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Bayesian Inference for Poisson and Multinomial
Log-linear Models

Jonathan J. Forster1

SUMMARY

Categorical data frequently arise in applications in the Social Sciences. In such applica-

tions,the class of log-linear models, based on either a Poisson or (product) multinomial

response distribution, is a flexible model class for inference and prediction. In this

paper we consider the Bayesian analysis of both Poisson and multinomial log-linear

models. It is often convenient to model multinomial or product multinomial data as

observations of independent Poisson variables. For multinomial data, Lindley (1964)

showed that this approach leads to valid Bayesian posterior inferences when the prior

density for the Poisson cell means factorises in a particular way. We develop this result

to provide a general framework for the analysis of multinomial or product multino-

mial data using a Poisson log-linear model. Valid finite population inferences are also

available, which can be particularly important in modelling social data. We then focus

particular attention on multivariate normal prior distributions for the log-linear model

parameters. Here, an improper prior distribution for certain Poisson model parame-

ters is required for valid multinomial analysis, and we derive conditions under which

the resulting posterior distribution is proper. We also consider the construction of

prior distributions across models, and for model parameters, when uncertainty exists

about the appropriate form of the model. We present classes of Poisson and multino-

mial models, invariant under certain natural groups of permutations of the cells. We

demonstrate that, if prior belief concerning the model parameters is also invariant, as

is the case in a ‘reference’ analysis, then choice of prior distribution is considerably

restricted. The analysis of multivariate categorical data in the form of a contingency

table is considered in detail. We illustrate the methods with two examples.

1 Introduction

Suppose that in each of c groups, Ni (i = 1, . . . , c) individuals are independently classified

into one of ni (i = 1, . . . , c) categories. Therefore there are a total of
∑c

i=1Ni individuals
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classified into a total of n =
∑c

i=1 ni categories. The observed data can be represented as

a vector y = (y1, . . . , yn)
T of n cell counts, which is subject to the constraint Cy = N =

(N1, . . . , Nc)
T , where C is a c×n matrix, with the property that every column contains c−1

zeros, the remaining element being equal to one. Hence if c = 1, C is a row vector of ones,

and the constraint is the usual simple multinomial constraint of a fixed grand total.

The cells are therefore divided into c non-overlapping strata, with each stratum total

fixed in advance. The likelihood for this product multinomial model is

f(y|p) ∝
n
∏

i=1

pyi

i , (1)

where Cp = 1c. Therefore, unless further constraints are placed on p, there are n − c free

parameters. We will refer to this model as a multinomial model for any c > 0.

Even when they are fixed in advance, by design, it is often convenient to treat N1, . . . , Nc

as observations of independent Poisson random variables, in which case y1, . . . , yn are also

Poisson, and independent. The distribution of y is then represented by the corresponding

vector of cell means µ = (µ1, . . . , µn)T .

The likelihood for the Poisson model is

f(y|µ) ∝ exp

(

−
n
∑

i=1

µi

)

n
∏

i=1

µyi

i . (2)

An alternative parameterisation for the Poisson model is through µ+ = Cµ and π =

(π1, . . . , πn), where πi = µi/[C
T µ+]i. Now, the Poisson likelihood can be written as

f(y,N |µ+,π) ∝ exp

(

−
c
∑

i=1

µ+
i

)

c
∏

i=1

µ+
i

Ni

n
∏

i=1

πyi

i (3)

where Cπ = 1c and Cy = N . This is simply a result of the familiar factorisation

f(y,N |µ+,π) = f(N |µ+)f(y|N ,π). As described above, this is equivalent to the stra-

tum totals N being drawn from independent Poissons, mean µ+, and then conditional on

N , the cell counts y have a product multinomial distribution.

The Poisson model is easier to deal with, particularly using standard software, as the

parameter µ is unconstrained (apart from positivity), and the cell counts are observations

of independent variables. Baker (1994) provides a series of examples. Lang (1996) considers

likelihood-based inference for the parameters of log-linear models, and describes how infer-

ences for multinomial or product multinomial models may be obtained from inferences for

Poisson models, extending results of Birch (1963). Here, we describe how this applies to

Bayesian inference. Similar advantages accrue. For example, Markov chain Monte Carlo

methods for posterior inference are typically much more straightforward to apply to Poisson

models than to multinomial models.
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2 Bayesian Inference

When data are observed using a product multinomial sampling scheme, the appropriate

Bayesian inference is obtained by specifying a prior distribution for p, and obtaining the

posterior density for p. Hence, f(p|y) ∝ f(y|p)f(p), and therefore, from (1),

f(p|y) ∝ f(p)
n
∏

i=1

pyi

i , (4)

where Cp = 1c.

If, instead, the Poisson likelihood is assumed, then a prior must be specified for µ, or

equivalently (µ+,π), and the resulting posterior density is

f(µ+,π|y) ∝ f(N |µ+)f(y|N ,π)f(µ+,π),

as the likelihood (3) factorises. Therefore it is clear that if µ+ and π are a priori independent,

and hence f(µ+,π) = f(µ+)f(π), then they will also be a posteriori independent. In

particular, the marginal posterior density for π will be given by

f(π|y) ∝ f(π)
n
∏

i=1

πyi

i , (5)

The equivalence between (4) and (5) allows us to use the more convenient Poisson rep-

resentation to analyse product multinomial data. The required posterior distribution for p

can be obtained by transforming µ to π. When a Monte Carlo approach is being used, this

is especially straightforward. All that is required is to specify the prior for µ correctly. An

appropriate prior for µ leads to a prior for (µ+,π) with the properties that (i) µ+ and π

are independent; and (ii) the prior for π is the required prior distribution for the product

multinomial parameter p.

