
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE &

MATHEMATICS

School of Mathematics

Approaches for solving some
scheduling and routing problems

by

Andrew John Drake

Thesis for the degree of Doctor of Philosophy

February 2009

University of Southampton

Abstract

Faculty of Engineering, Science and Mathematics

School of Mathematics

Doctor of Philosophy

Approaches for solving some scheduling and routing problems

by Andrew John Drake

We study approaches for finding good solutions, and lower bounds, for three
difficult combinatorial optimisation problems.

The supply ship travelling salesman problem is a simplification of a situa-
tion faced by a naval logistics coordinator who must direct a support vessel
tasked with resupplying ships in a fleet. It is a generalisation of the trav-
elling salesman problem in which the nodes are in motion, each following
some predetermined route. We apply dynamic programming state-space re-
laxation techniques, producing lower bounds for the problem that are 73% to
84% of the best solution, on average. We also apply heuristics to find good
solutions to this NP-hard problem, showing that restricted dynamic program-
ming approaches outperform simple 2-opt and 3-opt local search procedures
for instances with 20 nodes.

We introduce the supply ship scheduling problem, another problem inspired
by a support vessel environment. We wish to minimise the number of mobile
machines required to process a set of jobs; each job is in a different stationary
location and features a fixed start time. Jobs may be simultaneously pro-
cessed by multiple machines, obtaining a speed-up in processing time. We
represent the problem as a directed graph and use the minimum flow in a
transformed network to determine the minimum number of machines. We
present a neighbourhood structure based on the maximum cut, applying it
within descent and tabu search procedures. We construct a restricted dy-
namic programming based approach, but this is outperformed by the tabu
search algorithm.

The task allocation problem, arising in distributed computing, is to assign
a set of tasks to a set of processors so that the overall cost is minimised.
Costs are incurred from processor usage, interprocessor communication and
task execution. We construct, and try to improve, semidefinite programming
relaxations to find lower bounds for variants of this NP-hard problem. We
develop a branch-and-bound approach to find optimal solutions, but this is
only effective for small instances.

Contents

List of figures vii

List of tables viii

Declaration of authorship x

Acknowledgements xi

1 Introduction 1

1.1 Problem areas . 2

1.1.1 The supply ship travelling salesman problem 2

1.1.2 The supply ship scheduling problem 3

1.1.3 The task allocation problem 4

1.2 Organisation of the thesis . 5

2 Combinatorial optimisation methods 6

2.1 Introduction . 6

2.2 Computational complexity theory 7

2.3 Exact approaches . 9

2.3.1 Branch-and-bound . 10

2.3.2 Dynamic programming 11

2.3.3 Integer programming 12

2.4 Heuristics . 13

2.5 Local search . 15

2.5.1 Descent . 15

2.5.2 Iterated descent . 16

ii

2.5.3 Variable neighbourhood search 17

2.5.4 Tabu search . 18

2.5.5 Simulated annealing 19

2.5.6 Genetic algorithms . 20

2.5.7 Ant colony optimisation 20

2.6 Methods used in this thesis 21

3 The supply ship travelling salesman problem 22

3.1 Introduction . 22

3.2 Literature . 24

3.2.1 The classical travelling salesman problem 24

3.2.2 Variations of the TSP 29

3.2.3 Support ship routing in a deployed task group 32

3.2.4 Conclusions . 33

3.3 The supply ship travelling salesman problem 34

3.4 Calculation of arc costs . 35

3.5 Dynamic programming . 37

3.6 Dynamic programming state-space relaxation 40

3.6.1 An n-path relaxation 40

3.6.2 A q-path relaxation . 41

3.6.3 A q-q-path relaxation 42

3.6.4 Selection of state-space modifiers 43

3.7 Restricted dynamic programming 46

3.7.1 Retaining partial tours 47

3.7.2 Computational complexity 48

3.8 Local search: k-opt . 49

3.8.1 2-opt . 49

3.8.2 3-opt . 49

3.8.3 Neighbourhood move acceptance strategies 50

3.9 Computational experience . 51

3.9.1 Generating instances of the supply ship TSP 51

iii

3.9.2 Lower bounds from dynamic programming state-space
relaxations . 54

3.9.3 Restricted dynamic programming 56

3.9.4 k-opt . 61

3.9.5 3-opt using an improved starting solution 63

3.10 Extensions to the work presented 66

3.11 Conclusion . 66

4 The supply ship scheduling problem 68

4.1 Introduction . 68

4.2 Problem features . 70

4.3 Literature . 71

4.3.1 Identical parallel machines with sequence-dependent set-
up times . 71

4.3.2 Moldable tasks . 73

4.3.3 Tactical fixed job scheduling 76

4.3.4 Conclusions . 77

4.4 The minimum flow problem in a directed network 78

4.4.1 The maximum flow problem 78

4.4.2 The minimum flow problem 80

4.4.3 The tanker scheduling problem 82

4.5 The supply ship scheduling problem 85

4.5.1 Threshold graph . 87

4.5.2 Network flows . 92

4.6 Local search heuristics for the supply ship scheduling problem 100

4.6.1 A selective neighbourhood structure 100

4.6.2 Descent methods . 103

4.6.3 Tabu search . 106

4.7 Restricted dynamic programming based approaches 108

4.7.1 Restricting and sorting the list of retained states 110

4.7.2 Upper bounds on the optimal value 112

4.7.3 Time complexity . 113

iv

4.7.4 Improving the upper bound 114

4.8 Computational experience . 116

4.8.1 Generating instances of the supply ship scheduling prob-
lem . 116

4.8.2 Simple upper and lower bounds 118

4.8.3 Local search . 119

4.8.4 Restricted dynamic programming heuristics 123

4.9 Extensions to the work presented 128

4.10 An improved formulation for the restricted dynamic program-
ming approach . 129

4.11 Conclusion . 132

5 Solving task allocation problems using semidefinite program-
ming 134

5.1 Introduction . 134

5.2 Semidefinite programming . 136

5.3 Positive semidefinite matrices 137

5.4 The task allocation problem 138

5.4.1 The capacitated problem (CTAP) 140

5.4.2 The constrained module allocation problem (CMAP) . 140

5.4.3 The uncapacitated problem (UTAP) 141

5.5 Literature . 141

5.6 Structured SDP relaxations for variants of the TAP 145

5.6.1 UTAP . 145

5.6.2 CMAP . 148

5.6.3 CTAP . 148

5.6.4 TAP . 151

5.6.5 Strengthening the SDP relaxations 152

5.7 Branch-and-bound . 156

5.7.1 Reducing the dimension of the UTAP/CMAP SDP re-
laxation . 156

5.7.2 Branching heuristics 158

5.7.3 A branch-and-bound algorithm for the UTAP and CMAP161

v

5.8 Computational experience for the UTAP 164

5.9 Computational experience for the CTAP 166

5.10 Computational experience for the CMAP 167

5.10.1 Applying extensions to the matrix variable 168

5.10.2 Comparison of branching heuristics 171

5.10.3 Global lower bounds for the CMAP 172

5.10.4 Finding optimal solutions to the CMAP 176

5.11 Further work: redundant constraints 178

5.12 Conclusion . 179

6 Conclusion 181

6.1 Summary of contributions . 181

6.1.1 The supply ship travelling salesman problem 181

6.1.2 The supply ship scheduling problem 182

6.1.3 The task allocation problem 182

6.2 Suggestions for further work 183

6.2.1 The supply ship travelling salesman problem 183

6.2.2 The supply ship scheduling problem 184

6.2.3 The task allocation problem 185

References 186

vi

List of figures

3.1 Example patrols for eight warships 53

3.2 Average performance of iterative methods for selection of state-
space modifiers over twenty 20-node problems 55

3.3 Comparison of restricted dynamic programming approaches to
the 20-node supply ship TSP 58

3.4 Comparison of k-opt approaches for the 20-node problem . . . 62

3.5 Using 3-opt to improve a tour found using RDP2 for the 20-
node problem . 64

4.1 Network representing feasible sequences of consecutive shipments 83

4.2 Minimum flow model of the tanker scheduling problem 84

4.3 Threshold graph for the 4-job example 88

4.4 Network flow model of the 4-job example problem 93

4.5 Reduced network flow model of the 4-job example problem . . 94

4.6 A feasible flow for the 4-job example problem. Blue arc values
represent flow. 95

4.7 Residual graph with respect to the feasible flow for the 4-job
example problem . 96

4.8 A maximum flow from t to s in the residual network for the
4-job example problem . 96

4.9 A minimum flow for the 4-job example problem 97

4.10 A network to find a lower bound for the 4-job example problem 99

5.1 Bounds found at each level using different branching heuristics.
Bound statistic is the average result of the bounds from eight
(20 task, 5 processor) instances. 171

5.2 Comparison of bounds against CPU times for different sized
extension sets (Instance d2005Cc: optimal value 1197). 176

vii

List of tables

3.1 Results using RDP2 for the 20-node problem 59

3.2 Predictive RDP for the 20-node problem 59

3.3 Results using RDP2 for the 30-node problem 60

3.4 Results using k-opt for the 20-node problem 62

3.5 Results using k-opt for the 30-node problem 63

3.6 Results using 3-opt BI to improve RDP2 solutions for the 20-
node problem . 65

4.1 Example data for the tanker scheduling problem 82

4.2 Shipment transit times (left) and return times (right) 82

4.3 Example data for a 4-job problem 86

4.4 Threshold value table for the 4-job example 88

4.5 Average excess (%) of the simple upper bound over the best
solution; percentage of instances for which the simple upper
bound gave the best solution; and run time (seconds) 118

4.6 Average excess (%) for the descent methods. 121

4.7 Percentage of instances for which the descent methods found
the best solution. 121

4.8 Average CPU time (seconds) for the descent methods. 122

4.9 Average excess (%) for the tabu search methods. 122

4.10 Percentage of instances for which the tabu search found the
best solution. 122

4.11 Average CPU time (seconds) for the tabu search methods. . . 123

4.12 Average excess (%) for the RDP approaches. 125

4.13 % instances for which the RDP approach finds the best solution.126

4.14 Average CPU times (seconds) for the RDP approaches. 127

4.15 Further results for the D-Bisection RDP approach. 128

viii

5.1 Lower bounds using SDP relaxation for twenty instances of the
UTAP. 165

5.2 Lower bounds using SDP relaxation for six instances of the
CTAP. 166

5.3 Initial SDP bounds for the 16 instances of the CMAP. The
final column displays the reduction in the bound error when
maximum matrix extension is used. 169

5.4 Size of extension set (SES) used and CPU times required to
obtain a bound within 0.5% of the best bound by extension. . 170

5.5 Error and CPU times (seconds) for (10 task, 3 processor) in-
stances. 173

5.6 Error and CPU times (seconds) for (20 task, 5 processor) in-
stances. 174

5.7 Error and CPU times for the given size of extension set (SES)
and level of the tree for two (20 task, 5 processor) instances. . 175

5.8 CPU times required to find the optimal solution 177

ix

Declaration of authorship

I, Andrew John Drake, declare that the thesis entitled ‘Approaches for solving
some scheduling and routing problems’ and the work presented in the thesis
are both my own, and have been generated by me as the result of my own
original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research
degree at this University;

• where any part of this thesis has been previously submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated;

• where I have consulted the published work of others, this is always
clearly attributed;

• where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself;

• none of this work has been published before submission.

Signed: ..

Date: ...

Acknowledgements

I would like to thank my supervisors and advisors Professor Chris Potts, Dr.

Jonathan Whitehead and Dr. Miguel Anjos for all their help and advice.

Chapter 1

Introduction

This thesis focuses on approaches for three combinatorial optimisation

problems. Combinatorial optimisation problems are concerned with finding

the best solution from among a discrete set of solutions. Evaluation of all

possible solutions, known as complete enumeration, is usually

time-consuming so methods that quickly find optimal or near-optimal

solutions are desirable. Some methods rely on effective bounds on the

optimal value, so techniques to determine tight lower bounds can prove

useful.

Two of our combinatorial optimisation problems are complex scheduling

and routing problems. Both have been inspired by MSc projects for the

Defence Science and Technology Laboratory. Scheduling and routing are

widely studied areas and feature important classes of problems. Scheduling

is applied in many situations where a sensible ordering of activities and

allocation of resources is required [103]; examples include manufacturing,

computer processing and exam timetabling. Routing deals with the selection

of paths within networks and is commonly applied to telephone, data or

transport networks. A classical problem within these related fields is the

travelling salesman problem [60]: a salesman, starting at his home city, must

1

Introduction 2

visit each city within a given set exactly once before returning home, while

minimising the total distance he must travel. Although simply described,

this problem is not always easy to solve. It belongs to the NP-hard class of

problems. Problems in this class are usually tackled by heuristic algorithms

that obtain near-optimal solutions within a reasonable amount of time.

The first of our problems is a special variant of the travelling salesman

problem in which the cities are in motion, so distances vary with time. The

following problem we tackle is a new scheduling and routing problem with

an interesting combination of features. The final problem studied, although

not closely related to the previous two, is an important one within the world

of distributed computing and micro-processor systems.

1.1 Problem areas

1.1.1 The supply ship travelling salesman problem

The supply ship travelling salesman problem is the name we have given to a

generalisation of the travelling salesman problem in which the nodes are in

motion. Each node, or warship, follows some predetermined route. A supply

ship must visit and resupply all the warships in the fleet while they patrol

an area of sea. We wish to find near-optimal solutions to this NP-hard

problem using heuristic methods.

We first adapt dynamic programming state-space relaxation techniques for

the classical travelling salesman problem [27] to produce lower bounds for

the supply ship travelling salesman problem. The bounds found are

reasonable, but not strong enough to embed in an effective

branch-and-bound scheme.

Introduction 3

A restricted dynamic programming heuristic for the time dependent

travelling salesman problem [92] is applied to the supply ship travelling

salesman problem. We suggest an improved measurement for the evaluation

of partial tours. Our proposal for another measure, that predicts final tour

costs using the nearest neighbour heuristic, is also considered.

Simple 2-opt and 3-opt local search approaches are tested, demonstrating

that our variant of the restricted dynamic programming heuristic produces

superior results.

1.1.2 The supply ship scheduling problem

We introduce the supply ship scheduling problem. This problem is

concerned with minimising the number of mobile machines (supply ships)

required to process a set of jobs (warships/docks). Each job is in a fixed

location and must commence at a fixed start time. Jobs may be

simultaneously processed by multiple machines, obtaining a speed-up in

processing time.

The problem may be represented as a directed graph. Objective values are

calculated by determining the minimum flow in a transformed network. We

present a neighbourhood structure that restricts the search to moves likely

to improve the solution, based on information provided by a maximum cut

in the network. This structure is successfully applied within a number of

simple local search procedures to produce solutions rapidly. The

neighbourhood structure is then utilised within a tabu search metaheuristic

with encouraging results.

In an alternative approach, we construct a heuristic for the supply ship

scheduling problem based on the ideas behind restricted dynamic

programming. Our initial formulation is less effective than the tabu search,

Introduction 4

but may be used to find machine assignments to jobs when the total

number of machines is fixed. We indicate an improved formulation, but this

has not been implemented.

1.1.3 The task allocation problem

Task allocation problems arise in distributed computing (including air

defence radar systems [89]) and micro-processor sub-systems in car

manufacturing [106]. In a task allocation problem, a set of tasks must be

assigned to a set of processors so that the overall cost is minimised. Costs

are incurred through the use of processors, interprocessor communication

and the execution of a task on a particular processor. A number of NP-hard

variants of this problem appear in the literature, where there has been some

success in using linear programming relaxations to find lower bounds [47].

We construct semidefinite programming relaxations to find lower bounds for

some of these related problems. A number of heuristics for selection of tasks

to use in a partial higher lifting approach [6] are proposed, but we find that

the technique does not provide significant improvements to our bound.

We implement a branch-and-bound approach to find global lower bounds,

proposing some heuristics for the selection of branching variable. Those

heuristics based on analysis of communication costs were found to be the

most effective.

Introduction 5

1.2 Organisation of the thesis

The remainder of this thesis is organised as follows. Chapter 2 provides an

overview of some of the methods used within the field of combinatorial

optimisation. Chapter 3 concerns the supply ship travelling salesman

problem while Chapter 4 deals with the supply ship scheduling problem.

Chapter 5 tackles the task allocation problem using semidefinite

programming. Finally in Chapter 6, we draw together our conclusions on

the approaches for the problems we have studied.

Chapter 2

Combinatorial optimisation

methods

2.1 Introduction

In an optimisation problem we wish to find feasible solutions that minimise

or maximise the value of an objective function. In a combinatorial

optimisation problem feasible solutions are made up of a number of discrete

choices; there are a countable number of alternatives. Thus in a

minimisation problem with objective function f : X → R, where X is the

discrete set of solutions, we wish to find x∗ ∈ X such that f(x∗) ≤ f(x) for

all x ∈ X.

In this chapter, we give a brief overview of some of the methods used to

solve combinatorial optimisation problems. Exact methods may be used to

find optimal solutions, but in some cases it is more appropriate to determine

near-optimal solutions using heuristic algorithms. The theoretical

complexity of a combinatorial optimisation problem can help us determine

whether it is appropriate to apply exact approaches.

6

Combinatorial optimisation methods 7

2.2 Computational complexity theory

Complexity theory seeks to classify problems, discovering relationships

between them to gain insight into their difficulty. The computational

complexity of a problem can indicate whether we should try to find an

efficient algorithm to solve it, or instead devote our efforts to developing

effective procedures to obtain good, but not necessarily optimal, solutions.

An algorithm’s time complexity function, τ(n), gives the largest amount of

time the algorithm requires to solve a problem for each problem size n. We

say such a function is O(p(n)) whenever there exists a constant c such that

|τ(n)| ≤ c · |p(n)|

for all values of n ≥ 0. If p is a polynomial we say that the problem may be

solved in polynomial time, otherwise we describe the algorithm as

exponential. We usually regard polynomial time algorithms as more

desirable; execution times for exponential time algorithms may suffer from

explosive growth as input length increases. However, time complexity is a

worst case measure and a few exponential algorithms are useful in practice.

The empirical running time for an exponential algorithm may be better

than that for an algorithm with polynomial worst case behaviour; for

example, the polynomial time ellipsoid algorithm for linear programming is

very slow in practice and does not compete well with running times for the

exponential simplex algorithm.

Solving an instance of a decision problem results in one of only two possible

answers: “yes” or “no”. Algorithms for solving a problem may be modelled

using a Turing machine. A deterministic Turing machine allows a single

calculation at a time. A non-deterministic Turing machine allows an

exponential number of parallel calculations. The class P contains decision

problems that may be solved in polynomial time by a deterministic Turing

Combinatorial optimisation methods 8

machine. The class NP contains decision problems that may be solved in

polynomial time by a non-deterministic Turing machine. If it is possible to

verify in polynomial time that a guess solution results in a “yes” or “no”

answer then the problem belongs to NP.

It is clear that P ⊆ NP since any problem solvable by a polynomial time

deterministic algorithm must also be solvable by a polynomial time

non-deterministic algorithm. It is widely believed that P 6= NP, but this

conjecture has not been proven.

The class of NP-complete decision problems consists of the “hardest”

members of NP: every problem in NP can be “reduced” to a problem in the

NP-complete class using some polynomial time transformation (Cook’s

theorem). Such a transformation maps any instance of the NP problem into

an instance of the NP-complete problem. This means that if a polynomial

time algorithm is found that can solve an NP-complete problem, all

problems in NP may be solved using a polynomial time algorithm, proving

that P = NP. If it is shown that a problem in NP cannot be solved by any

polynomial time algorithm, then no NP-complete problem can be solved by

a polynomial time algorithm. That is, if P 6= NP then NP-complete

problems belong to NP − P.

The SAT problem was shown to be NP-complete by Cook [53]. We may

prove a decision problem in NP is NP-complete by giving a polynomial

transformation to it from an existing NP-complete problem. Any decision

problem that can be polynomially transformed from an NP-complete

problem may be described as NP-hard, whether it is in NP or not. Such a

problem is at least as hard as the NP-complete problems. An NP-hard

problem cannot be solved in polynomial time unless P = NP.

An algorithm runs in pseudo-polynomial time if its running time is

polynomial in the numeric value of the input. An NP-hard problem is called

Combinatorial optimisation methods 9

weakly NP-hard if it may be solved by a pseudo-polynomial time algorithm.

If it is proven that an NP-hard problem cannot be solved by a

pseudo-polynomial time algorithm, it is strongly NP-hard.

In an optimisation problem the goal is to find the best solution from all

feasible solutions. Each optimisation problem has a corresponding decision

problem which asks whether there is a feasible solution matching a

particular measure. An optimisation problem is NP-hard if its corresponding

decision problem is NP-complete. Thus NP-hard combinatorial optimisation

problems are at least as hard as NP-complete decision problems.

When faced with an NP-hard optimisation problem, it is unlikely that we

will find a polynomial time exact algorithm to compute the optimal

solution. For all but the smallest problems we settle for a solution that is

close to optimal. Although we may use heuristics for this purpose,

approximation algorithms produce a solution that is guaranteed to be

within some factor of the optimal solution. To prove that the approximation

factor is valid it is important to derive good bounds: lower bounds if it is a

minimisation problem and upper bounds if it is a maximisation problem.

Extensive descriptions regarding complexity theory may be found in the

texts of Garey and Johnson [53] and Papadimitriou [101].

2.3 Exact approaches

In a complete enumeration every possible solution to the problem is

evaluated; this method is impractical for all but the smallest problems. By

using information specific to the problem instance the number of evaluations

may be reduced to a manageable level.

Combinatorial optimisation methods 10

2.3.1 Branch-and-bound

A combinatorial optimisation problem may be conceptualised as a a decision

tree. The root node represents the problem and its set of possible solutions.

Branches from a node represent a choice. Nodes represent sub-problems

resulting from the choices made on the branches forming the path from the

root to the node. The further down the tree, the smaller the sub-problem.

A node on the final level, a leaf node, represents a sub-problem where all

decisions have been made; there is a single solution and no further

branching from the node.

To avoid complete enumeration, a branch-and-bound method [77] begins

with the root node and looks at its immediate branches and nodes, placing

the sub-problems in a list that gives the order in which they will be

investigated. A bound on the objective value for a sub-problem is calculated

as the node is investigated (an upper bound for a maximisation problem

and lower bound for a minimisation problem). This bound is compared to

the objective value of a trial solution. If the bound reveals that the

sub-problem must have an optimal solution worse than the objective value

of the trial solution, the node is pruned : further branching from the node

may be ignored and the sub-problem is said to be fathomed. Otherwise, the

branches from the current node are followed and its immediate

sub-problems are added to the ‘order of investigation’ list. The process

continues until the list is empty. The trial solution used is replaced

whenever a better solution is discovered.

The efficiency of the method relies on the tightness of the bound given by

the bounding procedure, the ease with which it is calculated, the quality of

the trial solution and the strategy employed to order new nodes within the

investigation list.

Combinatorial optimisation methods 11

2.3.2 Dynamic programming

In a dynamic programming approach [14] the problem is broken into

sub-problems. By recursively building on the optimal solutions to the

smallest sub-problems an optimal solution to the problem is reached.

Dynamic programming approaches feature the following characteristics

[104, 116]:

• The problem may be divided into stages, each requiring a decision.

• For each stage there a number of states.

• The decision transforms a state into a state belonging to another

stage.

• Given the current state, optimal future decisions do not depend on the

decisions made previously. (Principle of optimality).

• A recursion identifies optimal decisions for the current stage by

relating it to stages that have already been solved.

• An initial stage is easily solved.

There may be several possible formulations for a problem. While forward

recursions, starting at the first stage and working forward through decisions

to the last stage, may seem more natural, backward procedures may also be

constructed.

Combinatorial optimisation methods 12

2.3.3 Integer programming

Many combinatorial optimisation problems may be formulated as

mathematical programs in which the variables are constrained to be integer.

A column vector, x, of n variables may be used to formulate a linear integer

program with m equality constraints [5]:

min cTx

s.t. Ax = b

x ≥ 0

xj integer for some (or all) j

where A is an m × n matrix of real numbers, and b and c are column

vectors of real numbers.

If the integer constraints on the variables are removed we obtain the linear

programming (LP) relaxation. The LP relaxation may be solved using an

algorithm such as the simplex method, but this will not always provide an

optimal solution that is integer. The optimal value for the LP relaxation

provides a lower bound (for a minimisation problem) on the optimal value

for the integer program.

Integer solutions may be found by constructing a branch-and-bound tree.

At each node a candidate problem is solved consisting of the original LP

relaxation plus constraints generated by branching. Nodes are pruned if

their candidate problems are found to be infeasible or their optimal values

are worse than the current best upper bound (for a minimisation problem)

on the true optimal value.

The branch-and-cut method [94] is an extension to the branch-and-bound

method that applies cutting planes to the candidate problems. By

generating cuts and resolving the LP relaxation at each node, it is hoped

Combinatorial optimisation methods 13

that this results in a shorter search tree. Cutting planes are linear

inequalities that are included in the set of constraints in order to cut off (or

separate) the optimal solution to the LP relaxation from the integer feasible

set. It is often possible to find good cuts by exploiting the structure of the

problem [5]. Gomory cuts are cutting planes that may be generated

systematically by manipulating equations from the optimal dictionary

associated with the LP relaxation. The optimal solution may be found after

generating a finite number of Gomory cuts, but since this is potentially a

large number, these cuts are well suited for use in a branch-and-cut method.

Branch-and-price [110] is another generalisation of the branch-and-bound

method. This approach is designed for integer programs with a huge

number of variables. To improve efficiency, the size of the LP relaxation is

reduced by leaving out columns of A; many of the associated variables may

be equal to zero in an optimal solution anyway. To verify the optimality of

the LP solution, a sub-problem, known as the pricing problem, is solved to

indicate columns with a profitable reduced cost. If such columns are

discovered the linear program is reoptimised. If no profitable columns are

found and the LP solution is not integer, branching occurs. Column

generation is applied at every node of the branch-and-bound tree.

2.4 Heuristics

A heuristic method is a technique used to find near-optimal solutions to a

problem for a reasonable computational cost. Heuristics do not guarantee

the feasibility or optimality of the solutions they produce. By exploiting the

structure of a problem, reasonable solutions may be found. A heuristic

approach should be employed when exact solution methods require

impractical computational requirements; large NP-hard problems are

usually tackled with heuristic techniques.

Combinatorial optimisation methods 14

Heuristics are also rules or strategies used within other solution methods to

improve their effectiveness, for example, the choice of branching variable in

the branch-and-bound method.

Although many heuristics are specific to the problem they are designed for,

some categories of heuristics [104] include:

• Construction: Solutions are generated by adding one component of

the solution at a time.

• Improvement: From a starting solution, apply a sequence of

transformations to improve on it. This includes the important class of

local search heuristics.

• Partitioning: The problem is split into sub-problems which are

solved independently. The fragment solutions are combined together

to form a solution to the original problem.

• Aggregation: Entities are grouped together to form a smaller

problem.

• Relaxation: Some constraints are relaxed to make the problem easier

to solve. Transformations must be performed on infeasible solutions to

obtain a feasible answer.

• Restriction: The solution space is restricted to make the problem

easier to solve.

A heuristic that guides subordinate heuristics is known as a metaheuristic.

Combinatorial optimisation methods 15

2.5 Local search

Local search heuristics iteratively improve on feasible solutions by

generating neighbour solutions within the search space. A starting solution,

x0 ∈ X, may be generated randomly or through the use of some

construction heuristic. The neighbourhood N(xi) of a solution xi ∈ X is a

set of solutions that may be found by applying specified modifications to xi.

A solution xi+1 ∈ N(xi) is usually selected by comparing its objective value,

f(xi+1), with f(xi). The iterative process continues with the generation of

neighbours for xi+1. The algorithm ends when a termination test is

satisfied. For a survey of local search methods, see the book edited by Aarts

and Lenstra [1].

For a minimisation problem, an improving move is one in which the

objective value of the selected neighbour xi+1 is less than the objective value

of the current solution xi. In a neutral move the objective values are the

same. In a deteriorating move the objective value of the neighbour is

greater than the objective value of the current solution.

2.5.1 Descent

Descent procedures form the simplest local search heuristics. In a first

improvement descent the neighbours of the current solution are searched

until an improving move is found. The improved solution is accepted as the

new current solution and the algorithm continues. The algorithm terminates

when there are no more improving moves in the current neighbourhood; the

solution is a local optimum. The order in which neighbours are searched

may impact on the resulting solution. In a steepest descent all neighbours of

the current solution are searched and then the solution that gives the largest

improvement is selected. Larger neighbourhoods, and high computational

Combinatorial optimisation methods 16

costs for exploring each solution, may negatively impact the efficiency of

steepest descent. If measures are taken to prevent cycling, a descent

algorithm can be modified to accept neutral moves and explore a larger area

of the search space.

The solution provided by a descent algorithm may depend on the starting

solution; ordinary descent cannot escape local minima. To avoid slipping

into a single local optimum, a multi-start descent performs several

individual descents from different starting solutions. Starting solutions may

be generated randomly or by use of a construction heuristic with a random

element. These constructive approaches are known as greedy randomised

adaptive search procedures (GRASP) [48].

2.5.2 Iterated descent

Having found a local optimum it can prove useful to keep the good

characteristics already discovered rather than start again from scratch. In

an iterated descent [12] a kick is applied to the local optimum when it is

reached. The kick may take the form of a move to a solution within an

expanded or different neighbourhood, or a series of moves within the same

neighbourhood. If the resulting solution is satisfactory, another descent

begins using this as the starting point. Starting solutions may be generated

from the result of the previous descent or from the best local optimum so

far. The kick should be large enough to create a solution that does not

swiftly descend back to the same local optimum, but not so large that the

good features of the solution are lost. The iterative local optimum search

process continues until a stopping criterion is met, for example, the

completion of a fixed number of iterations.

Combinatorial optimisation methods 17

2.5.3 Variable neighbourhood search

Variable neighbourhood search (VNS) procedures [66, 67, 95] exploit three

observations:

1. A local minimum with respect to one neighbourhood structure need

not be a local minimum with respect to another.

2. A global minimum is a local minimum for all possible neighbourhood

structures.

3. In many problems, local minima are relatively close to one another

[67]. This suggests that a local optimum provides information about

the global optimum and a study of its neighbourhood may reveal

better solutions.

Variable neighbourhood descent combines descent heuristics by stipulating a

set of neighbourhood structures, Nl for l = 1, . . . , lmax. A descent is

repeatedly performed using N1 until no improving move is found. Upon

reaching a local minimum with respect to this first structure, the algorithm

applies each subsequent neighbourhood structure until an improving move is

found or all structures have been applied to the current solution. Whenever

an improving move is found, the original descent begins anew from the

improved solution.

Forming an ingredient for other VNS procedures, reduced variable

neighbourhood search uses a set of neighbourhood structures, Nk for

k = 1, . . . , kmax. Usually, each subsequent neighbourhood contains the

previous one. From an initial solution, a shaking procedure is applied that

generates a solution at random from the first neighbourhood. Whenever any

improvement is discovered, shaking continues from the new solution by

generating a neighbour using the first structure. Otherwise, the algorithm

Combinatorial optimisation methods 18

cycles through the neighbourhoods in the set, utilising each for a single

shaking step. The process returns to the first neighbourhood after each

improvement, continuing until a stopping condition is reached.

A basic variable neighbourhood search proceeds in a similar way to the

reduced VNS described above, cycling through a set of neighbourhood

structures, Nk for k = 1, . . . , kmax, and stopping when a condition is met.

The shaking procedure is used to generate neighbours of the incumbent

solution, x. The difference between this and the reduced VNS is that a local

search algorithm is applied to each of the generated neighbours; the

resulting local optimum is compared to x and becomes the new incumbent

solution if it is an improvement. If it is not an improvement, shaking

continues from x using the next neighbourhood, with the local search

procedure being used to try to improve each result.

A general variable neighbourhood search first uses a reduced VNS to improve

the initial solution, then applies a basic VNS where variable neighbourhood

descent is the featured local search procedure.

Variable neighbourhood search usually gives better solutions than

multi-start, especially when there are several clustered local optima [67].

