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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

BAYESIAN ALGORITHMS FOR SPEECH ENHANCEMENT

by Ioannis Andrianakis

The portability of modern voice processing devices allows them to be used in en-

vironments where background noise conditions can be adverse. Background noise

can deteriorate the quality of speech transmitted through such devices, but speech

enhancement algorithms can ameliorate this degradation to some extent. The devel-

opment of speech enhancement algorithms that improve the quality of noisy speech

is the aim of this thesis, which consists of three main parts.

In the first part, we propose a framework of algorithms that estimate the clean speech

Short Time Fourier Transform (STFT) coefficients. The algorithms are derived from

the Bayesian theory of estimation and can be grouped according to i) the STFT

representation they estimate ii) the estimator they apply and iii) the speech prior

density they assume. Apart from the introduction of algorithms that surpass the

performance of similar algorithms that exist in the literature, the compilation of the

above framework offers insight on the effect and relative importance of the different

components of the algorithms (e.g. prior, estimator) to the quality of the enhanced

speech.

In the second part of this thesis, we develop methods for the estimation of the power

of time varying noise. The main outcome is a method that exploits some similarities

between the distribution of the noisy speech spectral amplitude coefficients within a

single frequency bin, and the corresponding distribution of the corrupting noise. The

above similarities allow the extraction of samples that are more likely to correspond

to noise, from a window of past spectral amplitude observations. The extracted

samples are then used to produce an estimate of the noise power.



In the final part of this thesis, we are concerned with the incorporation of the time

and frequency dependencies of speech signals in our estimation model. The theo-

retical framework on which the modelling is based is provided by Markov Random

Fields (MRF’s). Initially, we develop a MAP estimator of speech based on the Gaus-

sian MRF prior. In the following, we introduce the Chi MRF, which is employed in

the development of an improved speech estimator. Finally, the performance of fixed

and adaptive schemes for the estimation of the MRF parameters is investigated.
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Chapter 1

Introduction

The continuous evolution of computers and digital systems has led to the widespread

use of voice capturing and processing devices (e.g. mobile phones, hearing aids etc.).

The portability of such devices enables them to be deployed in environments where

background noise conditions can be adverse. Background noise poses a serious prob-

lem for both voice-based communication and automated services. Speech quality

and intelligibility can be seriously hindered and automatic speech recognition sys-

tems are far less robust to noise than humans. Speech enhancement algorithms can

ameliorate to some extent the aforementioned problems.

In this thesis, we are concerned with the development of speech enhancement algo-

rithms whose aim is the improvement of the quality of noisy speech. As the notion of

speech quality can be rather abstract and multidimensional [25], we focus the scope

of our work into two main objectives: the first is the reduction of the level of the

background noise, trying at the same time to avoid the harmful speech enhancement

artifact known as musical noise [9], which consists of short tonal bursts that appear

in random frequencies. The second objective is to preserve speech as accurately as

possible, while minimising the distortions introduced by the processing.

The speech enhancement algorithms we propose in this thesis all fall in the category

of single channel speech enhancement. We will not be concerned with dual or multi

channel speech enhancement algorithms [61, 76]. A brief overview of single channel

speech enhancement will be given in the next section, where we will also identify

the specific genre of this family of algorithms that we will pursue. In §1.2 we will

1



outline the main developments of this thesis and highlight the novelty of this work.

The structure of the thesis will be presented in §1.3 and in §1.4 we will detail the

publications that have been derived from this work to date.

1.1 Single channel speech enhancement

Single channel speech enhancement algorithms assume the existence of a single sen-

sor that captures the noisy speech. Therefore, algorithms of this type have to

estimate the noise statistics and enhance the speech from a single recording. This

is in contrast to dual channel speech enhancement for example, where the existence

of a noise reference is assumed (e.g. [61]). The single channel speech enhancement

literature has produced a large number of algorithms, which can be classified in the

following categories:

• Bayesian estimators of the speech Short Time Fourier Transform (STFT) (e.g.

Ephraim and Malah [31], Martin [72], Wolfe and Godsill [99])

• Spectral subtraction (e.g. Boll [13], Lim and Oppenheim [63])

• Speech enhancement based on Hidden Markov Models (e.g. Ephraim [30])

• Subspace methods (e.g. Ephraim and Van Trees [33], Rezayee and Gazor [85])

• Kalman filters (e.g. Paliwal and Basu [78], Gannot et al. [37] )

The algorithms we develop in this thesis fall in the first category, that is, they are

based on Bayesian estimators of the STFT. A typical algorithm of this type first

transforms the noisy speech signal in the short time frequency domain by means of

an STFT. An optimal clean speech estimator is then applied to the noisy speech

STFT coefficients, assuming some distribution for the coefficients of speech and

noise. Finally, an inverse STFT is applied in order to retrieve the enhanced signal

in the time domain.

Algorithms based on Bayesian estimation of the STFT take advantage of the solid

background of Bayesian theory, unlike the spectral subtraction algorithms for exam-

ple, whose derivation has more empirical origins. The STFT is a computationally

2



cheap transformation, in contrast to the KLT transform that is typically applied

in subspace methods. Finally, in an extensive comparison of single channel speech

enhancement algorithms from various categories, which was presented by Hu and

Loizou [52], the algorithms based on Bayesian estimation of the STFT were preferred

by the majority of the subjects that participated in the listening tests.

1.2 Main developments

The work presented in this thesis can be divided in three major parts. In the first

part (chapters 3 - 5), we develop a framework of Bayesian algorithms for speech

enhancement, which consists of: i) generalisations of existing algorithms and ii)

algorithms that are entirely novel. In the second part (chapter 6), we propose novel

algorithms for the estimation of the noise power from a single channel recording of

speech corrupted with noise. In the third and final part of this thesis (chapter 7), we

employ tools from the theory of Markov Random Fields (MRF) for the development

of speech enhancement algorithms. MRF’s have found limited applications in speech

processing so far and, to the best of our knowledge, this is the first time they are

employed in enhancing speech corrupted with broadband noise.

The algorithms that comprise the proposed framework can be divided according

to three of their features. The first is the clean speech STFT representation they

estimate, which can be either the real (Re) and imaginary (Im) parts, or the am-

plitude. Secondly, they can be grouped according to the estimator they employ

for the estimation of the STFT representation. The employed estimators are the

Minimum Mean Square Error (MMSE) and the Maximum A Posteriori (MAP). A

final possible grouping is according to the probability density function that is used

for modelling the speech STFT coefficients (prior). The priors used with the algo-

rithms that estimate the Re and Im parts are the 2 sided Chi and Gamma density

functions. The priors used with the algorithms that estimate the amplitude are the

1 sided versions of the Chi and Gamma densities and the Lognormal density. A

graphic representation of the algorithms that constitute the proposed framework,

along with the ‘code’ names selected for each one, is shown in figure 1.1. The code

names for the algorithms are based on the following format: the two first letters

designate the estimator (i.e. MP for MAP and MS for MMSE). The next num-

3
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1 sided
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Log-
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MP2C MS1CMS2C MP2GMS2GName MP1C MP1LMS1G MP1GMS1L

Figure 1.1: The proposed framework of Bayesian algorithms for speech enhancement.

ber determines whether the prior is 1 or 2 sided and also determines the estimated

STFT representation as 2 sided priors are used for the estimation of the Re and Im

parts and 1 sided priors are used for the estimation of the amplitude. Finally, the

last letter denotes the name of the prior (i.e. C for Chi, G for Gamma and L for

Lognormal).

A common characteristic of all the employed priors is a parameter that controls

their shape, which we call a. Small values of a make the priors more leptokurtic

(higher concentration around zero and longer tails), while large values of a result in

more platykurtic priors. Apart from the above rather general observation however,

we should mention that the same value of a has different effect in different priors

(e.g. same a results in different values for the moments of the different priors).

Nevertheless, the shape parameter a offers great flexibility in the shape the priors

assume, and has an immense effect on the performance of the respective algorithms.

The effect of a on the quality of the enhanced speech is a focal point of our research.

The proposed framework encapsulates several algorithms that exist in the literature,

which are derived from the algorithms of the framework for particular values of

a. These algorithms are: the Wiener filter [63], which is derived from the MS2C

algorithm with a = 1, as the 2-sided Chi density with a = 1 is the Gaussian density.

The Ephraim - Malah MMSE STSA algorithm [31] is derived from the MS1C with

a = 2 as the 1 sided Chi density with a = 2 corresponds to the Rayleigh density

used in [31]. Two of the algorithms proposed by Martin [72] are given by the

MS2G algorithm with a = 0.5 and a = 1. A MAP algorithm proposed by Wolfe

4



and Godsill [99] is the MP1C with a = 2, while Lotter and Vary [66] proposed an

algorithm which is the MP1G with a = 2. Finally, Dat et al. [24] proposed an

instance of the MP1C and MP1G algorithms with a = 1 and a = 1.5 respectively.

No instances of the MP2C, MP2G, MS1G, MS1L, MP1L have ever been proposed

in the literature.

Apart from the introduction of algorithms that surpass the performance of the exist-

ing ones, the compilation of the above framework of algorithms has two additional

benefits. Firstly, it provides the opportunity of directly comparing several popular

speech enhancement algorithms that already exist in the literature. Secondly, and

perhaps more importantly, due to the large number of algorithms that comprise the

framework and the various groups they can be classified into, it offers an insight into

the effect the different elements (estimator, prior etc.) have on the quality of the

resulting speech, and yields interesting conclusions on their relative importance.

In the second part of this thesis, we present our work on the development of al-

gorithms that estimate the power of time varying noises. The first part of this

work, investigates the applicability of Gaussian Mixture Models in modelling the

STFT coefficients of time varying noise. We show that the flexibility of these mod-

els allows an accurate modelling of the STFT coefficients of time varying noise,

which motivates their employment in a speech enhancement scheme. In the sec-

ond part, a noise estimation algorithm based on a single Gaussian distribution is

developed, which exploits an observation that has received little attention in the

literature. This observation regards the similarities between the distribution of the

noisy speech spectral amplitude coefficients within a single frequency bin and the

distribution of the respective coefficients of the corrupting noise. Taking advantage

of the above similarities, we developed an algorithm that extracts from a window of

past spectral amplitude samples of noisy speech those samples that are more likely

to correspond to noise. The latter samples are then used to produce an noise power

estimate. The extraction of the samples that belong to noise is based on matching

the two first moments of the Rayleigh distribution.

Finally, in the last part of this thesis we investigate the applicability of MRF’s

to the problem of speech enhancement. MRF’s have found extensive application

in image processing problems, due to their ability to model interactions between
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neighbouring pixels. Speech signals are known to have dependencies both in time

and in frequency, which in the STFT domain manifest themselves as dependencies

between neighbouring STFT samples. We therefore try to take advantage of the

neighbour - modelling capabilities of the MRF’s to develop speech enhancement

algorithms that incorporate the time and frequency dependencies of speech signals.

1.3 Structure of the thesis

In chapter 2 we review the most prominent approaches for single channel speech

enhancement. Naturally, we focus our attention on the methods based on Bayesian

estimation of the STFT, making a distinction between the algorithms that are en-

capsulated in our framework and those which cannot be considered as its members,

although their derivation is based on very similar principles. In chapter 2 we also

present the basic concepts of Bayesian estimation, which form the stepping-stones

to developments that follow.

In chapter 3 we formulate the problem of enhancing noisy speech as an estima-

tion problem within a Bayesian context. After presenting analytically the proposed

speech priors we derive the respective estimators for all the algorithms of the frame-

work. At the end of the chapter we also attempt to verify the independence between

the Re and Im parts and between the amplitude and phase of speech STFT coeffi-

cients, which is assumed throughout the chapter.

The proposed priors have two parameters: the shape parameter a and the scale pa-

rameter θ. Chapter 4 discusses various methods for their estimation. The discussed

methods are grouped in two categories. The first is based on fitting the priors to

a large number of clean speech data by means of minimising the Kullback-Leibler

divergence. This method apart from providing a set of values that can be used

for enhancing speech, can also give a measure for the appropriateness of the priors

to model the speech data. The second group of methods estimate the values of

the priors’ parameters adaptively as the processing of noisy speech progresses. The

adaptive method we employ for the estimation of the scale parameter is the Decision

Directed (DD) method of Ephraim and Malah [31], while for the shape parameter

a the method we propose is based on moment matching.
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In chapter 5 we provide an extensive evaluation of the algorithms that comprise our

framework. First, we investigate their performance as a function of the priors’ shape

parameter a and draw conclusions about its effect on the quality of speech. Optimal

values for a are then sought by means of a formal subjective listening test. Finally,

the adaptive scheme for the estimation of a is evaluated.

Our work on the development of noise estimation algorithms is presented in chapter

6. We begin by reviewing some of the most popular noise estimation methods,

presenting them according to the principles on which they are based. The speech

enhancement algorithm that employs the Gaussian Mixture Models of noise is then

developed and evaluated. Finally, we describe the principles on which the Rayleigh

moment matching noise estimation algorithm is based and its derivation is given in

detail, followed by a comparison of the algorithm’s performance with that of a state

of the art noise estimation method.

Chapter 7 is a study on the applicability of MRF’s to speech enhancement. We begin

by laying down the theoretical background of the MRF’s and then derive a MAP

estimator of clean speech that is based on Gaussian MRF priors. We then introduce

a novel type of MRF, which we term Chi MRF and employ it in the problem of

speech enhancement. Finally, we discuss a limitation of using MRF’s with fixed

weights between the neighbours for speech enhancement and make an attempt to

overcome them by introducing an adaptive scheme.

Finally, chapter 8 summarises the work presented in this thesis and draws the con-

clusions that have stemmed from this work. Additionally, directions into which this

work could further expand are also given.

1.4 Novel contributions and publications

The main contributions of this work in the field of speech enhancement are the

following:

• The generalisation of existing speech enhancement algorithms (see chapter 3:

MS2C, MS2G, MS1C, MP1C and MP1G).
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• The introduction of novel speech enhancement algorithms (see chapter 3:

MP2C, MP2G, MS1G, MS1L and MP1L).

• The compilation of a framework of Bayesian algorithms for speech enhance-

ment, which offers insight on the relative importance of the estimator, prior

and estimated STFT feature.

• A noise estimation algorithm based on Gaussian Mixture Models.

• A noise estimation based on matching the moments of the Rayleigh distribu-

tion.

• The incorporation of MRF’s for modelling the speech spectral amplitude.

• The introduction of Chi MRF’s.

• The development of an adaptive scheme for the estimation of the MRF pa-

rameters that allows the restoration of the speech spectral components, while

effectively suppressing the background noise.

The following is a list of publications that have arisen from this work to date.

• I. Andrianakis and P. R. White, “Bayesian algorithms for speech enhancement”

ISVR Technical Report, No 305, Jan. 2006.

• I. Andrianakis and P. R. White, “MMSE speech spectral amplitude estimators

with Chi and Gamma speech priors” in International Conference on Acoustics,

Speech and Signal Processing (ICASSP-06), vol. 3, pp 1068-1071 May 2006.

• I. Andrianakis and P. R. White, “Noise estimation based on matching the

moments of the Rayleigh distribution for speech enhancement” in Hellenic In-

stitute of Acoustics 2006, Heraklion, Greece, Sep. 2006.

• I. Andrianakis and P. R. White, “On the application of Markov Random Fields

to speech enhancement” in Proc. 7th IMA Int. Conf. Mathematics in Signal

Processing, Cirencester, UK, Dec. 2006.
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Chapter 2

Literature review and background

material

In the past three decades numerous algorithms have been developed for the en-

hancement of noisy speech. The different approaches can be grouped according to

the theory on which they are based into categories such as spectral subtraction al-

gorithms, methods based on the Bayesian estimation of the STFT, signal subspace

approaches, Hidden Markov Models (HMM), Kalman filtering etc.. In this chap-

ter we present an overview of algorithms that belong in the different groups, while

maintaining our focus on those which are based on the Bayesian estimation of the

STFT, as these are the methods that are central to this thesis.

The algorithms that are based on the estimation of the STFT are reviewed in §2.1.

We make a distinction between those that immediately fit into the proposed Bayes-

ian framework of speech enhancement algorithms (§2.1.1) and those that although

cannot be considered as its members, they can either be seen as its extensions or

they are derived from a similar underlying theory. The latter group is presented in

§2.1.2. In §2.2, the algorithms that are derived from alternative theoretical back-

grounds (e.g. signal subspace, HMM’s, Kalman filters) are presented. We provide a

more detailed presentation of the algorithm(s) that triggered the research interest in

the particular area, with the addition of some extensions that attempted to mitigate

the shortcomings of the original methods.

Finally, in §2.3 we present the basic concepts of Bayesian estimation, which are
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considered standard textbook material (e.g. [96]) and are fundamental in the devel-

opment of the algorithms proposed in this thesis. Quantities such as the prior and

posterior distributions will be defined and an analytical derivation of the MMSE

and MAP estimators will be presented.

2.1 Methods based on Bayesian estimation of the STFT

A large number of speech enhancement methods that exist in the literature are based

on Bayesian estimation of the clean speech STFT. These methods typically trans-

form the noisy signal into the STFT domain and with the assumption of a statistical

model produce an estimate of the clean speech STFT. The resulting estimate is then

transformed back to the time domain in order to yield the enhanced speech signal.

A number of the methods that fall in the above category consist a subset of the algo-

rithms from the Bayesian framework, which is proposed in this thesis. Additionally,

there are a number of algorithms, which although cannot be directly incorporated

into the above framework, are intimately linked with it. The two above categories

of algorithms will be discussed in the next two sections.

2.1.1 Methods that belong in the proposed Bayesian framework

The framework we propose in this thesis consists of algorithms that i) estimate either

the Re and Im parts or the amplitude of the speech STFT, ii) use the Chi, Gamma

and Lognormal speech priors and iii) employ the MMSE or the MAP estimators. A

number of algorithms which are contained in the proposed framework can be found

in the literature. These are discussed in the following along with some motivation

for their development.

One of the earliest algorithms that is a member of the above framework is the Wiener

filter, which was first presented in the context of speech enhancement by Lim and

Oppenheim [63]. The same algorithm was put in its Bayesian context by Martin [72],

where it was explicitly stated that the Wiener filter is the MMSE estimator of the

Re and Im parts of the speech STFT coefficients. The Re and Im parts of speech

are assumed to follow a Gaussian distribution, which is an instance of the 2 sided
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Chi density (eq. 3.7) when its shape parameter a takes the value 1. Capitalising

on the importance of the short time speech amplitude relative to the short time

phase in speech perception, Ephraim and Malah [31] developed the MMSE STFT

amplitude estimator. The speech spectral amplitude was modelled with a Rayleigh

distribution, which is an instance of the 1 sided Chi density (eq. 3.21) when its

shape parameter a has the value 2.

Observing that the Re and Im parts of the speech STFT are better modelled by

supergaussian densities, Martin [72] developed MMSE estimators of the Re and Im

parts using instances of the 2 sided Gamma distributions (eq. 3.14) with a = 1

(Laplacian) and a = 0.5. Approximate MAP estimators of the speech spectral

amplitude were then developed in [24, 66, 99]. Wolfe and Godsill [99] used the 1

sided Chi priors with a = 2 (Rayleigh), Lotter and Vary [66] used the 1 sided

Gamma priors (eq. 3.28) with a = 2 and Dat et al. [24] used the 1 sided Gamma

priors with a = 1.5 and the 1 sided Chi with a = 1.

2.1.2 Methods adjacent to the proposed framework

Apart from the algorithms mentioned in the previous section, there are also a num-

ber of algorithms that although do not immediately fit into the above framework,

they do bear a large degree of similarity with its members. An example is the algo-

rithm proposed by Porter and Boll [81], where the MMSE estimator of the speech

spectral amplitude was developed under the same assumptions as in [31]. However,

rather than assuming a closed form density function for the distribution of the am-

plitude coefficients, the authors proposed that the MMSE estimator is implemented

empirically via the sample distribution of the clean speech signal. An obvious draw-

back of this method is that significant memory resources are required for the storage

of the clean speech database. Ding et al. [28] developed the MMSE estimator of the

squared speech spectral amplitude based on the assumption that the speech DFT

coefficients are distributed according to a mixture of Gaussian distributions. Lotter

and Vary [67] proposed a joint spectral amplitude and phase MAP estimator using

1 sided Gamma priors (eq. 3.28) and a = 1.1, while Gazor and Zhang [38] derived

MMSE and MAP estimators for the Discrete Cosine Transform (DCT) representa-

tion of the speech signals, assuming that the speech coefficients follow a Laplacian
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distribution and the coefficients of noise are Gaussian.

The following four studies introduced an estimator of the speech spectral ampli-

tude based on the Gaussian assumption for the distribution of the speech and noise

spectral coefficients. However, rather than using the amplitude mean square error

(MSE) cost function, other cost functions were proposed. Ephraim and Malah [32]

proposed the minimisation of the MSE of the logarithm of the spectral amplitude,

while Cohen [18] combined the above estimator with the speech presence uncertainty

method which was developed earlier by Ephraim and Malah [31]. You et al. [100]

proposed the minimisation of the MSE of the spectral amplitude raised to an arbi-

trary power β and finally, Loizou [65] proposed a number of perceptually motivated

cost functions. It is interesting to note, that the algorithm in [65] with the best

overall performance is identical to our MMSE amplitude spectral estimator with

the 1 sided Chi priors, despite the different motivation for their derivation.

McAulay and Malpass [73] adopted a somewhat different approach by modeling

the speech spectral amplitude, not as a random variable, but as a deterministic

complex variable with unknown amplitude and phase. Assuming then that the

noise coefficients have a Gaussian distribution they derived a Maximum Likelihood

estimator of the speech spectral amplitude. Hendriks et al. [47] used a model for the

Re and Im parts of the speech STFT that consisted of a random plus a deterministic

component. The random part of the model was used for noise like speech sounds

such as the fricatives /s/, /f/, while the deterministic part was used for vowels.

Estimators of the Re and Im parts of the DFT were then derived that involved a

soft and a hard decision between the two parts of the model.

The speech enhancement method proposed by Tsoukalas et al. [94] utilised a psy-

choacoustic mechanism, known as noise masking. According to this, there exists a

spectral amplitude threshold, called the Auditory Masking Threshold (AMT), below

which all frequency components are masked in the presence of the masker signal (i.e.

speech). The authors of [94] used the AMT in order to estimate the audible noise

spectrum, which consists of those spectral components that are perceived as noise.

The enhanced speech was then obtained with a parametric Wiener-type filter, whose

parameters were estimated so that the audible noise spectrum is equal or less than

zero. Extending the above work, Hansen et al. [45] proposed a statistical method for
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the estimation of the AMT. Rather than using the heuristic iterative method of [94]

for the estimation of the speech spectrum, which is required for the calculation of

the AMT, an MMSE estimator of the speech power spectrum was used instead. A

further extension to the above line of research was provided by You et al. [101], who

employed their β power MMSE amplitude estimator [100] both for enhancing speech

and for the estimation of the AMT. Additionally, the authors proposed a scheme

for the on line adaptation of the value of β, which was based on the frame SNR and

the estimated frame AMT, while an adaptation of a spectral flooring similar to that

proposed by Virag [97] was also employed.

2.2 Alternative methods for speech enhancement

Despite the fact that the algorithms presented in the previous section include some of

the most popular approaches for speech enhancement, they by no means exhaust the

vast number of speech enhancement algorithms that exist in the scientific literature.

In this section we summarise some of the most prominent alternative approaches.

2.2.1 Spectral Subtraction

An intuitive and simple in its implementation method for speech enhancement is the

spectral subtraction. Its basis relies on the fact that if speech and noise are additive

and uncorrelated, then the power spectral density of the noisy speech is equal to

the sum of the power spectral densities of speech and noise [63]. If we denote by

X(k), S(k) and N(k) the amplitude of the DFT of a short segment of noisy speech,

speech and noise respectively, then an estimate of the clean speech DFT amplitude

Ŝ(k) can be obtained as

ŜγSS(k) = max(αSSX
γSS(k) − βSSN̂

γSS(k), δSS N̂
γSS(k)) (2.1)

where k is the frequency bin index and N̂(k) is an estimate of the noise spectrum.

αSS, βSS, γSS and δSS are all positive parameters. In particular, βSS is known as the

oversubtraction factor, which determines the amount of the subtracted noise. The

exponent γSS controls the aggressiveness of the algorithm, resulting in lower levels
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of residual noise but higher speech distortion as it approaches zero. Finally, δSS

controls the noise floor, which is a minimum value for the spectral estimates and

can aid the suppression of musical noise.

The method proposed by Boll [13] used αSS = βSS = γSS = 1 and δSS = 0, a

method known as amplitude spectral subtraction. The method proposed by Lim

and Oppenheim [63] used the same parameter values as above except for γSS = 2,

which is known as power spectral subtraction. Although these methods result in

sensible estimates of the clean speech, they both suffer from high levels of musical

residual noise. To alleviate this problem, Boll [13] proposed to replace the current

spectral value estimate in a time frame with the minimum of the adjacent frames,

exploiting in this way the random nature of musical noise. Berouti et al. [9] proposed

the use of βSS > 1 and δSS = 0.01, in order to reduce the amount of perceived musical

noise. The authors of [9] also experimented with arbitrary powers of γSS, concluding

that the optimum results were obtained for γSS = 2. Scalart and Filho [88] proposed

to incorporate the DD method for the estimation of the a priori SNR [31] in the

power spectral subtraction method. This was motivated by the success of the DD

method in suppressing musical noise as reported in [16]. Sim et al. [90] proposed the

use of estimates of αSS and βSS that minimised the mean square error between S(k)

and Ŝ(k). Finally, Virag [97] used the perceptual model employed by Tsoukalas

et al. [94] for the calculation of the AMT, which was then used in the adaptive

estimation of βSS and δSS. The latter parameters were adapted in such a way that

less suppression was applied when the value of the AMT was high, in order to

minimise the speech distortion, taking also into account that the noise should be

masked anyway by the speech signal for high values of the AMT.

2.2.2 Hidden Markov Models

A speech enhancement method that is based on Hidden Markov Models (HMM) was

proposed by Ephraim [30] and references therein. The proposed method is based

on the Bayesian framework that was presented in §2.1, with the difference that

the speech and noise signals were modelled with HMM’s instead of simple density

functions. The speech and noise signals were modelled with first order HMM’s with

Gaussian state dependent density functions, each of which was assumed to be an
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AR process. Given the speech and noise HMM models, MMSE and MAP estimators

were then derived, in a similar fashion as in §2.3. The resulting estimators comprised

of M×M̃ Wiener filters, where M is the number of HMM states for the speech signal

and M̃ the states for the noise signal. The clean speech estimate was obtained with

different combinations of the M× M̃ Wiener filters, which was determined from the

employed estimator (MMSE or MAP).

The need for the calculation of M × M̃ Wiener filters imposes an increased com-

putational load to the HMM based methods. Additionally, their complexity can be

somewhat increased as the parameters of the HMM models need to be calculated

from training on speech and noise databases, while their performance depends on

the match between the training and test data [21].

2.2.3 Subspace Methods

The subspace methods are based on the decomposition of the noisy speech signal

into two subspaces: the speech plus noise and the noise only subspace. Once the

decomposition is achieved, the noise subspace is discarded, while the clean speech

is estimated from the remaining speech plus noise subspace.

The mixing model of speech and noise is given by

x = s + n (2.2)

where x, s and n are vectors of noisy speech, speech and noise respectively that

contain Kx samples each. The model that is assumed for the speech signal is

s = Wy (2.3)

where y is a Ks dimensional vector of zero mean random variables. The matrix W

consists of Ks basis vectors, whose dimension is Kx. The fundamental assumption of

the subspace family of methods is that a Kx dimensional speech vector can be rep-

resented as a linear combination of Ks < Kx basis vectors. Under this assumption,

the vector s lies in a subspace ℜKs of the Euclidean space ℜKx , which is spanned

by the columns of the matrix W and is called speech or speech plus noise subspace.
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The covariance matrix of s is

Σs ≡ E
[

ss#
]

= WΣyW
# (2.4)

where Σy is the covariance of y and (.)# denotes conjugate transpose. The rank

of the Σs matrix is Ks, which implies that it has Ks positive, and Kx − Ks zero,

eigenvalues.

For the Kx dimensional noise vector n on the other hand, it is assumed that its

covariance matrix Σn ≡ E
[

nn#
]

has a rank of Kx with Kx positive eigenvalues. In

other words, the noise vectors fill the entire Euclidean space ℜKx , which consists

of the signal subspace ℜKs and its compliment ℜKx−Ks . The latter is called noise

subspace.

The method proposed by Ephraim and Van Trees [33] achieved the decomposition

into speech and noise subspaces by means of a Karhunen-Loeve Transform (KLT).

Two estimators of the speech signal from the speech subspace were then developed:

the first minimised the speech distortion, while keeping the noise energy within

each frame below a certain threshold (time domain constrained estimator), and the

second estimator minimised the speech distortion, while keeping below a threshold

the energy in each spectral component (spectral domain constrained estimator). The

resulting estimators were closely related to the Wiener filter.

A drawback of the above approaches is that they are designed for white noise,

while colored noise can be handled only with a prewhitening step. A number of

extensions to the above methods have been proposed since, that can explicitly handle

colored noise. Mittal and Phamdo [74] proposed to classify the speech frames as

containing mainly speech or noise and apply the KLT to the dominant process in each

frame. Rezayee and Gazor [85] proposed the use of a diagonal matrix (as opposed

to the identity matrix of [33]) for the approximation of the colored noise spectrum.

Hu and Loizou [49] proposed the simultaneous diagonalisation of the speech and

noise covariance matrix with a non orthogonal transformation. The simultaneous

diagonalisation of the two covariance matrices with an orthogonal transformation

was achieved by Lev Ari and Ephraim [62].

Jabloun and Champagne [54] enhanced the spectral domain constrained estimator
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of [33] with the psychoacoustic models proposed in [94,97]. The AMT’s were first es-

timated by obtaining an estimate of the clean speech covariance matrix Σs = Σx−Σn,

where Σx is the covariance matrix of the noisy signal and applying an eigendomain

to frequency transformation. Subsequently, using a frequency to eigendomain trans-

formation, a set of eigenvalues that contained the perceptual information of the

psychoacoustic model were calculated, which were then used in the estimation of

the clean signal. An alternative method for the incorporation of a psychoacous-

tic model with the subspace algorithms was also proposed by Hu and Loizou [50].

Rather than using the AMT’s, an estimate of the speech spectrum was obtained with

an LPC polynomial, whose inverse spectrum was used to perceptually weight the

time domain error signal. A clean speech estimator similar to the spectral domain

constrained estimator of [33] was then developed, which minimised the perceptually

weighted error criterion rather than the mean squared error.

Apart from the above KLT-based methods, Dendrinos et al. [27] and Jensen et

al. [55] proposed methods which are based on the Singular Value Decomposition

(SVD). The method in [27] is an SVD-based method similar to the first estimator

of [33], while the method in [55] is a colored noise extension to the method in [27].

A drawback of the subspace methods is that they are computationally more de-

manding than the STFT estimation methods (§2.1). The load is imposed by the

relatively expensive computation of the KLT or SVD transforms. Additionally, in

the extensive subjective comparison of different classes of algorithms, which was

presented in [52], the subspace algorithms obtained lower scores compared to the

algorithms based on Bayesian estimation of the STFT.

2.2.4 Kalman Filters

Another family of speech enhancement algorithms is based on Kalman filters. In

this family of algorithms the time domain speech samples s(i) are typically modelled

with an AR process of the form

s(i) =

NAR
∑

m=1

ar(m, i)s(i−m) + er(i) (2.5)
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where ar(m, i) are the time varying AR coefficients, NAR is their number and er(i) is

the driving noise sequence. Based on the above speech model and the linear mixing

model

x(i) = s(i) + n(i) (2.6)

where x(i), s(i) and n(i) are the noisy speech, speech and noise signals, the equations

of the standard Kalman filtering for the estimation of clean speech were proposed by

Paliwal and Basu [78], under the assumption that both the driving noise sequence

er(i) and the noise signal n(i) are white and zero mean.

An extension to colored noise was proposed by Gibson et al. [40], by incorporating

an AR model for noise in the state equations of the Kalman filter. Gannot et al. [37]

enhanced the previous combined speech and noise model with the addition of the

Estimation Maximisation (EM) algorithm for the estimation of the speech and noise

model parameters. Incorporating a psychoacoustical model, Ma et al. [68] derived

a Kalman filter under the constraint that the estimation error is smaller than a

masking threshold, while both simultaneous frequency masking and time domain

masking were taken into account.

Finally, by taking a slightly different approach, Zavarehei et al. [102] proposed the

use of Kalman filters for estimating the Re and Im parts of the speech STFT.

Estimators where the noise was modelled as either an uncorrelated or an AR process

were then developed, and results comparable with those of well known Bayesian

STFT estimators were achieved.

2.3 Bayesian estimation

In this section we discuss the theoretical background of Bayesian estimation, which

will be central in the development of the proposed speech enhancement algorithms.

We will introduce quantities such as the prior and posterior distributions and will

derive the MMSE and MAP estimators, which will be extensively employed in the

following chapters. The section will close with an example of estimating a random

variable buried in noise, in an attempt to further clarify the various concepts of

Bayesian estimation and the procedure itself. A more comprehensive treatment of

the material presented in this section can be found in [96].
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Figure 2.1: Typical cost functions.

