
Feature Composition – Towards product lines of
Event-B models

Ali Gondal, Michael Poppleton, Colin Snook

Dependable Systems and Software Engineering Group
University of Southampton, Southampton SO17 1BJ, UK

{aag07r, mrp, cfs}@ecs.soton.ac.uk

Abstract. Event-B is a formal language for modelling reactive systems,
based on set theory and first-order logic. The RODIN toolkit provides
comprehensive tool support for modelling and refinement in Event-B,
analysis and verification using animator/model-checkers and theorem
provers. We consider the need to support reuse, in particular product
line reuse, in such a formal development method.
Feature modelling is an established technique for reuse in product lines.
We introduce concepts of feature modelling and composition in Event-B
to support the reuse of formal models and developments. A prototype
feature composition tool has been developed (as a RODIN plugin) for
Event-B, based on the Eclipse Modelling Framework (EMF). Using an
MDD philosophy, the tool extends the Event-B language metamodel to
a composition metamodel, and implements prototype composition pat-
terns for Event-B features. Thus, a required composite model can be
constructed by selecting, specializing, and composing input features in a
defined way. The tool is the first step towards full feature modelling for
product line model reuse for Event-B. We describe future work required
to meet this goal.

1 Introduction

Formal Methods provide mathematically based languages, tools and techniques
for specifying and verifying systems during construction. They allow identifica-
tion of inconsistencies, ambiguities and defects earlier in the software develop-
ment life-cycle and reduce the need for unit and integration testing [1]. Verifi-
cation conditions called proof obligations (POs) take the form of mathematical
theorems which state correctness properties of models and their refinements.
Successful application of formal methods can be seen in aerospace, transporta-
tion, defence and medical sectors [1, 2]. Improvements in formal specification lan-
guages, verification techniques and robust tools are ongoing, in particular, by the
DEPLOY1 and RODIN2 projects, including industrial partners such as Bosch,
1 DEPLOY - Industrial deployment of system engineering methods EU Project IST-

214158. http://www.deploy-project.eu
2 RODIN - Rigorous Open Development Environment for Open Systems: EU Project

IST-511599. http://rodin.cs.ncl.ac.uk

SAP, and Siemens and Space Systems Finland. These projects are developing
tools, as well as strengthening the theoretical base, for the formal specification
language Event-B [3].

Event-B, based on set theory and first-order logic, is used for modelling and
analysing discrete event systems and provides built-in generation and verification
of proof obligations. It is a successor of Abrial’s B language [4], developed in
the RODIN and earlier EU projects. After completion of the RODIN project,
the DEPLOY project is now deploying this work into industry. The RODIN
toolkit [5] provides support for modelling, animation, model-checking and proof
using Event-B. It is an Eclipse based IDE, and easily extensible. Refinement
is the core development process of introducing more details in each step from
abstract specification to the concrete implementation model in Event-B. Any
refined model must be proved to be a true refinement of the abstract model.

A software product line (SPL) refers to a set of related products having a
common base and built from a shared set of resources [6]. SPLs focus on the
problem of software reuse by providing automated ways to build families of
software products sharing commonalities, and differing by variabilities of struc-
ture. Feature modelling is a model-driven approach which gives a means to define
commonalities and variabilities in terms of atomic requirements features. Several
tools have been developed for supporting feature modelling for SPL engineering
[7]. For SPLs of critical systems, there is a need for the automated verification
that formal methods provide. This paper discusses our approach to introduce
product line reuse in Event-B using feature modelling concepts and reports on
tooling developments towards the full Feature Modelling Tool (FMT) for mod-
elling of SPLs in Event-B. The example used in the paper is discussed in section
2. Section 3 gives a technical overview of the Event-B language. The notion
of feature modelling in Event-B is discussed in section 4 followed by the tool
discussion, related and future works in sections 5, 6 and 7 respectively.

2 Feature Composition Example

This example has been taken from the Production Cell [8] case study which we
have modelled in Event-B. This is a reactive system which has been modelled
in a number of formalisms. The purpose of the example here is to demonstrate
the prototype tool that we have developed rather than its Event-B modelling.
There were multiple features in Production Cell model but we only consider two
features here for brevity, i.e. feed belt and table. Metal blanks enter the system
through the feed belt and are dropped one by one on to the table from where
other components such as a robot may pick them up and deliver them to another
component for further processing. It happens in this example that features map
to physical components of the system, e.g. table, robot etc. We chose this example
to represent a product line of Production Cell systems, where different feature
configurations result in different instances of a Production Cell. Variabilities
are the number and connectivity of features, e.g. we can build a system with

multiple robots and belts to increase throughput. All the features are modelled
generically for use in various configurations, and are verified separately.

