
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

School of Mathematics

Embeddings of CAT(0) Cube Complexes in Products of Trees

by

Gemma Lauren Holloway

Thesis for the degree of Doctor of Philosophy

August 2007



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING,SCIENCE AND MATHEMATICS

SCHOOL OF MATHEMATICS

Doctor of Philosophy

TITLE OF THESIS

by Gemma Lauren Holloway

In ‘Groups acting on connected cubes and Kazhdan’s property T’, [29], Niblo

and Roller showed that any CAT(0) cube complex embeds combinatorially

and quasi-isometrically in the Hilbert space `2(H) where H is the set of hy-

perplanes. This Hilbert space may be viewed as the completion of an infinite

product of trees. In this thesis, we consider the question of the existence

of quasi-isometric maps from CAT(0) cube complexes to finite products of

trees, restricting our attention to folding maps as used in [29].

Following an overview of the properties of CAT(0) cube complexes, we

first prove that there exists CAT(0) square complexes which do not fold into

a product of trees with fewer than k factors for arbitrary k, giving examples

which admit co-compact proper actions by right-angled Coxeter groups. We

also show that there exists a CAT(0) square complex which does not fold

into any finite product of trees.

We then identify a class of group actions on CAT(0) cube complexes

for which the existence of such an action implies the existence of a quasi-

isometric embedding of that group in a finite product of finitely branching

trees. We apply this result to surface groups, certain 3-manifold groups

and more generally to Coxeter groups which do not contain affine triangle

subgroups.
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Chapter 1

Background

1.1 Introduction

In order to study the geometry of a space we can employ one of two gen-

eral methods, either controlling the geometry of the space intrinsically or

extrinsically. Examples of intrinsic controls on the geometry of a space are

the CAT(0) condition and the hyperbolicity condition (see [20]). Extrinsic

control on the geometry of a space is achieved via an embedding of the space

within another space with known geometry. Examples of spaces in which

we can usefully embed are Euclidean space En, Hyperbolic space Hn, the

sphere Sn and Hilbert space. We also consider embeddings into products of

the above spaces.

A notable success of the extrinsic method is the following theorem

Theorem. [42] If G is a finitely generated group which coarsely embeds in

Hilbert space then the strong Novikov conjecture holds for G.

It is known that hyperbolic groups quasi-isometrically embed in products

of H2 and these coarsely embed in Hilbert space (see [5]). Other examples

include groups with Yu’s property A (as defined in [42]) (which includes

hyperbolic groups (see [39])), which also embed in Hilbert space.

In [16] Dranishnikov and Januszkiewicz noted that Coxeter groups embed

in products of trees (we give a proof of this in lemma 1.48) and used this

to show that every Coxeter group acts amenably on a compact space and
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has finite asymptotic dimension (see [41] for the definition of asymptotic

dimension).

It is natural to ask what one can say about the products of trees in which

a group can embed quasi-isometrically. In particular, when does it quasi-

isometrically embed in a finite product of locally finite trees. Dranishnikov

and Schroeder answered this for right-angled Coxeter groups in [17].

In chapter 3 of this thesis we explore generalisations of this result showing

that their theorem holds for several widely studies classes of groups, including

finitely generated Coxeter groups which contain no subgroups isomorphic

to the Euclidean triangle groups 4(2, 3, 6), 4(2, 4, 4) or 4(3, 3, 3), surface

groups and some 3-mainifold groups.

Given these results one can ask if every CAT(0) cube complex quasi-

isometrically embeds in a finite product of trees. Every asymptotically finite

dimensional space X is quasi-isomorphic to a subset of a finite product of

trees ([15]). Hence the question of whether every CAT(0) cube complex X

embeds quasi-isometrically in a product of trees is equivalent to the question

of whether every CAT(0) cube complex has finite asymptotic dimension.

This is a delicate question and it is not even known whether every CAT(0)

square complex has finite asymptotic dimension. In this context we provide

the following interesting result in chapter 2:

Theorem. For each k ∈ N there exists a right-angled Coxeter group Wk and

a 2-dimensional CAT(0) cube complex Uk such that Wk acts isometrically,

cocompactly and properly on Uk and there is no bending map from Uk to a

product of less than k trees.

It should be noted that this does not in itself settle the question of the

asymptotic dimension as we have restricted the class of maps from quasi-

isometries to bending maps (see section 2.1 for definition). However this

class of maps seems natural, arising in “Groups acting on CAT(0) cube com-

plexes” by Niblo and Reeves ([26]), and does suggest a possible class of

counter examples to the conjecture that CAT(0) cube complexes have finite

asymptotic dimension.
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1.2 Coxeter Groups

We begin by defining Coxeter groups and considering some of their properties.

The material in this section is mainly based on the books “Buildings”[6] and

“Reflection Groups and Coxeter Groups”[23].

1.2.1 Definitions

A Coxeter system (W,S) consists of a group W and a set of generators

S ⊂ W , such that the generating relations for W can be written in the form

(ss′)ms,s′ = 1 for some s, s′ ∈ S and some ms,s′ ∈ N∪{∞}, where ms,s′ = 1 if

and only if s = s′. Since ms,s′ = 1 if s = s′, each of the generators of W has

order 2. In the case where there is no relation between a pair of generators

s, s′, we define ms,s′ = ∞.

We call the group W a Coxeter group. If no element s ∈ S can be written

as a product of the elements of S \ {s} then S is a minimal generating set

for W . The rank of a Coxeter group W is the size |S| of the set S, where S

is a minimal generating set for W . For a given group W the generating set

S is not necessarily unique, but any two minimal generating sets for W have

the same size, hence the rank of a Coxeter group is well defined. A Coxeter

group is finitely generated if its rank is finite.

Coxeter groups are a generalisation of the Euclidean reflection groups.

An element of a Coxeter group W is called a reflection if it is a conjugate of

an element of the generating set S. It is easy to see that all elements of this

form have order 2.

A Coxeter matrix (ms,s′)s,s′∈S is a symmetric |S|×|S| matrix with ms,s =

1 for all s ∈ S and with every other entry either an integer greater than 1 or

∞. A Coxeter matrix defines a Coxeter group W generated by the index set

S and relations (ss′)ms,s′ = 1 for all s, s′ ∈ S.

Let (W,S) be a Coxeter system. The Coxeter diagram of this system

consists of a vertex for each element of S together with an edge connecting

distinct vertices s and t if ms,t 6= 2 and the edge is labelled by ms,t.[9]

A Coxeter diagram is irreducible if it is connected. A subdiagram of

a Coxeter diagram is a subcomplex with the same labels as the Coxeter
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diagram. [18]

1.2.2 The length function

Any element γ ∈ W can be represented by a word w with letters in the set S,

say γ = w = s1s2 . . . sr. The length of the word w is r. We define the length

of the identity element to be 0. A word representing an element γ is called a

reduced word for γ if it has minimal length among all words representing γ.

Theorem 1.1. ([6], page 50)

If (W,S) is a Coxeter system and γ is any element of W then every word

w in the generators S which represents γ can be transformed to a reduced

word representing γ by a finite sequence of operations of the following types:

(i) delete a subword of the form ss, s ∈ S;

or

(ii) given s, t ∈ S with ms,t < ∞ replace a subword of the form stst . . . of

length ms,t by a word tsts . . . of length ms,t.

If w and w′ are reduced words representing the same element γ ∈ G then

w can be transformed into w′ by a finite sequence of operations of type (ii).

For a proof of this theorem see chapter II, section 3C of [6].

Analysing the effect of these operations on the length of a word gives the

following corollary:

Corollary 1.2. (a) If the words w and w′ represent the same element of

W then the lengths of w and w′ are either both even or both odd.

(b) If w and w′ are reduced representations of the same element γ ∈ G then

w and w′ have the same length.

Let γ ∈ W and let w be a reduced representation of γ. The length of w

is denoted by `(γ) and called the norm of γ. By corollary 1.2 (b) we see that

the lengths of any two reduced words for γ are equal and hence `(γ) is well

defined.
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Humphreys [23] lists the following properties of the norm function ` for

any γ, γ′ ∈ W :

Lemma 1.3. Let γ, γ′ be any pair of elements in a Coxeter group W with

generating set S.

1. `(γ) = `(γ−1).

2. `(γ) = 1 if and only if γ ∈ S.

3. `(γγ′) ≤ `(γ) + `(γ′).

4. `(γγ′) ≥ `(γ)− `(γ′).

5. `(γ)− 1 ≤ `(γs) ≤ `(γ) + 1, for s ∈ S.

Proof. 1. If w = s1s2 . . . sn is a reduced word for γ then γ−1 can be written

as w′ = s−1
r . . . s−1

2 s−1
1 = sr . . . s2s1, which is also reduced, hence `(γ) =

`(γ−1).

2. This result is trivial.

3. Let w be a reduced word for γ and w′ a reduced word for γ′. Then the

element γγ′ can be represented by the word ww′ and hence `(γγ′) ≤
length of w + length of w′= `(γ) + `(γ′).

4. The element γ can be written as γ(γ′γ′−1) = (γγ′)(γ′−1). Hence

`(γ) = `((γγ′)γ′−1)

≤ `(γγ′) + `(γ′−1) by point 3

≤ `(γγ′) + `(γ′) by point 1

Rearranging the inequality gives `(γγ′) ≥ `(γ)− `(γ′).

5. By points 3 and 4 we have

`(γ)− `(s) ≤ `(γs) ≤ `(γ) + `(s)

11



Then since s ∈ S point 2 gives

`(γ)− 1 ≤ `(γs) ≤ (γ) + 1

It follows that setting dW (γ, β) = `(γ−1β) we obtain a metric on W . A

geodesic between two points α, β ∈ W is given by a sequence α = γ0, . . . , γk =

β with d(γi, γj) = |i − j|. Such a geodesic exists and corresponds to the

reduced word w = s1s2 . . . sr for α−1β by the following rule:

γ0 = α, γ1 = αs1, γ2 = αs1s2, . . . , γr = αs1s2 . . . sr = β

Note that subwords of reduced words are reduced, hence for all i ≥ j,

d(γi, γj) = `(γ−1
i γj)

= `((αs1 . . . si)
−1αs1 . . . sj)

= `(s−1
i . . . s−1

1 α−1αs1 . . . sj)

= `(si+1 . . . sj) = |i− j|

Let α, β and γ be elements of G. We say that γ lies between α and β

if d(α, γ) + d(γ, β) = d(α, β). If γ lies between α and β then there exists a

geodesic from α to β which contains γ.

1.2.3 Coxeter groups are linear

In this section we will show that every Coxeter group is linear by constructing

for each Coxeter group W an injective group homomorphism from W to a

general linear group. The proof will be in several stages.

Lemma 1.4. Given any finitely generated Coxeter group W there is a ho-

momorphism σ from W to a finitely generated linear group.

The proof of this lemma comes from section 5.3 of [23].

12



Proof. Given a Coxeter group W choose a Coxeter system (W,S). Let V be

a vector space with coefficients in R and a basis {αs|s ∈ S}. Then a general

vector λ in V can be written as (r1αs1 , . . . , rnαsn) where S = {s1, . . . , sn}
and ri ∈ R for all i ∈ {1, . . . , n}. We will construct a homomorphism from

W to the general linear group GL(V ) = GLn(R), where n is the rank of W .

For each pair of generators s and t in S we have a relation of the form

(st)ms,t = 1, where ms,t ∈ N ∪ {∞}. We can realise these relations geomet-

rically as reflections in hyperplanes such that for any pair of elements s and

t the corresponding hyperplanes meet at an angle of π
ms,t

if ms,t ∈ N, or as

reflections in parallel hyperplanes if ms,t = ∞.

We define a bilinear form B on V by

B(αs, αt) =

{
− cos

(
π

ms,t

)
ms,t 6= ∞

−1 ms,t = ∞

Since B is bilinear, for a general vector λ = (r1αs1 , . . . , rnαsn) we have

B(λ, αs) = r1B(αs1 , αs) + . . . + rnB(αsn , αs) and B(αs, λ) = r1B(αs, αs1) +

. . .+ rnB(αs, αsn).

For each s ∈ S we define a linear transformation σs : V → V by σs(λ) =

λ−2B(αs, λ)αs. Since each element of W can be written as a product of the

elements of S, we can now define a natural homomorphism σ : W → GLn(R)

by taking the product operation on GLn(R) to be composition. Let γ be any

element of W and let w = t1t2 . . . tk be a word representing γ with ti ∈ S for

all i ∈ {1, . . . , k}. Then σ(γ) = σ(t1)σ(t2) . . . σ(tk) = σt1σt2 . . . σtk .

In order to show that σ is well defined we must check that any two words

w and w′ representing the same element are mapped to the same linear

transformation. By Lemma 1.1 w can be transformed to w′ by a sequence of

operations of types (i) and (ii). Hence it suffices to show that σ(ss)(λ) = λ

for all s ∈ S and all λ ∈ V , and that if ms,t < ∞ then the product sts . . .

of length ms,t maps to the same linear transformation as the product tst . . .

of length ms,t. Equivalently we show that σ2
s = e for all s ∈ S and that

(σsσt)
ms,t = e for any pair s, t ∈ S such that ms,t <∞.

• ms,t = 1

13



Every element in the generating set S is mapped to an element of order

two in the linear group.

To see this, first note that for any s ∈ S

σs(αs) = αs − 2B(αs, αs)αs

= αs − 2
(
− cos

(π
1

))
αs

= αs − 2αs = −αs.

Hence

σ2
s(λ) = σs(σs(λ))

= σs(λ− 2B(αs, λ)αs)

= σs(λ)− 2B(αs, λ)σs(αs)

= (λ− 2B(αs, λ)αs)− 2B(αs, λ)(−αs)

= λ

• 1 < ms,t <∞

Definition. A bilinear form B on a vector space V is positive definite

if for all x ∈ V with x 6= 0, B(x, x) > 0. B is non-degenerate if

B(x, y) = 0 for all x implies y = 0, and B(x, y) = 0 for all y implies

x = 0.

Consider the two-dimensional subspace Vs,t = Rαs

⊕
Rαt. Then the

restriction of B to Vs,t is positive definite and non-degenerate. To see

this consider a general non-zero vector λ = aαs + bαt in Vs,t. Note that

14



Figure 1.1: The transformation σs applied to αt.

B(αs, αs) = B(αt, αt) = − cos(π) = 1 and let m = ms,t. Then

B(λ, λ) = B(λ, aαs + bαs)

= aB(λ, αs) + bB(λ, αt)

= a2B(αs, αs) + 2abB(αs, αt) + b2B(αt, αt)

= a2 − 2ab cos
( π
m

)
+ b2

=
(
a− b cos

( π
m

))2

− b2 cos2
( π
m

)
+ b2

=
(
a− b cos

( π
m

))2

+ b2 sin2
( π
m

)
> 0 when 1 < m <∞ and one of a, b non-zero

Since B is positive definite, we can consider Vs,t as the Euclidean plane.

Then the transformations σs(λ) = λ − 2B(αs, λ)αs and σt(λ) = λ −
2B(αt, λ)αt are the standard form for orthogonal reflections in two

hyperplanes. Since σs(αt) = αt − 2B(αs, αt)αt = αt + 2 cos( π
m

)αt we

see that the angle between αs and αt is π− π
m

(see figure 1.1) and so the

angle between the reflecting lines must be π
m

. Comparing this to the

case of two reflecting lines in a dihedral group, we see that σs,t must be

15



a rotation by 2π
m

and hence the order of the element σsσt in Vs,t is m

(for a discussion of dihedral groups see section 1.1 of [23]). This tells

us that the order of σsσt on the entire space V is at least m.

Because the bilinear form B is non-degenerate on Vs,t, V can be written

as the orthogonal direct sum of Vs,t and its orthogonal complement V ⊥
s,t

(see lemma 1.2 of [36]). The order of σsσt on V will be the least common

multiple of its order on Vs,t and its order on V ⊥
s,t. Any vector λ in V

can be written as the sum of a component in Vs,t and a component in

the complement, say λ = λs,t ⊕ λ⊥s,t. Then

σs(λs,t ⊕ λ⊥s,t) = λs,t ⊕ λ⊥s,t − 2B(αs, λs,t ⊕ λ⊥s,t)αs

= λ′s,t ⊕ λ⊥s,t

for some λ′s,t in Vs,t. This shows that the transformation σs fixes V ⊥
s,t

pointwise. Similarly σt fixes V ⊥
s,t pointwise and so σsσt acts as the

identity on the orthogonal complement of Vs,t. Hence σsσt has order m

on the entire vector space V .

In order to check σ is a homomorphism, we will need to show that (σsσt)

has degree ms,t for all s, t. Since we have already checked the cases ms,t = 1

and 1 < ms,t <∞ it only remains to check the case when ms,t = ∞.

• ms,t = ∞

Ifms,t = ∞ thenB(αs, αt) = B(αt, αs) = −1. We also haveB(αs, αs) =

B(αt, αt) = 1.

Consider the vector λ = αs + αt

B(αs, λ) = B(αs, αs) +B(αs, αt) = 1− 1 = 0. Similarly B(αt, λ) = 0.

Then

σs(σt(λ)) = σs(λ− 2B(αt, λ)αt)

= σs(λ)

= λ− 2B(αs, λ)αs

= λ
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Consider the vector αs in V . Then

σs(σt(αs)) = σs(αs − 2B(αt, αs)αt)

= σs(αs) + 2σs(αt)

= αs − 2B(αs, αs)αs + 2αt − 4B(αs, αt)αs

= αs − 2αs + 2αt + 4αs

= 3αs + 2αt

So σsσt(αs) = 2λ+ αs and by iteration (σsσt)
n(αs) = 2nλ+ αs. Hence

σsσt has infinite order on V as required.

Hence the map σ is well defined and is a homomorphism from G to the

set of linear transformations on a vector space V .

We will show that σ is injective. In order to do this, we need the following

lemma from [22]:

Lemma 1.5. For any w ∈ W and αs with s ∈ S if `(ws) > `(w) then

σ(w)(αs) can be written as
∑

s′∈S λs′αs′ where λs′ ≥ 0 for all s′.

Proof. Choose some word w ∈ W of minimal length such that the theorem

fails for some s ∈ S, and choose such an s. Such a w must be non-trivial,

hence `(w) ≥ 1 and we can choose some t ∈ S\{s} such that `(wt) = `(w)−1.

We can write w as a reduced word w1 either of the form v(st)k or of the

form vt(st)k where k is maximal over all possible reduced words for w and

`(vt) > `(v). Since w1 is a reduced word and `(ws) > `(w), we must have

k < ms,t

2
in the first case and k + 1 < ms,t

2
in the second case.

We first consider the case where w1 is of the form v(st)k:

If ms,t = ∞, then we have shown in the proof of the previous lemma that

(σsσt)
k(αs) = (2k + 1)αs + 2kαt.

If ms,t < ∞ then we have shown that (σsσt)
k acts on the space Vs,t as a
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rotation by kπ
ms,t

, and on the orthogonal complement of Vs,t trivially. Hence

(σsσt)
k(αs) =

1

sin
(

π
ms,t

) [sin((2k + 1)π

ms,t

)
αs + sin

(
2kπ

ms,t

)
αt

]
.

Note that this is not the standard form for a rotation due to the fact that the

basis for V is orthonormal. Since k < ms,t

2
both coefficients are non-negative.

We now consider the case where w1 is of the form vt(st)k:

If ms,t = ∞ then

σt(σsσt)
k(αs) = σt((2k + 1)αs + 2kαt)

= (2k + 1)αs + 2kαt − 2(2k + 1)B(αt, αs)αt − 2(2k)B(αt, αt)αt

= (2k + 1)αs + 2kαt + 2(2k + 1)αt − 2(2k)αt

= (2k + 1)αs + (2k + 2)αt

If ms,t <∞ then

σt(σsσt)
k(αs) = (σtσs)

k+1(−αs)

= − 1

sin
(

π
ms,t

) [− sin

(
2k + 1

ms,t

π

)
αs − sin

(
2k + 2

ms,t

π

)
αt

]

and since k + 1 < ms,t

2
each of these coefficients is non-negative.

Hence σ(w)(αs) = σ(v)(ηαs + µαt) for some λ, µ ≥ 0.

Since the word v(st)k or vt(st)k was chosen so that k is maximal, it

follows that `(vs) > `(v) and that `(v) < `(w). Hence by the minimality of

w among elements for which the lemma fails, σ(v)(α(s)) and σ(v)(αt) can

be expressed as a linear combination of the basis vectors with non-negative

coefficients. Hence σ(w)(αs) = ησ(v)(αs) + µσ(v)(αt) can be expressed as a

linear combination of the basis vectors with non-negative coefficients. This

contradicts our choice of w and s as a counterexample to the lemma and

completes the proof.

Lemma 1.6. Any finitely generated Coxeter group W is a finitely generated

linear group.
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Proof. By lemma 1.4, for any finitely generated Coxeter group W there is

a homomorphism from W to a finitely generated linear group. In order to

complete the proof, we must show that σ is injective, that is for any non-

trivial w ∈ W there exists a λ ∈ V such that σ(w)(λ) 6= λ.

Suppose that w is a non-trivial element such that σ(w) is trivial. Since

w is non-trivial `(w) ≥ 1 and for some s ∈ S we can write w as w′s with

`(w′) = `(w) − 1. Hence by lemma 1.5 σ(w′)(αs) can be written as a linear

combination of {αs|s ∈ S} with non-negative coefficients.

Consider λ = αs. Then αs = σ(w)(αs) = σ(w′s)(αs) = σ(w′)σs(αs) =

σ(w′)(−αs) = −σ(w′)(αs). Thus αs can be expressed as a linear combination

of {αs|s ∈ S} in which every coefficient is non-positive. This contradicts the

linear independence of the basis {αs|s ∈ S} of V . Hence there is no such w

and σ is an injective homomorphism. Hence W is a linear group generated

by the set {σs|s ∈ S}.

1.2.4 The Coxeter complex

Let W be a Coxeter group and S be a generating set for W. We call a

subgroup V < W a special subgroup if V = 〈S ′〉 for some (possibly empty)

generating set S ′ ⊂ S. Consider the cosets of the form wV where w ∈ W and

V is a special subgroup. We define the partial order ≤ on the set of cosets by

setting H ≤ H ′ if and only if H ′ ⊂ H as subsets of W . The partially ordered

set Σ(W,S) = {w 〈S ′〉 |w ∈ W, S ′ ⊂ S} is called the Coxeter complex of W .

We realise this complex as a simplicial complex by identifying each coset of

a special subgroup containing k elements with a k− 1 simplex, mapping the

elements of the coset to the vertices of the simplex (see chapter III section 1

of [6]). W acts on Σ(W,S).

If A,B are cosets of special subsets with A ≤ B then we say that A is

a face of B. We call a maximal element of the poset Σ a chamber. Since

{e} ⊂ V for any subgroup V of W , the set of chambers is the set of single

element subsets of W . The subgroup {e} is the fundamental chamber of Σ.

The group W acts simply transitively on the left on the set of chambers, that

is given any pair of chambers C and C ′ there is a unique element w ∈ W
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such that C = wC ′.

