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THE face of the water, in time, became a wonderful book; a book that was a dead
language to the uneducated passenger, but which told its mind to me without
reserve, delivering its most cherished secrets as clearly as if it uttered them with a
voice. And it was not a book to be read once and thrown aside, for it had a new story

to tell every day.

- Mark Twain, Life on the Mississippi

‘Element opposes element’ - Bernardo Trevisan
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ABSTRACT
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Doctor of Philosophy
SAND TRANSPORT IN NORTHERN VENICE LAGOON THROUGH THE
TIDAL INLET OF LIDO
by Rachel Helsby

The provenance and transport of sand has been investigated around Lido Inlet, the largest of
three tidal inlets in Venice Lagoon, Italy. Morphological analysis has established the presence
of an ebb-tidal delta extending from the mouth of Lido Inlet as well as other features typical
of tidal inlets. The stability of the inlet, as well as the canals of Treporti and Burano,
was determined through the application of the tidal prism/cross-sectional areas relationship
theorized by O’Brien (1969). Whilst Lido Inlet and Treporti Canal have both remained
in equilibrium in terms of this relationship, Treporti Canal has suffered erosion due to a
fluctuating tidal prism. Lido Inlet is slightly flood dominant although grain trend analysis
of bottom sediment reveals net export of sand. Treporti Canal is ebb dominant and is the
source of this sand, but it is becoming increasingly flood dominant as average current speeds
have reduced and ebb currents are weakening at a faster pace than flood currents. This is
proposed as a reason to why the northern lagoon is accreting (0.44 cm yr—!), contrary to
trends in the southern (-0.37 cm yr ~!) and central lagoon (-0.23 cm yr—!). A sediment
budget formulated for the whole lagoon has revealed that whilst the overall rate of erosion
is reducing, the area subject to erosion is increasing and the rate of accretion is decreasing,
resulting in no net change in the net sediment loss rate between 1930-1970 to 1970-2000 (-0.05
cm yr~!). Mineralogical analysis on bottom samples, beach and riverine samples confirmed
that longshore transport is from north to south along the northern lagoon; carbonate grains
are dominant in the north with proportions gradually replaced by quartz to the south. Lido
Inlet proved to have similar mineralogy to the River Piave with a higher calcite/dolomite ratio
than inner lagoon samples suggesting a less mature sediment and thus import of sediment.
Conversion of ADCP backscatter into bedload transport rate, suspended sand, and suspended
fines concentrations has shown that no sand is transported at velocities below ~0.4 m s~!.
55% of sediment transported during an ebb flow was sand in suspension (peak: 527,000
kg hr=1), 37% was fines in suspension (peak: 283,000 kg hr~!), and the remaining 8% of
sediment was transported as bedload (peak 68,700 kg hr—!).
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Introduction

‘Element opposes element’

Thus Bernardo Trevisan described the lagoon of Venice in 1718', upon recognition of the
conflict between the elements of water, sediment and wind at work within the lagoon.
Due to this dynamic nature, Venice Lagoon, as with all lagoons, is just a momentary
feature in geological timescales. Once in existence due to eustatic sea level rise (Dyer,
1997), a lagoon can follow only one of two possible fates; complete sedimentation and
formation of land, or ingression and eventual envelopment of the sea. Venice Lagoon
historically tended towards sedimentation, but due to its success as a maritime power
(Norwich, 2003), this trend was incompatible with the ambitions of its citizens, who
have sought to control the movement of sediment within Venice Lagoon for much of
its history. As such, interest in the sediment transport within Venice Lagoon has been
nurtured for several hundred years, with the knowledge first applied in the 14" century
when the mouth of the River Brenta was diverted away from the lagoon in an effort to
reduce the volumes of sediment imported (Consorzio Venezia Nuova, 1996). The most
recent works to the lagoon have been the construction of three jetties at the tidal inlets

(Lido, Malamocco, and Chioggia). The largest inlet, Lido, is an amalgamation of three
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channels; Treporti, San Nicolo and Sant’Erasmo canal. Consequently, the current has
been constricted, increasing its speed and ability to transport sandy sediments. The
hydrodynamics within the inlet have gradually altered as the channel adjusted to find a
new equilibrium. Although Tambroni and Seminara (2006a) and Fontolan et al. (2007)
have studied Lido Inlet in terms of its cross-sectional area, the authors disagree on the
status of its stability; Fontolan et al. (2007) believes Lido is stable, whereas Tambroni
and Seminara (2006a) state that the inlet is prone to deposition; both authors use the
relationship of O’Brien (1931). O’Brien studied North American tidal inlets to deter-
mine a relationship between the minimum cross-sectional area below mean sea level
and the tidal prism (total volume of water entering and leaving during a tidal cycle).
As the relationship has been found to be invalid elsewhere in the world (Hicks and
Hume, 1996; Shigemura, 1981), it is important to investigate the relationships validity
within the Adriatic, as well as that of other relationships to be found within the litera-
ture (Le Conte, 1905; Jarrett, 1976; Gao and Collins, 1994). By predicting equilibrium
values it may be possible to predict rates of sediment accretion or scour and conse-
quently it is an important management tool. If the same relationship can be proven
to be valid along the whole length of the tidal canal (currently the cross-sectional area
used is the smallest - the inlet mouth), volumes of sediment accretion and scour can

be estimated.

The construction of the jetties has also changed the morphodynamical features
of the inlet; prior to their construction, a large spit, formed through longshore trans-
port, extended from Punta Sabbioni (Fontolan et al., 2007) and an extensive flood tidal
delta existed adjacent to the (then) barrier island of Sant’Erasmo (see Figure 3.1 for
locations). An estimated 300,000 m® yr=! of sediment entered the lagoon through the
inlets at this time, with post-construction estimations falling between zero (Consorzio
Venezia Nuoval') and 50,000 m® yr—! (Consorzio Venezia Nuova, 1996). It is important
to determine whether or not sand is still being imported into the lagoon as sediment
exchange through tidal inlets affects the inner-lagoonal morphology and sediment ex-
change (Tambroni and Seminara, 2006a). Also, if sand is being dredged from the inlets
and canals it is important to ascertain whether it is derived from within the lagoon or

outside it; either way, removal of sediment will affect areas further down the transport
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pathway and may cause further erosion, although sediment-starved areas benefit from
dredge-spoil recycling for salt marsh restoration (providing bed stability for pioneer

species for eventual entrapment of finer sediment particles).

To determine the provenance of the sediment within Lido Inlet, a high-resolution
sediment sampling study has been carried out, with the samples analysed for their grain
size and mineralogy. Comparisons between neighbouring samples (Gazzi et al., 1973,
Folk and Ward, 1957; Gao and Collins, 1992) will be described and conclusions drawn
about the transport pathway and likely sources of the sediment. Although Venice La-
goon has already been widely studied in terms of sediment composition (Albani and
Serandrei Barbero, 2001; Bonardi et al., 2002; Umgiesser et al., 2005; Sfriso et al.,
2005a), the spatial resolution of these studies is low. Omne or two samples currently
characterise the sediment composition of Lido Inlet, which is hardly indicative of the
processes and pathways of sand within the inlet. Therefore, this study is sui generis
and will aim to represent the sediment composition, sources and sinks, and the trans-
portation pathway within Lido Inlet and the wider sediment cell to which it belongs
(longshore transport along the Venice Lagoon shoreline, tributary canals of Treporti

and Burano and the nearshore region).

Few estimates of the total sediment budget of Venice Lagoon have been pub-
lished,; estimates of sediment exchange are limited to a partial story (fluvial input
of sediment - Suman et al., 2005, average rates of sedimentation - Sfriso et al., 2005a,
modelled export within Treporti Canal - Umgiesser et al., 2006). Sediment loss and ac-
cumulation can be determined through comparison of bathymetry and the differences
between basins (north, central and south basins) and between canals and intertidal
areas. It is difficult to quantify sediment exchange through the inlets via this method
due to data limitations. In recent literature however, sediment exchange between the
lagoon and sea has been monitored by continually-recording, fixed Acoustic Doppler
Current Profilers (ADCP) at each inlet (Zaggia and Maurizio, 2005). Investigations
into conversion of backscatter to suspended sediment has resulted in estimations of
sediment export of approximately 60,600 m® yr~! (Tambroni and Seminara, 2006b)
compared to previous estimates of 400,000 m?® yr~! (Ravera, 2000). As the ADCP

is fixed to record data from approximately two metres above the seabed, it is nec-
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essary to determine the volume of sediment in transport below this level, including
sand transported as bedload. Thus far, the estimates of sediment in suspension have

been volumetric, with few attempts to differentiate the mass of sand and fines exported.

This thesis aims to investigate the exchange of sand between the lagoon and the Adri-
atic Sea through the tidal Inlet of Lido. Within the context of this study, the following

questions will be addressed:

e What is the provenance of the sand in Lido Inlet (Albani and Serandrei Barbero,

2001; Bondesan et al., 2004) and what are the characteristics of its transport?

e [s the inlet stable in terms of its cross-sectional area and its relationship with
the tidal prism and how does this relationship affect the transport of sediment
within the inlet?

e What are the volumes of sand transported through Lido Inlet and has this

changed since jetty construction?

1.1 Thesis Overview

This thesis is a study of the dynamics and origins of sand in northern Venice Lagoon,
with an emphasis on transport through tidal inlets. It forms part of activities de-
fined within CO.RI.LLA’s Programma di Ricerca 2003-2006 (Allegato A, linea 3.15), to

determine non-cohesive sediment exchange between the lagoon and sea.

e Chapter 4 describes the collection of high-resolution bathymetry and sidescan
sonar data of the study area and subsequent analysis of the revealed morphology
(U.S. Army Corps of Engineers, 1998, 2002). Stability of the channel cross-
sectional area, based on the method first described by O’Brien (1931, 1969),
is also investigated within this chapter using tidal prism estimated calculated
from discharge data modelled using SHYFEM (Umgiesser, 1997; Umgiesser et al.,
2004a, 2006) and bathymetry datasets collected in 1930, 1970, 1990, and 2000.

e 235 bottom sediment samples were collected within the study area, and at pos-

sible sources of sand (along the beaches bordering Venice Lagoon and the major
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regional rivers to the north and south). Statistical analysis of these samples is
described within Chapter 5, and grain-trend analysis has been applied to quali-
tatively illustrate the sand transport pathways within the inlet (Gao and Collins,
1992).

e A quantitative assessment of sediment in transport within the inlet is investigated
in Chapter 6, evaluating the conversion of Acoustic Doppler Current Profiler
(ADCP) backscatter data into estimates of suspended sediment concentrations
(both sand and fine-grained particles). The chapter will also use ADCP velocity
measurements to estimate bedload transport using equations outlined in Soulsby
(1997).

e Chapter 7 will analyse the lagoon-wide bathymetry datasets of 1930, 1970, and
2000 to determine areas of net erosion, net deposition and areas of stability. The
volume of sediment change will be calculated and an overall sediment budget

discussed.

e The final chapter will summarize and conclude the findings of the preceding
chapters, with a discussion in terms of the aims and objectives outlined within

this current chapter.



Background and Theory

2.1 Coastal Lagoons and Tidal Inlets

Coastal lagoons account for 13% of the coastal zone worldwide (Cohen et al., 1997),
and are found predominantly along low-lying plains that have been subject to sub-
mergence within their recent geological history (Kirk and Lauder, 2000). Lagoons are
important as a unique habitat for plants, animals, birds and fish, some of which are
commercially exploited, e.g. fish farms. Lagoons provide relatively warm, sheltered
and nutrient-rich water for ‘nurseries’ for commercially important fish such as salmon,
trout and shellfish. Lagoons are also economically important for shipping and recre-
ational boat use (tourism) as they act as natural harbours providing shelter. It has
been estimated that tidal estuaries, tidal marshes and wetlands have an average eco-

! relatively)

nomic value of $1.58 per m? year—! ($2.28, $0.99 and $1.48 per m? year™
compared with an average value of less than $0.02 of arable/pasture land (Costanza
et al., 1997). It is therefore of great economic and environmental importance to re-
tain the lagoonal ecosystem through an understanding of the unsteady equilibrium the
lagoon maintains during its existence. The system is self-regulating with negative feed-
back loops maintaining the equilibrium during natural changes such as sea level rise

and subsidence. The mobility and dynamics of this system are incompatible with the
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permanent boundaries maintained by man and so control of the lagoonal environment

becomes increasingly difficult as equilibriums are sought.

2.2 The Lagoon System

2.2.1 Definitions and Categories

A lagoon is defined by Kjerfve (1994) as:

‘a shallow coastal water body separated from the ocean by a barrier, connected at least
intermattently to the ocean by one or more restricted inlets, and usually orientated

shore-parallel.’

Kjerfve further subdivided this definition depending on the limits of water exchange
between the lagoon and sea, reflecting the forcing (wave or current dominance) and

the time-scale of hydrologic variability (see Figure 2.1):

Choked lagoons have a single, narrow inlet along wave dominated coastlines with
significant long-shore transport. The single channel serves as a ‘dynamic filter’

and restricts tidal oscillations and currents within the lagoon.

Restricted lagoons are large and generally shore-parallel with two or more tidal
inlets. They have a well defined tidal circulation and are well-mixed due to
wind effects and short residence times, although salinity ranges from brackish to

oceanic.

Leaky lagoons are elongated, tidally dominated shore-parallel water bodies with nu-
merous wide inlets, characterised by unimpaired water exchange between the

lagoon and sea.

2.2.2 Evolution of Lagoons

Lagoons are predominantly formed during eustatic sea level rise (less so during sea level
fall - Dyer, 1997) in low-lying coastal plains. The most recent period of eustacy, the
Flandrian Transgression, began 18,000 years BP as glacial ice sheets melted, raising

global sea levels an estimated 100 metres over a period of 15,000 years (Graham et al.,
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Fig. 2.1: Lagoon types: A. Choked lagoon (St. Lucia Lake, S. Africa). B. Restricted lagoon
(Venice Lagoon, Italy). C. Leaky lagoon (Wadden Sea, Netherlands).

2003). Most modern lagoons were formed as the eustacy rate slowed to levels less
than 1 m per century (Woodroffe, 2002) when sea level reached current levels between
6,000 to 3,000 years ago. A plentiful supply of sand is required to form barrier islands,
eventually separating the lagoon from the open sea and forming intertidal marshes.
The wave climate must also be sufficient to transport this sand and shape the barrier
islands (Kirk and Lauder, 2000). It is not known for certain how barrier islands form;
one long-held theory hypothesized by Gilbert (1885) is that longshore transport of
sediment forms long spits where the coast ‘indents’ (Figure 2.2A). The spits become

breached during storms to form tidal inlets and barrier islands (Figure 2.2B).

A B Growth o spit with longshore ransport

Direction of longshare trans port % % ;

Fig. 2.2: Formation of barrier islands due to spit breach after Gilbert (1885).
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This type of barrier island formation has been recently witnessed in locations
such as Cape Cod (U.S. Army Corps of Engineers, 1998); however, work by Hoyt (1967)
suggested that this can only be the case in small coastal sections with a plentiful sedi-
ment supply, and cannot be responsible for the growth of large barrier islands. He also
noted that the sand on some barrier islands did not match the corresponding landward
beach sand and therefore must have been derived from an offshore source rather than
longshore transport. Hoyt refined the theory originally formed by McGee (1890), that
encroachment of the sea onto a ‘beach-and-dune complex’ (U.S. Army Corps of Engi-
neers, 1998) floods the low-lying beach and marsh either side of the dune systems, with
only the dunes remaining exposed. Waves and currents are then responsible for shaping
and maintaining the new barrier island. However, if the tidal range of the area is above
4 m (macrotidal), then it is unlikely that the island will remain (Hayes, 1965, cited by
Martin and Dominguez, 1994) because of reduced localisation of breaking waves as a

sand deposition mechanism.

The tidal range affects the shape and size of the barrier islands; a mesotidal
coast will be more conducive to leaky lagoons, with shorter barrier islands and nu-
merous inlets; a microtidal coast will have more restricted lagoons with long, slender
barrier islands with few tidal inlets and less well developed tidal deltas (Kjerfve, 1994;
Hayes, 1979). Choked lagoons are similar, but the barrier island accumulation of sand
is more intense, resulting in fewer tidal inlets remaining. It is possible for the lagoons
to lose all tidal inlets and become completely isolated from the sea, as occurred with
the choked-lagoon, Lake Sibaya (the neighbour of the choked lagoon example in Figure
2.1) in South Africa, 5,000 BP (Wright et al., 2000). These choked lagoons are also
present in areas of coastal retreat, such as along South Island, New Zealand, but tend
to regress inland with the erosion, rather than become marine (Kirk and Lauder, 2000).
Tidal inlets tend to form as a breach in a barrier island during storm events. Most
breaches silt up due to the continuation of longshore transport, but some are main-
tained (if flow speeds continue to exceed sediment suspension thresholds) and become
permanent tidal inlets (Woodroffe, 2002; Hayes, 1979).

There are two types of barrier island; transgressive, which gradually move land-

wards due to limited sand supply and are susceptible to sea-level rise, and regressive
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barrier islands, which are progradational with a plentiful sediment supply (Woodroffe,
2002).

Lagoons are by nature a geologically temporary feature on a dynamic coast
with tendencies towards marine or land amalgamation (Consorzio Venezia Nuova, 1997;
Ravera, 2000). A lagoon will only maintain an uneasy stability if sedimentation and
erosion are equal. However, if fluvial and marine sedimentation exceeds subsidence
and erosion, then the lagoon will silt up and become terra firma. This has occurred to
the ancient Ravenna Lagoon (on the Adriatic coast just south of Venice). Like Venice,
Ravenna was built on a lagoon, but due to siltation, the city is now 10 km from the
coast (Keahey, 2002). If the volume of sedimentation is not sufficient to overcome
erosion then the lagoonal barriers will be eroded away and the area will become fully

marine.

Infilling of a lagoon will not be constant due to negative feedback cycles changing
the dominance of tidal currents. The longevity of the flood tide is related to the
strength of ebb currents, thus a long flood phase is due to strong ebb currents; a short
flood phase is due to weak ebb currents. The difference is due to the balance of the
tidal range (R) to inlet water depth (h) ratio identified by Speer and Aubrey (1985)
and the area of intertidal basin (A;) to total basin area (A). A large R/h ratio usually
signifies flood dominance; a large A; /A signifies ebb dominance (Crossland et al., 2005).
Flood dominance, and thus sediment import, is more probable for recent basins, but as
the intertidal area increases, and scour deepens the inlet, the lagoon will become ebb
dominant as it evolves, and less sediment is imported (negative feedback)(Crossland
et al., 2005).

2.2.3 Lagoon Morphology

Lagoons are dependent on their geomorphology for balances of salinity, heat and water.
This morphology is based on five categories: inlet configuration, lagoon size, orientation
to prevailing winds, bathymetry and mean depth (Smith, 1994). Water exchange is
controlled primarily by the dimensions and number of inlets and can be represented by

the hydrologic equation (2.1). This describes the change in water volume, both fresh
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and saline (Smith, 1994):

A

where AV is the total volume of the lagoon, At is time, P, and E are spatially inte-
grated precipitation and evaporation, R, is runoff, G is groundwater seepage and A,
is the advective change in water volume. Water input into a lagoon is mainly tidally
forced, but atmospheric pressure differences can push water into the lagoon. This can
be wind driven, especially if the inlet is orientated with the prevailing wind, or through

low pressure storm surges, increasing the sea level.

The principal morphological features of lagoons are found in association with
tidal inlets as large volumes of sand are transported with the flood/ebb tide and de-
posited when current speed falls below critical threshold for suspension. Estimates of
sand export can thus be determined through analysis of ebb-tidal delta volume and
how this alters over time (Hicks and Hume, 1996).

2.2.4 Tidal Inlets

Tidal inlets may be a natural or artificial (such as Ancao Inlet in Portugal - Vila-
Concejo et al., 2003) conduits between a back-barrier basin and the sea (Fenster and
Dolan, 1996). They provide a natural flushing mechanism to maintain water quality
and nutrient availability within the back-basin, producing a unique habitat (Seabergh,
2003). They are hydrodynamically complex and will migrate to attain equilibrium
depending on the wave climate, currents and surrounding geomorphology. This com-
plexity makes current modelling techniques of sedimentation and erosion imprecise
(U.S. Army Corps of Engineers, 2002). Inlets can be classified into three types: wave
dominated, tide dominated and mixed energy (Hayes, 1979). Wave-dominated coasts
tend to produce long, thin and highly mobile inlets (examples include Fire Island Inlet,
NY, which migrated 6.4 km in 100 years, and Nauset Inlet, NY, which migrates 1.2 to
1.7 m yr~! - Woods Hole Group, 2006), whereas tidal-dominated coasts form shorter,
wider and more stable inlets. Tidal inlet stability has been shown to be linked with
the tidal prism (the volume of water that enters and exits during a tidal cycle) and
inlet cross-sectional area (O’Brien, 1931; Escoffier, 1940; Bruun, 1978; Hume and Her-
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dendorf, 1988; Walton, 2004; Fontolan et al., 2007); this is discussed further in relation
to the study area in Chapter 4.

Circulation within inlets is primarily governed by tidal forcing although bay ge-
ometry, inlet geometry (Bertin et al., 2004), the presence of jetties, bottom topography,
and wind and river inflow all have a significant role. The tidal forcing is commonly
asymmetrical in inlets; a factor that strongly affects the net sediment transport direc-
tion as the ‘bias in peak velocity creates a difference in the amount of material being
transported on flood and ebb tides’ (Fitzgerald, 1988). An ebb dominant inlet will flush

sand to maintain an efficient inlet, whereas a flood dominant inlet will import sand.

2.2.5 Tidal Inlet Morphology

The morphology of a tidal inlet reflects the local sediment characteristics and hydrody-
namics, and consequently can be used to determine the movement of sand (Seabergh,
2003); therefore information on the morphology and how it alters (morphodynamics)
is useful in the management of an inlet. Figure 2.3 shows the morphology generally
associated with tidal inlets as described by Hayes (1975). Tidal currents converge in
the ‘gorge’ (throat) of the inlet, and travel along ebb or flood dominant channels be-
fore diverging once no longer restricted by the inlet. A bias in the peak flow can result
in a difference between the volume of sediment transported in the flood and ebb tide

effecting the morphology associated with either phase.

2.2.5.1 Ebb-Tidal Morphology

Ebb-tidal currents converging in the inlet are restricted, and therefore increase in ve-
locity to form an ‘ebb jet’ (Joshi, 1982). Jettied inlets accelerate flow velocities due
to deflection and constriction of currents flowing adjacent to the walls; thus causing
scour along the jetty wall (Hughes, 1997). As the current is deflected into the centre of
the channel, it decelerates and deposits some of its load. This continual erosion near
the wall and deposition in the centre of the channel eventual moves the deep channel
closer to the jetty wall . The proximity of the channel to the wall forms steep velocity
gradients, causing turbulent eddies that initiate scour. This is particularly prevalent

at the tips of the jetty walls, where turbulence increases as a result of flow convergence
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Flood—Tidal Delta
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Ebb—Tidal Delta

Fig. 2.3: Morphology associated with tidal inlets. From Hayes (1975); U.S. Army Corps of
Engineers (2002)

between the ebb jet and wave-generated, shore-parallel currents (Mitello and Hughes,
2000). The channel is shouldered by parallel, channel margin linear bars shaped by
wave and current interaction. Once the ebb jet is no longer restricted by the inlet
it expands and decelerates, and coarser grains held in suspension deposit to form an
ebb-tidal delta or shoal (Joshi, 1982). Most sediment is deposited before the terminal
lobe (usually indicated by a straightening of contour-lines - Stauble, 1998). These sed-
iments can then be reworked by wave activity to form swash bars. Towards the edge
of the delta, these bars are dominated by wave-generated currents and migrate in the
wave direction towards the shoreline, eventually helping to build up sandy barrier is-
lands. Interaction between longshore currents and the ebb jet can cause asymmetry of
the ebb tidal delta. Deposition of sediment on the downstream side of the inlet mouth
orientates the tidal channels (outside of the inlet) upstream (van Leeuwen et al., 2003).
If longshore currents exceed the effects of the tidal current, then the ebb delta will be
restricted in length seawards, however it will be skewed in the direction of longshore
transport. Stronger tidal currents will elongate the delta shore normal (Oertel, 1988).

Ebb tidal deltas are significant sources and sinks of sand and can effect sediment supply
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to nearby beaches particularly if there are any changes in delta volume due to alter-
ations in the tidal prism (Hicks and Hume, 1997; Oertel, 1988) such as those caused
by jetty construction. Studies by Walton and Adams (1976) show that the size of an
ebb tidal delta is directly related to the tidal prism of its inlet with variability caused
by differences in wave climate (Fitzgerald, 1988).

2.2.5.2 Flood-Tidal Morphology

Inlets also restrict flood-tidal currents, keeping peak velocities at the centre of the inlet.
Entrainment of sediment by this flood jet within the inlet decreases current velocity,
causing it to spread and therefore weaken (when out of the influence of jetties). As the
current weakens, it begins to deposit larger and/or heavier sediment grains to form a
‘flood ramp’ (all definitions after Hayes, 1975); this ramp further weakens the current,
leading to the formation of a flood tidal delta (shoal) and an ebb shield. Daboll (1969)
(in Davis, 1978) states that the ebb shield is generally composed of a larger grain size
than the flood ramp; this is probably a function of wave activity (if the ebb shield is
inter-tidal) removing all but the coarsest of grains (grain sorting). When the tide turns,
the ebb current gradually strengthens and traction of the flood tidal delta sediments
can occur, forming subaqueous ebb spits in the deeper water adjacent to the delta.
Flood tidal deltas occur within micro- and meso-tidal environments (< 1 to 4 m tidal
range). Sand accumulating along the flood ramp is often maintained as sand waves,
which slowly migrate to the top of the delta and may eventually form part of the
ebb shield. This is the highest and oldest part on the flood tidal delta, and may be
bio-stabilized. The ebb shield diverts ebb currents away from the flood delta reducing
erosion. However, this diversion of the ebb current can form ebb spits on either side of
the delta, which are also shaped by flood currents and storm activity. Breaches in the
ebb spits or shield due to ebb currents are known as spill over lobes (U.S. Army Corps
of Engineers, 2002).

2.2.5.3 Tidal Inlet Dynamics

Tidal currents are the predominant force acting on sediments at the inlet throat (the
minimum cross-sectional area of an inlet), with wave effects increasing seaward towards

the ebb-tidal delta, and alongshore, providing a potential sediment source to the inlet.



Background and Theory
2.2. The Lagoon System 15

The mobility and large sediment supply to inlets make them unpredictable in terms of
navigability and as a result, many be artificially restricted by jetty construction. By
decreasing the cross-sectional area, the inlet becomes unstable and is forced to accom-
modate the tidal prism by scouring the seabed and increasing in depth. Tidal inlets
are susceptible to scour when hydrodynamic bottom shear-stresses exceed the critical
shear stress for sediment mobility (Hughes, 2003). This may be due to focussing of
wave energy by structures, localised increases in wave orbital velocities, acceleration
or separation of flow, or changes in bed type from resistive to erodible. Scour at jetty
tips is caused by flow separation from turbulent eddies formed during a flood tide. The
scour is maintained by the ebb jet, which restricted by the jetty walls, forms a fast,

non-rotational, steady flow.

Wave climate affects the size of tidal deltas, with wave-dominated coasts tending
to support larger ebb deltas, but smaller flood deltas. Lagoons with no tidal flats or
high tidal marshes are more likely to have flood dominant tidal inlets; however, as
the surface slope increases with sedimentation (thus development of tidal flats), ebb

dominance will prevail (Mota Oliveira, 1970).

2.2.6 Inner Lagoonal Processes and Morphology

The inner-lagoonal canal system is a network of tidal creeks cut within intertidal
marshes. They are major sinks of sediment in low-energy areas and thus are im-
portant in the lagoon sediment cycle. Salt marshes originate as mudflats, which, under
an increase in sediment supply (U.S. Army Corps of Engineers, 2002, Allen, 2000,
see Marani et al., 2006), stabilize with an initial colonization of microphytobenthos
and pioneer halophytic plants such as Spartina maritima, Juncus spp. (Marani et al.,
2006). These plants help to attenuate wave energy and impede tidal-currents, trap-
ping sediment in the process. This sediment is generally finer (fine sand to clayey silt
- Packham and Willis, 1996) and better sorted than other intertidal areas (U.S. Army
Corps of Engineers, 2002), but accumulates slowly. If subsidence exceeds sediment
supply and accretion, then environmental stress on the halophytes increases (too much
salt, water inundation), which kills them, resulting in sediment loss and flattening of

the marsh surface (Meijer, 2005) with the sediment infilling the inner-lagoon canals
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(Ravera, 2000).

Scour can occur when the current flow of two canals combine. The resulting
confluence scour holes are usually associated with separation zone bars that form ad-
jacently due to flow separation. This low velocity region is a sink for tributary channel
sediment (Best, 1988; Bristow et al., 1993), whilst little erosion or deposition occurs in
the maintained scour hole. Scour holes are formed from erosion of the bed due to ‘high
turbulence along the combined flow shear layer and greatly increased velocities along
the confluence’ and are maintained due to the lack of sediment that travels through
the scour hole (Best, 1988). The scour hole orientation is a product of the channel
discharge ratio (between the main and tributary flow - Q, = Q;/@,,), aligning increas-
ingly with the tributary flow, and becoming deeper with an increase in confluence angle

(Bristow et al., 1993) - see Figure 2.4. The scour depth is a function of total discharge
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Fig. 2.4: Scour hole orientation and depth after Best (1988), with total discharge equal to
unity. A: shallow angle (15°) confluence with no confluence scour produced. B: 70°
confluence angle. C: 105° confluence angle. Cross sections are taken from a to b.

and confluence angle as described by the equation for fine sand (Klassen and Vermeer,
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1988 cited in Melville and Coleman, 2000):

Yes —1.29 4 0.0376, (2.2)
J

where y.s is the maximum water depth, ¥ is mean flow depth, and 6. is confluence
angle’. Thus the scour depth increases with the confluence angle. The depth is further
exaggerated with an increase in mean grain size (sands and gravels; y./7 = 2.24 +
0.0316, cohesive muds; y.s/7 = 1.01 + 0.0300 - Melville and Coleman, 2000).

2.2.7 Outer Lagoonal Processes

Longshore transport (also called littoral drift) describes the sediment transported par-
allel to shore. Waves and their associated sediment load, approach the shore at an
oblique angle, and retreat at a 90° angle, causing sand particles to move gradually
along the beach. Net drift of sediment may conceal volumes moving in the opposite
direction, with changes in total transport affected by annual meteorological conditions
such as storm events, which may move a large volume of sediment in a different di-
rection to the general trend in calm conditions (Stauble and Morang, 1992). The
morphology of the coast can indicate longshore transport direction. However, it can
also affect transport due to changes in the way waves are refracted along the shore
(from the presence of headlands, river mouths and inlets for example). Changes in
longshore transport direction define boundaries of a coastal cell; ‘areas of coast where
no inflow or outflow of sediment occurs’ (Smith and Sayao, 1989). Estimates of long-
shore transport rates in volume per unit time (Q;) can be found by the CERC equation
(U.S. Army Corps of Engineers, 2002; Bayram et al., 2007):

- PRA/ 9/% 25 .
Ql = 16 (ps — p) (1 — a) Hsb S1n (201,) (23)

where 7 is the breaker index (0.78), p and ps are the densities of water and sediment,
a is the porosity index (= 0.4), g is acceleration due to gravity, Hg, is the significant
wave breaking height, ¢, is the wave breaking angle and K is an empirical co-efficient
taken to be approximately 0.32-0.39 (Wang et al., 2002). This equation is thought to

IThis equation was originally formulated for braided rivers
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Fig. 2.5: Longshore transport. Waves travelling obliquely to shore, transports sediment onto
the beach. It is then transported perpendicularly back down the beach face with
backwash, gradually moving along the coast.

be 30-50% accurate, although subsequent equations are generally unable to replicate
field results (Wang et al., 2002) despite inclusion of a wider range of factors such as
breaker type, beach slope and grain size. An increase in the median grain size has
been shown to result in a decrease in longshore transport rates (King, 2005), although
it is not represented in the original CERC formula (Equation 2.3). Similarly, Vanoni
(1975) has shown viscosity to affect sediment transport in rivers, leading Rosati (1985)
to conclude that longshore transport must also be susceptible to changes in water

temperature (affecting viscosity).

2.2.8 Sediment transport in tidal inlets

Littoral sand is transported into tidal inlet systems through wave action and by tidal
currents, although some sediment is transported offshore by rip currents. Tidal current
flow through tidal inlets interrupts longshore transport driven by waves, affecting the
sediment supply to downdrift beaches (Fitzgerald, 1982; Balouin and Howa, 2002).
Wave action updrift of the inlet will either transport sand into the inlet, or it will
bypass the inlet and continue longshore transport. There are three methods of inlet
bypassing as described by Bruun and Gerritsen (1959) and Davis and Fitzgerald (2004)

and shown in Figure 2.6. These include:
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stable inlet processes, where the inlet does not migrate. Sand import to the
inlet occurs due to longshore transport, tide and wave currents passing thorough
flood channels and through wave breaking over ebb-delta bars. The sand is then
removed from the inlet by ebb currents, subsequently forming part of the ebb
delta. Wave activity over the delta lobe forms swash bars, which migrate slowly

towards the shore to be transported by longshore drift (Figure 2.6A).

ebb-tidal delta breaching occurs within stable inlets with migrating ebb chan-
nels (Figure 2.6B). Sand is imported into the inlet but instead of forming bar
complexes, it accumulates on the updrift portion of the delta, forcing the ebb
channel to migrate towards the downdrift shore. This reduces the tidal flow, and
eventually a new, more efficient channel is breached, leaving the accumulated
sand now downdrift of the channel. The sand is then able to form bar complexes
and migrate towards the shore and continue on the longshore transport pathway.
An example of this process is found in Willapa Bay Inlet (Davis and Fitzgerald,
2004), which undergoes a 16 year cycle of delta breaching and channel migration.
It is thought that El Nino is a driver for this cycle, increasing the tidal prism and

current speed enabling a new channel to be cut.

inlet migration caused by spit formation due to dominant longshore transport pro-
cesses (Figure 2.6C). The spits are liable to breaching due to water level differ-
ences either side of the spit, forming new inlets. The sand of the previous inlet
system moves onshore due to wave action. In jettied inlets, sand may also bypass

by passing through porous jetty walls (U.S. Army Corps of Engineers, 2002).
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Sand will accumulate around the tidal inlet in either the ebb or flood tidal-delta
(and to a lesser extent, ebb spits and sand bars), which affect the local wave climate.
The morphology of these deltas is related to the balance between longshore currents
and tidal currents (Oertel, 1988; Komar, 1996; van Leeuwen et al., 2003). An increase
in the tidal prism results in an increase in the volume of the ebb delta (Walton and
Adams, 1976) and a corresponding decrease in the inlet width:depth ratio, which re-
duces wave energy, allowing the ebb delta to move further seawards (Hicks and Hume,
1996). Ebb deltas are important in the exchange of water and sediment between the sea
and back-barrier basin (Fenster and Dolan, 1996; van Leeuwen et al., 2003). Bedforms
and sediment characteristics of ebb-tidal deltas have been described by Kriiger and
Healy (2006) during a study of a New Zealand inlet. They found coarse sand limited
to wave-influenced, outer swash bars, with medium sand deposited in a central fan
shape and modelled into small dunes, controlled by the ebb-jet. Fine sand was found

in all the other areas of the delta, exhibiting both wave and current generated bedforms.

Variation in hydrodynamics due to storms and other low pressure wind events
such as the Mediterranean bora winds, which can cause surges of over a metre (Keijzer
and Bobovic, 1999). This has a great impact on sediment transport in the tidal inlet
vicinity, causing sediment to accumulate in some areas (an annual accumulation of
15,000 m?® occurs at the end of the northern jetty of Lido Inlet, Venice, mainly due
to Sirocco wind events- Consorzio Venezia Nuova, 1997), or erode (Currumbin Creek,
Australia - Castelle et al., 2006). To determine the effect of the inlet on longshore trans-
port, the following has been formulated (Bruun and Gerritsen, 1959 cited in Castelle

et al., 2006),:
P

M tot

r (2.4)

where P is the tidal prism (m?®) and M, is total annual littoral drift (m?). The r values
define types of inlet, with » > 150 describing a tidal-dominated inlet, with stable, deep
channels. These inlets tend to be poor ebb-delta bypassers, whereas inlets with smaller
r values tend to be increasingly wave-dominated and unstable, but bypass sand well
through the ebb-delta (Carr and Kraus, 2001; Castelle et al., 2006).
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2.3 Fluid and Sediment Dynamic Theory

Quantifying and describing sediment transport is important in coastal system manage-
ment for navigational dredging, coastal protection (beach nourishment, coastal erosion)

and habitat protection (maintenance of salt marshes, dune systems, pollutant tracing).

Sediment transport is controlled by fluid flow, produced by tidal forcing or
waves (wind-produced or boat wake). A fluid moving past a solid body (seabed) is
retarded by frictional drag caused by a pressure differential, reducing its momentum

and producing shear stress. This frictional drag (Fp) is defined as:
pu’

where Cp is a drag coefficient, A,, is the area of the body normal to the flow, p is the
fluid density, and wu is horizontal velocity. In simple terms, the drag force of a body
is approximately proportional to the square of the velocity as long as turbulent flow
is created. As Cp is dependent on, amongst others, bed roughness (Zy) it is usually
evaluated by experimentation (Dyer, 1986; Soulsby, 1997; Thompson, 2003). Moving
away from the bed, frictional drag and shear stresses reduce and momentum increases
to free-stream velocities. The fluid layer affected by shear stress friction between the
flow and a solid body is known as the boundary layer. The fluid next to the solid
is constrained by a ‘no-slip’ condition, which dictates that the fluid velocity goes to
zero at the boundary (Schlichting and Gersten, 1999). Moving away from this solid
body, eddy viscosity falls and velocity increases parabolically until it reaches 99% of
the freestream velocity at the edge of the boundary layer (Heathershaw, 1988). The
thickness of the boundary layer reflects the amount of momentum delivered to the
bed, which has implications on sediment transport as the ability of a flow to transport
sediment is a function of bed shear-stress (Nielsen, 1992). Thin boundary layers, such
as those created in wave-dominated environments, create greater shear stresses as the
velocity gradient in the boundary layer (defining bed shear-stress) remains large, caus-
ing sediment resuspension as velocities are high closer to the seabed (see Figure 2.7).
Due to the oscillatory nature of waves, wave-entrained sediment is transported away by

currents. Thicker boundary layers associated with tidal currents have smaller velocity
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gradients and thus apply smaller shear stresses to the bed resulting in less resuspen-

sion. Boundary layer flow can either be laminar or turbulent (see Figure 2.8). Laminar

tidal boundary layer

wave induced

velocity tidal velocity

Wave Dolundary [ayer

Fig. 2.7: Velocity profile under tidal currents and waves.
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Fig. 2.8: Boundary layer in laminar and turbulent flow conditions.

flow generally occurs at lower velocities (depending on Reynolds number) with any
induced disturbance controlled by fluid viscosity. It is not as conducive to sediment
transport as turbulent flow, which occurs when velocities increase, and inertial forces

exceed viscous forces to cause turbulent mixing (Thompson, 2003). Most natural flows



Background and Theory
2.8. Fluid and Sediment Dynamic Theory 24

are turbulent with boundary layer forces controlling sediment transport above critical
shear-stress. Bed-shear stress is the frictional force exerted by the flow per unit area
of the bed (179 = 795 + 707) and is contributed to by 7y, the skin friction component
(which will be the total contribution to bed shear stress in a flat bed case), and 7y, the

form drag produced by pressure differences over rough beds. This threshold of motion
is defined by Soulsby (1997):

. h 1/7 12

U = 7d_50 [9(s = 1)dso f (D.)] (2.6a)
where: 0.30
D)= ——"— ) 1-— —0.020D. 2.
f(D.) 1+1.2D*+0055[ exp(—0.020D,)] (2.6b)
/3
g(s =17’

D* = lT:| d50 (26C>

where D, is the dimensionless grain size, s is the ratio of sediment and water densities
(ps/p), v is the kinematic viscosity, and h is water depth. Once this critical threshold is
exceeded, transport occurs as bedload or as suspension depending on grain size, shape
and flow speed. The sediment transport rate is generally proportional to the third or

fourth power of either current velocity or wave height (HR Wallingford, 2002).

A grain will fall through a column of water at terminal velocity (gravitational
force - Fi;). This velocity is the result of a balance between the weight of the immersed
grain and drag forces imposed on it by the water (see Figure 2.9). This immersed
weight is determined by the difference in the lift forces of drag from the surrounding

fluid and buoyancy, and gravity (Komar and Reimers, 1978). This is defined by:

1

o = EWD:S(ps —p)g (2.7)

This equation can then be balanced with the fluid drag (Fp) applied to a grain (Equa-
tion 2.8) to determine the settling velocity (ws) when the buoyant and frictional drag

forces equal gravitational forces:

pw?
2

Fp=CpA (2.8)
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Fig. 2.9: The forces affecting a static grain at the threshold of movement. If the friction
angle (¢) is overcome then the grain will roll out of its current position. p is water
density, ps, is particle density, Fr, Fp, and Fg are the respective forces of lift, fluid
drag and gravitational attraction.