2.5.4 Tabu search

The basic idea behind the tabu search [55] metaheuristic is to prevent a

search algorithm from moving back to solutions or characteristics that have

already been explored, encouraging the search into new areas. A tabu list

that contains forbidden moves, solutions or characteristics is compiled and

updated with each move selected. In a similar fashion to the steepest

descent method, the entire neighbourhood of a solution is explored before a

move is made; however, in a tabu search the best available move not on the

Combinatorial optimisation methods 19

tabu list is selected, even if it does not provide an improvement in the

objective value. To mitigate the effect of the tabu list preventing moves to

good solutions, the procedure may also include an aspiration criterion: this

overrides the restriction of the tabu list when the search encounters an

influential or quality solution. A move to a solution with a better objective

value than previously found will be allowed by an aspiration for quality. An

aspiration for influence enables moves to solutions that have a sufficiently

different structure, driving the search into new areas of the space. The

length of the tabu list is an important factor in the effectiveness of the

algorithm; a shorter list provides a greater risk of cycling through solutions,

while a longer list is more likely to cut off access to good solutions.

2.5.5 Simulated annealing

Simulated annealing [75] local search algorithms are inspired by a model of

a physical annealing process. The model represents the controlled cooling of

a heated substance from a liquid to solid state. The local search algorithm

proceeds in a similar way to a descent method but includes an important

difference: there is a probability that deteriorating moves will be accepted.

While improving and neutral moves are automatically accepted, a

deteriorating move is accepted with probability e−∆/T , where ∆ is the

difference between the objective values and T is a control parameter known

as the temperature. The value of T changes as the algorithm progresses

according to a cooling schedule; the probability of accepting a deteriorating

move decreases over time. As a result, the search is sometimes able to

escape quickly discovered local optima and continue the quest for the global

optimum.

Combinatorial optimisation methods 20

2.5.6 Genetic algorithms

Genetic algorithms [35] are inspired by the theory of evolution; the fittest

organisms within a population survive to pass their characteristics on to the

next generation. In a genetic algorithm, solutions are represented as strings.

An initial population is generated, randomly or by construction, and their

individual fitnesses are evaluated. A new population representing the next

generation is created with each iteration of the algorithm. In the classical

version, two offspring at a time are created from two parent solutions.

Selection of parents and breeding of offspring continues until the new

population is complete. Parents are selected at random with probabilities

based on their fitness value, a function of their objective value. The

probability of a crossover determines whether the two offspring are identical

to their parents or formed by swapping sections of their strings. There is

also a probability that offspring will undergo mutation, where an element of

the solution string is randomly altered. The algorithm terminates when the

stopping criterion is satisfied, for example, after completion of a fixed

number of generations. Some procedures apply a local search algorithm to

improve offspring before determining fitness values.

2.5.7 Ant colony optimisation

Ant colony optimisation [39] is inspired by the behaviour of ants foraging

for food. As an ant travels between food and the nest it deposits a

pheromone trail. This trail is detectable by other ants; they may choose to

follow it and deposit more of their own pheromone along the way. As the

pheromone trail grows in strength, more and more ants are attracted to the

route. The pheromone decays over time, so if the number of ants walking

the trail decreases, fewer ants will be attracted to it.

Combinatorial optimisation methods 21

The optimisation model first transforms the problem into the problem of

finding the best path on a weighted graph. During each iteration of the

algorithm, artificial ants are placed randomly on the graph. They wander

the edges of the graph, choosing a route from each vertex based on

probabilities given by the amount of pheromone laid on each incident edge.

In addition to the influence of the pheromone on edge selection, the artificial

ants may see the length of an edge and will remember the vertices they have

already visited. Each ant incrementally builds a solution to the problem.

Once the ants have completed their route, an amount of pheromone

evaporates from each edge. Then, extra pheromone is added to the edges of

the best solutions discovered. Iterations continue, using the updated

pheromone values, until a stopping condition is met. Optionally, solutions

are improved using a local search algorithm before pheromone alterations

are implemented.

2.6 Methods used in this thesis

Some of the methods summarised above have been shown to be very

effective for finding solutions to certain combinatorial optimisation

problems. Two of the problems we study in this thesis are NP-hard (the

complexity classification of the third problem has not yet been determined),

so truly efficient algorithms for solving them are unlikely to be discovered.

Heuristic methods therefore represent the best approaches unless dealing

with small instances. We employ restricted variations on the exact methods

of branch-and-bound and dynamic programming. We also use descent

procedures and a simple tabu search method.

Chapter 3

The supply ship travelling

salesman problem

3.1 Introduction

The supply ship travelling salesman problem is a variation on the travelling

salesman problem (TSP) where the nodes (or warships) are in motion. The

supply ship must visit and resupply all the warships. During replenishment

the supply ship and warship travel side by side. This problem is most

closely related to the time dependent TSP [91], the moving-target TSP [71]

and the non-stationary TSP [74].

The TSP is among the most well known combinatorial optimisation

problems and has been well studied over the past few decades [60]. It

involves finding a shortest route for a travelling salesperson that starts at a

home city, visits a prescribed set of other cities and returns to the starting

city. The problem is to find an optimal ordering of the cities, equivalent to

visiting each city exactly once while minimising the total distance travelled.

22

Supply ship travelling salesman problem 23

In the supply ship TSP, the cities are replaced by warships that may

continuously move location. The problem assumes all ships in the group

require resupply as soon as possible. As in the TSP, each warship must be

visited once by the supply ship. However, the cost (in time) of travelling

from one warship to another depends on the movement of the ships and

thus the time at which the transition is made. Each ship has a

replenishment time, the amount of time required by the supply ship to finish

restocking the warship. The supply ship remains with a warship while it is

being replenished. Upon completion of a warship’s replenishment, the

supply ship may move on to the next warship. The supply ship’s starting

position is given by a depot location. The supply ship returns to the depot

once all warships are replenished. The objective of the supply ship TSP is

to minimise the time taken to complete replenishment of all ships and

return to the depot location.

In this chapter, we compare the effectiveness of a number of heuristic

methods applicable to the supply ship TSP. State-space relaxation methods

for dynamic programming are used to provide lower bounds; our suggestion

to equate the values of the state-space modifiers with warship replenishment

times provides a significant improvement over iterative methods. We apply

restricted dynamic programming approaches, presenting alternative

valuations for selection of partial tours to be retained. We implement a

number of simple 2-opt and 3-opt local search heuristics for the supply ship

TSP, demonstrating that they are outperformed by our best restricted

dynamic programming approach.

Section 3.2 provides an overview of the key literature for the TSP and some

of its variants. Section 3.3 describes the supply ship TSP, while Section 3.4

outlines how arc costs are calculated. A dynamic programming formulation

for the supply ship TSP, based on a variant of the time dependent TSP, is

shown in Section 3.5. We apply state-space relaxation methods to find lower

Supply ship travelling salesman problem 24

bounds using dynamic programming in Section 3.6. In Section 3.7 we apply

restricted dynamic programming to the supply ship TSP. Section 3.8

describes 2-opt and 3-opt local search procedures for the supply ship TSP.

Our computational experience, and a comparison of the heuristic methods

described, are provided in Section 3.9. Suggestions for further study are

provided in Section 3.10. We conclude the chapter in Section 3.11.

3.2 Literature

3.2.1 The classical travelling salesman problem

According to Schrijver [112] the travelling salesman problem was first

formulated in a German manual for the successful travelling salesman in

1832; it was presented as a research problem by Menger in the 1930s.

In the classical travelling salesman problem (TSP) we are given a set,

{1, 2, . . . , n}, of cities, and distances, cij, for each pair of distinct cities. The

goal is to find an ordering of the cities, π = (π(1), π(2), . . . , π(n)), that

minimises the tour length

n−1
∑

i=1

cπ(i)π(i+1) + cπ(n)π(1).

In the symmetric TSP the distances satisfy cij = cji for 1 ≤ i, j ≤ n.

Extensive studies of the TSP may be found in [1, 60].

The TSP is an NP-hard problem [53] so algorithms to find optimal tours

must “work well on real-world rather than worst-case instances” [1].

Alternatively, we use heuristics to find near-optimal tours quickly.

Supply ship travelling salesman problem 25

Exact methods

Bellman [15] and Held and Karp [68] present the TSP in dynamic

programming (DP) terms. These approaches are efficient for small instances

of the TSP. Bellman notes that the DP approach can easily “incorporate all

types of realistic constraints involving the order in which cities can be

visited” [15]. He also states that the method may be used to provide

approximate solutions to large-scale problems by grouping subtours as one

new distance.

Dantzig et al. [33, 34] introduce an approach that iteratively improves linear

programming relaxations. This cutting plane method uses the simplex

method to move from a starting solution to new solutions, adding new

constraints to cut out solutions that are not tours.

Early branch-and-bound procedures for the TSP were developed by

Eastman [43] and Little et al. [84]. Optimal solutions to corresponding

assignment problems are used as lower bounds by Eastman, while Little et

al. calculate rapid lower bounds from the distance matrix. Held and Karp

[69] introduce an effective branch-and bound algorithm, exploiting the

relationship between the TSP and the minimum spanning tree problem to

derive strong lower bounds.

Applegate et al. [8] trace the development of the many refinements to the

linear programming relaxation method of Dantzig et al. [33], stating, “their

approach remains the only known tool for solving TSP instances with more

than several hundred cities” [8]. They use a variant of the branch-and-bound

method known as branch-and-cut [100]: it applies the cutting plane method

to each linear programming relaxation before branching. The Concorde TSP

solver [9, 121] includes their efficient implementation of this approach.

Supply ship travelling salesman problem 26

Tour construction heuristics

Tour construction procedures build a tour by successively adding a new

node or edge at each step, terminating on construction of a feasible tour.

These heuristics perform well in practice, “the best typically getting within

roughly 10-15% of optimal in relatively little time” [1]. Important tour

construction heuristics include:

• Nearest neighbour : This starts with a partial tour consisting of a

single node. With each step it adds the unvisited node that is closest

to the last node added to the partial tour.

• Greedy : Starting with an empty set of edges, this algorithm adds the

shortest unused edge from the graph at each step to the set. The

selection is restricted so that the edges form a valid tour in the final

step.

• Savings [30]: This looks for the best shortcuts in an initial

pseudo-tour.

• Christofides [26]: This constructs a tour based on a minimum

spanning tree of the graph.

The theoretical performance of these heuristics (and others) is discussed by

Johnson and McGeoch [1]. Empirical performance of heuristics may be

evaluated by comparing their results to the Held-Karp lower bound on the

optimal tour length [69].

Supply ship travelling salesman problem 27

Tour improvement heuristics

Tour improvement procedures start from an initial tour and seek a better

one by moving from one solution to another within a neighbourhood

structure.

For a local search approach, the starting tour may be found using a tour

construction heuristic or through some other method. Modifications are

made to the initial tour to examine the neighbourhood and one of these

neighbour tours is selected. The search continues iteratively from this tour,

with neighbours being investigated and selected until a local optimum is

found.

Neighbourhood structures for local search approaches to the TSP are based

on edge-exchange and node-insertion procedures. The k-opt algorithms are

classic local search methods for the TSP. A neighbour of the current tour is

found by deleting k edges, breaking the tour into k segments, then

reconnecting these segments in a different order using k edges. The

neighbourhood of the tour may be generated by applying this modification

for each possible combination of k edges. For an n-node instance,

discovering all neighbours of a solution requires O(nk) time.

Croes [32] introduces the 2-opt algorithm. A 2-opt move deletes two edges,

breaking the tour into two paths, then reconnects the paths in the other

possible way. Bock [20] and Lin [82] present the 3-opt method. In a 3-opt

move, three edges are deleted and the tour is broken into three paths. There

are then eight ways to reconnect the paths to form a tour. Johnson and

McGeoch [1] discuss theoretical bounds and experimental results for these

local search algorithms.

Supply ship travelling salesman problem 28

The Lin-Kernighan algorithm [83] is an effective method that generalises

k-opt, “the value of k is dynamically determined using a sequence of 2-opt

moves” [1]. The algorithm has been modified and improved by Helsgaun

[70] and Applegate et al. [10].

Voudouris and Tsang [119] apply guided local search (GLS) and fast local

search (FLS) to the TSP. GLS augments the objective function “with a set

of penalty terms which are dynamically manipulated during the search

process to steer the heuristic to be guided” [119]. FLS narrows the search of

the neighbourhood by splitting it into active and inactive

sub-neighbourhoods.

According to Fredman et al., “the choice of data structure for tour

representation plays a critical role in the efficiency of local improvement

heuristics for the travelling salesman problem” [52]. They consider

alternative tree-based tour data structures which are useful for large TSPs.

Johnson and McGeoch [61] perform extensive experimentation with a

number of heuristics for real-world applications of the TSP, discovering

that, “heuristics can provide surprisingly good results in reasonable

amounts of time” [61].

Supply ship travelling salesman problem 29

3.2.2 Variations of the TSP

The supply ship TSP is a variation of the TSP in which the nodes are in

motion, each following a predetermined route. Thus each inter-node

distance or arc cost is a known continuous function of time. We now look at

static TSP variants that share some aspect of this characteristic. (In static

problems, as opposed to dynamic ones, costs and requirements are known

before runtime).

Asymmetric TSP

In the asymmetric TSP (ATSP), the distance cij from city i to city j need

not equal the reverse distance cji.

A number of heuristic classes are tested on real-world instances of the ATSP

by Johnson et al. [28, 62]: classical tour construction such as nearest

neighbour; local search such as 3-opt; cycle cover; and repeated local search.

Burke et al. [21] present HyperOpt, a variable neighbourhood search for the

ATSP. They propose a hybrid of this method with 3-opt that yields good

results.

Carpaneto et al. [23] use a branch-and-bound algorithm to find exact

solutions to large-scale ATSPs in reasonable times.

Time-dependent TSP

The time-dependent TSP (TDTSP) is a generalisation of the classical TSP

where, in the standard version, the cost of any given arc is dependent on its

position in the tour. This has applications to one-machine scheduling with

sequence dependent set-up times.

Supply ship travelling salesman problem 30

Gouveia and Voß [57] present a number of linear programming formulations

for the TDTSP, including those of Picard and Queyranne [102], Fox, Gavish

and Graves [49] and a formulation based on the quadratic assignment

problem [78]. The branch-and-bound approach of Picard and Queyranne

[102] is an effective method for solving TDTSPs with up to 20 nodes.

Another effective tree-search based method is presented by Lucena [86] for

the deliveryman problem, a TDTSP that seeks to minimise the average

arrival time at each location.

Vander Wiel and Sahanidis [123] present a mixed integer linear program

formulation. They develop a heuristic based on Lin-Kernighan, producing

solutions within 4.4% of optimum, on average.

Time dependent TSP for a congested urban environment

Malandraki and Daskin [91] introduce an alternative version of the TDTSP,

where edge costs represent travel times that depend on both the distance

between two locations and the time of day the trip is made. Some form of

“rush hour” affects the travel time. Treating travel time functions as step

functions, they present a mixed integer linear programming formulation for

a time dependent vehicle routing problem, of which the TDTSP is a special

case. They give a probabilistic nearest neighbour heuristic for the TDTSP

and briefly describe a cutting plane heuristic based on their linear

programming formulation (with further details in [90]). The algorithms are

tested on randomly generated problems with 10 to 25 nodes, and 2 or 3

time periods per edge. The cutting plane algorithm produces better tours

than the nearest neighbour heuristic but is much more computationally

expensive.

Supply ship travelling salesman problem 31

Malandraki and Dial [92] introduce a restricted dynamic programming

heuristic for the TDTSP. The heuristic provides a middle ground between

an optimal dynamic programming algorithm and the nearest neighbour

heuristic by “retaining only the H most promising partial tours” [92]. They

state that the algorithm relies heavily on its sorting procedure. The

problem instances they generate and test contain 10 to 55 nodes and use

step functions with 2 or 3 periods to represent each edge cost. They present

results for H ∈ {1, 100, 1000, 5000, 15000}, showing the heuristic provides

significant improvements over nearest neighbour. Marginal improvements

diminish quickly as H increases. They suggest that good solutions can be

obtained for 200-node problems in reasonable computational times.

Schneider [111] applies simulated annealing to solve special cases of a

TDTSP in which some subset of cities fall within a traffic zone. Travel

times between cities in the zone are increased by a constant factor after the

start of the rush hour in the afternoon.

Moving-target TSP

In the moving-target TSP (or kinetic TSP), a pursuer must intercept in

minimum time a set of targets which move with constant velocities from the

origin.

Hammar and Nilsson [65] study the approximation complexity of variants of

the kinetic TSP where targets move with fixed constant speeds in fixed

directions, starting from the origin. They show that, if all the targets move

with the same velocity, there is a polynomial time approximation scheme.

Helvig et al. [71] propose approximate and exact algorithms for variants of

the moving-target TSP. They consider the situation where targets are

confined to a single line, deducing an algorithm to find an optimal tour with

Supply ship travelling salesman problem 32

quadratic runtime. They also provide a heuristic for the case in which only

a few targets move. Another variant they consider is the moving-target TSP

with resupply after intercepts, where the pursuer must return to the origin

after intercepting each target.

Non-stationary TSP

The non-stationary TSP is similar to the moving-target TSP. A pursuer

must intercept in minimum time a set of targets which move with constant

velocities; however, each target has an initial starting position, while the

pursuer starts at the origin.

Jiang et al. [74] introduce the non-stationary TSP and apply a genetic

algorithm with two different crossovers.

3.2.3 Support ship routing in a deployed task group

As part of an MSc dissertation, Hewitt [72] studies ‘Support ship routing in

a deployed task group’ on behalf of Dstl. A task group is a collection of

ships deployed to perform a specific function. There may be between 11 and

29 combat ships in the group. The deployment may involve transiting

between locations or patrolling an area of sea. During transit the

configuration of zones for the combat ships is maintained, with individual

ships moving within their designated zone in the group. During the

deployment the combat ships must be resupplied by the task group’s

support ships. A replenishment-at-sea is accomplished with the supply ship

and combat ship travelling side by side.

Hewitt developed a scenario generator to approximate realistic deployments

of task groups. Individual ships are restricted to zones relative to the centre

Supply ship travelling salesman problem 33

of the task group as it transits between locations; whatever a ship’s

individual movements, its position relative to the other ships in the group is

constrained. The heuristic approaches that Hewitt tests include: nearest

neighbour; cheapest insertion; ant systems; 3-opt (without reversed

segements) and restricted enumeration. The algorithms are implemented in

Microsoft Excel, using Visual Basic for Applications. Restricted

enumeration is highlighted as a good approach. The 3-opt approaches

produce the best tours but running times are significantly longer than those

for restricted enumeration. The inclusion of a stopping condition for 3-opt

demonstrates that restricted enumeration performs better over similar time

frames. The restricted enumeration algorithm is an attempt to apply the

restricted dynamic programming approach of Malandraki and Dial [92], but

fails to apply the principle of optimality in order to retain only the best

state from a set of identical states with different objective values.

It is Hewitt’s project that has lead us to tackle the supply ship TSP. We

have generalised warship movements, eliminated task group movement and

simplified patrol zone structure. A key difference is the change in the

number of allowable ships per patrol zone.

3.2.4 Conclusions

The strongest approaches for the TSP rely on being able to compute a

minimum spanning tree [26, 69] or the capture of “good” sub-sequences that

can be switched around to produce better solutions [83]. These ideas do not

translate well to the supply ship TSP since edge costs may change whenever

the solution sequence changes. The approaches developed for the more

unusual TSP variations may depend on specific restrictions to the structure

of the problem. We will test heuristics that do not rely too heavily on step

functions or node movement restrictions.

Supply ship travelling salesman problem 34

3.3 The supply ship travelling salesman

problem

The supply ship travelling salesman problem involves the minimisation of

the total time required by a supply ship to visit and replenish a set of

warships while they ‘patrol’ an area of sea. The positions and movements of

all warships are known throughout the patrol time period. Each warship

has an associated replenishment time, the time duration required to

complete transfer of supplies. During replenishment the supply ship and

warship travel side by side, sharing the warship’s position, course and speed.

The supply ship begins at node 0, the depot, at time t0. Let N = {1, . . . , n}

be the set of nodes representing the n warships to be replenished, while rk is

the replenishment time at node k. The travel time, or arc cost, from node i

to node j is given by cij(ti), where ti is the time of departure from node i.

The goal is to find an ordering of the nodes of N , π = (π(1), π(2), . . . , π(n)),

that minimises the supply ship’s return time to the depot:

T ∗ = t0 + c0π(1)(t0) + rπ(1) +
n−1
∑

i=1

(

cπ(i)π(i+1)(tπ(i)) + rπ(i+1)

)

+ cπ(n)0(tπ(n))

where

tπ(1) = t0 + c0π(1)(t0) + rπ(1)

tπ(i) = tπ(i−1) + cπ(i−1)π(i)(tπ(i−1)) + rπ(i) for 2 ≤ i ≤ n

This is equivalent to minimising the supply ship’s total travel time between

warships:

c0π(1)(t0) +

n−1
∑

i=1

(

cπ(i)π(i+1)(tπ(i))
)

+ cπ(n)0(tπ(n))

where tπ(i) is as described above.

In the problem instances we consider, each warship’s journey is described by

a series of legs. Each leg is described by a starting position and the direction

Supply ship travelling salesman problem 35

in which the ship travels at its constant speed until the start of the next leg.

We assume that the supply ship travels at a constant speed greater than

that of any warship, but matches the course and speed of a warship during

replenishment.

The supply ship TSP could be considered to be a special case of an

asymmetric time dependent TSP where costs may vary continuously with

time. Both the moving-target TSP [71] and non-stationary TSP [74] are

similar to the supply ship TSP when each warship is restricted to one

journey leg.

Only some of the approaches for the TSP mentioned in Section 3.2 are able

to handle the supply ship TSP’s time dependency. Promising heuristic

methods include nearest neighbour and 3-opt local search for their

simplicity, while the adaptability of restricted dynamic programming

indicates it to be a worthwhile candidate.

3.4 Calculation of arc costs

It is clear that, because the warships are in motion and their movements are

known, the travel time between any two warships depends on the time at

which the journey begins. We calculate travel time, or arc cost, by solving a

quadratic equation based on the warships’ movement information.

We wish to find cij(ti), the travel time for the supply ship to reach warship

j when departing from warship i at time ti. We know the position of the

supply ship at time ti: it is at the same position as warship i. Let (xi, yi) be

the supply ship’s coordinates at time ti. Let (xj , yj) be the coordinates of

warship j at time ti and (wx, wy) be the components of its velocity in the x-

and y- directions during its current leg. Let s be the speed of the supply

Supply ship travelling salesman problem 36

ship and (sx, sy) be the unknown components of its velocity in the x- and y-

directions.

We must solve a set of 3 equations. To simplify the notation in these

equations, let t = cij(ti), x = xj − xi and y = yj − yi. We have

sxt = x + wxt (3.1)

syt = y + wyt (3.2)

s2
x + s2

y = s2 (3.3)

where sx, sy and t are unknowns. Equations (3.1) and (3.2) determine the

intersection time for the journeys of the supply ship and warship. Equation

(3.3) applies Pythagoras’ theorem to constrain the velocity of the supply

ship in the x- and y- directions. We are primarily interested in finding a

non-negative real value for t. We may eliminate sx and sy by multiplying

(3.3) by t2 and squaring each of (3.1) and (3.2).

s2
xt

2 = x2 + 2xwxt + w2
xt

2

s2
yt

2 = y2 + 2ywyt + w2
yt

2

s2
xt

2 + s2
yt

2 = s2t2

The resulting quadratic equation in t is

x2 + 2xwxt + w2
xt

2 + y2 + 2ywyt + w2
yt

2 = s2t2

which we may simplify to

at2 + bt + c = 0

where

a = w2
x + w2

y − s2

b = 2(xwx + ywy)

c = x2 + y2

Supply ship travelling salesman problem 37

(this is equivalent to the quadratic equation applied by [72]).

The value of the smallest non-negative solution to the equation may reveal

that the supply ship cannot reach the warship during its current leg. In this

case, we solve an adjusted quadratic equation using the starting position

and velocity components that describe warship j’s next leg. If the start of

the new leg is at time tleg we redefine (xj , yj) to be the position of the

warship j at time tleg. (xi, yi) remains as the position of the warship i at

time ti. We begin with the following set of equations:

sxt = x + wx(t − h)

syt = y + wy(t − h)

s2
x + s2

y = s2

where h = tleg − ti. The components of the resulting quadratic equation

become:

a = w2
x + w2

y − s2

b = 2(xwx + ywy) − 2h(w2
x + w2

y)

c = x2 + y2 − 2h(xwx + ywy) + h2(w2
x + w2

y)

We continue to re-solve the quadratic equation, updating tleg to mark the

start of the next leg with each failure, until a valid value for t is found.

Thus cij(ti) has time complexity O(Lj), where Lj is the maximum number

of legs for warship j. Letting L = maxj∈N {Lj}, we may say that the time

complexity of the travel time functions is O(L).

3.5 Dynamic programming

The following dynamic programming exact algorithm finds a tour of the

warships with the shortest return time to the supply ship’s depot location.

Supply ship travelling salesman problem 38

The formulation is equivalent to that presented by Malandraki and Dial [92]

for the time dependent TSP.

Recall that N = {1, . . . , n} is the set of nodes representing n warships to be

replenished, while a node 0 is the supply ship depot location. We have

defined rp to be the replenishment time at node p, while cpk(tp) is the travel

time for the supply ship to reach node k when departing from node p at

time tp.

Given a set of nodes S ⊆ N , and k ∈ S, let T (S, k) be the minimum time

needed to start from node 0, visit all the nodes in S and arrive at node k.

First, we find T (S, k) for |S| = 1, so S = {k}. We have

T ({k}, k) = t0 + c0k(t0) for all k ∈ N,

where t0 is the supply ship’s departure time from node 0.

For |S| > 1, the algorithm considers visiting k immediately after

p ∈ S − {k} and looks up the value of T (S − {k}, p) from the preceding

computations. We have

T (S, k) = min
p∈S−{k}

{

T (S − {k}, p) + rp + cpk

(

T (S − {k}, p) + rp

)

}

(3.4)

for all k ∈ S.

The minimum return time to the supply ship’s depot location for a

complete tour is given by

T ∗ = min
p∈N

{

T (N, p) + rp + cp0

(

T (N, p) + rp

)

}

.

The dynamic programming algorithm will only produce an optimum tour

for travel time functions with the following property [92]:

If t′i ≤ t′′i then t′i + cij(t
′
i) ≤ t′′i + cij(t

′′
i) for all i, j ∈ N.

Supply ship travelling salesman problem 39

This states that the supply ship must always arrive at its destination

warship earlier than if it had set off at a later time. This condition will hold

for the supply ship TSP if the supply ship knows the course its destination

warship will take over the period of time it takes to intercept it. With this

information it can set a heading, travel in a straight line and arrive at the

warship at the earliest possible time. If the above condition was not true

then the principle of optimality would not hold, since a partial path of

minimum arrival time would not necessarily lead to a minimum tour. The

algorithm would need to be extended to include waiting times at each node.

The dynamic programming algorithm guarantees optimality but has

exponential time and computer memory requirements; it is only effective

when applied to small problems.

Time complexity: There are 2n possibilities for S (a node is either in S, or it

is not in S) and at most n values for k. Therefore, the total number of

states to be stored is bounded by n2n. Since the maximum number of steps

per state grows linearly with n, we may say that the algorithm has time

complexity O(n22n). The time complexity of the dynamic programming

algorithm becomes O(Ln22n) if we include the complexity of calculating

travel times for each state.

The formulation will be used as the basis for finding lower bounds on the

optimal solution (Section 3.6) and also for heuristic methods to find good

solutions (Section 3.7).

Supply ship travelling salesman problem 40

3.6 Dynamic programming state-space

relaxation

Dynamic programming state-space relaxation (DPSSR) techniques may be

used to obtain lower bounds on the optimal value. In addition to its use as

a measure of the effectiveness of heuristic solutions, a good lower bounding

method may be embedded within a branch-and-bound scheme to fathom

and prune nodes. The DPSSR method was developed for routing problems

by Christofides et al. [27]. A relaxed problem is obtained from the dynamic

programming formulation by mapping the original state-space onto a

smaller state-space. Suitable dynamic programming recursions are then

performed using the smaller state-space.

The state space is relaxed through the use of a separable mapping function

[27]. This function, g(.), maps the domain (S, k) to a smaller space

(g(S), k). We use the mapping functions for the classical TSP in [27] to

produce recursions for the supply ship TSP, modifying the recursion in

Equation (3.4).

3.6.1 An n-path relaxation

Define g(S) = |S|. We then have

g(S − {k}) = g(S) − 1

and, letting s ≡ |S|, the recursion on the relaxed state-space becomes

T (s, k) = min
p∈N−{k}

{

T (s − 1, p) + rp + cpk

(

T (s − 1, p) + rp

)

}

for all k ∈ N.

Notice that the set of possible candidates for p in Equation (3.4) has been

expanded to p ∈ N − {k} from p ∈ S − {k} as the set of visited nodes is

unknown.

Supply ship travelling salesman problem 41

Initialisation:

T (1, k) = t0 + c0k(t0) for all k ∈ N.

Termination:

T ∗
LB = min

p∈N

{

T (n, p) + rp + cp0

(

T (n, p) + rp

)

}

.

There are only n states (each requiring a comparison of n − 1 values to find

the minimum) in each of the n stages so the time complexity of the

algorithm is O(n3) (if we include complexity of travel times this is O(Ln3)).

The shortest path provides a lower bound on the true optimal value. The

sequence of n nodes corresponding to the shortest path may contain

repetitions of the same node.

3.6.2 A q-path relaxation

Associate an integer number qk ≥ 1 with every node k ∈ N . Define

g(S) =
∑

i∈S

qi.

We then have

g(S − {k}) = g(S) − qk.

Letting Q ≡
∑

i∈S

qi, the recursion becomes

T (Q, k) = min
p∈N(Q,k)

{

T (Q − qk, p) + rp + cpk

(

T (Q − qk, p) + rp

)

}

for all k ∈ N , where

N(Q, k) = {x| x ∈ N, x 6= k, qx ≤ Q − qk}.

Initialisation:

T (Q, k) =







t0 + c0k(t0), if Q = qk

∞, if Q 6= qk

for all k ∈ N.

Supply ship travelling salesman problem 42

Termination: Let Q =
∑

k∈N

qk, then

T ∗
LB = min

p∈N

{

T (Q, p) + rp + cp0

(

T (Q, p) + rp

)

}

.

The n-path relaxation is a special case of the q-path, where qk = 1 for all

k ∈ N . Appropriate selection of these state-space modifiers, qk, can reduce

the number of repeated visits to a node, improving the ‘feasibility’ of the

resulting sequence and thus improving the bound. If any qk > 1, the node

sequence corresponding to the shortest path will not necessarily contain n

nodes. There are now Q stages in the algorithm, so the time complexity is

O(Qn2) (if we include complexity of travel times this is O(LQn2)).

3.6.3 A q-q-path relaxation

Associate two integer numbers q′k, q′′k , where q′k + q′′k ≥ 1, with every node

k ∈ N . Define g(S) as the vector

(Q′, Q′′) =

(

∑

i∈S

q′i,
∑

i∈S

q′′i

)

.

We then have

g(S − {k}) = (Q′ − q′k, Q
′′ − q′′k).

The recursion becomes

T (Q′, Q′′, k) = min
p∈N(Q′,Q′′,k)

{

T (Q′ − q′k, Q
′′ − q′′k , p) + rp + cpk(tp)

}

for all k ∈ N , where

tp = T (Q′ − q′k, Q
′′ − q′′k , p) + rp

and

N(Q′, Q′′, k) = {x| x ∈ N, x 6= k, q′x ≤ Q′ − q′k, q
′′
x ≤ Q′′ − q′′k}

Supply ship travelling salesman problem 43

Initialisation:

T (Q′, Q′′, k) =







t0 + c0k(t0), if Q′ = q′k and Q′′ = q′′k

∞, otherwise

for all k ∈ N .

Termination: Let (Q′,Q′′) =

(

∑

k∈N

q′k,
∑

k∈N

q′′k

)

, then

T ∗
LB = min

p∈N

{

T (Q′,Q′′, p) + rp + cp0

(

T (Q′,Q′′, p) + rp

)

}

.