Given a reflection r ∈ W we define the wall Hr to be the fixed set of

the action of r, Hr = {x ∈ Σ(W,S)|r.x = x}. The stabiliser of a wall Hr,

denoted stabW (Hr), is the set {γ ∈ W |γHr = Hr}. The centraliser of the

element r, denoted CW (r) is the set {γ ∈ W |γr = rγ}.
Any wall Hr in Σ(W,S) separates the complex into two components,

called half-apartments ([28], p.5). We denote the half-apartments associated

to the wall Hr by Xr and X∗
r . Then ∗ is an involution which exchanges Xr

and X∗
r .

Two chambers are adjacent in Σ(W,S) if they have a common codimen-

sion 1 face. Given any pair of adjacent chambers C and C ′ there is a unique

automorphism s of the Coxeter complex of order 2 which exchanges C and

C ′ while fixing C ∩C ′, and C ∩C ′ lies in the unique wall Hs (see [9] pp.2-3).

Lemma 1.7. [9] The stabiliser of the wall Hr is the centraliser of the reflec-

tion r.

Proof. Given a reflection r, there exists a pair of adjacent chambers C and

C ′ such that r exchanges C and C ′ and fixes their common face C ∩ C ′. To

see this, note that any reflection r can be written as γsγ−1 for some γ ∈ W
and s ∈ S. Then the pair of chambers C = γ{e} and C ′ = rγ{e} = γs{e}
satisfies rC = C ′ and C ∩ C ′ = {γ, γs} = γ 〈s〉 is a common codimension 1

face of C and C ′. Choose such a pair C,C ′.

Suppose that γ ∈ stabW (Hr). Since C ∩C ′ is fixed by r, C ∩C ′ is in Hr.

Then γ maps C ∩C ′ to another chamber D in Hr such that r fixes D. Hence

both r and γ−1rγ fix C ∩ C ′ pointwise and exchange γC with γC ′. Since

W acts simply transitively on the set of chambers we must have γ−1rγ = r.

Hence γ ∈ stabW (Hr) implies γ ∈ CW (r).

Now suppose that γ ∈ CW (r), that is rγ = γr. Hence rγ(Hr) = γr(Hr) =

γ(Hr). As r fixes the unique wall Hr, r(γ(Hr)) = γ(Hr) means we must have

γHr = Hr and hence γ ∈ stabW (Hr).
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1.2.5 Dranishnikov and Schroeder’s construction

Definition. [17] A right-angled Coxeter group is a Coxeter group W with

generating set S and all relations of the form (st)ms,t = 1 such that ms,t ∈
{1, 2,∞} for any pair s, t ∈ S.

Definition. Let W be a right-angled Coxeter group with generating set S.

Then a colouring map for W is a map c : S → {1, 2, . . . , n} which satisfies

the condition c(s) 6= c(t) if ms,t = 2. The minimum value of n for which such

a map is possible is called the chromatic number of W .

If W is finitely generated then a colouring map exists. If the rank of W

is k then the chromatic number of W is less than or equal to k.

Dranishnikov and Schroeder proved the following theorem on embeddings

of Coxeter groups in products of trees in [17]. In this theorem the metric on

the group W is the word length metric with respect to the generating set S.

Theorem 1.8. Let W be a finitely generated right-angled Coxeter group with

chromatic number n. Then W admits an equivariant isometric embedding

into a product of n simplicial trees.

In general these trees are locally infinite. Dranishnikov and Schroeder

also prove the following theorem on embeddings in products of locally finite

trees.

Theorem 1.9. Let W be a finitely generated right-angled Coxeter group with

chromatic number n and let T be an exponentially branching locally compact

tree. Then for every r > 0 there exists a bilipschitz embedding ψ : W →
T × . . . × T (n-factors) such that ψ restricted to every ball of radius r is

isometric.
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1.3 Separability Properties

1.3.1 Definitions

Definition. [34] A group G is residually finite (RF) if for every g ∈ G \ {e}
there exists a finite index subgroup Gg of G such that g /∈ Gg.

Definition. [34] A group G is locally extended residually finite (LERF) if for

every finitely generated subgroup S < G and every g ∈ G \ S there exists a

finite index subgroup Gg of G such that S < Gg and g /∈ Gg.

Definition. A subgroup S < G is separable if there exists a (possibly infinite)

set of finite index subgroups of G, which we denote by {Hi, i ∈ I}, such that

S =
⋂

i∈I Hi.

Remark 1.10. A group G is residually finite if and only if {e} is separable in

G. G is locally extended residually finite if and only if every finitely generated

S < G is separable in G.

Lemma 1.11. A group G is residually finite if and only if for every g ∈
G\{e} there exists a finite group Fg and a homomorphism φg : G→ Fg such

that φg(g) 6= e.

Proof. Let G be an RF group. Then for each g ∈ G there exists a finite

index subgroup Gg of G such that g /∈ Gg. Let Gg =
⋂

γ∈G γGgγ
−1. Since Gg

is finite index, Gg is finite index, and since g /∈ Gg, g /∈ Gg. Then the map

φg : G → G/Gg is a homomorphism and G/Gg is a finite group Fg. Since

g /∈ Gg, φ(g) 6= eFg .

For every g ∈ G \ {e} suppose there exists a finite group Fg and a homo-

morphism φg : G → Fg such that φg(g) 6= eFg . Then the kernel of φg is a

finite index (normal) subgroup of G and g /∈ ker(φg).

Lemma 1.12. G is locally extended residually finite if and only if for every

finitely generated subgroup S < G and every g ∈ G \ S there exists a finite

group Fg and a homomorphism φg : G→ Fg such that φg(g) /∈ φg(S).
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Proof. Suppose that G is a LERF group. Then for any finitely generated

subgroup S of G and any g ∈ G \ S there exists a finite index subgroup

Gg of G such that g /∈ Gg and S ⊂ Gg. Let Gg =
⋂

γ∈G γGgγ
−1. Then

Gg is a finite index normal subgroup of G and Gg ⊂ Gg. Let φg be the

homomorphism φg : G → G/Gg. Let F1 be the subset φ(S) of G/Gg. Then

φ−1
g (F1) = SGg. Since S ⊂ Gg and Gg ⊂ Gg, SGg ⊂ Gg and hence g /∈ SGg,

that is φg(g) /∈ φg(S).

Suppose that for every finitely generated subset S of G and every g ∈
G \ {S} there exists a finite group Fg and a homomorphism φg : G → Fg

such that φg(g) /∈ φg(S). Then the kernel of φg is a finite index (normal)

subgroup of G. Let F1 denote the set φg(S). Then φ−1
g (F1) is a union of cosets

of ker(φg), and hence is a finite index subgroup of G containing S. Since

φg(g) /∈ φg(S), g /∈ φ−1
g (F1) and G is locally extended residually finite.

Lemma 1.13. [34], [35] If G is RF or LERF, then any subgroup of G has

the same property and so does any group K which contains G as a subgroup

of finite index.

Proof. We first consider the case where G is residually finite. Let H be a

subgroup of G and choose any h ∈ H \ {e}. Then h ∈ G \ {e} and by

definition there exists a finite index subgroup Gh of G such that h /∈ Gh.

Then Hh = Gh ∩H is a finite index subgroup of H and h /∈ Hh.

Now let K be a group containing G as a subgroup of finite index. If G

is not normal in K, replace G by G′ =
⋂

k∈K kGk−1. Since G is finite index

in K, there are finitely many conjugates of G and hence G′ is a finite index

normal subgroup of K. Since G′ < G we know from the previous paragraph

that G′ is RF. Suppose k ∈ K \{e}. If k ∈ G then since G is RF there exists

a subgroup Gk < G which is a finite index subgroup of K not containing k.

If k /∈ G then we take the subgroup G itself as the finite index subgroup.

We now consider the case where G is locally extended residually finite.

Let H be a subgroup of G, let SH be a finitely generated subgroup of H and

suppose h ∈ H \ SH . Then h ∈ G \ SH and by definition there exists a finite

index subgroup Gh of G such that SH < Gh and h /∈ Gh. Then Hh = Gh∩H
is a finite index subgroup of H such that SH < Hh and h /∈ Hh.
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Now let K be a group containing G as a subgroup of finite index. If G is

not normal in K, replace G by G′ =
⋂

k∈K kGk−1. Since G′ < G we know G′

is LERF. Let F be the finite quotient group K/G and let p : K → F be the

natural projection map.

Let SK be a finitely generated subgroup of K and suppose k ∈ K \ SK .

Since G is normal in K, SG = SK∩G is a finitely generated normal subgroup

of SK . Suppose g1 and g2 are elements of SK with p(g1) = p(g2), then there

exists some g ∈ G for which g1 = gg2. Since g1 and g2 lie in the subgroup

SK , so does g1g
−1
2 = g and hence g lies in SK ∩ G = SG. Hence for any

pair g1, g2 of elements of SK , p(g1) = p(g2) if and only if g1 = gg2 for some

g ∈ G∩SK and there exists an isomorphism from the quotient group SK/SG

to a subgroup F1 of F .

Consider K1 = p−1(F1). If k /∈ K1 then we can take K1 to be the required

finite index subgroup ofK containing SK . If k ∈ K1 then we can write k = gs

where g ∈ G and s ∈ SK . Since k /∈ SK , we know g /∈ SK and hence g /∈ SG.

Then, since G is LERF there exists a finite index subgroup Gg of G (and

hence of K) such that SG < Gg and g /∈ Gg. Let Gg be the subset of Gg

consisting of all elements normalised by SK , Gg =
⋂

s∈SK
sGgs

−1. Since we

already know that SG is normal in SK , we have SG < Gg. Clearly we have

g /∈ Gg. Let K2 be the subgroup generated by Gg and SK . Since K2 contains

Gg, a finite index subgroup of K, K2 is finite index in K, and by construction

K2 contains SK and does not contain k. Hence K is LERF.

1.3.2 Examples of RF and LERF groups.

Examples of RF groups include all finite groups, free groups, surface groups

and the fundamental groups of Haken 3-manifolds ([21]). In “On faithful

representations of infinite groups of matrices”, [25], Malcev proved the fol-

lowing:

Theorem 1.14. Let G be a finitely generated linear group. For every finite

set {g1, . . . , gk} of elements of G there exists a finite group H and a homo-

morphism Φ from G to H such that if gi 6= gj then Φ(gi) 6= Φ(gj). Hence G

is residually finite.
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Proof. Let G be a finitely generated linear group. Then G can be faithfully

represented as a subgroup of GL(n,R). Choose a set M1, . . . ,Mm of matrices

such that Mj ∈ GL(n,R) for all j and every element of G can be written as

a product of non-negative powers of these Mj. Since G is finitely generated,

this can be done by selecting the matrices representing the generators of G

and their inverses. We write the matrix Mj as (aj
αβ)α,β∈1,...,n.

We have a set of relations S between the generators of the group, written

as Si(M1, . . . ,Mm)−In = 0n where Si is a polynomial with integer coefficients

and variables in the set M1, . . .Mm.

In general the set S contains an infinite number of equations. By the

Hilbert basis theorem, we can replace S by a finite set of equations such that

all the equations in the original set are a consequence of these.

In each of these equations the elements of the matrix on the left hand

side are polynomials in xj
αβ with integer coefficients which give the required

relation when set equal to 0. There are a finite number of such polynomials

and a set aj
αβ with elements in the field R such that setting xj

αβ = aj
αβ satisfies

the set of polynomials. Since there are a finite number of polynomials which

these xj
αβ must satisfy, there is a finite degree extension of Z in which such a

choice of xj
αβ is possible. Hence each of the generators M1, . . . ,Mm and each

element of G can be written as an element of GL(n,R) where R is a finite

degree extension of Z. Hence G is a subgroup of GL(n,R).

Consider a finite set of elements {g1, g2, . . . , gk} ⊂ G. For each gi let

Pi(M1, . . . ,Mm) be an expression for gi in terms of the generating set. For

each pair gi, gh of elements in the set {g1, . . . , gk} with gi 6= gh, we have

the non-equality Pi(M1, . . . ,Mm) − Ph(M1, . . . ,Mm) 6= 0n. In each of these

relations the entries of the matrix on the left hand side are polynomials in

xj
αβ. The xj

αβ’s must be chosen so that at least one entry in each matrix is

non-zero.

Now consider the finite set S∗ of relations in the generators given by the

set of equalities S together with the set of non-equalities of the form

Pi(M1, . . . ,Mm)−Ph(M1, . . . ,Mm) 6= 0n. As our chosen matricesM1, . . . ,Mm

in GL(n,R) generate G and the expressions Pi and Ph represent distinct

group elements gi and gh, setting xj
αβ = aj

αβ as above satisfies the set of
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relations S∗.

With these choices of xj
αβ each of the polynomial entries in the matrices

Pi(M1, . . . ,Mm)− Ph(M1, . . . ,Mm) takes a value pih
αβ ∈ R, and for each pair

i, h at least one of the pih
αβ is non-zero. Choose a prime p such that p >

max{aj
αβ, p

ih
αβ|j = 1, . . . ,m; i, h = 1, . . . , k, i 6= h, α, β = 1, . . . , n}. Take K

to be the field R/pZ. There is a natural map φ : R→ K. The set of relations

S∗ is soluble in the field K, specifically we can take xj
αβ = φ(aj

αβ) as a set of

solutions. Since R is a finite degree extension of Z the field K is finite.

Let Nj = (xj
αβ) where xj

αβ = φ(aj
αβ) for all j = 1, . . . , k, α, β = 1, . . . , n.

This choice of matrices satisfies the set of relations S. For each g ∈ G, g

can be written as a product Pg(M1, . . . ,Mm) of the generators. Define Φ :

G→ H by g 7→ Pg(N1, . . . Nm). By our choice of prime p, Pgi
(N1, . . . , Nm)−

Pgh
(N1, . . . Nm) is non-zero for all i, h ∈ 1, . . . , k and hence Φ(gi) 6= Φ(gh) for

all gi, gh in our chosen finite set.

Since K is a finite field, the group GL(n,K) must also be finite. The

groupH is generated by a finite set of elements ofGL(n,K) soH < GL(n,K)

and H is finite.

Corollary 1.15. Let G be a finitely generated Coxeter group. Then G is

residually finite.

Proof. By Lemma 1.6 every finitely generated Coxeter group is a finitely

generated linear group. Theorem 1.14 completes the proof.

Lemma 1.16. Let G be a residually finite group and α be an automorphism

of G. Then the subgroup Fix(α) = {g ∈ G|α(g) = g} is separable in G.

Proof. Let α : G → G be an automorphism of a residually finite group.

Choose an element γ ∈ G \ Fix(α). Then, by the definition of Fix(α), we

have γ−1α(γ) 6= eG. Denote γ−1α(γ) by γ′. Since G is a residually finite

group, there exists a finite group Fγ′ and a homomorphism φγ′ : G → Fγ′

such that φγ′(γ
−1α(γ)) 6= eFγ′

.

Construct a map Φ : G→ Fγ′×Fγ′ defined by Φ(g) = (φγ′(g), φγ′(α(g))).

Note that φγ′(γ
−1α(γ)) 6= eFγ implies that φγ′(γ) 6= φγ′(α(γ)) and so Φ(γ) /∈

{(f, f)|f ∈ Fγ′}, the diagonal subgroup of Fγ′ × Fγ′ .
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Clearly, if g ∈ Fix(α) then g = α(g) and so Φ(g) ∈ {(f, f)|f ∈ Fγ}.
Hence for any γ ∈ G \ Fix(α) the pullback Φ−1({(f, f)|f ∈ Fγ}) is a finite

index subgroup of G containing Fix(α) but not containing γ, and so Fix(α)

is separable in G.

Corollary 1.17. Let G be a residually finite group. Then CG(g), the cen-

traliser of g in G, is separable for all g ∈ G.

Proof. Consider the homomorphism α : G → G given by r 7→ g−1rg. Then

Fix(α) = CG(r) and Lemma 1.16 gives the result.

Corollary 1.18. Let W be a finitely generated Coxeter group. Let Hr be a

wall in the Coxeter complex Σ(W,S). Then stabW (Hr) is separable.

Proof. By Corollary 1.15W is residually finite and by Lemma 1.7, stabW (Hr) =

CW (r). Hence by Corollary 1.17 stabW (Hr) is separable.

Lemma 1.19. [24] Let G be a RF group and H a maximal abelian subgroup

of G. Then H is separable in G.

Proof. Suppose H is a maximal abelian subgroup of G. Let f(x1, x2) =

x1x2x
−1
1 x−1

2 . Then H is maximal subject to the condition f(hj, hk) = e for

all hj, hk ∈ H. Since G is residually finite we can choose a set of finite index

normal subgroups Ni in G such that
⋂

i∈I Ni = {e}. We take Mi = HNi and

will show that H =
⋂

i∈I Mi. Since Ni is finite index in G and Ni < HNi =

Mi, each Mi is finite index in G.

Note that ⋂
i∈I

Mi =
⋂
i∈I

HNi ⊃ H{
⋂
i∈I

Ni} = H{e} = H.

For each choice of Ni we have

f(hjNi, hkNi) = (hjNi)(hkNi)(Nih
−1
j )(Nih

−1
k )

= hjhkh
−1
j h−1

k Ni

= Ni
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and so f(hjNi, hkNi) ∈ Ni. Hence
⋂

i∈I f(HNi, HNi) <
⋂

i∈I Ni = {e}, so

that any pair x1, x2 in the subgroup
⋂

i∈I HNi satisfy f(x1, x2) = e. Since

H was chosen to be maximal with respect to this property, it follows that

H >
⋂

i∈I HNi and so H =
⋂

i∈I Mi.

The following results are due to Scott and Hall respectively.

Theorem 1.20. [34, 35] Every surface group is LERF.

Corollary 1.21. Every finitely generated free group is LERF.

Proof. Every finitely generated free group is a subgroup of the fundamental

group of the genus 2 orientable surface. Hence by lemma 1.13 and theorem

1.20, every finitely generated free group is LERF.

Corollary 1.22. Every Fuchsian group is LERF.

Proof. Any Fuchsian group has a subgroup of finite index which is a surface

group. Hence by lemma 1.13 and theorem 1.20, every Fuchsian group is

LERF.

1.3.3 Scott’s results

Definition. [2] A topological space X is called Hausdorff if for any pair of

distinct points u, v ∈ X we can choose open neighbourhoods U and V such

that u ∈ U , v ∈ V and U ∩ V = ∅.

In“Subgroups of surface groups are almost geometric”, [34], and a later

correction, [35], Peter Scott gives the following characterisation of residual

finiteness.

Lemma 1.23. ([34],page 557) Let X be a Hausdorff topological space with a

regular covering X̃ and covering group G. Then the following conditions are

equivalent

(a) G is RF,

(b) If C is a compact set in X̃ then G has a subgroup G1 of finite index

such that gC ∩ C is empty for every non-trivial element g of G1,
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(c) If C is a compact set in X̃ then the projection map X̃ → X factors

through a finite covering X1 of X such that C projects by a homeomor-

phism into X1.

This generalises to the following characterisation of locally extended resid-

ual finiteness.

Lemma 1.24. ([34],page 557) Let X be a Hausdorff topological space with

a regular covering X̃ and covering group G. Then G is LERF if and only if

given any f.g. subgroup S of G and a compact subset C of X̃/S there is a

finite covering X1 of X such that the projection X̃/S → X factors through

X1 and C projects homeomorphically into X1.

Definition. ([34], page 555) Let F be a surface and X be a compact sub-

surface of F . X is incompressible if no component of the closure of F \X is

a 2-disc whose boundary is contained in the boundary of X.

Definition. ([34], page 555) Let F be a surface. A subgroup S of π1(F ) is

geometric if S = π1(X) for some incompressible subsurface X of F .

Scott gave the following theorem about embedded loops in surfaces, which

implies that the fundamental group of a surface is LERF.

Theorem 1.25. ([34], page 561) Let F be a surface, let S be a finitely gener-

ated subgroup of π1(F ) and let g ∈ π1(F ) \S. Then there is a finite covering

F1 of F such that π1(F1) contains S but not g and S is geometric in F1.

Scott also uses this approach to give a proof that the fundamental group

of a compact Seifert fibre space is LERF.
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1.4 Cube Complexes and Products of Trees

1.4.1 Definitions

Definition. ([4], p. 111) The unit n-cube In is the n-fold product [0, 1]n,

isometric to a cube in En with edges of length one. I0 is defined to be a

point. Faces of the cube are defined in the usual way as lower dimensional

cubes embedded in the boundary of the cube. We denote the boundary of

the cube σ by ∂σ.

Definition. ([4], p.112) A cube complex K is the quotient of a disjoint union

of cubes X =
∐

λ∈Λ I
nλ by an equivalence relation ∼. The restrictions pλ :

Inλ → K of the natural projection p : X → K = X/ ∼ to a cube are required

to satisfy:

1. for every λ ∈ Λ the map pλ is injective;

2. if pλ(I
nλ) ∩ pλ′(I

nλ′ ) 6= ∅ then there is an isometry hλ,λ′ from a face

Tλ ⊂ Inλ onto a face Tλ′ ⊂ Inλ′ such that pλ(x) = pλ′(x
′) if and only if

x′ = hλ,λ′(x).

The dimension of a cube complex X is equal to the dimension of the

highest dimension cube in X. The set of 0-dimensional cubes are called the

vertices of X. The set of 1-dimensional cubes are called the edges of X.

Throughout this thesis, we will assume that all cube complexes are finite

dimensional and locally finite, that is only finitely many cubes meet any

point.

We will consider two different metrics on the set of vertices of a cube

complex X. The first is the natural path metric inherited from En, de-

noted by d2. This metric can be defined on the whole of X. We will

also consider the edge metric d1 defined on the set of vertices of X by

d1(u, v) = min{length of p|p is a edge path joining u and v } where u and

v are any pair of vertices of X.

Definition. A graph G is a collection of vertices V and a set of edges E which

join pairs of vertices. We can denote the edge e which joins the vertices u
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and v by the pair (u, v). We say an edge e is incident with a vertex v if e

joins u and v for some vertex u in G.

A path in G is a sequence of edges (u1, v1), (u2, v2), . . . , (uj, vj) such that

vi = ui+1 for all 1 ≤ i < j. The length of a path is the number of edges in

the sequence. A cycle in G is a path in G with the same initial and terminal

vertices, in which no edge or vertex occurs more than once. The length of

a cycle is the number of edges in the cycle. A tree is a graph containing no

cycles.

A geodesic is a path whose length is minimal among the set of lengths of

paths between its end points. In a general metric space there may be more

than one geodesic with the same endpoints.

Given a cube complex X denote by X(i) the i-skeleton of X, that is the

subcomplex formed from all cubes of X of dimension less than or equal to i.

The 1-skeleton X(1) of a cube complex is a graph. An edge path in a CAT(0)

cube complex X is entirely contained in its 1-skeleton X(1).

Any tree is a 1-dimensional CAT(0) cube complex.

Definition. ([4], p.34) Let 4 be a triangle in a metric space (X, dX) with

vertices p, q and r and edge lengths dX(p, q), dX(q, r) and dX(r, p). A compar-

ison triangle for 4 in Euclidean space is a Euclidean triangle 4̄ with vertices

p̄, q̄, r̄ such that d(p̄, q̄) = dX(p, q), d(q̄, r̄) = dX(q, r) and d(r̄, p̄) = dX(r, p).