[

|4t (s—p)

_ |z D 2,
56, 5 Y (2.9)

Ws

where Cp is the drag coefficient, a dimensionless quantity to describe the level of drag

applied to an object:
4(ps —p)

Cp = —
P33 pu?

gD (2.10)

The drag coefficient is related to the Reynolds number (R, ), which is the ratio between
inertial forces and viscous forces (Reynolds, 1883 as cited in Bridge, 2003). Laminar
flow occurs when viscous forces exceed inertial forces (R, < 1), known as the ‘Stokes
range’, where Stokes law of viscous drag can be applied (normally to grains smaller
than 63 pum; Cp = %). Laminar flow separation occurs in the boundary layer when 1
> R, < 1000, leaving a turbulent wake (domination of fluid drag over viscous drag).
R. > 1000 describes a state of total form drag with the generation of a turbulent

boundary layer and wake region. At Reynolds numbers over 1, the settling velocity or
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Fig. 2.10: Drag coeflicient against Reynolds number for a single spherical grain in still water
conditions (modified after Bridge, 2003.)

w, of a grain can be determined by its size, shape and density, as well as the viscosity
of the settling medium (Soulsby, 1997). w; of sand can be calculated by Soulsby’s
settling formula (Soulsby, 1997, Chp 8), which is based on the dimensionless grain size
D,:
1
gls—1)1°
where v is the kinematic viscosity of water, d is the median sieve diameter of the grains

and s is ps/pw. Soulsby’s formula is:

1
W, = 2 ](10.36% + 1.049D?) 7 — 10.36] (2.12)

According to this formula, very coarse quartz sand will settle at a rate of 20 cm s~!

whilst very fine quartz sand will settle at 0.4 cm s™! (freshwater at 20°C - see Figure
2.11). 90% of the results of this formula are within 20% of the actual settling rate
(Soulsby, 1997).
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Fig. 2.11: Settling velocities calculated by Equation 2.12 for a quartz grain (ps = 2650 kg
-3
m—°.)

Sand grains increase bed roughness, and thus alter the flow of a current due
to deflection. This distortion causes flow acceleration and a corresponding decrease in
pressure vertically across the grain defined by Bernouilli’s equation:

U2
pgh +p+ Py = constant (2.13)

where ¢ is acceleration due to gravity, h is the height of the fluid, and p is the pressure
along the streamline. A decrease in this pressure difference across the grain causes lift

as velocity increases. This force can be defined as:
1 2
Fp = §PCLAnU (2.14)

where (', is the lift coefficient. This force is increased by backspin (spinning opposite
to velocity gradient), which reduces the pressure difference due to faster (relatively)
fluid velocities. The force is however, reduced to zero within one grain diameter of the
bed (Bagnold, 1974; Dyer, 1986). For grain transport to occur, the forces of Fj and

Fp must be sufficient enough to overcome Fg (see Figure 2.9). The moment of lift is
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known as the threshold of motion and occurs at a critical velocity. The depth-averaged

critical velocity (U.,) for a non-cohesive sediment of D, > 0.1 can be calculated as;

O =7 () o6 = Daaf (D)) 2.15)
dso
where 03

and s is the ratio ps/p, and v is the kinematic viscosity of water (Soulsby, 1997).

This results in a U, of 0.28 m s~' for a mean grain size of 1 mm in 10 m of water.
The threshold of motion can also be defined in terms of bed shear stress (7). It is also
described by the Shield’s Parameter (#) which is a dimensionless form of the bed shear

stress directly related to the sediment grain size (Soulsby, 1997). It is defined as:

To

L
g(ps — p)d

(2.17)
To find the threshold Shields parameter (6..), 7o can be replaced with the critical bed
shear stress (7..) to calculate the threshold of movement According to these formulas, a

quartz grain with a 1 mm diameter could be expected to move when bed shear stresses
exceed 0.45 Nm~2.

Once the threshold of motion has been reached, a sediment grain will be trans-
ported in suspension or as bedload by rolling or saltation, all of which influences the

degree of sediment sorting.

Bedload transport begins above the threshold of motion with some grains be-
ginning to roll upon exceeding the critical friction angle ¢ (see Figure 2.9). Stronger
currents cause saltation, where lift and drag exceed gravity momentarily and cause the
grain to lift into the flow at an angle of 50° before returning to the bed within two to
four grain diameters above the seabed (Francis, 1973 in Dyer, 1986). Saltation sorts
sediment according to shape with angular grains moving slower than more rounded
grains (Dyer, 1986).
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When the threshold of movement is exceeded, sediment starts to be transported
as bedload (rolling or saltation) or suspension. The transport of sediment in suspen-
sion is controlled by the transfer of momentum from the water column to the particle,
so the concentration of sediment in suspension is controlled primarily by the amount
of energy present in the water, which is usually provided by tidal/river currents or
through waves. The ability of a flow to transport a sediment is influenced by the shear
stresses it induces at the bed, thus waves will suspend greater volumes of sediment than
tidal currents. Even if tidal velocities are greater than wave-induced velocities (Figure
2.7), wave-generated shear stress will still be the controlling factor in sediment motion
(Nielsen, 1992). Suspension occurs once the settling velocity of a grain is less or equal
to the vertical component of turbulent velocity (Dyer, 1986) and so is more likely to
occur with finer-grained material. Greater volumes are transported as suspension than
as bedload (Soulsby, 1997).

The proportions of sediment transported as suspension or bedload are controlled
by the ratio between the ambient friction velocity (u.) and threshold friction velocity

(use) (see Figure 2.12). Transport begins near the threshold of movement, with exposed
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Fig. 2.12: The proportion of sediment transported as rolling, saltation, and suspension as a
function of velocity. From Dyer (1986)

grains rolling until they reach a stable position. A further increase in velocity at
transport stage 1 (Figure 2.12) causes momentary lift of grains, moving them at an
angle of 50° (Dyer, 1986) before they return to the bed at a concave projection. When
u, ~ Wy, the trajectory of the grains becomes higher and longer, with a wavy path of

suspension, although if the grain comes within two or three diameters of the seabed,



Background and Theory
2.8. Fluid and Sediment Dynamic Theory 30

settling is likely before commencement of another saltation or suspension event. The
transport stage is affected by the grain size, although authors disagree on exactly
how to relate grain size to suspended transport; Ackers and White (1973) argued
that the ds; for the bed grain size of a river gave the most accurate predictions of
sediment transport, whereas Whitehouse (1995) proposed that the dsy of sediment
in suspension is correlated with the diq of bed sediment grain size. Work by van
Rijn (1984a,b,c) shows a relationship between the dsy of both suspended load (s) and
bedload (b) sediment, using a sorting (os: Equation 2.18) and transport (Ty: Equation
2.19) parameter:

d84 d50)
oy = 0.5 (24 4 B0 2.18
(df)o dlﬁ ( )
7, — (70~ 7er) (2.19)
TCT

via:

d
2 = 140.011(0,—1) (T, —25) for0<T, <25

ds0,p
= 1 for Ty > 25

These equations may give a general estimate of the sediment transport if velocity and

the grain size distribution of the bed is known.



Study Area

3.1 Study Site - Venice Lagoon

3.1.1 Introduction

Venice Lagoon is a restricted, shallow, coastal embayment (Kjerfve, 1994) located on
the north east coast of Italy at 45° N 12° E. It is separated from the northern Adriatic
Sea by a series of slender, sandy barrier islands typical of a microtidal coast (Hayes,
1979). The islands are divided by three tidal inlets - Lido , Malamocco and Chioggia,
through which water and sediment exchange occurs (see Figure 3.1). The maximum
discharge through the three tidal inlets is 20,000 m? s™!, equivalent to between 175
million m? during neap tides and 350 million m? of discharge during spring tides (Maz-
zacurati, 1995). The tide is semidiurnal with an average range of 55 ¢cm increasing to
110 cm during spring tides (see Appendix A.1). An average depth of 1 m, ensures that
the lagoon is well-mixed (Pritchard, 1952; cited in Woodroffe, 2002) with a residence
time of between 24 hours close to the inlets (Carbognin and Cecconi, 1997; Ravera,
2000) and 30 days in the inner lagoon (Cucco and Umgiesser, 2005; Molinaroli et al.,
2007). The drainage basin of Venice Lagoon is 1877 km? (Consorzio Venezia Nuova,

1997), providing 35.5 m?® s~! of freshwater input, most of which comes from the north-
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Fig. 3.1: Venice Lagoon and its location in Italy (inset)

ern tributaries of the Silone (35% of total discharge) and Dese (21.1%) (Molinaroli
et al., 2007). As most fluvial input is into the northern basin of the lagoon (see Figure
3.2), not only is the salinity lower but there are more nutrients available as it receives
50% of the total annual sediment load (Zuliani et al., 2005).

The lagoon is exposed to two major wind events; the sirocco, an autumnal /spring
south-easterly wind from the Sahara, and the bora, a north-easterly wind that peaks
in the winter. The bora induces a drop in the water level in the north and and rise in
the south, which increase velocities in Chioggia Inlet and reinforces flood currents at

Lido Inlet, reducing residence times to three days (Fletcher and Spencer, 2005). These
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Fig. 3.2: The rivers of Venice Lagoon

winds cause major resuspension of sediment particularly in the south (bora) and west
(sirocco) of the lagoon (Nielsen, 1992 and G. Umgiesser, Pers Comm). In Lido Inlet,
high concentrations of sediment occur along the inside (bora) and at the tip (sirocco)
of the northern jetty. Both winds cause build up of sediment (approximately 150,000
m?) near to the mouth of Lido Inlet (Consorzio Venezia Nuova, 1996), in the position
of the ebb-tidal delta (Helsby et al., 2005).

3.1.2 Evolution of Venice Lagoon

Venice Lagoon is the principal survivor of a series of post-glacial lagoons, which formed
about 6,000 years BP along the eastern Italian coast as a result of the Flandrian ma-
rine transgression (Gatto and Carbognin, 1981). The climate at the time was hot and
humid, a controlling factor in the increased sediment load (accelerating weathering of

the surrounding bed rock - Birkeland, 1999) carried by the rivers, causing the ancient
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Piave and Adige river deltas (Gatto and Carbognin, 1981) to prograde towards the
Adriatic Sea. The sediment was then distributed along the coast by wave and current
action to form a well-defined littoral line characterised by a series of sandy barrier

islands and lagoons.

The lagoon was originally much smaller than the present day one (see Figure
3.3A), expanding into the mainland to retain the original position of the littoral line
(Gatto and Carbognin, 1981). Venice Lagoon was originally subject to fresh water
and sediment input from five major rivers; the Piave, Brenta, Tagliamento, Adige and
Sile, and had eight portals (in 1000 AD - Gatto and Carbognin, 1981) to the sea
for water and sediment exchange (Carbognin and Cecconi, 1997), which meant that
Venice Lagoon had a natural tendency for siltation. This tendency is evident in the
disappearance of similar, neighbouring lagoons as documented by Mazzacurati (1995).
The siltation of the lagoon was so great that 14" Century Venetians feared that ships
would not be able to reach Venice, and trade would be lost. Works were subsequently
undertaken to divert the mouth of the River Brenta away from the city (Albani and
Serandrei Barbero, 2001) reducing fluvial import of sediment from 700,000 m?* yr—!
to 30,000 m® yr~! (Suman et al., 2005). Further schemes to protect the lagoon have
continued to the present day, through further river diversions (including moving the Po
River in 1604 - Mazzacurati, 1995), coastal protection engineering (sea walls along the
barrier islands in 1700s - CVN website') and jetty building starting with Malamocco
(1808 to 1840), Lido (1890 to 1910), and finally Chioggia (1911 to 1933). Prior to the
construction of the jetties, sediment influx from the longshore transport pathway has
been estimated at approximately 300,000 m?® yr~! (Consorzio Venezia Nuova, 1996).
This transport is evident as spits/deltas extending from the eastern edges of the inlets
(Fontolan et al., 2007). If these engineering works had not been carried out, it has
been estimated that Chioggia Inlet and perhaps Malamocco Inlet would have silted
up. Instead beach nourishment schemes have been required to protect the southern

shoreline from lack of sedimentation (Mazzacurati, 1995).

The current sediment influx is insufficient to compensate the natural average

subsidence of 0.4 cm yr~! (Carbognin and Cecconi, 1997), resulting in erosion of salt

thttp://salve.it /uk/eco/default.htm - 29/11/07
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(e) 18" Century (f) 20*" Century

Fig. 3.3: The anthropogenic evolution of Venice Lagoon. Figure (a) is an old map showing
the lagoon before any engineering works - from www.corila.it. Figures (b-f) show
the diversion of all of the main rivers away from the lagoon, the seawalls (murazzi),
and jetties (changes are shown as pink). Scale is approximate across all figures.
From Consorzio Venezia Nuova website (www.salve.it)
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marshes, infilling of channels and greater wave energy (Ravera, 2000). The subsidence
has been exacerbated by eustatic sea level rise of 0.127 cm yr—! and industrial ground-
water pumping during the 1950s, 60s and 70s, which caused anthropogenic subsidence
of up to 1.4 em yr—' (Consorzio Venezia Nuova, 1996). These factors have lead to
Venice ‘sinking’ by 12 cm over the last century relative to sea level (Tosi et al., 2002;
Consorzio Venezia Nuova, 1997), meaning that parts of Venice now flood with a normal
spring tide of one metre (Fletcher and Da Mosto, 2004). However, if the spring tide
coincides with a low pressure event such as the sirocco, storm surges can inundate the
city; flood-waters reached 194 cm AMSL! in 1966, leaving St Mark’s Square under 1.2
m of water. Extreme flood events (over 110 cm AMSL), that flood 12% of the city,
have increased in frequency, occurring (if at all) once or twice a year before 1960, but
in the last decade have occurred at least four times a year (Fletcher and Da Mosto,
2004). Critical flood events (over 140 cm) have flooded 90% of the city five times since
1966". These floods affect the whole lagoon, causing currents and waves to reach areas

that otherwise would have remained protected from water-generated erosion.

Sea-level change in the Adriatic is greatest along the western and north-western

edge due to tectonic pressure from the subduction of the Adriatic plate under the

Lin Venice), which is overcompensated for by isostatic

1

Appenine plate (- 0.3 mm yr~
readjustment along the Italian coast (0.7 mm yr~" in Venice). This shows that sea-
level change in Venice is localised (di Donato et al., 1999). The relative increase in
water level has increased wave energy in the lagoon resulting in increased erosion and

flattening of the bottom (Ravera, 2000).

The reduction in sediment supply has affected the salt marshes in the south and
central lagoon, with 70,000 m? of sediment eroded annually (Mazzacurati, 1995). Lat-
eral erosion of the marsh front is occurring due to increased wave energy from relative
sea-level rise and an increase in boat traffic has resulted in areas that were protected
from natural waves now experiencing constant impacts from artificially-generated ones.

The area covered by salt marsh (including reclaimed land) totals 33.5 km? at last esti-

fiin 1968

fii Above Mean Sea Level

V03/11/68 (144 cm), 22/12/79 (166 cm), 01/02/86 (158 cm), 08/12/92 (142 cm), and 06/11/00
(144 cm): www2.comune.venezia.it/maree/allstoriche.asp - 03/12/07
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Fig. 3.4: Mean sea-level change between 1880 and 2005. Data from APAT (2006).

mate (1999) from 115 km? in 1810 (Fletcher and Spencer, 2005). At the current rate of
destruction (average loss of 4 cm yr~! at the marsh front according to Day et al., 1998),

salt marshes in Venice will have disappeared by 2045 (see Figure 3.5). Contrary to this
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Fig. 3.5: The rate of salt marsh depletion between 1800 and 2050. Data from Consorzio
Venezia Nuova (1996); Fletcher and Spencer (2005).

trend, salt marshes in the northern basin have been found to be accreting 1.52 cm
yr~!, due to bio-stabilisation inducing a increase in shear strength, and increased sed-

iment input because of the location within the relatively well supplied northern basin
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(Cappucci et al., 2004). Signs of rapid accumulation in the salt marshes has also been
noted by Day et al. (1999), who found plastic sheeting buried 30-50 cm in the Punta
Cane marsh (southern basin). This sediment accretion is highest during storm activity,
although the vegetation edge of this marsh is being eroded by 1.2 to 2.2 m yr—! due
to wave impacts. This has been especially noticeable around the Petroli Canal, built
in the ‘60s to allow passage of oil tankers to the industrial port of Mestre/Marghera.
An estimated 50-100 cm has been eroded from the shallows and salt marshes in this
area since 1900 (Fletcher and Spencer, 2005), with sediment settling in the channels
requiring maintenance dredging. Thus Venice Lagoon has evolved from a small, water
body, decreasing in size due to net sediment influx, to a larger, highly engineered,

brackish environment suffering the effects of net sediment loss.

3.1.3 Sediment Exchange

Gazzi et al. (1973) states that the sedimentary environment in the Gulf of Venice is
controlled by longshore transport (also found by Bonardi et al., 1997), which has been
interrupted by the construction of groynes and jetties, resulting in turbulent eddies.
Sediment supply in the vicinity of Lido Inlet is plentiful, demonstrated by the rapid
accretion of Cavallino Beach that occurred after the jetties were built (15.8 m yr—!
between 1908 and 1933, slowing to 8.5 m yr—! between 1980 to 1987 - Consorzio
Venezia Nuova, 1989; cited in Fontolan et al., 2007; Mazzacurati, 1995; Consorzio
Venezia Nuova, 2000). The accretion of Cavallino Beach and the evolution of Lido
Inlet is shown in Figure 3.6.

Whilst the longshore transport rate is estimated to be 150,000 m?® yr=! (Con-
sorzio Venezia Nuova, 1989 cited in Fontolan et al., 2007), the supply is limited at the
southern end of the lagoon, suggesting that much sediment is transported offshore or
trapped by the Lido jetties. Fontolan et al. (2007) has investigated the ebb-tidal delta
off Lido Inlet, and found it to be immature, containing 5.81 x 10° m?® of sand, which is
just 10% of its estimated equilibrium volume of between 6.05 x 107 m® and 7.18 x 107
m? as calculated by the Residual Method of Walton and Adams (1976) (in Hicks and
Hume, 1996). The Residual Method determines idealized ‘no inlet’ contours from the
bathymetric contours. The difference between this and the real bathymetry provides

an estimate to the total sediment present in an ebb-tidal delta (Fontolan et al., 2007).
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Fig. 3.6: The evolution of Lido Inlet: 1809 (A), 1897 (B), 1934 (C), 2003 (D). After Balletti
(2006)

The delta immaturity affects the sand supply to down-drift beaches, as sand is not
easily bypassed (Bruun and Gerritsen, 1959). The -5 m contour off Lido Beach has
receded 600 m closer to shore between 1886 and 1997, due to loss of sediment supply
although some sand has recirculated by ebb-jet related eddies to accrete by the beach
adjacent to the southern jetty (some of this sand may be a relic of the ebb-spit present
prior to jetty construction). Beach nourishment has occurred on south Lido Beach
and Pellestrina Beach, supplied by 2 million m? of sand from a 5,000 year old palaeo-
beach 20 km offshore (see Figure 3.7) from Malamocco Inlet (Danish Hydraulics, 1996;
Cecconi and Ardone, 2000; Consorzio Venezia Nuova, 2000). Frequent dredging to
maintain the shipping channel into Lido Inlet, as well as a wave energy of just 15.61
m? s? (a mean significant wave height of 0.5 m and 5 m for Bora and Sirocco events)
has slowed down the equilibrium process for the ebb delta in terms of the tidal prism
(Fontolan et al., 2007).
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The near-shore region along the lagoon is dominated by very-fine sand, which is di-

Fig. 3.7: The source of sand for beach nourishment for Cavallino and Pellestrina, and Lido
beaches. Modified from Cecconi and Ardone (2000).

verted offshore with the ebb current at Lido Inlet, leaving medium to fine sand south
of the inlet along Lido Beach due to selective removal of fine-grained sediment. A
5 km wide ‘mud belt’ is present 2-3 km offshore, stretching along the length of the
lagoon (Albani et al., 1998); the silts and clays are thought to have been supplied by
the northern Adriatic rivers such as the Piave (Brambati et al., 1973 cited in Wang
and Pinardi, 2002). Sand is present further offshore (Albani et al., 1998), in the form

of the palaeo-beaches described previously.

Increased agitation of bed sediment has occurred in recent years, due to a com-
bination of the use of mechanical dredges instead of manual dredges in the harvesting
of the clam Tapes philippinarum and a reduction in the presence of bed-stabilizing
macroalgae. Sfriso et al. (2005a) state that concentrations of suspended particulate
matter have increased by a factor of ~70 in the decade since 1988. This has been
estimated to be the equivalent losing 1.6 cm yr~! of sediment on average, or 2.4 million
m? yr=! (11 em) during 1994-2001, which was the peak clam harvesting period. During

the dredging process, fine sediments are resuspended above the boundary layer, where
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velocities exceed settling velocity, and are transported away.

Amos et al. (2002) studied the water and sediment exchange in the inner-lagoon
canal system of Burano-Treporti-Lido and found evidence of submerged beaches in the
Burano region, providing an area of shelly-sand to the otherwise silty inner-lagoon.
These beaches are biostabilized by seagrasses which strongly attenuate wave energy
through sand entrainment, protecting salt marshes as observed by Cappucci et al.
(2004). Umgiesser et al. (2006) used the hydrodynamic model SHYFEM (Umgiesser,
2000; Umgiesser et al., 2004a) with the sediment transport model SEDTRANSO05 (Li
and Amos, 2001; Ferrarin, 2005) to model sediment transport in the Burano-Treporti-
Lido system and found that sediment transport is inversely proportional to grain size
and also distance from Lido Inlet. During conditions of tidal forcing, sediment is ex-
ported from the lagoon except during Bora wind conditions, when sediment is imported
along Treporti Canal. Umgiesser et al. (2006) states that sand found in Treporti Canal
is reworked from an ancient sand barrier, resulting in no distinguishable trends. The
high velocities in Treporti Canal inhibit sedimentation meaning that the northern basin

is losing sand rather than importing it.

The geology of the Veneto Region (shown in Figure 3.8) is predominantly allu-
vium from the River Brenta, with alluvium from the River Piave (Figure 3.1) present
from the southern limits of Treviso (25 km north of the lagoon) to the north-east of the
lagoon. The barrier islands of Venice however, are predominantly medium/fine sand
mainly from the Piave, but with some characteristics of Brenta alluvium. Only the
very northern marshes are recent Piave alluvium. Alluvial sediments from the River
Adige are predominant just south of the lagoon, occupying a relatively thin strip be-
tween the regions of Po and Brenta river alluvium (APAT, 1960a,b,c). Mineralogy of
the lagoonal sediments has been carried out in detail by Bonardi et al. (2005). They
determined that the average percentage of sand (as opposed to clay or silt) was highest
in the southern basin and lowest in the northern basin, despite evidence that Lido Inlet
is sandy (see Chapter 5), and submerged beaches have been found in the Burano area
(Amos et al., 2002). Bonardi et al. (2005) found that the northern basin had greater
proportions of silt and clays than the other two basins (south and central). The au-

thors also found that carbonate minerals were dominant in the northern basin, and



Study Area
3.1. Study Site - Venice Lagoon

42

medium sand, silts, clays. Carbonates,

Piave
alluvium plagioclase, calcite, augite,

pyrite, chalcedony Brenta
alluvium

d = flood deposits
(gravels, sands, silts)

a = recent sediments (coarse
_ sand, medium sand, silts
- d = flood deposits (gravels, coarse and calcareous clays)
Piave alluvium sands, clays)

with some

Brenta alluvium Adige l:l Medium sand, silts. Orthoclase
- a = recent sediments (fine sand, alluvium

augite
calcareous clays)

Mixed allvium . l:l sandy-silts, clays. Quartz
mainly Piave {- medium and fine sand alluvium

and some

Brenta 0 km 5
o ——

Fig. 3.8: The geology of the Venice Lagoon region. From APAT (1960a,c).
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silicates in the south. These findings are in agreement with mineralogical analysis of
Gazzi et al. (1973) and modelled results of Weltje (1995), who hypothesised that car-
bonates were transported down the rivers Tagliamento and Piave (see Table 3.1) from
the Dolomite Mountains to the north to the beaches. The rivers are also an ancient
source of northern lagoonal sediment. Model results from Weltje (1995) agreed with
sedimentological findings of Gazzi et al. (1973), who showed that longshore transport
was from north to south from the Tagliamento to Pellestrina but travelled from south
to north from the Po delta to Pellestrina. Thus, silicate minerals carried by the rivers

Po, Adige and Brenta are transported north towards the southern basin.

River Quartz (%) Dolomite (%)
Tagliamento 15 20
Piave 10 20
Brenta 15 15
Adige 35 15

Po 20 0

Tab. 3.1: The percentage of quartz and dolomite in the main rivers around Venice Lagoon
as described by Ravaioli et al. (2003)



Character and Morphology of the Seabed

4.1 Introduction

The character and morphology of the seabed around a tidal inlet is the result of a
combination of hydrodynamics, sediment properties and aquatic biology. Through in-
vestigation of the morphological features and how they change over time, it is possible
to gain an understanding of the pathways of sand transport, and how this transport
reflects the stability of the tidal inlet.

This chapter will describe the methods used to collect bathymetric and reflec-
tivity data from Venice Lagoon, and will discuss the transport of sand in the context
of bathymetric change and seabed texture. From these results the tidal prism/cross-

sectional area relationship will be evaluated. The following questions will be discussed:

e What are the main transport pathways, sources and sinks of sand in northern

Venice Lagoon and how has the sand shaped the morphology of the region?
e To what extent is the morphology of the region controlled by the tidal prism?

e Has the tidal prism of Lido Inlet changed between 1930 and 2000 and is it possible
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Fig. 4.1: Ariel photo of Fire Island inlet showing the migration trends from 1875 to present.
From USGS website - http://3dparks.wr.usgs.gov /nyc/parks/loc74.htm

to apply the tidal prism relationship of O’'Brien (1931) along the canal system of
Lido Inlet, Treporti Canal, and Burano Canal?

e Can areas of peak sand transport be determined using changes in morphology

and through seabed classification?

4.1.1 Tidal Inlet Stability

A tidal inlet is a short channel maintained by tidal currents, which connects an enclosed
water body to the sea (Hayes, 1975; Fitzgerald, 1988). They are important to a lagoon
as they flush lagoonal/bay waters which may otherwise become nutrient depleted or
polluted. They are also economically important as a passageway for ships into sheltered
harbours. A tidal inlet is the most dynamically active component of a lagoon, as
revealed by frequent alterations in its morphology and position. The migration of the
Fire Island Inlet in New York state is an example of this mobility (shown in Figure
4.1) as it has migrated west approximately four miles in 100 years. This is an example
of sediment bypassing by inlet migration (see page 19). Inlet mobility is a sign of
instability between the current flow and the geomorphology of the site that can cause
navigational problems as maps quickly become obsolete. Therefore it is economically
beneficial to determine how stable a tidal inlet is and if it requires artificial stabilization
by jetty construction. Work by O’Brien (1931) has demonstrated that inlet stability
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can be determined by comparing the tidal prism (the total volume of water passing
through an inlet at its smallest cross section) during a tidal cycle and the cross-sectional
area at mid spring-tide. This relationship between the cross-sectional area (A.) of an
inlet and its tidal prism (P) has been investigated by numerous authors (Le Conte,
1905; O’Brien, 1931, 1969; Escoffier, 1940; Jarrett, 1976; Hume and Herdendorf, 1988,
1990). All have concluded that the relationship can be expressed by a variation of the
general formula:

A, =zP" (4.1)

where x and n are constants. If an inlet follows this relationship, then it can be re-
garded as stable in terms of its equilibrium with the tidal prism. An inlet with a
smaller cross-sectional area or larger tidal prism than the relationship predicts, may be
unstable and should erode to increase the cross-sectional area in order to accommodate
the tidal prism, and vice versa. However, as the inlet cross-sectional area changes, the
tidal discharge and velocity must also be affected and by analogy the tidal prism. It is
therefore important to consider this relationship in terms of inlet management as the

depth (for navigation) can be controlled if the inlet width is restricted by jetties.

Le Conte (1905); O'Brien (1931, 1969) and Nayak (1971) used data collected
from inlets along the Pacific coast of North America to define a standard relationship of
inlet stability. In addition, O’Brien (1969) distinguished a difference between natural
inlets (Equation 4.2) and jettied inlets (Equation 4.3), which results from a slightly

larger cross-sectional area found in the jettied inlets:

Natural inlets
A, =T7.607 x 107°P (4.2)

Jettied inlets
A, = T7.489 x 10~ *po86 (4.3)

Jarrett (1976) published a summary of cross-sectional area/tidal prism relationships
using data on inlets along the Pacific, Atlantic, and Gulf coasts of N. America. He
concluded that inlets on the Atlantic coast followed a different relationship to those on

the Pacific coast, that they have a larger cross-sectional area to a given tidal prism:
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Atlantic coast
A, =3.039 x 107°PL% (4.4)

Pacific coast
A, =2.833 x 1074p%9! (4.5)

Pacific and Atlantic coasts are subject to different tidal conditions as the for-
mer has a large diurnal inequality (one high tide is significantly larger than the second
high tide of the day); the latter is semidiurnal. Jarrett (1976) however, concluded that
the wave climate and ratio of the inlet width to the hydraulic radius (Ry, - the ratio
between the cross-sectional area and the wetted perimeter) were more significant in cre-
ating differences in these relationships. The mean wave height in the Pacific is greater
than in the Atlantic by over a metre; this influences the magnitude of the littoral drift
of sand and hence the hydraulic radius of the channel. The greater the magnitude of
littoral drift, the smaller the hydraulic radius becomes (Jarrett, 1976). Inlets restricted
by bedrock will shift geographically with littoral drift action (Bertin et al., 2004), and
reduce the tidal prism through the formation of ebb-tidal deltas (Walton and Adams,
1976), so that the relationship remains valid. The O’Brien relationship is not always
suitable and new relationships have formulated, for example, in Japan (Shigemura,
1981) and in New Zealand (Hume and Herdendorf, 1990).

The inlets of Venice Lagoon have only recently been studied in terms of their
stability. Tambroni et al. (2005) determined that all three inlets corresponded to
the general tidal prism/cross-sectional area relationship (Equation 4.1), although they
tested the stability of the inlets through a relationship between maximum velocity and
depth. Their results show that both Lido and Chioggia inlets are unstable and liable
to deposition due to relatively slow velocities when compared with depth, whilst the
artificially deepened Malamocco Inlet is near a ‘critical condition” with velocities faster
than predicted for its depth. Fontolan et al. (2007) researched the relationship between
Adpriatic inlets and their ebb-delta volumes (V') using variations of the general formula
V =z P" (note the similarity with Equation 4.1). Their results describe an immature
ebb-tidal delta associated with Lido Inlet, with just 10% of the volume predicted using
the formula V' = 8.157 x 1071 P14636 of Hicks and Hume (1996). Their investigations
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also show Lido Inlet to be stable in accordance with the relationship of O’Brien (1969),
contrary to the findings of Tambroni et al. (2005). However, whilst Tambroni et al.
(2005) used recent modelling techniques to determine their results, Fontolan et al.
(2007) used discharge data that is almost two decades old (Consorzio Venezia Nuova,
1989). The stability of Lido Inlet is still clearly debatable and requires further study;
therefore, this chapter will investigate the validity of the O’Brien (1969) relationship
within Lido Inlet and whether the relationship can be extended to any cross section

within a tidal canal to quantify the stability of channels within the lagoon.

4.1.2 Bathymetry and Texture

The mapping of morphology is important for sediment transport investigations. Hence
deeper channels are representative of high-energy environments with sediment trans-
port as suspended load and bedload. Similarly, shallow areas can depict a low-energy
environment and thus are a likely sink of sediment. Changes in the seabed bathymetry
over time can also provide an indication of the type of environment through erosion
(high-energy) and accretion (low-energy). Large scale bedforms can also provide infor-
mation on sand transport, for example, sand waves are produced by mean velocities

greater than 0.4 m s!

, with sediments coarser than 200 pm (Tucker, 1991). Sediment
characteristics, such as grain size and shape, provide an indication of the hydrody-
namics; for example, coarse material in a predominantly fine-grained area could be the
result of scour (armouring), caused by turbulence in the water column (Hoffmans and
Verheij, 1997). Changes in the sediment type of the seabed can be detected through
differences in the way they reflect acoustic waves, thus sidescan sonars (Nitsche et al.,
2007; Collier and Brown, 2005) and echosounders (Burczynski, 2001; Lied et al., 2004;
Tegowski, 2005) have been used to characterise the seabed by its reflectivity. The
authors generally concede that grain size is positively correlated with an increase in
backscatter (Collier and Brown, 2005); fine-grained sediment absorbs sound energy,
thus is distinguished by low reflectivity, whereas sand is generally more reflective due
to its hard, flat surface. Reflectivity must still be calibrated with sediment samples as
it is affected by other variables such as the turbidity, presence of bubbles, and water
chemistry of the water column, which can absorb acoustic energy. The reflectivity of

the seabed can subsequently be compared with these sediment samples to produce a
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high-resolution map of seabed texture. An example of seabed classification by Nitsche

et al. (2007) depicting the River Hudson is shown in Figure 4.2.

sedimentary environments
1 Deposbon - thick
Deposbon - thin
Depasition - over bedrock
Deposbon - unies. tickress
dobeis

scour
sl
sUBaks

Fig. 4.2: Example of the seabed classification maps of the Hudson River produced by Nitsche
et al. (2007).

The use of reflectivity and bathymetric data will be used to determine the
morphology of the study area resulting in hypotheses of hydrodynamics (areas of
peak/minimum velocity, eddy formation and scour, areas of wave and tidal current
domination) and sediment dynamics (sand wave production, scour, deposition and
erosion). From this it may be possible to determine potential sources (scour) and sinks
(deposition, fine-grained beds) of sediment as well as the average direction of sediment

transport (skewing of morphological features).

4.2 Methods

4.2.1 Bathymetry Survey

540 line kilometres of bathymetry and sector-scanning sonar data (in sidescan mode)
were recorded during February 2003, February 2004 and May 2004 within the Lido
Inlet, Treporti and Burano canals, and in the Adriatic Sea around the mouth of Lido

Inlet. The track lines are shown in Figure 4.3. Further bathymetry data from 1930,
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1970, 1990, and 2000 (provided by CNR-ISMAR) were also used, as well as historical
charts of Venice Lagoon up to 500 years old (Baso et al., 2003).

SantErasmy

Fig. 4.3: Survey lines for bathymetry and reflectivity (sonar) data for 2003 and 2004.

Bathymetric data strings were recorded at 1 Hz from a single-channel echosounder
at a vertical resolution of 3 cm. The data were geo-referenced with a Garmin® GPS
(recording at 1 Hz into a separate file) through correlation of time stamps saved within
each line of data in both data files. Tidal corrections (available at 5 minute intervals)
using measurements from a tidal gauge in Lido Inlet were interpolated and applied
to the data as were corrections for draft and depth (Figure 4.4); the echosounder was
calibrated during each survey for changes in the speed of sound in seawater. All of
the datasets were corrected relative to the Punta Salute Datum in the Grand Canal,

Venice, with any obvious outlying data-points removed.

Longitude and latitude (in decimal degrees) and depth (in metres) were trans-

ferred into a text file readable by Generic Mapping Tools (GMT) for imaging (Wes-
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Fig. 4.4: The depth calibration for the Fishfinder echosounder. Standard error of the differ-
ence is 0.16 m.

sel and Smith, 1991). The data were plotted initially as trackpoints, and cross-over
points (where the boat tracks intersected) were compared to ensure the data had been

corrected sufficiently. The average discrepancy between crossover points (excluding
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Fig. 4.5: Comparison of depths where boat tracks intersected (cross-over points).

three outliers seen in Figure 4.5) was 0.05 m with a standard error of 0.23. The
data were subsequently gridded at 0.001° intervals using GMT algorithms (Wessel and
Smith, 1991) to calculate the hypothetical value of desired fixed-grid datapoints us-
ing nearest-neighbour real world values, and imaged as layers in a postscript graphic.

Further image layers were added to show the locations of islands, which were digitized
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from a recent map of Venice Lagoon (Bondesan et al., 2004). Contour plots of the
whole lagoon as well as sections focussing on Lido Inlet, Treporti and Burano Canals
and outer Lido were created to show bathymetry in the years of 1930, 1970, 1990,
2000, and 2004. To show changes in morphology and areas of erosion and deposition
the difference map method (DMM) was employed (Stauble, 1998); the bathymetric
gridfiles were compared using a further GMT algorithm (algorithms used are shown in
Appendix B). The disparity between two datapoints occupying the same gridpoint but
for separate years were calculated and the result written into a new file also providing
the grid coordinate. The resulting gridfile was then used to determine temporal changes
in bathymetry and to quantify erosion and deposition rates. By analysing these maps,
changes in morphological characteristics could be determined and sediment transport

pathways hypothesized.

4.2.2 Tidal Inlet Stability

The hydrodynamic model SHYFEM (Umgiesser et al., 2004a,b) was used to determine
the channel stability as theorized by O’Brien (1969), and to investigate the applicability
of the relationship to inner-lagoonal channels. A model was used instead of taking
actual data measurements so that discharge and thus tidal prism could be calculated
for the years with available bathyemtry. 11 profiles, selected to correspond to nodes
within the SHYFEM model, were drawn across sections of Lido Inlet, Treporti Canal
and Burano Canal (for positions see Figure 4.7) and the cross-sectional area calculated
from the gridded, lagoon-wide, bathymetry datasets for the years of 1930, 1970, 1990
and 2000. The bathymetry was gridded using GMT algorithms and data extracted at
equal intervals along each profile (z in Equation 4.6). The depth (d) was then assumed
to be uniform for each of these intervals (dividing the cross-section into rectangles of

equal width. See Figure 4.6) so that a trapezoidal calculation could be performed:

Ac=) diAx (4.6)
=1

where n is the total number of individual trapezoids.

SHYFEM was used to calculate the tidal prism through simulation of a typ-
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S S

Fig. 4.6: Calculation of cross-sectional area. The white-shaded areas are not included in the
calculation but only appear significant in this image due to the relative exaggeration
of the axes and length z.

ical spring tide in Venice Lagoon. The model was run using all four lagoon-wide
bathymetry datasets to predict discharge, tidal elevation and current velocity across
each profile every 300 seconds of the tidal cycle. The tidal prism was then calculated
using three different methods, which were compared to determine the most accurate
method. The first method (Equation 4.7) was that of O’Brien (1931, 1969), where A,

is cross-sectional area, V., is the maximum velocity and 7" represents the tidal period:

. Acvmazt T

™

P (4.7)

The second method, uses maximum discharge during the flooding tide (Quqz), after
the U.S Army Corps. of Engineers (Seabergh, 2002):

. TQ’H’L(II

™

P

(4.8)

The final method directly sums the discharge passing the profile during the flooding
tide (Qpos) with the result multiplied by 300 (At):

T
pP— Z AtQ s (4.9)
0

The tidal prism and cross-sectional area were plotted against the O’Brien relationship
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Fig. 4.7: The location of cross sections used to determine the stability of Lido Inlet.
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as well as other cross-sectional area/tidal prism relationships (Jarrett, 1976; Le Conte,
1905). The cross sections were compared to quantify erosion and deposition in the
years 1930, 1970, 1990, 2000, and 2004, and to determine if channel shape has altered.

4.2.3 Reflectivity

A Marine Electronics image profiling sonar operating at 500 kHz, collected reflectivity
data concurrently with the bathymetry data (see Figure 4.3). The sonar was hull-
mounted on a downrigger, which restricted the survey speed to 7-8 km/hr to reduce
reverberation and turbulence. Degradation of the signal occurred due to turbulence
and bubbles left in the wake of ships (Lido Inlet is the thoroughfare to Venice for ferries

and cruise ships) crossing the survey path.

Each acoustic ping was displayed in real time on the onboard PC and saved
automatically approximately every three minutes (Figure 4.8). These data, saved as
an image file were then converted into text file with each bin having a value from 0
to 255, 0 being lowest reflectivity (blue pixels in Figure 4.8) and 255 being maximum
reflectivity (fully saturated and represented by red pixels in Figure 4.8).

GPS coordinates were not integrated with the sonar system, therefore the save
time from each sonar file was correlated with the save time from the bathymetric
dataset in order to determine the co-ordinates of the data. Water depth was also
correlated with the sonar data so the seabed return could be identified by subtracting
the water depth from the first return (taking into account draft). The seabed return
was averaged to reduce error and then plotted using GMT. This method produced only
adequate results, showing a large variation of backscatter, probably due to boat roll
and variation in the width of the seabed return (see Figure 4.8), which could not be
taken into account. To improve the quality of the results the image files were processed
using a more laborious, manual method, which involved the definition of colour scales
between 1 and 30 (arbitrary units, subsequently referred to as reflectivity index or Ig
shown in Figure 4.9) with dark blue (no backscatter) having a value of zero, and the
red (fully-saturated backscatter) having a value of 30 I, and the colours between split

into 5, 10, 15, 20, and 25 [r. Six images which corresponded well to each of these
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Fig. 4.8: An example sidescan image showing shadowing around navigation poles and a thin
seabed return (A) and a change in seabed texture and a thicker seabed return (B).

benchmarks were used to compare with all the remaining images, with intermediate
values (such as 8 or 27 Iy) used when the backscatter was not a precise match to the

reference images.

Fig. 4.9: Reflectivity spectrum of the data showing the reference Ir increasing from 5 to 30.

The save time of each image was used to determine the position which was then

combined with the Iy data, depth and sonar gain into a text file readable by GMT.