A central concept in Bayesian estimation is the cost function C (s, ŝ(x)), where s is

the random variable (r.v.) we are trying to estimate, x is the observed r.v. and ŝ(x)

is an estimate of s once x is observed. The cost function defines the cost of observing

x and saying that the estimate for s is ŝ(x). It is often possible to express the cost

as a function of a single variable es(x), which is called the error and is defined as

es(x) = ŝ(x) − s (2.7)

Typical cost functions include the square error (eq. 2.8) and the ‘hit-or-miss’ cost

function (eq. 2.9), which assigns a uniform cost for absolute error values above

a threshold δ. The above cost functions are illustrated in figure 2.1, while their

analytical expressions are given below.

Cse(es) = e2s (2.8)

Chm(es) =







0 if |es| < δ

1 if |es| > δ
(2.9)

Once a cost function is chosen, the objective is to minimise its expected value. The

expectation (average) is with respect to all the possible values of the r.v.’s s and x

and is often referred to as the risk R, which is defined in eq. 2.10. p(s, x) is the

joint probability density function (joint pdf) of s and x.

R ≡ E[C (es(x))] =

∫ ∞

−∞

∫ ∞

−∞
C (es(x)) p(s, x) ds dx (2.10)

Minimisation of the risk for different cost functions leads to different estimators. The

estimators that are derived when the square error and hit-or-miss cost functions are
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used are the Minimum Mean Square Error (MMSE) and Maximum A Posteriori

(MAP) estimators respectively. These estimators are the principal ones used in

practice and will be examined in the following sections.

2.3.1 Minimum Mean Square Error estimator

The MMSE estimator is obtained by minimising the risk function (eq. 2.10) with

respect to ŝ(x), using the square error cost function (eq. 2.8). The risk function can

be written as

R =

∫ ∞

−∞

∫ ∞

−∞
(s− ŝ(x))2 p(s, x) ds dx (2.11)

Application of Bayes’ theorem transforms the above equation to

R =

∫ ∞

−∞

∫ ∞

−∞
(s− ŝ(x))2 p(s|x) ds p(x) dx (2.12)

As p(x) and the inner integral are non-negative, minimising the latter with respect

to ŝ also minimises the risk. Differentiation of the inner integral w.r.t. ŝ yields

d

dŝ

[∫ ∞

−∞
(s− ŝ(x))2 p(s|x) ds

]

= −2

∫ ∞

−∞
(s− ŝ(x)) p(s|x) ds (2.13)

Setting eq. 2.13 to zero and considering that the integral of p(s|x) from −∞ to ∞
is 1, we see that the estimate that minimizes the mean square error is

ŝ(x) =

∫ ∞

−∞
s p(s|x) ds = E[s|x] (2.14)

where E[s|x] is the conditional statistical expectation of s given x. It is interesting

to note that the MMSE estimate is always the mean of the a posteriori density

p(s|x) (see figure 2.3). Further application of the Bayes theorem on eq. 2.14 can

yield the expression in eq. 2.15, where the MMSE estimate is expressed in terms of

the likelihood p(x|s) and the prior p(s) densities.

ŝ(x) =

∫ ∞

−∞
s p(s, x) ds

p(x)
=

∫ ∞

−∞
s p(s, x) ds

∫ ∞

−∞
p(s, x) ds

=

∫ ∞

−∞
s p(x|s)p(s) ds

∫ ∞

−∞
p(x|s)p(s) ds

(2.15)
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2.3.2 Maximum A Posteriori estimator

The maximum a posteriori estimator can be found by substituting the hit-or-miss

cost function (eq. 2.9) in the expression for the risk (eq. 2.10), which then reads

R =

∫ ∞

−∞

∫ ∞

−∞
Chm(es(x))p(s, x) ds dx (2.16)

Applying Bayes’ rule and following the same argument as in eqs. 2.12 and 2.13 we

see that for the minimisation of the risk it suffices to minimise

R′ =

∫ ∞

−∞
Chm(es(x))p(s|x) ds (2.17)

Considering that the cost function Chm(es(x)) is 1 only for es(x) > |δ| or equivalently

for s > ŝ(x) + δ and s < ŝ(x) − δ while it is zero everywhere else, eq. 2.17 can be

written as

R′ =

∫ ŝ(x)−δ

−∞
p(s|x) ds+

∫ ∞

ŝ(x)+δ

p(s|x) ds (2.18)

or as

R′ = 1 −
∫ ŝ(x)+δ

ŝ(x)−δ
p(s|x) ds (2.19)

if we recall that
∫

∞

−∞

p(s|x) ds = 1. As δ approaches zero, the value of ŝ(x) that

minimises R is the value of s for which p(s|x) has its maximum. In other words, the

risk is minimized for the hit-or-miss cost function when the estimate is the maximum

(mode) of the posterior density function (see figure 2.3). Analytically, and with the

application of Bayes’ rule, this estimator can be written as

ŝ(x) = arg max
s
p(s|x) = arg max

s

p(x|s)p(s)
p(x)

(2.20)

Finally, by observing that p(x) in the above equation does not depend on s the

estimator takes the form

ŝ(x) = arg max
s
p(x|s)p(s) (2.21)
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+s

n

x = x0 ŝ(x0)

Source r.v Noise Observation Estimate

Figure 2.2: The r.v. s is corrupted additively by random noise noise n. By observing
only the r.v. x, which takes on the value x0, we seek to produce an estimate ŝ(x0)
for the r.v. s.

2.3.3 An estimation example

In this section we present a simple estimation example for the clarification of the

concepts introduced previously. Suppose that we have a random variable s which is

corrupted with additive and independent noise n according to figure 2.2. We observe

only their sum x, which takes the value x0 and we seek an estimate ŝ(x0) of the r.v.

s, which is a function of the observation x.

In order to produce an estimate according to the theory described in the previous

sections we first need to define the prior distribution and the likelihood, which are

denoted by p(s) and p(x|s) respectively. The prior distribution can be determined

either by observing several realisations of s or by the possession of some knowledge

about the generating process. For the purposes of this example let us assume that

s follows a Laplacian distribution p(s) = 1
2θ

exp
[

− |s|
θ

]

as shown in figure 2.3(a).

Suppose also that the noise follows a Gaussian distribution p(n) = 1√
2πσ2

exp
[

− n2

2σ2

]

.

The likelihood p(x|s) can then be derived as follows: the joint density px,s(x, s) can

be obtained from the joint density pn,s(n, s) and a bivariate transformation x = s+n

and s = s as ( [79] p.201)1

px,s(x, s) = pn,s(x− s, s) (2.22)

The assumption of independence between s and n allows us to factorise pn,s(n, s),

1Subscripts have been introduced in the pdf’s (i.e. px(x)) to maintain notational clarity. See
also the last paragraph of this section for an explanation on the notation of the probability density
functions.
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Figure 2.3: (a) Prior (dash), likelihood (dash dot) and posterior (continuous) densi-
ties. (b) The posterior density with the MAP (mode) and MMSE (mean) estimates.
In both figures x0 denotes the observation.

therefore eq. 2.22 can be written as

px,s(x, s) = pn(x− s)ps(s) (2.23)

Application of Bayes’ theorem in px,s(x, s) yields

px|s(x|s)ps(s) = pn(x− s)ps(s) (2.24)

and finally

px|s(x|s) = pn(x− s) =
1√

2πσ2
exp

[

−(s− x)2

2σ2

]

(2.25)

Hence, the likelihood is the distribution of the noise (Gaussian) centered at the value

of the observation x = x0. This distribution is also shown in figure 2.3(a).

In the above, the prior density encapsulates any prior knowledge we might have

about the r.v. we are trying to estimate, while the likelihood represents the evidence

provided by the data x. The product of the above two densities is related to the

posterior density p(s|x) according to Bayes’ theorem through the equation

p(s|x) =
p(s)p(x|s)
p(x)

(2.26)

where, if we consider s as the free r.v., then p(x) is a mere normalising factor. The

posterior distribution p(s|x) is shown in figure 2.3(b). As already shown in §2.3.1
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and §2.3.2, the MMSE and the MAP estimates are the mean and the mode of the

posterior density respectively. The two different estimates are also shown in figure

2.3(b).

Before we close this section we make a comment on the notation of the probability

density functions. The formal notation of a pdf requires a subscript and an argument

i.e. px(x0). The subscript denotes the random variable the function refers to, while

the argument is the independent variable of the function, which can be a mere

number (i.e. x0 = 5). For example, px(x0) denotes the probability density of the

r.v. x at x = x0. However, when there is no fear of ambiguity the subscript is

dropped and the argument defines both the independent variable of the function

and the random variable.
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Chapter 3

A framework of Bayesian

estimators of the speech STFT

The estimators presented in this chapter are used for the estimation of the STFT

of the clean speech, when only the noisy speech STFT is observed. The proposed

estimators can be categorised according to the STFT feature they estimate, the

cost function they employ, and finally according to the speech prior density they

assume. The STFT features considered here are the Re and Im parts or the am-

plitude of the STFT and the cost functions used are the squared error and the ’hit

or miss’ (see figure 2.1), which lead to the MMSE and MAP estimators correspond-

ingly. The estimators of the Re and Im parts of the STFT use the 2 sided Chi and

Gamma prior densities, while the amplitude estimators use the 1 sided versions of

the above densities and additionally use the Lognormal priors. The assemblage of

the above framework of estimators allows us to obtain an insight on the effect of the

different components of an estimator to the quality of the enhanced speech, while it

also encapsulates several successful speech enhancement algorithms, which can be

found in the literature, as discussed in §2.1.1. After the presentation of each of the

algorithms, their instances that already exist in the literature will be detailed.

The formulation of speech enhancement as an estimation problem is given in §3.1,

while in the two next sections the estimators of the Re and Im parts and the am-

plitude estimators of the clean speech STFT are presented correspondingly. The

development of the above two groups of estimators assumes that either the Re and
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Im parts or the amplitude and the phase of the clean speech STFT are independent.

The above assumptions cannot be valid simultaneously for distributions other than

the complex Gaussian. The validity of the above assumptions for speech data is

discussed in §3.4.

3.1 Problem formulation

Let us denote by s(i) and n(i) the sampled speech and noise signals, which are

assumed to be independent and zero mean. The noisy speech signal x(i) is modelled

as the sum of s(i) and n(i). Although we acknowledge that real life noisy speech

signals might be generated by a process more complex than the mere addition of the

noise and speech signals (e.g. the Lombard effect), for the purposes of this thesis we

assume that the electrical instantaneous mixing suffices. The transformation of x(i)

to the STFT domain is achieved by windowing the first K samples with a tapered

window h(i) of length K and applying an K point DFT to the windowed data. The

window is then shifted by J samples and the procedure is repeated for the remainder

of the signal. The STFT transformation can be written as

X(k, l) =
K−1
∑

m=0

x(Jl +m) h(m) e−i2πmk
K (3.1)

where k is referred to as the frequency bin index and l as the time frame index.

According to the linearity property of the Fourier transform, the relationship be-

tween the STFT’s of x(i), s(i) and n(i) is

X(k, l) = S(k, l) + N(k, l) (3.2)

The task of speech enhancement algorithms is to produce an estimate of S(k, l)

when only X(k, l) is observed. Half of the algorithms we present here estimate the

Re and Im parts of S(k, l). In the following we will refer to these algorithms as the

‘DFT algorithms’ and they will be presented in the following section. The other half

of the algorithms estimate the amplitude of the clean speech STFT, which is then

combined with the phase of noisy speech to produce the enhanced speech signal.

We will collectively refer to the latter group as the ‘Amplitude algorithms’ and they
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will be introduced in §3.3. The amplitude algorithms that use the Chi and Gamma

priors have been published in [7]. The amplitude and DFT algorithms that use the

1 and 2 sided Chi and Gamma priors respectively have been published in [4].

3.2 DFT algorithms

The algorithms we present in this section estimate the Re and Im parts of the clean

speech STFT. The assumption of their independence allows their separate estima-

tion, thus dividing the problem into two disjoint parts. To simplify the notation,

X, S, and N will denote the real part of an STFT sample of the noisy speech,

clean speech and noise respectively. For the three quantities it will also hold that

X = S + N as a result of eq. 3.2. In the following, we will derive the estimators

for the Re parts of the involved STFT quantities, while the derivations for the Im

parts are identical.

The estimation problem can be formulated as follows: we observe a sample of X

and we want to estimate S given the noise and speech statistics. The derivation of

the MMSE and MAP estimators requires the calculation of the posterior probability

density function p(S|X). According to Bayes’ theorem, the posterior density can be

written as

p(S|X) =
p(X|S)p(S)

p(X)
(3.3)

According to eq. 2.25 the likelihood p(X|S) is given by

p(X|S) = pN(X − S) (3.4)

where pN is the pdf of N . Assuming that N is a zero mean Gaussian r.v. with

variance σ2
N , the likelihood p(X|S) can be written as

p(X|S) =
1

√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

(3.5)

The prior p(S) is a density function that reflects our knowledge about the distribu-

tion of S. We will see in the following that the form of the prior strongly affects the

performance of the resulting algorithm. The prior densities considered here are the
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(a) a = 0.1 (b) a = 1 (c) a = 2

Figure 3.1: 2 sided Chi pdf’s for different values of a.

2 sided Chi and Gamma pdf’s that will be presented shortly.

The probability density of the data p(X) in eq. 3.3 is a normalising factor that does

not depend on S and ensures that the integral of the posterior density, with respect

to S, is equal to 1. The density p(X) can be calculated according to Bayes’ rule as

p(X) =

∫ ∞

−∞
p(X|S)p(S) dS (3.6)

Note the similarity of the numerator and the denominator of eq. 3.3 if p(X) is

replaced from eq. 3.6.

3.2.1 2 sided Chi speech priors

The 2 sided Chi pdf is given by

p2C(S) =
1

θa/2Γ(a/2)
|S|a−1 exp

[

−S
2

θ

]

(3.7)

where Γ(.) is the gamma function. This is the 2 sided version of the Chi density with

a degrees of freedom and scale parameter
√

θ/2 [56]. Special cases of this distribution

occur when a = 1 (Gaussian) and when a = 2 (2 sided Rayleigh). Figure 3.1 shows

some instances of the 2 sided Chi pdf for some characteristic values of a.
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3.2.1.1 MMSE estimator (MS 2C algorithm)

As shown in §2.3 the MMSE estimator is the mean of the posterior density. There-

fore, the MMSE estimator of S will be

Ŝ = E [S|X] =

∫ ∞

−∞
S p(X|S) p(S) dS

∫ ∞

−∞
p(X|S) p(S) dS

(3.8)

where p(S) and p(X|S) are given by eqs. 3.7 and 3.5 respectively. Calculation of

the integrals in 3.8 yields (see appendix A.2)

Ŝ = aσ2
Nζ

D
−a−1(−ζX) −D

−a−1(ζX)

D
−a(−ζX) +D

−a(ζX)
where ζ =

√

θ/σ2
N

θ + 2σ2
N

(3.9)

where D.(.) is the Parabolic Cylinder Function (eq. 9.240, [42]). Its calculation is

performed with the routine mpbdv.m found in [8]. For |ζX| > 40, where numerical

problems typically occur in the calculation of D.(.), the asymptotic expressions

9.246.1-3 found in [42] are used, producing numerically stable results for all input

ranges.

Since their introduction in [31], the a priori SNR ξ and the a posteriori SNR γ have

become an integral part of the speech enhancement literature. It is very often that

speech enhancement estimators are expressed in the from of a gain function, whose

arguments are the above two quantities. We will also follow the same practice

here, for all the estimators that can be derived in a closed form. The definition

of the a priori SNR is ξ = E[|S|2]/E[|N|2] and the formula that relates ξ to the

scale parameter θ of the 2 sided Chi density is ξ = θa/2σ2
N

1. The definition of

the a posteriori SNR in [31] was γ = |X|2/E[|N|2]. This is a definition suitable

for the estimators of the STFT amplitude, as it involves the term |X|2. For the

DFT estimators we propose an alternative definition, which is γ2 = X2/E[N2] or

equivalently γ2 = X2/σ2
N . Substituting the expressions for ξ and γ2 in eq. 3.9 and

1The rationale behind the connection between the scale parameter θ and the a priori SNR ξ is
given at the beginning of chapter 4, while the expressions that relate θ and ξ for all the considered
priors are derived in §4.3.2
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denoting by sgn(.) the signum function we obtain

Ŝ = X

[

aη

γ2

D
−a−1(−η) −D

−a−1(η)

D
−a(−η) +D

−a(η)

]

where η = sgn(X)

√

ξγ2

ξ + a
(3.10)

For a = 1 the MS2C algorithm is equivalent to the Wiener filter [63, 72], as we will

discuss at the end of the following section.

3.2.1.2 MAP estimator (MP2C algorithm)

The MAP estimator Ŝ is the value of S for which the posterior density has its

maximum. The probability of the data p(X) is not a function of S so it suffices to

find the maximum of p(X|S)p(S), which are respectively defined by eqs. 3.5 and

3.7. The algebraic manipulations are substantially simplified if ln(p(X|S)p(S)) is

maximised. The resulting estimator is given by (see appendix A.3)

Ŝ = ζ
X

2
+ sgn(X)

[

(

ζ
X

2

)2

+ (a− 1)σ2
N ζ

]1/2

where ζ =
θ

θ + 2σ2
N

(3.11)

It is also possible to express the above estimator as a gain for the noisy coefficients,

which is a function of the a priori and a posteriori SNR, as they were defined in

§3.2.1.1. The resulting expression is

Ŝ = X

[

η

2
+

[

(η

2

)2

+ (a− 1)
η

γ2

]1/2
]

where η =
ξ

ξ + a
(3.12)

For a < 1 the 2 sided Chi density function (eq. 3.7) has a singularity at zero, which

the posterior density, given in eq. 3.3, inherits. The existence of the singularity in

the posterior density implies that the global maximum is at zero. The use of zero as

an estimate however, does not result in a useful algorithm. The strategy we follow

in this case is to take the local maximum provided by eq. 3.11 when it exists and

when it does not (or when the argument of the square root is negative) we suppress

X by a fixed amount (i.e. 50 dB). Figure 3.2 shows three instances of the posterior

density p(S|X). In the first instance a is greater than 1, in which case there is

always a global maximum. In the next two instances a is less than 1, so there is a
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(a) Global maximum

−2 0 2 4

(b) Local maximum

−2 0 2 4

(c) No maximum

Figure 3.2: Three instances of the posterior density of the MP2C algorithm. The
arrows in (a) and (b) indicate the MAP estimate. In (b) and (c) the ‘peaks’ at zero
are singular.

singularity at zero but only in one case there is a local maximum. The arrows in

figures 3.2(a) and 3.2(b) indicate the MAP estimates.

Although it is not evident at first sight (especially in the case of the MMSE), both

the MAP and the MMSE estimators give the well-known Wiener solution for a = 1

Ŝ =
XE[S2]

E[S2] + E[N2]
(3.13)

where E[S2] is the variance of speech S, which for a general 2 sided Chi pdf, is equal

to θa/2 and in this particular case is θ/2. E[N2] is the variance of noise N , which

is according to eq. 3.5 is E[N2] = σ2
N .

3.2.2 2 sided Gamma speech priors

The 2 sided Gamma density function is a generalisation of the Laplacian pdf and is

given by

p2G(S) =
1

2θaΓ(a)
|S|a−1 exp

[

−|S|
θ

]

(3.14)

The 2 sided Gamma pdf is more leptokurtic (has a higher kurtosis, i.e. higher value

at zero, longer tails) than the 2 sided Chi pdf for the same value of a. The case

a = 1 yields the Laplacian pdf. Some plots for characteristic values of a are shown

in figure 3.3.
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(a) a = 0.1 (b) a = 1 (c) a = 2

Figure 3.3: 2 sided Gamma pdf’s for different values of a.

3.2.2.1 MMSE estimator (MS 2G algorithm)

To obtain the MMSE estimator we need to substitute to eq. 3.8 the expression for

the likelihood (eq. 3.5) and the Gamma prior, which is given by eq. 3.14. The

resulting estimator is given by (see appendix A.4)

Ŝ = aσN

exp

[

ζ2
1

4

]

D
−a−1(ζ1) − exp

[

ζ2
2

4

]

D
−a−1(ζ2)

exp

[

ζ2
1

4

]

D
−a(ζ1) + exp

[

ζ2
2

4

]

D
−a(ζ2)

(3.15)

where ζ1 =
σN
θ

− X

σN
, ζ2 =

σN
θ

+
X

σN

In order to express the above estimator as a gain for the noisy coefficients we should

first note that the expression for the a priori SNR is now ξ = θ2a(a + 1)/σ2
N (see

§4.3.2), while the a posteriori SNR is again γ2 = X2/σ2
N . The resulting expression

is

Ŝ = X









a sgn(X)√
γ2

exp

[

η2
1

4

]

D
−a−1(η1) − exp

[

η2
2

4

]

D
−a−1(η2)

exp

[

η2
1

4

]

D
−a(η1) + exp

[

η2
2

4

]

D
−a(η2)









(3.16)

where η1 =

√

a(a+ 1)√
ξ

− sgn(X)
√
γ2, η2 =

√

a(a+ 1)√
ξ

+ sgn(X)
√
γ2

The MS2G algorithm with a = 0.5 and a = 1 has been also proposed by Martin [72].
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3.2.2.2 MAP estimator (MP2G algorithm)

The MAP estimator for the 2 sided Gamma priors can be obtained in the same

way the corresponding estimator for the 2 sided Chi priors was found. It therefore

suffices to find the maximum of ln(p(X|S)p(S)) where p(X|S) is again given by eq.

3.5 and p(S) by eq. 3.14. The resulting estimator is (see appendix A.5)

Ŝ = ζ + sgn(X)
[

ζ2 + (a− 1)σ2
N

]1/2
where ζ =

X

2
− sgn(X)

σ2
N

2θ
(3.17)

The expression of the above estimator as a gain for the noisy coefficients is given

below. The expressions for the a priori and the a posteriori SNR’s are the same as

in §3.2.2.1.

Ŝ = X

[

η + sgn(X)

[

η2 +
a− 1

γ2

]1/2
]

where η =
1

2
− 1

2

√

a(a+ 1)

ξγ2

(3.18)

When a < 1 the 2 sided Gamma density (eq. 3.14) and subsequently the posterior

density, given in eq. 3.3, have a singularity at zero. As we discussed in §3.2.1.2 and

in order to avoid using the global maximum, which is always at zero, the strategy we

follow is to use the local maximum provided by eq. 3.17 when it exists and suppress

X by a fixed amount (i.e. 50 dB) when it does not. If we also observe the form

of the posterior density (eq. A.29) we can see that the value of S which maximises

the posterior density must have the same sign as X. It is possible however, that

the expression in eq. 3.17 yields a negative solution for a positive X and vice versa.

This is not acceptable and in these cases X is again suppressed by a fixed amount.

No instances of the MP2G algorithm have been found previously in the literature.

3.3 Amplitude algorithms

In the previous section we presented methods for estimating the Re and Im parts of

the clean speech STFT coefficients in every frequency bin given the noisy observa-

tions. An alternative option is to estimate the amplitude and the phase of the clean

speech frequency bins instead, which generates a whole new family of algorithms. In
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practice, it is sufficient to estimate the amplitude only and then combine it with the

noisy speech phase to create the enhanced speech waveform. That is because it has

been widely argued that the perception of speech is phase insensitive [73], [98] and

moreover, Ephraim and Malah [31] showed that the optimal estimate for the clean

speech phase is the noisy speech phase itself. This property gives the amplitude

estimation methods an advantage compared to their DFT coefficients counterparts,

which is that the number of data points that need to be estimated is halved.

The STFT coefficients of the noisy speech, the clean speech and the noise in terms

of their amplitude and phase are denoted as X ≡ R exp[iψ], S ≡ A exp[iφ], and

N ≡ B exp[iω]. The estimation problem can then be formulated as follows: we are

trying to find an estimate of the clean speech amplitude A given the noisy speech

amplitude R and phase ψ. Recall from §3.2 that in order to derive both the MMSE

and the MAP estimators, the calculation of the posterior density p(A|R,ψ) is first

necessary. This can be written as

p(A|R,ψ) =
p(R,ψ|A)p(A)

∫ ∞

0

p(R,ψ|A)p(A) dA

=

∫ 2π

0

p(R,ψ|A, φ)p(A)p(φ) dφ

∫ ∞

0

∫ 2π

0

p(R,ψ|A, φ)p(A)p(φ) dAdφ

(3.19)

In the above equation note that p(A) and p(φ) are factorised, which stems from the

assumption that A and φ are independent. Simulation results also confirm that the

distribution of the clean speech phase is uniform; hence we can replace p(φ) with

1/2π.

The density function of R and ψ conditioned on A and φ is given by (see appendix

A.1)

p(R,ψ|A, φ) =
R

2πσ2
N

exp

[

−R
2 + A2 − 2RA cos(ψ − φ)

2σ2
N

]

(3.20)

We proceed with the derivation of the MMSE and MAP estimators for different

families of speech amplitude priors.
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(a) a = 0.1 (b) a = 1 (c) a = 2

Figure 3.4: 1 sided Chi pdf’s for different values of a.

3.3.1 1 sided Chi speech priors

The 1 sided Chi density function is the 1 sided version of the pdf described in §3.2.1

and its functional form is given by

p1C(A) =
2

θa/2Γ(a/2)
Aa−1 exp

[

−A
2

θ

]

, with A ≥ 0 (3.21)

For a = 2 the above density yields the Rayleigh pdf, while for a = 1 one obtains the

half Gaussian. Some of its characteristic instances can be seen in figure 3.4. Let us

now present the expressions for the MMSE and the MAP estimators.

3.3.1.1 MMSE estimator (MS 1C algorithm)

The MMSE estimator of the clean speech amplitude A given the noisy speech am-

plitude R and phase ψ is given by

Â = E[A|R,ψ] =

∫ ∞

0

Ap(A|R,ψ) dA

=

∫ ∞

0

∫ 2π

0

Ap(R,ψ|A, φ)p(A)p(φ) dφ dA

∫ ∞

0

∫ 2π

0

p(R,ψ|A, φ)p(A)p(φ) dφ dA

(3.22)

Substitution of p(R,ψ|A, φ) and p(A) from eq. 3.20 and 3.21 respectively and the

assumption of a uniform phase distribution (p(φ) = 1
2π

) yields (see appendix A.6)

Â =
√

2σ2
N ζ

Γ(a+1
2

)

Γ(a
2
)

1F1(
a+1
2
, 1, R2

2σ2
N

ζ)

1F1(
a
2
, 1, R2

2σ2
N

ζ)
where ζ =

θ

θ + 2σ2
N

(3.23)
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1F1(α, β, z) is the Confluent Hypergeometric Function (eq. 9.210.1, [42]). The cal-

culation of 1F1(α, β, z) was performed with the mchgm.m routine provided in [8]. To

alleviate the numerical problems that occur in the evaluation of the confluent hyper-

geometric function for large values of its input arguments (typically for z > 700) the

asymptotic expansions given in eq. 13.5.1 in [1] were used, producing numerically

stable results for all input ranges.

The estimator in eq. 3.23 can be expressed as a gain for the noisy coefficients, which

is a function of the a priori and the a posteriori SNR’s. The relation of the a priori

SNR ξ to the scale parameter θ is ξ = θa/4σ2
N (see §4.3.2), while the a posteriori

SNR is given by γ = R2/E[B2] or γ = R2/2σ2
N . The estimator can then be written

as

Â = R

[√

η

γ

Γ(a+1
2

)

Γ(a
2
)

1F1(
a+1
2
, 1, γη)

1F1(
a
2
, 1, γη)

]

where η =
ξ

ξ + a/2
(3.24)

The estimator in 3.23 was derived by Loizou [65] from a perceptually motivated

point of view. Additionally, the above estimator with a = 2 (Rayleigh speech prior)

is equivalent to the well known Ephraim-Malah MMSE-STSA algorithm [31].

3.3.1.2 MAP estimator (MP1C algorithm)

The MAP estimator can be found by maximising with respect to A the posterior

density p(A|R,ψ). Since the denominator in the expression for the posterior density

in eq. 3.19 is not a function of A it suffices to maximise the numerator only, or its

logarithm, as this simplifies the calculations significantly; thus

Â = arg max
A

ln

(∫ 2π

0

p(R,ψ|A, φ)p(A)p(φ) dφ

)

(3.25)

Substituting p(R,ψ|A, φ) and p(A) from 3.20 and 3.21 and p(φ) = 1
2π

yields (see

appendix A.7)

Â = ζ
R

2
+

[

(

ζ
R

2

)2

+ (a− 1.5)σ2
N ζ

]1/2

where ζ =
θ

θ + 2σ2
N

(3.26)
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(a) a = 0.1 (b) a = 1 (c) a = 2

Figure 3.5: 1 sided Gamma pdf’s for different values of a.

The above expression as a gain for the noisy coefficients is

Â = R

[

η

2
+

[

(η

2

)2

+ (a− 1.5)
η

2γ

]1/2
]

where η =
ξ

ξ + a/2
(3.27)

For a < 1.5, the global maximum of the posterior distribution is always at zero,

because the posterior density has a singularity at that point. In a similar fashion

to the DFT MAP estimators, for a < 1.5 we use the local maximum when it exists

(when the argument of the square root in eq. 3.26 is positive) and we suppress R

by a fixed amount (i.e. 50 dB) when it does not.

Two instances of the MP1C algorithm can be found in the literature: the first is by

Wolfe and Godsill [99] using a = 2 and the second is by Dat et al. [24] for a = 1.

3.3.2 1 sided Gamma speech priors

Another family of speech priors is given by the 1 sided Gamma density function,

described by equation

p1G(A) =
1

θaΓ(a)
Aa−1 exp

[

−A
θ

]

, with A ≥ 0 (3.28)

The above pdf is the 1 sided variant of the 2 sided Gamma pdf described in §3.2.2.

Some of its characteristic instances for various values of the parameter a are shown

in figure 3.5. A well known member of this family of density functions is the ex-

ponential, which is obtained for a = 1. We now proceed with the derivation of the

MMSE and the MAP estimators.
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3.3.2.1 MMSE estimator (MS 1G algorithm)

The MMSE estimator is obtained by substituting eqs. 3.28 and 3.20 in 3.22. After

some algebraic manipulation of the integrals, which is detailed in appendix A.8, the

estimator can be written as

Â =
IG(a)

IG(a− 1)
(3.29)

where

IG(ν) ≡
∫ ∞

0

Aν exp

[

− A2

2σ2
N

− A

θ

]

I0

(

AR

σ2
N

)

dA (3.30)

The above integral has no analytic solution for ν ∈ (−1,∞), which is the range of

interest for our problem. To solve this problem we resort to numerical integration.

It turns out that the integrand in IG is sufficiently smooth to allow convergence in

a few iterations of the Adaptive Lobatto Quadrature [36]. Additionally, the above

estimator could be calculated by means of a look up table in a final implementation

of the algorithm, in order to reduce the computational cost imposed by the numerical

integration.

No instances of this algorithm have been reported in the literature.

3.3.2.2 MAP estimator (MP1G algorithm)

The MAP estimator can be found by maximising the expression in (3.25), where the

likelihood is again given in (3.20), the phase density is p(φ) = 1
2π

and the Gamma

speech prior is given in (3.28). The resulting estimator is (see appendix A.9)

Â = ζ +
[

ζ2 + (a− 1.5)σ2
N

]1/2
where ζ =

R

2
− σ2

N

2θ
(3.31)

For the 1 sided Gamma priors the relation between ξ and θ is ξ = θ2a(a + 1)/2σ2
N

(see §4.3.2), while the a posteriori SNR is γ = R2/2σ2
N . The estimator in eq. 3.31

can be written as

Â = R

[

η +

[

η2 +
a− 1.5

γ

]1/2
]

where η =
1

2
− 1

4

√

a(a+ 1)

ξγ
(3.32)
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In accordance with the other MAP estimators presented so far, when a < 1.5 the

local maximum is used if it exists, while if it does not exist, R is suppressed by a

fixed amount (i.e. 50 dB). The existence of the local maximum is determined by

the sign of the argument of the square root in eq. 3.31. Additionally, the above

estimator can sometimes yield negative estimates when a < 1.5. These estimates

are not acceptable, as the parameter we are estimating is amplitude and in these

cases R is again suppressed by a fixed amount.

Two instances of this algorithm can be found in the literature: the first is by Lotter

and Vary [66], who used a = 2 and the second by Dat et al. [24], who used a = 1.5.

3.3.3 Lognormal speech priors

Another density function that models very accurately the speech amplitude data is

the Lognormal. A random variable has a Lognormal distribution if its logarithmic

transformation results in a Gaussian distributed random variable [56]. In other

words, if AGauss is a Gaussian r.v. then A = exp(AGauss) follows a Lognormal

distribution. Its functional form is given by

p1L(A) =

√
a√
πA

exp
[

−a (ln(A) − θ)2
]

, with A ≥ 0 (3.33)

The similarity with the Gaussian distribution is evident from the above formula,

by noting that θ is the mean of the corresponding Gaussian distribution and a is

inversely proportional to its variance. The parameter θ can take any value in ℜ and

controls the scale of the distribution. The parameter a on the other hand, has to

be a positive real number and controls the shape of the Lognormal pdf. The effect

of the parameter a on the shape of the distribution is illustrated in figure 3.6. A

difference between the Lognormal density, compared to the Chi and Gamma, is that

its value is zero at the origin (i.e. p1L(0) = 0) for all values of a. Before proceeding to

the derivation of the MMSE and MAP estimators with Lognormal speech amplitude

priors, we should mention that these two algorithms have never appeared previously

in the literature.
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(a) a = 0.1 (b) a = 0.5 (c) a = 3

Figure 3.6: Lognormal pdf’s for different values of a.