A point x̄ ∈ [q̄, r̄] is called a comparison point for x ∈ [q, r] if d(q̄, x̄) =

dX(q, x). Comparison points for points on [p, q] and [p, r] are defined in the

same way.

Definition. ([4], p.158) A metric space X is CAT(0) with respect to the

metric dX if for every geodesic triangle 4 in X and comparison triangle 4̄
in Euclidean space, every pair of points x, y ∈ 4 with comparison points

x̄, ȳ ∈ 4̄ satisfies dX(x, y) ≤ d(x̄, ȳ). Where the metric is clear from the

context, we will say that the space is CAT(0).

A metric space X is locally CAT(0) if for every x ∈ X there exists a ball

B(x, rx) which is CAT(0) with respect to the induced metric.

We say that a cube complex is CAT(0) if it is CAT(0) with respect to the

inherited metric d2.
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Figure 1.2: A comparison triangle for a pair of geodesics

Lemma 1.26. Geodesics in CAT(0) spaces are unique.

Proof. Let (X, d) be a metric space which is CAT(0) with respect to the

metric d. Let u and v be two points in X and suppose that l and l′ are two

geodesics joining u and v. Choose a point w on l. Then the comparison

triangle for the triangle with vertices u, v, w is a line segment with length

equal to the length of l, as in figure 1.2. Let x and y be points on l and l′

respectively with dX(u, x) = dX(u, y). Then we have x = y and, since X is

CAT(0), dX(x, y) ≤ d(x, y) = 0 and by the definition of a metric must have

x = y. This is true for any pair of corresponding points, and hence we must

have l = l′.

In the case of a cube complex X, we have an alternative method of check-

ing whether X is CAT(0). This method is based on examining the set of

directions at each point in X, and results in a combinatorial condition which

must be satisfied for X to be locally CAT(0).

Definition. ([20], pp.102-103, 108) Let X be a cube complex, and let x be

some point in X. The open star of x, denoted st(x), is the union of the

interiors of the cells that contain x. Given y, y′ ∈ st(x) \ {x}, we say that

the geodesic segments [x, y] and [x, y′] define the same direction at x if one of

them is contained in the other. The geometric link of x is the set LkX(x) of

directions at x. For any two directions u and u′ contained in the same cube of
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st(x), we define the distance between u and u′ to be the angle between u and

u′. We hence define a distance function on LkX(x) by taking the distance

between u and u′ to be the length of the shortest path u = u0, u1, . . . , um = u′

where for each 1 ≤ i ≤ m ui−1 and ui lie in the same simplex of st(x).

Lemma 1.27. (Theorem 7.16 of [4]) Let X be a cube complex and x be

a vertex in X. Then LkX(x) is isometric to ∂(B(x, 1) ∩ X), that is the

intersection of the boundary of a ball of radius 1 with X.

Definition. [33] The link of a m-cube σ in X, denoted linkX(σ) is a sim-

plicial complex whose n-skeletons are defined inductively as follows: The set

of vertices is the set {τ ∈ X(n+1) : σ ∈ ∂τ}, and the set {τ0, . . . , τn} ⊂
linkX(σ)(0) spans an n-simplex if there exists a cube C such that every τi

lies in the boundary of C. Where the space X is clear from the context, we

denote linkX(σ) by link(σ).

We note that in the case where σ is a vertex in X the link of the 0-cube

σ, linkX(σ), is isometric to the geometric link LkX(σ) of the point σ in X,

where the metric on linkX(σ) is defined by setting each edge in linkX(σ) to

have length π
2
.

Definition. [27] A cube complex X is non-positively curved if for any cube

C the following conditions are satisfied:

(i) (no bigons) For each pair of vertices in linkX(C) there is at most one

edge containing them.

(ii) (no triangles) Every edge cycle of length three in linkX(C) is contained

in a 2-simplex of link(C).

Definition. [2] Let X be a topological space. A path in X is a continuous

function γ : [0, 1] → X. A loop in X is a path γ : [0, 1] → X such that

γ(0) = γ(1).

X is path-connected if any pair a, b of its points can be joined by a path,

that is there exists a path γ : [0, 1] → X such that γ(0) = a and γ(1) = b.
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For any subset A of X, let cl(A) denote the closure of A. X is connected

if whenever it is decomposed as the union A ∪ B of two non-empty subsets

then either cl(A) ∩B 6= ∅ or A ∩ cl(B) 6= ∅.
X is simply connected if it is path-connected and has trivial fundamental

group, that is every loop in X is homotopic to the constant loop.

Remark 1.28. If X is a metric space then X is simply connected if any two

points in X can be joined by a unique geodesic path.

Lemma 1.29. [20] X is locally CAT(0) if and only if it is non-positively

curved, and it is CAT(0) if and only if it is simply connected and non-

positively curved.

Definition. Given a cell complex X and a cell in x, the star of x, denoted

star(x), is the union of all cells of X which contain x in their boundaries,

star(x) =
⋃

C∈X,x∈∂C C.

Definition. [33] An automorphism of a cube complexX is a homeomorphism

of the underlying space which restricted to each cube is a linear isomorphism

onto a cube of X.

An action of G on X is a homomorphism φ from G to the automorphism

group of X. We will write g(x) for φ(g)(x) when the action is clear from the

context.

Definition. We say the action of a group G on a space X is cocompact if

there exists a compact subspace C of X such that GC = X.

Definition. We say the action of a group G on a space X is free if for any

g ∈ G and x ∈ X g(x) = x implies g = e where e is the identity.

Definition. We say the action of a group G on a space X is properly

discontinuous (or proper) if for every compact subspace K of X the set

{g ∈ G|gK ∩K 6= ∅} is finite.

Lemma 1.30. Let G be a group and X be a CAT(0) cube complex on which

G acts properly and cocompactly. Then G is a finitely generated group.
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Proof. If G acts properly and cocompactly on X, there is some compact

region C ⊂ X such that GC = X. Let S = {g ∈ G|gC ∩ C 6= ∅}. Since

that action of G on X is properly discontinuous, S is finite. We claim S

is a generating set for X. Suppose γ ∈ G. Then γC ∈ X and since X is

path-connected we can choose a path p from a point in eC to a point in γC.

Let g0C = eC, g1C, . . . , gnC = γC denote the images of C through which p

passes.

Since each giC is compact and hence closed, it follows that giC∩gi+1C 6=
∅. Hence g−1

i giC ∩ g−1
i gi+1C = C ∩ g−1

i gi+1C 6= ∅ and by definition g−1
i gi+1 ∈

S. This is true for each choice of i and hence gn = γ ∈ 〈S〉. Hence G is

generated by the finite set S.

Suppose G is a group with finite generating set S. Then there is a nat-

ural length function on the elements of G given by defining `w(g) to be the

minimum possible length of γ where γ is a word for g in the elements of S

and their inverses. Using this length function, we define a metric on G by

setting dW (g1, g2) to be `w(g1g
−1
2 ) (see section 1.1.2 for a discussion of this

metric in the case of finitely generated Coxeter groups). We call this metric

the word length metric.

Definition. Let G be a group with finite generating set S. We construct the

Cayley graph Γ(G;S) of G as follows: Let V (Γ) = G. We connect vertices

g, h ∈ G by an edge in Γ if g−1h ∈ S, i.e. For all g ∈ G, s ∈ S we have an

edge connecting g to gs.

We can use any action a of a group G on a space X to define a map α

from G into X as follows. Choose any point x ∈ X and define α(e) = x

where e is the identity element of G. Then for any element g of G we define

α(g) = g(x).

If the action of G on X is free then the map α will be an embedding of

G in X, that is α(g) = α(h) =⇒ g = h.

Definition. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is

an isometric embedding if for every pair of points u, v ∈ X, dY (f(u), f(v)) =

dX(u, v). The map f is an isometry if it is also surjective. If there is an

isometric map f : X → Y then we say X and Y are isometric.
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For example, there exists a isometric embedding f : Z → R given by

mapping the integer z to the point z on the real line. However, this map is

not surjective, and the spaces Z and R are not isometric.

Suppose X and Y are a pair of cube complexes and let d1 be the edge

metric. A map f : X → Y is d1-isometric if for any pair of points u, v ∈
X, d1(f(u), f(v)) = d1(u, v).

Note that metric space formed by the group G with finite generating set

S with the word length metric is isometric to the Cayley graph Γ(G;S) with

the edge path metric.

Definition. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is

a quasi-isometry if there exists some k1, k2 ∈ R with k1, k2 > 0 such that for

all u, v ∈ X k1dX(u, v) ≤ dY (f(u), f(v)) ≤ k2dX(u, v).

If there is a quasi-isometry f : X → Y then we say X and Y are quasi-

isometric.

Lemma 1.31. ([3], p.24) If S and S ′ are finite generating sets for G then

Γ(G;S) is quasi-isometric to Γ(G;S ′).

Lemma 1.32. ([3], p.26) Suppose that Γ is a finitely generated group and

that G ≤ Γ is finite index. Then G is quasi-isometric to Γ.

We say that the action of a group G on a space X is isometric if for any

g ∈ G, x, y ∈ X dX(x, y) = dX(g(x), g(y)). The action is quasi-isometric if

there exists some k1, k2 such that k1dX(x, y) ≤ dX(g(x), g(y)) ≤ k2dX(x, y).

Note that the metric d2 and the edge metric d1 on a finite dimensional

CAT(0) cube complex X are quasi-isometric, that is for any x, y ∈ X(0) there

exists some k1, k2 such that k1d1(x, y) ≤ d2(x, y) ≤ k2d1(x, y). In fact, we

can see that k2 = 1 and k1 =
√
n where n is the maximum dimension of a

cube in X.

1.4.2 Hyperplanes

Definition. [19] Consider the cube [0, 1]n. Then for each i ∈ {1, 2, . . . , n}
there is a midplane M of [0, 1]n given by setting the coordinate xi to be 1

2
,

that is M = {(α1, . . . , αi−1,
1
2
, αi+1, . . . , αn)|αj ∈ [0, 1]}.
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Given a CAT(0) cube complex X, take the set of all midplanes of cubes

in X. Two midplanes M and N in X are said to be hyperplane equivalent if

there is a sequence of midplanes M = M1, . . . ,Mn = N such that Mi ∩Mi+1

is a midplane for all i ∈ {1, . . . , n − 1}. We call such a sequence a chain of

midplanes.

Given an equivalence class of midplanes, we build a complex by identifying

the faces of midplanes in the class along their common intersections. We will

use the term hyperplane for both the equivalence class of a midplane and the

associated complex.

Lemma 1.33. [27] The hyperplanes of a CAT(0) cube complex X are also

CAT(0) cube complexes.

Proof. By definition, any hyperplane h in a CAT(0) cube complex is a con-

nected cube complex. In order to show that h is CAT(0), we will show that

there is a global isometry from h to X. Hence any triangle in h is isometric

to a triangle in X, and so h satisfies the definition of a CAT(0) space.

The following proof is due to Niblo and Reeves in [27].

Let M be a midplane in h and let CM denote the unique lowest dimension

cube of X containing M as a midplane. Let φ : h → X denote the natural

inclusion of h in X, which maps cubes to midplanes. We show that for all

x ∈ h there is a neighbourhood U of x such that φ|U : h → X is an isometry.

For any M in h, φ|M is an isometry and so when x lies in a single cube M in

h, we can choose as U any neighbourhood of x contained in M .

Suppose x ∈ h lies in more than one cube of h. For each midplane

M ⊂ X let ρM : CM → CM denote reflection in M . Let Sth(x) denote the

set of cubes in h containing x and StX(φ(x)) denote the set of cubes in X

containing φ(x). We can define a map ρ : StX(φ(x)) → StX(φ(x)) by setting

ρ|Cφ(M)
to be ρφ(M) for each M ∈ Sth(x). To see that this function is well

defined we note that if M1 and M2 lie in a hyperplane and both contain x,

then ρφ(M1) and ρφ(M2) agree on Cφ(M1∩M2). We also check that ρ is defined on

every cube of StX(Cφ(x)), which follows from the fact that the minimal cube

in X containing φ(x) is C(M) where M is the minimal cube of h containing

x.
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Figure 1.3: An isometry from a hyperplane to the CAT(0) cube complex

Given any x ∈ h, there exists a ball of B of radius ε > 0 centered at φ(x)

such that B is convex and is contained in StX(φ(x)) (see fingure 1.3. Hence

the map ρ preserves B and is an isometry with fixed point set φ(Sth(x))∩B.

Since φ(Sth(x)) ∩ B is the fixed set of an isometry, it is a totally geodesic

subspace of X. Hence the set U = φ−1(φ(Sth(x)) ∩ B) is a set containing x

such that φ|U : h → X is an isometry. Hence for each x ∈ h we can choose a

neighbourhood U of x such that φ|U : h → X is an isometry, and so φ is a

local isometry.

Hence since X is CAT(0), by the Cartan-Hadamard theorem (section 4

[20]), the local isometry φmust be a global isometry. Hence the cube complex

h is CAT(0).

Remark 1.34. If a group G acts on a CAT(0) cube complex X, then G

acts on the set of hyperplanes of X. Since the action of G on X preserves

incidence of cubes, it preserves incidence of midplanes and hence extends to

an action on hyperplanes.

Each hyperplane h divides X into two simply connected pieces called

halfspaces (see [33] p.610-611). We denote the two halfspaces of X with

respect to h by Xh and X∗
h . Each hyperplane is geodesically convex, that is

for any hyperplane h every geodesic with initial and end points both in h is

entirely contained in h (see [27] p.624).
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Suppose that Xh is not geodesically convex. Then there exists a pair

of points u, v in Xh and a geodesic ` from u to v which has non-trivial

intersection with X \Xh. This geodesic must intersect the boundary h of Xh

in at least two points. Let u′ and v′ be the points of h ∩ ` closest to u and v

respectively. Since h is geodesically convex, any geodesic between u′ and v′

must be entirely contained in h, hence the intersection of ` with X \ Xh is

trivial. It follows that for every h the halfspaces Xh and X∗
h are geodesically

convex.

We say that two hyperplanes h1 and h2 intersect if each of the sets

Xh1 ∩Xh2 , X
∗
h1
∩Xh2 , Xh1 ∩X∗

h2
, X∗

h1
∩X∗

h2
,

is non empty. Equivalently, h1 and h2 intersect if and only if h1 6= h2 and

there exists midplanes M1 of h1 and M2 of h2 such that M1 ∩M2 6= ∅.
Suppose there exists a pair of vertices u, v in X which lie in the same set

of halfspaces. Since X is connected, there exists a shortest edge path from u

to v. Since each edge contains a midpoint which is a midplane in some hyper-

plane, the endpoints of any edge lie in different halfspaces. Since halfspace

are geodesically convex, the geodesic from u to v crosses between halfspaces

Xh and X∗
h at most once for each hyperplane h,. Hence any geodesic of length

> 1 has endpoints lying in different halfspaces for at least one hyperplane,

and so d(u, v) = 0, that is u = v. Hence every vertex in X is uniquely

determined by the set of halfspaces containing it.

We say a hyperplane h separates the vertices u and v if u lies in Xh and

v lies in X∗
h , or vice versa. We say the edge e and the hyperplane h intersect

if the midpoint of e lies in a midplane in the equivalence class of midplanes

h. Let u and v be a pair of vertices in X and let p be a geodesic edge path

between them. For each edge in the path p, p intersects a single hyperplane

in X. Since halfspaces in X are geodesically convex, the path p intersects

each hyperplane at most once and the length of the path p is equal to the

number of hyperplanes intersecting edges in p. Using the fact that halfspaces

are geodesically convex for a second time, we note that if the path p intersects

a hyperplane h, then u and v lie in different halfspaces Xh and X∗
h . Hence
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the length of any geodesic path from u to v, denoted by d1(u, v), is equal to

the number of hyperplanes separating u and v.

For any hyperplane h in X, let stabG(h) denote the set of elements of G

which act on X to map h to itself.

1.4.3 Almost Residual Finiteness

Definition. A group G is almost residually finite if there exists a finite

subgroup H of G such that H is separable.

Lemma 1.35. Let G be a group and suppose that G has a proper action on

a CAT(0) cube complex X such that for every hyperplane h in X stabG(h)

is separable. Then G is almost residually finite.

Proof. Choose a vertex v in X. Let H denote the set of hyperplanes in X

and let H be the set of hyperplanes adjacent to v, that is hyperplanes which

intersect an edge incident with v. Since X is locally finite, the set H is finite.

For some choice of halfspace X
(∗)
h in {Xh, X

∗
h} for each h, v is the unique

vertex contained in the intersection ∩h∈HX
(∗)
h . Since the set H contains all

hyperplanes adjacent to v, v is the unique vertex contained in
⋂

h∈HX
(∗)
h .

Consider the group I =
⋂

h∈H stabG(h). Since each subgroup stabG(h)

is separable, the group I is separable. Then I acts on X and preserves

each hyperplane in the set H, and so we can say that I acts on the set of

components of X \ H.

Since the set H is finite and each h ∈ H divides X into two components,

it follows that X \ H has only finitely many components, say n. Then I

permutes the components of X \ {H} and is homomorphic to a subgroup of

the symmetric group Sn. Since Sn is finite, it follows that for each component

ofX\H, the subgroup of I preserving that component is finite index in I. Let

Hv be the subgroup fixing the component containing v. Since v is uniquely

determined by the set X
(∗)
h of halfspaces containing it, it follows that Hv fixes

v.

Since the action of G on X is proper, {g ∈ G|gv = v} is finite. Hv is

a subgroup of this set and hence if finite. Hv is a finite index subgroup of
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the separable group I, so Hv is also separable. Hence G is almost residually

finite.

1.4.4 Coxeter groups act on CAT(0) cube complexes

The following construction is due to Niblo and Reeves and can be found in

[28].

Definition. ([28], p.2) We consider the triple (H,≤, ∗) where H is a set, ≤
is a partial order on H and ∗ is an order reversing involution on H, denoted

by X 7→ X∗.

Suppose (H,≤, ∗) satisfies the following conditions:

(1) Given any two elements X1 and X2 of H, there exist only finitely many

elements X3 ∈ H such that X1 ≤ X3 ≤ X2.

(2) Given any pair of elementsX1 andX2 ofH, at most one of the following

holds:

X1 ≤ X2, X1 ≤ X∗
2 , X

∗
1 ≤ X2, X

∗
1 ≤ X∗

2

Then (H,≤, ∗) is a halfspace system. The elements of the set H are called

halfspaces.

A pair of halfspaces X1 and X2 in H are said to be transverse if none of

the conditions in part (2) of the definition above hold.

For any set of halfspaces K ⊂ H a halfspace X ∈ K is said to be a

minimal halfspace in the set K if for every X ′ ∈ K, X ′ 
 X.

For a general halfspace system (H,≤, ∗), we define an equivalence relation

∼ on H by X1 ∼ X2 if and only if X1 = X2 or X1 = X∗
2 . We denote the

equivalence class containing X by [X] = {X,X∗}. The boundary map ∂ is a

map ∂ : H → H/ ∼ defined by X 7→ [X]. We call the equivalence class [X]

the boundary of X.

A pair of boundaries [X1], [X2] are said to intersect if the halfspaces X1

and X2 are transverse.

Given a CAT(0) cube complex, there is an obvious triple given by the set

of halfspaces H associated to the set of hyperplanes in the complex with the
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partial order ≤ induced by inclusion and with the order reversing involution

∗.

Lemma 1.36. Let X be a CAT(0) cube complex. Then the associated triple

(H,≤, ∗) is a halfspace system

Proof. Given any pair of halfspaces Xh1 and Xh2 , let I(Xh1 , Xh2) denote the

set {Xh3 ∈ H|Xh1 ≤ Xh3 ≤ Xh2}. If Xh1 � Xh2 then I(Xh1 , Xh2) is empty.

Suppose Xh1 ≤ Xh2 , then there is a finite length edge path p in the cube

complex X joining the hyperplanes h1 and h2, that is a path whose initial

and final edges have midpoints contained in midplanes in the hyperplanes h1

and h2 respectively.

If Xh3 satisfies Xh1 ≤ Xh3 ≤ Xh2 then h3 must cross the path p, that is

some edge of p must have midpoint in h3. The midpoint of each edge in p is

in exactly one hyperplane. Since p has finite length, there must be a finite

number of h3 crossing p and hence finitely many Xh3 with Xh1 ≤ Xh3 ≤ Xch2 .

Given any pair of halfspaces Xh1 and Xh2 with h1 6= h2, we show that

at most one of the inequalities listed in part 2 of the definition of a halfs-

pace system. Suppose Xh1 ≤ Xh2 , and consider in turn each of the other

inequalities.

• If Xh1 ≤ X∗
h2

, then Xh1 ≤ Xh2 ∩X∗
h2

= ∅.

• If X∗
h1
≤ Xh2 then Xh1 ∪X∗

h1
= X ≤ Xh2 .

• IfX∗
h1
≤ X∗

h2
then, applying the order reversing involution ∗, Xh2 ≤ Xh1

and we have Xh1 = Xh2 .

In each case we have a contradiction. Similarly, taking any ofX1 ≤ X∗
2 , X

∗
1 ≤

X2, X
∗
1 ≤ X∗

2 to be true, we show that assuming any other inequality in the

list to also be true leads to a contradiction.

We will consider a vertex of the cube complex X as defined by the set

of halfspaces containing it, and examine the properties of these sets of half-

spaces. Each vertex will lie in exactly one of X1, X
∗
1 for every X1. Suppose

a halfspace X1 is contained in a halfspace X2. If the vertex v in X lies in
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X1 then it also lies in X2. Two vertices u, v in X which are joined by an

edge will be separated by a single hyperplanes h, the hyperplane equivalence

class containing the midplane of the edge joiing u and v. Since u and v are

separated by a single hyperplane, the set of halfspaces containing u and v will

be identical with the exception of u being contained in Xh and v being con-

tained in X∗
h . We note that for a halfspace system arising from hyperplanes

in a CAT(0) cube complex the definition of intersection of boundaries in a

halfspace system is equivalent to the definition of intersection of hyperplanes

given in section 1.3.2.

Lemma 1.37. ([28],p.3) Given any halfspace system (H,⊆, ∗), we can con-

struct a CAT(0) cube complex whose hyperplanes form the halfspace system

(H,⊆, ∗)

In the following paragraphs, we outline the construction of a CAT(0)

cube complex from a halfspace system. Our definitions will be motivated

by the properties of sets of halfspaces in cube complexes containing vertices,

discussed above.

Definition. A map v : H/ ∼→ H is a section for ∂ if ∂v([X]) = [X], ∀X.

A section is interpreted as an orientation on a boundary. We view the

section v as a list of the halfspaces in which a vertex lies. We saw that if

X1 ≤ X2 and the vertex v in X lies in X1 then v should also lie in X2. Hence

for any pair of hyperplanes X1 and X2 v([X1]) 
 v([X2])
∗ (see figure 1.4).

We take the set of vertices for the CAT(0) cube complex to be all sections v

for ∂ such that v([X1]) 
 v([X2])
∗ for all X1, X2 ∈ H.