The q-path is a special case of the q-q-path where q′k = qk and q′′k = 0 for all

k ∈ N . The additional set of state-space modifiers is included to allow

further flexibility and improve the quality of the relaxation. The number of

sets of such modifiers can be increased, but will result in significant

increases in the size of the state-space. With Qqq = max{Q′ × Q′′,Q′,Q′′}

stages, the time complexity of the algorithm is O(LQqqn
2).

3.6.4 Selection of state-space modifiers

The integers, qk, in the q-path and q-q-path relaxations are called the

state-space modifiers [2]. Our aim for these modifiers is to force the shortest

path to define a feasible sequence.

Replenishment times as state-space modifiers

In the supply ship TSP each warship has a replenishment time. During

replenishment the supply ship and warship travel side by side. Total

replenishment time across all warships may make up a large proportion of

the total time to complete a tour. The state-space modifiers should reflect

the replenishment times for the warships, so the node sequence provided by

the relaxation includes an accurate contribution to the total tour time from

Supply ship travelling salesman problem 44

the total replenishment time. Otherwise, the sequence may repeatedly visit

the warships with smallest replenishment times in order to arrive at a

smaller total tour time.

We propose that for a q-path relaxation, we let qk = rk for all k ∈ N . Note

that this will only work if rk ∈ N. If any of the replenishment times are not

positive integers, the modifiers should represent these values as an integer;

for example, let qk = ⌈rk⌉ for all k ∈ N .

The q-q-path relaxation is an extension of the q-path. It uses two sets of

modifiers. In this relaxation, a modifier may be zero so long as the

corresponding modifier in the other set is an integer greater than zero. If

the first set of modifiers, q′k, are used to reflect the replenishment times for

the warships, the second set, q′′k , may be altered to improve the bound using

the methods described below.

Iterative methods for state-space modifiers

We follow the two iterative methods proposed by Abdul-Razaq and Potts [2]

to find values for a set of modifiers, qk for all k ∈ N .

• q-path: initially set q
(0)
k = 1 for all k ∈ N .

• q-q-path: the first set of modifiers are selected using some other

method. Denote the second set of modifiers by qk. Assuming the first

set of modifiers have values of at least 1, the second set are initially

set to q
(0)
k = 0 for all k ∈ N . Iterative modifications are performed on

this second set.

At iteration i − 1 the DPSSR lower bound is obtained with its

corresponding sequence of nodes. Let m
(i−1)
k be the number of times that

node k occurs in this sequence. If m
(i−1)
k = 1 for all k ∈ N , then every node

Supply ship travelling salesman problem 45

has been visited exactly once and the sequence provides a feasible tour.

Such a tour must be optimal.

Method 1:

If the sequence produced is not feasible, we wish to find a node p ∈ N for

which m
(i−1)
p > 1, and increase the modifier for node p by one with the hope

of obtaining m
(i)
p = 1 in the next iteration. Select a node p satisfying

(m(i−1)
p − 1)(q(i−1)

p + a) = max
k∈N

{(m
(i−1)
k − 1)(q

(i−1)
k + a)},

where a ≥ 0 is an integer parameter. Update the modifiers using

q
(i)
k =







q
(i−1)
k for k 6= p

q
(i−1)
k + 1 for k = p

for all k ∈ N.

The use of this method results in Q(i) =
∑

k∈N

q
(i)
k = i for the q-q-path. (More

DP stages must be calculated as Q(i) increases). Abdul-Razaq and Potts [2]

found that using this formula with a = 2 produced satisfactory results for

the single-machine scheduling problem.

Method 2:

Update the modifiers using

q
(i)
k = max{q

(i−1)
k + (m

(i−1)
k − 1), δ} for k ∈ N

where δ = 1 for the q-path, and δ = 0 for the q-q-path. Q(i) is typically

larger (in earlier iterations) than if Method 1 is used, so more DP stages

must be calculated, but the modifiers should approach their optimal values

more quickly. This method has similarities to the subgradient optimisation

technique also used in [2] to update penalties.

Supply ship travelling salesman problem 46

Penalties

A useful technique to improve the bounds provided by state-space

relaxations is the inclusion of penalties. A penalty λk is defined as an

additional cost that is incurred when node k is visited. Since the cost of any

complete tour would be increased by λ =
∑

k∈N

λk, the introduction of

penalties provides an equivalent problem. However, in a state-space

relaxation the sequences of nodes that do not define a complete tour would

increase in cost by varying amounts. It is desirable to find penalty values

that force the sequence with the smallest cost to form a complete tour.

These penalties are analogous to the multipliers used in Lagrangian

relaxation for integer programming.

Unfortunately, penalties may not be used so easily for our relaxation of the

supply ship TSP. The cost involved for the measurement of a tour is ‘time

for completion’. Since the travel time of the supply ship between warships

depends on the time of departure, using penalties would interfere with the

function calculating the travel time.

3.7 Restricted dynamic programming

Before looking at the restricted dynamic program, let us briefly review the

nearest neighbour heuristic. The nearest neighbour algorithm follows the

behaviour of a traveller whose rule is to always go to the nearest unvisited

location. For the supply ship TSP the nearest neighbour tour begins at the

depot, then repeatedly adds the warship not yet in the tour that takes the

shortest time to reach until all warships have been added. Once all the

warships are in the tour, it returns to the depot.

The restricted dynamic programming heuristic [92] provides a middle

Supply ship travelling salesman problem 47

ground between the dynamic programming exact algorithm and the nearest

neighbour heuristic. This modification of the dynamic programming

algorithm can avoid the exponential explosion of time and storage

requirements by retaining only the H most promising partial tours at each

stage, where H is a parameter specified by the user. When H = 1, the

algorithm is equivalent to the nearest neighbour heuristic. On average,

higher values for H will produce better solutions, but at a greater

computational cost.

3.7.1 Retaining partial tours

Partial tours, or states, are generated by adding a single node k ∈ N − S to

each partial tour, (S, p), in the previous stage. The principle of optimality is

applied so that inferior duplicate states are eliminated. Although there are

i
(

n
i

)

distinct states available in stage i ≡ |S|, only H states are retained by

the restricted dynamic programming algorithm. The partial tours are

judged by an associated cost value, with lower costs being preferred. The

natural cost measure (used in [92] for the time dependent TSP) is T (S, k),

the total time to arrive at the last node in the partial tour after reaching

and replenishing all preceding nodes.

As alternatives to using T (S, k) to determine which H tours to retain, we

propose the following strategies:

• Ignore replenishment: Compare the total travel time of the supply

ship between nodes, ignoring replenishment times and time of

departure from the depot. This eliminates any bias towards retaining

partial tours that schedule nodes with the shortest replenishment

times first. (During computational testing we designated this

approach RDP2).

Supply ship travelling salesman problem 48

• Predictive costing: Use the cost of a corresponding complete tour.

We calculate a predictive measure of the final cost of each partial tour

by applying the nearest neighbour algorithm to complete the tour.

(During computational testing we designated this approach as

Predictive RDP). This idea is inspired by the beam search technique

[97], an approximate branch-and-bound method where a simple

heuristic algorithm is used to estimate complete solution values from

partial solutions.

3.7.2 Computational complexity

The algorithm consists of n stages. A maximum of H partial tours are

retained at each stage. Since a partial tour includes S, where |S| ≤ n, the

space complexity of retaining partial tours for all stages is O(n2H). By

retaining only two stages at a time (the current stage and the previous stage

from which it is being generated) the space requirements are reduced to

O(nH).

Up to n partial tours may be generated from each partial tour retained in

the previous stage (each new tour requires a single use of the O(L) travel

time function). The number of steps required to identify whether a partial

tour is to be retained depends only on the number of states already retained

(O(H)). Thus the restricted dynamic programming algorithm for the supply

ship TSP has a time complexity of O(n2H2L).

The predictive costing approach applies the nearest neighbour heuristic to

complete the tour whenever a new partial tour is generated. The nearest

neighbour heuristic requires O(n2L) time, as up to n journeys to each

unvisited node must be computed. The predictive restricted dynamic

programming method therefore has a time complexity of O(n4H2L2).

Supply ship travelling salesman problem 49

3.8 Local search: k-opt

In this section, we briefly outline the application of k-opt algorithms to the

supply ship TSP. It is important to note that the cost of travelling from

warship i to warship j is not necessarily the same as the cost of travelling

from warship j to warship i (as in the asymmetric TSP). These costs also

depend on the time the supply ship leaves the origin warship, which in turn

depends on the sequence of warships visited so far. Whenever a neighbour

tour is generated, many arc costs must be recomputed; this requires O(nL)

time. A straightforward k-opt approach for the supply ship TSP therefore

requires O(nk+1L) time to search for an improving move.

3.8.1 2-opt

2-opt is the simplest of the k-opt family of algorithms [32]. It modifies a

tour by removing two edges, leaving two segments. The segments are

reconnected by inserting two edges in the only other way possible to make a

new tour. This is equivalent to reversing one of the segments. The arc costs

for the reversed segment could change significantly.

3.8.2 3-opt

3-opt modifies a tour by removing three edges, leaving three segments [20].

The segments are reconnected by inserting three edges to make a new tour.

There are seven ways to reconnect the segments to make a new tour; of

these, three correspond to 2-opt moves, where one of the deleted edges is

reinserted. Except for those arcs on the directed path leading from the

depot node within the ‘depot segment’, all arc costs must be recalculated.

Supply ship travelling salesman problem 50

A 3-opt move allows segments to be reversed in the same way as 2-opt.

There is only one way of reconnecting the segments to construct a tour that

maintains their direction; it may be worth considering a restricted 3-opt

strategy that considers only this swap, since this is effective for the

asymmetric TSP [62].

3.8.3 Neighbourhood move acceptance strategies

Two classical ways of choosing the move to accept within the

neighbourhood are:

• First improvement descent: Generate neighbour tours until one is

found that has a lower cost than the current tour. This new tour

becomes the current tour and now its neighbourhood is generated

until a better one is found. This process continues until a tour is

found that does not have any better tours in its neighbourhood.

• Best improvement / steepest descent: Generate all neighbour tours of

the current tour. From this list, select the tour with the lowest cost. If

its cost is lower than the current tour’s, the new tour becomes the

current tour and now its neighbourhood is generated. This process

continues until a tour is found that does not have any better tours in

its neighbourhood. This strategy may result in better tours being

found, but exploration of each adjacent tour may increase running

time.

Supply ship travelling salesman problem 51

3.9 Computational experience

The algorithms were coded in the C programming language and compiled

using Microsoft Visual Studio .NET 2003. The computer used to test the

algorithms featured a Pentium 4 processor (2.4 GHz with 504 MB of RAM).

3.9.1 Generating instances of the supply ship TSP

We generated random instances of the supply ship TSP using the following

parameters. A 200× 200 area of sea is split into four quadrants of 100× 100

(a large simplification of the fixed patrol zone structure of a deployed task

group). For an n-ship (or n-node) problem we allocate n warships evenly to

the four zones (i.e. ⌊n/4⌋ to each zone, then each of the remaining warships

to a different zone). Starting positions for each warship are randomly

generated within their assigned quadrant. A fixed location for the supply

ship’s depot position is generated and may lie anywhere within the

200 × 200 area (the depot might also be considered to be a node, thus an

“n-node” instance actually requires a tour containing n + 1 nodes).

The fixed patrol speed of each warship is selected at random from {2, 5, 10}.

Similarly, the fixed pursuit speed of the supply ship is randomly selected

from {12, 15, 20}, ensuring it is fast enough to catch any warship.

Replenishment times associated with each warship are selected at random

from {1, 2, 3}.

The warships’ patrol movement is made in ‘legs’: a warship continues along

a randomly generated bearing ({0,1,. . . ,359} degrees) for a time interval

randomly selected from {2, 5, 10}. We have not included specialised patrol

strategies. Warships must remain inside their zone, so a leg is interrupted if

the ship reaches the boundary; a new leg begins on a course that does not

Supply ship travelling salesman problem 52

cross the boundary. If a warship ends a leg within a 5 unit ‘buffer’ of a zone

edge, the direction of its next leg will be set so that it does not cross the

boundary. Legs continue to be generated until an upper bound on the time

required by the supply ship is reached. Information about position changes

and start/finish times of legs are stored so that we can calculate the

position of a warship at any time.

An illustration of warship movements for an 8-node instance is shown in

Figure 3.1. Each set of coloured edges and vertices represents the course of

a warship over the full time period. This does not truly represent a set of

realistic courses, but the random nature of these movements allows for fairly

diverse instances within the structure we have set out. The grid structure

arose in deference to the scenarios used in [72], but does not attempt to

match the distinct layout or single-ship-per-zone limitations.

Given our 200 × 200 movement area, the longest possible trip for the supply

ship between any two points is in a straight line across the diagonal. If s is

the speed of the supply ship and cmax =
√

2002+2002

s
, we have cij(ti) ≤ cmax

for all i, j ∈ N . Assuming that the supply ship must make only n journeys

to warships, the time period over which warship movements must be known

is (cmax + rmax)× n units long, where rmax the largest allowed replenishment

time (rmax = 3 for our instances).

By fixing a minimum leg duration value, we may determine, L, the

maximum possible number of legs needed by a warship to cover the time

period. For our instances we have specified that no leg duration may be less

than one time unit, so L = (cmax + rmax)n. Therefore, in the worst case,

cij(ti) requires O(n) time as it proceeds through all possible legs. (Note that

in the q-path relaxation there may be as many as Q trips, so there should

be (cmax + rmax) × Q legs).

Supply ship travelling salesman problem 53

0

100

200

0 100 200

Figure 3.1: Example patrols for eight warships

Supply ship travelling salesman problem 54

3.9.2 Lower bounds from dynamic programming

state-space relaxations

Experiments were conducted on twenty 20-node instances. Since optimal

values are unknown, we used the solution value from RDP2 with

H = 10, 000 as an approximation (see Section 3.9.3). The percentage of this

solution value achieved by the bound was calculated. That is, if α is the

approximation to the optimal value and Λ is the lower bound value, we

compute Λ
α
× 100. We looked at the average of these relative values (ARV)

across the twenty instances; the higher the ARV the better we consider the

lower bound to be.

n-path relaxation

The ARV for the n-path relaxation (Section 3.6.1) was 63.4% and required

0.03 seconds to compute, on average.

q-path relaxations

The iterative methods described in Section 3.6.4 were used independently to

find values for a single set of state-space modifiers, qk, k ∈ N . Following [2],

we set a = 2 for Method 1. For the starting iteration, qk = 1 for every

k ∈ N , thus the relaxations are equivalent to the n-path. Plots of ARV

against average computation time are shown in Figure 3.2. The lower two

lines display the average performance of Method 1 and Method 2 as

iterations progress. On average, Method 1 produced greater increases in the

bound within a shorter time than Method 2. Method 1 completed 270

iterations in 54 seconds on average, achieving an ARV of 74.8%, while

Method 2 computed 311 iterations with an ARV of 73.8% in the same time.

Supply ship travelling salesman problem 55

60

65

70

75

80

85

0 10 20 30 40 50

Running Time (s)

A
v

e
ra

g
e

R
e

la
ti

v
e

V
a

lu
e

(%
)

q-path: Method 1,a=2

q-path: Method 2

q-q-path: Method 1,a=5

q-q-path: Method 2

Figure 3.2: Average performance of iterative methods for selection of state-

space modifiers over twenty 20-node problems

In Section 3.6.4, we proposed setting the state-space modifiers equal to the

replenishment times for each node. The q-path relaxation with qk = rk for

all k ∈ N provided an ARV of 72.8% and required 0.06 seconds. This

represents a good improvement in the bound over the n-path, while

computation time remains small. Setting modifiers in this way compares

favourably with the iterative methods, since Method 1 required 7 seconds to

match the ARV obtained, while Method 2 required 32 seconds.

q-q-path relaxations

A single set of modifiers, q′k for k ∈ N , were set equal to the integer

replenishment times for the nodes. Both iterative methods were used to find

values for the second set of state-space modifiers, where initially, q′′k = 0 for

all k ∈ N . Thus at the starting iteration, the relaxations are equivalent to

the q-path with qk ≡ q′k = rk for all k ∈ N . Method 1 was tested using a

number of parameter values: a = 1, 2, 3, 4, 5.

Supply ship travelling salesman problem 56

The performances of Method 1 (with a = 5) and Method 2 are included in

Figure 3.2. Method 1 with a = 5 performed the best; ARV increased to

80.6% within 2 seconds. It computed 52 iterations within 54 seconds, with

an ARV of 83.6%. The bounds found by Method 1 improved marginally as

parameter a increased from 1 to 5.

Overall, Method 1 with its incremental approach was found to be superior

to the subgradient approach of Method 2 for the supply ship TSP. Although

our proposal for the use of replenishment times provides a significant

improvement, the resulting bounds are probably not tight enough to

underpin an efficient branch-and-bound scheme (but this has not been

tested).

3.9.3 Restricted dynamic programming

Three versions of the restricted dynamic program were tested, each with a

different criterion for retaining partial tours:

1. RDP: Retains partial tours with the smallest time cost, T (S, k).

2. RDP2: Retains partial tours with the smallest time cost, ignoring

contribution of replenishment times.

3. Predictive RDP: Retains partial tours with the smallest final time

cost found using the nearest neighbour heuristic.

The idea behind RDP2 is to remove the bias of retaining those tours where

the ships with shortest total replenishment times are placed earliest, as this

may occur in RDP. The supply ship’s total travel time between warships is

used instead. Since the total replenishment time is fixed for a complete

tour, our objective is to minimise this travel time in order to minimise tour

completion time.

Supply ship travelling salesman problem 57

Results were calculated for three sizes of supply ship TSP problem: 10-node,

20-node and 30-node. A number of different values for the parameter H , the

number of partial tours retained at each stage, were experimented with.

The quality of a solution is measured using the percentage excess of the

solution value over the solution found using RDP2 with H = 20, 000, after

subtracting total replenishment time (which is fixed) from both solutions.

That is, if U is the objective value given by our heuristic method, B is the

objective value we have found for the instance using RDP2 with

H = 20, 000, and R is the sum of each warship’s replenishment, then we let

Excess = 100 ×
((U − R) − (B − R))

(B − R)
=

100(U − B)

B − R
.

By removing replenishment times, we may differentiate more clearly

between the heuristics’ ability to pick tours with the smallest total travel

times. We consider H = 20, 000 to be a suitably large parameter value

against which results for smaller values may be meaningfully compared.

The 10-node problem instances proved easy to solve exactly using the RDP

heuristic with H = max
1≤i≤10

{i
(

10
i

)

} = 1260. This parameter value effectively

retains all partial tours and provides the dynamic programming exact

solution. In this case, 50 randomly generated scenarios were solved exactly,

requiring an average CPU time of 0.130 seconds. During experimentation,

the optimal solution was produced for all 50 of the instances using RDP2

with H = 840, requiring a CPU time of 0.101 seconds, on average.

The 20-node problem instances could not be solved exactly by dynamic

programming on our machine within a reasonable time; the algorithm would

require H = 1, 847, 560. Our approximation for the optimal solution was

provided by RDP2 with H = 20, 000, which required an average CPU time

of 277 seconds over 20 instances. Figure 3.3 compares the quality of solution

against average CPU time over twenty instances. In the figure, the closer

the points lie to the bottom-left, the better the method. Each point

represents the results obtained using a particular value for H ; as H

Supply ship travelling salesman problem 58

increases, the average excess over optimal decreases and average CPU times

increase. RDP2 produces better solutions on average than both RDP and

Predictive RDP at all running times. Predictive RDP outperforms RDP for

running times greater than 20 seconds.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5

Excess (%)

R
u

n
n

in
g

T
im

e
(s

)

RDP

RDP2

Pred RPD

Figure 3.3: Comparison of restricted dynamic programming approaches to

the 20-node supply ship TSP

Table 3.1 displays the excess percentage and running times for RDP2 with a

number of values for the parameter H (some correspond to i
(

n
i

)

for small i).

When H = 1, RDP2 is equivalent to the nearest neighbour heuristic; this

produced an excess of 27% but took almost zero time to compute. Perhaps

the best value to use for a fast, quality solution is H = 2000, since this

provides an excess of only 1.5 % in approximately 2 seconds.

The predictive costing approach used in Predictive RDP provided excellent

improvements in the quality of solutions over RDP2 for each value of H (see

Table 3.2), but the need to calculate a nearest neighbour tour for each

partial tour as it was generated meant that CPU times did not compare

favourably. Applying RDP2 with a larger value for H provides a better

solution in a shorter time.

Supply ship travelling salesman problem 59

H Excess (%) CPU time (s)

1 27.012 0.002

20 14.156 0.016

50 10.263 0.036

100 7.883 0.070

200 6.464 0.149

300 5.802 0.234

380 5.702 0.299

400 5.307 0.316

500 4.888 0.400

1000 3.099 0.890

2000 1.500 2.204

3420 1.433 4.800

5000 0.957 8.530

10000 0.528 27.360

15000 0.437 64.818

20000 0.000 276.812

Table 3.1: Results using RDP2 for the 20-node problem

H Excess (%) CPU time (s)

1 13.037 0.083

20 5.834 1.312

100 3.438 5.427

500 1.400 24.420

1000 1.059 44.505

1500 0.965 64.608

2000 0.556 84.838

Table 3.2: Predictive RDP for the 20-node problem

Supply ship travelling salesman problem 60

The comparison of these restricted dynamic programming heuristics for

twenty instances of the 30-node problem yielded similar patterns. The

RDP2 heuristic proved the best for this larger problem. Results for RDP2

are shown in Table 3.3. Using a value of H between 2000 and 5000 may

provide good results in a reasonable time.

H Excess (%) Time (s)

1 29.007 0.001

30 14.204 0.051

50 13.214 0.088

100 11.783 0.171

2000 10.400 0.345

300 8.946 0.530

400 8.525 0.727

500 8.088 0.931

870 7.227 1.759

1000 6.371 2.080

2000 4.622 4.938

5000 1.556 19.162

10000 0.517 60.724

12180 0.428 85.870

15000 0.352 146.908

20000 0.000 651.320

Table 3.3: Results using RDP2 for the 30-node problem

Supply ship travelling salesman problem 61

3.9.4 k-opt

Six varieties of a k-opt descent algorithm were tested on twenty instances of

the 20-node problem and twenty instances of the 30-node problem (the

same instances were used for the RDP testing).

1. 3-opt FI: first improvement.

2. 3-opt BI: best improvement.

3. 3-opt NR FI: no reversed segment moves - first improvement.

4. 3-opt NR BI: no reversed segment moves - best improvement.

5. 2-opt FI: first improvement.

6. 2-opt BI: best improvement.

In each case, the starting tour was generated using the nearest neighbour

(NN) algorithm. Figure 3.4 and Table 3.4 display the quality of solution

against average CPU time for the 20-node instances. In the figure, the

closer the points lie to the bottom-left, the better the method. The figure

also displays the performance of the RDP2 algorithm for comparative

purposes. We see that none of these k-opt methods compete with the RDP2

method in terms of quality or running time. The nearest neighbour heuristic

provided a starting solution with an excess of 27%. As expected, the 2-opt

methods were fastest, reducing the excess percentage by 10 percentage

points in very little time. The 2-opt best improvement method performed

slightly better than the 2-opt first improvement method. The 3-opt NR best

improvement had a slightly shorter running time than the 3-opt NR first

improvement method, though both provided a similarly effective solution.

The 3-opt FI and BI methods had much larger running times relatively, but

produced better solutions on average: around 10% in excess of the

Supply ship travelling salesman problem 62

approximation for the optimum. The first improvement method ran longer

than best improvement, but produced the best quality solution from the

k-opt algorithms tested.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

Excess (%)

R
u

n
n

in
g

T
im

e
(s

) 3-Opt FI

3-Opt BI

3-Opt NR FI

3-Opt NR BI

2-Opt FI

2-Opt BI

RDP2

Figure 3.4: Comparison of k-opt approaches for the 20-node problem

Excess (%) CPU time (s)

3-opt FI 8.794 2.156

3-opt BI 10.710 1.852

3-opt NR BI 16.344 0.372

3-opt NR FI 16.416 0.562

2-opt BI 17.453 0.045

2-opt FI 18.695 0.043

NN 27.012 0.002

Table 3.4: Results using k-opt for the 20-node problem

Table 3.5 displays results for the 30-node instances. A graphical comparison

between the opt methods and RDP2 displayed a picture very similar to

Figure 3.4 for the 20-node instances. As we might expect, both Excess

values and CPU times have increased, but the relative effectiveness of the

approaches remains similar.

Supply ship travelling salesman problem 63

Excess (%) CPU time (s)

3-opt FI 14.714 21.059

3-opt BI 16.274 11.994

3-opt NR BI 19.477 2.550

3-opt NR FI 20.702 5.270

2-opt BI 21.785 0.202

2-opt FI 22.563 0.274

NN 29.007 0.001

Table 3.5: Results using k-opt for the 30-node problem

3.9.5 3-opt using an improved starting solution

Since the effectiveness of the k-opt algorithms may depend on the quality of

the starting tour, the performance of these algorithms may improve if used

with a starting tour generated by the RDP2 algorithm. Figure 3.5 shows

how applying 3-opt best improvement to tours found using RDP2 with

varying H improves the quality of the solution and increases average CPU

time (the 3-opt first improvement approach produced almost identical

results). We present results averaged across forty 20-node scenarios (the

twenty used for RDP testing, plus another twenty that had been generated

during construction of the algorithm, thus representing an even broader

sample). We can see that the 3-opt algorithm provides a small improvement

to the solution value on average, with a small increase in CPU time. The

figure shows that only a section of the 3-opt line lies to the left of the RDP2

line, indicating an improvement over RDP2 for these values of H . The 3-opt

approach appears to be worthwhile when used to improve on a RDP2 tour

with 2000 ≤ H ≤ 4000. Otherwise it is better to use RDP2 with a larger

value for H to find the solution.

Supply ship travelling salesman problem 64

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4

Excess (%)

R
u

n
n

in
g

T
im

e
(s

)

RDP2

3-Opt BI

Figure 3.5: Using 3-opt to improve a tour found using RDP2 for the 20-node

problem

In many of the instances, the RDP2 solution already had a 0% excess;

applying 3-opt to such tours did not produce any tours that were better

than our benchmark. Many of the solutions provided by RDP2 were found

to be locally optimal with regard to the 3-opt search space, so applying

3-opt merely found that neighbour tours were inferior. This calculation only

takes a fraction of a second, but will improve the solution in a few cases.

Table 3.6 shows CPU times and solution quality improvement using 3-opt

BI on starting tours generated by RDP2 with varying H . For values of H

greater than 100, the average improvement in the solution is small, but the

additonal CPU time required is also very small. For values of H over 1000,

the bulk of the CPU time for the solution is due to the RDP2 starting tour.

Supply ship travelling salesman problem 65

H Excess (%) Improvement (%) Total CPU time (s) 3-opt time (s)

1 13.436 18.031 1.663 1.662

100 8.052 1.043 0.498 0.428

500 3.669 0.064 0.688 0.310

1000 2.367 0.172 1.167 0.319

1500 1.444 0.115 1.743 0.313

2000 1.208 0.136 2.440 0.315

2500 1.056 0.130 3.234 0.306

3000 1.056 0.113 4.120 0.295

3500 1.020 0.121 5.115 0.300

4000 1.020 0.037 6.184 0.293

4500 0.947 0.013 7.351 0.287

5000 0.860 0.030 8.619 0.293

Table 3.6: Results using 3-opt BI to improve RDP2 solutions for the 20-node

problem

Supply ship travelling salesman problem 66

3.10 Extensions to the work presented

We have tested our heuristics for problem sizes of 10, 20 and 30 nodes; these

sizes seem reasonable and correspond roughly to the maximum number of

ships in naval task groups. Although restricted dynamic programming

clearly outperforms simple 3-opt for these instances, we have not tested

them on larger scale problems.

Although we may apply some local search procedures that have been shown

to be effective for the classical TSP, we should bear in mind that objective

values for neighbouring solutions require significantly more computation:

any change in node ordering results in different arc costs from the first

altered node in the sequence onwards. In addition, since the arc costs may

change continuously, techniques used in k-opt for the TSP to speed up the

search [61], such as those employing lists of close neighbours, may actually

lengthen overall computation. However, algorithms in the k-opt family that

restrict the types of allowable move, such as 2.5-opt and Or-opt [99], could

provide improved computation time results over 3-opt. The 2.5-opt

neighbourhood includes all 2-opt moves, plus those 3-opt moves that delete

a single node and reinsert elsewhere in the tour. Or-opt extends 2.5-opt to

allow repositioning of segments of up to 3 nodes.

There is also scope for stochastic techniques to be applied to the supply ship

TSP. We have only used deterministic approaches.

3.11 Conclusion

This chapter has studied an unusual variation of the travelling salesman

problem, an important NP-hard combinatorial optimisation problem. A

supply ship must visit and resupply a group of warships while they are in

Supply ship travelling salesman problem 67

motion; we have called this problem the supply ship travelling salesman

problem. The potential for dynamic programming state-space relaxations to

provide lower bounds for this problem was investigated. We found that the

bounds provided by this method were probably not strong enough to be

useful, on average. We have constructed and applied our variants of the

restricted dynamic programming heuristic of Malandraki and Dial to

20-node and 30-node problems, highlighting an approach that seems to

provides good solutions in a reasonable time. Finally, we built and applied

simple k-opt descent algorithms to solve 20-node problems, discovering that

the performance of these approaches is strongly dominated by a restricted

dynamic programming approach.

Dynamic programming heuristics are best able to incorporate the strongly

‘dynamic’ nature of the problem. They are also flexible enough to handle

additional concerns that could be added to the problem, such as time

windows or precedence constraints.

Chapter 4

The supply ship scheduling

problem

4.1 Introduction

Scheduling concerns the allocation of limited resources to required activities.

Scheduling problems arise in many real-world environments; these include

manufacturing industries, airports and hospitals [80]. Inspired by watercraft

allocation issues arising in naval operations, we introduce the supply ship

scheduling problem, a combinatorial optimisation problem featuring a fusion

of flavours from the world of scheduling.

In the supply ship scheduling problem we wish to minimise the number of

machines required to process a set of jobs with fixed start times and

sequence-dependent set-up times, where any job may be simultaneously

processed by multiple machines, obtaining a speed-up in processing time.

We may think of the jobs as being service/cargo tasks that must be

completed at a number of ships/docks within an area of water. The

machines/supply ships are mobile and travel between these static locations

68

Supply ship scheduling 69

to complete the tasks; travel times translate to sequence-dependent set-up

times between jobs. It is assumed that these machines are identical and

travel at the same speed.

The combination of these scheduling components eliminates the

applicability of many of the algorithms used to tackle related problems. In

this chapter, we introduce the supply ship scheduling problem and develop

some heuristic methods for finding good solutions. A problem instance is

represented as a directed graph: its arc values determine whether

corresponding arcs appear in the transformed network associated with a

particular solution. The neighbourhoods utilised in our descent and tabu

search procedures are constructed through an analysis of minimum flows in

these networks. We also formulate heuristics based on restricted dynamic

programming that find feasible allocations of machines to jobs when the

total number of machines is limited.

The individual features of the supply ship scheduling problem are listed in

Section 4.2. Section 4.3 takes a brief look at the literature for scheduling

problems that share some of these features. An introduction to minimum

flows and the minflow-maxcut theory is provided in Section 4.4. Section 4.5

contains a description of the supply ship scheduling problem, then goes on

to show how threshold values are used to narrow the set of possible

solutions and create associated networks. Section 4.6 presents descent and

tabu search improvement heuristics whose neighbourhoods are determined

through analysis of maximum cuts in solution networks. Section 4.7

describes our initial restricted dynamic programming based heuristic. Our

computational experience is presented in Section 4.8. Section 4.9 suggests

areas for further study. Section 4.10 includes an improved formulation for a

restricted dynamic programming approach that has not yet been coded or

tested. Our conclusions are provided in Section 4.11.

Supply ship scheduling 70

4.2 Problem features

1. Deterministic: All data are known values.

2. Non-pre-emptable jobs: Execution of a job may not be

interrupted. Once a machine begins to process a job, it is unavailable

to perform any other activity until the job is completed.

