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UNIVERSITY OF SOUTHAMPTONABSTRACTFACULTY OF ENGINEERING, SCIENCE & MATHEMATICSSCHOOL OF MATHEMATICSDo
tor of PhilosophyCLASSICAL AND NON-CLASSICAL SCHOTTKY GROUPSby Jonathan Peter WilliamsThis thesis looks at two disparate problems relating to S
hottky groups, andin parti
ular what it means for a S
hottky group to be 
lassi
al or non-
lassi
al.The �rst problem fo
usses on the uniformization of Riemann surfa
esusing S
hottky groups. We extend the retrose
tion theorem of Koebe bygiving 
onditions on lengths of 
urves as to when a Riemann surfa
e 
an beuniformized by a 
lassi
al S
hottky group.The se
ond se
tion of this thesis examines a paper of Yamamoto ([40℄),whi
h gives the �rst example of a non-
lassi
al S
hottky group. We �rstlyexpand on the detail given in the paper, and then use this to give a se
ondexample of a non-
lassi
al S
hottky group. We then take this se
ond exampleand generalise to a two-variable family of non-
lassi
al S
hottky groups.
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Chapter 1
Introdu
tion
S
hottky groups were �rst 
onstru
ted by S
hottky in 1882, but were notstudied in greater detail until work of Chu
krow [13℄, Maskit [26℄ and Marden[25℄, along with others, in the late 1960s/early 1970s, and then more re
entlyby Maskit [30℄, Hidalgo [16℄ and Tan, Wong and Zhang [39℄ in the 21stCentury.A S
hottky group is de�ned by its 
onstru
tion as follows. Let D be aregion on the Riemann sphere bounded by 2n disjoint simple 
losed 
urves,C1; C 01; :::; Cn; C 0n. The Cis are paired to the C 0is by loxodromi
 M�obius trans-formations, 
i, su
h that 
i(Ci) = C 0i and that 
i(D) \ D = ;. If � is thegroup generated by the 
i then � is a S
hottky group. Alternatively a purelyloxodromi
, free, �nitely generated Kleinian group with non-empty domainof dis
ontinuity is a S
hottky group [26℄.A S
hottky group is 
lassi
al if there exist some set of generators for thegroup su
h that there exist a set of 
urves C1; C 01; :::; Cn; C 0n as above su
hthat the 
urves are Eu
lidean 
ir
les. Marden, [25℄, showed that not every1



2S
hottky group is 
lassi
al. Zarrow, [41℄ 
laimed to have dis
overed the �rstexpli
it example of a non-
lassi
al S
hottky group, but this was later shownto be 
lassi
al by Sato, [35℄. The �rst expli
it example of a non-
lassi
alS
hottky group was given by Yamamoto [40℄.In Chapter 2 we dis
uss some of the ba
kground of S
hottky groups, look-ing initially at Kleinian groups as a natural pre
ursor to studying S
hottkygroups. After looking at S
hottky groups in general we look at some of thereasons why de
iding if a S
hottky group is 
lassi
al or not is far from triv-ial. We also dis
uss Koebe's retrose
tion theorem, whi
h shows that S
hottkygroups 
an be used to uniformize Riemann surfa
es. With this in mind wegive some ba
kground on Riemann surfa
es and ring domains. We �nallydis
uss non-
lassi
al S
hottky groups in more detail.Koebe's retrose
tion theorem states that all 
losed Riemann surfa
es 
anbe uniformized by S
hottky groups, and it has been 
onje
tured that every
losed Riemann surfa
e 
an be uniformized by a 
lassi
al S
hottky group.In Chapter 3 we work towards this by showing that there exists a value ksu
h that a Riemann surfa
e of genus g with g homologously independentsimple 
losed 
urves of lengths less than k 
an be uniformized by a 
lassi
alS
hottky group.It is parti
ularly diÆ
ult to de
ide if a given S
hottky group is 
lassi
alor non-
lassi
al, and there are many questions for whi
h more examples ofnon-
lassi
al S
hottky groups would be useful. For example it is not knownwhat properties Riemann surfa
es uniformized only by non-
lassi
al S
hot-tky groups have, or even if there are surfa
es whi
h only have non-
lassi
aluniformizations. As mentioned there is only one known example of a family