(a) Feature Composition (b) Sub-Feature Composition

Fig. 1. Feature Composition Editor

3 Event-B Language

An Event-B model consists of a machine - modelling dynamic data and behaviour
- and zero or more contexts - modelling static data structures or configurations.
This separation of behaviour allows the use of different contexts to parametrize
the machines. Note that there is no concept of modularization in Event-B, so
a model represents a complete system at a particular level of refinement. The
state transition mechanism over the machine’s variables is given by the event,
which comprises parameters (also called arguments or local variables), guards
and actions. The guard is a condition on the event parameters and machine
variables that defines the enabledness of the event: the event is only enabled when
all of its guards are true. The action is the update operation on a state variable.
The syntax of an event e with guards G, variables v and actions A is: e = when
G(v) then A(v). Examples of two events (UnloadFB & LoadTbl) can be seen on
Fig. 1(b). The invariant is a state predicate specifying correctness properties
that must always hold. Variables are typed by invariants. Many POs concern
invariant preservation, i.e. correctness of the system is defined and preserved
through the invariants. All events must preserve invariants and any violation of
invariants will lead to the system being inconsistent. An INITIALIZATION event
is used to specify the initial values for the variables.

The context (static data) in Event-B contains sets, constants, axioms and
theorems. Sets are used to define the types and axioms describe the properties
of the constants. Theorems must be proved to follow from axioms.

Event-B provides support for refinement where structural and algorithmic
detail can be added during each refinement step; new events can be added and
existing events can be extended. Variables may be added or transformed. Re-
finement will usually reduce non-determinism. Similarly, contexts can also be
extended to add more details to the model. Refinement proof obligations are
generated by the tool to verify that a refined model is a correct refinement of
the abstract model. An EMF [9] metamodel for Event-B has been developed as
part of the DEPLOY project.

4 Feature Modelling in Event-B

Feature modelling is a well-known technique for reuse in product lines. Method-
ologically speaking, for its application in an Event-B setting, some form of do-
main engineering activity comes first. At very least, an instance of the product
line should be fully developed, followed by the engineering of a variant system
or two. Commonality/variability analysis should be undertaken and followed by
the incremental building of a domain feature model and database. Work is under
way developing this methodological and domain engineering work, which will be
reported elsewhere.

In this paper we introduce a prototype feature composition tool as an initial
step towards the development of a more comprehensive tooling for feature mod-
elling. For such a full Feature Modelling Tool (FMT), we will need to define a
metamodel for the feature modelling language. The FMT will consist of a fea-
ture model editor and a feature instance editor. The feature model editor will
be used to build the feature models for different product families and the fea-
ture instance editor will provide a configuration mechanism for choosing various
features to instantiate a new product line member, somewhat similar to config-
uration diagram of FeaturePlugin [10]. The feature model will also specify any
constraints needed to maintain the correct selection of features in a particular
instance. Feature composition rules will respect these constraints. The instance
editor will use the feature composition tool described in this paper to compose
selected features to build the instance system. We are planning to develop the
instance editor in such a way that it can produce an instance using the compo-
sition descriptions defined in the composition meta-language as discussed in our
earlier work [11]. This framework consists of two layers of metamodelling where
a feature model will conform to the feature metamodel and at the same time will
serve as a metamodel for the instance model. Validation criteria will be needed
to verify the correct instantiation of the metamodels at each level.

The feature has been defined as “a logical unit of behaviour specified by a set
of functional and non-functional requirements” [12]. We define the concepts of
“feature” and “sub-feature” in Event-B as atomic units of reuse, specialization
and composition. This is in order to preserve the semantics of Event-B and to

formally verify the product-line members. A feature is thus a small, coherent
and syntactically complete Event-B model which consists of a machine and zero
or more seen contexts. This allows a feature and its refinements to be verified
using the RODIN provers. A notion of sub-feature may be useful: when a feature
cannot be reused as a whole, we might be interested in reusing some parts of a
feature. Thus, a sub-feature is part of a feature which is syntactically incomplete
but can be reused when composed with other sub-features, e.g. in Event-B, an
event or a variable with its associated invariant(s) can constitute a sub-feature.
The following is our definition of feature and sub-feature in BNF3.