3.3.3.1 MMSE estimator (MS 1L algorithm)

To derive the MMSE estimator with Lognormal speech priors we need to substitute

eqs. 3.33 and 3.20 into 3.22. Following a similar procedure as in appendix A.8 the

estimator can be reduced to the following form

Â =
IL(0)

IL(−1)
(3.34)

where

IL(ν) ≡
∫ ∞

0

Aν exp

[

−R
2 + A2

2σ2
N

− a (ln(A) − θ)2

]

I0

(

AR

σ2
N

)

dA (3.35)

The above integral has no analytic solution so numerical integration techniques

had to be employed. The calculation was performed with the Adaptive Lobatto

Quadrature, in a similar fashion to the amplitude MMSE estimator with Gamma

speech priors.

3.3.3.2 MAP estimator (MP1L algorithm)

To obtain the MAP estimator we need to substitute the expression for the Lognormal

prior given in eq. 3.33 into eq. 3.25, together with eq. 3.20 and p(φ) = 1
2π

. The

resulting expression is minimised with respect to A. After some simplification, which

is detailed in appendix A.10 and after discarding the terms which are constant w.r.t.
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A, the expression that has to be maximised is found to be

Â = arg max
A

[

− ln(A) − R2 + A2

2σ2
N

− a (ln(A) − θ)2 + ln

(

I0

(

RA

σ2
N

))]

(3.36)

The maximum of this expression cannot be found analytically as equating its first

derivative w.r.t. A to zero does not result to an equation whose solution can be

obtained in a close form. The maximum is found instead numerically using a quasi-

Newton method §10.7 [82].

3.4 Assessment of the independence assumptions

During the development of the estimators in the two previous sections, we assumed

that the Re and Im parts and the amplitude and phase of the speech STFT were

independent. This assumption simplified significantly the development of the esti-

mators. The dependencies between the elements of the two different representations

of the STFT coefficients were reported in [72] to be weak on average, while the am-

plitude and phase were found to be statistically less dependent than the Re and Im

parts. No results however, were given in support of these statements. In this section

we quantitatively assess these independence assumptions by measuring the symmet-

ric uncertainty coefficient [82] between the Re and Im and between the amplitude

and phase of the clean speech STFT.

The symmetric uncertainty coefficient between two random variables x and y is

given by

U(x, y) = 2
H(x) + H(y) − H(x, y)

H(x) + H(y)
(3.37)

where H(.) is the entropy of a r.v. The symmetric uncertainty coefficient is a mea-

sure of independence between two r.v.’s, which is 0 for independent and 1 for fully

dependent r.v.’s. The numerator of eq. 3.37 is the mutual information between x

and y, which is denoted by I(x, y) [59]. For the calculation of the mutual informa-

tion we used the algorithm proposed in [59]. H(x) and H(y) in the denominator are

calculated with the same algorithm, exploiting the property I(x, x) = H(x) [82].

The clean speech STFT data used in the evaluation was calculated from a clean

speech database that consisted of 48 TIMIT sentences uttered by 3 male and 3
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female speakers. The total duration of the speech data was 2 minutes and 10 seconds

and the sampling frequency 8 KHz. The transformation to the STFT domain was

performed with Hamming windows of 256 samples and 75% overlap. For comparison

we also calculated the symmetric uncertainty coefficient between the Re and Im and

between the amplitude and phase of three test signals. The first of the test signals

was a complex Gaussian r.v. with independent Re and Im parts. The second was

a complex Laplacian r.v. with independent Re and Im parts, and finally, the third

test signal had exponential (1 sided Laplacian) amplitude, which was independent

from its uniformly distributed phase. The analytic models of the above signals

predict that the amplitude and phase of the first signal are independent, while the

amplitude and phase of the second and the Re and Im parts of the third have some

dependencies. The symmetric uncertainty coefficient results for the above data are

shown in table 3.1.

Speech Gaussian Laplacian Exp. Amp. &

Re & Im Re & Im Unif. Phase

U(SRe, SIm) 0.03 0 0 0.01

U(A, φ) 0 0 0.001 0

Table 3.1: Symmetric uncertainty coefficient results for the Re and Im and the
amplitude and phase of test and speech STFT data.

Table 3.1 shows that the symmetric uncertainty coefficient results2 agree with the

model predictions for the test data and also indicate that while the amplitude and

phase of the speech are independent there are indeed some dependencies between

its Re and Im parts. One might have anticipated these results by considering that

small shifts in time of the STFT analysis windows would affect the speech phase

but not its amplitude. Conversely, a multiplication of the speech time waveform

with an arbitrary constant, would have affected its spectral amplitude but not its

phase. Both of these examples indicate some form of independence between the

speech spectral amplitude and phase.

Despite the fact that some dependencies exist between the Re and Im parts of

speech, in the development of the DFT estimators we assume they are independent.

2The algorithm did not produce exactly 0 for the zeros shown in table 3.1. It instead produced
either negative or very small values (< 1×10−5) that varied between realisations for the test data.
The authors of [59] state that these cases indicate independent r.v.’s, hence the zeros in the tables.
For the used speech data the actual U(A,φ) was −6 × 10−6.
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A first reason is the lack of a non Gaussian model that can effectively take these

dependencies into account. Additionally, and perhaps more importantly, given the

complexity of the estimators of §3.2, any attempt to couple the estimators of the Re

and Im parts is likely to cause a further increase in the algorithm’s complexity, while

any substantial improvement in the performance is dubious as the dependencies

between the Re and Im parts are rather weak.

3.5 Summary

In this chapter we derived a number of speech enhancement algorithms that form

the backbone of this thesis. We started by formulating the problem of enhancing

speech as an estimation problem in the STFT domain. We then derived a frame-

work of STFT speech enhancement algorithms that can be grouped in the following

categories: Firstly, according to the STFT feature they estimate, which was either

the Re and Im parts (DFT algorithms) or the STFT amplitude (amplitude algo-

rithms). Secondly, according to the estimator they employed, which was the MMSE

or the MAP. The final feature of the algorithms were the priors used to model the

clean speech samples. For the DFT algorithms, the 2 sided Chi and Gamma priors

were used. For the amplitude algorithms, the priors used were the 1 sided Chi and

Gamma and the Lognormal.

Two assumptions made during the development of the algorithms were that the Re

and Im parts and the amplitude and phase of the speech STFT are independent.

These assumptions, which cannot hold simultaneously for other than Gaussian mod-

els, were tested in the last section of this chapter. The results showed that although

the amplitude and phase are independent, some dependencies exist between the Re

and Im parts. Nevertheless, these dependencies were not taken into account in the

development of the respective algorithms because they were rather weak, while their

incorporation was likely to result in a significant increase in the complexity of the

estimators.
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Chapter 4

Parameter estimation

The prior densities used in the development of the estimators of chapter 3 have two

parameters: the shape parameter a and the scale parameter θ. In the present chapter

we shall examine a number of approaches for estimating their values. The estimation

methods we discuss can be divided in two categories: the first, is based on fitting

the prior densities to a large amount of speech data and extracting the parameter

values that provide the optimal fit. The second category includes methods that

estimate the parameters adaptively during the enhancement process. Two methods

of the first category are discussed in §4.1 and §4.2, while §4.3 and §4.4 discuss two

adaptive methods.

The optimal fit of the prior densities to the speech data can be found via the

Kullback-Leibler (KL) divergence1. Its definition for the discrete case is [60]:

KL =

Nbin
∑

m=1

(pd(m) − ps(m)) ln

(

pd(m)

ps(m)

)

(4.1)

where pd(m) is the pdf of the data, calculated from a histogram, and ps(m) is the

speech prior evaluated at the position of the histogram’s bins. Nbin is the number

of bins used for the creation of the histogram. The values of the density function

parameters that provide the best fit to the data are those that minimize the KL

divergence. The purpose of fitting densities to the data is actually twofold. Apart

from extracting values for the parameters, which can subsequently be used with the

1A Maximum Likelihood based method was also tried, but resulted in poorer matching of the
data distributions.
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estimation algorithms, it can also show the appropriateness of the proposed densities

for modelling the data.

A first approach in obtaining parameter estimates via the fitting method is to fit

the priors to the entire STFT data (full data set) obtained from a large speech

database. The results of this method are presented in §4.1. A more refined approach

would be the separate fitting of the priors to data extracted from a single frequency

bin, thus allowing for variations in the form of the densities that model data from

different frequencies. The results of the last approach are shown in §4.2. In both

cases however, it must be ensured that the data to which the priors are fitted is

scaled, so that it has the same standard deviation with the speech data which is to

be enhanced. In the present work, the data used in the evaluation of the speech

enhancement algorithms is a subset of that used for fitting the priors, hence the

above requirement is met.

Although the above methods can yield estimates for both a and θ, it is beneficial in

the implementation of the algorithms to couple one of them with the a priori SNR.

The incorporation of the a priori SNR and its estimation with a method such as

the DD method [31], is reported to aid the reduction of the background noise level

and also to suppress the musical noise artifacts [16]. The a priori SNR is linked

by definition to the second moment of the speech samples. Despite the fact that

the second moment of all the considered densities is controlled by both a and θ,

simulations show that the parameter θ is related to the scale of the density, while

the parameter a controls the shape. This can be easily verified by fitting a density

function to a random variable multiplied with two different constants, in which

case the value of a that provides the best fit remains unaffected, while θ changes

according to the multiplying constant. It seems therefore more appropriate that the

parameter that is coupled with the a priori SNR is θ. The adaptive estimation of

the scale parameter via the a priori SNR and the DD method is discussed in §4.3.

From a Bayesian theoretic point of view, the methods of §4.1 and §4.2 model speech

with a long term prior. That is, a prior with fixed values of the scale and shape

parameters is employed for modelling the louder and quieter portions of speech as

well as the small segments of silence between words. With the introduction of the

DD method on the other hand, the priors become local or short term, because their
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scale is now a function of the a priori SNR which changes with time.

The estimation of θ via the a priori SNR implies that the use of the estimates of

a obtained from long term speech data (§4.1, §4.2) is not justified theoretically.

The reason is that the latter methods assume a constant value of θ for the whole

duration, which is not the case as θ is adaptively estimated from the a priori SNR. A

method for estimating a via the fitting of priors that is compatible with the adaptive

estimation model of θ is shown in §4.3.3. Finally, in §4.4 we will present a method

for the adaptive estimation of a, which is based on the moment matching method

and is also compatible with the estimation of θ from the a priori SNR.

The speech data to which all the priors of this chapter are fitted was taken from the

TIMIT database. The data used consisted of 16 male and 16 female speakers, each

uttering 8 sentences. After removing the silent frames with a Voice Activity Detector

(VAD), the total length of the data was 12.5 minutes. The sampling frequency was

8 KHz, while the STFT transformation was performed with Hamming windows of

256 samples and a 75% overlap. It is conceivable that there might be differences

between the distribution of clean speech data, and speech data extracted from real

life noisy speech recordings. A possible source of these discrepancies for example

might be the Lombard effect. We assume however, that the differences should not

be major and proceed with the use of clean speech data, which are significantly

easier to obtain.

4.1 Fitting densities to the full data set

We begin by demonstrating the fitting of the proposed densities to the full data set,

beginning with the Re and Im parts and then with the amplitude. Figure 4.1(a)

shows the histogram of the real part of the full data set and the 2 sided Gamma

and Chi densities. The respective histograms for the imaginary parts are essentially

identical and are not shown. The parameters used in the densities are those that

provided the best fit according to the KL divergence. Figure 4.1(b) shows the central

part of figure 4.1(a). Table 4.1 shows the parameter values and the KL divergence

values for the Re/Im parts.

As we can see from the above figures and especially from the KL divergence the
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Figure 4.1: (a) Histogram (solid) of the real part of the full data set and fitting of
the Gamma (dash) and Chi (dash dot) densities, (b) zoom in the central part of (a).

Density a θ KL

Chi 0.15/0.14 0.024/0.028 669/564

Gamma 0.25/0.24 0.036/0.038 289/228

Table 4.1: Parameter values that minimize the KL divergence when fitting the 2
sided Chi and Gamma densities to the Re/Im parts of the full data set.

Gamma density models the speech data more accurately. In their attempt to capture

the large peak at zero however, both distributions underestimate the long tails of

the speech data histogram.

Figure 4.2(a) shows the histogram of the spectral amplitude of the full data set

and the three densities with parameter values that provide the best fit according to

the KL divergence. Because the speech spectral amplitude distribution has a high

concentration close to zero, while a few samples have relatively large amplitudes, it

is difficult for histograms with a linear data bins segmentation to provide a good

resolution for the whole range of values. A remedy for this problem is to calculate

the histogram of the logarithm of the speech spectral amplitude instead. This is

feasible since amplitude values are always non negative and are practically never

zero. Visual evaluation of the fitting of the densities however, requires that they are

also transformed into the logarithmic domain. Figure 4.2(b) shows the histogram

of the natural logarithm of the speech spectral amplitudes and the corresponding

transformed densities. Table 4.2 shows the parameter values that provide the best fit

according to the KL divergence. The functional forms of the densities transformed
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Figure 4.2: Histogram (solid) of the amplitude of the full data set and fitting of the
Gamma (dash), Chi (dash dot) and Lognormal (dot) densities.

in the logarithmic domain are shown in appendix B.

Density a θ KL

Chi 0.17 0.034 1042

Gamma 0.28 0.056 464

Lognormal 0.16 -5.49 13

Table 4.2: Parameter values that minimize the KL divergence when fitting the 1
sided Chi and Gamma and the Lognormal densities to the amplitude of the full
data set.

The results demonstrate clearly that the fitting of the Lognormal density to the

data is superior compared to that provided by either the Gamma or the Chi. The

Lognormal density has the ability to capture the heavy tails of the speech amplitude

data and at the same time model the drop of the distribution as the amplitude values

approach zero. The Chi and Gamma densities on the other hand, underestimate

the tails of the distribution, and additionally predict that the probability density

increases as we move toward zero, which is not in agreement with the evidence

provided by the data.

4.2 Fitting densities to each frequency bin

Instead of fitting the densities to data taken from all the frequency bins it is possible

to fit the distributions to the data in each frequency bin separately. This approach
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Figure 4.3: Results from fitting the 2 sided Chi (dash-dot) and Gamma (solid)
densities to the real part of each frequency bin.

increases the model’s flexibility as it allows the shape and scale of the densities to

vary with frequency. The results from applying this model to the real part of the

STFT coefficients are shown in figure 4.3. Figure 4.3(a) shows the values of a as a

function of the frequency, while figures 4.3(b) and 4.3(c) show the values of θ and

the KL divergence respectively. Virtually identical results were obtained from the

imaginary parts of the data.

The value of a is associated with the kurtosis of the random variable. A r.v with a

high value of kurtosis has a large concentration around one point (e.g. the mean or

zero), and long tails. Random variables with low kurtosis have a flatter distribution.

For all the examined priors small values of a indicate higher kurtosis. The values

of a reach a minimum between 0.5-1 KHz, where most of the speech harmonics lie.

The data in these frequency bins have a high concentration around zero, when har-

monics are absent, while their presence gives large values to the data. Subsequently,

the kurtosis increases and the values of a drop. For higher frequencies, where the
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amplitude of the harmonics is smaller, the value of a rises slightly.

As mentioned previously, the parameter θ is mainly influenced by the scaling of

the random variable, or in other words, its energy. The high values of θ for the

frequency range between 0.2 and 1 KHz indicate that most of the speech energy

is present there, which is in agreement with the evidence provided by the speech

data. Finally, observation of the KL divergence plot shows that the values of the

Chi density are 1.5 to 3 times higher than those of the Gamma, which indicates the

better fitting of the Gamma prior to the data. This is consistent with the results

obtained when data from all the frequencies was used (see table 4.1).

Similar conclusions can be drawn by the examination of the corresponding plots

for the amplitude data, which are shown in figure 4.4. The KL divergence plots

show that the Lognormal density values are 2-10 times smaller than those of the

Gamma and 5-20 times smaller than those of the Chi. This again illustrates that

the Lognormal priors can more accurately model the shape of the speech amplitude

data distributions.

4.3 Adaptive estimation of the scale parameter.

In this section we will discuss the adaptive estimation of the scale parameter θ via

the a priori SNR ξ. We begin by introducing the DD method for the estimation of

the a priori SNR and then we show how the latter quantity can be related to the

scale parameter θ for the different priors. Finally, we will consider the implications

of the adaptive estimation of θ on the estimation of the shape parameter a.

4.3.1 The a priori SNR and its estimation

The a priori SNR ξ was defined by Ephraim and Malah [31] as:

ξ(k, l) =
E[|S(k, l)|2]
E[|N(k, l)|2] (4.2)

where k and l are the frequency and time indices correspondingly. The proportional

relation of ξ(k, l) with the second moment E[|S(k, l)|2] shows that it directly controls
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Figure 4.4: Results from fitting the 1 sided Chi (dash-dot), Gamma (solid) and
Lognormal (dot) densities to the amplitude of each frequency bin. In (d) the dotted
line is a transformation θ′ = 10 exp(θ) of the values of θ for the Lognormal priors,
so that their scaling matches that of the values of θ for the two other priors.

the scaling of the speech prior density, and therefore plays a major part in the

estimation process.

The DD method for the estimation of the a priori SNR, which was proposed in [31],

is based on the definition of the a priori SNR (eq. 4.2) and on its relation with the

a posteriori SNR γ(k, l). The definition of the latter is

γ(k, l) =
|X(k, l)|2

E[|N(k, l)|2] (4.3)

while its relation with the a priori SNR is

ξ(k, l) = E[γ(k, l) − 1] (4.4)
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A linear combination of eqs. 4.2 and 4.4 can be written as

ξ(k, l) = E

[

α
|S(k, l)|2

E[|N(k, l)|2] + (1 − α)(γ(k, l) − 1)

]

(4.5)

The DD estimator, which is based on the above expression, is

ξ̂(k, l) = α
|Ŝ(k, l − 1)|2

E[|N(k, l − 1)|2] + (1 − α) max

[ |X(k, l)|2
E[|N(k, l)|2] − 1, 0

]

(4.6)

The DD estimator was obtained by dropping the expectation operator in eq. 4.5

and using the estimated amplitude from frame l − 1 instead of the amplitude of

frame l. Additionally, the max[., .] operator ensures the estimator’s positiveness.

The advantage of the DD method is that it aids the elimination of the musical noise.

The mechanism by which this is achieved is documented by Cappé [16]. Its main

attributes are that during speech absence the a priori SNR is a highly smoothed

version of the a posteriori SNR, while when speech is present the a priori SNR

follows the a posteriori SNR with a delay of 1 frame.

Alternative methods for the estimation of the a priori SNR can also be found in the

literature [20–22, 46]. These methods attempt to address the delay in the response

of the DD method in an increase of the a priori SNR, and the one frame delay in

the periods of speech presence. These methods however, are computationally more

complex and they do not share the simplicity in the implementation of the DD

method.

4.3.2 Relation of the scale parameter to the a priori SNR

The scale parameter θ can be related to the a priori SNR via its relation with the sec-

ond moment of S for each prior. Dropping the time frequency indices for notational

simplicity and denoting E[|N|2] as 2σ2
N , the second moment of the complex STFT

coefficient S can be written as E[|S|2] = 2σ2
Nξ. Assuming that the second moments

of the Re and Im parts of speech are equal to E[S2], that is E[S2] ≡ E[S2
Re] = E[S2

Im],

it will then also hold that E[S2] = E[|S|2]/2. The expressions for the second mo-

ments of the 2 sided Gamma and Chi priors are E[S2] = θ2a(a+1) and E[S2] = θa/2

respectively. For the 1 sided priors, the expressions for the second moment E[A2],
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for which holds that E[A2] ≡ E[|S|2], are E[A2] = θ2a(a + 1) for the Gamma,

E[A2] = θa/2 for the Chi and E[A2] = exp(2θ + a−1) for the Lognormal. The rela-

tions of θ to the a priori SNR ξ for each of the examined priors are summarised in

table 4.3.

Gamma Chi Lognormal

2 sided θ2 =
σ2
Nξ

a(a+ 1)
θ =

2σ2
Nξ

a
-

1 sided θ2 =
2σ2

Nξ

a(a+ 1)
θ =

4σ2
Nξ

a
θ =

ln(2σ2
Nξ)

2
− 1

2a

Table 4.3: Relation of θ to the a priori SNR ξ for the proposed priors

4.3.3 Fitting densities to narrow variance data

The use of the a priori SNR for the estimation of θ means that the use of long time

speech data for fitting the priors and obtaining an estimate of a (§4.1, §4.2) is no

longer appropriate. The reason is that the fitting of the speech priors to long time

data assumes that the values of a and θ remain constant for the whole duration,

which is clearly not the case when the a priori SNR estimates and subsequently the

values of θ change with time. To overcome this problem it has been proposed to

examine the distribution of speech data from all frequency bins that correspond to

a narrow a priori SNR interval. This method has been considered in [66, 67, 72]. In

this section we implement the above method and evaluate its results.

The extraction of speech data from narrow a priori SNR intervals is performed using

the following procedure: white Gaussian noise is added to the clean speech at a high

input segmental SNR2, e.g. 50 dB. The noise is added to ensure finite values for the a

priori SNR. The actual value of the input segmental SNR is not important as long as

it is sufficiently high. The input segmental SNR has to be sufficiently high to ensure

that the weaker speech components do not get buried in noise and the extraction

of an accurate estimate of their a priori SNR is possible. The noisy signal is then

enhanced with the Ephraim-Malah algorithm [31] (MS1C algorithm with a = 2),

which returns an a priori SNR value for each sample of the clean speech STFT. The

2For a definition of the segmental SNR see §5.2
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DD method smoothing parameter α was set to 0.99. The proposed speech priors

were then fitted to data that had a priori SNR values in a narrow interval (1 dB).

This interval had to be in a relatively high SNR range, otherwise the data that

belonged to it corresponded to noise rather than speech. In our simulation we found

that the weaker speech components had an a priori SNR of approximately 20 dB,

given an input segmental SNR of 50 dB.

In the following we present results from fitting the proposed priors to data from three

intervals, i.e. 19-20, 49-50 and 79-80 dB. The first interval consisted of weak speech

components like consonants, while the last interval corresponded to high amplitude

data, typically found in the harmonics of the pitch period of vowels. Figure 4.5

shows the histograms of the real parts of the DFT data from the three intervals and

the fitted densities. Table 4.4 shows the KL divergence values that corresponded to

the best fit that could be achieved with each density for the Re and Im parts and

the respective values of the priors’ parameters.

Density Interval dB a θ KL
Chi 19-20 0.58/0.58 2.96/2.89 20/22
-\- 49-50 0.88/0.81 2.02/2.16 5/5
-\- 79-80 1.30/1.32 1.59/1.54 13/13

Gamma 19-20 0.87/0.88 0.69/0.67 7/7
-\- 49-50 1.15/1.19 0.61/0.59 1/1
-\- 79-80 1.68/1.74 0.54/0.52 22/22

Table 4.4: Parameter values that minimize the KL divergence when fitting the 2
sided Chi and Gamma densities to the Re/Im part of data from a narrow variance
interval.

The KL divergence values for each case reveal once again that the Gamma density

provides a more accurate fit than the Chi. It is worth also noting that as the SNR

interval moves to higher ranges, the value of the parameter a increases; that is,

the value of the distributions at zero decreases and the tails decay faster, i.e. the

distribution becomes more platykurtic.

Figure 4.6 shows the fitting of the amplitude priors to data from narrow variance

intervals and table 4.5 shows the corresponding values. When the SNR interval is in

a low range the Lognormal density fits the data better, capturing more accurately

the data distribution for both small and large values. As the a priori SNR interval
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moves to higher ranges, the Lognormal density underestimates the probability of

small values, which is better captured by the Gamma density for 49-50 dB and by

the Chi for 79-80 dB. The tails of the distribution however, are better modelled by

the Lognormal density in all three cases.

The main drawback of the parameter estimation approach described in this section is

that the distribution of the data and subsequently the estimated values of a showed

a strong dependence on the a priori SNR interval. This does not allow us to extract

a single value of a that optimally fits the data. Furthermore, a mapping between

the value of the a priori SNR interval and the values of a cannot be obtained, as

such a mapping depends on the global SNR, which is not known in general.

In view of the above observations, the strategy we adopt, when the scale parameter θ

is estimated adaptively, is to use a range of different values of a with the algorithms

and evaluate their performance as a function of the shape parameter a. In this way,

the optimal values of a are decided a posteriori, based on the results of the speech

enhancement algorithms. Ephraim and Malah [31] also proposed an a posteriori

evaluation of their statistical model, in order to sidestep the problems arising from

the inaccessibility of the true statistical model of speech.
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Density Interval dB a θ KL
Chi 19-20 0.91 1.96 106
-\- 49-50 1.39 1.28 25
-\- 79-80 4.98 0.39 51

Gamma 19-20 1.36 0.49 49
-\- 49-50 2.25 0.34 7
-\- 79-80 8.88 0.11 57

Lognormal 19-20 0.53 -0.80 14
-\- 49-50 0.96 -0.47 8
-\- 79-80 3.85 -0.10 78

Table 4.5: Parameter values that minimize the KL divergence when fitting the
1 sided Chi, Gamma and Lognormal densities to amplitude data from a narrow
variance interval.

4.4 Adaptive estimation of the shape parameter

In this section we present an adaptive method for the estimation of the shape pa-

rameter a, which is based on moment matching. The proposed method is also found

in [24], although a different strategy for the estimation of moments was employed

in that work. An application of a similar cumulant based method to an image es-

timation problem method was proposed in [34]. A maximum likelihood method for

finding estimates of a is described in [89], but requires a significantly greater amount

of computation and the availability of clean speech samples. The proposed moment

matching method on the other hand, is simple in its implementation and can be

applied directly on the noisy samples. In the following, we derive the expressions

for the estimators of the shape parameter a for the different priors, as a function

of the second and fourth moments of the noise, speech and noisy speech signals.

The estimation of the various moments and the evaluation of the proposed adaptive

method for the estimation of a, will be detailed in §5.5.

4.4.1 Estimation of a for the 2 sided priors

4.4.1.1 2 sided Chi priors

Given the model X = S + N for the Re (or Im) part of the noisy speech, clean

speech and noise coefficients, the fourth moment of the noisy speech can be written
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as:

E[X4] = E[S4] + 6E[S2]E[N2] + E[N4] (4.7)

The Gaussian noise model of eq. 3.5 yields the following expressions for the second

and fourth moments

E[N2] = σ2
N , and E[N4] = 3σ4

N

The fourth moment of N can then be expressed in terms of E[N2] as

E[N4] = 3
(

E[N2]
)2

(4.8)

Similarly, the corresponding moments of the 2 sided Chi pdf are:

E[S2] = θa/2, and E[S4] = θ2a(a+ 2)/4

The fourth moment in terms of the second can be expressed as

E[S4] =
a+ 2

a

(

E[S2]
)2

(4.9)

Substituting eqs. 4.8 and 4.9 in 4.7 we obtain:

E[X4] =
a+ 2

a

(

E[S2]
)2

+ 6E[S2]E[N2] + 3
(

E[N2]
)2

or:
a+ 2

a
=

E[X4] − 6E[S2]E[N2] − 3 (E[N2])
2

(E[S2])2 = κ2 (4.10)

Therefore, the estimator of the shape parameter is

â =
2

κ2 − 1
(4.11)

In eq. 4.10 κ2 can be recognised as the kurtosis of the Re (Im) parts of clean speech,

which is defined as κ2 ≡ E[S4]/ (E[S2])
2
. Note that as the kurtosis tends to infinity,

a tends to zero and the priors are getting narrower with longer tails. As the kurtosis

approaches 1, which is its theoretical lower limit, the value of a tends to infinity.
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4.4.1.2 2 sided Gamma priors

An estimate for the a parameter can be obtained in a similar way as in the previous

section. The corresponding moments for the Gamma prior are:

E[S2] = θ2a(a+ 1), and E[S4] = θ4a(a+ 1)(a+ 2)(a+ 3)

Therefore, the relation of the fourth moment to the second is

E[S4] =
(a+ 2)(a+ 3)

a(a+ 1)

(

E[S2]
)2

(4.12)

Following the same procedure as in §4.4.1.1 we have:

(a+ 2)(a+ 3)

a(a+ 1)
=

E[X4] − 6E[S2]E[N2] − 3 (E[N2])
2

(E[S2])2 = κ2 (4.13)

Solving the quadratic equation we have:

a =
5 − κ2 ±

√

(5 − κ2)2 − 24(1 − κ2)

2(κ2 − 1)
(4.14)

Finally, simplifying the argument of the square root, the estimator of a becomes

â =
5 − κ2 +

√

κ2
2 + 14κ2 + 1

2κ2 − 2
(4.15)

In the solution of the quadratic equation, the root with the (+) is selected because

for κ2 > 1, which are the acceptable values for the kurtosis, the root with the (−)

is negative as is evident from eq. 4.14.

4.4.2 Estimation of a for the 1 sided priors

4.4.2.1 1 sided Chi priors

Given the model for the complex STFT coefficients X = S + N the fourth moment

of the noisy speech spectral amplitude can be written as:

E[R4] = E[A4] + 4E[A2]E[B2] + E[B4] (4.16)
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where R, A and B are the amplitudes of the noisy speech, the clean speech and the

noise respectively. Based on the Gaussian noise model of eq. 3.5, the second and

fourth moments of the noise spectral amplitude are given by

E[B2] = 2σ2
N , and E[B4] = 8σ4

N

and the second and fourth moments are related by

E[B4] = 2
(

E[B2]
)2

(4.17)

The corresponding moments for the speech spectral amplitude for the Chi prior

density are:

E[A2] = θa/2, and E[A4] = θ2a(a+ 2)/4

and subsequently

E[A4] =
a+ 2

a

(

E[A2]
)2

(4.18)

Substituting eqs. 4.17 and 4.18 in 4.16 we have

(a+ 2)

a
=

E[R4] − 4E[A2]E[B2] − 2 (E[B2])
2

(E[A2])2 = κ1 (4.19)

The estimator of a then reads

â =
2

κ1 − 1
(4.20)

where κ1 is the kurtosis of the clean speech amplitude, defined as κ1 ≡ E[A4]/E[A2]2.

Note that the form of eq. 4.20 is the same as eq. 4.11, which is a consequence of

the second and fourth moments being the same for the 1 sided and the 2 sided Chi

pdf’s.

4.4.2.2 1 sided Gamma priors

The procedure for obtaining the estimates of a is identical to that of §4.4.2.1, except

for the expressions of the speech prior moments. For the 1 sided Gamma prior these

are:

E[A2] = θ2a(a+ 1), and E[A4] = θ4a(a+ 1)(a+ 2)(a+ 3)
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and

E[A4] =
(a+ 2)(a+ 3)

a(a+ 1)

(

E[A2]
)2

(4.21)

Following the same steps as in §4.4.2.1 we have:

(a+ 2)(a+ 3)

a(a+ 1)
=

E[R4] − 4E[A2]E[B2] − 2 (E[B2])
2

(E[A2])2 = κ1 (4.22)

Or finally, solving the quadratic equation w.r.t a:

â =
5 − κ1 +

√

κ2
1 + 14κ1 + 1

2κ1 − 2
(4.23)

The valid root from the solution of the quadratic equation is the one with the (+)

for the same reasons as those stated in §4.4.1.2. Note again that eq. 4.23 is identical

to eq. 4.15, which is the consequence of the second and fourth raw moments of the

1 sided and 2 sided Gamma density functions being identical.

4.4.2.3 Lognormal priors

The expressions for the second and the fourth moments of the Lognormal priors

are [56]:

E[A2] = exp
(

2θ + a−1
)

, and E[A4] = exp
(

4θ + 4a−1
)

and the two moments are related by

E[A4] = exp
(

2a−1
) (

E[A2]
)2

(4.24)

Following the same procedure as in §4.4.2.1 we can show that

exp(2a−1) =
E[R4] − 4E[A2]E[B2] − 2 (E[B2])

2

(E[A2])2 = κ1 (4.25)

Solving the above equation with respect to a, we have the following expression for

the estimator

â =
2

ln(κ1)
(4.26)
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4.5 Summary

The priors we employ for modelling the speech STFT data have two parameters:

the scale parameter θ and the shape parameter a. In this chapter we proposed a

number of methods for estimating their values. The proposed methods were grouped

in two categories: the first category contains methods that estimate the parameters

by fitting the priors to long term speech data, while the second consists of adaptive

methods.

The methods that use long term speech data were two: the first method used data

from all the available frequency bins, while the second method involved fitting the

priors to data from each frequency bin separately. In both cases, the best fit was

provided by the Lognormal priors. The Gamma priors offered a somewhat poorer fit

and the Chi priors were generally the least successful models. The priors estimated

with the above methods can be called long term priors, because long term speech

data are used for the estimation of their parameters.

Enhancing speech using fixed values of θ, as estimated from the long term priors,

results in musical noise artifacts, as we will show in the next chapter. For this reason

we investigated an adaptive method for the estimation of the shape parameter θ,

which is based on the DD method for the estimation of the a priori SNR. The DD

method is renown for aiding the reduction of the musical noise artifacts, while the

priors it defines are short term, as the values of their parameters change during the

enhancement of speech.

The selection of an adaptive method for the estimation of the scale parameter im-

plies that the use of long term estimates for the shape parameter a is not justified

theoretically. We implemented a method for the estimation of a that is found in

the literature and is compatible with the estimation of θ via the DD method. This

method estimates a via fitting the priors to data from narrow a priori SNR intervals.

We showed that the results of this method are not consistent and depend strongly

on the selection of the a priori SNR interval. In view of the shortcomings of this

method, in the following chapter we evaluate the performance of the algorithms as

a function of the shape parameter a and seek an optimal value based on the results.