3of non-
lassi
al S
hottky groups, given by Yamamoto. His paper [40℄ is notparti
ularly easy to read, with many details omitted or left for the reader.We begin Chapter 4 by rewriting Yamamoto's paper with a di�erent order,with details in
luded and with any typographi
al errors 
orre
ted. We thengo on to use this proof as a skeleton to �nd another family of non-
lassi
alS
hottky groups, and then to generalise this approa
h to a two variable fam-ily of non-
lassi
al S
hottky groups. We give the expli
it bounds on the twovariables in Appendix A.Finally in Chapter 5 we dis
uss two areas for further study. We inves-tigate �nding inequalities involving �xed points and multipliers of S
hottkygenerators whi
h allow us to de
ide whether that given generator set hasa set of 
lassi
al SG-
urves. We also dis
uss the e�e
t of applying Nielsentransformations to the generators of S
hottky groups, using the 
onstru
tionof Chu
krow [13℄, and build a graph analogous to the Andrews-Curtis graphfor S
hottky generators. We mention some interesting questions about thisS
hottky graph, and suggest that questions on S
hottky groups might beanswered by studying the Andrews-Curtis or S
hottky graphs.



Chapter 2
Ba
kground
2.1 Kleinian GroupsWe begin by de�ning Kleinian groups, and some important properties ofthese groups. We use [28℄ as a sour
e for this se
tion.We denote the extended 
omplex plane C [ f1g as Ĉ . M�obius transfor-mations are then de�ned as maps f : Ĉ ! Ĉ of the formf : z 7! az + b
z + dwhere a; b; 
; d 2 C and ad� b
 = 1. If we regard straight lines in C as 
ir
lesin Ĉ passing through 1 then we 
an see that M�obius transformations send
ir
les in Ĉ to 
ir
les in Ĉ .M�obius transformations 
an be 
lassi�ed into three di�erent types, basedon the number of �xed points of the transformation. A M�obius transforma-tion has either one or two �xed points, whi
h we obtain by solving az+b
z+d = z.4



2.1. KLEINIAN GROUPS 5A M�obius transformation, f , is said to be paraboli
 if f has exa
tly one�xed point. Every paraboli
 transformation is 
onjugate to z ! z + 1.If a transformation has two �xed points then it is 
onjugate to one with�xed points at 0 and 1, and hen
e there exists a M�obius transformation gsu
h that gfg�1(z) = k2z, with k 2 C and jkj2 � 1. We 
all k2 the multiplierof f . If jkj2 = 1 then the transformation is 
alled ellipti
, and is 
onjugateto a rotation z ! ei�z for � real. Otherwise it is 
alled a loxodromi
 M�obiustransformation.Within the loxodromi
 M�obius transformations if k2 2 R+ then thetransformation is 
alled hyperboli
. The hyperboli
 transformations 
an bethought of as dilations. Loxodromi
 M�obius transformations have two �xedpoints, one of whi
h is referred to as the attra
ting �xed point, and the otherthe repelling �xed point. Given the distin
e �xed points x; y of a loxodromi
transformation f we say that x is attra
ting if limn!1 fn(z) ! x for allz 6= y. Then y is the repelling �xed point. The attra
ting �xed point of f isthe repelling �xed point of f�1, and vi
e versa. We will be 
on
entrating onloxodromi
 transformations later.We 
an write the transformation f(z) in matrix form, for example as0� a b
 d 1Awhere we again have that ad�b
 = 1. This is very useful sin
e we are able to
ompose two M�obius transformations simply by multiplying the 
orrespond-ing matri
es. These matri
es are elements ofSL2(C ) = 8<:0� a b
 d 1A ����� a; b; 
; d 2 C ; ad� b
 = 19=;



2.1. KLEINIAN GROUPS 6We have though that the transformation f 
an be represented by two ele-ments of SL2(C ), that is0� a b
 d 1A and 0� �a �b�
 �d 1AIf we form the quotient group PSL2(C ) = SL2(C )=f�Ig by fa
toring out the
entre, where I is the identity matrix, then there exists an isomorphism fromthe group of M�obius transformations to PSL2(C ).We 
an �nd a general form of a loxodromi
 M�obius transformation givenits pair of �xed points, x; y, and its multiplier, k2. We 
an 
hoose a squareroot of the multiplier and then for x 6= 1 6= y the transformation 
an bewritten as: f = 1x� y 0� xk�1 � yk xy(k � k�1)k�1 � k xk � yk�1 1Aand for x =1 as f = 0� k�1 y(k � k�1)0 k 1Aand for y =1 as f = 0� k x(k�1 � k)0 k�1 1AA subgroup of PSL2(C ) is said to be dis
rete if it does not 
ontain asequen
e of distin
t elements 
onverging to I. We now de�ne a Kleiniangroup, and some terminology related to Kleinian groups.De�nition 2.1.1. A Kleinian group, �, is a dis
rete subgroup of PSL2(C )[31℄.