Feature ::= Context | Machine Context+

Machine ::= Name V ariable+ Invariant+ Theorem∗ [V ariant]
INITIALIZATION Init Event+

Context ::= Name {Set+ Axiom∗ Theorem∗ |
Set∗ Constant+ Axiom+ Theorem∗}

SubFeature ::= EventSF | V ariableSF | InvariantSF | ContextSF
EventSF ::= INITIALIZATION Init | Event
V ariableSF ::= V ariable+ InvariantSF
InvariantSF ::= Invariant+

TheoremSF ::= Theorem+

ContextSF ::= Set∗ | Constant∗ | Axiom∗ | Theorem∗

We start system modelling in Event-B by defining the features at an abstract
level and then refine these features gradually by adding further detail at each
refinement step. Splitting requirements across features and then modelling and
refining feature-wise, separates concerns and should reduce complexity - appli-
cation experience will tell. We call each feature and its chain of refinements a
feature development. Developing earlier work [11, 13], we regard these feature
developments as units of reuse. They will be specialized - by addition or alter-
ation of information - and composed in various ways in the process of assembling
(instantiating) an instance system in the target product line. For example, two
EventSFs are composed after specialization and conflict resolution into a single
EventSF named ‘LoadTbl’ during the composition of two Features i.e. feedbelt 2
& table 2, as shown in Fig. 1. The processes of specialization and composition
will occur in general at all refinement levels of the input feature developments.
Note that the relation between requirement feature and its implementation is
more complex than one to one and feature composition through non-linear re-
finements will layer in complex, possibly cross-cutting, structure.

3 The syntax used is: [] means optional (0 or 1), { }∗ means 0 or more occurrences,
{ }+ means 1 or more occurrences and | means OR.

(a) Part of Composition Metamodel (b) Example Structure

Fig. 2.

5 Feature Composition Tool

An initial version of the feature composition tool is available as a plugin to the
RODIN platform4 [5]. It provides a simple structured cut-and-paste composition
of features and guides the user in identifying and resolving any conflicts. We
are currently working on a number of composition/specialization patterns to
maximize automation while not restricting user expressiveness.

The plugin was developed in Eclipse using Java in a model-driven approach.
We built a metamodel for the composition model which inherits from the Event-
B metamodel. We then used EMF [9] to generate the code from the composi-
tion metamodel. The major advantage is in the ease of extension through the
metamodel where the code is automatically generated by EMF and then cus-
tomized. Fig. 2(a) shows part of the composition metamodel for event compo-
sition where Event, Guard and EventComposition inherit from Event-B meta-
model, i.e. BAnyEvent, BGuard and BNamedElement respectively. Event inher-
its ‘newName’ from RenameableElement which allows a new name to be given
to an Event, e.g. to resolve naming conflicts. The collection ‘sourceEvents’ repre-
sents the set of events being merged together to form a single ‘EventComposition’
which inherits ‘name’ attribute from BNamedElement. All composition elements
inherit a ‘compose’ boolean which represents the selection of that element for
composition.

The tool provides a composition editor5(Fig. 1) to select the features (in a
similar manner to existing feature modelling tools, e.g. [10]) that need to be

4 See http://sourceforge.net/projects/rodin-b-sharp/ and wiki entry at http:

//wiki.event-b.org/index.php/Feature_Composition_Plugin
5 The earlier prototype was contributed by Christopher Franklin (a University of

Southampton Intern)

composed resulting in the composition model. This model is then used by the
tool to transform/compose the input features into a composite Event-B feature.
The composition model is serialized in the RODIN model repository for replay-
ing the composition later. The editor provides conflict resolution functionality
and highlights any conflicts such as multiple declarations of variables or events
with the same name in different input features. It provides facilities for making
the input models disjoint before composition to automatically resolve any con-
flicting element names. It can also automatically resolve conflicting elements by
deselecting the repeating/redundant information in different models (see vari-
ables ‘position’ and ‘blanks’ on Fig. 1(a)). The editor also provides an option for
composing sub-features such as events (Fig. 1(b) shows the composition of two
events). The tool is also capable of composing features at different refinement
levels. The composite feature is a typical Event-B model and is automatically
checked by the RODIN static checker for any errors. Similarly, proof obligations
(POs) for the composite model are generated in normal fashion and the RODIN
provers discharge any POs automatically if they can. Fig. 2(b) shows the struc-
ture of our example features refined up to two levels and then composed using
the tool. The composition of features at each level needed some extra invariants,
guards and merging of events. Fig. 1(b) shows the composition of two events
into one and de-selection of redundant elements to resolve conflicts.