We say two vertices u and v are separated by the boundary [X] if u([X]) 6=
v([X]). We join two vertices u and v by an edge if and only if u and v are

separated by exactly one boundary [X]. Not every halfspace u([X]) can be

replaced by its complement to give a new vertex. Suppose two vertices u

and v are joined by an edge. Then for some element [X] of H/ ∼, u([X]) =

v([X])∗. By the definition of a vertex, for any halfspace Y we have u([Y ]) =

v([Y ]) 
 v([X])∗ = u([X]). Hence u([X]) must be minimal among the set

of halfspaces in the image of H/ ∼ under u. The set of vertices adjacent to
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X1[ ]

€ 

X2[ ]

€ 

v X1[ ]( )

€ 

v X2[ ]( )

Figure 1.4: Vertices must satisfy v([X1]) � v([X2])
∗

u are those obtained by replacing u([X]) by u([X])∗ where [X] is a minimal

halfspace in u(H/ ∼).

Now consider conditions necessary for a set of vertices to be the vertices

of a square. If the vertices u and v are to lie at opposite corners of the square,

then the values of u and v must differ on precisely two elements of H/ ∼, call

them [Xi], i ∈ {1, 2}. For i = 1, 2 we must have u([Xi]) minimal in u(H/ ∼).

The pair u, v has the following properties:

u([X1]) 
 u([X2]) by the minimality of u([X1])

u([X1])
∗ 
 u([X2]) by the minimality of u([X2])

u([X1]) 
 u([X2])
∗ since u is a vertex

v([X1]) = u([X1])
∗ 
 u([X2]) = v([X2])

∗ since v is a vertex

So u([X1]) and u([X2]) are transverse. For i = 1, 2 we replace either or

both of the u([Xi]) with u([Xi])
∗ to get the remaining three vertices of the

square.

In general, if we have a set [X1], [X2], . . . , [Xn] of boundaries such that

each u([Xi]) is minimal in u(H/ ∼) and any pair u([Xi]), u([Xj]) are trans-

verse, then by replacing the u([Xi]) with u([Xj])
∗, we form the vertices of

an n-dimensional cube. We construct a cube complex by filling in the cubes

which occur in this way.

The cube complex constructed in this way may have more than one

component. For example, consider the halfspace system (H,≤, ∗) where
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H = {Hi,H∗
i |i ∈ Z} and Hi ≤ Hj if and only if i ≤ j. Let hi = [Hi,H∗

i ]. The

CAT(0) cube complex constructed from this halfspace system as defined by

lemma 1.37 is isometric to the real line with additional points {+∞,−∞}.
This cube complex has three connected components, {−∞},R and {+∞}.
The vertex corresponding to a integer point z can be defined by the section

z(hi) =

{
Hi if i < z

H∗
i if i ≥ z.

The points ∞ and −∞ are defined by the sections

−∞(hi) = Hi for all i ∈ Z
+∞(hi) = H∗

i for all i ∈ Z

To see that the cube complex has three connected components, suppose

∞ and R lie in the same component. Then, by the definition of a connected

set, for any decomposition of ∞∪R as two subsets A and B, at least one of

the sets cl(A) ∩B, A ∩ cl(B) is non-empty.

Let

A =
⋂
i∈Z

X∗
hi

and

B = X − A = X −
⋂
i∈Z

X∗
hi

=
⋃
i∈Z

Xhi
.

Now B is a union of open sets, and hence is open. Hence A is closed and

cl(A) ∩ B = A ∩ B. Any point x ∈ B lies inside Xhj
for some j, and hence

x /∈ X∗
hj

and x /∈
⋂

i∈ZX
∗
hi

= A. Hence cl(A) ∩B = ∅.
We now consider the closure ofB, cl(B) = B∪∂B ⊂

⋃
i∈ZXhi

∪
⋃

i∈Z ∂Xhi
.

For any i ∈ Z, (Xhi
∪ ∂Xhi

) ⊂ Xhi+1
and hence (Xhi

∪ ∂Xhi
) ∩ X∗

hi+1
= ∅.

Suppose cl(B) ∩ A 6= ∅. Then for some j ∈ Z

(Xhj
∪ ∂Xhj

) ∩

(⋂
i∈Z

X∗
hi

)
6= ∅
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Hence for each k ∈ Z
(Xhj

∪ ∂Xhj
) ∩Xhk

6= ∅

which is false for k = j+1. Hence cl(B)∩A = ∅ and +∞ and R are separate

components of the cube complex.

In a similar fashion, we can construct a halfspace system corresponding

to the Euclidean plane. The cube complex constructed using this halfspace

system has 9 components, E2, four points corresponding to (±∞,±∞) and

four copies of the real line, corresponding to (±∞,R) and (R,±∞).

For a proof that the components of the space we just constructed are

CAT(0) cube complexes, see [33].

Theorem 1.38. ([28],p.1) If W is a finitely generated Coxeter group then

there exists a locally finite, finite dimensional CAT(0) cube complex X on

which W acts properly discontinuously by isometries, and in which there is

an isometric embedding of W .

Given a finitely generated Coxeter group W , we construct a cube com-

plex X as follows: We begin by defining a halfspace system for the Coxeter

group W . We then use the general method of constructing a cube complex

given in lemma 1.37 on this halfspace system. Finally, we show that if a

halfspace system is constructed from a Coxeter group W then W embeds

quasi-isometrically in a component of the corresponding cube complex.

There are three ways of defining a halfspace system for a Coxeter group

W . We will describe two of them. For the third definition of a halfspace

system associated to the Coxeter group W , see section 2.1 of [28]. We choose

a generating set S for W .

Definition. Given a Coxeter system (W,S) construct the Coxeter complex

Σ(W,S). Define the set of halfspaces HW to be the half-apartments of

Σ(W,S), HW = {Xr, X
∗
r |r is a reflection in W}. Then the triple (HW ,⊆, ∗)

where ⊆ is inclusion of half-apartments is a halfspace system. In this case

the map ∂ is equivalent to the map Xr 7→ Hr which takes the halfspace

corresponding to the reflection r to the wall corresponding to r.
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Definition. Let ΓW denote the Cayley graph of (W,S). Let u, v be adjacent

vertices in ΓW and define H(u, v) = {w ∈ W |d(w, u) < d(w, v)}. Since u

and v are adjacent, u = vs for some s ∈ S. Recalling the definition of the

metric on ΓW we have d(g, h) = `(g−1h), where `(γ) is the minimum length

of a word for γ in the generators. By corollary 1.2

d(w, u) = `(w−1u) = `(w−1vs) 6= `(w−1v) = d(w, v)

and hence H(u, v)∩H(v, u) is empty. For a fixed u and v, W is the disjoint

union of H(u, v) and H(v, u). Let H ′
W = {H(u, v)|u, v ∈ W, d(u, v) = 1} be

the collection of all such sets, and denote by ∗ : H ′
W → H ′

W the involution

which sends H(u, v) to H(v, u). Let ≤ be the natural order given by inclusion

as subsets. Then (HW ,≤, ∗) is a halfspace system.

Lemma 1.39. For any Coxeter group W the halfspace systems (HW ,⊆, ∗)
and (H ′

W ,≤, ∗) are isomorphic as partially ordered sets.

Proof. For the proof of this lemma, see proposition 1 of [28] and proposition

2.6 of [32].

We have seen that the cube complex X corresponding to a halfspace

system may have more than one component. We define an embedding of W

into a single component of X as follows:

For each edge (u, v) in ΓW , the pair H(u, v), H(v, u) represents a sub-

division of ΓW into two components, with exactly one of the two halfspaces

H(u, v), H(v, u) containing the vertex e. We define a section ve to ∂ by setting

ve([H(u, v), H(v, u)]) to be the halfspace containing e. By definition, the in-

tersection of any two halfspaces in the image of ve contains the vertex e and so

is non-empty. Hence for any pair of halfspaces ve(H(u, v)) and ve(H(x, y)) in

the image, ve(H(u, v)) � ve(H(x, y))∗ and ve(H(x, y)) � ve(H(u, v))∗. Hence

by definition ve is a vertex in the CAT(0) cube complex..

Similarly, for any g ∈ ΓW a section vg is defined by choosing the halfspace

of ΓW containing the vertex g for each pair H(u, v), H(v, u) where {u, v} is

an edge.
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Vertices of ΓW are labelled by elements of W by the construction of ΓW .

By the definition of the metric on W , the embedding of W in ΓW defined by

this labelling is an isometry. Hence it is sufficient to show that ΓW embeds

isometrically in the cube complex. We define the embedding to be the map

which takes g to vg for all g ∈ ΓW

Let g, h be a pair of vertices in ΓW and let g = γ0, γ1, . . . , γn = h be a

geodesic from g to h in ΓW . Then for each edge {γi, γi+1} in the geodesic,

g ∈ H(γi, γi+1) and h ∈ H(γi+1, γi). Hence the value of the sections vg and

vh differ on at least n boundaries and the distance d1(vg, vh) between vg and

vh in X satisfies d1(vg, vh) ≥ dW (g, h). In fact, there is a bijection from the

set of boundaries in ΓW which separate g and h to the set of hyperplanes in

X which separate vg and vh. Hence we have d1(vg, vh) = dΓW
(g, h) and so

the map taking g to vg for all g ∈ W is an isometry from (W, dW ) to (X, d1).

See [28] for the proof that X is locally finite (p.9) and finite dimensional

(p.8), and for the proof that W acts properly discontinuously (by isometries)

on X (p.9).

We note that the CAT(0) cube complex constructed in this way has the

property that for any hyperplane h in the complex, stabW (h) = stabW (Hr)

for some Hr in the Coxeter complex Σ(W,S).

The action of W on X as defined by Niblo and Reeves is not necessarily

cocompact. Williams gives the following theorem.

Theorem 1.40. [40] Let W be a Coxeter group acting on a CAT(0) cube

complex X as defined in the proof of theorem 1.38. Then the action of W

on X is cocompact if and only if for any triple p, q, r of positive integers, W

contains only finitely many conjugacy classes of subgroups isomorphic to the

p, q, r triangle group < a, b, c|a2 = b2 = c2 = (ab)p = (bc)q = (ac)r = 1 >.

Niblo and Reeves conjectured that the action of W on X will be cocom-

pact if and only if W contains no subgroups isomorphic to Euclidean triangle

groups, that is to either 4(2, 3, 6), 4(2, 4, 4) or 4(3, 3, 3). This result was

later proved by Caprace and Mühlherr in [7].

Lemma 1.41. ([7], p.468) Let (W,S) be a Coxeter system of finite rank.

The following statements are equivalent:
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(i) there are only finitely many conjugacy classes of reflection triangles,

(ii) the Coxeter diagram of (W,S) has no irreducible affine subdiagrams of

rank ≥ 3.

Considering the Coxeter diagrams of the affine groups (see for example

[38]), we see that the irreducible affine diagrams of rank 3 are those cor-

responding to the groups 4(2, 3, 6), 4(2, 4, 4) and 4(3, 3, 3). One of these

diagrams appears as a subdiagrams of the Coxeter diagram for a group (W,S)

if and only if W contains a subgroup isomorphic to the corresponding Eu-

clidean triangle group.

1.4.5 Actions and maps on CAT(0) cube complexes

Lemma 1.42. Let G be a finitely generated group which acts freely, isomet-

rically, cocompactly and properly on a CAT(0) cube complex X. Then there

is a quasi-isometric map from G to X.

Proof. Let S be a generating set for G. Choose any point x ∈ X and use

the action of G on X to define a map p from G to X by setting p(g) = g(x)

for all g ∈ G. Denote by k1 the maximum distance between x and s(x)

for any s ∈ S, that is k1 = max{dX(x, s(x))|s ∈ S}. Both the map p

and the specific value of k1 are dependant on our choice of x. Since the

action of G on X is isometric, it follows that for any g ∈ G and s ∈ S,

dX(g(x), (gs)(x)) ≤ k1. Given any g, h ∈ G there is a word s1 . . . sn, si ∈ S

representing g−1h such that n = dG(g, h). It follows that there is a path in

X from p(g) to p(h) defined by the vertices g(x), gs1(x), . . . , gs1 . . . sn(x) =

(gg−1h)(x) = h(x). Since dX(g(x), gs(x)) ≤ k1 for all g ∈ G, s ∈ S it follows

that dX(p(g), p(h)) ≤ k1n = k1dG(g, h).

In order to prove the map p is quasi-isometric it remains to show that

there exists some k2 such that k2dG(g, h) ≤ dX(p(g), p(h)) holds for any pair

g, h. We consider an alternative generating set for the group G. Since the

action of G on X is cocompact we can choose a compact region C ⊂ X

containing x such that GC = X. Then there is some r ∈ R, the diameter
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of the fundamental region C, such that for every y ∈ X ∃g ∈ G such that

dX(y, g(x)) ≤ r.

Let k = max{2r + 1, k1}. Let S ′ = {g ∈ G \ {1}|dX(x, g(x)) ≤ k}. Then

S ⊂ S ′ and S ′ is a generating set for G. We construct the graph ∆ with

vertex set V (∆) = G by connecting g, h ∈ G by an edge if dX(g(x), h(x)) ≤ k.

Then ∆ is the Cayley graph of G with generating set S ′. By lemma 1.31 the

metric dG on the group G with generating set S is quasi-isometric to the

metric d∆ on the Cayley graph for G with generating set S ′. Hence it is

sufficient to prove that, for all g, h ∈ G, k2d∆(g, h) ≤ dX(p(g), p(h)).

Given any g, h ∈ G, let α ⊂ X be a geodesic connecting g(x) to h(x).

Choose a sequence of points g(x) = x0, x1, . . . , xn = h(x) along α, such that

d(xi, xi+1) ≤ 1 for all i and such that dX(g(x), h(x)) > n− 1.

For each xi, we can choose some gi such that d(gi(x), xi) < r. Hence we

can construct a path g(x) = g0(x), g1(x), . . . , gn(x) = h(x) in X such that

dX(gi(x), gi+1(x)) ≤ r + 1 + r ≤ k for all i. Hence by the definition of ∆ for

each i we have d∆(gi, gi+1) = 1, and there is a path in ∆ from g to h with

length n. Hence d∆(g, h) ≤ n ≤ dX(g(x), h(x)) + 1.

Since the action of G on X is free and properly discontinuous, we can

choose some k′ > 0 in R such that for all g, h ∈ X dX(g(x), h(x)) > k′. Then

dX(g(x), h(x))

k′
> 1

⇒ k′ + 1

k′
dX(g(x), h(x)) > dX(g(x), h(x)) + 1

> d∆(g, h)

and the map p : G→ X is a quasi-isometric embedding.

We can define a quasi-inverse to p, that is a quasi-isometric map q : X →
G such that p ◦ q and q ◦ p are a bounded distance from the identity maps.

We have seen that for each point y ∈ X there exists a g ∈ G such that

dX(y, g(x)) ≤ r. Let q be a map which takes each y to some element g of G

satisfying dX(y, g(x)) ≤ r.
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Consider p ◦ q(y). We have defined q(y) to be some g ∈ G such that

dX(y, g(x)) ≤ r and hence dX(y, p ◦ q(y)) = dX(y, g(x)) ≤ r.

Let C ′ be the compact subset of X defined by C ′ = {y|dX(y, g(x)) ≤
r}. Since the action of G on X is properly discontinuous, there are finitely

many gi ∈ G such that giC
′ ∩ C ′ 6= ∅. Let m = max{d(e, gi)|giC

′ ∩ C ′ 6=
∅}. Consider q ◦ p(g) = q(g(x)). Then q ◦ p(g) is some g′ ∈ G for which

dX(g′(x), g(x)) < r. Since the action ofG onX is isometric dX(g−1g′(x), x) <

r and hence g−1g′ ∈ {gi|giC
′ ∩ C ′ 6= ∅} and `(g−1g′) = dG(g, g′) ≤ m.

1.4.6 Products of CAT(0) cube complexes

Definition. The Cartesian product of a pair of sets X and Y is the set of all

possible ordered pairs whose first component is a member of X and whose

second component is a member of Y

X × Y = {(x, y)|x ∈ X, y ∈ Y }

Definition. The product a pair of cube complexes X and Y , denoted X×Y
is the cartesian product X × Y together with the cubical structure inherited

from X and Y , that is each pair of cubes CX in X and CY in Y with

dimensions m and n respectively gives rise to a (m + n)-cube CX × CY in

X × Y , CX × CY = {(x, y)|x ∈ Cx, y ∈ Cy}.

We wish to show that the product of a pair of CAT(0) cube complexes

is CAT (0). We will do this by considering the links of the vertices in the

product.

Lemma 1.43. A CAT(0) cube complex X is CAT(0) if X is simply connected

and for every vertex v in Xthe link LkX(v) is a CAT(1) space.

Proof. See definition 5.1, theorem 5.2 and theorem 5.4 of [4].

Lemma 1.44. Lk(v) is CAT(1) if and only if every pair x and y of point in

Lk(v) with dLk(v)(u, v) ≤ π, x and y are joined by at most one geodesic.

Proof. See 4.2.B of [20]. Note that LkX(v) is isomorphic to the intersection

of the boundary of the ball B(v, 1) with X and hence has curvature 1.
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Definition. ([4], p.63) Let (X, dX) and (Y, dY ) be two metric spaces. As

a set, their spherical join X ∗ Y is [0, π
2
] × X × Y modulo the equivalence

relation ∼ where (θ, x, y) ∼ (θ′, x′, y′) whenever

• θ = θ′ = 0 and x = x′ or

• θ = θ′ = π
2

and y = y′ or

• θ = θ′ /∈ {0, π
2
} and x = x′, y = y′.

We define a metric d on X ∗Y by requiring that the distance between the

points u = (θ, x, y) and u′ = (θ′, x′, y′) be at most π and that d satisfy the

formula cos(d(u, u′)) = cos θ cos θ′ cos (dX(x, x′)) + sin θ sin θ′ cos (dY (y, y′)).

We think of X ∗ Y as the product of X × Y with the interval [0, π
2
],

identifying points to ‘collapse’ the ends so that (0, X, Y ) = {(0, x, y)|x ∈
X, y ∈ Y } is isometric to X and (π

2
, X, Y ) = {(π

2
, x, y)|x ∈ X, y ∈ Y } is

isometric to Y .

Lemma 1.45. ([4], p.284) Let X and Y be two complete CAT(0) spaces.

Then ∂(X × Y ) with the angular metric ∠ (as defined in definition 23 of

[14]) is isometric to the spherical join ∂X ∗ ∂Y of (∂X,∠) and (∂Y,∠).

More specifically, given ψ = (θ, x, y) and ψ′ = (θ′, x′, y′) in ∂(X × Y ), we

have

cos(∠(ψ, ψ′)) = cos θ cos θ′ cos(∠(x, x′)) + sin θ sin θ′ cos(∠(y, y′))

Lemma 1.46. Let X and Y be cube complexes and let u ∈ X, v ∈ Y be

vertices of X and Y respectively. Then the geometric link of the vertex u× v
in X × Y satisfies LkX×Y (u× v) = LkX(u) ∗ LkY (v)

Proof. The link of a vertex in a CAT(0) cube complex is isometric to the

boundary of the ball of radius 1 centered at that vertex with the angular

metric. Given a pair of vertices u, v in X,Y respectively, let X ′ denote the

sphere of radius 1 in X centered at u and let Y ′ denote the sphere of radius

1 in Y centered at v. Then the sphere of radius 1 in X×Y centered at (u, v)
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is isometric to the direct product X ′ × Y ′. Hence by lemma 1.45

LkX×Y ((u, v)) = ∂(X ′ × Y ′) = ∂(X ′) ∗ ∂(Y ′) = LkX(u) ∗ LkY (v).

Lemma 1.47. The product of a pair of CAT(0) cube complexes is a CAT(0)

cube complex.

Proof. Let X and Y be a pair of CAT(0) cube complexes. By definition,

the product X × Y is a cube complex. By lemma 1.43, X × Y is CAT(0) if

and only if for every vertex v in X × Y LkX×Y (v) satisfies the conditions in

lemma 1.44. Every vertex v in x is of the form (x, y) for some vertex x in X

and some vertex y in Y . By lemma 1.46, LkX×Y (v) = LkX(x) ∗ LkY (y). By

the definition of the metric on the spherical product, any geodesic between

two points has length at most π
2
, and so LkX×Y (v) is CAT(1) if and only if

no two points in LkX×Y (v) are joined by more than one geodesic, that is if

and only if LkX×Y (v) is simply connected.

Suppose ` is a non-trivial loop in LkX×Y (v), then we can homotope the

loop ` to a loop contained in the subspace (0, LkX(x), LkY (y)) by a continu-

ous change in the first coordinate. This loop is then homotopic to any loop

in (0, LkX(x), t) for fixed t, since points (0, s, t) and (0, s′, t′) are identified

under the equivalence if s = s′. We can then homotope to a loop in the

subspace (π
2
, LkX(x), LkY (y)), which since t is fixed and (0, s, t) and (0, s′, t′)

are identified under the equivalence if t = t′ is a point . Hence the product

of a pair of CAT(0) cube complexes is a CAT(0) cube complex.

A product of trees T1×T2×. . .×Tn is a CAT(0) cube complex of dimension

n. The product of CAT(0) cube complexes X1 and X2 of dimensions n and m

will have dimension n+m. We consider the d1 metric on products of CAT(0)

cube complexes. This choice of metric has the useful property that for any

pair of vertices u = (u1, u2 . . . , un) and v = (v1, v2, . . . , vn) in X1 × . . .×Xn

we have d1(u, v) =
∑n

i=1 d1(ui, vi), where d1(ui, vi) is the distance between ui

and vi in Xi.
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The Niblo-Roller construction found in [29] may be regarded as showing

that any CAT(0) cube complex can be d1-isometrically embedded in [0, 1]∞,

which can be viewed as an infinite product of trees.

Definition. A colouring map for a graph G is a map c : V → {1, 2, . . . , n}
such that c(v) = c(u) =⇒ u and v are not joined by any edge of G.

The chromatic number of a graph G is the smallest n such that there

exists a colouring map c : V → {1, 2, . . . , n}.

Definition. ([31]) The transversality graph of a halfspace system (H,≤, ∗)
is the graph T (H) with vertex set H/ ∼, where ∼ is the equivalence relation

X1 ∼ X2 if and only if X1 = X2 or X1 = X∗
2 . We denote the equivalence

class containing X1 by [X1]. Two vertices [X1] and [X2] are connected by an

edge in T (H) if and only if X1 and X2 are transverse in H.

Definition. The hyperplane chromatic number of a CAT(0) cube complex

X is the chromatic number of the transversality graph T (H) of the halfspace

system (H,≤, ∗) associated to X. Note that the chromatic number of a cube

complex may be infinite.

For any finitely generated Coxeter group W Dranishnikov and Schroeder

[17] give a construction of a CAT(0) cube complex in which W embeds and

a proof that the hyperplane chromatic number of X is finite. In the proof

of lemma 2.9, we will give a construction for a CAT(0) cube complex with

hyperplanes chromatic number k for any k ∈ N.

The following lemma is proved using a generalisation of the methods of

Niblo and Roller in [29].

Lemma 1.48. Let X be a CAT(0) cube complex with hyperplane chromatic

number n. Then X can be embedded d1-isometrically in a product of n trees.

