
and changing its label based on the set of features given in Table 2.1. While reduced
graphs collapse rings and groups of atoms into a single node that describe a TP feature,
the TP graph retains the original structure. For example, each atom/vertex within an
aromatic ring would be relabeled as an aromatic atom. The edge labels are not used so
they are all set to 1 in practice. The TP graphs were generated from molecular graph
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SMILES representation using GSK’s proprietary software and the Daylight5 toolkit. An
example of a topological pharmacophore graph is given in Figure 2.5.
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Figure 2.5: This figure shows the molecular graph (on the left) and TP graph (on
the right) of an Aspirin molecule. A TP graph has the same structure as the molecular
graph, although it contains different vertex and edge labels. Vertex labels in a TP

graph use labels described in Table 2.1.

2.3 Open Issues in Representing Molecules as Graphs

In this Section, we discuss several issues involved in choosing a graph representation
for a molecule. These considerations must be made in early data processing stage and
must be addressed when building a dataset. We will discuss some issues including vertex
colouring, usage of hydrogen atoms and aromatic bond types.

2.3.1 Colouring

Graph colouring is a technique that adds more structural information into vertex labels.
As there are relatively few atom types (or vertex labels), we can increase the distinction
between graphs by including some local structural information around each vertex in
the labels. Graph colouring must be performed in an initial data processing step which
modifies the original graphs. Graph colouring replaces the original vertex labels with
colour labels containing more structural information. In recent graph kernel literature,
two approaches have been suggested to colour graph vertex labels. The first method
notated by N-colour is described in Gärtner (2005a). This method defines a coloured
vertex label as the set of each neighbouring vertex labels as well as it’s own label. A
second method is presented in Mahé et al. (2004) and uses an iterative algorithm called
the Morgan index. At the first iteration when calculating the Morgan index (M0), each
vertex is labeled 1. Subsequent iterations define each vertex as the sum of its label and

5http://www.daylight.com
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each surrounding label. We will only use the first three iterations (denoted by M1, M2
and M3). Please see Figure 2.6 for an illustration of how Morgan and N-Colour are
implemented.
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Figure 2.6: A small molecule example of how the N-Colour and Morgan colour algo-
rithms work. This figure shows how a coloured label using each colouring algorithm is
calculated for the Carbon atom (in blue). The Carbon atom is neighboured by 3 other
atoms (in red). For M1-Colour, the coloured label is C,1, M2-Colour is C,4, M3-Colour

is C,11 and N-Colour is C,O(1),H(2),C(0)

After determining the coloured labels, each vertex in the graph is re-labeled with a
new unique identifier given by both the coloured and No-Colour label. This allows
information from the atom label and local structural information to be incorporated in
the new vertex label.

By generating a coloured label, both N-Colour and Morgan colour, incorporate local
structural information in the vertex labels. The coloured label provides greater dis-
crimination between graphs and more unique vertex labels. This modification has good
computational benefits as there are less matches between graphs.

We have only considered colouring of vertex labels, although we note that another
possibility would be to add colouring to edge labels in a similar manner. We will only
experiment with vertex colouring in our work although structural information could also
be added to edge labels. Furthermore, other properties such as whether an edge is a
rotatable bond could be added into a coloured edge label. Rotatable bonds are very
useful information in a molecular graph as they allow a molecule to change shape and
assume different conformations.

2.3.2 Explicit Hydrogen Atoms

In Section 2.2, we show how a molecular graph can be drawn with and without Hydro-
gen atoms. The SMILES format describes molecules without Hydrogen atoms, although
different publicly available datasets sometimes include Hydrogen atoms. Although it is
possible to modify the data from one format to the other, the two publicly available
datasets used in Chapter 5 differ in their use of Hydrogen atoms. In the MuTag dataset,
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the data gave molecules with Hydrogen atoms in the MOL file, while in the NCI-HIV
dataset they were not included. Despite this discrepancy, the most common format,
SMILES, does not include Hydrogen atoms as they are implicitly represented in the
structure. Using the Daylight software toolkit it is possible to rebuild the graphs to
include hydrogen atoms. This procedure was used to make both types of representa-
tions so that this difference could be analyzed. We note that Hydrogen atoms typically
comprise a large proportion of the graph (about a third) and by including them in our
graphs the kernel calculation becomes less efficient. Furthermore, Hydrogen atoms are
implicitly described in the molecular graph.

2.3.3 Aromatic Bonds

A final consideration is the notation used when labeling aromatic bonds. Although an
Aromatic ring can be drawn with alternating single and double bonds, the placement of
these bonds is arbitrary and depends on how the the 2D molecular graph is drawn. We
use the approach of creating a new bond type for aromatic bonds to resolve this issue.

2.4 Summary

In this Chapter we have reviewed several types of 1D, 2D and 3D descriptors which are
the most common method of representing a molecule. Afterwards, we introduced three
representations of a molecule as a graph: molecular (MG), reduced (RG) and topolog-
ical pharmacophore (TP) graph. We will use these representations in conjunction with
graph kernels in order to compare molecules for use in QSAR analysis. We concluded by
mentioning several features that must be considered when choosing a graph represen-
tation. Although some of these features may be beneficial when classifying drugs, one
must also consider the impact on space and time when calculating the graph kernel.
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A Review of Graph Kernels

Graphs are a very general data structure that are useful in modeling many types of data.
A graph consists of a set of vertices and relationships between these vertices modeled by
edges. Although some research in kernel methods use graphs to describe the input space
(where each vertex in a graph represents an example (Kondor and Lafferty (2002))), we
use graphs to model the structure within a single example or molecule. We reviewed
three types of graph-based representations of molecules in Chapter 2: the molecular
graph (MG), reduced graph (RG) and topological pharmacophore (TP) graph. The
most well known of these is the molecular graph which has vertices for atoms and edges
for bonds.

In this Chapter, we describe how a positive-definite kernel function, or graph kernel can
be calculated directly using the structure of the graph. We begin by reviewing notation
for labeled, directed graphs in Section 3.1. Computational issues involved in calculating
graph kernels are presented in 3.2. A review of several different graph kernels is organized
based on their use of graph features used to formulate the kernel in Section 3.3. Finally,
in Section 3.4 we review a number of recent advances towards designing graph kernels
for molecules.

3.1 Labeled, Directed Graphs

In order to describe graph kernels, we first introduce some notation that is used through-
out this Chapter and the rest of the thesis. A graph G is composed of a set of vertices,
V and edges, E , of size |V|, |E| respectively. When differentiating between graphs and its
elements we subscript each so a graph, Gi, has elements Vi and Ei. The vertex set, V, is
composed of elements {v1, v2, . . . , v|V|}, while an edge from vertex vi to vj is described
as (vi, vj) ∈ E or alternatively the set of by a set of edges:{e1, e2, . . . , e|E|} ∈ E .

29
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Figure 3.1: This figure shows the molecular graph of an Aspirin molecule in 3.1(a)
and the same graph with labeled, directed edges in 3.1(b). In this example, vertex
labels include atom types: Carbon (C), Oxygen (O) and Sulphur(S). The edge labels

are S for single bonds and D double bonds.

A labeled, directed graph has a set of labels, L, along with a function, label, that assigns
labels to each vertex and edge. Graphs without labels can be considered a special case
where the same label is assigned to every edge. We will consider graphs which contain
directed edges where an edge contains additional information about its starting and
ending vertex, as graph kernels need this description to obtain certain features from
the graph. This directional information does not occur naturally in molecular graphs
although it is easy to convert from an undirected to directed graph by replacing each
undirected edge with two opposing directed edges. Please see Figure 3.1 for an example.

Some important graph theory concepts are used to calculate graph kernels include walks,
paths and cycles. A walk is a sequence of vertices, v1, v2, . . . , vn, where vi ∈ V and
(vi, vi+1) ∈ E . Here, the length of the walk is the number of edges, given by n− 1 in the
preceding example. A path is a walk with no repeated vertices, i.e. vi 6= vj except where
i = j. A cycle is a path where the last vertex connects with the first or (v1, vn) ∈ E .

Finally, we mention two other special-cases of labeled, directed graphs, that can be used
to calculate graph kernels: trees and strings. A rooted tree is a type of hierarchical
structure. The vertices of a tree are described as either root nodes or leaf nodes. A tree
contains only one root node at the highest level in the hierarchy. Subsequent lower-level
leaf nodes are connected by branches (or edges). A child node is one level below its
parent node and two levels below it’s grandparent node. Another special-case of graphs
are strings. A string is a sequences of characters from some alphabet. Although strings
contain little structure, they can be expressed as a graph by considering each character
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in a string as a vertex and edges connect other characters immediately before and after
in the string.

3.2 Complexity of Graph Kernels

Before addressing methods of calculating a graph kernel, we discuss the complexity
of graph kernels. One of the first papers on graph kernels included a discussion on
complexity associated with calculating a complete graph kernel. A complete graph
kernel is one which uses all possible sub-graphs as features (Gärtner et al. (2003)). This
kernel would follow the convolution kernel approach (Haussler (1999)) to evaluate the
similarity between all sub-features of the graph. If we consider a feature vector φ(G)
that has a feature for every possible sub-graph. An inner product between these features
can be used to identify whether a graph has a hamiltonian path (Gärtner et al. (2003)).
A hamiltonian path is a path that visits each vertex in a graph exactly once. This
problem is known to be NP-hard on even small graphs (Skiena (1997)) and therefore a
graph kernel using sub-graphs as features is not tractable. As a result, one must take a
different approach that uses features other than every possible sub-graph.

3.3 Approaches to Calculating Graph Kernels

In this Section, we review several ways of calculating a graph kernel. A positive-definite
function between two labeled graphs, G1 and G2, is known as a graph kernel. We use κ

to denote a kernel function, so a graph kernel is given by κ (G1, G2).

As described in Shawe-Taylor and Cristianini (2004), the design of kernel function is
an important step in using a kernel learning algorithm. A kernel function defines the
similarity between two examples, and is the learning algorithm’s only view of the data.
One can choose a kernel function that weights different features accordingly, and as
a result, one can decide what similarity is important for comparing the data. When
normalized, a kernel function returns 0 if two graphs show no similarity. A value of 1
indicates high similarity and would imply that these graphs are implicitly mapped to
the same point in the kernel feature space.

In order to build a graph kernel by following the convolution kernel approach, one must
enumerate all ‘sub parts’ of two graphs and return the cardinality of the intersection of
these two sets. As described in the previous section, using the sub-graphs is not the best
choice, therefore one must use other features to define the ‘sub parts‘. Several graph
kernels have been developed using different features including walks, label distances,
trees, and cycles. We will begin our discussion by describing a trivial symbolic graph
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kernel. Later, we will introduce several classes of graph kernels that are grouped based
on their use of features.

3.3.1 A Trivial Symbolic Kernel

One of the simplest graph kernels, introduced in Kashima and Inokuchi (2002), is a
trivial symbolic graph kernel that uses counts of vertex labels as features. This kernel
defers from structure kernels described in later sections as we use a feature vector to
describe the graph. A feature vector of a graph φ(G) is composed of elements which
each describe counts of unique vertex labels (li). One of these elements is calculated
using:

φi(G) =
∑

vj∈V
1label(vj)=li (3.1)

The indicator function 1, returns 1 if the unique label Li matches a vertex of the graph,
vj . The kernel is the inner product between the feature vector for two graphs, G1 and
G2:

κ(G1, G2) = 〈φ(G1), φ(G2)〉 (3.2)

This kernel counts the number of labels in common between two graph. A similar
function could count edge labels or other simple counts. However, much more expressive
kernel functions can be calculated using the structural information in the graph.

3.3.2 Walks

One of the most popular approaches to calculating a graph kernel uses the number of
matching random walks between two graphs. This type of graph kernel has been termed
a contiguous label sequence graph kernel in Gärtner et al. (2003) as a walk in a graph
does not skip any vertices when walking from one vertex to the next in a graph. We will
use the term walk-based graph kernel to refer to this type of kernel. Two approaches to
calculating a walk-based graph kernel were introduced independently: one that uses a
marginalized kernel and one that uses a product graph approach. We will describe each
of these and discuss how they are equivalent.

The first walk-based approach to calculating a graph kernel we consider was introduced
in Kashima and Inokuchi (2002) and Kashima et al. (2003). This approach counts all
random walks that match between two graphs up to infinite length by down-weighting
longer walks using a marginalized kernel. A walk is described using several probabilities
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that determine its starting vertex, transitions and length. The starting probability, Ps,
is defined with equal probability for all vertices, allowing the random walk to start from
any vertex. A walk transitions from one vertex to another with probability Pt. This is
defined with equal probability for all adjacent vertices. Finally, the length is described
by a stopping probability, Pq. The probability of a walk, w, of length p is given by:

P (w|G) = Ps(w1)
p∏

i=2

Pt(wi|wi−1)Pq(wp) (3.3)

We must also define a kernel κw between two walks, which is the joint probability in
the marginalized kernel. We use the notation w,w′ for walks from G1, G2 respectively.
We first define an indicator function for vertex labels, κL(wi, w

′
i), which returns 1 if wi

and w′i have the same vertex label, and 0 otherwise. Similarly, we define an indicator
function for edge labels, κL((wi, wi+1), (w′i, w

′
i+1)), which returns 1 if given the same

edge labels and 0 otherwise. We can now define a kernel between two walks:

κw(w,w′) =





0 (p 6= p′)

κL(w1, w
′
1)

p∏
i=2

κL((wi−1, wi), (w′i−1, w
′
i))κL(wi, w

′
i) (p = p′)

(3.4)

Finally, the marginalized walk-based kernel is given for two graphs which uses the def-
initions given in eq (3.3) and (3.4). This kernel calculates all walks, w1 and w2, that
match from graphs G1 and G2 respectively.

κ(G1, G2) =
∞∑

p=0

∑
w1

∑
w2

κw(w1,w2)P (w1|G1)P (w2|G2) (3.5)

Some additional constraints must be set to ensure that Ps and Pt of eq (3.3) gives a
probability distribution. This is done by defining a parameter, 0 < Pq < 1, and setting
Ps = Pq

|V | . Similarly, we define Pa by setting
∑

u∈V Pa(u|v) = 1 for all neighbouring
edges. We set the following constraints for Pt to ensure a probability distribution:
Pt(u|v) = 1−Pq

Pq
Pa(u|v)Pq.

Since the path lengths considered span from 1 to ∞, one cannot calculate this kernel
directly in this formulation. In Mahé et al. (2004), a method is given to calculate this
kernel efficiently with product graphs and matrix inversions which is similar to another
walk-based kernel (Gärtner et al. (2003)) that we describe later. Given G1 = (V1, E1)
and G2 = (V2, E2), we construct a product graph, G1 × G2. Vertices for G1, G2 are
subscripted by 1 and 2 respectively. An edge in the product graph connects vertices
(u1, u2) and (v1, v2) if the edge label (u1, v1) = (u2, v2). The starting probability of a
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vertex, (u1, u2), in the product graph is defined by:

πs(u1, u2) = Ps(u1)Ps(u2) (3.6)

where Ps(u) is a uniform probability for all vertices in G1 and G2. By substituting the
constraints to make Ps a probability distribution described above, πs can be described
in terms of Pq.

πs =
P 2

q

|V1||V2| (3.7)

The transition probability of a walk in the product graph is defined by:

πt((v1, v2)|(u1, u2)) = Pt(v1|u1)Pt(v2|u2) (3.8)

where V1,V2 are from G1, G2 respectively. The walk transitions, from one product vertex
vi to vertex vj , are recorded in a transition matrix, Πt. Similarly, using the constraints
given earlier for Pt, this transition probability over product vertices is described in terms
of Pq alone.

Πt(vi|vj) =
(1− Pq)2

degreeG1
(vi)degreeG2

(vi)
(3.9)

where degreeG1
(v) refers to the degree of a vertex in G1 that is from the product vertex

v. The kernel is defined using a functional describing every possible walk, H(G×), of
length n = 1 to ∞:

κ(G1, G2) =
∞∑

n=1


 ∑

h∈H(G),|h|=n

π>s Πn
t 1


 (3.10)

= π>s (I −Πt)−11 (3.11)

This method of taking the inverse of the product graph was proposed independently as
a method of calculating walk-based graph kernels in Gärtner et al. (2003). A kernel
between G1 and G2 is calculated by constructing a product graph and then obtaining
the exponential or geometric convergence of the adjacency matrix of this product graph
when multiplied by a certain weights.

The product graph, G1 ×G2, is constructed using:
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V×(G1 ×G2) = {(v1, v2) ∈ V1 × V2 : (label(v1) = label(v2))}
E×(G1 ×G2) = {((u1, u2), (v1, v2)) :

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ (label(u1, v1) = label(u2, v2))}

As described in previous equations, the vertex set of the product graph, V×, creates a
new product vertex for each vertex that has matching labels in G1 and G2. An edge
in the product graph, E×, between two product vertices is created if the corresponding
vertices in G1 and G2 have an edge and if they have the same label. Please see Figure
3.2 for an example of how a product graph is constructed.

G
1

G
2

G
X

A BA

C

Q Z

C C

A B BA

X

C

B

Figure 3.2: Construction of a Product Graph - A product graph, G×, is con-
structed from two graphs, G1 and G2. Each vertex in G1 is matched with vertices in
G2. Edges are added between product vertices if they exist in the original graphs. The
shading and labels in the product graph shows which product vertices correspond to

the vertices in G1.

The adjacency matrix of the product graph is notated by E×. The i, j-th element of E×
is 1 if product vertex vi is connected product vertex vj and is zero otherwise. In order to
calculate all walks up to infinite length, the following graph-theoretic property is used.
If E× is taken to the power n, En×, each i, jth element now lists the number of walks of
length n starting at vertex vi and ending at vj . By defining a sequence of weights, λ

(λ0, λ1, . . .), we are now able to calculate a walk-based graph kernel:

κ× (G1, G2) =
|ν×|∑

i,j=1

[ ∞∑

n=0

λnEn
X

]

ij

(3.12)

if the limit exists. The outer sum of eq (3.12) returns a single value, summing all
values of the converged matrix. Choices of λ allow the inner sum in eq (3.12) to be
expressed as either an exponential or geometric series expansion. To reach a con-
vergence with a geometric series, we must choose a parameter γ, which must satisfy
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γ < 1/min (degree(G1), degree(G2)). The function degree, gives the maximum num-
ber of connected edges to any single vertex (calculated as a column or row sum of the
adjacency). The limit is computed by inverting the matrix: (I − γE×)−1. This calcu-
lation takes O(|V×|3). In practice, for molecular graphs, this is very expensive as there
are relatively few atom types, so a very large product graph is constructed.

When deciding whether to use the geometric or exponential convergence to find all
matching walks summed to infinity, one should first consider the graphs in Figure 3.3.
Here, a graph is given that compares the relative importance of walk lengths for several
graph kernel parameters. For exponential series, we evaluated walk lengths 1, . . . , 20
along with exponential parameters 3, 5 and 7, and used the formula presented in Gärtner
et al. (2003) for exponential series convergence αi

i! . For geometric series, we again used
walk lengths 1, . . . , 20, and used geometric parameters 1

3 ,15 ,17 , and used the geometric
term for convergence αi. All values are normalized between 0 and 1 allowing for a
1:1 comparison, which gives the relative importance between parameters and individual
walk lengths. As shown in Figure 3.3, more information is taken from longer walks with
an exponential weight than geometric weights.
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Figure 3.3: These figures show the relationship between the user defined parameter γ
(used to define the convergence of the walk kernel) and the relevance given to different
walk lengths. Different weighings may occur for the exponential and geometric series,
atlthough walks longer than 10 account for little to the kernel as they are down-weighted

so greatly.

In recent work (Gärtner (2005b)), the exponential parameter has often been used, ad-
ditionally the relative importance of walks when calculating the convergence of the
marginalized kernel is similar to the Geometric Relative Importance in Figure 3.3.

It is interesting to note that although each kernel in Kashima et al. (2003) and Gärtner
et al. (2003) are formulated differently, they can be computed with the same method.
Graph kernels are calculated using the number of matching walks up to infinite length
by down-weighting longer paths. The only difference between these is the down-weights
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used in order to find a convergence. A discussion comparing these methods is given in
Tsuda and Vert (2004).

3.3.3 Extensions to Walk Kernels

Two extensions to walk-based kernels have been proposed: one counts non-contiguous
walks and the other non-tottering walks.

The first extension we will consider is non-contiguous walks. A non-contiguous walk
considers the similarity when walks contain a vertex label that does not match. For
example, let’s consider two walks of length 3: CCC and CSC. Using a contiguous
walk kernel, this feature would not be matched. Despite not being a perfect match,
they are only different by one character. A non-contiguous kernel will match these
walks, although a penalty is applied to the second character which has different labels,
sometimes referred to as a soft match. Clearly, parallels can be drawn with Lodhi et al.
(2002) which considers similar features in string kernels. A non-contiguous walk kernel
was first introduced in Gärtner et al. (2003) and is calculated in a similar way to the
contiguous walk kernel.

To define this kernel we now introduce an alternative product graph, Go, that includes
vertices with non-matching labels. The set of vertices and edges of Go is given by:

Vo(G1 ×G2) = {(v1, v2) ∈ V1 × V2}
Eo(G1 ×G2) = {((u1, u2), (v1, v2)) :

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ (label(u1, v1) = label(u2, v2))}

To define this kernel, we must also introduce a parameter, α (where 0 ≤ α ≤ 1), to
penalize soft matches. α allows the kernel to choose the amount of relevance taken from
the contiguous walks in E× and non-contiguous in Eo. We can construct E× to have
the same size as Eo by adding corresponding empty rows and columns where there is
no corresponding vertex in E×. This modification is necessary to calculate the kernel as
these two matrices will be added. The non-contiguous label sequence kernel is defined
as:

κo(G1, G2) =
|V×|∑

i,j=1

[ ∞∑

n=0

λn((1− α)E× + αEo)n

]

ij

(3.13)

if the limit exists. As shown by the outer sum of eq (3.13), the kernel only counts
anchored walks, where a walk begins and ends with matching product vertices. A
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matching product vertex is one which will have the same label in G1 and G2, therefore
it will exclusively be in E× and not one which was created with mismatched vertices
that may exist in Eo. Although this kernel gives a sum to ∞, it is calculated using the
same method as the walk kernel discussed in the previous section. It can be calculated
using either an exponential or geometric convergence. With a geometric convergence
the kernel is calculated as: [(I − γ)((1− α)E× + αEo)]

−1.

