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UNIVERSITY OF SOUTHAMPTONABSTRACTFACULTY OF ENGINEERING, SCIENCE & MATHEMATICSSCHOOL OF MATHEMATICSDotor of PhilosophyCLASSICAL AND NON-CLASSICAL SCHOTTKY GROUPSby Jonathan Peter WilliamsThis thesis looks at two disparate problems relating to Shottky groups, andin partiular what it means for a Shottky group to be lassial or non-lassial.The �rst problem fousses on the uniformization of Riemann surfaesusing Shottky groups. We extend the retrosetion theorem of Koebe bygiving onditions on lengths of urves as to when a Riemann surfae an beuniformized by a lassial Shottky group.The seond setion of this thesis examines a paper of Yamamoto ([40℄),whih gives the �rst example of a non-lassial Shottky group. We �rstlyexpand on the detail given in the paper, and then use this to give a seondexample of a non-lassial Shottky group. We then take this seond exampleand generalise to a two-variable family of non-lassial Shottky groups.



Contents
1 Introdution 12 Bakground 42.1 Kleinian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Shottky Groups . . . . . . . . . . . . . . . . . . . . . . . . . 82.3 Classial Shottky Groups . . . . . . . . . . . . . . . . . . . . 172.3.1 `At least one set of SG-urves...' . . . . . . . . . . . . . 172.3.2 `At least one set of generators...' . . . . . . . . . . . . . 192.4 Riemann Surfaes . . . . . . . . . . . . . . . . . . . . . . . . . 212.5 Ring Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.6 Non-Classial Shottky Groups . . . . . . . . . . . . . . . . . 373 Uniformization by Classial Shottky Groups 453.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.2 Impliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 Non-Classial Shottky Groups 584.1 Yamamoto's Paper . . . . . . . . . . . . . . . . . . . . . . . . 594.2 Generalising Yamamoto . . . . . . . . . . . . . . . . . . . . . 83iii



CONTENTS iv4.2.1 A new non-lassial Shottky group . . . . . . . . . . . 834.2.2 Generalisation . . . . . . . . . . . . . . . . . . . . . . . 915 Further Work 965.1 Criterion for showing if a Shottky group is lassial . . . . . . 965.2 Andrews-Curtis Graph . . . . . . . . . . . . . . . . . . . . . . 102A Expliit Formula for " 107



List of Figures
2.1 An example of four urves, two loxodromi M�obius transfor-mations and the region D. . . . . . . . . . . . . . . . . . . . . 82.2 The image of D under 1. . . . . . . . . . . . . . . . . . . . . 102.3 Images of D after two M�obius tranformations (inside C 01 are1(D) shaded lightly, and 12(D), 1�12 (D) and 11(D)shaded more darkly; inside C1 are �11 (D) shaded lightly, and�11 2(D), �11 �12 (D) and �11 �11 (D) shaded more darkly;with similarly shaded regions inside C2 and C 02 ). . . . . . . . 112.4 The original de�ning urves for a Shottky group and the newurves, after the automorphism (i). . . . . . . . . . . . . . . . 132.5 The original de�ning urves for a Shottky group and the newurves, after the automorphism (ii) . . . . . . . . . . . . . . . 142.6 The original de�ning urves for a Shottky group and the newurves, after the automorphism (iii). . . . . . . . . . . . . . . 152.7 Two di�erent sets of SG-urves for the Shottky group hf; gi. . 192.8 A Riemann surfae, with interseting harts and a transitionfuntion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.9 An example of SU-urves on a losed Riemann surfae. . . . . 23v



LIST OF FIGURES vi2.10 An example of a pair of ollars about SU-urves on a losedRiemann surfae. . . . . . . . . . . . . . . . . . . . . . . . . . 242.11 A Ring Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 252.12 Gr�otzsh's Extremal Domain. . . . . . . . . . . . . . . . . . . 322.13 Teihm�uller's Extremal Domain. . . . . . . . . . . . . . . . . . 332.14 The de�ning urves for Yamamoto's non-lassial Shottkygroup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.1 An example of the lift of a ollar under 
(�) ! 
(�)=� to apair of ring domains R1 and R2 with Ci and C 0i respetivelyas separating urves . . . . . . . . . . . . . . . . . . . . . . . . 473.2 Two examples of ring domains, one whih admits an essentialround annulus entered at 0, and one whih does not. . . . . . 493.3 A topologial ollar about � . . . . . . . . . . . . . . . . . . . 503.4 The topologial ollar . . . . . . . . . . . . . . . . . . . . . . . 504.1 The de�ning urves for Yamamoto's non-lassial Shottkygroup. Here " is the distane between the inner retangleand the irles . . . . . . . . . . . . . . . . . . . . . . . . . . 604.2 The set eC, with C1" on the outside and CN" nearest to 0. . . . 634.3 The irles Cj" , Cj+1" and C 0. . . . . . . . . . . . . . . . . . . . 724.4 The irles Cj" and Cj+1" . . . . . . . . . . . . . . . . . . . . . 774.5 An example of the domain Ej" and two (dotted) irles whihould be added to make a Dj". . . . . . . . . . . . . . . . . . . 804.6 The set eC, from Figure 4.2, along with h"(C). . . . . . . . . . 81



LIST OF FIGURES vii4.7 The de�ning urves for a non-lassial Shottky group. Thedistane between the inner retangle and the irles are " andthe distane above and below the irles are "+ 12 . . . . . . . . 844.8 The de�ning urves for a 2-variable family of non-lassialShottky groups. . . . . . . . . . . . . . . . . . . . . . . . . . 915.1 Classial SG-urves for �1. . . . . . . . . . . . . . . . . . . . . 100



DECLARATION OF AUTHORSHIPI, Jonathan Peter Williams, delare that the thesis entitled Classial andNon-Classial Shottky Groups, and the work presented in it are my own. Ion�rm that:� this work was done wholly or mainly while in andidature for a researhdegree at this University;� where any part of this thesis has previously been submitted for a degreeor any other quali�ation at this University or any other institution,this has been learly stated;� where I have onsulted the published work of others, this is alwayslearly attributed;� where I have quoted from the work of others, the soure is always given.With the exeption of suh quotations, this thesis is entirely my ownwork;� I have aknowledged all main soures of help;� where the thesis is based on work done by myself jointly with others,I have made lear exatly what was done by others and what I haveontributed myself;� none of this work has been published before submission.Signed: ................................Date: ...................................



ACKNOWLEDGEMENTSMany people have helped to make this thesis what it is, and they alldeserve thanks for the support they provided in their own speial ways.Thanks must go to all at the Shool of Mathematis at Southampton, butpartiularly to my supervisor Jim Anderson for his enouragement, supportand patiene with me and my work. Speial thanks also from throughoutmy time at Southampton to David Singerman and Vesna Perisi.There have been many many oÆe mates over the years, all of whomhave been a pleasure to work with. There are so many great people that tohighlight any would be unfair; thanks to them all. Having said that, speialmention might just about be appropriate for Corma Long. Just.Not everyone that has helped with this thesis has been mathematiallyminded. Support has ome from all diretions, from Mum, Dad, other rel-atives, friends from work, uni and elsewhere. Thank you to you all - yoursupport, deliberate and unintentional, has been muh appreiated.Finally there is of ourse someone else to whom I am hugely indebted. Athousand thank yous to my wife, Dr Kirsty Williams, for the support fromthe start of the PhD to the end, from before the thesis to long afterwards.This wouldn't have been possible without her.



Chapter 1
Introdution
Shottky groups were �rst onstruted by Shottky in 1882, but were notstudied in greater detail until work of Chukrow [13℄, Maskit [26℄ and Marden[25℄, along with others, in the late 1960s/early 1970s, and then more reentlyby Maskit [30℄, Hidalgo [16℄ and Tan, Wong and Zhang [39℄ in the 21stCentury.A Shottky group is de�ned by its onstrution as follows. Let D be aregion on the Riemann sphere bounded by 2n disjoint simple losed urves,C1; C 01; :::; Cn; C 0n. The Cis are paired to the C 0is by loxodromi M�obius trans-formations, i, suh that i(Ci) = C 0i and that i(D) \ D = ;. If � is thegroup generated by the i then � is a Shottky group. Alternatively a purelyloxodromi, free, �nitely generated Kleinian group with non-empty domainof disontinuity is a Shottky group [26℄.A Shottky group is lassial if there exist some set of generators for thegroup suh that there exist a set of urves C1; C 01; :::; Cn; C 0n as above suhthat the urves are Eulidean irles. Marden, [25℄, showed that not every1



2Shottky group is lassial. Zarrow, [41℄ laimed to have disovered the �rstexpliit example of a non-lassial Shottky group, but this was later shownto be lassial by Sato, [35℄. The �rst expliit example of a non-lassialShottky group was given by Yamamoto [40℄.In Chapter 2 we disuss some of the bakground of Shottky groups, look-ing initially at Kleinian groups as a natural preursor to studying Shottkygroups. After looking at Shottky groups in general we look at some of thereasons why deiding if a Shottky group is lassial or not is far from triv-ial. We also disuss Koebe's retrosetion theorem, whih shows that Shottkygroups an be used to uniformize Riemann surfaes. With this in mind wegive some bakground on Riemann surfaes and ring domains. We �nallydisuss non-lassial Shottky groups in more detail.Koebe's retrosetion theorem states that all losed Riemann surfaes anbe uniformized by Shottky groups, and it has been onjetured that everylosed Riemann surfae an be uniformized by a lassial Shottky group.In Chapter 3 we work towards this by showing that there exists a value ksuh that a Riemann surfae of genus g with g homologously independentsimple losed urves of lengths less than k an be uniformized by a lassialShottky group.It is partiularly diÆult to deide if a given Shottky group is lassialor non-lassial, and there are many questions for whih more examples ofnon-lassial Shottky groups would be useful. For example it is not knownwhat properties Riemann surfaes uniformized only by non-lassial Shot-tky groups have, or even if there are surfaes whih only have non-lassialuniformizations. As mentioned there is only one known example of a family



3of non-lassial Shottky groups, given by Yamamoto. His paper [40℄ is notpartiularly easy to read, with many details omitted or left for the reader.We begin Chapter 4 by rewriting Yamamoto's paper with a di�erent order,with details inluded and with any typographial errors orreted. We thengo on to use this proof as a skeleton to �nd another family of non-lassialShottky groups, and then to generalise this approah to a two variable fam-ily of non-lassial Shottky groups. We give the expliit bounds on the twovariables in Appendix A.Finally in Chapter 5 we disuss two areas for further study. We inves-tigate �nding inequalities involving �xed points and multipliers of Shottkygenerators whih allow us to deide whether that given generator set hasa set of lassial SG-urves. We also disuss the e�et of applying Nielsentransformations to the generators of Shottky groups, using the onstrutionof Chukrow [13℄, and build a graph analogous to the Andrews-Curtis graphfor Shottky generators. We mention some interesting questions about thisShottky graph, and suggest that questions on Shottky groups might beanswered by studying the Andrews-Curtis or Shottky graphs.



Chapter 2
Bakground
2.1 Kleinian GroupsWe begin by de�ning Kleinian groups, and some important properties ofthese groups. We use [28℄ as a soure for this setion.We denote the extended omplex plane C [ f1g as Ĉ . M�obius transfor-mations are then de�ned as maps f : Ĉ ! Ĉ of the formf : z 7! az + bz + dwhere a; b; ; d 2 C and ad� b = 1. If we regard straight lines in C as irlesin Ĉ passing through 1 then we an see that M�obius transformations sendirles in Ĉ to irles in Ĉ .M�obius transformations an be lassi�ed into three di�erent types, basedon the number of �xed points of the transformation. A M�obius transforma-tion has either one or two �xed points, whih we obtain by solving az+bz+d = z.4



2.1. KLEINIAN GROUPS 5A M�obius transformation, f , is said to be paraboli if f has exatly one�xed point. Every paraboli transformation is onjugate to z ! z + 1.If a transformation has two �xed points then it is onjugate to one with�xed points at 0 and 1, and hene there exists a M�obius transformation gsuh that gfg�1(z) = k2z, with k 2 C and jkj2 � 1. We all k2 the multiplierof f . If jkj2 = 1 then the transformation is alled ellipti, and is onjugateto a rotation z ! ei�z for � real. Otherwise it is alled a loxodromi M�obiustransformation.Within the loxodromi M�obius transformations if k2 2 R+ then thetransformation is alled hyperboli. The hyperboli transformations an bethought of as dilations. Loxodromi M�obius transformations have two �xedpoints, one of whih is referred to as the attrating �xed point, and the otherthe repelling �xed point. Given the distine �xed points x; y of a loxodromitransformation f we say that x is attrating if limn!1 fn(z) ! x for allz 6= y. Then y is the repelling �xed point. The attrating �xed point of f isthe repelling �xed point of f�1, and vie versa. We will be onentrating onloxodromi transformations later.We an write the transformation f(z) in matrix form, for example as0� a b d 1Awhere we again have that ad�b = 1. This is very useful sine we are able toompose two M�obius transformations simply by multiplying the orrespond-ing matries. These matries are elements ofSL2(C ) = 8<:0� a b d 1A ����� a; b; ; d 2 C ; ad� b = 19=;



2.1. KLEINIAN GROUPS 6We have though that the transformation f an be represented by two ele-ments of SL2(C ), that is0� a b d 1A and 0� �a �b� �d 1AIf we form the quotient group PSL2(C ) = SL2(C )=f�Ig by fatoring out theentre, where I is the identity matrix, then there exists an isomorphism fromthe group of M�obius transformations to PSL2(C ).We an �nd a general form of a loxodromi M�obius transformation givenits pair of �xed points, x; y, and its multiplier, k2. We an hoose a squareroot of the multiplier and then for x 6= 1 6= y the transformation an bewritten as: f = 1x� y 0� xk�1 � yk xy(k � k�1)k�1 � k xk � yk�1 1Aand for x =1 as f = 0� k�1 y(k � k�1)0 k 1Aand for y =1 as f = 0� k x(k�1 � k)0 k�1 1AA subgroup of PSL2(C ) is said to be disrete if it does not ontain asequene of distint elements onverging to I. We now de�ne a Kleiniangroup, and some terminology related to Kleinian groups.De�nition 2.1.1. A Kleinian group, �, is a disrete subgroup of PSL2(C )[31℄.



2.1. KLEINIAN GROUPS 7De�nition 2.1.2. A Kleinian group, �, ats properly disontinously at apoint x 2 Ĉ if there exists a neighbourhood Ux about x suh that (Ux)\Ux =; for all but �nitely many  2 �.De�nition 2.1.3. The open set in Ĉ whih onsists of all the points at whih� ats disontinously is alled the domain of disontinuity and denoted by
(�). Its omplement in Ĉ is alled the limit set, and is denoted �(�).The limit set an also be de�ned in terms of aumulation points. A pointx 2 Ĉ is alled an aumulation point (or limit point) of a Kleinian group,�, if there exists a sequene of distint elements of �, say fig, and a pointz 2 Ĉ suh that i(z)! x, [28℄. The limit set �(�) is then simply the set ofall aumulation points of �.A Kleinian group whose limit set onsists of more than two points isalled non-elementary. If � is non-elementary then � ontains a loxodromielement, and the limit set of � is the losure of the set of loxodromi �xedpoints.One of the uses of the domain of disontinuity is that in general Ĉ =�is not Hausdor�, while 
(�)=� is a Riemann surfae, as disussed in x2.4.Often the easiest way to desribe a Kleinian group is to desribe 
(�)=�,usually in terms of the fundamental domain for �.De�nition 2.1.4. A fundamental domain for a Kleinian group � is an opensubset D of the domain of disontinuity whih (i) has the identity element in� as its stabilizer, (ii) satis�es (D) \D = ; for all  in � not the identity,(iii) has sides paired by elements of �, (iv) for every z 2 
(�) there is a  2 �with (z) 2 D, (v) the sides of D only aumulate at limit points, and (vi)only �nitely many translates of D meet any ompat subset of 
(�).



2.2. SCHOTTKY GROUPS 82.2 Shottky GroupsShottky groups are a lass of Kleinian groups whih are partiularly inter-esting for a number of reasons. One suh reason is their link to uniformizingRiemann surfaes, as will be seen in x2.4, and another is due to their simpleonstrution whih we detail below. We begin by de�ning SG-urves.De�nition 2.2.1. Take 2g disjoint Jordan urves in Ĉ , whih are not nestedand hene de�ne an open region D with the 2g urves as boundary. We labelthese urves in pairs as C1; C 01; :::; Cg; C 0g, and will refer to them as the de�ningurves for the Shottky group or for ease of referene as SG-urves.We now detail the set-up to de�ne a Shottky group. Suppose thereexist loxodromi M�obius transformations 1; :::; g suh that i(Ci) = C 0i. Anexample with g = 2 is shown in Figure 2.1.
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Figure 2.1: An example of four urves, two loxodromi M�obius transforma-tions and the region D.



