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SUMMARY

We consider the specification of prior distributions for Bayesian model comparison, focusing

on regression-type models. We propose a particular joint specification of the prior distribution

across models so that sensitivity of posterior model probabilities to the dispersion of prior

distributions for the parameters of individual models (Lindley’s paradox) is diminished. We

illustrate the behavior of inferential and predictive posterior quantities in linear and log-linear

regressions under our proposed prior densities with a series of simulated and real data examples.
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1 Introduction and motivation

A Bayesian approach to inference under model uncertainty proceeds as follows. Suppose that the

data y are considered to have been generated by a model m, one of a set M of competing models.

Each model specifies the distribution of Y , f(y|m,βm) apart from an unknown parameter vector

βm ∈ Bm, where Bm is the set of all possible values for the coefficients of model m. We assume

that Bm = Rdm where dm is the dimensionality of βm.

If f(m) is the prior probability of model m, then the posterior probability is given by

f(m|y) =
f(m)f(y|m)
∑

m∈M
f(m)f(y|m)

, m ∈M (1)

where f(y|m) is the marginal likelihood calculated using f(y|m) =
∫
f(y|m,βm)f(βm|m)dβm and

f(βm|m) is the conditional prior distribution of βm, the model parameters for model m. Therefore

f(m|y) ∝ f(m)f(y|m), m ∈M.

For any two models m1 and m2, the ratio of the posterior model probabilities (posterior odds

in favour of m1) is given by
f(m1|y)

f(m2|y)
=

f(m1)

f(m2)

f(y|m1)

f(y|m2)
(2)
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the ratio of prior probabilities multiplied by the ratio of marginal likelihoods, also known as the

Bayes factor.

The posterior distribution for the parameters of a particular model is given by the familiar

expression

f(βm|m,y) ∝ f(βm|m)f(y|βm,m), m ∈M.

For a single model, a highly diffuse prior on the model parameters is often used (perhaps to represent

ignorance). Then the posterior density takes the shape of the likelihood and is insensitive to the

exact value of the prior density function, provided that the prior is relatively flat over the range

of parameter values with non-negligible likelihood. When multiple models are being considered,

however, the use of such a prior may create an apparent difficulty. The most obvious manifestation

of this occurs when we are considering two models m1 and m2 where m1 is completely specified (no

unknown parameters) and m2 has parameter βm2
and associated prior density f(βm2

|m2). Then,

for any observed data y, the Bayes factor in favour of m1 can be made arbitrarily large by choosing

a sufficiently diffuse prior distribution for βm2
(corresponding to a prior density f(βm2

|m2) which

is sufficiently small over the range of values of βm2
with non-negligible likelihood). Hence, under

model uncertainty, two different diffuse prior distributions for model parameters might lead to

essentially the same posterior distributions for those parameters, but very different Bayes factors.

This result was discussed by Lindley (1957) and is often referred to as ‘Lindley’s paradox’

although it is also variously attributed to Bartlett (1957) and Jeffreys (1961). As Dawid (2009)

points out, the Bayes factor is only one of the two elements on the right hand side of (2) which

contribute towards the posterior model probabilities. The prior model probabilities are of equal

significance. By focusing on the impact of the prior distributions for model parameters on the

Bayes factor, there is an implicit understanding that the prior model probabilities are specified

independently of these prior distributions. This is often the case in practice, where a uniform

prior distribution over models is commonly adopted, as a reference position. Examples where non-

uniform prior distributions have been suggested include Madigan et al (1995), Chipman (1996),

Laud and Ibrahim (1995, 1996), and Chipman et al (2001). In this paper, we consider how the

two elements of the prior distribution under model uncertainty might be jointly specified so that

perceived problems with Bayesian model comparison can be avoided.

A related issue concerns the use of improper prior distributions for model parameters. Such

prior distributions involve unspecified constants of proportionality, which do not appear in posterior

distributions for model parameters but do appear in the marginal likelihood for any model and in

any associated Bayes factors, so these quantities are not uniquely determined. There have been

several attempts to address this issue, and to define an appropriate Bayes factor for comparing

models with improper priors; see Kadane and Lazar (2004) for a review. In such examples, Dawid

(2009) proposes that the product of the prior model ‘probability’ and the prior density for a given

model could be determined simultaneously by eliciting the relative prior ‘probabilities’ of particular

sets of parameter values for different models. He also suggests an approach for constructing a
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general non informative prior, over both models and model parameters, based on Jeffreys’ priors

for individual models. Although the prior distributions for individual models are not generally

proper, they have densities which are uniquely determined and hence the posterior distribution

over models can be evaluated. Here, we do not consider improper prior distributions for the model

parameters, but our approach is similar in spirit as we do explicitly consider a joint specification

of the prior over models and model parameters.