3. Fixed job start times: The time at which the execution of a job

begins is specified as part of the problem data. A schedule must allow

for at least one machine to be available to process a job at its fixed

start time.

4. Sequence-dependent set-up times: Before each job is processed

the machine must be prepared. The time required for this preparation

depends on the job that was last completed by the machine.

5. Identical parallel machines: A number of machines are available to

process jobs. Distinct jobs may be processed simultaneously on

different machines. Processing times are independent of the machine

used.

6. Moldable processing times: The processing time of a job may be

decreased by increasing the number of machines assigned to execute it.

The number of machines is fixed before the job is started – once

execution of a job has begun, no machines may quit the job until it is

completed and no more may join in its execution.

7. Objective – minimise the number of machines used: We wish

to find the smallest number of machines that allows us to complete all

the jobs, subject to their fixed start times.

This combination of features does not appear to have been studied together

in the literature.

Supply ship scheduling 71

4.3 Literature

Scheduling is applied in a variety of situations that require a sensible

ordering of activities and allocation of resources. The subject has been

widely studied and many approaches have been developed to find optimal or

near-optimal solutions. Scheduling problems take many different forms; each

has specific goals and conditions on the availability of resources. The basic

idea of scheduling is to find an order in which to process jobs on one or

more machines. A machine may only process a single job at a time. Jobs

may be subject to a number of conditions (e.g. precedence constraints,

release dates, due dates, weights, required machines). The processing order

chosen depends on the objective (e.g. minimising the maximum completion

time, minimising the number of late jobs). See the text by Pinedo [103] for

details on scheduling theory and applications.

The volume of literature on scheduling problems is extensive. We shall

narrow our view to three areas that best feature combinations covering

some of the key aspects of the supply ship scheduling problem.

4.3.1 Identical parallel machines with

sequence-dependent set-up times

This problem arises in production environments where the set-up times are

significant. The time required to make a machine ready to process a new

job depends on the job the machine last completed. In this parallel machine

system, jobs may be partitioned into sets for processing by separate identical

machines. This is an extension of the single-machine scheduling problem

with sequence-dependent set-up times. (If the objective is to minimise the

makespan – the maximum completion time – then this single-machine

problem is equivalent to the travelling salesman problem (TSP), an NP-hard

Supply ship scheduling 72

problem [11]). Features that may appear in these problems include due

dates, generally accompanied by an objective to minimise early/tardy costs

or maximum tardiness, and pre-emption (job splitting). An alternative

objective that arises when set-up costs are significant is the minimisation of

the total set-up cost. We shall look at some of the heuristics that have been

applied to problems that do not allow pre-emption.

Frederickson et al. [51] use heuristic procedures for the TSP to solve the

parallel machine scheduling problem with sequence-dependent set-up times,

where the objective is to minimise the maximum completion time. One

heuristic for the k-TSP (where each city must be visited by one of k

salesmen) builds k subtours simultaneously. Another method splits a good

tour for one salesperson into k subtours.

Franca et al. [50] propose a heuristic procedure consisting of three phases:

1. An initial solution is constructed by assigning all jobs to the processors.

2. A local search employing a tabu search scheme is used to improve the

solution’s makespan by moving jobs between processors.

3. The sequence on the busiest machine is improved to obtain a better

makespan.

Lee and Pinedo [79] consider the problem where jobs have due dates and

associated weights (values that measure their relative importance). They

propose a three phase heuristic to minimise the sum of the weighted

tardinesses:

1. Factors associated with the due dates are computed.

2. A sequence is constructed using a dispatching rule. This is controlled

through two parameters determined by the factors found in the first phase.

3. A simulated annealing method is applied to the solution provided by the

second phase.

Supply ship scheduling 73

Radhakrishnan and Ventura [105] propose a simulated annealing method for

solving parallel machine scheduling with earliness-tardiness penalties and

sequence dependent set-up times.

Mendes et al. [93] compare two metaheuristic methods to solve the

makespan minimisation problem. The first approach is the tabu search

based heuristic by Franca et al. [50]. The second method is a memetic

algorithm: a hybrid genetic algorithm procedure where a local search is

applied to improve individuals. They state that the performance of the

algorithms is greatly influenced by the parameters of the instances.

De Paula et al. [37] compare their variable neighbourhood search approach

to three greedy randomized adaptive search procedure (GRASP) algorithms.

4.3.2 Moldable tasks

Due to its application to parallel computing, most of the literature in this

area refers to machines as processors and jobs as tasks. A parallelizable task

is one that can be “run on an arbitrary number of processors with a running

time that depends on the number of processors allotted to it” [118]. A

parallelizable task is described as moldable when “the number of processors

to execute the task is not fixed but determined before the execution . . . this

number does not change until the completion of the parallelizable task” [42].

If the number of processors may change during execution the task is

described as malleable [18, 19, 87].

Du and Leung [41] study the complexity of scheduling parallel task systems.

The parallel tasks presented match the moldable task description. The

number of processors in the system is denoted by m. The objective is to

minimise the schedule length (makespan) on m ≥ 2 identical processors.

Their analysis includes non-pre-emptive schedules with empty precedence

Supply ship scheduling 74

constraints. They show that the optimal schedule can be found in

pseudo-polynomial time for m = 2 and 3 and is strongly NP-hard when

m ≥ 5. It is not known whether the problem is strongly NP-hard or solvable

in pseudo-polynomial time when m = 4.

Belkhale and Banerjee [13] present an approximate algorithm for the

partitionable independent task scheduling problem. The n independent tasks

described fall within the moldable task category. The system consists of m

processors. A task i completes in time pi

σk(i)
when run on k processors, where

pi is the time task i takes to run on a single processor, and σk(i) is the

estimated speed-up that can be obtained by running i on k processors. The

objective is to minimise the schedule finish time. For i ∈ {1, . . . , n} and

1 ≤ k ≤ m − 1, they assume σk(i) ≤ σk+1(i) and σk(i)
k

≥ σk+1(i)

(k+1)
(a result of a

convex speed-up curve). The approximate algorithm they present

guarantees a solution within 2
1+1/m

of the optimal solution. The largest

processing time (LPT) algorithm is a list scheduling algorithm in which the

tasks are first sorted into a list, ordered by decreasing execution times. The

list scheduling algorithm builds up a partial schedule and assigns tasks from

the list to processors with the earliest finish times. The main idea of the

algorithm of Belkhale and Banerjee is to construct an LPT schedule and

iteratively modify it by assigning a task to more processors, provided the

assignment results in an immediate decrease in the schedule time. They

state that the algorithm can be implemented in O(n log n + nm log m) time.

In the system of Turek et al. [118] a task’s execution time is given by a

non-increasing function of the number of processors allotted to it. They

present polynomial time approximate algorithms which provide schedules

with length no worse than twice the optimal length. Unlike the algorithm of

Belkhale and Banerjee, they do not constrain the running time of the tasks.

They provide a family of algorithms that extend techniques used to solve

resource allocation problems [73]. An algorithm selects candidate numbers

Supply ship scheduling 75

of processors to be allocated to each of the tasks. Once processor numbers

are fixed, the problem becomes the easier multiprocessor scheduling problem

[40].

Parallelizable task systems may be viewed as a generalization of the

orthogonal rectangle packing problem [31] – rectangles (representing tasks)

must be placed within a rectangular ‘bin’. The width of a rectangle

represents the number of processors used, while the height is the task’s

completion time when allotted that number of processors. The height of the

bin’s contents when all rectangles have been placed is the makespan of the

corresponding schedule. This packing problem is known to be NP-hard [31].

Since tasks are moldable, each task is represented by a set of rectangles –

one rectangle for each possible processor number allocation. Only one

rectangle from this set is placed into the bin. Possible heuristics to solve

this packing problem include shelf algorithms: rectangles are placed into

the bottom of the bin, a ‘shelf’ is then laid over them, resting at the height

of the tallest rectangle below. The process continues by placing rectangles

on the shelf and laying another shelf on top of them. Turek et al. [117]

apply this idea to develop shelf-based algorithms for scheduling

parallelizable (moldable) tasks.

Monte and Pattipati [96] develop sub-optimal algorithms for scheduling

parallelizable (moldable) tasks to minimise the makespan and weighted sum

of the task completion times. The algorithms use Lagrangian relaxation [98]

– a technique that removes constraints from the problem and adds them

into the objective function through the use of Lagrange multipliers.

Multipliers are found approximately by an iterative method. A feasible

solution to the original problem is found based on the solution to the

relaxed problem (which itself provides a lower bound).

Supply ship scheduling 76

Burke et al. [22] consider the complexity of scheduling independent

malleable tasks. They first study non-pre-emptable task problems where

assigned sets of processors do not change until their job is completed. The

processing time of a job i is given by pi(k) = pi

f(k)
, a non-increasing function

in k for all i ∈ {1, . . . , n}, where k is the number of machines assigned to job

i, pi is a job-specific value and f is a given function. They note that if

pi(k) ≤ pi

k
, all processors should be assigned to each job in turn and

“optimal maximal completion time is the same irrespective of the schedule”

[22]. They provide a proof that the problem is NP-hard for the case in

which pi > pi(k) > pi

k
when k > 1.

4.3.3 Tactical fixed job scheduling

In an interval scheduling problem there are n jobs available to be processed

on m parallel machines. Each job j features a time window given by a ready

time rj and deadline dj between which the job must be completed. If jobs

may not be delayed after their ready times the problem is known as a fixed

job scheduling problem. If the objective is to minimise the total number of

machines needed to process all the fixed jobs we call it tactical fixed job

scheduling (TFJS).

Gertsbakh and Stern [54] introduce the idea of using a step function to solve

the TFJS. The value of the function is zero at time zero. Whenever a job

starts, the value is increased by one; whenever a job finishes it is decreased

by one. The maximum value of the function is the total number of machines

required. An optimal assignment of jobs to machines is constructed by

forming a string of jobs that are known to be executable by one machine,

removing the string from the list of remaining jobs, and repeating. The

algorithm is O(n2) in the worst case. Gupta et al. [58] present an optimal

algorithm of O(n log n).

Supply ship scheduling 77

The tactical fixed job scheduling problem is a special case of Dilworth’s

problem [38, 54], which involves the decomposition of a finite set into

disjoint sequences that obey an ordering on the elements.

4.3.4 Conclusions

We have provided a very brief overview of the methods that have been

applied to three different areas within scheduling. These areas were selected

because they share some characteristics with the supply ship scheduling

problem. The first two problems are NP-hard, while the third may be

solved by an efficient algorithm.

Local search metaheuristics (including tabu search, memetic algorithms and

variable neighbourhood search) proved the most popular for scheduling

identical parallel machines with sequence-dependent set-up times.

Approximate algorithms and shelf-based algorithms were used to schedule

parallelizable (moldable) tasks by relating the schedule to bin packing

problems. The final problem, tactical fixed job scheduling, may be solved

exactly using a polynomial time algorithm.

The combination of the problem characteristics eliminates the direct

applicability of their solution methods to the supply ship scheduling

problem.

Supply ship scheduling 78

4.4 The minimum flow problem in a

directed network

In this section we provide an introduction to determining minimum flows in

networks, as some of our approaches to the supply ship scheduling problem

rely on this methodology. Networks arise in many applications. Physical

networks, such as communication, electronic and transportation systems,

are among the most easily recognised.

In a network flow problem we wish to determine the flow along each arc in

the network. In a capacitated network, flow along an arc must be less than

or equal to the capacity of the arc. We may imagine that the network is a

system of pipes carrying water. Each arc is a pipe, with the size of the pipe

determining its capacity. Pipes are connected to each other through the

nodes at each endpoint. The network may have a source node and a sink

node. The source node can represent water entering the system from

outside, while water leaves the system through the sink node. In the nodes

in-between, the amount of flow that leaves a node is equal to the amount

that enters it (mass balance).

4.4.1 The maximum flow problem

An important optimisation problem in network flows is the maximum flow

problem, for which several polynomial-time algorithms have been developed.

Maximum flow problem: In a capacitated directed network we wish to send

as much flow as possible between two special nodes, a source node s and a

sink node t, without exceeding the capacity of any arc [3].

Supply ship scheduling 79

Most algorithms for solving the maximum flow problem fall into two

categories:

• Augmenting path algorithms: Flow is incrementally augmented along

paths from the source node to the sink node. Mass balance constraints

are maintained at every node except the source and sink, i.e. total

flow into a node equals total flow out.

• Preflow-push algorithms: These “flood the network so that some nodes

have excesses (or build-up of flow). These algorithms incrementally

relieve flow from nodes with excesses by sending flow from the node

forward toward the sink node or backward toward the source node” [3].

Algorithms for the maximum flow problem may be used to tackle the

minimum flow problem.

Residual networks

Residual networks form an important part of many maximum flow

algorithms. “Given a flow x, the residual capacity rij of any arc (i, j) is the

maximum additional flow that can be sent from node i to node j using the

arcs (i, j) and (j, i)” [3]. The amount that flow can be increased along arc

(i, j) is given by the unused capacity of arc (i, j) plus the current flow on

arc (j, i) which may be cancelled. The residual network with respect to the

flow x consists of the arcs with positive residual capacities.

Supply ship scheduling 80

4.4.2 The minimum flow problem

Following [29], we consider a capacitated network G = (N, A, l, c, s, t). N is

the set of nodes while A is the set of arcs in the network. A non-negative

capacity c(i, j) and non-negative lower bound l(i, j) is associated with each

arc (i, j) ∈ A. The network contains a source node s and a sink node t. A

flow is a function f : A → R
+ satisfying the following conditions:

f(i, N) − f(N, i) =



















v for i = s

0 for i 6= s, t

−v for i = t

(4.1)

l(i, j) ≤ f(i, j) ≤ c(i, j), for all (i, j) ∈ A (4.2)

for some v ≥ 0, where

f(i, N) =
∑

j|(i,j)∈A

f(i, j)

and

f(N, i) =
∑

j|(j,i)∈A

f(j, i)

We call v the value of the flow f . We may think of f(i, N) as the flow out of

node i, while f(N, i) is the flow into node i. For nodes other than the sink

node s and source node t, flow into a node must equal the flow out. Flow

along any arc must be at least the value of the lower bound l for that arc

while not exceeding the capacity c of the arc. The minimum flow problem is

to determine a flow f for which v is minimised. [29]

A cut [S, S̄] is a partition of the node set N into two subsets S and

S̄ = N − S. We refer to [S, S̄] as an s - t cut if s ∈ S and t ∈ S̄. An arc

(i, j) is called a forward arc of the cut if i ∈ S and j ∈ S̄, and a backward

arc if i ∈ S̄ and j ∈ S. Let (S, S̄) denote the set of forward arcs in the cut

and (S̄, S) the set of backward arcs.

Supply ship scheduling 81

For the minimum flow problem the capacity, c[S, S̄], of an s - t cut, [S, S̄], is

defined as the sum of the lower bounds of the forward arcs minus the sum of

the capacities of the backward arcs:

c[S, S̄] = l(S, S̄) − c(S̄, S)

Note that there is a difference between this definition and the more

commonly encountered definition of capacity of a cut for a maximum flow

problem, where c[S, S̄] = c(S, S̄) − l(S̄, S).

A maximum cut is an s - t cut whose capacity is the maximum among all

s - t cuts.

Min-flow max-cut theorem [29]: If there exists a feasible flow in the network,

the value of the minimum flow from a source node s to a sink node t in a

capacitated network with non-negative lower bounds equals the capacity of

the maximum s - t cut.

The minmax algorithm

This approach to solving the minimum flow problem is described in [29].

The minimum flow problem can be solved by determining a maximum flow

from the sink node to the source node in the residual network given by a

feasible flow. Any maximum flow algorithm may be used.

1. Let ff be a feasible flow in network G.

2. Determine the residual network, Gf .

3. Establish a maximum flow, fr, from t to s in Gf .

4. Combine flows ff and fr into the resultant flow f .

5. f is a minimum flow from the source node s to the sink node t.

Supply ship scheduling 82

If a feasible flow is not known, one may be determined by a transformation

of the network and application a maximum flow algorithm. “The

complexity of the minimum flow problem is equal to the complexity of the

maximum flow algorithm used for determining a feasible flow and for

establishing a maximum flow from t to s” [29].

4.4.3 The tanker scheduling problem

The following example problem and solution procedure are based on an

application of the maximum flow problem demonstrated by Ahuja at al. [3].

The solution network bears some similarities to the transformed network we

develop in Section 4.5.2.

A steamship company must deliver goods between several pairs of ports.

The customers have specified precise delivery dates when the shipments

must reach their destinations: they may not arrive early or late. The

steamship company wants to know the minimum number of ships needed to

meet the delivery dates.

Shipment Origin Destination Delivery Date

1 Port A Port C 3

2 Port B Port D 5

3 Port A Port D 9

4 Port B Port C 13

Table 4.1: Example data for the tanker scheduling problem

C D A B

A 3 4 C 2 3

B 4 5 D 3 4

Table 4.2: Shipment transit times (left) and return times (right)

Supply ship scheduling 83

This problem may be solved by constructing the network shown in Figure

4.1. Each node corresponds to a shipment. There is an arc from node i to

node j if it is possible for a single tanker to deliver shipment j after

completing shipment i. Directed paths in the network correspond to feasible

sequences of shipments. To solve the tanker scheduling problem we must

find the minimum number of directed paths that contain each node in the

network on exactly one path.

Figure 4.1: Network representing feasible sequences of consecutive shipments

We may transform this network into a minimum flow problem.

1. Split each node i into two nodes: i′ and i′′.

• Add an arc (i′, i′′).

• Set a lower bound of 1 on the arc.

2. Add a source node s.

3. Connect s to the origin of each shipment; i.e. add arcs (s, i′). (These

arcs represent putting ships into service).

4. Add a sink node t.

5. Connect each destination node to t; i.e. add arcs (i′′, t). (These arcs

represent taking ships out of service).

Supply ship scheduling 84

6. Set the capacity of each arc in the network equal to 1.

Figure 4.2 displays the resulting network. Each directed path from s to t

corresponds to a feasible schedule for a single ship: a feasible flow of value x

in the network may be decomposed into schedules of x ships. The problem

has been reduced to identifying a feasible flow of minimum value.

Figure 4.2: Minimum flow model of the tanker scheduling problem

Supply ship scheduling 85

4.5 The supply ship scheduling problem

Let N = {1, . . . , n} be the set of jobs to be processed, numbered by the

order of their fixed start times, si, i = 1, . . . , n. Jobs may not be interrupted

and must commence at their fixed start times: they cannot be early or late.

Machines are identical and at least one machine must process each job.

Let tij be the set-up time for job j when it follows job i on a machine; i < j;

i = 1, . . . , n − 1; j = 2, . . . , n. Set-up times are equivalent to travel times for

a machine travelling between job locations. We define these to satisfy:

tij ≥ 0 for i < j; (4.3)

tik ≤ tij + tjk for i < j < k. (4.4)

We assume that the processing requirements for any job may be divided up

equally between the machines assigned to it. Let pi be the processing time

required by a single machine to complete job i. Thus if a solution assigns mi

machines to job i, the processing time function is

pi(mi) =
pi

mi
.

A solution takes the form of a set M = {m1, . . . , mn}, where each mi ∈ N is

the number of machines that are assigned to process job i ∈ N . (Section

4.5.2 covers the decomposition of this into a schedule). Let M represent the

set of all solutions.

Let Q(M) represent the minimum number of machines required for a

solution M to be feasible.

The goal is to find M∗ ∈ M, a solution that minimises the total number of

machines that are required; that is,

M∗ = argmin
M∈M

{Q(M)}.

Supply ship scheduling 86

Notes:

• Assigning a separate machine to process each job provides an

immediate solution, M = {1, . . . , 1}, where at most n machines are

used in total. We may therefore ignore all solutions with mi > n for

some i ∈ N .

• For a solution M = {m1, . . . , mn}, a lower bound on Q(M) is given by

max
i∈N

{mi}.

• We may determine the value of Q(M) using minimum flows (more on

this in Section 4.5.2).

• Since jobs have been numbered in order of their fixed start times, si,

set-up times for tij with i ≥ j are not needed.

• Machines originate from a ‘depot’. Set-up/travel times from the depot

to job locations are not needed: the fixed start times of jobs must

allow sufficient time for machines to travel directly to any job from the

depot.

• Table 4.3 displays problem data for an instance of the supply ship

scheduling problem where four jobs must be completed. We shall use

this instance in subsequent sections to illustrate how our networks are

constructed.

i 1 2 3 4

si 18 20 36 58

pi 26 24 22 30

t1i 3.89 3.13 1.06

t2i 6.22 3.68

t3i 4.17

Table 4.3: Example data for a 4-job problem

Supply ship scheduling 87

4.5.1 Threshold graph

When looking at this scheduling problem it is important to know which jobs

may be scheduled one after another on a particular machine. We calculate

how many machines must be assigned to a job so that the machines

involved are available to process any subsequent job.

Let aij ∈ N be the minimum number of machines that must be assigned to

job i so that at least one of these machines is available to process job j. We

shall refer to these aij as threshold values.

• If pi > 0 and si + tij < sj we have

si +
pi

aij
+ tij ≤ sj . (4.5)

(4.5) represents the condition that job i must start on time at si, be

processed (taking time equal to pi/aij) and then job j must be set up

(time tij) before the fixed start time sj . We wish to find the smallest

integer aij for which this condition holds. Let a∗
ij ∈ R

+ represent aij in

a situation where jobs may be processed by partial machines. We then

have:

si +
pi

a∗
ij

+ tij = sj

⇒ a∗
ij =

pi

sj − si − tij

We require aij to be integer, so we let aij =
⌈

a∗
ij

⌉

. This provides

pi/aij ≤ pi/a
∗
ij . So if pi > 0 and si + tij < sj then

aij =

⌈

pi

sj − si − tij

⌉

.

• If pi > 0 and si + tij ≥ sj it is not possible for a machine to process

both jobs i and j: we denote its value as aij = ∞ to represent

infeasibility.

Supply ship scheduling 88

• If pi = 0 then

aij =







1 if si + tij ≤ sj

∞ if si + tij > sj

(4.6)

We will never assign more than n machines to a job, thus we may treat any

aij > n as aij = ∞.

The resulting threshold values for our example instance are displayed in

Table 4.4.

j

1 2 3 4

1 - ∞ 2 1

i 2 - - 3 1

3 - - - 2

4 - - - -

Table 4.4: Threshold value table for the 4-job example

Figure 4.3: Threshold graph for the 4-job example

We may represent the threshold values in a directed graph Ga = (N, Γ) (see

Figure 4.3). Each job is represented by a node, so the set of nodes is

N = {1, . . . , n}. We will call these job-nodes. There is an arc (i, j) ∈ Γ if

Supply ship scheduling 89

and only if aij ∈ {1, . . . , n}. We will call these threshold arcs. We associate

the values aij with their corresponding arcs. This graph provides a step

towards seeing how machines might move from job to job, and which jobs

may not directly follow each other on the same machine.

Theorem 4.1 If there is an arc (i, j) and an arc (j, k) in the threshold

graph then there must also be an arc (i, k). The corresponding threshold

values satisfy aik ≤ aij.

Proof: By definition we have

(i, j) ∈ Γ ⇐⇒ si + tij ≤ sj and aij ∈ {1, . . . , n}.

Since (i, j), (j, k) ∈ Γ,

si + tij ≤ sj and sj + tjk ≤ sk

⇒ si + tij + sj + tjk ≤ sj + sk

⇒ tij + tjk ≤ sk − si.

Using Inequality (4.4):

tik ≤ tij + tjk ≤ sk − si

⇒ si + tik ≤ sk. (4.7)

We must now show that aik ≤ n.

Case: pi > 0.

(i, j) ∈ Γ ⇐⇒ si + tij < sj and aij ∈ {1, . . . , n}. (4.8)

By (4.8), aij ∈ {1, . . . , n}, so 0 < a∗
ij ≤ n satisfies the following equation:

si + pi/a
∗
ij + tij = sj. (4.9)

Supply ship scheduling 90

For a∗
ik > 0, we also have

si + pi/a
∗
ik + tik = sk. (4.10)

Let c ≥ 0 represent pj/a
∗
jk for the case pj > 0, and a slack value for the case

pj = 0. In addition to (4.9) and (4.10) we have

sj + c + tjk = sk. (4.11)

(4.9)+(4.11)−(4.10) gives us

pi

a∗
ij

+ c −
pi

a∗
ik

+ tij + tjk − tik = 0

⇒
pi

a∗
ij

+ c −
pi

a∗
ik

= tik − tij − tjk. (4.12)

Using (4.4) and (4.12) we now know

pi

a∗
ij

+ c −
pi

a∗
ik

≤ 0.

Since pi, a
∗
ij, a

∗
ik > 0 and c ≥ 0 we have

pi

a∗
ij

≤
pi

a∗
ik

⇒ a∗
ik ≤ a∗

ij ⇒ aik ≤ aij .

So aik ≤ aij , and thus aik ∈ {1, . . . , n}.

Case: pi = 0.

Minimising aij , aik ∈ {1, . . . , n} while satisfying the fixed start times

(following (4.7)) provides:

si + pi/aij + tij ≤ sj ⇒ aij = 1;

si + pi/aik + tik ≤ sk ⇒ aik = 1.

�

This means that if it is possible for a machine to process jobs i, j and k in

sequence, then it is also possible for that machine to instead process job i

and then job k without processing job j. As a consequence, if there is a

directed path (of any length) from job x to y then there is an arc from x to

y. From this we know that it is not necessary to send surplus machines

through intermediate jobs in order for them to access later jobs.

Supply ship scheduling 91

Cutting down the size of the solution space M

Using the upper bound n we restrict each mi to take values in {1, . . . , n}.

We may restrict the possible values further by using the threshold values.

The objective of the problem is to minimise the total number of machines

used to process the jobs in N ; in part, we try to minimise the number of

machines assigned to any job. Having established the consequence of

Theorem 4.1, that ‘surplus’ machines are not needed, the only remaining

reason to increase mi is to shorten job i’s processing time: with a sufficient

decrease in processing time, some of the machines already allocated to i are

able to process some job j that is unavailable to them at the lower value of

mi. Therefore, the only values for mi we need consider are the smallest

values that allow previously unreachable jobs to be reached by machines.

Let Ai be an ordered set of the distinct threshold values leading from job i:

the values at which the set of possible successor jobs expands. So

Ai =
{

a| a = aij for some aij ∈ {1, ai, i+1, . . . , ain}
}

. The elements of Ai are

listed in order of increasing magnitude. We may restrict the possible values

for the number of machines assigned to job i to belong to Ai. That is

mi ∈ Ai , ∀ i ∈ N.

Ai must include the value ‘1’: any job i without successors is assigned only

one machine in an optimal solution. For the 4-job example shown in Table

4.4 and Figure 4.3 we have:

m1 ∈ {1, 2}, m2 ∈ {1, 3}, m3 ∈ {1, 2}, m4 ∈ {1}.

Any new information provided by upper bounds may be used to narrow the

useful set of solutions. When a solution M with Q(M) < n is discovered we

may eliminate any values in Ai greater than Q(M).

Supply ship scheduling 92

4.5.2 Network flows

For a particular solution M we wish to know Q(M), the minimum number

of machines needed to allow the configuration given by M . We may

calculate Q(M) by constructing a capacitated network, where the passage of

machines between jobs is represented by flow along the arcs. Q(M) is equal

to the value of the minimum flow in the network corresponding to M .

Constructing the network

We have the set of jobs, N = {1, . . . , n}, the number of machines assigned

to each job for a particular solution, M = {m1, . . . , mn}, and the threshold

graph, Ga. We will construct a capacitated network, GM . Each arc (i, j) has

an associated non-negative capacity, c(i, j), and non-negative lower bound,

l(i, j). Inter-job arcs of GM represent the opportunity for machines to travel

between jobs. Intra-job arcs are included to reflect the constraints provided

by M . The flow value along an arc from job-node i to j represents the

number of machines that process j immediately after processing i. The

construction of network GM begins with Ga as a foundation.

1. Initially, all arcs and nodes in Ga appear in GM .

2. Each job-node must be assessed to see which arcs emanate from the

node. If any of the threshold arcs emanating from job i in Ga have

aij > mi, they are removed from GM . The remaining arcs represent

which jobs may be performed in succession by a machine, given M .

3. A source node s is added, and arcs to each job-node from the source.

These arcs represent the ability of as yet unused machines to travel

from the machine depot to any job.

4. A sink node t is added, and arcs from each job-node to the sink.

Supply ship scheduling 93

5. All the arcs currently in the network are considered to have unlimited

capacity and a lower bound of zero.

6. Each job-node i is split into two nodes: an entry node, i′, and an exit

node, i′′. The entry node now receives all arcs that terminated at the

job-node. All arcs that emanated from the job-node now leave the exit

node. A single arc connects the entry node and exit node. Flow along

this arc is constrained to be equal to the number of machines allocated

to the job by M . So the intra-job arc corresponding to job i has both

lower bound and capacity equal to mi.

The resulting network for a solution M = {2, 1, 1, 1} of our 4-job example is

displayed in Figure 4.4. Arc values represent both lower bounds and

capacity of flow.

Figure 4.4: Network flow model of the 4-job example problem

Determining the minimum flow

We use the minmax algorithm described in Section 4.4.2. Since the time

complexities of most maximum flow algorithms are dependent on the

number of nodes and arcs in the network, it may be useful to reduce the size

Supply ship scheduling 94

of the network before applying the algorithm. An example of a reduced

network is given in Figure 4.5.

• Any pair of nodes (i′, i′′) connected only to the source node s and sink

node t may be removed from the network along with their incident

arcs. Any flow along such a path is fixed by the constraints on the

intra-job arc and cannot be changed by the maximum flow algorithm.

• Nodes with exactly one terminating arc and one emanating arc may

be eliminated; the incident arcs may be replaced with a single arc

connecting the nodes adjacent to the eliminated node. The highest

lower bound and lowest capacity of the removed arcs apply to the new

arc.

Figure 4.5: Reduced network flow model of the 4-job example problem

The first stage of the minmax algorithm is to find a feasible flow, ff . Since

every job-node was connected to both the source and the sink it is always

possible to find a feasible flow. The simplest feasible flow is to send mi units

of flow directly along the arc from the source node to the entry node of job i

(arc (s, i′) or (s, i′′)) then mi units of flow directly along the arc from the

exit node of job i to the sink node (arc (i′′, t) or (i′, t)). In this way, the flow

between nodes i′ and i′′ meets the lower bound and capacity constraints of

that arc. An example of this feasible flow is provided in Figure 4.6.

Supply ship scheduling 95

Figure 4.6: A feasible flow for the 4-job example problem. Blue arc values

represent flow.

Now that a feasible flow, ff , has been established we must create its residual

network, Gf . An example of such a residual network is shown in Figure 4.7.

• Since the flow on intra-job arcs is fixed (i.e. lower bound = capacity),

the residual capacity for such arcs must be zero and so these arcs do

not appear in the residual network.

• We treat inter-job arcs as having unlimited residual capacity. In

practice we let the residual capacity of such arcs be 1 +
∑

i∈N mi. In

this way these arcs will always have a positive residual capacity.

• The arcs from the source and arcs to the sink are those that carry the

flow in the feasible flow. The flow along such arcs may be cancelled to

increase the flow in the reverse direction.

We may now treat the residual network, Gf , as a network in which we wish

to find a maximum flow, fr, from t to s. The residual capacity of an arc

may be treated as the capacity of the arc. Figure 4.8 provides an example of

a maximum flow.

Supply ship scheduling 96

Figure 4.7: Residual graph with respect to the feasible flow for the 4-job

example problem

Figure 4.8: A maximum flow from t to s in the residual network for the 4-job

example problem

Supply ship scheduling 97

The feasible flow, ff , and maximum flow, fr, from t to s in the residual

network may be combined to form the minimum flow, f , in our reduced

network. Figure 4.9 displays a minimum flow for our example: the

combination of flows in Figures 4.6 and 4.8.