Corrections to the data were required to standardize the different gains used
through the survey, and also to correct for depth induced errors. The [r of several
pairs of images which were consecutive but had different gains, was compared to find
the average change in I (1.5 I per increment in gain). This difference was used to nor-
malize all images to a gain of 7. These values were subsequently mapped and compared
with the initial uncorrected map to evaluate the success of the calibration. Neighbour-

ing datapoints now showed similar I, unless the seabed characteristics changed. The
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Fig. 4.10: Backscatter reflectivity versus depth. The original data is shown in orange, the
corrected data, in blue.

height of the water column also affects reflectivity as sound is attenuated with distance
travelled. Therefore the return signal can be over-saturated in shallow water but very
weak in deeper water. A graph (Figure 4.10) of I versus depth (h) was plotted and
a regression line fitted (/g = 0.6753h + 25.046) to show the mean I at each depth.
To correct the data for depth, the regression line was de-trended as shown by Figure
4.10. The result of this calibration was to retain the mean I at 25 (the mean I at
zero depth). As the maximum /p was now greater (33.9) than the defined maximum

of 30, the results were multiplied by 0.885 to restore the scaling.

4.2.4 Seabed Classification

The reflectivity data were used in conjunction with sediment classification (determined
through grab sampling and discussed in Chapter 5) and bathymetry data to categorize
the seabed. Three morphodynamic zones were identified and mapped: high energy
(e.g. areas of maximum current strength, or wave foci), medium energy (e.g. dynamic
conditions - waves, tidal currents) and low energy (sheltered due to short fetch or water

depth). Areas of significant deposition (over 2 m between 1990 and 2004), deposition
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(0 to 2 m), erosion (0 to -2 m) and scour (over -2 m erosion) were also added to the

same diagram.

4.3 Results

4.3.1 Morphological Changes in Venice Lagoon

Venice Lagoon has suffered widespread erosion between 1930 and 2000 (Figure 4.11);
comparison between the datasets of these two years reveals loss of sediment principally
around the Petroli Canal (passage for oil tankers leading from Malamocco Inlet to the
industrial port of Marghera - see Figure 3.1), Venice and Chioggia Inlet. This is in
agreement with the conclusions of Magistrato alle Aqua (1993) and Ravera (2000). The
average rate of erosion is approximately 1.5 cm yr—!, although this doubles to 3 cm
yr~! around Chioggia Inlet and increases to over 10 cm yr~—! around the Petroli Canal'.

! extends

An erosion ‘aura’, where bed elevation has decreased at a rate of 5 cm yr—
about 2 km around the canal’s 90° bend!. Deposition at an average rate of 2 cm yr—!
occurs in the northern intertidal area and along the shoreline of the mainland. Further
results regarding volumetric changes in the morphology of the lagoon are discussed in

Chapter 7.

4.3.2  Morphological Features of the Study Area
4.3.2.1 General Morphology

Lido Inlet contains many of the typical features normally associated with tidal inlets
(as shown in Figure 4.12) as defined by Hayes (1975). In 1930 it was slightly ebb
dominant, although from approximately 1980 the tidal dominance shifted and it is
currently slightly flood dominant (ebb/flood ratio is 7:8 during June 2007"; see Figure
4.13) and from observation it appears that the strongest current flows along the deepest
part of the channel running adjacent to the southern jetty. An ebb-tidal delta is present
at the mouth of the inlet that extends about 4 km into the Adriatic Sea (Amos, 2005;
Donde et al., 2008). The delta is skewed to the south-west, in the direction of longshore

IThis rate is calculated from a 1970-2000 comparison map as the canal was not completed until
1969.
"Data (in hours) from Comune di Venezia.
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Fig. 4.11: Areas of erosion and deposition in Venice Lagoon between 1930 and 2000. Note
deposition in the northern intertidal areas, and erosion around the Petroli Canal
extending from Malamocco Inlet.
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transport (Gazzi et al., 1973). There does not appear to be any marginal flood channels
or channel-margin linear bars. The deepest part of Lido Inlet is adjacent to the southern
jetty and is well defined; the maximum depth is around 18 m (MSL) compared to an
average depth of approximately 5 m elsewhere in the inlet. There are no channel-
margin linear bars within the inlet, although a sub-aqueous ebb tidal spit is attached
to Punta Sabbioni extending parallel to the tidal channel for about 1 km. A flood-tidal
delta separates Treporti Canal and San Nicolo Canal; whereas the San Nicolo Canal is
a continuation of the deep tidal channel and reaches depths of over 20 m, the channel

leading into Treporti Canal is shallow at 4 m.

Flood-ramp sand waves are visible on satellite images (see Figure 4.14), which
are orientated perpendicularly to the tidal currents and lead up to a shallow area of
deposition inaccessible to the boat survey. A bio-stabilised ebb shield is attached to the
eastern edge of the delta. Treporti Canal is strongly ebb dominant exhibiting greater
discharge (by 14%) and faster average current-speeds than during flood (modelled by
SHYFEM as 0.50 m s~! compared to 0.48 m s~! during flood). However, the modelled
results (used to calculate the tidal prism) reveal that the flow of Treporti Canal is
becoming increasingly flood dominant as ebb currents have decreased at a greater rate
than the flood currents (see Figure 4.13 and Table 4.1).

Channel Date ‘ Ebb Max Ebb Speed ‘ Flood Max Flood Speed

Lido 1930 | -37.03 -0.78 | 36.71 0.70
1970 | -37.55 -0.79 | 37.46 0.73
2000 | -34.97 -0.72 | 35.23 0.69
Treporti 1930 | -32.18 -0.57 | 27.15 0.59
1970 | -32.95 -0.60 | 27.93 0.60
2000 | -26.47 -0.50 | 23.13 0.48
Burano 1930 | -22.71 -0.50 | 25.10 0.42
1970 | -20.33 -0.44 | 23.92 0.42
2000 | -17.05 -0.37 | 18.86 0.36

Tab. 4.1: Flow characteristics of Lido Inlet, Treporti and Burano canals (cm s~!). Ebb and
flood are calculated from summation of all modelled velocity data over the period
of a typical spring tide.
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Fig. 4.12: Morphology of the study area showing the tidal deltas.
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Fig. 4.13: Changes in tidal dominance (ebb discharge to flood discharge ratio) in Lido Inlet,
Treporti and Burano canals. The percentage difference in the total discharge in a
typical spring tide as modelled by SHYFEM.

sand waves

Fig. 4.14: Satellite image (from Google Earth) showing the flood delta with sand waves on
the flood ramp and a bio-stabilised ebb shield.

The canal has a 10 m deep tidal channel which is bordered by a channel margin

linear bar reducing the depth to around 4 m. The deepest part of the canal is at the
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Fig. 4.15: Confluence scour holes along Burano Canal. Bathymetry from 2000 (in metres)
with satellite image from Google maps.

junction with Burano Canal and San Felice Canal where a 20 m deep confluence scour
hole exists. These confluence scour holes are a significant feature of Burano Canal,
appearing at most tributary confluences (see Figure 4.15). They have been referred to
as ‘triple-junction scour holes’ in a study of the region by Amos (2005). The depth
of Burano Canal ranges from an average of 6 m at its mouth to 3 m at source, and
is up to 15 m deep at the scour holes. Scour is also present half way along the canal
where the course changes direction by 90°. Burano Canal is flood dominant, and like
Treporti Canal, this dominance is reducing gradually as current speeds have fallen by
around 15 to 20% between 1930 and 2000.
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4.3.2.2 Morphological Changes: Erosion and Depositional Trends

The tidal channel in the narrowest section of Lido Inlet has deepened by 3 m between
1930 and 2004 (4 cm yr~—!). This ebb scour, B in Figure 4.16, extends past the limits
of the jetties, with maximum scour (approximately 14 cm yr~!) occurring 500 m off

the southern jetty, skewing slightly towards the south west. A second area of erosion
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Fig. 4.16: Bathymetric changes in Lido Inlet between 1930 and 2004. Areas of erosion have
formed where current flow from Treporti Canal (A) has been altered by deposition
on the ebb shield (F), and in the tidal channel (B). Deposition has occurred on
the western edge of the flood delta (C), the ebb spit (D) and at the northern jetty
where sand enters the inlet (E).
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with a relative increase in depth of up to 1 m between 1990 and 2004, exists 2 km to
the south east of the jetties, positioned in line with the tidal channel. The ebb-tidal
delta lobe begins about 1.5-2 km from the southern jetty, beyond the ebb scour. The

1

delta has experienced deposition of around 10 cm yr~—; sediment has been deposited

in a 'half-moon’ shape, south-west from the inlet mouth.

Rapid deposition has occurred on the beach side of the northern jetty as water
depth has decreased by over 4 m between 1990 and 2004 (Figure 4.17). This deposition
is related to the rapid progradation of Cavallino Beach (8.5 m yr~! - Consorzio Venezia
Nuova, 1989). If the beach has prograded to the end of the jetty, it is likely that some
of its sediment will enter the inlet during a flood tide; a small area of deposition just
inside the inlet adjacent to the northern jetty, has appeared since the 1970 dataset was
collected, suggesting this has occurred. Deposition has occurred on the large ebb tidal
spit within Lido Inlet (Figure 4.16D) at an average rate of 8 cm yr—! between 1930

and 1970. This corresponds to around 387 m? of sediment deposited in cross-section
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Fig. 4.17: A. The bathymetry of the ebb-tidal delta in 2004 and B. The patterns of erosion
and deposition between 1990 and 2004.

2 (see Figure 4.7 for location). Deposition post 1970 has been negligible, with erosion

1

of around 2.5 cm yr—" occurring where the ebb spit extends away from the northern
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jetty. Sediment is also being deposited at a rate of 7-8 cm yr—! near to the mouth
of Lido Inlet adjacent to the northern jetty (Figure 4.16E). However, this is relatively
recent as no significant deposition occurred here prior to 1970. The rest of the inlet
has remained stable between 1930 and 2004. The flood-tidal delta has experienced
slight deposition on the flood ramp (Figure 4.16C) and the western section of the ebb
shield (1 em yr~') with a maximum rate of deposition (2.5 cm yr=!) occurring on the
western edge of the flood delta. The eastern edge of the flood delta has been severely
affected by sediment removal, with water depths increasing around 3 m between 1930

and 2004; a rate of 4 cm yr—1.

Cross sections of Lido Inlet reveal that the tidal channel has deepened by a
similar volume (387 m?; see also Chapter 7) as the ebb spit has gained since 1930 (see
Figure 4.18). In 1930, the inlet had a ‘u’ shaped profile, but since 1970 the depth of the
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Fig. 4.18: The cross-sectional profile midway up Lido Inlet for the years of 1930, 1970, 1990,
and 2000 (MSL).

tidal channel has increased by around 2 m, whereas the area of the ebb spit has become
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shallower by an equal volume creating an asymmetric profile. The cross sections also
show that the tidal channel is ‘v’ shaped in contrast to the ‘u” of the channel leading
into Treporti Canal. The tidal channel has deepened by around a metre between 1930
and 2000, whereas the shallower, northern part of Lido Inlet has a depositional ten-

dency (see Appendix B for all cross sections).
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Fig. 4.19: The change in cross-sectional area in the first profile of Treporti Canal (profile 4
in Figure 4.7).

Treporti Canal has become increasingly intrenched between 1930 and 2004 as
the channel margin linear bars have remained relatively stable, whilst the water depth
in the tidal channel has increased by about 3 m. The cross sections of Treporti Canal
show that the channel changed shaped from ‘u’ shaped in 1930 to ‘w’ shaped from 1970
due erosion of part of the channel (Figure 4.19).

Burano Canal experienced an average deposition of 4 cm yr—! between 1930
and 1970, although the mouth adjoining Treporti Canal was eroded slightly. After
1970 however, the canal has remained relatively stable, with changes around the scour
holes, located at channel junctions. Infilling affected these holes when the canal was

depositional; the Mazzorbo-Burano scour hole was reduced to a third of its 1930 size
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Fig. 4.20: Bathymetry of the confluence scour hole at Burano and Treporti canals: in 1930
(A), a comparison between 1930 and 2000 (B), and in 2000 (C).
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Fig. 4.21: The cross sectional profile at the mouth of Burano Canal showing the channel in
1930, 1970, 1990, 2000, and the position of the 1930 profile (black) assuming error
in the positioning of the 1930 dataset.

by 1970. The confluence scour hole between Treporti and Burano canals experienced a
decrease in water depth (deposition) of 4 m on its western edge between 1930 and 2004
and an increase of over 5 m depth (erosion) on its northern and eastern edges in the

same time frame (see Figure 4.20). Direct comparison of the bathymetry from both
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these years show the scour hole has become streamlined with the dominant flow (see
Figure 4.20). The cross sections of Burano Canal show that the 1930 profile is offset
in comparison to subsequent profiles (see Figure 4.21), which have remained relatively
stable in terms of depth and profile shape. This suggests that the canal may have
shifted its position.

4.3.3 Tidal Prism

Different methods of calculating the tidal prism were compared (results shown in Figure
4.22). The direct discharge equation (Equation 4.9) compared favourably (within 2.6%;
o = 4.5%) with the trapezoidal calculation favoured by Seabergh (2002) of the U.S.
Army Corps of Engineers (Equation 4.8). The velocity method of O’Brien (1969)
(Equation 4.9) differs by over 10% when compared to the direct discharge calculation
in Lido Inlet despite being similar to the results for the Treporti and Burano canal
profiles (o = 15.6%). For this reason, the U.S Army Corps discharge method (Equation
4.8) was used to calculate the tidal prism as it appears to provide a better fit than the

velocity method and is simpler than the direct discharge calculation.

The ratio of the tidal prism and cross-sectional area (CSA) in 1990 shown in
Figure 4.23A, reveal that the cross-sections were on average, 29% larger than pre-
dicted by the O’Brien relationship. However, the profiles in Treporti increased by an
average of 7% between 1970 and 2000 though some deposition occurred between 1990
and 2000. Also, Lido Inlet remained relatively stable between 1990 and 2000 despite
needing to reduce its cross-sectional area by a minimum of 20% to be stable according
to the O’Brien relationship. Larger cross section/tidal prism ratios are indicative of
the Pacific coast inlet relationship described by Jarrett (1976) and so were compared
with the cross-sectional profiles from the current study. These results are shown in
Figure 4.23B. The data from Venice Lagoon (green diamonds) fit the relationship for
Atlantic coast inlets (blue line) better than the relationship of O’Brien (red dashed
line). Burano Canal has a relatively large cross-sectional area for the tidal prism, even
when compared to the Atlantic relationship. However, it does fit a relationship for
inner harbour entrances (dotted blue line in Figure 4.23B) formulated by Le Conte
(1905).
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Fig. 4.22: A comparison between methods of tidal prism calculation

The stability over time of the northern Venice Lagoon canals was determined
by repeating the analysis with bathymetry data from 1930, 1970, and 2000 to provide
answers to two important questions; has the tidal prism changed within the last 70
years, and are the tidal channels stable? The model results show the tidal prism to be
relatively stable, albeit with an increase in 1970. As the results are similar in 1930,
1990, and 2000, it may be that the 1970 data is an outlier (see Figure 4.24). Profiles
2 and 3 (well within Lido Inlet - see Figure 4.7) have remained stable between 1930
and 1970 in terms of cross-sectional area, but experienced change by 2000; profile 2
increased its cross-sectional area by 3%, whilst profile 3 experienced a decrease of 3%.
Profile 1 agreed with the results of Tambroni et al. (2005), and experienced a 7% in-
crease in its cross-sectional area between 1930 and 1970 before gradually infilling and
returning to its 1930 dimensions. This prompts the question; why was the cross-section
significantly larger in 1970 if subsequently the cross-sectional area returned to previous

dimensions and thus, is returning to an equilibrium level? The results from the tidal
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(a) Cross-sectional area against tidal prism of 11 profiles in the Lido Inlet-Treporti-Burano
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(b) The tidal prism and cross-sectional area data from Venice in comparison to data from
jettied tidal inlets on the Pacific and Atlantic coasts. The relationships of Le Conte,

1905, Jarrett, 1976 and O’Brien, 1969 are also plotted.

Fig. 4.23:
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prism calculations also show an increase of 2% (an extra 8,633,000 m?) in the total
volume of tidal water entering and leaving profile 1 between 1930 and 1970, although
by 2000, this had returned to the same tidal prism as seen in 1930 (see Figure 4.24).
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The tidal prism/cross-sectional area relationship was also calculated for the
other two inlets of Venice Lagoon (Malamocco and Chioggia) as they are thought to
drain hydraulically separate basins (the northern, central and southern basin - Seran-
drei Barbero et al., 1999; Solidoro et al., 2004) but have similar tidal and geologi-
cal characteristics so should be directly comparable to Lido Inlet (Figures 4.26A &
4.26B). Both the cross-sectional area and tidal prism calculations for Malamocco Inlet
reflect the artificial deepening of the channel for the Petroli Canal, however it appears
that equilibrium values may now have been reached 30 to 40 years after construction.
However, this equilibrium is not in agreement with the O’Brien relationship as the
cross-sectional area is much smaller than expected (Figure 4.26B). The tidal prism in
Chioggia Inlet is gradually increasing (by almost 1 million m? between 1930 and 2000),
as is its cross-sectional area (by 1000 m? in the same time frame). This is the only
inlet that has reached equilibrium according to the relationship of O’Brien, although

its continually changing state suggests that it is not stable.
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Fig. 4.25: Tidal prism (dotted lines) and cross-sectional area (solid lines) for Malamocco (M;
grey), Chioggia (C; black) and Lido (L; white) inlets.



Character and Morphology of the Seabed

4.3. Results 75
160 -
o /
140 A
Malamocco Lido
120
g «d
= 100
E
g 80 Chioggia
w0
i ¢
= 60 n
T /
'—
40 (O1es0 |
{1970
A 1980
20 O 2000
== Obrien
0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Cross-Sectional Area (m?)

(a) The tidal prism/cross-sectional area relationship of the three inlets of
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(b) The summed tidal prism and cross-sectional area of the three Venice Lagoon
inlets in 1930, 1970, 1990, and 2000. Shown with the O’Brien relationship
and the Atlantic relationship (after Jarrett, 1976).

Fig. 4.26: Cross-sectional area/prism relationships.

4.3.4 Seabed Texture and Classification

The mapped results of corrected reflectivity are shown in Figure 4.27A. Areas of high

reflectivity are located around the southern jetty, along Cavallino Beach and extend
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into Lido Inlet around the northern jetty, as well as the confluence between Treporti
Canal and Lido Inlet. The lowest reflectivity is found off Cavallino Beach, extending

around the area of high reflectivity off the southern jetty.

Collier and Brown (2005) state that backscatter is generally positively corre-
lated with mean grain size although in the present study, the coefficient of error (R?)
of the regression is very low (0.05) so the likelihood of using backscatter to accurately
determine grain size in this case is limited. However, direct comparison between the
reflectivity and grain size maps (see Chapter 5 for more information and diagrams),
show that there are some similarities. The area of low reflectivity (Figure 4.27A) is
located in the region of the mudbelt described by Albani et al. (1998) but also where
very fine sand has been sampled during this study (see Figure 5.10B and 4.27B). The
area of high reflectivity (4.27A) corresponds to areas with gravel or high sand content.
This is not the case in area D on the flood-tidal delta, which has high reflectivity but

is composed of muddy sand. The area is however, much shallower and intertidal.

A summary diagram of the ‘seabed classification’ is shown in Figure 4.27C.
The sediment type and reflectivity are analogous, showing a low energy environment
(fine sand and low reflectivity) to the south east of the inlet mouth and a high energy
environment (high reflectivity and coarse sediment) near the flood-tidal delta. There
is some agreement to where scour (high energy) occurs at the southern jetty, but it
is not well defined compared to the other areas of low and high energy environments
(defined on Page 58).
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4.4  Discussion

4.4.1 Lagoonal Morphology

Venice Lagoon is separated from the Adriatic Sea by sandy barrier islands, which are
divided by three tidal inlets through which sediment and water exchange occur. Few
rivers drain into the lagoon and so the morphology is primarily driven by marine pro-
cesses. Wind-driven current and waves are also an important factor due to the size
of the lagoon (Umgiesser, 1997), although longshore drift (Gazzi et al., 1973) has an

effect on morphology outside.

Venice Lagoon has suffered severe erosion at least since 1930. This is signifi-
cant as the average depth of the lagoon is only 1 m (Consorzio Venezia Nuova, 1996).
The greatest degree of erosion has occurred around the Petroli Canal, which was con-
structed between 1952 and 1969 to allow passage of oil tankers from the Adriatic Sea
to the mainland industrial port of Marghera (see Figure 4.11). This dredging, com-
bined with significant subsidence (Gatto and Carbognin, 1981), has altered the current
hydrodynamics and increased the Malamocco Inlet tidal prism by 28% between 1930
and 2000 (from 1.18 x 108 to 1.51 x108). This increase in the volume of water entering
into this canal has caused erosion (Gatto and Carbognin, 1981; Ravera, 2000). Waves
generated by the tankers and other boat traffic have exacerbated this erosion by scour-
ing the fine sediment of the mudflats and salt marshes surrounding the Petroli Canal
(Ciavola et al., 2002). In total, these effects have caused bed elevation to decrease at

a rate of 10 cm yr—!.

The edges of the lagoon as well as most of the northern basin have experienced
accretion between 1930 and 2000. Some of this deposition was artificial; the result
of attempts to protect the salt marshes (Scarton et al., 2000; Fletcher and Spencer,
2005). However, work by Cappucci et al. (2004) and Day et al. (1999) reveal that rapid

deposition is occurring naturally in the northern basin.
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4.4.1.1 Morphological Features of the Study Area

The predominant feature in the nearshore off Lido Inlet (outer Lido) is an asymmetrical
ebb-tidal delta that is skewed to the south-west in the direction of longshore transport
as defined by Gazzi et al. (1973). The skew suggests that longshore currents exceed the
effects of tidal currents, which enhance the seaward growth of the delta (van Leeuwen
et al., 2003). Comparison between the bathymetries of 1990 and 2004 reveal that the
outer part of the ebb-tidal delta has accreted by a maximum of 2 m between 1990 and
2004, whilst the inner part, directly adjacent to the mouth of Lido Inlet, has eroded
by about 1 m. Figure 4.28 shows that this is because the delta has expanded seawards
(Stauble, 1998). Growth is also indicated by an increase in width of the 8 m contour
(the thickest part of the delta), suggesting that an increased volume of sand is being
stored within the delta. Marino and Mehta (1987) and Hicks and Hume (1996) note
that ebb-tidal delta growth is linked to an increase in the tidal prism, a decreasing
inlet width/depth ratio and decreasing wave energy, and that a seaward extension of
the delta is linked with only with decreasing wave energy. The ebb delta of Lido Inlet
has appeared since the construction of the jetties in the early 20" Century (Amos,
2005; Fontolan et al., 2007); the width/depth ratio has reduced from 320:1 just after
construction, to 80:1 in recent years (data from MAV-CVN, 1992; Tambroni and Sem-
inara, 2006a - see Figure 3.6), altering the cross-sectional area/tidal prism relationship
to cause scour. The change in wave energy is unknown, although the both the inten-
sity and frequency of bora wind events has reduced due to warmer temperatures in the
polar regions (Pirazzoli and Tomasin, 1999), resulting in a decrease in bora-generated
waves. This could decrease wave energy in the north Adriatic and thus enhance the
expansion of the ebb-delta seawards (Marino and Mehta, 1987).

Scour has occurred at the mouth of Lido Inlet extending from the tidal channel
(Figure 4.16B), to a kilometre offshore. The seabed has deepened by 2 m here between
1990 and 2004; this has been caused by the ebb-jet, a high velocity flow formed due
to constriction of ebb currents by the jetties, able to erode sediment (Joshi, 1982). As
the flow starts to weaken when the ebb jet is no longer constricted beyond the jetties,
the suspended sediment becomes influenced increasingly by the longshore current and

sand begins to be deposited to the south-west onto the ebb-tidal delta as velocity drops
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below the suspension threshold (Joshi, 1982). Fine sediments are transported further
into the offshore mudbelt (Albani et al., 1998). The composition of the ebb delta is
therefore likely to be a mix of lagoonal sands and beach/river sands from the north

(longshore transport); this will be discussed further in Chapter 5.
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Fig. 4.28: The bathymetry of the ebb-tidal delta area in 1990 (black contours) and 2004 (red
contours), showing the seawards migration of the delta.

Lido Inlet is slightly flood dominant. The strongest currents flow along the
deepest part of the channel, which leads into the San Nicolo Canal towards Venice.
The channel has experienced scour averaging 4 cm yr—! between 1930 and 2000 in the
region of fastest velocities (see Chapter 6 for velocity profiles), thus it is this region
that has the greatest potential for sand transport. The ebb spit extending from Punta
Sabbioni on the northern side of the inlet has accreted by 4 m between 1930 and 1970

in proportion to the scour in the flood channel. Thus Lido Inlet is stable in terms of
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its cross-sectional area (which has changed by 1%) despite these large changes in shape
(Figure 4.18). The inlet morphology post-1970 has remained relatively unchanged so
these two features are probably interlinked. It may be that the channel was deepened
by dredging to accommodate the large cruise ships travelling to Venice. The ebb spit
has built up naturally as a response, according to the tidal prism relationship proposed
by O’Brien (1931). Between 1970 and 2004, the water depth decreased by around 2
m in the area adjacent to the northern jetty (Figure 4.16E). This suggests that sedi-
ment is entering the inlet at this point by longshore transport, as Cavallino Beach has

prograded at an average rate of 20 m yr—!

(see Figure 3.6) since the jetties were built
and has now reached the tip of the northern jetty. The beach sand first started to
enter the inlet between 1970 and 1990 as between 1930 and 1970 there was no sand

accumulation adjacent to the northern jetty.

A flood-tidal delta is attached to the southern shoreline of Sant‘Erasmo island
at the landward end of Lido Inlet. An ebb shield is present across the back of the flood
delta (although not attached to the shore of Sant‘Erasmo), the eastern edge of which
is bio-stabilized (as shown by Figure 4.14) suggesting that this area has experienced
the weakest tidal flow. There are at least two washover lobes; one in the middle of the
shield, which looks as if may have been breached during storm activity as the shield is
about 200 m wide at this point. The second is at the western extreme. Small spits also
occur to the eastern edge of the shield, pointing to the west away from Treporti Canal.
This suggests that the channel dividing the island of Sant‘Erasmo and the delta is ebb
dominant, but that Treporti Canal is flood dominant (which is the case - see Figure
5.18 and Umgiesser et al., 2006). Between 1930 and 2004, the flood delta accreted

I although on the western edge (Figure 4.16C) the average

approximately 2 cm yr~
depositional rate was in general double that. It also appears that the eastern bio-
stabilized ebb shield is extending into Treporti Canal causing a redirection of current
to scour the inlet edge of the delta (Figure 4.16F). This accounts for a maximum

increase of 4 m in water depth in this location.
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4.4.1.2 Treporti and Burano Canal Morphology

Treporti Canal is erosional; between 1930 and 2004 the erosion rate was up to 1 c¢m

yr~! on the channel margin linear bars and 5 cm yr—!

within the main channel. The
flow of Treporti Canal has been diverted by the ebb shield to erode the south eastern
edge of the flood delta. The peak flow from Treporti continues along the tidal channel
of Lido Inlet (Chapter 5) and is directed away from the ebb spit. This flow direction
was probably instrumental in the formation of the ebb spit due to reduction in current

speed as the channel widened upon entry to Lido Inlet.

Burano Canal has been infilling at an average rate of 2 cm yr~! between 1930
and 2000. Most of this deposition occurred between 1930 and 1970, with the canal
stabilising post 1970. The cross sections show that the southern part of the canal (see
Appendix Figure B.4(a)) has migrated around 30 m to the west. Erosion of the banks
has increased the cross-sectional area, especially between 1970 to 2000, and is probably
indicative of increased wave height due to boat traffic (Day et al., 1998; Ravera, 2000;
Fletcher and Spencer, 2005). Eroded sediment has decreased the water depth of Bu-
rano Canal and partially infilled the confluence scour holes. These scour holes suffered
erosion along the upstream side between 1930 and 1970 (as seen on the bathymetric
maps), therefore Burano Canal may have been flood dominant at this time. The re-
moval of this sediment post 1970, and the erosion of the triple junction scour holes
in the downstream direction, suggest that Burano Canal has become ebb dominant,
and thus more efficient at exporting sediment (Walton, 2002). This is supported by
the fact that the largest scour hole within Burano Canal (Burano-Crevan, near to the
Treporti Canal confluence; Figure 4.15) was a eroding when Burano Canal was infilling

and accreting when Burano Canal eroded.

Vertical accretion of 4 m of sediment on the western edge of the confluence
scour hole of Treporti, Burano and San Felice canals has been balanced by erosion of
around 5 m of sediment along the northern and eastern edges. This is mainly a trans-
formation of shape, as the scour hole became more streamlined with the flow from
Treporti Canal. Figure 4.20A shows the original ‘dogleg’ appearance of the scour hole
in 1930, while Figure 4.20C shows a straighter shape in 2000 as the scour increasingly
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responds to discharge coming from Burano, causing the orientation to shift to bisect
the confluence angle (Bridge, 2003). This is despite overall discharge (as modelled by
SHYFEM) falling between 1930 and 2000 in Burano, San Felice and Treporti canals.

4.4.2 Tidal Inlet Stability

The canals of northern Venice Lagoon do not fit the O‘Brien relationship; only 5
data-points fall within 10% of the predicted cross-sectional area and half of the data-
points have a cross-sectional area at least 25% larger than predicted. If the O’Brien
relationship is assumed to be valid then the canals, especially Lido Inlet, should be
depositional. Table 4.3 shows the change in area of each cross-section between 1930
and 2000 and shows that, by contrast, all the cross-sections have increased in size (i.e.

erosion has occurred) by an average of 9% between 1930 and 2000.

Lido Inlet was accretional between 1970 and 2000, which reduced the average
cross-sectional area by 2%. However, the average cross-sectional area should have de-
creased by an average of 25% to become stable according to O’Brien’s relationship.
As the cross-sectional areas of Lido Inlet haven’t altered by more than 7% between
1930 and 2000, it would appear that the inlet is already relatively stable, so why does
O’Brien’s relationship not fit with this data? Jarrett (1976) proved that the inlets on
the Atlantic coast did not fit with O’Brien’s relationship, although they still conformed
to the theory that tidal prism and cross-sectional area are linked. A new relationship,
defining a larger cross-sectional area for a given tidal prism was formulated. This dif-
ference in cross-sectional areas may be a result of the local wave climate; the Pacific
Ocean has a much larger mean wave height than the Atlantic Ocean, and therefore
greater wave energy and, as Jarrett (1976) explains, littoral sand transport. Conse-
quently, more sediment is transported into the Pacific inlets. This creates a smaller
cross-section than would be expected for an equivalent inlet on the Atlantic coast.
Another explanation could be the inlet width to hydraulic radius ratio (R, = A./P,).
This is generally smaller for the Pacific inlets, indicating a narrow, deep, and thus more
hydraulically efficient channel than the wide, shallow inlets on the Atlantic coast. Jar-

rett reasons that this allows the Pacific inlets to accommodate more water (i.e. a larger
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Profile Date

1930-2000 ‘ 1930-1970 1970-1990 1990-2000
1 0% ™% -3% -4%
2 3% -1% 0% 4%
3 -3% 0% -4% 0%
Lido Average 0% 2% -2% 0%
4 30% 27% 5% 0%
5 21% 13% 12% -4%
6 14% 6% 4% 5%
7 2% -7% 15% -9%
Treporti Average 17% 10% 9% 2%
8 5% 4% -4% 5%
9 13% 18% -3% -3%
10 2% -9% -3% 13%
11 11% -11% 17% 4%
Burano Average 8% 1% 2% 5%
Total Average 9% 4% 3% 1%

Tab. 4.3: The change in the area of each cross section (%). Blue (-ve) values indicate depo-
sition, and red (+ve) values indicate erosion.
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tidal prism) than their Atlantic counterparts. The lack of change in the bathymetry
over the last 40 years indicates that Lido Inlet is probably stable (see Table 4.3); this
is confirmed by the correspondence to the Atlantic relationship (see Figures 4.23B &
4.29A). Treporti Canal was net erosional between 1930 and 2000, although this incor-
porates a period of slight accretion between 1990 and 2000 (see Table 4.3). Treporti
Canal fits the Atlantic relationship fairly well also, and is in equilibrium in relation to
this (as the tidal prism changes, a corresponding change in cross-sectional area occurs).
However, it cannot be defined as stable as the canal has lost 2-3 cm yr=! over the last

70 years; it is clearly unstable in terms of bed level.

Burano Canal does not fit either O’Brien’s relationship or Jarrett’s Atlantic re-
lationship. This not unexpected as Burano Canal is sheltered from the waves that effect
inlets such as Lido. Le Conte (1905) created a formula for inner harbour entrances,
which takes into account the circumstances of a tidal channel further from the open
sea. The data from Burano (discounting the data form Profile 9, which extends across
a confluence scour hole) appears to fit this relationship. Between 1930 and 1970, when
Burano Canal was eroding slightly (but becoming increasingly flatter through deposi-
tion in the channel) and flood dominant (Helsby et al., 2005, Table 4.3), it appeared
to move towards the Atlantic relationship line by depositing sediment whilst the tidal
prism increased. However, post 1970, Burano Canal experienced a greater degree of
erosion, which increased the cross-sectional area. With a concurrent reduction in the
tidal prism (Table 4.2), the relationship increasingly followed the line of Le Conte
(1905). Profile 11 became stable according to Le Conte’s relationship (Le Conte, 1905)
in 1990, and responded to the change in tidal prism by the removal of a proportionate
amount of sediment to remain that way. Therefore, it seems likely that, for the last 30
years, that Burano Canal has responded to the Le Conte inner harbour relationship

and is eroding in order to reach stability.

4.4.3 FError in the Method

Error in the calculation of cross-sectional area or tidal prism is likely to be fairly

high due to poor resolution of bathymetry data (especially in 1930 and 1970) and the
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positioning of the profiles (using SHYFEM nodes increased the accuracy of the tidal
prism calculations but may not have been positioned in the same position or orientation
as profiles used for previous work - Fontolan et al., 2007; Tambroni et al., 2005).
Modelling the tidal prism may produce error, even though SHYFEM has been well
calibrated (Umgiesser, 1997). To estimate the error the results of Fontolan et al. (2007)
and Tambroni et al. (2005) are compared with the results from this study. The cross-
sectional area of Chioggia (deemed to be stable according to O’Brien’s relationship by
this study and that of Fontolan et al.) is within 3% of estimates by Tambroni et al.
(2005), although Fontolan et al. (2007) proposes a cross-sectional area (and tidal prism)
15% larger than this. Estimates of the cross-section of Lido are larger by 8% in the
current study over those of Fontolan et al.; however, the calculated tidal prism is also
larger (by 23%). These differences are partially explained by the use of discharge data
from 1984 by Fontolan et al.; especially when the current study shows the tidal prism
to have reduced since 1970. The tidal prism did appear to increase between 1930 and
1970 before reducing back to 1930 levels by 2000; work by Tomasin (1974) revealed
an increase of 10% in the tidal amplitude between 1909 and 1972, which would affect
the tidal prism by the amount calculated in this current study (8% greater discharge
in 1970 compared to 1930 through profile 1). This change corresponded to a period
of relative sea-level rise of 4 mm yr~! (exacerbated by subsidence - Carbognin and
Cecconi, 1997); between 1970 and 2000, the average sea-level rise was negligable (see
Figure 3.4).

4.4.4 Seabed Classification

A classification system to convert reflectivity data into seabed classes, such as that
designed by Nitsche et al. (2007) could not be utilised for this study due to the lack of
sub-bottom profiling. However, the change in bathymetry, reflectivity data and sedi-
ment type all give clues to the type of environment present. Low-energy environments
occurred in Burano Canal and off-shore to the east, represented by low reflectivity and
muddy sediments. Burano Canal is relatively sheltered, current speeds are roughly
40% slower than in Lido Inlet (Table 4.1) and the residence time of water is longer
than the Venice average (Cucco and Umgiesser, 2005), allowing the accumulation of

finer sediments. Nearshore Cavallino Beach is low energy due to a combination of water
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depth (around 12 m) and distance away from the breaker zone and the ebb jet of Lido
Inlet. It includes the mud-belt that runs parallel to the shore (Albani et al., 1998),
interrupted only by river or inlet deposits. Most of the study area has been classed as
medium energy (able to transport sand-sized sediments) and includes the beginning of
the ebb-tidal delta and nearshore Cavallino Beach adjacent to the northern jetty. The
remaining areas are high energy, where armouring of the seabed occurs (lag deposits
by Punta Sabbioni), the shelly area south of the southern inlet, and where scour occurs
at the mouth of Lido Inlet.

4.5 Conclusions

Venice Lagoon is evolving into a marine habitat due to a combination of sea level rise
and subsidence, both natural and anthropogenic. This caused an increase in the total
volume of water passing through the lagoon between 1930 and 1970 (the tidal prism),
which has caused inner-lagoonal channels such as Burano Canal to widen. The result-
ing sediment has deposited in the channel bed, resulting in a flatter, wider channel,
although the relatively fast current speeds resulted in confluence scour holes to increase
in size. The tidal prism reduced after 1970, with a corresponding fall in average current
speeds; Burano Canal also became decreasingly flood dominant. This has resulted in
infilling of the confluence scour holes within the canal and a streamlining of the large
confluence scour at the Treporti/Burano/San Felice junction. The canal is nonetheless
stable following the tidal prism/cross-sectional area relationship of Le Conte (1905).
Due to this stability, it is unlikely that it is a present source of sand, although this

does not discount it from transporting sand from further within the lagoon.

The ebb-dominant Treporti Canal was highly erosional between 1930 and 1970
although the rate of erosion decreased between 1970 and 2000. However, the cross-
sectional area has remained in equilibrium with the tidal prism. Treporti Canal is able
to transport sand. This is indicated by the composition of the sea bed (bottom classi-
fication by Bondesan et al., 2004 and in Chapter 5) and evidence that it is erosional;
it may therefore be a source of sand to Lido Inlet. Treporti Canal is ebb dominant,

but becomes less so as average current speeds fell with the reduction of the tidal prism
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post-1970. The flow has eroded part of the eastern edge of the flood-tidal delta (a
sediment sink located at the end of Lido Inlet), removing finer sediments and leaving
behind lag deposits (seen by the sonar as high reflectivity). The rest of the delta is
stable with maximum rates of deposition on its western side and an ebb shield spanning
its width.

The morphology of Lido Inlet suggest that sand is principally exported. This
is shown by the direction of growth of the ebb spit and the seaward growth of the
ebb-tidal delta. Scour occurs only where the ebb jet exits adjacent to the southern
jetty. Lido Inlet has been stable in terms of its cross section and tidal prism (following
the Atlantic relationship of Jarrett, 1976) since 1970. Sediment has been removed from
the deepest part of the channel but has been balanced by the evolution of the ebb spit
on the northern edge. This sediment may be a combination of sand transported from
within the lagoon, and also of sand imported from Cavallino Beach. An ebb-tidal delta
is present about 2 km from the mouth of Lido Inlet and is extending seawards due to

low wave energy (Fontolan et al., 2007), storing sediment exported from Lido Inlet.

From the orientation and dimensions of seabed morphology and through reflec-
tivity data it is possible to determine that the likely sand transport pathway is from
the inner canals of the lagoon (such as Treporti, which is erosional and ebb dominant;
both of which encourage export), through Lido Inlet (shown by the seaward orientation
of the ebb spit and seaward growth of the ebb delta) and into the Adriatic Sea. Peak
sand transport is likely within Treporti Canal and in the deep flood-channel of Lido

Inlet, as both areas have experienced erosion/scour.

This study confirms that a tidal prism/cross-sectional area relationship is valid
for other channels within the lagoon; it is not necessary to use the minimum cross-
sectional area as define by O’Brien (1969), although this simplifies comparison in the
future. The type of relationship may alter with distance from the open sea; Burano
Canal follows a relationship of sheltered inner harbour entrances (Le Conte, 1905),
whereas Treporti Canal and the three Venice Lagoon inlets follow the Atlantic coast-
line relationship of Jarrett (1976).



Source, Transport and Sinks of Sand

5.1 Introduction

The morphology of the seabed, as investigated in the previous chapter, represents the
large-scale result of sediment transport as a product of the local hydrodynamic condi-
tions. Thus general observations on the movement of sand can be generated. However,
as the rate of transport of sand is controlled by the physical characteristics of its in-
dividual particles (grain size, shape, density, mineralogy), it is only by analysis of the
sediment that conclusions can be drawn on the characteristics of its transport. Key
questions are: what is the direction of sand transportation? Is the sediment part of a

sink or is it a source to other areas?

This chapter will describe the methods used to collect bottom sediment samples
in Venice Lagoon and the analysis involved to determine the properties of the sediment
to find the direction of transport and possible sources. The aims of the chapter are as

follows:

e Do the trends in grain properties of the sediment agree with transport hypotheses

derived in the previous chapter?
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e [s the sediment of the ebb tidal delta sourced from inside the lagoon or is it

transported to the study site by littoral drift?

e Lido Inlet is known to be comprised of sand (Gazzi et al., 1973; Albani et al.,
1998; Albani and Serandrei Barbero, 2001) but how variable are the character-
istics of this sand and can transport within the inlet be determined from these

characteristics?

5.1.1 Grain Characteristics

There are three significant characteristics of sand important in the understanding of
the processes of sediment transport. These are size, density, and shape. The grain
size of a sediment sample is primarily a function of the source material and the lo-
cal environmental conditions (Folk, 1974). Exposed to erosion and weathering, the
grain size will decrease (although the rate of abrasion will vary depending on how the
environmental characteristics interact with those of the sediment), which has some
significance in terms of the determination of provenance and the transport direction.
Grain size affects the mobility of a sediment; generally, finer grains will be transported
before coarser grains due to the increase in lift required to overcome the increase in
mass. This is described by the Hjulstrom curve, which describes the transport stage
(erosion, transport, deposition) as a function of current velocity against grain size, as
shown in Figure 5.1. The threshold of motion of a grain is described by the Shields
Diagram (Figure 5.2), which describes the dimensionless shear-stress required to trans-
port grains of various dimensions (threshold Shields parameter - 6,,.; Equation 2.17).