2.2. SCHOTTKY GROUPS 9Eah urve Ci (or C 0i) separates Ĉ into two regions, and we de�ne theoutside of Ci (or C 0i) to be the part of Ĉ � Ci (or Ĉ � C 0i) ontaining otherSG-urves, and the inside to be the region ontaining no other SG-urves.We an also de�ne the inside of an SG-urve to be the part of Ĉ � Ci (orĈ � C 0i) ontaining only one of all of the �xed points for the generators of�. Expliitly, Ci has the repelling �xed point of i inside it, and C 0i has theattrating �xed point of i inside it.We have that D = Ĉ n Si(Ci [ C 0i). For any of the loxodromi M�obiustransformations, we have that i(D) ould either interset D or have emptyintersetion with D. We have from the de�nition of the fundamental domainthat D \ i(D) = ; for all i not equal to the identity in �, and hene wehave the property that eah i sends the inside of Ci to the outside of C 0i, andthe outside of Ci to the inside of C 0i. So, for example, in Figure 2.1, 1 sendsC1 to C 01 and sends C2; C 01 and C 02 to urves inside C 01. Figure 2.2 shows theimage of D under 1, and we see that D \ 1(D) = ;.De�nition 2.2.2. A Shottky group is then simply de�ned as the groupgenerated by the loxodromi transformations, � = h1; :::gi.We also de�ne a Shottky system for use later:De�nition 2.2.3. A Shottky system is the name given to a Shottky groupand a spei�ed set of SG-urves. The set of SG-urves used is not unique tothe group, and there are many Shottky systems for a given Shottky group.We will see later in this setion that given a Shottky group and spei�edSG-urves that hanging the urves slightly will not alter the Shottky group,but will hange Shottky system.



2.2. SCHOTTKY GROUPS 10
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Figure 2.2: The image of D under 1.The domain of disontinuity of a Shottky group an be written as
(�) = [2� (D)where D denotes the losure of D. We have that as more and more M�obiustransformations are applied, the diameters of the (C), for C an SG-urve,tend to zero. These image urves will all be inside of a partiular urve, andafter a �nite number, say k, of appliations of  to C we have that n+1(C) isinside n(C) for n > k. Thus we have that the limit set �(�) an be seen asthe set of aumulation points of this nesting of images of the SG-urves andis a Cantor set. This idea an be seen shematially in Figure 2.3, wherebyeah SG-urve has three urves nested inside it.Shottky groups have some interesting properties as shown in a proposi-tion of Maskit:



2.2. SCHOTTKY GROUPS 11
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Figure 2.3: Images ofD after two M�obius tranformations (inside C 01 are 1(D)shaded lightly, and 12(D), 1�12 (D) and 11(D) shaded more darkly; in-side C1 are �11 (D) shaded lightly, and �11 2(D), �11 �12 (D) and �11 �11 (D)shaded more darkly; with similarly shaded regions inside C2 and C 02 ).Proposition 2.2.4. ([28℄ X.H.2) Let � be a Shottky group on the genera-tors 1; :::; n. Then: � is free on the n generators; is purely loxodromi; hasD as a fundamental domain; � is Kleinian with 
(�)=� a �nite Riemannsurfae.There is also a onverse result to the above proposition. From the fol-lowing theorem of Maskit we an see that we have neessary and suÆientonditions for a Kleinian group to be Shottky.Theorem 2.2.5. ([26℄) Every Kleinian group whih is purely loxodromi,�nitely generated, free and having non-empty domain of disontinuity is aShottky group.



2.2. SCHOTTKY GROUPS 12We an look at the e�et that hanging generators of our Shottky grouphas on a given Shottky system. Suppose our group � an be represented bytwo di�erent sets of generators � = h1; :::; gi and � = h1; :::; gi. The mapi ! i extends to an automorphism �! �.There are three elementary automorphisms, the Nielsen transformations,whih we look at.(i) We an replae the �rst generator 1 by its inverse �11 :h1; :::; gi ! h�11 ; :::; gi(ii) We an swap the �rst generator 1 with any other generator i:h1; :::; i; :::; gi ! hi; :::1; :::; gi(iii) We an replae the �rst generator 1 by the produt of the �rst twogenerators:h1; 2; :::; gi ! h21; 2; :::; giWe an then look at other generator sets for � as being multiple appli-ations of Nielsen transformations (i) - (iii) on h1; 2i due to the followingtheorem of Nielsen:Theorem 2.2.6. ([33℄) If � is free on x1; :::; xn and also free on y1; :::; ynthen a �nite sequene of Nielsen transformations will hange x1; :::; xn toy1; :::; yn.For eah appliation of a Nielsen transformation applied to � we see thatthe Shottky system hanges; either we �nd we have the same SG-urves asthe original system, but with a new labelling or we have that some of thenew SG-urves were not in the original Shottky system. We will look at the



2.2. SCHOTTKY GROUPS 13e�et of the three automorphisms, (i)-(iii), in turn. Throughout this setionwe use Ci to refer to the SG-urves of the initial Shottky system for �, andKi used for SG-urves for the Shottky system one a transformation hasbeen applied. We begin with transformation (i).If we look at transformation (i), we replae the �rst generator by itsinverse: h1; :::; gi ! h�11 ; :::; giIn terms of the SG-urves then this an be seen as keeping the SG-urvesexatly the same, but simply swapping the diretion of the 1 arrow around,that is labelling C1 as K 01 and labellingC 01 as K1. This is the ase beause ournew �rst generator sends C 0i to Ci now, rather than the other way around.This is shown in in Figure 2.4.
K1

Kg Kg
/

K1
/

Cg

C

C
/

C
/

1
1

g

Figure 2.4: The original de�ning urves for a Shottky group and the newurves, after the automorphism (i).



2.2. SCHOTTKY GROUPS 14Looking now at the seond automorphism, (ii), we see this involves swap-ping the positions of two generators.h1; :::; i; :::; gi ! hi; :::1; :::; giIn terms of the SG-urves again we may keep the same SG-urves as in theinitial Shottky system and just have a relabelling. We swap the subsriptson the labels for the urves, swapping i subsripts for 1 subsripts, and vieversa. Expliitly we relabel C1 as Ki, C 01 as K 0i, Ci as K1 and C 0i as K 01 asan be seen in Figure 2.5.
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Figure 2.5: The original de�ning urves for a Shottky group and the newurves, after the automorphism (ii)



2.2. SCHOTTKY GROUPS 15The third automorphism is more ompliated - it atually produes a newset of urves, rather than just a relabelling. This onstrution of new urvesomes from a paper of Chukrow [13℄. We have the transformationh1; 2; :::; gi ! h21; 2; :::; giGiven the SG-urves, from the initial Shottky system, for h1; 2; :::; gi welook for the new SG-urves for h21; 2; :::; gi. The old urves and the newurves are shown on Figure 2.6, with explanations afterwards.
C 1

C 2

C 1
/

C 2
/

C 3

C g

C 3
/

C g
/

2
/K

3
/

K 2

K 1

K 3

K g
K

K

K /
1

g
/

Figure 2.6: The original de�ning urves for a Shottky group and the newurves, after the automorphism (iii).We take K1 to be the urve C1 from the initial Shottky system. Sine the



2.2. SCHOTTKY GROUPS 16�rst generator for � is now 21 we an see that K 01 is by de�nition 21(C1).We an see that K 01 is therefore inside the original C 02. We hoose the new K2to be a urve whih has C 01 and C2 on its inside, and all other Ci urves onits outside. Then we have that by de�nition K 02 = 2(K2), and is thus insideC 02. We also have that K 01 and K 02 are not nested. The remaining urves areunhanged, and so Ki = Ci and K 0i = C 0i for 3 � i � g.As an be seen from the diagram, the new urves may bear little resem-blane to the old urves.



2.3. CLASSICAL SCHOTTKY GROUPS 172.3 Classial Shottky GroupsWe begin this setion with the de�nition of a lassial Shottky group.De�nition 2.3.1. A Shottky group, � is said to be lassial if for at leastone set of generators at least one set of SG-urves an be taken to be Eu-lidean irles in C . That is that there exists a Shottky system whihonsists of � and Eulidean irles.De�nition 2.3.2. A partiular generator of a Shottky group, i, is referredto as a lassial generator if the SG-urves Ci and C 0i for that generator areirles in C .There are two onditions in the de�nition of a lassial Shottky group,the fat that we have `at least one set of generators...' and the fat thatwe have `at least one set of SG-urves...'. We shall briey look at theseonditions, and the reasons why they make deiding whether a given Shottkygroup is lassial or not suh a diÆult question to answer.2.3.1 `At least one set of SG-urves...'For a �xed generator set for a Shottky group � = h1; :::; gi we an alterthe SG-urves slightly and reate a new set of SG-urves and hene newShottky system. If we take the C1 and C2 urves and deform them, or keepthe urves the same shape but move them, or a ombination of both, thenthe image urves will also be slightly hanged. As long as the �xed points ofthe generators of � and images of 1 are still inside the new urves, and aslong as the new urves do not interset eah other, or their images, then thenew urves are new SG-urves by de�nition.



2.3. CLASSICAL SCHOTTKY GROUPS 18We an formalise this proess as follows. Assume we have a spei� Shot-tky system with a given set of SG-urves for our Shottky group, labelled inthe usual way. We de�ne a ring domain preisely in x2.5, but for this setionwe just de�ne a ring domain to be the open region in C between two nestedJordan urves. By ompatness arguments there exist disjoint ring domainsdi, one about eah Ci, suh that: the di do not interset eah other; theimages of the ring domains under i do not interset eah other; the imagesof the ring domains under  do not interset the di. For eah di we an takeany Jordan urve whih separates the boundary urves, and these urves anbe the new Ci for a di�erent Shottky system. Their images under i will bethe new C 0i, and we know that none of the urves will interset sine the ringdomains do not interset. We then have a set of 2g non-interseting, non-nesting urves, paired by the generators of the group. These are therefore anew set of SG-urves for �.Finally we give the following example whih shows that a spei�ed gen-erator set an have more than one set of SG-urves, simply by moving oneset of SG-urves.Take our urves to be C1 = fjz � 10ij = 1g and C2 = fjzj = 1g withtransformations f(z) = (10 + 10i)z + 99� 100iz � 10iand g(z) = 10z � 1zwith C 01 and C 02 de�ned as C 01 = f(C1) and C 02 = g(C2). Then we have thatC 01 = fjz�10�10ij = 1g and C 02 = fjz�10j = 1g as on the left of Figure 2.7.If we move C1 and C2 by 12 to the right we see that the image urves move to



2.3. CLASSICAL SCHOTTKY GROUPS 19C 01 = fjz � 323 � 10ij = 43g and C 02 = fjz � 323 j = 43g as shown on the right ofFigure 2.7. Also we an easily observe that the property of insides of urvesgoing to outsides of urves et (that is (D) \ (D) = ; for  2 � = hf; giand D = Ĉ n fnew urvesg) holds for the moved SG-urves. Thus we havetwo di�erent Shottky systems for the same generator set.
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Figure 2.7: Two di�erent sets of SG-urves for the Shottky group hf; gi.2.3.2 `At least one set of generators...'From x2.2 we know that hanging generators an alter the SG-urves quitesigni�antly.In a similar sense to De�nition 2.3.1 we an de�ne the notion of a Shot-tky group being lassial on a spei� generator set if at least one set ofSG-urves for that partiular generator set an be taken to be Eulidean ir-les. Obviously if we have that � is lassial on a given generator set, then



2.3. CLASSICAL SCHOTTKY GROUPS 20appliations of the automorphisms (i) and (ii) ensure that � is lassial on thenew set, sine these automorphisms do not hange the SG-urves themselves,just the labelling. Automorphism (iii) an alter whether a Shottky group islassial on its generator set or not sine it hanges the urves dramatially.Clearly if � is lassial on any spei� generator set then � is lassial. If� is not lassial on a spei� generator set then we annot onlude that� is not lassial. If we were to try to show that a Shottky group was notlassial by analysing how hanging generator sets alters SG-urves we wouldneed to show that � is not lassial on any of its generator sets. We disussnon-lassial Shottky groups in more detail in x2.6.



2.4. RIEMANN SURFACES 212.4 Riemann SurfaesKleinian groups, and hene Shottky groups, are linked to Riemann surfaesas mentioned at the end of x2.1. Firstly we de�ne a Riemann surfae, viade�nitions of harts and an atlas.De�nition 2.4.1. A hart is a pair onsisting of an open, simply onnetedregion Ui on S and a homeomorphism �i : Ui ! Di whih maps Ui onto anopen subset Di of the omplex plane C . The homeomorphism � gives a loalo-ordinate system at eah point on S.De�nition 2.4.2. An atlas is the name given to a family of harts.When two open regions U� and U� on S interset, we have that there aretwo images of the intersetion in C , namely ��(U� \U�) and ��(U� \U�) asin Figure 2.8.
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βαFigure 2.8: A Riemann surfae, with interseting harts and a transitionfuntion.



2.4. RIEMANN SURFACES 22De�nition 2.4.3. A transition funtion then takes one image of the inter-setion to the other by t�� = �� Æ ��1� : ��(U� \ U�)! ��(U� \ U�). Thesefuntions represent the transition from one oordinate system on (U� \ U�)to another.De�nition 2.4.4. A Riemann surfae is a two-real-dimensional onnetedmanifold, S, with a maximal atlas with analyti transition funtions, that isthat the transition funtions are di�erentiable [5℄.For � a Shottky group we have that S = 
(�)=� is a onneted Riemannsurfae. The proof of this an be found in [28℄ (II.F.6).This link between Riemann surfaes and Shottky groups an be desribedas the proess of using Shottky groups to uniformize losed Riemann sur-faes.De�nition 2.4.5. A olletion of g disjoint, homologially independent, suf-�iently smooth, simple losed urves s1; :::; sg on a losed Riemann surfaeS of genus g are de�ning urves for a Shottky uniformization, or SU-urves,if one an hoose a Shottky group �, with generators 1; :::; g, so that thereis a fundamental region D bounded by SG-urves C1; C 01; :::; Cg; C 0g 2 
(�),with i(Ci) = C 0i suh that si is the image of Ci (and C 0i) under the map� : 
(�)! 
(�)=�. We say then that S is uniformized by a Shottky group.Theorem 2.4.6. Koebe Retrosetion Theorem ([6℄,[18℄) Every losedRiemann surfae an be uniformized by a Shottky group.We look to extend this theorem to lassial Shottky groups in Chapter3.



2.4. RIEMANN SURFACES 23

Figure 2.9: An example of SU-urves on a losed Riemann surfae.It ould be that properties of the SG-urves relate to properties of theSU-urves, or of the surfae, S. In [37℄ Sibner shows that a losed symmertiRiemann surfae of genus g an be represented by a Shottky group whihhas a standard fundamental domain whih exhibits the symmetry.It will be neessary to look at ollars about the SU-urves on S. Theollar lemma states:Theorem 2.4.7. ([11℄) Let S be a ompat Riemann Surfae of genus g �2, and let s1; :::; sg with lengths l(s1); :::; l(sg) be pairwise disjoint simplelosed geodesis on S. Then the ollarsC(si) = fp 2 S j dist(p; si) � w(si)gof widths w(si) = arsinh" 1sinh �12 l(si)�#are pairwise disjoint for i = 1; :::; g.An example of a pair of ollars is shown on Figure 2.10. We now look atthe pre-image of suh a ollar, under �, in 
(�).



2.4. RIEMANN SURFACES 24

Figure 2.10: An example of a pair of ollars about SU-urves on a losedRiemann surfae.



2.5. RING DOMAINS 252.5 Ring DomainsWe �rst give two de�nitions.De�nition 2.5.1. A ring domain in C is a doubly onneted domain, thatis, the open region between a pair of nested disjoint Jordan urves k1, k2,with k2 inside k1 as in Figure 2.11.
k1

k2

Figure 2.11: A Ring Domain.De�nition 2.5.2. An SG-urve  is said to separate the boundary ompo-nents of a ring domain A if any line onneting one boundary omponent ofA to the other rosses  an odd number of times.Given a ollar as desribed in Theorem 2.4.7, about a urve, s, on a losedRiemann surfae, S, we an look at the pre-image of the ollar on the domainof disontinuity, under � : 
(�) ! 
(�)=�. The ollar has as pre-image anin�nite olletion of disjoint ring domains, paired by onjugate elements of�. One suh pair of ring domains will ontain a pair of SG-urves, with theSG-urves separating the boundary omponents of the ring domain.We briey mention a pair of de�nitions of properties of ring domains.