A second extension to walk-based graph kernels was presented in Mahé et al. (2004)
that removed tottering walks. A tottering walk is one of the form w = w1, . . . , wn with
wi = wi+2, so a walk will move to a new vertex and immediately return to the previous
vertex. Intuitively, it seems that this type of walk will contain less information. For
example, if we consider a very large graph, a walk which moves back and forth between
only two vertices, will only describe a small part of the graph. In Mahé et al. (2004)
showed that totters could be removed from a walk-based graph kernel.

3.3.4 Label Distances

A second class of graph kernels uses distances between labels as features. We present
the method given in Gärtner et al. (2003). We note that a similar kernel is defined
in Borgwardt and Kriegel (2005), although it is faster to compute using Gärtner et al.
(2003) so we only review this method.

A label pair is the distance (in edges) between any two vertices in a graph. In order to
calculate a label distance based graph kernel, we define the following: a label matrix,
L. It is of size l × |V | matrix. l is the number of unique vertex labels and |V | is the
number of vertices in the graph. An element in this label matrix, Li,j , is 1 if the label of
vertex vi is the type of unique label given by column j. For a given row, every column
will be 0, except for the correct column which is the type of vertex label for the vertex
represented by the row.

By multiplying the adjacency matrix, E, by the label matrix, L, and LT , the resulting
matrix [LEnLT ]ij , has an element i, j that correspond to the number of walks of length
n between vertices labeled li and vertices labeled lj . The kernel is defined as:

κ(G1, G2) =

〈
L1

( ∞∑

i=0

λiE
i
1

)
LT

1 , L2




∞∑

j=0

λjE
′j
2


LT

2

〉

F

(3.14)

where F indicates the Frobenius norm. The Frobenius norm is a pairwise inner-product
between elements in two matrices (A and B):

〈A,B〉F =
∑

i

∑

j

aijbij (3.15)



Chapter 3 A Review of Graph Kernels 39

The matrix [LE∞LT ]ij , is a matrix order l × l. The kernel in eq (3.14), includes a sum
to ∞, although the convergence can be found using an exponential or geometric series.
As the features for two graphs can be calculated independently, the features can be
pre-computed before running the learning algorithm for a fast computation.

3.3.5 Trees

Another class of kernels uses tree patterns as features. This was first presented in Ramon
and Gärtner (2003). A tree pattern is one that is constructed by selecting a vertex in a
graph as the root node and then recursively adding leaves to the tree according to each
neighbouring vertex in the graph. We use the notation given in Mahé and Vert (2006)
to describe tree kernels. A function, ψt, counts the number of times a tree-pattern of
depth t occurs in a graph. The kernel function counts tree patterns between two graphs,
G1 and G2 as defined by:

κ(G1, G2) =
∑
t∈τ

λ(t)ψt(G1)ψt(G2) (3.16)

where τ is a set of trees from all possible graphs of depths from 1 to∞. The λ function is
a parameter that sets trees of greater depth to have smaller values, by setting λ(t) = αt

where α is between 0 and 1. In practice, the set of tree fragments,τ , can be restricted
to a finite depth as in Mahé and Vert (2006). As the labeled, directed molecular graph
contains many cycles (two vertices contain opposing directed edges which form cycles),
the largest-depth tree pattern will be infinite so this restriction must be made.

3.3.6 Cycles

A final class of graph kernels uses cycles as features. A graph kernel that uses features
from both simple cycles and trees in Horvath et al. (2004). A simple cycle is a cycle
that contains no repeated vertices. The first step to calculating this kernel involves
decomposing the graph into bi-connected components and bridges using a depth-first
search algorithm described in Tarjan (1972). A bi-connected component is a sub-graph
which cannot be disconnected (split into two sub-graphs) by removing any vertex from
this sub-graph. A bridge is an edge in a graph which when removed increases the number
of connected components. We give an example of a graph that shows all bi-connected
components and bridges in Figure 3.4.

After generating the bi-connected components and bridges of a graph, the simple cycle
and tree patterns can be obtained. The set of of simple cycles, S(G), is enumerated
for a graph, G, from the bi-connected components. The set of tree patterns, T (G), is
calculated by generating trees rooted at each bridge. The kernel uses both the number
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Figure 3.4: A graph is shown along with its associated bi-connected components
and bridges. The bridges are the edges given by dashed lines, while the bi-connected
components are given by solid lines. These are two cycles (containing vertex labels

O,O,S) and three single vertices O,C and C.

of simple cycle, S(G), and tree patterns, T (G). This approach differs slightly from other
graph kernel research by describing the kernel using an intersection kernel, which is a
set kernel that operates on structured data. The kernel is calculated by the intersection
or number of matching simple cycles S(G) and tree patterns T (G) between two graphs
as given by:

κ(G1, G2) = |S(G1) ∩ S(G2)|+ |T (G1) ∩ T (G2)| (3.17)

3.4 Graph Kernels for Molecules

Several recent papers have used graph kernels to classify molecules. Each of the types
of graph kernels discussed in Section 3.3 have been tested with molecular datasets. In
this Section, we review the kernels in this Chapter that have been applied to molecular
data. We also describe some other kernels as well as related approaches that do not fit
into a structured kernel framework.

The walk-based kernels formulated as marginalized kernels in Kashima and Inokuchi
(2002) and Kashima et al. (2003), were tested with and without the non-tottering ex-
tensions in Mahé et al. (2004) as well as Mahé et al. (2005). These kernels were tested
on two very small, publicly-available datasets: MuTag and PTC. The results showed
that kernels with only non-tottering features performed better than graph kernels that
included tottering features.

The walk-based kernels developed in Gärtner et al. (2003) were later tested on the
much larger, publicly available NCI-HIV dataset in Gärtner (2005a). These walk kernel
outperformed cyclic pattern kernels from Horvath et al. (2004) as well as a frequent sub-
graph approach. The frequent sub-graph approach was developed in Deshpande et al.
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(2002) and Deshpande et al. (2003) and creates feature vectors that indicate the presence
of frequently occurring sub-graphs. Despite the complexity involved in enumerating all
possible sub-graphs, when only enumerating up to a certain threshold this approach
is tractable. Results in Horvath et al. (2004) also confirm those in Gärtner (2005a),
suggesting that the cyclic pattern kernel outperforms a frequent sub-graph approach on
the NCI-HIV dataset.

The label-distance kernel defined in Gärtner et al. (2003) remains untested on molecular
datasets, as well as the similar kernel defined in Borgwardt and Kriegel (2005). Results
were given in Borgwardt and Kriegel (2005), for a bioinformatics problem where their
kernels outperformed a walk-based kernel. The tree kernels originally presented in Ra-
mon and Gärtner (2003) considered tree patterns from a graph that could be calculated
up to infinite depths. This work was furthered by Mahé and Vert (2006) which exam-
ined tree patterns up to a finite depth and tree patterns where totters were removed.
Using the MuTag dataset and a second larger, publicly-available dataset, results showed
improvements compared to walk-based kernels.

The optimal assignment graph kernel, introduced in Fröhlich et al. (2005), does not use
the convolution kernel approach, as is common with others in this Chapter. This kernel
uses a bipartitite graph matching algorithm to calculate the kernel. By defining two
graphs as a bipartite graph, where the vertices of of G1 and G2 are two disjoint sets
with edges only between vertices in G1 and G2. The edges between G1 and G2 with
the highest similarity are given the largest weight for the edge label. This similarity
is based on matching the atom labels for two vertices, as well as surrounding vertices.
Using the Hungarian method, solvable in polynomial time, the most similar areas of G1

are matched with those in G2. Although, intuitively, this seems like a good approach
to match two molecules, it is not positive definite. We refer the reader to a proof given
in Gärtner (2005b) that shows that the min and max function are not positive definite.
This kernel uses a max function to return the optimal match between two graphs and
so this is not positive definite.

A weighted decomposition kernel between two graphs was presented in Ceroni et al.
(2007), which has many parallels to the optimal assignment kernel. This kernel compares
each vertex in graph G1 to vertices in G2, and scores how similar each atom is based
on atom type, atom charge and bond type, as well as information from neighbouring
vertices. Also in parallel to the optimal assignment kernel, there is a min operation when
comparing vertices so this type of kernel may not be positive definite in general as well.
Results on a publicly-available NCI cancer dataset suggest that this kernel performs
better than frequent sub-graph and cyclic pattern kernels.

Other related research, that does not directly use a structured kernel approach has
recently been presented. Research in Ralaivola et al. (2005) generated fingerprints for
each molecule, and then used a Tanimoto normalization to create a Tanimoto graph
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kernel. Results are given for the MuTag, PTC and NCI-HIV datasets which performed
better than walk-based kernels on some tasks. Some other work (Azencott et al. (2007))
has also used fingerprints taken from 1D-4D space for a molecule with promising results.

3.5 Summary

In this Chapter we have reviewed a number of graph kernels. We first described notation
for labeled, directed graphs. After, we described why a complete graph kernel which uses
all sub-graphs as features is NP-complete and so other features must be chosen. We then
reviewed a number of graph kernels that used different features including walks, trees,
cycles and distances between labels. Finally, we reviewed several new graph kernels for
molecules.



Chapter 4

Finite-Length Graph Kernels and

Extensions

In this Chapter we introduce a new approach to calculating graph kernels. We show that
graph kernels computed with dynamic programming are very efficient allowing walks of
several hundred vertices in length to be counted. Furthermore, our approach allows
more domain knowledge to be used. We show how soft-matching and gappy walks can
be included in our framework. This allows prior knowledge to be incorporated so that
one can tailor graph kernels to molecular data. We introduce two new finite-length graph
kernels in Section 4.2. These kernels allow one to specify long walks which may define a
high degree of similarity. Next, we show how this approach can be used to calculate two
infinite-length kernels in Section, 4.3. Following this, we describe extensions that can be
added to these four basic kernels. We show that non-tottering walks can be removed in
Section 4.4. Walks that have miss-matched labels can be matched using soft-matching
as described in Section 4.5. Finally, we show how walks can be matched where one or
more gaps are inserted (Section 4.6).

4.1 Product Graphs

Recall, from Chapter 3 that a product graph can be constructed from two graphs in
order to count the number of walks in common. To begin calculating this kernel, one
first needs to calculate the product graph given two graphs.

4.2 Finite-Length Graph Kernels

In this Section we describe an alternative method to calculate walk-based kernels that
allows more flexibility in feature-weighting so that different walk-weighting schemes can

43
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be introduced. We introduce two new kernels that use finite-length walks as features.
The first uses a single walk length (termed FC graph kernel) and the second uses all
walk lengths up to a certain length (termed the FS graph kernel).

4.2.1 FC Graph Kernel

Definition 4.1 (FC Graph Kernel). Assume we have the direct product graph G× =
(V×, E×) of two graphs G1 and G2. The finite-length contiguous label sequence or FC
graph kernel counts the number of matching p-length walks in two graphs using the
following dynamic programming equations:

D0(vi) = 1 (4.1)

Dn(vi) =
∑

vj :(vj ,vi)∈E×
Dn−1(vj) (4.2)

for each vertex vi ∈ V× and where the notation (vj , vi) describes a directed edge which
starts at vertex vj and ends at vi. The FC graph kernel is then:

κ(G1, G2) =
∑

vi∈V×
Dp(vi) (4.3)

From eq (4.3) it is clear that the kernel counts all walks of length p in the direct product
graph G×. For each vertex, vi, D0 records the existence of each vertex in the graph
(walk of length 0). At each iteration Dn(vi) sums up the counts of p− 1 walks that end
in vertex vi. The kernel is the sum of these walks for each vertex in the graph.

This method is much more attractive computationally than other graph kernels. The
worst case time complexity of this method is O(p|V×|d), where d is the maximum degree
of G×. Big-Oh notation (O(·)) is used to describe an upper-bound on the worst-case
time complexity of the algorithm (Skiena (1997)). We compare this to the graph kernel
in Gärtner et al. (2003), which computes the kernel by inverting the adjacency matrix,
E×. This gives a worst-case time complexity of O(|V×|3).

4.2.2 FS Graph Kernel

A slight variation of the previous kernel is the FS graph kernel. While the FC graph
kernel returns only the number of all walks of length p, the FS kernel returns the number
of all walks up to length p (i.e. walks of length 1 + 2 + . . . + p).

Definition 4.2 (FS Graph Kernel). Assume we have the direct product graph G× =
(V×, E×) of two graphs G1 and G2. The FS graph kernel, counts the number of all walks
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up to length p, given by:

κ(G1, G2) =
p∑

p̂=0

∑

vi∈V×
Dp̂(vi) (4.4)

We note that the FS kernel is quick to compute. Although it counts walks for each
length, 1, . . . , p, it only needs to use the DP equations (eq (4.3)) for the last length p

and sum the values at each successive application of the DP update. The worst case time
complexity of the FS kernel is O(2p|V×|d) as one must apply eq (4.3) at each iteration
of p. This is strictly the same as the FC kernel as the constant 2 is not counted with
Big-Oh notation.

4.3 Infinite-Length Graph Kernels

In this Section, we describe how our framework can be used to approximate infinite
walk-length kernels. We will show how two variants of infinite-length kernels fit into
this framework: the kernel in Mahé et al. (2004) (we term IM graph kernel) and the
kernel in Gärtner et al. (2003)(we term IG graph kernel). The original formulation
suggests the kernel could be derived using an inverse of the product graph adjacency.
Please refer to Chapter 3 for a more discussion of these kernels.

4.3.1 IM Graph Kernel

We first describe how the infinite walk-length kernel given in Mahé et al. (2004) can
be computed with our DP approach. The kernel is calculated by first generating the
product graph for G1 and G2. A walk in the product graph can be defined by a starting
probability, πs, and transition probability matrix, Πt. Also, recall form Chapter 3 that
the IM kernel is parameterized by Pq. Pq allows one to put more emphasis on short
paths when it is close to 0 and long paths when Pq is close to 1.

Definition 4.3 (IM Graph Kernel). Assume we have the direct product graph G× =
(V×, E×) of two graphs G1 and G2. The IM graph kernel is defined by one parameter,
Pq. Recall from Chapter 3 that walks in the product graph are defined by Pq using two
probabilities. The starting probability (uniform for all vertices), πs = P 2

q

|V1||V2| , where
V1,V2 are from G1, G2 respectively. The walk transitions, from one product vertex vi

to vertex vj , are recorded in a transition matrix, Πt. The elements of this matrix are
composed of Πt(vj |vi) = (1−Pq)2

degree(vi(G1))degree(vi(G2)) , where vi(G1) refers to the original
vertex in G1 which was used to create the product vertex vi.
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The DP equations to approximate the IM graph kernel are therefore:

D0(vi) = πs (4.5)

Dn(vi) =
∑

vj :(vj ,vi)∈E×
Πt(vj |vi)Dn−1(vi) (4.6)

(4.7)

The kernel is obtained by choosing the number of iterations, p, to estimate the kernel.
It is given by:

κ(G1, G2) =
∑

vi∈V×
Dp(vi) (4.8)

In order to determine how many iterations are necessary for a good estimation, for a
range of stopping probabilities we constructed finite-length approximation testing it-
erations 1 to 8. We then measured the Frobenius norm of the difference between the
finite-length approximation and the infinite-length walk kernel calculated using an in-
verse of the transition matrix suggested in the original kernel. One can see from Figure
4.1 that walks of only a few vertices in length are needed for a good approximation.
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Figure 4.1: Graph showing ||K − K̂||2F for an infinite length kernel, K, and the finite
length approximation, K̂. Increasing iterations (Walk Lengths) are tested, as well as
several stopping probabilities, Pq, (0.1, 0.3, 0.5, 0.7, 0.9). Very few iterations were

needed to find a good approximation.

4.3.2 IG Graph Kernel

A second infinite walk-length kernel in Gärtner et al. (2003) can be approximated with
our DP approach. Recall from Chapter 3, that after constructing a product graph for
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G1 and G2, all walks of the product graph can be described as a geometric series. The
convergence of this series is given by one parameter γ.

Definition 4.4 (IG Graph Kernel). Assume we have the direct product graph G× =
(V×, E×) of two graphs G1 and G2. The IG graph kernel is defined by one parameter γ.

The DP equations to approximate the IG graph kernel are therefore:

D0(vi) = 1 (4.9)

Dn(vi) =
∑

vj :(vj ,vi)∈E×
γDn−1(vi) (4.10)

(4.11)

The kernel is obtained by choosing the number of iterations, p, to estimate the kernel.
It is given by:

κ(G1, G2) =
∑

vi∈V×
Dp(vi) (4.12)

Clearly, the IG kernel down-weights walk transitions evenly, while the down-weight for
walks in IM is based on the density of vertex.

4.4 Non-Tottering

Mahé et al. (2004) introduced the idea of non-tottering walks. A tottering walk is one
which simply turns around and traverses the previous edge in the opposite direction.
A tottering walk is less informative as it will contain repeated vertices and therefore
the tottering walks will explore less structure of a graph. A walk which only totters
will move back-and-forth between two vertices, without exploring any other area of the
graph. In Mahé et al. (2004), they showed that by modifying the original graphs, totters
could be removed. In this Section, we will describe a new method of removing totters
that is implemented using product graphs and dynamic programming. This approach
will allow us combine it with the four kernels given in Sections 4.2 and 4.3. Next, we
will describe how walks may totter in the original graphs but not in the product graph.
We update the equations to ensure that we are not tottering in the original graphs as
well.

4.4.1 Non-Tottering using DP

Given a product graph, G× = (V×, E×), we can count the number of matching walks
between two graphs using the DP equations given in Section 4.2. Non-tottering can be
added to these DP equations with the following. For each round n in the computation



Chapter 4 Finite-Length Graph Kernels and Extensions 48

and for each vertex of the product graph, one simply keeps an array of how each previous
vertex, j, contributed to the sum. For n > 1, let:

Anj(vi) =

{
Dn−2(vj) if (vj , vi) ∈ E×
0 otherwise

(4.13)

then the DP update equation can be written as:

Dn(vi) =
∑

vj :(vj ,vi)∈E×

∑

t:(vt,vj)∈E×∧vt 6=vi

Ant(vj). (4.14)

For the finite-length kernels, one uses the original DP equations for n = 0 (eq (4.1)) and
n = 1 (eq (4.2)). Although, for n > 1 we use eq (4.14).

Similarly, for the infinite-length kernels, one uses original DP equations for n = 0 and
n = 1. For the IM graph kernel, the new DP update for n > 1 is multiplied by Πt(vj |vi)
(described in Section 4.3.1) giving:

Dn(vi) =
∑

vj :(vj ,vi)∈E×

∑

t:(vt,vj)∈E×∧vt 6=vi

Πt(vj |vi)Ant(vj). (4.15)

For the IG graph kernel, the new update for n > 1 is multiplied by γ (described in
Section 4.3.2) giving:

Dn(vi) =
∑

vj :(vj ,vi)∈E×

∑

t:(vt,vj)∈E×∧vt 6=vi

γAnt(vj). (4.16)

This modification to the DP update, requires storing A which requires a maximum
memory penalty of O(2|V×|d), where d is the maximum degree of V×. Although d = |V×|
for a fully connected graph, it is typically much smaller for a molecular graph. We require
2 times |V×|d as storage for the current and previous iteration in the DP algorithm.

In order to remove totters, the computational cost rises to O(p|V×|d2) from the original
formulation without totters which was O(p|V×|d). It now requires d2 as for a given
vertex, the algorithm must loop over each connected edge as the values in A which
shows the contribution from two back. Similarly, one could remove walks that return
after k iterations (a cycle of length k) although the complexity rises to O(p|V×|k).

We will not include non-tottering features in the DP equations of Section 4.7 as we will
not test this in further experimental chapters. Despite its reported success on a small
dataset (Mahé et al. (2004)), we found that removing totters significantly reduced the
accuracy of our models.
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4.4.2 Non-Tottering in the Original Graphs

In this Section we discuss how a walk in the original graph may contain totters even
though the product graph does not totter. In Figure 4.2 we show an example of two
graphs, G1 and G2, along with the full direct product graph, G×. We have uniquely
subscripted each of the vertices in G1 and G2 from 1 to 5, although note that we are
only matching based on the labels A or B. A walk in G×, ABA, has product vertices
(A2, A3), (B1, B4), (A2, A5). This corresponds to a tottering walk in G1, given by the
first component (shaded), A2, B1, A2, and a non-tottering walk in the second graph G2,
from the second component, A3, B4, A5.
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Figure 4.2: On the left is the product graph, G× for two graphs on the right: G1 and
G2. The dashed lines show a walk on each of the graphs. There is no tottering in the

walk on G×, although tottering occurs in the original graph G1.

The dynamic programming equations that remove tottering in Section 4.4.1 can be
updated to remove totters in the original graph as well. We note that each vertex vp

has a label of the form (a, b) where a ∈ V1 and b ∈ V2. Totters can be removed from the
original graphs, by modifying the inner summation from eq (4.16). For a given vertex
vi, we check that the vertex two back, vt is not the same vertex, given by the following
constraint t : (vt = (a, b), vi = (c, d)) ∈ E× ∧ (a 6= c) ∧ (b 6= d). Removing totters may
be useful in more complex graph matching, where we allow soft matching of labels and
gaps, as it will remove features that may be undesirable.

4.5 Soft-Matching

In this Section we introduce new extension for graph kernels. When matching vertex
labels between two graphs, we may want to consider soft-matching which allows in-
exact matches. A soft-match potentially allows a more appropriate weighting scheme,
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rather than a binary comparison: match or no match. Even though two labels may not
match exactly, expert knowledge may allow us to define a degree of similarity between
mismatched labels that provides a better model of the data.

In our research, we are motivated to use soft-matching as molecules are complex struc-
tures with other features that can be matched besides the atom label (i.e. Carbon,
Oxygen). Soft-matching allows much more flexibility in the graph kernel so that one
can incorporate more prior knowledge when designing the kernel. As we are interested
in finding walks which correspond with parts of the molecule that binds with the tar-
get, we will soft-match mismatched atom labels if the atom shares a common functional
property associated with binding to the target. The functional property is given by the
topological pharmacophore (TP) label that is used in the TP graph (please see Chapter
2). Each vertex in the molecular graph has a corresponding TP label which we will use
for soft-matching.