Proof. Suppose X has hyperplane chromatic number n and let H denote

the set of hyperplanes in X. We can find a map c : H/ ∼→ {1, . . . , n}
such that for all [X1], [X2] in H c([X1]) = c([X2]) =⇒ [X1] and [X2]

are not joined by an edge in T (H), that is X1 and X2 are not transverse
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in X. We rewrite the set H as a disjoint union of sets H =
∐
Hi where

Hi = {[Xj] ∈ H|c([Xj]) = i}.
The construction outlined here is based on the construction given in the

proof of lemma 1.37, and is discussed in detail in section 3.1.2.

For each set Hi we can build a tree Ti using the construction given in

lemma 1.37 and the halfspace system ({Xh, X
∗
h|h ∈ Hi},≤, ∗) where ≤ is the

order defined by inclusion and ∗ exchangesXh andX∗
h for each h ∈ Hi. X\Hi

consists of a number of connected components. For each component there is

a vertex v in Ti defined by the section which maps each boundary [Xj] to the

halfspace Xj or X∗
j containing that component. We join two vertices by an

edge if and only if the corresponding components are separated by exactly one

hyperplane. By definition no pair of hyperplanes in Hi are transverse. Hence

since n-cubes arise from sets of n boundaries which are pairwise transverse,

Ti contains no cubes of dimension greater than 1 and is a graph. Since the

components of the complex constructed from (Hi,≤, ∗) are CAT(0), Ti is

simply connected and hence must be a tree.

For each Hi and Ti we define a map σi : X(0) → Ti by sending each vertex

v to the vertex of Ti corresponding to the component of X\Hi which contains

v. We note that this map is not injective, two vertices may lie in the same

component and hence be mapped to the same vertex of Ti. Two vertices

in Ti are joined by an edge if and only if the corresponding components of

X \Hi are separated by a single hyperplane. Hence for any two components

in X \Hi separated by k hyperplanes, there is a path of length k between the

corresponding vertices in Ti. Since Ti is a tree, there is no shorter path, and

the distance between components in the number of hyperplanes separating

them. Hence for any pair of vertices u, v the distance between σi(u) and

σi(v) is the number of hyperplanes in the set Hi separating them.

We define the map σ : X(0) → T1 × T2 × . . .× Tn for every vertex v ∈ X
by σ(v) = (σ1(v), σ2(v), . . . , σn(v)). Since every edge in the CAT(0) cube

complex intersects exactly one hyperplane, the distance d1(u, v) between two

vertices u, v in the CAT(0) cube complex is precisely the number of hyper-

planes separating them. Each hyperplane lies in Hi for exactly one i in

{1, . . . , n}, hence taking the product metric on the product of trees d1(u, v)
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is exactly the distance between σ(u) and σ(v) in T1 × T2 × . . .× Tn and the

map σ is an d1-isometry.
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Chapter 2

Cube complexes which do not

embed in finite products of

trees

We will prove the following result:

Theorem 2.1. For each k ∈ N there exists a right-angled Coxeter group Wk

and a 2-dimensional CAT(0) cube complex Uk such that Wk acts isometri-

cally, cocompactly and properly on Uk and there is no bending map from Uk

to a product of less than k trees.

2.1 Preliminaries

Definition. A hyperplane colouring map for a CAT(0) cube complex X with

hyperplane set H is a map c : H → {1, 2, . . . , n} such that for all h, h′ ∈ H,

c(h) = c(h′) =⇒ h and h′ do not intersect.

Note that a hyperplane colouring map corresponds to a colouring of the

transversality graph of the corresponding halfspace system.

The hyperplane chromatic number of a CAT(0) cube complex X is the

smallest n such that there exists a hyperplane colouring map c : H →
{1, 2, . . . , n} for X.
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Remark 2.2. Let X be a CAT(0) cube complex and H be the set of hy-

perplanes in X. Let k be the hyperplane chromatic number of X and

c : H → {1, . . . , k} be a hyperplane colouring map for X. Let H ⊂ H
be a subset of the hyperplanes of X. Then the restriction of c to the set H
has the property that for all h, h′ ∈ H, c(h) = c(h′) =⇒ h and h′ do not

intersect. We make use of this fact in later in this chapter.

Recall the definition of a hyperplane as an equivalence class of midplanes.

For any CAT(0) cube complex there is an canonical map m from the set of

edges to the set of hyperplanes given by inclusion of midpoints of edges in

these classes.

Definition. Let X be a CAT(0) cube complex and e, e a pair of edges in

X. A square-path from e to e in X is a sequence of 2-dimensional cubes

C1, . . . , Cn in X such that e ∩ C1 = e, Cn ∩ e = e and Ci ∩ Ci+1 is an edge

for all 1 ≤ i ≤ n− 1.

A straight square-path from e to e in X is a square-path C1, . . . , Cn from

e to e which in addition satisfies e ∩ C1 ∩ C2 = ∅, Cn−1 ∩ Cn ∩ e = ∅ and

Ci ∩Ci+1 ∩Ci+2 = ∅ for all 1 ≤ i ≤ n− 2. This additional condition ensures

that for all i the cubes Ci and Ci+2 meet Ci+1 at opposite edges.

Lemma 2.3. Let X be a CAT(0) cube complex and e, e be edges in X. The

edges e and e are mapped by m to the same hyperplane h if and only if there

is a straight square-path from e to e.

Proof. Suppose that there is a straight square-path C1, . . . , Cn from e to e.

Denote e by C0 and e by Cn+1. Let M0 be the midpoint of e and Mn+1 be the

midpoint of e. Then for all 0 ≤ i ≤ n, Ci ∩Ci+1 is an edge, call this edge ei.

Since Ci∩Ci+1∩Ci+2 = ∅, the edges ei and ei+1 must be opposite faces of the

square Ci+1. Let Mi+1 be the midplane of Ci+1 which cuts both ei and ei+1.

Then both Mi+1 and Mi+2 cut the edge ei+1, and Mi+1 ∩Mi+2 is a midplane

- the midpoint of the edge ei+1. Thus the sequence M0,M1, . . . ,Mn,Mn+1

is a chain of midplanes and M0 = m(e) and Mn+1 = m(e) lie in the same

hyperplane.

Suppose e and e are mapped by m to the same hyperplane h. Then

there exists a chain of midplanes M1,M2, . . . ,Mn where M1 is the midpoint
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of e and Mn the midpoint of e. Given such a chain of midplanes, we can

construct a chain of midplanes from M1 to Mn in which each midplane has

dimension less than 2. Suppose M2 has dimension d2 ≥ 2. Then we can

choose an edge path m1
2, . . . ,m

k2
2 of length at most d2 from the vertex M1 ∩

M2 to a vertex in M2 ∩ M3, since the edges and vertices of M2 are also

midplanes in X, m1
2, . . . ,m

k2
2 is a chain of midplanes. Replace the chain

M1,M2, . . .Mn with M1,m
1
2, . . . ,m

k2
2 ,M3, . . . ,Mn. Repeating this process

with the new chain for each Mi of dimension greater than 1, we obtain a

chain of midplanes M1,m
1
2, . . . ,m

k2
2 , . . . ,m

1
n−1, . . . ,m

kn−1

n−1 ,Mn in which every

midplane has dimension at most one.

Given a chain of midplanes m1,m2, . . . ,mn we can replace any subse-

quence mj,mj+1,mj+2 such that mj∩mj+1∩mj+2 is a midplane with the sub-

sequence mj,mj+2 to construct a shorter chain of midplanes from m1 to mn.

Using this process, we remove midplanes from the chain M1,m
1
2, . . . ,m

k2
2 , . . . ,

m1
n−1, . . . ,m

kn−1

n−1 ,Mn as necessary to produce a chain of midplanes which has

no subsequence of length three such that the intersection of the elements in

that subsequence is a midplane.

Let Cj
i be the unique square with midplane mj

i . Let mj,mj+1 be adjacent

midplanes in the chain of midplanes. Then mj ∩ mj+1 is a midplane of

dimension 0 and is the midpoint of an edge ej. Hence we must have Cj ∩
Cj+1 = ej. Since mj+1 ∩ mj+2 is also a midplane and mj ∩ mj+1 ∩ mj+1

is not a midplane, it follows that mj+1 ∩ mj+2 is the midpoint of the edge

of Cj+1 opposite ej. Label this edge ej+1. Then Cj+1 ∩ Cj+2 = ej+1, and

Cj ∩ Cj+1 ∩ Cj+2 = ej ∩ ej+1 = ∅. Hence C1
2 , C

2
2 , . . . , C

k2
2 , . . . , C

1
n−1, . . . C

kn−1

n−1

is a straight square-path from e to e.

Let T1×. . .×T̂i×. . .×Tk denote the product T1×. . .×Ti−1×Ti+1×. . .×Tk.

Let p be the map from the set of edges of T1, . . . , Tk to sets of edges in

T1 × . . . × Tk given by defining the image of an edge ei in the tree Ti to be

the product of ei with the set of vertices of T1 × . . .× T̂i × . . .× Tk. Denote

p(ei) by Ei.

Lemma 2.4. Let T be a product of trees T1 × . . . × Tk. Suppose that there

exists a straight square-path C1, . . . , Cn from e to e in T . Then both e and e
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lie in Ei for some i ∈ 1, . . . , k, and some edge ei in Ti.

Proof. Every edge in T is of the form ei × v̂i for some unique choice of tree

Ti, edge ei ∈ Ti and vertex v̂i ∈ T1 × . . . × T̂i × . . . × Tk. Similarly, every

square in T is of the form ei × êi for some Ti and some pair of edges ei, êi

with ei an edge in Ti and êi an edge in T1 × . . .× T̂i × . . .× Tk.

Consider the straight square-path C1, . . . , Cn from e to e. By the above,

e must be of the form ei× v̂i for some Ti and some edge ei in Ti and vertex v̂i

in T1 × . . .× T̂i × . . .× Tk. Since e∩C1 = e, C1 must be of the form ei × êi
1

where êi
1 is an edge in T1 × . . . × T̂i × . . . × Tk which has v̂i as one of its

vertices.

Since C1 ∩ C2 is an edge, C2 must be of the form

ei × êi
2 where ei is an edge in Ti,

êi
2 is an edge in T1 × . . .× T̂i × . . .× Tk and

êi
1 ∩ êi

2is a vertex in T1 × . . .× T̂i × . . .× Tk

or

êi
1 × ei

1 where e1i is an edge in Ti,

êi
1 is an edge in T1 × . . .× T̂i × . . .× Tk and

e1i ∩ ei is a vertex in Ti

Suppose C2 is of the form êi
1 × e1i then

e ∩ C1 ∩ C2 = (ei × v̂i) ∩ (ei × êi
1) ∩ (ei × êi

1)

⊆ (ei ∩ e1i )× v̂i

as v̂i ∈ êi
1. Since ei ∩ e1i is a vertex, (ei ∩ e1i )× v̂i

1 6= ∅ which contradicts

the hypothesis that C1, . . . , Cn is a straight square-path. Hence C2 must be

of the form ei× êi
2. Similarly, each Cα must be of the form ei× êi

α for some

edge êi
α in T1× . . .× T̂i× . . .×Tk, and e must be of the form ei× vi for some

vertex vi in T1 × . . .× T̂i × . . .× Tk. Hence e and e lie in Ei for some i.

Definition. An map α from a cube complex X to a cube complex T is called
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a bending map if

1. it is injective and

2. the restriction α|S of α to the cube S is an isometry from the n-cube

S in X to an n-cube α(S) in T for every cube S of X.

Remark 2.5. Let α : X → T be a bending map. Suppose that a pair of

cubes S and S ′ are adjacent in X, that is S∩S ′ is non empty. Then the cubes

α(S) and α(S ′) are adjacent in T . To see this, note that, by the definition of

a cube complex, if S∩S ′ is non-empty it contains a cube C which lies in both

S and S ′. Restricting α to S we see that α(C) lies in α(S), and similarly,

α(C) lies in α(S ′), and hence α(C) ⊂ α(S) ∩ α(S ′) and so α(S) and α(S ′)

are adjacent.

Note that a bending map is not necessarily an isometry. To see this,

consider the possible images under a bending map of a pair of adjacent cubes

(for example see the map α in figure 2.1), and the distance between a pair

of points where one point lies in each of these cubes.

In fact, a bending map is not necessarily a quasi-isometry, since we can

choose a pair of cube complexes X and T and a bending map α : X → T

such that for any k1 ∈ R there exists a pair of vertices u and v in X with

d(u, v) > k1 for which d(α(u), α(v)) = 1. For example, consider a bending

map from the infinite tree X in which every vertex has valency two into

the 2-dimensional cube complex T isomorphic to the Euclidean plane which

maps X to a double spiral in T (see α′ in figure 2.1). Then for every k1 > 0

we can choose two vertices in T which are a distance 1 apart and which lie in

different ‘arms’ of the spiral whose preimages are at least k1 apart in X. To

see that this is possible, consider how the distance in the preimage changes

as we move away from the central point of the spiral.

Lemma 2.6. Suppose X and T are CAT(0) cube complexes and that α is

a bending map from X to T . Then there is a map h from the set HX of

hyperplanes in X to a subset of the set HT of hyperplanes in T such that if

the pair of hyperplanes h, h′ ∈ HX intersect then so do h(h) and h(h′).
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Figure 2.1: Bending maps which are not quasi-isometries

Proof. The bending map α takes n-cells in X isometrically to n-cells in T ,

and hence induces a map h which takes midplanes of n-cells inX to midplanes

of n-cells in T . To see that h extends to a well-defined map on hyperplanes,

consider two midplanes M and M ′ which lie in the same hyperplane in X.

Then there exists a sequence M1,M2, . . . ,Mk of midplanes in X such that

each of M∩M1, Mi∩Mi+1, i ∈ {1, . . . , k−1} and Mk∩M ′ is also a midplane.

Then h(M) and h(M ′) lie in the same hyperplane in T . To see this,

consider the sequence h(M1), h(M2), . . . , h(Mk) of midplanes in T . We know

that M1 ∩M2 is a midplane in X. Hence the n-cells containing M1 and M2

must both be adjacent to an (n− 1)-cell with midplane M1 ∩M2. Since the

map α preserves adjacency, the cells containing h(M1) and h(M2) must both

be adjacent to an (n− 1)- cell with midplane h(M1)∩h(M2). Similarly, each

of the intersections h(M) ∩ h(M1), h(Mi) ∩ h(Mi+1), i ∈ {1, . . . , k − 1} and

h(Mk) ∩ h(M ′) is a midplane in T . Hence the midplanes h(M) and h(M ′)

lie in the same hyperplane as required.
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It remains to show that if h and h′ are hyperplanes in X which intersect,

then the hyperplanes h(h) and h(h′) intersect in T . To see this, note that if

h and h′ intersect, then then there must be a pair of midplanes M ∈ h and

M ′ ∈ h′ which are midplanes of the same cube C in X and hence intersect

within that cube. Restricting α to C we have an isometry from C to α(C),

and hence the images h(M) and h(M ′) intersect in the cube α(C) in T , and

hence the hyperplanes h(h) and h(h′) intersect.

Lemma 2.7. Let X be a CAT(0) cube complex. If there is a bending map

from X to a product of k trees then X has hyperplane chromatic number less

than or equal to k.

Proof. Suppose there is a bending map from X to the product of trees T =

T1 × . . . × Tk. Let HT denote the set of hyperplanes in T and HX the

hyperplanes in X.

Since there is a bending map from X to T , by lemma 2.6 there is a map

h from the set of hyperplanes HX to a subset of HT such that if h, h′ ∈ HX

intersect then so do h(h) and h(h′). Hence by remark 2.2 it suffices to show

that the product of trees T has hyperplane chromatic number less than or

equal to k.

Let m be the canonical map from the set of edges in the CAT(0) cube

complex T to the set of hyperplanes HT . We extend this map to a map m

from the set of edges in the trees T1, . . . , Tk to the set of hyperplanes HT .

For every edge ei in a tree Ti, choose any edge ei in the complex T which lies

in the image of ei under p. We define m(ei) to be m(ei).

To see that this map is well defined, we need to show that m does not

depend on our choice of edge ei in Ei. Consider an edge ei in the tree Ti,

which has image a set of edges Ei in T . Let e and e be a pair of edges in

Ei. Then e and e are given by ei × v and ei × v respectively where v, v are

vertices in T1× . . .× T̂i× . . .× Tk. Since T1× . . .× T̂i× . . .× Tk is a CAT(0)

cube complex, it is connected and contains an edge path p from v to v. Then

{ei} × {p} is a straight square-path from e to e, and so by lemma 2.3 each

image of ei in T is mapped to the same hyperplane in HT .

Suppose e, e are a pair of edges in T such that m(e) = m(e). By lemma
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2.3 if m(e) = m(e) then there is a straight square path from e to e. Suppose

e is an edge in Ei = p(ei) and e is an edge in Ej = p(ej). Then we have a

straight square-path in T from the edge e to the edge e. By lemma 2.4, it

follows that ei = ej. Hence the map m−1 is also well defined.

Define a map cT : HT → {1, . . . , k} by taking cT (h) to be the index of the

tree containing m−1(h). To see that cT is a hyperplane colouring map, note

that for any ei, ei ∈ Ti the midpoints of ei and ei are distinct and hence the

hyperplanes m(ei) and m(ei) do not intersect in T . Hence T has hyperplane

chromatic number at most k.

2.2 2-dimensional cube complexes which do

not embed in products of k trees

2.2.1 CAT(0) cube complexes

Lemma 2.8. ([12]) For every integer k > 0 there exists a graph Gk with

chromatic number k and no cycle of length less than 6.

Proof. For k < 3 the result is trivial. The following construction is due to

Blanche Descartes in [12]. We define inductively a sequence G3, G4, . . . of

graphs. For each k ≥ 3 Gk has chromatic number k and contains no cycle of

length less than 6.

Let G3 be a graph with chromatic number 3 and no cycles of length less

than 6, for example the cycle of length 7. Let mi be the number of vertices

in Gi, and define Mi :=

(
imi − i+ 1

mi

)
. For all i ≥ 3, let Gi+1 be defined

as follows: take Mi copies of Gi, and imi− i+1 additional vertices, which we

will refer to as central vertices. Choose a one-to-one map between the set of

copies of Gi and the set of subsets of the central vertices with mi members.

Denote the sets of mi central vertices by S1, S2, . . . SMi and denote the copy

of Gi corresponding to Sj by Gj
i .

For each set Sj of central vertices, we add edges joining each vertex in Sj

to a vertex of Gj
i in such a way that no two edges are incident with the same

64



e1

v

v

v1 v2

e1 e2

e2

Gij2Gij1

Figure 2.2: Cycles must have length at least six

vertex. This is possible since we have chosen the size of the set Sj to be the

number of vertices in Gj
i . The resulting graph is Gi+1.

To see that there are no cycles of length less than 6 in the graph Gi we

will use induction on i. Suppose that Gi has no cycles of length less than 6.

Then any cycle in Gi+1 with length less than 6 cannot lie entirely within a

copy of Gi, and hence must contain a central vertex v and a pair of edges

e1, e2 incident with v. Since there is no edge joining two central vertices,

e1 joins v to some vertex v1 of Gj1
i for some j1 ∈ {1, . . . ,Mi}. Since no two

edges from Sj1 to Gj1
i have a common end point, the edge e2 must join v to

some vertex v2 of Gj2
i for some j2 ∈ {1, . . . ,Mi} \ j1.

There are no edges joining vertices in different copies of Gi, hence since

j1 6= j2 there must be a second central vertex v in the cycle. As above, within

the cycle each central vertex must be incident with two edges which join it

to vertices in distinct copies of Gi. Note that any cycle containing 3 or more

central vertices must therefore have length greater than or equal to 6.
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Let us assume that only two of the vertices of the cycle are central vertices,

v and v. Then there must be edges in the cycle from v to vertices in Gj1
i and

Gj2
i . Let e1 be an edge from Gj1

i to v. Suppose e1 is incident with v1. Then

v does not lie in the set Sj1 of central vertices since no two edges from Sj
1

to Gj1
i can share an endpoint. Hence there is no edge from v to a vertex in

Gj1
i , which is a contradiction. Hence e1 must be incident with a vertex in Gji

i

other than v1. Since we are interested in the shortest possible circuit, let us

assume that this vertex is joined to v1 by an edge.

Similarly, there must be an edge e2 from v to a vertex of Gj2
i other than

v2. Hence it follows that any cycle in Gi+1 has length at least six. See figure

2.2.

Since G3 contains no cycles of length less than 6, it follows that for all

k ≥ 3 Gk contains no cycle of length less than 6.

To see that for each k the chromatic number of Gk is k we again use

induction on i. Suppose that Gi has chromatic number i. Since no pair of

central vertices are joined by an edge, and no pair of vertices in different

copies of Gi are joined by an edge, we can colour Gi+1 with the colours

1, . . . , i, i + 1 by colouring the vertices in each copy of Gi using a colouring

map for Gi, and the central vertices with colour i + 1. Hence Gi+1 has

chromatic number at most i+ 1.

Suppose Gi+1 can be coloured with i colours. Then the imi− i+1 central

vertices can be coloured with i colours, and for some d ∈ 1, . . . , i there are

at least mi vertices with colour d. Let Sj denote a set of mi central vertices

in which every vertex has colour d. Then every vertex in Gj
i is joined by

an edge to a central vertex which has colour d, and so Gj
i must be coloured

in i − 1 colours, which contradicts the fact that Gi has chromatic number

i. Hence Gi+1 has chromatic number i + 1. G3 is a cycle with odd length,

and hence has chromatic number 3. Hence for each k ≥ 3 Gk has chromatic

number k.

Lemma 2.9. For every integer k > 0 there exists a compact 2-dimensional

CAT(0) cube-complex Xk such that there is no bending map from Xk to a

product of less than k trees.
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Figure 2.3: The construction of X3 from G3

Proof. By Lemma 2.8 we can construct a graph Gk which has chromatic

number k and contains no cycles of length less than six. We construct Xk as

follows: begin with a vertex x. For each vertex v in Gk we add a vertex v

and an edge ev = (x, v) to Xk. If the vertices u and v are joined by an edge

in Gk then we attach a square Suv to Xk by identifying the edges eu and ev

with two adjacent faces of Suv. For an example of this construction in the

case k = 3, see figure 2.3.

Since Xk is constructed by identifying the faces of cubes of dimension less

than or equal to 2, Xk is a 2-dimensional cube complex. For all k > 1 the

cube complex Xk is locally CAT(0). In order to see this, consider the link of

each vertex in Xk. By Lemma 1.29 Xk is CAT(0) if the link of every vertex

in Xk contains no cycle of length less than 4.

We consider the vertices of Xk in three sets. By definition, the link of the

vertex x is the graph Gk which was chosen to contain no cycles of length less

than 6. Consider the vertices of Xk which correspond to vertices in Gk. If

v is such a vertex then the set of edges in link(v) corresponds to the set of
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squares in Xk which contain v in their boundaries. Every such square is also

incident with the edge ev, but since Gk contains no cycles of length two, no

two squares in Xk share more than one edge. It follows that link(v) contains

no cycles. The remaining set of vertices are those lying on the boundary of

squares of the form Suv which are not joined to the vertex x by an edge.