Using this assumption, the presence of large grain sizes may then indicate the maxi-
mum current velocity at the time of deposition (Folk, 1974) as the current must have

reached a certain velocity in order to transport this size of grain.

Grain size is usually described by the Wentworth-Udden scale (Figure 5.3),
which defines size classes from clay (< 3.9 pm) to boulders (> 256 mm) and includes
five sand size classes (very fine sand, fine sand, medium grained, coarse and very coarse
sand). The sizes are expressed as sieve diameters, so does not account for grain shape;
however, the sieve diameter can be converted into a sphere of an equivalent volume
by multiplying by 1.32 (Komar and Cui, 1984; le Roux, 2005). The Wentworth-Udden
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Fig. 5.1: The Hjulstrom Curve, showing the critical velocity boundaries for erosion, deposi-
tion and transport of different grain sizes.

scale was modified by Krumbein (1936) to include a logarithmic scale in phi (¢). This
was principally to equalise the size intervals and to ensure that each class was lim-
ited by an integer, simplifying subsequent statistical analysis (as described in Section
5.1.2). Sand-sized particles are usually separated into these classes by sieving or set-
tling (where grain size is calculated from its settling velocity). Both methods have
advantages and disadvantages but generally, sieving can be more accurate (De Lange
et al., 1997), whereas settling is far quicker. Both methods were used in this study and

are described further in Section 5.2.1.

The shape of a grain is usually assumed to be spherical as a generalisation when
calculating sediment transport. This is not particularly accurate, as grains are very
rarely this shape. However, the more a grain deviates from a spherical shape, the
greater the drag force is (and thus the internal friction angle - Komar and Reimers,
1978), which decreases the settling velocity and consequently the grain mobility in
turbulent conditions. Shape can be described by a grains sphericity or roundness;
sphericity is defined as the ‘cube root of the volume of the particle divided by the
volume of the circumscribing sphere’ (Dyer, 1986). This parameter is controlled by the
original 3D shape of the crystal structure and is unlikely to alter greatly over trans-

port, unlike roundness, which Dyer defines as ‘the average radius of corners and edges
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Fig. 5.2: A modified Shields diagram describing the threshold Shields parameter (dimension-
less shear-stress; 6.,) required to effect motion in a grain size (D) related in terms
of the thickness of the laminar sub-layer (d,). After Hoffmans and Verheij (1997).

divided by the radius of the circumscribing circle’. Roundness is particularly affected
by abrasion as any outliers on the grain will be smoothed more than any depressions.
This variation in exposure eventually rounds the grain. This difference between angu-
lar and rounded grains affects sediment transport as rounder grains are preferentially

moved first as the friction angle is smaller (Folk, 1974).

Rollability is another method of determining the grain shape as there is a high
correlation between rollability and shape (Winkelmolen, 1969). Grain shape will af-
fect the erodibility of the bed, due to sorting and packing of the sediment. The more
‘rollable’ a grain is, the quicker it will be sorted out from the main sediment and be
transported away. This has been proven by Winkelmolen (1969) who passed grains of
the same size class through a slightly tilted (2° 30" above horizontal) rotating drum.
The most rollable (i.e. spherical or allantoid grains) quickly separated from the remain-
ing sediment and accumulated in the collector (as described by Dyer, 1986). The shape
of a grain also affects the efficiency of packing; important in terms of erodibility as a

well-packed sediment is less porous (the ratio of water volume to sediment volume),
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Fig. 5.3: Grain size scale with the Wentworth-Udden classes, with metric and the logarithmic
phi scale (Krumbein, 1936).
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Grain size Porosity (%)
Coarse Sand 39-41
Medium Sand 41-48
Fine Sand 44-49
Fine Sandy Silty Clay 50-54

Tab. 5.1: Typical porosity values for different grain sizes (Soulsby, 1997).

thus requiring greater energy to move it than a loosely-packed grain. Generally, the

smaller the mean grain size is, the higher the porosity (see Table 5.1).

Grain density is controlled by the component mineral. It can be measured
by specific gravity (SG), which is the grain density divided by water density at 4°C.
Quartz has an SG of 2.65 and is less dense than dolomite, which has an SG of 2.86.
Although specific gravity is dimensionless, pure water has a known density of 1000 kg
m?, so the density of quartz can be calculated as 2650 kg m® (Fredlund and Rahardjo,
1993). Denser grains have a faster settling velocity so this has implications in sediment
transport as more energy (i.e. flow velocity/turbulence) is required for the vertical
components of turbulence to exceed the resistive forces. Grains of a greater density
tend also to be more resistant to erosion (Briggs, 1986) and concentrate in areas of
high energy where less dense and erosion-prone grains are abraded or transported away
(selective entrainment/kinetic sieving). These denser grains include minerals such as
zircon (SG = 4.6), gold (SG = 19.3) and haematite (SG ~ 5.0).

5.1.2 Sediment Characteristics

A sediment sample can be characterised by the distribution of its individual grain sizes.

These statistical measures are sorting, kurtosis and skewness.

5.1.2.1 Sorting

Sorting, in statistical terms, is the standard deviation of a grain size distribution. The
smaller the standard deviation is, the greater the degree of sorting. Each sediment grain

in transport has characteristics which affect the ease in which it is carried. Therefore
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over time, the sediment will be sorted by a combination of its grain size, density and
shape. A 125 pum sand grain will usually be transported in preference to a grain
twice the size; a less dense quartz grain should move before a denser dolomite grain;
a ‘rollable’ grain should move preferentially over a more angular grain. However, this
is not always the case and determining transport becomes more complicated. For
example, shear sorting affects grains of different densities in ‘liquefied” sediment such
as found in the swash zone of a beach. Gravity causes the smaller grains to drop
down into the space between larger grains, with the larger and denser grains moving to
the surface; the area of least shear strain (Inman, 2002). Also, an allantoid (sausage-
shaped) grain may be highly rollable in one axis, but if this face is perpendicular to
the current, then it becomes more streamlined and less drag force is produced, which
inhibits transport. More energy is therefore required to transport the grain. The
degree of sorting is dependent principally on the source material; Folk (1974) gives the
example of waves eroding a glacial till cliff and a river running through a sandstone
bedrock outcrop. The glacial till cliff will provide a wide range of grain sizes from
boulders to clay, making the beach poorly sorted, but the river will carry very well-
sorted sediment though both samples are adjacent to the source. A graph of grain size
versus sorting can help to evaluate the degree of sorting in this case. Current intensity
will also affect the degree of sorting. An intermediate current of constant strength
will be more efficient at sorting than a weak or strong current, or a current which is
constantly fluctuating (Folk, 1974).

Sorting (in ¢) is defined by Folk and Ward (1957) as:

_ ¢84 - ¢16 + ¢95 - ¢5 (51)

o1 1 6.6

or in geometric (pum) terms as:

111P16—111P84 1DP5—1I1P55)' (52)

oG = &P ( 4 6.6

the result (o; and o¢) refers to descriptive classes as shown in Table 5.2.
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Sorting Geometric (um) Logarithmic (¢)
Very well sorted < 1.27 < 0.35
Well sorted 1.27 - 1.41 0.35 - 0.50
Moderately well sorted 1.41 - 1.62 0.50 - 0.70
Moderately sorted 1.62 - 2.00 0.70 - 1.00
Poorly sorted 2.00 - 4.00 1.00 - 2.00
Very poorly sorted 4.00 - 16.00 2.00 - 4.00
Extremely poorly sorted > 16.00 > 4.00

Tab. 5.2: The degree of grain size sorting using pum (geometric) and ¢ (logarithmic) using
Folk and Ward (1957).

5.1.2.2 Kurtosis

Kurtosis describes the ‘peakedness’ of a grain size distribution curve, thus illustrating
how far the sample deviates from the median grain size. A platykurtic size distribution
describes a sample which has an even spread of size classes and a large standard
deviation, whereas a leptokurtic curve describes a sample with a small deviation from

the median grain size (see Figure 5.4 and Table 5.3). It is defined as:

Pos — ¢5

Kg = 5.3

LY F— 53)
Kurtosis ¢ & pm
Very platykurtic < 0.67
Platykurtic 0.67 - 0.90
Mesokurtic 0.90 - 1.11
Leptokurtic 1.11 - 1.50
Very leptokurtic 1.50 - 3.00
Extremely leptokurtic > 3.00

Tab. 5.3: The classes of kurtosis for both geometric and logarithmic size scales, using Folk
and Ward (1957).
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Fig. 5.4: Description of kurtosis (left) and skewness (right) in graphical form

5.1.2.3 Skewness

The skewness of a sediment sample describes the distribution around the median grain
size and which grain sizes are predominant. If the distribution is normal then the
mean, median and mode will all be the same. However, if the sediment is mainly
composed of coarse sediment then the mode and median will be positive in relation
to the mean and the skewness will be positive or coarsely skewed. If the median and
mode are negative relative to mean, then the sediment is dominated by fine-grained

material and is negative or fine skewed (see Fig 5.4).

Q16+ Psa — 2050 P55+ Pos — 2050

SK; = + 5.4
" 2(sa — o) 2(dos — ¢5) (5:4)
Skewness ¢ & pm
Very fine skewed -0.3 to -1.0
Fine skewed -0.1 to -0.3
Symmetrical -0.1 to +0.1
Coarse skewed +0.1 to +0.3

Very coarse skewed +0.3 to +1.0

Tab. 5.4: The classes of skewness for both geometric and logarithmic size scales, using Folk
and Ward (1957).
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5.1.2.4 Considerations in Grain-size Analysis

Shells in sediment are usually broken up but can cause positive skewness, making the
sediment seem coarser than it actually is. Despite being generally larger than sand
grains, shells are hydrodynamically equivalent to quartz grains due to their flat shape
(Dyer, 1986). Consequently, shells can also be used as a tracer as they are softer than
quartz and will be eroded the longer they remain in transport. Heavy minerals within
a sample can also cause positive skewness (compared to the results if the same sample
was sieved) if the grain-size distribution is calculated from settling velocities as they
settle faster than equivalently-sized quartz or carbonate grains. However, this may
be an advantage within a study focussed on the transport of sand grains, as heavy
minerals are generally hydrodynamically equivalent to larger sand grains (White and
Williams, 1967).

5.1.3 Grain Trend Analysis

Grain size trends over a transport pathway have long been studied as a method to assess
not only sediment movement in modern coastal areas, but also ancient environments
(Emery, 1955; Folk and Ward, 1957; McLaren, 1981; Gao and Collins, 1992; Gao et al.,
1994; Hill and McLaren, 2001; Lucio et al., 2004). The assumption that grain size
should decrease along a pathway is superficially sensible (erosion and abrasion reduces
grain size), however this is not always the case. If fine-grained material is readily eroded
and leaves behind a coarser-grained component, then it may appear that sediment
becomes coarser over the transport pathway, although the sediment will become better
sorted and increasingly skewed; the key identifiers in the grain-trend model of Gao
and Collins (1992), which is described herein. A grain size distribution is the result
of primarily the source material and the variables controlling the way each individual

grain is transported. These variables according to Krumbein (1938) are:
e the gradual erosion, loss, or addition of sediment en route;
e the nature of fluid flow (laminar or turbulent), and

e authigenic changes after deposition.
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McLaren and Bowles (1985) used the characteristics of seabed sediment to infer
the direction of transport (McLaren, 1981). The authors write that a grain size dis-
tribution is independent of the transportation process and depositional environment,
but instead relies on “clearly identifiable trends from source to deposit” resulting from
erosion/abrasion, partial deposition and total deposition, which are disclosed in the
statistical parameters. McLaren and Bowles therefore use changes in mean grain size,
sorting and skewness to provide three possible cases of sediment transport between two

neighbouring samples.

Case I/lag deposit: if sample 2 (ds) has a larger mean grain size, is better sorted
and has more positive skew than sample 1 (d;), then sample d; is a ‘lag deposit’

of d; from the same source. No transport direction can be gauged.

Case II/fining sediments: if dy has a smaller mean grain size, but is better sorted
and more negatively skewed than d;, then the transport direction is from d; to
dy. Coarser grains are not transported as far as the finer particles of the source

sediment.

Case III/coarsening sediment: d, has a larger mean grain size and is also better
sorted and more positively skewed than d;. The direction of transport is also
from d; to ds but explained by the trapping of the finer sediment (shielded by

coarser surface grains).

This method was criticized by Gao (1991) and Gao and Collins (1992) as a ‘one-
dimensional’ model. The authors argue that sediment transport can occur even if
McLaren’s Case 11 or 111 is false (see Table 5.5), and so proposed a new two-dimensional
version of the model, using ‘transport vectors’. This model has been utilised to gauge
transport of sediment within the study area. Consequently it is discussed in greater
detail in the methods section (5.2).

5.1.4 Mineralogy

The mineralogy of a sediment is useful in the determination of sediment transport
pathways (Folk, 1974; Cox, 2002) due to a presence of a natural tracer (e.g. garnet) or

through a change in the mineralogical composition as softer minerals (e.g. mica) erode
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Observed Changes Environment Author(s)
pooo Sk
+ u u Alluvial fan Blissenbach, 1954
+ - u Beach Pettijohn & Ridge, 1932
- n n Beach Schalk, 1938
+ - n Beach Schalk, 1946
- -+ Beach Carr, 1969
+ - + Beach Self, 1977
- u u Beach McCave, 1978
- - u Beach Bryant, 1982
+ n - River Plumley, 1948
+ u u River Basumallick, 1966
- -+ River McLaren & Bowles, 1985
- -+ Spit McLaren & Bowles, 1985
- - u Spit Nordstrom, 1981
+ n u Spit Nordstrom, 1989
+ - - Delta)\lake McLaren & Bowles, 1985
+ u u Submarine Canyon Hand & Emery, 1964
- - u Flume Bagnold, 1968

Tab. 5.5: Observed changes in grains size parameters in the direction net transport (u is
unknown, n is no change). From Gao (1993).

at a greater rate than more resistive minerals.

The mineralogical composition of sediment within a sediment cell should be
comparable to its source (assuming a singular source); therefore, a sudden change in
composition can signal a boundary with another cell and thus a change in the trans-
port direction. Changes within each sediment cell will occur as the result of erosion
along the transport pathway. An indicator of this erosion specific to Venice Lagoon
is the change in dolomite relative to calcite (dolomite/calcite ratio) due to the greater
resistance to weathering of the former. Not only is calcite softer (3 on the Mohs scale,
compared to 4 to 4.5 for dolomite), but it is more liable to dissolution in seawater than
dolomite (Kramer, 1959). Therefore, the lower the calcite/dolomite ratio becomes, the
longer the sediment will have been transported and exposed to erosive forces. Problems

in interpretation occur with the introduction of sediment from a secondary source, as
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occurs when a river divides a beach.

Quartz also is a robust indicator of sediment maturity due to its hardness (7 on
the Mohs scale) as it will remain after minerals such as dolomite have been removed.
Shape is also an indicator; angular quartz will be relatively young and close to source,
whereas a well-rounded quartz will either have been in transport for an extended time
or have been exposed within a high-energy environment such as a swash bar. Other
minerals such as mica, also indicate lack of maturity by virtue of their presence. Mica
is easily eroded due to a combination of its hardness (around 2.5 Mohs) and structure

(a sheet structure separated by weak bonds).

5.2 Methods

5.2.1 Grain Size Analysis

204 sediment samples were collected in February 2004 in the Lido Inlet vicinity, along
the seaward-side beaches of Cavallino/Jesolo, Lido, Pellestrina and Chioggia (see Fig-
ure 5.5). Samples from the Rivers Brenta, Piave and Tagliamento were also collected
as possible sources of the sediment into the study area. The offshore samples were
collected using a Van Veen sediment grab whilst the beach and intertidal samples were
collected by hand (surface sample imitating volume collected by the grab). Only sam-
ples containing sand were retained. Other sand samples from Treporti Canal collected
in a 2003 study were also available for this analysis (Umgiesser et al., 2006). Broken
shells were not removed as the method used to remove them would also destroy the

carbonate minerals known to be present (Gazzi et al., 1973).

The samples were processed to determine the proportion of fines (< 63 pum), sand
(63 pm to 2 mm) and gravel (> 2 mm). The samples were wet sieved, with material
less than 63 pum retained in measuring cylinders and allowed to settle before before
both fractions were weighed (as dry-weight). Due to the large volume of fine-grained
material, alternative methods were investigated to quicken the process. The Amos
and Sutherland (1994) method to quickly gauge the dry mass of sand in a saturated

sample was adjusted to see whether the technique was valid for fine sediment. The
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Fig. 5.5: The location of the sediment sampling sites. Samples were also collected in the
rivers Tagliamento, Adige and Brenta.

sediment /water mix which had passed through the 63 pum sieve during wet sieving was
weighed to 1 c¢g and the volume measured to the nearest 5 ml; the following formula

was applied:

ms = ps(my — puVi) (5.5)

where my is the mass of dry silt, p, is the sediment density (2800 kg m~1), p,, is the
density of tap water (998 kg m™'), m; is the weight of the water /sediment mix, and V;
is the volume of the water/sediment mix. The results were compared to samples where
the weight of fine sediment was known and was found to be comparable to within 0.4

g, however, these samples were particularly abundant in fine-grained material. Other
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samples measured this way exhibited larger errors. Thus, it is likely that the method
is only valid when the concentration of fine sediment is significant (over 20% fines). It

is not therefore, suitable for the majority of these predominantly sand samples.

The quickest and most accurate method was to dry each sample at a low tem-
perature, as not to bake the fine fraction and to measure the total dry weight. The
samples were then wet sieved at 63 pm to remove the fine-grained component and oven
dried prior to separating the sands and gravels with a 2 mm sieve. The mass of fines
was then calculated from the dry weight of the sands and gravels. Error is introduced
if sand grains are caught in the sieve mesh, as they contribute to the fines content (any

gravel stuck in the 2 mm sieve was clearly visible and removed from the sieve).

The sand fraction was analysed further using the National Oceanography Cen-
tre’s settling column ; a long glass tube filled with water of a known density used to
determine the settling velocity of particles. Each sand sample was divided in a splitter
to provide a subsection of approximately 5 g. This was then poured onto the rough
plate of the settling column, dampened with distilled water and spread equally over
the plate. Any excess water was then absorbed by a tissue lightly pressed against the
side of the plate. This was found to be the most effective way to ensure the whole
sample adhered to the plate, rather than the usual method of pressing the damp plate
into a dish of the dry sample, which tended to leave smaller particles behind due to
sheltering by larger grains. The thoroughly damp sand ensured that minimal air was
trapped between particles, which can prevent the grains from entering the water due
to air bubble formation (see Figure 5.6). Releasing a lever at the top of the tube drops
the roughened plate into the water releasing the sediment, which falls through the wa-
ter column at different speeds according to the size and shape of the different grains
(Equation 2.12, page 26). At the same time, the lever triggers a connected computer
to start recording the cumulative weight of sediment landing on the connecting dish
at the base of the tube (connected to a balance correct to 1 mg). Error was reduced
by ensuring that no sand from previous experiments was in suspension at the start of
each test. Other precautions included minimizing air movement around the balance,
which reduced the error by around 3%. Unavoidable error in this technique results

from turbulence caused by water displacement as the grains enter the water, which
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Fig. 5.6: Air bubbles forming on the settling column rough plate after deployment

lifts some grains in the resultant eddies, thus affecting the time it take for them to
settle. Boundary layer conditions exist along the wall of the settling column, which
reduces the settling velocity of grains in the vicinity. The error produced by this effect
is negated by a centimetre gap left between the collecting plate and the wall ensuring
that affected grains pass by uncollected. Error may be produced if particles stick to
the rough plate and drop during the coarse of the experiment, although this is thought
to be less than 1% (Syvitski, 2008)

The results (a text file of cumulative weight recorded in 0.16 second time steps)
were processed using a Matlab script (Neumeier, 2005). The script uses the settling
velocity formula (Equation 2.12) of Soulsby (1997) to determine the grain size classes
(3 phi) defined by Folk and Ward (1957) - see section 5.1.4. Error is reduced by
calculating the settling velocity once turbulence (from the release of grains into the
water) has subsided after ~ 7 seconds. GRADISTAT, a Microsoft Excel add-on package
written by Blott and Pye (2001) was used on the resultant data for statistical analyses

to determine:

mode - the most inhabited class size,

percentiles (median/dsy) - the class size at the d,, of the distribution ,
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mean - the average class size,
sorting - the standard deviation of the sample (Equation 5.1 and 5.2).
kurtosis - the degree of peakedness of the distribution (Equation 5.3).

skewness - measure of asymmetry of class sizes (Equation 5.4).

A resultant data sheet is produced as in Figure 5.7, showing these characteristic statis-
tics as well as percentiles and descriptions of class type present. A particle size distri-

bution graph is also produced to show the general trend.

5.2.2 Data Visualisation

The processed data were combined with coordinates and plotted as maps created by
Generic Mapping Tools (GMT - Wessel and Smith, 1991) to view the distribution of

different grain attributes over the sampling area:

e very fine sand e mean grain size (Folk and Ward,
1957 in mm or ¢)

fine sand

. e skewness
e medium sand

kurtosis

coarse sand

e very coarse sand sorting

5.2.3 Grain Trend Analysis

The statistical parameters described in the previous section can be used to determine
the likely direction of sand transport (Gao and Collins, 1992; McLaren, 1981). The
mean grain-size ¢, sorting, and skewness were used to calculate transport vectors,
which were plotted onto a map of the study area (see results section). The initial step
of the Gao and Collins (1992) grain trend model is to illustrate trend vectors through
the comparison of neighbouring samples. In this case, a neighbour was defined as any
sample (S2) located within a 500 m critical distance (D,,) of the initial sample site (57).

This distance was chosen as it was large enough to allow most lagoonal samples to have
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SAMPLE STATISTICS
SAMPLE IDENTITY: LGO AMALYST & DATE: Rachel Helshby,
SAMPLE TYPE: Unimodal, Very Well Sored TEXTURAL GROUP: Slightly Gravelly Sand
SEDIMENT MAME: Slightly Fine Gravelly Fine Sand
S L GRAIM SIZE DISTRIBUTION
WMODE 1;| 155.4 2.688 GRAVEL: 0.5% COARSE SAND: 0.0%
MODE 2: SAMD: 99.5% MEDIUM SAND: 0.5%
MODE 3: rMUD: 0.0% FINE SAND: 84.2%
D 1768 2.509 Y FINE SAND: 14.7%
MEDIAM or D=y| 1914 2724 W COARSE GRAVEL: 0.0% YW COARSE SILT: 0.0%
Da| 175.6 3.098 COARSE GRAVEL: 0.0% COARSE SILT: 0.0%
(Dol D[ 7.904 1.235 MEDIUM GRAVEL: 0.0% MEDILM SILT: 0.0%
(Dan-Daak| 98.87 0.5849 FINE GRAVEL: 0.5% FIME SILT: 0.0%
(Dss { Dsey|  1.216 1.109 WV FINE GRAVEL: 0.0% VFIME SILT: 0.0%
(Digs - Da):| 29.32 0282 W COARSE SAMD: 0.0% CLAY: 0.0%
METHOD OF MOMENTS FOLK & WARD METHOD
Arithmetic  Geometric Logarithmic | Geometric Logarithmic Description
A am ] i L)
MEAME): 171.7 150.0 2737 148.5 2781 Fine Sand
SORTING (g} a2 1.358 0.442 1.182 0.241 Very Well Sorted
SKEWNESS (Sk): 13.63 6.692 -6.692 -0.211 0.211 Fine Skewed
KURTOSIS (K): 189.3 76.14 7614 1.252 1.252 Leptokurtic
GRAIN SIZE DISTRIBUTION
Particle Diameter (§)
5.0 4.0 3.0 2.0 1.0 0.0 -1.0 -2.0 -3.0
250 A
2000 4
£
b= ]
) 165.0
-
=
;]
@ |
o 100 -
50
0.0 T 1
100 1000
Particle Diameter [pm)

Fig. 5.7: Example data sheet produced by the GRADISTAT Excel macro (Blott and Pye,
2001) showing grain size distribution and statistical characteristics. This particular
sample is from the shallow-side of the inlet.
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at least one neighbouring sample, but small enough not to encompass the majority of
the inlet width which could affect results due to the averaging of vectors in the latter
stages of the model. The samples outside Lido Inlet had a D, of 1 km, due to the wider
spacing between samples. Each neighbouring sample had its sediment characteristics
compared and if either Case 1 or Case 2 proved true, then a dimensionless trend vector

was applied (the length is unity) in the direction of the neighbouring sample.
Case 1: 09 < o7 and pg > p1, and S < Sk

Case 2: 09 < 0y and pg < pq, and Sgo > Sk

The majority of samples had more than one neighbour, therefore it was neces-
sary to sum the resultant vectors to produce a singular trend vector for each site. This

was achieved by applying:

n

R(z,y) =Y #(z.y); (5.6)

1
where n is the number of trend vectors for the site, 7(z, y); is a trend vector and R(z, y)
is the sum of the trend vectors. Noise still exists where more than one neighbouring
site adheres to either case. To remove the noise the vectors must be averaged with
vectors of neighbouring sites. Using the same D, defining distance, the following is

applied to each site:

—

K

1 |- _

Roo(2,y) = Pl R(z,y)+ Y R, (5.7)
1

where I%j is a summed trend vector from a neighbouring site resulting from Equation
5.6 and k is the total number of such sites. The resulting vectors are defined as transport
vectors now that noise has been significantly reduced. If neighbouring vectors follow
similar directions then transport pathways can begin to be established. However, it is
still necessary to test the reliability of that each vector is displaying the real direction
of transport. Assuming that noise alone is responsible for a grid of neighbouring trend
vectors, it is likely that the averaging protocol previously described will cause vectors
to cancel each other out, producing short transport vectors. To determine if the vector

length is reliable, Gao and Collins (1992) ran the following significance test, where
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length (L) increases with increased reliability:

éav (-Ta y)i

N

L=>Y" (5.8)
1

where N is the number of sites. Due to the uneven grid pattern in the current study

(distance between sites varies between 100 m to 1 km), the longer vectors cover up

the small vectors on the map making them difficult to distinguish. Therefore, using

Equation 5.8, L was assigned a colour instead of a length; red is an unreliable indicator

of transport, and purple is very reliable.

5.2.4 Mineralogy

A subsection of samples within the study area was chosen to represent potential sand
transport pathways (as determined by the literature and the results of the grain trend
analysis). Samples were also chosen to represent the major morphological features in-
cluding Chioggia, Lido and Cavallino beaches, the ebb and flood tidal deltas, and the
ebb and flood channels.

Each sample was embalmed in resin and fashioned into a thin section!, which
were stained using alizarin red and potassium ferricyanide to differentiate between
calcite and dolomite (both ferrigenous and non-ferrigenous). Each thin section was
viewed under a Zeiss Photomicroscope III with a rotating stage and adjustable spec-
imen holder. Each mineral was classified into one of the following classes, chosen as
they are relatively common in these samples (Gazzi et al., 1973; Weltje, 1995) and easy
to identify:

Dolomite: A sedimentary carbonate, either fine grained or orthorhombic cleavage.
Colour is either pale (translucent) or stained deep blue if ferroan; salmony rain-

bow extinction colours. Identified by a change in relief upon rotation.

Calcite: A sedimentary or metamorphic carbonate, also has a change in relief upon

rotation. Stained pink or purple (if ferroan).

By Bob Jones and John Ford of the National Oceanography Centre
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Monocrystalline quartz: relatively slow crystal growth in hydrothermal conditions.
Grey extinction although slightly yellow in comparison to feldspars, relatively

free of inclusions, but not aligned if present and usually rounded.

Polycrystalline quartz: rapid crystallization in hydrothermal conditions. Multiple

crystals of quartz. Also includes microgranular chert.

Potassium feldspar: igneous mineral always the same composition but different crys-
tal structures depending on temperature during formation. Orthoclase (clear grey
extinction, stable above 500° C) and microcline (tartan extinction, often has dirty

appearance from inclusions which are often aligned, stable below 400°C)).
Plagioclase feldspar: twinning giving stripy grey appearance.

Mica: slowly formed igneous muscovite (clear, low relief, high interference colours) or

metamorphic biotite (brown, highly pleochroic).
Shell: identified to differentiate biogenic sediment from terrigenous.
Rock fragment: all other fragments including heavy minerals.

The degree of error in counting between the beginning and end of the analysis was found
by replicate analysis. 99% of the grains were identified as the same mineral during both
counts. The data were then mapped using GMT to visualise the change in composition
around the Lido Inlet and along the shore face of Venice Lagoon and ternary diagrams

created to correlate patterns and determine possible transport pathways.
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5.3 Results

Morphology and seabed characterization has been used in the previous chapter to
hypothesize sand transport routes as well as possible sources and sinks. The proposed
transport pathway begins in the ebb-dominant Treporti Canal, where sand is scoured
from the channel bed; some sand passes through Treporti from Pordelio Canal (flowing
through the sandy barrier island of Cavallino) and possibly from Burano and San Felice
canals. Some of this sand is deposited on the ebb spit, whilst the majority is exported
into the longshore transport pathway with some deposition on the ebb-tidal delta.
Finer sediments are deposited on the flood-tidal delta, although the source for this
sediment is unclear. These pathways will be further investigated within this chapter

using grain-size analysis, grain trend analysis, and mineralogical analysis.

5.3.1 Grain Size Analysis
5.3.1.1 Distribution of Sediment Size Classes

The initial analysis of the Venice Lagoon sediments (divided into fines, sands, and
gravels) show an area dominated by sand (Figure 5.8). The ‘baseline’ sand content
of the lagoonal channels appears to be around 60-70%, but this increases to 85-100%
around the lobe of the flood tidal delta, and the Punta Sabbioni ebb spit. The sand
content is over 80% outside Lido Inlet, with ‘lobes’ of 90% sand content extending from
Cavallino Beach and around the ebb tidal delta. Sediment with a substantial volume of
fine grains is found well into Treporti Canal, where proportions reach 50%. Fine-grained
sediment is also found between the ebb spit and jetty, and in the main channel of Lido
around the confluence of Treporti and San Nicolo. Gravel-sized sediment is mainly
composed of shells and is predominant off Punta Sabbioni, and from here, seawards
along the remainder of Treporti Canal into the deep channel of Lido Inlet. The mean
grain size (Figure 5.9) of the study area is approximately 170 pm but increases towards
the southern edge of Lido entrance where gravel is present. The grain size on the ebb
tidal delta is around 180 pm, much coarser than the rest of the seabed outside of the
lagoon, where it falls to less than 100 pum just off Cavallino Beach and south of the ebb
delta.
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Fig. 5.9: Mean grain size in microns of the study area using the method of Folk (1974).
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The maps showing the different classes of sand (Figure 5.10) indicate that these
areas have a seabed composed of between 70% to 100% of very fine sand (63 pm to
125 pm), whereas the rest of the study area is composed of only 20% on average of
this sized sand. The map of fine sand (Figure 5.10A) shows that the seabed of the
study area is approximately 70% sand between 125 pm and 250 um in size. The flood-
delta lobe is almost completely constructed of this fine-grained sand, with fine-grained
‘patches’ continuing down the centre of the Lido Inlet channel and onto the ebb-tidal
delta. Sand sizes larger than 250 pum are not predominant anywhere in the study area,
though concentrations of up to 20% are present along Treporti Canal, Lido Inlet, the
ebb delta, and also along Cavallino Beach. Coarse sediment (between 500 pum and 1
mm) is only present in small quantities (below 10%) off Punta Sabbioni and along both
sides of the southern jetty. There appears to be no significant amounts of sediment

between 1 mm and 2 mm in diameter.

5.3.1.2 Statistical Parameters

Maps were created to show the statistical parameters of the sediment in the study area
(Figure 5.11). The sorting of the sediment can show where transport pathways combine
if sorting worsens. Most of the study area is very well sorted with the exception of the
deepest parts of the tidal channels and the shore to the west of Lido Inlet where sorting
deteriorates. The grain distribution curve or skewness, is basically symmetrical, with
a tendency towards a finer skew (predominance of fine sediments) in Treporti Canal,
the tidal deltas and adjacent to the beach. Within the tidal channel of Lido, and west
of the inlet, there is a tendency towards a coarser skew. The maps of kurtosis show a

gradual east to west change from mesokurtic (mainly nearshore) to leptokurtic.

Maps showing the d; and dgs percentiles of grain size were also generated (Fig-
ure 5.12) as Folk (1974) states that maximum seabed grain-sizes can indicate areas of
peak sediment transport. Minimum seabed grain-sizes can also be used in a similar way
as relatively large, minimum grain-sizes indicate that smaller grains are transported as

suspension and the area must be of high velocity and/or high turbulence.

Figure 5.12A displays the d5 percentile (the smallest 2—10 of the sample). The
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minimum grain-size increases from an average of approximately 100 pum over the whole
study area to over 140 pum in the tidal channel of Lido, but only where the inlet width
is at its narrowest. The d5 of the seabed adjacent to the northern jetty is finer than
70 pm and this band of d; fines extends to Punta Sabbioni at the mouth of Treporti
Canal. Both the ebb- and flood-tidal deltas have slightly higher than average ds values
(110 pm), although the ds grain size of the ebb delta gradually decreases with dis-
tance from the inlet mouth (extending in a south-west direction). The beaches also
have higher-than-average ds values (between 120 and 180 pm) although the minimum

grain-size falls to below 70 pm in the nearshore area by Cavallino Beach.

The dgs values (largest o of the sample, shown in Figure 5.12) reach a maximum
at the inlet mouth (covering most of the inlet width including the tip of the northern
jetty), although values rapidly fall from over 2 mm to about 500 pm further into the
inlet (falling below 70 pum on the northern edge of the channel). The tip of Punta
Sabbioni also has relatively large grains in the 95" percentile (above 1500 pm); these
areas of high dgs values are abridged by a region of moderately high dgs values (500
pum), whilst the rest of the seabed in the inlet (including the flood delta, San Nicolo
and Treporti canals) has maximum grain sizes no higher than 300 pm. The dg; grain
size of the ebb-tidal delta gradually decreases with distance away from the inlet mouth

in a pattern similar to that seen with Figure 5.12.
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Sand Size Composition along Cavallino Beach
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Cavallino Beach (west to east)

Fig. 5.13: The changes within sand grain sizes along Cavallino Beach. Sample B1 was taken
adjacent to Lido Inlet, B30 is adjacent to the Piave River and the vertical line
shows the position of the Sile River mouth.

Figure 5.13 shows the change in proportions of three different sand size classes
(very fine, fine, and medium/coarse sand) along the transport route from the Piave
River-mouth (site B30), along Cavallino Beach to the mouth of Lido Inlet (site B1).
The grain size fluctuates little until the mouth of the Sile River is reached. The
sediment is mainly fine sand suggesting that the sediment is from one source. There
is a slight trend of decreasing proportions of medium/coarse sand and a corresponding
increase in proportions of fine sand moving south from the Piave mouth. This is the
result of grain abrasion, decreasing the average grain diameter along the transport
pathway (Folk, 1974). The Sile River mouth dissects Cavallino Beach 12.3 km south-
west from the Piave River, between sites B18/B19 (shown by the vertical line in Figure
5.13). An immediate change in the grain-size composition occurs as an increase in the
concentration of medium/coarse grains from negligible proportions up to 20%. The
levels of this size class peaks at approximately 70% at site B15. The proportions of
very fine sand do not fluctuate, remaining at 1 or 2% along Cavallino Beach, but the
proportions of both fine and medium/coarse sand alter greatly with the medium/coarse

sand proportions varying between 15% and 75%.



Source, Transport and Sinks of Sand
5.3. Results 120

Sand Size Change Along Venice Lagoon

Chioggia Inlet Malamocco Inlet Lido Inlet Sile River Outlet
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Fig. 5.14: The changes within sand grain sizes along the beaches of Venice Lagoon including
Chioggia Beach (S1 to S5), Pellestrina Beach (P1 to P9), Lido Beach (W1 to W6)
and Cavallino Beach (B1 to B30).

5.3.2 Transport
5.3.3 Grain Trend Analysis

The results of the Gao and Collins (1992) grain trend model are presented in Figure
5.15. The general transport pathway (as shown by the vectors) is from Treporti Canal
into the deep tidal channel of Lido Inlet (adjacent to the southern jetty) and then
out of the lagoon. These vectors are cold colours and are therefore a highly reliable
indicator of the transport direction of sand. The vectors change direction from south
to south west at the mouth of the inlet to point the same way as the vectors adjacent to
Cavallino Beach. The vectors on the south shore of Sant’Erasmo island initially point
in a northerly direction and gradually turn to a southerly direction progressing from
the east to the west end of the island. These vectors are of low reliability however as
they are adjacent to the shoreline and thus do not have enough neighbouring samples
with which to compare characteristics. Outside of the lagoon, the vectors appear to
point in all directions. The vectors pointing in a southerly direction are generally more
reliable (appearing as colder colours) than the northerly vectors, suggesting that this

is the more likely direction of transport. However, as this area is subject to changing
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current directions, no conclusions should be made from the results of the grain trend

analysis.

12.38° 12.4° 12.42° 12.44°

45.44" 45.44°

{1

l 45.42°
45.4°
s 6

12,38 12.4° 12.42° 12.44°
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45.4°

Fig. 5.15: Grain trend analysis using the method of Gao and Collins (1992). Colour denotes
reliability of transport direction; purple is very reliable and red is of low reliability.
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5.3.4 Mineralogy

Maps of the percentage composition were created to form a visual representation of

the sea bed composition. The data were also presented in a variety of ternary diagrams.

Quartz is found predominantly south of Chioggia Inlet and makes up around
30% of the sediment. The levels reduce further to the north to under 20% at Lido Inlet,
and less than 10% past Cavallino Beach. There are a couple of outliers on Cavallino
Beach, where the composition is 20% quartz. This quartz is predominantly polycrys-

talline (60%) with monocrystalline quartz accounting for the remaining 40%.

The sites north of the lagoon are composed of over 80% carbonate (Figure
5.16A), though this drops to between 50 and 75% around Lido Inlet and Lido Beach.
At Chioggia Inlet, the percentage of carbonate is significantly lower (under 20%). Two
outliers exist along Cavallino Beach; the northern outlier contains only 20% carbonate
and the adjoining site increases to 40%. The general pattern is of a reduction in carbon-
ate from north to south. This carbonate is mainly dolomite, with calcite representing
no more than 20% of the whole sample. Outliers of calcite appear along Pellestrina
Beach, where percentages reach 40% just north of Chioggia Inlet. South of this inlet,

levels drop once again to less than 5%.

The calcite/dolomite ratios are much higher south of Chioggia Inlet (0.9) and
at sites of beach replenishment (> 0.8) than around Lido Inlet. The lowest ratios (0
to 0.3) occur in the ebb and flood tidal deltas of Lido Inlet and on the ebb spit. The
ratio increases to 0.5 within the flood channel, Treporti Canal and also along Lido and

Cavallino beaches.

The pattern of percentage of rock fragments follows that of quartz. High levels
(40%) occur south of Chioggia Inlet, but small amounts are found north of the lagoon
(< 5%). Levels are between 10 and 30% around Lido Inlet, but increase at the same

outlier sites described above for quartz (Figures 5.16B and C).

Feldspar, mainly potassium feldspar, comprises of up to 30% of the sediment
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Fig. 5.16: The percentage composition of carbonates (A), quartz (B), rock fragments (C),
and feldspar (D).
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south of Chioggia Inlet, although levels fall towards the north (Figure 5.16D). Lido
Inlet has less than 10% feldspatic content within its sediment, and this drops to trace

levels north of the lagoon.

Shell fragments are only found at one or two sites within the lagoon, and along
Lido Beach, though levels are never more than 10% of the whole sample. Mica is also
uncommon in the area; found only south of Chioggia Inlet at levels less than 10%,

where there are high levels of quartz and rock fragments.

Figure 5.17A is a ternary diagram discriminated by source, with axes of gravels,
sands, and fines. It shows the dominance of sand over the study area, increases in the
proportion of silt towards the inner lagoon (up to 85% fines in Treporti Canal), and an
increase of gravels in the flood and ebb channel (30-55%) as well as parts of Treporti
Canal. The sandiest section of the study area is the flood delta lobe, the beaches and
nearshore beach areas. Figure 5.17B describes the distribution of sand sizes in finer
detail (very fine, fine and medium/coarse sand) for the beaches and nearshore beach
areas. It shows the beaches to be predominantly fine sand (> 50%), decreasing in size
in the Cavallino nearshore area (50 to 100% very fine sand) and Lido Beach, although

the nearshore Lido Beach samples are poorly sorted with a mix of all three grain sizes.

The mineralogical data were also subdivided; Figure 5.17C compares lagoonal
samples with riverine and beach samples to see if the likely source could be determined.
All of the lagoonal samples cluster around the Cavallino Beach, Piave and Tagliamento
river sources, showing high levels of rock fragments and carbonates (over 70%). Only
the beach samples show any similarity with the sample from the Brenta River, with
20 and 30% of quartz (the Brenta sediment is around 38% quartz), although they also

have a greater feldspar content than any of the rivers.

Figure 5.17D also shows mineralogical compositions, but separates the carbon-
ates. The data shown are representative samples along the length of Cavallino Beach,
as well as Lido, Pellestrina, and Chioggia beaches and the riverine samples. North and
south Cavallino Beach samples are similar in composition to the Tagliamento River

sample with carbonate levels of around 70%. Mid Cavallino Beach samples however,
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have much higher quartz and rock fragment levels but less carbonate. Lido Beach
samples have almost the same mineralogical composition as the Piave River, as does
the southern-most sample from Pellestrina Beach. Chioggia Beach samples have the
highest quartz proportion, but is composed of more rock fragments than the River

Brenta (which has similar levels of quartz).