Apart from the independence constraint, any choice of prior for µ+ will suffice. Lindley

(1964) made use of this result in the multinomial case (c = 1). The most straightforward

example is where µ1, . . . , µn have independent gamma distributions with corresponding shape

parameters α1, . . . , αn, and common scale parameter β. Then

f(µ) ∝ exp

(

−β
n
∑

i=1

µi

)

n
∏

i=1

µαi−1
i .

The Jacobian for the transformation from µ to (µ+,π) is
∏c

i=1 µ
+
i

ci−1
. Therefore,

f(µ+,π) ∝ exp

(

−β
c
∑

i=1

µ+
i

)

c
∏

i=1

µ+
i
[Cα]

i
−1

n
∏

i=1

παi−1
i .

Hence µ+ and π are independent, and the marginal prior distribution for π is a product

Dirichlet distribution. Hence, posterior inference for (product) multinomial data, with a
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(product) Dirichlet prior may be obtained by using an independent Poisson likelihood, and

appropriate gamma priors.

The result is also applicable when y is drawn from a finite population with corresponding

population frequencies Y = (Y1, . . . , Yn). Here we assume that the stratum population totals

CY = Y + = (Y +
1 , . . . , Y

+
c )T are known. Where c = 1 (multinomial sampling), Ericson

(1969) proposed a prior distribution for Y reflecting exchangeability of the units comprising

the population. This can be adapted easily to exchangeability of the units within each

stratum. Following Ericson (1969), the prior is constructed as a two stage hierarchical

distribution with a (product) multinomial(Y +,p) distribution for Y |p at the first stage,

where Cp = 1c. The hyperparameter p is then given an arbitrary second stage distribution

f(p). The resulting posterior for the unsampled population cell frequencies is

Y − y|p ∼ multinomial(Y + −N,p)

with f(p) updated to f(p|y) in the posterior, using (4). As we can obtain f(p|y) by assuming

a Poisson sampling scheme with an appropriate prior, it is clear that the the corresponding

finite population inferences will also be available.

In some situations there may exist a number of plausible models for p, which constrain

p so that its effective dimension is less than n− c. In this situation, the prior is constructed

to reflect this. Suppose that the possible models are denoted by m ∈ {1, . . . ,M}, and the

joint prior distribution of (m,p) is of the form f(m)f(p|m) where f(p|m) places all its mass

on values of p constrained in a way consistent with m. Then,

f(m,p|y) ∝ f(y|p)f(m)f(p|m), m ∈ {1, . . . ,M}.

The equivalent Poisson models constrain π, and assuming that the prior for µ satisfies

conditions (i) and (ii) above for all m, we have

f(m,π,µ+|y) ∝ f(N |µ+)f(y|N ,p)f(m)f(π|m)f(µ+|m), m ∈ {1, . . . ,M}.

Now, for the marginal posterior distribution of (m,π) under the Poisson model to be identical

to the posterior distribution of (m,p) under the multinomial model, we require an extra

condition, that f(µ+|m) does not depend on m. The same prior for µ+ is required for all

models. As the models relate to p and π, this does not seem to be a serious restriction.

Gûnel and Dickey (1974) consider the Bayes factor for comparing independence and saturated

models in a two-way contingency table, and give an example where inference under Poisson

and multinomial models differs when this condition is violated.
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3 Log-linear models

Often, the categories 1, . . . , n, arise as a result of a cross-classification of individuals by

a number of categorical variables. The resulting data form a contingency table, and it is

common to investigate the structure of the table using log-linear models for p or µ. The

saturated log-linear model for µ allows log µ to take any value in Rn. A non-saturated

model constrains log µ to lie in some vector subspace of Rn.

Let θ be the multivariate stratum-centred logit

θ = log p − CT diag(n)−1C log p

and hence

log p = θ − CT log(C exp θ).

For Poisson models, the equivalent logit is defined as

θ = log π − CT diag(n)−1C log π = log µ − CTdiag(n)−1C log µ.

Therefore Cθ = 0c, as CCT = diag(n), and θ lies in N(C), a (n − c)-dimensional vector

subspace of Rn. Indeed, θ is the orthogonal projection of log p or log µ onto N(C). This is a

much more convenient parameter space to deal with than {p : pi > 0, i = 1, . . . , n; Cp = 1c},

the equivalent parameter space for p. If c = 1 then θ = log p − log g(p) is the centred

logratio used by Aitchison (1986, p79) where g(p) is the geometric mean of {p1, . . . , pn}.

Any alternative multivariate logit may be obtained from θ by linear transformation.

We define a log-linear model for p to be any vector subspace of N(C). We express the

model as θ = Xβ, where X is a n × p matrix, and CX = 0. Therefore the saturated

product-multinomial model is R(X) for any n× (n− c) X whose columns span N(C). The

Poisson log-linear model equivalent to R(X) is R(Z) where Z = (X CT ), which can be

expressed as log µ = Xβ+CT φ. Here, φ = diag(n)−1C log µ. This constrains π in exactly

the same way that the product multinomial model constrains p, so the likelihoods for β,

f(y|N ,β), are identical under the two models.

The posterior density under the Poisson model is

f(β,φ|y) ∝ f(N |µ+)f(y|N ,β)f(β,φ)

where f(β,φ) is the joint prior density for β and φ, and

log µ+ = φ + log(C exp Xβ).