Each of these vertices is in the boundary of a single square, and hence its

link contains a single edge. Hence no vertex has a link which contains a cycle

of less than 4 edges, and it follows that Xk is locally CAT(0).

In order to complete the proof that Xk is CAT(0), we need to show that

Xk is simply connected. Considering the definition of Xk, we observe that

each square in Xk lies in the star of the vertex x, that each edge of Xk lies

either in star(x) or in the boundary of a square in star(x), and that each

vertex lies either in star(x) or in the boundary of some higher dimensional

cube of star(x). Hence Xk is equal to the closure of the star of x in Xk, and

Xk is path-connected.

Suppose there exists a loop ` inXk which is not homotopic to the constant

loop. Then ` is homotopic to a loop in the 1-skeleton of Xk. Suppose this

loop contains edges which do not lie in the star of x. Each such edge lies in

the boundary of a square in star(x), and so we can construct a homotopy

from ` to a loop which lies in the 1-skeleton of star(x). Hence the existance

of a loop ` in Xk which is not homotopic to the constant loop implies the

existence of a non-trivial loop in the 1-skeleton of star(x). By definition,

star(x)(1) is a tree and hence contains no non-trivial loops. Hence Xk is

simply connected.

We claim that Xk has hyperplane chromatic number at least k. Consider

the set Hx of hyperplanes in Xk which contain midpoints of edges which are

incident with the vertex x. Since the vertex x has finite valency, the set Hx

is finite and hence a hyperplane colouring of the set Hx with finitely many

colours exists.

Let V Gk denote the set of vertices of Gk. We define a map g from V Gk

to the set of edges incident with x by setting g(v) = ev. Let m be the map

from the set of edges in a cube complex to the set of hyperplanes, as defined

in the proof of lemma 2.7. Suppose c : Hx → {1, 2, . . . , κ} is a hyperplane
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colouring map on the set Hx.

Then c ◦m ◦ g : V Gk → {1, 2, . . . , κ} is a colouring map for Gk. To see

this, suppose u and v are joined by an edge in Gk. Then there is a square Suv

in Xk with the edges eu and ev in its boundary. The hyperplanes m(eu) and

m(ev) intersect in the square Suv and it follows that c(m(eu)) 6= c(m(ev)).

Hence c ◦m ◦ g(u) 6= c ◦m ◦ g(v) as required.

Suppose κ < k. Then the chromatic number of Gk is less than k, which is

a contradiction. So the hyperplane chromatic number of Xk is greater than

or equal to k. Hence by lemma 2.7, there is no bending map from Xk to a

product of less than k trees.

Lemma 2.10. There exists a 2-dimensional CAT(0) cube complex X∞ such

that there is no bending map from X∞ to a finite product of trees.

Proof. By lemma 2.9, for every k ∈ N we can choose a 2-dimensional CAT(0)

cube complex Xk such there is no bending map from Xk to a product of less

than k trees. For each k ∈ N\{1}, take a copy of Xk and choose two vertices

on the boundary of Xk which are not joined by an edge to the vertex x. To

see that this is possible, consider the proof of lemma 2.9. For each k > 1

we can choose Xk so that each Xk contains more than one square, and each

square contains a vertex not joined by an edge to the vertex x. Label the

chosen vertices as v−k and v+
k .

We define a CAT(0) cube complex X∞ as follows: Consider the union⋃
k∈N\{1}Xk and define the equivalence relation ∼ by v−k−1 ∼ v+

k for all k > 2.

Then X∞ =
⋃

k∈N\{1}Xk/ ∼.

Clearly X∞ is a 2-dimensional cube complex. To see that X∞ is CAT(0),

we consider the link of each vertex in X∞. Since we know that each Xk

is CAT(0), we need only consider the link of those vertices given by the

identification of v−k−1 and v+
k for some k > 2. We saw in the proof of lemma

2.9 that each of these vertices has link consisting of a single edge. Since no

higher dimensional cubes are identified under ∼, the link of the vertex in X∞

corresponding to the equivalence class [v−k−1, v
+
k ] is a pair of disjoint arcs, and

contains no cycles. Hence X∞ is CAT(0).
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Suppose there is a bending map from X∞ to a product of K trees for

some K. Then by lemma 2.7 there is a hyperplane colouring map c : X∞ →
{1, 2, . . . , K} and by remark 2.2, the restriction of c to the set HXK+1

is a

hyperplane colouring map, where HXK+1
is the set of hyperplanes in XK+1.

Then XK+1 has hyperplane chromatic number less than or equal to K and

this contradicts lemma 2.9, hence there exists no bending map from X∞ to

a finite product of trees.

2.2.2 Hyperbolic cube complexes

In order to prove that the cube complexes constructed in the previous section

are CAT(0), we made use of the fact that the link of any vertex in the

complex contains no vertex whose link contains a cycle of less than 4 edges.

In fact, we have constructed a cube complex which contains no vertex whose

link contains a cycle of less than 7 edges. This allows us to prove a stronger

result, that for any k > 0 we can choose a metric dH on Xk such that (Xk, dH)

is hyperbolic. In order to show this, we need the following definition and

lemmas.

Definition. ([20],page 119) The model space (M,χ0) is the complete simply

connected manifold of constant curvature χ0. A (M,χ0)-simplicial space is

a simplicial complex in which each simplex is isometric to a simplex in the

model space (M,χ0).

Let X be a cube complex in which each n-cube is isometric to the Eu-

clidean n-cube with side length 1. Let sub(X) be a subdivision of X such

that every cell in sub(X) is a simplex. Such a subdivision is always possi-

ble, for example take the barycentric subdivision of X. Then sub(X) is a

(M, 0)-simplicial space.

Definition. We say two cell complexes P1 and P2 are combinatorially equiv-

alent if there is a bijective map f from the vertex set of P1 to the vertex

set of P2 such that if u1, . . . , uj are vertices lying in the boundary of an

i-dimensional cell of P1 then f(u1), . . . , f(uj) lie in the boundary of an i-

dimensional cell of P2.
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2-cube

Hyperbolic 2-cube

Figure 2.4: Constructing a “square” in the (M,−1) model space.

For each n, we define a n-dimensional polyhedron in the model space

(M,−1) which is combinatorially equivalent to the Euclidean n-cube and in

which every edge has length 1. Call this the hyperbolic n-cube.

To see that this is possible, consider embedding the Euclidean n-cube

in the model space (M,−1). We can construct a geodesic from the center

of the cube to each vertex. Extending these geodesics, we can take the

intersection of these geodesics with a n-sphere centered at the centre of the

cube, and construct a polyhedron whose vertices are these points and which

is combinatorially equivalent to the Euclidean n-cube. For an illustration of

the 2-dimensional case, see figure 2.4.

By varying the radius of the sphere, we can construct such a polyhedron

in which the lengths of the edges are any non-zero length, and hence can

choose the edge length to be 1. This polyhedron is the hyperbolic n-cube.

Note that the angle between adjacent edges will be less than π
2

in such a

polyhedron.

Define a piecewise hyperbolic metric on the cube complex X by taking

each n-cube inX to be isometric to the hyperbolic n-cube. For clarity, we will

denote X with this metric by X. Let sub(X) denote a subdivision of X such

that every cell in sub(X) is a simplex. Since each cube in X was isometric
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to a cube in the (M,−1) model space, sub(X) is a (M,−1)-simplicial space.

The following lemmas are due to Gromov.

Lemma 2.11. ([20], page 120) An (M,χ0)-simplicial space L satisfies CAT(1)

if and only if the curvature of L is less than or equal to 1 and for every two

points l1 and l2 in L with distance between them less than π, l1 and l2 can be

joined by at most one geodesic segment in L.

Lemma 2.12. ([20], page 120) An (M,χ0)-simplicial space X has curvature

less than or equal to χ if and only if χ ≥ χ0 and the link of each cell is

CAT(1).

Lemma 2.13. For every integer k > 0 there exists a compact, 2-dimensional

hyperbolic cube-complex Xk such that there is no bending map from Xk to T

where T is a product of less than k trees with the piecewise hyperbolic metric.

Proof. By Lemma 2.9, there exists a 2-dimensional CAT(0) cube complex

Xk such that there is no bending map from Xk to a product of less than k

trees with the standard piecewise Euclidean metric.

Replace each of the euclidean cubes in Xk with a hyperbolic n-cube in the

model space (M,−1) as described above. Hence form the piecewise hyper-

bolic space Xk. Suppose that there is a bending map from Xk to a product

T = T1× . . .×Tnwhere n < k and where T has the piecewise hyperbolic met-

ric. Then there is a bending map from Xk to the product T = T1 × . . .× Tn

with the piecewise Euclidean metric, which is a contradiction.

It remains to show that Xk is hyperbolic. Since lemmas 2.11 and 2.12

apply to (M,χ0)-simplicial complexes, we need to subdivide Xk in such a way

that every cell is a simplex. Since Xk is 2-dimensional, we can do this by

placing a vertex at the center of each square, and joining that vertex to each

corner of the square. We call this complex sub(Xk), and note that with the

metric inherited from Xk it is a (M,−1)-simplicial space. Then by lemma

2.12, sub(Xk) (and hence Xk) has curvature -1 if and only if the link of every

cell in sub(Xk) is CAT(1).

Since the dimension of Xk is 2, we need only consider the links of the

vertices, which will be graphs whose edges are given length equal to the

72



corresponding angle of the triangle in Xk. We first consider the vertices of

sub(Xk) which were not vertices of Xk. Each of these vertices lies within

a hyperbolic space, namely the hyperbolic 2-cube of which it is the center.

Hence by lemmas 2.11 and 2.12, the links of these vertices contain no cycles

of length less than 2π.

We now consider those vertices of sub(Xk) which are also vertices of

Xk. Since the length of edges in the link of a vertex is given by the size

of the corresponding angles, taking sub(Xk) preserves the total length of a

cycle in the link of a vertex under this metric, while doubling the number of

edges. Using the 2nd hyperbolic cosine rule (see Hyperbolic Geometry, [1]),

we calculate that the angle α at a corner of a regular hyperbolic 4-gon with

sides of length 1 is approximately 1.36 (2 d.p). Note that 4×α < 2π < 5×α.

Hence if the link of a vertex in Xk contains no cycles of less than 5 edges, it

contains no cycles of length less than 2π and hence any two points in link(v)

joined by more than one geodesic have distance between them greater that π.

Hence by lemma 2.11 the link of the corresponding vertex in X is CAT(1).

By lemma 2.8 and the proof of lemma 2.9, Xk satisfies the condition that

the link of any vertex contains no cycle with less than 5 edges. Hence Xk

has curvature -1, and is hyperbolic.

2.3 Cube complexes with isometric group ac-

tions

2.3.1 The space U

The following definitions and lemmas are from “The Geometry and Topology

of Coxeter groups” by Michael Davis ([10]).

Definition. (page 59, [10]) A mirror structure on a space Y is an index set

Q and a family (Yq)q∈Q of closed subspaces of Y . Each Yq is called a mirror

of Y . For any subset P ⊂ Q, define YP =
⋂

p∈P Yp. Let Q(y) denote the set

{q ∈ Q|y ∈ Yq}.
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Definition. (page 59, [10]) A family of groups with index set Q consists of

a group Γ, a subgroup B of Γ and a family (Γq)q∈Q of subgroups of Γ such

that each Γq contains B. For any non empty subset P ⊂ Q, define ΓP to be

the group generated by {Γp|p ∈ P}. Let Γ∅ = ∅.

In this thesis we will only consider families of groups where the subgroup

B of Γ is trivial. In this case, any set (Γq)q∈Q of subgroups of Γ is a family

of groups.

Definition. (page 60, [10]) Given a space Y with mirror structure (Yq)q∈Q

and a group Γ with family of groups (Γq)q∈Q we can define a space U(Γ, Y ) =

U on which there is a Γ action with fundamental region homeomorphic to Y .

U(Γ, Y ) = Γ× Y/ ∼

where ∼ is the equivalence relation on points of Γ × Y given by (γ1, y1) ∼
(γ2, y2) if and only if y1 = y2 and γ−1

1 γ2 ∈ ΓQ(y1)

There is a natural action of Γ on Γ× Y given by g(γ, y) = (gγ, y) for all

g ∈ Γ, (γ, y) ∈ Γ×Y . Suppose (γ1, y1) and (γ2, y2) are a pair of points in Γ×Y
such that (γ1, y1) ∼ (γ2, y2). Then g(γ1, y1) ∼ g(γ2, y2) since (gγ1)

−1gγ2 =

γ−1
1 (g−1g)γ2 = γ−1

1 γ2 ∈ ΓQ(y1). Hence the action of Γ on Γ × Y descends to

an action on U .

Let i : Y → U be the map defined by y 7→ (e, y) where e is the identity

element of Γ. Then i(Y ) is an embedded copy of Y in U , and is a fundamental

region for the action of Γ on U . For each γ ∈ Γ and subspace Y of Y let

(γ, Y ) denote the subspace {(γ, y)|y ∈ Y }.
Suppose that there is a metric d on the space Y . If x, y ∈ Y then for any

γ in Γ, we define a metric on (γ, Y ) by d((γ, x), (γ, y)) = d(x, y). We define

a piecewise geodesic path in U to be a path p such that for any γ ∈ Γ the

intersection of p with (γ, Y ) is a geodesic with respect to the metric d in the

subspace (γ, Y ). Suppose (g, x), (h, y) are points in U . The space U inherits

a metric from Y by taking d((g, x), (h, y)) to be the length of the shortest

piecewise geodesic path from (g, x) to (h, y).
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Definition. (page 61, [10]) A mirror structure on Y is Γ-finite (with respect

to a family of subgroups for Γ) if XP = ∅ for any finite subset P ⊂ Q such

that ΓP is infinite.

Lemma 2.14. (page 61, [10]) Given a group Γ and a space Y with associated

mirror structure and family of groups, the Γ-action on U(Γ, Y ) is properly

discontinuous if and only if the following conditions hold:

(a) Y is Hausdorff

(b) The mirror structure is Γ-finite.

Lemma 2.15. (page 62, [10]) Suppose (W,S) is a Coxeter system. Define

a family of subgroups indexed by S by taking, for each s ∈ S, Ws to be

the subgroup of order 2 generated by s. Then U(W,Y ) is connected (resp.

path-connected) if the following two conditions hold:

(a) Y is connected (resp. path connected) and

(b) Ys is nonempty for each s ∈ S.

Definition. (page 113, [10]) Let (W,S) be a Coxeter system. A subset T ⊂ S

is spherical if the subgroup generated by T is finite.

Lemma 2.16. (page 151, [10]) Let (Γ, S) be a Coxeter system and let Y be a

connected cell complex withh associated family of groups and mirror structure

indexed by S. Then U(Γ, Y ) is simply connected if and only if the following

three conditions hold:

(a) Y is simply connected.

(b) For each s ∈ S, Ys is nonempty and path connected.

(c) For each spherical subset {s, t} ∈ S(2), Ys ∩ Yt is nonempty.
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2.3.2 The cube complex Uk

For each k ∈ N, let Gk be the graph as defined in lemma 2.8. Let Wk be the

Coxeter group 〈Sk|s2 = 1∀s ∈ Sk〉 where Sk is in one-to-one correspondence

with the set of edges of Gk.

We define a family of groups with respect to Wk with index set Sk by

taking Wk s to be the order two subgroup of Wk generated by s.

Let Xk be the two-dimensional cube complex as defined in lemma 2.9.

We define a mirror structure on Xk with index set Sk as follows: For each

s ∈ Sk there is a corresponding edge {u, v} in Gk. For each such edge, we

have a square Suv of Xk. Let Xk s be the vertex of Suv opposite the vertex x.

For each k ∈ N, we define

Uk = U(Wk, Xk)

Recall that U(Wk, Xk) = Wk × Xk/ ∼. Wk × Xk is a collection of 2-

dimensional cube complexes. The equivalence relation ∼ leads to the identi-

fication of a pair of points only if those points are vertices on the boundaries

of distinct copies of Xk. It is clear from this that the resulting complex Uk

is a 2-dimensional cube complex.

Let i(Xk) = {(e, x)|x ∈ Xk}. Then i(Xk) is an embedded copy of Xk in

Uk. i(Xk) is a fundamental region for the action of Wk on Uk, hence since

Xk is compact the action is cocompact.

Corollary 2.17. Uk is connected and path connected.

Proof. Xk is connected and path connected, and Wk is a Coxeter group.

Each Xk s is non-empty, hence by lemma 2.15 Uk is connected and path

connected.

Lemma 2.18. The action of Wk on Uk is isometric with the inherited metric.

Proof. Let (γ1, x1), (γ2, x2) be a pair of distinct points in Uk and let p be a

shortest geodesic path from (γ1, x1) to (γ2, x2). Let

(γ1, Xk) = (g1, Xk), (g2, Xk), . . . , (gn, Xk) = (γ2, Xk)
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denote the sequence of copies of Xk in Uk through which p passes, and let

pi = (gi, Xk) ∩ p denote the geodesic segment of pi in (gi, Xk).

Since p is a path, pi ∩ pi+1 must be a point (gi, xi) ∼ (gi+1, xi) and by

the definition of Uk xi must lie in a mirror Xk si
of Xk and we must have

g−1
i gi+1 ∈ Wk si

.

Now consider the pair of points g(γ1, x1) = (gγ1, x1), g(γ2, x2) = (gγ2, x2).

Then the set g(p) = {g(x)|x ∈ p} is a piecewise geodesic path from g(γ1, x1)

to g(γ2, x2). To see this, note that g(pi) contains the point (ggi, xi) and

g(pi+1) the point (ggi+1, xi) and that (ggi)
−1(ggi+1) = g−1

i (g−1g)gi+1 = g−1
i gi+1.

Hence g(p) is a path. For each i, g(pi) is a geodesic path in (gγi, Xk) with

length equal to the length of pi, and hence g(p) is a piecewise geodesic path.

Hence d(g(γi, x1), g(γ2, x2)) ≤ d((γ1, x1)(γ2, x2)).

Suppose there exists a piecewise geodesic path from g(γ1, x1) to g(γ2, x2)

with length less than p. Then

d(g(γ1, x1), g(γ2, x2) ≥ d(g−1(g(γ1, x1)), g
−1(g(γ2, x2))

= d((γ1, x1), (γ2, x2))

Hence d(g(γ1, x1), g(γ2, x2) = d((γ1, x1), (γ2, x2)) and the action of Wk on

Uk is isometric.

Corollary 2.19. The action of Wk on Uk is proper.

Proof. Suppose M is a subset of Sk such that Wk M is infinite. Then M must

contain more than one element. But Xk s ∩ Xk t = ∅ for any choice s, t of

distinct elements of Sk, hence the mirror structure on Xk is Wk-finite. Xk is

Hausdorff. Hence by lemma 2.14 the action of Wk on Uk is proper.

Lemma 2.20. Uk is non-positively curved.

Proof. We consider the links of vertices of Uk. Let p : Wk ×Xk → Uk denote

the canonical map onto Uk, and let p−1(x) denote the preimage of the point

x. The mirror structure on Xk was chosen so that each point which lies in a

mirror is a vertex of Xk. The relation ∼ identifies points (γ1, x1) and (γ2, x2)

of Wk × Xk only if x1 and x2 lie in mirrors, and so ∼ identifies only those
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points which are vertices. It follows that the link of a vertex v is isomorphic

to the disjoint union of the links of the vertices p−1(v). As in the proof of

lemma 2.9 the link of any vertex in Xk contains no cycle of less than 4 edges.

Hence by lemma 1.29 Uk is non-positively curved.

Lemma 2.21. Uk is simply connected.

Proof. We saw in the proof of lemma 2.9 that the space Xk is simply con-

nected. Each Xk s contains a single point, and hence is nonempty and path

connected. For any s, t ∈ S the group generated by s and t is infinite, hence

the Coxeter system (Wk, Sk) has no 2-element spherical subsets. Hence by

lemma 2.16 Uk is simply connected.

Theorem 2.1. For each k ∈ N there exists a right-angled Coxeter group Wk

and a 2-dimensional CAT(0) cube complex Uk such that Wk acts isometri-

cally, cocompactly and properly on Uk and there is no bending map from Uk

to a product of less than k trees.

Proof. Let Wk and Uk be as defined at the beginning of the section. Then

by lemmas 2.20 and 2.21, Uk satisfies the conditions of lemma 1.29 and is a

CAT(0) cube complex. By the definition of Uk, since Xk is a 2-dimensional

cube complex Uk is also a 2-dimensional cube complex.

By lemmas 2.19 and 2.18 and the definition of Uk, Wk acts isometrically,

cocompactly and properly on Uk. Suppose there is a bending map α from Uk

to a product of less than k trees. i(X) = (e,Xk) is an embedded copy of Xk

in Uk, so the restriction α|i(X) is a bending map from Xk to a product of less

than k trees. This is a contradiction of lemma 2.9, hence there is no bending

map from Uk to a product of less than k trees.
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Chapter 3

Embeddings in finite products

of trees

We prove the following result:

Theorem 3.1. Let G be a group which acts isometrically, properly, and

cocompactly on a finite dimensional, locally finite CAT(0) cube complex X

in such a way that stabG(h) is separable for each hyperplane h of X. Then

there is a quasi-isometric embedding of X in a finite product of locally finite

trees.

If in addition to satisfying the conditions of theorem 3.1, the action of G

on X is free, by lemma 1.42 there is a quasi-isometric embedding of the group

in the cube complex X. Hence we have the following corollary to theorem

3.1:

Corollary 3.2. Let G be a group which acts freely, isometrically, properly,

and cocompactly on a finite dimensional, locally finite CAT(0) cube complex

X in such a way that stabG(h) is separable for each hyperplane h of X. Then

there is a quasi-isometric embedding of G in a finite product of locally finite

trees.
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3.1 Embeddings of the CAT(0) Cube Com-

plex in a Product of Trees.

3.1.1 Choosing N-orbits of h which do not cross

Let a group G act properly and cocompactly on a CAT(0) cube complex X.

Then there exists a compact subset C of X such that GC = X. Since C is

compact, there is a finite set of hyperplanes inX which intersect the subset C.

Denote these hyperplanes by h1, h2, . . . , hn. Then the set of all hyperplanes

in X is given by {Gh1, Gh2, . . . , Ghn}, where Ghi = {ghi|g ∈ G}.
In general, there may be some g ∈ G and hi ∈ {h1 . . . , hn} such that

ghi ∩ hi 6= hi and ghi ∩ hi 6= ∅. In this case we say that ghi crosses hi.

For a given hyperplane h ∈ {h1, . . . , hn}, let Lh denote the set {g ∈
G|gh crosses h} and Hh the group stabG(h) = {g ∈ G|gh = h}.

Lemma 3.3. Let G be a group which acts properly and cocompactly on a

CAT(0) cube complex X. Then for any hyperplane h ∈ {h1, . . . , hn}, Lh =

stabG(h)FhstabG(h) for some finite set Fh ⊂ G.

Proof. Suppose G acts properly on X and let h be any hyperplane of X.

Any compact subset K of the hyperplane h is a compact subset of X, hence

{g ∈ stabG(h)|gK ∩K 6= ∅} ⊂ {g ∈ G|gK ∩ JK 6= ∅} is a finite set, and the

action of stabG(h) on h is proper.