6 Related Work

To our knowledge, there is no tool support for feature modelling within the for-
mal methods domain, although, there are tools which support feature modelling
for product lines such as XFeature6, FeaturePlugin [10] etc. The underlying con-
cepts discussed in [14] are quite similar to what we want to achieve in the domain
of formal product line development. Another area that is closely related to our
work is the definition of composition patterns. These patterns will enable us to
write composition rules when composing Event-B features. The RODIN toolkit
is already in the phase of adopting the model transformation and code generation
facilities of EMF7.

7 Conclusion & Future Work

We have given an overview of our approach to introduce the concepts of feature
modelling within formal methods using Event-B. Our prototype feature compo-
sition tool is an initial step towards the development of a feature modelling tool
for configuring Event-B features and composing them to instantiate software
product line systems by reusing and extending existing features as mentioned in
section 4. This is required because existing feature modelling tools don’t provide

6 Feature Modelling Tool http://www.pnp-software.com/XFeature/Home.html
7 See http://wiki.event-b.org/index.php/EMF_framework_for_Event-B

enough facilities to give semantics to features and the resulting formal verifica-
tion capabilities such as offered by Event-B. Our prototype tool will enable us
to experiment with different case studies and to improve the tool requirements
and underlying notations for feature modelling. This remains work in progress.

The example of section 2 revealed additional tool requirements and research
questions.We will require a composition management capability to record, man-
age and replay the sequences of compositions and specializations of features
required by a target system. This should substantially increase productivity.
Another area to explore is reusing proofs. When we compose Event-B features
into a composite feature, the tool generates proof obligations (POs) for consis-
tency and refinement checking. Most of the POs for the input features still exist
for the composite feature, and may have already been discharged interactively.
Hence, it would be useful if the tool could reuse interactively discharged POs to
save user time and effort. This might be achieved through the composition of
proof trees while composing their associated features.

References

1. Abrial, J.R.: Formal methods in industry: Achievements, problems, future. In:
ICSE ’06: Proceedings of the 28th ICSE, NY, USA, ACM (2008) 761–768

2. Bowen, J.P., Hinchey, M.G.: The use of industrial-strength formal methods. In:
COMPSAC ’97, Washington, DC, USA, IEEE Computer Society (1997) 332–337

3. Metayer, C., Abrial, J.R., Voisin, L.: Event-B language. Rodin deliverable 3.2, EU
Project IST-511599 -RODIN (May 2005)

4. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

5. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for Event-B. In: ICFEM. (2006) 588–605

6. Clements, P., Northrop, L., Northrop, L.M.: Software Product Lines : Practices
and Patterns. Addison-Wesley Professional (August 2001)

7. Lee, K., Kang, K.C., Lee, J.: Concepts and guidelines of feature modeling for
product line software engineering. In: ICSR-7, UK, Springer-Verlag (2002) 62–77

8. Lindner, T.: Task description. In Lewerentz, C., Lindner, T., eds.: Formal Devel-
opment of Reactive Systems. Volume 891 of LNCS., Springer (1995)

9. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. 2nd edn. The Eclipse Series. Addison-Wesley Professional (December 2008)

10. Antkiewicz, M., Czarnecki, K.: Featureplugin: Feature modeling plug-in for Eclipse.
In: Eclipse ’04: Proceedings of the 2004 OOPSLA, NY, USA, ACM (2004) 67–72

11. Poppleton, M., Fischer, B., Franklin, C., Gondal, A., Snook, C., Sorge, J.: Towards
reuse with “Feature-oriented Event-B”, Nashville, TN, In McGPLE (October 2008)

12. Bosch, J.: Design and Use of Software Architectures: Adopting and Evolving a
Product-line Approach. ACM Press/Addison-Wesley, NY, USA (2000)

13. Poppleton, M.: Towards feature-oriented specification and development with
Event-B. In: Proc. REFSQ. LNCS, Trondheim, Norway, Springer (2007) 367–381

14. Cechticky, V., Pasetti, A., Rohlik, O., Schaufelberger, W.: Xml-based feature
modelling. (2004) 101–114