5.4 Discussion

The transport pathway of sand was investigated in the previous chapter in terms of
the morphology of the study area. The morphology (and changes in it over time)
can reveal regions where the hydrodynamics alter to conditions suitable for suspen-
sion (transportation) or deposition (accretion/sink). An estimated transport pathway
of sand was hypothesised; sediment is scoured from Treporti Canal and transported
through Lido Inlet out of the lagoon and onto the ebb-tidal delta. The aims of the cur-
rent chapter attempt to verify the sand transport pathways through seabed sampling

and application of grain trend analysis.

5.4.1 General Sediment Patterns

Sand is the predominant size class found around Lido Inlet as grain-size distributions
reveal that seabed sediment is comprised of 60-70% sand. As the lagoon was created
due to the formation of sandy barrier islands (Gilbert, 1885; Bonardi et al., 1997),
the dominance of sand is expected. Also, the lagoon was originally fed, and is still
surrounded by, rivers carrying sandy sediment from the Dolomite mountain range to
the north. These rivers are thought to be the general source of sediment to the lagoon

(discussed in section 5.4.2).

The major morphological features of the inlet (ebb- and flood-tidal deltas, and
the ebb spit) have higher proportions of sand (80-100%) suggesting that selective en-
trainment has removed the finer material present further within the lagoon. The ve-
locity in these areas must be high enough to remove finer material without resettling,
but not fast enough to transport the sand away as occurs in the main tidal channel
(in regions where gravel is present). The 5% percentile map shows that transport po-

tential increases in the tidal channel of Lido as soon as the flow becomes restricted by
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the jetties, indicating the presence of an ebb jet (Joshi, 1982); the 95" percentile map
shows more specifically that peak sediment transport occurs at the mouth of Lido but
is reduced once the flow becomes unrestricted. The gravel within the tidal channel is
further evidence of scour and the position of peak turbulent velocities, which must be
frequently above the suspension threshold of fine sand (~0.44 m s~! following Equation

2.6a) to remove most sediment below 250 pm.

The flood-tidal delta has been formed by a drop in velocity due to the increase
in the size of the cross-sectional area relative to the inlet mouth; as soon as the channel
widens, the proportion of sand increases from around 60 to 80%. The delta is shaped
by ebb currents from Treporti Canal to the north-east as well as flood tidal currents
from Lido. This is indicated by the direction of sand transport as shown by the re-
sults of the grain-trend modelling. Flow entrainment by the flood-lobe induces sand in
suspension to be deposited and transported as bedload, forming sand waves (seen in
Figure 4.14). The grain size increases from the lobe to the delta (shown in Figure 5.9)
due to selective removal of finer grains as the sediment is reworked by waves and tidal
action (Daboll, 1969). The transport potential of the mid section of the delta (running

parallel to Sant’Erasmo) is still high as shown by the comparatively large d; grain size.

The ebb-tidal delta is formed by deceleration of the ebb jet as it ceases to be
restricted beyond the jetties. Sand in suspension (discussed fully in Chapter 5.5) set-
tles out as flow speeds fall below the suspension threshold to form the ebb delta. The
mean grain-size is relatively large at around 190 pm as the medium-grained sands fall
out of suspension first (particle-size analysis shows little evidence of coarse- and very
coarse-grained sands) before the fine sands and silts, which are transported further
offshore. This grading of sediments is illustrated in Figure 5.12 of the 5™ and 95
percentile of the grain-size distribution. The ebb delta extends 4 km from the mouth
of the inlet, suggesting that the velocity remains above the suspension threshold for
sand to this point, although it is likely that sand from longshore drift is mixed with the
lagoonal deposits here. The sand south of the inlet is relatively poorly sorted, more so
nearshore, suggesting that sand from two sources has intermixed (Folk, 1974) as pre-
dicted in the previous chapter. The position of this mixed sediment south of the inlet

implies that longshore transport moves sediment from north to south, as previously
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observed by Gazzi et al. (1973) and Brambati et al. (1978).

The greatest concentration of gravel in the study area is located at the tip of
Punta Sabbioni suggesting this to be a source of larger grain sizes. The sediment in this
area has grain sizes above 1500 ym in the 95" percentile of the grain-size distribution,
which is well above average for the study area. This suggests that the transport poten-
tial of sand is very high; however, the below-average grain sizes in the 5% percentile of
the distribution also imply that this is an area of deposition for fine-grained sediment.
The shape that the contouring produces in each percentile map may provide an answer
to this contradiction; the map of ds grain-size shows a contour tapered into Lido Inlet,
whereas the contour tapers into Treporti Canal in the dgs grain-size map. It may be
possible that the transport potential for coarse-grained particles reaches a peak during
the flooding tide when the flow is compressed into the smaller channel of Treporti, but
reduces significantly to the extent of deposition of fine-grained material when the tide

turns and the flow from Treporti Canal expands into Lido Inlet.

The map of fines (< 63pm) shows that this size class makes up to 40% of the
seaward end of Treporti Canal. This location is sheltered from waves propagating
through Lido Inlet and waves generated from sirocco winds (from the south-east) by
the barrier island to the south. The canal is orientated to the north-east, parallel to
the bora winds, but due to the short fetch, is still relatively sheltered to the north-east.
The weak wind-generated waves and relatively slower tidal velocities (Umgiesser, 2000)
prevent the same degree of selective sorting as seen in Lido Inlet allowing finer-grained
sediment to remain. The channel present between the ebb shield and Sant’Erasmo
island also has a relatively high percentage of fine sediment (~20%), suggesting that
this area is also sheltered. Residual currents predicted by Umgiesser (2000) show
lower average currents (Figure 5.18). Note that the mean current shows slight flood
dominance in Lido Inlet as found in Chapter 4 (page 58). There are also fines present
in the northern edge of main tidal channel (~20%) and between the ebb spit and the
northern jetty wall (~60%). This latter area is relatively sheltered by the ebb spit,
and is away from the strongest flows (in the main tidal channel), allowing the settling
of fine-grained material due to low velocities. The fines within the tidal channel occur

where the jetties widen near the Lido island, and so are present where the flow is less
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Fig. 5.18: The residual modelled current for 1987, showing low current velocity in the shel-
tered area above the ebb shield (within red rectangle). (Umgiesser, 2000).

restricted and the velocities are lower. Alternatively, their presence may be the result
of sediment trapping, where the peak flow from the flood current continues in a straight
line instead of following the jetty wall, so that velocity by the wall is below transport
threshold. However, this would need to be confirmed through modelling or in situ
current measurements. It also appears that some sediment may pass through the jetty
wall as fine-grained sediment is present on both sides, despite coarser sediment being

present elsewhere on the seaward side.

5.4.2 Source

The mineralogy of the lagoonal sediments is most similar to the Piave and Tagliamento
rivers (see Figure 5.17). It is therefore likely that these rivers are the source of the
sediments in the study area. Work by Bellucci et al. (2005) found calcite/dolomite ra-
tios to be low (approximately 0.3) in the central lagoon, corresponding to values (from
this study) around the deltas and ebb spit. Low ratios characterise re-worked mature
sediments, so it is likely that the sediment was sourced from the rivers when they were
still discharging into the lagoon, rather than being imported now they have been di-
verted. Therefore, it could be concluded that the ebb and flood deltas are comprised

of lagoonal sediment rather than beach (fluvial) sediment as the ratios here are also
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below 0.3. The sediment in the rest of the inlet has slightly higher calcite/dolomite
ratios so may be intermixed with grains sourced from the beaches (and thus the rivers),
which have ratios of 0.3-0.5.

The work of Gazzi et al. (1973) shows that the longshore transport around
Venice Lagoon is part of a sediment cell moving sand from the north along the coast
to Chioggia Inlet, which is also the boundary to another sediment cell transporting
sediment from the south. Figure 5.13 shows a trend in decreasing grain size from north
(by the Piave River) to south (the Sile River), as grains are abraded during transport.
The introduction of a secondary source may be responsible for varying grain sizes south
of the Sile River; however, the predominant signal is more likely to be from beach re-
plenishment schemes in the '90s (Cecconi and Ardone, 1998). Sediment was dredged
from a region about 14 km to the south-east of Lido Inlet (Cecconi and Ardone, 2000)
and pumped onto the beaches. This source most likely would had varying grain sizes,
accounting for the trend seen along Cavallino Beach. Although grain sizes do not infer
transport direction here, it is apparent that sand continues to move towards the south
due to the significant accretion of Cavallino Beach immediately to the north of Lido

Inlet (see previous chapter).

Figure 5.14 shows the change in sand grain size along the Venice Lagoon beaches.
Chioggia Beach follows a similar trend to the northern part of Cavallino Beach (north of
the Sile River), in that the proportions of medium/coarse sand grains decreases relative
to fine sand as abrasion reduces the grain size over time (the longer a grain has been
in the transport pathway the longer it is exposed to erosive forces - Folk, 1974). The
trend on Chioggia Beach (unlike Cavallino and Lido Beach) is south to north, agreeing
with trends highlighted by Gazzi et al. (1973). The trend is also seen in the mineralogy,
as these beach samples are high in quartz and mica - minerals which are less prevalent
further north, but are found in the rivers to the south. The calcite/dolomite ratios do
not follow this trend however, with the most southern Chioggia Beach sample having
a high ratio (1), suggesting relatively unworked sediment, but at the northern end of
the beach, the sediment has a very low ratio (0.14) suggesting well-worked, mature
sediment. However, as this latter sample contains mica (a maturity indicator), it is

more likely to be a recent sediment, indicating that the sediment here has recently



Source, Transport and Sinks of Sand
5.5. Conclusion 131

been added to the transport pathway. Along Pellestrina Beach, transport pathways

have been obscured due to recent beach replenishment.

Sand from Cavallino Beach enters Lido Inlet; this can be seen in the map of
sand (Figure 5.8) by a small tail of high percentage sand entering Lido around the
northern jetty. It is also indicated by a change in the sorting from very-well sorted
both inside the lagoon and offshore, to moderately to well sorted within the confines
of the jetties suggesting that two sources of sediment are mixing within this area -
one from Cavallino Beach, and the other from within the lagoon. Unfortunately, the
mineralogy does not provide conclusive results. However, the results of the Gao and
Collins grain trend modelling showed that sand is mainly exported from Treporti Canal
and out of the lagoon through Lido Inlet. This suggests that the source of the inlet
sediment is from within the lagoon, supporting the conclusions made in the previous

chapter.

5.4.2.1 FError

The sediment samples were collected over a period of days in February 2003 during
both the ebb and flood tidal phases, which may have affected the direction of sediment
transport. However, the sample depth (~4 c¢m) of the Van Veen grab is sufficient to
capture sediment transported over numerous tidal cycles to provide a composite sample
and thus provide an modal transport direction. It may however be conducive to repeat
this study during different seasons (as (Tambroni and Seminara, 2006b) state seasonal

changes in the direction of net transport within the inlet).

5.5 Conclusion

Sand from the Piave and Tagliamento rivers is transported south by longshore drift.
This is shown by a decrease in the mean grain-size and a decrease in medium/coarse
sand (corresponding with an increase in very-fine sand). The mineralogy of the Piave
and Tagliamento river samples corresponds well with the northern Cavallino Beach
samples; all are carbonate rich with little quartz, unlike the Brenta River (a likely

source for Chioggia Beach). The mid-beach Cavallino samples are an exception caused
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by annual beach replenishment which began in the ‘90s (Cecconi and Ardone, 1998).
This sand is more quartz rich with larger quantities of rock fragments, but become
more carbonate rich towards the south due to mixing with the natural sediment trav-
elling in the same sediment cell. The area adjacent to Lido Inlet is the only section of
Cavallino Beach naturally accreting due to trapping by the northern Lido jetty. This
sediment is mineralogically a mix between the natural fluvial sediment and the sand
from the beach replenishment further updrift. Once the sediment reaches the tip of
this jetty, the majority is transported 3-4 km offshore with the ebb jet, however, a
small quantity enters the lagoon adjacent to the northern jetty. This is best seen in
Figure 5.8B, where the plume of sand extends away from the lagoon and the ‘tail’ of
sand enters near the jetty. The tail is also visible in the reflectivity data described in
Chapter 4. Further, the mineralogy of sample D13, which is located inside Lido Inlet
adjacent to the northern jetty, is similar to sample B1 on the accreting section of Cav-
allino Beach. How far this sand travels into the lagoon is unclear, as the source rivers
originally fed directly into the lagoon and sediment deposited prior to the diversion of
the rivers may still be a source of sand within the lagoon. The mineralogy of most
of the lagoonal samples is similar to one another to within 10%, with variations in
the levels of lithics occurring in areas of scour. Therefore it is difficult to determine
the extent of sand import using mineralogical methods. The grain trend modelling
hints at a short penetration, with one vector of low reliability pointing north where
the jetty extends seawards, but again, this is not sufficient to categorically determine

the transport of sand into the lagoon.

The sand is exported from Treporti Canal and out of the lagoon through Lido
Inlet. The principle evidence for this is the grain trend modelling (Gao and Collins,
1992), as most transport vectors follow the ebb currents along Treporti Canal and
either closely follow the Punta Sabbioni shoreline and the northern jetty, or passing
into the deep tidal channel. The vectors also suggest that sediment in the flood tidal
delta channel between Sant’Erasmo and the ebb shield move in the ebb direction be-
fore draining into the San Nicolo Canal and out of the lagoon through the inlet. The
calcite/dolomite ratios indicate that the sediment is reworked from sources within the
lagoon as they are lower than the ratios of the beach samples. The sediment is then

transported about 3-4 km out of the lagoon with the ebb jet and settles to form the
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ebb-tidal delta, over which longshore transport occurs. The confluence of sediments
from different sources is evident in the map of sorting (Figure 5.11C); each source (from
inside and outside the lagoon) is very-well sorted. At Lido Inlet, the sediment becomes

less-well sorted, indicative of mixing.

The longshore transport of sand continues north to south past Lido Inlet. Fig-
ure 5.8B shows that the plume of sand from Cavallino Beach passes the inlet and moves
closer towards Lido Beach. This outlines the area of the ebb tidal delta described in
Chapter 4. The area adjacent to the southern jetty is subject to eddies recirculating
the sediment back towards the north (Brambati et al., 1978). This is visible in satel-
lite images (Figure C) although Figure 5.8C suggests the area is affective at trapping
gravel sized sediment from the Lido Inlet. The grain size of Lido Beach is similar to
the northern section of Cavallino Beach, where a gradual decrease in medium/coarse
grained sand with a corresponding increase in fine-grained sand is evident (see Figure
5.14). This supports the hypothesis of north to south longshore transport. However,
the mineralogy shows that there is an increase in quartz levels on Cavallino Beach,
indicative of the recent beach replenishment (Cecconi and Ardone, 1998). The north
to south longshore transport appears to continue past Pellestrina, although replenish-
ment of the whole beach has occurred (Cecconi and Ardone, 1998). There is a lack of
mica (present in Chioggia Beach), so if south to north transport was occurring along
Pellestrina, some mica should be present in the samples. Chioggia Beach is miner-
alogically different from the other beaches, with more than twice the average volume
of quartz and less than half the quantity of carbonates. It follows the same pattern
of decreasing medium/coarse grained sand and increasing fine grained sand with the
direction of transport, although that direction is from south to north. The Brenta
River is thought to contribute to the south-north sediment transport pathway, as the
samples are mineralogical similar, although there are significantly more rock fragments
and lithics in the Chioggia samples. These may be from the Adige or Po rivers, lo-
cated further to the south. The hypothesized sediment transport route is summarized
in Figure 5.19. Sand is transported north to south along Cavallino Beach. At Lido
Inlet, some sand enters the lagoon, but the main direction of sand transport is out of
Treporti Canal, through Lido Inlet and onto the ebb delta (shown as very fine sand by

Albani et al., 1998). A band of medium to fine relic sand is present offshore (Cecconi
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and Ardone, 1998) and it is unlikely to be rejuvenated on a large scale by sand from
the present-day sediment cell. Thus, sand exported from the lagoon continues south
within the longshore transport pathway to the cell boundary at Chioggia Inlet. Some
sand must be lost along the pathway; the thickness of the barrier islands reduces from
approximately 2 km in the north to a strip less than 50 m wide in the south. Where
does this sand go? Is the carbonate fraction abraded and/or dissolved? Is it trans-
ported offshore past the mudbelt? These are questions that need to be answered by

further data collection (sediment sampling) and modelling.
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Fig. 5.19: The transport of sand, gravels and fines in Lido Inlet and along the coast of Venice
Lagoon. The contours show the sediment of the seabed after Albani et al. (1998).



Channel Dynamics and Sand Transport

6.1 Introduction

The volume of sediment transported as suspension is the most important control of the
sediment budget in a coastal system. Because sediment in suspension is transported
within the current flow, the volume transported is much greater than the volume of
sediment travelling as bedload (Raudkivi, 1998; Edwards and Glysson, 1999). When
flow velocity falls, sediments are deposited from suspension, and this influences the
morphological evolution of the system by infilling channels for example (Simon and
Senturk, 1992). Suspended sediments are also responsible for the distribution of pol-
lutants and toxins which readily adhere to fine-sediment particles (Yuan et al., 2006),
and affect the level of light attenuation important for photosynthesis and the biological
food chain (Gartner, 2004).

In order to estimate the export of total Suspended Sediment Concentration
(SSC) in Venice Lagoon, upward-looking RDI Acoustic Doppler Current Profilers (AD-
CPs) were fixed to the seabed in each of the three tidal inlets. The ADCPs have been
continuously recording velocity and backscatter data since 2003 to provide estimates of

long-term sediment transport in the inlets (Zaggia and Maurizio, 2005). To determine
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the velocity and backscatter across the whole channel profile, an additional survey was
undertaken with traversing RDI ADCPs. Water column and epi-benthic sediment sam-
pling was also performed to calibrate the backscatter into SSC as backscatter recorded
by the ADCP is directly related to suspended matter in the water column (Gartner,
2002). The bottom metre of the water column affects the acoustic reflection (side-lobe
echoes Rotaru et al., 2006) of the traversing ADCP, and the fixed ADCP is upward
looking and thus does not record any data from the bottom metre either. There is
therefore a need to be able to model the concentration of suspended sediment in the
lower metre of the water column; possible through application of the Rouse Profile
(described in Soulsby, 1997). Furthermore, using data collected from the traversing
ADCP it should also be possible to model the bedload transport rate (Soulsby, 1997)
so a total mass of sediment in transport can be determined. This can then be used to
estimate a sediment budget and be used in the calibration of SHYFEM/SEDTRANS

(Ferrarin, 2005), currently under development.

The aim of this chapter is to:

e determine total suspended sediment transport within Lido Inlet by correlating
backscatter from the traversing ADCP with various sediment sampling methods
and using this to calibrate the fixed ADCP.

e further refine the calibration to differentiate the total suspended fines and total

suspended sands.

e calculate the total suspended sediment transport in the bottom metre below the

fixed and traversing ADCPs using the Rouse parameter.

e calculate bedload transport using velocity data from the ADCPs.

6.1.1 Methods to Determine Suspended Sediment Concentrations

Traditional methods of sampling Suspended Sediment Concentration (SSC) involve di-
rect sampling of the water column with sediment traps (e.g. Helley-Smith bedload
traps shown in Figure 6.4A), Niskin Bottles, and pump sampling. However, there are

inherent problems with these techniques; water sampling is limited by small sampling
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volumes (increasing potential error) and some samplers (Niskin bottles) are suscepti-
ble to accidental triggering resulting in a sample of unknown depth/wrongly assumed
depth. Settling within the bottle below the output tap will also remove larger parti-
cles from the analysis. The technique is also highly labour intensive and requires time
commitment although the efficiency is very high due to the instantaneous collection of
water and any suspended particulate matter. Sediment traps can sample much larger
volumes but provide average concentrations over the deployment time, which can en-
compass several resuspension events (Bloesch, 1994). Adaptations of bedload samplers
such as the Helley-Smith have also been used but the efficiency falls rapidly with de-
creasing mesh size from ~100% between mesh sizes of 0.5 mm to 16 mm (Batalla and
Martin-Vide, 2001) to 4% with a 63 gm mesh (Amos et al., 2008). A further disadvan-
tage to the Helley-Smith trap is that it collects only the larger particles in suspension;
thus further investigation is required if a complete particle size distribution is required.
Optical and acoustical instruments such as Optical Backscatter Sensors (OBS) and
laser diffraction particle size analysers (LISST) measure relative turbidity. Turbid-
ity can subsequently be converted into estimates of SSC by calibration (Yuan et al.,
2006), with LISST also providing data on the particle size distribution, and are able
to sample a greater size range of particles in suspension'. OBS instruments work by
measuring backscatter, LISST particle size analysers work by measuring laser diffrac-
tion. Algorithms are applied to the signals to determine sediment size distribution
(LISST) and sediment concentration (LISST and OBS). There are disadvantages in
the use of these instruments; OBS calibration is arduous as the sensor is sensitive to
fine grain-sizes. Therefore sand will produce lower turbidity readings (NTU) than the
same concentration of fine-grained material (Hitchcock et al., 1999; Gartner, 2002).
Thus the calibration sample must be representative of the grain-sizes measured in sus-
pension. Sediment colour also effects the reflectivity (Sutherland et al., 2000) although
this shouldn’t be an issue if un-oxidised sediment from the study site is used to cali-
brate the sensor. Success of long-term deployment may be affected by biological fouling
obscuring the optical sensor (Gartner, 2002), although recent designs have a self-wipe
mechanism that limits this problem. Both instruments (more so the LISST) affect

the current flow of the water that they sample (Yuan et al., 2006) and record as single

From manufacturers website: www.sequoiasci.com /products/LISST Inst.aspx
"www.ysi.com/products - May 2008
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point sources. Use of acoustic backscatter methods (Acoustic Doppler Current Profiler
- ADCP), which can sample a transect of the water column without affecting the flow
in the sampling area, in the determination of suspended particulate concentrations has
been investigated since the early 1990s (Thevenot et al., 1992).

6.1.2 ADCP

An Acoustic Doppler Current Profiler (ADCP) is principally used to determine the cur-
rent velocity throughout the water column. It works by transmitting a high frequency
sound pulse (ping) that reflects off particles in the water back to the instrument. Due
to the Doppler effect, particles moving away from the instrument return acoustic re-
flections that are low frequency, particles moving towards the instrument return higher
frequency waves. Using the frequency shift, it is possible to calculate the direction and
velocity of the water current. The time taken for the pings to return is also recorded
so current velocities throughout the water column can be calculated. As the ADCP
uses particles in the water column to determine velocity, in theory it should be possible
to estimate SSC, as an increase in sediment concentration will affect the return signal
intensity or backscatter to the ADCP (Yuan et al., 2006).

Transmitted ping Fo Received ping Fp
aFy>Fg
@
b Fy<Fq
‘ A . cFp=Fg

Fig. 6.1: Principles of the operation of an ADCP.

iiFrom Sontek website: http://www.sontek.com/princop/adp/adppo.htm - accessed 23/09/2007
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Since the first studies in the determination of SSC using ADCP was published
by Thevenot et al. (1992), much work has been carried out in an attempt to over-
come the inherent difficulties and produce an accurate method to estimate SSC from
backscatter (Gartner, 2002; Merckelbach, 2006). Continuous sampling can provide a
complete picture of sediment transport over time with no interruption to the flow.
Although calibration is still required, the data can be used to provide a long-term es-

timate of volumes of sediment being imported and exported.

ADCP data are affected by beam attenuation, which is affected by water viscos-
ity and transducer attributes, although this has been solved by authors such as Yuan
et al. (2006) and is now taken into account by software packages such as WinRiver
(Teledyne RDI) and Sediview (Dredging Research Ltd). A further consideration arises
as the acoustic ping can be reflected off any floating particle including suspended sedi-
ment, organic matter, turbulence/bubbles or even fish; hence separating the proportion
of the signal reflected from suspended sediment is difficult. The degree of backscatter
is also dependent on particle characteristics such as particle size (the ADCP is more
sensitive to larger grains, Yuan et al., 2006), shape and density (Hoitink and Hoekstra,
2005). Sand grains in suspension are thought to be homogeneous in terms of backscat-
ter (Sheng and Hay, 1988; Hoitink and Hoekstra, 2005), but the signal from other
suspended matter (organics, fine-grained material) must also be accounted for. These
problems are because the instrument operates at a single frequency, thus a change
in grain size may be difficult to distinguish from a change in concentration (Gartner,
2002). Merckelbach (2006) states that gauging SSC from ADCP has been carried out
successfully using random-phase, acoustic-backscatter modeling as applied in the Se-
diview software'™ used by Gartner (2004) and others. Whilst Merckelbach managed to
find a good correlation between the model results derived from the echo intensity of the
ADCP and actual SSC, the model significantly overestimated the SSC when current
speeds exceeded 0.7 m s™! (the echo intensity increased without the expected increase
in SSC). Water samples confirmed that there was no increase in the particle sizes in
suspension which may have explained the trend. Merckelbach concluded that the dif-
ference could be explained by the spatial distribution of particles; randomly spaced

particles reflected backscatter with incoherent wave phases, whereas spatially coherent

VDRL Software LTD for RDI ADCPs.
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particles could reflect backscatter waves that are in phase and thus produce a stronger
echo intensity. The presence of turbulence-induced density fluctuations provides some
coherence to the suspended particles over some critical velocity threshold and reflect
in-phase acoustic waves. Therefore velocity must be taken into account when using

backscatter to derive suspended sediment concentrations.

Wall et al. (2006) state that using an ADCP for calculation of SSC should be
used as a tangent rather than a replacement to conventional methods because of the
level of post-processing and additional measurements or assumptions required to re-
solve the reasons why echo intensity varies. Also error in SSC estimations increases as
the ratio between particle size and acoustic wavelength nears unity (Gartner, 2004).
However the benefits of using ADCP may outweigh any disadvantages as they can be
operated by ships of opportunity (ferries, container ships“) or left unattended on the
seabed, and can therefore provide a much larger dataset at a fraction of the cost than

can be collected by conventional methods.

Problems with using an ADCP mount from the lack of usable data adjacent
to bed; fixed ADCPs are located above the bed and so do not ‘see’ the water column
below the sensor. Traversing ADCPs return bad data from this same area due to
the production of side-lobe echoes, which can affect the calculation of velocity and
produce artificially high backscatter values (Rotaru et al., 2006). The Rouse profile
(Rouse, 1939; Soulsby, 1997) can produce estimates of suspended sediment in this
bottom metre (or at any height above the bed) assuming a parabolic reduction in
concentration throughout the water column. A reference concentration from near the

bed is required along with the Rouse parameter (b):

p=

a Bru,

(6.1)

This formula uses the settling velocity (W) of the median sediment grain size dsg, with
von Karman’s constant (x = 0.4), and the total friction velocity (u.). The value of 3
is generally assumed to be unity although this is controversial as values have been ob-
tained both above and below unity (Dyer, 1986; Soulsby, 1997). Lees (1981) evaluated

VFerrybox website: http://www.ferrybox.org/ - November 19, 2007
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[ using velocity and concentration measurements in the sea and determined that it
varied with grain size, changing from ~1 for very fine sand, and increasing to ~10 for
medium sand (Dyer, 1986). Further to this, an inverse relationship exists between 3
and SSC 1 m above the seabed reaching unity at around 180 mg 1™! (Lees, 1981). For
Rouse parameters less than unity, sediment is suspended throughout the water column;
greater than unity means that settling dominates vertical mixing and maximum con-
centrations are found close to the bed (Ralston and Stacey, 2007). Solving the Rouse
parameter enables an estimate of suspended sediment concentration at any depth to

be calculated:

= b= Z} B (6.2)

C(z) =0, L’_a P
where C(z) is the sediment concentration at height z above the bed, C,, is the reference
sediment concentration at reference height z, above the bed and h is total water depth.
The Rouse profile assumes that eddy diffusivity varies parabolically with height and is
therefore more suited to riverine environments; a linear diffusion for open-sea conditions
requires the power-law profile (Soulsby, 1997).

The b parameter is related to grain size relative to flow; a large Wy /u, (> 2.0) indicates
a large grain size in a weak flow, meaning that most transport is as bedload, a small
Ws/u, (< 0.8) indicates smaller grain sizes in a faster flow travelling as suspension

(Dyer, 1986; Ogston, 2006).

6.1.3 Bedload Estimations

Most sediment in coastal areas is transported in suspension but a significant volume
of sediment will still be transported as bedload; this is important to quantify as it
controls the morphology of the channel in the long term. Not only is it the primary
method of transportation below transport stage 1 (when u,/u.. = 1 - see Figure 2.12),
but it will also occur when most sediment is in suspension and for grains coarser than
2 mm (Soulsby, 1997). The threshold for transport as bedload is related to bottom

shear stress and can be determined by the form:

O = func(0,0.,) (6.3)
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Fig. 6.2: (a) Velocity profiles for wave and tidal velocities showing the smaller boundary

layer from wave induced velocities. From Nielsen (1992). (b) Relative concentration
profiles for varying Rouse parameters.

where @ is the dimensionless bedload transport rate: ® = q[g(s — 1)d®]*/2, 0 is the
Shield’s Parameter: 6 = 1ogp(s—1)d, 7., is the critical threshold of movement, and g, is
the volumetric bedload transport rate per unit width. Soulsby (1997) summarizes the
most common variations of this formula (6.3), but has determined that the equation
derived by Nielsen (1992) is well suited to sand transport as bedload under currents as
it has been verified by real data, theory and experimentation (Soulsby, 1997). Nielsen’s

formula follows:

d = 120%(0 — 6,,.) (6.4)

To convert this dimensionless transport rate into actual bedload rate, the following
equation is applied:

@ = Plg(s — 1)(13]1/2 (6.5)

where ¢, has units of m?s~!.

6.1.4 Fixed ADCP project - Venice Inlets

Fixed ADCPs (600 kHz RDI Sentinals) have been recording current flow in the three in-

lets of Venice Lagoon since 2001 as part of ongoing programme to monitor the exchange
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of water, sediments and dissolved substances for habitat management and preservation
(Zaggia and Maurizio, 2005). Sediview software has been used to calibrate the ADCP
using water samples collected by Niskin bottles. The results suggest a narrow range of
sediment sizes although there is an acoustical underestimation when the particle size
distribution is finely skewed. The average concentration in Lido Inlet was found to be

10 mg 17!, and was found to be strongly modulated by the tide.

The fixed ADCP is located 1 m above the seabed (see Figure 6.3) and therefore
does not collect any data in the bottom metre of the water column where much sediment
is transported in suspension and as bedload. However, if the sediment concentration
(C.) is known at a reference height (z,) above the bed, then the Rouse profile can
be used to determine sediment concentration in this bottom metre. The fixed ADCP
records backscatter and velocity data in the water column directly above it, so in order
to estimate the total SSC across the whole channel profile, traversing ADCP profiles
have been collected and to SSC derived from the backscatter data. In situ suspended
samples collected in collaboration with these profiles provide points of calibration. This
chapter will describe the methods used to determine SSC from ADCP backscatter data

in order to estimate the total volume of sand and fine-grained sediment in transport.

6.2 Methods

6.2.1 Field Survey

A survey was undertaken on the 19, 20*" and 21%% September 2006 to determine
suspended and bedload sediment transport in Lido Inlet and to calibrate the fixed
ADCP. Bedload and suspended sediment samples were collected as calibration points
in order to process optical backscatter from the traversing and fixed ADCPs into sus-
pended sediment concentration. The survey consisted of two simultaneous operations;
the Litus was stationed adjacently to the northern jetty opposite the fixed ADCP to
collect sand in suspension, with the Henetus undertaking ADCP transects between the
Litus (see Figure 6.3 for positions and Appendix D for sampling times) and the fixed
ADCP (N45.42250 E12.42650). Two Helley-Smith bedload samplers fitted with 63 pm
mesh were deployed from the Litus. The first trap sat directly on the bed to sample



Channel Dynamics and Sand Transport
6.2. Methods 145

by < - . .’
N A7 A eHeley-Smith sampling
LR S & @& and current meter

L

— ADCFP transect

W
il | -
P | R . [Position of fixed ADCP]
\-\ J | - J_/d
e,
.~ Lido Tnfet S :
A | /-\| : _ = . -
. AN A
7
Henetus
700 m TN

Fig. 6.3: Location of the fixed ADCP in Lido Inlet.

bedload transport (including grains saltating up to 15 cm above the bed); the second
trap had skis attached to lift the mouth 13 cm above the bed and sampled sand in
suspension (travelling 13-28 cm above the bed). Any sand in suspension in the surface
layers were sampled using a streamer bag, also fitted with a 63 pum mesh (see Figure
6.4 for dimensions of the traps and streamer bag). Calibration samples were collected
at the surface using a 14 litre bucket. The bucket was filled 40 times during each
sampling interval and the water filtered through a 63 pum sieve. Sand retrieved from
the traps was also filtered through a 63 pum sieve to remove finer particles. Deployment
of all traps for 20 minutes occurred each hour on the commencement of each ADCP
transect. A frame with a Valeport current meter (recording at 4 Hz for 6 minutes every
30 minutes), a LISST particle sizer (4 Hz every minute), and an Optical Backscatter
Sensor (OBS) were deployed in the same area. An ADV was deployed concurrently
with the traps recording at 25 Hz in 5 minute intervals. Finally, a CTD rosette was
deployed at the end of each ADCP transect by the Henetus with triggers set at 2
m, 10 m (in line with the fixed ADCP), and 12 m to collect Total Suspended Solids
(TSS). Profiles of density, temperature, oxygen, salinity and pH were also recorded by
the CDT. Velocity data recorded by the fixed ADCP for the water column was also
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Fig. 6.4: Sand traps used in Lido Inlet on the 19th, 20th and 21st September, 2006.
available in ten minute bursts for the month of September 2006.

6.2.2 Survey Error

The small size of the mesh on the sand traps results in a reduction in water velocity
and potential blockage from clays and larger particles; this means that most water and
any associated suspended matter is diverted away at the mouth and is not collected.
This is evident in the low efficiencies determined by calibration. Calibration of the
Helley-Smith sampler would normally be carried out using pumps but this option was
limited due to the volume of water sampled during this survey. Therefore surface water
samples were collected using a bucket; approximately 560 litres was passed through a
63 pum sieve to determine mass of sand in suspension. An error of approximately 7%
occurs in this method if the bucket was underfilled by just 1 cm (approximately 1 L)
as the volume was estimated rather than measured accurately due to time constraints
and ease of method. Only the surface sampler bag could be calibrated in this way
and was found to have an efficiency of approximately 34+3.5%. The Helley-Smith traps

were assumed to have a similar efficiency in the absence of other calibration data.



Channel Dynamics and Sand Transport
6.2. Methods 147

water/air interface

surface trap 027m
(63 pm mesh)

4m

Helley Smith

“aleport 3 um mesh)

current meter Nartek ADY

/H\ _\ ]015m /L\
£015m A Joasm t 034m

Fig. 6.5: Cross-section diagram showing the positions of deployed instruments from the Litus
in the September 2006 survey (modified after Venturini, 2007)

6.2.3 Processing and Analysis

The surface (S) and calibration (C) samples from the Litus and the niskin bottle sam-
ples from the CTD drop (also washed through a 63 pm sieve) were filtered through
pre-weighed glass-fibre filters and rinsed with distilled water to remove salt residue.
The filters were oven dried and the weight of the residue calculated before being in-
cinerated at 380 °C for 4 hours to determine the percentage of organic and inorganic
matter present (loss on ignition). The Helley-Smith samples of near-bottom suspended
load (M) and bedload (B) were dried and sub-samples incinerated for total organic
carbon. Grain-size distribution of the sand trap samples was determined using the

National Oceanography Centre settling column (see page 104).

Velocity of the current taken from the traversing ADCP was used to estimate
the total volume of water passing uninhibited through the sand traps so the total
concentration of suspended sands (mg 17!) could be determined. The trap efficiency,
calculated through comparison with SSC of the calibration samples, was used to pro-
duce a final concentration of sand in suspension. FError is introduced if the bedload

sampler agitates sediment upon landing on the seabed; this may have produced an
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overestimation of the volume of sediment travelling as bedload. Underestimation of

sediment may occur if the mesh was blocked by organic matter or sediment.

6.2.4 Suspended Sediment Concentration: Traversing ADCP
6.2.4.1 Method Development

The ADCP data were viewed and processed by WinRiver software’' to show acoustical
backscatter (dB), which could then be correlated with the calculated SSC. The top
metre is not recorded as the sensor head sits below the surface and the bottom metre
is disregarded due to side-lobe echoes reflecting from the seabed, which can affect the
calculation of velocity and produce artificially high backscatter values (Rotaru et al.,
2006).

The main components of suspended matter are inorganic sands and silts, organic
particulate matter and macrophytes; the composition of organic and inorganic matter
was determined from the sand trap samples and Niskin bottle samples by loss on
ignition (see 6.2.3). Sand concentration was determined from the sand trap samples
and Niskin bottle samples provided the concentration of fine-grained sediment. Several
different combinations of size classes can potentially produce the same backscatter
signal (i.e. a low-density sand plume with some silt may produce a similar backscatter
signal to that of a high-density silt plume with some sand). To determine the SSC,

some characteristics of sediment transport have to be assumed:

e Sand in suspension is less likely above the benthic boundary layer (up to 4 m in
this case - Amos et al., 2008), so a linear probability relationship above 4 m is

applied.

e Sand in suspension is unlikely to occur in current velocities below the suspension
threshold for sand.

e The concentration of fines in suspension is likely to be constant over the water

column.

ViTeledyne RD Instruments
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e A Rouse profile can be define sediment concentration in the bottom metre of the

water column.

The raw ADCP data were processed within WinRiver to extract the ensemble num-
ber (count), depth of bin, velocity magnitude and direction, backscatter intensity
(dB) and water depth. Sediment concentrations were calculated using regressions be-
tween backscatter and sample concentrations. Sand concentrations were determined
through a regression of backscatter and sand trap samples corrected for efficiency:
Cy = 1.6971, — 116.15, where I, is backscatter intensity. Fines concentration was
found using a straight-line function, where m and ¢ were derived from a regression of
backscatter and fines concentration at depths of 2, 10, and 12 m (see Table 6.1 and
Figure 6.6). The gradient and intercept from the three equations were plotted to gain

Depth (m) Fines Concentration Equation  R?

2 y = 0.59z — 33.31 0.44
10 y = 0.77r — 44.36 0.59
12 y = 0.73z — 43.45 0.37

Tab. 6.1: The equations derived from Niskin fines concentration and backscatter at different
depths.

two further equations (Equations 6.6 and 6.7) to derive the gradient and intercept for

any depth(z), allowing fines concentration to be calculated (y).
m = 0.247In(z) + 0.156 (6.6)

¢ = —18.61In(z) + 0.886 (6.7)

This presumes that backscatter is a direct function of fines concentration, so the fol-
lowing assumptions were also applied:

1. if Ujgp < 0.2 m s! (below the suspension threshold of sand); then only the
calibration for fines is applied throughout the water column.

2. if Ujgo > 0.2 m s~ !; then:
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Fig. 6.6: Correlation between backscatter and fine sediment concentration for the three sur-
vey days. Standard error is applied to show similarity of regression.

(a) the backscatter is calibrated for sand in bottom 4 m;

(b) a linear probability function is applied to the sand calibration between 4
and 8 m (the estimated concentration of sand is more likely to be correct
closer to the bottom);

(c) the backscatter is calibrated for fines at a constant concentration above 8

m.

(d) the backscatter is calibrated for fines above 8 m (as sand will not be present
above 8 so backscatter is a function of fines).
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The Rouse profile was calculated to determine suspended sediment concentration in
the bottom metre of the water column. The deepest bin of the ADCP data from
which the sediment concentration had been calculated, was used as the reference con-
centration (C,) and reference depth (z,) of Equation 6.2. Settling velocities of sand
(Dso = 125 pm) and fine-grained sediment (Djy = 30 pm) were determined (0.0225
and 0.0073 m s™! respectively) and WinRiver-style profiles created to show concen-
tration of sand, fines and total inorganic suspended matter (see Figure 6.7). These
diagrams showed representative pictures of sand and fine-grained sediment in suspen-
sion at lower velocities; however at higher velocities, the profile appeared very striated,
and contours of SSC appeared affected by the shape of the profile rather than the
intensity of backscatter (Figure 6.7B). The sand and fines concentrations are derived
separately for this method, which is the predominant reason to why this method is
dubious. As the backscatter signal is a function of all suspended particles it is difficult
to undertake separate regression analysis for each class (e.g. sand, fines, organics).
Therefore the resultant relationship within the method described above for either fines
or sands cannot be reliably attributed to either sediment size, based solely on the
backscatter signal; i.e. the regressions falsely assume that backscatter is a product
solely of sand or fine sediment, whereas it is a product of both sizes (and also other
floating particulate matter). Thus the ideal sampling dataset would include the per-
centage of fines and sand to show exactly what the backscatter is being reflected off.
Difficulties in obtaining this type of data derive from sampling methods; the sediment
traps collect only sediment larger than 63 pum, and although able to collect an entire
particle size distribution, water sampling can misrepresent the concentration of sands
due to the small sampling volume. However, as the sampling depth and volume is
known at three positions within the water column (2, 10, and 12 m), Niskin-derived

fines concentrations can be used as the first step in developing the method.