2.5. RING DOMAINS 26De�nition 2.5.3. A ring domain B � C is round if it is bounded by on-entri Eulidean irles, and hene has the form fz j r < jz � j < sg forr; s 2 R+ ,  2 C . If a ring domain is round we will all it an annulus.De�nition 2.5.4. Given two ring domains, A and B with B � A, we saythat B is essential with respet to A if B separates the boundary omponentsof A.We now look to de�ne the module and modulus of a ring domain. Themodule and modulus are numbers assigned to a given ring domain, whihmeasure the size of the ring domain, for some de�nition of size, and areonformal invariants. We shall briey disuss onformal equivalene andinvariane.De�nition 2.5.5. A map f is onformal if it preserves angles.Examples of suh funtions inlude rotations, dilations, and in fat anyM�obius tranformation.De�nition 2.5.6. Two objets A and B are onformally equivalent if thereexists a onformal map f suh that B = f(A).De�nition 2.5.7. A property p, suh as extremal length, module or modu-lus, is said to be a onformal invariant if, for any onformal map f , p(A) =p(f(A)). In other words, p is invariant under onformal maps, or that fortwo onformally equivalent objets A and B it is true that p(A) = p(B).Extremal length is an example of a onformal invariant, and we givesome details about it here. Suppose we have a region �, with boundary



2.5. RING DOMAINS 27onsisting of a set of expliitly de�ned edges, and a set of reti�able ars �in �, for example joining two edges of � or separating two omponents ofthe boundary of �. Extremal length is a property invariant under onformalmappings whih we desibe shortly. We let m denote extremal length, withappropriate subsript denoting the spei� region whih is being onsidered.Let �0 represent � after the onformal mapping, and let �0 represent � afterthe mapping. To be a onformal invariant is the same as requiring thatm�(�) = m�0(�0). We onsider the family of Riemannian metris whihare onformally equivalent to the eulidean metri. We let P be the set oflength elements, �, on the region �, whih are then used to de�ne metris byds = �jdzj. We may look at an ar � 2 �, whih has a well de�ned �-lengthgiven by: L(�; �) = Z� � jdzjThe open set � has �-area given by:A(�; �) = ZZ � �2 dx dyThese funtions are both invariant under hange of metri by onformal map-ping. Now we de�ne the minimum length of any ar in � for a given � bytaking the in�mum of the �-lengths over all possible ars:L(�; �) = inf�2�L(�; �)Saling of the region � by a fator is a onformal map, and so extremallength must be unhanged when � is multiplied by a onstant. We thereforetake the funtion L(�; �)2=A(�; �) to form the de�nition of extremal lengthsine replaing � by � for  a onstant doesn't alter the value. We take the



2.5. RING DOMAINS 28least upper bound of this funtion over all �, giving us that the extremallength of � in � is de�ned [3℄ as:m�(�) = sup� L(�; �)2A(�; �)It is useful to work through an example, to give an idea of how extremallength is alulated. If we take a retangle R, with sides on x = 0, x = a,y = 0 and y = b then we an alulate the extremal length of the ars joiningthe vertial sides as follows. Let the set of ars joining x = 0 with x = abe denoted �. We may get a lower bound on the extremal length of � byinitially hoosing any metri that we like, say � = 1. In this ase L(�; 1) = a,and A(R; 1) = ab, and hene L(�;1)2A(R;1) = ab , and hene thatmR(�) � ab (2.1)To �nd if this bound holds for all � we may pik an arbitrary �, althoughwe may normalise by hoosing for example that L(�; �) = a. Therefore wehave for a urve � 2 �: L(�; �) � aZ a0 � dx � Z a0 1 dxZ a0 (�� 1) dx � 0ZZ R(�� 1) dx dy � 0 (2.2)We may use this fat to alulate the area A(R; �). It is lear that wehave: ZZ R(�� 1)2 dx dy � 0 (2.3)



2.5. RING DOMAINS 29Expanding the brakets in Equation (2.3), rearranging, and substituting inthe result of Equation (2.2) we get:A(R; �) = ZZ R �2 dx dy � ZZ R(2�� 1) dx dyZZ R �2 dx dy � 2 ZZ R(�� 1) dx dy + ZZ R 1 dx dyA(R; �) � ZZ R dx dy= abSo we have that for all �:mR(�) = sup� L(�; �)2A(�; �) � ab (2.4)We therefore an ombine Equations (2.1) and (2.4) to see that mR(�) = ab .We return now to the onept of the modulus of a ring domain. Inthe literature the modulus an be de�ned in two equivalent ways, both ofwhih are worth mentioning here. There is some di�erene of normalisationin the texts in this area, the main di�erene being a fator of 2�. Thethree soures I use here are Herron, Liu and Minda [15℄, Lehto and Virtanen[22℄ and MMullen [32℄. These soures use the same notation for slightlydi�erent de�nitions, so I will use the subsripts HLM, LV and M respetivelyto denote whih text the term relates to. Module is denoted by M(A) for aring domain A, and modulus will be denoted by mod(A), with appropriatesubsripts. The funtion � to be de�ned later will also arry subsripts todenote soure where appropriate. We will be using the de�nitions of Herron,Liu and Minda predominantly, but there is value in looking at all the di�erentde�nitions and heking that they are onsistant.



2.5. RING DOMAINS 30De�nition 2.5.8. ([22℄) A general ring domain A is onformally equivalentto an annulus of the form fz j r1 < jzj < r2g; let f be the map from A to suhan annulus. The module of a ring domain is de�ned as MLV (A) = ln� r2r1�.Equivalently A is onformally equivalent to an annulus A(R), that is,there exists an angle preserving map fromA toA(R), A(R) de�ned as A(R) =fz j 1 < jzj < Rg for a unique R. The module of the ring domain is thende�ned to as MLV (A) = ln(R)A seond de�nition of module an be onstruted as below. We �rstlyset up notation used throughout this setion, and in Chapter 3.Remark 2.5.9. ([22℄, I 6.2) Let (�A)1 and (�A)2 denote the omponents ofthe omplement of A, and we an let C be the set of urves separating (�A)1and (�A)2.We now go on with the alternate de�nition. Then let P be the familyof all possible metris on A, de�ned by line elements � dz where � is anon-negative funtion on A suh that the metris are ontinuous enough forthe following integrations, and that P ontains the metri de�ned by thefuntion jf 0=f j, for f as de�ned in De�nition 2.5.8. For � 2P, leta�(A) = ZZ D �2 d�where d� is the area element on A. Also for a urve C 2 C we de�nel�(C) = ZC � jdzjand jdzj is the length element. The alternate de�nition for module an thenbe expressed as MLV (A) = inf�2P 2�a�(A)� infC2C l�(C)�2



2.5. RING DOMAINS 31This alternate de�nition will be useful later.De�nition 2.5.10. The modulus of a ring domain, A, whih is onformallyequivalent to an annulus fz j 1 < jzj < Rg, is de�ned in [32℄ as modM(A) =lnR2� .Thus we have that modM(A) = MLV (A)=2�. Herron, Liu and Mindagive the same de�nition of modulus, so modM(A) = modHLM(A). It is worthnoting then that from the above we havemodM(A) = modHLM(A) = inf�2P a�(A)� infC2C l�(C)�2Calulating the modulus of a ring domain diretly is not neessarily easy,but there exist bounds based on the modulus of a spei� domain de�nedbelow.De�nition 2.5.11. Gr�otzsh's Extremal Domain is a domain, denoted B(r),whih is onformally equivalent to a ring domain (as detailed below), andhas as its boundary the unit irle jzj = 1 and the segment of the real axis0 � x � r, r < 1. Its modulus is denoted �(r).Gr�otzsh's extremal domain is onformally equivalent to a ring domain,and in fat onformally equivalent to an annulus. The onformal map whihmaps B(r) to an annulus is onstruted as follows. We may map the upperhalf of Gr�otzsh's Extremal Domain onformally to the upper half of thepartiular annulus de�ned by 1 < jzj < e�LV (r). This map an then beextended to a map on the whole of B(r) by following this with a reetion inthe real axis [22℄. We have Gr�otzsh's module theorem, given below, whih
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0 r 1

Figure 2.12: Gr�otzsh's Extremal Domain.gives us a bound on the modulus (and hene module) of any ring domainwhih is essential with respet to Gr�otzsh's extremal domain.Theorem 2.5.12. ([15℄) If a ring domain A separates the points 0 and rfrom the unit irle then modHLM(A) � �HLM(r).The � funtion is disussed in all three texts and again there is somedi�erene in normalisation. Gr�otzsh's extremal domain is denoted B(r) inLehto and Virtanen. They de�ne the module of Gr�otzsh's extremal domainto be MLV (B(r)) = �LV (r). In [15℄ the domain is de�ned in the same way,denoting it RG(r), so B(r) = RG(r). They denote its modulus using �, so Iwill denote it as �HLM(r). Therefore we an write the following�LV (r) = MLV (B(r))= 2�modHLM(B(r))= 2�modHLM(RG(r))= 2��HLM(r)



2.5. RING DOMAINS 33MMullen doesn't use Gr�otzsh's extremal domain to introdue � but we aneasily see that �LV (r) = �M(r).In order to get a better bound on the module or modulus of a general ringdomain than the one in Theorem 2.5.12 we introdue Teihm�uller's extremaldomain.De�nition 2.5.13. Teihm�uller's Extremal Domain is a domain in Ĉ whihhas as its boundary the segment of the real axis �r1 � x � 0 and the segmentr2 � x � 1. Its modulus is given in terms of the modulus of Gr�otzsh'sextremal domain as 2�HLM �q r1r1+r2�.
−r r

1 2
0Figure 2.13: Teihm�uller's Extremal Domain.From this we an get Teihm�uller's module theorem, whih appears inLehto and Virtanen ([22℄, II 1.3) and in MMullen ([32℄, pg 11). As before wetake a ring domain A with omplement (�A)1 and (�A)2, where 0 2 (�A)1and 1 2 (�A)2. Then to bound the modulus of A we simply need a pointinside (�A)1 and a point outside (�A)2. We have:Theorem 2.5.14. ([22℄,[32℄) If a ring domain B separates the points 0 andz1 from z2 and 1, then we haveMLV (B) � 2�LV  s jz1jjz1j+ jz2j!and in the notation of MMullenmodM(B) � 1��M  s jz1jjz1j+ jz2j!



2.5. RING DOMAINS 34Using the onversions above, an equivalent formula an be written in thenotation of Herron, Liu and Minda and so the version of the theorem we willuse is:Theorem 2.5.15. If a ring domain B separates the points 0 and z1 from z2and 1, then we havemodHLM(B) � 2�HLM  s jz1jjz1j+ jz2j!We an see that the three di�erent sets of notation are atually onsistentwith eah other. We may onvert from one to the other using rules suh as�LV = 2��HLM as derived earlier, or modM = modHLM . Table 2.5 showsthe di�erent de�nitions based on the soures used, and after eah de�nitiongives a way to onvert between the three texts.We now need to de�ne the � funtion so that we an onstrutively useTeihm�uller's module theorem. From here on, we will use the HLM de�nitionof � and mod, without expliit use of subsripts.Remark 2.5.16. This funtion �(r) is de�ned in terms of ellipti integrals, inthat �(r) = 14K(p1� r2)K(r)where K(r) = Z 10 dxp(1� x2)(1� r2x2)There exist some useful bounds on the behaviour of �(r) in [15℄, [22℄ and[34℄. For instane �(r) < 12� ln(4r ) and �(r) < 12� ln 2(1+p1�r2)r but we will beusing the ellipti integral de�nition predominantly. This partiular elliptiintegral is known as the omplete ellipti integral of the �rst kind.
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HLM LV MModule M(A) = ln (R)Modulus mod(A) = 12� ln(R) mod(A) = 12� ln(R)Conversion = modHLM(A) MLV (A) = 2�modHLM(A) modM(A) = modHLM(A)�(r) Modulus of GED Module of GED \positive dereasing funtion of r"Conversion = �HLM(r) �LV (r) = 2��HLM(r) �M(r) = 2��HLM(r)Teihm�uller'sModule mod(A) � 2��q jz1jjz1j+jz2j� M(A) � 2��q jz1jjz1j+jz2j� mod(A) � 1���q jz1jjz1j+jz2j�TheoremTable 2.1: Summarising the onepts of module, modulus and �, with notes for omparing the texts.



2.5. RING DOMAINS 36Finally we will disuss the extremal length of the family of urves Cmentioned in the seond de�nition of the module of a ring domain.For a ring domain extremal length an be rewritten in terms of the termsde�ned in Setion 2.4. We an see quite easily that the terms in the de�nitionof extremal length an be replaed by those in the de�nition of module, andhene modulus. We see that for a ring domain A with set of urves Cas previously de�ned we have a de�nition for extremal length in terms ofomponents of the de�nition of modulus:mA(C ) = sup�2P � infC2C l�(C)�2a�(A)Thus we an see that mA(C ) = 1mod(A)



2.6. NON-CLASSICAL SCHOTTKY GROUPS 372.6 Non-Classial Shottky GroupsWe return now to non-lassial Shottky groups. It is obvious that lassialShottky groups exist, simply by onstrution, but it is not obvious thatnon-lassial Shottky groups exist. In his paper [25℄ Marden proved theexistene of non-lassial Shottky groups using Shottky spae. We give twoequivalent de�nitions of Shottky spae, and then briey disuss Marden'sproof, and survey what is known in this area.De�nition 2.6.1. The Shottky spae of a given genus g is denoted Sg and isthe set of all equivalene lasses of Shottky groups with g generators, wheretwo Shottky groups � = h1; :::; gi and �0 = h01; :::; 0gi are equivalent ifthere exists a M�obius transformation f with fif�1 = 0i for all i = 1; :::; g.We put a topology on Sg by requiring that the equivalene lass [Gn℄ on-verges to [G℄ i� there exists h1; :::; gi 2 [G℄ and h1;n; :::; g;ni 2 [Gn℄ suhthat i;n onverges to i, [29℄,[30℄.In this sense we may think of a point in Shottky spae as being a setof free generators for a Shottky group, modulo onjugation in PSL2(C ).Alternatively we may de�ne Shottky spae in relation to Riemann surfaesuniformized by Shottky groups.De�nition 2.6.2. [17℄ Shottky spae an be de�ned as the set of equiv-alene lasses of pairs (X; �), where X is a Riemann surfae of genus gand � : �g �! PSL2(C ) is an injetive homomorphism, where �g is thefree group on 1; :::; g, where � := �(�g) is a Shottky group, and where
(�)=� �= X. We have that (X; �) and (X 0; �0) are equivalent if there exists



2.6. NON-CLASSICAL SCHOTTKY GROUPS 38some A 2 PSL2(C ) with �(0i) = A�(i)A�1 for all i = 1; :::; g. We have thenthat X 0 is isomorphi to X.We de�ne lassial Shottky spae in a similar way to the �rst de�nitionof Shottky spae, that is the set of equivalene lasses represented by las-sial Shottky groups with g generators. We say that a Shottky group �0 isequivalent to a lassial Shottky group � if there exists a M�obius transfor-mation f with fif�1 = 0i for all i = 1; :::; g. Note we have that if the ihave lassial SG-urves then we do not neessarily have that 0i has lassialSG-urves. We let Sg denote lassial Shottky spae.In his paper, [25℄, Marden ompares Shottky spae with lassial Shot-tky spae, to show that non-lassial Shottky groups exist. He shows thatthe intersetion of the losure of lassial Shottky spae with Shottky spaeis not the whole of Shottky spae, and hene there are Shottky groups whihare not lassial. We briey summarise the idea of his main proof. FirstlyMarden shows that if G is a group in the losure of lassial Shottky spaethen G is disontinuous. Marden then takes a Shottky group H on theboundary of Shottky spae whih is not disontinuous; this group existsthrough a result of Chukrow [13℄. He then hooses a sequene Gn of Shot-tky groups, whih are not on the boundary of lassial Shottky spae, andwhose limit is H. He shows that at most a �nite number of the Gn lie inlassial Shottky spae, and hene the remaining groups lie in Sg�(Sg\Sg),whih is therefore non-empty, and therefore there exist non-lassial Shottkygroups.It is worth mentioning here about Teihm�uller and moduli spae, andtheir links to Shottky spae. In a similar vein to the seond de�nition of



2.6. NON-CLASSICAL SCHOTTKY GROUPS 39Shottky spae we de�ne these spaes in terms of surfaes. A simple wayto de�ne Teihm�uller and moduli spaes involves �rst de�ning the mappinglass group, [38℄.De�nition 2.6.3. Let Di�(X) be the set of orientation-preserving di�eo-morphisms of a surfae X, and let Di�0(X) be the set of those di�eomor-phisms isotopi to the identity. We de�ne the mapping lass group to beMCG(X) = Di�(X)=Di�0(X).We may also de�ne the mapping lass group in terms of the uniformizinggroup �:De�nition 2.6.4. [10℄ For a Shottky group �, we let the group of orienta-tion preserving automorphisms be denoted by Aut(�) (where an orientationpreserving automorphism is one whih orresponds to an orientation preserv-ing di�eomorphism). We then have that MCG(�) = Aut(�)=Inn(�).For a given oriented surfae X we letM(X) denote the set of all omplexstrutures on X whih agree with the di�erentiable struture on X. We anthen de�ne the moduli spae, Mg, and Teihm�uller spae, Tg, as follows:De�nition 2.6.5. Moduli spae, Mg, of a surfae X of genus g, is de�nedby Mg = M(X)=Di�(X). Moduli spae is therefore the spae of all equiv-alene lasses of ompat Riemann surfaes of genus g, where two surfaesare equivalent if there is onformal di�eomorphism between them.De�nition 2.6.6. Teihm�uller spae, Tg, of a surfae X of genus g, is de-�ned by Tg = M(X)=Di�0(X). Teihm�uller spae is therefore the spae ofall equivalene lasses of ompat Riemann surfaes of genus g where two



2.6. NON-CLASSICAL SCHOTTKY GROUPS 40surfaes are equivalent if there is a onformal di�eomorphism between themwhih is isotopi to the identity.A simple example to show the di�erene between the two is to onsidera surfae of genus g > 0 with a given omplex struture. We onsider thesurfae obtained by utting one of the handles in two, twisting one setion by2� and then glueing them bak together. This new surfae would orrespondto the same point as the original surfae in moduli spae, but would be adi�erent point in Teihm�uller spae. This is beause the operation desribedabove (a \Dehn twist") is not isotopi to the identity but the surfae obtainedby the twist is still equivalent in moduli spae.It is simple to see that moduli spae and Teihm�uller spae are related byMg = Tg=MCG(X). The link with Shottky spae is explained in [29℄. Asdisussed in x2.4 we have a Riemann surfae uniformized by any Shottkygroup. Let S be the surfae uniformized by �. Looking at the generatorsof �1(S) we an see that a partiular generator may also be a generator of� or not. Let N be the smallest normal subgroup of �1(S) ontaining thosegenerators of �1(S) whih are not generators of �. We an then de�ne Nalgas the subgroup of the mapping lass group whih is the subgroup of outerautomorphisms � : �1(S) �! �1(S) with the properties that �(N) = N andthat the indued isomorphism � : �1=N �! �1=N is the identity. Shottkyspae is then Sg = Tg=Nalg.We an de�ne another spae, known as unmarked Shottky spae as fol-lows.De�nition 2.6.7. Let Nun be the subgroup of the mapping lass group on-sisting of all outer automorphisms � : �1(S) �! �1(S) with the property that