Soft-matching was introduced with infinite-length graph kernels in Gärtner et al. (2003),
where it was termed a non-contiguous label sequence kernel. Here, we prefer the term
non-matching, as later on we will introduce a method for matching walks with gaps,
and we wish to make clear the distinction between non-contiguous (with gaps) and non-
matching (no gaps, but walk symbols may not be aligned). Assume we have the full
direct product graph (i.e. ignoring labels) Go = (Vo, Eo). Recall from Chapter 3, the
soft-matching infinite-length graph kernel defined in Gärtner et al. (2003) is:

κ(G1, G2) =
|V×|∑

i,j=1

[ ∞∑

n=0

λn((1− α)E× + αEo)n

]

ij

, (4.17)

if the limit exists. There are two important points to note about this kernel that should
be considered when defining the DP equations for soft-matching. First, the outer sum is
over i, j ∈ V×, so only walks that are anchored (or start and end with matching labels)
are counted. Secondly, each block of non-matching symbols of length n has a penalty
factor of αn.

In Figure 4.3, we show an example of a product graph, G×, that allows soft-matching.
If no soft-matching were allowed this example would not produce any walks with length
greater than 0 (i.e. counts of matching product vertices). The vertices of the full, direct
product graph will allow a match between every vertex so for this example |V×| = 16.
We only show the product vertices that have edges to emphasize where the soft-matching
occurs. The 12 remaining product vertices will not be counted as we only start and end
walks at matching vertices (anchored walks).
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Figure 4.3: Two graphs, G1 and G2 are shown with their product graph G×. Note
that walk ABC in G1 is soft-matched with walk AEC in G2. This is shown with the
corresponding walk in G×, (A,A),(B,E),(C,C). The first component of a product

vertex (shaded) is from G1, while the second component is from G1.

4.5.1 Soft-Matching using DP

In this Section we describe how soft-matching is added to the dynamic programming
equations. Assume we have a product vertex, vi = (a, b). We first introduce a sub-
stitution matrix S where Svi = [0, 1] indicates the strength of a match for a product
vertex. If a product vertex has matching labels (i.e. label(a) = label(b)) then Svi = 1.
In order to describe the DP equations, we need to introduce notation to differentiate
between product vertices with matching labels and non-matching labels. Let VN be the
set of vertices from Vo that do not have matching labels, i.e. VN = Vo\V×. For specific
vertices, we will indicate this by superscript, that is v×i , vN

i will denote vertices from
V×, VN respectively. The dynamic programming equations are as follows:

D0(v×i ) = 1

D0(vN
i ) = 0

Dn(vi) = Svi

∑

vj :(vj ,vi)∈Eo

Dn−1(vj)

with the kernel computation the same as eq (4.3):

κ(G1, G2) =
∑

vi∈V×
Dp(vi) (4.18)
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Setting Svi = 1 for vi ∈ V× and Svi = α for all vi ∈ VN gives the kernel defined in eq
(4.17) from Gärtner et al. (2003). We note that our definition gives a much more general
soft-matching kernel where one can choose specific weights for each label allowing one to
incorporate more prior knowledge. With our approach to soft-matching we can specify
different weights for certain mismatched labels, which allows one to incorporate expert
knowledge. The walks are anchored to matching vertices by initializing the matching
vertices to 1 and non-matching to 0 in the DP equations. The last vertex in the walk
is anchored to a matching vertex as well, since the kernel in eq (4.18) only counts
walks that finish in V×. The time complexity of this kernel is O(p|Vo|d), where d is the
maximum degree of Go. Although we have only shown the soft-match DP equations for
finite-length kernels, we will show the DP equations for infinite-length kernels in Section
4.7.

4.6 Gaps

In this Section we consider matching walks which are allowed to contain gaps which
corresponds to insertion or deleting a vertex in a walk. This is analogous to the string
kernel approach. See Lodhi et al. (2002) for details. It may seem surprising that this is
at all possible without incurring a prohibitive cost, as many graph matching problems
are NP-complete, although we will show that gap features can be included in our DP
framework.

We are motivated to use graphs in our research as they may be useful for reduced graphs.
As described in Chapter 2, reduced graphs are very small, often only a few vertices, and
allowing gaps in these graphs will give flexibility to match features that may be useful
in binding.

4.6.1 Singly-Gapped Walks

We first consider the case where we only allow gaps of length 1, or singly-gapped walks.
Therefore the walk ABC would match AB-C or A-B-C, but not A- -BC. For now, we will
not consider non-matching vertices from Go. We will introduce gaps by only describing
matching product vertices, i.e. G×. We will later show how both non-matching vertices
(or soft-matching) can be combined in Section 4.7. In order to add gaps we modify the
original graphs, G1 and G2, by adding wildcard vertices where an edge exists. Let W1

be a set of wildcard symbols wi such that |W1| = |E1| and hence the index i uniquely
identifies an edge in G1. For each edge ei = (u, v) ∈ E1 we create an additional node
labeled with the appropriate wildcard symbol, wi. We therefore add a node labeled
wi to the graph along with two additional edges ei1 = (u,wi) and ei2 = (wi, v)1. The

1Note that if the edge ei was labeled, then ei1 and ei2 are assigned with this label



Chapter 4 Finite-Length Graph Kernels and Extensions 53

graph G1 = (V1, E1) is transformed into Gs1 = (Vs1, Es1) where |Vs1| = |V1| + |E1| and
|Es1| = 3|E1|. A similar transformation is applied to G2 which we denote Gs2 = (Vs2, Es2).
Please see Figure 4.4 for an illustration of this process.
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Figure 4.4: Two graphs, G1 and G2 are shown before (above) and after (below) the
transformation. Note that walk ABC in G1 matches with walk A-C in G2 after the

transformation. A ’-’ symbol represents a wildcard.

The direct product graph, Gs× = (Vs×, Es×), can now be constructed from the original
graphs with added wildcard vertices, Gs1 = (Vs1, Es1) and Gs2 = (Vs2, Es2). We do not
allow wildcard symbols to match. Therefore, there is no vertex in Vs× composed of two
wildcard symbols. More formally the vertex and edge sets are composed of:

Vs× = {(a, b) ∈ Vs1 × Vs2 : a /∈ W1 ∨ b /∈ W2 (4.19)

∧label(a) = label(b) (4.20)

∧label(a) ∈ W1 ∨ label(b) ∈ W2} (4.21)

Es× = {((a, b), (c, d)) ∈ Vs× × Vs× : ((a, c) ∈ Es1 ∧ (b, d) ∈ Es2)} (4.22)

We will introduce a parameter in Section 4.7 that down-weights symbols which match
with a wildcard. This kernel will be more expensive computationally as we have increased
the number of vertices in the direct product graph. Without wildcards, the maximum
size of V× is |V1| × |V2| when all labels match. Since wildcard labels cannot match each
other, the maximum size of the product vertices, Vs×, is (|V1| × |V2|) + (|V1| × |E2|) +
(|V2| × |E1|). Although the second and third terms always match, the product graph
must obey the structure of the original graphs, so in practice there are not as many
matches.

4.6.2 Allowing Multiple Gaps

In order to allow more than a single-spaced gap, one must add additional edges between
wildcard symbols in each graph. See Figure 4.5 for an example of the resulting graph.



Chapter 4 Finite-Length Graph Kernels and Extensions 54

−

B C
A B C

−

A

Figure 4.5: A graph is shown after the transformation. Note that an additional link
is added between wildcard nodes (labeled ’-’).

As discussed in the last section, the maximum number of vertices in the product graph
that includes wildcards is V×, is (|V1| × |V2|) + (|V1| × |E2|) + (|V2| × |E1|). If we allow
gaps we allow edge labels to match so this now becomes (|V1| × |V2|) + (|V1| × |E2|) +
(|V2|×|E1|)+(|E1|×|E2|). The second and third terms will increase as it does not need to
obey the structure of the graph, unlike with single gaps. Furthermore, the fourth term
adds further product vertices. We will not include multiple gaps in the DP equations of
Section 4.7 because of the increased complexity of this feature.

4.7 Algorithms for Combined Kernels

In this Section we give the full dynamic programming equations for computing the
kernels described in this Chapter. As the contribution from each of these kernels is
broken up in the sum when using dynamic programming, one can choose which of these
feature to include.

Before giving the DP equations, we will repeat some definitions and provide some ad-
ditional terms. We define the single-gap, non-matching direct product graph to be
Gsn = (Vsn, Esn). We do not remove tottering features, although it is possible to add
this to the combined DP equations as well. Let VN be the set of vertices from Vo that
do not have matching labels, i.e. VN = Vo\Vsn. Also, let VW be the set of vertices
which contain a wildcard symbol, VW = Vs×\Vsn. The remaining vertices are matching
vertices, V×. We will use the notation v×j , vN

j , vW
j to denote a node j from V×, VN

and VW respectively. As in Section 4.5, we assume we are given a substitution matrix S

which gives the cost of mismatching two labels. We also introduce two new parameters
that allow one to choose the amount of influence from soft-match and gappy extensions.
σsm = [0, 1] down-weights soft-match features and σ1g = [0, 1] down-weights single gap
features. We note that σsm could be incorporated into S, although we choose to create a
separate parameter as in practice one will often define specific values to compare labels
in S and tune the model using σsm.
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4.7.1 FC and FS Graph Kernels

The dynamic programming equations for computing the FC and FS kernel are as follows:

D0(v×i ) = 1 (4.23)

D0(vN
i ) = 0 (4.24)

D0(vW
i ) = 0 (4.25)

Dn(v×i ) =
∑

vj :(vj ,vi)∈Esn

Dn−1(vj) (4.26)

Dn(vN
i ) = σsmSvi

∑

vj :(vj ,vi)∈Esn

Dn−1(vj) (4.27)

Dn(vW
i ) = σ1g

∑

vj :(v
×
j ,vi)∈Esn

Dn−1(v×j ) (4.28)

The FC graph kernel is defined as:

κ(G1, G2) =
∑

vi∈V×
Dp(vi) (4.29)

As described in Section 4.2, the FS kernel is almost identical to the FC kernel except
at each update the sum Dn is summed. This modification allows the kernel to count all
walks up to length p.

4.7.2 IM and IG Graph Kernels

As described in Section 4.3.1 and 4.3.2, the IM and IG graph kernels are calculated by
multiplying the update equations by a down-weight. As the combined DP equations are
very similar, we will describe them in terms of variables A and B and then later define
these for each kernel. The dynamic programming equations for computing the IM and
IG graph kernels are:
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D0(v×i ) = A (4.30)

D0(vN
i ) = 0 (4.31)

D0(vW
i ) = 0 (4.32)

Dn(v×i ) =
∑

vj :(vj ,vi)∈Esn

BDn−1(vj) (4.33)

Dn(vN
i ) = σsmSvi

∑

vj :(vj ,vi)∈Esn

BDn−1(vj) (4.34)

Dn(vW
i ) = σ1g

∑

vj :(v
×
j ,vi)∈Esn

BDn−1(v×j ) (4.35)

The kernel is calculated with:

κ(G1, G2) =
∑

vi∈V×
Dp(vi) (4.36)

For the IM kernel, A = πs, the initial starting probability of a walk. B = Πt(vj |vi)
from the transition matrix, Πt. Both of these are parameterized by one variable, Pq

(described in Section 4.3.1). We use the notation σIM (for this parameter Pq) in our
experiments.

For the IG kernel, A = 1 and B = γ. As described in Section 4.3.2, γ = [0, 1] and
evenly down-weights walk transitions (unlike the IM kernel). We use the notation σIG

to describe the parameter γ for this kernel.

Both the IM and IG kernels are parameterized by one variable, which we describe as
σIM and σIG. Both of these parameters are defined in [0, 1], where a value close to zero
down-weights so that short walks are emphasized in the kernel. Conversely, a value close
to 1 emphasizes longer walks.

4.8 Summary

In this Chapter we presented a new approach to calculate graph kernels using a frame-
work where we can incorporate expert knowledge. We first introduced two new finite
walk-length kernels, FC and FS graph kernels. Next, we describe how two infinite walk-
length kernels, IM and IG, are approximated with the DP framework. Following this,
we showed how several other features could be introduced in this DP framework, in-
cluding non-tottering, soft-matching and gaps. Soft-matching allows information from
alternative vertex labels to be incorporated such as topological pharmacophore labels.
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Gaps will allow small walks that have slight structural differences to be matched which
should prove useful with reduced graphs as they are very small.



Chapter 5

Experiments in Classification of

Molecules

Graph kernels can be used to classify molecules into relevant classes such as ‘active’ and
‘not active’. There are many parameters that must be chosen when using graph ker-
nels for classification: there are parameters for graph kernels which emphasize different
features, parameters for the SVM model, and a choice of several graph-based represen-
tations. This Chapter introduces a number of new experiments that are tested in one
consistent experimental design. We hope to understand patterns between these variables
and which combinations produce the best model. Firstly, our finite-length graph kernels
are tested and compared with two known infinite-length graph kernels. Secondly, we test
our new soft-matching and gap extensions with finite and infinite length graph kernels.
Also, we try two graph colouring algorithms (with several parameters) and compare
these with experiments that do not include this colouring. Furthermore, we run ex-
periments comparing molecular graphs (MG) and two previously untested graph-based
representations including reduced graphs (RG) and topological pharmacophore graphs
(TP).

This Chapter is organized as follows. Our experimental setup and design choices are
described in Section 5.1. Next, we give metrics to measure experimental success in
Section 5.2 and visualize the kernel space in Section 5.3. Experiments on a small dataset
are analyzed in Section 5.4. Later in Section 5.5, we give experiments with a much large
dataset that contains over forty thousand molecules. A further experiment that uses
progressively larger numbers of negative examples for training is given in Section 5.6.
Finally, we summarize in Section 5.7.

58
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5.1 Experimental Design Decisions for Graph Kernel Mod-

els

There are many parameters and representations possible to experiment with graph-
kernels for drug discovery. Crucially, we must choose a graph kernel, colouring and
graph representation when running an experiment. In this Section, we will describe
these choices and layout which kernels and parameters we will test in our Classification
experiments of this Chapter.

Choosing a graph-kernel is one fundamental first step, although there is no obvious
choice. As discussed in Chapter 3, there are several ways to calculate a graph ker-
nel. A graph kernel can be calculated using several different features including walks,
cycles, trees, and shortest distances between vertices. In this work, we will use our
dynamic programming framework which counts finite walks. We will calculate two fi-
nite walk-length kernels including the FC kernel which uses a single walk-length for
the kernel. We will also use the FS kernel which sums all walk-lengths up to a given
length. Both kernels are tested with 1 to 15 iterations (walks). We focus on smaller
walk-lengths as previous research has shown that these are the most informative (Mahé
et al. (2004)). We also will test the infinite walk-length kernels which down-weight longer
walks. These kernels are also computed using the same framework as the finite-length
kernel, although longer paths are down-weighted. As discussed in Chapter 3, only a few
iterations of the algorithm are needed, although we use 15 iterations in all experiments
to achieve a good approximation. The two infinite-length kernels are the down-weight
scheme from Mahé et al. (2004) (IM) and the down-weighting scheme from Gärtner et al.
(2003) (IG). Both of these kernels are parameterized by one parameter which chooses
the amount of down-weight added to longer paths. We term this parameter σIM and
σIG for the IM and IG kernel respectively. We experiment with the following weights
(0.01, 0.05, 0.1, 0.2, . . . , 0.9) for all experiments. Finally, we also will experiment with the
soft-matching (SM) and single gap (1G) kernel extensions. We will experiment adding
these two extensions to all of the four basic graph kernels (FC,FS,IM,IG). The amount
of soft-matching and single-gaps added to these kernels is parameterized by two weights
σsm and σ1g, which we will experiment with values using (0.01,0.05,0.1,0.2,. . . ,0.5).

In Table 5.1, we summarize the notation used to describe graph kernel and extensions
in our experiments.
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Notation Description

FC Finite walk-length single
FS Finite walk-length all paths summed
IM All walks down-weighted Mahé
IG All walks down-weighted Gartner

SM Soft-matching
1G Single Gaps

Table 5.1: Notation for graph kernels

Another decision is the type of colouring used to modify the graphs. This is a pre-
processing step performed to modify the original graphs and is computed off-line. For
a molecular graph the original atom labels can be replaced with colour labels which
contain more structural information. We will test both approaches introduced in graph
kernel literature for experiments. The first method used in Gärtner (2005a) (notated as
N-Colour) creates new vertex labels by combing each vertex label and each neighbouring
vertex label. We will also use the morgan colour method introduced in Mahé et al. (2004)
with 1,2 and 3 iterations (notated by M1-Colour, M2-Colour and M3-Colour). Finally,
we will also experiment with the original graph (notated by No-Colour). A discussion
of edge colouring is given in Chapter 2, although we do not test this modification.

A third decision necessary when deciding a graph-kernel model is the graph-based rep-
resentation of the data. In our experiments we use three types of graph-based repre-
sentations. Those are the classic molecular graphs (MG). Second, the reduced graphs
(RG). And third, the topological pharmacophore graphs (TP). A discussion of these
three types of representations is given in Chapter 2. In general, an RG is much smaller
than an MG, although more structural information is given in MGs. A TP graph con-
tains the same structure as an MG, although each atom is re-labeled with the closest
topological pharmacophore.

In Table 5.2, we review the notation used to describe graph-based representations.

Notation Description

MG Molecular graph
RG Reduced graph
TP Topological pharmacophore graph

Table 5.2: Notation for three graph-based representations of molecules

5.2 Measuring Success

In order to interpret the success and compare with previous results we must define a
measure to compare classifiers. With the first dataset we will record the accuracy to
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compare results. Accuracy is suitable for small datasets, furthermore the first dataset is
much more balanced with 68% from the active class and 32% inactive. We consider this
relatively balanced as typically active examples comprise less than 1% of the dataset.

Unfortunately, this measure is not as useful with the second datasets as it is highly
skewed with only 1% from the active class. This class distribution is fairly common
in chemoinformatic datasets as there are often only a few examples that are active
against a target; millions of other molecules do not share this property. As a result,
overall classification accuracy would lead to misleading results. If a classifier was built
that always guessed negative, it would in fact do very well, obtaining over 99% correct,
unfortunately it would also guess that all of the drugs are inactive, which would defeat
the purpose of this classifier - to discover new drugs. This problem of drug discovery
is in some senses like finding a needle in a haystack. As a result, we need to find a
measure that considers the importance of the active class and weighs these examples
proportionally to the negative class.

This balance is achieved with Receiver Operator Characteristic (ROC) analysis. We
define data that are ‘active’ as members of the positive class while all other molecules
are from the negative class. If the example is positive, and if the classifier correctly
predicts that it is positive, then it is a true positive. However, if it is classified as
negative then it is a false positive. If an example is from the negative class (‘not active’),
and the classifier predicts it as negative, then it is a true negative, if instead it were
predicted as positive, then it is a false negative. The true positive rate is the number
of true positives divided by the total positives. The false positive rate is the number of
false positives divided by the total negatives. The ROC curve graphs the progression
of the true positive rate versus the false positive rate (Fawcett (2003)). Since these
two rates are scaled by the total positives and negatives, they are not sensitive to class
imbalances. The Area Under the ROC curve (AUC), is a one number statistic that
describes the performance of a classifier, where an ideal classifier would achieve an AUC
of 1 and a random classifier 0.5. A value less than 0.5 is worse than random; if we reverse
all the predictions we would have a classifier that has found a pattern. We will report
the AUC for our classifiers, and we will use this to measure the performance.

5.3 Visualizing the Kernel Space

Data visualization techniques are an excellent method to gain an initial understanding of
the input space where the data lies. Visualizing the data enables one to see any obvious
patterns such as data clusters and outliers. As the kernel space is often high-dimensional
and as graph kernels exist in a high or infinite-dimensional space, a technique such as
dimensionality-reduction must be used to represent the data in two or three dimensions
(2D,3D) where it can be visualized.
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An overview of kernel-based data visualization techniques along with Matlab code for
a simple visualization algorithm is given in Shawe-Taylor and Cristianini (2004). For a
2D view, the data is projected onto the first two principal components using a principal
components analysis (PCA) algorithm. A visualization for our two datasets used in this
Chapter is computed using this algorithm. The positive class, ‘actives’ are coloured red,
while the ‘not actives’ are coloured blue to examine the differences between these classes.
All 188 molecules from the smaller MuTag dataset are used. For our second dataset,
only 1,000 inactives are used along with all 411 active molecules. The FC graph kernel
is used for all visualizations. The one parameter for this kernel, walk-length, is fixed at
length 5. Therefore, this kernel only uses walk-lengths of length 5 that match between
each graph to calculate the kernel. Six plots are given in Figure 5.1: both datasets are
visualized using each of the three representations (MG,RG,TP).
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Figure 5.1: Visualizations of dataset 1 (MuTag) and dataset 2 (NCI-HIV) using MG,
RG and TP representations. ‘Active’ examples are coloured red, while ‘not active’
examples are coloured blue. Plots 5.1(a) and 5.1(b) show actives in two clusters. In
the remaining graphs (5.1(c), 5.1(d), 5.1(e) and 5.1(f)) actives appeared in only one
cluster, so we have increased the focus on this area of the plot in order to show greater
detail near the class boundaries. As a result, a few inactive outliers (around 10) are

not shown in 5.1(c)-5.1(f)

In this 2D space, there appears to be clustering of actives and inactive molecules across
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all 6 plots. Clearly, the data are not linearly separable based on only the first two
dimensions, although patterns exist as both actives and inactives appear in separate
clusters.

5.4 Dataset 1

The MuTag dataset (Debnath et al. (1991)) consists of 230 molecules tested for Mu-
tagenicity in Salmonella Typhimurium. Only 188 of these are considered useful for
classification of Mutagenicity (Debnath et al. (1991)). Of these, the data is relatively
balanced with 125 active and 63 inactive forming this two-class problem.

For building SVM models, we used the publicly available1 Gist-SVM in conjunction with
our SVMLightfor graphs to build the kernel matrix. Leave-one-out cross-validation is
performed using Gist-SVM’s built-in functionality.