Transforming (β,φ) to (β, log µ+), we obtain

f(β, log µ+|y) ∝ f(N |µ+)f(y|N ,β)f(β,φ{µ+,β})
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as the Jacobian for the transformation from (β,φ) to (β, log µ+) is one. A sufficient condition

for marginal posterior inference for β from this model to be equivalent to the multinomial

model is that

f(β,φ) = f(β) (6)

where f(β) is the required prior density for β. This is an improper prior which is uniform

over Rc for φ. The posterior distribution will still be proper, unless one of the strata has

no observations, in which case this stratum can be eliminated from the analysis as the

corresponding cells are structural zeros. The proof of this condition appears in Section 6.

The most straightforward prior for β under the product multinomial model is a mul-

tivariate normal distribution for β. This results in a lognormal distribution for log µ and

a logistic normal distribution for p (normal for any multivariate logit; see Aitchison, 1986,

for details). King and Brooks (2001) derive the relationship between the distributions of β,

log µ and p for a particular model matrix. Suppose that we assume a Poisson model, with

a multivariate normal prior distribution for (β,φ) with mean α = (αβ,αφ) and precision

(inverse variance) matrix S, partitioned

S =





Sββ Sβφ

Sφβ Sφφ



 .

Knuiman and Speed (1988) showed that, if Sβφ = ST
φβ = 0 and Sφφ = 0, which completely

eliminates µ+ (or φ) from the prior, then the posterior mode for β and posterior dispersion,

calculated as negative second derivative of log posterior density at the posterior mode, are

the same for Poisson and (product)-multinomial models. In fact, as this prior is of the

form (6), the entire posterior density for β is identical under the two sampling models. The

marginal prior for β is proper provided that Sββ is positive definite.

Usually, there exists uncertainty about which log-linear model is appropriate for the data.

Suppose that the possible log-linear models are denoted by m ∈ {1, . . . ,M}, where model

m is θ = Xmβm (multinomial) and log µ = Xmβm + CT φ (Poisson). If, for the Poisson

model, f(m,βm, log µ+) = f(m)f(βm|m) then the prior distribution for φ (or log µ+) is

uniform for each model. The resulting posterior density is

f(m,βm, log µ+|y) ∝ f(N |µ+)f(y|βm)f(m)f(βm|m).

As µ+ and (m,βm) are a posteriori independent, the marginal distribution for (m,βm), is

the same as for the corresponding multinomial analysis, where µ+ is absent. In particular

relative marginal likelihoods of models (Bayes factors) are the same under the multinomial

model. Although the prior distribution for φ is improper, the same improper prior appears

in all models.
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4 Permutation Invariant Models

Under model uncertainty, we require a prior distribution f(m) over the set M of all possible

log-linear models. As we define log-linear models as vector subspaces of Rn for Poisson

sampling or N(C) for multinomial sampling, the set M is potentially infinite. This set may

be reduced by considering only those models which are invariant under certain permutations

of the category labels {1, . . . , n}. This is desirable in any situation where the prior belief

about the cell probabilities is unaltered when the cell labels are permuted in certain ways.

Even in cases where the permutations are ‘too restrictive’ and overstate the degree of prior

uncertainty, the set of models obtained may still be suitable for a reference analysis.

We denote a permutation under which invariance is required by g, and the corresponding

n×n permutation matrix, acting on y, µ or θ by P g. The set of all such permutations forms

a group G under composition. As log-linear models are vector subspaces of Rn, determining

models which are invariant under G is equivalent to finding G-invariant subspaces of Rn, in

other words to finding subspaces Vi ⊂ Rn such that P g log µ ∈ Vi for all log µ ∈ Vi and all

g ∈ G.

When c > 0, and certain stratum totals are fixed in advance, it clearly does not make

sense to consider permutations which alter the strata. Hence, any two cells are in the same

stratum after permutation if and only if they were originally in the same stratum. This is

equivalent to requiring thatN(C) is itself an invariant subspace of Rn under any permutation

being considered. The stratum-centred logit θ is then invariant under any strata-preserving

permutation g, in the sense that θ(P gp) = P gθ(p). For example, for simple multinomial

sampling, where C = (1, · · · , 1), then clearly N(C) is invariant under any permutation. In

the following, we shall therefore restrict attention to Poisson log-linear models, and consider

invariant subspaces of Rn. For the same set of permutations, invariant multinomial log-

linear models are simply those invariant subspaces of Rn, which are also invariant subspaces

of N(C).

Determination of the G-invariant subspaces of Rn utilises group representation theory.

See, for example James and Liebeck (1993) or, for applications in Statistics, Hannan (1965)

or Diaconis (1988). A brief discussion of essential representation theory appears in Ap-

pendix A. The prior distribution f(m) over models is then a discrete distribution over

invariant subspaces indexed by m. Where multiplicities arise, the non-uniqueness of the

irreducible decomposition makes this task less straightforward; see Forster (2009) for details.

For many common structures, the irreducible decompositions are well known. For ex-

ample, there is a clear connection with the study of invariant normal linear models, such

as those considered by Consonni and Dawid (1985), as invariant linear models for a normal
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mean, and log-linear models for a Poisson mean coincide if the permutation group under

consideration is the same. We next consider the two most common situations.

4.1 Univariate Categorical data

We first consider the case where classification of individuals is with respect to a single

categorical variable A with n levels, and there is no further structure to the classification.

Hence, we can have either Poisson sampling, c = 0, or simple multinomial sampling, c = 1.

In such an example, particularly if the classification is with respect to a nominal scale

variable, it is common to restrict consideration to classes of models which are invariant under

any permutation of the labels of A. The group of permutations of n labels is the symmetric

group Sn and the natural permutation matrix representation acting on log µ ∈ Rn consists

of all n! n× n permutation matrices.