2.6. NON-CLASSICAL SCHOTTKY GROUPS 41�(N) = N . Unmarked Shottky spae is then de�ned as Sung = Tg=Nun.A point in unmarked Shottky spae is a Shottky group modulo onju-gation in PSL2(C ) [29℄.Finally, in [29℄ Maskit de�nes Stopg , whih is topologial Shottky spae.This is done in a similar way, by de�ning another subgroup of the mappinglass group.De�nition 2.6.8. Let Ntop be the subgroup of the mapping lass grouponsisting of all outer automorphisms � : �1(S) �! �1(S) with the followingproperty. If a1; :::; ag denote the generators of �1(S) whih are not generatorsof � then �(ai) is onjugate to ai for all i = 1; :::; p. We then de�ne thetopologial Shottky spae as Stopg = Tg=Ntop.A point in topologial Shottky spae an be regarded as onsisting of aShottky group with a fundamental domain bounded by 2g SG-urves. Wean see that points in Stopg arry the most information, then points in Sg, andthen points in Sung whih arry the least information about the group.From the nature of de�ning these Shottky spaes using subgroups of themapping lass group we have a tower of overings as shown below:Tg ! Stopg ! Sg ! Sung !MgWork on the nature of these overings an be found in [29℄, [30℄ and others.The �rst onrete example of a non-lassial Shottky group was givenby Yamamoto [40℄. An earlier example given by Zarrow [41℄ was then shownto be lassial by Sato [35℄. Yamamoto's group is a two generator Shottkygroup, with SG-urves C1 the retangle with orners p2�1+i(1�"=3);p2�



2.6. NON-CLASSICAL SCHOTTKY GROUPS 421 � i(1 � "=3);�p2 + 1 + i(1 � "=3) and �p2 + 1 � i(1 � "=3), and C 01 isde�ned as 1(C1), C2 := fjz +p2j = 1 � "g, C 02 := fjz � p2j = 1 � "g. Ashemati piture of this arrangement is shown in Figure 2.14.
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1Figure 2.14: The de�ning urves for Yamamoto's non-lassial Shottkygroup.The two transformations are1(z) = i(p2 + 1)zand 2(z) = p2(1� ")�1z + (1� ")(2(1� ")�2 � 1)(1� ")�1z +p2(1� ")�1and it is shown that for " < 10�20 �" is a non-lassial Shottky group. Thispaper will be looked at in more detail in x4.1, and generalised in x4.2.Finally in this setion we disuss the idea of how lassial a Shottky groupan be. By de�nition a Shottky group is lassial if it is lassial on at leastone set of generators. We an ask the question now as to, in some sense,how lassial a Shottky group an be, or what it means for one Shottkygroup to be more lassial than another. If a Shottky group is lassial ona generator set then the group is lassial, but equally if a Shottky group



2.6. NON-CLASSICAL SCHOTTKY GROUPS 43is lassial on many di�erent generator sets it is still lassial. The naturalquestion to ask is how many di�erent generator sets an a Shottky groupbe lassial on? Does there exist a Shottky group � whih is lassial onall generator sets? We refer to this group � as �uber-lassial.As mentioned previously, only one Nielsen transformation alters the SG-urves themselves, the transformation (iii) in Setion 2.2. For a Shottkygroup � to be lassial on all generator sets then �rst of all it would have to belassial on h21; 2i, and also h221; 2i. By the proedure of Chukrow,as in Figure 2.6, this only allows for ertain on�gurations. In the notationof x2.3 we would need to be able to �nd a irle K2 around C 01 and C2, whihdoes not interset K1; K 01 or K 02. This is possible, but we would also requirethat there was a irle around C2 and C 01 so that h12; 1i is lassial, andso on. These restritions from the Chukrow onstrution prohibit manyarrangements of original SG-urves.Aside from the diÆulties of the Chukrow onstrution there are alsoertain restritions on how a generator set an have lassial SG-urves, forinstane loations of �xed points and i(1). For example in a two generatorShottky group � = h1; 2i, with SG-urves C1; C 01; C2 and C 02, we have thatboth �11 (1) and the repulsive �xed point of 1 must be on the inside ofC1. These points, along with similar restritions for C 01; C2 and C 02, an bepositioned suh that no lassial SG-urves exist for those generators, but itis more diÆult to show that for every group there is at least one generatorset where suh arrangements arise.In [12℄ Button shows that a Fuhsian Shottky group is �uber-lassial i�it has two generators whih have interseting axes.



2.6. NON-CLASSICAL SCHOTTKY GROUPS 44Of ourse the equivalent question regarding non-lassiality is muh moresimple. If we want to look for an �uber-non-lassial Shottky group then werequire that it is non-lassial on all possible generator sets. But of ourse fora group to be non-lassial it must be non-lassial on all possible generatorsets. Therefore any non-lassial Shottky group is �uber-non-lassial.



Chapter 3
Uniformization by ClassialShottky Groups
3.1 TheoremAs disussed in x2.4 Koebe's Retrosetion Theorem states that every losedRiemann surfae an be uniformized by a Shottky group. As we have alsomentioned, Shottky groups exist in two distint types, lassial and non-lassial. An interesting question to ask would be whether every losed Rie-mann surfae an be uniformized by a lassial Shottky group, or onverselywhat features do Riemann surfaes that are uniformized only by non-lassialShottky groups have. In this setion we try to extend Koebe's theorem bylooking at what an be said about surfaes uniformized by lassial Shottkygroups.Work on Shottky uniformizations of surfaes has been done, partiularlyon those with ertain symmetries, by people suh as Hidalgo [16℄. From45



3.1. THEOREM 46x2.6 we know Marden showed that non-lassial Shottky groups exist, andan expliit example of a non-lassial Shottky group is due to Yamamoto[40℄. The natural question to ask is whether Koebe's theorem holds if werestrit to lassial Shottky groups, that is Shottky groups where some setof de�ning urves an be taken to be irles.In [29℄ Maskit states that a surfae of genus p with p suÆiently smallhomologously independent simple disjoint geodesis an be uniformized by alassial Shottky group. We prove this in this hapter, with a numerial esti-mate to formalise `suÆiently small'. We de�ne the Shottky uniformizationonstant, k, to be the smallest positive solution of the following equation:ex sin�x4� + sin�x4� = 2ex2 (3.1)We then have the following theorem:Theorem 3.1.1. Let S be a losed Riemann surfae of genus g � 2, andlet s1; :::; sg be the de�ning urves for a Shottky uniformization. If theseurves have length less than the Shottky uniformization onstant, k, then,independent of the genus g, there exists a lassial Shottky uniformizationof S.Proof. First we give a brief outline of the proof. The aim is to show thatgiven a ondition on the length of urves on a losed Riemann surfae, S,we are able to show the existene of a set of Eulidean irles whih areSG-urves for a lassial Shottky uniformization of S.The surfae will have a Shottky uniformization, S = 
(�)=� by Koebe[18℄, and hene we have a set of SU-urves s1; :::; sg on S and orresponding



3.1. THEOREM 47SG-urves C1; C 01; :::; C 0g on 
(�), not neessarily irles. These SG-urvesalong with � form our initial Shottky system.The aim of our proof is to show that for eah given SG-urve Ci with aorresponding SU-urve si there exists a Eulidean irle on 
(�) whih ismapped to a urve s0 on S suh that s0 is homotopi to si. If this is the asethen we an use this irle as our new SG-urve in a new Shottky systemfor �. That is that s0 will be an SU-urve for the Shottky uniformizationwith a lassial generator.We take eah SU-urve, �, in the uniformization individually and �nd alassial SG-urve for it in the following way. We look at the ollar about �on S and lift it to a pair of ring domains in 
(�), one about Ci, all this A,and the the other about C 0i. Figure 3.1 shows an example.
C

C
R1 R2

i

i
/

Figure 3.1: An example of the lift of a ollar under 
(�)! 
(�)=� to a pairof ring domains R1 and R2 with Ci and C 0i respetively as separating urvesGiven a ondition on the length of �, this an then be adapted throughwork of Maskit to give a ondition on the extremal length of the family ofurves separating the omponents of the boundary of A. We will then relateextremal length to the modulus of A, and from this show that this bound on



3.1. THEOREM 48modulus gives us that there exists a irle in 
(�) whih an be mapped toa urve homotopi to � on S.We are now able to look at the details of the proof. Let k be the smallestpositive solution of ex sin �x4� + sin �x4� = 2ex2 . If we look at the rearrangedequation x = 4 arsin�2ex=2ex+1� we see that there is only one solution, namelythe Shottky uniformization onstant, k. We use this rearranged form later.Using Maple [24℄ we an use numerial methods to solve this rearranged form,and get that k � 2:371776. We assume that l(si) < k for all si in the set ofSU-urves on S and we want to show that this implies existene of a set ofirular SG-urves.If all the si on S lift to irles in 
(�) then S is uniformized by a lassialShottky group. If this is not the ase then some SU-urves do not lift toirles in 
(�), so we an take one suh urve and all it �. There exists aollar about � whih then lifts to a pair of ring domains in 
(�), one aboutsome Ci and the other about C 0i. Let R be the ring domain about Ci. Usingthe notation of [22℄ and Remark 2.5.9 we an assume, through onjugation byan element of PSL2(C ) if neessary, that C �R onsists of (�R)1 and (�R)2,with 0 2 (�R)1 and 1 2 (�R)2. Let z1 2 (�R)1 be the (not neessarilyunique) point whih maximises jzj over (�R)1. Similarly let z2 2 (�R)2be the (not neessarily unique) point whih minimises jzj over (�R)2. Wean see that for a irle to `�t' inside a ring domain it suÆes to show thatjz1j < jz2j. If this is the ase then learly R ontains the essential roundannulus B = fz j jz1j < jzj < jz2jg. Examples of jz1j < jz2j and jz1j > jz2jare given in Figure 3.2. In the �rst we have an essential round annulus, andhene a irle �ts inside the ring domain. In the seond we see that jz1j > jz2j



3.1. THEOREM 49and hene the round annulus B may not exist.
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Figure 3.2: Two examples of ring domains, one whih admits an essentialround annulus entered at 0, and one whih does not.We want to �nd a link from a bound on l(si) to the existene of annuli.To begin we use a paper of Maskit [27℄ to ompare the hyperboli length lwith the extremal length, m, of the urve family C onsisting of all urvesseparating (�R)1 and (�R)2. The paper of Maskit uses a di�erent realizationof S, rather than using S = 
(�)=� to de�ne S, it an also be written as aquotient of H 2 as S = H 2=�. A geodesi on S is lifted by the overing mapto a set of hyperboli lines (�) for  2 � and � a hyperboli line. Up toonjugation of the group, we an assume that � is a Eulidean straight linein H 2 . A ollar of the type disussed in Theorem 2.4.7 about the geodesi �on S is symmetrial, and hene will be lifted to a symmetrial ollar of the



3.1. THEOREM 50form ��2 � � < arg z < �2 + �	 as in Figure 3.3.
φ φ

β

Figure 3.3: A topologial ollar about �We have from [27℄ that l � m� where the angle � is the angle width forthe ollar, so, in Figure 3.3, we have that � = 2�.The ollar on S lifts to a ollar in H 2 as in Figure 3.4, where the sidesof the ollar are at a hyperboli distane of w = w(�) from the vertialhyperboli line.
w

1

A

1

10−1

φFigure 3.4: The topologial ollarThe point A, of distane w along the hyperboli line through �1; i; 1 isA = e2w � 1e2w + 1 + 2ewe2w + 1 iWe an see that sin� = Re(A), and hene sin� = e2w�1e2w+1 . Now we want thisangle in terms of l not w, so �rst we need to look at the de�nition of w from



3.1. THEOREM 51the ollar lemma (Theorem 2.4.7), whih states thatw = arsinh �1= sinh( l2)�First of all we let x = 1= sinh l2 so that we have w = arsinh(x). Now wean rewrite w in terms of the logarithmi de�nition of arsinh, so we havethat w = ln(x+px2 + 1). Also we have the standard exponential de�nitionof sinh, whih gives us that x = 1= sinh( l2) = 2el=2 � e�l=2 . Combining all ofthis we get sin� = e2w � 1e2w + 1= (x +px2 + 1)2 � 1(x +px2 + 1)2 + 1= x2 + xpx2 + 1x2 + 1 + xpx2 + 1= 2el=2 + 4 + 2e�l=2el + 2el=2 + 2 + 2e�l=2 + e�l= 2el=2el + 1So we have � = 2� = 2 arsin�2el=2el+1�. Now we an rearrange the inequal-ity of Maskit to get that m � l� = l2 arsin�2el=2el+1�Rearranging the expression in Theorem 3.1.1 we get that k2 = 2 arsin� 2ek=2ek+1�,and so if we have that l < k from our theorem then we have that l� < kk=2 = 2,and hene m < 2.The next detail we need to look at is that of the extremal length of theurve family C onsisting of all urves separating (�R)1 and (�R)2. We



3.1. THEOREM 52have that this extremal length is m < 2. Now, from x2.5 we have thatmod(R) = 1m . Hene if m < 2 then mod(R) > 12 .Now, Theorem 2.5.15 tells us that mod(R) � 2��q jz1jjz1j+jz2j�. So we havespei�ally that 12 < mod(R) � 2� s jz1jjz1j+ jz2j!From Remark 2.5.16 we get that:12 < mod(R) � 2� s jz1jjz1j+ jz2j! = 12K(p1� r2)K(r)where r =s jz1jjz1j+ jz2jNow reall that to have an essential round annulus we require that jz1j <jz2j. We an write jz2j = Æjz1j for some Æ, and the ondition jz1j < jz2j isequivalent to Æ > 1. So now:12 < 12K(p1� r2)K(r) ; r =r 11 + Æ (3.2)We now look at the funtion K(r) in more detail, to see how it behavesfor 0 < r < 1. Heuristially we an just plot K(r) against r and see that it isan inreasing funtion. Similarly we an see that K(p1� r2) is a dereasingfuntion, and so we have that K(p1�r2)K(r) is a dereasing funtion for 0 < r < 1,whih is preisely the range that r satis�es sine r originates in the de�nitionof Gr�otzsh's extremal domain.



3.1. THEOREM 53More tehnially we an note thatK(r) = �2 1Xn=0 �(2n� 1)!!(2n)!! �2 r2nwhere the double fatorial is de�ned using a reursive de�nition asn!! = 8<: 1 if n = �1; n = 0 or n = 1n[(n� 2)!!℄ if n � 2In [2℄ it is shown that K(r) is stritly inreasing and positive, and it isalso shown that for 0 < r < 1ddr �K(p1� r2)K(r) � = ��2r(1� r2)K(r)2and so we have that K(p1�r2)K(r) is a stritly dereasing funtion on 0 < r < 1.Equation 3.2 now beomes 1 < K(p1�r2)K(r) , whih we need to solve. Whenr = p2=2 we have that 1 � r2 = r, and so K(p1� r2) = K(r), and henethat 1 = K(p1�r2)K(r) . Now, sine we know that this funtion is dereasing wehave that: 1 < K(p1� r2)K(r) ) r < p2=2Now we simply have that: r < p22r 11 + Æ < p221 < ÆThus if the length of � on S is l(�) < k then jz1j < jz2j and henethere exists an essential annulus. Hene we an �nd a urve homotopially



3.1. THEOREM 54equivalent to � whih lifts to irle in 
(�). We an then repeat this proessfor all other SU-urves. If the ondition l(si) < k holds for all SU-urvesin the Shottky uniformization then S an be uniformized by a lassialShottky group.



3.2. IMPLICATIONS 553.2 ImpliationsWe now onsider the impliations of our result by looking at Bers' onstant.It was hoped that the bound in Theorem 3.1.1 would be suh that we oulduse work done with Bers' onstant to show that ertain types of Riemannsurfaes were uniformizable by lassial Shottky groups. The bound in ourtheorem is slightly too small for the partiular result we were after, and inthis setion we briey look at impliations following our theorem and suggestfurther work.In [7℄ Bers showed the existene of a onstant B(g), depending only uponthe genus, g, of a losed Riemann surfae, S, suh that there exists a pantsdeomposition of S where the length of the 3g�3 urves do not exeed B(g).A pants deomposition is a way of splitting a losed Riemann surfae intothree-holed spheres, or `pairs of pants' using 3g � 3 urves. Muh is knownabout Bers' onstant, for example, if we take a pair of pants deompositionfor a genus two surfae S, that is three geodesis j1; j2 and j3 whih separateS into two three-holed spheres, we have several methods to get a bound onthe lengths of these urves.From [11℄ we have that for every ompat Riemann surgae of genus gthere exists a set of urves de�ning a pants deomposition whih have lengthsde�ned by l(jk) � 4k ln �8�k � for k = 1; :::; 3g � 3. We an easily alulatethat these lengths for a genus 2 surfae to be approximately l(j1) � 12:90,l(j2) � 20:25 and l(j3) � 25:51.There are known bounds on Bers' onstant given in terms of the genusof the surfae, for example, [11℄, B(g) � 21(g � 1). A lower bound is alsoknown for B(g) in that B(g) � p6g � 2 for a genus g surfae.