Suppose G acts cocompactly on X, and let h be any hyperplane in X.

Let C be a compact subset of X such that GC = X. Any midplane in the

hyperplane equivalence class h must be the image of a midplane in C. Let M

be the set of midplanes in C which are mapped by some g ∈ G to a midplane

of h. For each Mi ∈ M choose a gi ∈ GH such that giMi ∈ h. Then the set

C ′ =
⋃

Mi∈M giMi is the union of a finite set of midplanes of h and hence is

a compact subset of h. We claim HhC
′ = h.

Suppose M ′ is a midplane in h. Then M ′ = gMi for some g ∈ G and some

Mi ∈ M . Then gi(g
−1M) = giMi ∈ C ′ and gig

−1 ∈ Hh since any element of

the group which maps a midplane in h to a midplane in h stabilises h. Hence

HhC
′ = h and the action of Hh on h is cocompact.
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If g ∈ Lh then gh crosses h. Hence for some h1, h2 ∈ Hh, gh1C
′ and h2C

′

intersect but are not equal. We will say that subsets which intersect but are

not equal cross.

Since gh1C
′ and h2C

′ cross, so do h−1
2 gh1C

′ and C ′. Since G acts properly

onX and C ′ is a compact subset ofX, the set Fh = {f ∈ G|fC ′ crosses C ′} ⊆
{f ∈ G|fC ′ ∩ C ′ 6= ∅} is finite. We have shown that if g ∈ Lh, then

g ∈ HhFhHh, that is Lh ⊆ HhFhHh.

Suppose g ∈ HhFhHh. Then for some h1, h2 ∈ Hh and some f ∈ Fh,

g = h1fh2. Then gh crosses h if and only if h1fh2h = h1fh crosses h. Since

h1 ∈ stabG(h), h−1
1 ∈ stabG(h) and h1fh crosses h if and only if fh crosses h.

By the definition of the set Fh, fh crosses h, hence gh crosses h and g ∈ Lh.

Hence HhFhHh ⊂ Lh and we have Lh = HhFhHh = stabG(h)FhstabG(h) as

required.

Lemma 3.4. Let G be a group which acts properly and cocompactly on a

CAT(0) cube complex such that stabG(h) is separable for each hyperplane h.

Then for each h ∈ {h1, . . . , hn} there exists a finite index subgroup Kh of G

containing stabG(h) such that for all k ∈ Kh, kh does not cross h.

Proof. By the hypothesis stabG(h) = Hh is separable for any h, so we have

Hh =
⋂
Hj where, for each j, Hj is a finite index subset of G. Hence for all

g ∈ G \Hh , there exists a Hj with g /∈ Hj.

As Fh = {f ∈ G|fC ′ crosses C ′} if f ∈ Fh then fh crosses h, and so if

f ∈ Fh, f does not stabilise h. Hence Fh ∩ Hh = ∅ and for each f ∈ Fh we

can choose a finite index Hj not containing f . We intersect these to form a

subgroup Kh which contains Hh = stabG(h) and contains no element of Fh.

Since Lh = HhFhHh, it follows that Kh contains no element of Lh, and hence

for all k ∈ Kh, kh does not cross h. Since Fh is finite and each Hj is finite

index in G, it follows that Kh is a finite index subgroup of G.

Lemma 3.5. Let G be a group which acts properly and cocompactly on a

CAT(0) cube complex X such that stabG(h) is separable for any hyperplane

h. Then we can find a finite index normal subgroup N of G such that mhi

does not cross hi for any m ∈ N , hi ∈ {h1, h2, . . . , hn}.
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Proof. Taking M =
⋂

iKhi
gives a subgroup of G such that hhi does not

cross hi for any h ∈ M, hi ∈ {h1, h2, . . . , hn}. M is an intersection of a finite

number of finite index subgroups of G, and hence is finite index in G.

Let N =
⋂

g∈GM
g. Since M is finite index in G, there are a finite number

of subgroups conjugate to M in G. Hence the intersection
⋂

g∈GM
g is an

intersection of a finite number of finite index subgroups, and so N is a finite

index normal subgroup of G. By definition, for all m ∈ N, hi ∈ {h1, . . . , hn},
mhi does not cross hi.

Remark 3.6. Since N is finite index in G, we can choose a finite set of coset

representatives for N in G, {γ1, . . . , γl}. Let {h1, . . . , hk} denote the finite set

of hyperplanes {γihj|i ∈ 1, . . . , l, j ∈ 1, . . . , n}. Then the set {Nh1, . . . , Nhk}
includes all the hyperplanes of the cube complex X.

Note that for any m ∈ N and any hyperplane h in X mh does not cross

h. This follows from the fact that N is a normal subgroup: For any h we can

write h = ghi for some g ∈ G and hi ∈ {h1, . . . , hn} and so for any m ∈ N

mh ∩ h = mghi ∩ ghi = g(m′hi) ∩ ghi = g(m′hi ∩ hi)

for some m′ ∈ N , which by lemma 3.5 is either the empty set or the hyper-

plane ghi.

3.1.2 Using N to construct a product of trees

Given a group G with a proper, cocompact action on a CAT(0) cube complex

X such that stabG(h) is separable for every hyperplane h, we will construct

an embedding of X in a product of trees, by first constructing for each hi a

tree Ti by considering Nhi. We will use the method described in the proof

of lemma 1.38. We begin by defining a halfspace system.

Definition. Given any hyperplane hi ∈ {h1, . . . , hk} consider the set of hy-

perplanes Nhi. For each n ∈ N , nhi separates X into two connected com-

ponents which we denote by Xnhi
and X∗

nhi
. We denote the set of halfspaces

obtained in this way by Hi = {Xnhi
, X∗

nhi
|n ∈ N}. We consider the triple
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(Hi,≤, ∗) where ≤ is the order given by inclusion of halfspaces and ∗ is the

order reversing involution given by interchanging the two halfspaces defined

by any hyperplane.

We define the boundary map ∂ : Hi → Hi/ ∼ to be the map which takes

halfspaces to their boundaries, i.e. ∂(Xnhi
) = {Xnhi

, X∗
nhi
} = ∂(X∗

nhi
). For

simplicity of notation, we equate the equivalence class {Xnhi
, X∗

nhi
} with the

hyperplane nhi.

Lemma 3.7. (Hi,≤, ∗) is a halfspace system.

Proof. By lemma 1.36 the set of halfspaces of a CAT(0) cube complex form

a halfspce system. Hi is a subset of the halfspaces H of X, with the partial

order ≤ and the involution ∗ on Hi agreeing with the partial order and

involution on H. Suppose X1 and X2 are any two elements of Hi. Since

Hi ⊂ H the set {X3 ∈ Hi|X1 ≤ X3 ≤ X2} is contained in the set {X3 ∈
H|X1 ≤ X3 ≤ X2} and hence is finite. Similarly, since the partial order

on Hi agrees with the partial order on H, at most one of the inequalities

X1 ≤ X2, X1 ≤ X∗
2 , X

∗
1 ≤ X2, X

∗
1 ≤ X∗

2 holds. These two observations on

the properties of triple (H,≤, ∗) show that it is a halfspace system.

Lemma 3.8. For each i ∈ {1, . . . , k} let (Hi,≤, ∗) be the halfspace system

defined above. Then the components of the cube complex corresponding to

(Hi,≤, ∗) (as defined in lemma 1.37) are trees. There is an injective map

ξ1 from the set of components of X \Nhi into the vertex set of one of these

trees.

Proof. For any i ∈ {1, . . . , k} we construct a CAT(0) cube complex Ci using

(Hi,≤, ∗) as follows: Take the set of vertices to be all sections for ∂ such that

v(n1h) 
 v(n2h)∗ for any n1h, n2h ∈ Hi.

Let h = hi. We define a map ξi from the set of components ofX\Nh in the

set of vertices by mapping each component D of X \Nh to the section ξi(D)

defined by setting ξi(D)(nh) to be the halfspace Xnh or X∗
nh containing D.

Since D is non-empty, the section ξi(D) will satisfy ξi(D)(n1h) � ξi(D)(n2h)∗

for all n1h, n2h ∈ N and hence is a vertex of Ci

We join two vertices u and v by an edge if and only if the values of the

sections u and v differ on exactly one hyperplane. If two components D and
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D′ are adjacent in X \Nh then they are separated by exactly one hyperplane

h. Hence the values of the sections ξi(D) and ξi(D
′) differ on exactly one

boundary {Xh, X
∗
h}, and so by definition the vertices ξi(D) and ξi(D

′) are

adjacent in C ′.

Choose any component of X \ Nh and denote it by E. Let Ti be the

component of Ci containing ξi(E), the vertex corresponding to the component

E. X is connected, and any two vertices are separated by at most finitely

many hyperplanes. Hence for any component D of X \Nh, the vertex ξi(D)

also lies in Ti and so the canonical map from X\Nh to Ci gives an embedding

in a single component of Ci.

To see that Ti is a tree, suppose that Ti contains a cycle. Then there is

a finite set of hyperplanes H ′ = {n1h, . . . , nkh} such that for each nih, there

is a pair of vertices v, v′ in the cycle such that the values of v and v′ on nih

differ.

Consider the finite set of halfspaces {Xnih, X
∗
nih
|nih ∈ H ′}. Since ≤ is

an order on the set of all halfspaces from this set, we can choose a minimal

halfspace in this set, i.e a halfspace Xnh with nh /∈ H ′ such that for all

nih ∈ H ′ Xnih 
 Xnh and X∗
nih


 Xnh. Without loss of generality, let this

halfspace be Xn1h. By the definition of the set H ′, there exists a vertex v in

the cycle such that v(n1h) = Xn1h. Suppose that the vertex u is adjacent to v

and lies in the cycle. The values of u and v differ on precisely one hyperplane,

call it nh. Then u(nh) = v(nh)∗.

Suppose that nh 6= n1h. As nh lies in the set H ′ we know that Xnh 
 Xn1h

and X∗
nh 
 Xn1h. Suppose that v(nh) = Xnh. By the definition of a vertex we

have Xnh = v(nh) 
 v(n1h)∗ = X∗
n1h and X∗

nh = v(nh)∗ = u(nh) 
 u(n1h)∗ =

X∗
n1h. Similarly, taking v(nh) = X∗

nh yields the same relations. However, at

least one of the relations Xnh ≤ Xn1h, Xnh ≤ X∗
n1h, X

∗
nh ≤ Xn1h, X

∗
nh ≤ X∗

n1h

must hold, and hence we must have nh = n1h. This means that the vertex

defined by u(n1h) = v(n1h)∗, u(nih) = v(nih)∀nih ∈ H ′ \ {n1h} is the only

vertex adjacent to u which lies in the cycle. This contradicts the existence

of such a cycle, hence Ti is a tree.

By our choice of subgroup N the action of N on X maps hyperplanes in
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Nhi to hyperplanes in Nhi. Hence the action of N on the set {Xnhi
, X∗

nhi
|n ∈

N}maps halfspaces to halfspaces in such a way that, for anym ∈ N , m(Xnhi
)

is either X(mn)hi
or X∗

(mn)hi
. We define an action of N on Ti by taking the

value of m(v) on the hyperplane nhi to be m(v(nhi)) for each m,n ∈ N and

each vertex v in Ti.

We check that the resulting section m(v) is a vertex as follows:

v(nih) � v(n2h)∗ ⇒ v(n1h) ∩ v(n2h) 6= ∅

⇒ m(v(n1h) ∩ v(n2h)) 6= ∅

⇒ m(v(n1h)) ∩m(v(n2h)) 6= ∅

= m(v(n1h)) � m(v(n2))
∗

Hence m(v) is a vertex of Ti. Similarly, we can show that if ξi(D) is the

image in Ti of the component D of X \Nhi then m(ξi(D)) = ξi(m(D)). Let

Y denote the product of trees T1 × . . .× Tn. Then there is a natural action

of N on Y resulting from the action of N on Ti.

Lemma 3.9. Suppose N is a normal subgroup of a finitely generated group

G with index n and that N acts on the left on a product of trees Y . Then G

acts on the product of n copies of Y .

Proof. In order to show this, we use Serre’s construction as described in

“Groups acting on graphs”, [13]. We have N normal in G with finite index

n. Let Y1, . . . , Yn be copies of Y . We have an action of N on each Yi. Let

x1, . . . , xn be left coset representatives for N in G. G acts on the left on the

set of cosets {x1N, . . . , . . . , xnN}. Define an action of G on the index set

{1, . . . .n} by gi = j if and only if g(xiN) = xjN .

Consider any g ∈ G. For each i ∈ {1, . . . , n} there is a unique expression

gxi = xgihi where gi ∈ {1, . . . , n} and hi ∈ N . Let (w1, . . . , wn), wi ∈ Yi

represent a general point of Y1 × . . .× Yn. We define

g(w1, . . . , wn) = (hg−11wg−11, . . . , hg−1nwg−1n)

Clearly e(w1, . . . , wn) = (w1, . . . , wn). To see that this is an action, it
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remains to check that f(g(w1, . . . , wn)) = (fg)(w1, . . . , wn).

For each i ∈ {1, . . . , n} there is a unique expression gxi = xgihi and a

unique expression fxi = xfiki where gi, fi ∈ {1, . . . , n} and hi, ki ∈ N .

Then (fg)xi = f(gxi) = f(xgihi) = (fxgi)hi = xfgikgihi = xfgiji since

multiplication in the group is associative, and we have the expression ji =

kgihi. In order to check that we have an action, we will need the following

expression for j(fg)−1i;

j(fg)−1i = jg−1f−1i = kg(g−1f−1i)hg−1f−1i = k(gg−1)f−1ihg−1f−1i = kf−1ihg−1f−1i.

Then

f(g(w1, . . . , wn)) = f(hg−11wg−11, . . . , hg−1nwg−1n)

= f(y1, . . . , yn) where yi = hg−1iwg−1i

= (kf−11yf−11, . . . , kf−1nyf−1n)

= (kf−11hg−1f−11wg−1f−11, . . . , kf−1nhg−1f−1nwg−1f−1n)

= (jg−1f−11wg−1f−11, . . . , jg−1f−1nwg−1f−1n)

(fg)(w1, . . . , wn) = (j(fg)−11w(fg)−11, . . . , j(fg)−1nw(fg)−1n)

Hence G acts on the finite product Y × . . .× Y as required.

Lemma 3.10. Let G be a group which acts properly and cocompactly by

isometries on a finite dimensional, locally finite CAT(0) cube complex X

such that stabG(h) is separable for any hyperplane h. Then for some k ∈ N
there is an isometric map from X to a product of trees T1 × . . .× Tk

Proof. By lemma 3.5 and remark 3.6 there exists a finite index subgroup N

and a finite set of hyperplanes h1, . . . , hk such that the action of N on the set

of hyperplanes generates all hyperplanes of X and such that, for all m ∈ N

and any hyperplane h ∈ X, mh does not cross h.

Each vertex x in X is uniquely defined by the set of half spaces containing

it. Since each hyperplane in X is the image under the action of N of some

unique hyperplane in the set {h1, . . . , hk}, each pair of halfspaces Xh, X
∗
h is

contained in the set Hi for some unique i. Hence for each vertex x the set
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of halfspaces {X(∗)
h |x ∈ X

(∗)
h } can be decomposed into the disjoint union of

the sets {X(∗)
h ∈ Hi|x ∈ X

(∗)
h }, i = 1, . . . , k. Hence each vertex in X is

uniquely defined by the list of components D1, . . . , Dk containing it, where

Di ∈ X \Nhi.

Define the map from the vertex set of the cube complexX to the vertex set

of the product of trees T1× . . .×Tk defined as follows: for each vertex x in X

and each i ∈ {1, . . . , k} let Di(x) be the component of X \Nhi containing x.

As defined in lemma 3.8 for each i there is an injective map ξi : X\Nhi 7→ Tiξ.

We define ξ : X(0) 7→ T1 × . . .× Tk by ξ(x) = ξ1(D1(x)), . . . , ξk(Dk(x)).

If u and u′ are adjacent vertices in X then they are separated by exactly

one hyperplane. Hence they map to vertices in T1×. . .×Tk which differ in only

one co-ordinate and are adjacent in that co-ordinate tree. Extending this to

a shortest edge path between any two vertices in X, we see that the distance

between two vertices is precisely the number of hyperplanes separating them.

Similarly, we have one edge in the shortest edge path between corresponding

vertices in the product of trees for each of these hyperplanes. Hence on the

level of edge metrics distance is preserved and soX(1) embeds d1-isometrically

in the one skeleton of T1 × . . .× Tk.

Since both the cube complex X and the product of trees T1× . . .×Tk are

CAT(0), the map ξ extends to a map from n-cubes to n-cubes for all n which

is d2-isometric. To see this, note the map ξ preserves incidence of edges and

consider the image under ξ of the 1-skeleton of a n-cube in X where n ≥ 2.

If n = 2 then, since T1 × . . . × Tk is CAT(0) and hence simply connected,

the image of the 1-skeleton of every 2-cube in X must be the 1-skeleton of a

2-cube in T1 × . . . × Tk. If n > 2, then since T1 × . . . × Tk is non-positively

curved the image of the 1-skeleton of every n-cube in X is the 1-skeleton

of an n-cube in T1 × . . . × Tk. Similarly, we can show that for any pair of

vertices ξ(u) and ξ(v) in the image of X in T1 × . . .× Tk, if n is the minimal

value for which ξ(u) and ξ(v) are vertices in the boundary of an n-cube in

T1 × . . .× Tk, then u and v lie in the boundary of an n-cube in X.

Corollary 3.11. Let G be a group which acts freely, properly and cocompactly

by isometries on a finite dimensional, locally finite CAT(0) cube complex X
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such that stabG(h) is separable for each hyperplane h of X. Then G embeds

quasi-isometrically in a finite product of trees.

Proof. By lemma 1.42, for any such G and X there is a quasi-isometric

embedding of G in X. By lemma 3.10 there is an isometric map from X to

a product of trees T1 × . . .× Tk. The composition of these two maps gives a

quasi-isometric map from the groupG to the product of trees T1×. . .×Tk.

3.2 Embeddings in a product of finitely branch-

ing trees

We now want to construct a product of locally finite trees into which X will

embed quasi-isometrically. The following construction is based on the work

of Dranishnikov and Schroeder in [17].

We begin by looking at trees in a different way to the previous section,

and consider rooted trees. Let (Q) = Q1, Q2, . . . be a sequence of non-empty

sets. We associate to (Q) the rooted simplicial tree T(Q) as follows: The set

of vertices is the set of finite sequences (q1, . . . , qα) with qi ∈ Qi. The empty

sequence defines the root vertex and is denoted by v∅. We denote the vertex

given by (q1, . . . , qα) as v(q1,...,qα). Two vertices are connected by an edge in

T(Q) if their lengths as sequences differ by one and the shorter can be obtained

by erasing the last term of the longer.

Let v = v(q1,...,qα) and u = v(q′1,...,q′
α′ )

. Then there exists a unique integer

r, such that qi = q′i for all i ≤ r , and such that qr+1 6= q′r+1. Then d(v, u) =

(α′ − r) + (α− r).

The vertex v∅ has |Q1| neighbours and every vertex of distance i > 0 from

v∅ has |Qi+1| + 1 neighbours. The tree T(Q) is locally compact if and only if

Qi is finite for all i.

Throughout this section we will assume that G acts properly and co-

compactly by isometries on a CAT(0) cube complex X in such a way that

stabG(h) is separable for every hyperplane. Let N denote a finite index nor-

mal subgroup of G such that, for all n ∈ N , nh does not intersect h, and
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let {h1, . . . , hk} be a set of hyperplanes such that for any hyperplane h in X

h = nhi for some n ∈ N and some unique hi ∈ {hi, . . . , hk}.
For ease of notation, we will refer to vertices in X by elements of the

group G, as if there was an embedding of G in X. In the case where there

is no such embedding, or where a vertex is not the image of an element of

G, the same arguments apply with the “identity”being a chosen vertex in X

and γ, γ′ being any pair of vertices.

Define the length of the vertex γ to be the number of hyperplanes crossed

by a geodesic from the identity in X to γ. We denote the length of γ by l(γ).

Lemma 3.12. If h = nhi for some n ∈ N then any two shortest edge paths

from the identity to h in X must cross the same set of images of hi under N .

Proof. First note that a shortest edge path crosses each hyperplane at most

once. This follows from the properties of CAT(0) cube complexes, in which

geodesics are unique and hyperplanes are geodesically convex.

Let p be a shortest edge path from the identity to nhi, then p crosses a set

of images of hi which can be listed as n1hi, n2hi, . . . , nαhi with nj ∈ N\{n}.
Any hyperplane njhi, nj ∈ N in X separates the cube complex into two

connected components which we will denote by Xnjhi
and X∗

njhi
. Without

loss of generality, label the components so that the identity lies in Xnjhi
. By

our choice of N , there is no nj ∈ N such that njhi intersects nhi, hence if the

path p crosses njhi we can say that njhi separates the identity from nhi, that

is the identity lies in Xnjhi
and nhi lies inX∗

njhi
. Hence any shortest path from

the identity to nhi must cross each of the hyperplanes n1hi, n2hi, . . . , nαhi.

Suppose a path p′ crosses a hyperplane mhi, m ∈ N\{n} not crossed by

p. Since the path p from the identity e to the hyperplane nhi does not cross

mhi, both e and some midplane in the hyperplane equivalence class nhi must

lie in Xmhi
. By our choice of subgroup N in which n and m are contained,

nhi and mhi do not cross, and hence every midplane in nhi lies in Xmhi
.

Since Xmhi
is geodesically convex, any shortest path from e to nhi must be

entirely contained in Xmhi
. Hence since the path p′ crossed mhi, it is not a

shortest path from e to nhi.
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Hence any two shortest paths between the identity vertex and the hyper-

plane h cross the same set of images of hi under N .

Every hyperplane in X is the image under an element of N of exactly one

hyperplane in the set {h1, . . . , hk}. For each i ∈ {1, . . . , k} and each vertex

γ we define li(γ) to be the number of times a geodesic from the identity to γ

crosses a hyperplane which is in the orbit of hi under N . By lemma 3.12, li

is well defined. Note that l(γ) =
∑k

i=1 li(γ).

If h is a hyperplane then there is a unique hi ∈ {h1, . . . , hk} such that h

is an image of hi under the action of N , and the level of h, denoted lev(h), is

the number of images of that unique hi intersected by a shortest length path

from the origin to h. Lemma 3.12 shows that lev(h) is well defined.

Denote by Hi the hyperplanes which are images of hi under N , and by

Hi
m the set of hyperplanes in Hi with level m. We consider the tree THi

belonging to the sequence (Hi) = Hi
1,Hi

2, . . .. In general the set Hi
m will be

infinite, so T(Hi) will be an infinitely branching tree.

For each i we define a map φi : X(0) → T(Hi) by φi(γ) = v(g1hi,g2hi,...,gli(γ)hi)

where gk ∈ N and (g1hi, g2hi, . . . , gli(γ)hi) is the ordered sequence of translates

of hi through which the geodesic from the origin to γ passes. Note that for

all i, the identity vertex is mapped to the root vertex of T(Hi).