It is well known that there are only two non-trivial Sn-invariant subspaces of Rn, namely

1n and N(1T
n ). (Here, and henceforth, 1n denotes the one dimensional vector subspace of

Rn, spanned by 1n). Therefore, the four Sn-invariant log-linear models for µ are 0n, 1n,

N(1T
n ) and Rn, and can be interpreted as all cell means are one, all cell means are equal,

log cell means sum to zero, and the saturated model, respectively.

Under multinomial sampling, C = 1T
n and the two Sn-invariant log-linear models for θ

correspond to vector spaces 0n and N(1T
n ), and can be interpreted as all cell probabilities

are equal, and the saturated model, respectively.

4.2 Contingency Tables

Next, we consider multivariate categorical data, where individuals are classified by each of k

nominal variables, which we denote 1, . . . , k, with corresponding number of levels r1, . . . , rk.

Hence, the models required are invariant to any combination of permutations of levels of any

of the variables concerned. The appropriate permutation group is the direct product

G =
k
∏

i=1

Sri
.

The natural permutation matrix representation of G acting on the cells of the contingency

table (with the elements of p and θ ordered in a suitable lexographic way) is through the

permutation matrices

P g =
k
⊗

i=1

P gi
.
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As there are no multiplicities, the decomposition of Rn into inequivalent irreducible G-

invariant subspaces is given uniquely by

Rn =
k
⊗

i=1

1ri
⊕N(1T

ri
) (7)

The right hand side of (7) is a direct sum of 2k tensor product spaces, all of which are

G-invariant subspaces of Rn. There are therefore 2k G-invariant irreducible subspaces of

Rn, each of which can be represented by a binary k-vector γ, where γi = 0 if the ith term

in the tensor product is N(1T
ri
) and γi = 1 otherwise. Therefore γ ∈ {0, 1}k = ∆ and an

alternative way of expressing (7) is

Rn =
⊕

γ∈{0,1}k

k
⊗

i=1

{

N(1T
ri
) if γi = 1

1ri
if γi = 0

(8)

For the permutation invariant inner product In, the orthogonal projection matrices, onto

the 2k irreducible G-invariant subspaces of Rn take the form

Qγ =
k
⊗

i=1

γi

(

Iri
−

1

ri

Jri

)

+ (1 − γi)
1

ri

J ri
(9)

The irreducible G-invariant subspaces are immediately familiar. They represent the usual

main effects and interaction terms of a standard loglinear interaction model for a multiway

contingency table, where Qγ log µ is the interaction between all variables i for which γi = 1.

In this case, the G-invariant log-linear models, each corresponding to a subset m of ∆ =

{0, 1}k are exactly the class of log-linear interaction models. Diaconis (1988, p168) discusses

this for a 2k table. Knuiman and Speed (1988) present the projection matrices Qγ for a 2×3×

4 contingency table. In practice, for reasons of interpretability or computation, consideration

is often restricted to those log-linear interaction models which are hierarchical, graphical or

decomposable. See Darroch, Lauritzen and Speed (1980) for details. McCullagh (2000)

considers further invariance restrictions, under selection of levels of classifying variables,

where the invariant models are the hierarchical models.

Under simple multinomial sampling, C = 1T
n , the model is parameterised by θ ∈ N(1T

n ).

All G-invariant subspaces of Rn in (7), except 1n are G-invariant subspaces of N(1T
n ). Prod-

uct multinomial sampling for multiway contingency tables typically involves the totals for

the marginal cross-classification of some subset L of the k classifying variables being fixed

in advance. Then

CL =
k
⊗

i=1

λiIri
+ (1 − λi)1

T
ri

(10)

where the indicator λi = 1 if variable i is in L, and 0 otherwise. If L = ∅, then we have

the simple multinomial constraint. It can be seen that any component of the sum in (8) is
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in N(CL) if there exists a variable i for which γi = 1 and λi = 0. Hence the G-invariant

decomposition of N(CL) is of exactly the same form as (8), but with {0, 1}k replaced by

∆(CL) = {γ ∈ {0, 1}k : (1 − λ)T γ > 0}. Therefore G-invariant multinomial log-linear

models for contingency tables with fixed margins defined by the variable set L, correspond

to m ⊆ ∆(CL). The terms appearing in Rn, but not in N(CL) are the intercept and any

main effects or interactions involving only variables in the fixed marginal cross-classification.

These are also the terms which must be included in a Poisson likelihood analysis, to ensure

valid inferences under product multinomial sampling.

5 Prior Distributions for Model Parameters

Each log-linear model m requires a prior distribution for its model parameters βm. Again,

the prior distribution for the cell probabilities should be constructed in a way which respects

invariance considerations. Furthermore, by restricting prior distributions to those which are

invariant under certain permutations of the cell labels, the burden of prior specification may

be substantially reduced.

Here, we will restrict attention to invariant means and covariance structures, required to

specify a multivariate normal prior for βm. Rather than considering an explicit parameteri-

sation for an invariant model, for the moment we will focus on the prior mean and covariance

for log µ under the saturated model. Suppose that the prior mean for log µ is α and that

the prior variance matrix is Σ. It is required to find α and Σ so that the prior distribution

is invariant under any permutation g ∈ G. Therefore, α = P gα and Σ = P gΣP T
g for

all g ∈ G. This implies that any G-invariant mean α is itself G-invariant and hence must

lie in the direct sum of all the G-invariant subspaces of Rn which correspond to the trivial

representation (subspaces containing those log µ for which P g log µ = log µ for any g ∈ G)

and which are components of the G-invariant model under consideration.