3.2. IMPLICATIONS 56For our Shottky uniformization we only need g SU-urves, whih ouldbe a subset of the 3g � 3 urves suh that the omplement of the SU-urvesis onneted. We do know though there exist multiple sets of g suh urvesin any given pants deomposition (for g � 2), and hene many suh sets ofSU-urves with lengths less than B(g).If we had that Bers' onstant for a given surfae was less than the onstantin Theorem 3.1.1 then we would have that that surfae was uniformized by alassial Shottky group. For instane, taking the example given previouslyusing the theorem from [11℄, we alulated that for any genus 2 surfae wehave three urves with lengths approximately l(j1) � 12:90, l(j2) � 20:25 andl(j3) � 25:51 whih de�ne a pants deomposition. We would require just twoof these for our Shottky uniformization, so we an take the shortest two,but we an see already that these bounds are a lot more than k whih is thevalue we require for lassial Shottky uniformization. We have that k < 3and so these values are a lot greater.We have the following onjeture related to Shottky uniformizations:Conjeture 3.2.1. There exists a onstant S(g), analogous to B(g), forwhih there exists a deomposition of S into a 2g-holed spheres, where thelengths of the g urves do not exeed S(g). Then S(g) � B(g) for g � 2.Looking bak at Bers' onstant, whilst Bers' proof does not give any in-formation on B(g) aside from its existene, work has been done as mentionedabove on bounding B(g) by others. A theorem of Gr�aio and Sousa Ramos[14℄ states that for genus 2 surfaes, B(g) = 2 arosh(2). If our bound khad been greater than B(2) then we would have all genus 2 Riemann surfaesuniformized by lassial Shottky groups. Unfortunately our bound, k, is less



3.2. IMPLICATIONS 57than this, but it is hoped that S(2) < k then we would have had the desiredresult. The values that we have are very lose to that stated in the Gr�aioand Sousa Ramos paper, in that k � 2:371776 and B(2) = 2:633915794 sothe values are very lose. Work on S(g) is neessary to progress this further.Papers suh as [23℄ might be useful to �nd if the Riemann surfaes satis-fying the onditions of Theorem 3.1.1 are known elsewhere. Other possiblework in improving this ould ome from investigating whether it is the asethat if just one Shottky uniformizing urve has length less than k satisfyingek sin �k4� + sin �k4� = 2e k2 then there exist a full set of de�ning urves withshorter length, and hene if one urve has length less than k we have lassialShottky uniformization.



Chapter 4
Non-Classial Shottky Groups
In this hapter we �nd more examples of non-lassial Shottky groups, us-ing tehniques from Yamamoto's paper [40℄. Firstly we disuss this paperin detail, rewriting the paper with all details inluded. We then take thisrewritten paper and use it as a skeleton for the proof that a di�erent family ofSG-urves produe a non-lassial Shottky group. Finally we generalise thestep from Yamamoto's example to our example and produe a two variablefamily of non-lassial Shottky groups through the following theorem:Theorem 4.0.1 Let Ja;" be the free group generated by:la : z 7! k + 1a + 1 izha;" : z 7! k(1� ")�1z + (1� ")(k2(1� ")�2 � 1)(1� ")�1z + k(1� ")�1where k = pa2 + 2a+ 2. Then Ja;" is non-lassial for 0 � a < 1:4 and for" < f(a) for some funtion f (given expliitly in Appendix A).58



4.1. YAMAMOTO'S PAPER 594.1 Yamamoto's PaperAs disussed in Chapter 2 the �rst example of a non-lassial Shottky groupwas given in a paper of Yamamoto [40℄. In this hapter we use notation fromYamamoto's paper, drawing omparisons to previously disussed notationwhere appropriate. The Shottky group G" is de�ned by Yamamoto, and isgenerated by the transformations l and h" below:l : z 7! = i(p2 + 1)zh" : z 7! p2(1� ")�1z + (1� ")(2(1� ")�2 � 1)(1� ")�1z +p2(1� ")�1Yamamoto shows that when " � 10�20 then G" is non-lassial. The SG-urves are suh that l sends C1;" to C3;" and h" sends C2;" to C4;", and areexpliitly de�ned as:C1;" = The retangle with verties: p2� 1 + i(1� "=3)p2� 1� i(1� "=3)�p2 + 1 + i(1� "=3)�p2 + 1� i(1� "=3)C3;" = l(C1)C2;" = fjz +p2j = 1� "gC4;" = fjz �p2j = 1� "gThe paper gives a proof that G" is non-lassial for " � 10�20, using aproof by ontradition. The paper uses a number of tehnially dense lem-mas, and proves these lemmas after proving the main theorem. A lot of thereasoning behind using the lemmas omes from the proofs, and so it wouldfeel more natural to prove the lemmas en route to the proof of the main
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Figure 4.1: The de�ning urves for Yamamoto's non-lassial Shottky group.Here " is the distane between the inner retangle and the irlestheorem. Some details in the proofs of the main theorem or lemmas are leftto the reader of the paper, but these are generally not trivial alulations,espeially due to the fat that in various plaes in [40℄ there are some inor-ret details, through typographial error and oasional mathematial error.These details do not a�et whether the theorem is true but are worth orret-ing. In this setion we rewrite Yamamoto's paper, making some alterationsto the order of results presented, and orreting the errors. We also inludea number of �gures whih help with some of the explanation of the detailsof the proofs.Sine the proof of the theorem is tehnially dense in plaes and onsistsof several lemmas on the way we begin by giving an overview of the proof.We take the four SG-urves de�ned above, and assume we an �nd lassialSG-urves for G". From the de�nition of lassial that means we assumethat there exist four eulidean irles C1; C 01; C2 and C 02 whih are also SG-urves for G" and whih bound a fundamental domain for G". Considering allpossible images of these four irles under the group we �nd a partiular set,eC, of image irles whih are nested and interset the real interval(0;p2+1)



4.1. YAMAMOTO'S PAPER 61one. We introdue Lemma 4.1.3 whih shows that the distane betweenonseutive irles in eC is less than 10�2, where distane is measured alongthe real and imaginary axes. Lemma 4.1.3 is proven using Lemmas 4.1.4,4.1.5 and 4.1.6. Lemmas 4.1.4 and 4.1.5 look at lengths of omponents of thedomain of disontinuity whih interset the real and imaginary axes. Lemma4.1.6 then relates the regions in Lemmas 4.1.4 and 4.1.5 with the distanebetween irles in eC. Finally we �nd a partiular image of one of C1; C 01; C2or C 02 whih is not in eC, whih intersets (0;p2+ 1) twie and has diametergreater than 10�2. This means that this irle intersets at least one of theeC, whih means that the original irles annot be SG-urves, and so ourassumption that the group G" is lassial is inorret.Theorem 4.1.1. ([40℄) The group G" generated byh" : z 7! p2(1� ")�1z + (1� ")(2(1� ")�2 � 1)(1� ")�1z +p2(1� ")�1and l : z 7! i(p2 + 1)zis a non-lassial Shottky group if " � 10�20.The �rst step is to use the following lemma, whih as stated by Yamamotois a lemma of Marden, the proof of whih is given in suÆient detail inYamamoto's paper, and is therefore omitted here.Lemma 4.1.2. ([25℄) Let � be a lassial Shottky group generated by twoM�obius transformations. Let  be an element of �. Then there exists afundamental domain for � surrounded by four irles, at least one of whihseparates the �xed points of .



4.1. YAMAMOTO'S PAPER 62We are now able to begin the proof of Theorem 4.1.1, pausing to proveneessary lemmas on the way.Proof. We prove that G" is non-lassial by ontradition. Suppose thatfor " = 10�20 we have G" is lassial. Then by Lemma 4.1.2 we have afundamental domain D" for G" bounded by four irles, our proposed SG-urves, C1; C 01; C2; C 02, one of whih separates 0 and 1, the �xed points ofl. Without loss of generality let C1 be this urve. There will be anotherboundary urve of D" whih also separates the �xed points of l. We leteC = fC1" ; C2" ; C3" ; :::; CN" g be the omplete list of images of the SG-urvesunder G" whih satisfy the following onditions:(i) Eah Cj" separates 0 from 1.(ii) Eah Cj+1" separates Cj" from 0.(iii) C1" , Cj" (for j = 2; 3:::N�1) and CN" meet [p2+1;1), (p2�1;p2+1)and (0;p2� 1℄ respetively.An example of a set of irles whih satisfy the above is shown in Figure4.2.If Ca and Cb are urves in eC whih are not separated by other urves ineC then Ca and Cb lie on the boundary of a fundamental domain, that is atranslate of D". If Ca = Cj" and Cb = Cj+1" then the translate of D" is alledDj".Let ujk" be the point Cj" \ ik�1R+ , where k = 1; :::; 4 and R+ = fx 2 R :x > 0g. We then de�ne �j" = maxkfjujk" � u(j+1)k"jg, the largest distanebetween two onseutive irles in eC, where distane is measured along thereal or imaginary axes.
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Figure 4.2: The set eC, with C1" on the outside and CN" nearest to 0.As mentioned in the overview we are looking to show that a partiularirle de�ned later has diameter greater than the gaps between the irles ineC, so we now need to �nd a bound on the gaps between the irles, that is,a bound on �j".In partiular we prove the following lemma whih puts an upper boundon �j".



4.1. YAMAMOTO'S PAPER 64Lemma 4.1.3. ([40℄, Lemma 2) For every 0 < " � 10�20 and every posi-tive integer 1 � j < N , �j" < 10�2Proof. To prove Lemma 4.1.3 we move to H", the group generated by h" andL = l2. This group is used as it preserves the real axis, and the intervalsbetween the ujk" points that we are looking at are simply segments of thereal and imaginary axes. Following the standard notation we let 
(H") bethe domain of disontinuity of this group. This allows us to look at the twoaxes separately. To prove this lemma we require a seond lemma:Lemma 4.1.4. ([40℄, Lemma 3) The length of eah omponent of (
(H")\R)[(
(lH" l�1)\iR) whih meets the region made up of the union of segmentsgiven as [�(p2+1)3; (p2+1)3℄[i[�(p2+1)4; (p2+1)4℄ is less than 2:01(p2+1)3(2 +p2)p".Proof. To prove Lemma 4.1.4 it is suÆient to prove the following lemma.This simpli�es the details by restriting to segments of the real line.Lemma 4.1.5. ([40℄, Lemma 4) The length of eah omponent of 
(H")\R whih meets the region [�p2� 1;�p2 + 1℄[ [p2� 1;p2 + 1℄ is less than2:01(2 +p2)p".Proof. Let W = h"Lh"L�1 with �xed points:w1 = (1� 2"+ "2)(1 +p2) + (1 +p2)p"(1� 2"+ "2)(2� ")w2 = (1� 2"+ "2)(1 +p2)� (1 +p2)p"(1� 2"+ "2)(2� ")We let I1 be the omponent of 
(H") \ R whih is bounded by the �xedpoints of W . All omponents of 
(H") \ R are equivalent under H", but we



4.1. YAMAMOTO'S PAPER 65de�ne three other regions I2 = h�1" (I1), I3 = L�1(I2) and I4 = L�1(I1)to make some of the expliit alulations in the proof below simpler.Let J be a omponent of 
(H") \ R whih is inside C2;" or C4;". Wean write J as 2q(I ) = hp2q" Lp2q�1 :::hp2" Lp1(I ), where I signi�es one ofI1;I2;I3 or I4 and p2qp2q�1:::p2 6= 0.Calulating the lengths ofI1;I2;I3 orI4 expliitly from their de�nitionwe �nd that I1 and I2 have the same lengths as eah other, and I3 andI4 have the same lengths as eah other. The length of I1 (and hene I2)is 2(p2 + 1)p(1� 2"+ "2)(2� ")", and the length of I3 (and hene I4)is 2(p2� 1)p(1� 2"+ "2)(2� ")". We an see that I1 and I2 are longerthan I3 and I4. Looking again at the length of I1 we an see that2(p2 + 1)p(1� 2"+ "2)(2� ")" < (2 +p2)2:01p"and so the length of I is less than (2 +p2)2:01p". To omplete the proofwe need to show that the length of any image of I under 2q is no longerthan the length of I , whih we do by showing that j02q(x)j < 1, 8x 2 I .We prove this using indution.Our method of indution involves �rst showing that j02q(x)j < 1 8x 2 Iis true for q = 1. We then show that assuming it is true for q = n then thisimplies it is true for q = n+ 1.Equivalently we prove in some ases that the image of 2(I ) is no longerthan I , and that if we assume 2n(I ) is no longer than I then 2(n+1)(I )is also no longer than I . We will often be using indution to prove stepsalong the way, so we refer to the indution on q as the q-indution for easeof referening.Following the proof in the paper as a guide we now work through the



4.1. YAMAMOTO'S PAPER 66details of the indution, labelling the setions of the indution for ease ofreading.The q = 1 ase. If we set q = 1 we have 2 = hp2" Lp1 . We look at threeases (i) p1 = 0, (ii) p1 < 0 and (iii) p1 > 0.For referene, sine they are used frequently in this proof, we mentionthat jh0"(x)j = ���� (1� ")2(x +p2)2 ���� jL0(x)j = ���i(p2 + 1)��� = p2 + 1It is useful to briey look at jh0"(x)j to see where this funtion is greaterthan one, and where it is less that one. Inside C2;" we have that jh0"(x)j > 1sine ��x +p2�� < 1 � " and outside C2;" we have that jh0"(x)j < 1 sine��x +p2�� > 1� ".Looking �rst at the ase where (i) p1 = 0, we want that j(hp2)0(x)j < 18x 2 I . For this we use indution on p2. Looking at p2 > 0 we see thatfor the initial step of the indution we have jh0"(x)j < 1 for all x 2 I apartfrom some x 2 I2, but we an see that the image of I2 under h" remainsthe same size (it is I1). Thus we need to look at h2" for our �rst step of theindution, essentially using a p2 = 2 stage rather than an p2 = 1 stage forthe start of the indution.If we look at j(h2")0(x)j we see that��(h2")0(x)�� = ���� (1� ")4(�2p2x� 3� 2"+ "2)2 ����Analysing this funtion we see that if x < �p2 then j(h2")0(x)j < 1. Similarlyif x > 12p2(�1 � 2" + "2) then j(h2")0(x)j < 1. If we take the region wherej(h2")0(x)j > 1, that is �p2 < x < 12p2(�1�2"+"2) we see that I2 is to theleft of this region, I1 and I3 are obviously to the right of this region, and



4.1. YAMAMOTO'S PAPER 67for small values of " (spei�ally " < 1 � 10�4) that I4 is also outside thisregion. Therefore we have that for all values of x 2 I we have j(h2")0(x)j < 1.This ompletes the p2 = 2 ase of this indution.Now we need to show that assuming j(hp2" )0(x)j < 1 for p2 = n then it istrue for p2 = n + 1.We an write j(hn+1" )0(x)j asj(hn+1" )0(x)j = ���� ddx(hn+1" (x))����= ����d(hn+1" (x))d(hn" (x)) ���� ����d(hn" (x))dx ����< ����d(hn+1" (x))d(hn" (x)) ����= 1� 2"+ "2�hn" (x) +p2�2We only need to show this is true for n � 3, sine we already know thisto be true for n = 2. If we apply hn" to any of the four regions whih makeup I we see that hn" (x) will be inside C4;". If we take values of hn" (x) tobe any value inside C4;" and substitute these into the above we get thatj(hn+1" )0(x)j < 1 as required.The indution for p2 < 0 follows very losely to the above. First we proveit for p2 = �2 and then show that assuming j(hp2" )0(x)j < 1 is true for p2 = n,n < 0 then it is true for p2 = n � 1. The details follow the exat methodabove. This proves ase (i) above.Looking now at (ii) p1 < 0 we use an indution method in a similar way



4.1. YAMAMOTO'S PAPER 68to the previous ase, where we an writej(2)0(x)j = j(hp2" Lp1)0(x)j= ���� ddx(hp2" Lp1(x))����= ����dhp2" Lp1(x)dLp1(x) ���� ����dLp1(x)dx ����< 1p2 + 1 ����dhp2" Lp1(x)dLp1(x) ����Then if we let u = Lp1(x) and we have a similar situation as in the p1 = 0ase in that we have j(2)0(x)j < 1p2+1 ���dhp2" (u)du ���, requiring an indution on p2.The indution follows that of the indution in ase (i), exept where beforewe tested for x 2 I we now test for u 2 Lp1(x). Sine p1 < 0 in this ase wehave that the regions we onsider are all outside C2;", and hene using thesevalues we get that j(hp2" Lp1)0(u)j < 1, proving the ase of p1 < 0.Finally for the �rst step of our q-indution we prove the ase of (iii)p1 > 0 whih we onsider as having to show that the image of I beomesno longer under the transformation hp2" Lp1 for p1 positive. We �rst look atp2 > 0, but the proof for p2 < 0 is very similar. We an restrit our values ofx to those only in I1 or I2 beause if p1 = 1 we know appliation of L sendsI3 and I4 to I2 and I1 and we know that j(hp2" )0(x)j < 1 for all x 2 Ifrom previous work. We therefore need to fous on p1 > 1 and x 2 I1 or I2.We an therefore see that any image of I1 or I2 under Lp1 will be outsideC2;", and we know that h" is ontrating outside of C2;" (jh0"(x)j < 1 for��x +p2�� > 1� ", whih is preisely those points outside C2;"). This meansthat the longest interval for hp2" Lp1(x) will be when p2 = 1. All we need toshow is that h"Lp1(I ) is shorter than I for all p1.