Finally, an adaptive method for the estimation of the shape parameter a was also
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developed, which was based on moment matching. Expressions for the estimators

of a were analytically derived for each of the employed priors, while the results of

this method are also evaluated in the next chapter.
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Chapter 5

Evaluation

In this chapter we present the results from the evaluation of the of Bayesian algo-

rithms described in chapter 3. The evaluation is based on simulations performed

with a number of clean speech phrases, artificially corrupted with additive white

Gaussian and car noise, which are then enhanced with the proposed algorithms.

The performance of the algorithms is measured using a number of objective mea-

sures, while formal and informal listening tests are employed to subjectively assess

the quality of the enhanced speech.

Of particular interest in this evaluation, is the effect of the priors’ shape parameter a

on the quality of the enhanced speech. In §5.3 the performance of the algorithms is

evaluated as a function of the shape parameter a, where it is revealed that its value

essentially controls the trade off between the musical character of the residual noise

and its overall level, while the preservation of the weaker speech spectral components

is influenced to some extent. In the same section there is also a discussion on the

performance of the algorithms with values extracted with the methods presented in

§4.1 - §4.3. In §5.4, optimal values for a that maximise the speech quality are sought,

by means of a formal subjective listening test. Finally, the adaptive scheme for the

estimation of a presented in §4.4 is evaluated in §5.5. Prior to the presentation of

the results however, some details about the specifics of the performed simulations

and the employed evaluation measures will be first given in §5.1 and §5.2 .
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Figure 5.1: Car noise power spectral density.

5.1 Simulation setup

The clean speech database used for the simulations in this chapter is a subset of the

database that was used in chapter 4. It comprises of three male and three female

speakers, each uttering 8 sentences. The total duration of the database is 2 minutes

and 10 seconds and the sampling frequency is 8 KHz. The transformation to the

frequency domain was performed using Hamming windows of 256 samples length,

overlapped by 75%. The windows were also normalised so that their amplitude when

overlapped and added was 1.

The speech phrases were corrupted with white Gaussian and car noise at 0, 10 and 20

dB input Segmental SNR. For these input Segmental SNR levels the corresponding

noisy speech PESQ scores were 2.11, 2.80 and 3.46 for the white noise and 2.89, 3.49

and 4.07 for the car noise respectively1. The white noise was computer generated,

while the car noise was recorded in a car traveling on a motorway at 60 mph. The car

noise contained not apparent transients or long term trends, and its power spectrum

is shown in figure 5.1. To eliminate the effect of a noise estimation algorithm on the

speech enhancement schemes, the noise power was estimated directly from the noise

samples, which were known as the mixing of the noise with speech was performed

artificially. In practice however, the noise power can be estimated with a noise

estimation algorithm, such as those described in chapter 6.

1For a definition of Segmental SNR and PESQ see §5.2.
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5.2 Methods used for the evaluation of the algorithms

The methods that assess the quality of an enhanced speech utterance can generally

be divided into two categories: the subjective and the objective methods. The

subjective methods typically involve a panel of listeners who are presented with a

set of enhanced speech utterances and subjectively judge their quality, usually based

on a predetermined scale. Objective methods on the other hand, are based on a

mathematical model, which may or may not try to predict the results of a subjective

method. In this work we have used two objective measures: the Segmental Signal

to Noise Ratio (SegSNR) and the Perceptual Evaluation of Speech Quality (PESQ).

The SegSNR is an extension of the traditional (or total) SNR and is designed to

measure more accurately the quality of the enhanced speech. The Segmental SNR

is calculated by finding the logarithm of the SNR in each time frame and then

averaging across the frames. Analytically it is given by [25]:

SegSNR =
1

L

L−1
∑

l=0

10 log10

[

K
∑

m=1

s2(Jl +m)

[s(Jl +m) − ŝ(Jl +m)]2

]

(5.1)

where L is the number of speech frames, K is the number of samples per frame and

J is the distance (in samples) between the start points of two consecutive frames. s

is the clean and ŝ the enhanced speech signal. The motivation for this measure is

to emphasize the effect of noise in the low energy speech segments, which are more

sensitive to noise compared to the high energy ones. Indeed, a segment with a very

low SNR will contribute much more toward the final result in eq. 5.1, because of the

addition of the logarithms, whereas with the total SNR the square errors would be

summed across the entire waveform. A problem that arises often when the SegSNR

is used, is that the existence of silent frames in the signal can produce large negative

SNR’s, which are not representative of the enhanced speech quality. This problem

however, is sidestepped if the silent frames are identified in the clean speech and

excluded from the calculation of the SegSNR. This strategy has also been followed

in this work, where only the frames that were classified as containing speech, with

the aid of a VAD, were used in the calculation of the SegSNR.

The PESQ algorithm [53,87] is an objective speech quality measure, which has been
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Figure 5.2: Spectrograms of clean and noisy speech at 10 dB input SegSNR.

approved as the International Telecommunication Union recommendation ITU-T

P.862. It is designed to predict the results of a subjective Mean Opinion Score

(MOS) test. The scores of the PESQ algorithm lie on a scale from 1 (= bad) to 4.5

(= no distortion). The correlation of the results of the PESQ algorithm with results

from subjective MOS tests has been studied in several works [51, 102], where the

correlation coefficient was found to be 0.65 in [51] and 0.86 in [102]. Although there

is probably still room for improvement in the prediction of MOS results, among the

several well known objective speech quality measures evaluated in the above studies,

PESQ was the one that presented the highest correlation.

Throughout the presentation of the results, along with the above two objective mea-

sures we will give an informal subjective evaluation of the degraded audio samples.

The evaluation will be mainly focused on aspects such as the nature of the resid-

ual noise (musical vs. broadband) and the amount of speech distortion, which are

not always illustrated in the numerical results of the objective measures. A vi-

sual supplement will be provided by spectrograms of an enhanced speech segment.

The spectrograms of this chapter will correspond to the phrase (Be careful not to

plough over the flower beds), unless stated otherwise. In order to facilitate a com-

parison between different algorithms, the spectrograms will also be normalised, so

that same colors indicate same spectral amplitude values. The spectrograms of the

above phrase prior to noise corruption and mixed with white Gaussian noise at 10

dB input SegSNR are shown in figure 5.2 for reference purposes.

A popular visualisation of an algorithm’s properties is given by its suppression
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curves. These are plots of the suppression the algorithm applies (in dB) as a func-

tion of some of its input parameters. Some of the properties that are illustrated in

the suppression curves include the transparency (0 dB suppression) of an algorithm

in high input SNR conditions and some indications about the quality of the residual

noise (musical or broadband). A number of suppression curves will be given for

each algorithm and for some key values of the prior density function parameter a,

so that their shape for the whole range of values of a should be easily inferred. The

suppression curves will be shown as a function of the a priori and the a posteriori

SNR, as it is customary (e.g. [99]).

5.3 Evaluation of the algorithms as a function of the shape

parameter a

In chapter 4 we used a number of methods for estimating values for the priors’

parameters a and θ. Some of these methods were based on fitting the priors to

long term speech data (§4.1, §4.2), while others were estimating the values of the

parameters adaptively (§4.3, §4.4). When the values obtained with the methods of

the first category are used, the resulting speech suffers from high levels of musical

residual noise. On the other hand, the adaptive estimation of the scale parameter

via the DD method manages to eliminate the musical noise to a large extent. For

this reason, all the algorithms in the remainder of this chapter will use the DD

method for the estimation of the scale parameter. The smoothing factor α of the

DD method is set to 0.99. Additionally, a lower limit is also set for the a priori SNR

at -25 dB, as this was reported to further aid the reduction of musical noise [16].

A comparison of the results obtained with fixed (long term) and adaptive values of

the scale parameter is given in appendix C.

In §4.3.3 we also examined a method for the estimation of the shape parameter a,

which was based on fitting the priors to data that belonged to narrow a priori SNR

intervals and was compatible with the DD method. Unfortunately, this method

failed to result in a consistent set of values for a. For this reason, in the current sec-

tion we examine the performance of the algorithms for a range of values of a, which

includes those values that produce the highest scores in the objective measures. In
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the following section we attempt to extract optimal values for the shape parameter

by means of a formal listening test. The adaptive method for the estimation of a,

which was presented in §4.4 and is also compatible with the estimation of θ via the

DD method, will be evaluated in §5.5. We now proceed with the evaluation of the

performance of the proposed algorithms as a function of the priors’ shape parameter

a.

Because the signals that are enhanced using the same estimator are acoustically

similar, and in order to facilitate the presentation of the results, we will separately

discuss the performance of the algorithms according to the estimator used and pro-

vide a comparison at the end. We begin with the algorithms that use the MAP

estimator.

5.3.1 MAP estimator algorithms

Figure 5.3 shows the SegSNR and PESQ scores for the MAP algorithms that es-

timate either the Re and Im parts or the amplitude of the STFT using the Chi,

Gamma and Lognormal speech priors. The results correspond to 3 different input

SegSNR values. The corrupting noise is Gaussian and white. Figure 5.4 shows the

respective results for car noise. The suppression curves of the above algorithms are

shown in figures 5.5 and 5.6.

The behaviour of the MAP algorithms that use the Chi or Gamma priors is some-

what different compared to the MAP algorithm that uses the Lognormal priors. The

differences arise when the MAP algorithms with the Chi and Gamma priors employ

values of a for which the posterior density has a singularity at zero2 (i.e. a < 1 for

the DFT MAP algorithms and a < 1.5 for their amplitude counterparts). For the

above reason we will start the discussion with the MAP algorithms that use the Chi

and Gamma priors and the evaluation of the MP1L algorithm will follow.

Evaluation of the MAP algorithms with Chi and Gamma priors In analys-

ing the performance of the MAP algorithms with the Chi and Gamma priors we can

2Recall from §3.3.3 that the posterior density p(A|R,ψ) of the MAP algorithm with the Log-
normal priors has no singularity at zero for any value of the parameter a.
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Figure 5.3: SegSNR and PESQ scores for the MAP algorithms for different values
of a and input SegSNR’s. Speech was corrupted with white Gaussian noise.
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Figure 5.4: SegSNR and PESQ scores for the MAP algorithms for different values
of a and input SegSNR’s. Speech was corrupted with car noise.
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Figure 5.5: Suppression curves of the DFT MAP algorithms for different values of
a as a function of the a priori SNR ξ and a posteriori SNR γ2.

identify two discrete ranges of a, which depend on the existence (first range) or non

existence (second range) of the singularity in the posterior distribution. The MAP

algorithms with values from the first range preserve adequately the speech com-

ponents, especially for a ∼ 0.1. However, the residual noise has a strong musical

character. Although the MAP algorithms with values of a from the second range

are less successful in recovering the weaker speech components, the residual noise

has a more uniform character. The broadband residual noise is also indicated by

the ‘counter-intuitive’ behaviour of the MAP suppression curves (see figures 5.5(c,f)

and 5.6(c,f,i)), which show that the suppression increases with increasing values of

a posteriori SNR for high values of a3. Furthermore, the level of the residual noise,

which increases with the value of a, can be adjusted so that the majority of the

spurious spectral peaks are masked. On the basis of the uniform character of the

residual noise, we prefer values of a from the second range.

Figure 5.7 shows two characteristic instances of the MP1G algorithm with a = 0.1

and a = 3. In the first case there is a better preservation of the speech spectral

3For an explanation of this mechanism see [16].
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Figure 5.6: Suppression curves of the amplitude MAP algorithms for different values
of a as a function of the a priori SNR ξ and a posteriori SNR γ.

components, for instance at 0.5 and 1.5 sec for frequencies above 2.5 KHz. The

residual noise however, despite its low level, exhibits a large number of spurious

spectral peaks, which are perceived as musical noise.

The MP1L algorithm The behaviour of the MP1L algorithm for values of a

larger than 0.4 is similar to that of the remaining MAP algorithms with values of

a from the second range. That is, the restoration of the weaker speech components

is moderate but the residual noise is uniform. For values of a smaller than 0.4

the MP1L algorithm results in very low residual noise levels but as the value of

a drops an increasing number of speech spectral components are also suppressed.
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Figure 5.7: Speech enhanced with the MP1G algorithm for 2 different values of a.
Small values of a result in a better preservation of the weaker speech components,
while larger values result in uniform residual noise.

This behaviour is reflected in the rapid drop of the objective scores for the MP1L

algorithm for a smaller than 0.4 (figures 5.3(e,f), 5.4(e,f)).

To provide a comparison between the examined MAP algorithms we use values of

a that result in equal levels of residual noise. In order to obtain these values we

concatenate a speech utterance with a segment of silence and enhance the result-

ing signal with different algorithms, adjusting a so that the output SegSNR’s at

the silence segment are equal. We find that using the above values of a the re-

sulting signals are very similar acoustically, and their differences can be identified

only through careful listening. We proceed with a comparison with respect to the

estimated STFT feature and then with a comparison with respect to the employed

prior.

Comparison w.r.t the estimated STFT feature A comparison between the

DFT and amplitude MAP estimators that use the same priors and values of a that

result in equal levels of residual noise reveals that the DFT algorithms slightly

underestimate some speech harmonics. Subsequently, the speech enhanced with

the amplitude estimators is perceived somewhat louder. The above observation is

illustrated in figure 5.8, which shows the SNR for each frame from speech enhanced

with the MP1G (continuous line) and the MP2G (dotted line) algorithms, for values

of a that resulted in equal levels of residual noise. Note the slightly higher SNR

values of the MP1G algorithm at the peaks of speech activity.
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Figure 5.8: Frame SNR as a function of frame number for the MP1G (continuous
line) and MP2G (dotted line).

An additional advantage of all the algorithms that work in the amplitude domain is

that the total amount of data that needs to be processed is half compared to that

of the DFT domain algorithms. The reason is that the amplitude algorithms only

estimate the clean speech amplitude, which is then combined with the noisy phase,

while the DFT algorithms have to separately estimate the real and the imaginary

parts of the STFT.

Comparison w.r.t. the prior Before comparing the three speech priors, we

should mention that they all produce speech of very similar quality, when their

shape parameter is tuned so as to result in equal levels of residual noise. This ability

of the different priors to produce speech of similar quality should be attributed to

the flexibility that is provided by their shape parameter a. The differences, which

are rather minor, are described in the following. If, according to figures 4.5, 4.6, we

classify the three priors according to the length of their tails from the shortest to the

longest as Chi, Gamma and Lognormal, we can make the following observations: the

use of a prior with shorter tails results in the preservation of a few more weak speech

spectral components, at the expense of a larger number of spurious spectral peaks.

A longer tailed prior on the other hand, suppresses some of the weaker spectral

speech components, but at the same time, the fewer spurious spectral peaks reduce

the amount of the perceived speech distortion. Additionally, longer tailed priors

have a slightly faster response at the onset of speech after a segment of silence.
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A comment on the approximation of MP1C and MP1G algorithms Among

all the algorithms that are examined in this chapter, the amplitude MAP algorithms

that use the Chi and Gamma priors are the only approximate estimators, because

the Bessel function that appears in the derivation of the respective likelihoods is

approximated with eq. A.43 (see appendices A.7, A.9). The same is not true for the

MP1L algorithm which is an exact estimator. Enhanced speech of similar quality

can be obtained with the three amplitude MAP estimators, while, as we will see

in the following section, the same is also true for the three amplitude MMSE esti-

mators (MS1C, MS1G, MS1L), which are all exact (not approximate). The above

observation could be an indication that the performance of the exact MP1C and

MP1G estimators would not be greatly different from that of the approximate ones,

while the latter have the advantage that can be derived in a closed form, which

makes them more efficient computationally.

5.3.2 MMSE estimator algorithms

We now present and discuss the results of the algorithms that use the MMSE es-

timator. Figures 5.9 and 5.10 show the SegSNR and PESQ results for the MMSE

algorithms, for different input SegSNR levels and a values. The corrupting noise for

the results presented in figure 5.9 was white Gaussian, while the respective results

obtained with the car noise are shown in figure 5.10. The suppression curves of the

DFT MMSE algorithms for some characteristic values of a are shown in figure 5.11

while figure 5.12 shows the respective suppression curves for the amplitude MMSE

algorithms.

General evaluation The MMSE algorithms provide an adequate preservation of

the speech spectral components for small values of a (∼ 0.2), although the residual

noise in this range of the shape parameter has a strong musical character. For

increasing values of a the behaviour of the DFT MMSE algorithms is different from

that of their amplitude counterparts, so we will discuss them separately.

Unlike the MAP algorithms, the residual noise of the DFT MMSE algorithms does

not increase with increasing values of a, a fact which is reflected in the almost

constant shape of the respective suppression curves (figure 5.11) for small values of
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Figure 5.9: SegSNR and PESQ scores for the MMSE algorithms for different values
of a and input SegSNR’s. Speech was corrupted with white Gaussian noise.
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Figure 5.10: SegSNR and PESQ scores for the MMSE algorithms for different values
of a and input SegSNR’s. Speech was corrupted with car noise.
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Figure 5.11: Suppression curves of the DFT MMSE algorithms for different values
of a as a function of the a priori SNR ξ and a posteriori SNR γ2.

the a priori SNR and medium to small a posteriori SNR values. Conversely, the level

of the spurious spectral peaks decreases, which results in a reduction in the intensity

of the musical noise. At the same time however, spectral components that belong

to speech are also attenuated, which causes the drop in the objective measures for

increasing values of a (figures 5.9, 5.10). The above observations are illustrated in

figure 5.13. A discerning characteristic of the DFT MMSE algorithms is that their

residual noise has a musical character for all values of the shape parameter a, which

can be a fundamental limitation for audio speech enhancement applications.

The amplitude MMSE algorithms on the other hand, do not attenuate the speech

spectral components for increasing values of a. They do result however, in an in-

crease in the level of the residual noise, which eventually becomes uniform. The

similar shape of the suppression curves of the amplitude MMSE algorithms (fig-

ure 5.12) with those of the MAP for low a priori SNR conditions and large values

of a gives an indication about the uniform character of the residual noise4. Two

characteristic instances of the MS1C algorithm for small and large values of a that

4See also the third paragraph of §5.3.1
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Figure 5.12: Suppression curves of the amplitude MMSE algorithms for different
values of a as a function of the a priori SNR ξ and a posteriori SNR γ.

demonstrate the above behaviour are shown in figure 5.14.

Comparison w.r.t. the prior. The differences in the quality of the speech

enhanced with the different priors, when the values of the shape parameter a result

in equal levels of residual noise, are relatively subtle. The use of a longer tailed

prior (e.g. Lognormal) results in a slightly better restoration of some weaker speech

spectral components, especially at the onset of speech. A shorter tailed prior, such as

the Chi on the other hand, results in smoother spectral peaks in the noise dominated

regions of the spectrogram, and hence, the residual noise of the enhanced sentence

is more uniform.
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Figure 5.13: Speech enhanced with the MS2G algorithm for 2 different values of a.
Increasing a reduces the intensity of the musical noise spectral peaks, but some of
the speech spectral components are also suppressed.
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Figure 5.14: Speech enhanced with the MS1C algorithm for 2 different values of
a. Increasing a elevates the level of the residual noise, which eventually becomes
uniform.

Comparison between the MAP and the MMSE estimators A comparison

between the MAP and the amplitude MMSE estimators reveals that the MAP esti-

mators result clearly in lower levels of residual noise. However, the preservation of

the speech spectral components is better when the MMSE estimator is used and the

resulting speech sounds less bandlimited and more natural. We should also note at

this point that the computational complexity of the MMSE algorithms is generally

higher compared to that of their MAP counterparts, because the former involve the

calculation of special functions or numerical integration techniques.
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5.3.3 Conclusion

Among the elements of the algorithms presented (STFT feature, estimator, prior)

the one with the greatest impact on the performance was the estimator. Using values

of a from the second range, the MAP estimator resulted in lower levels of residual

noise compared to the MMSE estimators of the amplitude, while the latter were

more successful in preserving the speech spectral components. The DFT MMSE

estimators on the other hand, failed to result in uniform residual noise for any value

of a, which could pose a significant problem in their employment in audio speech

enhancement applications.

The selection of the STFT feature had a small impact on the algorithms that use

the MAP estimator. The similarities between the expressions for the MP2C (eq.

3.11) and the MP1C (eq. 3.26) algorithms and between the MP2G (eq. 3.17) and

the MP1G (eq. 3.31) algorithms also support this observation. The amplitude MAP

algorithms however, were marginally better in the preservation of speech, so they

might be preferred over their DFT counterparts. On the contrary, the selection of

the STFT feature played an important part when the MMSE estimator was used,

leading to musical residual noise and inferior speech restoration when the Re and

Im parts were estimated instead of the amplitude. An advantage of the amplitude

domain algorithms is that half the data load needs to be processed compared to

their DFT counterparts.

The choice of the prior had a rather moderate effect on the algorithms. This should

be attributed to the fact that the flexibility provided by tuning the shape parameter

a, offered the possibility of matching closely the performances achieved with the

different priors. Combined with the MAP estimator, the Gamma priors achieved

a good balance between the preservation of speech spectral components and the

suppression of the spurious spectral peaks that are perceived as speech distortions.

When the MMSE estimator was used, the Chi priors offered the most uniform back-

ground noise for an almost identical preservation of speech and residual noise level.
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5.4 Subjective estimation of an optimal value for a

In the previous section we saw that among the three features of the examined algo-

rithms (estimator, STFT feature and prior) the most influential in the performance

of the algorithms was the estimator, while the estimated feature and the different

prior densities had a somewhat less important role. Another critical component of

the presented speech enhancement algorithms is the value of the shape parameter

a. The analysis of the previous section showed that the value of a essentially deter-

mines the trade off between the musical character and the level of the residual noise

and, to some extent, the preservation of the weaker speech spectral components.

In this section we present the results from a formal subjective listening test that we

carried out, in order to identify a set of values for the shape parameter that result in

the highest quality of speech. A set of 20 subjects were asked to determine the value

of a that provided the best enhanced speech quality, using 6 sentences that were

corrupted with white Gaussian noise at 0 and 10 dB input SegSNR. The subjects

were presented with the clean and the noisy speech, and could then adjust the value

of the shape parameter and listen to the corresponding enhanced speech. No visual

cues were given for the value of a, so the subjects had to base their decision solely

on the audio samples. Additionally, the value of a was randomised for each new

sentence so that the preferred values for one sentence could not affect the decision

made for the others. Finally, each subject was presented with a sequence of audio

samples in which the order of the sentences and the input SegSNR levels was random.

Informal listening tests in §5.3 revealed that the MAP algorithms produced speech

of very similar quality when the shape parameter of the priors was tuned so that

the level of the residual noise was equal among the different MAP algorithms. For

this reason, and in order to reduce the duration of the subjective experiment one

MAP algorithm was evaluated, the MP1G. The latter was selected because it is

computationally more efficient than the DFT MAP algorithms and results in a good

trade off between the uniform character of the residual noise and the preservation

of speech. From the MMSE family of algorithms we considered the estimators of

the amplitude only, because of their tendency to generate uniform residual noise.

The MMSE amplitude algorithm we selected was the MS1C, because it results in
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Figure 5.15: Histograms of values of a selected in the subjective experiment.

the most uniform noise among the other MMSE amplitude algorithms, for a given

residual noise level and speech restoration quality, while it is also the most efficient

computationally.

In figure 5.15 we present the results of the subjective test for the two different

algorithms and the two different noise levels. The histograms show the occurrences

of the different values of a for all the subjects and the presented sentences. It is

noticeable that for the low input SegSNR the selections are concentrated around

some particular values. For the MAP algorithm the majority of the values are

around 2-4, while for the MMSE the most popular range is between 1 and 1.5. For

the higher input SegSNR on the other hand, the selected values are considerably

more spread.

To verify the validity of the above observation we performed a chi square signifi-

cance test [75]. The above test was used in order to check the hypothesis that the
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Input SegSNR 0 dB 10 dB

Algorithm X2 p-value X2 p-value

MP1G 103.0 1.5 × 10−13 16.3 0.63

MS1C 68.0 2 × 10−7 23.7 0.17

Table 5.1: Chi square significance test results for the two algorithms and input
SegSNR levels.

subjective test data for each algorithm and input SegSNR level came from a uniform

distribution (null hypothesis). Rejection of the null hypothesis for the low SegSNR

data and failure of rejection for the high SegSNR data would indeed confirm the

larger spread of the high SegSNR data set.

Table 5.1 shows the results of the chi square test. The chi square statistic X2 is

given by the formula

X
2 =

NX
∑

i=1

(Oi − Ōi)
2

Ōi

(5.2)

where Oi is the number of occurrences in the ith histogram bin and Ōi is the number

of expected occurrences in the ith histogram bin according to the assumed distri-

bution (uniform). The number of histogram bins was NX = 20, which satisfies the

requirement for a minimum of 5 expected occurrences in each of the histogram bins,

given that the total number of observations for each case was 120. The p-value

of the test denotes the probability of a random variable that follows the assumed

distribution to have a chi square statistic larger than the respective statistic of the

data. The smaller the p-value therefore, the stronger the evidence is for the re-

jection of the null hypothesis. The p-values shown in table 5.1 indicate that the

null hypothesis can be safely rejected for the low input SegSNR condition for both

algorithms, while for the high input SegSNR level there is not sufficient evidence for

its rejection.

The differences in the shapes of the distributions for the two input SegSNR con-

ditions can be attributed mainly to two reasons: The first is related to the fact

that for the low input SegSNR condition the extreme values of a were not favoured,

because either the musical noise was too intense (small a) or the residual noise was

excessive (large a). For the high input SegSNR however, the effect of selecting a

value of a closer to the extremes of the range was not as adverse, which generally
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Figure 5.16: Histograms of values of a selected in the subjective experiment for two
different sentences and input SegSNR levels.

made harder to pinpoint an optimal value for a and contributed to the flatter shape

of the respective histograms.

The second reason was related to the spectral content of some particular sentences.

Specifically, it was observed that for two out of six sentences the subjects consistently

chose higher values of a for the high input SegSNR compared to their selections for

the low input SegSNR condition. An example is shown in figure 5.16 where the his-

tograms of the selected values for two sentences and two input SegSNR’s are shown.

The results correspond to the MP1G algorithm, while the first sentence is ‘The cow

wandered from the farmland and became lost’, denoted as ‘TC’ and the second is

‘Be careful not to plough over the flower beds’ denoted as ‘BC’. Note that for both

input SegSNR levels the values selected for the first sentence are relatively similar

(figures 5.16(a), 5.16(c)), while for the second sentence (figures 5.16(b), 5.16(d)) the

values chosen for the high input SegSNR condition were significantly higher than

those selected for the low SegSNR.

A retrospective evaluation of the above sentences, in terms of inspecting the respec-

tive spectrograms and performing informal listening tests, revealed that the above

observations may stem from the differences in the distribution of the spectral en-

ergy of each sentence on the time frequency plane. For example, processing the ‘BC’

sentence with the MP1G algorithm and a = 4 at 10 dB input SegSNR resulted in

a number of spurious spectral peaks, which were the result of the distribution of
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Figure 5.17: Spectrograms of two different sentences enhanced with the MP1G
algorithm and a = 4. The ellipses highlight the spurious spectral peaks that are
perceived as musical noise.

the weaker speech spectral components in the clean sentence. The spurious spectral

peaks of the ‘TC’ sentence, when processed with the same algorithm and value of a,

were considerably less. The spectrograms of the two sentences are shown in figure

5.17, where the spurious spectral peaks of the ‘BC’ that are perceived as musical

noise are highlighted. The existence of more randomly placed spectral peaks in the

‘BC’ sentence, may have led the subjects to increase the level of the residual noise, by

means of increasing the value of a for masking purposes. For the low input SegSNR

the majority of the weak speech spectral components were immersed in noise and

their recovery was not possible, while any remaining spurious spectral peaks were

masked from noise for much smaller values of a due to the higher background noise

level. This resulted in more consistent choices of a for the different sentences in the

low SegSNR condition and consequently, the values of a are more concentrated in

the respective aggregate histograms of figure 5.15.

Based on the results of the subjective test we propose as ‘optimal’ the mean values

of the parameter a extracted from the low SegSNR condition5. These values were

2.6 for the MP1G and 1.4 for the MS1C algorithm. In table 5.2 we show the results

in the objective measures for the two examined algorithms with the aforementioned

values of a. Additionally, table 5.2 shows the results for the remaining MAP and

amplitude MMSE algorithms for values of a that result in the same residual noise

5For the MAP algorithms we actually used the mean value of the data that appear in the main
‘hump’ between 1 and 4.5.
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Input SegSNR 0 dB 10 dB 20 dB

SegSNR PESQ SegSNR PESQ SegSNR PESQ

MP1C a = 1.6 7.03 2.79 12.70 3.27 20.09 3.79

MP1G a = 2.6 7.19 2.74 12.96 3.24 20.40 3.78

MP1L a = 1.1 7.35 2.68 13.16 3.22 20.63 3.79

MP2C a = 1.1 6.72 2.75 12.23 3.22 19.49 3.76

MP2G a = 2.0 6.81 2.68 12.49 3.20 19.85 3.74

MS1C a = 1.4 6.71 2.81 13.03 3.33 20.69 3.82

MS1G a = 2.4 6.96 2.82 13.38 3.34 21.09 3.82

MS1L a = 1.4 7.09 2.84 13.57 3.35 21.27 3.81

MS2C a = 2.0 6.22 2.68 11.52 3.09 18.66 3.65

MS2G a = 2.5 6.93 2.70 12.53 3.14 19.90 3.72

Table 5.2: Results in the objective measures obtained with values of a selected from
the subjective test. The corrupting noise was white Gaussian.

Input SegSNR 0 dB 10 dB 20 dB

SegSNR PESQ SegSNR PESQ SegSNR PESQ

MP1C a = 1.6 10.52 3.37 16.63 3.81 23.88 4.18

MP1G a = 2.6 10.62 3.36 16.79 3.80 24.02 4.18

MP1L a = 1.1 10.66 3.36 16.84 3.82 24.03 4.18

MP2C a = 1.1 10.20 3.34 16.25 3.79 23.44 4.17

MP2G a = 2 10.20 3.32 16.38 3.78 23.58 4.16

MS1C a = 1.4 9.72 3.37 16.61 3.82 24.13 4.20

MS1G a = 2.4 9.91 3.38 16.86 3.82 24.39 4.20

MS1L a = 1.4 9.99 3.38 16.95 3.81 24.49 4.18

MS2C a = 2 9.73 3.23 15.69 3.70 22.83 4.12

MS2G a = 2.5 10.45 3.29 16.48 3.76 23.71 4.15

Table 5.3: Results in the objective measures obtained with values of a selected from
the subjective test. The speech was corrupted with car noise.
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levels as the MP1G and MS1C algorithms respectively. Such a normalisation was

not possible for the DFT MMSE algorithms, because the level of the residual noise

remains almost constant for different values of a, as we mentioned in §5.3.2. For this

reason in table 5.2 we present the results for the MS2C and MS2G algorithms with

values of a empirically chosen so that they provide an adequate trade off between

the musical character of the residual noise and the suppression of the speech spectral

components. Table 5.3 shows the respective results for the car noise.

The objective scores reveal that the amplitude algorithms achieve higher results

compared to their DFT counterparts. The same is also true for the MMSE algo-

rithms compared to the MAP, with the exception of the SegSNR measure for the

0 dB input SegSNR level. The reason is that the MAP algorithms achieve a lower

residual noise level, at the expense of the suppression of some spectral components

that belong to speech. Regarding the priors we can note that the longer tailed priors

(i.e. Lognormal) achieve higher SegSNR scores, mainly due to the better preserva-

tion of speech especially at its onset. Although the PESQ scores of the MMSE

algorithms are fairly similar for the different priors, for the MAP algorithms higher

PESQ scores are achieved for the short tailed priors (i.e. Chi). We believe that the

reason is the preservation of some weak spectral components with the shorter tailed

priors, which however contribute more to the musical character of the residual noise

rather than to the enhancement of the speech quality.

5.5 Results for adaptively estimated values of a

In the previous sections the algorithms employed a fixed value of the parameter a

for the entire duration of the speech utterances. In this section we evaluate the

adaptive scheme for the estimation of a, which was presented in §4.4.

The values of a were estimated from a function of the kurtosis of the clean speech

spectral samples, which for the DFT algorithms was defined as

κ2 =
E[X4] − 6E[S2]E[N2] − 3 (E[N2])

2

(E[S2])2 (5.3)
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and for the amplitude algorithms as

κ1 =
E[R4] − 4E[A2]E[B2] − 2 (E[B2])

2

(E[A2])2 (5.4)

We will now discuss the method for estimating the moments, which are involved

in the above expressions. The noise moments E[N2] and E[B2] can be estimated

directly from the noise estimation algorithm. For example, if an estimate of the

noise variance is Ê[|N|2], then we can set E[N2] = Ê[|N|2]/2 and E[B2] = Ê[|N|2].

For the estimation of the fourth moment of the noisy speech coefficients we used

a first order recursive averaging. If we define an estimator Ê[X4] for the fourth

moment of the noisy speech DFT coefficients E[X4], an estimate can be obtained as

Ê[X4]|k = (1 − λ)Ê[X4]|k−1 + λX4 (5.5)

where the subscripts k and k − 1 indicate the current and previous time frames re-

spectively. The fourth moment estimator for the noisy speech amplitude coefficients

E[R4] was defined accordingly. The smoothing parameter λ was found to have a

major influence on the performance of the adaptive scheme. Large values (∼ 0.1)

resulted in highly fluctuating estimates of a. The application of these values to

the algorithms resulted in speech that suffered from high levels of background noise

with a strong musical character. Too small values of a (∼ 0.0001) resulted in an

insensitivity of the adaptive scheme to the speech changes. The values of λ that

were found to give the optimal results were in the range of 0.001 to 0.01. In all the

simulations the value used was λ = 0.005.