Determining covariance matrices Σ such that Σ = P gΣP T
g for all g ∈ G is equivalent

to determining Σ for which ΣP g = P gΣ, as permutation matrices are orthogonal. In other

words, we require a set of variance matrices which commute with every matrix P g of the

permutation matrix representation P G of G. The set of all such matrices form an algebra,

which is referred to as the commuting algebra or the commutant algebra of ρ; see Ledermann

(1977; 1.8) for details. We are concerned with those elements of the commutant algebra

which are symmetric and non-negative definite, and which may therefore be considered as

covariance matrices. McLaren (1963) studies the set comprising the symmetric members of

the commutant algebra of P G.

10



Suppose that Σ is a member of the commutant algebra of P G, and that Rn =
⊕

i Vi is the

canonical decomposition of Rn into G-invariant subspaces. As before, i indexes inequivalent

irreducible representations. Now suppose that T is a unitary matrix with columns composed

of elements of a unitary basis for Rn, in such a way that there exists a subset of dim(Vi)

columns of T which form a unitary basis for Vi, and that these columns appear consecutively

in T , as submatrix T i. It is always possible to construct such a basis. See, for example,

Fässler and Stiefel (1992 pp.115–17). [As we are primarily concerned with representations

which can be expressed over the real field (all representations of symmetric groups or their

direct products), then T is an orthogonal matrix whose columns form an orthonormal basis

for Rn.] Then, provided that the submatrices T i are chosen appropriately if multiplicity

ei > 1, the commutant algebra of P G consists of matrices which can be written as

Σ = T

[

l
⊕

i=1

Σi ⊗ Idi

]

T−1 (11)

where l is the number of distinct irreducible components of P G, Σi is an arbitrary ei × ei

matrix and di is the dimension of each irreducible subspace corresponding to ρi; see, for

example, Ledermann (1977; pp.29–31) or McLaren (1963). Furthermore, McLaren (1963)

shows that for Σ to be real and symmetric, we now require each Σi, i = 1, . . . , l, to be real

and symmetric. It is straightforward to see, using (11), that non-negative definiteness of

each Σi is a necessary and sufficient condition for Σ to be non-negative definite.

Henceforth, we restrict consideration to examples, such as those considered in Sections

4.1 and 4.2, where no multiplicity is greater than one. Then Σi = σi is a scalar and we can

write

Σ =
l
∑

i=1

σiT iT i
T . (12)

The terms in the summation of (12) are simply non-negative multiples of the projection

matrices onto the corresponding Vi, with respect to the invariant inner product In. For the

non-saturated G-invariant log-linear model log µ ∈
⊕

i∈m Vi, the prior variance is obtained

by setting σi = 0 in (12) unless i ∈ m. The columns of the matrices T i, i ∈ m lead

to a parameterisation of model m through βm
i = T i

T log µ, i ∈ m. Then log µ = Tβm =
∑

i∈m T iβ
m
i and a G-invariant prior distribution for βm = {βm

i , i ∈ m} has covariance matrix

Σ =
⊕

i∈m

σiIdi
. (13)

Hence, with this orthonormal parameterisation, G-invariance requires the log-linear model

parameters to be uncorrelated. Where multiplicities exist, this constraint may be relaxed;

see Forster (2009) for details.
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Recall that a (product) multinomial log-linear model, θ = Xβ ∈ R(X) ⊆ N(C), can

be analysed as the Poisson log-linear model log µ ∈ R(X) ⊕ R(CT ), subject to (6), where

φ are the ‘additional’ parameters describing log µ ∈ R(CT ). As mentioned in Section 4,

we only consider permutations which do not alter the strata (rows of C). Hence, R(CT ) is

a G-invariant subspace of Rn and can be expressed as R(CT ) =
⊕

i∈∆\∆(C)
Vi. Then, any

Poisson model
⊕

i∈m Vi where m ⊇ ∆ \ ∆(C) can be used to provide marginal inferences

for the corresponding multinomial log-linear model
⊕

i∈m∩∆(C)
Vi provided that the prior

distribution for the model parameters satisfies

f({βi, i ∈ m}) = f({βi, i ∈ m ∩ ∆(C)}). (14)

For a multivariate normal prior, this is readily achieved by setting appropriate 1/σi to be

zero in the prior precision matrix S =
⊕

i∈m
1
σi

Idi
for the parameters of the Poisson model.

More concrete examples follow below.

5.1 Prior distributions for Univariate Categorical data

Recall from Section 4.1 that the decomposition of Rn into irreducible Sn-invariant subspaces

is Rn = 1n ⊕ N(1T
n ). The invariant subspace 1n corresponds to the trivial representation,

so for models where this component is present, a prior mean α ∝ 1n is permitted. As 1n

and N(1T
n ) correspond to inequivalent representations, any Sn-invariant covariance matrix

for log µ must be of the form

Σ =
σ1

n
J + σ2

(

I −
1

n
J

)

.

Here σ1 controls the prior uncertainty about the overall size of the cell means, while σ2

reflects the strength of prior belief in equal cell probabilities, with the limiting value σ2 = 0

corresponding to the null model of a common cell mean. Marginal inferences under a Poisson

model will be valid under simple multinomial sampling, where C = 1T (and hence CT = 1)

provided that we set 1/σ1 = 0 in the precision S = 1
σ1n

J + 1
σ2

(

I − 1
n
J
)

of a multivariate

normal prior for log µ. Alternatively, as discussed in Section 2, independent gamma priors for

the cell means will suffice (with common parameters if permutation invariance is required).

5.2 Contingency Tables

For those r1 × · · · × rk tables considered in Section 4.2, where the categorical variables are

considered to be nominal, and G =
∏k

i=1 Sri
, the G-invariant decomposition is given by (8).