4.1. YAMAMOTO'S PAPER 69We want to look atF1 = ����h"��p2 + 1�2p1 I1a�� h"��p2 + 1�2p1 I1b�����and F2 = ����h"��p2 + 1�2p1 I2a�� h"��p2 + 1�2p1 I2b�����where Ina and Inb are the end points of In. We want to show that theseare both less than jI1a � I1bj. For small values of " we alulate maxp1 F1and maxp1 F2, and we get that p1 has absolute value less than 1, and that thelengths of F1 and F2 tend to zero as p1 inreases so all we need to spei�allytest is when p1 is equal to 1.The length of F1 and F2 is shorter than I for p1 = 1 and therefore sowill any image of I under hp2" Lp1 for p1 > 0. Thus we have proven the �rststep of the q-indution.Now we have shown that for any ombination of p1 and p2 we have thatj(2)0(x)j < 1 for any x 2 I . We now move on to the seond step of theindution.The indution step of the proof. We assume that j02q(x)j < 1 forq = 1; 2; :::; n, and try to prove it is true for q = n + 1. We need to provej(hp2n+2" Lp2n+1hp2n" Lp2n�1 :::hp2" Lp1)0(x)j < 1, 8x 2 I or equivalently that theimage of I under 2(n+1) is no longer than the image of I under 2n. Toshow that this is true we look at the ase where (i) p2n+1 < 0 and the asewhere (ii) p2n+1 > 0 seperately.Looking �rst at the ase (i) p2n+1 < 0 we see that from our assumptionthat the image of I under 2n is shorter than I . Sine p2n+1 < 0 we havethat the image of I under Lp2n+12n will be shorter still. Moreover, sine



4.1. YAMAMOTO'S PAPER 70the image of I under 2n will be inside either C2;" or C4;" (depending on thesign of p2n) we have that the image under Lp2n+12n will be inside C1;" andhene outside C2;" and C4;". As mentioned previously h" (resp h�1" ) ontratsregions outside of C2;" (resp C4;") so the image under hp2n+2" Lp2n+12n will inturn be shorter than the image under Lp2n+12n. Thus the ase of p2n+1 < 0is proven.Now �nally we need to prove the ase (ii) p2n+1 > 0. In the paperYamamoto desribes two ases whih we will look at here. The two asesare (a) � � j2n(x)j < p2 + 1 and (b) p2 � 1 � j2n(x)j < �, where� = (2� (1� ")2) 12 is the attrative �xed point of h". If we look at ase (a)we have that��02q+2(x)�� = ����d(hp2q+2" Lp2q+12q(x))dLp2q+12q(x) ���� ����d(Lp2q+12q(x))d2q(x) ���� ��02q(x)��< ����d(hp2q+2" Lp2q+12q(x))dLp2q+12q(x) ���� (p2 + 1)p2q+1< ����� (1� e)2(p2 + 1)p2q+1((p2 + 1)p2q+1 +p2)2 �����< 1Now we need to look at ase (b). The proof of this is similar to ase (a)exept that we need to note that beause of the onditions of ase (b) wehave that jLp2q�12q�2(x)j < p2 � 1 and hene p2q�1 < 0. Taking the samemethod as above, but expanding bak to ��02q�2(x)�� rather than just ��02q(x)��we obtain that ��02q+2�� < 1 as required.This ompletes the indution, and hene the proof of the lemma.We now show that Lemma 4.1.5 proves Lemma 4.1.4. Using multipleappliations of l we an see that we an extend the proof of Lemma 4.1.5



4.1. YAMAMOTO'S PAPER 71to the region stated in the statement of Lemma 4.1.4. Applying l twieand three times to the region in Lemma 4.1.5 we get that Lemma 4.1.4 istrue for the parts of (
(H") \ R) [ (
(lH"l�1) \ iR) whih meet the region[�(p2+1)3;�p2+1℄[[p2�1; (p2+1)3℄[i[�(p2+1)4;�1℄[i[1; (p2+1)4℄.To show that we an extend this to the whole region stated in the lemmawe simply need to observe that to �ll in this region we would apply l�1 anumber of times. Sine l�1 is ontrating this does not inrease the size ofintervals, and so we may extend the regions above to the regions of the realand imaginary axes in the statement of Lemma 4.1.4.Now, to omplete the proof of Lemma 4.1.3 we need one �nal lemma,given below with detailed proof.Lemma 4.1.6. ([40℄, Lemma 5) Let � > 0. If jujk" � uj+1k"j < � for atleast two values of k 2 f1; 2; 3; 4g then �j" < 106�.Proof. We let Pj = xj+iyj and Rj be the entre and radius of Cj" respetively.We let �j be the distane between the entres of Cj" and Cj+1" , that is �j =jPj � Pj+1j. We de�ne a irle C 0 whih is onentri to Cj+1" and tangentto Cj, then C 0 is given by (x� xj+1)2 + (y� yj+1)2 = (Rj � �j)2, and we letT be the point of tangeny. We de�ne S 0 to be the point on C 0 suh thatTS 0 is a diameter. Finally we set u0k = C 0 \ ik�1R+ for k = 1; :::; 4. All thisinformation is shown in Figure 4.3Let k1 and k2 denote the two values of k for whih jujk" � u(j+1)k"j < �,whih exist by the hypothesis of the lemma. Without loss of generality wemay assume \u0k1Pj+1S 0 � \u0k2Pj+1S 0. Let � denote \u0k1Pj+1S 0, and let us
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Figure 4.3: The irles Cj" , Cj+1" and C 0.�rst onsider �2 � � � �.Considering the triangle 4S 0Tuk1 we an see, using the sine rule thatsin � > sinuk1S 0T , and similarly for 4S 0Tuk2. Therefore we havesin � + sin\u0k2Pj+1S 0 > sin\u0k1S 0T + sin\u0k2S 0TSine S 0T is a diameter, and u0k1 is on the irle C 0 we have that 4S 0Tu0k1is right-angled. Realling that the radius of C 0 is R0j = Rj � �j we have that



4.1. YAMAMOTO'S PAPER 73sin\u0k1S 0T = ju0k1�T j2(Rj��j) therefore we havesin � + sin\u0k2Pj+1S 0 > 2Xr=1 ju0kr � T j2(Rj � �j) (4.1)We now want to derive an inequality for 2(Rj��j) in terms of the lengthsju0kj. From the de�nition of the u0k we an see that the maximum the sum ofthe ju0kj an be is twie the diameter of C 0, and the minimum it an be is thediameter. Hene:ju01j+ ju02j+ ju03j+ ju04j � Diameter of C 04Xk=1 ju0kj � 2(Rj � �j) (4.2)By the triangle inequality we haveju0k1 � T j+ ju0k2 � T j > ju0k1 � u0k2j > ju0k1j (4.3)the last part of the above line being due to the fat that the u0kr are on theaxes.Combining inequalities (4.2) and (4.3) into the right hand side of Equation(4.1) we get: sin � + sin\u0k2Pj+1S 0 > ju0k1j4Xk=1 ju0kj (4.4)Sine l has �xed points of 0 and 1, and sine C 0 separates them, anyimage of C 0 under l will also separate 0 and1 and thus be either one of theeC or outside C1;". The image annot be inside Cj sine l has 0 as a repulsivepoint. The image annot be Cj sine Cj is tangential to C 0, so therefore it



4.1. YAMAMOTO'S PAPER 74must be outside Cj. Therefore we have that the images of the uk under lmust be outside the uk themselves, so we have ju0k+1j < (p2 + 1)ju0kj.We know that k1 is just one of the k, and so u0k1 is one of the u0k. Wean therefore writeP4k=1 ju0kj as ju0k1j+ ju0k1+1j+ ju0k1+2j+ ju0k1+3j, where thesubsript addition is yli through f1; 2; 3; 4g. We therefore have that4Xk=1 ju0kj < ju0k1j+ (p2 + 1)ju0k1j+ (p2 + 1)2ju0k1j+ (p2 + 1)3ju0k1j= ju0k1j�1 + (p2 + 1) + (2p2 + 3) + (5p2 + 7)�= ju0k1j(12 + 8p2)< 24ju0k1jTherefore Equation (4.4) beomessin � + sin\u0k2Pj+1S 0 > 124 (4.5)Now, sine we have assumed � � \u0k2Pj+1S 0 and �2 � � < � we havethat sin � > sin\u0k2Pj+1S 0 and hene we have from Equation (4.5) thatsin � > 148 . Later we shall want an inequality for (1+os �) so from the abovewe have (1 + os �)�1 < 4608 (4.6)As mentioned earlier Cj" and Cj+1" , along with two other urves, bound afundamental domain for G", so in partiular we have that L(Cj")\Cj+1" = ;.The transformation L preserves any line though the origin, so taking the lineL through the origin and Pj we see that the line segment from the point A onCj" whih is Rj�jPjj away from the origin and the point B whih is Rj+ jPjjaway from the origin is a diameter of Cj" . We an see that the image of A



4.1. YAMAMOTO'S PAPER 75under L will be on the line L and further from the origin than B. Hene wehave: (p2 + 1)2(Rj � jPjj) > Rj + jPjj(2p2 + 2)Rj > (2p2 + 4)jPjjRj > p2jPjj (4.7)By the triangle inequality it is lear that�j � jPjj+ jPj+1j (4.8)Finally sine the origin lies inside C 0 (sine the origin lies inside Cj+1"whih in turn lies inside C 0) we must have thatjPj+1j < Rj � �j (4.9)Combining Equations (4.7), (4.8) and (4.9) we get that�j < p2 + 12p2 Rj < 9Rj10 (4.10)We now let �0 = jujk1" � u0k1j and so we neessarily have that �0 < �. Wean see easily that Rj < jPj � u0k1j + �0 from the triangle inequality, and solooking at 4u0k1Pj+1Pj we use the osine rule to get:(Rj � �0)2 < jPj � uk1j2= �2j + (Rj � �j)2 � 2�j(Rj � �j) os �Therefore we have:(�0)2 � 2Rj�0 < 2�2j � 2Rj�j � 2�j(Rj � �j) os �2�j(Rj � �j)(1 + os �) < 2Rj�0 � (�0)2 < 2Rj�0 < 2Rj��j < Rj�(Rj � �j)�1(1 + os �)�1 (4.11)



4.1. YAMAMOTO'S PAPER 76From Equation (4.10) we get that (Rj � �j)�1 < 10Rj and ombining thiswith (4.6) we see that Equation (4.11) beomes�j < Rj�(Rj � �j)�1(1 + os �)�1�j < Rj� 10Rj 4608�j < 5� 104 � (4.12)We now look at the ase that 0 � � < �2 . We have that (1 + os �)�1 < 1simply beause os � is positive in this range, and so we have that the aboveall holds for this ase, sine (1 + os �)�1 < 1 < 4608.We now turn our attention to vj" and look to prove the lemma. Reallingthe de�nition of vj" from before Lemma 4.1.3 we an see thatvj" = maxk fjujk" � u(j+1)k"jg< 4Xk=1 jujk" � u(j+1)k"j= 2Xk=1 �jujk" � uj(k+2)"j � ju(j+1)k" � u(j+1)(k+2)"j� (4.13)The last step of the above an be seen from Figure 4.4.From the triangle shown in Figure 4.4 we an see using Pythagoras thatjuj1"�uj3"j = 2qR2j � y2j . We an do the same for other equivalent trianglesand get that ju(j+1)1"�u(j+1)3"j = 2qR2j+1 � y2j+1, juj2"�uj4"j = 2qR2j � x2jand ju(j+1)2" � u(j+1)4"j = 2qR2j+1 � y2j+1. Then some simple algebra gives
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Figure 4.4: The irles Cj" and Cj+1" .us that Equation (4.13) beomesvj" < 2 hqR2j � y2j �qR2j+1 � y2j+1 +qR2j � x2j �qR2j+1 � x2j+1 i= 2�qR2j � x2j �qR2j+1 � x2j+1��qR2j � x2j +qR2j+1 � x2j+1�qR2j � x2j +qR2j+1 � x2j+1+ 2�qR2j � y2j �qR2j+1 � y2j+1��qR2j � y2j +qR2j+1 � y2j+1�qR2j � y2j +qR2j+1 � y2j+1= 2 �R2j � x2j � R2j+1 + x2j+1�qR2j � x2j +qR2j+1 � x2j+1 + 2 �R2j � y2j � R2j+1 + y2j+1�qR2j � y2j +qR2j+1 � y2j+1 (4.14)



4.1. YAMAMOTO'S PAPER 78We now have that vj" is less than the sum of two frations, and by repla-ing the denominators of eah fration by the minimum of the two denomina-tors we see thatvj" < 2 �R2j � x2j � R2j+1 + x2j+1�+ 2 �R2j � y2j � R2j+1 + y2j+1�minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o= 2 �2(R2j � R2j+1) + (�x2j + x2j+1 � y2j + y2j+1)�minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o(4.15)Now we need a few more fats to �nish the proof. Firstly we an writethe following, using the triangle inequality and the geometry of Figure 4.4:�x2j + x2j+1 � y2j + y2j+1 � jx2j � x2j+1 + y2j � y2j+1j� jxj � xj+1jjxj + xj+1j+ jyj � yj+1jjyj + yj+1j< (jxj � xj+1j+ jyj � yj+1j)(Rj +Rj+1) (4.16)Now, by taking a line through the enters of Cj" and Cj+1" and fromEquation (4.12) we an see that Rj �Rj+1 < �j + � < (5� 104 + 1)�. FromEquation (4.7) we get jPjj < Rj=p2, and hene learly jxjj; jyjj < Rj=p2.This gives us that, for example, xj < Rjp2�x2j > �R2j2R2j � x2j > R2j2qR2j � x2j > Rjp2



4.1. YAMAMOTO'S PAPER 79Finally we need to look at jxj�xj+1j+ jyj�yj+1j. We onsider a trianglewith one vertex at Pj and one at Pj+1, with two of its edges parallel to theaxes, and with edges of length jxj � xj+1j, jyj � yj+1j and �j. We an seethat the minimum that jxj�xj+1j+ jyj� yj+1j an be is �j, when one of theother two sides has length zero, and the maximum it an be is p2� when thetriangle is isoseles. Hene jxj � xj+1j+ jyj � yj+1j � p2� < p2 � 5� 104 �.Combining all of these omments together with Equation (4.16) we getfrom Equation (4.15) thatvj" < 2 �2(R2j � R2j+1) + (�x2j + x2j+1 � y2j + y2j+1)�minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o< 2(Rj +Rj+1) [2(Rj �Rj+1) + (jxj � xj+1j+ jyj � yj+1j)℄minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o< 2(Rj +Rj+1) [2(Rj � Rj+1) + (jxj � xj+1j+ jyj � yj+1j)℄Rjp2 + Rj+1p2< 2p2 h2(5� 104 + 1)� + (p2 � 5� 104)�i< 106� (4.17)as required. This ends the proof of Lemma 4.1.6.We are now able to prove Lemma 4.1.3. We de�ne Ej" to be the doubly-onneted domain surrounded by Cj" and Cj+1" . Thus the boundary of Ej" isa subset of the boundary of a fundamental domain Dj", as in Figure 4.5.At least two omponents of Ej"\(R[iR) are inluded in Dj"\(R[iR), infat in Figure 4.5 only two suh omponents oinide, due to the plaing of theadditional two irles in Dj". Let these omponents be A1 and A2 (there may
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Figure 4.5: An example of the domain Ej" and two (dotted) irles whihould be added to make a Dj".be others). We an see that eah of A1 and A2 lies in a omponent of (
(H")\R)[(
(lH" l�1)\iR) meeting [�(p2+1)3; (p2+1)3℄[i[�(p2+1)4; (p2+1)4℄and so from Lemma 4.1.4 has length less than 2:01(p2+1)3(2+p2)p". FromLemma 4.1.6 we have that �j" < 106 2:01(p2+1)3(2+p2)p" < 108p". Heneif 0 < " � 10�20 then �j" < 10�2 as required. This proves Lemma 4.1.3.We are now able to prove the theorem in question, that is Theorem 4.1.1.Let C be a irle meeting [�(p2 + 1)5;�(p2 + 1)℄ whih is equivalentto C1 under the group generated by l4. We may then apply h" to C andlook at the properties of this new irle. We see that sine C1 separates 0and 1 then so does C. Sine C is outside C2;" its image h"(C) will meet[p2� 1;p2 + 1℄ twie, as illustrated by Figure 4.6.
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0 Ö2 -1 Ö2 +1

Figure 4.6: The set eC, from Figure 4.2, along with h"(C).We know that 1 and �(p2 + 1)5 are outside of C and so h"(1) andh"(�(p2 + 1)5) will be inside h"(C) and on the real axis. The diameter ofh"(C) will therefore be greater than ��h"(�(p2 + 1)5)� h"(1)��.Calulating this expliitly we see that���h"(�(p2 + 1)5)� h"(1)��� = ���� �(1� ")2�(p2 + 1)5 +p2 ���� > 10�2However from Lemma 4.1.3 we know that the gaps between the urves in



4.1. YAMAMOTO'S PAPER 82eC is less than 10�2, and therefore we see that h"(C) meets some Cj" . Thismeans that all images of C1, C 01, C2 and C 02 are not disjoint, and hene theassumption that the group is lassial is inorret.