The second moments of the speech samples were obtained from a smoothed version

of the a priori SNR. When unsmoothed values of the a priori SNR were used, the

resulting speech suffered from high levels of musical background noise. The smooth-

ing was performed with a recursive averaging estimator, in a similar fashion to eq.

5.5. The estimators for E[S2] and E[A2] were

Ê[S2]|k = (1 − λ)Ê[S2]|k−1 + λ ξ E[N2] (5.6)
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and

Ê[A2]|k = (1 − λ)Ê[A2]|k−1 + λ ξ E[B2] (5.7)

respectively. The same parameter λ as in eq. 5.5 was used for the smoothing.

The estimates of a were permitted to take values only within a certain range. For

the Chi and Gamma priors this range was [0.01, 3] and for the Lognormal priors the

range was [0.1, 3]. The value of the lower limit was not particularly important, as the

estimates rarely were below that. However, when lower estimates were allowed, their

influence was found to be rather damaging, as it resulted in the excessive suppression

of some speech spectral components. The value of the upper limit played a more

important role. Firstly, as it was indicated by informal listening tests, values of a

beyond the above limits were not found to improve the speech restoration in some

way. Additionally, the adaptive scheme occasionally produced estimates of a that

had unusually high values. These were mostly due to poor estimation because of high

background noise levels. For these values of a the algorithms resulted in excessively

high background noise levels and bounding the values of a mitigated the above

problem to some extent. Furthermore, very large values of a caused numerical issues

with the routines that calculated the special functions or with those that performed

the numerical integrations. Bounding the values of a alleviated this problem as well.

Tables 5.4, 5.6 show the results in the objective measures obtained with the MAP

and MMSE algorithms respectively, using the adaptive method for the estimation of

a. The results are presented in the column under the header ‘adaptive’. To provide

a comparison with the case when a fixed value of a is used, we used the algorithms

with a fixed a, which was equal to the median of the values of a estimated with the

adaptive scheme, across all the time and frequency samples. The results are shown

in the columns under the header ‘fixed’. The respective median values for the MAP

and MMSE algorithms respectively are shown in tables 5.5, 5.7. A comparison

between the ‘adaptive’ and ‘fixed’ scores shows that the results are not drastically

different, although the scores obtained with a fixed value of a tend to be somewhat

higher.

Figure 5.18 shows the behaviour of the estimates of a in a single frequency bin. The

typical behaviour of a is that it increases at the onset of speech and then drops due
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White Noise Car Noise

SegSNR PESQ SegSNR PESQ

Fixed Adaptive Fixed Adaptive Fixed Adaptive Fixed Adaptive

0 dB Input SegSNR

MP1C 7.40 7.20 2.71 2.67 11.05 10.24 3.44 3.44

MP2C 7.15 6.96 2.71 2.67 10.82 9.96 3.42 3.42

MP1G 7.60 7.04 2.69 2.67 11.12 10.34 3.41 3.44

MP2G 7.50 7.18 2.68 2.63 10.90 10.23 3.37 3.36

MP1L 7.41 7.40 2.62 2.63 10.80 10.58 3.35 3.35

10 dB Input SegSNR

MP1C 13.75 13.64 3.38 3.37 17.21 16.85 3.93 3.94

MP2C 13.58 13.45 3.38 3.37 17.00 16.67 3.92 3.93

MP1G 13.68 13.71 3.33 3.38 17.15 16.94 3.91 3.94

MP2G 13.35 13.30 3.27 3.27 16.87 16.68 3.88 3.88

MP1L 13.20 13.18 3.19 3.17 16.84 16.76 3.84 3.83

20 dB Input SegSNR

MP1C 21.18 21.15 3.94 3.94 24.50 24.10 4.25 4.24

MP2C 21.01 20.93 3.95 3.94 24.24 23.90 4.24 4.24

MP1G 21.07 21.35 3.91 3.95 24.37 24.27 4.24 4.24

MP2G 20.63 20.68 3.87 3.87 24.03 23.82 4.23 4.22

MP1L 20.63 20.63 3.80 3.80 23.99 23.97 4.20 4.19

Table 5.4: Results with adaptively estimated values of a for the MAP algorithms.

Noise Type White Car

SegSNR 0 10 20 0 10 20

MP1C 0.06 0.08 0.10 0.10 0.10 0.11

MP2C 0.04 0.05 0.07 0.07 0.07 0.07

MP1G 0.11 0.14 0.20 0.20 0.20 0.20

MP2G 0.09 0.14 0.18 0.19 0.19 0.19

MP1L 0.48 0.59 0.65 0.66 0.66 0.67

Table 5.5: Median of the values of a estimated with the adaptive scheme for the
MAP algorithms.

to the recursive estimation of the speech moments. Informal listening tests indicate

that the adaptive scheme results in speech which suffers from musical residual noise.

The quality of the resulting speech is similar to that obtained using the fixed values

of a shown in tables 5.5 and 5.7.

An additional drawback that is associated with the adaptive estimation scheme

is that in the presence of excessive noise levels, the parameter a can take high
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White Noise Car Noise

SegSNR PESQ SegSNR PESQ

Fixed Adaptive Fixed Adaptive Fixed Adaptive Fixed Adaptive

0 dB Input SegSNR

MS1C 7.76 7.75 2.85 2.86 10.97 10.50 3.53 3.53

MS2C 7.40 7.55 2.79 2.82 10.90 10.92 3.46 3.46

MS1G 7.79 7.78 2.86 2.86 10.98 10.77 3.53 3.51

MS2G 7.54 7.64 2.81 2.82 11.03 11.05 3.46 3.46

MS1L 7.70 7.60 2.88 2.87 10.68 10.35 3.49 3.46

10 dB Input SegSNR

MS1C 13.83 13.79 3.49 3.49 17.28 17.09 3.97 3.96

MS2C 13.45 13.42 3.41 3.40 16.98 16.94 3.93 3.93

MS1G 13.88 13.85 3.49 3.47 17.33 17.23 3.97 3.95

MS2G 13.51 13.52 3.40 3.39 17.11 17.07 3.93 3.92

MS1L 13.91 13.86 3.45 3.42 17.29 17.16 3.91 3.89

20 dB Input SegSNR

MS1C 21.24 21.20 3.99 3.98 24.48 24.45 4.26 4.26

MS2C 20.78 20.73 3.94 3.93 24.14 24.10 4.25 4.24

MS1G 21.32 21.32 3.99 3.98 24.55 24.58 4.26 4.25

MS2G 20.90 20.88 3.93 3.92 24.29 24.26 4.24 4.24

MS1L 21.43 21.41 3.94 3.93 24.65 24.60 4.23 4.22

Table 5.6: Results with adaptively estimated values of a for the MMSE algorithms.

Noise Type White Car

SegSNR 0 10 20 0 10 20

MP1C 0.04 0.08 0.10 0.10 0.10 0.10

MP2C 0.02 0.05 0.06 0.07 0.07 0.07

MP1G 0.12 0.14 0.19 0.19 0.20 0.20

MP2G 0.07 0.14 0.18 0.19 0.19 0.19

MP1L 0.51 0.61 0.66 0.66 0.66 0.67

Table 5.7: Median of the values of a estimated with the adaptive scheme for the
MMSE algorithms.

values in some frequency bins, which results in high levels of residual noise at those

frequencies. An example is shown in figure 5.19, where the spectrogram of the

enhanced sentence Cyclical programs will never compile and the estimated values

of a are shown. The above sentence was corrupted with white Gaussian noise at 0

dB input SegSNR and enhanced with the MP1G algorithm. Note that in some of

the high frequencies the estimation scheme returns large values of a, which result in

high levels of bandlimited noise.
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Figure 5.18: (a) Clean speech spectral amplitude values from the frequency bin
corresponding to 1 KHz, (b) Values of a estimated with the adaptive scheme from
the corresponding noisy speech data and the MP1G algorithm.
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Figure 5.19: (a) Spectrogram of speech enhanced with the MP1G algorithm and the
adaptive scheme (b) Estimated values of a with the adaptive scheme.
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Overall, the scores in the objective measures of the speech processed with the adap-

tive scheme were among the highest that could be obtained using fixed values of a.

Nevertheless, the residual noise had a rather strong musical character, while poor

estimation occasionally resulted in high levels of narrowband residual noise.

5.6 Summary

In this chapter we evaluated the algorithms that constitute the framework of al-

gorithms that was proposed in chapter 3. The performance of the algorithms was

evaluated using the SegSNR and PESQ objective measures, as well as with formal

and informal subjective listening tests. All the algorithms employed the DD method

for the adaptive estimation of the speech priors’ scale parameter θ, because fixed

values of θ were shown to result in high levels of musical noise. As the method for

the estimation of the shape parameter a, which was described in §4.3.3 and is com-

patible with the DD method failed to result in consistent estimates, the performance

of the algorithms was measured as a function of the value of the shape parameter a.

The adaptive method for the estimation of a, which was proposed in §4.4 was also

evaluated in this chapter.

The most influential element of the proposed speech enhancement algorithms was

shown to be the estimator. On the other hand, the estimated feature or the employed

prior had a somewhat smaller influence on the results. The impact of the different

features of the algorithms in their performance was summarised in §5.3.3.

The priors’ shape parameter a essentially controlled a trade off between the musical

character of the residual noise and its level, while the preservation of the weaker

speech spectral components was influenced to some extent. Small values of a re-

sulted in an adequate preservation of speech, but the residual noise had a strong

musical character. Larger values of a resulted in a more uniform residual noise, but

generally led to an increase in its level. The increase in the values of a also deterio-

rated the preservation of the weaker speech spectral components, especially for the

MAP algorithms. Optimal values of a were sought by means of a formal subjective

listening test.

The scheme for the adaptive estimation of a resulted in some of the highest scores
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in the objective measures that could be achieved with any fixed value of a. The

speech however suffered from musical residual noise, while occasional poor estimates

of a, mainly due to low input SegSNR levels, resulted in poor suppression of the

background noise in some relatively narrow frequency bands.
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Chapter 6

Noise estimation

The noise estimation algorithm is a vital part of an integrated speech enhancement

scheme. Accurate noise estimates are critical in such a scheme’s overall performance,

because an underestimation can result in less suppression of the background noise,

while noise overestimates result in increased speech distortion. In this chapter we

review some of the most well known noise estimation algorithms and present two

novel noise estimation algorithms that have been developed as part of this project.

In chapter 3 we examined a number of different prior densities that were used to

model the speech data. The noise STFT coefficients on the other hand, were mod-

elled only with a single distribution, the complex Gaussian. If the background noise

is stationary the Gaussian assumption for the distribution of the noise STFT coef-

ficients is supported by the Central Limit Theorem [15], and can be easily verified

by simulations. The above assumption is also valid even if the noise is only approxi-

mately stationary. However, if the noise is time varying and its amplitude fluctuates

significantly with time, the distribution of its STFT coefficients can deviate signifi-

cantly from the Gaussian model.

In the early stages of this project we experimented with alternative noise models and

we used the Gaussian Mixtures Models (GMM’s) that fitted the time varying noise

data very accurately. When these models were combined with a speech enhancement

algorithm they resulted in some improvement over the models that used a single

Gaussian distribution with a fixed variance. However, when the single Gaussian

models were allowed to adapt their variance according to the changes in the power
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of the noise signal their performance surpassed that of the GMM’s. Results of this

work are presented in §6.2.

The above results showed that the Gaussian model can be adequate for time varying

noise1 as well, as long as there is an algorithm that not only can estimate the noise

power, but it can also track its changes with time. Such an algorithm has been

developed during the course of this project and is presented in §6.3. The proposed

algorithm exploits some similarities between the distribution of the noisy speech

spectral amplitude coefficients within a single frequency bin and the distribution of

the corresponding coefficients of the corrupting noise. The above similarities are

used for the extraction of samples, from a window of past spectral amplitudes of

noisy speech, which are more likely to contain noise only. These samples are then

used for the calculation of an estimate of the noise power. The extraction of the noise

samples is based on matching the two first moments of the Rayleigh distribution.

The algorithms that are presented in this chapter are all designed to estimate the

power of the amplitude of the noise STFT coefficients i.e. E[|N|2], or 2σ2
N in the

notation of chapter 3. For use with algorithms that enhance the Re and Im parts of

the noisy STFT coefficients the output of the noise estimation algorithms has to be

divided by two. In order to simplify the notation, in this chapter we introduce the

symbol P, which will denote the estimate of E[|N|2], that is P ≡ Ê[|N|2]. We begin

our discussion on the estimation of noise by summarising in the next section some

of the most prominent noise estimation methods that can be found in the literature,

highlighting also their main benefits and drawbacks.

6.1 Previous methods

6.1.1 Noise estimation by averaging past spectral values

One method for estimating the noise power is found by averaging the past values

of the noisy speech spectrum. The averaging, which is typically implemented with

a first order recursion, is performed with the samples that are assumed to belong

1We need to mention here that the noise should vary with time in such a way that the signal
is stationary over the duration of an STFT analysis window. These signals might also be called
quasi stationary.
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to noise only, while the noise estimate is not updated when speech is believed to be

present. The above rule can be written as

H0(k, l) : P(k, l) = αdP(k, l − 1) + (1 − αd)R(k, l)2 (6.1)

H1(k, l) : P(k, l) = P(k, l − 1)

H0(k, l) denotes the hypothesis that R(k, l) contains noise only, while H1(k, l) de-

notes the hypothesis that R(k, l) contains noisy speech. αd is the smoothing param-

eter.

The speech presence or absence can be determined with a VAD. A simple imple-

mentation of a VAD is achieved by measuring the spectral distance between the

frame that needs to be classified and a noise template, which has to be provided.

If the distance is above a threshold the frame is assumed to contain speech, while

it is considered to contain only noise otherwise. For example suppose we wish to

classify frame l and we are provided with a noise template B̂(k, l), which can be the

noise estimate from the previous frame. A decision rule for the speech presence or

absence can be the following

1

K

K
∑

k=1

max
(

20 log(R(k, l)) − 20 log(B̂(k, l)), 0
) H1(l)

≷
H0(l)

δ (6.2)

H1(l) denotes the speech presence in frame l and H0(l) the speech absence, while δ

is an empirically determined threshold.

An improved version of a VAD was proposed by Sohn et al. [91]. A ratio of the likeli-

hood of speech presence given the noisy measurements over the likelihood of speech

absence is first formed and the average of the ratio’s logarithm is then compared to

a threshold. The rule can be written as follows

1

K

K−1
∑

k=0

ln

(

p(R(k, l)|H1(k, l))

p(R(k, l)|H0(k, l))

)

H1(l)

≷
H0(l)

δ (6.3)

where K is the number of the frequency bins. The likelihoods are formed with

the assumption that the STFT coefficients of speech and noise have a Gaussian

distribution, according to the analysis in [31].
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A problem with estimating noise using VAD’s is that if the noise level increases

suddenly, it is possible that the spectral distance or the likelihood ratio for the

noise only frames exceeds the threshold δ and noise only frames are misclassified as

speech. Additionally, it may be possible that the number of frames that are classified

as containing noise only is very small and an accurate noise estimate cannot be

obtained.

Malah et al. [69] proposed a scheme that offers better adaptability to the changes of

the noise power. Specifically, an adaptive smoothing factor αd was proposed that is

a linear function of the negative value of the a posteriori SNR γ. The rationale was

that higher values of γ might indicate an increase in the noise power and therefore

the value of αd should decrease in order to achieve a quicker adaptation of the noise

power estimate. Nevertheless, as the above algorithm is applied only in the speech

absent frames, the use of a VAD is still required.

The method proposed by Hirsch and Ehrlicher [48] did not explicitly employ a

VAD but there was an implicit decision about the presence of speech. The noise

estimate was updated only when the noisy speech spectral amplitude R(k, l) was

below a threshold, which was directly proportional to the square root of the existing

estimate of the noise power. It follows, that sudden increases in the level of the

noise power would cause this method to stop updating the estimates of noise.

A conceptually similar method was proposed by Lin et al. [64], which did not use a

VAD, in the sense that a hard decision about the presence or absence of speech was

not required. The first of the equations in 6.1 was employed for updating the noise

estimates, with a variable value of αd. The value of αd was a sigmoid function of the

a posteriori SNR γ, which was zero for γ < 1 and 1 for γ & 2. The behaviour of αd

under this estimation scheme is the opposite to that proposed in [69]. In the latter

work, the value of αd dropped with increasing γ because the update was performed

only on the frames that were classified as noise from the VAD. The goal in that

case was to track the increasing levels of noise, in frames that were already classified

as noisy. On the other hand, in [64] the value of αd increases with γ because it

implements a soft decision alternative to the VAD.
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6.1.2 Minimum statistics noise estimation

A popular method for estimating the power of the background noise is given by

tracking the minima of the amplitude of the noisy STFT coefficients within a fre-

quency bin. This family of methods is based on the observation that the noise power

in a frequency bin is related to the minimum values of the STFT coefficients. Indeed,

if we consider the amplitude values of a clean speech frequency bin, its minimum

values should be found during speech pauses and should ideally be zero. When

adding background noise, the minima increase and their values are related to the

average noise power.

The first algorithm that made use of the minimum statistics estimation method was

proposed by Martin [70]. To avoid problems related with the minima outliers, the

noisy speech power spectrum was first smoothed with a first order recursive equation

with a constant smoothing factor

R(k, l) = αpR(k, l − 1) + (1 − αp)R(k, l)2 (6.4)

where R(k, l) is the smoothed noisy speech power spectrum and αp the smoothing

factor. The minimum of R was then found in a window of D = 100 samples. As the

values of the minima will necessarily be lower than the average of the noise power,

the calculated minimum values were then compensated with a constant factor to

yield an unbiased estimate.

Later, Martin [71] introduced some improvements to his original algorithm. The first

was to introduce a variable smoothing factor αp for the power spectral values. The

reason was to avoid the compromise between insufficient smoothing of the samples

that belonged to noise and widening the spectral peaks that belonged to speech.

Additionally, he derived a variable compensation factor for the bias, using results

from the theory of minimum statistics.

To improve the efficiency of the minimum searching algorithm, Martin also proposed

to split the original window of D samples in Ds subwindows . In this way and by

storing the minima of the Ds − 1 previous subwindows, the number of comparisons

per signal frame, and thus the total computational cost, decreased significantly. Fur-
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thermore, the search for local minima in the current subwindow was also proposed,

in an effort to increase the speed of the algorithm’s response during periods when

the noise power is increasing.

An alternative method of searching for minima was proposed by Doblinger [29].

Instead of searching for minima within a window, the author proposed to track the

minimum values as

if Rmin(k, l − 1) < R(k, l) (6.5)

Rmin(k, l) = β1Rmin(k, l − 1) +
1 − β1

1 − β2

(R(k, l) − β2R(k, l − 1))

else

Rmin(k, l) = R(k, l)

where Rmin(k, l) is the minimum value of the smoothed noisy speech power spec-

trum at the (k, l) time frequency point and β1, β2 are experimentally determined

constants. The constant β2 in particular, controlled the adaptation time of the min-

imum to changes in the noise power. This method of minimum tracking is reported

in [83] to respond better in abrupt changes of the average noise power.

Two other methods that are related to the minimum statistics noise estimation

are those proposed by Ris and Dupont [86] and by Stahl et al. [92]. The first

method proposed to calculate the average of the d < D lowest energy samples

within a window of D samples and then compensate for the bias. The second

method exploited the sample with the dth lowest value (quantile) in the window of

D samples.

6.1.3 Minima controlled recursive averaging noise estimation

Algorithms of this category estimate the noise variance through averaging past spec-

tral values, in a similar sense to the algorithms presented in §6.1.1. However, the

parameter that controls the averaging is determined by the minima of the power

spectral values. Therefore, algorithms of this section, which also are the most re-

cent, can be viewed as a hybrid between the algorithms of §6.1.2 and §6.1.1.

An algorithm of this category was presented by Rangachari et al. [84]. The noisy
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speech spectrum is first smoothed according to eq. 6.4 with αp = 0.7. A comparison

of R(k, l) with P(k, l − 1) yields a rough decision about the presence of speech. If

speech is judged to be absent (H0) the noise is estimated with the first of eqs. 6.1

and a fixed αd = 0.8. If speech is present however, the parameter αd is controlled

by the minima. The minimum Rmin(k, l) is found with Doblinger’s method and the

ratio R(k, l)/Rmin(k, l) is compared to a frequency dependent threshold. If the value

of the ratio is below the threshold (higher probability of speech absence), the value

of αd remains at 0.8. Otherwise, it is more likely that the (k, l)th sample belongs to

speech and αd becomes 1, so that the noise estimate is not updated.

The algorithms by Cohen and Berdugo [23] and Rangachari and Loizou [83] take

a slightly different approach. By introducing the conditional probability of speech

presence p(Hc
1(k, l)) ≡ p(H1(k, l)|R(k, l)), they modify the recursive averaging eqs.

6.1 as

P(k, l) = P(k, l − 1)p(Hc
1(k, l)) + (6.6)

(

αdP(k, l − 1) + (1 − αd)R(k, l)2
)

(1 − p(Hc
1(k, l)))

In the above equation, the two branches of eq. 6.1 can be identified, multiplied with

the conditional speech presence probability. As the traditional smoothing factor

αd is kept constant, we can see that the recursive equation is now controlled by

p(Hc
1(k, l)).

The conditional speech presence probability is calculated as follows: The ratio

R(k, l)/Rmin(k, l) is compared to a threshold δ, and if it is found greater than the

threshold, the indicator variable Ind(k, l) takes the value 1, otherwise it becomes

zero. The conditional speech presence probability is then calculated as

p(Hc
1(k, l)) = αprp(H

c
1(k, l − 1)) + (1 − αpr)Ind(k, l) (6.7)

where αpr = 0.2

A difference between [23] and [83] is that in the first the minima are estimated with

Martin’s method while in the second with Doblinger’s. Additionally, the threshold

δ in the second method is frequency dependent.
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Finally, Cohen [19] proposed an alternative version of his previous algorithm by

estimating the conditional speech presence probability within a Bayesian framework.

Specifically, the speech presence probability given the noisy measurements was given

by

p(H1|γ) =
p(γ|H1)p(H1)

p(γ|H1)p(H1) + p(γ|H0)p(H0)
(6.8)

where γ is the a posteriori SNR. The probabilities of γ given the speech presence or

absence, were derived from the assumption of the Gaussian distribution of speech

and noise STFT coefficients, following the model in [31]. The minima of the spectral

values in this algorithm were used to control the probability of the speech absence

p(H0).

6.1.4 Energy clustering noise estimation

The energy clustering noise estimation method is based on the analysis of histograms

of the logarithm of the amplitude of consecutive STFT samples of noisy speech

within a single frequency bin, and the corresponding histograms of the corrupting

noise. Under the assumption that the analysed segments contain both speech and

silence portions, the histograms can look like the ones depicted in figure 6.1. Observe

that the distribution of noisy speech consists of two modes, the leftmost of which,

corresponds to the samples that contain noise only, while the rightmost corresponds

to the samples that contain speech plus noise. Additionally, the leftmost mode of

the speech distribution is approximately at the same position with the mode of

the distribution of the corrupting noise. Fitting two Gaussian pdf’s with the EM

algorithm [26], as proposed by Van Compernolle [95], or the utilisation of a two

centroid algorithm such as the k-means, as proposed by Ris and Dupont [86], can

extract the position of the leftmost mode of the noisy speech distribution, and hence,

yield an estimate for the noise energy.

The main drawback of this algorithm is that the assumption of the existence of two

modes in the distribution of noisy speech is not always valid, particularly when the

input SNR is low. The merging of the two modes in these cases can result in gross

inaccuracies in the noise estimates.
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Figure 6.1: Histograms of the logarithm of the amplitude of noisy speech and noise.
Samples were extracted from the frequency bin centered at 1 KHz from speech
corrupted with white Gaussian noise at 10 dB SegSNR.

6.2 Noise estimation based on Gaussian Mixture Models.

According to Brillinger [15], the DFT samples of a stationary signal with finite

moments follow a complex Gaussian distribution as the length of the DFT tends to

infinity. The complex Gaussian distribution will have zero mean, while its variance

at a particular frequency will be proportional to the power spectrum of the signal at

the same frequency. According to the above argument, consecutive STFT samples

within a single frequency bin of a stationary signal will be distributed according

to approximately the same Gaussian distribution. Figure 6.2(a) shows the Re part

of consecutive STFT samples of a stationary white Gaussian noise signal extracted

from the same frequency bin, which was centered at 1 KHz. The fitting of a Gaussian

distribution, with parameters estimated with the maximum likelihood method from

the samples of the signal, is also shown. Indeed, the accurate fitting of the Gaussian

distribution is in agreement with the theoretical result of Brillinger.

The Gaussian distribution however, is not an accurate model for consecutive STFT

samples calculated from time varying noises. Figure 6.2(b) shows the histogram of

the Re part of consecutive STFT samples calculated from time varying train noise

and the maximum likelihood fit of a Gaussian distribution. The fitting is clearly

poor. Based on the above observation and taking into account that the majority

of the recorded noises exhibit at least some variation with time, we investigated

the potential modelling of the noise STFT samples with Gaussian Mixture Models

(GMM) [12] .
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Figure 6.2: (a) Histogram of stationary white Gaussian noise (continuous line) and
ML fitting of a Gaussian distribution (dashed), (b) Histogram of time varying train
noise (continuous line), ML fitting of a Gaussian distribution (dashed) and ML
fitting of a 2 component GMM (dash-dot).

The Gaussian Mixture Models are density functions of the form

p(N) =
M

∑

m=1

wm N(µm, σ
2
m) (6.9)

where N(µm, σ
2
m) is a Gaussian density function with mean µm and variance σ2

m.

The weights wm ensure that
∫

p(N) dN = 1 and M is the number of the Gaussian

densities that constitute the mixture. The estimation of the parameters of the GMM

is typically performed with the Estimation Maximisation (EM) algorithm [12,26].

The model we proposed for the Re and Im parts of the noise STFT is a complex

zero mean GMM of the form

p(NRe, NIm) =
M

∑

m=1

wm
2πσ2

N,m

exp

[

−N
2
Re +N2

Im

2σ2
N,m

]

(6.10)

where NRe and NIm represent the Re and Im parts of the noise STFT coefficients.

The above model implies that the Re and Im parts of noise have the same variance,

which is in agreement with empirical observations. Integration of eq. 6.10 w.r.t.

NIm yields

p(NRe) =
M

∑

m=1

wm
√

2πσ2
N,m

exp

[

− N2
Re

2σ2
N,m

]

(6.11)

The distribution of the Im part is identical. The above equation reveals that the
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proposed noise model does not assume that the Re and Im parts of noise are in-

dependent, as p(NRe, NIm) 6= p(NRe)p(NIm). The dependencies reflect the fact that

if the variance of, say, the Re part changes due to a change in the noise power,

the variance of the Im part will change as well; hence the Re and Im parts are not

independent.

The model parameters wm and σ2
N,m are estimated separately from the Re and

Im parts, based on equation 6.11 via the EM algorithm. Simulations show that

the parameters estimated from the Re or Im parts are equal down to statistical

fluctuations. Therefore, the estimates obtained from either the Re or the Im parts

can be used with the model, or if both estimates are available their mean can also

be used. In figure 6.2(b) the dash-dot line shows the fit of the GMM with M = 2

to the real part of the time varying train noise data.

In the following, we derive the MMSE estimator of the speech spectral amplitude

with the 1 sided Chi priors and the proposed GMM noise model. Using eq. 6.10 and

following the same procedure as in appendix A.1 we can show that the likelihood

p(R,ψ|A, φ) is

p(R,ψ|A, φ) =
M

∑

m=1

wmR

2πσ2
N,m

exp

[

−R
2 + A2 − 2RA cos(ψ − φ)

2σ2
N,m

]

(6.12)

Substituting the likelihood from the equation above and the 1 sided Chi priors from

equation 3.21 into the expression for the MMSE estimator given in equation 3.22

and following the same procedure as in appendix A.6 we can show that the resulting

estimator is

Â =

∑M
m=1wm

(

2σ2
N,m

)
a−1

2 exp
[

−R2

2σ2
N,m

]

Γ
(

a+1
2

)

ζ
a+1

2
m 1F1

[

a+1
2
, 1, R

2ζm
2σ2
N,m

]

∑M
m=1wm

(

2σ2
N,m

)
a−2

2 exp
[

−R2

2σ2
N,m

]

Γ
(

a
2

)

ζ
a
2
m 1F1

[

a
2
, 1, R

2ζm
2σ2
N,m

] (6.13)

where ζm = θ
2σ2
N,m

+θ
.

The proposed estimator is compared with the MMSE amplitude estimator with Chi

priors and a single Gaussian noise model (MS1C, eq. 3.23). The latter estimator

however, allows the noise power to vary with time, to compensate for the time
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2-state WGN
SegSNR [dB]

Input 0 10 20
GMM 5.08 11.20 18.93
MS1C 6.14 12.55 20.42

PESQ
Input 2.13 2.75 3.41
GMM 2.61 3.17 3.63
MS1C 2.72 3.24 3.70

Train noise
SegSNR [dB]

Input 0 10 20
GMM 3.23 10.36 18.59
MS1C 5.77 12.64 20.73

PESQ
Input 2.46 3.04 3.64
GMM 2.65 3.21 3.71
MS1C 2.88 3.35 3.82

Table 6.1: Comparison of the proposed GMM-based algorithm with the MS1C

variations of the noise signal. The speech signals we are using for the evaluation

are 4 sentences from the TIMIT database, two of which are uttered by a male and

two by a female. Two different noise signals are used: the first is a stationary

white Gaussian noise, whose power increases by 6 dB after the two first utterances.

The second is noise recorded in a train, which contains a number of time varying

events. The parameters of the GMM model (eq. 6.10) are estimated with the EM

algorithm. The noise power estimate that is required for the second algorithm is

estimated directly from the noise samples for the first noise signal, while for the

second, the power is calculated from the noise signal with a first order recursion of

the form

P(k, l) = 0.9P(k, l − 1) + 0.1|N(k, l)|2 (6.14)

The priors’ shape parameter a is set to 2 for both algorithms. The results from the

above comparison are shown in table 6.1.

Table 6.1 shows that the MS1C algorithm outperforms the algorithm with the GMM

noise model. The MS1C algorithm is actually optimal for the two discrete states of

the first noise signal. The GMM based algorithm can be considered as optimal for

the combination of the two states. The lack of time information about the transition

of the states however, poses a clear drawback for the latter algorithm. Even in the

case of the train noise, where the transition between the different noise states is less

apparent, allowing the noise power to change with time yields better results than

using a more accurate but fixed model for the entire duration of the noise segment.

108



10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

(a)

0 100 200 300 400 500 600
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

d

r m

(b)

Figure 6.3: (a) Distributions of the noisy speech (continuous) and noise (dash dot)
spectral amplitudes, (b) value of the rm criterion as a function of the number of
samples d of the vector Q.

6.3 Noise estimation based on matching the moments of the

Rayleigh distribution

6.3.1 The Rayleigh Moment Matching noise estimation method

In this section we present an algorithm for the estimation of the noise power, which

is also capable of tracking its changes with time. The proposed algorithm, which

was published in [5], is based on the similarities between the distribution of consec-

utive noisy speech STFT amplitude samples within a single frequency bin and the

corresponding distribution of the corrupting noise. Figure 6.3(a) shows a typical

example of the above distributions. The distributions shown were created from 600

consecutive samples taken from the frequency bin centered at 1 KHz. The clean

speech was corrupted with white Gaussian noise at 10 dB SegSNR. An examination

of figure 6.3(a) reveals that the leftmost part of the noisy speech distribution resem-

bles the distribution of noise, which is the Rayleigh2 distribution according to the

complex Gaussian model of its STFT coefficients. Additionally, the noisy speech

distribution has a much longer tail, which is the result of the high amplitude spec-

tral components that belong to speech. The shape of the noisy speech distribution

is the result of the relative sparseness of the speech components within a window of

several time frames.

2Recall that the Rayleigh distribution is a special case of the 1 sided Chi distribution (eq. 3.21)
with a = 2.
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The above similarities were also exploited by Hirsch and Ehrlicher [48], although

that method required the calculation of histograms for every STFT sample of the

speech utterance, which resulted in an increased computational load. Our method

is based on the same observations as those of Hirsch and Ehrlicher but circumvents

the need for the calculation of histograms. The objective we are trying to achieve is

the separation of the Rayleigh-like lower part of the noisy speech distribution from

its heavy tails. The separation is based on matching the moments of the Rayleigh

distribution. The central idea is that if we have a vector of D past noisy spectral

amplitude samples and start discarding those with the higher values until the two

first moments of the Rayleigh distribution match, then the variance of the remaining

samples should give us an estimate of the noise power. The moments are calculated

from the data that remain after discarding those with the higher values.

The Rayleigh distribution is given by

p(x) =
2x

σ2
x

exp

(

−x
2

σ2
x

)

, x ≥ 0 (6.15)

and its two first moments are E[x] = 0.5
√

πσ2
x and E[x2] = σ2

x. Defining a vector

of D past spectral amplitude values as Q
△
= {R(k, l′) : l′ ∈ (l −D, l]}, which is also

sorted in ascending order, we can then form the following criterion that can indicate

the matching of the two first moments of the Rayleigh distribution

rm(d) = 0.5
√

πE [Q2(1 : d)] − E [Q(1 : d)] , d ∈ [1, D] (6.16)

The notation Q(1 : d) indicates the d first samples of the vector Q. If the elements of

Q are drawn from a Rayleigh distribution then the criterion rm is zero. However, if

the vector Q consists of noisy speech spectral samples the above criterion is typically

positive for d = D. Decreasing the value of d, until we find a value dm such that

rm(dm) ≈ 0, an estimate for the noise power can then be calculated as P(k, l) =

E [Q2(1 : dm)]. A typical behaviour of rm as a function of d is shown in figure 6.3(b).