In order to compare our kernels directly with Mahé et al. (2004) and Mahé (2006), we
used Gist-SVM’s built-in radial basis kernel function (RBF) heuristic, that automatically
determines the RBF width. This heuristic estimates the RBF width using the average
distance from each positive to each closest negative example. After Gist-SVM loads a
kernel matrix, it applies this transformation before learning the SVM model. This has
been suggested to be useful in practice, although no mathematical justification is given
(Noble and Demco (2007)). We note that this heuristic is estimated using all examples
from the kernel matrix. As the leave-one-out error is computed using the entire kernel
matrix, some information from the test set is used while training and hence this may
be considered cheating. On the other hand this RBF width is a single value which is
averaged over all examples, so little test information is used for each LOO run. In light
of this, we have decided to include this RBF parameter in order to directly compare
with the highest published accuracies on the MuTag dataset (Mahé (2006)). We do
not use this RBF parameter for experiments on the second, larger dataset or in further
experiments.

As this dataset is very small, only containing 188 examples, there may be no measurable
significance between classifiers. Moreover, as a grid-search is performed when searching
for the best accuracy, one must question whether the results have been over-trained to
this small dataset. Despite these issues, it’s small size makes it a good initial test to
compare a number of computationally expensive graph kernel parameters. Furthermore,
it has become the de-facto benchmark for most papers discussing graph kernels. In Sec-
tion 5.5, analysis of a much larger dataset is given where significance between classifiers
is compared.

1http://www.bioinformatics.ubc.ca/gist/
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5.4.1 Models with Implicit Hydrogen Atoms

After designing new graph kernels, we first wanted to check that our implementation
matched the current state-of-the-art (Mahé et al. (2004)). Using the same Gist-SVM
implementation, RBF parameter, IM graph kernel, no graph vertex colouring and using
a LOO experiment, we were able to match almost all of their experimental parameters.
We used our own implementation of the IM graph kernel, although we note that their
implementation has been recently publicly released 2. This experiment allows us not only
to compare our implementation of the IM kernel, but also to compare results for models
that include Hydrogen atoms (Explicit H) and models that do not include Hydrogen
atoms (Implicit H). We will only use the molecular graph (MG) representation for these
experiments.

With H No H

pq-Mahé Accuracy (%) AUC Accuracy (%) AUC

0.01 88.8 0.9468 84.6 0.8900

0.1 89.9 0.9435 86.7 0.8900
0.2 90.4 0.9425 86.2 0.8890
0.3 90.4 0.9392 85.1 0.8840
0.4 90.4 0.9357 83.0 0.8820
0.5 90.4 0.9360 82.4 0.8800
0.6 90.4 0.9337 83.0 0.8740
0.7 87.8 0.9280 82.4 0.8720
0.8 87.2 0.9142 82.4 0.8570
0.9 81.4 0.8930 77.7 0.8350

Table 5.3: With the MuTag data, we ran a set of parameters for the IM kernel, and
compared representations that uses explicit hydrogen atoms to a model with implicit
hydrogen atoms. Improved accuracy and AUC are achieved using models with explicit

hydrogen or ‘With H’.

In Table 5.3, results are given comparing implicit and explicit Hydrogen models. The
best accuracy is achieved with a model that includes Hydrogen with a value of 90.4%.
This is achieved by setting the graph kernel IM parameter σIM to 0.2. The best implicit
Hydrogen model only achieves an accuracy of 86.7% when the kernel parameter is set
to 0.1.

Our best model achieves 90.4%, which is higher than accuracies for several other classi-
fiers shown in Table 5.4, which were originally reported in King et al. (1996).

2http://chemcpp.sourceforge.net
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Classifier Accuracy

Linear Regression 89.3%
Neural Network 89.4%
Decision Trees 88.3%

Inductive Logic Programming 87.8%

Table 5.4: MuTag Dataset accuracy from several machine learning classifiers

Furthermore, much higher AUC scores were achieved when including Hydrogen (0.9468
vs 0.8900). These results match those given in Mahé et al. (2004) and Mahé (2006),
suggesting that our implementation of the IM kernel is correct. In order to narrow the
grid-search of parameters, and because of this result, all further experiments on the
MuTag dataset are only built with models that include H in the representation. Fur-
thermore, we are primarily interested in finding the positive class, so the AUC provides
a much more sensible weighting. In the remaining tests on the MuTag we will only
report the AUC score for comparing classifiers.

5.4.2 Colouring Choice for Graph Kernels

Using the same experimental procedure as the previous section, we next tried to find the
best type of colouring for our four basic graph kernels. These kernels include the FC,
FS, IG and IM kernels. Again, we only considered the MG representation. The finite-
length kernels, including FC and FS, are parameterized by the walk-length parameter.
The infinite-length kernels, IG and IM, are parameterized by the weight given on longer
walks. We iterated to walk-length 15 in order to estimated the converged value. All
four kernels were estimated over a range of parameters in order to find the optimal
combination and to understand this parameter space. We try the five colouring types
including M1, M2, M3 and N-Colouring as well as ones with No-Colouring. In these
initial tests we do not include the SM or 1G extensions.
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Figure 5.2: Results that compare the four basic graph kernels over a range of pa-
rameter values. Each line represents a set graph colouring along with a set of these

parameters.

We first tested the finite walk-length kernels in combination with a number of graph
colouring. In Figure 5.2(a), results are given for the FC kernel. Results for the FS
kernel are given in Figure 5.2(b). Results for both of these kernels are very similar as
the FS kernel simply sums up all walks walk lengths, while the FC kernel uses only a
single walk length. Despite this they are similar especially since the largest walk has the
greatest impact on the kernel. For short walks (length 1 to 3), the colouring methods
N-Colour and M2 give the best results for both FS and FC kernels. This patterns
suggests that incorporating more structural information using these colouring methods
is beneficial for these shorter paths with the FC and FS kernel as these walks cannot
reach this information on their own. With longer walks greater than 3, models with no
colouring performs the best. This suggests that incorporating structural information in
longer walks (by colouring with M1,M2,M3 or N-Colour) is not useful as these longer
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walks can obtain this information directly. Also, the specificity of each vertex label
increases, allowing less graphs to match for longer walks. Overall, the best AUC for the
FC and FS kernel was found using a very short walk (length 1) with M2-Colour.

Next, we consider models that use infinite walk-lengths. In Figure 5.2(c) and 5.2(d),
results are given for the IG and IM kernels along with different graph colourings. The
best results were achieved using N-Colour and M3-Colour, which seems sensible as only
the first few walks contribute to the kernel (longer walks are down-weighted). Including
more information into each vertex allows these shorter length walks to use this infor-
mation. In general, the IG results show that better results are found using longer walks
(larger Exponential Weight parameters), while the IM kernel achieve better results with
shorter walks (IM parameter). This inconsistency is a result of the weighting scheme,
the IG kernel uses a single parameter to down-weight all values, while the IM kernel has
different down-weights based on transition probabilities (this is described in Chapter 3).

Among all kernels, including finite and infinite walk-length, the highest AUC was found
with the FS kernel by setting the walk-length to 1 and using M2-Colour. This achieves
an AUC of 0.9630. The second highest AUC was found with the FS kernel, setting the
walk-length to 1 and using M2-Colour. This achieves an AUC of 0.9610. Two models
had the third highest AUC of 0.9600. Those were the IM kernel, setting σIM to 0.001,
and M2-Colour, or by setting σIM to 0.001 and using N-Colour.

We note that among all of these models, the highest classification rate was found with
the IM kernel by setting σIM = 0.01 and M2-Colour, resulting in a classification rate of
92%. This is higher than any previously published results on MuTag.

5.4.3 Choosing Soft-Matching and Single Gap Parameters

We next experimented with the soft-matching kernel extensions, SM and TPSM, and
single gap (1G) parameters. We continued with the same experimental setup as before
and only use molecular graphs.

We chose the FS kernel and added all 3 kernel extensions and compared to the basic
kernel without these extensions. In Table 5.5, results are given for these experiments.
We note that the first columns refers to an alpha value of 0. By setting the SM, TPSM
and 1G parameter to 0, the kernel does not use any information from these types of
patterns. The kernels that use SM and TPSM are parameterized by σsm while the
single gap extension is parameterized by σ1G. Refer to Chapter 4 for more details.

As shown in the previous section, the best model with the FC kernel used No-Colour so
we used this for testing the SM, TPSM and 1G extensions. We fixed the walk-length
parameter for the FC kernel to 4 for all experiments, as this produced the best model
in the previous section.
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0 0.01 0.05 0.1 0.3 0.5

FS+SM 0.9596 0.9597 0.9599 0.9605 0.9614 0.9615

FS+TPSM 0.9596 0.9590 0.9592 0.9595 0.9601 0.9599

FS+1G 0.9596 0.9591 0.9587 0.9580 0.9561 0.9549

Table 5.5: Results for SM, TPSM and 1G extensions added to FC kernel for MuTag
dataset

Overall, the best SM model was found by using the largest value for σsmsetting, σ = 0.5.
This model achieved an AUC of 0.9615. The best TPSM model was found by setting
the σSM to 0.3 to get an AUC of 0.9601. For both SM and TPSM, all parameter
values achieved higher results than models which did not include this extension (the
first column in Table 5.5).

Including the 1G extension, did not help the FS kernel. The FS kernel with no 1G
extension achieved a higher AUC than for each of the parameter settings of 0.1 to
0.5. The larger the σ1G parameter, and consequently the more influence on the kernel,
the worse the performance. This extension may not be beneficial for molecular graphs,
although it may be beneficial with reduced graphs, which are very small, and may benefit
from greater flexibility when matching two graphs with different structure.

5.4.4 Comparing Graph Representations

Our final tests on the MuTag dataset, included experiments comparing the MG, RG and
TP graph-based representations. This was the only change made to the experimental
set-up and otherwise all other aspects were similar. For all experiments, we only record
the highest AUC found from a grid search performed over all kernel parameter values
and colouring types.

We summarize the optimal colour and kernel parameter choices in the following Table
5.6 for the three representations: MG, RG and TP. We also include the choices for SM,
TPSM and 1G extensions added only to the FC kernel. The TPSM is only possible with
the MG representation.
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MG RG TP

Kernel Colour Parameter Colour Parameter Colour Parameter

FC M2 1 No 13 N 1
FS M2 1 M1 1 N 1
IG M3 0.3 M1 0.5 M3 0.3
IM N 0.001 M1 0.8 M3 0.9

FC+SM M2 0.5 M1 0.9 N 0.9
FC+TPSM M2 0.9 - - - -

FC+1G M2 0.01 M1 0.9 N 0.9

Table 5.6: Parameter choices for MG, RG and TP and graph kernels using MuTag

The patterns between colour and kernel parameter choices variety greatly. Of the models
which select colour, the finite kernels (FC and FS) prefer very short paths choosing length
1. This seems reasonable as the structural information is now brought into each vertex
label so longer walks are not required to find the desired pattern. Similarly, the one
experiment for FS that chose No-Colouring found a very long walk-length to be the
most informative: possibly because this structural information was not in the vertex
labels. A less clear trend was evident with the IG and IM kernels. All experiments
selected colouring to be used with the models, although the kernel parameter varied
between the smallest possible value (0.001) and the largest (0.9), favoring short and
long paths respectively.

Using these optimal parameters, the corresponding AUC scores are calculated for all
three representations in Table 5.7.

MG RG TP

FC 0.9629 0.9502 0.9415
FS 0.9601 0.9471 0.9319
IM 0.9604 0.9503 0.9500
IG 0.9548 0.9501 0.9501

FC,WL4 0.9596 0.9430 0.9222
FC,WL4+SM 0.9615 0.9514 0.9268

FC,WL4+TPSM 0.9606 - -
FC,WL4+1G 0.9591 0.9465 0.9275

Table 5.7: Results for MG, RG and TP and graph kernels using MuTag

The MG representation performed well for all four basic kernels. Adding SM and TPSM
for the molecular graphs slightly increased improved performance from 0.9601 to 0.9615
and 0.9606 respectively. The 1G extension resulted in a slightly lower AUC score. It is
surprising that adding these extensions had such a small effect on the AUC score as a
high weight was applied to SM models at 0.5 and TPSM at 0.9. The weight given to
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the 1G extension was very small at 0.01, although even this slight addition to the kernel
resulted in a smaller AUC.

With the RG representation, the highest SM extension AUC score outperformed the
models with no SM. The 1G extension slightly decreased the top AUC score from 0.9471
to 0.9465. Both the SM and 1G extension weights were very high at 0.9 each, although
this only resulted in very small change in the overall AUC score.

The TP representation achieved some of the lowest scores. Both the SM and 1G ex-
tensions reduced performance. These extensions were both given high weighting in the
kernel at 0.9, although with the SM extension this resulted a decrease from 0.9319 to
0.9268. With the 1G extension a slightly smaller drop followed from 0.9319 to 0.9276

Overall, these results suggest that molecular graphs (MG) can be used to obtain better
models for classification compared to RG and TP graphs. For all kernels, and extensions
we tested the molecular graphs achieved the highest AUC for each experiment. The RG
did worse than MG, although they achieved better results than TP for each kernel and
extension. The best AUC scores were achieved without including soft-matching or gappy
extensions.

5.5 Dataset 2

We used the NCI-HIV data for our second dataset. It is a publicly available dataset3,
containing over 40 thousand molecules along with their ability to protect human cells
from HIV-1 infection. Each compound is assigned one of three categories: highly active
(CA), moderately active (CM) or inactive (CI) comprising 1.0%, 2.5% and 96.4% of the
data respectively. We will focus on the binary classification experiment CA vs CI, as
this is of the highest interest in real world drug discovery. This data was first used with
graph kernels in Horvath et al. (2004), and more recently in Gärtner (2005b).

To model large datasets that consists of tens of thousands of examples, the cost of
memory for a kernel matrix of this size becomes prohibitively expensive. In Table 5.8,
we calculate the approximate memory requirements for a kernel matrix with different
numbers of examples. With 40,000 examples, we would require roughly 11.9 Gigabytes
of memory. Although this is possible with some high performance computers, the time
required to build this entire kernel matrix must be considered. The computation of
a graph kernel is quite complex, in our implementation it takes approximately 0.001
seconds on a 3Ghz Processor. For a kernel matrix of size 40 thousand, this would
take roughly 222 hours. As a result, we decided to add our kernels to the popular
SVMLight software, and call it SVMLight for graphs. SVMLight is one of the only SVM
implementations that does not require the entire kernel matrix to be built. It takes

3http://cactus.nci.nih.gov/ncidb/download.html
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advantage of the sparsity in kernel matrices and takes samples of the data during the
calculation of the SVM, instead of computing all kernel values before hand.

Number of Examples Space Required

100 0.07 Megs
1,000 8 Megs
5,000 186 Megs
10,000 745 Megs
20,000 2.98 Gigs
40,000 11.9 Gigs

Table 5.8: Storage required when varying size of kernel matrix

In our SVMLight for graphs software we added a requirement which set an upper limit
for the largest size of molecule and product graph. The max number of vertices per
example is set to 150, and the max number of product graph vertices per example was
set at 20,000. Any example that was larger than this was excluded during training. Only
around 30 examples exceeded this requirement and were not included in any experiments.
This requirement affected our first dataset as well, although all 188 examples were within
this threshold. We note that experts in the field suggest that very large molecules will
most likely fail at later stages of the drug discovery process. In general a ‘drug‘-like
compound has less than 50 atoms. Salt compounds were removed from each molecule
resulting in many duplicates. Each of these duplicates were filtered resulting in a smaller
dataset. This step reduced the size of the dataset from the original 42,689 to 40,543
examples. After this we also removed a few examples who’s molecular graph could not
produce a reduced graph. Only 31 molecules had this issue. After removal, this decreased
the size from 40,543 to 40,512 molecules. This final desalted dataset, composed examples
that were available in all three graph-based representations we use for this work: MG,
RG and TP.

5.5.1 Experimental Setup

As described in Section 5.1, there are many design decisions involved in these experi-
ments. In general, we will follow the experimental process used in Gärtner (2005b). The
data is split into 10% for parameter tuning and 90% for testing. Both of these parameter
tuning and testing splits are then further divided into 5 folds. The average AUC from
a 5 fold cross-validation (CV) is used.

As the parameter tuning data only uses 10% of the data or around 4 thousand molecules,
we built the kernel matrix for these experiments. After building the kernel matrix, our
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SVMLight for graphs software chooses the one parameter for the SVM model, the SVM-
C value. Experiments are run using a grid search and the highest AUC is selected by
setting the SVM-C parameter to 103,102,101,10−1,10−2 and 10−3.

Using the parameter tuning data, we first chose the colouring type for each of the four
basic kernels. We fix the kernel values for all four kernels and then test with each of the
five colouring choices (N, M1, M2, M3 and No-Colour). We fix the FC and FS values to
walk-length 5, and the IM and IG kernels to 0.1. The type of colouring is then selected
for each kernel using the highest AUC score from these tests.

After the colour has been selected we only use this for each kernel for further experiments.
Using this colouring model, we then choose the kernel value for each of the four kernels.
We choose the walk-length for the FC and FS kernel by testing walk-lengths 1 to 15 and
then selecting the highest AUC. Similarly, the IM and IG kernels are selected from a
range of values including 0.01, 0.1, 0.2, . . . , 0.9. Additionally, for each of those selected,
we record the SVM-C value for use when testing with the full 90% of the data.

We decided to only test the extensions, SM, TPSM and 1G with the finite kernels, as
these extensions seem most relevant to longer walk lengths. Using infinite walk-length
kernels, walks greater than two are so heavily down-weighted that they have only a small
influence in the kernel. After the kernel parameters are tested, we choose among the
FC and FS kernels based on highest AUC. After selecting FC or FS, we choose the best
parameter for each of these extensions. The SM and TPSM extension are parameterized
by σsm and 1G by σ1g. We select the highest AUC from a range of parameters including
0.01, 0.1, 0.2, . . . , 0.5. We record the SVM-C value for testing with the full 90% of data.

After choosing the colouring and kernel parameters we then run experiments with these
on the remaining 90% of the data (around 7 thousand examples per fold and around 29
thousand examples using 4-folds for each of the 5-fold CV run). Using a 5-fold CV we
record the average AUC for these experiments.

5.5.2 Parameter Tuning Dataset

Fixing the kernel parameters, we tried five colouring types including N, M1, M2, M3 and
No-Colour. The colour chosen for each kernel and representation is given in the Table
5.9. Most of the kernels and representations chose models with colouring, although the
finite-length graph kernels, FC and FS did not. As the reduced graphs are very small
and encode the local structure in the vertex label, encoding too much of the structural
information into the labels may not work well. Therefore, the original labels may be
best for classification.



Chapter 5 Experiments in Classification of Molecules 73

MG RG TP

FC M1 No M2
FS M1 No M1
IM N M2 M3
IG N N M3

Table 5.9: Graph colouring types from the NCI-HIV parameter tuning set.

We first optimized the two finite-length kernels, FC and FS. In the following table,
we list the average AUC for a 5-fold CV on 10% of the data. Results are listed for a
range of walk-lengths and using the FC and FS kernel with each of the MG, RG and TP
representations in Figure 5.3. It is interesting that most kernels choose fairly long paths,
four of six choose length five or greater. The FC and FS produce different results for
walk-length 1, as the FS kernel includes walk-length 0 which simply counts the product
vertices.
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Figure 5.3: Parameter tuning experiments for the FC kernel are given in 5.3(a) and
the FS kernel in 5.3(b). The best parameter will have an AUC score close to 1. We
have set the Y-scale between 0.75 and 0.95, although an AUC score may have a value

between 0 and 1.

In Figure 5.4, we list results for experiments testing a range of kernel parameters for
the infinite-length kernels, IM and IG. Average AUC values from a 5-fold CV on 10% of
the data are listed. A range of kernel parameters are tested with the IM and IG kernel
for each of the MG, RG and TP representation. There is quite a large variety among
infinite-walk kernel parameter choices. The IM kernel with MG chose 0.05, adding more
emphasis to very short paths, while the IG with MG chose the largest weight adding
more emphasis to longer paths. Although the IM and IG both count infinite-walks, they
are calculated differently and this may be the cause of this variation.
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Figure 5.4: Parameter tuning experiments for the IM kernel are given in 5.4(a) and
the IG kernel in 5.4(b). The best parameter will have an AUC score close to 1. We
have set the Y-scale between 0.75 and 0.95, although an AUC score may have a value

between 0 and 1.

Finally, results are given for parameter tuning the SM, TPSM and 1G extensions in
Figure 5.5. The average AUC from a 5-fold CV on 10% of the data is given. We follow
the same procedure as before and test a range of weighting values for the extensions
along with the FC or FS kernel and each of MG, RG and TP representations. For
each representation, we chose the best among the finite-length kernels, FC and FS and
chose the best walk-length as a base to add these extensions. Again, we are using the
colouring for each kernel and representation chosen in the initial stage. For molecular
graphs, we used the FC kernel with walk-length 5. For reduced graphs we used the
FS kernel and fixed the walk-length at 7. For TP graphs we used the FC kernel with
walk-length 4. It is apparent that smaller weights between 0.01 and 0.1 produce the
best models with highest AUC. After a certain threshold (around 0.1), the extensions
appear to add too much noise to the kernel, and the performance of kernels with higher
weights progressively decreases.
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Figure 5.5: Parameter tuning for SM and TPSM is given in 5.5(a) and 1G is given in
5.5(b). The best parameter will have an AUC score close to 1. We have set the Y-scale

between 0.75 and 0.95, although an AUC score may have a value between 0 and 1.

5.5.3 Full Results

After choosing the optimal parameter choices in the previous section, including colour-
ing and kernel parameters for each kernel and representation, we next ran 5-fold CV
experiments for each kernel and representation on the remaining 90% of the data.

For these experiments, each of the 5-fold CV was trained using our SVMLight for graphs

software. Each of the five cross-validation (CV) experiments required four training folds
which included around 29 thousand examples. Our software does not require the entire
kernel to be pre-computed so these experiments could be run on a typical cluster node
which had 1 Gigabyte of memory.

As we have set up these experiments to allow a 1:1 correspondence between training
sets, for each representation, we can not only compare the performance between each
kernel, but how well kernels perform across each representation: MG, RG and TP.

In Table 5.10, we list results for the MG, RG and TP representations. The average
AUC and standard deviation is given for each kernel, along with results for each of the
five folds. For the MG representation, the highest average AUC was obtained using the
IM kernel, followed by IG, FC and FS. We added SM, TPSM and 1G extensions to the
FC kernel. By adding the SM and 1G extensions, the FC kernel increased from 0.9192
to 0.9315 and 0.9327 respectively. Adding the TPSM to the FC kernel decreased from
0.9192 to 0.8690. The highest AUC for the RG representation was obtained using the
IM kernel followed by the FS, IG and FC kernel. We added the SM and 1G extensions
to the FC kernel. Both the SM and 1G extensions increased performance slightly from
0.9101 to 0.9112 and 0.9113 respectively. The highest AUC for the TP representation
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was achieved with the IM kernel followed by the IG, FC and FS kernel. We added
the SM and 1G extensions to the FC kernel, although lower results were achieved with
these models. With no extensions the FC kernel achieved 0.9138 while with SM the
performance reduced slightly to 0.9107 and with 1G it reduced to 0.9025. It is interesting
to note that among all three representations, the IG kernel obtained the highest average
AUC score among all 4 graph kernels.