6.2.4.2 Further Development of the Method

Standard error was applied to the regression of Niskin fines concentration and backscat-

ter (in Figure 6.6) to verify whether that there was no backscatter variation due to
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Fig. 6.7: Results from the initial method showing fines (top), sand (middle) and total con-
centration (bottom). Note that high velocities show the weakness of the method -
linearisation.

depth (depth effects should have been removed during correction of echo intensity).
There was significant overlap between the depths proving that the samples were sim-
ilar and the backscatter produced is not dependent on depth. The regression was

therefore replotted without accounting for depth, producing the correlation;
Cy = 0.8891, — 54.34 (6.8)

where CY is fine sediment concentration and I, is backscatter (dB). The regression was
applied to the backscatter from the traversing ADCP files and profiles imaged to show
fine-grained sediment concentration. Accuracy of the results were compared to those

determined by SediView, a popular, commercially available piece of post-processing
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software (USACE, 2007; Zaggia and Maurizio, 2005)

The regression is derived from only fines concentration and using separately
derived sand concentrations from the sand traps has already been shown not to work.
The use of a LISST instrument was therefore employed to give further information
on the grain size distribution of the water column. The LISST (Laser In-Situ Siz-
ing/Scattering and Transmissometry) instrument was deployed on the same frame as
the Valeport and OBS sensors, recording data every minute for the duration of the
survey each day to give the particle concentrations (ug 17!) for 32 size classes between
1.25 to 250 pm. Accuracy of the LISST has been documented in Bale (1996); Gartner
et al. (2001); Pedocchi and Garcia (2006). The LISST data were compared to the
SSC estimates derived from the Niskin samples, which is preferable to just using the
single-point measurement of the LISST data as the Niskin samples were taken at three
positions throughout the water column. The total concentration of fine particles (<
63 pm) derived by the LISST was summed and compared with the Niskin concentra-
tion at 12 m (the closest depth to the LISST sensor depth). A positive correlation
(Figure 6.8) was found with an R? = 0.68, showing that the concentration described
by the LISST is approximately double the estimate calculated from the Niskin bottle
sampling. The difference in concentration is partly due to the difference in depth be-
tween both samplers; the Niskin sample was taken at 12 m (~1 m off the bed), and
the LISST was 0.45 m off the bed. There may also be errors in the calibration of the
LISST, and particle loss during recovery of the grains from the water sample (settling
below output pipe and loss from filtering of sand grains). This correlation showed that
using the LISST was a viable alternative to using sand traps to determine suspended
sand concentrations; therefore the concentration of particles larger than 63 pym was
also summed from the LISST data.

The LISST-derived concentrations of both sands and fines were plotted against
tidal elevation, velocity, wind speed and wind direction (strong winds can cause re-
suspension, and direction can affect the fetch and waves, affecting suspension), shown in
Figure 6.9. Suspension of fine-grained material follows changes in velocity. Water depth
is important as larger concentrations of fine-grained material occur when the water

level is lower due to the thickness of the boundary layer. Velocity is also an important
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Fig. 6.8: Comparison of fines concentration as determined by Niskin bottle sampling and
LISST instrumentation.

factor in controlling sand in suspension, but it appears that the sirocco (south-easterly
wind) helps to maintain sand in suspension when tidal velocities fall. However, on two
occasions high concentrations occurred when the wind direction was variable prior to
becoming southerly; this may be the results of a predominant southerly wind causing
waves, which are more effective at suspending sediment due to a thinner boundary
layer (Figure 6.2A). The southerly winds coincide with maximum current velocities so
the trend is not definitive. A correlation was found between the Niskin suspended fines
concentrations and LISST suspended sand concentrations (Figure 6.10). It appears
that up to ~15 mg 17! of fines in concentration, the proportion of sands to fines
remains at around 57% (£ 5%) sand. Above this concentration, the proportion of
sands increases to an average of 70% (£ 4%). The total correlation is shown in Figure
6.10:

Cs =0.101In(Cy) + 0.367 (6.9)

where C; and C refers to concentrations of sand and fines respectively. The correlation
is reliable only at z =1 m, as fines concentration throughout the water column can be
assumed to be almost linear (above the boundary layer, calculated to be approximately
4 m thick - Amos et al., 2008), whereas sand will be concentrated nearer the bed
(Soulsby, 1997). Therefore the concentration of sand relative to fines changes according
to the position in the water column (z). However, the equation is useful as it provides
a value for C, (Cs at 1 m) to calculate the Rouse profile. The Rouse profile was

used to calculate the concentration of sand in the water column. The value C,/C, is
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Fig. 6.10: Correlation between Niskin-derived fines concentration and LISST-derived sand
concentration.

determined by solving Equation 6.9, and the changing variables of water depth and
velocity taken into account at each point where Cj is known. The method is displayed

in the following steps, with brackets denoting values used in this study:

1. Determine the Rouse parameter (Equation 6.1) for a range of relevant water
depths (h = 14, 12, 10, 8, and 5 m) and relevant U velocities (U =0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.8, and 1 m s™!) for both fines (40 ym) and sands (98 ym).

Fines Conc. ( mg 171) Sands Conc. ( mg171)
14 12 10 8 ) 14 12 10 8 5)
0.1 1055 054 0.52 0.51 047|321 3.13 3.05 294 0.23
021028 0.27 0.26 0.25 2.71|1.60 1.57 1.52 147 1.36

U

Tab. 6.2: Example of Step 1: Determine Rouse number (b)

2. Calculate the Rouse profile at a range of arbitrary suspended fines concentrations
within bounds determined by sediment sampling (1, 5, 10, 15, and 20 mg 17!)
using z values every 0.1 m for the first metre above the seabed and then once

every metre subsequently (1, 2, and 3).

3. Use Equation 6.9 to calculate the percentage of sand as a total and determine

concentration relative to the fines (see table below).
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Fines (mg17) | 1 5 10 15 20
Sands ( mg 171) ‘ 0.58 5.63 14.97 26.73 40.53

4. Apply the Rouse profile to the calculated sand concentrations (as in Step 2) using
the Rouse number for a sand dso (111 gm; the mean grain size of the sand caught

in the sand traps).

5. Produce a regression (y = mz*) of fines and sand for each z value for every water
depth (h) class chosen at Step 1.

6. Produce a regression of m (from previous step) and z for each U and h class.

m = nzP

7. Apply the equation y = ma® (from Step 5), where x is fines concentration, m is
determined by Step 6, and ¢ is as produced by Step 5 to produce the concentration
of sand in suspension at any depth (dependent on U and h).

These steps were used to calculate fines (section 6.2.4.2) so that the concentration of
sand in suspension could be calculated for any ADCP bin as long as the suspended
concentration of fines was known, as well as water depth, depth-averaged velocity and
height above seabed. The final steps summed the suspended concentration of fines and
sand to determine the total sediment in suspension per bin and per profile so that total

sediment export could be calculated.

6.2.5 Suspended Sediment Concentration: Fixed ADCP

To determine sediment transport over a longer time scale than provided by the travers-
ing ADCP, the data calculated from the previous section must be used to calibrate SSC
values derived from the fixed ADCP, which continuously collects data every ten min-

utes from the main channel of Lido Inlet.

The ADCP is fixed at 1 m above the seabed and can sample a vertical column
of water, 13 m in height (although the top 2 bins are bad data in this study). The
data from the fixed ADCP was available as velocity and echo intensity, which could

not be converted into backscatter by WinADCP. The conversion corrects for sound
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absorption, beam spreading, transducer temperature and power (Gordon, 1996). As
the process can be complicated (Deines, 1999), the velocity was used to determine
suspended sediment concentration in conjunction with the application of the Rouse
profile, which was required to determine the SSC in the bottom metre of the water
column where no data was available from the fixed ADCP. Sediment samples were
collected by sand trap in the vicinity of the fixed ADCP at the same height as the
first data bin (Venturini, 2007) but no correlation was found with the suspended sand
concentration and velocity, so no C, could be determined. A number of methods exist
to calculate the sediment concentration (C,) at a reference height (z,) in the absence
of samples (Soulsby, 1997). The formula derived by Smith and McLean (1977) is
recognised to be one of the more accurate methods (Garcia and Parker, 1991; Soulsby,
1997):

0.001567,
= s 1
© 14 0.00247, (6.102)
26.37,T, d
g = 20T 50 (6.10D)

“opg(s—1) 12

where T is a transport parameter (%), Ter 1s threshold shear stress.
Using a dsy of 106 um, which was the mean grain size of the sand traps deployed on the
northern edge of the inlet (see Figure 6.3), and the depth averaged velocity (U) from
the fixed ADCP, C, and z, were calculated using the method of Smith and McLean
(1977). The Rouse profile was then determined with Equation 6.2 at z values (height

above seabed) every 0.1 metre to 0.9 m and every metre from 1 to 13 m.

The results provided very high concentrations when velocity exceeded around
0.4 m s~!'. Therefore, OBS data and Valeport velocity data were compared and a cor-
relation of C, = 32.36InU + 103.4 determined*. The d5, was determined from grain
size analysis of the sand trap data from the site near to the fixed ADCP. A logarithmic
relationship between the height above the seabed and mean grain size was determined
(Figure 6.11), from which, the dso was determined at height z. Between the heights of
the benthic frame (current meter, OBS and LISST; 0.45 m) and the fixed ADCP head
(~1 m), the average dsy of 98 um was assumed. The Rouse profile was recalculated to

produce a transect of sediment concentration throughout the survey period (see Figure

Vilgee section 6.2.5
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Fig. 6.11: Correlation between height above seabed and mean grain size (dsp). Dashed lines
show heights of the fixed ADCP and LISST.

6.23 in the results section). The results were compared with the SSC results from the
traversing ADCP. As the fixed ADCP collects data continuously, these calculations for
the Rouse profile were run again for the entire month of September 2006 to determine

net sand transport.

This method produced sensible results with suspended sediment concentrations
values similar to those produced from the traversing backscatter data, although no cor-
relation was found between the two datasets. Consequently, the suspended sediment
concentrations from the traversing ADCP were compared with meteorological data as
sediment can also be suspended by waves (Figure 6.2B). This was especially impor-
tant as the R? value for velocity against OBS SSC was 0.45, suggesting than another
factor had influenced the results. Three sets of data, ADCP velocity/sand trap, Vale-
port/OBS and U/OBS were initially plotted against tidal elevation, but no significant
correlations emerged. The data was then divided according to the time of collection,
which revealed a significant difference between morning and afternoon samples. The
afternoon samples had a much greater concentration than those collected in the morn-
ing despite being collected under similar velocities. Separate regressions (Figure 6.12)
found that morning samples followed an exponential relationship, with an average R?
of 0.88. Afternoon samples followed logarithmic relationships, with an average R? of
0.56 (reduced due to a bad sand trap correlation). The best fit, with an average R? of
0.83 was between U and OBS SSC, but cannot be applied until the reason why separa-
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tion in the results occurs between morning and afternoon sampling is determined. The
tide was in the last stages of ebb at 12pm before turning at 3pm near the end of the
survey day. Therefore the split is not due to a simple ebb/flood difference. Wind speed
increased in the afternoon but the most significant factor seems to be wind direction,
which changed from NE in the morning to SE in the afternoon (with some variability
between 10am and 1pm). Wind driven velocity has a thinner boundary layer, encour-
aging resuspension of sediments from the bed. The regressions therefore reflect the
shape of the velocity profiles (see Figure 6.2A). The fixed ADCP velocity data was

120 : ; S— 10
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: :
100 ‘I‘
|
/ -8
/
/ f
| /
= s F7 £
Eﬂ 80 ! * / ﬁ ® Ubaram
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Fig. 6.12: Suspended sediment concentration vs velocity. OBS SSC has been correlated with
U from the fixed ADCP (Ubar) and Valeport velocity. Sand trap (ST) data has
been correlated with ADCP velocity. Note that afternoon samples (diamonds)
regressed logarithmically, and morning samples (circles), exponentially.

re-processed to incorporate wind effects using C,) = 0.789 exp* 76U (R?=0.88) for
normal conditions, and C(,) = 23.72In (U) + 11.8, (R*=0.78) for data collected dur-
ing Sirocco events. The results appeared to compare favourably with suspended fines

concentration, despite the OBS being calibrated for total sediment. However, as the
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calibration relied on simple laboratory based methods involving mechanical mixing in
a shallow container and subsampling, the likelihood is that most sands settled before
subsampling could effectively collect them. As the results were comparable to estimates
of the concentration of suspended fines determined by the traversing ADCP, the same

proportional-based method was used to find the concentration of suspended sand for
the fixed ADCP.

6.2.6 Bedload Transport

Although the traversing ADCP cannot provide estimations of bedload transport through
the conversion of backscatter data, it can provide values for U and h needed to solve the
volumetric transport rate (g, Equation 6.4); thus high resolution estimates of bedload
transport can be calculated across the whole profile. As the equation (Equation 6.5)
requires similar variables for the calculation of the Rouse profile, the processing script
used to estimate suspended sediment concentration was altered to provide estimations
for bedload transport in the inlet. The average grain size used in the calculations was
179 pm as indicated by the grain size maps described in Chapter 5. Bedforms were
assumed (as it was observed that the skin friction Shield’s parameter remained below
0.8 when suspended sediment concentrations were calculated - Soulsby, 1997) and es-
timated using the assumptions in Soulsby (1997) that ripple wavelengths are ~1000
grain diameters (A, = 1000d5p) and ripple height is 1/7 of the wavelength (A, = ’\—7’“)
These estimates were used in the calculation of the form-drag component of shear stress
to find the total shear stress (79 = 795 + 7o) for the Shield’s parameter (in Equation
6.4). The processing produced a single image for the three day survey (see results). To
calculate the total bedload transported per hour across the whole profile the transport
rate () was summed across the whole profile and plotted onto a graph. The area

! and multiplied by the average

under the graph was calculated to find ¢, m™* hr~
width of each ping (approximately 1.8 m) to find the total volume transported over
the width of the profile. The total mass transported was calculated by multiplying the

total volume transported by p, (dolomite; 2860 kg m™2).
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6.3 Results

6.3.1 CTD

Over the survey period, water temperature varied only by 0.5 °C over most of the
water column. Only in the top 4 m was there any variation with depth as surface
water temperature harmonized with air temperature. The water was slightly alkali,
remaining between pH 8.3 and 8.4 for the whole survey; there was also little variation
with depth. Water density increased with depth from an average of 21 (ot) in the
surface layers to 23.5 below 4 m. A variation of 3 ot occurred over the survey in both
the surface and bottom layers, reducing during ebb flow and increasing with flood
(Figure 6.13B). The trend is similar for salinity, with an average of 30 PSU at the
surface increasing to an average of 34 PSU at depth. The difference between surface
and deeper waters was more noticeable when current velocities were low. The CTD
also recorded oxygen saturation levels (shown in Figure 6.13A) and showed them to be
super-saturated, in comparison to atmospheric oxygen levels, over most of the survey.
They remained relatively stable (around 118%) on the first two survey days, although
the top 0.5 m of the water column became under-saturated during the 20*®. The data
from the 21%* September showed a super-saturated oxycline (130%) between 2 and 4 m
deep, although oxygen saturation was much lower in water above (minimum of 83%)

and below (average of 104%).

6.3.2 ADCP Backscatter and Velocity

The first day of surveying (19*" September) was conducted over a change in the tide
from ebb to flood. During this time, velocity increased from around 0.4 m s~ to 0.6 m
s~! before decreasing to 0.3 m s~! during slack water (see Figure 6.14). The backscatter
trend follows that of the bottom velocity, which tended to increase and decrease at a
greater rate than surface velocity. The backscatter also followed the bottom velocity
trend on the 20" September although in this case the surface velocity responded to a
greater degree to the changing tide. Velocities were on average, 0.05 m s~ faster than
the previous day, with a peak velocity of 0.8 m s™! (see Figure 6.14). No trends are
recognised on the 215 September as data could only be collected for a few hours in

the morning, resulting in few datapoints. Images of ADCP backscatter and velocity
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Fig. 6.13: CTD profiles of oxygen saturation and salinity during the 19" to 215" September

were arranged to show a transect through time for each day (see Figure 6.15). On
the morning of the 19, the backscatter was relatively low (around 65 dB) with higher
backscatter in the main channel of Lido Inlet, which gradually spread along the bottom
of the whole channel with time. At 11 am (profile 5), backscatter increased to around
80 dB across the whole channel, with just the surface metres remaining below 70 dB.
This area of low backscatter gradually diminished as velocities reached peak speeds,
before returning gradually at 2 pm (profile 15) when velocities dropped around slack
waters. The velocity was faster on the 20", with greater speeds at depth than the
previous day, although the spread across the channel was similar. The backscatter was
also higher, with ‘plumes’ of high backscatter (90 dB) extending from the bottom of
the channel, both in the deepest and shallowest area. The data collected on the 21%*
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shows that velocities fell initially within the main channel also, but generally showed
a similar pattern to the previous survey days with an increase of backscatter from the

bottom of the profile and an increase in velocity.

6.3.3 Suspended Sediment Concentration: Traversing ADCP

There is not a good correlation between ADCP velocity and backscatter (R?=0.2);
however, the general trend is an increase in backscatter with an increase in velocity

1

until flow speeds reach approximately 0.7 m s™. The average backscatter then falls

despite further increases of velocity (see Figure 6.16).

Although data on organic matter was collected from the sand trap samples,
no significant correlations were uncovered between velocity or backscatter, although
organic material appears to have been transported in the bottom of the water column
at lower velocities, and transported in the surface waters at higher velocities. The
median proportion of organics in the samples is 4.8%, and although there are samples
containing up to 90% organics, the lack of any correlation and generally low presence
makes any definitive organics analysis from backscatter difficult. The survey was not
designed to accurately monitor floating organic matter; thus a leaf caught in the traps
will make a large contribution to the proportion of organic matter. It will therefore

be ignored within the processing procedure, although will be further examined in the
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Fig. 6.14: Velocity, ADCP backscatter, and tidal elevation during the 2006 survey. The 215
is not shown due to lack of datapoints.
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Fig. 6.15: Backscatter and velocity on the 19", 20", and 21°¢



Channel Dynamics and Sand Transport
6.3. Results 166

100

. y=-17.33:% + 30.99x + 63.85
35 RI=0.211

Backscatter (dB)

55

50 T T T T

a 0.2 0.4 0.6 0.8 1 1.2 1.4
Velocity m s-1

Fig. 6.16: Correlation between ADCP derived backscatter and velocity.

discussion section.

A positive correlation was found between backscatter and suspended sand con-
centration from the traps, although the significance was low (R? = 0.36 for surface
samples and 0.22 for bottom samples) because low concentrations of sand in suspen-
sion were collected at both high and low backscatter levels, although generally, higher
backscatter correlated with high sand concentration. It was impossible to determine
how the signal was affected by relative proportions of fines and sands as no fine-grained

sediments were collected where the sand traps were deployed by the Litus.

6.3.3.1 Fines Concentration

The first ADCP transect took place in the initial stages of the ebbing tide. From
Figure 6.17A showing suspended fines concentration, it appears that most suspension
occurred as a small plume of between 6 to 14 mg 17! in the deep channel adjacent
to the southern jetty. A second plume of around 12 mg 17! was also present in the
shallowest edge of the profile. As the tide progresses and velocity increases (Figure
6.17B), the plume reduces in height and flattens out so that only the surface 4 metres

has negligible fines concentration (< 6 mg 171).
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By profile 5 (Figure 6.17C), the velocity had increased and fines in suspension
were present over the whole profile reducing from 22-28 mg 1=! at the bed to 6-10 mg 17!
at the surface. The shallow side of the profile (northern edge) has greater concentrations
of suspended fines than over the deeper, main channel due to a large plume extending
from the bed. The water column mixes further as velocity increases; concentrations
reach 30 mg 17! at the bed and 14-18 mg 17! at the surface. A large plume with
concentrations of fines of 22-26 mg 17! covering most of the shallows started to build
by profile 9 (mid ebb-tide; Figure 6.17D). The volume of fines in suspension and the size
of the plume started to decrease as U drops to 0.3 m s~ ! as the tide reached low water.
The survey on the following day (the 21%) sampled during similar tidal conditions
although velocities were higher. The pattern of suspended fines distribution was also
similar to that of the previous day although the volumes involved were slightly smaller
(maximum concentration of suspended fines was 28 mg 17!). The final day of the survey
produced very different profiles as the survey covered slack water conditions prior to
flood-tidal conditions. The first two profiles showed a band of high concentrations of
fines at the surface and a rapid reduction from ~20 mg 1=! at the seabed to ~10 mg
17! 2 m above the seabed. During slack water conditions (covering several profiles),
the concentration of fines in suspension fell to levels seen in the previous two days at
slack water. As the flow started to ebb, a plume of 28 mg 17! of fines emanated from
the deep channel bed. The suspension threshold of fine-grained material appears to

! with the densest plumes appearing at velocities exceeding

be approximately 0.2 m s~
0.55 m s~t. The water column appears fairly well-mixed at velocities of approximately

0.7m s 1.

6.3.3.2 Sand Concentration

There is little sand in suspension until around 9 am (profile 2: Figure 6.19B) when ebb
current velocity increased past the suspension threshold (7..) of sand (approximately
0.3 m s~ 1). Unlike the fine-grained particles, which suspended initially as a plume,
small volumes of sand (9-15 mg 17!) became suspended across the bed of the main
channel. Just prior to peak velocities, sand was suspended in concentrations between
51-57 mg 17! near the seabed, and gradually decreased to between 0-21 mg 17! at the

surface. The suspended sand concentration further increased at peak velocities, to
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Fig. 6.18: Example profile (6 19/09/06 at 12:21 pm GMT) showing estimated suspended
fines, sand and total concentration (mg 17!). Note the fines plume in the shallows
and sand plumes in the deeper channel. Note that the scales differ in each diagram
so plume structure can be seen clearly for the different grains-size distributions.
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over 57 mg 17! at a metre above the seabed; a small plume of 27-33 mg 1=! suspended
sand also extended from the shallow, northern side of the profile. As velocities fell,
concentrations rapidly fell to an average of 9-15 mg 17!, with concentrations falling
more quickly at the deeper, southern edge of the profile; suspended sand concentra-
tions here were between 0-9 mg 17! compared with 15-21 mg 17! along the mid-channel
slope. Sand was already in suspension (9-15 mg 17!) within the deeper waters at the
beginning of the ebb tide on the 20" September. Concentrations rapidly increased as
a plume, so that by profile 23, volumes of sand in suspension were as high as 39 mg
17! 4 m above the seabed, although concentrations were less than half of this (9-15 mg
171 in the shallows. Profiles 25 to 29, taken at peak ebb velocities, showed the highest
sand concentrations for the whole survey, with plumes of around 45 mg 17! extending
8 m from the seabed and an average concentrations of 37 mg 17!, In the final stages
of the ebb tide, concentration levels gradually reduced to approximately 21-33 mg 171,
and 0-21 mg 17! in the shallows. The background concentration on the 21%* was 9-15
mg 171, which rapidly increased to over 57 mg 17! near the seabed. Concentrations
were no greater than 15 mg 17! when velocities reduced during slack tide but increased

again when during the ebb phase.



Channel Dynamics and Sand Transport

6.3. Results

171

‘(roquegdag IET) Py SUIqQe Ue SULIND 19[U] OPI] SSOIOR UOIJRIJUSOUOD pues papuadsng 6779 "SI

UOIRAd[D [€PI} W 8Z°0 LIND ST:1T (P)

7/Bw
fnal 000k S 1S Sk BE €€ L2 kK SE 6 O
yinos [ e aeses——— | fipa|
005 009 004 008 Lpou
A
| 21—
Fol- o
4 1]
j/ Le- &
o o
|m\ Iw\
I 114 L
-
[ E; EE.- A oba. al [ B _-E_
& . | . Lo
uorjeas[e [epry wk y9°0 LIND 94:80 Ao:
7/Bw
fnal 000 /S 1S S B EE /f2 8 SF 6 0 fnal
Lnos [ e ees——— | Yuou

0osg 0048 Qo9e Q0se 00ve

i Y

(w) yidep

uoryess[o [epl} W 9" LIND L0:01 (2)
7/Bw

000k 45 1S SP 68 E€ L2 L2 SL 6 O

fnal
Lnos fnel
0oL oo9 00s oow LtoQ
45
cl-
R - g
.f./f,.,.... ©
7 oy 9- ..@..
_ ....:.._.!. o
I, |2
zf-rlal
-
;.._E EL Y L:,: |
T T o]
TOTYeAdd [RPIY W 640 LIND G0:80 (®)
7/Bw
fnal 000k /S 1S SP 68 85 [2 12 SE 6 O fual
Lynos [ s eese——— | {iou
008 00s

006

0o8 004

(w) yidep



Channel Dynamics and Sand Transport

6.3. Results 172
=O=Sand -e=Fines Tide ==eUbar

40 1
a5 19/09/06 N B 20/09/06 21/09/06 .
5 _ fo—oo 08 3
=i e —=<ol =7 N = | 6 D
E" 20 e / o 2 . . Seo ~ 7 g g
-2 [ 2 . . —_ 9
o Seo P s =? om0 35
2 1; 7 e e e "\‘\ —a = 045%
< 7 g o 02 3

S % b >
0 - T 0

T T T T T T T T T T T
08:00 09:00 10:00 11:00 12:00 13:00 10:00 11:00 12:00 13:00 08:00 09:00 10:00
Time (GMT)

Fig. 6.20: Depth-averaged suspended sediment concentration (sand and fines) in the three
survey days shown with tidal velocity and U. Diagram also in Appendix D.2

Some sand is suspended when velocities are approximately 0.45 m s~!, but

1

transport begins in earnest above velocities of approximately 0.65 m s~ , with plumes 4-

5 m high created. The greatest densities are seen at peak velocities. Sand in suspension

1

starts to settle below 0.5 m s™, and most sand is no longer in suspension at velocities

1

below 0.4 m s~ . Generally, the rate of change was much faster for the sands in

suspension than for the suspended fines in both accelerating and decelerating flows.

6.3.3.3 'Total Concentrations and Comparisons

The mean concentration of fines in the first profile is 5 mg 17!, with little sand present.
As ebb tidal currents accelerate, mean sand concentrations begin to exceed fines con-
centration increasing to 26 mg 17! at peak velocities compared to just 15 mg 17! of
fines. Past this point, the suspended fines start to slowly settle reaching 12 mg 17! at
the end of the survey, with sands in suspension settling out more rapidly, falling to an
average concentration of 11 mg 17! in the last profile. The total dry weight of fines in
suspension across the profile on the 19*", varies from 30 g during slack water to 110 g
during peak velocities (see Appendix D.2); the total mass of sand in the same profile
varies between 4 g to 183 g, equating to between 9,960 kg hr=! transported during
minimum velocities and 298,000 kg hr~! during peak velocities (see Table 6.3). The
second day shows higher velocities and much greater volumes of sediment in suspen-
sion; the peak load is over 35 mg 17! of sand in suspension (average), and just below
20 mg 17! of fines. Up to 527,000 kg of sediment is transported between the hours
of 11 and 12 pm (peak velocity), 77% more than during the hour of peak transport
the previous day. The final day was described by a flood to slack tide and generally
showed less sand (5 mg 17!) than fines (10 mg 17!) in suspension, although the first
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Date  GMT | Sand (kg) Fines (kg) Total (kg) Sand (%) Fines (%) U,

8 9.96x10° 2.44x10* 3.44x10* 29% 1% 0.22
9 1.11x10° 8.86x10*  1.99%x10° 56% 44% 0.54
19th 10 | 2.91x10° 1.85x10° 4.76x10° 61% 39% 0.74
11 | 2.98x10° 1.90x10° 4.88x10° 61% 39% 0.69
12 | 1.72x10°  1.35x10° 3.07x10° 56% 44% 0.54
9 6.73x10*  7.33x10* 1.41x10° 48% 52% 0.49
5th 10 | 2.93x10° 1.84x10° 4.77x10° 61% 39% 0.72
11 | 5.27x10° 2.83x10° 8.09x10° 65% 35% 0.78
12 | 4.22x10°  2.39x10° 6.61x10° 64% 36% 0.68
o1t 8 5.35x10*  7.63x10* 1.30x10° 41% 59% 0.43
9 5.20x10*  6.87x10*  1.21x10° 43% 57% 0.50

Tab. 6.3: Total fines, sand and total sediment transported as suspension per hour. U, is
depth-averaged velocity over an hour. Note that totals represent mass from hour
stated, i.e. sediment transported between 9 and 10 is listed under 9.

and last profiles, taken during higher velocities, showed up to 15 mg 1=! suspended
sand concentration. In total, this represented a maximum of 53,500 kg of sediment
transported through the whole profile per hour. Over the whole survey (11 hours in
total), approximately 3,843,362 kg of sediment was transported as suspension through
the Lido profile, of which 60% was sand.

The values were compared against modeled data from Coraci et al. (2003).

! whereas values

Estimated values of sand export varied between 0 and 100 kg s~
in the present study (in Table D.2) ranged from 0-100 kg s~ (19*%), 10-154 kg s~*
(20™"), and 12-61 kg s~! (21°"). The estimates derived from both studies are variable
in terms of tidal phase, wind strength and direction, but appear to be comparable to
one another (considering 100 kg is approximately 14 mg 1=! assuming that each ADCP
profile covers approximately 7.3 million litres of water'i,

More fine-grained sediment is transported during low velocity conditions than

sand-sized sediment, but as velocity increases the proportion of sand transported as

Viii)
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Fig. 6.21: Change in proportion of suspended sand as a total of the hourly suspended load
against average U per hour.

suspension increases at a logarithmic rate of:
SSCy = 0.397InU), + 0.754 (6.11)

where SSCy is the proportion of sand transported as suspension as a percentage of
the hourly total load, and U}, is the average depth-averaged velocity over an hour. The
critical threshold (U,,) of sand with a Dso of 100um (h = 10 m) is approximately 0.4
m s~! according to Soulsby (1997). This is also the approximate value provided by
the results on page 172. The relationship detailed in Equation 6.11 provides a lower
estimate of U,, (0.15 m s7!) defined as when the proportion of sand increases above

0%. However U is both depth and time averaged over an hour.

6.3.4 Comparison to SediView and Sediment Samples

The same sediment samples and ADCP profiles were processed with SediView soft-
ware™™ by Zaggia and Maurizio (2005). SediView uses raw binary ADCP data and
sediment concentration data to provide estimates of suspended sediment concentration
in profiles. The method behind both solutions to SSC estimates differs, as SediView

incorporates the following algorithms*:

calibration of the ADCP transducer: each transducer has a unique conversion

XRD instrument specific software by DRL Software
*Taken from the SediView website: http://drl.com/svmancont.html- 01/11/07.
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(factory calibrated) from counts to dB that is dependent on temperature. This

factor varies by + 20% of the average; a potential error of 10 dB or 1000%.

beam spreading: normal procedure assumes spherical spreading, which underesti-
mates concentrations in the top bins. SediView corrects the nearfield bins de-

pending on frequency, transducer diameter and configuration settings.

water absorption: water conditions are not assumed to be constant in the water

column, removing errors of around 100%.

sediment attenuation: a top down approach applies a value dependent on sediment

density, speed of sound, kinematic viscosity and temperature.

particle variability: correlated with backscatter, dependent on time and particle

concentration.

Precautions were taken within the method described herein to prevent some of the
error inherent in suspended sediment estimates by ADCP. The echo intensity of each
ping is corrected by WinRiver for sound absorption, beam spreading and transducer

temperature, and speed of sound is a constant calculated by the ADCP.

The SediView profiles (Figure 6.22) are comparable to the concentration of
fines in suspension profiles drawn up by this study. However, the SediView profiles
had smaller bin sizes and no information on the bottom metre of the water column.
Therefore more data on sediment transport was produced within the present study
(having applied the Rouse profile). Furthermore, the data within the present study
was available as the total concentration (and mass) of fines and sand in suspension, as

well as the total concentration and mass of all sediment in suspension.

The low velocity profiles on the 19" are similar, although this study shows
there to be higher concentrations near to the seabed and some values at the surface
not present in the SediView. All of the profiles from this study show slightly higher
estimates of suspended sediment, although at higher velocities, SediView begins to
show much higher concentration estimates near the bed. This is the case for the data
from the 19 and 20", although the first couple of profiles from the final day (21%)
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Fig. 6.22: Comparison between SediView (left) and the technique used in this study (right).
Note that both figures show suspended fines concentration; the profiles determined
by this study also have concentration estimates for the bottom of the water column
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show much higher concentrations than SediView predicts. Overall, the correlation
between the SediView results and the fines SSC from this study is very good, with 63%
of data (points picked from both sets of profiles at the same position where the Niskin

samples were taken) being the same and 92% = one class™

6.3.5 Fixed ADCP: Correlation between SSC and Velocity

Velocity was used to determine estimates of suspended sediment concentrations as
backscatter could not be extracted from the dataset without extensive processing. As
velocity can be used to estimate sediment concentrations, it was tested for applicability.
The SSC estimates using velocity data from the fixed ADCP show sensible results
(comparable with those determined using the traversing ADCP data) with suspended
sediment concentration increasing with faster velocities and wind speeds. Estimates
vary between trace amounts to 16 mg 17! for tidal driven velocity, increasing to 62 mg
171 for wind driven velocity. The profiles show greater concentration of fines towards
the seabed with plumes extending throughout the water column. The profiles also show
a relationship with water depth as SSC plumes extend higher into the water column

when water level is relatively low.

The results from the fixed ADCP were compared with estimates derived from
the traversing ADCP so that a correlation could be determined for more accurate
long term sediment export estimates. The estimates are generally higher than those
determined by backscatter and appear to be most accurate when concentrations are
between 6 and 20 mg 17! with 52% of estimations calculated within 2 mg 17! of the
backscatter estimations. 16% of the total estimations differ by over 20 mg 1=! because
the processing algorithm could not take into account any sediment still in suspension
from previous highs in velocity (half of the SSC estimates calculated during falling
velocities are within 10 mg 17!, compared to 76% during increasing velocities). Also,
SSC has been overestimated during sirocco wind events due to too few data points on
which to base the correlation of wind and SSC. After removing the values most effected

by this problem, estimates were all within 10 mg 17! of backscatter-derived estimates

*IThe SediView profiles available to this study had different colour scales for each day, which were
matched for the study: the class interval for the 19" is every 4 mg 17!, the 20" is every 6 mg 17},
and the 215 is every 3 mg 171
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Fig. 6.23: Suspended sediment using the fixed ADCP. The red dots indicate U. Note the
different scales used in order for comparison with Sediview (Zaggia and Maurizio,

2005).
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Fig. 6.24: Comparison of suspended sediment concentration estimates between the fixed
ADCP (top) and traversing ADCP (bottom). The results are similar but are much
too high at peak velocities and too low when velocity has recently been higher.

and 73% were within 5 mg 171,

Results from the 19" and 20™ of September (Figure 6.23) show similar pat-

terns due to similar tidal and wind patterns, but concentrations were underestimated
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Fig. 6.25: Comparison between velocity derived and backscatter derived suspended fines con-
centration ( mg 171). Note that SSC during Sirocco wind events have been over-
estimated.

when the tide changed from the last stages of flood into slack water and current speeds
reduced as the fines that had remained in suspension from the earlier, stronger flood

currents were not taken into account during processing.

The incorporation of algorithms that estimate the concentration of sediment
remaining in the water column after the velocity had dropped requires considerable
calculation as most estimates of settling velocity assume still water conditions (Soulsby,
1997). Therefore, it is more logical to apply the corrections to the echo intensity
from the fixed ADCP to produce backscatter and process it in a similar way to the
backscatter from the traversing ADCP. Because this conversion is beyond the scope of
the thesis, the data from the fixed ADCP will be used as an indication of long term
patterns rather than a complete calibration producing estimates of total import and

export.

6.3.6 Bedload Estimations

The estimates of bedload showed that most transport occurred in the deep channel at

high velocities, as was evident for sediment in suspension. Transport did not occur
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until U exceeds 0.34 m s—!

, and then the rate of transport increased with velocity. The
maximum volume of sediment transported as bedload was 13.39 x107¢ m? s=! (Table
D.2), equivalent to 878,000 kg hr~' (6.4). Bedload accounted for 8% of the total
transport of sediment over the 11 hours of the survey, sand transported as suspension

accounted for 55%, with suspended fines accounting for the remaining 37% (Table 6.5).
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Fig. 6.26: Bedload transport in the traversing ADCP profile in Lido Inlet, with corresponding
depth averaged velocity.
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Date GMT | average ¢, (m®* m™ s7') kg hr™! | total transport (kg hr)
8 1.53x1074 8.42x 102 3.52x10*
9 2.63x107% 2.36x10* 2.23x10°
19t 10 5.77x1073 5.64x10% 5.32x10°
11 4.72x1073 4.52x10% 5.33x10°
12 2.04x1073 2.56x10% 3.33x10°
9 1.06x1073 7.59x103 1.48x10°
20% 10 5.11x1073 4.70x10% 5.24x10°
11 7.06x1073 6.87x10% 8.78x10°
12 4.75%1073 4.69x10* 7.08x10°
gyt S 3.97x10~* 2.31x103 1.32x10°
9 5.77x10~* 3.21x103 1.24%10°

Tab. 6.4: Average bedload rate per hour, total sediment weight transported as bedload and
total sediment transported as suspension and bedload.

Date ‘ Suspended load ‘ bedload %

sand % | fines %
19 53% 38% 9%
20 58% 35% 8%
21 41% 57% 2%
total 55% 37% 8%

Tab. 6.5: Proportion of each transport mechanism transported on each survey day and over
the whole survey.

6.4 Discussion

Determining the mass of sediment transported in suspension requires many assump-
tions (the estimate is representative of the whole channel; the timespan over which the
estimate was derived is representative of a typical tidal cycle, month, year) and accu-
racy of estimations is often difficult to prove as only a very small part of the total mass
of sediment can be sampled. Sampling sediment accurately from the water column
is subject to error due to small sampling volume (water sampling) or low sampling
efficiencies (sediment trap); also, the samples collected may not be representative of

the water column spatially and temporally (turbulent eddies increasing or decreasing
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concentrations - Street, 2003; seasonal biological growth may alter sediment transport).
This potential error can be addressed by continuous sampling; however manually col-
lecting samples is labour intensive, and using turbidity instrumentation such as an
OBS or a LISST gives only a 2D representation; a single-point measurement over time.
Thus using backscatter from an ADCP can potentially determine long-term suspended
sediment transport across a transect of the channel, as long as the backscatter signal

from the SSC can be distinguished from other signals.

6.4.1 Velocity and Backscatter

An increase in velocity as the ebb tide progressed was reflected by an increase in the
level of backscatter seen on the traversing ADCP profiles. Peak velocities occurred in
the deepest part of the channel when the current direction was homogeneous across
the inlet profile. Velocity profiles showed the ebb current dominating the southern
edge of the channel and spreading across the channel just beneath the surface waters.
The flow changed direction in the deepest part of the channel as a salt wedge of
denser seawater entering the inlet along the seabed with a flood tide. This observation
is representative of usual conditions (peak velocities in the deep channel) as sand
and gravelly-sand are found on the bed along the deeper, southern part of the inlet,
whilst muddy sands are found on the northern, shallower part of Lido Inlet (slower
velocities - see Figure 4.27(b)). The fastest, and most enduring, peak velocities were
seen on the 20" September, and this was reflected in the estimations of sediment
transport; the total mass of sediment transported in the hour of peak velocity was
828 kg, compared to 535 kg on the previous day (Table 6.3). The backscatter was
minimal during low velocities (~0.2 m s7!), although small plumes occurred close to
the seabed from small scale sediment transport. These plumes were present both in
the deeper channel due to increasing velocities (thus exceeding the critical suspension
threshold for sand earlier; 0.4 m s~!), and in the shallow waters along the northern
edge, probably due to turbulence from the boundary layer (calculated to be 4 m) and
waves causing suspension of sediment. The high backscatter seen just below the surface
on the 21% is likely to be floating organic matter, as the water column is well mixed
(as shown by the CTD data in Figure 6.13) so it is unlikely that the backscatter is

due to suspended sediment when lower backscatter is present below. There was also
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visual evidence of increased organic matter seen from the boat. The highest backscatter
emanates in the deeper part of the channel where the tide begins to change; the plume
then reduces in height and spreads across the width of the inlet before increasing in
reflectance from around 71 dB to 80 dB. The change in current direction is responsible
for the initial plume of sediment into the water column, due to increased turbulence
but as the current direction harmonizes across the profile, turbulence decreases and
sediment in suspension settles slightly, reducing the height of the plume. As velocity
increases with the ebb tide an increased volume of sediment is suspended closer to
the inlet bed. Small ‘wisps’ of low reflectivity occur at the surface of the profiles
in areas of peak velocity due to turbulent eddies (Street, 2003). Figure 6.16 shows
that there is not a well defined correlation between backscatter and velocity; however,
charting the minimum, maximum and the difference between these values of backscatter
against velocity shows that the minimum backscatter does increase with velocity. The

L after

maximum backscatter value increases initially with velocity until ~0.5 m s~
which they decrease (see Figure 6.27). This may be indicative of the spatial coherence
of the particles as hypothesized by Merckelbach (2006); with an increase in velocity,
the particles are distributed in the water column in phase with the acoustic wave sent
by the ADCP. Merckelbach (2006) states that increased velocities produce a greater
echo intensity for the concentration of particles in suspension, but there is no mention
of the backscatter reducing after a critical velocity. The grain size distribution did not
change in the dataset of Merckelbach, but within Lido Inlet, just fines are transported
at lower velocities, with sand being transported after the critical suspension threshold

! which is marginally slower than the critical velocity for the reduction

of ~0.4 m s~
in maximum backscatter. It may be the case that suspension of sand into the water
column reduced the spatial coherence of the sediment in suspension, thus reflecting
acoustic waves that were out of phase (producing lower echo intensities). Further
investigation of this phenomenon, using the same method as Merckelbach (2006) is
required to confirm the effect of changing grain size on the coherence of suspended

particles.
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Fig. 6.27: Minimum, maximum and range of backscatter values against velocity.