We focus on models in which the parameters are sufficiently homogeneous (perhaps after

transformation) that a multivariate normal prior density N(µm, Vm) is appropriate, and in which

the likelihood is sufficiently regular for standard asymptotic results to apply. Examples are linear

regression models, generalized linear models and standard time series models. In much of what

follows, with minor modification, the normal prior can be replaced by any elliptically symmetric

prior density proportional to |V |−1/2g
(
(β − µ)TV −1(β − µ)

)
where

∫∞
0 rd−1g(r2)dr < ∞ and d

is the dimensionality of β. This includes prior distributions from the multivariate t or Laplace

families.

We choose to decompose the prior variance matrix as Vm = c2mΣm where cm represents the

scale of the prior dispersion and Σm is a matrix with a specified value of |Σm|; for example |Σm| = 1,

although in what follows we will not use an explicit value. Hence, suppose that

f(βm|m) = (2π)−dm/2|Σm|−1/2c−dm

m exp

(
−

1

2c2m
(βm − µm)T Σ−1

m (βm − µm)

)
. (3)

Then,

f(m|y) ∝ f(m)

∫
f(y|m,βm)f(βm|m)dβm

= f(m)(2π)−dm/2|Σm|−1/2c−dm

m ×∫

Rdm

exp

(
−

1

2c2m
(βm − µm)T Σ−1

m (βm − µm)

)
f(y|m,βm)dβm (4)

and for suitably large cm,

f(m|y) ≈ f(m)(2π)−dm/2|Σm|−1/2c−dm

m

∫

Rdm

f(y|m,βm)dβm. (5)

Hence, as c2m gets larger, f(m|y) gets smaller, assuming everything else remains fixed. Therefore,

for two models of different dimension with the same value of c2m, the posterior odds in favor of the

more complex model tends to zero as c2m gets larger, that is as the prior dispersion increases at a

common rate. This is essentially Lindley’s paradox.

There have been substantial recent computational advances in methodology for exploring the

model space, see for example Green (1995, 2003), Kohn et al (2001), Denison et al (2002), Hans et al

(2007). The related discussion of the important problem of choosing prior parameter dispersions

has been largely focused on ways to avoid Lindley’s paradox; see, for example, Fernandez et al

(2001) and Liang et al (2008) for detailed discussion on appropriate choices of Zellner’s g-priors for

linear regression models and Raftery (1996) and Dellaportas and Forster (1999) for some guidelines
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on selecting dispersion parameters of normal priors for generalized linear model parameters. The

important effect that these prior specifications might have on the parameter posterior distributions

within each model has been neglected. For example, a set of values of cm might be appropriate for

addressing model uncertainty, but might produce prior densities f(βm|m) that are insufficiently

diffuse and overstate prior information within certain models. This has a serious effect on posterior

and predictive densities of all quantities of interest in any data analysis.

In this paper we propose that prior distributions for model parameters should be specified

with the issue of inference conditional on a particular model being the primary focus. For example,

when only weak information concerning the model parameters is available, a highly diffuse prior may

be deemed appropriate. The key element of our proposed approach is that sensitivity of posterior

model probabilities to the exact scale of such a diffuse prior is avoided by suitable specification

of prior model probabilities f(m). As mentioned above, these probabilities are rarely specified

carefully, a discrete uniform prior distribution across models usually being adopted. However, it is

straightforward to see that setting f(m) ∝ cdm

m in (5) will have the effect of eliminating dependence

of the posterior model probability f(m|y) on the prior dispersion cm. This provides a motivation

for investigating how prior model probabilities can be chosen in conjunction with prior distributions

for model parameters, by first considering properties of the resulting posterior distribution.

2 Prior and posterior distributions

We consider the joint specification of the two components of the prior distribution by investigating

its impact on the asymptotic posterior model probabilities. By using Laplace’s method to approx-

imate the posterior marginal likelihood in (4), we obtain, subject to certain regularity conditions

(see, Kass et al, 1988, Schervish, 1995, sec. 7.4.3),

f(m|y) ∝ f(m)|Σm|−1/2c−dm

m f(y|m, β̂m) exp

(
−

1

2c2m
(β̂m − µm)T Σ−1

m (β̂m − µm)

)
×

|c−2
m Σ−1

m −H(β̂m)|−1/2
(
1 +Op(n

−1)
)

(6)

where β̂m is the maximum likelihood estimate and H(βm) is the second derivative matrix for

log f(y|m,βm). Then,

log f(m|y) = C + log f(m) −
1

2
log |Σm| − dm log cm + log f(y|m, β̂m)

−
1

2c2m
(β̂m − µm)T Σ−1

m (β̂m − µm) −
1

2
log |c−2

m Σ−1
m −H(β̂m)| +Op(n

−1)

= C + log f(m) −
1

2
log |Σm| − dm log cm + log f(y|m, β̂m)

