The University of Southampton
University of Southampton Institutional Repository

Dispersal and connectivity of northeastern atlantic patellid limpets: a multidisciplinary approach

Dispersal and connectivity of northeastern atlantic patellid limpets: a multidisciplinary approach
Dispersal and connectivity of northeastern atlantic patellid limpets: a multidisciplinary approach
Dispersal and connectivity of patellid limpets (Patella spp.) in the eastern North Atlantic have been examined by addressing reproductive biology, larval development, population genetics and physical modelling of dispersal. The reproductive cycles of four limpet species were assessed on the northern and central Portugese coast, to determine spawning periods. This information was incorporated into dispersal models. The results showed that P. depressa and P. ulyssiponensis have almost year-round breeding, with a brief resting phase in the early summer. Conversely, the two other species displayed much shorter spawning periods, with gamete release taking place between December and March in P. vulgata and between September and December in P. rustica. The relationship between temperature and planktonic periods in P. depressa, P. ulyssiponensis, and P. vulgata was investigated with laboratory rearing experiments. Average duration of precompetent periods varied inversely with temperature, ranging between 3.7-14.0 days in P. depressa, 2.8-13.7 days in P. ulyssiponensis and 5.7-14.6 days in P. vulgata, whilst delay periods ranged between 15.8-25.4 days in P. depressa, 14.5-27 days in P. ulyssiponensis and 16.5-25 days in P. vulgata. Population genetic structure was examined on a range-wide scale in P. depressa and along the Iberian coast in P. rustica using microsatellite markers, plus one mtDNA locus in P. rustica. Results suggested high levels of gene flow throughout the study area and widespread lack of population differentiation in both species. A biophysical model of dispersal has been developed to assess the degree of demographic connectivity over ecological and evolutionary time frames, and to identify possible barriers to dispersal for P. depressa and P. rustica. The model predicted high levels of connectivity through most of the study area in both species, but in P. depressa simulations identified two large extensions of adult habitat discontinuity as barriers to larval dispersal. The model also showed that despite the potential for long-distance dispersal, most of the larvae released at one given location settle within much shorter distances. These results illustrate the need to view the study of marine dispersal as a multidisciplinary task, and suggest that relying on just one line of evidence may produce misleading results.
Ribeiro, Pedro Miguel de Azevedo
283a7195-e7e3-4bc2-82a6-fce572809372
Ribeiro, Pedro Miguel de Azevedo
283a7195-e7e3-4bc2-82a6-fce572809372
Hawkins, Steven
758fe1c1-30cd-4ed1-bb65-2471dc7c11fa

Ribeiro, Pedro Miguel de Azevedo (2008) Dispersal and connectivity of northeastern atlantic patellid limpets: a multidisciplinary approach. University of Southampton, School of Biological Sciences, Doctoral Thesis, 278pp.

Record type: Thesis (Doctoral)

Abstract

Dispersal and connectivity of patellid limpets (Patella spp.) in the eastern North Atlantic have been examined by addressing reproductive biology, larval development, population genetics and physical modelling of dispersal. The reproductive cycles of four limpet species were assessed on the northern and central Portugese coast, to determine spawning periods. This information was incorporated into dispersal models. The results showed that P. depressa and P. ulyssiponensis have almost year-round breeding, with a brief resting phase in the early summer. Conversely, the two other species displayed much shorter spawning periods, with gamete release taking place between December and March in P. vulgata and between September and December in P. rustica. The relationship between temperature and planktonic periods in P. depressa, P. ulyssiponensis, and P. vulgata was investigated with laboratory rearing experiments. Average duration of precompetent periods varied inversely with temperature, ranging between 3.7-14.0 days in P. depressa, 2.8-13.7 days in P. ulyssiponensis and 5.7-14.6 days in P. vulgata, whilst delay periods ranged between 15.8-25.4 days in P. depressa, 14.5-27 days in P. ulyssiponensis and 16.5-25 days in P. vulgata. Population genetic structure was examined on a range-wide scale in P. depressa and along the Iberian coast in P. rustica using microsatellite markers, plus one mtDNA locus in P. rustica. Results suggested high levels of gene flow throughout the study area and widespread lack of population differentiation in both species. A biophysical model of dispersal has been developed to assess the degree of demographic connectivity over ecological and evolutionary time frames, and to identify possible barriers to dispersal for P. depressa and P. rustica. The model predicted high levels of connectivity through most of the study area in both species, but in P. depressa simulations identified two large extensions of adult habitat discontinuity as barriers to larval dispersal. The model also showed that despite the potential for long-distance dispersal, most of the larvae released at one given location settle within much shorter distances. These results illustrate the need to view the study of marine dispersal as a multidisciplinary task, and suggest that relying on just one line of evidence may produce misleading results.

Text
pedro_ribeiro-phd.pdf - Other
Download (6MB)

More information

Published date: November 2008
Organisations: University of Southampton

Identifiers

Local EPrints ID: 66261
URI: http://eprints.soton.ac.uk/id/eprint/66261
PURE UUID: e4d8d8cd-50ac-40de-ac05-9a774ffbd838

Catalogue record

Date deposited: 27 May 2009
Last modified: 13 Mar 2024 18:14

Export record

Contributors

Author: Pedro Miguel de Azevedo Ribeiro
Thesis advisor: Steven Hawkins

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×