Again, the invariant subspace 1n =
⊗

i 1ri
corresponds to the trivial representation, and for

12



models where this component is present, a prior mean α ∝ 1 is permitted. No irreducible

representation occurs with multiplicity greater than one, so we index each invariant subspace,

and corresponding prior variance term by by its corresponding interaction label γ ∈ {0, 1}k.

Hence, a G-invariant covariance matrix must take the form

Σ =
∑

γ∈{0,1}k

σγQγ

where the Qγ , given by (9), are the projection matrices onto the irreducible G-invariant

subspaces and σγ = 0 for any term (subspace) not included in the model under consideration.

Hence the prior requires specification of a single dispersion parameter for every term present

in the model. For any parameterisation of a log-linear interaction model where the columns

of the model matrix X are orthonormal, the parameters must be a priori uncorrelated, and

parameters corresponding to the same main effect or interaction term must have common

variance if the prior distribution is to be invariant under G.

While it is not necessary to construct the prior with respect to an orthonormal param-

eterisation, the resulting marginal prior distribution for such a parameterisation must have

these (independence and common variance) properties unless prior information suggests that

invariance under G is not appropriate. Different parameterisations are linearly related, so

this can be checked. An orthonormal model matrix can easily be constructed, for example,

by a Gram-Schmidt procedure using columns of Qγ for each γ ∈ m. Alternatively the stan-

dard parameterisation of a log-linear interaction model using ‘sum-to zero’ constraints on

model parameters produces a model matrix where columns corresponding to different model

terms γ are naturally orthogonal, although parameters corresponding to the same model

term are not, but can easily be made so.

For product multinomial models where the totals for the marginal cross-classification of

some subset L of the k classifying variables are fixed in advance, θ ∈ N(CL) where CL is

given by (10). Furthermore R(CT
L) is given by a direct sum of exactly the same form as

(8), but with {0, 1}k replaced by ∆ \ ∆(CL) = {γ ∈ {0, 1}k : (1 − λ)T γ = 0}. Hence the

Poisson model γ ∈ m ⊇ ∆ \ ∆(CL) can be used to provide valid marginal inferences for

the multinomial model m ∩ ∆(CL) if the prior for the log-linear parameters satisfies (14).

Hence for a multivariate normal prior for β in the Poisson model, we require 1/σγ = 0 in

the prior precision matrices for βγ , for γ ∈ ∆ \ ∆(CL), in other words for the parameters

corresponding to the ‘intercept’ and all main effects and interactions involving variables in

the fixed margin L only.
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6 The Posterior Distribution

As the prior for at least some of the parameters of a Poisson model may be improper, we need

to consider whether the resulting posterior will be proper. Consider an arbitrary Poisson

log-linear model log µ = Xβ. First, we derive conditions for the posterior distribution for β

resulting from an improper uniform prior to be proper. In fact, the following is sufficient for

any prior for β which has bounded density over Rp. We use the fact that a log-linear model

is a generalised linear model with canonical link, and hence the likelihood is a log-concave

function of β.

Theorem

A necessary and sufficient condition for a log-concave function to have a finite integral is

that it achieves its maximum in the interior of the parameter space. In other words the

maximum likelihood estimate for β must be finite.

Proof

To prove suffiency, we first note that for any log-concave function g(β) and any r > 0,

there exists finite positive numbers a and b such that g(β) < a exp(−b|β − β̂|) for all

β 6∈ R = {|β − β̂| < r2}, where β̂ is the mode of g. Then,

∫

Rp
g(β) dβ <

∫

R
g(β) dβ + a

∫

Rp
exp(−b|β − β̂|) dβ,

and both the integrals on the right hand side are finite. (The first is a bounded function,

over a finite region, the second is equal to 2(π/b2)p/2Γ(p)/Γ(p/2).) To observe the necessity

of a finite maximum likelihood estimate, note that for a log-concave density function the

surfaces of equal density are concave. If the mle is infinite, they each divide Rp into two

regions of infinite volume. In one of these regions, the density is bounded above zero and

hence its integral is unbounded.

Now for the Poisson log-linear model, the log-likelihood is

L(β) = −
n
∑

i=1

exp[Xβ]i + yT Xβ

Consider a parameterisation β = |β|βu, where |βu| = 1. Then

L(|β|,βu) = −
n
∑

i=1

exp[|β|Xβu]i + |β|yT Xβu. (15)
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For β to have a finite mle, we require L → −∞ as |β| → ∞, for every βu. For a given

βu, let δ = maxi exp[Xβu]i and denote the number of exp[Xβu]i which attain δ by d. If

δ > 0, then L = − exp(|β|δ)[d + o(1)], so clearly L → −∞ as |β| → ∞. If δ ≤ 0, then

L = |β|yT Xβu − O(1). Therefore, a necessary and sufficient condition for a finite mle

is yT Xβ < 0 for all β 6= 0 such that Xβ ≤ 0 where the second inequality is in every

component. This condition was first proved by Haberman (1974, Theorem 2.3). Clearly, for

any model which permits Xβ < 0, (all models with 1 as a column of X) we will require
∑n

i=1 yi > 0; at least one positive cell count. Further constraints on y for the posterior to be

proper arise by considering other possible linear predictors Xβ which are non-positive with

at least one zero component. Glonek, Darroch and Speed (1988) describe the implications

of this result for hierarchical log-linear models.