Figure 4.9: A minimum flow for the 4-job example problem

The maximum flow algorithm we use in our computational testing is an

efficient implementation of the push-relabel method. This runs in

O(ηα log(η2/α)) time on an η-node, α-edge graph [56, 25]. The C source

code for the algorithm is from hi pr version 3.6 by IG Systems [120], a more

robust version of the h prf code implemented in [25].

An upper bound on the optimal value

The most immediate upper bound on the minimum number of machines

needed is n. This is the number of machines used when a distinct machine

is assigned to each individual job. An improved bound may be found by

creating the network to represent a solution M with mi = 1 for i = 1, . . . , n.

The minimum flow, Q(M), in this network provides a better upper bound

on the optimal value, as individual machines can process a number of jobs

in sequence.

Supply ship scheduling 98

A lower bound on the optimal value

At least one machine is needed if all the jobs are to be processed. It is

simple to check whether all jobs may be completed by a single machine:

min
M∈M

{Q(M)} = 1 ⇐⇒ ai, i+1 = 1, ∀ i ∈ {1, . . . , n − 1}.

If any ai, i+1 6= 1, then it is not possible to complete all the jobs using the

same machine. This gives us an initial lower bound of two machines for such

a problem; a very weak bound in most cases.

We suggest that by relaxing the problem we may determine a slightly better

lower bound. The set of jobs j that may immediately follow job i on a

machine is determined by the threshold values, aij , and machine allocation,

mi, to job i; we propose to expand this set by introducing relaxed threshold

values, ar
ij. Let u ≤ n be an upper bound on min

M∈M

{Q(M)}. We let

ar
ij =







1 if aij ≤ u

aij otherwise
for all i, j ∈ N.

We assign each job the minimum allowed number of machines, i.e. mi = 1,

for all i ∈ N . This relaxed problem is then represented as a network Gl,

constructed in the same way as the network GM described above, but using

the relaxed threshold values, ar
ij , in place of aij . Calculating the minimum

flow in Gl provides a lower bound on min
M∈M

{Q(M)}. Better values for the

upper bound, u, may tighten the relaxation.

Figure 4.10 shows a network Gl for our example instance, where u = 3; the

key difference between this network and a network GM for M = {1, . . . , 1} is

the inclusion of previously restricted inter-job arcs. Inter-job arcs are

represented in green.

Supply ship scheduling 99

Figure 4.10: A network to find a lower bound for the 4-job example problem

Determining a schedule for individual machines

A solution to the supply ship scheduling problem is a set of values, M ,

where each element represents the number of machines allocated to an

associated job. We can take this solution a step further by identifying

individual machines and determining the set of jobs to be completed by

each machine. A schedule for each machine is given by the decomposition of

the minimum flow into unit-flow directed paths from the source to the sink.

The decomposition may be accomplished by applying a decreasing path

algorithm [29], iteratively reducing flow along a path from the source to the

sink by one unit and recording the nodes the path traverses. Each unit path

represents an assignment of jobs to a machine.

Supply ship scheduling 100

4.6 Local search heuristics for the supply

ship scheduling problem

4.6.1 A selective neighbourhood structure

The network GM is dependent on the values in M = {m1, . . . , mn}. We wish

to find the solution, M∗, that creates a GM with the smallest minimum

flow. Recall that we may restrict the possible values for mi to belong to the

set Ai, for all i ∈ N (Section 4.5.1). Notice that the values in M have two

direct effects on GM :

1. The intra-job arcs of GM have lower bounds and capacities equal to

the values in M .

2. The values in M determine the inter-job arcs leaving each job-node for

subsequent job-nodes. A greater value for mi indicates a larger

number of arcs leaving job-node i.

We will use maximum cuts in GM and the min-flow max-cut theorem to

inform changes to the values in M and influence the minimum flow. Let

[S, S̄] be an s - t cut, so s ∈ S. Recall that the capacity of a cut [S, S̄] is

given by

c[S, S̄] = l(S, S̄) − c(S̄, S),

the sum of the lower bounds on the forward arcs minus the sum of the

capacities of the backward arcs.

Each job i may be represented by two nodes in the network: the entry node

i′ and the exit node i′′. There is a single arc (i′, i′′) connecting node i′ and i′′

that we refer to as the intra-job arc for job i. Since these intra-job arcs have

associated lower bounds and capacites, i.e. l(i′, i′′) = c(i′, i′′) = mi for all

i ∈ N , they will play an important part in any maximum cut.

Supply ship scheduling 101

Inter-job arcs (i′′, j′), where j′ is the entry node for job j ∈ N , i < j,

represent the ability of machines to process successive jobs; they have a

lower bound of zero and are considered to have unlimited capacity, i.e.

l(i′′, j′) = 0, c(i′′, j′) = ∞ for all i, j ∈ N , i < j.

Since the minimum flow value is equal to the maximum cut value by the

min-flow max-cut theorem, if we can reduce the value of the maximum cut

we will reduce the value of the minimum flow. If we know the arcs

belonging to a maximum cut for GM we may attempt to reduce the value of

the maximum cut by manipulating M and generating a new GM . Two

methods to potentially reduce the value of the maximum cut are:

1. Decrease the lower bounds on forward arcs in the maximum

cut. Let i be a job whose intra-job arc (i′, i′′) appears in a maximum

cut. (i′, i′′) has an associated lower bound equal to mi ∈ Ai:

decreasing mi must decrease the value of the cut. (Decreasing mi will

also reduce the number of arcs in the network as at least one arc

emanating from i′′ will disappear). If there are additional maximum

cuts that do not include (i′, i′′), the minimum flow will not be smaller

in the new network. (It would be useful to know all maximum cuts in

GM , to inform the choice of i).

2. Introduce a backward arc in the cut which has a large

capacity. Let i be a job whose corresponding exit node i′′ lies on the

sink side of a maximum cut, i.e. i′′ ∈ S̄. By increasing mi ∈ Ai, we

increase the number of arcs emanating from i′′. If any of these new

arcs terminate at a node j′ ∈ S, the capacity of this new backward arc

will be subtracted from the capacity of the cut. The new arc has

unlimited capacity, so the capacity of the cut becomes −∞. This

eliminates this particular cut from being a maximum cut in the new

network.

Supply ship scheduling 102

Given a solution M = {m1, . . . , mn}, we may generate a neighbour of M by

increasing or decreasing the value of mi ∈ Ai for a particular i ∈ N . To

improve our chances of finding a better solution, our selection for i and its

modification are restricted to jobs and modifications highlighted by the

maximum cut information. Let [S, S̄] be a maximum cut in the network,

GM . The selective neighbourhood structure we propose features the

following two components:

1. Let

R(M) = {r| r ∈ N, (r′, r′′) ∈ [S, S̄], mr > 1}.

R(M) is the set of jobs with intra-job arcs that appear in the

maximum cut and have a machine allocation that may be reduced.

For each job r in R(M) there is a neighbourhood move in which mr is

decreased to the preceding value in the ordered set Ar.

2. Let

W (M) = {w| w ∈ N, w′′ ∈ S̄, ∃ j′ ∈ S with mw < awj ≤ n}.

W (M) is the set of jobs that introduce a backward arc into the cut

when their machine allocation is increased. Each job w in W (M)

corresponds to a neighbourhood move in which mw is increased by the

minimum amount necessary to allow a backward arc in the cut [S, S̄]

to emanate from w′′.

The neighbourhood contains at most 2n solutions, but the selective

structure typically provides many fewer than this.

A good starting solution could be mi = 1 for all i ∈ N . This solution

provides us with a simple upper bound on the optimal value. It may also be

close to optimal for instances with widely spread fixed start times or short

processing times, since these may feature a large number of ‘critical’

threshold values that equal one.

Supply ship scheduling 103

4.6.2 Descent methods

We now describe how we use the selective neighbourhood structure within

descent heuristics to improve our solutions.

First improvement

1. Starting solution M : mi = 1 for all i ∈ N .

2. Determine R(M) and W (M).

3. By applying a modification given by R(M) or W (M) find a neighbour

M ′ with Q(M ′) < Q(M). When M ′ is found let M = M ′ and go to

step 2. If no such neighbour is found go to step 4.

4. Stop. (M is a local minimum).

The order in which neighbours are generated from R(M) and W (M) may

be important. A sensible method would be to first select neighbours that we

believe could lead to the greatest improvement in Q(M). We shall use the

following simple heuristic rules for the order in which we generate

neighbours:

• Work backwards through R(M). A reduction of the allocation to a job

will reduce the set of subsequent jobs available to those machines.

Later jobs have fewer following jobs, so the effect of cutting off

sequences is minimised.

• Work forwards through W (M). Machines newly assigned to earlier

jobs may process a longer sequence of jobs and may allow other

machines to process longer sequences.

Supply ship scheduling 104

In the first improvement descent method we shall call FI-RW, we generate

neighbours from R(M) before neighbours from W (M). This gives priority

to removing any over-assignment of machines.

In the alternative first improvement descent method FI-WR, we generate

neighbours from W (M) before neighbours from R(M). We hope to increase

the length of the paths travelled by machines by increasing the number of

arcs in the network.

First improvement allowing neutral moves

How will performance of the algorithm change if we accept a move to the

first neighbour M ′ with Q(M ′) ≤ Q(M)? Allowing neutral moves may

result in cycling, but opens up the possibility of exploring more of the search

space. Since we do not accept deteriorating moves, solutions in a cycle will

all have the same value for Q. To cycle back to a previous solution, all

moves equating to an increase in machine allocation to a job (i.e. those in

W) must be countered by moves that decrease the allocation (i.e. those in

R). To avoid cycling, we apply the following acceptance conditions:

Accept a move generated from R(M) if Q(M ′) < Q(M).

Accept a move generated from W (M) if Q(M ′) ≤ Q(M).

In this way, a move from W can only be undone by a move from R when it

improves the value of Q.

In addition to the prevention of cycling we hope these conditions will lead

to better solutions from subsequent neighbours. When we decrease the

machine allotment to job i we wish to see a decrease in Q(M). Such an

improvement is a direct result of the reduction of the machines to job i; we

have improved on an over-assignment. If we reduce the machine assignment

Supply ship scheduling 105

and Q(M) remains the same, it means that one or more arcs emanating

from job i have been removed but we have seen no improvement in the

minimum flow. In a possible subsequent neighbour where machine

allocation to another job has increased, those arcs could have allowed the

machines of job i to process longer sequences of jobs. It seems beneficial to

maintain these arcs. On the other hand, if Q(M) remains unchanged for a

decrease in machine allotment for a job in R, it indicates there is another

maximum cut in the network of the same value. At least one other job must

have its allotment decreased before we will see an improvement in the

minimum flow Q(M). The drawback of applying the anti-cycling condition

is that the discovery of such possibilities is prevented.

We will test two variants of this approach: FIN-RW and FIN-WR.

Best improvement

In the best improvement (or steepest descent) algorithm, we look for the

best improving move among all neighbours of the current solution (neutral

and deteriorating moves are not accepted).

1. Starting solution M : mi = 1 for all i ∈ N .

2. Determine R(M) and W (M).

3. By applying the modifications given by R(M) and W (M) generate all

neighbours of M .

4. • If there is a neighbour M ′′ with Q(M ′′) < Q(M), select the

neighbour M ′ with the minimum value for Q(M ′).

• Otherwise stop. (M is a local minimum).

5. Let M = M ′. Go to step 2.

Supply ship scheduling 106

Since the entire neighbourhood of a solution is searched, the order in which

the neighbours are generated may seem less important; however, there may

be multiple neighbours with the same value for Q(M ′) that could provide

the best improving move. Of these equally good moves, it will be the first to

be generated that is selected. We shall call these best improvement methods

BI-RW and BI-WR.

The modified methods, where we accept neutral moves when no improving

move can be found, shall be called BIN-RW and BIN-WR. These neutral

move methods use the anti-cycling acceptance rule employed in the first

improvement methods described previously.

4.6.3 Tabu search

Since the acceptance rule applied within FIN-RW and FIN-WR may

prevent good solutions being discovered, it may be worth implementing a

tabu list to tackle the threat of cycling instead. This technique has the

added bonus of driving the search into new areas. We broaden the

acceptance of a move to be:

Move to the best neighbour that is not restricted by the tabu list.

A simple scheme for implementation of a tabu list is to store the recent

modifications made when moving between solutions and forbid moves that

undo these modifications. By the use of this form of tabu list we still risk

cutting off access to good solutions. In an attempt to counteract this we use

a simple aspiration criterion:

Accept a move to a neighbour with objective value better than that of the

current best solution, even if the move is restricted by the tabu list.

To prevent the search from continuing indefinitely, we apply the following

Supply ship scheduling 107

termination criterion:

Stop the search after a number of iterations without an improvement in the

best objective function value.

Let T be the tabu list, |T | be the current length of the tabu list and L be

the maximum length of the tabu list. Let Qb be the best objective value

found so far by the search, h be the current number of iterations since Qb

improved and I be the maximum number of such iterations.

Tabu search algorithm

1. Starting solution M : mi = 1 for all i ∈ N .

Qb = Q(M). T = ∅. |T | = 0. h = 0.

2. Determine R(M) and W (M).

3. By applying the modifications given by R(M) and W (M) generate all

neighbours of M .

4. • If Q(M ′′) < Qb for any neighbour M ′′: select the neighbour M ′

with the minimum value for Q(M ′); let Qb = Q(M ′) and store

M ′ as the best solution found so far; set h = 0.

• Otherwise: set h = h + 1 and select the neighbour M ′ with the

minimum value for Q(M ′) from among the neighbours not

generated by a tabu modification within T . If the only

neighbours are on the tabu list or there are no neighbours, stop.

5. Record in T the modification made to M to obtain M ′. If |T | > L

remove the oldest modification from T .

6. Let M = M ′.

7. If h < I go to step 2. Otherwise stop and return the best solution

found.

Supply ship scheduling 108

4.7 Restricted dynamic programming based

approaches

In our scheduling problem the processing time of a job depends on the

number of machines assigned to it; this affects the availability of those

machines for subsequent jobs. Approaches inspired by dynamic programming

(DP) may be useful in deciding how many machines should be allocated.

Let x be the total number of machines available to process the jobs

N = {1, . . . , n}. For a fixed value of x we must determine whether there is a

feasible assignment, M = {m1, . . . , mn}, of machines to jobs. If there is no

feasible M for the given x, we know that the minimum number of machines

required to process the jobs of N is at least x + 1; if there is a feasible

assignment, the minimum required number of machines is at most x.

In the DP based algorithm we present for this problem, each successive

stage corresponds to a job in N = {1, . . . , n}. At stage i, the algorithm

determines feasible allocations to job i by assigning available machines from

the depot and jobs 1, . . . , i − 1. A state (d, Ci, Mi) in stage i contains the

following information:

• d, the number of machines currently left unused at the depot.

• Ci = {c1, . . . , ci}, the number of machines that have completed their

job and are available from jobs 1, . . . , i.

• Mi = {m1, . . . , mi}, the number of machines assigned to jobs 1, . . . , i.

In the initial stage there is only one state: (x, ∅, ∅), all x machines are at the

depot and no jobs have yet been allocated any machines. Let job 0 refer to

the depot, while stage 0 is this initial stage. States in stage i are generated

from each state in stage i − 1. All possibilities for ‘movement’ of numbers of

Supply ship scheduling 109

machines from jobs in {0, 1, . . . , i − 1} to job i are computed to create new

states.

Example: State (2, {1}, {1}) in stage 1 generates the following states in

stage 2 (assuming a12 = 1):

• (2, {0, 1}, {1, 1}): 1 machine moves from job 1 to job 2.

• (1, {1, 1}, {1, 1}): 1 machine moves from the depot to job 2.

• (1, {0, 2}, {1, 2}): 1 machine moves from job 1 to job 2, and another

comes from the depot.

• (0, {1, 2}, {1, 2}): 2 machines move from the depot to job 2.

• (0, {0, 3}, {1, 3}): 1 machine moves from job 1 to job 2, and 2 more

come from the depot.

For any state in stage i it holds that ci = mi. Machine allocation values for

job i are restricted to be members of Ai (see Section 4.5.1). In valid states,

at least one machine must be assigned to job i. If a state generated for stage

i cannot lead to states in stage i + 1 it is discarded from stage i: this is

checked by calculating whether any machines will be able to move to job

i + 1.

Stage n is the final stage. If there is at least one state in stage n then it is

feasible to process the jobs of N using at most x machines. If we are not

restricting the number of states retained at each stage, then stage n will

contain states corresponding to an optimal solution: a feasible assignment of

machines to jobs that requires the smallest number of machines. Let

Qmin = min
M∈M

Q(M), the optimal value for the scheduling problem. Optimal

states of stage n have the greatest value for d amongst all states of stage n.

Supply ship scheduling 110

Let dmax be this maximum value of d. We have Qmin = x − dmax, the total

machines available minus the number of machines left unused at the depot.

Since the DP algorithm results in an exponential explosion in the number of

states as the problem size n increases, we attempt to find good solutions

using a restricted DP heuristic (RDP) [92]. The RDP heuristic keeps the H

best states at each stage and discards the rest. This means that the number

of states in stage i, from which the states of stage i + 1 are generated, is

limited. Fewer generating states will often result in fewer possibilities for

states in the next stage and a large decrease in computational resources.

The heuristic must judge which states are most likely to lead to feasible

states at stage n. It should also endeavour to maximise the number of

machines remaining at the depot, thus minimising the number of machines

used. We shall refer to the restricted dynamic programming algorithm as

RDP(x, H), where up to H states at each stage are retained with the

objective of finding feasible solutions when there are x machines available.

4.7.1 Restricting and sorting the list of retained states

To judge which to keep and which to reject we associate a statistic with

each state: we shall call this its opportunity value. The opportunity value

should reflect a state’s potential to lead to a feasible solution; this potential

is suggested by its ability to lead to states in all subsequent stages. Since

states in subsequent stages are generated by ‘moving’ machines from

completed jobs to jobs awaiting machines, the number of opportunities for

such movements from completed jobs will impact the number of states that

can arise.

The formula we use results from the idea that each machine provides one

opportunity ‘point’ for each unallocated job accessible from its current job.

A limit, bk, is placed on the maximum number of machines that may move

Supply ship scheduling 111

from any individual job to job k, where bk is the largest element of Ak, the

greatest allocation of machines allowed for job k. For a state (d, Ci, Mi) in

stage i, we use

opp(d, Ci, Mi) =

n
∑

k=i+1

min {d, bk} +

i
∑

j=1

n
∑

k=i+1

min {gjk, bk}

where

gjk =







cj if mj ≥ ajk

0 otherwise.

As states are generated, they are sorted by their opportunity value. We

wish to keep the H states with highest opportunity values, since these may

lead to a greater number of feasible solutions. Among states with the same

opportunity value, we sort by the value d. We prefer states with a larger

value of d as these may lead to states at stage n with the greatest value of d.

Our sorting process uses ordered ‘buckets’ corresponding to each

opportunity value, and ‘sub-buckets’ for each value of d.

An alternative is to sort by d alone, ignoring opportunity. This places less

emphasis on retaining states that could lead to feasible solutions and more

emphasis on using as few machines as possible.

Sometimes a state from stage i − 1 will generate a state for stage i that is

identical to one already retained in the list. We discard the duplicate state.

Even if two states of the same stage are not quite identical, they may be

similar enough that we need keep only one of them. Let

Kj = {k| k ∈ N, k > i, mj ≥ ajk} be the set of jobs after job i that are

reachable by machines at job j, given mj. If there are no machines at job j,

i.e. cj = 0, we set Kj = ∅. Assume we have two states (d′, C ′
i, M

′
i) and

(d′′, C ′′
i , M ′′

i), with corresponding sets K ′
j and K ′′

j for each j ≤ i. If d′ = d′′,

C ′
i = C ′′

i and K ′
j=K ′′

j for all j ≤ i, then the two states are similar and we

may discard one of them. Note that when c′j 6= 0 and c′′j 6= 0, we have

K ′
j=K ′′

j if m′
j , m

′′
j ≥ max

k>i
{ajk}.

Supply ship scheduling 112

4.7.2 Upper bounds on the optimal value

Recall that dmax is the value of d that is the greatest among all states of

stage n. The machine assignments in Mn for states with d = dmax reveal the

best solutions provided by the RDP heuristic for a particular H and x.

If there is a stage i ≤ n for which no states can be generated, the

RDP(x, H) heuristic cannot find any feasible solutions for the problem of

completing the set of jobs using at most x machines, given the restriction

H . Applying the heuristic with a larger value of H may reveal feasible

solutions. To be certain of infeasibility, or to find the optimal solution, H

must be an unrestrictive value.

Let y(x, H) = x − dmax be the number of machines actually used in the best

feasible solution produced by RDP(x, H). If x ≥ Qmin and RDP(x, H)

produces at least one feasible solution, then x ≥ y(x, H) ≥ Qmin.

RDP(x, H) may still provide an upper bound on Qmin even if no feasible

solutions are found. If stage i is the last stage at which states were found

then we know that x machines are able to complete jobs {1, . . . , i}. If i > x

we may improve on our simplest upper bound, n. Starting from a partial

solution in stage i, we allocate an additional machine for each of the n − i

remaining jobs. This provides a simple feasible solution to the scheduling

problem that uses x + (n − i) machines.

Note that due to the way that states are selected to be retained we cannot

guarantee that y(x, H1) ≤ y(x, H2) for H1 > H2, or that y(x1, H) ≤ y(x2, H)

for x1 < x2. It is possible for a critical state to be accepted for some values

of the parameters and rejected in favour of others when other parameter

values are used. In general, we expect lower values for y(x, H) as H

increases, as fewer critical states are rejected. We might also expect

y(x1, H) ≤ y(x2, H) when x1 < x2, since lower values for x result in a smaller

Supply ship scheduling 113

number of states generated from each state at every stage: with fewer states

generated there is less competition between states to be retained.

4.7.3 Time complexity

The number of steps required by RDP(x, H) in the worst case is O(n2H22x),

where x is the number of machines, n is the number of jobs in N , H is the

maximum number of states retained at each stage, and we assume H ≥ n.

• The exponential term, 2x, arises from the generation of states for a

stage i: each state contains a total of x machines waiting at jobs

{0, 1, . . . , i − 1} and each machine either moves to job i or it does not.

• The sorting and checking of each state is O(nH). (If n > H and

opportunity values are calculated, this becomes O(n2)).

• Each stage contains at most H generating states.

• There are at most n stages.

• The algorithm requires O(nH) space. Only two stages are retained at

a time.

This shows that the running time of RDP(x, H) is most dependent on the

magnitude of x. The heuristic may be very inefficient for instances where x

must be a large value.

Supply ship scheduling 114

4.7.4 Improving the upper bound

Let u represent the current best upper bound on Qmin, while l is the best

lower bound. We may obtain initial values for u and l using the networks

presented in Section 4.5.2. A better upper bound is provided by any feasible

solution M with Q(M) < u. We may use RDP(x, H) to discover such

feasible solutions, improving the upper bound to u = y(x, H). For a fixed

value of the parameter H , two search methods we might use are:

1. Bisection search:

(a) Find an initial lower bound, l, and an upper bound, u0, on Qmin.

(b) Let u = u0 and lu = l.

(c) While (lu 6= u): { Apply RDP(x, H) using x =
⌊

lu+u
2

⌋

.

• If RDP(x, H) finds a feasible solution, let u = y(x, H).

• Otherwise, let lu = x + 1 (the next lowest value that may

produce feasible solutions). }

(d) Return u.

2. Decremental search:

(a) Find an initial upper bound, u0, on Qmin.

(b) Let u = u0.

(c) Loop: { Apply RDP(x, H) using x = u − 1.

• If RDP(x, H) finds a feasible solution, let u = y(x, H).

• Otherwise, go to step (d). }

(d) Return u.

In the bisection search algorithm, lu indicates a lower bound on the best

upper bound achievable by RDP(x, H), not a lower bound on Qmin.

Supply ship scheduling 115

Let xH represent the smallest value of x for which RDP(x, H) provides a

feasible solution. The relative efficiency of the two search methods depends

on the number of calls to RDP(x, H), and the values of x that must be

explored:

• Increases in the value of x lead to significantly larger running times for

each RDP(x, H).

• RDP(x, H) requires fewer computations when no feasible solutions are

found, as it terminates at the last feasible stage.

• If xH = u0, the decremental search needs only one iteration of

RDP(x, H): a common occurrence if the initial bound is already

near-optimal.

• The worst case occurs when xH = l. The bisection search requires

O(log(u0 − l)) iterations, while the decremental search requires

O(u0 − l) iterations.

Supply ship scheduling 116

4.8 Computational experience

The algorithms were coded in the C programming language and compiled

using Microsoft Visual Studio .NET 2003. The computer used to test the

algorithms used a Pentium 4 processor (2.4 GHz with 504 MB of RAM).

By considering both the excess value of resulting solutions over the best

solutions we have discovered, and the number of instances for which an

approach produces the best objective value, we may compare the

effectiveness of different approaches. If U is the objective value given by our

heuristic method, and B is the best objective value we have found for the

instance (by any method), then we let

Excess = 100 ×
(U − B)

B
.

4.8.1 Generating instances of the supply ship

scheduling problem

Any n-job instance of the problem may be specified by its threshold values:

data for such an instance consists of 1
2
n(n− 1) elements corresponding to aij

for i = 1, . . . , n − 1; j = i + 1, . . . , n. Our scheduling problem requires that

set-up times satisfy the triangle inequality, so these aij cannot be randomly

generated directly. To ensure that all set-up times obey this restriction we

generate instances by randomly locating n jobs on a 100 × 100 unit grid.

Each instance is controlled by the random job locations and three

parameters. Set-up times are calculated by dividing the distance between

jobs by a parameter representing a machines speed: the greater the speed,

the smaller the set-up times. An upper bound on the possible

single-machine processing time for any job is given by a processing

parameter. A lower bound on the single-machine processing time is set to

Supply ship scheduling 117

be 20% of the upper bound. Generation of fixed start times is controlled by

a density parameter: the higher the density, the smaller the average time

between consecutive jobs. The latest possible start time for any job is given

by n divided by the density parameter. The random values for start times

are sorted into ascending order before being assigned to the current job

ordering. For each parameter we allow three possible values:

• Start time density: {0.1, 0.2, 0.3}.

• Processing time: {25, 50, 100}.

• Set-up speed: {5, 10, 20}.

Using every combination of these parameter values, we form a group of

twenty-seven n-job instances. Each member shares the same set of job

locations, as well as some subset of their parameters, with others in the

group. Use of these groups ensures our instances cover a wide range of start

time, processing time and set-up time combinations. The resulting

threshold values can be significantly different between instances even for a

seemingly small change in parameter.

For each n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90} we generate five groups. This

gives us 1215 instances on which to test our heuristics.

To simplify our analysis, and presentation of results, we divide the set of

instances into subsets:

• Small represents n ∈ {10, 20, 30} (405 instances).

• Medium represents n ∈ {40, 50, 60} (405 instances).

• Large represents n ∈ {70, 80, 90} (405 instances).

Supply ship scheduling 118

4.8.2 Simple upper and lower bounds

The upper bound derived from solving the minimum flow in a

one-machine-per-job network (see Section 4.5.2) provides surprisingly good

solutions for many of the instances considered (see Table 4.5). The best

solution for several of our instances is this basic one-machine-per-job

solution, since each machine may process a number of jobs. This simple

upper bound is obtainable in almost zero time and should form a good

starting solution for the local search methods.

Small Medium Large

Excess (%) 16.61 16.83 17.59

Best (%) 23 15 10

CPU time 0.000 0.001 0.003

Table 4.5: Average excess (%) of the simple upper bound over the best solu-

tion; percentage of instances for which the simple upper bound gave the best

solution; and run time (seconds)

The lower bound (as described in Section 4.5.2) is 46.55% below the best

solution found on average across all instances. This is a fairly weak lower

bound, but because it takes practically zero time to compute in most

instances (maximum of 0.047 seconds for 100-task instances) it may be

useful to narrow the search area for a good feasible solution. (A small

modification to the bounding calculation would allow it to be used for

sub-problems in a branch-and-bound scheme. Fixing numbers of machines

for a set of jobs, thus eliminating some arcs between jobs, should improve

the effectiveness of the bound, but this has not been tested).

Supply ship scheduling 119

4.8.3 Local search

Descent

Results for the eight varieties of descent method tested are shown in Tables

4.6, 4.7 and 4.8. Each method uses the selective neighbourhood prescribed

by a maximum cut in the network corresponding to the current solution.

The neighbourhood is formed from two parts: R (containing decreases in

machine allocation) and W (containing increases in machine allocation).

First improvement:

The results for FI-RW and FI-WR reveal that there was no difference

between the methods in practice: both lead to equivalent local minimums in

every instance without a significant difference in the CPU times required.

Indeed, the first few accepted moves for each method should be identical

from a starting solution of mi = 1 for all i ∈ N . Moves that reduce machine

assignment, i.e. those in R, only apply to jobs i with mi > 1. The two

neighbourhood order variations are equivalent if R is empty.

First improvement with neutral move acceptance:

Acceptance of neutral moves provides much better solutions in practice.

There is some difference between FIN-RW and FIN-WR however.

Generating neighbours from R before W results in a slightly longer average

running time and allows the approach to settle in a better local minimum

for some instances. FIN-RW produces good solutions in very little time.

Best improvement (steepest descent):

Checking the entire neighbourhood before selecting a move results in a

doubling of the CPU time over the FI methods, but no improvement in

solution quality. The order in which neighbourhood fragments R and W

Supply ship scheduling 120

were checked (and thus the selection of a move from among equals) did not

affect the results. BI-RW and BI-WR behaved almost identically.

Best improvement with neutral move acceptance:

BIN-RW and BIN-WR provide the best solutions among the descent

variants we have tested. There is not a significant difference between the

performance of BIN-RW and BIN-WR. Average CPU time remains very

small, but is the greatest among the descent methods.

It seems well worth applying BIN to our problem to achieve good solutions

in a fraction of a second.

Tabu search

Results for five tabu search approaches using different parameters are given

in Tables 4.9, 4.10 and 4.11. The tabu search algorithm was applied with list

lengths from 1 to 4 (small values seem appropriate since the neighbourhoods

are relatively small). The search was set to continue for 100 iterations after

the last improvement to the current best solution. In addition, since the list

length of 3 seemed to produce the best results, an experiment to extend the

termination criterion to 1000 iterations was also included.

The solutions obtained by the tabu search approaches appear excellent,

achieving the best solution we have found for about 90% of the instances.

Average CPU times are also very short; this may be due to many instances

terminating before the 100 iteration (post improvement) limit is reached. If

the neighbourhood of a solution is very small (perhaps indicating it is a

strong solution) and the tabu list forbids those moves that are available, the

algorithm terminates. Average CPU times for the 1000 iteration limit are

reasonable and even larger iteration limits (or a fixed time limit) may

produce better results for some instances.

Supply ship scheduling 121

Method Small Medium Large

FI-RW 6.35 9.27 9.36

FI-WR 6.35 9.27 9.36

FIN-RW 2.39 2.77 2.40

FIN-WR 2.45 2.89 2.63

BI-RW 6.35 9.27 9.36

BI-WR 6.35 9.27 9.36

BIN-RW 1.57 2.24 1.83

BIN-WR 1.58 2.24 1.82

Table 4.6: Average excess (%) for the descent methods.

Method Small Medium Large

FI-RW 52 29 26

FI-WR 52 29 26

FIN-RW 79 66 70

FIN-WR 78 64 67

BI-RW 52 29 26

BI-WR 52 29 26

BIN-RW 85 72 77

BIN-WR 85 72 77

Table 4.7: Percentage of instances for which the descent methods found the

best solution.

Supply ship scheduling 122

Method Small Medium Large

FI-RW 0.001 0.011 0.042

FI-WR 0.001 0.012 0.041

FIN-RW 0.003 0.060 0.271

FIN-WR 0.001 0.023 0.089

BI-RW 0.002 0.022 0.085

BI-WR 0.002 0.022 0.086

BIN-RW 0.008 0.163 0.770

BIN-WR 0.008 0.162 0.768

Table 4.8: Average CPU time (seconds) for the descent methods.