The above procedure has to be repeated for every STFT sample of the speech

utterance. However, there is no need for sorting the vector Q each time. As the

analysis progresses by one time frame, it suffices to remove the R(k, l −D) sample
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For all frequency bins k

For all time frames l

Remove R(k, l −D) from Q

Sort R(k, l) in Q

If rm(dm|l−1) > 0

Decrease d = dm|l−1 until rm(d) < 0

else

Increase d = dm|l−1 until rm(d) > 0

P(k, l) = E
[

Q2(1 : d)
]

, dm|l = d

Table 6.2: Pseudo code for the RMM algorithm

from the vector Q and sort only the new sample R(k, l). Additionally, if the value

of dm from frame l− 1 is used as an initial estimate for d in the frame l, the number

of evaluations of the rm criterion can be kept to a minimum. A pseudo code for the

proposed algorithm is shown in table 6.2.

6.3.2 Evaluation

We evaluate the performance of the proposed noise estimation algorithm using two

tests. In the first, we investigate its ability to track time varying noise, while in

the second, the noise estimation algorithm combined with a speech enhancement

algorithm is used for the enhancement of speech corrupted by different types of

stationary and time varying noise. In both tests the results of the RMM algorithm

are compared with those of the Minimum Statistics (MinS) algorithm [71], which is

a widely acclaimed algorithm and has often acted as a benchmark for the evaluation

of other noise estimation algorithms e.g. [19, 83]. In all the simulations we used

D = 100 for the RMM algorithm, which was equal to the length of the minima

searching window of the MinS algorithm.

For the first test we corrupted four sentences from the TIMIT database with two

different types of time varying noise. The first noise was white Gaussian, whose

power increased by 6 dB in approximately 3 seconds. The overall input SegSNR was

0 dB. The second noise was recorded in a train and contained some time varying

events in the middle of the segment, which were possibly a consequence of the train

entering a tunnel. The overall input SegSNR was again 0 dB. The transformation to
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Figure 6.4: Noise tracking results for white Gaussian noise of increasing power. (a)
Actual noise power (dashed line), RMM estimate (thick line), MinS estimate (fine
line), all averaged across frequency. (b) Smoothed power of noisy speech (fine line)
and RMM estimate (thick line) for the frequency bin centered at 1 KHz.
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Figure 6.5: Noise tracking results for train noise. (a) Actual noise power (dashed
line), RMM estimate (thick line), MinS estimate (fine line), for the frequency bin
centered at 1 KHz. (b) Smoothed power of noisy speech (fine line) and RMM
estimate (thick line) for the same frequency bin.

the STFT domain was performed with Hamming windows of 256 samples and 75%

overlap. Figure 6.4(a) shows the actual power of the white noise (dashed line), the

RMM (thick line) and MinS (fine line) estimates of the noise power, all averaged

across frequency. Figure 6.4(b) shows the smoothed periodogram of the noisy speech

and the RMM noise power estimate for the frequency bin centered at 1 KHz. Figure

6.5(a) shows the smoothed train noise power at the frequency bin centered at 1

KHz and the respective estimates of the RMM (thick line) and MinS (fine line)

algorithms. Finally, figure 6.5(b) shows the smoothed noisy speech power for the

same frequency bin and the RMM estimate.
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Figure 6.4(a) highlights the main advantage of the RMM algorithm, which is the

quick response in the event of an increase in the noise power. Observe for example

that between frames 400 and 800 the RMM estimates are significantly closer to

the actual noise power than the MinS estimates, which are clearly lower. The

drawbacks of the RMM algorithm however, involve a slower response in the event of

a drop in the noise power (figure 6.5(a) frames 800-900) and a greater tendency to

overestimate the noise in the presence of large speech activity (figure 6.5(a), peaks

at frames 750 and 1050). The differences in the behaviour of the two algorithms

should be attributed to the fact that while the MinS uses only one sample (the

minimum) from the window of past spectral values to estimate the noise power, the

RMM algorithm essentially employs the dm minimum values. This makes the RMM

more prone to overestimate the noise power in periods of increased speech activity,

but also shortens the response time in the event of an increase in the noise power.

For the second evaluation test we corrupted 16 speech sentences from the TIMIT

database with stationary white Gaussian noise and with train noise that contained

a number of time varying events. The noise estimates provided by the RMM and

MinS algorithms were then supplied to the MS1C algorithm with a = 2 (a.k.a.

Ephraim-Malah MMSE-STSA [31]) in order to evaluate the quality of the resulting

speech. The objective evaluation was performed with the SegSNR and the PESQ

measures. The results are shown in tables 6.3 and 6.4.

Noisy RMM MinS Noisy RMM MinS

0 7.7 7.7 1.62 2.43 2.39

SegSNR 10 12.7 12.9 PESQ 2.30 3.04 3.00

20 16.8 17.2 2.96 3.57 3.56

Table 6.3: White noise results

Noisy RMM MinS Noisy RMM MinS

0 6.6 6.2 2.03 2.59 2.53

SegSNR 10 12.0 12.2 PESQ 2.67 3.21 3.19

20 16.8 17.0 3.31 3.70 3.70

Table 6.4: Train noise results

A general trend that can be identified in these tables is that the enhanced speech

obtained with the MinS noise estimates scores higher in the SegSNR measure, while
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the enhancement algorithm that employed the RMM noise estimates yielded higher

PESQ scores. An inspection of enhanced speech spectrograms reveals that the

weaker speech spectral components are better preserved with the MinS algorithm.

On the other hand, the residual noise exhibits less spurious spectral peaks and a

lower overall level when the RMM algorithm is used. This is due to the RMM

noise estimates being generally higher than those of the MinS algorithm. Informal

listening tests suggest that the better restoration of the weaker speech components

offered by the MinS algorithm is less perceptible compared to the more uniform

residual noise that is obtained when the RMM algorithm is used, which could also

justify the higher PESQ scores.

6.4 Summary

This chapter presented our work on the development of noise estimation algorithms.

After summarising the most prominent approaches for noise estimation we presented

an alternative modelling approach, which was based on GMM’s. The motivation

was that GMM’s were capable of modelling very accurately the distribution of time

varying noise STFT coefficients. The results showed however, that a model based

on a single Gaussian distribution might be preferable, as long as the model allows

for changes in the variance of the Gaussian distribution with time.

Such an algorithm was presented at the second part of the chapter. The proposed

algorithm was based on the similarities between the distribution of the STFT ampli-

tude coefficients of noisy speech, with the distribution of the respective coefficients

that belonged to the corrupting noise. An estimate of the noise power was then ex-

tracted from the coefficients of a window of past spectral amplitude values that were

classified as containing noise only. The classification was performed with a criterion,

which was based on matching the two first moments of the Rayleigh distribution.

The proposed algorithm exhibited a quick to response in the event of an increase

in the noise power, and despite its susceptibility to overestimate the noise power in

prolonged periods of speech activity, its overall performance was comparable with

that of a state of the art noise estimation method.

114



Chapter 7

Speech enhancement based on

Markov Random Fields

The STFT matrices of speech are known to have a particularly rich structure. Con-

secutive samples within a frequency bin are highly correlated, as it was demonstrated

by Cohen [21]. Additionally, correlations exist between the amplitudes of adjacent

frequency bins, which stem not only from the spectral leakage caused by the windows

used in the calculation of the STFT, but are also due to the common modulation of

the STFT amplitude coefficients in neighbouring frequency bins [3]. Furthermore,

the voiced time frames very often have a well defined structure, because of the har-

monics of the pitch frequency. The information that is encapsulated in the above

attributes of a speech STFT matrix can prove very helpful in the restoration of

speech degraded by background noise.

For example, consider the DD method, which is used for the estimation of the a

priori SNR, and is popular for its ability to reduce the level of the background

noise, and perhaps more importantly to help in the suppression of the musical noise

spectral peaks [16]. Equation 4.6 clearly demonstrates the Markovian character of

the DD method, and the influence the samples from the previous STFT frame exert

on those of the current. The correlation between successive STFT samples has also

been exploited by Cohen [21] for the estimation of the a priori SNR, while it is

also the main motivation for using Kalman filters for the restoration of the DFT

trajectories [102].
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In this chapter we present an effort to extend the more traditional unidimensional

speech models into both dimensions of the STFT, by exploiting the correlation

of speech both in time and in frequency. The framework within which we build

our two dimensional time frequency models is provided by the theory of Markov

Random Fields (MRF’s). The MRF’s are spatial stochastic processes, which can be

considered as two dimensional extensions of the Markov Chains. Therefore, as the

value of a r.v. in a Markov Chain depends on the values of the r.v.’s that precede it,

the value of a r.v. in an MRF depends on the values the r.v.’s which are considered

as its neighbours, in a two dimensional space.

One of the first studies on MRF’s was presented in Besag’s seminal paper [10],

where the MRF’s were rigorously defined and proof was given for some of their fun-

damental properties. The applications presented in [10] concerned two dimensional

agricultural data. The MRF’s were brought to the attention of the image and signal

processing community with a paper by Geman and Geman [39], where MRF’s were

employed in the Bayesian restoration of images. Since then, the MRF’s have been

extensively used in the image processing literature [11,14,35,57,58,77,80].

In speech processing on the other hand, MRF’s have found limited applications

so far. We are aware of Gravier’s work [43], who has employed MRF’s in speech

recognition, while Andia [2] has tried to tackle the restoration of missing STFT data

due to severe contamination from tonal noises. To the best of our knowledge, in the

current work it is the first time that Markov Random Fields are used in enhancing

speech that has been corrupted with broadband noise.

We begin this chapter by laying down the theoretical background of the Markov

Random Fields (§7.1) and introducing the fundamental concepts for their develop-

ment. A speech enhancement scheme based on Gaussian MRF’s is presented in §7.2,

which serves as a first example for demonstrating the MRF’s ability to incorporate

time and frequency dependencies in the estimation model. The Gaussian MRF es-

timator is unfortunately not well defined for all the values of its input parameters,

in a similar fashion as the MP1C and MP1G algorithms of chapter 3. This problem

is sidestepped with the introduction of the Chi MRF’s in §7.3. The chapter closes

with the introduction of an adaptive algorithm that uses the Chi MRF conditional

priors and combines a superior restoration of weak speech spectral components with
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an effective suppression of the residual noise.

7.1 Theoretical background

In this section we present the basic theory and some fundamental concepts of the

Markov Random Fields. Our presentation, which is primarily based on [10] and to

some extent on [11,14,80], is focused on those aspects of the MRF theory which we

will need for developing the proposed speech enhancement schemes in the subsequent

sections. A more extensive treatment of the theory of MRF’s can be found in the

above references.

7.1.1 Markov Random Fields and the Hammersley-Clifford theorem

Suppose that we have a vector of random variables X = [X1, ..., Xq] and let x =

[x1, ..., xq] denote a realisation of X. We define the space Si of the random variable

Xi as

Si = {xi : p(xi) > 0}, with i ∈ Q = {1, .., q}

where p(xi) is the probability density function of Xi. Let also denote the joint

probability density function of the Xi random variables as p(x) = p(x1, ..., xq). The

space S of the vector of random variables X is given by the Cartesian product of

the individual Si’s

S = S1 × S2×, ...,×Sq

A central concept in the development of Markov Random Fields is that of a neigh-

bour. Given two random variables Xi and Xj with i 6= j, we say that Xj is a neigh-

bour of Xi if and only if the conditional distribution p(xi|x1, ..., xi−1, xi+1, ..., xq)

depends on xj. The neighbours of the random variable Xi are denoted by Xn(i).

We also require that if the realisations X1 = x1, ..., Xq = xq can occur individu-

ally, they can also occur simultaneously. More formally, if p(xi) > 0 ∀i ∈ Q then

p(x1, ..., xq) > 0. The last condition is called the positivity condition and is usually

satisfied in practice.

Definition. A Markov Random Field is a collection of interacting random variables
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with joint probability density function p(x) for which:

(i) The positivity condition holds.

(ii) For each Xi there is a defined set of r.v.’s Xn(i), which are called neighbours

and the following statement is true

p(xi|xQ−i) = p(xi|xn(i)) ∀i ∈ Q

where, {Q− i} is a shorthand notation for the set of indices j ∈ Q with j 6= i.

An intuitively appealing method of constructing an MRF is via the conditional

density functions. This method allows the explicit definition of the interactions

between a random variable and its neighbours, which is not as straightforward to

achieve with a direct construction of a joint density function. The conditional density

approach however, is hindered by the disadvantage that not all conditional densities

yield a valid joint distribution for the process. This can be illustrated in the following

example. Suppose that the vector X consists of two only variables X = [X1, X2]

and x and z are two different realisations. Bayes’ theorem allows us to write the

two following expressions assuming that all the conditionals are positive

p(x1, x2)

p(z1, x2)
=
p(x1|x2)

p(z1|x2)
,

p(z1, x2)

p(z1, z2)
=
p(x2|z1)

p(z2|z1)

Multiplication of the above two equations yields

p(x1, x2)

p(z1, z2)
=
p(x1|x2)

p(z1|x2)

p(x2|z1)

p(z2|z1)
(7.1)

An alternative set of expressions could be

p(x1, x2)

p(x1, z2)
=
p(x2|x1)

p(z2|x1)
,

p(x1, z2)

p(z1, z2)
=
p(x1|z2)

p(z1|z2)

and consequently
p(x1, x2)

p(z1, z2)
=
p(x2|x1)

p(z2|x1)

p(x1|z2)

p(z1|z2)
(7.2)

There is no obvious reason why the right hand sides of eqs. 7.1 and 7.2 should be

equal, which implies that there must be some ‘hidden’ constraints in the form of the

conditional densities that result in valid joint density functions.

118



The above constraints are explored by the Hammersley-Clifford theorem [10, 17,

44], which poses the question: given the neighbours of each r.v. and the positivity

condition, what is the most general form the joint density p(x) can take in order to

define a valid probability structure to the system. Assuming that x0
i is a realisation

of Xi and defining x0 ≡ [x1, ..., xi−1, x
0
i , xi+1, ..., xq] we have

p(x)

p(x0)
=
p(xi|x1, ..., xi−1, xi+1, ..., xq)

p(x0
i |x1, ..., xi−1, xi+1, ..., xq)

(7.3)

The above equation implies that knowledge of the most general form p(x) can take,

provides the most general form for the conditional densities as well.

Theorem (Hammersley-Clifford) Let {p(x) > 0 : x ∈ S}, denote a probability

density function satisfying the positivity condition. Then p(x) is a Markov Random

Field if and only if

p(x) ∝
∏

C

ΨC(xC) (7.4)

where the functions ΨC(xC) are chosen arbitrarily, subject to 0 < ΨC(xC) < ∞ for

all x ∈ S. The sets of indices C ⊆ Q define sets of random variables xC, which in the

MRF literature are termed cliques. A clique is a set in which every random variable

is a neighbour of every other random variable in that set. Cliques can also be sets

that consist of a single random variable (singleton).

The above theorem was originally derived for discrete random variables, where p(x)

denoted a probability mass function. Its extension to continuous random variables

was however straightforward, subject to the integrability of p(x), which then denoted

a probability density function.

Although a number of different neighbourhood schemes exists [10] we will only be

concerned with first order schemes, as the one depicted in figure 7.1. In this scheme,

the random variables are arranged on a rectangular lattice and each one of them

depends on the values of its four nearest neighbours. As the lattice is not infinite,

the r.v’s at its edges will only have three neighbours, while the r.v.’s at the corners

will only have two. The cliques in this spatial scheme consist only of singletons and

pairs of neighbours. Therefore, only pairwise interactions are allowed between the

random variables.
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Figure 7.1: First order MRF neighbourhood. The cells that contain the ‘x’ are the
neighbours of ‘o’. The distribution of ‘o’ is independent of all the other cells if the
values of the ‘x’s are known.

7.1.2 Gaussian Markov Random Fields

A type of continuous MRF that is very common and serves as a good introductory

application of the theoretical developments of the previous section is the Gaussian

MRF. Its conditional density function is

p(xi|xn(i)) ∝ exp



− 1

2σ2
i



xi −
∑

j∈n(i)

bijxj





2

 (7.5)

where σ2
i is the variance of xi and bij is a weight that determines the influence of xj

on xi. The joint density function can be derived via the factorisation

p(x)

p(z)
=

∏

i∈Q

p(xi|x1, ..., xi−1, zi+1, ..., zq)

p(zi|x1, ..., xi−1, zi+1, ..., zq)
(7.6)

Substituting the expression for the conditional density from eq. 7.5 in the above

factorisation, and assuming the symmetry condition bij/σ
2
i = bji/σ

2
j the derived

expression for the joint density is 1

p(x) ∝ exp



−





∑

i∈Q

x2
i

2σ2
i

−
∑

{i,j}∈C

bij
σ2
i

xixj







 (7.7)

where C denotes the unordered set of pairs of indices, such that {i, j} ∈ C if and

only if xi and xj are neighbours. Note also that xC ≡ [xQ, xC ], or in other words the

cliques in a first order neighbourhood consist of the r.v.’s that form the MRF and

the pairs of r.v.’s which are mutually neighbours.

1see also appendix D for a similar derivation of the Chi MRF joint density, which is a generali-
sation of the Gaussian MRF.
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The density in eq. 7.7 can be written as

p(x) ∝ exp
[

−xGxT
]

(7.8)

where G is a matrix with elements Gii = 1/2σ2
i and Gij = −bij/2σ2

i . The above den-

sity function corresponds to the multivariate Gaussian. We see therefore, that the

conditionally Gaussian MRF leads to a multivariate Gaussian density. A condition

for the above density to be valid is that the matrix G is positive definite. Bouman

and Sauer [14] state that a sufficient condition for the positive definiteness of G is

that all of its elements are positive (Gij > 0∀i, j ∈ Q) and that Gii >
∑

j∈n(i)Gij,

∀i ∈ Q. A proof of the last statement is given in appendix D.

7.1.3 Estimation with MRF priors

Suppose that we observe a set of random variables Y = [Y1, ..., Yq], which are mod-

elled as a random function of the random variables X that constitute an MRF. An

example of such a random function could be the addition of a Gaussian noise vector

to X. We additionally suppose that the random variables Y are independent when

the values of X are given. For the joint density function of Y we therefore have

p(y) =
∏

i∈Q
p(yi|xi) (7.9)

A typical estimation problem under the above scenario is to find an optimal, in

some sense, estimate of X when only Y is observed, given that the joint density of

X belongs to the class of Markov Random Fields.

An estimator that has been widely used in the literature is the MAP, which according

to Bayes’ rule it can be written as (see §2.3.2)

x̂ = arg max
x

p(y|x)p(x) (7.10)

The above optimisation problem can be enormously difficult to solve due to the

typically large number of the random variables involved in real problems. In an

image processing scenario for example, even a small picture (256×256) contains 216
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pixels. A relatively efficient, although still demanding computationally optimisation

method, was proposed by Geman and Geman [39] involving simulated annealing

and the Gibbs sampler. Apart from the heavy computational load, an additional

disadvantage of this type of global optimisation is that it can induce positive corre-

lations between random variables that are arbitrary far from each other [11], while

it is generally desirable to have models whose dependencies are only local.

An alternative local instead of global optimisation method was proposed by Be-

sag [11], which was termed Iterated Conditional Modes (ICM). In this estimation

scheme the proposed estimate x̂i is the one with the maximum probability given the

observation yi and its neighbours xn(i). That is,

x̂i = arg max
xi

p(yi|xi)p(xi|xn(i)) (7.11)

The ICM method circumvents the problems posed by the computational load of the

global MAP estimate and the large scale dependencies. However, Besag [11] states

that it has no proper mathematical basis, mainly due to the reason that it does not

always converge to the global MAP solution, which is the theoretically sound solu-

tion according to the MRF model specifications. Nevertheless, the computational

efficiency and the mitigation of large scale dependencies offered by the ICM, ques-

tion the need for a strict adherence to the MRF theory, taking also into account the

fact that the ICM method does not require the conditional distributions to define a

legitimate MRF joint density, as predicted by the Hammersley-Clifford theorem. In

Besag’s words ‘it is only a partial answer to the above question to suggest that ad-

herence to genuine MRF’s removes some arbitrariness and aids interpretation’ [11].

7.2 Speech enhancement based on Gaussian MRF priors

In this section we propose a speech enhancement scheme that uses a Gaussian

Markov Random Field as a model of the speech spectral amplitude samples. In

particular, a MAP estimator of the speech spectral amplitude is derived using a

Gaussian MRF prior. The estimation method used is the ICM, because of its low

computational load and because we wish to incorporate in our model only local,

122



and not large scale, interactions between the spectral amplitude samples. We begin

by deriving the proposed estimator, then define the neighbourhood and finally, dis-

cuss the implementation of the estimator. The evaluation of the proposed scheme

is given in §7.2.4. A version of the algorithm proposed in this section has also been

published in [6].

7.2.1 Derivation of GMRF the estimator

The derivation of this estimator is very similar to that of the MP1C (§3.3.1.2 and

appendix A.7). The difference between the two estimators is that the MRF prior for

the spectral amplitude sample Ai is conditioned on its neighbours (i.e. p(Ai|An(i))),

while the Chi prior (eq. 3.21), used in the MP1C estimator, was a function of the

sample Ai alone (i.e. p(Ai)). The proposed estimator can be found by maximising

the expression

Âi = arg max
Ai

ln
[

p(Ri|Ai)p(Ai|An(i))
]

(7.12)

where the Gaussian MRF prior is given by

p(Ai|An(i)) ∝ exp



− 1

2σ2
i



Ai −
∑

j∈n(i)

bijAj





2

 (7.13)

In the above expression σ2
i represents the variance of the sample Ai and bij is the

weight between Ai and Aj. To obtain the likelihood p(Ri|Ai) we use the approximate

expression, derived in appendix A.1 eq. A.14

p(Ri|Ai) ∝ A
−1/2
i exp

[

−R
2
i + A2

i

2σ2
N,i

]

exp

[

RiAi
σ2
N,i

]

(7.14)

which allows the derivation of the estimator in closed form, as was the case with the

MP1C and MP1G estimators. In the above equation 2σ2
N,i ≡ E[|Ni|2] where Ni is

the ith sample of the (complex) noise STFT (eq. 3.2).

The expression for the estimator can then be written as

Âi = arg max
Ai






− ln (Ai)

2
− (Ai −Ri)

2

2σ2
N,i

−

(

Ai −
∑

j∈n(i) bijAj

)2

2σ2
i






(7.15)
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Differentiating the above expression w.r.t. Ai and setting the result equal to zero,

the MAP estimate for Ai can be expressed as

Âi = ζ1 +
√

ζ2
1 − ζ2 (7.16)

where

ζ1 =
Riσ

2
i + σ2

N,i

∑

j∈n(i) bijAj

2
(

σ2
i + σ2

N,i

) , ζ2 =
σ2
N,iσ

2
i

2
(

σ2
N,i + σ2

i

)

The above estimator with bij = 0 yields the MP1C estimator with shape parameter

a = 1 (half Gaussian priors).

Similar to the MP1C estimator with a = 1, the GMRF estimator (eq. 7.16) is not

well defined for all the values of its input parameters, as it can be seen from the

discriminant in eq. 7.16, which can take negative values. This is a consequence of

the approximation of the Bessel function (eq. A.13), which introduces a singularity

in the likelihood (eq. 7.14) for Ai = 0. As was the case with the MP1C algorithm,

the estimate of eq. 7.16 is used only when the discriminant is non negative, while

for negative values the noisy sample Ri is suppressed by 50 dB.

7.2.2 Definition of the neighbourhood

The selection of the neighbours of the sample Ai determines its interaction with

the rest of the spectral amplitude samples. Our motivation for employing the MRF

priors was the incorporation of the time and frequency dependencies of speech in

the statistical model. Initially, we experimented with a simple four sample neigh-

bourhood, where the neighbours were the immediately adjacent samples of Ai in

time and frequency. Adopting the notation A(k, l) to represent the spectral am-

plitude, where k and l denote the frequency and time indices respectively, such a

neighbourhood is defined as

An(k,l) = {A(k − 1, l), A(k + 1, l), A(k, l − 1), A(k, l + 1)} (7.17)

In the course of this work, it became apparent that a ‘harmonic’ neighbourhood,

similar to the one proposed by Andia [2], provides better results during voiced time

frames. In the harmonic neighbourhood the frequency neighbours for the voiced
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Figure 7.2: Illustration of the proposed harmonic neighbourhood. Upper right figure
shows the neighbours of a sample that belongs to an unvoiced frame and lower right
figure shows the neighbours used for the samples of the voiced frames.

frames are kf0 frequency bins apart, where kf0 is the frequency bin number that

corresponds to the pitch frequency of the current frame. (Assuming that the DC

frequency bin is numbered 0.) The definition of the harmonic neighbourhood is

given in eq. 7.18 and is illustrated in figure 7.2.

An(k,l) =







{A(k − 1, l), A(k + 1, l), A(k, l − 1), A(k, l + 1)} if l unvoiced

{A(k − kf0, l), A(k + kf0, l), A(k, l − 1), A(k, l + 1)} if l voiced

(7.18)

As a shorthand notation for the neighbours of Ai ≡ A(k, l) we introduce the notation

An(i) = {AS, AN, AW, AE}, which denote the south, north, west and east neighbours

respectively. If the frame l is unvoiced we denote AS ≡ A(k − 1, l) and AN ≡
A(k + 1, l), while if frame l is voiced AS ≡ A(k − kf0, l) and AN ≡ A(k + kf0, l). In

both cases it holds that AW ≡ A(k, l − 1) and AE ≡ A(k, l + 1)2.

The above type of neighbourhood implies that a pitch estimate for each of the voiced

frames is needed. The estimates are obtained with the pitch estimator of the 2400

bps Federal Standard Speech Coder [93]. This pitch estimation algorithm is based

on autocorrelation and the application of error correcting procedures for common

2The DC and the Nyquist frequency bins are calculated with the weights of the frequency
neighbours AS, AN set to zero. The voiced frame samples, which are below the pitch frequency are
also calculated with a local neighbourhood. That is because they typically have low speech energy
and the local neighbourhood avoids contamination from frequency bins above the pitch frequency,
which typically have higher energy. Finally, the samples of the voiced frames that are less than
a pitch frequency apart from the Nyquist frequency bin have the north neighbour’s weight set to
zero.
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errors such as pitch doubling.

Regarding the performance of the pitch estimator, we should mention that the pro-

posed speech enhancement algorithm does not require a great accuracy for the pitch

estimates. The reason is that only the frequency bin number that corresponds to the

pitch frequency is required and not the actual pitch frequency. In our experiments

we have used analysis windows of 256 samples for calculating the STFT coefficients,

while the sampling frequency was 8 KHz. This implies that each frequency bin corre-

sponds to a bandwidth of 31.25 Hz, which makes the speech enhancement algorithm

robust to relatively small inaccuracies of the pitch estimator.

7.2.3 Implementation

In order to obtain an estimate for Ai according to eq. 7.16 there are a number of

quantities related to the ith STFT point that must be known (i.e. Ri, σ
2
N,i, σ

2
i ), as

well as quantities that correspond to neighbouring STFT points, such as Aj and bij.

In this section we discuss the estimation of the above quantities, not all of which

are readily available during the estimation of Ai. Additionally, the definition of a

valid MRF scheme requires that bij/σ
2
i = bji/σ

2
j (see §7.1.2). We also explain how

the above requirement is fulfilled within our estimation scheme.

The variance of the noise spectral amplitude coefficients σ2
N,i can be obtained from

a noise estimation algorithm and the value of σ2
i can be estimated from the a priori

SNR ξi. The latter quantity is estimated with the DD method, as shown in chapter

4, while the relationship between σ2
i and ξi is σ2

i = 2ξi σ
2
N,i.

The estimation of the speech spectral amplitudes Ai proceeds first from smaller to

larger frequency indices k and subsequently form smaller to larger time frame indices

l. According to this estimation ‘schedule’, during the estimation of Ai estimates

exist for AS and AW. The same is not true for AE and AN, although their values are

required according to eq. 7.16. For this reason, temporary estimates of AE and AN

are calculated, which are used only for the estimation of Ai and are then discarded.

The estimates are calculated with eq. 7.16 setting the neighbour weights bij to zero.

Finally, in order to generate a valid MRF scheme, the symmetry condition bij/σ
2
i =
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For all time frames l

For all frequency bins k

Obtain σ2
N,i from the noise estimation algorithm

Estimate AN, σ2
N with eq. 7.19 and bij = 0

Estimate AE, σ2
E with eq. 7.19 and bij = 0

Estimate σi = 2ξi σ
2
N,i with the DD method

Estimate
∑

j∈n(i)
bij
σ2
i

Aj according to eq. 7.20

Estimate Âi according to eq. 7.19

Table 7.1: Pseudo code for the GMRF algorithm

bji/σ
2
j must be satisfied. A method of achieving this is to first write eq. 7.16 as

Âi = ζ1 +
√

ζ2
1 − ζ2 (7.19)

where

ζ1 =
Ri + σ2

N,i

∑

j∈n(i)
bij
σ2
i

Aj

2
(

1 + σ2
N,i/σ

2
i

) , ζ2 =
σ2
N,iσ

2
i

2
(

σ2
N,i + σ2

i

)

Then by setting the summation term of ζ1 equal to

∑

j∈n(i)

bij
σ2
i

Aj =
biS
σ2
i

AS +
biN
σ2

N

AN +
biW
σ2
i

AW +
biE
σ2

E

AE (7.20)

and ensuring that biS = biN and biW = biE the symmetry condition is fulfilled. In

the above equations σ2
N and σ2

E are the second moments of AN and AE respectively,

which had already been calculated during the temporary estimation of AN and AE.

A pseudo code for the GMRF algorithm is shown in table 7.1

7.2.4 Results

For the evaluation of the proposed GMRF algorithm we use the simulation setup

described in §5.1. That is, 48 sentences from the TIMIT database are corrupted with

additive white Gaussian and car noise at three different input Segmental SNR’s and

the noisy sentences are enhanced with the proposed algorithm. The noise power

is estimated directly from the noise samples, in order to eliminate the effect of a
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Figure 7.3: Speech enhanced with the GMRF algorithm and different values of bij.

noise estimation algorithm. The objective speech quality measures used are the

SegSNR and the PESQ (§5.2), while the smoothing parameter α of the DD method

is set to 0.99. Along with the objective speech quality measures, we also show some

spectrograms that illustrate the effect of the neighbour coupling parameter on the

enhanced speech. All the spectrograms shown in this chapter correspond to the

same phrase used in §5.2 (‘Be careful not to plough over the flower beds’).

Figure 7.3 shows a spectrogram of speech enhanced with the GMRF algorithm and

three different neighbour weights bij. The spectrograms show that as the values of

bij increase more speech spectral components are preserved. This is the result of the

time and frequency coupling that the bij weights impose.

Tables 7.2, 7.3 show the results in the objective measures obtained with the speech

database described in §5.1. Although,the SegSNR scores increase with the value

of bij, the PESQ scores remain roughly the same for bij = 0 and 0.12, while they

drop for bij = 0.25. The PESQ scores reveal the fact that the excessive coupling
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between the neighbours generates estimation artifacts that deteriorate the quality

of the enhanced speech. Therefore, although from figure 7.3 the speech harmonics

seem to be better preserved when bij equals 0.25 rather than 0.12, the higher spectral

estimates of the former case, particularly in the segments between the words (e.g.

between 1.3-1.4 secs), distort the speech rather than enhancing its quality.

Noisy bij = 0 bij = 0.12 bij = 0.25

0 7.17 7.51 7.47

SegSNR 10 12.72 13.25 13.39

20 20.02 20.72 21.02

2.11 2.63 2.61 2.55

PESQ 2.80 3.17 3.17 3.14

3.46 3.80 3.82 3.81

Table 7.2: Objective measure results for white noise

Noisy bij = 0 bij = 0.12 bij = 0.25

0 10.71 10.90 10.83

SegSNR 10 16.59 16.82 16.83

20 23.76 24.00 24.10

2.89 3.33 3.33 3.26

PESQ 3.49 3.83 3.83 3.79

4.07 4.19 4.19 4.18

Table 7.3: Objective measure results for car noise

The most serious drawback of the GMRF algorithm however, stems from the fact

that the estimator is not defined when the discriminant in eq. 7.16 is negative. This

characteristic, which is also present in the MP1C and MP1G estimators of chapter 3

for small values of a, generates large differences between the estimates obtained for

input samples that have a marginally positive or negative discriminant. The result is

the appearance of some isolated spectral peaks, which are perceived as musical tones

and are unfortunately amplified as the coupling between the neighbours increases.

An attempt to rectify this problem, and create a well defined estimator for all the

values of its input parameters, will be made in the next section with the introduction

of the Chi Markov Random Fields.

129



7.3 Speech enhancement based on Chi MRF priors

The MP1C estimator of chapter 3 was not well defined for all the values of its

input parameters, when the shape parameter a was less than 1.5. This resulted in

enhanced speech that suffered from musical noise, due to the fact that the output of

the estimator was not continuous with respect to its input arguments. This problem

was however rectified when the value of a increased beyond 1.5. We have seen in

§7.2.1 that the MP1C algorithm with a = 1 is a special case of the GMRF algorithm,

obtained by setting bij = 0. Additionally, the GMRF algorithm was ill defined in

the same sense as the MP1C with a = 1, also suffering from musical residual noise.