6.4.2 Suspended Sediment Concentration: Traversing ADCP

The general increase of backscatter to increasing velocities suggest that an increase
in velocity suspended greater volumes of particulate matter into the water column;
however, the contribution between sediments and organics to the backscatter signal
is unclear. The only relationship between organics and velocity appeared to be the
gradual rising of organic matter from the seabed to the surface. Because segregation

proved difficult, the likelihood of organics present will be discussed in this section.

The first method used to determine sand and fines in suspension gave an un-
realistic representation of sand in the water column, although the calibration for fines
appeared sensible. The potential error in using the values determined from the bedload
traps was fairly high as no specific calibration was carried out (instead the average effi-
ciency of the surface trap was used; 4%). The traps were also deployed within the layer
of side-lobe echoes, thus the backscatter to which the concentrations were compared
to, were derived from the last viable bin a metre or more above the traps. Although
some correlation was found (which was used), the accuracy is highly debatable even
if the method was acceptable. The premise of the method was that sand in suspen-
sion was highly unlikely in the surface waters, but as high backscatter readings from

fine-grained material and organics was present, estimates of sand in suspension were
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wrongly inferred. Using a probability scale to determine the accuracy of the estimate

only produced stratification and no comparability to the SediView profiles.

The method was developed on the basis that backscatter is a product of the all
particles in suspension; thus, as it could be assumed that the concentration of fines in
suspension is fairly constant over depth, although close to the bed the concentration
increases (Amos, 2006; pers comm). Therefore the differences in backscatter could
mainly be attributed to the sand in suspension. Consequently, the concentration of
fines in suspension as determined by the Niskin bottle were compared to backscatter
and the resulting regression applied to the backscatter data. The SediView profiles
appeared to show higher concentrations of fines in suspension in the bottom 3 m dur-
ing higher velocities than described by the results from this study. For example, for
profile 25 (Figure 6.22C), SediView estimated concentrations of between 33 to 57 mg
171, compared to estimates of 27 mg 17! by the method outline in this chapter; how-
ever, the concentration of suspended fines in the original water sample was 24 mg 171,
which appears to verify this method. Generally, comparisons with the results from the
SediView software is very good with 63% of the points sampled being the same for both
profiles. Only two profiles looked noticeably different due to organic matter appearing
as high backscatter in the surface waters between 2 and 4 m deep. Samples taken at
the time contained around 60% organic matter and CTD data shows an oxycline at
the same depth, with 103% O, below 4 m, and 128% O, between 2 and 4 m, compared
to a survey average at this depth of ~118%. These high concentrations of oxygen
are indicative of green organic matter. The method converted the high backscatter
reflected off the plants into peaks of suspended fines concentration, whereas the real
concentration was likely to be approximately 10 mg 17! less than estimated. Occasional
peaks of very high fines concentration at the surface in two of the profiles are due to
reflections off boat wakes. It may be possible to remove the signal from both of these
non-sediment related variables through careful averaging, but as this might remove
real data also, the option was removed in preference to correlating any outlying data
with the samples and CTD data. This approach will affect the estimations of total

suspended sediment but has been included in error calculations.

Comparing the Niskin derived suspended fines concentration with LISST de-
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rived suspended fines concentration produced a fairly good correlation (R? = 0.7), so
it is probable that the LISST data for sands in suspension must also be viable. A
problem with the previous method was the double-signal gained from independently
deriving suspended sand, and suspended fines concentrations from the same signal,
therefore it was important to determine proportions of the different grain sizes that
produced the backscatter signal. Both sand and fines in suspension are controlled by
the same variables (velocity, water depth etc.) so a proportional relationship between
the two concentrations is probable. Niskin derived SFC and percentage LISST sand
followed a logarithmic relationship, so that as fines increased, so did the percentage of
sand. The R? was 0.6, but there were no significant outliers to sully the relationship
conclusively. This method took water depth and velocity into account so no correction
for ‘probability’ was required (as for the previous method) and although no SediView
profiles were available for sand, the results looked realistic with sand increasing and
decreasing in concentration at a greater rate than fines. The rate of change between
surface and near bed concentrations was also greater than for the fines, as would be
expected. Most importantly, the actual estimations were reasonable when compared

to the sand trap and water samples.

6.4.3 Suspended Sediment Concentration: Fixed ADCP

Using velocity from the fixed ADCP provided mixed results. The estimates of SSC
were comparable with backscatter derived results when velocity was increasing (and
had been increasing for approximately an hour), whereas SSC was underestimated
when velocity was falling or had been higher previously. This is because the processing
script did not take sediment already in suspension into account. In order to incorporate
settling, the processing script would have to estimate the SSC at peak velocity and then
calculate how much of this sediment would settle out completely in the time between
peak velocity and present velocity. The sediment remaining in suspension would then
have to be added to the SSC estimate calculated for the present velocity speed. This
method would have numerous obstacles not least because settling velocities would not
be the same as those calculated for still water conditions due to turbulent eddies, and
also the grain size is likely to change as larger particles usually have larger settling

velocities; this would affect calculations of the Rouse profile. Changing grain sizes
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(dso) affects the accuracy of this particular study anyway as sediment samples are
only available for ebb velocities. It is likely that the dsq would increase during flood
conditions as the lagoonal fines that are transported with the ebb will not be present

to the same degree.

6.5 Conclusions

The 12 m deep main channel is the most dynamical area of Lido Inlet in terms of tidal
driven current flow, and consequently sediment transport. The tide starts to ebb in the
waters adjacent to the southern jetty before extending across the surface waters (lower
density freshwater) to the rest of the channel. Peak velocities occur in the surface
waters over the deep channel, with speed rapidly falling at both edges of the inlet due
to a combination of increased influences from the seabed/inlet walls and decreased free
stream flow. These results are representative of general conditions as the seabed under
areas of higher velocities are sandy and gravelly (as described in Chapter 5), whereas

finer muddy sands are found in the lower velocity shallows opposite.

Tidal currents during flood conditions enter the inlet along the bottom of
the main channel as seen in ADCP velocity direction profiles and CTD drops. The
backscatter signal from the ADCP is correlated with bottom velocity, as it is bottom

! in order to transport the sand fraction as

velocity that must exceed 7. of 0.14 m s ~
suspension (Dsg = 98 pm). Once this transport is initiated, the proportion of sand-
sized sediment transported every hour increases logarithmically with average velocity
as the water column mixes. The maximum proportion of sand transported as sus-
pension during this survey was 65%, equating to around 539 kg hr™!, an average of
37 mg 17'. During lower velocities (below ~0.4 m s™!), more fine-grained sediment
is transported as suspension, the average concentration being between 6 to 8 mg 17}
(around 100 kg hr~'). The concentration of sand in suspension rapidly increased with
faster velocities; from the point of equilibrium to peak concentrations, supended fines
increased by around 150-170%, whilst suspended sand concentration increased by 330-
400%. Although the first two survey days (19-20*" September) sampled the same tidal

period, and showed similar velocities, the second day saw greater masses of sediment
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being transported (around a third more for the same Uj). The current flow on this
day had more enduring peak velocities allowing little settling, and increased scour
resulting in greater volumes of sediment transported as sediment. This difference in
concentration at the same velocity is partly why the use of velocity for estimates of
SSC, as carried out for the fixed ADCP data, is not accurate.

The proportion method used in this study to define the concentration of sand through-
out the water column appears to be successful, with comparable results to the SediView
method (Land and Bray, 2000). Although the equations used in this study may not
transfer, the method should be applicable to other inlets as long as organic matter does
not make up the majority of suspended matter. The reasoning behind this assump-
tion relies on the theory that sediments of any size are influenced by the same water

conditions albeit in different magnitudes.

*4119/09/06 11:00 am GMT: Uj, = 0.69, total mass of sediment transported 535.12 kg. 20/09/06
12:00 pm GMT: U} = 0.68, total mass of sediment transported 715.87 kg. Page 173.



Sediment Budget and Modelling

7.1 Introduction

A sediment budget provides a quantitative estimate of volumes of sediment entering
and leaving a system (sources and sinks), as well as volumes within active transporta-
tion. The morphological variability and vulnerability of the system can consequently
be quantified and effectively managed with understanding of the budget and how it
changes. Whereas sediment-transport pathways, sinks and sources can readily be iden-
tified, the task of quantifying the sediment exchange accurately is difficult (French,
2001), especially around tidal inlets due to the complex pathways involved'; sediment
transport magnitudes and pathways are convoluted due to bi-directional tidal currents,
wave and current interactions, wave diffraction/refraction, and also engineering activi-
ties (Rosati and Kraus, 1999a). The transport pathway of sand in the northern lagoon
and along the coastline of Venice has been investigated in Chapters 4 and 5, with es-
timates of the volumes of sediment transported through Lido Inlet as suspended load
and bedload discussed in Chapter 6. The results from these chapters will be used
in conjuntion with quantitative volume estimates from the lagoon-wide bathymetry
datasets provided by CNR-ISMAR, to formulate a sediment budget of Venice Lagoon.

http: //www.csc.noaa.gov/beachnourishment /html/geo /budgets.htm
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The aims of this chapter are as follows:

e What is the sediment budget of Venice Lagoon; does it compare with previous

estimates of sediment exchange?

e [s the system in equilibrium; has the balance changed with the large-scale, in-

dustrial changes seen in the last century (canal building, water pumping)?

e What are the future trends in the sediment budget for Venice Lagoon?

7.1.1 Sediment Exchange

The sources, sinks and transport pathways in Venice Lagoon are complex (as shown in
Table 7.1), but must be identified, and balanced in the form (French, 2001):

Volume of sediment in = Volume of sediment stored + Volume of sediment out

although if a system is not in equilibrium then change (erosion or accretion) will occur
until balance is achieved. Rosati and Kraus (1999a) describe this balance in more
detail:

Z Qsource - Z Qsink - AV -+ P — R = Residual (71)

where () is discharge, AV is the net change in volume within a coastal cell, R and P
are the volumes artificially removed and placed into the system. The Residual volume
represents the remaining imbalance of the sediment budget. As the actual volume of

sediment in transport cannot be accurately measured, each value may be expressed as:
Reported Value = Best estimate £ Uncertainty

where uncertainty represents both error and true uncertainty in the volumetric esti-
mate. True uncertainty includes temporal variations, unknown parameters such as
sediment density and grain size, and uncertainty in estimations of the volumes of sed-

iment removed by dredging and sediment disposal (Kraus and Rosati, 1998, 1999).

The Difference Map Method (DMM) has been cited in the literature (Stauble,
1998; Pacheco et al., 2008) as a way to estimate the change in volume (thus volume

added, P, or removed, R, from the sediment budget) between two bathymetry datasets
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Sediment gains' Sediment losses!
longshore transport longshore transport
onshore transport offshore transport
fluvial inputs solution/abrasion
wind transport wind transport
deposition of intertidal /channel sediment erosion of intertidal /channel sediment
artificial gains (beach nourishment) artificial losses (dredging)

Tab. 7.1: Sediment losses and gains in an open tidal inlet system

of different years. The gridded bathymetry of one year is subtracted from that of an-
other (the method used for determining areas of erosion and deposition in Chapter 4).
This method is only suitable for areas where adequate bathymetry is available. Pacheco
et al. (2008) and Rosati and Kraus (1999b) note that estimating changes in tidal deltas
are difficult to assess using this method, as most bathymetric surveys cease at the tidal
inlet. In this case, or if the total volume of a delta is being investigated (requiring
estimates of how the contours would look if no delta was present), an estimate of the
bathymetry must be calculated, thus increasing uncertainty (Pacheco et al., 2008). Er-
ror is also introduced as the boundaries of deltas are indistinct; Stauble (1998) suggests
that the boundary of an ebb-tidal delta can be determined by a return to straight and

parallel contour lines.

Other methods of determining the volume of exported sediment involve direct
measurement of bedload and suspended sediment at all the major conduits into the
system (tidal inlets, rivers etc). Estimates can be determined through the use of optical
(OBS) or acoustic (ADCP) instruments, which measure the concentration of sediment
in suspension; error is introduced with uncertainties in calibration (Downing, 2008).
The use of ADCP to measure the backscatter (and thus the volume of sediment in
transit) across a cross-section of a channel is currently being developed (Reichel and
Nachtnebel, 1994; Land and Bray, 2000; Dinehart and Burau, 2005; Merckelbach, 2006;
Wall et al., 2006); if successful, it can improve both the efficiency and the accuracy of
calculating the export and import of sediment in suspension. The use of ADCP also

provides the variables required (velocity, water depth) to calculate bedload transport
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(see previous chapter) and the possibility of long-term deployment, which ensures that
a wide range of sediment transport conditions are sampled, decreasing estimate error.
These optical or acoustical methods can only produce estimates during the period of
deployment, and thus can only show the present-day sediment budget (due to the in-
strumentation being relatively recent developments). However, it is often possible to
model the sediment exchange within the system (Kern and Westrich, 1997; Cooper
et al., 2001; Ferrarin, 2005), although error can be high due to the extensive list of

uncertainties and assumptions.

Despite the large catalogue of scientific research that has been conducted in and
around Venice Lagoon, there is very little data describing sediment exchange system-

wide. Consorzio Venezia Nuova (1996) estimate that the total sediment loss from

1

the lagoon is 1.1 million m? yr=!, with 400,000 m® yr=! dredge spoil dumped at sea

(although the practice is now to retain this sediment for intertidal flat regeneration

- D’Alpaos, 2007). Consorzio Venezia Nuova (CVN) have also published! estimates

I of sediment moves within the lagoon,

1

stating that approximately 2.2 million m?® yr~
of which 30,000 m?® yr=! enters via the rivers, 70,000 m® yr~! is eroded from the salt
marshes, and 2.1 million m?® yr~! is re-suspended from the bed. Of this, 700,000 m?
yr~! exits the lagoon via the inlets (Figure 7.1). No mention is made of sediment
entering through the tidal inlets as CVN state that sediment supply to the coast has
been reduced from anthropogenic interference to river channels, and jetties defining
the inlets block any “silt, sand and any other solid materials” preventing them from
reaching the lagoon and depositing. Consorzio Venezia Nuova (1996) have estimated
that 300,000 m? yr~! of sediment entered the lagoon through the inlets prior to jetty
construction, with the volume decreasing to less than é of this (50,000 m?®) post-
construction. Tambroni and Seminara (2006b) modelled the total loss of sand from
the lagoon at 58,000 m® yr~!. They suggest that sand actually enters the lagoon during
winter and summer due to sand accumulation at the jetty during bora and sirrocco wind
events (Consorzio Venezia Nuova, 1996). Tambroni and Seminara (2006b) estimate
that 7,800 m® yr=! of sediment leaves the lagoon via Lido Inlet, 43,000 m?® yr—! via
Malamocco, and 9,800 m?yr~! through Chioggia Inlet. Whilst 400,000 m?® yr—! of

3

sediment is estimated to be removed by dredging, 25 million m® was removed between

iiWebsite - www.salve.it (February 29" 2008)
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1965 and 1969 during construction of the Petroli Canal (Ravera, 2000), although it

is unclear whether this volume has been included in the estimates of CVN. There
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Fig. 7.1: Current sediment budget of Venice Lagoon. From Consorzio Venezia Nuova, 2008

is a need for an up-to-date sediment budget for all of Venice Lagoon as data has
tended to be collected from specific sites across the lagoon rather than looking at the
lagoon as a whole system (Day et al., 1998; Albani et al., 1998; Amos et al., 2002;
Helsby, 2006). This should provide a general picture of the balance between the total
volume of sediment eroded and deposited within the canals and intertidal areas (salt
marshes, mudflats) and whether large scale anthropogenic modifications have affected
this balance (dredging, salt marsh restoration - Fletcher and Spencer, 2005). This
final chapter will concatenate data used within previous chapters as well as recent data
published within the literature, including results from the fixed ADCP stations (Zaggia
and Maurizio, 2005).

7.2 Methods

7.2.1 Sediment Budget

The erosional and depositional trends determined from changes in the bathymetry of
Venice Lagoon have been used to estimate the total loss or gain of sediment in the

longterm. The canals are the main conduit for sediment transport, with secondary
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inputs from fluvial sources, intertidal flats and longshore transport. Fluvial input is
negligible since the diversion of the rivers (Albani and Serandrei Barbero, 2001; Mazza-
curati, 1995), but has been estimated to be 33 x 103 kg yr=!, of which 50% is deposited

into the northern region.

Bathymetric datasets from 1930, 1970 and 2000 were used to evaluate the sedi-
ment budget as these are generally considered to be reliable for the whole lagoon. The
1990 dataset is believed to be inaccurate in the northern lagoon and was not used for
this reason (G. Umgiesser, pers. comm.). Venice Lagoon can be partitioned into south-
ern, central and northern basins, which are thought to be hydrodynamically separate
(Solidoro et al., 2004; Cucco and Umgiesser, 2005). As the boundaries of these basins
are debatable, three arbitrary boundaries were defined following lines of latitude or
longitude to the nearest 0.01° (positions in Figure 7.2) to provide a general overview of
sediment exchange in each region, although the final sediment budget will be provided

as a lagoon-wide estimate.

The 1930 bathymetry dataset was subtracted from the 2000 dataset and the re-
sultant data gridded every 0.0005 decimal degrees (i.e. DMM /difference map method).
The aim of the method was to calculate the change in volume between the two years;
therefore, if the change in depth is known, and the total area that experienced this

level of change is known, then it is possible to calculate the total volume that has been
eroded or deposited (Table 7.2).

Change in depth (m) Area affected (m?) Total Volume (m?)
-0.375 X 2.59 x107 = -9.71 x108
-0.625 X 1.51 x107 = -9.43 x10°
TOTAL 4.1 <107 -1.91 x107

Tab. 7.2: Calculating the total volume of sediment eroded by determining the total area
changed by the same value between two years. Example shown is from the central
region 1970-2000.

To calculate the total area subject to change at different depths, the gridded
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Central Basin
128 x10% m?

27 x 108 m?

101 x 108 m?2 Northern Basin

120 x 108 m?
26 x 105 m?
95 x 10° m?

Southern Basin
165 x 108 m?

23x10® m?
141 x 10® m?

Fig. 7.2: The divisions used for sediment budget calculation, and the area of each region
(black), major canals (blue) and intertidal habitat (red). Urbanized islands are not
included in the calculations.

data were imaged with the scale interval representing changes in bathymetry of 25 cm
between 1930 and 2000. To keep the colours perceptible between the scale interval
(with changes of over 10 m in some places, there over 100 intervals in total), the data
were imaged three times. The first image showed changes in bathymetry of less than
4 m (scale shown in Figure 7.3A), the second image showed changes in bathymetry
greater than 4 m but less than 11 m (Figure 7.3B), and the final image showed changes
greater than 11 m (Figure 7.3C). The open-source, graphics editor ‘The Gimp’ was

used to select each colour of the scale using a masking tool. This selected pixels of the

www.gimp.org
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Fig. 7.3: Colour scales and increments used for the sediment budget calculations.

same colour in the whole image, with the in-built histogram revealing the number of
pixels within the mask (i.e. the total area, in pixels, that has experienced change of the
value represented by the colour selected). In order to determine the equivalent, real-
world area that each pixel represented, the distance (in metres) over 0.1 of a decimal

degree (latitude and longitude) was calculated and the number of pixels over the same

real world distance )

distance counted as shown in Figure 7.4 (pixel area = Ane
number of pixels

I 1 km
I 9 pixels

Fig. 7.4: Calculation of the pixel area. The example produces a pixel area of 111 m?

Areas defined as canals (using Bondesan et al., 2004) were painted out using
lilac, a colour not used within the scale (see Figure 7.5), and the mask for each scale
interval reapplied to determine the area of (i.e. number of pixels in) the intertidal
area (the intertidal zone within this chapter is defined as any area not urbanised or a
canal, with the definition including mudflats and salt marshes). The volume and area
of sediment change within the canals was then determined by subtracting the intertidal
count from the total count. The steps were repeated comparing bathymetry from 1930
to 1970 and 1970 to 2000. Using this method, a variety of data was extracted:

area - total area subject to net sediment loss, gain or experiencing relatively no
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Fig. 7.5: Colour mask selection. The canals have been painted over with lilac to ensure that
their pixels are not including in the mask (selecting the colour representing a loss
of 1 m of sediment in the example). The histogram (not shown) reveals 58 pixels
have been selected; each pixel represents 1089 m?, thus the area subject to a loss of
1 m is 63,162 m?; a volume of 63,162 m3.

change (within + 0.25 m; the smallest increment used in the scale and equivalent
to between 4 (1930-2000) to 8 (1970-2000) mm maximum change per year).

volume/area - volume measurements in conjunction with area enabling comparison

between regions, and/or environment.

total volume - total volumes of sediment lost or gained.

7.2.1.1 Error and Assumptions

The Petroli Canal was analysed separately in order to evaluate the error of this method

as a known volume of sediment was dredged during its construction (25 million m? in
total), which finished in 1969, one year before the 1970 dataset was collected. The
sum total of sediment deficit in the Petroli Canal between 1930 and 1970, as calculated
by the described method was also 25 million m?, which suggests that the error in the

technique is low.
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Average subsidence levels are known for Venice Lagoon, but no correction was
applied as the area of subsidence has shifted from around the centre of the lagoon
(due to water extraction) between the ‘20s and ‘70s, to the northern region due to
natural subsidence (Carbognin et al., 2004). No corrections concerning sea-level rise
were required as the bathymetry dataset had already been corrected relative to the
Punta della Salute Datum. Distinguishing a difference between natural erosion and
dredging activities is very difficult without complete dredging records', therefore, no
distinction is made, although possible regions of dredging and artificial accretions are
discussed at the end of the chapter. Difference between the two bathymetry datasets
of less than 25 cm is deemed to be insignificant (in relation to maximum changes of up

to 19 m") and therefore referred to as unchanged.

7.3 Results

The sediment budget as calculated by differences between bathymetric datasets can
only provide net change rather than the gross volume of sediment gained or lost. Thus,
sediment that has accreted during storms in 1947 for example, but has eroded or been
dredged by 1970 will not be accounted for in a net sediment budget of 1930-1970,
although the total volume of sediment lost through dredging of a canal in 1969 would
mostly be included. Although the estimates will be much smaller than gross change,
net change can still provide estimates to the long-term evolution of the lagoon. The

results are shown as:
net change by area:

e [s the area subject to erosion increasing or decreasing?

e [s erosion around the Petroli Canal balanced by deposition in the northern

region?
net volume change:

e Is the volume of sediment eroding per m? increasing or decreasing?

e [s Venice Lagoon balanced in terms of its sediment budget?

Vunable to obtain
v1930-2000
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7.3.1 Sediment Budget: Area

1930-1970

Over 50% of the lagoon experienced no net change between 1930 and 1970, 27% saw net
erosion, and deposition characterised the remaining 22% (see Figures 7.6A and 7.10A).
85% of the canals were subject to change (erosion or deposition), whilst the intertidal
area was stable in comparison (59% experienced no change). However, the total area
of intertidal zone subject to erosion was greater than that subject to deposition (25%
and 16% respectively). This is also evident as the gradual decline in the total area
of salt marsh shown in Figure 3.5. All three regions show similar trends, although
the central region was the most dynamic; 57% experienced change, compared to 43%
of the southern region and 48% of the northern region. The southern region was the
most stable region as 64% experienced no change. Only around 15% of the canals over
the whole lagoon were stable between 1930-1970 and a slightly greater proportion of
the remaining canals suffered infilling in comparison to those losing sediment. This
difference in the total area of canals experiencing net loss and net gain was greatest
in the central region (54% more canals were infilling than eroding) and smallest in the

northern region (within 1%).

‘ Total ‘ Central ‘ South ‘ North
‘ T C I‘ T C I‘ T C I‘ T C I

- 27.1 381 24.6|30.6 342 29.7|242 387 221|272 415 232
+ 21.7 471 16.2|26.3 527 195|184 464 14.3|21.3 422 155
nc 51.2 148 59.2|43.1 13.1 50.7|573 149 63.7|51.5 16.3 61.3

%

Tab. 7.3: Proportion (%) of total lagoonal area (T), canals (C), and intertidal zone (I) subject
to erosion (-), deposition (+) and no change (nc) between 1930 and 1970.

1970-2000

42% of the lagoon was stable between 1970-2000, a third suffered net erosion, whilst
a quarter was depositional (see Figures7.6B 7.10B). There was an equal proportion
of canals experiencing erosion and deposition (39%), although the total area of canal

experiencing no change increased to 21% (from 15% in the period 1930-1970). This in-
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crease was manifested by a decrease in the total area of canals experiencing deposition
(reduced from 47% in the period 1930-1970, to 39% between 1970-2000). Therefore,
the canals were fairly balanced as the area suffering erosion equalled the area expe-
riencing deposition. 47% of the intertidal zone was stable between 1970 and 2000; a
smaller area than that seen in the earlier period (59%) due mainly to the increase in
area experiencing change in the southern region. The proportion of intertidal zone re-
maining stable in the southern region decreased by a third compared with the previous
period to 43.2%, with the extension of areas experiencing net sediment loss increasing
by two thirds on the previous period to 37%. However, 20% saw net sediment gain,
an increase of 39% on the previous period. The increased dynamicism (implied by a
decrease in the total area remaining stable) was also seen in the central region, where
the proportion of intertidal zone eroding was greater (39%), as it was for deposition
(22%). Despite this, the rate of change between the two periods was much smaller in
the central region than in the southern region, as the total area of intertidal zone that
was net eroded increased by 31% and the area of net gain increased by 13% (see Table
7.6). The northern region saw a decrease in the total area of eroding intertidal zone,
reducing by 30% from the first period to 16%. At the same time, the proportion of
intertidal zone that experienced net deposition increased to 24% (an increase of 53%

on the previous period).

‘ Total ‘ Central ‘ South ‘ North
| ¢ 1, T C I T Cc I|] T C I

- 33.1 39.2 31.7|39.8 43.1 38.9|38.0 44.7 36.9|19.3 30.2 16.2
+ 25.0 39.6 21.6|252 36.1 22.1|224 375 199|284 451 237
nc 41.8 21.2 46.7 | 349 20.8 39.0|39.5 17.8 43.2 523 24.7 60.1

%

Tab. 7.4: Proportion (%) of total lagoonal area (T), canals (C), and intertidal zone (I) subject
to erosion (-), deposition (+) and no change (nc) between 1970 and 2000.

1930-2000
The results show that 38% of Venice lagoon was net erosional between 1930 and 2000
(Figure 7.6C). 32% remained unchanged (4 0.25 m), and only 29%"! experienced ac-

Vithe remaining 1% is accounted through rounding errors
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cumulation. Sediment gains are largely within the canals, of which 50% experienced
deposition, compared to only 24% of the intertidal zone. 38.4% of the intertidal zone
and 37.9% of canals were subject to erosion (similar proportions); however, the inter-
tidal zone was more stable with 36.8% showing no change between 1930-2000, compared
to 12.5% of the canals. Only the northern region had a stable intertidal zone; 50%
remained unchanged between 1930 and 2000, and a slightly larger area sustained sed-
iment gain (26%) than loss (24%). The northern region canals largely infilled (50%),
and experienced lower than average (lagoon-wide) losses of sediment (35%). The south-
ern and central regions were much more dynamic than the northern region: 66% and
78% of the regions experienced change (respectively), compared to 58% of the north-
ern region. 47% of the central region experienced erosion, with a slightly larger area
of intertidal zone experiencing loss than the canals did (see Table 7.5), which mainly
(~50%) infilled. The pattern is similar in the southern region, although not to the

same extremes as in the central region.

‘ Total ‘ Central ‘ South ‘ North
‘ T C I‘ T C I‘ T C I‘ T C I

- 38.3 379 3841449 389 46.5 419 40.2 422264 349 24.0
+ 29.3 495 24.8|33.6 50.7 29.1|245 476 20.7|31.5 50.1 26.5
nc 32.3 125 36.8|21.5 105 244 |33.6 122 37.1]42.1 150 495

%

Tab. 7.5: Proportion (%) of total lagoonal area (T), canals (C), and intertidal zone (I) subject
to erosion (-), deposition (+) and no change (nc) between 1930 and 2000.

% ‘ Total ‘ Central ‘ South ‘ North
0

‘ T C 1 ‘ T C | ‘ T C | ‘ T C 1
- 22 3 29 30 26 31 57 16 67 -29 -27 -30
+ 15  -16 33 -4 -31 13 22 -19 39 33 7 53
nc -18 43 21| -19 59 -23| -31 19 -32 2 52 -2

Tab. 7.6: Change in total area of total lagoonal area (T), canals (C), and intertidal zone (I)
subject to erosion (-), deposition (4), or experiencing no change (nc), between 1930
to 1970 and 1970 to 2000.
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Fig. 7.6: Percentage of areas within Venice Lagoon experiencing erosion, deposition, or no

change.
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7.3.1.1 Summary - Intertidal Zone

The intertidal zone shows evidence of increased changes in time. Over half of the
intertidal area experienced no net change (£ 0.25 m) between 1930 and 1970. However,
between 1970 and 2000, intertidal areas were increasingly becoming subject to erosion
in the central and southern regions. Only the northern region has retained a similar
area of unchanged intertidal zone (see Figure 7.7). Almost 50% of the central region
was net erosional between 1930 and 2000, compared to under 25% in the northern
region. However, a greater proportion of the central region experienced net deposition
than the north (and south), suggesting that it was the most dynamic region of Venice
Lagoon (Figure 7.8). All three regions have seen an increase in the total intertidal area
subject to deposition between 1930-1970 to 1970-2000. Despite this, a concurrent and
larger increase in the intertidal area subject to sediment loss results in a increasingly
erosional intertidal zone in the southern and central regions. A decrease in the intertidal
area experiencing erosion in the northern region effectuates the only net depositional

intertidal zone in the lagoon (see Figure 7.6).

7.3.1.2 Summary - Canals

The canals are much more dynamic than the intertidal area; only 12.5% maintained
stability between 1930 and 2000. Almost 50% of lagoonal canals experienced depo-
sition, whilst 38% deepened. The northern region canals were the most stable (15%

remaining stable), and had the smallest proportion of eroding canals.

Between 1930 and 1970, most canals were depositional, especially in the central
region (52.7%), although the northern region had an equal proportion of canals eroding
and depositing (42%). Between 1970 and 2000, the canals followed a similar pattern to
the intertidal zone; the total area of eroding canals in the central and southern regions
increased to over 40%, whereas the area of infilling canals in the same regions decreased
to below 40%. In contrast, the northern canals became depositional in place of those
which were net erosional. Between 1990 and 2000, the proportion of infilling canals
had fallen to ~25%:; however, the central region canals stablized with the proportion

of eroding canals returning to 1930-1970 levels.
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7.3.2 Sediment Budget: Annual Volumetric Changes

In order to present the data in context, the average rates of erosion and deposition are
presented as volume change per area experiencing erosion/deposition, rather than per
total area, which may ‘dilute’ the results (see Figure 7.11). Thus, the rates shown are

representative unless otherwise stated.

m-1m

- o

Fig. 7.11: The average loss within erosional areas would be -1 m (representative), whereas if
averaged over the whole area, the result would be 0.04 m, which does not provide
a good indication of the average erosion rate.

1930-1970

During 1930 to 1970, the areas of the lagoon experiencing net erosion lost an average
of 2.79 cm?® per cm? (hereafter noted as just cm), whilst areas of net accretion gained
3.21 cm yr~! (see Table 7.7). However, as a greater area of the lagoon suffered erosion,

the lagoon as a whole, experienced a net loss of 0.05 cm yr~!. Erosion of the central

1 1

region was greater than the other regions (-3.17 cm yr—', compared to -2.76 cm yr—

1

in the southern region and -2.36 cm yr~! in the northern region). Deposition was also

greater in comparison (3.3 cm yr~! compared to ~3.15 cm yr~! in the other regions),

although as an average over each region, the central and southern regions lost around

! whereas the northern region gained 0.03 cm yr—*.

1

0.1 cm yr— Canals deepened by

an average of 5.99 cm yr~" over the lagoon and infilled at an average rate of 4.67 cm

yr~!. The area of infilling canals exceeded those eroding; however, the higher rate of

erosion resulted in the canals deepening by an average of 0.1 cm yr—1.

The erosional sections of the canals in the central region deepened by an aver-

1

age of 8.57 cm yr—!; the infilling sections gained 4.83 cm yr—!, resulting in the canals
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deepening by a average, net rate of 0.38 cm yr~—! (the greatest loss in the lagoon). The
canals in the southern region deepened by a net average of 0.24 cm yr—!, resulting from

1in the erosional canal sections and a net gain of 4.73 cm yr—! in

net loss of 6.3 cm yr—
the sections that have accreted. The northern region canals experienced net infilling
of 0.33 cm yr~! due to a much lower rate of erosion (-3.69 cm yr=!, 57% less than the
erosion rate in the adjacent central region), and a slightly smaller depositional rate

(4.41 cm yr—1).

The depositional regions of the intertidal flats experienced a 2.28 cm yr—! gain,
compared to a average loss of 1.71 cm yr—! from the erosional parts. However, as a 50%
larger area experienced erosion over deposition, the intertidal zone across the whole
lagoon experienced net erosion of -0.05 cm yr—!. The central region intertidal zone was

1

the most stable, with a net loss of 0.03 cm yr~", compared to a net loss of 0.06 cm

yr~! experienced in the rest of the lagoon. The erosional areas here experienced the
smallest rate of loss (-1.58 cm yr™!), compared to the southern region (-1.83 cm yr—)
and the northern region (-1.7 cm yr~'). The southern intertidal zone experienced the
greatest rate of deposition, gaining 2.41 cm yr~!, compared to the central region (2.24
cm yr—!) and the northern region (2.14 ¢cm yr—!). In all cases, net erosion occurred
over a larger area of intertidal zone, than net deposition, resulting in net losses despite

a larger rate of deposition in all three regions.

cm | Total | Central | South | North
YW T ¢ I | T ¢ I | T ¢ I | T ¢ I
- ‘ -2.79 -599 -1.71| -3.17 -857 -1.58| -2.76 -6.30 -1.83 | -2.36 -3.69 -1.70

3.21 467 228 | 330 483 224 317 473 241 | 3.13 441 214
-0.10  -0.38 -0.03 | -0.09 -0.24 -0.06 | 0.03 0.33 -0.06

Tab. 7.7: Annual rate of change in total lagoonal area (T), canals (C), and intertidal zone (I)
subject to erosion (-), deposition (4) and net change (nc) between 1930 and 1970.

1970-2000
The period 1970-2000 saw a 5% increase in the rate of sediment loss from the eroding
areas of the lagoon to 2.92 cm yr~!, and a 9% increase in sediment gain in the deposi-

tional areas to 3.5 cm yr—!. However, there was a 44% increase in the area subject to
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erosion resulting in a net loss of 0.05 cm yr—!; the same rate as in the earlier period.
The rate of accretion in depositional areas in all three regions exceeded the rate of
erosion. The central region continued to have the greatest rate of change in areas of
erosion (-3.03 cm yr—!) and deposition (3.3 cm yr~'). The relative rate of deposition (in
comparison to the rate of erosion) has increased from 1930-1970 due to a 5% decrease
in the erosion rate, and a 17% increase in the deposition rate. Despite this, there was

L over the whole region. The southern region lost an

an average loss of 0.23 cm yr~
average of 0.37 cm yr~! due to a high rate of sediment loss in its eroding areas (-2.92
cm yr~') and the lowest rate of deposition in the lagoon (3.3 cm yr—!).

The average net accretion in the northern region increased by 1368% from 0.03
to 0.44 cm yr~!, due to the low sediment loss rate in the eroding areas (2.7 cm yr—1)
and fairly high accretion rate (3.38 cm yr—!). The average infill in accreting areas of
the canals (lagoon-wide) remained similar to that in the first period, although average
erosion in the canals fell by 6% to -5.65 cm yr—!. However, the total area subject to
erosion in the canals increased by 10%; the total area subject to infilling fell by 10%,

1

resulting in a net loss of 0.37 cm yr~ in the canals. The rate of erosion in the central

region decreased by 27% to -6.23 cm yr~!, with a corresponding 8% increase in the

deposition rate to 5.22 cm yr—1.

Despite this, the average net change in the central
canals increased from -0.38 to -0.79 cm yr~!, due to a 32% increase in the extent of net
erosion. The southern region has also experienced an increase in the average loss (down
t0 -0.92 cm yr1), similar to the central region. The net gain within the canals of the
northern region has increased by 84% to 0.61 cm yr—!, although the rates of change in
the eroding canal sections are similar to the rates of accretion in depositing sections
(-4.38 and 4.28 cm yr~! respectively). Unlike the other regions, a larger proportion
of canals in the northern region are depositional rather than erosional, explaining the

large net gain.

The lagoonal intertidal zone experienced an increase in the average area subject
to erosion (up 25% to -2.13 cm yr~!) and deposition (up 31% to 2.99 cm yr—'). As the
depositing areas enlarged at a greater rate than the eroding areas (33% compared to
27%), the net average change across the intertidal zone was +0.02 cm yr—!. In contrast
to the pattern of change within the canals, the rate of change has intensified in the

intertidal zone. The southern intertidal zone has the greatest rate of erosion (-2.31 cm
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yr1, up 26% on the first period), and the smallest rate of deposition (2.89 cm yr—?,
an increase of 20% on the first period), resulting in a net change of -0.28 cm yr~!. The
depositional intertidal areas in the central region have the greatest rate of sediment
gain of all three regions (3.21 cm yr~!), and an erosion rate of 2 cm yr—!, resulting in
a net loss of -0.07 cm yr~!. The northern intertidal region achieved a net gain of 0.39
cm yr~! (from being net erosional), due to a relatively low average rate of sediment
loss (1.82 cm yr~!) and a complementary increase of 53% in the extent of areas of net

deposition and 30% decrease in the extent of net erosion.

cm | Total | Central | South | North
—1
YW T ¢ I | T ¢ I | T ¢ I | T ¢ I

- ‘—2.92 -5.65 -2.13 | -3.03 -6.23 -2.00 | -2.92 -594 -2.31 | -270 -4.38 -1.82

+ 3.50 469 299 386 5.22 321 | 3.30 464 289 | 338 428 290
nc -0.23  -0.79 -0.07 | -0.37 -0.92 -0.28 | 044 0.61  0.39

Tab. 7.8: Annual rate of change in total lagoonal area (T), canals (C), and intertidal zone (I)
subject to erosion (-), deposition (4) and net change (nc) between 1970 and 2000.

1930-2000

Between 1930 and 2000, the erosional areas of the lagoon lost an average of 1.5 cm yr—!
of sediment per year, with area of deposition gaining an average of 1.7 cm yr—!. This
equates to an average annual loss of 0.06 cm over the whole lagoon; an average loss over
the 70 years of 4.06 cm*l. The rate of change was the greatest in the central region,
where erosional areas lost 1.71 cm yr~—! on average, and depositional areas gained 1.83
cm yr—!. The depositional areas in the south and northern regions both gained ~1.6
cm yr—!, however, loss in the erosional areas of the southern region was 16% greater

than in the northern region.

The greatest rates of change occurred in the canals; the erosional areas lost an
average of 3.7 cm yr~! with the depositional sections gaining an average of 2.52 cm
yr~!. This equates to an average loss in the canals of 0.16 cm yr—!. The central region

once again, saw the greatest rate of change; canals suffering net erosion lost 4.65 cm

vilpote that this does not include data for urbanized islands or the barrier islands.
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yr~ !, whilst infilling canals gained an average of 2.68 cm yr—!.

1

A similar degree of

! respectively).

change was seen in the southern region (-4 cm yr—' and 2.57 cm yr~
The northern region canals experienced an inversion of this trend with higher rates of
deposition (2.32 cm yr~!) than erosion (-2.27 cm yr~'). Consequently, the southern
region canals deepened by an average of 0.21 cm yr—!, while the central region canals
deepened by 0.15 cm yr—!; the northern region canals infilled by an average of 0.19 cm

yr~! over the whole network.

The intertidal areas were relatively stable over the whole lagoon with an aver-

1'in the erosional parts and an average gain of 1.34 cm yr—!

age loss of 1.02 cm yr~
in the depositional areas. The larger expanse of eroded intertidal flats resulted in an
average loss of -0.04 cm yr~! despite the depositional flats experiencing a greater rate
of change than those that have eroded. The southern region intertidal zone showed
the greatest rate of erosion on average (-0.18 cm yr~!) as the accreting flats gained less
than those in the other regions (1.27 cm yr~'), whilst the erosional areas lost 1.05 cm
yr~t. Although the central region intertidal zone lost sediment at a similar rate (-1.06
cm yr— 1), its intertidal depositional-rate was much higher (1.44 cm yr~!), resulting in
an average annual loss of 0.07 cm. The northern region intertidal zone gained sediment
at a comparable rate in its accreting parts as the southern region; however, the eroded
parts lost, on average, 19% less than the other two regions (-0.85 cm yr~!) resulting in

a net annual gain of 0.14 cm.

Overall, the lagoon as a whole has remained constant in volume, with an overall
loss of 0.05 cm yr~! between 1930 to 1970 and 1970 to 2000 despite many changes in

the rates of erosion and deposition in the canals and intertidal zone.