Method Small Medium Large

TS L1 It100 0.81 1.16 1.18

TS L2 It100 0.69 1.03 1.01

TS L3 It100 0.71 0.87 0.89

TS L4 It100 0.78 0.89 0.96

TS L3 It1000 0.71 0.83 0.81

Table 4.9: Average excess (%) for the tabu search methods.

Method Small Medium Large

TS L1 It100 92 85 85

TS L2 It100 93 87 86

TS L3 It100 94 90 88

TS L4 It100 93 90 88

TS L3 It1000 94 90 90

Table 4.10: Percentage of instances for which the tabu search found the best

solution.

Supply ship scheduling 123

Method Small Medium Large

TS L1 It100 0.059 0.806 10.031

TS L2 It100 0.051 0.748 9.514

TS L3 It100 0.045 0.709 8.676

TS L4 It100 0.038 0.682 8.039

TS L3 It1000 0.356 5.203 24.570

Table 4.11: Average CPU time (seconds) for the tabu search methods.

4.8.4 Restricted dynamic programming heuristics

Results for four approaches using restricted dynamic programming (RDP)

are given in Tables 4.12, 4.13 and 4.14. Four different values for the

parameter H , the maximum number of states retained at each stage, are

displayed for each approach. Two search methods are used: bisection search

and decremental search. The bisection search uses the simple upper and

lower bounds given in Section 4.8.2 to narrow the search, while the

decremental search begins at the simple upper bound. Results for two

different sorting criteria are provided. OD represents utilisation of an

approach that sorts states first by opportunity value, and then (among

states with equal opportunity) by the depot number, d. Sorting of states by

d alone is represented by D.

In general, as H increases the solutions obtained improve and CPU times

increase. The performances of the RDP approaches are much better for

small instances than for medium or large instances; the best solution is

found for 66% of the small instances in very little time.

As problem size and H increase, the difference in average CPU time

between RDP methods using different sorting criteria becomes more

marked. The two OD methods, which employ both the opportunity value

and depot number to sort and retain states, require significantly more time

Supply ship scheduling 124

than the two D methods, that sort only by the depot number. Three factors

contributing to this large difference are:

1. Computation of each opportunity value is O(n2). In the OD methods,

an opportunity value must be determined for every state that is

generated .

2. States with a high opportunity value tend to generate more states

(and thus even more computation) in subsequent stages than those

with lower opportunity.

3. At each stage, the D algorithm implementations use the worst

retained value of d to break early from the generation loop, cancelling

the generation of worse states. Many fewer states must be considered.

The use of the opportunity statistic provides better solutions for the small

instances when restricted to the smallest values of H . Overall however,

opportunity values are not useful: by selecting states to retain using the

depot number alone, we can provide better solutions in a shorter time,

increasing H if necessary.

We now compare the performance of the bisection search procedure,

D-Bisection, versus the decremental search, D-Decrement. The decremental

search is slightly faster on average, but the bisection search provides a

better solution in a few cases. We might expect the bound improvement

from each of these methods to be identical, but results from RDP(x, H) can

occasionally appear peculiar; for example, for a particular 20-job instance,

RDP(x = 15, H = 20) provided a valid upper bound of 14, with an

associated solution; but RDP(x = 14, H = 20) did not find a feasible

solution. In this rare situation, RDP(x = 14, H = 20) must have discarded

some critical state that would have lead to the feasible solution.

Since the most promising approach of those presented is D-Bisection we

Supply ship scheduling 125

present further results for increasing H in Table 4.15. We see that the

heuristic performs very well for small instances, but cannot match the

performance of the tabu search heuristics. Large CPU time requirements for

some medium and large instances mean that the average CPU time of the

RDP method cannot compete with the very quick FIN and BIN descent

methods or the tabu search method.

The results given are for search procedures using a fixed value of H . A

scheme that increases H as the search progresses may improve CPU times.

Small H = 5 H = 10 H = 20 H = 40

OD-Bisection 7.19 6.34 5.49 4.71

OD-Decrement 7.26 6.40 5.56 4.75

D-Bisection 10.48 8.83 7.01 5.10

D-Decrement 10.48 8.83 7.01 5.10

Medium H = 5 H = 10 H = 20 H = 40

OD-Bisection 12.82 12.08 11.57 10.34

OD-Decrement 12.86 12.17 11.57 10.37

D-Bisection 13.89 12.79 11.00 10.11

D-Decrement 13.89 12.79 11.00 10.11

Large H = 5 H = 10 H = 20 H = 40

OD-Bisection 13.94 13.53 12.81 12.09

OD-Decrement 14.00 13.59 12.88 12.14

D-Bisection 14.29 13.11 11.89 10.37

D-Decrement 14.29 13.15 11.89 10.37

Table 4.12: Average excess (%) for the RDP approaches.

Supply ship scheduling 126

Small H = 5 H = 10 H = 20 H = 40

OD-Bisection 53 57 62 67

OD-Decrement 53 57 61 67

D-Bisection 44 51 57 66

D-Decrement 44 51 57 66

Medium H = 5 H = 10 H = 20 H = 40

OD-Bisection 21 24 26 30

OD-Decrement 21 24 26 30

D-Bisection 24 27 34 36

D-Decrement 24 27 34 36

Large H = 5 H = 10 H = 20 H = 40

OD-Bisection 15 17 20 23

OD-Decrement 15 16 20 23

D-Bisection 18 21 26 32

D-Decrement 18 21 26 32

Table 4.13: % instances for which the RDP approach finds the best solution.

Supply ship scheduling 127

Small H = 5 H = 10 H = 20 H = 40

OD-Bisection 0.013 0.022 0.040 0.074

OD-Decrement 0.015 0.028 0.058 0.118

D-Bisection 0.001 0.003 0.005 0.010

D-Decrement 0.001 0.001 0.004 0.008

Medium H = 5 H = 10 H = 20 H = 40

OD-Bisection 1.740 3.375 6.541 13.037

OD-Decrement 1.898 3.928 7.841 15.655

D-Bisection 0.011 0.022 0.045 0.103

D-Decrement 0.005 0.015 0.035 0.084

Large H = 5 H = 10 H = 20 H = 40

OD-Bisection 11.862 22.559 44.588 78.127

OD-Decrement 17.032 35.450 94.735 228.494

D-Bisection 0.053 0.079 0.137 0.385

D-Decrement 0.031 0.054 0.107 0.339

Table 4.14: Average CPU times (seconds) for the RDP approaches.

Supply ship scheduling 128

Small H = 80 H = 160 H = 320 H = 640 H = 1280

Excess (%) 3.88 3.19 2.43 1.69 1.13

Best (%) 71 74 78 83 88

CPU time 0.022 0.054 0.136 0.352 0.981

Medium H = 80 H = 160 H = 320 H = 640 H = 1280

Excess (%) 8.31 7.06 6.17 5.37 4.58

Best (%) 42 49 54 58 63

CPU time 0.294 0.847 2.700 8.814 37.288

Large H = 80 H = 160 H = 320 H = 640 H = 1280

Excess (%) 9.15 8.17 6.85 5.75 4.87

Best (%) 37 42 48 54 59

CPU time 1.144 3.380 12.254 41.519 187.295

Table 4.15: Further results for the D-Bisection RDP approach.

4.9 Extensions to the work presented

We have concentrated on entirely deterministic methods for finding good

solutions. Almost all of our approaches could be modified to accept random

choices; for example, the best improvement descent methods could

randomly select between equally good neighbours; the probability of

retaining a state in the RDP could be based on a function of its elements, or

entirely random. It would be interesting to discover the change in

performance these ideas might allow.

We could apply our selective neighbourhood structure within alternative

local search metaheuristics; for example, simulated annealing. With the

development of an appropriate kick modification, an iterated descent might

enhance the ability of our simplest procedures. We decided to use a

one-machine-per-job solution as the starting point for all our heuristics

because it often represented a fair solution. An alternative heuristic for

Supply ship scheduling 129

generating starting points might allow access to new areas of the search

space and allow the use of multi-start descent algorithms: we could use

random selection of machine assignments, or the feasible solutions provided

by our RDP for small H .

The tabu list in our tabu search approach was created from forbidden

solution modifications. This allowed us to use a short list but meant that

there was a possibility of cutting off access to better solution possibilities.

We could instead store all the recently explored solutions, allowing a more

thorough investigation of the search space.

We have tested instances consisting of 10 to 90 jobs. Our descent methods

provided good solutions within a fraction of a second in most cases. These

procedures might also be successful for considerably larger problems.

4.10 An improved formulation for the

restricted dynamic programming

approach

As we saw in Section 4.7.3, the worst-case time performance of the RDP

technique presented is very poor. We noted that each state may ‘generate’

up to 2x states in the next stage, where the parameter x is the number of

machines allowable in the problem. By the following reformulation we may

reduce this significantly: each state generates at most n states in the next

stage.

The previous formulation employed perhaps the simplest and most intuitive

approach for movements of machines: each state provided the number of

machines currently at each job and the number of machines allocated to

Supply ship scheduling 130

each job; thus we could determine the availability of machines for remaining

jobs. New states were generated by moving a subset of those machines to

the current job. The idea behind our improved approach is that a state

simply provides the number of machines available for each remaining job,

together with the number of machines that remain unused at the depot.

When we allocate a number of machines to a job, it is important to know

whether those machines come directly from the depot or are already ‘in the

system’ of jobs. Remember that we wish to maximise the number of jobs

remaining at the depot in order to minimise the total number of machines

required to complete the jobs.

Let a state (di, Xi) at stage i contain the following information:

• di, the number of machines currently left unused at the depot.

• Xi = {xi, i+1, xi, i+2, . . . , xi, n−1, xin}, where each xij is the number of

machines available to process job j for this state in stage i.

Assuming there are x machines allowed in the problem, the initial stage

contains only the state (d0 = x, X0 = {x0j = x, ∀ j = 1, . . . , n}), i.e. all x

machines are at the depot and are available to process any job.

New states for stage i are generated from those in stage i− 1 by fixing mi to

be each member of Ai in turn (see Section 4.5.1) with the condition that

mi ≤ xi−1, i; we cannot assign more machines to job i than are available to

it. The assignment of only mi machines to job i may restrict those machines

from processing some of the subsequent jobs. We determine these jobs by

comparing mi to the threshold values aij .

We calculate the values of the elements in Xi for the new state by modifying

those of Xi−1 for the generating state. We use

xij = xi−1, j − miδij for j = i + 1, . . . , n

Supply ship scheduling 131

where

δij =







0 if mi ≥ aij

1 otherwise.

We must also calculate di for the new state. Since we wish to maximise the

number of machines remaining at the depot, we re-use machines whenever

possible. Let us call a machine that has already completed some previous

job a used machine. By subtracting the value of di−1 from xi−1, i we can

determine the availability of used machines for job i. If we assign more

machines to job i than the available used machines, we must take the

additional machines from the depot: if mi > xi−1, i − di−1, we have

di = di−1 − (mi − (xi−1, i − di−1)).

We may therefore use

di =







di−1 if mi ≤ xi−1, i − di−1

xi−1, i − mi otherwise.

Application of the above process for generation of states is likely to produce

multiple instances of the same state; we maintain only one entry for the

state in our list. We will also discover states that are dominated by other

states. We say a state (d′
i, X

′
i) in stage i is dominated by a non-identical

state (d′′
i , X

′′
i) if d′′

i ≥ d′
i and x′′

ij ≥ x′
ij for all j = i + 1, . . . , n. We may

discard any state that is dominated.

A state is infeasible if any xij = 0, j = i + 1, . . . , n. A value of zero for xij

means that there are no machines available to process job j; we may discard

the state.

Formulating the states in this way allows us to find the minimum number of

machines required to complete the jobs. To find a solution, M ,

corresponding to this value we must also associate a set Mi = {m1, . . . , mi}

with each state in stage i. (These Mi need not be considered when

Supply ship scheduling 132

determining if two states are identical, or if one dominates the other; they

merely provide an example partial solution). In this way, any state consists

of n + 1 elements.

If we maintain a list of H states at stage i, then we only need consider

|Ai| × H states in the next stage (where |Ai| ≤ n). Some potential statistics

to use for the ordering and retaining of our H states include:

1. di. Retain those states in which the most machines remain unused.

2. xi, i+1. Retain those states that allow the greatest number of machines

to process the next job (this leads to the largest number of states at

the next stage).

3.
n
∑

j=i+1

xij . Retain those states with the greatest sum of available

machines across the remaining jobs.

An algorithm using this formulation would have a time complexity of

O(n3H2) and space complexity of O(nH).

4.11 Conclusion

We have introduced and studied a combinatorial optimisation problem we

have named the supply ship scheduling problem. By calculating statistics

we called threshold values, we may represent any instance as a directed

graph and reduce the field of possible solutions. Objective values for

solutions to this problem may be calculated by constructing an appropriate

network and deducing its minimum flow. This network was used to find

upper and lower bounds on the optimal value for the problem.

We proposed a selective neighbourhood structure for local search procedures

based on finding a maximum cut in the network representing the solution.

Supply ship scheduling 133

The neighbourhood was applied within several descent algorithms and a

tabu search procedure.

We have also presented a heuristic inspired by restricted dynamic

programming, suggesting statistics for use in selection of states to retain.

Two simple search procedures were outlined. These methods were used to

improve previous upper bounds and find good feasible solutions.

The local search heuristics seem to perform very well on the instances

tested. Good solutions may be found in a very short amount of time. We

highlight the BIN (best improvement with acceptance of neutral moves) and

tabu search methods as the best approaches.

The best RDP approach we tested requires a significant amount of time in

order to match the best solutions given by the local search. It is most

effective for fairly small problems.

It remains an open problem whether the supply ship scheduling problem is

NP-hard.

Chapter 5

Solving task allocation

problems using semidefinite

programming

5.1 Introduction

In a task allocation problem (TAP) a set of tasks must be assigned to a set of

processors so that the overall cost is minimized. Costs arise from processors,

task assignment and inter-processor communication. Processors may have a

limited capacity which must be shared by any tasks assigned to them.

The TAP arises in distributed computing systems [114], an area that has

become increasingly important with the development of micro-processor

systems, multi-processor computers, the proliferation of networked

computers and demand for solutions to complex modular programs. It is

useful to know how components of such programs should be spread amongst

the available processors to obtain the fastest results. We may consider costs

to be the amount of time required by a processor to execute a particular

134

Task allocation problems 135

task, plus the time required for the communication of task data between

processors.

In industrial applications, we want to know which processors and data links

should be installed in a system from a number of different options. When

costing a proposed system of micro-processors the aim is to minimise the

installation cost of both the processors and inter-processor communication

bandwidth, ensuring that all tasks are executable within a fixed time cycle.

The prime example of such an application is within the car manufacturing

industry [106], where the monitoring processes of chassis, suspension and

fuel injection are performed by a sub-system of microcomputers.

In this chapter we apply semidefinite programming (SDP) relaxation

techniques to three variants of the TAP known as the UTAP, CTAP and

CMAP. The UTAP features uncapacitated processors. The CTAP does not

include execution costs, while the CMAP excludes the costs of processors.

We employ a partial higher lifting approach to improve the relaxations,

proposing a number of heuristics for selection of indices for matrix variable

extension. We also suggest heuristics for selection of branching variables

and use a branch-and-bound search tree to find lower bounds and solutions

for the CMAP.

Sections 5.2 and 5.3 give a brief introduction to semidefinite programming

and positive semidefinite matrices. Standard linear programming

formulations for variants of the task allocation problem are provided in

Section 5.4. Section 5.5 is a short review of the key literature pertaining to

the TAP. Our semidefinite programming relaxations, and heuristics to aid

the effectiveness of partial higher lifting improvements, are presented in

Section 5.6. In Section 5.7 we present our branch-and-bound algorithm and

a number of strategies for selection of the branching variable. Sections 5.8,

5.9 and 5.10 contain our computational experience of the application of the

Task allocation problems 136

SDP relaxations to three variants of the TAP. We suggest an area for

further study in Section 5.11, then conclude the chapter in Section 5.12.

5.2 Semidefinite programming

Semidefinite programming [124] is a mathematical programming technique

that involves optimisation over matrices. If all the matrices are diagonal, a

semidefinite program becomes a linear program.

SDP problems can be solved efficiently in practice by interior-point

algorithms [4]. The approach has been successfully applied in combinatorial

optimisation, including quadratic 0-1 programming problems.

The standard SDP problem [5]:

An n × n matrix variable, X, is used to formulate a problem as:

max C • X

s.t. Ak • X = bk, k = 1, . . . , m

X � 0

where C and Ak are n × n matrices of real numbers, each bk is a real

number and

C • X =
n

∑

i=1

n
∑

j=1

Ci,jXi,j.

Each equation Ak • X = bk represents a linear constraint on the elements of

X.

X � 0 denotes that X is symmetric and positive semidefinite.

Task allocation problems 137

5.3 Positive semidefinite matrices

An n × n symmetric matrix, X ∈ R
n×n, is said to be positive semidefinite if

yTXy =

n
∑

i=1

n
∑

j=1

Xi,jyiyj ≥ 0 ∀ y ∈ R
n.

Positive semidefinite matrices have a number of important properties:

• All eigenvalues of a positive semidefinite matrix are non-negative.

• All its diagonal entries are non-negative.

• The trace is non-negative, since this is the sum of the diagonal entries.

• The determinant is non-negative, since this is equal to the product of

the eigenvalues.

• Let S ⊆ {1, 2, . . . , n}. A principal submatrix, X(S), is the matrix that

results from the deletion of indexed rows and columns of X that are

complementary to S. Any principal submatrix of a positive

semidefinite matrix is positive semidefinite.

• The principal minors are non-negative. These are the determinants of

the corresponding principal submatrices.

Two further properties, that we shall make use of in Section 5.7.1, are:

Fact 5.1 If a diagonal entry of a positive semidefinite matrix is zero, any

other entries in the same row or column must also be zero.




a c

c b



 � 0 and b = 0 =⇒ c = 0

Proof:
∣

∣

∣

∣

∣

∣

a c

c b

∣

∣

∣

∣

∣

∣

≥ 0 =⇒ ab − c2 ≥ 0 =⇒ c2 ≤ 0 =⇒ c = 0.

Task allocation problems 138

Fact 5.2 If the first entry of a positive semidefinite matrix is one and the

diagonal entry and the first entry in a column/row are one, then the

column/row is identical to the first column/row of the matrix.











1 1 a

1 1 b

a b a











� 0 =⇒ a = b

Proof:

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 a

1 1 b

a b a

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 a − b

1 1 b

a b a

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (a − b)

∣

∣

∣

∣

∣

∣

1 1

a b

∣

∣

∣

∣

∣

∣

= −(a − b)2 ≥ 0 ⇒ a = b.

5.4 The task allocation problem

We have n tasks to be assigned to m processors. Each task must be assigned

to exactly one processor. Communication links between processors are

identical. Let cij be the cost of communication between tasks i and j; we

assume that cij = cji and cii = 0. The communication cost, cij, is incurred if

and only if the tasks i and j are assigned to different processors. A task may

require different amounts of running time if assigned to different processors.

Let eik denote the execution cost of task i if it is assigned to processor k. If

used, processor k incurs a fixed cost of fk and has a total resource capacity

of bk. Let ai denote the amount of resource required to execute task i.

To formulate the general TAP problem, we introduce two sets of 0-1

decision variables:

• xik = 1 if and only if task i is assigned to processor k;

• yk = 1 if and only if processor k is assigned at least one task.

Task allocation problems 139

The problem formulation is as follows [47]:

min
n−1
∑

i=1

n
∑

j=i+1

cij

(

1 −
m
∑

k=1

xikxjk

)

+
n
∑

i=1

m
∑

k=1

eikxik +
m
∑

k=1

fkyk

s.t.
m
∑

k=1

xik = 1 i = 1, . . . , n

n
∑

i=1

aixik ≤ bkyk k = 1, . . . , m

xik ≤ yk i = 1, . . . , n; k = 1, . . . , m

xik ∈ {0, 1} i = 1, . . . , n; k = 1, . . . , m

yk ∈ {0, 1} k = 1, . . . , m

The objective function is minimizing the total cost, which is the sum of the

communication costs, the execution costs and the processor costs. The

constraints ensure that each task is assigned to exactly one processor, that

the total resource usage by the tasks assigned to a processor does not exceed

its capacity, and that no task is assigned to a processor that is not used.

Notice that if ai > 0 for all i, then the last set of inequalities is redundant,

since it can be deduced from the other constraints.

To simplify the formulation of the objective function we multiply out the

brackets, remove the constant value of the sum of communication costs and

let dij = −cij .

min
n−1
∑

i=1

n
∑

j=i+1

cij

(

1 −
m
∑

k=1

xikxjk

)

+
n
∑

i=1

m
∑

k=1

eikxik +
m
∑

k=1

fkyk

= min
n−1
∑

i=1

n
∑

j=i+1

cij −
n−1
∑

i=1

n
∑

j=i+1

m
∑

k=1

cijxikxjk +
n
∑

i=1

m
∑

k=1

eikxik +
m
∑

k=1

fkyk

≡ min
n−1
∑

i=1

n
∑

j=i+1

m
∑

k=1

(−cij)xikxjk +
n
∑

i=1

m
∑

k=1

eikxik +
m
∑

k=1

fkyk

= min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijxikxjk +
m
∑

k=1

n
∑

i=1

eikxik +
m
∑

k=1

fkyk

A number of special cases of the TAP appear in the literature.

Task allocation problems 140

5.4.1 The capacitated problem (CTAP)

In this version of the problem, costs are usually associated with the

installation of communication links and processors. Execution costs are not

a factor.

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijxikxjk +
m
∑

k=1

fkyk

s.t.
m
∑

k=1

xik = 1, i = 1, . . . , n

n
∑

i=1

aixik ≤ bkyk k = 1, . . . , m

xik ≤ yk i = 1, . . . , n; k = 1, . . . , m

xik ∈ {0, 1} i = 1, . . . , n; k = 1, . . . , m

yk ∈ {0, 1} k = 1, . . . , m

This case also arises if execution costs are a constant value. If eik = e for all

i, k, then

n
∑

i=1

m
∑

k=1

eikxik = e
n
∑

i=1

m
∑

k=1

xik = e
n
∑

i=1

(

m
∑

k=1

xik

)

= e
n
∑

i=1

(1) = en.

This is a constant and may be removed from the objective function.

5.4.2 The constrained module allocation problem

(CMAP)

Costs usually represent time in this case. Fixed costs to use processors are

not included, eliminating the need for yk variables.

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijxikxjk +
m
∑

k=1

n
∑

i=1

eikxik

s.t.
m
∑

k=1

xik = 1, i = 1, . . . , n

n
∑

i=1

aixik ≤ bk, k = 1, . . . , m

xik ∈ {0, 1} i = 1, . . . , n; k = 1, . . . , m

Task allocation problems 141

5.4.3 The uncapacitated problem (UTAP)

Processors are assumed to have unlimited capacities. Fixed costs to use

processors are not included. The yk variables and capacity constraints no

longer appear.

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijxikxjk +
m
∑

k=1

n
∑

i=1

eikxik

s.t.
m
∑

k=1

xik = 1 i = 1, . . . , n

xik ∈ {0, 1} i = 1, . . . , n; k = 1, . . . , m

5.5 Literature

Our interest in task allocation problems arose from the report by Ernst et

al. [47] in which they present several integer linear programs and column

generation formulations for the UTAP and CTAP. Their approaches to the

UTAP proved very successful: two of their linear relaxations provided the

optimal solution for many of their instances, while another formulation

provided a good lower bound in a short amount of time. Their column

generation approach was even more successful in most cases. Their

experiments for the CTAP indicated that it was a much harder problem.

Their branch-and-bound approaches for the CTAP were unable to converge

quickly, even after a number of cutting techniques were applied in CPLEX.

The success of the linear programming approaches for the UTAP inspired us

to apply semidefinite programming to these classes of problems. Subsequent

to construction of our SDP formulations for the UTAP and CTAP we came

across a report by Elloumi et al. [45] in which they compare seven different

lower bounds for the constrained module allocation problem (CMAP):

another special case of the TAP that seems to fall between the difficulty of

the UTAP and CTAP. The bounds they consider come from three families

Task allocation problems 142

of optimisation techniques: linearisation, semidefinite programming and

Lagrangian decomposition. Their SDP relaxations are created by applying a

set of rules (from [108]) that convert any quadratic or linear program with

bivalent variables into an SDP. (Their most basic SDP is similar to our

basic SDP when applied to the CMAP). They show that two of their SDP

relaxations are tighter than the linear and Lagrangian decomposition

methods. They also note the structural difficulty of the problem which is

“much more difficult to solve when there are no execution costs and easier

to solve when these execution costs are more important” [45].

We now take a brief look at some of the other approaches that have been

used for the UTAP, CMAP, CTAP and related problems: these include

graph theory, heuristics and integer programming.

Stone [114] models the 2-processor TAP as a graph and uses a maximum

flow algorithm to find the optimal solutions given by a minimum cut in the

transformed network. The problem of finding an optimal assignment of tasks

to 3 or more processors is known to be NP-hard [59] (except for specially

restricted cases [36]); exact approaches are useful only for small instances,

while heuristics may be used to find good solutions to larger problems.

A branch-and-bound technique is used by Ma et al. [89] to solve a TAP with

applications in distributed computing for air defence. Utilisation of each

processor is balanced while satisfying several engineering constraints.

The graph matching approach for task allocation with non-identical

communication links is proposed by Shen and Tsai [113].

Lo [85] proposes a family of greedy heuristic algorithms to find good

solutions for the UTAP based on the approach of Stone [114], extending the

problem to include interference costs. These additional costs are incurred by

assigning tasks to the same processor and are designed to aid in processor

Task allocation problems 143

load balancing.

Sarje and Sagar [109] propose a heuristic for the UTAP with load balancing.

The technique forms task clusters by analysing the communication costs

associated with each task, restricting the cluster size to the average load

across all processors.

Kopidakis et al. [76] transform the UTAP into a maximisation problem in

which they try to determine and avoid large communication costs. Applying

a graph transformation, they present two fast heuristics to find good

solutions: graph matching and greedy edge selection.

A branch-and-bound algorithm of Billionnet et al. [16] uses Lagrangian

relaxation to solve (or find tight lower bounds for) the UTAP. Their

approach is effective when a small percentage of communication costs are

non-zero.

Lewis et al. [81] re-cast the UTAP as an unconstrained quadratic binary

program which they then solve by a tabu search. They state their approach

is competitive with other methods and outperforms CPLEX (a

mathematical programming optimisation software package) for larger

instances.

The CMAP was formulated as a quadratic program with 0-1 variables in

[17]. Roupin shows that “unless P = NP , no polynomial-time algorithm

can guarantee to find a feasible solution within c percent of the optimal

value, where c is any fixed positive constant” [107].

Hamam and Hindi [64] apply simulated annealing to find good solutions to

the CMAP, while Elsadek and Wells [46] use a greedy heuristic to cluster

tasks (similar to Sarje and Sagar [109] for the UTAP), improving their

solution using simulated annealing.

Task allocation problems 144

The cross entropy method is applied to the CMAP with alternative

objectives by Widell and Nyberg [122]. They state that cross entropy

efficiently generates high quality solutions for the CMAP. A cross entropy

method uses “a distribution with parameter v to generate sample allocation.

The generated samples are then used to update v according to sample

quality. This process continues until the distribution converges to a possibly

optimal solution” [122].

Hadj-Alouane et al. [63] propose a hybrid of Lagrangian relaxation and

genetic algorithms to tackle the CTAP arising from a car assembly line

[106]. The method requires a significant amount of time to obtain optimal

solutions for larger problems.

Chen and Lin [24] present another hybrid search technique: tabu search and

noising method. Their hybrid approach is shown to be much more effective

at obtaining good solutions for the CTAP than the method in [63].

A general variable neighbourhood search algorithm is developed for the

CTAP and TAP by Lusa and Potts [88]. This technique outperforms the

hybrid algorithm of Chen and Lin [24] for 72% of the instances.

We have seen that there are several varieties of task allocation problem and

the techniques for solving them are equally diverse. Mathematical

programming approaches to find lower bounds have demonstrated

encouraging results, but there is still scope for improvement in this area.

Task allocation problems 145

5.6 Structured SDP relaxations for variants

of the TAP

We build SDP relaxations for the variants of the TAP in order of increasing

difficulty. We attempt to take advantage of the TAP’s structure to

construct our matrix variable.

Note that 0-1 constraints may be reformulated as quadratic constraints: the

only solutions to x2
ik = xik, 0 ≤ xik ≤ 1 are xik ∈ {0, 1}.

5.6.1 UTAP

Let us begin with the UTAP in the form:

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijxikxjk +
m
∑

k=1

n
∑

i=1

eikxik

s.t.
m
∑

k=1

xik = 1 i = 1, . . . , n

x2
ik = xik i = 1, . . . , n; k = 1, . . . , m

0 ≤ xik ≤ 1 i = 1, . . . , n; k = 1, . . . , m

We first set up column vectors vk containing a “1” as the first entry, then

each of the variables xik, i = 1 . . . n.

vk =























1

x1k

x2k

...

xnk























Task allocation problems 146

A symmetric matrix X(k) is formed by multiplying the vector vk and its

transpose [5].

X(k) = vkv
T
k =























1

x1k

x2k

...

xnk























(

1 x1k x2k . . . xnk

)

=























1 x1k x2k · · · xnk

x1k x2
1k x1kx2k · · · x1kxnk

x2k x1kx2k x2
2k · · · x2kxnk

...
...

...
. . .

...

xnk x1kxnk x2kxnk · · · x2
nk























Since all its rows are a multiple of one vector, the rank of X(k) is one. We

can show that X(k) is positive semidefinite, since

yTX(k)y = yT (vkv
T
k)y = (yTvk)(v

T
k y) = (yTvk)

2 ≥ 0, ∀ y ∈ R
n.

By assuming the symmetry of X(k), and implementing the quadratic

constraint x2
ik = xik that equates each diagonal entry to the first entry in its

column/row, we may simplify our representation:

X(k) =























1 x1k x2k · · · xnk

x1k x1kx2k · · · x1kxnk

x2k · · · x2kxnk

. . .
...

xnk























We index the rows and columns of X(k) using 0, 1, 2, . . . , n. Let X
(k)
ij

represent the entry in row i and column j of X(k).

Task allocation problems 147

We propose the use of a matrix variable X for the UTAP with the following

block diagonal structure:

X =























X(1) 0 · · · 0 0

0 X(2) 0 0
...

. . .
...

0 0 X(m−1) 0

0 0 · · · 0 X(m)























(5.1)

A standard SDP approach for this problem would employ an

m(n + 1) × m(n + 1) matrix variable with rows and columns indexed by all

pairs (i, k) for i = 1, . . . , n; k = 1, . . . , m. The block diagonal structure is

equivalent to using only m matrices of dimension (n + 1) × (n + 1): a

significant reduction in the number of variables. Using the proposed matrix

variable, xikxjk = X
(k)
ij and xik = X

(k)
0i = X

(k)
ii = x2

ik. We can formulate the

UTAP as follows:

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijX
(k)
ij +

m
∑

k=1

n
∑

i=1

eikX
(k)
ii

s.t.
m
∑

k=1

X
(k)
ii = 1 i = 1, . . . , n

X
(k)
00 = 1 k = 1, . . . , m

X
(k)
ii = X

(k)
0i i = 1, . . . , n; k = 1, . . . , m

X � 0

rank(X(k)) = 1 k = 1, . . . , m

All diagonal entries of a positive semidefinite matrix must be non-negative,

so xik = X
(k)
ii ≥ 0; this, together with the constraint

∑m
k=1 X

(k)
ii = 1, ensures

that 0 ≤ xik ≤ 1.

The form of the block in (5.1) is enforced by the constraint on each block’s

rank, together with the symmetry of the positive semidefinite matrix. By

removing the condition that the rank must be one, we obtain an SDP

relaxation; the objective value provides a lower bound on the optimal value

of the UTAP. The entries in the matrix will have the precise structure in

(5.1) only if a 0-1 solution is found.

Task allocation problems 148

5.6.2 CMAP

The formulation is identical to that for the UTAP, but we now include the

resource constraint:

n
∑

i=1

aixik ≤ bk, k = 1, . . . , m.

In terms of our matrix variable, this constraint becomes

n
∑

i=1

aiX
(k)
ii ≤ bk, k = 1, . . . , m.