In this section we make an attempt to rectify these shortcomings of the GMRF

algorithm by introducing the Chi MRF priors, whose parameter a can be tuned so

that the resulting estimator is well defined for all the values of its input parameters,

so the residual noise of the resulting speech has a uniform character.

7.3.1 Chi Markov Random Fields - the CMRF Estimator

The Chi MRF is an extension of the Gaussian MRF in an analogous fashion with

the Chi density function being a generalisation of the Gaussian. We define the

conditional density function of the Chi MRF as

p(Ai|An(i)) ∝ Aa−1
i exp



− 1

θi



Ai −
∑

j∈n(i)

bijAj





2

 (7.21)

Under the assumption that bij/θi = bji/θj, the joint density function for the Chi

MRF is (appendix D)

p(A) ∝
∏

i∈Q

(

Aa−1
i

)

exp



−
∑

i∈Q

A2
i

θi
+

∑

{i,j}∈C

2bij
θi

AiAj



 (7.22)

A sufficient condition for the above expression to constitute a valid probability

density function (i.e. |
∫

A
p(A)dA| <∞) is that bij > 0, ∀i, j ∈ Q and

∑

j∈n(i) bij <

1, ∀i ∈ Q. The above sufficiency condition is proved in appendix D, demonstrating

that the Chi MRF’s are valid MRF schemes.
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The procedure for deriving the estimator based on the Chi MRF priors is identical to

the procedure followed for the GMRF. Substituting the expression for the likelihood

(eq. 7.14) and the Chi MRF prior (eq. 7.21) in eq. 7.12, yields the following

expression for the estimator

Âi = arg max
Ai






− ln (Ai)

2
− (Ai −Ri)

2

2σ2
N,i

+ ln(A
(a−1)
i ) −

(

Ai −
∑

j∈n(i) bijAj

)2

θi







(7.23)

The maximum of the above expression can be found by setting its first derivative to

zero. The resulting estimator can be expressed as

Âi = ζ1 +
√

ζ2
1 − ζ2 (7.24)

where

ζ1 =
Riθi + 2σ2

N,i

∑

j∈n(i) bijAj

2
(

θi + 2σ2
N,i

) , ζ2 = (1.5 − a)
σ2
N,iθi

θi + 2σ2
N,i

The implementation of the above estimator is identical to that of the GMRF estima-

tor. The same harmonic neighbourhood is also employed. The parameter σ2
i of the

GMRF estimator has been replaced by θi in the CMRF and its value is calculated

via the a priori SNR from the relation (see table 4.3)

θi =
4σ2

N,iξi

a

7.3.2 Results

The simulation setup used for the evaluation of the CMRF algorithm is identical

to that used for the evaluation of the GMRF algorithm, which was described in

§7.2.4. Figure 7.4 shows spectrograms of a speech utterance enhanced with the

CMRF algorithm with a = 1 and bij = 0, 0.06 and 0.12. The spectrograms reveal

that as the coupling imposed by bij increases more speech spectral components

are recovered. Nevertheless, despite the fact that the residual noise has a uniform

character, its level increases with increasing values of bij. Informal listening tests also
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Figure 7.4: Speech enhanced with the CMRF algorithm and different values of bij.

indicate that the merits of the better preservation of the speech spectral components

are outweighed by the increased level of the residual noise for all values of bij. This

is also indicated in the results of the objective measures which drop monotonically

with the increase of bij in almost all cases, the only exception being the SegSNR at

the highest input SNR. Tables 7.4, 7.5 present these results for different values of bij.

The results in the above tables were obtained with the speech database described

in §7.2.4.

An interpretation as to why the coupling between the neighbours increases the

residual noise level can be provided by inspection of the formula of the CMRF

estimator (eq. 7.24). Setting bij = 0 yields the MP1C estimator, while bij > 0

implies that

ÂCMRF ≥ ÂMP1C

where ÂCMRF and ÂMP1C are the CMRF and MP1C estimates. As the influence

of the neighbours does not depend on whether they contain speech plus noise or
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noise only information, since the bij’s are fixed, increasing the coupling will increase

the estimates of the noise only regions of the spectrogram as well as those that

contain speech. This effect was not as prominent in the GMRF algorithm, because

of the hard thresholding, arising when negative values of the discriminant were en-

countered, which occurred mainly in the noise dominated portions of the utterance.

However, as the CMRF estimator is well defined for all the values of its input argu-

ments the above effect is more pronounced. In the following section we present an

adaptive method for the estimation of the neighbour weights that avoids the above

problem and enhances the spectral components that contain mostly speech.

Noisy bij = 0 bij = 0.12 bij = 0.25

0 6.80 4.92 2.94

SegSNR 10 12.59 12.38 11.57

20 20.06 20.74 20.53

2.11 2.79 2.57 2.33

PESQ 2.80 3.28 3.12 2.97

3.46 3.77 3.63 3.55

Table 7.4: Objective measure results for white noise

Noisy bij = 0 bij = 0.12 bij = 0.25

0 10.20 9.70 7.68

SegSNR 10 16.53 16.46 15.52

20 23.86 23.99 23.60

2.89 3.36 3.31 3.13

PESQ 3.49 3.79 3.76 3.65

4.07 4.17 4.16 4.12

Table 7.5: Objective measure results for car noise

7.3.3 Adaptive selection of the neighbour weights

In this section we propose the use of adaptive weights between the neighbours,

in order to improve the restoration of the speech spectral components, without

increasing the level of the residual noise. In order to attain this goal we make

the bij weights a function of the local SNR, so that the influence of a neighbour

increases when its SNR is high and vice versa. Additionally, we wish to decouple

the parameter θi from the a priori SNR and the DD method, in order to avoid having

the MP1C estimates as a lower bound of the new algorithm’s estimates. In other
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words, in the new algorithm, which is referred to as Adaptive CMRF (ACMRF), we

wish to remove the constraint ÂACMRF ≥ ÂMP1C .

The proposed estimates for the parameters θi and bij are

θi
2σ2

N,i

=
wiiξ

l
i

∑

m∈n(i)wimξ
l
m + a/2

(7.25)

and

bij =
wij

√

ρij ξlj
∑

m∈n(i)wimξ
l
m + a/2

(7.26)

The term ξli is a local a priori SNR at sample i, defined as ξli ≡
E[A2

i ]

2σ2
N,i

. The term ρij

on the other hand is a ‘cross’ a posteriori SNR between samples i and j defined as

ρij ≡ R2
i

2σ2
N,j

. The constants wij are weights that control the amount of interaction

between the neighbours. The expression in eq. 7.25 is essentially a ratio between the

SNR of the sample that is being estimated and the SNR of its neighbours. Under

this estimation scheme the term θi/2σ
2
N,i is large when the local SNR at the sample

i is higher than that of its neighbours and vice versa. The expression for bij was

chosen with a similar concept in mind, but as the development that leads to the

exact form of eq. 7.26 is more involved, it will be presented later in §7.3.5.

We now consider the estimation of the parameters that are involved in eqs. 7.25

and 7.26. We assume the same schedule for the estimation of the STFT samples as

in §7.2.3, i.e. first from smaller to larger frequency indices k and subsequently form

smaller to larger time frame indices l. According to this, during the estimation of

Ai there are available estimates for AS and AW, but not for the AN and AE. For

the two latter quantities we need to calculate temporary estimates. The temporary

estimate for AN is found as

ÂN =
(

R2
N − 2σ2

N,N

)0.5
(7.27)

and an equivalent formula is used for the estimation of AE. For the a local priori

SNR’s of the neighbours we propose the estimates

ξ̂lj =
Â2
j

2σ2
N,j

, j ∈ n(i) (7.28)
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while for the a priori SNR of the sample Ai we use

ξ̂li =
R2

i

2σ2
N,i

− 1 (7.29)

The above strategy for the estimation of the parameters that are involved in eqs.

7.25 and 7.26 allows us to write the ACMRF estimator in a very compact form and

provides some further intuition on its behaviour. We begin by noting that according

to eq. 7.28,
√

ρij ξ̂ljÂj = Riξ̂
l
j. Using this last result, substitution of the expressions

for θi and bij (eqs. 7.25 and 7.26) in the equation for ζ1 (eq. 7.24) will yield after a

simple algebraic manipulation

ζ1 =
wiiξ̂

l
i Ri +

∑

j∈n(i)wij ξ̂
l
j Ri

2
(

wiiξ̂li +
∑

j∈n(i)wij ξ̂
l
j + a/2

) (7.30)

If we denote by ξ̂gi a ‘global’ estimate of the a priori SNR at sample i, which we

define as

ξ̂gi ≡ wiiξ̂
l
i +

∑

j∈n(i)

wij ξ̂
l
j (7.31)

then ζ1 can be further simplified to

ζ1 =
ξ̂gi Ri

2
(

ξ̂gi + a/2
) (7.32)

Following the same procedure, ζ2 can be reduced to

ζ2 = (1.5 − a)
σ2
N,iwiiξ̂

l
i

ξ̂gi + a/2
(7.33)

The ACMRF estimator can therefore be summarised as

Âi = ζ1 +
√

ζ2
1 − ζ2 (7.34)

where

ζ1 =
ξ̂gi Ri

2
(

ξ̂gi + a/2
) ζ2 = (1.5 − a)

σ2
N,iwiiξ̂

l
i

ξ̂gi + a/2
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Recall from §3.3.1 eq. 3.27 that the MP1C estimator was given by

Âi = ζ1 +
√

ζ2
1 − ζ2 (7.35)

where

ζ1 =
ξiRi

2 (ξi + a/2)
ζ2 = (1.5 − a)

σ2
N,iξi

ξi + a/2

The term ξi in the above equations denotes the a priori SNR, which is calculated

with the DD method. Therefore, apart from the difference between the numerators

in the definition of the ζ2 the ACMRF estimator can be viewed as the MP1C with

a time frequency extended method for the estimation of the a priori SNR.

7.3.4 Results

In our implementation of the ACMRF estimator the values for the weights wij

we have used are wiS = 0.48, wiW = 0.49, wiN = 0.01, wiE = 0.01 and wii = 0.01.

Significantly larger weights are placed on the south and west neighbours because the

local a priori SNR’s ξ̂S and ξ̂W are estimated from AS and AW, which were already

estimated with the ACMRF algorithm before the estimation of Ai and therefore

are more reliable. Conversely, the remaining local a priori SNR’s are estimated

with a less reliable, but computationally more efficient, power spectral subtraction

approach (i.e. ξ̂N =
(

R2
N/2σ

2
N,N − 1

)0.5
), which typically results in estimates of

increased variance. Experiments have shown that increasing the values of wiN, wiE

and wii at the expense of wiS and wiW typically results in musical residual noise.

Finally, a lower limit of -25 dB is placed at the global a priori SNR ξ̂gi , because it

contributes to the uniform character of the residual noise. The simulation setup for

the evaluation of the ACMRF algorithm is the same to that described in §7.2.4,

with the exception of the DD method, which is not required by this algorithm and

therefore is not used.

We initially consider the performance of the ACMRF algorithm in comparison to

the MP1C algorithm of chapter 3. Figure 7.5(a) shows a speech utterance processed

with the MP1C algorithm and a = 2, while figure 7.5(b) shows the same utterance

processed with the ACMRF algorithm also using a = 2. Observe that the ACMRF

algorithm provides a significant improvement in the preservation of speech over the
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Figure 7.5: Speech enhanced with the MP1C and ACMRF algorithms using a = 2
for both.

MP1C algorithm. Furthermore, this improvement does not come at the expense of

an increase in the residual noise level, which as figure 7.5 shows is approximately the

same for both algorithms. Informal listening tests confirm that the residual noise of

the ACMRF algorithm has a uniform character, although the residual noise of the

MP1C is more similar in quality to the original noise. Finally, the time and par-

ticularly the frequency coupling of the ACMRF algorithm decreases drastically the

number of isolated spectral peaks. This is a significant advantage from a perceptual

point of view, because isolated spectral peaks in the vicinity of the main corpus

of the speech energy were judged as being quite harmful during the subjective test

performed in §5.4.

We now proceed to investigate the effect of the parameter a on the enhanced speech.

For a < 1.5 the ACMRF estimator is again not well defined, as the discriminant

appearing in eq. 7.34 can be negative. The strategy employed is to use the resulting

estimate only when the discriminant is positive and suppress the noisy sample by 50

dB otherwise. An example of an utterance enhanced with the ACMRF algorithm

and a = 1 is shown in figure 7.6(a). Such low values of a are successful in restoring a

large number of speech spectral components, particularly in the voiced segments of

the utterance. However, the rather strong time frequency coupling in combination

with the hard threshold of this algorithm, generates a number of isolated spectral

peaks, which are perceived as musical tones and speech distortion.

The above problem is alleviated for a > 1.5, because the the estimator is well defined
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Figure 7.6: Speech enhanced with the ACMRF algorithm and different values of a.

for all the values of its input parameters. This eliminates the isolated spectral

peaks, while the residual noise has uniform character and the speech distortions are

minimised. An example of the ACMRF algorithm with a = 2 is shown in figure

7.6(b). A further increase of a does not alter the quality of noise, but results in the

loss of some of the weaker speech spectral components. This effect is rather mild

for a as large as 3 (figure 7.6(c)), but becomes more severe as a increases further

(figure 7.6(d)). The reason behind the underestimation of the weaker speech spectral

components with increasing values of a, is mainly the a/2 factor in the denominator

of ζ1 in eq. 7.34, which results in a decrease of the estimates Âi as a increases.

Figures 7.7, 7.8 show the scores in the objective measures of the ACMRF algorithm

for different input SegSNR levels and noise types. The results were obtained with

the speech database described in §7.2.4. For all the presented cases, the SegSNR

exhibits a maximum around a = 1.4 and drops monotonically for larger a’s. The

PESQ on the other hand, reaches its maximum for 1.8 < a < 3, but also maintains a
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Figure 7.7: Performance of the ACMRF algorithm as function of the parameter a
for white Gaussian noise.

fairly constant value within this range. The values of PESQ signify that for a > 1.8

the algorithm results in uniform residual noise and minimal speech distortions, while

the loss of speech spectral components is not perceptually significant for a as large

as 3. This range of a’s is considered as the most useful for this algorithm.

Although subjective tests, such as those in §5.4, could be performed in order to

identify an optimum value for a, we believe it is not as necessary for the ACMRF

algorithm as it was for the algorithms of chapter 3. Recall that for the algorithms in

chapter 3 the parameter a represented a trade off between the level of the residual

noise and its musical character. For the ACMRF algorithm however, there seems to

be an optimum range between 1.8 and 3. Smaller values result in musical noise and

distortion, whereas higher values result in an underestimation of speech components,

and both extremes seem to lack any obvious advantage. Furthermore, the objective

measures scores do not vary significantly (esp. the PESQ) for 1.8 < a < 3, which
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Figure 7.8: Performance of the ACMRF algorithm as function of the parameter a
for car noise.

indicates that the quality of speech, from a perceptual point of view at least, remains

fairly constant.

Finally, we provide a comparison between the the MP1G, MS1C and ACMRF algo-

rithms, using for the first two the values of a obtained via the subjective experiments.

For the ACMRF algorithm, we use a = 2. Table 7.6 shows the scores of the objective

measures for the three algorithms and the three different input SegSNR’s for white

noise. The respective results for car noise are shown in table 7.7. Both tables reveal

that the ACMRF algorithm yields consistently higher scores than the MP1C and

MS1C algorithms.

Figure 7.9 shows spectrograms of an utterance enhanced with the three algorithms.

A conclusion drawn from chapter 5 was that the although the MAP algorithms result

in lower levels of residual noise, the MMSE algorithms are more successful in the

preservation of the speech spectral components. Figure 7.9 reveals that the ACMRF
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Input SegSNR 0 dB 10 dB 20 dB

SegSNR PESQ SegSNR PESQ SegSNR PESQ

MP1G a = 2.6 7.19 2.74 12.96 3.24 20.40 3.78

MS1C a = 1.4 6.71 2.81 13.03 3.33 20.69 3.82

ACMRF a = 2 7.83 2.91 13.95 3.45 21.50 3.95

Table 7.6: Comparative results for the MP1G, MS1C and ACMRF algorithms for
white Gaussian noise.

Input SegSNR 0 dB 10 dB 20 dB

SegSNR PESQ SegSNR PESQ SegSNR PESQ

MP1G a = 2.6 10.62 3.36 16.79 3.80 24.02 4.18

MS1C a = 1.4 9.72 3.37 16.61 3.82 24.13 4.20

ACMRF a = 2 10.97 3.49 17.46 3.92 24.54 4.23

Table 7.7: Comparative results for the MP1G, MS1C and ACMRF algorithms for
car noise.

algorithm combines the advantages of both MAP and MMSE algorithms. It is able

to provide residual noise levels similar to that of the MAP, while the preservation

of the speech spectral components surpasses that of the MMSE.

7.3.5 Discussion - Motivation

In the previous section we have seen that the ACMRF algorithm is able to restore

the weaker speech spectral components while keeping the level of the residual noise

low. This behaviour was not attainable from the CMRF algorithm, which used

fixed weights between the neighbours. Nevertheless, unlike the CMRF algorithm,

the ACMRF has a theoretical weakness: it is not possible to define a valid joint

probability density function because the symmetry condition bij/θi = bji/θj is not

satisfied. We can see this by substituting the expressions for θi and bij from eqs.

7.25, 7.26 in the symmetry condition equation, which yields

wij

√

ρijξlj

2σ2
N,iwiiξ

l
i

6=
wii

√

ρjiξli

2σ2
N,jwijξ

l
j

(7.36)

The ACMRF therefore cannot be considered as an MRF algorithm in the strict sense,

because it yields no valid joint probability density function. Instead the ACMRF

could be seen as an MRF-based or MRF-inspired algorithm. However, it is probably
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Figure 7.9: Speech enhanced with the MP1G, MS1C and ACMRF algorithms.

fair to say that the above remark has a more theoretical than practical significance.

After all, the ICM estimation, on which the ACMRF is based, does not require the

existence of a valid joint density, as the global optimisation methods do [11].

In the presentation of the update equations for θi and bij (eqs. 7.25, 7.26), we

mentioned that the update for θi was essentially a ratio between local SNR’s, pro-

portional to the local SNR of the ith sample. The process that led to the derivation

of the update equation for bij was delayed however until the end of the chapter, be-

cause it is slightly more involved, but we believe that it provides interesting insights

on the application of MRF’s to speech enhancement.

After the failure of the CMRF algorithm with the fixed weights to restore the speech

spectral components without increasing the residual noise level, we considered al-

tering the influence of the neighbours depending on their local SNR. The rationale

was that a sample with high SNR would typically correspond to speech, therefore

it should contribute to the final estimate, while a low SNR sample would mainly
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contain noise, so it should be excluded. The weights first considered were

θi
2σ2

N,i

=
wiiξ

l
i

∑

m∈n(i)wimξ
l
m + a/2

(7.37)

and

bij =
wijξ

l
j

∑

m∈n(i)wimξ
l
m + a/2

(7.38)

According to these weights, the influence of a neighbour would be proportional to

its SNR and in the limit if ξli >> then Âi = Ri, while if ξlj >> then Âi = Aj.

Under this scenario however, the role of the evidence, provided by the noisy speech

Ri acts ‘competitively’ with the influence of the neighbours. That is, if the weights of

the neighbours wij increase, the weight of the evidence Ri decreases, assuming that
∑

j∈n(i)wij+wii = 1. Additionally, we have found that using the value of a neighbour

Aj as an estimate for Ai, (e.g. if Aj has a high a priori SNR), generates annoying

speech artifacts. In an image processing scenario, where the MRF’s have been

extensively used, substitution of a pixel’s value with that of its neighbour’s might

be desirable, assuming that both pixels represent the same color. This approach

to the restoration of the speech STFT amplitudes however, was found to generate

significant distortions.

The proposed parameters (eqs. 7.25, 7.26) on the other hand, avoid the direct

substitution of the neighbour values. Instead, as it can be seen from the form of the

estimator shown in eq. 7.34, the spectral amplitude of the neighbours indicates the

amount of the suppression that has to be applied to the noisy sample Ri, by means

of the a ‘global’ estimate of the a priori SNR ξ̂gi . This allows the restoration of

weak spectral samples that lie in a neighbourhood of samples with large amplitude,

while it avoids the artifacts generated by the direct substitution of the neighbours’

spectral amplitude values.

7.4 Summary

In this chapter we proposed and investigated the application of MRF’s to the prob-

lem of enhancing speech that is corrupted with broadband noise. This study was
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triggered by our desire to incorporate the time and frequency dependencies of speech

signals into the estimation model.

We first developed an algorithm based on Gaussian MRF priors. This algorithm

resulted in an improvement in the preservation of speech spectral components by

coupling the the STFT samples both in time and in frequency. The algorithm’s

major drawback however, was that the estimator was not well defined for all the

values of its input parameter, due to an approximation in its derivation that allowed

the estimator to be expressed in a closed form. This resulted in the amplification of

some isolated spectral peaks, which were then perceived as musical noise.

In order to overcome this problem, we introduced the Chi MRF priors, proving as

well that they result in valid MRF schemes. A MAP estimator based on the Chi

MRF priors was then derived. When the latter estimator was applied with fixed

weights between the neighbouring samples, the time frequency coupling enhanced

the weaker speech spectral components, but the level of the residual noise also

increased. This was attributed to the fact that the fixed neighbours’ weights were

not designed to differentiate between the samples that contained speech plus noise

or noise only, thus increasing the level of both.

An adaptive scheme for the estimation of the neighbours’ weights was finally de-

vised, which was capable of performing the above differentiation. The result was an

algorithm which enhanced the spectral components that belonged to speech, while

keeping the level of the residual noise low. The proposed adaptive scheme was shown

to combine the low residual noise levels of the MAP algorithms of chapter 3, with

the ability to surpass the MMSE algorithms of the same chapter in restoring the

spectral components that belong to speech.
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Chapter 8

Conclusion

This thesis considers the problem of enhancing speech that has been corrupted

with additive and uncorrelated noise. The problem of speech enhancement was

formulated as an estimation problem in the STFT domain, according to which, an

optimal, in some sense, estimate of the clean speech STFT was sought, when only

the noisy speech STFT was observed. Given the above formulation of the problem

and with a number of tools from the Bayesian machinery at our disposal, we have

made several novel contributions in the field of speech enhancement, all of which are

summarised in the next section, along with the conclusions that have been reached

during the course of this work. An outline of ideas that build on the methods and

concepts developed in this thesis and can potentially produce fruitful research results

is presented in §8.2.

8.1 Summary - conclusions

The research that has been carried out in this project can be divided in three main

parts. In the first part (chapters 3 - 5) a framework of Bayesian algorithms for

speech enhancement was proposed and studied, which consists of the generalisation

of existing algorithms and the introduction of novel ones. The second part (chapter

6) is concerned with the development of algorithms that can estimate the power of

time varying noises and can be used with those algorithms that estimate the clean

speech STFT coefficients. Finally, the third part (chapter 7) is a study on the appli-

cation of Markov Random Fields to speech enhancement, where the incorporation of
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the time and frequency dependencies of speech in the estimation model was sought.

Apart from offering an opportunity to compare directly several successful speech

enhancement algorithms from the literature, the compilation of the framework of

algorithms in chapter 3 provides insight on the effect of several components of a

Bayesian STFT estimation speech enhancement algorithm to the quality of the

enhanced speech. The components studied were the estimated feature (Re and

Im parts and the amplitude of the STFT), the employed estimator (MMSE and

MAP) and the shape and type of the speech prior (Chi, Gamma and Lognormal).

As mentioned previously, some members of the family of algorithms presented in

chapter 3 are generalisations of existing algorithms, while others are proposed for

the first time in this work. Specifically, the MS1C algorithm is a generalisation of

the Ephraim-Malah algorithm [31] as the Wiener filter [63, 72] is a special case of

the MS2C. The algorithms proposed by Martin [72] are special cases of the MS2G,

and the MP1C and MP1G algorithms are generalisations of the algorithms found

in [24,66,99]. By generalisation here we mean that the algorithms we propose yield

the special case algorithms mentioned above for a particular value of the shape

parameter that is incorporated in their priors. On the other hand, the DFT MAP

algorithms (MP2C, MP2G) are introduced for the first time in this work, and so are

the MS1G and the algorithms that use the Lognormal priors (MP1L, MS1L).

The analysis of chapter 5 showed that for the MAP algorithms, the choice of the

estimated feature (Re and Im parts or amplitude) had a rather small effect in the

quality of the resulting speech. The amplitude MAP algorithms however, were

marginally better in the preservation of speech, which might give them an edge

over their DFT counterparts. Additionally, as with all the amplitude estimation

algorithms, their computational load is smaller because only the amplitude needs to

be estimated, while the DFT algorithms require the estimation of both the Re and

Im parts.

On the other hand, the selection of the estimated feature played an important role

for the MMSE algorithms. The residual noise of the MMSE DFT algorithms had

a musical character for all the values of the priors’ shape parameter a, which can

hinder their employment in audio speech enhancement applications. This problem
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was not apparent in the amplitude MMSE algorithms, because appropriate values

of a resulted in uniform residual noise.

The type of the employed estimator was very influential in the quality of the en-

hanced speech. The algorithms that employed the MAP estimator resulted in lower

noise levels while they also had a lower computational load. On the other hand,

the MMSE based algorithms were more successful in the preservation of speech and

generally achieved higher scores in the objective measures.

An interesting observation that emerged from the study of the different priors, was

that an appropriate tuning of the priors’ shape parameter a could yield speech

of very similar quality for all the three families of priors. A possible reason for

the similar performances achieved with the three different priors is the flexibility in

their shape that is provided by the shape parameter a. Nevertheless, there were some

differences in the quality of the resulting speech depending on the employed prior,

which are summarised in the following: according to figures 4.5, 4.6, we classify the

three priors with respect to the length of their tails as Chi (shorter tails), Gamma

and Lognormal (longer tails). The combination of a short tailed prior with a MAP

estimator results in the preservation of a few extra speech spectral components, but

a long tailed prior results in slightly less distorted speech. A long tailed prior in

combination with an MMSE estimator results in a somewhat better preservation

of speech, especially at its onset, but a shorter tailed prior results in more uniform

residual noise.

In chapter 4 we tried to extract optimal values for both the shape and the scale

parameters a and θ of the priors. To realise this goal, two methods were employed:

the first consisted of fitting the priors to a large number of clean speech data, via

the minimisation of the KL divergence, while the second was based on adaptive

estimation of the parameters. The adaptive method was preferred for the estima-

tion of the scale parameter, because using fixed values of θ resulted in high levels

of musical residual noise. In accordance with the practice followed in the relevant

literature (e.g. [31,72,99]), the scale parameter was estimated from the a priori SNR,

which was in turn calculated with the DD method. The adaptive estimation of θ

excludes the use of long term speech data for the estimation of the shape parameter

a, because fitting the priors to such data assumes a fixed value for θ. A method
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for estimating a from narrow a priori SNR intervals, which is compatible with the

adaptive estimation model of θ, was also implemented, but failed to produce con-

sistent results for data selected from different a priori SNR intervals. Additionally,

the method for the adaptive estimation of a, which was based on moment matching

showed limited success.

In view of the shortcomings of the above methods, the approach we followed was

to evaluate the performance of the proposed algorithms as a function of the priors’

shape parameter a and reach an a posteriori decision for their optimal values, based

on the performance results. The analysis of chapter 5 revealed that the shape

parameter a essentially controls a trade off between the musical character of the

residual noise and its level. Small values of a, which correspond to priors with large

concentration around zero and heavy tails, result in good preservation of speech

but the residual noise has a strong musical character. Large values of a, which

correspond to flatter priors, result in an increase in the level of the residual noise and

to an underestimation of the speech components, primarily for the MAP algorithms,

but their significant benefit is that the residual noise has a uniform character.

In order to identify an optimal value for the shape parameter a we carried out formal

subjective listening tests. During these tests a panel of listeners was asked to tune

the shape parameter a so that the quality of the enhanced speech is maximised. An

interesting conclusion that stemmed from the subjective tests was that the selected

values of a were significantly different from those which maximised the scores of the

objective measures. This may be an indication that there might be further room

for improving the objective speech quality measures that attempt to predict the

subjective quality of speech.

In chapter 6, we developed methods for estimating the power of time varying noise,

which is an essential component of every single channel speech enhancement scheme.

An algorithm based on Gaussian Mixture Models of noise was developed, capable of

modelling very accurately the distribution of time varying noise STFT coefficients.

The results however showed that a noise model based on a single Gaussian distri-

bution is preferable and more simple to implement, as long as there is an algorithm

that can effectively track the variations of the time varying noise power. Such an

algorithm was also proposed in chapter 6, which was based on an observation about
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the distribution of the noisy speech spectral amplitude coefficients that had received

little attention in the literature. The main benefit of this algorithm was the quick

adaptation of the estimates in the event of an increase in the noise power. Its main

disadvantage was its tendency to overestimate the noise power in periods of pro-

longed speech activity. Nevertheless, its overall performance was comparable with

the performance of state of the art noise estimation methods such as the minimum

statistics method proposed in [71].

In the final part of this thesis, we employed tools from the theory of Markov Random

Fields, in order to create models that account for the time and frequency depen-

dencies of speech signals. We first developed an algorithm based on Gaussian MRF

priors, which, despite its success in introducing the time and frequency dependencies

in the estimation model, was not well defined for all the values of its input param-

eters and resulted in speech suffering from musical noise. In order to overcome the

deficiencies of this algorithm we proposed a novel type of MRF, which we termed

Chi MRF, proving also its validity as an MRF model. The major outcome was the

development of an adaptive algorithm based on Chi MRF’s, which combined low

levels of uniform residual noise - the strong point of the MAP algorithms of chapter

3 - with the ability to surpass the MMSE algorithms of the same chapter in the

restoration of the weaker speech spectral components.

8.2 Further work

The analysis of chapter 5 showed that algorithms which used different priors but

the same combination of estimator and estimated feature (e.g. MP1C and MP1G)

resulted in speech of very similar quality when the priors’ shape parameters were

tuned appropriately (i.e. tuning a so that the levels of residual noise for two dif-

ferent algorithms are equalised). This can be an indication that there is probably

little margin for improving an algorithm’s performance by experimenting with dif-

ferent density functions that model individually the speech spectral samples. On the

other hand, the two employed estimators (MMSE and MAP) resulted in speech of

significantly different quality, which suggests that experimentation with alternative

estimators can yield interesting results. An example could be the combination of

one of the studied priors (e.g. Chi) with the Log spectral estimator proposed in [32].
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Additionally, the combination algorithms proposed in chapter 3 with the method

of Ephraim and Malah [31] that takes into account the uncertainty of the speech

presence, is also worth considering.

Given the importance of the DD method to the enhanced speech quality, and the

similarity of the ACMRF algorithm of chapter 7 with the MP1C that utilises a

time frequency extended DD estimator of the a priori SNR, we may conclude that

research into improving the method for the estimation of the a priori SNR has a high

probability of producing successful speech enhancement schemes. Steps towards this

direction have appeared recently in the literature [21,46].

The discrepancy between the values of a extracted via our formal listening tests and

the values of a that maximised the scores of the objective measures also indicate that

there is margin for improving the algorithms that objectively evaluate the speech

quality. In particular, the PESQ measure appeared to be relatively insensitive to

the musical residual noise, which was judged as annoying by the participants in our

test. Addressing the above issue could provide a more robust evaluation measure

and possibly reduce the need to perform formal subjective tests.

The noise estimation algorithm we proposed in chapter 6 presented encouraging

results but was marred by the overestimation of noise during periods of prolonged

speech activity. As the review of the noise estimation methods showed in §6.1, a

current trend in the field is the merging of elements from different methods, (e.g.

averaging and minimum statistics §6.1.3). Elements of these methods could also

be combined with the principles of the method we proposed in §6.3, for its further

improvement.

Additionally, the interaction between the noise estimation and the speech estimation

modules of a speech enhancement scheme could be an interesting field of research.

An objective of this research could be the development of a speech enhancement

scheme, in which it is not only the speech estimation algorithm that uses the es-

timates of the noise module, but there is instead a closer interaction of the two

modules for improving the performance of both.

The application of Markov Random Fields to speech enhancement is a novel idea

that has produced very good results so far. We believe that the MRF’s represent
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a powerful tool in the development of speech enhancement algorithms and that

this thesis has only scratched the surface of their potential. Their main strength

lies in that they provide a framework for encapsulating the time and frequency

dependencies of speech in the estimation model. In the following, we mention some

of the directions into which the relevant research could expand.

The parameters of the ACMRF algorithm were chosen empirically based on the

requirement that the speech spectral components are enhanced, while the residual

noise level is kept to a minimum. Alternative parameterisations could also yield

interesting results, while they could be selected either empirically, as the ones we

proposed, or based on standard statistical procedures, as the Maximum Likelihood

method presented in [80].

The ACMRF algorithm, which is based on Iterated Conditional Modes, performs

only a single iteration. Algorithms with multiple iterations could also be devel-

oped, in an effort to reduce further the level of the residual noise and improve

the preservation of the speech spectral components. The exploration of alternative

neighbourhood structures could also be another extension of the presented work.

For example, the influence of STFT points that are further apart in time and in

frequency could be incorporated in the existing models in a straightforward way.