4.2. GENERALISING YAMAMOTO 834.2 Generalising YamamotoWe would like to have many more examples of non-lassial Shotty groups,amongst other things to help progress in the work disussed in Chapter 5.The following is an example of a non-lassial Shottky group, obtained usingthe methods of Yamamoto. We take his example, and experiment with waysof reating new examples. We would like to reate a three generator non-lassial Shottky group, but whilst a lot of the details follow through, thevery last step of Yamamoto's proof does not hold, sine we need to plaefour irles in Figure 4.5 rather than just two, and they may blok all foursetions of the axes. Instead we take Yamamoto's example and alter thediagram slightly by adding a gap of 12 above and below eah irle to get anew family of non-lassial Shottky groups, desribed in Setion 4.2.1. Insetion 4.2.2 we look to further this proess by adding a distane of a aboveand below the irles, and then get a bound on a and note its e�et on ".4.2.1 A new non-lassial Shottky groupWe look for a seond example of a non-lassial Shottky group, and provethe following theorem:Theorem 4.2.1. The Shottky group J" with generators:l : z 7! 23 �12p13 + 1� izh" : z 7! p132 (1� ")�1z + (1� ")(134 (1� ")�2 � 1)(1� ")�1z + p132 (1� ")�1is non-lassial for " < 5� 10�19.



4.2. GENERALISING YAMAMOTO 84The SG-urves are shown in Figure 4.7. We hange the notation slightlyfrom Yamamoto, and de�ne the urves as:C1 = The retangle with verties: 12p13� 1 + i(32 � "=2)12p13� 1� i(32 � "=2)�12p13 + 1 + i(32 � "=2)�12p13 + 1� i(32 � "=2)C 01 = l(C1)C2 = fjz + p132 j = 1� "gC 02 = fjz � p132 j = 1� "g
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Figure 4.7: The de�ning urves for a non-lassial Shottky group. Thedistane between the inner retangle and the irles are " and the distaneabove and below the irles are "+ 12 .Proof. The proof follows that of Yamamoto's example, but with di�erentdetails. We again assume that the group is lassial and look for a ontra-dition. We assume the existane of Ĉ1; Ĉ 01; Ĉ2 and Ĉ 02 whih are lassialSG-urves for J".We de�ne eC in a similar way as in the proof of Theorem 4.1.1 withdi�erent bounds:



4.2. GENERALISING YAMAMOTO 85eC = fC1" ; C2" ; C3" ; :::; CN" g whih is a omplete list of images of the SG-urves under G" whih satisfy:(i) Eah Cj" separates 0 from 1.(ii) Eah Cj+1" separates Cj" from 0.(iii) C1" , Cj" and CN" meet the regions �12p13 + 1;1�, �12p13� 1; 12p13 + 1�and �0; 12p13� 1� respetively.We again de�ne �j" = maxkfjujk" � u(j+1)k"jg, and have equivalents toLemma 4.1.3, Lemma 4.1.4, Lemma 4.1.5 and Lemma 4.1.6 for our group J".We give these new lemmas with some details of the proofs.Lemma 4.2.2. For every 0 < " � 5 � 10�19 and every positive integer1 � j < N , �j" < 8� 10�3Proof. We de�ne the real line preserving group K" as K" = hh"; L = l2i. Toprove Lemma 4.2.2 we need Lemma 4.2.3 and hene Lemma 4.2.4.Lemma 4.2.3. The length of eah omponent of (
(K")\R)[ (
(lK" l�1)\iR) whih meets the region"�49 �12p13 + 1�3 ; 49 �12p13 + 1�3# [i"� 827 �12p13 + 1�4 ; 827 �12p13 + 1�4#is less than 1681(12p13 + 1)4 2:01p2".Proof. To prove this we use an equivalent to Lemma 4.1.5:



4.2. GENERALISING YAMAMOTO 86Lemma 4.2.4. The length of eah omponent of 
(K")\R whih meets theregion ��12p13� 1;�12p13 + 1� [ �12p13� 1; 12p13 + 1� is less than 13(2 +p13) 2:01p2".Proof. The proof of Lemma 4.2.4 follows that of Lemma 4.1.5, with di�er-enes in the numerial details, but not in the proess used. We omit it herefor simpliity.As in Yamamoto's paper, where Lemma 4.1.4 follows from Lemma 4.1.4, herewe have Lemma 4.2.3 follows from Lemma 4.2.4 by the same reasoning.Next, to �nish the proof of Lemma 4.2.2 we require the following.Lemma 4.2.5. If jujk" � uj+1k"j < � for at least two k 2 f1; 2; 3; 4g then�j" < 2:5� 105�.Proof. As in Yamamoto's proof of Lemma 4.1.6 we let Pj = xj + iyj andRj be the entre and radius of Cj" respetively and �j = jPj � Pj+1j. Wede�ne a irle C 0 onentri to Cj+1 and tangent to Cj, then C 0 is given by(x � xj+1)2 + (y � yj+1)2 = (Rj � �j)2 and let T be the point of tangeny.We de�ne S 0 to be the point on C 0 suh that TS 0 is a diameter and we setu0k = C 0 \ ik�1R+ .We let k1 and k2 denote two values of k for whih jujk" � u(j+1)k"j < �.We assume \u0k1Pj+1S 0 � \u0k2Pj+1S 0. Let � denote \u0k1Pj+1S 0, and let us�rst onsider �2 � � � �.Looking at the triangle 4S 0Pj+1uk1 we see, using the sine rule, thatsin � > sinuk1S 0T , and similarly for 4S 0Pj+1uk2. Therefore we havesin � + sin\u0k2Pj+1S 0 > sin\u0k1S 0T + sin\u0k2S 0T



4.2. GENERALISING YAMAMOTO 87S 0T is a diameter and u0k1 is on C 0, so we have that 4S 0Tu0k1 is right-angled, so sin\u0k1S 0T = ju0k1�T j2(Rj��j) therefore we have the same equation as forLemma 4.1.6: sin � + sin\u0k2Pj+1S 0 > 2Xr=1 ju0kr � T j2(Rj � �j) (4.18)Also, with the same reasoning as in Lemma 4.1.6 we have:ju01j+ ju02j+ ju03j+ ju04j � Diameter of C 04Xk=1 ju0kj � 2(Rj � �j) (4.19)And: ju0k1 � T j+ ju0k2 � T j > ju0k1 � u0k2j > ju0k1j (4.20)Combining the inequalities of Equations (4.19) and (4.20) into the righthand side of Equation (4.18) we get:sin � + sin\u0k2Pj+1S 0 > ju0k1j4Xk=1 ju0kj (4.21)In our proof we have the same reasoning to show that the images ofthe uk under l must be outside the uk themselves, but we have ju0k+1j <23(1+ 12p13)ju0kj beause of the hange in generators and therefore have thatsin � + sin\u0k2Pj+1S 0 > 11 + 23(1 + 12p13) + 49(1 + 12p13)2 + 827(1 + 12p13)3> 113 (4.22)This implies that sin � > 126 , and hene(1 + os �)�1 < 1359 (4.23)



4.2. GENERALISING YAMAMOTO 88We know Cj" and Cj+1" , along with two other urves, bound a fundamentaldomain for G", so in partiular we have that L(Cj") \ Cj+1" = ;. L preserveslines through the origin, so taking the line L through the origin and Pj wesee that the line segment from the point A on Cj" whih is Rj �jPjj from theorigin and the point B whih is Rj + jPjj from the origin is a diameter. Wean see that the image of A under L will be on the line L and further fromthe origin than B. Hene we have:49 �1 + 12p13�2 (Rj � jPjj) > Rj + jPjjRj > 65 + 8p1347 + 8p13 jPjj (4.24)By the triangle inequality it is lear that�j � jPjj+ jPj+1j (4.25)Finally sine the origin lies inside C 0 we must have thatjPj+1j < Rj � �j (4.26)Combining the inequalities (4.24), (4.25) and (4.26) we get�j < 8(7 +p13)65 + 8p13 Rj < 91Rj100 (4.27)De�ning �0 = jujk1" � u0k1j (and hene �0 < �), we an derive the sameequation as in (4.11):�j < Rj�(Rj � �j)�1(1 + os �)�1 (4.28)From Equation (4.27) we get that (Rj � �j)�1 < 1009Rj and ombining this



4.2. GENERALISING YAMAMOTO 89with (4.23) we see that Equation (4.28) beomes�j < Rj�(Rj � �j)�1(1 + os �)�1�j < Rj� 1009Rj 1359�j < 1:51� 104 � (4.29)We have trivially that (1 + os �)�1 < 1359 for the ase that 0 � � < �2sine os � is positive in this range. This means that the above holds for all�. We now turn our attention to vj" and proving the lemma. The detailsof this setion are the same as in Lemma 4.1.6, so we look straight at thefollowing:vj" < 2(Rj +Rj+1) [2(Rj � Rj+1) + (jxj � xj+1j+ jyj � yj+1j)℄minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o(4.30)By taking a line through the entres of Cj" and Cj+1" we an see that Rj�Rj+1 < �j + � < (1:51� 104 + 1)�. From Equation (4.24) we have a relationbetween jPjj and Rj, and so we have, in a similar way as in Yamamoto'sproof, for exampleqR2j � x2j > 1213p13(p13 + 1)(5p13 + 8)389 + 80p13 RjWe have from work in Lemma 4.1.6 that in our ase we have jxj�xj+1j+jyj � yj+1j � p2� < 1:51� 104p2�.Combining all of these omments together we get from Equation (4.30)



4.2. GENERALISING YAMAMOTO 90thatvj" < 26(389 + 80p13)12p13(p13 + 1)(5p13 + 8) h2(1:51� 104 + 1)� + 1:51� 104p2�i< 2:5� 105� (4.31)as required. This ends the proof of Lemma 4.2.5We onlude the proof to Lemma 4.2.2 by noting that by de�ning A1and A2 in the same way as before, in that they are setions of the real orimaginary axes not overed by the boundary of the domains equivalent toDj" in Figure 4.5. We have that eah of A1 and A2 lies in a omponent of(
(H") \ R) [ (
(lH"l�1) \ iR) meeting ��49(12p13 + 1)3; 49(12p13 + 1)3� [i �� 827(12p13 + 1)4; 827(12p13 + 1)4� and so from Lemma 4.2.3 has length lessthan 1681(12p13 + 1)4 2:01p2". From Lemma 4.2.5 we have that �j" < 2:5 �105 1681(12p13 + 1)4 2:01p2" < 9 � 106p". Hene if 0 < " � 5 � 10�19 then�j" < 8� 10�3 as required.Finally as in Yamamoto's proof we let C be a irle meeting the re-gion h� �23�4 (1 + 12p13)5;�(1 + 12p13)i whih is equivalent to Ĉ1 under thegroup generated by l4. The diameter of the image of C under h" is greaterthan�����h" ��23�4 (1 + 12p13)5!� h"(1)����� = 81(1� ")21381 + 344p13 > 8� 10�3Again, sine C is outside C2 its image under h" will meet [12p13�1; 12p13+1℄twie. Sine the distane between image irles eC is less (from Lemma 4.2.2)than the diameter of this irle h"(C) we see that h"(C) meets some Cj" ,



4.2. GENERALISING YAMAMOTO 91ontraditing that all images of Ĉ1, Ĉ 01, Ĉ2 and Ĉ 02 are disjoint, and henethe assumption that the group is lassial is inorret.
4.2.2 GeneralisationWe now look at adjusting the area above the irles, and see how far the proofholds. We look to get a two variable family of non-lassial Shottky groups.The key distanes in the diagrams of initial hoie of urves in the previoustwo setions are those along the x-axis, and so we preserve the proximity ofall the urves on the axes, and simply inrease the spae above and belowthe irles in x4.2. We study the following arrangement of SG-urves:

2+2a

2k-2 a+e

2k+2Figure 4.8: The de�ning urves for a 2-variable family of non-lassial Shot-tky groups.Where we have k = p2 + 2a+ a2. We keep the same notation as in x4.2,



4.2. GENERALISING YAMAMOTO 92and de�ne the urves more preisely as:C1 = The retangle with verties: k � 1 + i(1 + a� "3)k � 1� i(1 + a� "3)�k + 1 + i(1 + a� "3)�k + 1� i(1 + a� "3)C 01 = l(C1)C2 = fjz + kj = 1� "gC 02 = fjz � kj = 1� "gWe have the following generators for these SG-urves:la : z 7! k + 1a + 1 izha;" : z 7! k(1� ")�1z + (1� ")(k2(1� ")�2 � 1)(1� ")�1z + k(1� ")�1We now show that the group generated by these funtions is non-lassial,with partiular values of a and ". We prove the following:Theorem 4.0.1 The Shottky group Ja;" = hla; ha;"i is non-lassial for 0 �a < 1:4 and for 0 < " < f(a) for some funtion f .The funtion f is given expliitly in Appendix A, but we briey desribeit here. The funtion is the quotient of two expressions in integer powers ofa, in integer powers of pk for k = p2 + 2a+ a2 and in J = (ak + 3k + 4 +3a + a2) 12 (16k + 7 + 10a� 3a2 � 16a3 � 15a4 � 6a5 � a6 + 4k3 + 4ak) 12 . thefuntion f is positive inreasing for 0 � a < 1:4 and for inputs of this rangeof a it outputs numbers of the order of the bounds of " in the two examplesof non-lassial Shottky groups in x4.1 and x4.2.



4.2. GENERALISING YAMAMOTO 93Proof. The proof follows the same skeleton as Yamamoto's proof, with di�er-ent details. We assume that the group is lassial and look for a ontradition.We assume the existane of Ĉ1; Ĉ 01; Ĉ2 and Ĉ 02 whih are lassial SG-urvesfor J�;". We state the lemmas whih are equivalents to those in Yamamoto'spaper, but in some ases we omit the proofs here. The methods of proof arethe same, but the details are more unwieldy, with ompliated regions andnumbers. The notations of �j"; ujk" and � are as in the previous setions,and Ka;" is the real line preserving group, hha;"; l2ai. We begin by listing theequivalents to Lemmas 4.1.4, 4.1.5 and 4.1.6 without proof, and then provethe equivalent to 4.1.3 afterwards for ease of notation and reading. We on-tinue to use the notation of k de�ned above, and introdue other shorthands.The key feature is that all the shorthands are purely in terms of the variablea.Lemma 4.2.6. The length of eah omponent of (
(K")\R)[ (
(lK" l�1)\iR) whih meets the intersetion of intervals��(k + 1)3(a + 1)2 ; (k + 1)3(a+ 1)2 � [ i ��(k + 1)4(a + 1)3 ; (k + 1)4(a + 1)3�is less than 2:01(k + 1)2p"(1 + a)4 p(1 + a)4 + 8k2 + 4k(k2 + 1)Lemma 4.2.7. The length of eah omponent of 
(K")\R whih meets theregion [�k � 1;�k + 1℄ [ [k � 1; k + 1℄ is less than2:01p"(1 + a)(k + 1)p(1 + a)4 + 8k2 + 4k(k2 + 1)



4.2. GENERALISING YAMAMOTO 94Lemma 4.2.8. If jujk" � uj+1k"j < � for at least two k 2 f1; 2; 3; 4g then�j" < 2k(2(X + 1) +p2X )a + 1 �where X is de�ned as:4kpkp(a+ 3)k + k2 + a+ 2(k � 1)�12pkp(a+ 3)k + k2 + a+ 2�p(1 + a)(4k2 � (1 + a)5) + 4k(4 + a+ k2)Lemma 4.2.9. For every 1 � j < N ,�j" < 4:02k(2(X + 1) +p2X )(k + 1)2p"(a+ 1)5 p(1 + a)4 + 8k2 + 4k(k2 + 1)We briey explain how these tie together to prove the theorem. We letC be a irle meeting the region h�(k+1)5(1+a)4 ;�k � 1i whih is equivalent to Ĉ1under the group generated by l4. The diameter of the image of C under h"is greater than����h"��(k + 1)5(1 + a)4 �� h"(1)���� = ���� �(a + 1)4(1� e)2�(k + 1)5 + k(a + 1)4 ���� > 10�2Again, sine C is outside C2 its image under h" will meet [k� 1; k+1℄ twie.The group is non-lassial if the diameter of this irle is greater than thebound on �j" above. That is that the group is non-lassial if the followingholds:4:02k(2(X + 1) +p2X )(k + 1)2p"(a+ 1)5 p(1 + a)4 + 8k2 + 4k(k2 + 1) < 10�2This an be rearranged to give the funtion f in the statement of the theorem,thus proving that for a given " (dependent on a) we have that Ja;" is non-lassial.



4.2. GENERALISING YAMAMOTO 95Finally we need to show that we have 0 � a < 1:4. Geometrially weneed that �j" is positive, whih simpli�es toX > �12 +p2This gives us the bound on a as in the theorem.For ompleteness we give the de�nition of the funtion f in Appendix A,showing how " relates to a.



Chapter 5
Further Work
5.1 Criterion for showing if a Shottky groupis lassialDeiding whether a given Shottky group is lassial or non-lassial is a verydiÆult task, as disussed in x2.3, due to the freedom of hoie of generatorset and hoie of SG-urves. We would like to be able to tell from anygenerator set whether the group is lassial or not. One possible way wouldbe to reate an inequality into whih we ould enter information from thegenerator set, and if the inequality holds we have a lassial Shottky group.Given information suh as �xed points of the generators, and the multiplierswe ould insert this information into an inequality then from this deide ifthe group is lassial on its given generators. We would expet that largemultipliers with a long distane between �xed points would be lassial, andsmall multipliers with lose �xed points would indiate non-lassial.96



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 97Taking this general theory and produing suh inequalities is not trivial.We would not expet a omplete answer from this method, simply a riterionfor showing if a Shottky group was lassial, another for if it was non-lassial, and a grey area in between - that is to say that if a Shottky groupdidn't satisfy the lassial inequality then it is not neessarily non-lassial,and vie versa. Having looked at both an inequality to show lassiality andan inequality to show non-lassiality we have made some progress on theformer, and so we mention this briey now.There is an obvious hoie of urves to look at to give lassial SG-urvesfor given generators, and that is to use isometri irles.De�nition 5.1.1. Given a loxodromi M�obius tranformation g(z) = az+bz+d ,ad� b = 1 we look at irles whih are mapped to irles of the same radiusby g. The point � = g�1(1) is the entre of the isometri irle of g, andthe point �0 = g(1) is the entre of the isometri irle of g�1. We have aunique irle, I, entred at �, whih maps under g to a irle of the sameradius entred at �0. This irle I is alled the isometri irle of g and itsimage under g, g(I) = I 0 is the isometri irle of g�1.Expliitly given in terms of a; b;  and d we an write the two isometriirles as I = �����z + d ���� = 1jj�I 0 = ����z � a ��� = 1jj�If the isometri irles for a Shottky group do not interset then thegroup is lassial on its isometri irles.