−
1

2c2m
(β̂m − µm)T Σ−1

m (β̂m − µm) −
dm

2
log n−

1

2
log |i(β̂m)| +Op(n

−1/2) (7)

where C is a normalizing constant to ensure that the posterior model probabilities sum to one

and i(βm) ≈ −n−1H(βm) is the Fisher information matrix for a unit observation; see Kass and
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Wasserman (1995). If the decomposition of the prior variance matrix c2mΣm is chosen so that

|Σm| = |i(βm)|−1, then

log f(m|y) = C + log f(y|m, β̂m) −
1

2c2m
(β̂m − µm)T Σ−1

m (β̂m − µm)

+ log f(m) − dm log cm −
dm

2
log n+Op(n

−1/2) (8)

and c−2
m can be interpreted as the number of units of information in the prior, defined as

c−2
m = (|Vm||i(βm)|)−1/dm . (9)

Note that substituting cm = 1 (unit information) into (8), and choosing a discrete uniform

prior distribution across models, suggests model comparison on the basis of a modified version of

the Schwarz criterion (BIC; Schwarz, 1978) where maximum likelihood is replaced by maximum

penalized likelihood. In a comparison of two nested models, Kass and Wasserman (1995) give extra

conditions on a unit information prior which lead to model comparison asymptotically based on BIC;

see Volinsky and Raftery (2000) for an example of the use of unit information priors for Bayesian

model comparison. For regression-type models where the components of y are not identically

distributed, depending on explanatory data, the unit information as defined above potentially

changes as the sample size changes, so a little care is required with asymptotic arguments. We

assume that the explanatory variables arise in such a way that i(βm) = ilim(βm) + O(n−1/2)

where ilim(βm) is a finite limit. This is not a great restriction and is true, for example, where the

explanatory data may be thought as i.i.d. observations from a distribution with finite variance.

In general, i(βm) depends on the unknown model parameters, so the number of units of

information c−2
m corresponding to any given prior variance matrix Vm, will also not be known, and

hence it is not generally possible to construct an exact unit information prior. Dellaportas and

Forster (1999) and Ntzoufras et al (2003) advocated substituting µm, the prior mean of βm into

i(βm) to give a prior for model comparison which has a unit information interpretation but for

which model comparison is not asymptotically based on BIC.

When the prior distribution for the parameters of model m is highly diffuse, so that cm is

large, then (8) can be rewritten as

log f(m|y) ≈ C + log f(y|m, β̂m) + log f(m) − dm log cm −
dm

2
log n (10)

where β̂m is the maximum likelihood estimate of βm. Equation (10) corresponds asymptotically to

an information criterion with complexity penalty equal to log n+ log c2m − 2d−1
m log f(m) compared

with BIC, for example, where the complexity penalty is equal to log n. The relative discrepancy

between these two penalties is asymptotically zero. Poskitt and Tremayne (1983) discussed the

interplay between prior model probabilities f(m) and BIC and other information criteria in a time

series context when Jeffreys priors are used for model parameters.

It is clear from (10) that a large value of cm arising from a diffuse prior penalizes more

complex models. On the other hand, a more moderate value of cm (such as unit information) may
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have the effect of shrinking the posterior distributions of the model parameters towards the prior

mean to a greater extent than desired. This has a particular impact when model averaging is used

to provide predictive inferences (see, for example, Hoeting et al , 1999), where both the posterior

model probabilities and the posterior distributions of the model parameters are important. A

conflict can arise where to achieve the amount of dispersion desired in the prior distribution for

model parameters, more complex models are unfairly penalized. To avoid this, we suggest choosing

the dispersion of the prior distributions of model parameters to provide the amount of shrinkage

to the prior mean which is considered appropriate a priori, and to choose prior model probabilities

to adjust for the resulting effect this will have on the posterior model probabilities. We propose

f(m) ∝ p(m)cdm

m (11)

where p(m) are baseline model probabilities which do not depend on the prior distributions of the

model parameters, and might be expected not to depend on the dimensions of the models, although

we do not prohibit this. With this choice of f(m), (8) becomes

log f(m|y) = C + log f(y|m, β̂m) −
1

2c2m
(β̂m − µm)T Σ−1

m (β̂m − µm)

+ log p(m) −
dm

2
log n+Op(n

−1/2) (12)

Where the specification of the base variance Σm is not in terms of unit information, the extra term

− log(|Σm||i(βm)|)/2 is required in (12). When c2m is large and when all p(m) are equal, model

comparison is asymptotically based on BIC. More generally, we propose choosing prior model

probabilities based on (11) for any prior variance Vm. Substituting (9) into (11), we obtain

f(m) ∝ p(m)(|Vm||i(βm)|)1/2. (13)

The choice of p(m) can be based on the form of the equivalent model complexity penalty which is

deemed to be appropriate a priori. Setting all p(m) equal, which we propose as the default option,

leads to model determination based on a modified BIC criterion involving penalized maximum

likelihood. Hence, the impact of the prior distribution on the posterior model probability through

(β̂m−µm)T Σ−1
m (β̂m−µm)/2c2m in (12) is straightforward to assess, and any undesirable side effects

of large prior variances are eliminated.