We add this constraint to our SDP formulation of the UTAP to obtain the

CMAP.

5.6.3 CTAP

The CTAP reintroduces the processor usage variables, yk. We must make

modifications to our matrix variable X(k) to incorporate this aspect. In the

UTAP formulation the entry X
(k)
00 is fixed to be ‘1’; we shall now set this

entry of our new matrix block to be equal to yk. Let

Y (k) =























yk x1k x2k · · · xnk

x1k x1kx2k · · · x1kxnk

x2k · · · x2kxnk

. . .
...

xnk























The corresponding matrix variable is

Y =























Y (1) 0 · · · 0 0

0 Y (2) 0 0
...

. . .
...

0 0 Y (m−1) 0

0 0 · · · 0 Y (m)























(5.2)

Task allocation problems 149

We begin with the following CTAP formulation:

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijxikxjk +
m
∑

k=1

fkyk

s.t.
m
∑

k=1

xik = 1, i = 1, . . . , n

n
∑

i=1

aixik ≤ bkyk k = 1, . . . , m

xik ≤ yk i = 1, . . . , n; k = 1, . . . , m

x2
ik = xik i = 1, . . . , n; k = 1, . . . , m

0 ≤ xik ≤ 1 i = 1, . . . , n; k = 1, . . . , m

yk ∈ {0, 1} k = 1, . . . , m

In a similar fashion to the UTAP and CMAP cases, our SDP formulation

becomes

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijY
(k)
ij +

m
∑

k=1

fkY
(k)
00

s.t.
m
∑

k=1

Y
(k)
ii = 1, i = 1, . . . , n

n
∑

i=1

aiY
(k)
ii ≤ bkY

(k)
00 k = 1, . . . , m

Y
(k)
ii = Y

(k)
0i i = 1, . . . , n; k = 1, . . . , m

Y � 0

Y
(k)
00 ∈ {0, 1} k = 1, . . . , m

rank(Y (k)) ∈ {0, 1} k = 1, . . . , m

The xik ≤ yk constraint is enforced by Y being positive semidefinite. We

may show this by looking at the principal submatrix of the positive

semidefinite matrix Y (k) that includes rows/columns zero and i:




yk xik

xik xik



 � 0

We know that that diagonal elements are non-negative: yk ≥ 0; xik ≥ 0. We

also know that the determinant of this positive semidefinite matrix is

non-negative:
∣

∣

∣

∣

∣

∣

yk xik

xik xik

∣

∣

∣

∣

∣

∣

= ykxik − x2
ik

Task allocation problems 150

Thus

yk ≥ 0, xik ≥ 0 and ykxik − x2
ik ≥ 0 =⇒ xik ≤ yk.

The rank constraint has been modified to allow Y (k) to have either rank

zero or rank one.

• When yk = Y
(k)
00 = 1, then Y (k) = X(k), which we have seen has rank

one.

• If yk = Y
(k)
00 = 0, then all the entries of Y (k) are zero: if a diagonal

entry of a positive semidefinite matrix is zero then entries in the same

row or column are also zero. By setting yk = 0 we cause all entries in

the first row to be zero. By the constraint x2
ik = xik this causes all

diagonal entries to be zero, which in turn means that all entries in all

rows and columns are zero. The zero matrix has rank zero.

To obtain our SDP relaxation we remove the rank constraint and replace

the 0-1 constraint on Y
(k)
00 with

Y
(k)
00 ≤ 1 k = 1, . . . , m.

Due to Y being positive semidefinite we know that all diagonal entries are

non-negative and so Y
(k)
00 ≥ 0, k = 1, . . . , m.

Task allocation problems 151

5.6.4 TAP

We generalise our SDP formulation for the CTAP by including the total

execution cost in the objective function.

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijY
(k)
ij +

m
∑

k=1

n
∑

i=1

eikY
(k)
ii +

m
∑

k=1

fkY
(k)
00

s.t.
m
∑

k=1

Y
(k)
ii = 1, i = 1, . . . , n

n
∑

i=1

aiY
(k)
ii ≤ bkY

(k)
00 k = 1, . . . , m

Y
(k)
ii = Y

(k)
0i i = 1, . . . , n; k = 1, . . . , m

Y � 0

Y
(k)
00 ∈ {0, 1} k = 1, . . . , m

rank(Y (k)) ∈ {0, 1} k = 1, . . . , m

Our SDP relaxation is then

min
m
∑

k=1

n−1
∑

i=1

n
∑

j=i+1

dijY
(k)
ij +

m
∑

k=1

n
∑

i=1

eikY
(k)
ii +

m
∑

k=1

fkY
(k)
00

s.t.
m
∑

k=1

Y
(k)
ii = 1, i = 1, . . . , n

n
∑

i=1

aiY
(k)
ii ≤ bkY

(k)
00 k = 1, . . . , m

Y
(k)
ii = Y

(k)
0i i = 1, . . . , n; k = 1, . . . , m

Y
(k)
00 ≤ 1 k = 1, . . . , m

Y � 0

The objective value of the SDP relaxation provides a lower bound on the

optimal value for the TAP.

Task allocation problems 152

5.6.5 Strengthening the SDP relaxations

We can tighten the SDP relaxation and improve the quality of the bounds

using a partial higher lifting approach [6]. Extra rows and columns are

added to each block in the matrix variable; each additional row/column

corresponds to some subset of the tasks. The newly available entries are

included in constraints that involve the entries in the original matrix,

tightening the relaxation. It is hoped that the improvements in the bound

will provide a worthwhile trade-off for extra computational effort associated

with solving the relaxation for a larger matrix variable.

We pick a subset, S ⊆ {1, . . . , n}, of tasks in some way. We shall call S the

task set. Using this set S, new rows/columns are added to a block of the

matrix variable by selecting pairs of tasks: if i ∈ S and j ∈ S, then an extra

row/column with first entry xikxjk is added to block Y (k). The remaining

entries are multiples of the first term with the variables x1k, . . . , xnk, as

described for the standard rows/columns.

If there are |S| tasks selected for a block, then
(|S|

2

)

extra rows/columns

(corresponding to each pair of tasks in S) will be added. We shall call the

set containing all pairs of tasks from S the extension set, E: every member

of E corresponds to a new row/column to augment Y (k). An alternative to

selecting S is to choose the members of E directly, that is, choose pairs of

tasks with which to form rows/columns.

Further constraints relating the entries in each block can be added to the

augmented matrix. Using the quadratic constraint, x2
ik = xik, we have

xikxjk = x2
ikxjk = xikx

2
jk = x2

ikx
2
jk.

Task allocation problems 153

For each row/column that is added to the block, four more constraints are

included in the SDP relaxation to constrain the appropriate elements of the

block to be equal. If the new row/column representing the combination of

tasks i and j is placed in row/column position h (> n), these constraints are

as follows:

Y
(k)
ij = Y

(k)
0h

Y
(k)
ij = Y

(k)
ih

Y
(k)
ij = Y

(k)
jh

Y
(k)
ij = Y

(k)
hh

For example, if S = {1, 2} is chosen to augment block k, then the structure

becomes:

Y (k) =



































yk x1k x2k x3k · · · xnk x1kx2k

x1k x1kx2k x1kx3k · · · x1kxnk x1kx2k

x2k x2kx3k · · · x2kxnk x1kx2k

x3k · · · x3kxnk x1kx2kx3k

. . .
...

...

xnk x1kx2kxnk

x1kx2k



































The additional constraints should tighten the relaxation and lead to a

better lower bound. We shall refer to this approach as an SDP relaxation

with extension.

By including even more rows/columns based on the combination of three or

more tasks, we might tighten the relaxation even further. Initial testing

indicated that this is likely to increase running times without providing

significant improvements.

Task allocation problems 154

We now suggest a number of heuristics for the selection of tasks for the task

set, S:

Close to 0.5

We wish to tighten constraints on variables furthest from having a 0-1 value.

A sensible proposal is to select for S those tasks with variable values closest

to 0.5. This method requires an initial run of the SDP relaxation without

extension, so that the values of the variables can be analysed. We then

choose the |S| tasks with a variable closest to 0.5 from among the variables

xik; i = 1, . . . , n; k = 1, . . . , m. The resulting extension set is applied to all

blocks in the matrix variable.

‘Improved’ close to 0.5

A possible improvement to the previous method involves choosing a task set

for each processor block separately. This could result in different task sets

for each block in the matrix, with each extension being specific to its block.

Resource requirement

Selects tasks based on the size of their processor resource requirement ai. It

is not necessary to run an initial SDP relaxation before the extended

relaxation. The same extension set is applied to all blocks in the matrix

variable. Two possible approaches are to choose tasks i corresponding to

either the largest or smallest values of ai.

Task allocation problems 155

Further improvements may be gained by choosing pairs of tasks for the

extension set, E, directly. We propose the following heuristics:

Communication cost

This heuristic chooses pairs of tasks to be entered as elements of the

extension set based on the communication cost between those tasks. The

same extension set is applied to all blocks in the matrix variable. With this

method, a pair of tasks (i, j) is selected based on its associated coefficient in

the objective function (we return to the original −cij terms in place of the

simplifying dij terms). Since this information is available as part of the

problem instance, it is not necessary to run an initial SDP relaxation before

the relaxation with extension. Two possible approaches are:

• Maximum communication: choose (i, j) with the largest values of cij

first.

• Minimum communication: choose (i, j) with the smallest values of cij

first.

Paired value difference

This method requires an initial run of the SDP relaxation without

extension. We then choose pairs of tasks (i, j) based on the difference

between the values of xik × xjk and the xikxjk term; i.e.
∣

∣

∣
Y

(k)
ii Y

(k)
jj − Y

(k)
ij

∣

∣

∣
.

The larger the difference between these two values, the further the solution

matrix block is from having rank one, and the greater the benefit of

tightening the constraint by adding the paired tasks to the extension set.

There may be a different extension set for each block, k.

Task allocation problems 156

5.7 Branch-and-bound

We may a obtain an improvement in our bound by selecting a variable and

branching on it. We can compute a new bound by the following approach:

1. Solve the SDP relaxation.

2. Select a variable xik.

3. Solve the SDP relaxation with xik = 0. Let us call the corresponding

objective value F (xik = 0).

4. Solve the SDP relaxation with xik = 1. Call the corresponding

objective value F (xik = 1).

5. A new lower bound on the optimal value is given by

min{F (xik = 0), F (xik = 1)}.

We may explore deeper by branching from each of these sub-problems.

Note that due to the constraint
∑m

k=1 xik = 1, by fixing xil = 1, we are also

fixing xik = 0 for all processors k 6= l.

5.7.1 Reducing the dimension of the UTAP/CMAP

SDP relaxation

Once a variable has been fixed by a branching process, the SDP relaxation

for the resulting instance can be reduced in size by exploiting the structure

of the matrix variable and its positive semidefinite properties. This has a

positive impact both on the dimension of the matrix variable and the

number of constraints in the SDP relaxation. Consider the structure of the

Task allocation problems 157

kth block of the matrix variable:

X(k) =























1 x1k x2k · · · xnk

x1k x1kx2k · · · x1kxnk

x2k · · · x2kxnk

. . .
...

xnk























If the variable xik is set to zero then the (i + 1)th diagonal entry becomes

zero. Because X(k) is positive semidefinite, all the entries in the same row or

column as this diagonal entry then become zero (see Fact 5.1). Since the

whole column/row is zero its variables play no further part in the

constraints or objective function and may be removed from this block of the

matrix variable.

Similarly, if the variable xik is set to one then the (i + 1)th entry in the first

row, first column and along the diagonal become ‘1’. All the entries in the

(i + 1)th column/row become identical to the first column/row of the

matrix. Once again, this can be seen by the use of the properties of a

positive semidefinite matrix with ‘1’ as the first entry (see Fact 5.2). Since

the whole column/row is a repeat of a previous one it is redundant and may

be removed from this block of the matrix variable. By fixing xik = 1, we are

also setting xil = 0 for all l 6= k: the equivalent column/row may be

removed from every block of the matrix variable.

The appropriate coefficients of a variable fixed to ‘1’ must be included in the

objective value and resource constraints. If a task i is assigned to processor

k in the CMAP, we must reduce the remaining capacity of processor k by its

resource requirement, ai. If any aj, j 6= i, are greater than the remaining

capacity of processor k, then j may not be assigned to k; therefore xjk = 0.

The tasks corresponding to fixed variables are not eligible to be members of

S or E in an SDP relaxation with extension (Section 5.6.5).

Task allocation problems 158

5.7.2 Branching heuristics

We now discuss the selection of variables on which to branch. The following

ideas may be used to construct heuristics for this purpose:

• Choose the variable that is furthest from being integer; i.e. a variable

xik with value closest to 0.5. All entries are ‘0’ or ‘1’ in solution

matrices having rank one, so entries nearest 0.5 are the least desirable.

• Choose the variable from among the tasks that contribute most to the

objective value:

– Communication costs: choose a variable xik for a task i with the

maximum communication cost cij.

– Summed communication costs: choose a variable xik for a task i

with the maximum summed communication costs,
∑n

j=1 cij .

– Execution costs: choose a variable xik corresponding to the

largest eik.

Under the simplest scheme to apply these ideas, many equally ‘good’

variables would become candidates for branching. To narrow down the list

of candidate variables we apply an ordered subset of these ideas to select a

branching variable.

Some of our heuristics are based on the analysis of coefficients in the

objective function. We consider the symmetric variant of the objective

function (i.e. both cijxikxjk and cjixjkxik appear) where cij represents half

of the total communication cost between i and j.

m
∑

k=1

n
∑

i=1

eikxik −
m
∑

k=1

n
∑

i=1

n
∑

j=1

cijxikxjk .

Task allocation problems 159

Heuristic 1: Closest to 0.5

1. Choose the variable with value closest to 0.5.

2. If there is more than one candidate, select those with maximum

summed communication costs for their associated task (see Heuristic

4).

3. If there is still more than one candidate, choose the variable with

maximum execution cost (see Heuristic 2).

Heuristic 2: Maximum execution costs

1. Choose the variable with the maximum coefficient in the linear term

of the objective function (this is usually its execution cost; see below).

2. If there is more than one candidate, select from these the variable with

value closest to 0.5.

If a previous branch has fixed some variable to ‘1’, then the corresponding

task has been fixed to its processor and communication costs to this task

move to the linear term in the objective function. If xhk = 1, the objective

function for the UTAP and CMAP is modified thus:
m
∑

k=1

n
∑

i=1

eikxik −
m
∑

k=1

n
∑

i=1

n
∑

j=1

cijxikxjk

=
m
∑

k=1

n
∑

i=1

eikxik − 2
m
∑

k=1

n
∑

i=1

cihxikxhk −
m
∑

k=1

∑

i6=h

∑

j 6=h

cijxikxjk

=
m
∑

k=1

n
∑

i=1

(eik − 2cih)xik −
m
∑

k=1

∑

i6=h

∑

j 6=h

cijxikxjk

.

Heuristic 3: Maximum communication cost

1. Calculate the set of tasks J = {argmax
i

{cij}}. Form a candidate set of

variables B = {xik : i ∈ J}.

2. Select from B the candidate variable with value closest to 0.5.

Task allocation problems 160

Heuristic 3.1: ‘Improved’ maximum communication cost

This method improves on Heuristic 3 by modifying the cij for any processor

with fixed variables before selecting candidates. Let c
(k)
ij represent a

communication statistic between tasks i and j on processor k. Initially,

c
(k)
ij = cij for all k, i, j.

If any xhl = 0, we let c
(l)
ih = c

(l)
hi = 0 for i = 1, . . . , n. (Any objective function

terms involving xhl will be equal to zero; since this includes cihxilxhl we

consider cihxil unimportant for i = 1, . . . , n). We now use the modified c
(k)
ij

to pick candidate variables.

1. Calculate the candidate set of variables

B =

{

xik : {(i, k)} = argmax
(i,k)

{c
(k)
ij }

}

.

2. Select from B the candidate variable with value closest to 0.5.

Heuristic 4: Maximum summed communication costs

1. Calculate the set of tasks

J =

{

argmax
i

{

n
∑

j=1

cij

}}

.

Form a candidate set of variables B = {xik : i ∈ J}.

2. Select from B the candidate variable with value closest to 0.5.

Heuristic 4.1: ‘Improved’ maximum summed communication costs

This method improves on Heuristic 4 by altering the values of

communication costs in the same way as the improved maximum

communication costs heuristic.

Task allocation problems 161

1. Calculate the candidate set of variables

B =

{

xik : {(i, k)} = argmax
(i,k)

{

n
∑

j=1

c
(k)
ij

}}

.

2. Select from B the candidate variable with value closest to 0.5.

5.7.3 A branch-and-bound algorithm for the UTAP

and CMAP

The algorithm calculates a tree of solutions. At each node:

1. Solve the SDP relaxation with the branch constraints that apply at

that node.

2. Either

• pick a set of tasks with which to extend the matrix (see Section

5.6.5),

• or prune. Move to the next node.

3. Solve the SDP relaxation again with the branch constraints and

extended matrix.

4. Either

• pick a new branching variable (see Section 5.10.2): two more

nodes are generated,

• or prune.

5. Move to the next node.

An SDP relaxation provides a lower bound on the objective value of the

sub-problem given by the branch constraints. If this lower bound shows that

Task allocation problems 162

the optimal solution for the sub-problem must be worse than the best

solution to the main problem we have so far discovered, we may prune the

corresponding node. Effective pruning of the tree depends on the tightness

of the bounds provided by the relaxation and the speed of discovery of

solutions to the main problem.

The SDP relaxations become more effective as variables are fixed; this is

due to the reduction in the dimension of the matrix variable with each

branch (see Section 5.7.1).

Search strategy for optimal solutions

For the purpose of finding an optimal solution to the problem we apply a

depth-first search strategy: we look for quick solutions to the root problem

by following branches to the bottom of the tree. We first follow the

branches where the variable is fixed to be ‘1’ (fixing a variable to ‘1’ also

fixes another m − 1 variables to be ‘0’): this provides a greater

strengthening of the SDP relaxation and we expect such branches to lead to

an integer solution more quickly, thus achieving more efficient pruning.

Search strategy for global lower bounds

We may also use a partial branch-and-bound tree to find global lower

bounds. Such bounds may be used to analyse the quality of solutions

produced by a heuristic. The objective value of any node forms a local lower

bound on the optimal value for the associated sub-problem. Let G be a set

of nodes with the following property: each feasible solution for the root

problem is equivalent to a feasible solution for some sub-problem in G. The

minimum objective value corresponding to a node in G forms a global lower

bound for the instance.

Task allocation problems 163

Each complete level of the partial tree qualifies as a set G. To obtain these

sets speedily, we proceed in a breadth-first search fashion. With each

completed level we obtain a better global lower bound.

On the possible application of our branch-and-bound approach to

the CTAP

In addition to xik variables that would be fixed by branching, the CTAP

also has yk variables representing which processors are used. One possible

solution method is to calculate a tree of nodes by branching on the yk alone.

Once a feasible solution is found it may be used to prune nodes.

At the bottom level of the tree, the nodes represent sub-problems where

only a subset of the processors are being used. These sub-problems take the

form of the CMAP. We use each of these nodes as the root node for the

branch-and-bound tree approach for the appropriate CMAP.

The fastest way to find a feasible solution may be to branch on those yk that

lead to the smallest feasible CMAP: order the processors in non-increasing

order of capacity, bk. By including each successive processor from the start

of the list, determine P , the smallest subset of processors so that

n
∑

i=1

ai ≤
∑

k∈P

bk.

Another alternative to find a good trial solution is to solve the most flexible

(but largest) CMAP sub-problem: let yk = 1 for k = 1, . . . , m.

Task allocation problems 164

5.8 Computational experience for the UTAP

The procedures were coded in MATLAB and tested on an Intel Pentium 4,

CPU 2.40 GHz, 504 MB RAM computer. The MATLAB code uses SDPT3

[115] to solve each semidefinite program relaxation. SDPT3 employs a

predictor-corrector primal-dual path-following method and is able to exploit

a block diagonal structure.

Table 5.1 displays the results for twenty problems of different sizes. The

problems are those generated by Ernst et al. [47]. For each problem the

table provides the number of processors (m), the number of tasks (n), the

optimal value, the lower bound obtained by the SDP relaxation of the

UTAP and the CPU time required to obtain the bound. The relative error

of the bound from the optimal value is displayed. The average error across

these instances is 10.5%, requiring 29.1 seconds on average.

Results for three LP relaxations were presented in [47]: LP2, LP3 and LP4.

Their computer used a 500MHz alpha processor. LP2 provides slightly

better bounds than ours on average, with an error of 8.3%. LP2 also

provides its bounds significantly faster than ours, requiring 3.9 seconds on

average. LP3 is able to obtain the optimal value in many cases, but requires

significantly longer CPU times (494.5 seconds on average). Thus our SDP

bounds do not compare very favourably to those found by the LP

relaxations in [47].

Task allocation problems 165

m n Optimal Bound CPU time Error %

5 30 710.59 691.11 1.285 2.74

5 40 1001.62 951.76 1.783 4.98

5 50 1389.05 1284.80 2.595 7.51

5 70 2368.20 2009.90 5.127 15.13

5 100 3784.95 3233.70 9.550 14.56

10 30 532.16 520.23 3.233 2.24

10 40 853.33 804.29 4.763 5.75

10 50 1226.46 1110.60 6.874 9.45

10 70 2178.08 1797.00 12.186 17.50

10 100 3439.86 2966.90 22.128 13.75

20 30 443.75 436.04 10.266 1.74

20 40 729.23 697.26 18.580 4.38

20 50 1073.58 983.36 23.265 8.40

20 70 2090.35 1690.40 41.794 19.13

20 100 3591.56 2861.90 72.266 20.32

30 30 394.62 379.50 24.373 3.83

30 40 662.81 619.27 34.030 6.57

30 50 1020.57 914.47 48.058 10.40

30 70 1983.18 1585.10 85.125 20.07

30 100 3458.34 2729.40 154.081 21.08

Table 5.1: Lower bounds using SDP relaxation for twenty instances of the

UTAP.

Task allocation problems 166

5.9 Computational experience for the CTAP

Table 5.2 displays the results for six instances of the CTAP. These test

problems have previously been used by [47] and [63]. For each problem the

table provides the number of processors (m), the number of tasks (n), the

best solution found in [63], the lower bound obtained by the SDP relaxation

of the CTAP and the CPU time taken to obtain the bound. We also display

the relative error of the bound from the best solution found in [63].

Problem m n Best solution Bound CPU time Error %

A 6 20 13804 8666.7 3.030 37.22

B 6 20 11946 6900.0 2.095 42.24

C 6 20 11120 5934.8 1.655 46.63

D 12 40 39680 17333 7.282 56.32

E 12 40 36575 13800 8.188 62.27

F 12 40 35821 11870 8.236 66.86

Table 5.2: Lower bounds using SDP relaxation for six instances of the CTAP.

The SDP bound values are identical in most cases to those provided by the

LP relaxations in [47]. SDP relaxation CPU times are roughly 2 seconds

longer than the LP relaxation for A, B and C; and 4 seconds longer for D, E

and F. The SDP provided a slightly better bound for problem D.

Task allocation problems 167

5.10 Computational experience for the

CMAP

The sixteen example problems are sampled from those described by Elloumi

et al. [45], available at [44]. These include a representative from each of

eight configurations of communication and execution costs. There are two

problem sizes: (10 tasks, 3 processors) and (20 tasks, 5 processors), we

represent these by the name components 1003 and 2005 respectively. The

ranges of values corresponding to each instance code name are as follows:

• A: eik ∈ [1, 100], cij ∈ [0, 100], for all i, j, k.

• B: eik ∈ [1, 10], cij ∈ [0, 100], for all i, j, k.

• C: eik ∈ [1, 100], cij ∈ [0, 10], for all i, j, k.

• D: eik = 0, cij ∈ [0, 100], for all i, j, k.

Half of the instances have complete communication graphs (instance names

are preceded by a d for dense) while the others have 50% communication

cost density. (The final lower case letter in the code name represents the

particular instance within the configuration it represents).

Some of the bounding methods in [45] produce fairly good results. One

particular linear relaxation provided an average error of 30% across all (10

task, 3 processor) instances and required only 1 second. This method seems

to outperform those we present below. One of the semidefinite programming

relaxations in [45] gives average bounding errors of 7%, but requires over

600 seconds for full convergence to a solution, on average.

Task allocation problems 168

5.10.1 Applying extensions to the matrix variable

The extension set contains pairs of tasks (i, j) that correspond to the first

entry xikxjk in new columns/rows used to extend the matrix variable. The

choice and size of the extension set will affect the bound obtained and the

CPU running time for computation of the SDP relaxation with extension. It

is desirable to find the smallest extension set that provides a bound value

close to the value we shall call the best bound by extension. The best bound

by extension is the bound obtained if all possible pairs of tasks are used in

the extension set.

The sixteen CMAP example problems were solved first by the SDP

relaxations without extension to provide our simplest SDP bound. We then

solved the SDPs using the maximum possible size of extension set to

discover the attainable improvement on the basic bound. The results are

shown in Table 5.3.

The initial bounds found are extremely weak in general. Only the bounds

for ‘C’ configuration instances were within 35% of the optimal; the lower

bound for instance ‘1003Cc’ is within 1.5% of optimal. (In a ‘C’ instance

execution costs are up to 10 times as large as communication costs).

Average running times were 0.66 seconds and 1.28 seconds for (10 task, 3

processor) and (20 task, 5 processor) instances respectively, with little

variation between instances.

Task allocation problems 169

Instance Optimal Initial bound Error (%) Extension:

Error reduction

1003Aa 731 420.20 42.52 5.30

d1003Aa 1616 480.38 70.27 0.76

1003Bb 528 58.20 88.98 0.08

d1003Bb 865 56.64 93.45 0.01

1003Cc 347 341.93 1.46 1.46

d1003Cc 475 388.83 18.14 10.59

1003Dd 445 0.00 100.00 0.00

d1003Dd 956 0.00 100.00 0.00

2005Aa 3059 896.72 70.69 1.58

d2005Aa 6412 911.49 85.78 0.24

2005Bb 2088 100.21 95.20 0.02

d2005Bb 5371 100.56 98.13 0.00

2005Cc 772 667.91 13.48 11.39

d2005Cc 1197 788.79 34.10 11.10

2005Dd 2211 0.00 100.00 0.00

d2005Dd 5594 0.00 100.00 0.00

Table 5.3: Initial SDP bounds for the 16 instances of the CMAP. The final

column displays the reduction in the bound error when maximum matrix

extension is used.

Task allocation problems 170

Instances SES CPU time

1003Aa 21 2.17

1003Cc 3 0.95

d1003Cc 28 3.14

2005Cc 66 31.77

d2005Cc 55 25.45

Table 5.4: Size of extension set (SES) used and CPU times required to obtain

a bound within 0.5% of the best bound by extension.

The method of improving the bound by extending the matrix variable did

not prove effective for most instances. The worst performance was for the

‘D’ configuration instances (in which execution costs are zero) as they

received a lower bound of zero even with a fully extended matrix. However,

extension did prove more effective for the ‘C’ instances: the error of the

bound from the optimal value may be reduced by up to 11 percentage

points. Note that the optimal solution for instance ‘1003Cc’ is found when

an extension is applied.

In Section 5.6.5 we proposed a number of heuristics for the selection of

tasks, or pairs of tasks, to form the extension set. Experimentation has

revealed that methods based on analysis of communication costs often

provide the best improvement in the bounds for the smallest extension set.

The maximum communication costs heuristic seems to be the best way to

choose the most efficient extension set in general. Table 5.4 displays the

running time required for the augmented SDP to obtain a bound within

0.5% of the best bound by extension; it displays only those instances who

received a significant benefit. The run times are significantly larger than the

times required for the basic SDP relaxation.

Task allocation problems 171

5.10.2 Comparison of branching heuristics

We implemented the branch-and-bound algorithms in MATLAB.

Breadth-first search trees for each of the different branching heuristics (see

Section 5.10.2) were generated for the CMAP example data. Global lower

bounds on the optimal value were calculated at each level of the tree. A

comparison of the increase in global lower bounds provided by each heuristic

is given in Figure 5.1. A higher bound at a lower level indicates a superior

heuristic.

Comparison of branching heuristics

400

500

600

700

800

900

1000

1100

1200

0 1 2 3 4 5 6 7

Level

B
o

u
n

d

Heuristic 1

Heuristic 2

Heuristic 3

Imp. H3

Heuristic 4

Imp. H4

Figure 5.1: Bounds found at each level using different branching heuristics.

Bound statistic is the average result of the bounds from eight (20 task, 5

processor) instances.

The results of the experiment revealed that the heuristics based on analysis

of communication costs provided the best bounds. Heuristic 4.1: ‘improved’

maximum summed communication costs yielded the best bounds on

average. This produced slightly better bounds than Heuristic 4 at some

levels of the tree. The next most effective were Heuristic 3.1 and Heuristic

3, which also utilise communication costs. Heuristic 1 was next; this selects

Task allocation problems 172

branching variables based on their value. Heuristic 2, which compares

execution costs, was the least effective overall.

5.10.3 Global lower bounds for the CMAP

Implementing Heuristic 4.1 for selection of branching variables, we wish to

determine the number of levels that should be calculated to achieve a good

lower bound in a reasonable run time.

We first study (10 task, 3 processor) problems. Table 5.5 shows how the

global lower bound improves as more levels of the tree are calculated; no

extension to the matrix variable is used. In [45] the results suggested that

the ‘1003D-’ configuration instances (in which execution costs are zero) are

generally the most difficult, while ‘1003C-’ instances (in which execution

costs are up to 10 times larger than communication costs) are the easiest to

solve. The pattern is similar here. The bounds displayed in the tables

compare favourably with those in [45] for the (10 task, 3 processor)

instances. The algorithm provides the optimal solution within 10 levels of

the tree in several instances. (Instance 1003Cc is solved at the first level,

requiring only 1.94 seconds).

We next look at the (20 task, 5 processor) instances. Table 5.6 displays the

performance of the search tree for eight instances after nine levels have been

calculated. The CPU time for these instances is significant while the bound

remains extremely weak. These bounds do not compete with the best of

those found in [45], where errors were reported as between 1%-30%.

Application of extension sets did prove useful for two ‘C’ instances. The

most efficient bound found for these is given in Table 5.7. We next take a

closer look at the application of the extension sets to one of these examples:

d2005Cc.

Task allocation problems 173

Level 0 2 4 6 8 10

1003Aa

Error % 42.52 20.21 8.57 8.56 0.00 —

CPU time 0.55 3.11 12.94 19.04 20.30 —

1003Bb

Error % 88.98 43.55 24.84 5.91 0.00 —

CPU time 0.51 2.92 12.37 32.56 36.38 —

1003Dd

Error % 100.00 47.53 28.93 8.61 0.00 —

CPU time 0.54 3.09 12.70 48.84 93.09 —

d1003Aa

Error % 70.27 49.47 35.40 20.27 11.54 5.09

CPU time 0.70 3.20 11.90 45.50 154.00 200.60

d1003Bb

Error % 93.45 68.79 33.35 19.00 1.77 0.00

CPU time 0.54 2.85 11.55 42.91 63.70 64.34

d1003Cc

Error % 18.14 11.28 9.07 5.26 3.21 1.66

CPU time 0.73 3.28 13.42 44.41 81.84 91.93

d1003Dd

Error % 100.00 63.03 43.20 16.17 5.31 0.00

CPU time 0.67 2.95 11.72 44.70 60.99 63.64

Table 5.5: Error and CPU times (seconds) for (10 task, 3 processor) instances.