Given a set of AUC scores from a 5-fold CV model, A = {A1, A2, A3, A4, A5}, we can
use a t distribution to determine if two models are significantly different. We begin by
calculating the sample mean:

Â =
∑5

i=1 Ai

5
(5.1)

We calculate the sample variance, var(A), using:

var(A) =
1
5

5∑

i=1

(Ai − Â)2 (5.2)

Given AUC scores from two models, A1 and A2, we can calculate the test statistic, t̂,
with the following:

t̂ =
Â1 − Â2√

var(A1)+var(A2)
2 ·

√
2
5

(5.3)

Since the degrees of freedom is 2 ·5−2, we compare t̂ with t8(α) and determine whether
they are significantly different at a 5% level. According to Dekking et al. (2005), t8(α)
at a 5% level is 0.1860. If t̂ > 1.860 then we reject the hypothesis that they are the
same, so they are therefore significantly different.

MG RG TP

FC 0.9335(±0.0055) 0.9101(±0.0313) 0.8998(±0.0077) ◦
FS 0.9192(±0.0044) 0.9057(±0.0255) 0.9138(±0.0101)
IM 0.9355(±0.0176) 0.9200(±0.0114) 0.9266(±0.0250)
IG 0.9335(±0.0158) 0.9059(±0.0085) 0.9245(±0.0219)

F+SM 0.9315(±0.0094) 0.9112(±0.0332) ◦ 0.9107(±0.0113) ◦
F+TPSM 0.8690(±0.0148) - -

F+1G 0.9327(±0.0075) 0.9113(±0.0301) 0.9025(±0.0497)

Table 5.10: Results for NCI-HIV. We give the average AUC from 5-fold cross-
validation along with the standard deviation. We use the notation ◦ to identify if

a significant loss (at 5%) over the same kernel and MG representation.

Overall, the molecular graphs performed better than the reduced or TP graphs for all
four kernels. There was some variation for the second-best representation among the
four kernels. RG had better results for the FC kernel, although TP had better results for
the FC, IM and IG kernels. Although in general, each kernel for every representation
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performed at a very similar level as shown by the significance levels. For the basic
kernel, only the MG+TP combination resulted in a significant loss, otherwise a given
kernel that uses either MG, RG or TP representations will give similar results.

We note that with reduced graphs, it was relatively fast to run all models, including
those which added soft-matching and gaps. The most time-intensive were the MG and
TP models with soft-matching and gaps. These took a long a very long time to build.
The MG and 1G models took over 30 days for each of the 5 folds that had to be trained.
This is most likely not a good method in practice. This result motivates the following
section where we determine a faster approach to learning from large datasets.

5.6 Experiment: Scaling Number of Inactive Molecules

Experiments on the large NCI-HIV dataset, the second dataset in this Chapter, helped
emphasize the time-intensive nature of computing graph kernels. Although one could use
all available data, we question whether it is possible to do as well with less information.
Specifically, we wondered whether all the ‘not active’ examples are required for training.

We argue that by removing some of the ‘not active’ examples we still retain the same
patterns. In effect, what we are truly interested in is the positive examples. The goal
of drug discovery is to find the active examples. We can reduce the number of negative
examples to the point where we are left with a one-class classification problem (also
termed outlier detection or distribution support estimation depending on the domain).
One-class algorithms, for example the 1-SVM (Schölkopf et al. (1999)), find a region
which contain all the points of this class corresponding to the class of interest. Any data
point which lies outside this region is identified as an outlier, or ‘not active’. Inherently,
one-class algorithms should do worse than binary classification, as you are giving the
model less information. Therefore, we will continue to use binary classification as this
class information is available.

By removing some of the negative examples, we can remove a major bottleneck in the
training phase. In general, an increase in the number of training examples results in
much greater training times. In this Section, we address the question of how many
inactive examples are needed to achieve good performance on the data with AUC. We
will keep all active examples and use only some of the negative examples.

To model this problem, we will use the NCI-HIV data, the second dataset that contains
over 40,000 examples. We will re-run the four basic kernel experiments using the MG
representation, and using the four basic kernels that don’t include any of the extensions,
these are FC, FS, IM and IG. Also, we will use the colouring methods chosen in the
previous experiments on dataset 2. The FC and FS kernels are coloured with N-Colour
and IM and IG with M1-Colour. We will use the same parameter tuning from for these
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kernels and just re-run the 90% examples, training and testing. Only the training sets
will change for the 5 folds. The 5 test sets will remain the same with all negative
examples used.

Since we use the same parameter tuning for the kernels (10% of the NCI-HIV data), the
remaining 90% portion is used for testing. We create 4 new datasets (5-folds each) which
include 1, 10 100 and 500 inactive examples in the following manner. We first selected
all of the positive examples from the original dataset. We then created progressively
larger folds by randomly sampling inactive examples from all ‘not active’ example for
use. Each subsequently larger fold includes the inactive found in the previous iteration.

Results are given in Table 5.11 with varying amounts of inactive molecules. For compar-
ison, we note that the number of inactive examples in the full 90% (notated by ‘Full’)
has the following number of examples in folds 1 to 5 contain 25,892, 25,887, 25,864,
25,870 and 25,873 respectively. Each of the smaller datasets for example ‘10‘ will have
10 inactive examples paired with all active examples for all 5 folds. We calculate the
significance at 5% using the t distribution as discussed in the previous section.

FC FS IM IG

1 0.6391(±0.0254) ◦ 0.6714(±0.0246) ◦ 0.5702(±0.0746) ◦ 0.5729(±0.0721) ◦
10 0.7220(±0.0521) ◦ 0.7528(±0.0333) ◦ 0.7056(±0.0519) ◦ 0.7355(±0.0524) ◦

100 0.8688(±0.0126) ◦ 0.8985(±0.0103) ◦ 0.8583(±0.0192) ◦ 0.8683(±0.0169) ◦
500 0.8483(±0.0318) ◦ 0.9291(±0.0044) ◦ 0.9077(±0.0099) ◦ 0.9033(±0.0134) ◦
Full 0.9335(±0.0055) 0.9192(±0.0044) 0.9355(±0.0176) 0.9335(±0.0158)

Table 5.11: Results are given for subsets of randomly selected inactives. We report
the average AUC from a 5-fold cross-validation as well as the standard deviation. We
use the notation ◦ to identify if a significant loss (at 5%) over the same kernel that uses

all inactive examples (Full).

As shown in Table 5.12, both the training and testing phases of using this model were
greatly sped up by sampling less numbers of examples. Another important point is
that when using less examples for training, less possible support vectors can be given
by the model. In terms of efficiency for the testing phase, this is very efficient as when
classifying an example, this classification is a linear combination of the support vectors,
as described in Chapter 1. Furthermore, all models that used less examples (in rows 1,
10, 100 and 500 of Table 5.12), had significantly lower AUC scores.

Significance was measured using the technique described above. It was expected that
a lower AUC score would be achieved as the model is given less information, although
it is surprising that when using a model with only one positive example, results can be
achieved better than random classifiers. We note that although these scores were lower,
they may be good enough when speed is more important than obtaining the optimal
model.
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Avg. Train Time Avg. Classify Time

1 5s 33s
10 18s 1m34s

100 1m25s 4m44s
500 6m7s 10m21s
Full 12h 6h

Table 5.12: The average time to train an SVM for all 5 folds (Avg. Train Time)
and similarly to perform classification (Avg. Classify Time) is compared for varying

training data sizes.

Even with just 100 negative examples, we are achieving an AUC close to 0.9 for all
representations. This success rate may be sufficient for some domains, and therefore
only a few negative examples are needed. It is shown that using 500 negative examples
is able to achieve AUC scores that are within 1.5% of the full dataset for FC,IM and
IG kernels. With the FS kernel, a higher AUC is achieved using just 500 examples as
opposed to using all 25 thousand, all of the information.

These results suggest that training with a sample of the negative examples is a good
alternative. In larger systems where millions of molecules are available, training with
less examples would make it still feasible to create models and run experiments using
this data.

5.7 Summary

In this Chapter we have tested two new graph kernels the FC and FS kernel, along with
known infinite-length graph kernels (IM and IG) on two datasets. We have also tested
three extensions to simple graph kernels including soft-matching, TP soft-matching and
single gaps. For both datasets, we experimented with three graph-based representations
including MG, RG and TP graphs. Finally, we have experimented with models that
include fewer ‘not active’ examples in the training phase.



Chapter 6

Experiments in Lead Hopping

Lead hopping is the ability to identify molecules that belong to a different chemical
series while still being active with a target. The Chapter will analyze combinations
of graph kernels, graph colouring and molecular representations to determine which is
best suited for lead hopping. We begin by introducing the lead hopping problem and
reviewing recent literature in Section 6.1. Next, in Section 6.2, we will describe how two
sets of data are built in order to model lead hopping. Although we compare our models
using AUC scores (as described in Section 6.3), we also give the active molecules found
near each cluster center (Section 6.4) as well as the closest actives between splits (Section
6.5) to aid in our analysis. A kernel between fingerprints is introduced in Section 6.6
and is compared with graph kernel models. We will describe the parameters of graph
kernel models as well as colourings and representations in Section 6.8. After, we give
an experimental methodology to test for lead hopping in Section 6.8. We give results
for the first dataset in Section 6.9 and the second dataset in Section 6.10. Finally, we
summarize in Section 6.11.

6.1 Lead Hopping

In this Section, we describe the lead hopping problem and review some recent literature
in this area. Lead hopping (also known as scaffold hopping) is the ability to identify
molecules that belong to a different chemical series while still being active with a target.
Although chemists, pharmacologists and patent attorneys may have different views of
what defines a unique chemical series (Schneider et al. (2006, 1999b)), in a QSAR sense it
is a group of molecules which have the same core or central structure. As such, molecules
within this group will only vary by a few atoms added or removed to the outer edge
of the molecular graph. Lead hopping involves learning patterns from training data
and predicting a separate test set that has very different molecular graphs. Learning
algorithms rely on a similarity measure between molecules to make predictions, so to

80
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make learning possible, one must define descriptors for learning that are as different as
possible from the calculation of molecular similarity used to define lead hopping.

In drug discovery, the motivation to find models that lead hop is clear. Often when
developing a drug, issues arise with a specific lead series because of its biological activity
or inability to meet certain ADMET properties (absorption, distribution, metabolism,
excretion, and toxicity) (Renner and Schneider (2006)). As a result, this lead series
cannot be used and one must have a back-up lead series (Zhao (2007)) or else the drug
discovery cycle would have to restart. Furthermore, there are commercial motivations
to find new leads. After identifying a drug candidate, one may determine that a patent
exists for this series of drug. Therefore, it may not be commercially viable to proceed
because of this intellectual property. From another perspective, at an early stage of the
drug discovery process, one may be given a commercially successful, patented drug, and
asked to identify an alternative which can be used to emulate this drug.

The key question in lead hopping research is which features of a molecule are indepen-
dent enough from the similarity calculated using the structure of the molecular graphs
to allow a model to lead hop. In general, there are four approaches to lead hop which
include shape matching the entire molecule, pharmacophore searching, fragment replace-
ment and similarity searching (Böhm et al. (2004)). From these, the use of topological
pharmacophores (TP) has prevailed. TPs are new labels for atoms or groups of atoms
that perform certain functions in the molecule which may be involved in binding the
ligand to the target. Using these TP labels, one can then relabel each of the atoms in
the molecular graph to form a TP graph. Alternatively, the groups of atoms involved
in one functional area can be collapsed into a single node to produce a reduced graph.
We use the reduced graphs from Harper et al. (2004), although the weights can also be
optimized in a more systematic fashion (Birchall et al. (2006)). Please refer to Chapter
2 for more discussion on these representations.

In recent literature, it has been demonstrated that fingerprints (used as feature vectors)
derived from topological pharmacophores and reduced graphs are useful for lead hopping.
Using fingerprints generated from TPs and an SVM model, Saeh et al. (2005) removed
one cluster of actives (corresponding to a held-out lead series) and were able to recall 75%
of the held-out actives and correctly classify almost all of the inactives. In Barker et al.
(2006), using reduced graph representation and a similarity searching method it was
found that reduced graphs find topologically different molecules. In Stiefl et al. (2006),
a different type of reduced graphs is analyzed with lead hopping. They use extended
reduced graphs which augments reduced graphs with specific differences within rings,
substitution patterns and fused rings and found these can be used to find structurally
diverse molecules.
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6.2 Constructing Datasets That Exhibit Lead Hopping

To model lead hopping, we used two datasets that are derived from two publicly available
datasets. The first is derived from the NCI-HIV1, while the second is derived from
Pyruvate Kinase data from PubChem2 Assay ID 361 (containing 602 actives out of 51415
tested). In this Section, we will describe the methodology used by GlaxoSmithKline to
generate these datasets for our research.

Each of the datasets were constructed using the following steps. First, the structures
were preprocessed to remove salts and normalize the structures. After, the dataset was
split into its constituent clusters. This was performed using GSK’s proprietary soft-
ware and Spotfire3 data visualization software. A complete link clustering algorithm
(described in Martin et al. (2002) and Brown and Martin (1997)) uses daylight finger-
prints and the Tanimoto similarity index to cluster molecules. This algorithm begins by
assigning each molecule to its own cluster. It then successively merges the most similar
clusters. This similarity is calculated by the minimum Tanimoto similarity between two
molecules in each cluster. A single parameter is used to terminate the algorithm which
occurs when no two clusters are more similar than this cut-off parameter. The maximum
similarity between two molecules in dataset 1 is 0.4, while the maximum for dataset 2
is 0.5. These are very tough criterion which will create two very structurally dissimilar
clusters.

The two largest clusters were selected for experimentation, while the remaining data was
discarded. As described below, a final step filters molecules that are moderately active
to form a binary classification problem: active vs. inactive. Please see Figure 6.1, for a
visualization of this procedure.

1http://cactus.nci.nih.gov/ncidb/download.html
2http://pubchem.ncbi.nlm.nih.gov/
3http://spotfire.tibco.com/
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Structure Normalization

Inconclusive or Moderately Active Removed

Original Dataset

Split 2Split 1

��

�
�
�
��
�
�
���

�
�
�
���

��

��
�
�
�
�
��

��

�
�
�
�

��
��

�
�
�
�

�
�
�
���

��
��

��

����

��
��
��
��

��
��
��
����
��
��
��

��
��
��
������

��
��
��
��

��
��
��
������

��
��
��
��
����
����

����

��
��
��
����
��
��
��

�
�
�
�

�
�
�
�

����

�
�
�
�

�
�
�
�

�
�
�
��
�
�
�

��

�
�
�
�

�
�
�
�

��
��
��
��
����

��
��
��
��

��
��
��
����
��
��
����
��
��
������

����
����

��
��
��
��

����
����

��
��
��
�� ��

��
��
����������

��
��
��
��

����

��

�
�
�
�

��

��

��

������

Clustering
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Figure 6.1: This diagram outlines the process to generate two splits of data which
together can be used to model lead hopping. Given a dataset, this is done by picking
out the two largest clusters. Each of these clusters (splits) now represent one lead or
chemical series. Finally, we remove inconclusive molecules to form a binary dataset.
This process was used to create splits for both the NCI-HIV and the Pyruvate Kinase

data.

The similarity measure used for clustering was the Tanimoto similarity. We note that
this similarity is also a type of kernel (Ralaivola et al. (2005)). Recall from Chapter 2,
given two fingerprints, F1 and F2, the Tanimoto similarity is calculated as:

T (F1, F2) =
〈F1,F2〉

〈F1, F1〉+ 〈F2,F2〉 − 〈F1,F2〉 (6.1)

It would have been equally valid to split the data into clusters based on the normalization
used with graph kernels. This would correspond to:

T (F1, F2) =
〈F1,F2〉√

〈F1, F1〉 〈F2, F2〉
(6.2)

Although clustering using the normalization from eq (6.2) may produce a slightly differ-
ent split of the data from the two largest cluster selected with eq (6.1), this will not affect
our analysis as either method presents a split that shows data which are structurally
different based on the molecular graphs in some 2D sense. We will use the notation Split
1 and Split 2 for data from the first and second clusters respectively.
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After the data has been clustered, we had to further reduce dataset 1 to create a binary
classification problem. From dataset 1, split 1 had a total of 9,199 molecules while split 2
contained 9,972 molecules. Split 1 comprised 1.3% active (CA), 2.7% moderately active
(CM) and 96.0% inactive (CI). Split 2 comprised 1.0% active (CA), 2.5% moderately
active (CM) and 96.5% inactive (CI). In order to create a binary classification task we
removed all of the moderately active (CM) molecules which left us with the problem
active vs. inactive (CA vs CI). After this reduction, split 1 now contains 120 active and
8,831 inactive comprising 1.3% and 98.7% of the data. Split 2 contains 100 active and
9,623 inactive comprising 1.0% and 99.0% of the data.

We performed the same steps on dataset 2 (Pyruvate Kinase data) in order to create
a binary classification problem. Split 1 had a total of 13,446 molecules, while split 2
contained 7,131 molecules. Split 1 comprised 1.5% active, 1.7% inconclusive (labeled
moderately active in dataset 1) and 96.7% inactive. Split 2 comprised 0.9% active,
1.5% inconclusive and 97.6% inactive. In order to create a binary classification task we
then removed all of the inconclusive molecules which left us with the problem active
vs. inactive. After this reduction, split 1 now contains 204 active and 13,004 inactive
comprising 1.5% and 98.5% of the data. Split 2 contains 64 active and 6,963 inactive
comprising 0.9% and 99.1% of the data.

6.3 Measuring Success

In our lead hopping experiments, we will use the area under the ROC curve (AUC) to
compare classifiers. The AUC is a single value which gives equal emphasis to the correct
positive and negative examples. This is important as the proportion of the active and
inactive classes are highly skewed with our data. Only 1.3% of the molecules in Dataset
1 are active and 1.5% in Dataset 2. If considering classification accuracy alone, a model
which always predicted inactive would achieve a 98% success rate. The AUC of an ideal
classifier is 1, while a random classifier has an AUC around 0.5 (Fawcett (2003)).

In addition to reporting AUC, we will also analyze the top active molecules retrieved
by each model. As discussed in Section 6.1, the aim of lead hopping is to learn patterns
from one set of molecules to predict a separate set with a different core structure of their
molecular graph. Although this problem has been incorporated into our training and
testing sets, we can confirm our results with a visual analysis. Potentially, we may find
that some models perform well although their success is due to a weakness in dividing
the data with Tanimoto clustering. We will visualize active molecules from the cluster
centers of both splits and datasets in Section 6.4. After we will visualize the active
molecules which are closest to active molecules in the other split in Section 6.5. Again,
we give this analysis for both splits and datasets. Note that in each molecule image, we
give the molecule number corresponding to the numbering used in each dataset.
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6.4 Actives Near Cluster Centers

In order to confirm that our models lead hop, we provide a visual analysis of each
cluster. In this Section, we will draw molecules which are closest to the cluster center.
We begin by describing a method to calculate the center of a cluster where distance
between examples is calculated with the Tanimoto similarity in Section 6.4.1. After, we
graph 10 active molecules which are closest to the cluster center. Analysis of clusters
(splits) from dataset 1 are given in Section 6.4.2 and clusters from dataset 2 are given
in Section 6.4.3.

6.4.1 Calculating the Tanimoto Cluster Center

Using a basic clustering algorithm, such as K-means, the cluster center would be given
by the average feature vector for the examples in a cluster. More formally, given a set
of N fingerprints, F1, F2, . . . , FN , the cluster center is calculated as:

Fcenter =
F1 + F2 + . . . + FN

N
(6.3)

Although using a complete link clustering algorithm, as described in the previous Section,
a different similarity can be defined between examples such as the Tanimoto similarity
(eq (6.1)). As a result, the cluster center is not the same as eq (6.3). We define the
center of the cluster using a point, F̂ , that maximizes the Tanimoto similarity between
F̂ and each fingerprint in the cluster.

Fcenter = max
F̂

N∑

i=1

T
(
Fi, F̂

)
(6.4)

= max
F̂

N∑

i=1

〈
Fi, F̂

〉

〈Fi,Fi〉+
〈
F̂ , F̂

〉
−

〈
Fi, F̂

〉 (6.5)

This can be solved by taking the gradient of eq (6.5) and then iteratively estimating
closer solutions.

Ft+1 = Ft + ε∇F

N∑

i=1

T (Fi,Ft) (6.6)

Setting an appropriate step size, ε, and iterating until |Ft+1 − Ft| < tol, we can find
the cluster center. A fingerprint is composed of components F = (f1, f2, fn) so ∇F is:

∇F =
(

∂F

∂f1
,
∂F

∂f2
, . . . ,

∂F

∂fn

)
(6.7)
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We will use an initial guess for F0 using eq (6.3). The gradient is given by:

∇F

N∑

i=1

T (Fi, Ft) =
Fi (〈Fi,Fi〉+ 〈Ft, Ft〉 − 〈Ft, Fi〉)− 〈Ft,Fi〉 (2Ft − Fi)

(〈Fi, Fi〉+ 〈Ft, Ft〉+ 〈Fi,Ft〉)2
(6.8)

=
Fi 〈Fi,Fi〉+ Fi 〈Ft, Ft〉 − 2Ft 〈Fi,Ft〉

(〈Fi, Fi〉+ 〈Ft,Ft〉+ 〈Fi, Ft〉)2
(6.9)

6.4.2 Cluster Centers of Dataset 1 - NCI-HIV Data

In this Section, we describe the 10 closest active molecules to the cluster center of splits
in dataset 1. The data was originally separated into two clusters using fingerprints of the
molecular graph and the Tanimoto similarity (described in Section 6.2). We calculate
the center of each cluster using an iterative approach described in Section 6.4.1. The
center of both cluster in dataset 1 could be found in around 50 iterations by setting
ε = 0.01 and tol = 0.001.