As it was shown in appendix D eq. D.5 the joint Gaussian MRF density can be

written as

p(x) ∝ exp



−
∑

i∈Q
b′i x

2
i −

∑

{i,j}∈C
b′ij (xi − xj)

2





where b′i and b′ij is a shorthand notation for the parameters of the prior as they

appear in eq. D.5. Bouman and Sauer [14] proposed a generalised Gaussian MRF

prior for image processing problems, which has the form

p(x) ∝ exp



−
∑

i∈Q
b′i x

β
i −

∑

{i,j}∈C
b′ij (xi − xj)

β





where β is a real number in the interval [1,2]. The effect of these generalised priors on

speech enhancement algorithms could also be investigated, as it has happened with

the investigation of spectral subtraction of arbitrary powers of the speech spectrum
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[9] or the MMSE estimators of an arbitrary power of the speech spectral amplitude

[100]. Furthermore, research into the development of MRF’s based on alternative

density functions (e.g. Lognormal) is also possible.

Cohen [21] proposed a model in which dependencies exist between the speech spec-

tral variances, while the speech spectral amplitude samples are independent, given

the value of their variance. In the same spirit, the speech spectral variances could

be modelled with an MRF, allowing for a variety of estimators of the speech spectral

amplitude to be applied (e.g. MMSE, LogMMSE), while preserving the time and

frequency dependencies of the model.
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Appendix A

Derivation of the estimators

A.1 Derivation of the amplitude posterior density

According to eq. 2.25 the likelihood p(X|S) can be written as

p(X|S) = pN(X − S) (A.1)

where pN is the pdf of the noise STFT coefficients. Assuming that these are Gaussian

and independent random variables with zero mean and variance σ2
N eq. A.1 can be

written as:

p(X|S) ≡ p(XRe, XIm|SRe, SIm) =
1

2πσ2
N

exp

[

−(XRe − SRe)
2 + (XIm − SIm)2

2σ2
N

]

(A.2)

where XRe and XIm denote the Re and Im parts of X and similarly for S.

Our goal is to find p(R,ψ|A, φ) when we know p(X|S). If we define by DRψ the slice

of a circle of radius R0 and angle ψ0 centered at zero on the plane XRe, XIm, the

probability mass that it encloses can be written as

PR,ψ|A,φ(R0, ψ0|A, φ) =

∫∫

DRψ

p(XRe, XIm|SRe, SIm) dXRe dXIm (A.3)

where PR,ψ|A,φ(R0, ψ0|A, φ) is the probability distribution function of R and ψ given

A and φ, or in other words, the probability that R ≤ R0 and ψ ≤ ψ0 given A and

φ. If we change the Cartesian to polar coordinates in the integral in eq. A.3 (i.e.
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XRe = r cosω, XIm = r sinω and dXRe dXIm = rdrdω) and express SRe, SIm in their

polar form A, φ we get:

PR,ψ|A,φ(R0, ψ0|A, φ) =

∫ R0

0

∫ ψ0

0

p(r, ω|A, φ)r dr dω (A.4)

Substituting the expression for p(XRe, XIm|SRe, SIm) from eq. A.2 we have:

PR,ψ|A,φ(R0, ψ0|A, φ) =

1

2πσ2
N

∫ R0

0

∫ ψ0

0

exp

[

−(r cosω − A cosφ)2 + (r sinω − r sinφ)2

2σ2
N

]

r dr dω =

1

2πσ2
N

∫ R0

0

∫ ψ0

0

exp

[

−r
2 + A2 − 2rA cos(ω − φ)

2σ2
N

]

r dr dω (A.5)

The probability density function of R and ψ given A and φ is easily obtained by

differentiating the distribution function with respect to R0 and ψ0.

pR,ψ|A,φ(R0, ψ0|A, φ) =
∂2

∂R0 ∂ψ0

PR,ψ|A,φ(R0, ψ0|A, φ) =

R0

2πσ2
N

exp

[

−R
2
0 + A2 − 2R0A cos(ψ0 − φ)

2σ2
N

]

(A.6)

Finally, by denoting R0 and ψ0 with R and ψ we have:

p(R,ψ|A, φ) =
R

2πσ2
N

exp

[

−R
2 + A2 − 2RA cos(ψ − φ)

2σ2
N

]

(A.7)

Integration of the phases φ and ψ can also yield an expression for the p(R|A).

∫ 2π

0

p(R,ψ|A, φ) dψ =
R

σ2
N

exp

[

−R
2 + A2

2σ2
N

]

1

2π

∫ 2π

0

exp

[

RA cos(ψ − φ)

σ2
N

]

dψ

(A.8)

Using eq. 8.431.5 from [42]

I0

(

RA

σ2
N

)

=
1

2π

∫ 2π

0

exp

[

RA cos(ψ − φ)

σ2
N

]

dφ (A.9)

where I0(z) is the modified Bessel function of the first kind we have
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p(R|A, φ) =
R

σ2
N

exp

[

−R
2 + A2

2σ2
N

]

I0

(

RA

σ2
N

)

(A.10)

With the assumption that the phase φ is uniformly distributed (i.e. p(φ) = 1
2π

) we

have

p(R|A, φ) =
p(R, φ|A)

p(φ)
= p(R|A) (A.11)

since R and φ are independent conditioned on A (i.e. p(R, φ|A) = p(R|A)p(φ)).

Therefore

p(R|A) =
R

σ2
N

exp

[

−R
2 + A2

2σ2
N

]

I0

(

RA

σ2
N

)

(A.12)

An approximate expression for the above equation can be found by using the ap-

proximation 1 for the Bessel function [73]

I0(z) ∼ ez/
√

2πz (A.13)

The approximate expression for p(R|A) then reads

p(R|A) ∼
√

R

2πσ2
NA

exp

[

−R
2 + A2

2σ2
N

]

exp

[

RA

σ2
N

]

(A.14)

A.2 Derivation of the MS2C estimator

Substitution of eqs. 3.7 and 3.5 into eq. 3.8 yields:

Ŝ =

∫ ∞

−∞
S

1
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

] |S|a−1

θa/2Γ(a/2)
exp

[

−S
2

θ

]

dS

∫ ∞

−∞

1
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

] |S|a−1

θa/2Γ(a/2)
exp

[

−S
2

θ

]

dS

(A.15)

1The relative error for this approximation is less than 5% for z > 3, while the largest discrepancy
is found for z → 0, for which value the Bessel function tends to 1, while its approximation tends
to infinity.
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The numerator can be written as:

num =

∫ 0

−∞
S

1
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

(−S)a−1

θa/2Γ(a/2)
exp

[

−S
2

θ

]

dS

+

∫ ∞

0

S
1

√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

Sa−1

θa/2Γ(a/2)
exp

[

−S
2

θ

]

dS

Making the substitution S = −S in the first integral we have:

num =

∫ ∞

0

−S 1
√

2πσ2
N

exp

[

−(X + S)2

2σ2
N

]

Sa−1

θa/2Γ(a/2)
exp

[

−S
2

θ

]

dS

+

∫ ∞

0

S
1

√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

Sa−1

θa/2Γ(a/2)
exp

[

−S
2

θ

]

dS

Expanding the exponentials and taking common factors:

num =

exp

[

− X2

2σ2
N

]

√

2πσ2
N θ

a/2 Γ(a/2)

[

−
∫ ∞

0

Sa exp

[

−S2

(

1

2σ2
N

+
1

θ

)

− S
X

σ2
N

]

dS

+

∫ ∞

0

Sa exp

[

−S2

(

1

2σ2
N

+
1

θ

)

− S
X

σ2
N

]

dS

]

(A.16)

The above integrals can be solved with equation 3.462.1 found in [42], which is stated

below.

∫ ∞

0

xν−1 exp[−βx2 − γx] dx = (2β)−ν/2 Γ(ν) exp

[

γ2

8β

]

D−ν

(

γ√
2β

)

(A.17)

where Dν(z) is the Parabolic Cylinder Function (eq. 9.240, [42]).

Solving the integrals in eq. A.16 according to eq. A.17 we have:

num =
exp

[

− X2

2σ2
N

]

√

2πσ2
N θ

a/2 Γ(a/2)

(

1

σ2
N

+
2

θ

)−(a+1)/2

Γ(a+ 1) exp







(

X
σ2
N

)2

8
(

1
2σ2
N

+ 1
θ

)







[

−D−a−1,





X
σ2
N

√

1
σ2
N

+ 2
θ



 +D−a−1,





− X
σ2
N

√

1
σ2
N

+ 2
θ





]

(A.18)
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Performing the same steps on the denominator of eq. A.15 we get:

den =
exp

[

− X2

2σ2
N

]

√

2πσ2
N θ

a/2 Γ(a/2)

(

1

σ2
N

+
2

θ

)−a/2
Γ(a) exp







(

X
σ2
N

)2

8
(

1
2σ2
N

+ 1
θ

)







[

D−a,





X
σ2
N

√

1
σ2
N

+ 2
θ



 +D−a,





− X
σ2
N

√

1
σ2
N

+ 2
θ





]

(A.19)

Dividing the two above equations we get:

Ŝ =

(

1

σ2
N

+
2

θ

)−1/2
Γ(a+ 1)

Γ(a)

D−a−1(−ζX) −D−a−1(ζX)

D−a(−ζX) +D−a(ζX)
(A.20)

where

ζ =
1/σ2

N
√

1/σ2
N + 2/θ

=

√

θ/σ2
N

θ + 2σ2
N

Considering that Γ(a+ 1)/Γ(a) = a and expressing the first square root of eq. A.20

in terms of ζ we have:

Ŝ = aσ2
Nζ

D
−a−1(−ζX) −D

−a−1(ζX)

D
−a(−ζX) +D

−a(ζX)
where ζ =

√

θ/σ2
N

θ + 2σ2
N

(A.21)

A.3 Derivation of the MP2C estimator

The MAP estimate is the value of S which maximises ln(p(X|S)p(S)), where p(X|S)

and p(S) are given by 3.5 and 3.7 respectively. We therefore have:

ln(p(X|S)p(S)) = ln

[

1
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

] |S|a−1

θa/2 Γ(a/2)
exp

[

−S
2

θ

]

]

Taking the derivative w.r.t. S we get:

d(ln(p(X|S)p(S)))

dS
=
X − S

σ2
N

+
a− 1

S
− 2S

θ
(A.22)
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Setting the above equation to zero and solving w.r.t S we get:

Ŝ = ζ
X

2
+ sgn(X)

[

(

ζ
X

2

)2

+ (a− 1)σ2
N ζ

]1/2

where ζ =
θ

θ + 2σ2
N

(A.23)

The above estimator comes from solving a quadratic equation, which can have two

solutions. We briefly describe which one is chosen and how the sgn(.) appears in the

above equation. The value of S for which the posterior density has its maximum

has the same sign as X as it can be seen from the form of p(X|S)P (S). For a > 1

the two solutions have different signs, so we chose the one that has the same sign as

X. For a < 1 both of the solutions have the same sign but one only is a maximum,

which is what we are looking for. Following these rules, it turns that the correct

sign from the ± is the one that matches the sign of X.

A.4 Derivation of the MS2G estimator

Substituting in eq. 3.8 the expression for the likelihood (eq. 3.5) and the Gamma

prior, which is given by eq. 3.14 we have:

Ŝ =

∫ ∞

−∞

S
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

] |S|a−1

2 θa Γ(a)
exp

[

−|S|
θ

]

dS

∫ ∞

−∞

1
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

] |S|a−1

2 θa Γ(a)
exp

[

−|S|
θ

]

dS

(A.24)

The numerator can be written as:

num =

∫ 0

−∞

S
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

(−S)a−1

2 θa Γ(a)
exp

[

S

θ

]

dS

+

∫ ∞

0

S
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

Sa−1

2 θa Γ(a)
exp

[

−S
θ

]

dS
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Making the substitution S = −S in the first integral we have:

num =

∫ ∞

0

−S 1
√

2πσ2
N

exp

[

−(X + S)2

2σ2
N

]

(S)a−1

2 θa Γ(a)
exp

[

−S
θ

]

dS

+

∫ ∞

0

S
1

√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

]

Sa−1

2 θa Γ(a)
exp

[

−S
θ

]

dS

Expanding the exponentials and taking common factors:

num =

exp

[

− X2

2σ2
N

]

√

2πσ2
N 2θa Γ(a)

·
[

−
∫ ∞

0

Sa exp

[

− S2

2σ2
N

− S

(

X

σ2
N

+
1

θ

)]

dS

+

∫ ∞

0

Sa exp

[

− S2

2σ2
N

− S

(

− X

σ2
N

+
1

θ

)]

dS

]

(A.25)

Solving the above integrals with A.17 we get:

num =
1

2
√

2πσ2
N

σa+1
N

θa
Γ(a+ 1)

Γ(a)
exp

[

− X2

2σ2
N

]

[

exp

[

(

ζ1
2

)2
]

D−a−1 (ζ1) − exp

[

(

ζ2
2

)2
]

D−a−1 (ζ2)

]

(A.26)

where ζ1 =
σN
θ

− X

σN
, ζ2 =

σN
θ

+
X

σN

if we perform the same operations on the denominator of eq. A.24 we have:

den =
1

2
√

2πσ2
N

σaN
θa

exp

[

− X2

2σ2
N

]

[

exp

[

(

ζ1
2

)2
]

D−a (ζ1) + exp

[

(

ζ2
2

)2
]

D−a (ζ2)

]

(A.27)

Dividing the numerator and the denominator we get:

Ŝ = aσN

exp

[

ζ2
1

4

]

D
−a−1(ζ1) − exp

[

ζ2
2

4

]

D
−a−1(ζ2)

exp

[

ζ2
1

4

]

D
−a(ζ1) + exp

[

ζ2
2

4

]

D
−a(ζ2)

(A.28)
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A.5 Derivation of the MP2G estimator

The estimate of this algorithm is the value of S that maximises ln(p(X|S)p(S))

where p(X|S) is again given by eq. 3.5 and p(S) by eq. 3.14. we consecutively have:

ln(p(X|S)p(S)) = ln

[

1
√

2πσ2
N

exp

[

−(X − S)2

2σ2
N

] |S|a−1

2θa Γ(a)
exp

[

−|S|
θ

]

]

(A.29)

Taking the derivative w.r.t. S we get:

d(ln(p(X|S)p(S)))

dS
=
X − S

σ2
N

+
a− 1

S
− sgn(S)

θ
(A.30)

Setting the above equation to zero and solving w.r.t S we get:

Ŝ = ζ + sgn(X)
[

ζ2 + (a− 1)σ2
N

]1/2
where ζ =

X

2
− sgn(X)

σ2
N

2θ
(A.31)

The sgn(.) in the definition of ζ comes from the fact that the maximum of the

posterior density occurs at an S which has the same sign with X. The sgn(.) before

the square root appears because one of the two solutions of d(ln(p(X|S)p(S)))/dS =

0 is chosen according to the rules stated in appendix A.3.

A.6 Derivation of the MS1C estimator

The estimator for this algorithm can be obtained by substituting eqs. 3.20 and 3.21

into 3.22. The numerator of the last equation will then read:

num =

∫ ∞

0

∫ 2π

0

AR

2πσ2
N

exp

[

−R
2 + A2 − 2RA cos(ψ − φ)

2σ2
N

] 2Aa−1 exp
[

−A2

θ

]

2π θa/2 Γ(a/2)
dφdA

(A.32)

which after some algebraic manipulations can be written as:

num = K

∫ ∞

0

Aa exp

[

−A2

(

θ + 2σ2
N

θ 2σ2
N

)]

J0

(

i
RA

σ2
N

)

dA (A.33)
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where

J0

(

i
RA

σ2
N

)

=
1

2π

∫ 2π

0

exp

[

RA cos(ψ − φ)

σ2
N

]

dφ (A.34)

and J0(z) is the Bessel function of the first kind and zeroth order (see [42] eqs.

8.406.3, 8.431.5). K is:

K =
2R

2π σ2
N θ

a/2 Γ(a/2)
exp

[

− R2

2σ2
N

]

(A.35)

The integral in eq. A.33 can be solved with formula 6.631.1 from [42] which is stated

below.

∫ ∞

0

xµe−δx
2

Jν(βx) dx =
βν Γ

(

ν+µ+1
2

)

2v+1 δ(µ+ν+1)/2 Γ(ν + 1)
1F1

(

ν + µ+ 1

2
, ν + 1,−β

2

4δ

)

(A.36)

Solving the integral we get:

num = K

(

2σ2
Nθ

θ + 2σ2
N

)
a+1

2 Γ(a+1
2

)

2
1F1

(

a+ 1

2
, 1,

R2θ

2σ2
N(θ + 2σ2

N)

)

(A.37)

Performing the same operations on the denominator we get:

den = K

(

2σ2
Nθ

θ + 2σ2
N

)a/2
Γ(a/2)

2
1F1

(

a/2, 1,
R2θ

2σ2
N(θ + 2σ2

N)

)

(A.38)

Dividing the the numerator (num) with the denominator (den) we get:

Â =
√

2σ2
N ζ

Γ(a+1
2

)

Γ(a/2)

1F1(
a+1
2
, 1, R2

2σ2
N

ζ)

1F1(a/2, 1,
R2

2σ2
N

ζ)
where ζ =

θ

θ + 2σ2
N

(A.39)
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A.7 Derivation of the MP1C estimator

Substituting p(R,ψ|A, φ) and p(A) from 3.20 and 3.21 and p(φ) = 1
2π

into eq. 3.25

yields:

Â = arg max
A

ln

[

∫ 2π

0

R

2πσ2
N

exp

[

−R
2 + A2 − 2RA cos(ψ − φ)

2σ2
N

]

· 2Aa−1

2π θa/2 Γ(a/2)
exp

[

−A
2

θ

]

dφ

]

(A.40)

After some rearrangement the logarithm can be written as:

ln

[

2R

2πσ2
N θ

a/2 Γ(a/2)
Aa−1 exp

[

−R
2 + A2

2σ2
N

− A2

θ

]

1

2π

∫ 2π

0

exp

[

RA cos(ψ − φ)

σ2
N

]

dφ

]

(A.41)

Using eq. 8.431.5 from [42] we have:

I0

(

RA

σ2
N

)

=
1

2π

∫ 2π

0

exp

[

RA cos(ψ − φ)

σ2
N

]

dφ (A.42)

where I0(z) is the modified Bessel function of the first kind. Using also the approx-

imation [73]

I0(z) ∼ ez/
√

2πz (A.43)

the logarithm in eq. A.41 can be written as:

ln





2R

2πσ2
N θ

a/2 Γ(a/2)
Aa−1 exp

[

−R
2 + A2

2σ2
N

− A2

θ

] exp
[

RA
σ2
N

]

√

2πRA
σ2
N



 (A.44)

Taking the derivative of the above expression w.r.t. A, setting to zero and solving

w.r.t A we get:

Â = ζ
R

2
±

[

(

ζ
R

2

)2

+ (a− 1.5)σ2
N ζ

]1/2

where ζ =
θ

θ + 2σ2
N

(A.45)

From the above two solutions the valid is the one which is a maximum and positive.
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Some further analysis shows that this is always the one with the (+).

A.8 Derivation of the MS1G estimator

The estimator for this algorithm can be obtained by substituting eqs. 3.20 and 3.28

into 3.22. The numerator of the last equation will then read:

num =

∫ ∞

0

∫ 2π

0

AR

2πσ2
N

exp

[

−R
2 + A2 − 2RA cos(ψ − φ)

2σ2
N

]

Aa−1 exp
[

−A
θ

]

2π θa Γ(a)
dφdA

(A.46)

which after some algebraic manipulations can be written as:

num = K

∫ ∞

0

Aa exp

[

− A2

2σ2
N

− A

θ

]

I0

(

RA

σ2
N

)

dA (A.47)

where I0

(

RA
σ2
N

)

is defined in eq. A.42 and K is given by:

K =
R

2π σ2
N θ

a Γ(a)
exp

[

− R2

2σ2
N

]

(A.48)

Performing the same operations on the denominator we get:

den = K

∫ ∞

0

Aa−1 exp

[

− A2

2σ2
N

− A

θ

]

I0

(

RA

σ2
N

)

dA (A.49)

where K is given by eq. A.48. Division of the eqs. A.47 and A.49 yields the

expression given in eq. 3.29
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A.9 Derivation of the MP1G estimator

Substituting p(R,ψ|A, φ) and p(A) from 3.20 and 3.28 and p(φ) = 1
2π

into eq. 3.25

yields:

Â = arg max
A

ln

[

∫ 2π

0

R

2πσ2
N

exp

[

− R2 + A2 − 2RA cos(ψ − φ)

2σ2
N

]

· Aa−1

2π θa Γ(a)
exp

[

−A
θ

]

dφ

]

(A.50)

After some rearrangement the logarithm can be written as:

ln

[

R

2πσ2
N θ

a Γ(a)
Aa−1 exp

[

−R
2 + A2

2σ2
N

− A

θ

]

1

2π

∫ 2π

0

exp

[

RA cos(ψ − φ)

σ2
N

]

dφ

]

(A.51)

Transforming the integral as in appendix A.7 the above expression becomes:

ln





R

2πσ2
N θ

a Γ(a)
Aa−1 exp

[

−R
2 + A2

2σ2
N

− A

θ

] exp
[

RA
σ2
N

]

√

2πRA
σ2
N



 (A.52)

Taking the derivative of the above expression w.r.t. A, setting to zero and solving

w.r.t A we get:

Â = ζ ±
[

ζ2 + (a− 1.5)σ2
N

]1/2
where ζ =

R

2
− σ2

N

2θ
(A.53)

From the above two solutions the valid is the one with the (+) because it is always

positive and a maximum.
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A.10 Derivation of the MP1L estimator

Substituting eqs. 3.20, 3.33 and p(φ) = 1
2π

into eq. 3.25 yields:

Â = arg max
A

ln

[

∫ 2π

0

R

2πσ2
N

exp

[

− R2 + A2 − 2RA cos(ψ − φ)

2σ2
N

]

· 1

2π

√
a√
π A

exp
[

−a (ln(A) − θ)2
]

dφ

]

(A.54)

Discarding the terms that are constant with respect to A and rearranging the re-

maining ones we have:

Â = arg max
A

ln

[

1

A
exp

[

−R
2 + A2

2σ2
N

]

exp
[

−a (ln(A) − θ)2
]

· 1

2π

∫ 2π

0

exp

[

2RA cos(ψ − φ)

2σ2
N

]

]

(A.55)

Using eq. A.42 the above equation can be written as:

Â = arg max
A

[

− ln(A) − R2 + A2

2σ2
N

− a (ln(A) − θ)2 + ln

(

I0

(

2RA

2σ2
N

))]

(A.56)
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Appendix B

Amplitude density functions and

their logarithmic transformation

p(A) p(y), y = ln(A)

Chi
2

θa/2Γ(a/2)
Aa−1 exp

[

−A
2

θ

]

2

θa/2Γ(a/2)
exp

[

−e2y

θ
+ ya

]

Gamma
1

θaΓ(a)
Aa−1 exp

[

−A
θ

]

1

θaΓ(a)
exp

[

−ey

θ
+ ya

]

Lognormal

√
a√
πA

exp
[

−a(ln(A) − θ)2
]

√
a√
π

exp
[

−a(y − θ)2
]

Table B.1: Amplitude density functions and their logarithmic transformation.
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Appendix C

The effect of using long term

priors to speech quality

In this appendix we investigate the effect of using the values of the priors’ parameters

that have been estimated using long term speech data. In particular, we demonstrate

the effect of using the values that have been estimated using the all the available

speech STFT data, as discussed in §4.1, and make a comparison with the case when

the same values of a are used, but the scale parameter θ is estimated using the DD

method.

The use of the scale parameter value estimated from the long term priors compro-

mises the suppression of the residual noise and, perhaps more importantly, results

in a residual noise that has a strong musical character. The incorporation of the

DD method on the other hand, suppresses the residual noise more effectively, and

smooths the spurious spectral peaks, thus making the residual noise more uniform.

A downside of the DD method is that some of the speech spectral components are

also suppressed. This drawback however is outweighted by the lower level of the

residual noise and its more uniform character. The spectrograms of figure C.1 illus-

trate the above observations. The utterance described in §5.2 is enhanced with the

MP1G and MS1G algorithms with either fixed or adaptive values of θ. The value

of a in both cases is 0.28, as it was estimated in §4.1.

Table C.1 shows the results in the objective measures for all the MMSE algorithms

with either fixed or adaptively estimated values of θ via the DD method. Table C.2
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(a) MP1G DD
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(b) MP1G fixed θ
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(c) MS1G DD
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(d) MS1G fixed θ

Figure C.1: Speech enhanced with the MP1G and MS1G algorithms. The scale
parameter θ was estimated either with the DD method, or the fixed values estimated
in §4.1 were used.

shows the respective results for the MAP algorithms. For the MMSE algorithms the

objective measures favour the DD method for the majority of the cases, especially

in the low input SegSNR conditions, where the effect of the background noise is

more damaging to the quality of speech. For the MAP algorithms however, it

is interesting to note that although the SegSNR favours the DD method for the

majority of the cases, the best scores for the PESQ are achieved with the fixed

values of θ. This was rather striking, since both informal listening tests and the

examination of spectrograms indicated that the DD method resulted in lower levels

of residual noise, which also has a significantly more uniform character, and there

was no apparent aspect of speech quality in which the results obtained with the

fixed values of θ surpassed those obtained using the DD method.

A possible explanation for this observation could be the following: for the values of

a estimated using the long term priors, which are used in this appendix, the MAP
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White Noise Car Noise

SegSNR PESQ SegSNR PESQ

DD Fixed DD Fixed DD Fixed DD Fixed

0 dB Input SegSNR

MS1C 7.76 5.68 2.88 2.65 10.93 8.43 3.54 3.34

MS2C 7.33 5.41 2.83 2.62 10.53 8.57 3.48 3.33

MS1G 7.79 5.31 2.87 2.58 10.95 9.00 3.54 3.30

MS2G 7.45 5.48 2.82 2.60 10.65 9.68 3.48 3.33

MS1L 7.77 5.30 2.82 2.57 11.05 9.08 3.47 3.27

10 dB Input SegSNR

MS1C 13.82 13.51 3.51 3.32 17.28 15.75 3.97 3.92

MS2C 13.20 13.30 3.45 3.29 16.75 15.58 3.93 3.90

MS1G 13.91 13.12 3.51 3.22 17.34 15.59 3.97 3.85

MS2G 13.40 13.01 3.44 3.21 16.91 15.91 3.93 3.85

MS1L 13.65 12.61 3.38 3.10 17.14 15.59 3.93 3.73

20 dB Input SegSNR

MS1C 21.22 21.63 4.00 3.95 24.50 23.89 4.26 4.27

MS2C 20.46 21.46 3.94 3.92 23.79 23.71 4.24 4.26

MS1G 21.35 21.50 3.99 3.84 24.58 23.49 4.26 4.25

MS2G 20.73 21.38 3.94 3.82 24.01 23.49 4.24 4.24

MS1L 21.05 21.02 3.92 3.62 24.29 23.08 4.25 4.17

Table C.1: Objective measures’ scores for the MMSE algorithms, using adaptive or
fixed values of θ.

algorithms are not well defined. This implies that for a large number of samples,

especially in the noise dominated areas of the spectrograms, estimates do not exist,

and the strategy we follow is to simply suppress the noisy samples by a fixed amount

1. Consequently the difference between the residual noise levels obtained with the

fixed and the adaptive values of θ is smaller for the MAP compared to the MMSE

algorithms. This characteristic in combination with the fact that some weak speech

spectral components are better preserved with the fixed values of θ might give rise

to the better scores of the PESQ measure for the MAP algorithms. Nevertheless,

we believe that the above behaviour of the PESQ measure is an indication of its

weakness in penalising the musical character of the residual noise.

1see the derivation of the MAP algorithms in chapter 3
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White Noise Car Noise

SegSNR PESQ SegSNR PESQ

DD Fixed DD Fixed DD Fixed DD Fixed

0 dB Input SegSNR

MP1C 7.67 5.81 2.70 2.66 11.11 9.50 3.42 3.38

MP2C 7.21 5.15 2.73 2.61 10.50 8.91 3.40 3.34

MP1G 7.69 6.91 2.64 2.71 11.11 10.78 3.40 3.46

MP2G 7.26 6.10 2.67 2.69 10.54 10.26 3.36 3.41

MP1L 6.84 7.52 2.36 2.72 10.04 10.80 3.19 3.39

10 dB Input SegSNR

MP1C 13.56 13.39 3.32 3.34 17.13 16.23 3.91 3.93

MP2C 13.07 13.01 3.35 3.28 16.64 15.63 3.90 3.89

MP1G 13.55 13.52 3.27 3.36 17.10 16.96 3.90 3.94

MP2G 13.04 13.08 3.27 3.29 16.62 16.47 3.87 3.90

MP1L 12.48 13.77 3.01 3.44 16.21 17.04 3.77 3.95

20 dB Input SegSNR

MP1C 20.97 21.49 3.92 3.95 24.34 24.07 4.24 4.25

MP2C 20.36 21.26 3.91 3.90 23.68 23.65 4.24 4.24

MP1G 20.98 21.49 3.90 3.95 24.31 24.28 4.24 4.25

MP2G 20.35 21.25 3.86 3.88 23.65 23.83 4.23 4.24

MP1L 19.77 21.53 3.69 3.95 23.22 24.37 4.18 4.25

Table C.2: Objective measures’ scores for the MAP algorithms, using adaptive or
fixed values of θ.
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Appendix D

Derivation of the the joint Chi

MRF density

The conditional density of the Chi MRF is

p(xi|xn(i)) ∝ xa−1
i exp



− 1

θi



xi −
∑

j∈n(i)

bijxj





2

 (D.1)

The logarithm of the factorisation in eq. 7.6 can be written as

ln

(

p(x)

p(z)

)

=
∑

i∈Q
[ln (p(xi|x1, ..., xi−1, zi+1, ..., zq))] (D.2)

−
∑

i∈Q
[ln (p(zi|x1, ..., xi−1, zi+1, ..., zq))]

Substituting eq. D.1 in the above factorisation we have

ln

(

p(x)

p(z)

)

=
∑

i∈Q

[

(a− 1) ln(xi) −
x2
i

θi
+ 2

xiΩ

θi
+

Ω2

θi

]

(D.3)

−
∑

i∈Q

[

(a− 1) ln(zi) +
z2
i

θi
− 2

ziΩ

θi
− Ω2

θi

]

where

Ω =
∑

{j∈n(i):j<i}
bij xj +

∑

{j∈n(i):j>i}
bij zj
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Elimination of the
Ω2

θi
terms in eq. D.3 yields

ln

(

p(x)

p(z)

)

=
∑

i∈Q



ln(xa−1
i ) − x2

i

θi
+

∑

{j∈n(i):j<i}

2bij
θi

xixj +
∑

{j∈n(i):j>i}

2bij
θi

xizj





−
∑

i∈Q



ln(za−1
i ) +

z2
i

θi
−

∑

{j∈n(i):j<i}

2bij
θi

zixj −
∑

{j∈n(i):j>i}

2bij
θi

zizj





Under the assumption that
bij
θi

=
bji
θj

and j ∈ n(i) if and only if i ∈ n(j) it holds

that

∑

i∈Q

∑

{j∈n(i):j>i}

2bij
θi

xizj =
∑

i∈Q

∑

{j∈n(i):j<i}

2bij
θi

zixj

The expression for ln(p(x)) then becomes

ln (p(x)) ∝
∑

i∈Q



ln(xa−1
i ) − x2

i

θi
+

∑

{j∈n(i):j<i}

2bij
θi

xixj





p(x) ∝
∏

i∈Q

(

xa−1
i

)

exp





∑

i∈Q



−x
2
i

θi
+

∑

{j∈n(i):j<i}

2bij
θi

xixj









Noting also that
∑

i∈Q

∑

{j∈n(i):j<i}

2bij
θi

xixj =
∑

{i,j}∈C

2bij
θi

xixj

where C is the unordered set of pairs of indices i, j such that {i, j} ∈ C if and only

if xi and xj are neighbours. The joint density p(x) can be finally written as

p(x) ∝
∏

i∈Q

(

xa−1
i

)

exp



−
∑

i∈Q

x2
i

θi
+

∑

{i,j}∈C

2bij
θi

xixj



 (D.4)

In order for the above expression to constitute a valid probability density function

we also require that |
∫

x
p(x)dx| < ∞. This condition is satisfied if the argument

of the exponential is negative for all the possible values of x. The values of the
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parameters bij and θi that satisfy this condition can be found if we write eq. D.4 as

p(x) ∝
∏

i∈Q

(

xa−1
i

)

exp



−
∑

i∈Q

(1 −
∑

j∈n(i) bij)

θi
x2
i −

∑

{i,j}∈C

bij
θi

(xi − xj)
2



 (D.5)

The above equation reveals that the argument of the exponential is negative for all

x if bij > 0, ∀i, j ∈ Q and if
∑

j∈n(i) bij < 1, ∀i ∈ Q.

An alternative method for proving the validity of the joint Chi MRF density function

is given by Gershgorin’s circle theorem [41]. We first write eq. D.4 as

p(x) ∝
∏

i∈Q

(

xa−1
i

)

exp
[

−xGxT
]

(D.6)

where the elements of the matrix G are Gii = 1/θi and Gij = −bij/θi. The MRF

defined by p(x) is valid if the matrix G is positive definite, or equivalently, if all of

its eigenvalues are positive. Gershgorin’s circle theorem says that the eigenvalues

of a matrix G lie in circles, which are centered at the points Gii on the complex

plane, and whose radius is less or equal to
∑

j∈Q |Gij|. If bij > 0, ∀i, j ∈ Q and if
∑

j∈n(i) bij < 1, ∀i ∈ Q, then Gershgorin’s circles lie on the right hand side of the

complex plane. Therefore, the matrix G positive definite.
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