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 98If we have generator g1 with �xed points a1 and a2 and multiplier 2 andgenerator g2 with �xed points b1 and b2 multiplier �2 for a two generatorShottky group, � = hg1; g2i, we an look to get onditions from isometriirles. So that we have fewer variables in our inequality we apply a M�obiustransformation to send the �xed points to �1 and 1 for g1 and �X and Xfor some X for g2. From x2.1 we have that the transformations g1 and g2 anbe written as: g1(z) = 12( + �1)z + 12( � �1)12( � �1)z + 12( + �1) (5.1)g2(z) = 12X (X� +X��1)z + 12XX2(� � ��1)12X (� � ��1)z + 12X (X� +X��1) (5.2)The simple onditions that will ensure that the isometri irles do notinterset are that the entres of the isometri irles must be more than thesums of the radii apart. We have six inequalities, one for eah pair of irles.For simpliity, if we have g1(z) = az+bz+d and g2(z) = a0z+b00z+d0 then these sixinequalities are:�����d � a ���� > 2jj �����d + d00 ���� > 1jj + 1j0j �����d � a00 ���� > 1jj + 1j0j�����d00 � a00 ���� > 2j0j �����d00 � a ���� > 1jj + 1j0j ����a � a00 ���� > 1jj + 1j0jWhen we substitute in the values of a; b; ; d; a0; b0; 0 and d0 from (5.1)and (5.2) into these inequalities, they simplify to give the following fourinequalities.



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 99
�� + �1�� > 2��� + ��1�� > 2��X(� + ��1)( � �1) + ( + �1)(� � ��1)�� > j2Xj �� � �1��+ 2 ��� � ��1����X(� + ��1)( � �1)� ( + �1)(� � ��1)�� > j2Xj �� � �1��+ 2 ��� � ��1��If a Shottky group satis�es these onditions then it is lassial with itsisometri irles as its SG-urves.The value of X is simple to �nd using the original four �xed pointsa1; a2; b1 and b2. If we let B denote the ross ratio of the four �xed points,that is B = (a1�b2)(b1�a2)(a1�a2)(b1�b2) then X = 2B � 1 + 2pB2 �B.As mentioned previously, if generators for a Shottky group do not satisfythe above equations then that does not mean that the group is non-lassial,just that it is not lassial on that generator set on isometri irles.We now look at an example of a Shottky group satisfying the inequalitiesabove, but not being lassial on isometri irles for the given generators. Wetake the Shottky group �1 = D5z�313 z ; (4�30i)z+ 9152 i�2iz+(4+30i) E, then we have multipliers5+p212 and 4+p15 respetively. The �xed points are 152 � 3p212 and 152 + 3p212for the �rst generator, and 15� 5ip24 and 15� 5ip24 for the seond generator.Using the alulations above we see that B = 12 + 97ip422520 and hene thatX = ip421260 (97 +p47209). We �nd that the inequalities are all satis�ed, andso we know we have some set of isometri irles whih are SG-urves for thisgroup. The isometri irles however are not neessarily the isometri irlesof the generators of �1 sine we have moved the �xed points to �1;�X andmoving bak to the �xed points of the generators above will preserve irles,



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 100but not whether they are isometri irles or not. We atually have isometriirles for di�erent generators, but these in turn give us SG-urves whih areirles. The isometri irles for the generators of �1 given above interset,but we do have lassial SG-urves on these generators, as shown in Figure5.1
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Figure 5.1: Classial SG-urves for �1.The irles in Figure 5.1 are C1 = fjzj = 9g, C 01 = fjz � 15j = 1g,C2 = fjz � 15 + 2ij = 12 and C 02 = fjz � 15� 2ij = 12 .Initial investigations at improving these inequalities or �nding an inequal-ity to show non-lassiality have not yet been suessful. This is partially dueto the lak of non-lassial examples on whih to work, but partiularly onthe fat that showing a group is non-lassial is a more diÆult problem thanshowing that it is lassial.Finally it is worth noting that this question links to the omments on�uber-lassial Shottky groups in x2.6. An �uber-lassial Shottky group



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 101would be lassial on all generators, so regardless of whih generator setwe used in improved inequalities we would �nd that they were satis�ed.We might be able to use improved inequalities to de�ne onditions whihan �uber-lassial Shottky group would satisfy, and hene prove or disprovetheir existene.For an �uber-lassial Shottky group to exist we would like to be able touse improved versions of these inequalities to investigate onditions for allpossible generator sets to satisfy the inequalities.



5.2. ANDREWS-CURTIS GRAPH 1025.2 Andrews-Curtis GraphIn x2.3.2 we desribed the three Nielsen transformations whih are used togo from one generator set of a Shottky group to another. We look now atsome questions whih ome about from thinking about these transformationsin further detail. We turn our attention to a two generator Shottky group,�, and �x a base generator set as � = h1; 2i. If we have a general generatorset for � written as hx1; x2i, where eah xi is a word in 1; 2; �11 and �12then we an �rstly label the three Nielsen transformations from x2.3.2 as:A: hx1; x2i ! hx2; x1iB: hx1; x2i ! hx1�1; x2iC: hx1; x2i ! hx2x1; x2iWe an then look at other generator sets for � as being multiple appli-ations of Nielsen transformations A - C on h1; 2i due to the theorem ofNielsen [33℄ given previously (Theorem 2.2.6).Any pair of generators that generate our group � an be thought of asbeing our base generator set with a �nite number of Nielsen transformationsapplied. We are able to write any generator set for � in terms of appliationsof A;B and C to our base generator set h1; 2i, for example, h�12 ; 21i =BACh1; 2i.It may be of use to onsider the graph S(�) onstruted in the followingway. The vertex set of S(�) orresponds to pairs of generators for �, whereany inidenes of xx�1 or x�1x have been simpli�ed. Two verties of S(�)



5.2. ANDREWS-CURTIS GRAPH 103are joined by an edge if you an get from one generator set to the otherby A;B or C. The edges orresponding to A and B will not be diretededges sine multiple appliation of either A or B simply moves bak andforth between two pairs of generators. The edges orresponding to C willbe a direted edge sine multiple appliations of C take us further from theoriginal generator set. The graph will be 4-valent, sine at any vertex v wean apply A;B and C, and there will also be a direted edge oming into thevertex orresponding to appliation of C to a di�erent vertex v0 suh thatC(v0) = v. The following are some examples of rules that result in yles onthe graph, inluding:ABAB = BABA CBCB = BCBC ACABA = CABCABIt would �rstly be interesting to know in greater detail properties of S(�).If we take � to be a lassial Shottky group we know from x2.3.2 thatsome generator sets for � may not neessarily have lassial SG-urves.Chukrow's onstrution [13℄ shows that Nielsen transformations an totallyalter the shape of the SG-urves. It would be interesting to know whih ver-ties of our graph S(�) orrespond to generator sets with lassial SG-urves.Let v be a vertex orresponding to a set of generators for whih � is lassialon those generators. Any vertex vi joined to v by a sequene of A and Bedges will also be lassial on those generators, sine A and B do not hangethe SG-urves. Some verties joined to v by sequenes inluding C may alsobe lassial as in some ases the method of onstruting new SG-urves anresult in irles.It would be interesting to know the answers to the following:



5.2. ANDREWS-CURTIS GRAPH 104� Is the set of lassial verties onneted?� If not, is there a maximum/minimum number of onneted lassialsets of verties?� For a given base generator set for a lassial Shottky group is there amaximum radius in terms of distint edges travelled, after whih theverties orrespond to generator sets without lassial SG-urves?A similar onstrution to this is used in studying the Andrews-Curtisonjeture, and it is interesting to see the links between the two graphs. Wede�ne the normal losure of a set �rst, and then state the Andrews-Curtisonjeture [4℄.De�nition 5.2.1. The normal losure of a set A in a group G is the smallestnormal subgroup ontaining A.Conjeture 5.2.2. Andrews-Curtis Conjeture [4℄ If F is free on thegenerators x1; :::; xn and the normal losure of fr1; :::; rng is F , then r1; :::; rnmay be hanged to x1; :::; xn by a �nite sequene of the operations below:A0i: ha1; :::; ai; :::; ani ! hai; :::; a1; :::; aniB0: ha1; :::; ani ! ha1�1; :::; aniC 0: ha1; a2; :::; ani ! ha1a2; a2; :::; aniD0g: ha1; :::; ani ! hga1g�1; :::; ani for g 2 GWe an see that these transformations are related to our transformationsA;B and C. A0i and B0 are just generalisations of our A and B. C 0 is



5.2. ANDREWS-CURTIS GRAPH 105obviously losely linked to our C, with right multipliation rather than left.Expliitly, C 0hx1; x2; :::; xni � A2BA2BCA2BA2Bhx1; x2; :::; xniIn [8℄ and [9℄ the authors introdue the Andrews-Curtis graph, whih usesslightly di�erent, but equivalent transformations:(i) hx1; :::; xi; :::; xj; :::; xki ! hx1; :::; xix�1j ; :::; xj; :::; xki(ii) hx1; :::; xi; :::; xj; :::; xki ! hx1; :::; xix�1j ; :::; xj; :::; xki(iii) hx1; :::; xi; :::; xki ! hx1; :::; x�1i ; :::; xki(iv) hx1; :::; xi; :::; xki ! hx1; :::; xwi ; :::; xki for w 2 GThese an easily be seen to be equivalent to A0i - D0g. Operation (iv) isequivalent to A0iD0wA0i, (iii) is equivalent to A0iB0A0i. Depending on the signin the index of xj we have that(i) � A0jA02A0iC 0A0iA02A0jor A0jB0A02A0iC 0A0iA02B0A0jand that (ii) � A0jA02A0iB0C 0B0A0iA02A0jor A0jB0A02A0iB0C 0B0A0iA02B0A0jSimilarly we an show that A0i - D0g an be written in terms of (i) - (iv).We an now look at the Andrews-Curtis graph 4n(G;N)



5.2. ANDREWS-CURTIS GRAPH 106We take a group G and N � G, and look at the graph 4n(G;N) wherethe verties are n-tuples of elements in N whih generate N as a normalsubgroup. We join two suh verties of4n(G;N) by an edge if we an obtainone n-tuple from the other using one of the operations (i) - (iv). The linkwith the graph we were looking at for a Shottky group is that if we let theN = G then the vertex set is those n-tuples whih generate G. The edges aredi�erent, sine they orrespond to ombinations of our operations A - C andextra edges due to the onjugation edges. The Andrews-Curtis onjeturean be rewritten as: For n � 2, the Andrews-Curtis graph 4n(Fn; Fn) isonneted.The Andrews-Curtis graph and the graph S(�) have many similarities,and there may be links between the two problems. It may be that one isa subgraph of the other. In [8℄ the authors mention that `still virtuallynothing is known about the properties of the Andrews-Curtis graph for freegroups', and it would seem more likely that for any progress to be made withthe lassial Shottky group questions mentioned above, progress would �rsthave to be made with properties of the graph S(�) or the Andrews-Curtisgraph.This problem also has links to �uber-lassial Shottky groups. We ouldinvestigate the question of the existane of suh groups via the graph S(�)inx5.2. As disussed, it would be interesting to know if there is a maximumradius of lassiality to the graph, and if the radius is in�nite then we wouldhave the existane of an �uber-lassial Shottky group.



Appendix A
Expliit Formula for "
As disussed in x4.2.2 we now give an expliit formula for the bound on " interms of a. We set a few preliminary shorthands for ompliated expressionsin a; �rstly we use k to denote the following:k = p2 + 2a+ a2We then de�ne J in terms of a and k as follows:J = �ak + 3k + 4 + 3a+ a2� 12�16k + 7 + 10a� 3a2 � 16a3 � 15a4 � 6a5 � a6 + 4k3 + 4ak� 12Our bound on " will be given in terms of three expressions, A, B and Cwhih are in terms of a, J and k. We give the three de�nitions of A, B andC on the next few pages, and �nally give the inequality giving us the boundon " in terms of A, B and C.
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A = �31 + 3640a11 + 552a13 + 16a15 + 120a14 � 352a� 3066a8�1832a2 + 3440a9 � 18488a6 + 5096a10 � 12224a7 � 17976a5�12180a4 � 5768a3 + a16 + 840a4Jpk + 4Jpk�32k � 336ak + 480a3Jpk + 40a9Jpk + 1008a5Jpk�4k3 + 4a10Jpk � 8208a7k � 4200a8k � 1520a9k � 840a6k3�372a10k � 56a11k � 480a7k3 + 840a6Jpk � 8820a4k�11904a5k � 40ak3 � 180a2k3 � 11592a6k � 840a4k3�480a3k3 � 180a8k3 � 40a9k3 � 4a10k3 � 4a12k � 4600a3k+180a2Jpk + 480a7Jpk � 1604a2k + 40aJpk+180a8Jpk � 1008a5k3 + 1708a12
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B = �337918 + 8516a11 + 974a13 + 16a15 + 153a14 � 1628226a�674679a8 + 3983a12 � 3979981a2 � 153462a9 � 3918453a6�9271a10 � 1905392a7 � 6085238a5 � 7176507a4 � 6318596a3+a16 + 592p2aJpk5 + 736p2aJpk7 + 88p2a2Jpk13+88p2a2Jpk9 + 16p2a3Jpk13 + 16p2a3Jpk9+4p2a4Jpk13 + 4p2a4Jpk9 + 144p2aJpk13�4976p2a11 � 112216k + 680p2a2Jpk5 � 1976p2a10k�477648ak � 136896p2� 49824p2k � 6292k7�512p2a12 � 6316k3 � 2656p2k7 � 3258000p2a4+768p2a2Jpk7 + 16p2a3Jpk11 + 464p2a3Jpk7+4p2a4Jpk11 + 196p2a4Jpk7 + 144p2aJpk11+8p2a6Jpk5 � 1702144p2a2 + 144p2aJpk9+8p2a6Jpk7 + 48p2a5Jpk7 + 448p2a3Jpk5+192p2a4Jpk5 + 48p2a5Jpk5 + 88p2a2Jpk11�280p2a5k5 � 152p2a11k � 40p2a6k5 � 34352a2k3�5336p2ak5 � 223968p2ak � 224p2a2k9 � 672p2ak9�789160p2a4k � 24p2a13 + 12a4Jpk13 + 16a4Jpk9+16a4Jpk11 + 432aJpk13 + 576aJpk9 + 576aJpk11�678304p2a� 2778816p2a3 � 266152a7k � 85056a8k+9136a6k3 � 2860a10k � 196a11k + 7840a7k3 + 352a2Jpk9�19392a9k � 1471244a4k � 1098480a5k � 20964ak3
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C = �15800a4k3 + 1612a5k3 � 32360a3k3 + 3960a8k3 + 1344a9k3+64a3k9 + 60a4k9 + 24a5k9 + 4a6k9 + 4a12k3 + 4a12k+48a11k3 + 48a3Jpk13 + 64a3Jpk9 + 64a3Jpk11�5352p2a2k5 � 1872p2a3k7 � 3912p2ak7 � 362120p2a6k�161544p2a7k � 53720p2a8k � 752448p2a3k � 614504p2a5k�12760p2a9k � 510624p2a2k � 3120p2a3k5 � 1200p2a4k5�720p2a4k7 � 168p2a5k7 � 24p2a6k7 � 3448p2a2k7+264a2Jpk13 � 252a5k7 � 436a2k9 � 32a6k7 + 404p2Jpk7+16p2Jpk17 + 148p2Jpk11 + 164p2Jpk13 + 312a10k3+148p2Jpk9 + 16p2Jpk19 + 32p2Jpk15 � 1464276a3k+272p2Jpk5 + 1496Jpk7 � 896p2k9 + 772a4Jpk5�13080ak5 � 12860a2k5 � 84a6k5 � 600a5k5 � 2700a4k5�1448ak9 � 8876ak7 � 1252a4k7 � 3656a3k7 � 32ak11�131840p2a9 � 1030992p2a7 � 1952848p2a6 � 2873800p2a5�2848p2k5 + 352a2Jpk11 + 32a6Jpk5 + 48Jpk19+112Jpk15 + 64Jpk17 � 7124k5 � 1039132a2k � 96k11�7384a2k7 + 524Jpk13 + 2512aJpk7 + 2504a2Jpk7+592Jpk9 + 608Jpk11 + 2512aJpk5 + 2808a2Jpk5+1440a3Jpk7 + 1808a3Jpk5 + 600a4Jpk7 � 7296a3k5+144a5Jpk7 + 192a5Jpk5 + 24a6Jpk7 + 1220Jpk5�30576p2a10 � 621272a6k � 421872p2a8 � 2012k9



111We then ombine these three terms to get our bound on " whih dependsonly on a: " < A646416(B + C)
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