The closest 10 active molecules in split 1 to the cluster center are given in Figure 6.2.
A common pattern among these actives appears to be the presence of two aromatic
rings separated by a group of 1 Sulphur and 2 Oxygen atoms (seen in molecules 633001,
624231, 629267, 633011 and 667950). Also, there is a group of atoms (1 Nitrogen double
bonded to 2 Oxygen atoms) attached as side groups to aromatic rings in molecules
629273, 633001, 624231, 629267 and 667950. Molecule 7229, 638478, 641295 do not share
these properties, although as they are large molecules with many rings, they will have
many overlapping features with other molecules according to their Tanimoto fingerprint
similarity. Overall, all of these molecules are similar according to the clustering algorithm
and molecular fingerprints.
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Figure 6.2: The figure gives the 10 closest molecules to the cluster center of split
1, dataset 1 (NCI-HIV data). Molecule names are given above each molecular graph.
They are sorted from the closest in the top-left (molecule 629273) to the 10-th closest

in the bottom-right (molecule 667950).

The closest 10 active molecules in split 2 to the cluster center are given in Figure 6.3.
There appears to be two groups of similar molecules. The first set includes molecules
647648, 637646 and 646444, sharing a similar central structure of two rings. They are
only different by a few groups of atoms attached at the side. The second set includes
molecules 50848 and 50850. Again, these are almost identical except for a few atoms
attached at one end of the molecule. The remaining five (624151, 695836, 128701, 684881
and 318534) do not appear to be similar visually, although they are grouped together in
the same cluster according to their Tanimoto similarity from molecular fingerprints
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Figure 6.3: The figure gives the 10 closest molecules to the cluster center of split
2, dataset 1 (NCI-HIV data). Molecule names are given above each molecular graph.
They are sorted from the closest in the top-left (molecule 624151) to the 10-th closest

in the bottom-right (molecule 50850).

6.4.3 Cluster Centers of Dataset 2 - Pyruvate Kinase Data

In this Section, we will show the 10 closest active molecules to the cluster center of
dataset 2. Using an iterative approach described in Section 6.4.1, the center of both
clusters in dataset 2 could be found in around 50 iterations by setting ε = 0.01 and
tol = 0.001.

The closest 10 active molecules in split 1 to the cluster center are given in Figure 6.4.
Two pairs of molecules (5356192,5771437 and 445154,3238641) appear to match visually,
although the remaining molecules do not. Despite this, they are grouped together in the
same cluster according to the Tanimoto similarity from their molecular fingerprints.
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Figure 6.4: The figure gives the 10 closest molecules to the cluster center of split
1, dataset 2 (Pyruvate Kinase data). Molecule names are given above each molecular
graph. They are sorted from the closest in the top-left (molecule 660143) to the 10-th

closest in the bottom-right (molecule 315109).

The closest 10 active molecules in split 2 to the cluster center are given in Figure 6.5.
Besides one pair (2195987,2193330), the remaining molecules do not appear to match
visually. Despite this, they are grouped together in the same cluster according to the
Tanimoto similarity from their molecular fingerprints.
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Figure 6.5: The figure gives the 10 closest molecules to the cluster center of split
2, dataset 2 (Pyruvate Kinase data). Molecule names are given above each molecular
graph. They are sorted from the closest in the top-left (molecule 694854) to the 10-th

closest in the bottom-right (molecule 660799).

6.5 Similarity of Actives Between Splits

In this Section, we show the active molecules in one split that are closest to the actives in
the other split. The similarity is calculated using the Tanimoto similarity for molecular
fingerprint since we used this to separate the clusters (as described in Section 6.2). We
are interested in viewing the actives that are close to the other split, as these molecules
should be the easiest to find by a model using similar molecular descriptors. For each of
the 10 closest actives, we also give the corresponding closest active from the other split
so that we can visually determine the differences.

6.5.1 Dataset 1

The closest molecules in Split 1 to molecules in Split 2 are given in Table 6.1. There
appears to be no similarity visually between each active and the closest active in the
opposite split.
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Rank Split 1 Closest Split 2 Rank Split 1 Closest Split 2

1 6

2 7

3 8

4 9

5 10

Table 6.1: The 10 closest actives in split 1 to actives in split 2, dataset 1 (NCI-
HIV data), are listed. We draw each of these molecules in column ‘Split 1’ and the
corresponding closest molecules in ‘Closest Split 2’. They are ranked from the closest

(molecule 633011) to the 10-th closest (molecule 697671).

The closest molecules in Split 2 to molecules in Split 1 are given in Table 6.2. There
appears to be no similarity visually between each active and the closest active in the
opposite split. These 10 actives are closest to only two molecules from split 1 (633011
and 629273). Among these 10 actives, 8 of them have a small group of 3 Nitrogen
(N) atoms attached to the side of the atom (known as an azide group), which may be
involved in binding. This group does not appear in the closest active molecule from the
other split.
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Rank Split 2 Closest Split 1 Rank Split 2 Closest Split 1

1 6

2 7

3 8

4 9

5 10

Table 6.2: The 10 closest actives in split 2 to actives in split 1, dataset 1 (NCI-
HIV data), are listed. We draw each of these molecules in column ‘Split 2’ and the
corresponding closest molecules in ‘Closest Split 1’. They are ranked from the closest

(molecule 637646) to the 10-th closest (molecule 641698).

6.5.2 Dataset 2

The closest molecules in Split 1 to molecules in Split 2 are given in Table 6.3. There
appears to be no similarity visually between each active and the closest active in the
opposite split.
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Rank Split 1 Closest Split 2 Rank Split 1 Closest Split 2

1 6

2 7

3 8

4 9

5 10

Table 6.3: The 10 closest actives in split 1 to actives in split 2, dataset 2 (Pyruvate
Kinase data), are listed. We draw each of these molecules in column ‘Split 1’ and the
corresponding closest molecules in ‘Closest Split 2’. They are ranked from the closest

(molecule 660143) to the 10-th closest (molecule 891145).

The closest molecules in Split 2 to molecules in Split 1 are given in Table 6.4. There
appears to be no similarity visually between each active and the closest active in the
opposite split
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Rank Split 2 Closest Split 1 Rank Split 2 Closest Split 1

1 6

2 7

3 8

4 9

5 10

Table 6.4: The 10 closest actives in split 2 to actives in split 1, dataset 2 (Pyruvate
Kinase data), are listed. We draw each of these molecules in column ‘Split 1’ and the
corresponding closest molecules in ‘Closest Split 2’. They are ranked from the closest

(molecule 2999839) to the 10-th closest (molecule 663249).

6.6 Kernels for Fingerprints

In this Chapter we will also introduce a new kernel that uses fingerprints derived from
MG, RG and TP. We test models that use a kernel between fingerprints for each rep-
resentation. A similar kernel was also used in Ralaivola et al. (2005). The MG kernel
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is calculated using the Daylight4 proprietary software. Each MG fingerprint contains
binary values and is length 1024. Similarly, the RG and TP fingerprints contains binary
value and has a length 1024. The RG and TP fingerprints are calculated using internal
GSK software. We use the notation FPRINT for experiments with fingerprints. The
kernel is a simple inner product between each of these feature vectors.

κ(F1, F2) = 〈F1, F2〉 (6.10)

As shown in eq (6.10), this kernel does not use any normalization. Note that a similar
measure was used for separating the splits, the Tanimoto similarity, in eq (6.1). Using
this normalization for the kernel, we would obtain the Tanimoto kernel introduced in
Ralaivola et al. (2005). It would have also been possible to use the normalization from
our graph kernels for the kernel as in eq (6.2).

6.7 Experimental Design Decisions for Graph Kernel Mod-

els

In this Section, we briefly review some design decisions for graph kernels introduced in
Chapter 5. We will discuss what graph kernels, graph colourings and representations
are used to test for Lead Hopping.

Among the many graph kernels introduced in Chapter 3, we show that walk-based graph
kernels can be calculated in a dynamic programming framework in Chapter 4. In our
research we will use four kernels calculated using the dynamic approach, two new finite-
length kernels and two known infinite-length kernels. We use the FC kernel that uses
single walks of a certain length as features as well as the FS kernel that uses all walks up
to a specified length. We will test walks from length 1 to 15 in our research. We also use
the IM and IG graph kernel that down-weight longer walks effectively counting all walks
up to infinite length. We will use 15 iterations of our dynamic programming equations
for all kernels and test parameters for each using weights (0.01, 0.05, 0.1, 0.2, . . . , 0.9).

We then add extensions soft-matching (SM), TP soft-matching (TPSM), and single gaps
(1G). We add this to the finite-length kernels by weighting these features using the σsm

and σ1g parameters with values (0.01,0.05,0.1,0.2,. . . ,0.5). The 1G extension evenly
down-weights all product vertices that contain a wild-card by σ1g. The SM extension
evenly down-weights all non-matching vertices by σsm. The TPSM extension is only
added to the MG representation as we only test soft-matching from atom labels to TP
labels. For each atom in the molecular graph, there are 6 possible TP labels (discussed
in Chapter 2): positively ionizable, negatively ionizable, aromatic ring, aliphatic ring,

4http://www.daylight.com/
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hydrogen bond donor and hydrogen bond acceptor. If two vertices in the product graph
do not have matching atom labels, they can still be matched up to 100% if all of the TP
labels match. If only a few TP labels match, the amount is summed for each matching
TP label according to: 1

4 , 1
4 , 1

16 , 1
16 , 1

16 , 1
16 . We give more importance to the first two

(positively ionizable and negatively ionizable) as experts believe that these are most
important among TP labels. In addition to this weighting scheme, the matching is
multiplied by σsm to choose the amount of weight given to the TPSM feature. For each
of these models, the SVM-C value used for testing is the one chosen in the loop over 7
choices for C when selecting parameters.

Another consideration that must be made with the graph kernel approach is choosing a
graph colouring method. In our experiments, we modify the original graph by colouring
vertex labels and test two different colouring methods. The first method used in Gärtner
(2005a) (notated as N-Colour) creates new vertex labels by combing each vertex label and
each neighbouring vertex label. We will also use the Morgan colour method introduced
in Mahé et al. (2004) with 1, 2 and 3 iterations (notated by M1-Colour, M2-Colour
and M3-Colour). Finally, we will also experiment with the original graph (notated by
No-Colour).

A third consideration is choosing a graph representation of the molecule. We will test
three representations including the original molecular graph (MG), reduced graphs (RG)
and topological pharmacophore graphs (TP). Please refer to Chapter 2 for discussion of
these types of graphs.

6.8 Experimental Methodology

In this Section we describe our methodology for testing lead hopping on dataset 1 and
2. As described in Section 6.2, given a dataset, the first step is to generate two splits of
the data.

Using these two splits, we will run experiments where we train on split 1 and test on
split 2 (split 1 vs. split 2) and also train on split 2 and test on split 1 (split 2 vs. split
1). We further divide each of the splits into a 10% portion for parameter tuning and
90% for training. For split 1 vs. split 2, we will parameter tune on 10% of split 1, then
using the best parameters train a single SVM model on the remaining 90%. We will
then test this model on 100% of the examples in split 2. The same steps are taken for
split 2 vs. split 1.

In order to choose a parameter (colouring and graph kernel parameter) from the 10%
parameter tuning set, we used a 5-fold cross-validation (CV). This would return the
average AUC from 5 iterations of training on 4 folds and testing on the held-out fold.
For each of these 5 folds, we would choose the best SVM-C value from 103, 102, 101, 100,
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10−1, 10−2 and 10−3. Therefore, if we want to test a certain colour and graph kernel
parameter we have to run the SVM a total of 35 times (5 folds by 7 values for SVM-C).
To make this more efficient, for each parameter we pre-built the kernel matrix on the
10% of data to run these 35 iterations of the SVM.

In the parameter tuning phase, we first choose graph colouring and graph kernel param-
eters for the four basic kernels. This is done by fixing the value for the graph kernels
and testing each colouring method. The finite-length kernels (FC and FS) used a fixed
setting with the walk-length parameter to 5. The infinite-length kernels (IM and IG)
use a fixed setting with the down-weight parameter set to 0.1. We choose the best
colouring method among No-Colour, N-Colour, M1-Colour, M2-Colour and M3-Colour.
In the next phase, the graph kernel parameters for each kernel and representation (MG,
RG and TP) are selected. We use the colouring type chosen in the previous phase and
test a range of values for each of the four basic graph kernels. For the FC and FS ker-
nel, we test walk-lengths from 1 to 15 and select the walk corresponding to the highest
AUC. For the IM and IG kernel, we test the down-weight parameter (σSM , σ1G) from
0.01,0.05,0.1,0.2,. . . ,0.9 and select the weight corresponding to the highest AUC. For
each of these models, the SVM-C value used for testing is the one chosen in the loop
over 7 choices for C when selecting parameters.

The best kernel among the finite-length kernels (FC and FS) are selected and tested with
the SM, TPSM and 1G extensions. We have decided to only test these extensions with
the finite-length kernels as these extensions are more relevant to longer walks. Infinite-
length walks down-weight longer walks and so this feature will have little impact. To add
this extension to the finite-length kernel we must choose the weight parameter for each
extension. Given the optimal colouring and graph kernel parameter from the previous
stage, we then test a range of values 0.01, 0.05, 0.1, 0.2, . . . , 0.5 for σsm and σ1g and select
the best parameter to weight the influence from the extensions. The TPSM extension
is only added to the MG representation as we only test soft-matching from atom labels
to TP labels. For each of these models, the SVM-C value used for testing is the one
chosen in the loop over 7 choices for C when selecting parameters.

Using the same folds and parameter tuning sets as above, we also need to parameter
tune our fingerprint models. Only the SVM-C parameter needs to be chosen for this
model. Using the same folds of the parameter tuning 10% of data, we choose the highest
AUC from SVM-C values 103, 102, 101, 100, 10−1, 10−2 and 10−3 with a 5-fold cross-
validation. As mentioned earlier, using these optimized parameters we can then build a
single SVM model on the remaining 90% of the training data and test it on 100% of the
data from the other split.
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6.9 Dataset 1 - NCI-HIV Data

In this Section, we give results for the NCI-HIV dataset. We give results for training
on the first split and testing on the second cluster (split 1 vs split 2) in Section 6.9.1.
After, we give results for training on the second and testing on the first cluster (split 2
vs split 1) in Section 6.9.2.

6.9.1 Split 1 vs. Split 2

Training on split 1 and classifying split 2, we performed experiments for MG, RG and
TP graph representations. We parameter tune graph kernels on 10% of the data. The
optimal parameters are given in Table 6.5. We remove the ending ‘-Colour’ when de-
scribing colouring types for brevity. The column Param gives the parameters for each
of the kernels. FC and FS are parameterized by a walk-length. IM and IG are param-
eterized by a down-weight parameter. SM, TPSM are parameterized by a down-weight
σsm and 1G extensions are parameterized by a down-weight σ1g. The FC or FS kernel
parameter used with the extensions are found in the corresponding rows above. The
column C gives the SVM-C parameter.

MG RG TP

Colour Param C Colour Param C Colour Param C

FC N 2 10−1 M1 4 10−3 N 7 10−3

FS No 3 102 M1 5 10−3 M3 1 10−3

IM No 0.4 103 No 0.01 102 M2 0.8 10−3

IG No 0.6 10−1 M1 0.05 10−1 M2 0.01 10−3

F+SM N 0.05 10−2 M1 0.3 10−3 N 0.3 103

F+TPSM N 0.01 10−2 - - - - - -
F+1G N 0.01 100 M1 0.05 10−3 N 0.01 10−2

FPRINT - - 0.1 - - 1000 - - 0.1

Table 6.5: Parameter tuning split 1 vs. split 2 for dataset 1

The results for split 1 vs. split 2 are given in Table 6.6. The best model without
extensions used MG and an FC kernel. The FC and FS kernel for the RG representation
performed very poorly as it must have overtrained to the parameter tuning set. These
models chose a relatively long walk-length of 4 and 5 considering that reduced graphs
usually only contain a few vertices and the specificity of each label was increased with
M1 colouring. The soft-matching (SM) extension improved all three representations
(MG,RG and TP). Only a slight increase in AUC was seen when adding SM to the
MG and FC model as this extension used the largest down-weight (0.01). RG and TP
chose much larger down-weights (0.3) for soft-matching. Adding the 1G extension to
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MG, RG and TP models gave a consistent improvement according to the AUC. It is
somewhat surprising to see that MG and FPRINT kernel had an AUC greater than
0.5, although the SVM must find non-linear patterns that were not addressed when
separating the data in the clustering phase. When analyzing the results, we note that
this lead hopping is a difficult problem. A score above 0.5 allows us to potentially find
molecules from another lead which could be extremely beneficial. Therefore, even a
small hit-rate can be considered a success.

MG RG TP

FC 0.7178 0.3872 0.5440
FS 0.6281 0.4403 0.6609
IM 0.6399 0.6507 0.6087
IG 0.4694 0.5300 0.6563

F 0.7178 0.4403 0.5440
F+SM 0.7198 0.4557 0.6015

F+TPSM 0.7155 - -
F+1G 0.7156 0.5300 0.6550

FPRINT 0.6652 0.6179 0.5772

Table 6.6: Results for dataset 1, split 1 vs. split 2. We report the single AUC score
from training on 90% of split 1 and testing on 100% of split 2.

In Figure 6.6, we show the number of actives found in the top 300 molecules ranked
by each model. We also give the number of unique actives for each model compared to
those returned by MG and FPRINT kernel. We compare to this model as it is nearly
identical to the measure used to separate the clusters except for a normalization factor
in the Tanimoto similarity. It is interesting to note that almost all actives returned by
the other models are unique to those from the MG and FPRINT kernel.
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Figure 6.6: This graph shows the number of unique actives found in the top 300
molecules ranked by the SVM (blue). We also give the number of unique actives found
compared to the MG-FPRINT model (green). Finally, we show the number of these
actives which are from the top 10 most similar to the other split’s actives described in

Section 6.5 (red).

In Figure 6.7, we give the top 10 actives ranked by the SVM output for the best per-
forming graph kernel model. As shown in Table 6.6, the model with MG graphs and FS
kernel with SM gave an AUC of 0.7198. 8 of these actives are listed as the closest to
actives in the opposite split (described in Section 6.5). These actives all have a similar
structure and have a group of 3 Nitrogen atoms (an Azide group).
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Figure 6.7: Highest ranked actives in MG - FS+SM model for split 1 vs. split 2 of
dataset 1. They are in order from top left to bottom right.

6.9.2 Split 2 vs. Split 1

We follow the same set-up as in the previous section and train on split 2 and classify
split 1 of dataset 1.

MG RG TP

Colour Param C Colour Param C Colour Param C

FC No 4 10−2 M1 4 10−3 No 3 10−2

FS No 1 100 N 4 10−3 No 6 10−2

IM M2 0.6 10−1 M3 0.9 103 N 0.05 103

IG M1 0.2 10−2 M3 0.01 103 M1 0.01 10−2

F+SM No 0.3 102 N 0.2 10−2 No 0.2 10−3

F+TPSM No 0.3 10−2 - - - - - -
F+1G No 0.4 103 N 0.05 10−2 No 0.5 10−2

FPRINT - - 10−1 - - 102 - - 100

Table 6.7: Parameter tuning split 2 vs. split 1 for dataset 1

The results for split 2 vs. split 1 are given in Table 6.8. A single SVM is trained
on 90% of split 1 using the parameters from Table 6.7 and then 100% of the data
from split 2 is tested. We give the AUC score to measure performance of each model.
Without including extensions, the best model was found with MG and the IM kernel.
Both IM and IG kernels with the RG representation chose M3-Colouring and performed
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the worst. M3-Colour adds the most structural information into a vertex label, so
this representation must have been too specific not allowing for generalization to other
examples. The SM extension gave a huge improvement to the models from MG, RG
and TP. The largest improvement was from adding SM to the FC kernel with the MG
representation where the AUC nearly double from 0.4800 to 0.8179, although adding
SM to the RG and TP models gave large increases as well. The TPSM also gave a large
increase to the FC and MG model. Adding 1G to the FC and MG model gave a lower
AUC, possibly because one of the largest weights was chosen (0.4). Adding 1G to RG
and TP gave much better models than without. The FPRINT kernels all found models
better than random (0.5) with the highest from MG.

MG RG TP

FC 0.4800 0.7858 0.6827
FS 0.7046 0.7440 0.5459
IM 0.8305 0.4474 0.7047
IG 0.7469 0.5157 0.8139

F 0.4800 0.7440 0.5459
F+SM 0.8179 0.8221 0.6527

F+TPSM 0.7915 - -
F+1G 0.4364 0.8123 0.7242

FPRINT 0.7050 0.7418 0.3961

Table 6.8: Results for dataset 1, split 2 vs. split 1. We report the AUC score from a
single SVM model trained on 90% of split 2 and testing on 100% of split 1.

In Figure 6.8, we show the number of actives found in the top 300 molecules ranked by
each model. There was very little overlap in the top ranked actives as shown in this
figure. Two of the RG models with FC+SM and FC+1G had almost twice as many
actives as other models. While the RG and FC kernel had an AUC of 0.7440, the SM
and 1G had AUCs of 0.8221 and 0.8123. The number of actives greatly increased from
14 to 79 and 76.
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Figure 6.8: This graph shows the number of unique actives found in the top 300
molecules ranked by the SVM (blue). We also give the number of unique actives found
compared to the MG-FPRINT model (green). Finally, we show the number of these
actives which are from the top 10 most similar to the other split’s actives described in

Section 6.5 (red).

In Figure 6.9, we give the top 10 actives ranked by the SVM output for the best per-
forming graph kernel model. As shown in Table 6.8, the model with MG graphs and IM
kernel gave an AUC of 0.8305. 9 of these actives look very similar visually to the top
actives returned from the split 2vs1 experiment (Figure 6.7). These actives a similar
core structure of two rings with a group of 3 Nitrogen atoms attached at the side. This
structure appears to be useful for the HIV target that is not found from the Tanimoto
similarity.
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Figure 6.9: Highest ranked actives from MG - IM model in split 2 vs. split 1 of
dataset 1. They are in order from top left to bottom right.