Task allocation problems 174

Level 0 1 3 5 7 9

2005Aa

Error % 70.69 68.16 62.33 51.50 46.83 37.08

CPU time 1.50 3.60 15.90 65.60 262.70 1058.00

d2005Aa

Error % 85.78 84.55 79.69 70.19 67.03 57.92

CPU time 1.30 3.20 16.20 64.70 257.90 1014.70

2005Bb

Error % 95.20 95.00 84.96 72.50 62.01 48.00

CPU time 1.30 3.80 16.90 67.30 269.10 1095.10

d2005Bb

Error % 98.13 98.09 91.93 78.70 75.86 70.86

CPU time 1.20 3.30 16.20 66.40 261.60 1018.70

2005Cc

Error % 13.48 11.61 9.56 5.13 4.79 4.29

CPU time 1.30 3.70 17.50 71.40 288.20 1162.70

d2005Cc

Error % 34.10 31.63 27.54 24.09 19.94 17.88

CPU time 1.20 3.40 16.50 68.30 275.80 1110.20

2005Dd

Error % 100.00 100.00 89.76 73.35 70.91 49.68

CPU time 1.20 3.20 15.80 65.60 262.90 1046.70

d2005Dd

Error % 100.00 99.82 92.01 81.17 78.32 65.65

CPU time 1.20 3.30 16.00 66.00 262.40 1034.60

Table 5.6: Error and CPU times (seconds) for (20 task, 5 processor) instances.

Task allocation problems 175

Instance Error % CPU Time SES Level

2005Cc 1.55 640 50 4

d2005Cc 11.41 2277 30 7

Table 5.7: Error and CPU times for the given size of extension set (SES) and

level of the tree for two (20 task, 5 processor) instances.

Analysis of the size of the extension set

In Section 5.10.1 we decided that the best heuristic we had proposed for

selection of an extension set was the maximum communication costs

method. We selected this heuristic based on its ability to improve our lower

bound at the root node for a reasonable increase in the size of the matrix

variable. However, extension was only effective for ‘C’ configuration

instances.

Instance d2005Cc

Figure 5.2 shows a plot of bound obtained against CPU time needed for

calculation. Each series of points shows the progressive increase in the

bound and run time as more levels of the tree are calculated (each point

represents a level). The points lying closest to the bottom right of the graph

are the best, indicating a higher bound calculated in a shorter run time.

The slope of the lines between points measures the trade off between bound

and run time at each level. A steep slope represents a poor trade off, so any

‘elbow’ points in the plot could indicate the number of levels of the tree to

calculate for similar examples.

Figure 5.2 demonstrates that it is better to use a larger extension set when

calculating bounds for this instance. The lines representing extension sets of

size 30 and 40 lie furthest to the bottom right (SES 30 is better than 40 for

the later levels). The ideal SES probably lies between 30 and 40 for this

Task allocation problems 176

example. Using SES greater than 40 does not produce large enough

increases in the bound to compensate for the increase in run time.

Fewer levels need to be calculated for the larger sizes of extension set. The

graph indicates that for SES 0, the benefit of calculating more levels

diminishes after level 7. For SES 30 and 40, the benefit diminishes after

level 4.

0

200

400

600

800

1000

1200

750 800 850 900 950 1000 1050

Bound

R
u

n
T

im
e SES 0

SES 10

SES 30

SES 40

Figure 5.2: Comparison of bounds against CPU times for different sized ex-

tension sets (Instance d2005Cc: optimal value 1197).

5.10.4 Finding optimal solutions to the CMAP

In Section 5.10.3 we used a branch-and-bound tree to find global lower

bounds for the optimal value of the CMAP. This involved searching the tree

in a breadth-first fashion. The branch-and-bound tree may also be used to

find the optimal solution to the CMAP. This is best achieved using a depth

first search of the tree. Use of this search strategy should yield an integer

solution faster than the breadth-first search. This can be used to prune

nodes with an objective value higher than that of the integer solution.

Task allocation problems 177

Instances CPU time (s)

1003Aa 17.98

d1003Aa 140.93

1003Bb 31.83

d1003Bb 53.01

1003Cc 1.51

d1003Cc 65.11

1003Dd 38.26

d1003Dd 51.10

Table 5.8: CPU times required to find the optimal solution

Table 5.8 shows the CPU time required to find the optimal solution to eight

(10 task, 3 processor) instances.

We also performed experiments applying extensions to the matrix variable.

We found that a larger extension set decreased the number of nodes in the

tree, but resulted in a longer running time for six of the ‘1003’ instances.

Again the two ‘C’ instances benefited from matrix augmentation: with an

extension set containing six pairs of tasks, the CPU time for 1003Cc reduced

to 0.77 seconds; with one pair of tasks, d1003Cc reduced to 60.45 seconds.

The depth-first search of the tree did not prove effective for the larger (20

task, 5 processor) problems (CPU times exceeded 24 hours).

Task allocation problems 178

5.11 Further work: redundant constraints

We can tighten the SDP relaxation and improve the quality of the bounds

by including redundant constraints [7].

The following approach may be applied to the CMAP. We start with the

resource capacity constraint:
n

∑

i=1

aixik ≤ bk, k = 1, . . . , m.

By dividing through by bk, then including a slack variable wk, this becomes
n

∑

i=1

ai

bk
xik + wk = 1, k = 1, . . . , m. (5.3)

We may generate redundant constraints by multiplying Equation (5.3)

through by xjk for a particular j ∈ {1, . . . , n}.
n

∑

i=1

ai

bk

xikxjk + xjkwk = xjk, k = 1, . . . , m. (5.4)

To include these in our SDP relaxation, an extra row/column with first

entry wk is added to each block X(k).


































1 x1k x2k x3k · · · xnk wk

x1k x1kx2k x1kx3k · · · x1kxnk x1kwk

x2k x2kx3k · · · x2kxnk x2kwk

x3k · · · x3kxnk x3kwk

. . .
...

...

xnk xnkwk

w2
k



































By relating the appropriate entries of the augmented matrix using the

redundant constraints we may tighten the relaxation.

Further redundant constraints can be found by squaring Equation (5.3),

then simplifying. We find
n

∑

i=1

ai

bk

xikwk + w2
k = wk. (5.5)

Task allocation problems 179

These may be included in the relaxation in addition to the constraints in

(5.4) without increasing the size of the matrix any further.

If this approach is combined with the partial higher lifting approach

(extending the matrix using pairs of tasks), more redundant constraints can

be generated by multiplying the capacity constraints through by

xjkxlk, j, l ∈ v.

We implemented the inclusion of the redundant constraints given above and

achieved significant increases in the objective values for the resulting

relaxations. Unfortunately, in a few cases the objective values were slightly

higher than the optimal solution for the problem, indicating some kind of

error. We were not able to find anything wrong with the coding for our

implementation. For a further study of the benefits of these redundant

constraints we might investigate whether the problem persisted when using

a different SDP solver.

5.12 Conclusion

We have looked at applying semidefinite programming relaxation methods

to task allocation problems. This method provides reasonable bounds for

the UTAP but performs poorly for the CTAP and for many instances of the

CMAP.

Methods for improving the bounds were investigated: extension to the

matrix variable and creation of a branch-and-bound search tree for the

CMAP. The branch-and-bound method was also used to find optimal

solutions. We proposed strategies for choosing variables on which to branch

and found that the heuristics based on analysis of communication costs

produced the best results.

Task allocation problems 180

Extension to the matrix variable produced a small improvement in the

bound. When combined with the branch-and-bound search tree, extension

was only useful for a specific category of problems, where execution costs

are generally larger than communication costs.

Our SDP relaxations were only useful for solving small instances of the

CMAP; larger examples required unreasonable running time. Further

investigation of redundant constraints may lead to significant improvements

in the SDP bounds.

Chapter 6

Conclusion

6.1 Summary of contributions

This thesis looked at finding bounds and good solutions to two NP-hard

combinatorial optimisation problems, and another combinatorial

optimisation problem whose computational complexity has not yet been

established.

6.1.1 The supply ship travelling salesman problem

We applied dynamic programming state-space relaxation approaches to

determine lower bounds, and suggested that state-space modifiers should

take the value of the corresponding node’s replenishment time. This

provided a significant improvement over the standard relaxation techniques.

Our variant of the cost function for a restricted dynamic programming

heuristic provided good solutions in a reasonable time, outperforming simple

2-opt and 3-opt approaches for the instances we tested. Another of our cost

measures, one that predicted final tour cost using the nearest neighbour

181

Conclusion 182

heuristic, also provided good solutions but required longer computation

times.

6.1.2 The supply ship scheduling problem

We introduced the supply ship scheduling problem and showed how problem

instances could be represented as directed graphs. Objective values for

solutions to this problem were calculated by constructing an appropriate

network and determining its minimum flow. Quick upper and lower bounds

could be found using this network structure, but the lower bounds were

found to be weak.

We proposed a neighbourhood structure based on a maximum cut in the

solution network. The aim of this structure was to restrict possible moves to

those likely to yield an improvement in the objective value. Several effective

descent algorithms and a tabu search procedure were implemented using

this neighbourhood, each providing quick solutions.

We developed a heuristic inspired by restricted dynamic programming. It is

only competitive with the tabu search for fairly small problems, but allows

us to find solutions corresponding to a specified objective value. We have

indicated, but not implemented, a formulation that may slightly improve its

performance.

6.1.3 The task allocation problem

We considered the application of semidefinite programming relaxation

methods to variants of the task allocation problem. This method provides

reasonable bounds for the UTAP and also for some small instances of the

CMAP. Application of semidefinite programming relaxation to the CTAP

Conclusion 183

produced almost identical results to those from linear relaxations.

A partial higher lifting approach for improving the relaxations was

investigated, involving the proposal of a number of heuristics for selection of

task sets. The approach did not provide significant improvements, but

communication costs were highlighted empirically as important indicators

for the selection of tasks.

A branch-and-bound approach, utilising the semidefinite programming

relaxation, was only useful for solving small instances of the CMAP, but

could be used to find reasonable global lower bounds. We proposed a

number of heuristics for selection of the branching variable. Empirical

testing showed that strategies based on communication costs provided the

best global lower bounds.

6.2 Suggestions for further work

6.2.1 The supply ship travelling salesman problem

The bounds derived from dynamic programming state-space relaxation were

never tested within a branch-and-bound scheme. Such a scheme would need

to determine appropriate sub-problems and branching strategies. A

straightforward approach would be as follows: each branch adds a single

warship to the next position in the partial tour for that sub-problem.

Only the most basic, and deterministic, search procedures have so far been

applied; stochastic approaches may yield improved results. Remember that

a seemingly simple change alters all the arc costs in the tour after the first

affected node. An efficient local search procedure must adequately deal with

this property.

Conclusion 184

A variation of the restricted dynamic program could be tested on the supply

ship TSP with additional concerns, such as time windows and precedence

constraints. It seems likely that this sort of approach could deal fairly well

with these issues.

6.2.2 The supply ship scheduling problem

Local search approaches that employ a random element may provide

improved solutions. More sophisticated search procedures (e.g variable

neighbourhood search) may also do well.

We may formulate the problem as a linear integer program. Recall the

definitions of aij and Ai from Section 4.5. The IP variables may be defined

as follows. Let mi be the number of machines allocated to job i. Define xij

to be the number of machines travelling from job i to job j. Let yij be a 0-1

variable representing whether machines may process job j after job i. We

have

min
n
∑

j=1

x0j

s.t.
j−1
∑

i=0

xij = mj, j = 1, . . . , n

mi ≥ 1, i = 1, . . . , n

mi ≥
n
∑

j=i+1

xij , i = 1, . . . , n

mi ≥ aijyij, i = 1, . . . , n − 1; j = i + 1, . . . , n

xij ≤ nyij, i = 1, . . . , n − 1; j = i + 1, . . . , n

mi ∈ Ai i = 1, . . . , n

yij ∈ {0, 1}, i = 1, . . . , n − 1; j = i + 1, . . . , n

xij ∈ {0, 1, 2, . . . , n}, i = 0, 1, . . . , n − 1; j = i + 1, . . . , n

xij = 0 and yij = 0 if aij > n or aij = ∞.

The objective is to minimise the number of machines required, which is

equivalent to the sum of the machines leaving the depot. The constraints

Conclusion 185

impose conditions on the total number of machines entering a job. At least

one machine must process each job and total machines leaving a job cannot

exceed the number allocated to it. The remaining two inequalities ensure

that machines may only travel between jobs i and j if enough machines were

allocated to job i to allow it; thus xij may only be non-zero if mi is at least

aij . This integer programming formulation was not implemented or explored

any further in this thesis. Perhaps small instances could be solved (or lower

bounds discovered) through the development of this method.

We have not yet shown that the supply ship scheduling problem is NP-hard,

although it appears to be a difficult problem.

In our variant of the supply ship scheduling problem the objective was to

minimise the number of machines required. An alternative problem is to

constrain the number of machines available and instead minimise the

number of missed jobs. A restricted dynamic programming approach may

be better suited to solving this variant than the one studied in this thesis.

6.2.3 The task allocation problem

Although the SDP relaxations we have presented did not produce

impressive bounds, there is still scope for SDP to be a useful tool for these

problems. A further investigation into the benefits of adding capacity based

redundant constraints to the CMAP is warranted.

References

[1] E. Aarts and J.K. Lenstra (Eds). Local Search in Combinatorial

Optimization. John Wiley & Sons, Chichester, 1997.

[2] T.S. Abdul-Razaq and C.N. Potts. Dynamic programming state-space

relaxation for single-machine scheduling. Journal of the Operational

Research Society, 39(2):141–152, 1988.

[3] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory,

Algorithms, and Applications, chapter 6, pages 166–206. Prentice Hall,

New Jersey, 1993.

[4] F. Alizadeh. Interior point methods in semidefinite programming with

applications to combinatorial optimization. SIAM Journal on

Optimization, 5:13–51, 1995.

[5] M.F. Anjos. Mathematical programming. Lecture notes, 2002.

[6] M.F. Anjos. An improved semidefinite programming relaxation for the

satisfiability problem. Mathematical Programming, 102(3):589–608,

2004.

[7] M.F. Anjos and H. Wolkowicz. Semidefinite programming for discrete

optimization and matrix completion problems. Discrete Applied

Mathematics, 123(1–2):513–577, 2002.

186

References 187

[8] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of

traveling salesman problems. Documenta Mathematica, Extra Volume

ICM 1998(III):645–656, 1998.

[9] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University

Press, 2006.

[10] D. Applegate, W. Cook, and A. Rohe. Chained lin-kernighan for large

traveling salesman problems. INFORMS Journal on Computing,

15(1):82–92, 2003.

[11] K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New

York, 1974.

[12] E.B. Baum. Iterated descent: A better algorithm for local search in

combinatorial optimization problems. Technical report, Caltech,

Pasadena, CA, 1986.

[13] K.P. Belkhale and P. Banerjee. An approximate algorithm for the

partitionable independent task scheduling problem. In International

Conference on Parallel Processing, August 1990.

[14] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[15] R. Bellman. Dynamic programming treatment of the traveling

salesman problem. Journal of the ACM, 9(1):61–63, 1962.

[16] A. Billionet, M. Costa, and A. Sutter. An efficient algorithm for a

task allocation problem. Journal of the Association for Computing

Machinery, 39:502–518, 1992.

[17] A. Billionnet and S. Elloumi. Placement de tâches dans un système

distribué et dualité lagrangienne. RAIRO Recherche Opérationelle,

26(1):83–97, 1992.

References 188

[18] J. Blazewicz, M.Y. Kovalyov, M. Machowiak, D. Trystram, and

J. Weglarz. Scheduling malleable tasks on parallel processors to

minimize the makespan. Annals of Operations Research, 129:6580,

2004.

[19] J. Blazewicz, M. Machowiak, G. Mounie, and D. Trystram.

Suboptimal approaches to scheduling malleable tasks. Computational

Methods in Science and Technology, 6:25–40, 2000.

[20] F. Bock. An algorithm for solving travelling-salesman and related

network optimization problems. Manuscript associated with talk

presented at the 14th National Meeting of ORSA, St. Louis, MO,

1958.

[21] E.K. Burke, P.I. Cowling, and R. Keuthen. Effective local and guided

variable neighbourhood search methods for the asymmetric traveling

salesman problem. In E.J.W. Boers et al., editor, EvoWorkshop 2001,

LNCS 2037, pages 203–212, 2001.

[22] E.K. Burke, M. Dror, and J.B. Orlin. Scheduling malleable tasks with

interdependent processing rates: Comments and observations.

Discrete Applied Mathematics, 156(5):620–626, March 2008.

[23] G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solutions of

large-scale, asymmetric traveling salesman problems. ACM

Transactions on Mathematical Software, 21(4):394–409, 1995.

[24] W. Chen and C. Lin. A hybrid heuristic to solve a task allocation

problem. European Journal of Operational Research, 27:287–303, 2000.

[25] B.V. Cherkassky and A.V. Goldberg. On implementing the

push-relabel method for the maximum flow problem. Algorithmica,

19:390–410, 1997.

References 189

[26] N. Christofides. Worst-case analysis of a new heuristic for the

traveling salesman problem. Technical Report CS-93-13, Carnegie

Mellon University, 1976.

[27] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation

procedures for the computation of bounds to routing problems.

Networks, 11:145–164, 1981.

[28] J. Cirasella, D.S. Johnson, L.A. McGeoch, and W. Zhang. The

asymmetric traveling salesman problem: algorithms, instance

generators, and tests. In ALENEX 2001 Proceedings, pages 32–59,

2001.

[29] E. Ciurea and L. Ciupala. Sequential and parallel algorithms for

minimum flows. Journal of Applied Mathematics & Computing,

15(1-2):53–75, 2004.

[30] G. Clarke and J.W. Wright. Scheduling of vehicles from a central

depot to a number of delivery points. Operations Research,

12:568–581, 1964.

[31] E. Coffman, M. Garey, D. Johnson, and R. Tarjan. Performance

bounds for level-oriented two-dimensional packing algorithms. SIAM

Journal on Computing, 9(4):808–826, November 1980.

[32] G.A. Croes. A method for solving traveling salesman problems.

Operations Research, 6:791–812, 1958.

[33] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale

traveling salesman problem. Journal of the Operational Research

Society of America, 2(4):393–410, 1954.

[34] G. Dantzig, R. Fulkerson, and S. Johnson. On a linear-programming

combinatorial approach to the traveling-salesman problem. Operations

Research, 7(1):58–66, 1959.

References 190

[35] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold,

1991.

[36] W. Fernandez de la Vega and M. Lamari. The task allocation problem

with constant communication. Discrete Applied Mathematics,

131(1):169–177, 2003.

[37] M.R. de Paula, M.G. Ravetti, G.R. Mateus, and P.M. Pardalos.

Solving parallel machines scheduling problems with

sequence-dependent setup times using variable neighbourhood search.

IMA Journal of Management Mathematics, 18(2):101–115, 2007.

[38] R.P. Dilworth. A decomposition theorem for partially ordered sets.

Annals of Mathematics, 51:161–166, 1950.

[39] M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press,

2004.

[40] M. Drozdowski. Scheduling multiprocessor tasks – an overview.

European Journal of Operational Research, 94:215–230, 1996.

[41] J. Du and J.Y-T. Leung. Complexity of scheduling parallel task

systems. SIAM Journal on Discrete Mathematics, 2(4):473–487,

November 1989.

[42] P-F. Dutot, G. Mouni, and D. Trystram. Handbook of Scheduling:

Algorithms, Models, and Performance Analysis, chapter Scheduling

parallel tasks – approximation algorithms. CRC Press, Boca Raton,

2004.

[43] W.L. Eastman. Linear programming with pattern constraints. Ph.d

thesis, The Computation Laboratory, Harvard University, 1958.

[44] S. Elloumi. Website: Task assignment problem instances.

http://cedric.cnam.fr/oc/TAP/TAP.html, accessed 10/11/03.

References 191

[45] S. Elloumi, F. Roupin, and E. Soutif. Comparison of different lower

bounds for the constrained module allocation problem. Technical

Report 473, CEDRIC-CNAM, 2003.

[46] A.A. Elsadek and B.E. Wells. A heuristic model for task allocation in

heterogeneous distributed computing systems. The International

Journal of Computers and Their Applications, 6(1), 1999.

[47] A. Ernst, H. Jiang, and M. Krishnamoorthy. Exact solutions to task

allocation problems. Technical report, CSIRO Mathematical

Information and Sciences, 2002.

[48] T. Feo and M. Resende. Greedy randomized adaptive search

procedures. Journal of Global Optimization, 6:109–133, 1995.

[49] K.R. Fox, B. Gavish, and S.C. Graves. An n-constraint formulation of

the (time-dependent) traveling salesman problem. Operations

Research, 28(4):1018–1021, 1980.

[50] P.M. Franca, M. Gendreau, G. Laporte, and F.M. Muller. A tabu

search heuristic for the multiprocessor scheduling problem with

sequence dependent setup times. International Journal of Production

Economics, 43:79–89, 1996.

[51] G. Frederickson, M.S. Hecht, and C.E. Kim. Approximation

algorithms for some routing problems. SIAM Journal on Computing,

7(2):178–193, May 1978.

[52] M.L. Fredman, D.S. Johnson, L.A. McGeoch, and G. Ostheimer. Data

structures for traveling salesman. In Proceedings of the fourth annual

ACM-SIAM symposium on discrete algorithms, pages 145–154, 1993.

[53] M.R. Garey and D.S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. Freeman, 1979.

References 192

[54] I. Gertsbakh and H.I. Stern. Minimal resources for fixed and variable

job schedules. Operations Research, 26(1):68–85, 1978.

[55] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,

1997.

[56] A.V. Goldberg and R.E. Tarjan. A new approach to the maximum

flow problem. Journal of the Association for Computing Machinery,

35(4):921–940, 1988.

[57] L. Gouveia and S. Voß. A classification of formulations for the

time-dependent traveling salesman problem. European Journal of

Operational Research, 83:69–82, 1995.

[58] U.I. Gupta, D.T. Lee, and J.Y-T. Leung. An optimal solution for the

channel-assignment problem. IEEE Transactions on Computers,

28(11):807–810, November 1979.

[59] M. Gursky. Some complexity results for a multi-processor scheduling

problem. private communication from H.S. Stone, 1981.

[60] G. Gutin and A.P. Punnen (Eds). The Traveling Salesman Problem

and Its Variations. Kluwer Academic Publishers, Dordrecht, 2002.

[61] G. Gutin and A.P. Punnen (Eds). The Traveling Salesman Problem

and Its Variations, chapter 9. Experimental analysis of heuristics for

the STSP. Kluwer Academic Publishers, Dordrecht, 2002.

[62] G. Gutin and A.P. Punnen (Eds). The Traveling Salesman Problem

and Its Variations, chapter 10. Experimental analysis of heuristics for

the ATSP. Kluwer Academic Publishers, Dordrecht, 2002.

[63] A. Hadj-Alouane, J. Bean, and K. Murty. A hybrid

genetic/optimization algorithm for a task allocation problem. Journal

of Scheduling, 2:189–201, 1999.

References 193

[64] Y. Hamam and K. Hindi. Assignment of program modules to

processors: A simulated annealing approach. European Journal of

Operational Research, 122:509–513, 2000.

[65] M. Hammar and B.J. Nilsson. Approximation results for kinetic

variants of tsp. Discrete & Computational Geometry, 27:635–651,

2002.

[66] P. Hansen and N. Mladenović. Variable neighborhood search:

Principles and applications. European Journal of Operational

Research, 130(3):449–467, May 2001.

[67] P. Hansen and N. Mladenović. A tutorial on variable neighborhood

search. Technical report, Les Cahiers du GERAD, HEC Montreal and

GERAD, 2003.

[68] M. Held and R.M. Karp. A dynamic programming approach to

sequencing problems. Journal of SIAM, 10:196–210, 1962.

[69] M. Held and R.M. Karp. The traveling-salesman problem and

minimum spanning trees: Part ii. Mathematical Programming,

1(1):6–25, 1971.

[70] K. Helsgaun. An effective implementation of the lin-kernighan

traveling salesman heuristic. European Journal of Operational

Research, 126:106–130, 2000.

[71] C.S. Helvig, G. Robins, and A. Zelikovsky. The moving-target

traveling salesman problem. Journal of Algorithms, 49:153–174, 2003.

[72] S. Hewitt. Support ship routing in a deployed task group. Master’s

thesis, School of Mathematics, University of Southampton, 2004.

[73] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic

Approaches. The MIT Press, Cambridge, Massachusetts, 1988.

References 194

[74] Q. Jiang, R. Sarker, and H. Abbass. Tracking moving targets and the

non-stationary traveling salesman problem. Complexity International,

11:171–179, 2005.

[75] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.

[76] Y. Kopidakis, M. Laman, and V. Zissimopoulos. On the task

assignment problem: Two new efficient heuristic algorithms. Journal

of Parallel and Distributed Computing, 42:21–29, 1997.

[77] A.H. Land and A.G. Doig. An automatic method for solving discrete

programming problems. Econometrica, 28:497–520, 1960.

[78] E.L. Lawler. The quadratic assignment problem. Management

Science, 9(4):586–599, 1963.

[79] Y.H. Lee and M. Pinedo. Scheduling jobs on parallel machines with

sequence-dependent setup times. European Journal of Operational

Research, 100:464–474, 1997.

[80] J.Y-T. Leung. Handbook of Scheduling: Algorithms, Models, and

Performance Analysis. Chapman & Hall, 2004.

[81] M. Lewis, B. Alidaee, and G. Kochenberger. Modeling and solving the

task allocation problem as an unconstrained quadratic binary

program. Operations Research Letters, 2004.

[82] S. Lin. Computer solutions of the traveling salesman problem. Bell

Systems Technical Journal, 1965.

[83] S. Lin and B.W. Kernighan. An effective algorithm for the

traveling-salesman problem. Operations Research, 21(2):498–416, 1973.

References 195

[84] J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel. An algorithm

for the traveling-salesman problem. Operations Research, 11:972–989,

1963.

[85] V. Lo. Heuristic algorithms for task assignment in distributed

systems. IEEE Transactions on Computers, 37:1384–1397, 1988.

[86] A. Lucena. Time-dependent travelling salesman problem - the

deliveryman case. Networks, 20:753–763, 1990.

[87] W.T. Ludwig. Algorithms for scheduling malleable and nonmalleable

parallel tasks. Ph.d thesis, University of Wisconsin - Madison,

Department of Computer Sciences, 1995.

[88] A. Lusa and C.N. Potts. A variable neighbourhood search algorithm

for the constrained task allocation problem. Technical Report

IOC-DT-P-2006-5, EOLI - Institut d’Organitzaci i Control de

Sistemes Industrials, 2006.

[89] P. Ma, E. Lee, and M. Tsuchiya. A task allocation model for

distributed computing systems. IEEE Transactions on Computers,

C-31:41–47, 1982.

[90] C. Malandraki. Time dependent vehicle routing problems:

Formulations, solution algorithms and computational experiments.

Ph.d dissertation, Northwestern University, Evanston, IL, 1989.

[91] C. Malandraki and M.S. Daskin. Time dependent vehicle routing

problems: Formulations, properties and heuristic algorithms.

Transportation Science, 26:185–200, 1992.

[92] C. Malandraki and R.B. Dial. A restricted dynamic programming

heuristic algorithm for the time dependent traveling salesman

problem. European Journal of Operational Research, 90:45–55, 1994.

References 196

[93] A.S. Mendes, F.M. Muller, P.M. Franca, and P. Moscato. Comparing

meta-heuristic approaches for parallel machine scheduling problems.

Production Planning & Control, 13(2):143–154, 2002.

[94] J.E. Mitchell. Integer programming: Branch and cut algorithms, In

“Encyclopedia of Optimization” (C.A. Floudas and P.M. Pardalos,

Eds), volume 2, pages 519–525. Kluwer Academic Press, 2001.

[95] N. Mladenović and P. Hansen. Variable neighborhood search.

Computers & Operations Research, 24(11):10971100, 1997.

[96] J.D. Monte and K.R. Pattipati. Scheduling parallelizable tasks to

minimize make-span and weighted response time. IEEE Transactions

on Systems, Man and Cybernetics - Part A, 32(3):335–345, May 2002.

[97] T.E. Morton and D.W. Pentico. Heuristic Scheduling Systems. John

Wiley & Sons, New York, 1993.

[98] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial

Optimization. Wiley, New York, 1988.

[99] I. Or. Traveling Salesman-Type Combinatorial Problems and their

Relation to the Logistics of Regional Blood Banking. Ph.d thesis,

Northwestern University, Evanston, IL, 1976.

[100] M. Padberg and G. Rinaldi. Facet identification for the symmetric

traveling salesman polytope. Mathematical Programming,

47(2):219–257, 1990.

[101] C.H. Papadimitriou. Computational Complexity. Addison Wesley,

1993.

[102] J.C. Picard and M. Queyranne. The time-dependent traveling

salesman problem and its application to the tardiness problem in

one-machine scheduling. Operations Research, 26(1):86–110, 1978.

References 197

[103] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice

Hall, 2nd edition edition, 2001.

[104] C.N. Potts. Deterministic operational research techniques: Heuristics.

Lecture notes, 2002.

[105] S. Radhakrishnan and J.A. Ventura. Simulated annealing for parallel

machine scheduling with earliness-tardiness penalties and

sequence-dependent set-up times. International Journal of Production

Research, 38(10):2233–2252, 2000.

[106] K.N. Rao. Optimal synthesis of microcomputers for gm vehicles.

Technical report, 1992.

[107] F. Roupin. On approximating the memory-constrained module

allocation problem. Information Processing Letters, 61(4):205–208,

1997.

[108] F. Roupin. From linear to semidefinite programming: an algorithm to

obtain semidefinite relaxations for bivalent quadratic problems.

Technical Report 388, CEDRIC-CNAM, 2003.

[109] A. Sarje and G. Sagar. Heuristic model for task allocation in

distributed computer systems. IEE Proceedings, E-138:313–318, 1991.

[110] M.W.P. Savelsbergh. Branch and price: Integer programming with

column generation, In “Encyclopedia of Optimization” (C.A. Floudas

and P.M. Pardalos, Eds), volume 1, pages 218–221. Kluwer Academic

Press, 2001.

[111] J. Schneider. The time-dependent traveling salesman problem.

Physica A, 314:151–155, 2002.

[112] A. Schrijver. On the history of combinatorial optimization (till 1960).

Technical report, Department of Mathematics, University of

Amsterdam, The Netherlands, 1996.

References 198

[113] C.C. Shen and W.H. Tsai. A graph matching approach to optimal

task assignment in distributed computing systems using a minimax

criterion. IEEE Transactions on Computers, 34(3):197–203, 1985.

[114] H. Stone. Multiprocessor scheduling with the aid of network flow

algorithms. IEEE Transactions on Software Engineering, SE-3:85–93,

1977.

[115] K.C. Toh, R.H. Tutuncu, and M.J. Todd. Sdpt3 version 3.02 – a

matlab software for semidefinite-quadratic-linear programming.

http://www.math.nus.edu.sg/ mattohkc/sdpt3.html, accessed

15/05/03.

[116] M.A. Trick. A tutorial on dynamic programming. Website:

http://mat.gsia.cmu.edu/classes/dynamic/dynamic.html, 1998.

[117] J. Turek, J.L. Wolf, K.R. Pattipati, and P.S. Yu. Scheduling

parallelizable tasks: putting it all on the shelf. In SIGMETRICS

’92/PERFORMANCE ’92: Proceedings of the 1992 ACM

SIGMETRICS joint international conference on Measurement and

modeling of computer systems, 1992.

[118] J. Turek, J.L. Wolf, and P.S. Yu. Approximate algorithms scheduling

parallelizable tasks. In SPAA ’92: Proceedings of the fourth annual

ACM symposium on Parallel algorithms and architectures, 1992.

[119] C. Voudouris and E. Tsang. Guided local search and its application to

the traveling salesman problem. European Journal of Operational

Research, 113:469–499, 1999.

[120] Website. Andrew Goldberg’s Network Optimization Library.

www.avglab.com/andrew/soft.html, accessed 06/07/07.

[121] Website. Concorde Home. www.tsp.gatech.edu/concorde, accessed

7/11/08.

References 199

[122] N. Widell and C. Nyberg. Cross entropy based module allocation for

distributed systems. In Proceedings of the 16th IASTED International

Conference on Parallel and Distributed Computing and Systems, 2004.

[123] R.J. Vander Wiel and N.V. Sahanidis. Heuristic bounds and test

problem generation for the time-dependent traveling salesman

problem. Transportation Science, 29(2):167–183, 1995.

[124] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of

semidefinite programming: theory, algorithms and applications.

Kluwer Academic Publishers, 2000.