In order to specify prior model probabilities using (11), with p(m) chosen to correspond

to a particular complexity penalty, it is necessary to be able to evaluate c−2
m , the number of

units of information implied by the specified prior variance Vm for βm. Equivalently, as f(m) ∝

p(m)|Vm|
1

2 |i(βm)|
1

2 , knowledge of |i(βm)| is required. Except in certain circumstances, such as

normal linear models, this quantity depends on the unknown model parameters βm. One possibil-

ity is to use a sample-based estimate |i(β̂m)| to determine the ‘prior’ model probability, in which

case the approach is not fully Bayesian. Alternatively, as suggested above, substituting µm, the

prior mean of βm, into i(βm) gives a prior for model comparison which has a unit information

interpretation but for which model comparison is not asymptotically based on (12), the extra term

log(|i(µm)|/|i(βm)|)/2 being required.
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3 Normal linear models

Here we consider normal linear models where for m ∈M , y ∼ N(Xmβm, σ
2I) with the conjugate

prior specification

βm|σ2,m ∼ N(µm, σ
2Vm) and σ−2 ∼ Gamma(α, λ) . (14)

For such models the posterior model probabilities can be calculated exactly. Dropping the model

subscript m for clarity,

f(m|y) ∝ f(m)
|V ∗|1/2

|V |1/2

(
2λ+ yT y + µTV −1µ − β̃

T
(V ∗)−1β̃

)−α−n/2

where V ∗ = (V −1 + XT X)−1 and β̃ = V ∗(V −1µ + XT y) is the posterior mean. Hence, setting

V = c2Σ, as before,

log f(m|y) = C + log f(m) −
1

2
log |c−2Σ−1 + XT X| −

1

2
log |Σ| − d log c

− (α+ n/2) log

(
2λ+ yT y + µTV −1µ − β̃

T
(V ∗)−1β̃

)

= C − (α+ n/2) log
(
2λ+ (y − Xβ̃)T (y − Xβ̃) + (β̃ − µ)TV −1(β̃ − µ)

)

+ log f(m) −
1

2
log |i| −

d

2
log n−

1

2
log |Σ| − d log c+O(n−1) (15)

where, with a slight abuse of notation, i = n−1XT X is the unit information matrix multiplied by

σ2. Notice the correspondence between (7) and (15). As before, if |Σ| = |i|−1, then c−2 can be

interpreted as the number of units of information in the prior (as the prior variance is c2σ2Σ) and

log f(m|y) = C − (α+ n/2) log
(
2λ+ (y − Xβ̃)T (y − Xβ̃) + (β̃ − µ)TV −1(β̃ − µ)

)

+ log f(m) −
d

2
log n− d log c+O(n−1). (16)

In both (15) and (16) the posterior mean β̃ can be replaced by the least squares estimator β̂. Again,

if c = 1 (unit information) and the prior distribution across models is uniform, model comparison

is performed using a modified version of BIC, as presented for example by Raftery (1995), where

n/2 times the logarithm of the residual sum of squares for the model has been replaced by the first

term on the right hand side of (16). The residual sum of squares is evaluated at the posterior mode,

and is penalised by a term representing deviation from the prior mean, as in (7). This expression

also depends on the prior for σ2 through the prior parameters α and λ, although these terms vanish

when the improper prior f(σ2) ∝ σ−2, for which α = λ = 0, is used. With these values, and setting

Σ−1 = i = n−1XT X , we obtain the prior used by Fernandez et al (2001), who also note the unit

information interpretation when c = 1.

As before, if the prior variance V suggests a different value of c, then the resulting impact

on the posterior model probabilities can be moderated by an appropriate choice of f(m) and again

we propose the use of (11) and (13), noting that for normal models i is known. In the context of
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normal linear models, Pericchi (1984) suggests a similar adjustment of prior model probabilities by

an amount related to the expected gain in information. Alternatively, replacing |i| by |i+n−1V −1|

in (13), resulting in

f(m) ∝ p(m)|V |
1

2 |i+ n−1V −1|
1

2 , (17)

makes (15) exact, eliminating the O(n−1) term. Again, for highly diffuse prior distributions on the

model parameters (large values of c2), together with α = λ = 0 and prior model probabilities based

on (11) and (13), equation (16) implies that model comparison is performed on the basis of BIC.

4 Relationship with other information criteria

In Sections 2 and 3, we have investigated how prior model probabilities might be specified by

considering their joint impact, together with the prior distributions for the model parameters, on

the posterior model probabilities. It was shown that making these probabilities depend on the prior

variance of the associated model parameters using (11) or (13) with uniform p(m) leads to posterior

model probabilities which are asymptotically equivalent (to order n−
1

2 ) to those implied by BIC.

For models other than normal linear regression models, a prior value of β must be substituted into

(13) and so the approximation only attains this accuracy for β within an O(n−
1

2 ) neighbourhood of

this value. Nevertheless, we might expect BIC to more accurately reflect the full Bayesian analysis

for such a prior than more generally, where the error of BIC as an approximation to the log-Bayes

factor is O(1).