6.9.3 Discussion for Dataset 1

There was quite a bit of variation in the results for both Split 1 vs 2 and Split 2 vs
1. Some models found no patterns and achieved an AUC less than 0.5, although this
was expected as lead hopping is a very difficult problem where much of the correlation
between the training and test data is removed. One of the first things one must consider
when reviewing the results is the variable chosen in the parameter tuning phase. We
choose a vertex colouring type in this stage so two kernels in the full results may have
different vertex labels. Although one might expect two similar kernels to achieve similar
results, one must consider the parameters that each model has selected using cross-
validation. For example, in Table 6.6, the MG-FC model achieved a much higher AUC
than the other three kernels with MG, although this difference might be caused from
MG-FC using N-Colouring while the other three used No-Colouring.

One of the most consistent patterns emerged from the soft-matching extensions. In
experiments from both Split 1 vs 2 (Table 6.6) and Split 2 vs 1 (Table 6.8), we found
that adding soft-matching to the FC or FS kernel increased the AUC score. Surprisingly,
adding the TP soft-matching (TPSM) also resulted in a higher AUC, although it did
worse than the simple SM extension. The 1G extension also increased the AUC, although
the results were less consistent than the soft-matching extensions.
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6.10 Dataset 2 - Pyruvate Kinase Data

In this Section, we give results for the Pyruvate Kinase dataset. We give results for
training on the first split and testing on the second cluster (split 1 vs split 2) in Section
6.10.1. After, we give results for training on the second and testing on the first cluster
(split 2 vs split 1) in Section 6.10.2.

6.10.1 Split 1 vs. Split 2

We followed a similar set-up to dataset 1. We first train on split 1 and classify split 2
of dataset 2.

MG RG TP

Colour Param C Colour Param C Colour Param C

FC N 5 10−3 N 2 10−1 No 12 10−2

FS M2 15 10−2 N 10 103 No 10 10−2

IM M1 0.5 10−3 N 0.9 10−3 M2 0.2 10−1

IG M1 0.1 10−3 M2 0.01 102 M2 0.3 10−3

F+SM M2 0.01 10−2 N 0.01 10−1 No 0.4 10−3

F+TPSM M2 0.01 10−2 - - - - - -
F+1G M2 0.1 10−2 N 0.01 100 No 0.3 103

FPRINT - - 10−2 - - 10−1 - - 10−2

Table 6.9: Parameter tuning split 1 vs. split 2 for dataset 2

The results for split 1 vs. split 2 are given in Table 6.10. The best model that did not
use extensions was found with the IM kernel and TP representation. Adding the SM
extension improved models from all three representations (MG, RG and TP). Adding
the 1G extension slightly decrease the AUC for MG, RG and TP. Some of the best
models were found using the FPRINT kernel. The best model from both graph kernel,
extensions and fingerprint kernels was found with the RG and FPRINT kernel with an
AUC of 0.7587. This was slightly higher than the best graph kernel model with an AUC
of 0.7501.
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MG RG TP

FC 0.6679 0.6130 0.5695
FS 0.6664 0.5251 0.6138
IM 0.6008 0.5962 0.7501
IG 0.5617 0.6626 0.6527

F 0.6664 0.6130 0.5695
F+SM 0.6783 0.6154 0.6101

F+TPSM 0.6307 - -
F+1G 0.6627 0.6121 0.5623

FPRINT 0.6959 0.7587 0.7029

Table 6.10: Results for dataset 2, split 1 vs split 2. We report the AUC score from a
single SVM model trained on 90% of split 1 and testing on 100% of split 2.

In Figure 6.10, we show the number of actives found in the top 300 molecules ranked
by each model. We also give the number of unique actives for each model compared to
those returned by MG and FPRINT kernel. We compare to this model as it is nearly
identical to the measure used to separate the clusters except for a normalization factor
in the Tanimoto similarity. It is interesting to note that almost all actives returned by
the other models are unique to those from the MG and FPRINT kernel.
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Figure 6.10: This graph shows the number of unique actives found in the top 300
molecules ranked by the SVM (blue). We also give the number of unique actives found
compared to the MG-FPRINT model (green). Finally, we show the number of these
actives which are from the top 10 most similar to the other split’s actives described in

Section 6.5 (red).

In Figure 6.11, we give the top 10 actives ranked by the SVM output for the best
performing graph kernel model. As shown in Table 6.10, the model with TP graphs and
IM kernel gave an AUC of 0.7501.



Chapter 6 Experiments in Lead Hopping 108

Figure 6.11: Highest ranked actives in 1vs2 of dataset 2. They are in order from top
left to bottom right.

6.10.2 Split 2 vs. Split 1

We followed a similar set-up to dataset 1. We train on split 2 and classify split 1 of
dataset 2.

MG RG TP

Colour Param C Colour Param C Colour Param C

FC N 12 103 No 1 102 M3 7 10−2

FS N 15 10−1 No 1 103 M1 2 10−3

IM No 0.7 10−2 No 0.01 10−2 No 0.1 10−2

IG M1 0.1 10−2 No 0.2 10−2 M1 0.3 10−2

F+SM N 0.01 100 No 0.01 102 M1 0.01 10−3

F+TPSM N 0.01 10−1 - - - - - -
F+1G N 0.01 100 No 0.01 102 M1 0.1 103

FPRINT - - 10−1 - - 100 - - 10−1

Table 6.11: Parameter tuning split 2 vs. split 1 for dataset 2

The results for split 2 vs. split 1 are given in Table 6.12. The best model among graph
kernel models with no extensions was the FS kernel and TP graph. Only one model
performed poorly, IM kernel with MG graphs. This difference is probably from the
colouring choice, the other kernels with MG (FC, FS and IG) all used graphs that were
coloured and this might have been necessary to find patterns that can lead hop. Adding
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SM to the models varied among representation. With MG there was a slight decrease and
TP a slight increase. It seems sensible that only modest changes in the AUC occurred
as the largest down-weight (0.01) was chosen for both models. A large change increase
Adding the 1G extension increased the AUC for both MG and TP graphs. No change
occurred in AUC when adding SM and 1G extensions to the RG graphs as a walk-length
of 1 was chosen, so no soft-matching could be used. The best FPRINT kernel was found
using TP graphs, followed by RG and MG graphs.

MG RG TP

FC 0.6538 0.6018 0.6001
FS 0.5560 0.5844 0.7434
IM 0.4475 0.6033 0.6800
IG 0.6009 0.6227 0.5380

F 0.5560 0.6018 0.7434
F+SM 0.5650 0.6018 0.7444

F+TPSM 0.6286 - -
F+1G 0.5648 0.6018 0.7449

FPRINT 0.5727 0.6173 0.7209

Table 6.12: Results for dataset 2, split 2 vs split 1. We report the AUC score from a
single SVM model trained on 90% of split 1 and testing on 100% of split 2.

In Figure 6.12, we show the number of actives found in the top 300 molecules ranked
by each model. We also give the number of unique actives for each model compared to
those returned by MG and FPRINT kernel. We compare to this model as it is nearly
identical to the measure used to separate the clusters except for a normalization factor
in the Tanimoto similarity. It is interesting to note that almost all actives returned by
the other models are unique to those from the MG and FPRINT kernel.
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Figure 6.12: This graph shows the number of unique actives found in the top 300
molecules ranked by the SVM (blue). We also give the number of unique actives found
compared to the MG-FPRINT model (green). Finally, we show the number of these
actives which are from the top 10 most similar to the other split’s actives described in

Section 6.5 (red).

In Figure 6.13, we give the top 10 actives ranked by the SVM output for the best
performing graph kernel model. As shown in Table 6.12, the model with TP graphs and
FS kernel gave an AUC of 0.7434.
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Figure 6.13: Highest ranked actives in TP graph with FS kernel for split 2 vs. split
1 of dataset 2. They are in order from top left to bottom right.

6.10.3 Discussion for Dataset 2

Overall, dataset 2 also contained inconsistencies in the results, although in general the
results were much easier to interpret. Only a few models achieved an AUC less than 0.5,
while on average most models obtained an AUC close to 0.6 which indicates that some
learning was taking place.

As shown in the results for Split 1 vs 2 (Table 6.10) and Split 2 vs 1 (Table 6.12), the
models that used TP graphs achieved some of the highest results. In Split 1 vs 2, the IM
kernel with TP graphs achieved the highest AUC. In Split 2 vs 1, the FS kernel achieved
the highest and IM kernel achieved the second highest using TP graphs.

Similar to results for Dataset 1, we found that adding SM to the FC or FS kernel con-
sistently increased the AUC score. The 1G extension increased in some cases although
the results were less consistent.

6.11 Summary

In this Chapter we analyzed a dataset that was modeled to exhibit the lead hopping
which involves learning from one set of data and predicting another which has low 2D
Tanimoto similarity calculated from molecular graph fingerprints. Adding soft-matching
(SM) and single gap (1G) extensions increased the performance of the FC and FS kernel
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in almost all of our experiments. Furthermore, the number of actives returned in the
top 300 ranked by the SVM increased dramatically (dataset 2, split 2vs1) when adding
soft-matching and gaps. We tested a number of models that used different graph kernels,
extensions, colouring and graph-based representations. Overall, we found that it was
possible to predict across splits although very different relative performance occurred
based on the dataset. Most graph kernel models achieved an AUC greater than 0.5 and
therefore outperforms a random classifier.



Chapter 7

Experiments with Multiple

Targets

A recent approach in drug discovery uses the activity from multiple targets to find
small molecules (or ligands). This approach, sometimes referred to as polypharmacology,
deviates from the traditional approach of analyzing drugs with only a single target
(as performed in experiments from Chapters 5 and 6). With a single target, binary
classification uses a pre-determined threshold of the activity to label each example as
‘active’ or ‘not active’. In machine learning research, an example with multiple labels is
referred to as a multi-class classification problem and several kernel learning machines
exist to solve this type of problem. With multiple targets, we use the underlying binding
activity for each target. This activity is a real value number giving the strength of
interaction between a ligand and target. Although in our research we use these real
values directly, it is also possible to convert these to binary (‘active’, ‘non active’) values
by setting a threshold as performed with a single target.

In this Chapter, we give results using our graph kernels for two types of experiments
with multiple targets. We begin, in Section 7.2, by reviewing research that uses multiple
targets and give results for the first set of experiments. Using the publicly available
NCI Cancer data that has activity information for 36 targets with a set of molecules,
we use an SVM to predict each target individually and compare this with a kernel PLS
algorithm that predicts all targets simultaneously. Next, in Section 7.3, we give results
for the second set of experiments. In these experiments, we use views from both the
target and ligand to perform Kernel Canonical Correlation Analysis (KCCA) which finds
the best mapping from each view onto a common projection. We used a subset of the
publicly available Glida database that has a set of molecules with activity information
for different protein targets. Using this method, we are able to predict the closest
molecules in the training data for an unseen target. Both types of experiments are a

113
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novel approach to model ligand-target activity as it is the first research that uses graph
kernels with multiple targets.

7.1 Previous Research with Multiple Targets

In this Section, we highlight some recent research that approaches drug discovery using
multiple targets. A review of polypharmacology, where one is interested in molecules
that bind with more than one target, is given in Hopkins et al. (2006). By clustering
molecules from the BioPrint database1, it was shown that similar molecules have similar
binding properties for 70 pharmacological assays. They also show that there is a high
correlation between the most promiscuous molecules, that bind with many targets, to a
low molecular weight. It is noted however that designing drugs using multiple targets has
certain problems. For example, two drugs that are safe on their own may be unsafe in
combination (Hopkins et al. (2006)). As a result, the expensive procedure of finding an
optimal dosage becomes more complex. Using the BioPrint database which contains 997
compounds and 316 targets, Paolini et al. (2006) showed that a Bayesian classification
approach with molecular fingerprints could be used to predict a number of targets. In
Schuffenhauer et al. (2007), clustering and descriptor-based classification methods from
both reduced and molecular graphs were analyzed for a range of targets in the NCI
cancer dataset. No superior method was found, although the best clustering used only
a few targets. Finally, in Glick et al. (2006b), SVMs were used to predict the activity of
molecules with 21 targets from the MDDR dataset. Although each target was predicted
individually, it was shown that patterns exist between active molecules and targets.

7.2 Experiments in Predicting Multiple Targets

In this Section, we describe experiments which use graph kernels to predict multiple tar-
gets. We hope to understand how different graph kernels, colourings and representations
perform for several tasks with multiple targets. First, in Section 7.2.1, we describe the
dataset used in our experiments. After, we describe experiments used to tune parame-
ters in Section 7.2.2. In Section 7.2.3, we predict each target individually using an SVM
and graph kernels. We also test graph kernels in combination with a kernel between the
remaining 35 targets (all except the held-out target). Finally, in Section 7.2.4, we use
Kernel Partial Least Squares (KPLS) to predict all targets simultaneously.

1http://www.cerep.fr/cerep/users/pages/collaborations/bioprint.asp
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7.2.1 Dataset

In our experiments, we use a set of molecules derived from the NCI cancer dataset2.
This subset of examples was used for experiments in Schuffenhauer et al. (2007) and
includes 7,787 molecules with activity information for all 36 targets. The original NCI
cancer dataset contains 32,557 molecules, although the remaining molecules do not have
activity information for every target so they cannot be used in our experiments. The
activity is given by the value pGI50, which is the negative log of the concentration
required for 50% of a target (cancer cell) to exhibit growth inhibition. If a molecule is
‘not active’, this value is set to 4 otherwise it is greater than 4.

Using 7,787 molecules, a GSK proprietary structure normalization and duplicate removal
program was used. This left 6,229 molecules for our experiments. We used 10% of
these for parameter tuning (626 molecules) and the remaining 90% (5,603 molecules)
for testing. We further divide each of these into 5 sets so that we can perform 5-fold
cross-validation for both parameter tuning and during experimental testing.

7.2.2 Parameter Tuning

We choose parameters for our graph kernel models using only the first target. Although
we run experiments with the remaining 35 targets in Section 7.2.3, we only parameter
tune our models with the first target. This may produce suboptimal results, although
it should give a reasonable setting.

To measure success, we compare our results using the average loss. The average loss is
calculated by adding the absolute differences from each prediction and output of a model.
For each model, we give the average loss from 35 targets and a 5-fold cross-validation
on the parameter tuning set.

A similar experimental methodology to Chapters 4 and 6 is used in our experiments.
The procedure to choose parameters for graph kernels, colourings and representations is
briefly summarized here. For the MG representation, we first fix the parameters of the
four basic kernels (FC, FS, IM and IG) and then choose a colouring method (N, M1, M2,
M3 and No-Colour). We only test No-Colour for the RG and TP representations. Next
using this colouring method, we test the FC and FS kernel with walks from length 1 to 15.
We test the IM and IG graph kernel using 15 iterations of our dynamic programming
equations using weights 0.01, 0.05, 0.1, 0.2, . . . , 0.9. We then add soft-matching (SM)
extensions, TP soft-matching (TPSM), and single gaps (1G). We add these extensions
to the finite-length kernels by choosing a weight with the σsm and σ1g parameters.
We choose these weights from values 0.01,0.05,0.1,0.2,. . . ,0.5. The TPSM extension is
only added to the MG representation as we only test soft-matching from atom labels

2http://cactus.nci.nih.gov/ncidb2/download.html
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to the 6 TP labels. If the atom labels do not match, the TP labels are used and
weighted according to the following: 1

4 , 1
4 , 1

16 , 1
16 , 1

16 , 1
16 . In addition to this weighting

scheme, the σsm parameter is used to choose the amount of weight given to the TPSM
feature. For each parameter setting above we also chose the best SVM-C value from
103,102,101,10−1,10−2 and 10−3.

Colouring methods were chosen for each kernel and representation. For the MG repre-
sentation, We fixed the kernel parameter for FC, FS, IM and IG kernels and then chose
the colour among N, M1, M2, M3 and No-Colouring. FC and FS kernels obtained the
best result with N-Colouring using this fixed setting. IM kernel found the best result
with M3-Colour and IG with N-Colour. For the RG and TP representations, we only
test our models with No-Colour as these seem like good choices from experiments in
previous chapters.

Next, using these colouring choices, we optimized parameters for the two finite-length
kernels, FC and FS. In Figure 7.1, we give the results for parameter tuning these kernels.
Unlike Chapters 4 and 6 which use an AUC score, we are giving the average absolute
loss from a 5-fold cross-validation, so the optimal parameter is the smallest instead of
largest value.

A general trend appears for both kernels, the MG and RG kernels find an optimal
parameter setting at 4 or 5, while TP chooses the longest walk. This may occur as RG
are smaller graphs, and MG has structural information built into each vertex. For the
FC kernel, the best parameters are 5, 5 and 15 for the MG, RG and TP representations
respectively. For the FS kernel, the best parameters are 3, 4 and 15 for the MG, RG
and TP representations respectively.
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Figure 7.1: Parameter tuning experiments for the FC kernel are given in 7.1(a) and
the FS kernel in 7.1(b). As the average loss values for each model quite similar, the

scale is fixed between 0.6 and 0.7.
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In Figure 7.2 we give results for optimizing parameters for the infinite-length kernels,
IM and IG. In this Figure we have fixed the scale of the average absolute loss between
0.6 and 0.7. We give these graphs to show how these parameters perform over a certain
range, although only the smallest of these parameters are chosen for full testing. The
best parameter for the IM kernel was 0.01, the smallest parameter, for all three repre-
sentations. The IG kernel similarly chose a small value, 0.05, for the RG representation
which seems sensible as the reduced graphs are quite small. The MG and TP repre-
sentations chose the longest value, 0.9, with the IG kernel, providing more emphasis to
longer walks.
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Figure 7.2: Parameter tuning experiments for the IM kernel are given in 7.2(a) and
the IG kernel in 7.2(b). As the average loss values for each model quite similar, the

scale is fixed between 0.6 and 0.7.

Finally, we give results for optimizing SM, TPSM and 1G extension parameters in Figure
7.3. We test these with the best FS kernel and graph colouring chosen in the initial
parameter tuning experiments. We test a range of parameter values that weight each
extension. For the MG representation, the best parameter was found with a small weight
(0.01) with SM and 1G, although a large weight (0.5) was chosen with TPSM. The RG
representations chose the largest parameters (0.5) for both SM and 1G, suggesting that
more flexibility in these smaller graph is beneficial. The TP graphs chose the smallest
parameter (0.01) to weight SM and 1G, suggesting that these are not very beneficial for
these models.
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Figure 7.3: Parameter tuning for SM and TPSM is given in 7.3(a) and 1G is given
in 7.3(b). As the average loss values for each model quite similar, the scale is fixed

between 0.6 and 0.7.

7.2.3 Results for SVM Leave One Target Out

Using the parameters selected in Section 7.2.2, we ran experiments with the remaining
90% testing portion of the data. In our first experiment, we predict each of the 36 targets
individually using an SVM. To measure success, we use the average loss calculated by
averaging the differences between each prediction and label of a model. We give the
average loss from a 5-fold cross-validation on the full test set.

Given a set of absolute loss values from a 5-fold CV model, L = {L1, L2, L3, L4, L5}, we
can use a t distribution to determine if two models are significantly different. We begin
by calculating the sample mean:

L̂ =
∑5

i=1 Li

5
(7.1)

We calculate the sample variance, var(L), using:

var(L) =
1
5

5∑

i=1

(Li − L̂)2 (7.2)

Given average loss values from two models, L1 and L2, we can calculate the test statistic,
t̂, with the following:

t̂ =
L̂1 − L̂2√

var(L1)+var(L2)
2 ·

√
2
5

(7.3)

Since the degrees of freedom is 2 ·5−2, we compare t̂ with t8(α) and determine whether
they are significantly different at a 5% level. According to Dekking et al. (2005), t8(α)
at a 5% level is 0.1860. If t̂ > 1.860 then we reject the hypothesis that they are the
same, so they are therefore significantly different.
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We will test three types of models. We refer to the first as κgraph, where we only use
information from graph kernels with KPLS. For this type of model we give the average
loss from a 5-fold cross-validation. The second model additionally uses information from
the remaining 35 targets as well as the graph kernel and we refer to it as κgraph+target.
For this type of model we give the average loss from 35 leave-one-target-out over a 5-fold
cross-validation. Finally, the third type of model will only use target information and
we refer to it as κtarget. We use the same measure as κgraph+target and report the average
value from 35 leave-one-target, 5-fold CVs.

Results for MG, RG and TP models for the κgraph models are given in Table 7.1. Almost
all RG and TP models performed significantly worse than the MG kernels for each kernel,
except the RG and IM kernel. Overall, the best model (lowest absolute error) was found
with the MG and FS kernel. The worst model (highest absolute error) was found with
the RG and FC+1G kernel. Adding SM, TPSM and 1G extensions to the FS kernel did
not improve performance for any representation.

MG RG TP

FC 0.5577(±0.0178) 0.5900(±0.0164) ◦ 0.6462(±0.0194) ◦
FS 0.5422(±0.0168) 0.6021(±0.0172) ◦ 0.6462(±0.0194) ◦
IM 0.6989(±0.0178) 0.6125(±0.0151) • 0.6950(±0.0215)
IG 0.5948(±0.0177) 0.6886(±0.0129) ◦ 0.7019(±0.0203) ◦

FC+SM 0.5579(±0.0178) 0.6030(±0.0142) ◦ 0.6465(±0.0194) ◦
FC+TPSM 0.6645(±0.0222) - -

FC+1G 0.5593(±0.0178) 1.8009(±0.0498) ◦ 0.6488(±0.0192) ◦

Table 7.1: Results for κgraph models. We report the average absolute loss so the best
model has the lowest value. The standard deviation reported for the κgraph model is
from the 5-fold cross-validation. We use the notation ◦ to identify if a significant loss
(at 5%) over the same kernel and MG representation. Similarly, we identify a significant

gain (at 5%) by •.

The results for the κgraph+target and κtarget models are given in Table 7.2. It appears
that using the target information consistently performs better than without (κtarget).
Every RG and TP model performs significantly worse than the same kernel with MG
representation. Overall, the best model (lowest absolute error) was found with MG and
FS kernel. The MG and FS kernel also was the best model found using the κgraph in the
previous experiments. The worst model was found adding gaps to the RG and FC+1G
kernel. This model used the largest value to weight the gap feature, so it may have
overtrained to the parameter tuning set. Adding SM, TPSM and 1G extensions to the
FS kernel did not improve performance for any representation.
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MG RG TP

FC 0.5087(±0.0063) 0.5285(±0.0061) ◦ 0.5606(±0.0066) ◦
FS 0.4983(±0.0065) 0.5320(±0.0060) ◦ 0.5606(±0.0064) ◦
IM 0.5294(±0.0064) 0.5428(±0.0062) ◦ 0.5800(±0.0072) ◦
IG 0.5303(±0.0098) 0.5787(±0.0068) ◦ 0.5833(±0.0073) ◦

FC+SM 0.5088(±0.0061) 0.5357(±0.0057) ◦ 0.5608(±0.0065) ◦
FC+TPSM 0.5235(±0.0066) - -

FC+1G 0.5097(±0.0063) 1.0199(±0.0027) ◦ 0.5618(±0.0065) ◦
κtarget 0.5422(±0.0325)

Table 7.2: Results for κgraph+target and κtarget models. We report the average ab-
solute loss so the best model has the lowest value. The standard deviation reported
for the κgraph+target model is obtained from the average of the 36 leave-one-target-out
tests. We use the notation ◦ to identify if a significant loss (at 5%) over the same kernel

and MG representation. Similarly, we identify a significant gain (at 5%) by •.