We now generalise this result to posterior distributions resulting from a particular im-

proper prior distribution, the multivariate normal

f(β) ∝ exp
{

−
1

2
(β − α)T S(β − α)

}

(16)

where S is non-negative definite, of rank q < p. As the posterior density will be log-

concave, a necessary and sufficient condition for it to be proper, as before, is that it achieves

its maximum in the interior of the parameter space, and hence that L + log f → −∞ as

|β| → ∞, where L and f are given by (15) and (16) respectively. As log f is quadratic in

|β|, this will be the case for all β 6∈ N(S), and hence the condition becomes yT Xβ < 0 for

all β ∈ N(S)\{0} such that Xβ ≤ 0. For the Poisson models considered in Section 3, if the

prior is proper for β, we need consider only φ, and hence situations in which CT φ ≤ 0. It is

straightforward to see that Cy > 0 is a necessary and sufficient condition for the posterior

to be proper. In other words, each of the prespecified group totals, Ni, must be positive.

7 Examples

We now present two small examples to illustrate some of the ideas presented in the paper.

7.1 Example 1

For illustration, we present a possible Bayesian analysis of the product binomial example

presented by Lang (1996). Here, c = 2, n1 = n2 = 2, y = (30, 20, 60, 15)T , N = (50, 75)T ,

L = {1}, λ = (1, 0)T and

C =





1 1 0 0

0 0 1 1



 .
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so p1 + p2 = p3 + p4 = 1. The centred logits are given by θ1 = −θ2 = 1
2
(log p1 − log p2) and

θ3 = −θ4 = 1
2
(log p3 − log p4). The saturated Poisson log-linear model may be expressed as

θ = Tβ where

T =
1

2

















1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

















.

Each of the columns of T = (T 00,T 10,T 01,T 11) is an orthonormal basis for an inequivalent

one-dimensional invariant subspace for log µ. Columns T 01 and T 11) span N(C) and hence

form orthonormal bases for inequivalent one-dimensional invariant subspaces for θ. Possible

permutation invariant models have model matrices whose columns are a subset of those in

T . In this example, we consider two possible models: the saturated model, and the model

with no interaction (final column absent). We consider these models to be a priori equally

probable.

We construct a multivariate normal prior for β which respects invariance under permuta-

tion of the row or column labels. Hence, the model parameters β = (β00, β10, β01, β11) must

be independent a priori. The prior mean for (β10, β01, β11) must be 0, but β00 is allowed a

non-zero mean in Poisson models where it is present. However, for valid multinomial infer-

ences to be obtained from Poisson models, we need to set the prior precision for β00 and β10

to zero. Hence, the resulting improper prior distribution for the saturated Poisson model is

f(β00, β10, β01, β11) ∝ exp
{

−
1

2σ01
β2

01 −
1

2σ11
β2

11

}

. (17)

The posterior will necessarily be proper, from the results of Section 6, as Cy > 0 by design.

The prior for (β01, β11) for the saturated multinomial model is given by the right hand side of

(17). For the no interaction model, β11 is not present, and the corresponding term vanishes

from the prior.

In the following analysis, we set σ01 = π2/2 ≈ 4.935, and give σ11 the same value in the

saturated model. Hence in the saturated model, the prior for the logits of the independent

product binomial probabilities has the same mean and variance as the corresponding inde-

pendent Jeffreys priors. For inference, we focus on the posterior marginal densities of β01

(common log odds) for the no interaction model and β11 (0.5 times log odds ratio) for the

saturated model. The latter also enables us to calculate the Bayes factor for comparing the

models, using the Savage-Dickey density ratio of the prior and posterior densities of β11 at 0.

The posterior densities are calculated using Laplace’s method, although the Gibbs sampler is

also extremely convenient for log-linear models, which have log-concave posterior densities.
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Figure 1: Posterior marginal densities for β01 in the no interaction model (a) and β11 in the

saturated model (b). Panel (b) also displays the prior (dashed line). Both panels also display

the posterior marginal density derived from the Poisson model with σ10 = 10−3 (dotted line),

although in (a) this is indistinguishable from the true multinomial posterior density.

Figure 1 displays the posterior marginal densities for β01 in the no interaction model

(a) and β11 in the saturated model (b). The Bayes factor in favour of the saturated model

is 1.74, calculated directly using Laplace’s method or using the Savage-Dickey density ratio.

For illustration, the plots also contain ‘incorrect’ marginal densities derived from a Poisson

analysis where σ10 is finite. In particular, the inference concerning model comparison is

potentially misleading, as the Bayes factor in favour of the saturated model increases to 10.94.
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7.2 Example 2

Here we consider an example of univariate categorical data where it is natural to consider a

permutation group other than the symmetric group Sn in constructing the prior. The top

line of Table 1 is taken from Santner and Duffy (1989, p.95) and represents cases of Acute

Lymphatic Leukaemia recorded in the British Cancer Registry from 1946–60, classified by

month of entry. Santner and Duffy find that the model of uniform monthly rate of entry is

a poor fit to these data.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Cases 39 58 51 56 36 48 33 38 40 34 30 44

Estimates 42.5 48.5 45.8 49.1 43.4 44.3 38.4 39.8 35.9 39.4 37.7 43.3

Table 1: Cases of Acute Lymphatic Leukaemia recorded in the British Cancer Registry

from 1946–60, classified by month of entry, together with the corresponding Bayes estimates

(posterior expected cell means) obtained by ‘model averaging’ over Fourier regression models.

As the data are classified by a variable which is cyclic, it seems sensible here to consider

models and prior distributions which are invariant under Cn, the cyclic permutations of the

category labels (months). A little care is required with the representation theory, as real

and complex representations do not coincide (unlike symmetric groups). As n = 12 is even

then Rn has two one-dimensional Cn-invariant irreducible subspace spanned by c0 = 1 and

the alternating vector cn/2 = (−1, 1,−1, 1, . . . ,−1, 1)T respectively. Note that c
n/2
k = cos kπ.