Alternative (non-uniform) specifications for p(m) might be based on other information cri-

teria of the form

log f(y|m, β̂m) −
1

2
ψ(n)dm

where ψ(n) is a ‘penalty’ function; for BIC, ψ(n) = log n and for AIC ψ(n) = 2. From (12), for large

c2m or for a modified criterion, we have ψ(n) = log n + 2d−1
m log p(m). As p(m) contributes to the

prior model probability through (11) it cannot be a function of n since our prior belief on models

should not change as the sample size changes. Therefore, strictly, the only penalty functions which

can be equivalent to setting prior model probabilities as in (11) are of the form ψ(n) = log n+ ψ0

for some positive constant ψ0 > 0. Any alternative dependence on n would correspond to a prior

which depended on n, through f(m) or f(βm|m). Hence AIC, for example, is prohibited (as would

be expected, as AIC is not consistent, whereas any approach arising from a proper prior must be).

Nevertheless, if a penalty function of a particular form is desired for a sample of a specified size

n0, then setting log p(m) = dm

2

{
log n0 − ψ(n0)

}
will ensure that posterior model probabilities are

calculated on the basis of the information criterion with penalty ψ(n0), at the relevant sample size

n0.
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5 Alternative arguments forf(m) ∝ cdm

m

The strategy described in this paper can be viewed as a full Bayesian approach where the prior

distribution for model parameters is specified by focusing on the uncertainty concerning those pa-

rameters alone, and the prior model probabilities can be specified by considering the way in which

an associated ‘information criterion’ balances parsimony and goodness-of-fit. In the past, infor-

mative specifications for these probabilities have largely been elicited via the notion of imaginary

data; see for example Chen et al (1999, 2003). Within the approach suggested here, prior model

probabilities are specified by considering the way in which data yet to be observed might modify

ones beliefs about models, given the prior distributions for the model parameters. Full posterior

inference under model uncertainty, including model averaging, is then available for the chosen prior.

Specifying the prior distribution on the basis of how it is likely to impact the posterior

distribution is entirely valid, but may perhaps seem unnatural. In particular, the consequence that

the prior model probabilities might depend on the prior distributions for the model parameters

may seem somewhat alien. This is particularly true of the implication of (13), that models where

we have more information (smaller dispersion) in the prior distribution should be given lower prior

probabilities than models for which we are less certain about the parameter values. One justification

for this is to examine the prior model probabilities for particular subsets of the parameter spaces

within models. This can be considered as an extension of the approach of Robert(1993) for two

normal models. We consider the prior probability of the event

E = {model m is ‘true’ } ∩ {(βm − µm)T i(β0
m)(βm − µm) < ǫ2}

for some reference parameter value β0
m, possibly the prior mean µ. The dependence of this subset

of the parameter space on the unit information at β0
m enforces some degree of comparability across

models. This is particularly true if the various values of β0
m are compatible (for example they

imply the same linear predictor in a generalised linear model, as they would generally do if set

equal to 0). For the purposes of the current discussion, we also require Vm = c2mi(β
0
m)−1. This is

a plausible default choice, but nevertheless represents considerable restriction on the structure of

the prior variance, which was previously unconstrained. Then

P (E) = f(m)P

(
χ2

dm
<

ǫ2

c2m

)

≈
f(m)ǫdm

2dm/2−1Γ(dm/2)c
dm
m

for small ǫ. Therefore, for this prior, if the joint prior probability of model m in conjunction with

βm being in some specified neighbourhood (defined according to a unit information inner product)

of its prior mean is to be uniform across models then we require f(m) ∝ p(m)cdm

m as in (11), with

p(m) = 2dm/2−1Γ(dm/2)/ǫ
dm .

An alternative justification of (11) when the model parameters are given diffuse normal prior

distributions arises as follows. One way of taking a ‘baseline’ prior distribution and making it more
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diffuse, to represent greater prior uncertainty, is to raise the prior density to the power 1/c2 for

some c2 > 1, and then renormalise. For example, for a single normal distribution this has the effect

of multiplying the variance by c2, which increases the prior dispersion in an obvious way. Highly

diffuse priors, suitable in the absence of strong prior information, may be thought as arising from a

baseline prior transformed in this way for some large value of c2. Where model uncertainty exists,

the joint prior distribution is a mixture whose components correspond to the models, with mixture

weights f(m). As suggested above, a diffuse prior distribution might be obtained by raising a

baseline prior density (with respect to the natural measure over models and associated parameter

spaces) to the power 1/c2 and renormalising. Where the baseline prior distribution for βm is normal

with mean µm and variance Σm, the effect of raising the mixture prior density to the power 1/c2 is

to increase the variance of each βm by a factor of c2, as before. For large values of c2 the effect of the

subsequent renormalisation is that the model probabilities are proportional to |Σm|1/2(2π)dm/2cdm ,

independent of the model probabilities in the original baseline mixture prior. Again this illustrates

a relationship between prior model probabilities and prior dispersion parameters satisfying (11).