7.3.2.1 Summary - Canals

The amount of sediment loss in the eroding areas has decreased between 1930-1970
and 1970-2000, although the rate of sediment gain in depositing areas has remained
fairly constant. A relative increase in the total area subject to erosion has resulted in

a net average loss of -0.16 cm yr~! between 1930 and 2000, with the rate increasing



Sediment Budget and Modelling

7.8. Results

214

Net change (cm)
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Fig. 7.12: Volume of net erosion (>0.25 m), no change (-0.25 to 0.25 m), and net deposition
(>0.25 m) in (a) 1930 to 1970, (b) 1970 and 2000, and (c) 1930 and 2000. Note
that values for erosion have been plotted in the positive to facilitate comparison
with values of deposition; net change values remain either positive or negative.
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cm | Total | Central | South | North

—1
YT C I | T C I | T C I | T C I

-1.71  -4.65 -1.06
1.83 268 144
-0.15 -0.45 -0.07

-1.45 -4.00 -1.05
1.62 257 1.27
-0.21  -0.38 -0.18

-1.25  -2.27  -0.85
1.64 232 1.30
0.19 037 0.14

+ 1.70 252 134

- -1.50  -3.70 -1.02
nc

Tab. 7.9: Annual rate of change in total lagoonal area (T), canals (C), and intertidal zone (I)
subject to erosion (-), deposition (4) and net change (nc) between 1930 and 2000.

substantially in the second period (see Table 7.11). Only in the northern region, have
the canals shown net accretion (0.37 cm yr~') between 1930 and 2000, whereas the

central region has shown the largest net loss (-0.45 cm yr—1).

7.3.2.2 Summary - Intertidal Zone

The intertidal zone has changed from being a sediment exporter (-0.05 cm yr~') be-
tween 1930 and 1970, to a sediment importer (0.02 cm yr~') between 1970 and 2000.
However, the rate of import in 1970-2000 has not yet exceeded the rate of export in
1930-1970 and so it remains a net exporter (-0.04 cm yr—!) between 1930 and 2000
(see Table 7.11). Both the southern and central regions have seen a large increase in
the rate of loss from the intertidal zone (362% and 129% respectively), with a total

I seen respectively between 1930 and 2000. Only

loss of -0.18 cm yr—! -0.07 cm yr~
the northern region has experienced a change from net loss to net accretion, with an

overall gain of 0.14 cm yr—! between 1930 and 2000.

7.3.2.3 'Total Volume Changes

Between 1930 and 1970, Venice Lagoon exported a net total of 241,000 m?® yr=! of

sediment of which 74% came from the intertidal zone. The canals were balanced, im-

1

porting and exporting 1.6 x 10 m?® yr~!. In comparison, net accreting areas in the

! and eroding areas exported 1.4 x 10° m?

intertidal zone imported 1.2 x 10% m? yr—
yr~t. Therefore, even though the canals transported greater volumes of sediment, the
intertidal zone largely controlled the net sediment budget during this time period (see

Table 7.10).
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Between 1970 and 2000, the net annual loss of sediment increased as the lagoon
lost 373,000 m® yr ~'. The amount of sediment eroded and deposited also increased
with ~900,000 m? yr~! extra sediment eroded from erosional areas, and 765,000 m?
yr~! extra sediment deposited on depositional areas, when compared to the previous
period (1930-1970). Whilst areas of net erosion within the canals exported an extra
62,000 m? yr ~! from 1930-1970 to 1970-2000, the depositing areas imported 155,000
m? yr ! less in 1970-2000 than in 1930-1970, resulting in greater contribution to
net lagoonal export by the canals (Table 7.11 and Figure 7.13). Greater volumes of
sediment were exported (2.3 x 10° m® yr=!) from eroding intertidal flats and imported
(2.2 x 10% m® yr=!) from accreting intertidal flats in 1970-2000. This balance in the
sediment exchange resulted in a net export of only 91,000 m? yr~! from the intertidal

zone (Table 7.11).

° 4 . 0 T
Q .| e ° 9 1930-70 1970-00
=% 3 Tg=—= --¢--Export Total = -50
-9 P \
- 2 ot e ® | --¢-ExportCanal 100 o
£ 1 1@~ ¢ | --*-Exportintertidal ? \/
) = -150
5 0 -@- Import Total o ./\
5 (73
5 -®- Import Canal 5 -200
o -1 3 = \
3 , 33'-'-'-‘--.:_-,-.-_ ______ - -®- Import Intertidal _E -250 LN
e . -# Net Total Z 300 \
BT -#- Net Canal \
-4 e -#- Net Intertidal -330 a
1930-70 1970-00 1930-00 -400

Fig. 7.13: Net export and import of sediment.

7.3.2.4 Summary

The following tables show the difference in sediment exchange between 1930 to 1970,
and 1970 and 2000, as a total (Table 7.10), and within the canals and intertidal zone
(Table 7.11). Changes in the total area result from differences in the coverage of data
between 1930 and 2000.
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Variable Exchange Total
1930-70 1970-00 1930-00
erosion -124,050,439 -119,968,283 -166,612,821
volume [m?] accretion 114,420,363 108,776,665 144,565,554
sum -9,630,076 -11,191,617 -22,047,267
erosion -3,101,261 -3,998,942 -2,380,183
volume [m? yr—!] accretion 2,860,509 3,625,889 2,065,222
net change -240,752 -373,054 -314,961
erosion -30.46 (-1.12) -28.36 (-0.88) -39.77 (-1.05)
av. cm (m) accretion 28.28 (1.28) 26.77 (1.05) 35.71 (-1.19)
change -2.18 (0.17) -1.59 (0.17) -4.06 (0.14)
1 erosion -0.76 (-2.79) -0.95 (-2.92) -0.57 (-1.5)
av. cm yr .

(em yr-1) accretion 0.71 (3.21) 0.89 (3.5) 0.51 (1.70)
change -0.05 (0.42) -0.05 (0.58) -0.06 (0.2)
sum 411,141,904 413,190,748 413,270,762
area [m?] erosion 111,236,468 136,836,202 158,366,954
accretion 89,227,500 103,486,232 121,271,544
no change 210,677,936 172,868,314 133,632,274
erosion 27.06% 33.12% 38.31%
area % accretion 21.70% 25.05% 29.34%
no change 51.24% 41.84% 32.3%

Tab. 7.10: Summary results comparing total changes between 1930-1970, 1970-2000, and
1930-2000. Data outside parentheses is an average of the total area, data within

parentheses is an average of just erosional or accretional areas.
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7.4 Discussion

Quantitative comparisons of bathymetry datasets (the difference map method - DMM)

have been used to provide estimates to the terms of the sediment budget:

Z Qsource - Z Qsink — AV + P — R = Residual

The method has determined the net volume of sediment eroded (> Qsource + R), and
the net volume of sediment accreted (D Qgink + P). Distinguishing the natural (Q)) and
anthropogenic terms (R and P) is complicated but will be discussed qualitatively within
this section. The final term, AV (net change in volume) cannot be determined through
DMM, thus is also discussed in terms of direct-measurements determined within this
thesis and within the literature (Zaggia and Maurizio, 2005; Ferrarin, 2005; Sfriso et al.,
2005a; Fontolan et al., 2007; Tambroni and Seminara, 2006b).

7.4.1 Venice Lagoon in Periods of Exploitation and Remediation

The period between 1930-1970 was part of the industrial revolution of Venice; the petro-
chemical /chemical industrial sector at Mestre/Marghera (Figure 3.1) expanded rapidly,
with groundwater extracted underneath Venice in order to provide enough water for its
use (Consorzio Venezia Nuova, 1996). To allow for passage of tankers to the port, the
15 m-deep Petroli Canal was constructed between 1965 to 1969 (Ravera, 2000) from
Malamocco Inlet to Marghera Port. The industrial sector and the Petroli Canal have
both affected the central region (causing subsidence due to groundwater extraction
and erosion from ship-generated waves), although the hydrodynamics of the whole
lagoon had been altered at the beginning of the 20" century due to construction of
jetties at all three inlets, which resulted in changed circulation and sediment dynamics
(Seminara et al., 2005; Di Silvio, 2005). The extreme high water in 1966 enlightened the
authorities to the potential impact of continued anthropogenic exploitation and climate
change (Fletcher and Spencer, 2005), and thus the period 1970-2000 encompasses a time
when remedial measures were undertaken with a view to sediment retention, especially

in the salt marshes and mudflats. These remedial measures include:

e Cessation of groundwater pumping in the early ‘70s (Fletcher and Spencer, 2005);
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e Control of pollutants (dredging of polluted sediments, securing dumps abandoned
in the ‘70s). Increased nutrients in the water column caused macro-algal blooms
(predominantly Ulva rigida) in the ‘70s and ‘80s, reducing the light attenuation
in the lagoon and resulting in the reduction of eel-grass beds (bioindicator of
unpolluted habitat under the European Water Framework Directive - Krause-
Jensen et al., 2005). Eel-grass helps reduce resuspension of sediment, thus in its

absence erosion of sediment increases (Bettinetti et al., 1996);

e Restoration and protection of salt marshes (dredge spoil recycled into artificial
marshes and mudflats, pilings installed to protect existing marshes"') (Consorzio
Venezia Nuova, 1996, 1997).

The effects of some of these remedial measures will have been encompassed within the

results as they have changed the elevation of the seabed.

7.4.2 Alterations in the Sediment Budget: 1930-1970 to 1970-2000

The lagoon has become more dynamic, with 22% more of the lagoon accreting or
eroding during 1970-2000 than during 1930-1970. This is largely due to anthropogenic
intervention; the construction of the Petroli Canal has caused widespread erosion in
the surrounding saltmarshes due to wave action from heavy shipping traffic (Venice
Institute of Science, Letters and Arts, 2008™) with the resultant suspended sediment
depositing in the surrounding canals (Ravera, 2000), including the Petroli Canal. The
same effect can be seen around the canal leading from Chioggia Inlet, although the
erosional ‘aura’ has not extended as far as with the Petroli Canal (Bettinetti et al.,
1996). Further, artificial salt-marsh regeneration has occurred in and around the edges
of the lagoon (Scarton et al., 2000; Deheyn and Shaffer, 2007), appearing as accretion
in the DMM maps, where it had previously been relatively stable or erosional. Some
of this accretion is due to plantation of trees and shrubs, which act as a buffer between
land-derived pollutants' (fertilizers) and the lagoonal waters; their roots increase
shear strength of the sediment bed, and pollutants are trapped within this buffer rather
than entering the lagoon. Pilings have been laid elsewhere in the lagoon to prevent

further loss of sediments; in total, Consorzio Venezia Nuova'll state that 12 km? of

viii
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intertidal zone has been reconstructed, along with the implantation of 30 km of pilings

to reinforce existing salt marshes.

7.4.2.1 Intertidal Zone

32% of the intertidal zone eroded between 1970-2000 (a 28% increase on the period
1930-1970), whilst 22% accreted (a 34% increase on the previous period). As the rate
of deposition increased more than the rate of erosion, the intertidal zone accreted 0.02
cm yr—! during 1970-2000 (changing from a -0.05 cm yr~! loss). This is principally
due to the lagoon-edge, salt-marsh regeneration (both natural and artificial) previously
described, and the combination of a high accretion rate and low erosion rate in the

northern region.

Most of the intertidal area surrounding the Petroli Canal is subject to net
sediment erosion (~80 km?), as is the smaller intertidal zone surrounding the Chioggia
Inlet canal system (~24 km?) and between Venice and Burano. This erosion can be

largely attributed to anthropogenic activities such as:

e waves generated by boat traffic (especially tankers in the Petroli Canal), under-

mining root systems in the intertidal zone, causing bank collapse;

e dredging of canals, which reduces the wave buffer zone, allowing the full impact

to hit the mudflats and salt marshes (causing slumping);

e dredging for clams in the intertidal zone, which reduces cohesive strength as well
as resuspending sediment. It also disrupts the surface biofilm further decreasing

cohesive strength;

e increased efficiency of channels (such as Malamocco Inlet, Petroli Canal) can
change circulation patterns, flooding the tidal flats with water and increasing
salinities. The niche that salt marsh plants thrive in is thus altered causing the

plants die, reducing soil stability and increasing resuspension (Weinstein, 1996).

A larger area of the intertidal northern region was stable during 1970 and 2000 than
during 1930 to 1970. However, the canals and the intertidal zone adjacent to the

canals, have infilled except for the area between Palude della Centrega and of Palude
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Fig. 7.14: Erosion between the salt marshes of Palude del Vigno and Palude della Centrega
between 1970-2000.

del Vigno (Figure 7.14), which has experienced net erosion. Suspended sediment from
these intertidal areas may be entering the nearby San Felice Canal, which has changed
from being net erosional between 1930 and 1970, to becoming net depositional between
1970 and 2000. Suspended sediment concentrations have increased greatly since the
'90s (Sfriso et al., 2005a), due to an almost complete disappearance of the macroal-
gae (Ulva rigida), that previously bloomed in the lagoon (Sfriso et al., 2005b). The
clam Tapes philippinarum, introduced in 1983 (Venice Institute of Science, Letters and
Arts®) quickly colonized areas not inhabited by macroalgae or seagrasses, and subse-
quent harvesting of these clams by mechanical dredges has caused a increase in the
amount of suspended sediment by one order of magnitude (Sfriso et al., 2005a). This
suspended sediment is not exported out of the lagoon quickly, as residence times av-

erage 30 days in the lagoon (Fletcher and Spencer, 2005), which allowing it time to
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settle. Furthermore, the surface biological layer in the northern region is still present,
unlike in the other two regions, which are almost free of macrophyte biomass (Sfriso
et al., 2001). Macrophytes attenuate waves, which reduces shear stress and enhances
the rate of sediment deposition; the roots also stabilize the bed reducing the rate of

resuspension (Cappucci et al., 2004).

Intertidal deposition in the northern lagoon occurred during 1970-2000 whilst
other regions have eroded. Whilst reduction of boat-generated waves has occurred
since implementation of speed limits in 2002 (Zanatta et al., 2005); the effects are
too recent to be seen within the available lagoon-wide bathymetry. However, wind-
generated waves have been affected by the reduced frequency and velocities of Bora
winds due to climate change (Pirazzoli and Tomasin, 1999). Bora winds are caused
by polar air invasion in eastern Europe; cold air is steered around the Alps and wind
is formed due to temperature gradients as the air reaches the warmer Mediterranean
Sea. Reduced frequencies of polar air invasions into eastern Europe has had a knock-on
effect on the creation of Bora winds (Pirazzoli and Tomasin, 1999). When Bora winds
occur, water is ‘pushed’ towards the southern region, causing water levels to decrease
by approximately 30 cm in the northern region (Umgiesser, 1997). The northern re-
gion is also relatively sheltered from bora-generated waves as the fetch is short. Higher
waves are produced in the southern region due to the large fetch over the whole lagoon
(Umgiesser, 1997). As Bora events are becoming increasingly infrequent, the level of
erosion is decreasing in the northern region. If this was the only reason to why depo-
sition is occurring in the northern region then less erosion should also be seen in the
southern region, as it is this area that is affected by the largest bora-generated waves.
However, the southern region has seen an increase in erosion and decrease in deposition
(see Figure 7.6). It may be possible that the rivers are transporting increased sedi-
ment loads; the canals and the surrounding intertidal zone along the northern shoreline
has accreted more during 1970-2000 than 1930-1970 (see Figure 7.7). Also, Cavallino
Beach has migrated to the end of the northern jetty of Lido Inlet and it has been shown
in previous chapters that sand is entering the inlet. Tambroni and Seminara (2006b)
have also modeled that there is net import of sand into the inlet during summer and
winter. Thus it may be that sand from longshore transport is now being imported

into the northern region, although this has been hard to prove from the results of the
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mineralogical analysis undertaken in Chapter 5. Further investigation is required to
prove whether increased import is occurring and its provenance, including the longterm
sediment flux of the rivers feeding the northern region and perhaps particle tracking

(tracing Black et al., 2004) from Cavallino Beach exploring seasonality.

Sections of Palude del Monte (the areas south of the shoreline of Campalto and
Marco Polo Airport) are the only areas within the southern region that have remained
stable between 1930 and 2000. The area is adjacent to accreting intertidal zone that is
present along the shoreline of the mainland and has previously been described by Soli-
doro et al. (2004) as an extension of the northern region (also experiencing accretion
along the shoreline of the mainland). The northern region is particularly stable with
large areas of intertidal zone which have not changed (£ 25 cm) between 1930-2000.
However, most of the central intertidal zone away from the shoreline has been eroded
between 1930 and 2000, although the canals have infilled. This flattening effect has
been described by Ravera (2000); waves undercut the intertidal zone and the eroded

sediment is washed into the canals.

Dredge spoil has been used to reclaim land in an effort to restore salt marsh
habitat within the lagoon, and thus appears as sediment accretion in the sediment bud-
get. The area around Lago dei Teneri and Lago Stradoni (south of the industrial area,
Marghera), has been particularly affected by this type of regeneration (Fletcher and
Spencer, 2005). This area represents the majority of the intertidal zone in the central
region that has experienced deposition. Fish farming is prevalent in the southern re-
gion, along the mainland /lagoonal boundary, and is generally represented by intertidal

zone that has remained unchanged between 1930 and 2000.

7.4.2.2 Canals

A larger proportion of canals have stopped depositing and become stable; this could
be due to a reduction in the supply of sediment. The proportion of canals deepening
has also increased slightly, probably due to routine maintenance dredging of canals.
Treporti Canal and Lido Inlet have also stabilized in 1970-2000 compared to 1930-1970
(see Chapter 4), which may indicate dredging in the earlier period. The stabilization
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Fig. 7.15: Areas subject to no change and sediment losses or gains, between 1930 and 2000.

could be partly due to increasing hydrodynamic stability after the construction of the
jetties, or deposition due to land subsidence. The only canal not to show net deposition
is the Petroli Canal, due to the initial dredging project in the ‘60s and then subsequent
maintenance dredging. However, in gross terms, it is also likely to experience a similar
level of infilling as the other central canals due to the degree of local intertidal erosion
and relatively low velocities (due to the large cross-sectional area to tidal prism ratio
O’Brien, 1969).

7.4.2.3 Sediment Budget Volumes

The total net volume of sediment loss from the intertidal zone between 1970 and 2000
is 2.3 x 106 m?® yr='¥, compared with 1.4 x 10° m3 yr=! lost between 1930 and 1970
(Table 7.11); thus an extra 835,000 m?® yr~! is exported into the lagoon due to erosion of

intertidal areas, and an extra 921,000 m?® yr~! is imported into areas of deposition. The

¥irounded figure
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residual volume of sediment from the intertidal zone has thus reduced from a net export
of 178,000 m? yr=! to 92,000 m? yr=!. These values suggest a more dynamic intertidal
environment with greater volumes of sediment in transit, but also suggest that the
rate of accretion is overcoming the rate of erosion. The severity of the erosion of the
intertidal area around the Petroli Canal has meant that the total volume of sediment
exported from the intertidal zone between 1970-2000 exceeded the volume exported
from the canals (in contrast to the trend seen between 1930-1970) even though the
rate of change within the canals remained greater. This reduced the total area of the
lagoon inhabited by salt marsh, as marshes must accrete enough sediment to remain
intertidal; too far down the tidal range results in waterlogging and dieback of the marsh
(Patrick and DeLaune, 1990). Loss of salt marsh further exacerbates resuspension of
sediment as waves are no longer attenuated and sediment is not stabilized by root

systems.

7.4.3 Determination of Gross Export: 1970-2000

The most recent sediment budget determined within this chapter was compared to the
Consorzio Venenezia Nuova budget. CVN* proposed that 2.2 million m? of sediment
was resuspended from the lagoon beds and 70,000 m?® was eroded from the salt marshes.
These figures are comparable to the results determined within this chapter, with dif-
ferences most likely attributable to the definitions (intertidal zone/canals and lagoon
bed/salt marsh). This study determined that 1.7 million m® was resuspended from the
canals, which is smaller than the estimate of CVN, although ‘lagoon bed’ probably in-
cludes some intertidal mudflats, which are defined within the ‘intertidal zone’ definition
within this study. An estimate of 92,000 m? of sediment exported from the intertidal
zone is also comparable to CVNs estimate of 70,000 m?® exported from the salt marshes
(again, the difference can be explained by mudflat regions being included in different
categories). CVN estimated that 95% of the sediment resuspended from the bed was
redeposited in the lagoon; this study estimates a redeposition rate of 91%*!; however,
the estimates of total export are smaller within this study. Whereas CVN estimates
that 700,000 m? is exported through the inlets, the present study puts the figure closer
to 370,000 m3. It may be possible that the difference is generated by dredge spoil,

Miwrww.salve.it
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which was previously dumped outside the lagoon (producing the overall export esti-
mate of 1.1 million m? that is frequently cited). This volume is now re-introduced into
the lagoon for marsh regeneration and thus may be included in the results of this study
(no authorship year is present for the sediment budget, although the estimate of 1.1

3

million m”® annual sediment export appears in Carbognin and Cecconi, 1997, and thus

predates the 2000 bathymetry dataset used by the present study).

_:_,_‘,_,,.;
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Fig. 7.16: Sediment budget of Venice Lagoon following the style of Consorzio Venezia Nuova,
2008t

7.4.4 Summary and Error

Quantitative comparisons of bathymetry datasets are useful in the determination of
long-term, change in sediment volumes important in the evaluation of the sediment
budget. However, it is limited as the calculations only take into account net change
and provide no information on through-put of sediment. For example, if sediment
builds up in one area after bathymetry is collected, but is dredged before the second
survey is completed, the sediment removed prior to the second survey is not included in
the calculations. For this reason, the volumes calculated for the period 1930-2000 are
not a simple addition of the results derived from the intermediate periods (1930-1970
and 1970-2000).
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Fig. 7.17: Vertical displacement in Venice Lagoon between (a) 1973-1993, and (b) 1993-2000
(after Carbognin et al., 2004)

The results show net changes in elevation of the seabed between 1930-1970, 1970-
2000 and 1930-2000. During 1930-1970, approximately 25 million m?® (approximately
6,250,000 m? yr~! between 1965-1969) was removed from the lagoon during the building
of the Petroli Canal, and a further 400,000 m® yr~!' removed through maintenance
dredging of the canals. As this removal will have affected the bathymetry, the figures
are included within the results discussed. Sediment from the salt marshes (~178,000
m? yr~1) may have contributed further to the infilling of the canals, with an additional

30,000 m?® yr=! of sediment entering the lagoon from the rivers.

The bathymetry is affected by subsidence in the region; the central region has

rebounded up to 1.5 mm yr—*

now that underground water pumping has been discon-
tinued. However the northern region has subsided by 6 cm between 1973 and 2000
(up to 3.5 mm yr~! Carbognin et al., 2004 - see Figure 7.17). The average subsidence
across the lagoon is approximately 1 mm yr—!, thus error is introduced if data is within

1'% 30 years) of the previous scale boundary. Error increases in the

3 cm (1 mm yr-
north and south where subsidence is greater, and where change in elevation has been
relatively small; therefore average error (the percentage of datapoints that fall within
3 cm of the interval boundary) and maximum error (percentage of datapoints that fall
within 7.5 em of the interval boundary) is shown in Figure 7.18. The mean average

error for the whole lagoon is 0.07%; the mean maximum error is 0.19%.
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Fig. 7.18: Average and maximum error due to subsidence.

7.5 Conclusions

The net volume of sediment lost annually from the Venice Lagoon system has increased
by approximately 30% between 1930-1970 and 1970-2000. This is despite 25 million
m? of sediment being removed from the lagoon within 1930-1970 due to the excavation
of the Petroli Canal (1965 to 1969), and despite increasing areas of intertidal zone
becoming net depositional in the latter period (either artificially via re-integration of
dredge spoil back into the lagoon for salt marsh regeneration or natural depositional
trends as is occurring in the northern region). The increase in the net loss (373,000 m?
yr~! of sediment) from the system is not due to an increase in erosion, as the net volume
of sediment being eroded from the lagoon has in fact decreased by 3% between the two
periods. The result is due to a 4% decrease in the net volume of sediment depositing; it
is likely that this sediment is remaining in suspension (it has been previously reported
that the concentration of sediment in suspension has increased) and is exported out of
the lagoon before conditions allow for settling. The increase in the level of suspended
sediment is principally due to the excavation of the Petroli Canal; a combination of
increased ship traffic, producing waves that have been eroding the shallows adjacent to
the channel, and increased and altered hydrodynamics (Gatto and Carbognin, 1981)

due to the increased efficiency of the channel.
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Lagoons are by nature a geologically temporary feature on a dynamic coast with ten-
dencies towards marine or land amalgamation (Consorzio Venezia Nuova, 1997; Ravera,
2000). Throughout this investigation it has become clear that Venice Lagoon has un-
dergone a gradual transformation towards a marine embayment since the construction
of jetties at each inlet c. 1900 (Ravera, 2000).

It is suggested that lagoons will be flood dominant at conception due to the lack
of intertidal zone, but as the lagoon infills and the intertidal area (A;) increases rela-
tive to basin area (A), the ebb tide gradually becomes more dominant due to negative
feedback control (see page 10). Modelled velocity for 1930, 1970, and 2000 suggests
that the northern lagoon may be becoming flood dominant once more; Lido Inlet has
changed from being slightly ebb dominant to flood dominant between 1930 to 2000
and Treporti Canal is becoming less ebb dominant than it was in 1930 (see Table 4.1).
The erosion of the intertidal zone (A;) is well documented (Consorzio Venezia Nuova,
1996; Day et al., 1998); if current rates of loss continue, there will be no salt marsh by
2045 (Figure 3.5), and the lagoon is becoming flatter due to the deposition of eroded
material into the canals (Ravera, 2000). Therefore the A;/A ratio is reducing, the ebb
currents are weakening (hypothesized by Speer and Aubrey, 1985 and shown in Table
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4.1) and as a result, the flood phase is becoming dominant. If this trend continues then
there should be import of sand from the Adriatic Sea, although Tambroni and Semi-
nara (2006a) has stated that inlet geometry is a dominant factor of sediment exchange
as it is more of a control on ebb-flood asymmetry. Further, the distance of jettied
inlet mouths away from the breaker zone prevent wave-suspended sediment from being
imported. There is a lack of knowledge about the provenance, transport processes and
sinks of sand in the region despite the seabed of all three tidal inlets being composed
of sand (Bondesan et al., 2004). The issue of sand exchange between the lagoon and
sea is becoming increasingly important as relative sea level rises and impacts from an-
thropogenic activities cause resuspension and erosion. However, previous engineering
works to prevent siltation of the lagoon, are now aiding the gradual amalgamation into
the sea. The aim of this thesis has been to investigate the transport of the sand that
composes the seabed of Lido Inlet; to determine its provenance, whether this sand is
being exported or imported and analyse the characteristics of transport and changes

in these characteristics over time.

8.1 The Sand Transport Pathway in Northern Venice Lagoon

8.1.1 Sources

Gazzi et al. (1973) described the longshore, sediment-transport pathway along the
Adriatic coast, interpreting a north to south, beach-parallel movement of sand from
the Talgliamento river to Pellestrina where it converges with south to north transport
from the River Po. The longshore transport of sand is restricted to within 2 km of the
shore; beyond this is a ‘mud-belt’ running parallel (Albani et al., 1998), which itself is
restricted by a region of relic sand that has been used as a source for beach replenish-
ment for the barrier islands of Venice (Cecconi and Ardone, 2000). The mineralogy of
these replenished beaches show a higher content of quartz and feldspar than would be
expected in the native, dolomite-rich sediment, and is representative of sediment found
to the south of the lagoon (Gazzi et al., 1973; Stefani, 2002). Although this sand is
relic (re-worked from coastal structures formed during the last marine transgression -

Simonini et al., 2005), its high quartz content and high calcite/dolomite ratio suggests
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a shared source with the southern rivers (Adige, Brenta, Po). The underlying signal of
the longshore transport pathway is still evident despite this recent beach replenishment,
with a gradual decrease in the grain size from north to south along Cavallino and Jesolo
beaches, and from south to north along Chioggia Beach representing grain maturity.
The mineralogy of the northern (Jesolo, Cavallino and Lido) and southern (Chioggia
and Pellestrina) beaches is distinct as greater proportions of quartz are present in the
southern beaches, and greater calcite/dolomite ratios (above 0.3) are present in the

northern beaches.

Calcite/dolomite (c/d) ratios of sediment within Lido Inlet are also high, indi-
cating relatively unworked sediment, whereas the ¢/d ratios of sediment in the inner
lagoon are fairly low (less than 0.3 - Bellucci et al., 2005); an indication of mature sed-
iment. The higher ratios suggest that the sediment within the lagoon is not the source
of the sediment within Lido Inlet. This is also indicated through grain-size statis-
tics; lagoonal sediment is principally sandy-silt sediment (McComb, 1995), with sands
present predominantly along the barrier islands and tidal inlets. It may be possible
that the low ratios in the lagoon are recorded principally due to fine-grained sediments
which are preferentially transported away in high-energy environments, like canals and
tidal inlets, leaving the coarser-grained, and less mature sediment behind. Mineralog-
ical comparisons indicate that little sediment from north of the Sile River is imported
into the inlet as the sand of Lido Inlet is composed of much fewer carbonate grains
(50-75%) than the sand north of the Sile River (75-100%), whilst proportions of quartz
and feldspar are approximately double within the inlet. It may be that sand from
beach replenishment has increased the proportions of quartz and feldspar, especially
as Tambroni and Seminara (2006b) have hypothesized that sand enters the inlet during
winter and summer months. It is unknown how much of the estimated 150,000 m? yr—1
of sand transported along Cavallino Beach (Fontolan et al., 2007) bypasses Lido Inlet.
However, the thickness of the beaches alongshore progressively narrows and there is a
strong indication that a proportion does enter Lido Inlet alongside the northern jetty.
Sediment sampling along the jetty has show that this area has a higher proportion of
sand than the rest of the inlet excluding the ebb spit and flood delta. This is also
shown on the sidescan as an area of high reflectivity; both of these maps (Figures

4.27B & 5.8) indicate import rather than accumulation of lagoonal sand. Comparison
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of bathymetry reveal that this sand has built up post-1930, after massive accretion due
to longshore transport and trapping of sand by the northern jetty, had extended Punta
Sabbioni and Cavallino Beach (15.8 m yr~! between 1908 and 1933 - Fontolan et al.,
2007) almost up to the tip of the jetty.

The results of grain-trend modelling (after Gao and Collins, 1992) show a strong
likelihood of sand export from Treporti Canal, some of which is derived from continual
erosion of the channel bed (as seen in the bathymetric comparison- Chapter 4). Tre-
porti Canal drains the northern lagoon, which has received sediment from the Piave
River (Collavini et al., 2000) in the past (Stefani, 2002). The sediments of Treporti
Canal and Lido Inlet are mineralogically similar to the Piave sediments (see Figure
5.17C), and less so with the Tagliamento River sediments, despite the fact that Cav-
allino/Jesolo Beach (present between Lido Inlet and the Tagliamento River) sediments
are richer in Dolomite and lacking in quartz. The sediment samples used to run the
grain trend model were collected during the winter months and showed a transport
pathway out of the lagoon. This indicates that sand being transported as bedload
is exported, despite the flood dominance of Lido Inlet and suggestions that sand is

imported during winter.

The largest source of sediment is the lagoon itself; the sediment budget esti-
mates that 1.8 million m? of sediment is eroded from the lagoonal floor and salt marshes
every year (in agreement with older estimates by Consorzio Venezia Nuova'). In previ-
ous years, much of this sediment would have been redeposited; however, a combination
of increasing boat traffic (and size of vessel able to navigate the lagoon), dredging
for clams (reducing bed shear stresses and increasing erodibility) and a decrease in
seabed macroalage and seagrass (reducing shear strength) has caused an increase in
the suspended sediment concentration (Sfriso et al., 2005a). As there has been a de-
crease in the net volume of sediment eroding, but a concurrent decrease in net sediment

accretion (see Chapter 7); it appears that sediment, once eroded, remains in suspension.

A significant volume of sand has been eroded from the bed of Treporti Canal

as shown by the comparisons of bathymetry in Chapter 4. This erosion has been a

'www.salve.it
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response to an increasing tidal prism, although the sand will mostly have been exported
due to the ebb dominance of this channel (albeit the ebb dominance is receding). Lido
Inlet is stable in terms of the tidal prism/cross-sectional area relationship, and so is
not a significant source of sand. The largest morphological change occurring in Lido
Inlet since the construction of the jetties c. 1900 has been the scouring of the deep,
flood-dominant channel and the concurrent growth of the ebb-tidal spit, indicating
that equilibrium occurred prior to 1930, although morphological stability occurred
later (between 1930-1970). The cross-sectional area has not changed by more than 2%
since 1970 (see Figure 4.18).

8.1.2  Sinks

Before the construction of the jetties, the major sink in the northern-most inlet was a
large tidal delta/sub-aqueous spit that extended from Punta Sabbioni and Sant‘Erasmo,
with the main tidal channel meandering around the northern-most extent of Lido bar-
rier island. The jetties dissected both the channel and delta, causing major restructur-
ing of the water circulation pattern and affecting the dynamics of sediment transport.
With the channel constrained, flow speed of water exported from Treporti Canal in-
creased (shown in Figure 3.6 as an increase in depth) and the sub-aqueous spit eroded.
The delta extending from Sant‘Erasmo has remained an important sediment sink for
sand, with fine-grained sediment sorted and removed (although the particle-size distri-
bution of the delta is finely skewed). The growth of the delta has not been significant;
only the western edge has accreted more than 1 m over the last century (1930-2000),
with the eastern edge remaining stable enough for plant growth and stabilisation. The
ebb spit extending from Punta Sabbioni has regrown rapidly, depositing sand (sedi-
—1ii

ment sampling proved no fines or gravels) at a net rate of 18,000 m* yr~! suggesting

that this is a sink of sand from Treporti Canal rather than longshore transport.

The constriction of the channel by the jetties has resulted in the formation of
ebb-jets, able to exceed the transport threshold for sand to export it out of the lagoon.
Beyond the confines of the artificial channel, flow speeds rapidly fall below the sand
transport threshold and sand is built up in the form of an ebb-tidal delta. As this

iiEstimate is from 1930-1970, after which the ebb spit was dredged
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delta extends approximately 4 km into the Adriatic Sea, it is highly likely that some
of the sand is derived from the north-south longshore transport, certainly as the shape
of the delta has been skewed to follow the direction of longshore transport. Grain-
size statistics also support this hypothesis, as sediment both within the lagoon and
nearshore north of the inlet mouth is very well-sorted. Within the inlet, the ebb-tidal
delta and nearshore south of the lagoon, the sand is less well sorted, which can indicate
a mixing of sediments from different sources. As the ebb-tidal delta has a gradient of
grain sizes, with gravels (> 2 mm) depositing near to the inlet mouth, sands from the
inlet mouth to approximately 4 km offshore, with finer-grained sediment present at the
very edge (at the mudbelt), it is probable that the main component of this deltaic sand
is lagoonally sourced. The delta is still experiencing growth, indicated by a gradual

extension seawards.

8.1.3 Sand in Transport

The majority of sediment in Lido Inlet is transported as suspension (approximately
90%). Sand is transported when flows exceed 0.4 m s—1 and contributes approxi-
mately 60% to the total mass of sediment in suspension during peak flow, although
only fine-grained sediment remains in suspension during low current velocities. Using
ADCP backscatter, it has been determined that peak ebb flows (Uj, = 0.78 m s™1) can
transport approximately 878,000 kg hr~! of sediment of which 60% is sand in suspen-
sion and a further 9% is sand travelling as bedload. Bedload transport is also minimum
during low velocities although faster velocities, especially within the deeper water, are
enough to transport medium to coarse sand. Both of these mechanisms have been

analysed in Chapter 5.5 using backscatter and velocity data from ADCP.

8.2 Conclusions

The northern region of Venice Lagoon has been following an increasingly flood dom-
inant trend; as such, it is more susceptible to import of sand. Evidence to support
this hypothesis is plentiful. Investigations from sediment analysis and reflectivity of
the seabed suggest that sand is entering the inlet from the north to south longshore
transport pathway (having accreted to the tip of the northern jetty). Tambroni and

Seminara (2006b) has proposed that sand export from the lagoon is much less than
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previously estimated and that it is invariably imported during the winter and summer
months. Sediment budget analysis has indicated that the northern region is net accre-
tional (between 1970-2000), having previously been net erosional like the central and
southern regions were and still are. This suggests an increase in the sediment supply
that could only come though Lido Inlet as the rivers provide a small proportion of
sediment (~30,000 m? yr~!) and the basins (south, central and north) are thought to
be hydrodynamically separate (Solidoro et al., 2004).

The southern and central lagoon suffers net loss of sediment as it is more exposed
to wind-generated waves (bora; Umgiesser et al., 2004a), ship-generated waves (tanker
route through the Petroli Canal), and aggressive fishing techniques (mechanical clam
dredging). Furthermore, the supply of sand to its inlets (Malamocco and Chioggia)
is much weaker than at Lido Inlet, shown by the progressive narrowing of the barrier
islands from north to south. However, results from sediment budget analysis suggest
that whilst the rate of erosion is falling, there has been a large increase in area subject to
erosion. Deposition rates are also decreasing, most likely because resuspended sediment
is unable to settle, shown by an increase in the concentration of suspended solids noted
by Sfriso et al. (2005a).

8.3 Questions for Future Consideration

The investigations within this thesis have raised many possibilities for future study.
The hypothesis that sand is imported into the northern lagoon could be further tested
with field study and modelling;:

e Can tracers be used to determine the pathway of sand from Cavallino Beach into

Lido Inlet and the northern lagoon, and does transport vary seasonally?

e ADCPs have been used to determine sand in suspension as well as give esti-
mates of bedload transport. However, a clearer picture of the total exchange of
sand could be determined with seasonal transects taken over complete cycles of
neap and spring tides, with data calibrated with coordinated LISST and water

sampling of total suspended solids.
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e [s the northern lagoon accreting due to an increase in the sediment flux from the

rivers?

e [s the accretion seen in the northern lagoon correlated with estimates of sand

import modelled by Tambroni and Seminara (2006b)?

The largest losses in the intertidal zone have been around the Petroli Canal within the

central and southern basins;

e is the negative feedback cycle described by Speer and Aubrey (1985) also occur-
ring in this area and are Chioggia and Malamocco inlets becoming flood dominant

as a result?



‘ T ENICE. The only place where you can get seasick by crossing the street.

-Anonymous
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Character and Morphology

All bathymetry images including comparisons between years can be found in the elec-
tronic appendix. GMT algorithms used:

grdcontour Contouring of 2-D gridded data
grdimage Produce images from 2-D gridded data
grdvector Plot vector fields from 2-D gridded data
pslegend Plot legend on a map

psmask Create overlay to mask specified regions of a map
psscale Plot greyscale or colourscale

pstext Plot textstrings

psxy Plot symbols, polygons, and lines in 2-D
surface Continuous curvature gridding algorithm
grdtrack Sampling of 2-D data along 1-D track
project Project data onto lines/great circles
gmtdefaults List the current default settings

gmtset Edit parameters in the .gmtdefaults file
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e grdinfo Get information about grd files
e minmax Report extreme values in table datafiles
e grdmath Reverse Polish calculator for grdfiles

e makecpt Create GMT colour palette tables
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Profile Date

1930-’70  1930-’90 1930-’00 1970-'90 1970-00 1990-’00
1 7% 2 % 0% -6 % -8 % 2%
2 7% 2 % 0% -6 % 8% 2%
3 7% 2 % -1 % -6 % -8 % -2 %
Lido Average 7% 2 % 0% -6 % -8 % 2%
4 17 % 4 % 10 % -15 % 9% 6 %
5 16 % 4% 7% -14 % -10 % 4%
6 16 % 2 % 9% 17 % -8 % 7%
7 17 % 2 % 8 % 17 % -11 % 6 %
Treporti Average 16 % 3% 8 % -16 % 9% 6 %
8 3% -4 % -16 % -T% -20 % -12 %
9 1% -14 % 11 % -15 % 12 % 3%
10 8 % 1% 3% -11 % -6 % 4%
11 5 % 9% -4 % 15 % 9% 5 %
Burano Average 4% -T% -T% -12 % -12 % 0%
Total average 9% 1% 0% -12 % -10 % 1%

Tab. B.1: The change the tidal prism at each cross section
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Fig. C.1: Satellite image showing the recirculation eddies adjacent to Lido Beach and the
southern jetty, showing some south to north transport, against the predominant
direction.
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Fig. C.5: The sand was also analysis for colour (by eye); the areas are well defined by different
colours of sand and proportion of shell. It appears that the sand from the ebb delta
is similar to that of the ebb spit and flood delta lobe. Shells were found predomi-
nantly in the scour channel and outside the inlet. It is interesting to note that the
sand immediately south of the mouth is the same colour as the beach replenished
sand of Pellestina. This study was extended through the use of radiometer although
the results have not been fully analysed for this study.
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19th ‘ 20th ‘ 91st
Time (GMT)  m?s™' | Time (GMT) m?s' | Time (GMT) m?s™!

08:05:58 2.30x1076 09:17:58 1.32x107% 07:31:06 3.53x1073
08:19:26 0 09:31:16 3.75%x1074 07:44:26 3.09x1073
08:56:48 3.64x104 10:15:12 4.85x1073 08:13:03 2.41x104
09:10:38 7.91x1074 10:28:32 4.77x1073 08:25:10 6.61x107°
10:07:20 5.90x1073 11:10:00 7.44%x1073 09:40:29 3.43x1074
10:21:24 5.91x1073 11:24:11 7.78%1073 09:54:11 8.51x1074
11:02:25 5.80x1073 12:10:31 5.77x1073 10:07:34 3.50x10~3
11:15:57 5.44x1073 12:23:39 5.50x1073 10:20:30 3.62x1073
12:02:10 3.30x1073 13:02:30 2.62x1073
12:15:28 2.75%1073 13:14:57 2.07x1073
13:00:54 5.94x104
13:14:03 4.89x10%

Tab. D.1: Total bedload transported per hour. Note that totals represent mass up until hour
stated, i.e. sediment transported between 9 and 10 is listed under 10.
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