By construction, φi(γ) ∈ T(Hi) and lev(gαhi) = α, the distance from the

root vertex v∅ to the vertex determined by the sequence (g1hi, g2hi . . . , gαhi).

As we would hope, the distance from v∅ to φi(γ) in T(Hi) is equal to li(γ).

Definition. Let g1hi and g2hi be images of the hyperplane hi. Then the

distance between them is defined to be the number of images of hi separating

them, that is the number of hyperplanes nhi such that either g1hi ∈ Xnhi
and

g2hi ∈ X∗
nhi

or g1hi ∈ X∗
nhi

and g2hi ∈ Xnhi
.

Lemma 3.13. For any hyperplane hi in {h1, . . . , hk} and any m ∈ N there

exists a map fini
m : Hi

m → F i
m, where F i

m is a finite set, such that fini
m(g1hi) =

fini
m(g2hi) only if either g1hi = g2hi or d(g1hi, g2hi) ≥ 4nm.

Proof. By hypothesis, stabG(hi) is separable in G, that is stabG(hi) can be

written as an intersection of finite index subgroups of G.
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Let ν = 4nm. Then there exists a finite set of hyperplanes which are

images of hi under N and which are at a distance of less than ν from hi. We

choose a finite set of elements {n1, . . . , nα} in N such that {n1hi, . . . , nαhi}
is a list of these hyperplanes (not including hi itself). Note that the choice

of these ni is not unique.

For each nj ∈ {n1, . . . , nα} njhi 6= hi, that is nj /∈ stabG(hi) and we can

choose a finite index subgroup Hj of N such that stabN(hi) ⊂ Hj and nj /∈
Hj. Hence there exists a finite group Fj and a homomorphism σj : N → Fj

satisfying σj(nj) /∈ σj(stabN(hi)).

We define σhi
: N → F1 × . . . × Fα, n 7→ (σ1(n), . . . , σα(n)). Then

∀nj ∈ {n1, . . . , nα}, σhi
(nj) /∈ σ(stabN(hi)).

We define fini
m : Hi

m → F i
m by fini

m(nhi) = σhi
(n).

Choose any g1, g2 ∈ N with d(g1hi, g2hi) < 4nm and g1hi 6= g2hi. Then

d(g−1
2 g1hi, hi) < 4nm, and g−1

2 g1 ∈ {n1, . . . , nα}.
Suppose fini

m(g1hi) = fini
m(g2hi). Let eF i

m
denote the identity element of

the group F i
m. Then since σhi

is a homomorphism

σhi
(g1) = σhi

(g2)

=⇒ σhi
(g−1

2 )σhi
(g1) = eF i

m

=⇒ σhi
(g−1

2 g1) = eF i
m

=⇒ σhi
(g−1

2 g1) ∈ σhi
(stabN(hi)).

which is a contradiction. Hence we must have either g1hi = g2hi or

d(g1hi, g2hi) ≥ 4nm.

For simplicity we use the notation fin instead of fini
m if the indices are

clear from the context. For each hyperplane hi ∈ {h1, . . . , hk} we consider

the locally compact tree T(F i) coming from the sequence (F i) = F i
1, F

i
2, . . ..

We consider the map ψi : X(0) → T(F i) defined by

ψi(γ) = v
(fin(g1hi),...,fin(gli(γ)hi))
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where

φi(γ) = v(g1hi,...,gli(γ)hi).

We define

ψ =
k∏

i=1

ψi : X(0) →
k∏

i=1

T(F i)

We now show that this map is a quasi-isometry. First recall that d(γ, γ′)

is the number of hyperplanes crossed by a geodesic from γ to γ′. The func-

tion φi gives a list of hyperplane images of hi crossed by this geodesic, so we

have d(γ, γ′) =
∑k

i=1 d(φ
i(γ), φi(γ′)). Applying the map fini

m may identify

two hyperplanes, but does not create any new hyperplanes. Hence we have

d(ψi(γ), ψi(γ
′)) ≤ d(φi(γ), φi(γ′) for every i and d(γ, γ′) ≥

∑k
i=1 d(ψi(γ), ψi(γ

′)) =

d(ψ(γ), ψ(γ′)).

In order to establish an upper bound for the distance in the image, we

need the following.

Definition. Let X be a CAT(0) cube complex and X(0) the vertex set of

X. For x, y ∈ X(0) the median of x and y, denoted [x, y], is given by [x, y] =

{z ∈ X(0)|d(x, y) = d(x, z) + d(z, y)}.
If z ∈ [x, y] then we say z is between x and y.

Lemma 3.14. ([30], [8]) If X is a CAT(0) cube complex then given any 3

vertices x, y, z ∈ X(0) there is a unique vertex m such that m ∈ [x, y]∩ [x, z]∩
[y, z]

Lemma 3.15. Let γ, γ′ ∈ N and let d(ψ(γ), ψ(γ′)) = r then d(γ, γ′) ≤ 8nr.

Proof. By lemma 3.14 there exists an element α between γ and γ′ such

that α also lies between both 1 and γ and 1 and γ′, as shown in figure

3.1. We now consider a geodesic α = α0, . . . , ατ = γ from α to γ and a

geodesic α = α′0, . . . , α
′
τ ′ = γ′ from α to γ′. Since α lies between γ and γ′,

d(γ, γ′) = d(γ, α) + d(α, γ′) = τ + τ ′.

The edges ei = [αi, αi−1] and e′i = [α′i−1, α
′
i] are oriented edges of the cube

complex and the path eτ , . . . , e1, e
′
1, . . . , e

′
τ ′ is a geodesic from γ to γ′.

We can assume without loss of generality that τ > τ ′. Let τi be the

number of hyperplanes in the orbit of hi under N which are crossed by the

92



Figure 3.1: Geodesics between e, γ and γ′

geodesic path e1, . . . , eτ . Choose the hyperplane hi ∈ {h1, . . . , hk} in such a

way that τi is maximal. If τi ≤ 4r then d(γ, γ′) = τ + τ ′ ≤ 2nτi ≤ 8nr and

we are done.

Thus we can assume τi > 4r. Consider the images of γ and γ′ under the

map ψ. Since r = d(ψ(γ), ψ(γ′)), we must have r ≥ d(ψi(γ), ψi(γ
′)).

Now, ψi(γ) = (fin(a1), . . . , fin(ap), fin(g1), . . . , fin(gτi
)) where (a1, . . . , ap)

is the ordered list of images of hi crossed by the geodesic from e to α and

(g1, . . . , gτi
) the ordered list of images of hi crossed by the geodesic from α

to γ.

Similarly, ψi(γ
′) = (fin(a1), . . . , fin(ap), fin(g′1), . . . , fin(g′τ ′)) where (g′1, . . . , g

′
τ ′)

is a ordered list of the images of hi crossed by the geodesic from α to γ′.

Since r ≥ d(ψi(γ), ψi(γ
′)), there must be a subsequence

(fin(a1), . . . , fin(ap), fin(g1), . . . , fin(gβ)) of ψi(γ) such that fin(gi) = fin(g′i) ∀i ≤
β and such that (τi− β) + (τ ′i − β) ≤ r. It follows that β ≥ τi− r, and hence

fin(gτi−r) = fin(g′τi−r).

We claim that gτi−r = g′τi−r. Note that lev(gτi−r) = p+τi−r ≥ τi−r and
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recall that d(gτi−rhi, g
′
τi−rhi) ≤ d(γ, γ′) < τ + τ ′ ≤ 2nτi. If gτi−rhi 6= g′τi−rhi

then by proposition 3.13 d(gτi−rhi, g
′
τi−rhi) ≥ 4nm where m is the level of the

hyperplanes.

Hence

d(gτi−rhi, g
′
τi−rhi) ≥ 4nm ≥ 4n(τi − r) ≥ 4n

(
τi −

τi
4

)
= 3nτi

which contradicts d(gτi−r, g
′
τi−r) < 2nτi.

Thus gτi−r = g′τi−r, and there exists a pair of edges ej = [αj−1, αj] ∈
{e1, . . . , eτ} and e′j′ = [α′j′−1, α

′
j′ ] both intersecting the hyperplane gτi−r, (see

figure 3.1). We know that the hyperplane gτi−r cuts the complex into two to-

tally convex pieces, U and U∗. Without loss of generality we assume αj−1 and

α′j′−1 are contained in U . Then the geodesic αj−1, . . . , α0 = α′0, . . . , α
′
j′−1 is

completely contained in U , and in particular α ∈ U . Now αj and α′j′ are con-

tained in U∗, and by the same argument the complete geodesic αj, . . . , α0 =

α′0, . . . , α
′
j′ is contained in U∗. Hence α ∈ U∩U∗ = ∅. This is a contradiction,

so we must have τi ≤ 4r. We have seen that if τi ≤ 4r then d(γ, γ′) ≤ 8nr,

hence the proof is complete.

We have observed that since the map fini
m does not create any hyper-

planes, d(γ, γ′) ≥ d(ψ(γ), ψ(γ′)). Combining this observation with lemma

3.15, we have shown that the map ψ is quasi-isometric.

We can now prove the theorem.

Theorem 3.1. Let G be a group which acts, isometrically, properly and

cocompactly on a finite dimensional locally finite CAT(0) cube complex X

such that stabG(h) is separable for each hyperplane h of X. Then X embeds

quasi-isometrically in a finite product of locally finite trees.

Proof. We can construct a map ψ from X(0) to the vertex set of a finite

product of finitely branching trees. By lemmas 3.13 and 3.15 the map ψ is

a quasi-isometry. Quasi-isometric maps between the vertex sets of finite di-

mensional CAT(0) cube complexes naturally extend to quasi-isometric maps

on the entire complex, hence we have a quasi-isometric embedding of X in a

finite product of finitely branching trees.
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Given in addition that the action of the group on X is free, we have the

following corollary:

Corollary 3.2. Let G be a group which acts freely, isometrically, properly

and cocompactly on a finite dimensional locally finite CAT(0) cube complex X

such that stabG(h) is separable for each hyperplane h of X. Then G embeds

quasi-isometrically in a finite product of locally finite trees.

Proof. By Lemma 1.42 there is a quasi-isometry from the group G to the

CAT(0) cube complexX. By Theorem 3.1 we can construct a quasi-isometric

map ψ from X to a finite product of finitely branching trees. Hence by

composition of maps we have a quasi-isometric embedding of G in a finite

product of finitely branching trees.
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Chapter 4

Groups with embeddings in a

product of trees

In this chapter we give some examples of groups which satisfy the conditions

of corollary 3.2, and hence have quasi-isometric embeddings into a finite

product of finitely branching trees. The example of surface groups and the 3-

manifold groups mentioned were suggested by the examples of LERF groups

in [34].

4.1 Coxeter groups

Let G be a finitely generated Coxeter group. Suppose that for every triple

p, q, r of natural numbers G contains only finitely many conjugacy classes of

subgroups isomorphic to the (p, q, r)-triangle group . Then G acts isometri-

cally, properly and cocompactly on a CAT(0) cube complex X ([28] ,[40]).

Caprace and Mühlherr, [7], showed that G contains only finitely many con-

jugacy classes of subgroups isomorphic to the (p, q, r)-triangle group if and

only if it contains no subgroups isomorphic to the Euclidean triangle groups

4(2, 3, 6), 4(2, 4, 4) or4(3, 3, 3). By construction, if stab(h) is the stabiliser

of a wall in X, then it is equal to the stabiliser of some wall in the Coxeter

complex of X. By Corollary 1.17, wall stabilisers of CAT(0) cube complexes

are separable.
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By lemma 1.38 there is a quasi-isometric embedding of G in X. By

theorem 3.1, there is a quasi-isometric embedding of X in a finite product of

finitely branching trees. Hence we have:

Corollary 4.1. Let G be a finitely generated Coxeter group which contains

no subgroup isomorphic to a Euclidean triangle group. Then G embeds quasi-

isometrically in a finite product of locally finite trees.

Note that G need not be hyperbolic, since we do not exclude the possibil-

ity that G contains affine Coxeter groups, only that it contains affine triangle

groups.

4.2 Surface groups

Let G be the fundamental group of a compact, orientable surface F , and X

the universal covering space for F . Let g be the genus of the surface F .

Suppose g = 0. If F is a compact, orientable surface without boundary,

then G is the trivial group. If F is a compact, orientable surface with n ≥ 1

boundary components then π1(F ) = Fn−1, the free group of rank n − 1.

Hence if F is a genus 0 surface then either G is trivial or G acts on the tree

in which each vertex has valency 2n.

If F is a compact orientable surface of genus 1 without boundary then

the covering space X of F is the Euclidean plane. We can choose a Euclidean

square in X which is a fundamental region for the action of G on X. This

gives a tessellation ofX by squares and hence there is a natural isometry from

X to a CAT(0) cube complex, on which G acts properly and cocompactly

by isometries.

If F is a compact orientable surface with g ≥ 1 and s ≥ 1 boundary

components then the universal covering space X for F will be the hyperbolic

plane. Following the construction of Denvir and Mackay given in [11], we

can choose a set of paired geodesics in X in such a way that the compact

region bounded by these geodesics is a fundamental region for the action of

G on X. In fact, since P lies in the hyperbolic plane P can be chosen to be

a regular polygon with at least 5 edges in which all angles are right angles.
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The fundamental group G of F is generated by the isometries between

the geodesics in the set bounding P . Since P is compact, the action of G

on X is cocompact. By the definition of G, if giP ∩ P 6= ∅ for some gi ∈ G

then gi maps some edge e of P to some edge e′ of P . Since there are finitely

many edges in the polygon P there are finitely many such gi in G. Let

I = {g ∈ G|gP ∩ P 6= ∅}. Any compact set K in X can be contained in the

union K of a finite set of copies of P , say K =
⋃

g∈G gP . Let {h1, . . . , hk}
denote the finite set of elements of G which map giP to gjP for some gi, gj

in P . If g is such that gK ∩K 6= ∅ then g maps some giP ∈ K to intersect

some gjP ∈ K and can be written as hjgjig
−1
j for some hj ∈ H, gj ∈ G and

i ∈ I. Hence for any compact set K ⊂ X the set {gi ∈ G|giK ∩K 6= ∅} is

finite.

We now show that G acts isometrically, properly and cocompactly on a

cube complex. Consider the polygonal region P . We divide P into cubes by

adding a vertex at the centre of each edge of P and joining each of these to a

vertex in the centre of P . We subdivide each copy gP of P in X, and denote

the resulting cube complex by X̃. We define a metric on X̃ by defining the

length of each edge to be 1 and each square to be isomorphic to a unit square.

The metric on X̃ is quasi-isometric to the natural metric on X.

To see that X̃ is CAT(0) we consider the combinatorial link condition

on each cell of X̃ (see lemma 1.29). Since the covering space X is either

Euclidean or hyperbolic and the angles at the vertices of P are right angles,

any cycle in the link of a vertex in X̃ which is the image of a vertex of X

contains no cycles of less than 4 edges. Any vertex corresponding to the

midpoint of a side in X will also contain no cycles of less than 4 edges in

its link. Since P has at least 5 sides , the link of any vertex of X̃ which

corresponds to the centre of a copy of P in X has no cycles of less than 5

edges. Hence G acts freely, properly, cocompactly, and isometrically on a

CAT(0) cube complex X̃.

By Theorem 1.20 every surface group is locally extended residually finite.

Since the G acts properly and cocompactly on X̃ it follows that for each

hyperplane h in X̃ stabG(h) acts properly and cocompactly on h (see the

proof of lemma 3.3 for a proof of this fact). By lemma 1.30 stabG(h) is
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finitely generated for each h, and since G is LERF it follows that stabG(h) is

separable.

Hence by applying corollary 3.2 when g ≥ 1 we have

Corollary 4.2. Let G be the fundamental group of a compact, orientable

surface. Then G embeds quasi-isometrically in a finite product of locally

finite trees.

4.3 3-manifold groups

Lemma 4.3. Let G be the fundamental group of the complement in S3 of

the Borromean rings. Then G embeds quasi-isometrically in a finite product

of locally finite trees.

Proof. G is the fundamental group of the complement in S3 of the Borromean

rings. In [37], Thurston showed that the complement of the Borromean ring

link can be given a hyperbolic structure coming from a gluing of two ideal

octahedra.

Let Γ be the group generated by reflections in the faces of P , where P is

a regular octahedron in H3 all of whose dihedral angles are π
2
. Then G is a

subgroup of index 2 of the reflection group Γ.

Γ is a finitely generated right-angled Coxeter group (as defined in section

1.2.5), hence by lemma 1.38 Γ acts properly discontinuously by isometries on

a CAT(0) cube complex X. Since Γ is right-angled, any edge in its Coxeter

diagram must be labelled by ∞, and hence the Coxeter diagram of Γ con-

tains no affine subdiagram of rank 3. Hence by lemma 1.41 Γ contains only

finitely many conjugacy classes of reflection triangles, and by lemma 1.40 Γ

acts cocompactly on X. Scott ([34], [35]) proved that Γ is LERF. Hyper-

plane stabilisers in X are finitely generated, and hence for all hyperplanes h

stabG(h) is separable.

Applying theorem 3.1 gives a quasi-isometric embedding of Γ in a finite

product of finitely branching trees. Since Γ is finitely generated, by lemma

1.32 any finite index subgroup of Γ is quasi-isometric to Γ, hence by compo-
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sition of quasi-isometries, we have a quasi-isometric map from G to a finite

product of finitely branching trees.

Let A denote the fundamental group of a compact orientable surface

F with boundary. We saw in section 4.2 that A acts freely, isometrically,

properly and cocompactly on a locally finite CAT(0) cube complex X in

such a way that stabA(hX) is separable for hyperplane hX ∈ X. Let G be

a central extension of an infinite cyclic group J =< j > by A. Since F

is a surface with boundary, the group A is free. Hence G is a split central

extension of J by A, and G can be written as a direct product J × A. G is

the fundamental group of a S1-bundle over F , a compact Seifert fibre space.

We will show that G embeds quasi-isometrically in a finite product of finitely

branching trees.

Lemma 4.4. Let A and B be groups which act freely, isometrically, properly

and cocompactly on locally finite CAT(0) cube complexes X and Y respec-

tively, in such a way that stabA(hX) and stabB(hY ) are separable for every

pair of hyperplanes hX ∈ X and hY ∈ Y .

Let G be the direct product A × B. Then G acts freely, isometrically,

properly and cocompactly on a locally finite CAT(0) cube complex in such a

way that stabG(h) is separable for every hyperplane h in the new cube complex.

Proof. For any g ∈ G we can write g uniquely as (a, b) for some a ∈ A, b ∈ B.

We define the action of G on X×Y by g(x, y) = (a, b)(x, y) = (a(x), b(y))

for any point (x, y) ∈ X × Y .

Given metrics dA on A and dB on B we can define the metric on the

group G by d((a1, b1), (a2, b2)) = dA(a1, a2) + dB(b1, b2). If we take the prod-

uct metric on X × Y then the isometric actions of A and B on X and Y

respectively give us an isometric action of G on X × Y .

If K1 ⊂ X and K2 ⊂ Y are compact fundamental regions for the actions

of A and B onX and Y respectively, then the regionK1×K2 is a fundamental

region for the action of G on X × Y , and so we can see that the action of G

is cocompact.

Suppose K is a compact subspace of X×Y . Then we can choose compact

subspaces K1 ⊂ X and K2 ⊂ Y such that K ⊂ K1 × K2. Then if g ∈ G
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maps K to intersect itself, it follows that g maps K1 ×K2 to intersect itself.

Hence to show that the action of G on X × Y is properly discontinuous, it

is sufficient to show that for any pair of compact subspaces K1 ⊂ X and

K2 ⊂ Y , the set {g ∈ G|g(K1 ×K2) ∩ (K1 ×K2) 6= ∅} is finite.

Writing g as (a, b) ∈ A×B,

{(a, b) ∈ G|(a, b)(K1 ×K2) ∩ (K1 ×K2) 6= ∅}

= {(a, b) ∈ G|(a(K1)× b(K2)) ∩ (K1 ×K2) 6= ∅}

= {(a, b) ∈ G|a(K1) ∩K1 6= ∅ and b(K2) ∩K2 6= ∅}

which is finite.

It remains to show that the stabiliser of every hyperplane in X × Y is

separable. Each hyperplane h in X × Y is either of the form hX × Y where

hX is a hyperplane in X or of the form X × hY where hY is a hyperplane in

Y .

Consider the case where h is hX × Y . The case X × hY will follow by

similar reasoning. Then

stabG(h) = {(a, b)|(a, b)(hX × Y ) = hX × Y }

= {(a, b)|a(hX)× b(Y ) = hX × Y }

= {(a, b)|a(hX) = hX and b(Y ) = Y }

= {(a, b)|a ∈ stabA(hX), b ∈ B}

By hypothesis, stabA(hX) is separable in A, that is there exists a collection

{Hi|i ∈ I} of finite index subsets of A such that stabA(hX) =
⋂

i∈I Hi, and

hence we have stabG(h) =
⋂

i∈I Hi × B. Hi × B is finite index in G, and

hence stabG(h) is separable in G.

If (a, b)(x, y) = (x, y) then a(x) = x and b(y) = y, hence if the actions of

A and B on X and Y respectively are free, we must have a = eA and b = eB.

Hence the action of G on X × Y is free.

Corollary 4.5. Let A and B be groups which act freely, isometrically, prop-

erly and cocompactly on locally finite CAT(0) cube complexes X and Y re-
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spectively, in such a way that stabA(hX) and stabB(hY ) are separable for

every pair of hyperplanes hX ∈ X and hY ∈ Y . Let G be the direct prod-

uct A×B. Then G embeds quasi-isometrically in a finite product of finitely

branching trees.

Proof. Applying corollary 3.2 to the action of G on the CAT(0) cube complex

X × Y as constructed in lemma 4.4, we have the result.

Lemma 4.6. Let G be a split extension of Z by a finitely generated group F

which acts isometrically, properly and cocompactly on a cube complex X in

such a way that stabF (hX) is separable in F for every hyperplane hX in X.

Then G embeds quasi-isometrically in a finite product of finitely branching

trees.

Proof. Since G is a split extension of Z by F , there is a map f : F → Aut(Z)

defined by the extension

1 → Z → G→ F → 1

The automorphism group of Z is Z2, and hence the kernel of f , which we

will denote by K, has index at most 2 in F .

Since F acts isometrically, properly and cocompactly on a cube complex

X, there is a isometric, proper cocompact action of K on X. We have

stabK(hX) = stabF (hX)∩K for each hX in X, and so since K is finite index

in F stabK(hX) is separable in K.

G has an index 2 subgroup G′ defined by the extension

1 → Z → G′ → K → 1

in which K acts trivially on Z, so G′ is a split, central extension Z × K.

There is a tree T on which Z acts isometrically, properly and cocompactly

with stabZ(hT ) separable for every hyperplane hT in T . Hence by lemma 4.5

G′ embeds quasi-isometrically in a finite product of finitely branching trees,

T . Since G′ is finite index in G, by lemma 1.32 G′ is quasi-isometric to G and

by composition of quasi-isometric embeddings there exists a quasi-isometric

embedding of G in a finite product of finitely branching trees.
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