Surprisingly, using κtarget alone with no information from the structure performed as
well as the best κgraph model (MG-FS). Although overall, combining these two sources
of information with κgraph+target gave the best model as shown by the lowest absolute
loss (0.4983).

7.2.4 Results for KPLS

Using the parameters selected in Section 7.2.2, we ran experiments with the remaining
90% testing portion of the data for another experiment to predict multiple targets.
In this experiment, we used Kernel Partial Least Squares (KPLS) (Rosipal and Trejo
(2001)). KPLS is an iterative algorithm that constructs a linear PLS algorithm in a
kernel space. We used 5 components of the KPLS in our tests. We list results for the
MG, RG and TP graphs in Table 7.3. We calculate the significance at 5% using the t

distribution as discussed in the previous section.
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MG RG TP

FC 0.1765(±0.0495) 0.1571(±0.0311) 0.1318(±0.0436)
FS 0.1826(±0.0480) 0.2807(±0.0195) ◦ 0.1335(±0.0429)
IM 0.0766(±0.0359) 0.1607(±0.0319) ◦ 0.0275(±0.0192) •
IG 0.0801(±0.0381) 0.0875(±0.0358) 0.0339(±0.0242) •
F 0.1765(±0.0495) 0.2807(±0.0195) ◦ 0.1335(±0.0429)

FS+SM 0.1748(±0.0492) 0.1008(±0.0260) • 0.1118(±0.0382) •
FS+TPSM 0.1066(±0.0400) - -

FS+1G 0.1711(±0.0485) 0.1327(±0.0315) 0.1115(±0.0384) •

Table 7.3: KPLS results for MG, RG and TP and several kernels. We report the
average loss as well as the standard deviation from a 5-fold CV. The best model has
the lowest value as we are considering the average absolute loss. We use the notation
◦ to identify if a significant loss (at 5%) over the same kernel and MG representation.

Similarly, we identify a significant gain (at 5%) by •.

The best result was found with the TP and IM kernel, followed by the TP and IG kernel.
The SM extension helped improve results for each representation. It is interesting to
note that the FS and TPSM extension dramatically improved the MG representation,
decreasing the error from 0.1765 to 0.1066. The SM and 1G extensions also improved the
model although to a much smaller degree. Every TP model except the FC and FS kernels
achieved significantly better results than the same kernel with the MG representation.

Comparing the results from KPLS (Table 7.3), to those that used SVMs (Tables 7.1 and
7.2) it is clear that the KPLS provides a much better model. The KPLS models had an
average loss around 0.1 while the SVM models had average loss much higher around 0.5.
In fact, the best KPLS model that used IM and TP achieved a very low average loss of
0.0275. Clearly, it is much more beneficial to use KPLS than an SVM for this data.

7.3 Experiments in Predicting an Unseen Target

In this Section, we introduce a new approach to drug discovery that allows one to
predict the activity of molecules for a target that was unseen in the training set. We
utilize Kernel Canonical Correlation (KCCA) which develops a model that finds the best
correlation between two views of data. KCCA is a natural model for drug discovery
where a molecule-target binding can be viewed from features that describe either the
molecule or target. KCCA also requires a kernel function for each view and specifically
tailored kernel functions are available for each view. We use graph kernels to represent
the view of the molecule and a string kernel for the view of a protein target. By mapping
an unseen target onto a KCCA mapping, we try to find the best molecules in the training
set that bind with this target.
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This Section is outlined as follows. We begin by reviewing KCCA and introducing a
method to apply it to drug discovery in Section 7.3.1. We describe our dataset in Section
7.3.2 and experimental methodology in Section 7.3.3. Using a subset of the data, we
discuss parameters for KCCA models and choose parameters for graph kernels using
a small parameter tuning set in Section 7.3.4. Finally, we give results and analysis in
Section 7.3.5.

7.3.1 KCCA for Drug Discovery

If a dataset has two representations (or views) for each example, we can use Kernel
Canonical Correlation Analysis (KCCA) to find the correlation between these views.
KCCA has been applied to several problems including classification experiments where
a document has both image and text representations (Hardoon et al. (2003)) and in
cross-language experiments where an example has text from two different languages
(Vinokourov et al. (2002); Li and Shawe-Taylor (2005)). Several reviews of KCCA are
available such as Hardoon et al. (2003) and as a part of books on kernel methods (Shawe-
Taylor and Cristianini (2004)).

Given a dataset with views a and b, we define the corresponding kernel matrices, Ka and
Kb. We define ε, as a parameter to allow control over the regularization in KCCA. The
correlation coefficient, ρ, between two kernel matrices is calculated with KCCA using:

ρ = max
α,β

α′KaKbβ√
(α′K2

aα + εα′K2
aα) · (β′K2

b β + εβ′K2
b β)

(7.4)

The corresponding optimization problem is:

max
α,β

α′KaKbβ (7.5)

subject to (α′K2
aα + εα′K2

aα) = 1 (7.6)

(β′K2
b β + εβ′K2

b β) = 1 (7.7)

In drug discovery, two views exist of the binding event between the ligand and target.
Kernel functions have been developed for each of these views. Graph kernels have been
specifically designed for molecules in Chapter 4. String kernels have previously been
tested with protein targets (Leslie et al. (2003)). We will only test the simplest string
kernel known as the n-gram kernel which do not allow mismatches (Leslie et al. (2003))
or gaps (Leslie and Kuang (2004)). A string kernel is used to model the protein target
as it is composed as a sequence of characters. The string kernel is computed in an
efficient manner using suffix arrays (Teo and Vishwanathan (2006)). Although each
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view has been tested independently, we propose combining these two views to model the
ligand-target binding using KCCA.

To model this relationship, it is important to note that we are modeling the binding
relationship which is composed of one molecule and one target. Each molecule may
bind with more than one target and conversely each target may bind with more than
one molecule. Therefore, each molecule or target may be represented more than once
when building a dataset to represent every binding relationship.

7.3.2 Dataset

We used a division of the Glida database3 from Jacob et al. (2008), which removed
molecules with properties not suitable for drugs as well as any duplicates. From the
original database consisting of 22,964 ligands for 3,738 GPCR targets, this left 2,446
molecules and 80 targets. These correspond to 4,051 binding interactions between
molecules and targets.

In Figure 7.4, we show in decreasing order the number of targets that bind with each
molecule. Out of 2,446 molecules, only 723 bind with more than 2 targets.

500 1000 1500 2000 24461

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Molecule

T
ar

ge
ts

 P
er

 M
ol

ec
ul

e

5 10 15 20 251

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Molecule

T
ar

ge
ts

 p
er

 M
ol

ec
ul

e

Figure 7.4: The number of targets per molecule are shown in 7.4(a). In 7.4(b), we
show the first 25 molecules in greater detail.

In Figure 7.5, we show the number of molecules that bind with each target. There are
66 targets that bind with at least two molecules. The first target, ACM1, binds with
over 526 molecules although this number decreases with the remaining targets.

3http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/
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Figure 7.5: The number of molecules that bind with each target in our dataset.

7.3.3 Experimental Methodology

To experiment with KCCA, we will remove the bindings associated with one target from
the data. Next, we will map this target on to the KCCA projection and determine if
the closest molecules in the remaining data contain molecules that bind with the target.
In order to measure success, we require that every molecule in our data binds with at
least two targets. Therefore, when we remove one target (and its binding molecules)
there will be ‘correct’ responses which are molecules that bind with this target in the
remaining data. We can rank the molecules in the training data that are closest to this
held-out target. The best model will list molecules that bind with this target first in
this list. These ‘correct’ molecules are found in the bindings from the held-out target.
We can calculate an AUC score form this ranked list, and we use this to compare
models. The results are measured with the average AUC from a set of leave-one-target-
out experiments.

To model this problem, we first sort the molecules by counting the number of targets
that bind with each molecule. We select the top 100 molecules that bind with the
most targets to use for the ‘full’ set. For a parameter tuning set, we select the next
10 molecules (molecules 100 to 110) that have the most target bindings. The first 110
molecules selected have bindings with at least two targets so they meet the requirement
mentioned earlier to model this problem. This results in a parameter tuning set that
consists of 10 unique molecules and 28 targets to form 40 molecule-target bindings. The
full set consists of 100 unique molecules that bind with 48 targets to form 680 bindings.
We then build kernel matrices for each view of the binding.

The string kernel matrices are calculated using the publicly-available software4 based
on Teo and Vishwanathan (2006). Similar to experiments in previous chapters, we use

4http://users.rsise.anu.edu.au/~chteo/SASK.html
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our graph kernels as well as several graph colouring and representations. We review this
methodology in Section 7.3.4, where we run experiments to select parameters for our
graph kernel models.

We use the publicly-available KCCA matlab software 5 to model KCCA. It is straight-
forward to modify this code so that it returns a list of the closest examples in view a

given an example in view b.

7.3.4 Parameter Tuning

In this Section, we review the parameters of KCCA models. Next, using a small param-
eter tuning set we experimentally select parameters for the graph kernel models.

7.3.4.1 KCCA Parameters

There are three parameters that define a KCCA model. The ε parameter controls
the regularization in the KCCA. We choose this parameter for each experiment using
the method suggested in Hardoon et al. (2003). This is calculated experimentally by
choosing a range of ε values. The best value is selected by choosing the one which
has the largest difference in eigenvalues returned by the KCCA algorithm and those
returned when computed with randomized kernel matrices. By choosing the maximum
difference, this gives a model with correlations furthest from the randomized version. We
use η = 0.5 for the Gram-Schmidt Decomposition (GSD) precision. This is a heuristic
value suggested in Hardoon et al. (2003). Finally, we must decide how many eigenvectors
used for the GSD algorithm which we refer as nfactors. Using the parameter tuning set
we found that setting nfactors to 5 gave the best results which agrees with Hardoon
et al. (2003).

7.3.4.2 Parameter Tuning Graph Kernels

Although we only use one string kernel for the view of the target, we use a number of
different graph kernels, colourings and representations for the ligand view. The best
setting using the parameter tuning set and selecting the parameter with the highest
average AUC from a series of leave-one-target-out trials.

A similar experimental methodology to Chapters 5 and 6 is used in our experiments.
We used the same method to parameter tune graph kernels and colours as described in
earlier experiments (Section 7.2), although we chose to test colouring methods with RG
and TP representations to allow more flexibility. We give the colour and graph kernel
parameter settings chosen in Table 7.4.

5http://www.davidroihardoon.com/
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MG RG TP

Colour Param Colour Param Colour Param

FC M1 10 M1 5 M1 1
FS M1 4 N 11 M1 5
IM N 0.1 N 0.2 M3 0.1
IG M2 0.1 N 0.01 No 0.1

F+SM M1 0.01 M1 0.05 M1 0.3
F+TPSM M1 0.05 - - - -

F+1G M1 0.01 M1 0.01 M1 0.01

Table 7.4: Parameter tuning graph kernel models for KCCA experiments

7.3.5 Results

Using the ‘full’ set that includes 100 unique molecules and 48 targets to give 680 bindings,
we performed experiments using the parameters chosen in Section 7.3.4. The results are
given in Table 7.5. The value reported is an average AUC score from series of 48 leave-
one-target-out experiments. An AUC score greater than 0.5 shows that patterns are
discovered from the data on average for all targets. The FS, IM and IG kernel have
values greater than 0.5 for MG. The FC kernel had an average AUC less than 0.5 on
average. This kernel used a very long walk-length (length 10) that may be too specific.
None of the RG models appear to learn patterns from the data. Only the IM kernel
for the TP representation did not achieve an AUC greater than 0.5. This kernel used
M3-Colour which incorporates the greatest amount of structural information into each
node. The other kernels FC, FS and IG for the TP representation used M1 or No-Colour
which incorporate much less information into each node. This suggests that the original
labeling of the graph may produce the best results. Only the TP representation was
improved by adding SM and 1G extensions. The SM extension increased the AUC from
0.5159 to 0.5604.

MG RG TP

FC 0.4280 0.4958 0.5192
FS 0.5632 0.4844 0.5159
IM 0.5524 0.4955 0.4705
IG 0.5883 0.4848 0.5208

F 0.5632 0.4958 0.5159
F+SM 0.5365 0.4820 0.5604

F+TPSM 0.4999 - -
F+1G 0.5006 0.4512 0.5416

Table 7.5: KCCA Results. These values are AUC scores averaged from a 5-fold CV
for the kernel and representation. The three results in bold will be analyzed further.
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Although we have given an average AUC for leave-one-target-out experiments, we give
analysis to understand how each of the 48 targets perform individually. Using the top
three models highlighted in Table 7.5, we analyze the results for each target. The top
three models highlighted are MG with the IG kernel, followed by MG with FS kernel
and TP with FS kernel and SM extension.

In Figure 7.6, we sort the targets based on the number of molecules that bind with each
target. We report the number of hits found in the first 100 molecules in the ranked list
of molecules closest in the training data to the target. In general, it appears that most
targets are able to retrieve a good proportion of the actives in the first 100 molecules.
As shown for the last 10 targets, almost all of the targets are found in the first 100.
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Figure 7.6: The number of actives retrieved for the top 100 molecules ranked by
output of three KCCA models with highest average AUC

In Figure 7.7, we give the AUC found for each target. The targets are ordered in the
same manner as Figure 7.6 so that these figures can be compared. in the last 10-15
targets, it appears that many models achieve a high AUC close to 0.9. The MG-IG
model (coloured yellow) has many targets with AUC close to 1.
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Figure 7.7: The AUC achieved by each individual held-out target for three KCCA
models with highest average AUC

7.3.6 Discussion

A new approach to virtual screening was presented in this Section. This is the first
known method that combines information from both ligand and target to predict a
molecules activity with a target. Given an unseen target, we can find the best molecules
in the training data that may interact with this target. We found that experimentally
our models could learn from this data and achieve an AUC greater than 0.5. This is
quite surprising as it is a very difficult problem; the relationship between the structure
of the target and the structure of the ligand is very complex. Overall, using MG we
achieved the highest results with the IG kernel obtaining an average AUC of 0.5883.

This approach may be very useful in the drug discovery cycle when training data is
not available for a certain target. One very recent paper (Holden et al. (2008)), gave
the structure of an APOBEC3G target that is believed to be useful in restricting the
replication of the immunodeficiency virus (HIV). Although we use NCI-HIV data in ear-
lier Chapters, only 13 inactive molecules overlapped with the data used in this Section.
Therefore, although we are able to predict the most suitable molecules for this target in
our training data, we cannot validate these because of a lack of data.
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7.4 Summary

In this Chapter we have given new results that use graph kernels with multiple targets in
two sets of experiments. In the first set of experiments, we predict each target individu-
ally and then compared this with kernel PLS that predicted all targets simultaneously.
We found trends among each graph kernel and representation. Our finite length kernels
performed better than infinite-length kernels for a leave-one-target SVM experiment.
Also, using the remaining target information (κgraph) consistently achieved better mod-
els than ones that did not use this information. In the second set of experiments we
used KCCA to predict molecules for a target that was not used in the training data.
This method is a new approach to drug discovery, and we found that several settings
of graph kernels are able to accurately predict the activity of molecules for an unseen
target confirmed by analysis of the top 100 ranked molecules and the AUC score.



Chapter 8

Conclusions

8.1 Conclusions

This thesis suggests that graph kernels are a powerful tool for virtual screening of
molecules. Through the course of this research we have identified three decisions that
one must address to use graph kernel models. Firstly, one must choose a graph-based
representation of a molecule. Although previous research has only tested molecular
graph, in this thesis we introduce two new graphs for testing with graph kernels: the
reduced graph and topological pharmacophore (TP) graph. These are described in de-
tail in Chapter 3. As every molecule in our dataset can be described as any of the three
graphs, we test all three graphs and make direct comparisons when used to classify
their activity and perform other experiments. A second decision is whether to modify
the vertex labels of the graphs by enriching each label with structural information. We
describe how this graph colouring is achieved with either N-Colour or Morgan colour
methods in Chapter 2. A third decision involves choosing the type of graph kernel. As
described in Chapter 3, there are a number of different graph kernels available.

We addressed some of the problems with previous kernels by introducing a new flex-
ible framework to calculate graph kernels efficiently, in Chapter 4. As a part of this
framework, we show that two infinite-length graph kernels can be approximated. Also,
we introduce two new finite-length graph kernels, that use counts of walk-lengths of
a set length as features. Finally, we introduce extensions to graph kernels including
soft-matching and gaps. The primary motivation for soft-matching is the availability of
alternative TP labels for molecular graphs. Using our kernels we can include mismatched
walks that have matching TP labels. We are motivated to allow gap features in graphs
primarily for use with reduced graphs. Reduced graphs are very small, typically con-
taining only 5 nodes. Important features may be separated by internal nodes, although
no matching would occur. By allowing gaps we can include features and match these
reduced graphs which seems appropriate. This framework allows much more flexibility
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so that one can incorporate expert knowledge and weight certain features to design the
best kernel. All three of these considerations were addressed in three different Chapters
of experiments.

Our first experiments, in Chapter 5, used graphs kernels for ‘active’, ‘not active’ binary
classification of two publicly-available datasets: MuTag and NCI-HIV datasets. Using
an AUC score, we compared several graph kernels and extensions using MG, RG and TP
representations. In both datasets, we found that MG graphs achieved slightly higher
AUC scores. We consider the second, larger dataset, a more reliable source to draw
conclusions as it is much larger. In this second dataset, we found that the IM graph
kernel achieved the highest AUC for every representation. Adding the soft-matching and
gap extensions to the finite-length graph kernels improved the AUC score. By examining
the statistical significance of the results for each kernel, we found that a given kernel
performed similarly using either MG, RG or TP. Finally, as the NCI-HIV dataset is
highly skewed containing over 96% examples from the ‘not active’ class which is typical
of most chemoinformatic datasets, we tried experiments that varied the number of ‘not
active’ examples used for training. We found that good models could be built with a
fraction of the total ‘not actives’ and thus not all of these are needed to build a good
classification model with SVMs.

While previous research has used cross-validation techniques using the entire dataset, in
Chapter 6 we modify our data to exhibit lead hopping so that we can understand how
well these models generalize to other classes of drugs. We used two datasets derived from
publicly-available dataset including the NCI-HIV data and the Pyruvate Kinase data. In
these experiments, we went beyond just the AUC score and performed a visual analysis
of the top actives from each model to determine if lead hopping occurred. We did this as
the definition of lead hopping is fairly subjective and although in general two molecules
must have different core structure to be considered lead hopping. Many of the kernels and
representations were able to achieve an AUC greater than 0.5 suggesting lead hopping.
We found that with certain graph kernels and colourings chosen in the parameter tuning
phase, could result in very poor performance on the full dataset. Overall, no one kernel
or representation emerged as the best choice. One consistent trend that occurred for
both datasets while predicting either way on the splits was that adding the SM extension
to either the FC or FS kernel increased the models performance. The 1G extension also
increased performance, although this was much less consistent than the SM extension.
Surprisingly, we found that models could learn with MG fingerprints even though most
of the information was removed by the nature of the data split.

Finally, in Chapter 7, we introduce two sets of experiments for learning with multi-
ple targets. This type of problem, sometimes referred to as polypharmacology, differs
from experiments in earlier chapters where we predicted the activity of a single tar-
get. To predict multiple targets, we tried two approaches. First, we predicted each
target individually with an SVM and used the remaining activity information with a
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linear kernel. Next, we predicted all targets simultaneously with kernel PLS. We found
that using KPLS we could achieve much better results than using a leave-one-target-
out SVM. Models that used an SVM performed best when using a kernel that took
information from both the target and molecular graph. Finally, we performed a second
set of experiments which introduced a new method to integrate information from both
ligand and target to predict the activity of a target. Using Kernel Canonical Correla-
tion Analysis (KCCA), we found that some kernels and representations could learn form
the data achieving an average AUC greater than 0.5 from a set of leave-one-target-out
experiments.

8.2 Future Work

We see several areas where our work could be extended. In Chapter 7, we introduced a
new framework using KCCA to perform drug discovery. In our experiments we only used
one type of string kernel for analysis. One future direction would be to run experiments
with string kernels that allow mismatches and gaps (sometimes referred to as the n-gram
kernel). Another alternative would be to use the structural information in the protein
class hierarchy, which was used to define a kernel between targets in Jacob et al. (2008).
While in Chapter 7 we optimized our model for the best view of the molecule, we could
use one of these alternative kernel for targets to optimize the view of the target as well.

Another area for future work is motivated by an interesting result from Chapter 5. We
found that using only a fraction of the ‘not active’ examples, we could achieve nearly
as good AUC scores as models that used all the examples. This result is especially
important for large chemical databases that include millions of compounds and only
hundreds of hits or active compounds. As the active class information is so critical, we
would like to test one-class classifiers such as the 1-SVM (Schölkopf et al. (1999)) with
our framework. Using one-class this is a type of novelty detection and it appears that
drug discovery fits nicely with this interpretation, as we are only interested in the hits
and not the inactive examples.

Finally, the dynamic programming framework to calculate graph kernels introduced in
Chapter 4, could be applied to other problems beyond drug discovery. One of the key
aspects of our kernels is the ability to incorporate prior knowledge using soft-matching
and gappy features. We could test our new graph kernels on a bioinformatics tasks such
as the classification of proteins where previous graph kernel research has been effective
(Borgwardt and Kriegel (2005)). Graph kernels may be useful for other domains where
the data can be modeled using a graph. Other possible areas where graph kernels may
prove useful include spam detection and social network analysis. Our kernels could be
tailored to address each of these areas.
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P. Mahé. Kernel design for virtual screening of molecules using support vector machines.
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