The remaining irreducible Cn invariant subspaces are two dimensional and are spanned by

{cl1, cl2} for l = 1, . . . , n/2 − 1 where (cl1
k , c

l2
k ) = (cos 2klπ/n, sin 2klπ/n). These spaces

represent cosine curves with period n/l (frequency l) for l = 1, . . . , (n − 1)/2. For n odd,

the decomposition is similar, but there is no space equivalent to cn/2. The resulting models

are log-linear Fourier regression models with an evenly spaced covariate. For a cyclic factor

with 12 levels, there are five invariant subspaces of dimension 2, representing cosine curves

of frequency 1, . . . , 5 and two of dimension 1, representing a constant effect and a cosine

curve of frequency 6, respectively. This results in a total of 128 possible Poisson log-linear

models. In our analysis, we will assume that the ‘intercept’ (l = 0) is present in all models

under consideration.

All the basis vectors derived above are orthogonal, and can be normalised to construct the

orthonormal model matrix T for any given invariant model. A Cn-invariant prior requires a

zero mean for any βl other than β0 (corresponds to trivial representation). In the current

example, we choose to set E(β0) = 0. Each irreducible component has a single prior variance
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parameter so, for example, V ar(βl1, βl2) = σlI2. The resulting Cn-invariant covariance matrix

for log µ may be expressed as Σ where

Σjk =
[n/2]
∑

l=1

alσl

n
cos (2πl(j − k)/n) i, j = 1, . . . , n (18)

where al = 1 if l = 0 or l = n/2 and al = 2 otherwise (see also, Dawid and Consonni, 1985).

The [n/2] + 1 components of this matrix are the projection matrices onto the [n/2] + 1 real

invariant subspaces, and hence non-negative definiteness is ensured if and only if all σl are

non-negative.

We present two possible Bayesian analyses of the data in Table 1. The first is based on

calculating posterior model probabilities using the Bayesian Information Criterion (BIC).

This is a crude, but simple, way of calculating posterior model probabilities using model

deviances, which does not require specification of a prior distribution for the model parame-

ters. See Kass and Raftery (1995) for details. We also present an alternative fully Bayesian

analysis, specifying an invariant normal prior for the parameters of each model. For β0 we

set σ0 → ∞. For all other βl present in a model, we choose a proper, but diffuse, prior by

specifying prior variances σl = ψ′(λ), i = 1, . . . , 6. Then, the prior mean and variance for the

corresponding multinomial θ are the same as for a symmetric Dirichlet prior for multinomial

cell probabilities, with all parameters equal to λ. Here we use λ = 1
2

(Jeffreys’ prior), in

which case ψ′(λ) = π2/2 ≈ 4.935.

Two sets of posterior model probabilities are presented in Table 2. For the full Bayesian

analysis thay have been calculated using Laplace’s method. It can be seen that qualitatively

the results are very similar, with exactly the same four models having non-negligible (> 10−2)

posterior probability, accounting for over 98% of total probability. These models are the null

model, and the models with frequency 1, frequency 6 and frequencies 1 and 6 together.

The frequency one term represents a yearly cycle of admissions, and the frequency 6 term

a bimonthly fluctuation, which is more difficult to interpret. The model-averaged estimated

cell means, calculated using Laplace’s method and presented in the second row of Table 1,

are largely based on these four models.

Appendix A Group Representations

The natural representation, ρ (which we also denote PG), of the action of G on Rn maps

g ∈ G to P g. When ρ is restricted to a G-invariant subspace Vi of Rn, then the resulting sub-

representation, ρi, maps g ∈ G to the corresponding linear transformation in Vi. Therefore

invariant subspaces of Rn correspond to subrepresentations of ρ.
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Model Posterior probability df

BIC Bayes

null 0.4215 0.2323 11

1 0.2445 0.3209 9

6 0.2006 0.1708 10

1+6 0.1163 0.2360 8

Table 2: Posterior model probabilities for Table 1, for models with probabilities greater than

10−2, calculated using BIC, and using a fully Bayesian approach. A model is denoted by the

frequencies of the cosine functions present.

An irreducible representation of G is one which has no non-trivial subrepresentation, and

every representation is a direct sum of irreducible subrepresentations. In other words, Rn

can be decomposed as a direct sum of minimal G-invariant subspaces Rn =
⊕

i Vi. However,

this decomposition is not necessarily unique. If the action of G on Vj is isomorphic to the

action of G on Vk then the corresponding subrepresentations ρj and ρk are said to be equiva-

lent. There are then an infinite number of ways of decomposing Vj ⊕ Vk into two irreducible

invariant subspaces. The number of times an equivalent representation apppears in an irre-

ducible decomposition is called the multiplicity of the representation in the decomposition.

The canonical decomposition is Rn =
⊕

i Vi where i indexes inequivalent irreducible repre-

sentations and Vi is the direct sum of the ei invariant subspaces corresponding to ρi, where

ei is the multiplicity of ρi in ρ. The canonical decomposition is unique, but is reducible if

any multiplicity is greater than 1.

In all the examples presented in this paper, all multiplicities are one, the unique canonical

decomposition Rn =
⊕

i Vi is irreducible and any G-invariant Poisson log-linear model can be

expressed as
⊕

i∈m Vi wherem is any subset of ∆, the index set for the irreducible components.

Hence there are 2|∆| possible G-invariant models, each corresponding to a particular m ⊆ ∆.

An invariant multinomial log-linear model corresponds to any
⊕

i∈m Vi ⊆ N(C).
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