For the two normal models considered by Robert (1993) the resulting prior model probabilities are

identical. Where the baseline variance is based on unit information, so |Σm| = |i(βm)|, then the

prior model probabilities can be written as (13) with p(m) = (2π)dm/2|i(βm)|−1/2.

Finally, this approach can be justified by considering the behaviour of the posterior mean

under model averaging. We restrict consideration here to two nested models, m0 and m1, differing

by a single parameter θ and suppose that f(y|m0) = f(y|m1, θ0). We assume that the (marginal)

prior for θ under m1 is N(θ0, τ
−1) and, without loss of generality, we take θ0 = 0. Under model m1

the Bayes estimator for θ is the posterior mean E1(θ|y), which has asymptotic expansion

E1(θ|y) = θ̂

(
1 −

i(θ̂)τ

n

)
+

a3

2i(θ̂)2n
+ o(n−1) (18)

where na3 is the third derivative of the log-likelihood, evaluated at θ̂ (see for example, Johnson,

1970, Ghosh, 1994). This illustrates the usual effect of prior precision τ as a shrinkage parameter,

with the posterior mean being shrunk away from the m.l.e., with the amount of shrinkage dimin-

ishing as τ → 0. Hence, for fixed y, the posterior mean for θ is (asymptotically) monotonic in τ .

Allowing for model uncertainty, we have E(θ|y) = f(m1|y)E1(θ|y) where

f(m1|y) =
1

1 + k(2π)1/2τ−1/2f1(0|y)
(19)

where f1(θ|y) is the posterior (marginal) density for θ under m1, and k are the prior odds in favour

of m0 over m1. Combining (18) and (19), we see that the relationship between the coefficient for θ̂ in

the model averaged posterior depends and the prior precision for θ is no longer generally monotonic,

so τ no longer has a simple interpretation as a shrinkage parameter. A simple illustration of this is

provided by Figure 1, where this coefficient is plotted for various values of τ , for the simple example

of a normal distribution with known error variance, and prior odds k = 1. It can be seen that,

10



regardless of the value of τ there will be a certain amount of shrinkage to the prior mean. Adopting

the approach advocated in this paper has the effect of setting k ∝ τ1/2 which mitigates this effect,

and returns control over the shrinkage to the analyst.
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Figure 1: Model average coefficient on θ̂ [evaluated as θ̂/θ], for normal likelihood with known

error variance, σ2. The plot here is for n = 10, θ̂ = 1, σ2 = 1. The solid line is for a uniform

prior over models, and the dashed line uses prior model probability f(m1) ∝ τ1/2. The dotted

lines are approximations based on replacing (2π)1/2f1(0|y) in (19) with its normal approximation

exp

(
− i(θ̂)n

2 θ̂2

)
, ignoring the dependence, to O(n−1), of f1(0|y) on τ .

The purpose of the above discussion is not necessarily to advocate a particular prior, but

simply to illustrate that one can arrive at (11) by direct consideration of prior probabilities, or

prior densities, or by the behaviour of posterior means, as well as by the asymptotic behavior of

posterior model probabilities, or associated numerical approximations, as earlier.

6 Illustrated Examples

6.1 Scope

Here we present three examples. In Section 6.2 we illustrate the effect of Lindley’s paradox in a

standard linear regression context emphasizing its dramatic effect on inference concerning model

11



uncertainty. At the same time, we demonstrate that if instead of using the standard discrete uniform

prior distribution (DU) for f(m) we adopt our proposed discrete adjusted prior distribution (DA)

given by (11) with p(m) = 1, this effect is diminished.

Section 6.3 illustrates that unit information prior specifications (or other specifications sug-

gesting smaller prior parameter dispersion) can indeed significantly shrink posterior distributions

towards zero. This effect suggests that although prior variances based on unit information might

have desirable behaviour with respect to model determination, they may unintentionally distort

the parameter posterior distributions. We demonstrate that this can affect the predictive ability of

routinely used model averaging approaches in which information is borrowed across a set of models.

Finally, Section 6.4 investigates the behaviour of posterior model probabilities when sub-

stantive prior information about the parameters ia available. We demonstrate through a real data

example that the DU prior may have a significant impact on posterior model probabilities and

we illustrate the advantages of choosing the DA prior model probabilities that are appropriately

adjusted for parameter prior dispersions.

6.2 Example 1: Simulated Regression Example

We consider a simulated dataset based on n = 50 observations of 15 standardized normal covariates

Xj , j = 1, . . . , 15, and a response variable Y generated as

Y ∼ N( X4 +X5, 2.52 ) .

Assuming a conjugate normal inverse gamma prior distribution given by (14) with zero mean,

Vm = c2mΣm and a = λ = 10−2, we calculated posterior model probabilities for all models under

consideration. Similar behaviour is exhibited either when Σm is specified as Σm = n
(
XT

mXm

)−1

(described below) or as Σm = Idm
.

Figure 2(a) illustrates Lindley’s paradox for this dataset with DU prior. Simpler models are

preferred as c2m increases. In contrast, the DA prior in Figure 2(b) identifies 1+X4+X5+X12 as the

highest probability model for any value of c2m > 1. Note that, when Σm = n
(
XT

mXm

)−1
, c2m = 1

represents the dispersion induced by the unit information prior. Similarly, Figure 3 summarises the

posterior inclusion probability of each variable Xj . Again, in for the DU prior these probabilities

are sensitive to changed in c2m across its range, whereas the DA prior produces stable results for

c2m > 1.

6.3 Example 2: A real data linear regression example

Montgomery et al (2001) investigate the effect of the logarithm of wind velocity (x), measured in

miles per hour, on the production of electricity from a water mill (y), measured in volts, via a linear

regression model of the form

yi ∼ N
(
β0 + β1xi, σ

2
)
, i = 1, . . . , n

12
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(a) Discrete Uniform (DU) prior
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(b) Adjusted discrete (DA) prior

Figure 2: Posterior model probabilities under different prior dispersions. Solid line: constant model;

short dashed line: 1 +X4 +X5 model; long dashed line: 1 +X4 +X5 +X12 model.
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Figure 3: Posterior variable inclusion probabilities under different prior dispersions.
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based on n = 25 data points. We calculate the posterior odds of the above model, denoted by

m1, against the constant model denoted by m0, adopting the usual conjugate prior specification

given by (14) with zero mean, variance Vm = c2mn
(
XT

mXm

)−1
and α = λ = 10−2. Since there is a

high sample correlation coefficient of 0.978 between y and x, we expect that m1 will be a posteriori

strongly preferred to m0. Indeed, the posterior probability of m1 is very close to one for values of

c2m as large as 1028. This behaviour provides a source of security with respect to the choice of c2m

and Lindley’s paradox, but we should also investigate the effect of c2m on the posterior densities

of β0 and β1; see Figure 4. We have used values of c2m that represent highly diffuse priors with

c2m = 10 and c2m = 100, the unit information prior that approximates BIC with c2m = 1, a prior

that approximates AIC for this sample size c2m = (e2 − 1)/n = 0.256 and a prior suggested by the

risk inflation criterion (RIC) of Foster and George (1994) with c2m = 0.04. It is striking that the

resulting posterior densities differ highly in both location and scale. The danger of misinformation

when unit information priors are used is discussed in detail by Paciorek (2006). The approach

described in this paper allows, where considered appropriate, the prior distribution for the model

parameters to be made highly diffuse, so that it does not impact strongly on the posterior model

parameters, while at the same time, through a DA prior across models, ensuring that posterior

model probabilities are unduly skewed.

We now investigate the effect of prior specification when prediction is of primary interest.

Assume that predictions will be based on the MCMC output estimate of the model-averaging

predictive density of observation yi given the rest of the data y\i,

fp(i) =
∑

m∈M

f(m)f(yi|y\i,m).

To evaluate the predictive performance, as a function of the prior, we apply the negative cross-

validatory log-likelihood score (NCV ; see Geisser and Eddy, 1979) given by

NCV = −
n∑

i=1

log fp(i).

Lower values of NCV indicate greater predictive accuracy. Following Gelfand (1996) we estimate

fp(i) by the inverse of the posterior (over m,βm) mean of the inverse predictive density of obser-

vation i.

We generated three additional covariates that have correlation coefficients 0.99, 0.97 and

0.89 with x and performed the same model determination exercise. Posterior model probabilities

for all models were calculated for all models under consideration. We used Zellner’s g-prior Vm =

c2mn
(
XT

mXm

)−1
and an independence prior Vm = c2mIdm

. For the DU prior combined with the

unit information prior obtained by c2m = 1, NCV is far away from the minimum value achieved

for higher values of c2m; see Figure 5(a). For c2m > 105 NCV increases due to the effect of Lindley’s

paradox focusing posterior probability on models that are unrealistically simple. On the other

hand, our proposed DA prior specification achieves the maximum predictive ability for any large

values of c2m; see Figure 5(b).
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Figure 4: Posterior densities of parameters β0 and β1 under different prior dispersions; c2m = c2 for

all models m.
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This simulated data exercise does indicate that predictive ability can be optimised if highly

dispersed prior parameter densities are chosen together with the DA prior over model space.
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(a) Zellner’s g-prior

(
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)

(b) Independence prior (Vm = c2mIdm
)

Figure 5: Negative cross-validatory log-likelihood for two prior dispersion structures with DU prior

(solid line) and DA prior (dashed line).

6.4 Example 3: 3 × 2 × 4 Contingency Table Example with Available Prior

Information

We consider data presented by Knuiman and Speed (1988) to illustrate how our proposed methodol-

ogy performs in an example where prior information for the model parameters is available. The data

consist of 491 individuals classified in n cells by categorical variables obesity (O: low,average,high),

hypertension (H: yes,no) and alcohol consumption (A: 1,1–2,3–5,6+ drinks per day). We adopt the

notation of the full hierarchical log-linear model used by Dellaportas and Forster (1999)

yi ∼ Poisson(λi) for i = 1, 2, . . . , n, log(λ) = Xβ

where λ = (λ1, . . . , λn)T , X is the n × n design matrix of the full model β = (βj; j ∈ V) is a

n× 1 parameter vector, βj are the model parameters that correspond to j term and V is the set of

all terms under consideration. All parameters here are defined using the sum-to-zero constraints.

Dellaportas and Forster (1999) proposed as a default prior for parameters of log-linear models

βj ∼ N

(
µj, k2

j

(
XT

j Xj

)−1
)

(20)

with µj being a vector of zeros and k2
j = 2n for all j ∈ V = {∅, O,H,A,OH,OA,HA,OHA}; we

denote this prior by DF.

In their analysis, Knuiman and Speed (1988) took into account some prior information avail-

able about the parameters βj. In particular, prior to this study information was available indicating
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that βOHA and βOA are negligible and only V = {∅, O,H,A,OH,HA} should be considered. More-

over, the term βHA is non-zero with a-priori estimated effects β
T
HA = (0.204,−0.088,−0.271); (note

that the signs of the prior mean are opposite when compared with reported values of Knuiman and

Speed since we have used a different ordering of the variable levels).

Knuiman and Speed adopted the prior (20) with µHA = βHA and µj = 0 for j ∈ V \ {HA}

and prior variance coefficients k2
HA = 0.05 and k2

j = ∞ for j ∈ {∅, O,H,A,OH}. In our data

analysis we used k2
j = 104 instead of k2

j = ∞. We denote this prior as KS. We also used a

combination of the DF and KS priors, denoted by KS/DF, modifying slightly the KS prior so that

k2
j = 2n for terms j ∈ {∅, O,H,A,OH}. Finally, an additional diffuse independence prior, denoted

by IND, with zero prior mean and variance 103 for all model parameters was also used.

In log-linear models i(βm) depends on βm so to specify the DA prior we utilize the prior

mean µm of βm resulting in

f(m) ∝ p(m)|Vm|1/2|XT
mDiag(λ0)Xm|1/2n−dm/2, λ0 = exp (Xmµm) ,

while the prior parameters p(m) were set equal to log p(m) = −dm

2 log(2) in line with the DF prior.

Parameter Model space Prior model probabilities Posterior model probabilities

Prior Prior O+H+A OH+A O+HA OH+HA O+H+A OH+A O+HA OH+HA

1. DF DU 0.25 0.25 0.25 0.25 0.657 0.336 0.004 0.002

2. KS DU 0.25 0.25 0.25 0.25 0.075 0.000 0.923 0.002

3. KS/DF DU 0.25 0.25 0.25 0.25 0.059 0.023 0.638 0.280

4. DF DA 0.247 0.247 0.251 0.255744 0.677 0.317 0.004 0.002

5. KS DA 0.046 0.954 2.0× 10−6 3.3× 10−5 0.665 0.335 0.000 0.000

6. KS/DF DA 0.500 0.500 1.7× 10−5 1.7× 10−5 0.690 0.310 0.000 0.000

7. IND DA 0.003 0.996 3.0× 10−6 0.001 0.690 0.303 0.004 0.003

Table 1: Prior and posterior model probabilities under different parameter and model prior densi-

ties.

Posterior model probabilities (estimated using RJMCMC) for all prior specifications are

presented in Table 1. The top right of the Table illustrates the striking effect of informative

parameter priors on posterior model probabilities. The difficulty to make joint inferences on the

product parameter and model space is evident by inspecting the sensitivity of model probabilities

to different prios. However, the DA specification adjusts the prior model probabilities so that

posterior model probabilities are robust under all prior specifications.

7 Conclusion

There are clearly alternative specifications for the prior model probabilities p(m) which satisfy (11),

and we do not seek to justify one over the other. Indeed, choosing model probabilities to satisfy (11)

may not be appropriate in some situations. Hence, we do not propose (11) as a necessary condition
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for f(m) although we do believe that there are compelling reasons for considering such a specifica-

tion, perhaps as a default or reference position in the type of situations we have considered in this

paper. What we do argue is that there is nothing sacred about a uniform prior distribution over

models, and hence by implication, about the Bayes factor. It is completely reasonable to consider

specifying f(m) in a way which takes account of the prior distributions for the model parameters

for individual models. Then, certainly within the contexts discussed in this paper, as demonstrated

by the examples we have presented, the issues surrounding the role of the prior distribution for

model parameters, in examples with model uncertainty, become much less significant.
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