2.1. KLEINIAN GROUPS 7De�nition 2.1.2. A Kleinian group, �, a
ts properly dis
ontinously at apoint x 2 Ĉ if there exists a neighbourhood Ux about x su
h that 
(Ux)\Ux =; for all but �nitely many 
 2 �.De�nition 2.1.3. The open set in Ĉ whi
h 
onsists of all the points at whi
h� a
ts dis
ontinously is 
alled the domain of dis
ontinuity and denoted by
(�). Its 
omplement in Ĉ is 
alled the limit set, and is denoted �(�).The limit set 
an also be de�ned in terms of a

umulation points. A pointx 2 Ĉ is 
alled an a

umulation point (or limit point) of a Kleinian group,�, if there exists a sequen
e of distin
t elements of �, say f
ig, and a pointz 2 Ĉ su
h that 
i(z)! x, [28℄. The limit set �(�) is then simply the set ofall a

umulation points of �.A Kleinian group whose limit set 
onsists of more than two points is
alled non-elementary. If � is non-elementary then � 
ontains a loxodromi
element, and the limit set of � is the 
losure of the set of loxodromi
 �xedpoints.One of the uses of the domain of dis
ontinuity is that in general Ĉ =�is not Hausdor�, while 
(�)=� is a Riemann surfa
e, as dis
ussed in x2.4.Often the easiest way to des
ribe a Kleinian group is to des
ribe 
(�)=�,usually in terms of the fundamental domain for �.De�nition 2.1.4. A fundamental domain for a Kleinian group � is an opensubset D of the domain of dis
ontinuity whi
h (i) has the identity element in� as its stabilizer, (ii) satis�es 
(D) \D = ; for all 
 in � not the identity,(iii) has sides paired by elements of �, (iv) for every z 2 
(�) there is a 
 2 �with 
(z) 2 D, (v) the sides of D only a

umulate at limit points, and (vi)only �nitely many translates of D meet any 
ompa
t subset of 
(�).



2.2. SCHOTTKY GROUPS 82.2 S
hottky GroupsS
hottky groups are a 
lass of Kleinian groups whi
h are parti
ularly inter-esting for a number of reasons. One su
h reason is their link to uniformizingRiemann surfa
es, as will be seen in x2.4, and another is due to their simple
onstru
tion whi
h we detail below. We begin by de�ning SG-
urves.De�nition 2.2.1. Take 2g disjoint Jordan 
urves in Ĉ , whi
h are not nestedand hen
e de�ne an open region D with the 2g 
urves as boundary. We labelthese 
urves in pairs as C1; C 01; :::; Cg; C 0g, and will refer to them as the de�ning
urves for the S
hottky group or for ease of referen
e as SG-
urves.We now detail the set-up to de�ne a S
hottky group. Suppose thereexist loxodromi
 M�obius transformations 
1; :::; 
g su
h that 
i(Ci) = C 0i. Anexample with g = 2 is shown in Figure 2.1.
C

C

C

C

γ

γ

D

1

2

2

1

2

/

/

1

Figure 2.1: An example of four 
urves, two loxodromi
 M�obius transforma-tions and the region D.



2.2. SCHOTTKY GROUPS 9Ea
h 
urve Ci (or C 0i) separates Ĉ into two regions, and we de�ne theoutside of Ci (or C 0i) to be the part of Ĉ � Ci (or Ĉ � C 0i) 
ontaining otherSG-
urves, and the inside to be the region 
ontaining no other SG-
urves.We 
an also de�ne the inside of an SG-
urve to be the part of Ĉ � Ci (orĈ � C 0i) 
ontaining only one of all of the �xed points for the generators of�. Expli
itly, Ci has the repelling �xed point of 
i inside it, and C 0i has theattra
ting �xed point of 
i inside it.We have that D = Ĉ n Si(Ci [ C 0i). For any of the loxodromi
 M�obiustransformations, we have that 
i(D) 
ould either interse
t D or have emptyinterse
tion with D. We have from the de�nition of the fundamental domainthat D \ 
i(D) = ; for all 
i not equal to the identity in �, and hen
e wehave the property that ea
h 
i sends the inside of Ci to the outside of C 0i, andthe outside of Ci to the inside of C 0i. So, for example, in Figure 2.1, 
1 sendsC1 to C 01 and sends C2; C 01 and C 02 to 
urves inside C 01. Figure 2.2 shows theimage of D under 
1, and we see that D \ 
1(D) = ;.De�nition 2.2.2. A S
hottky group is then simply de�ned as the groupgenerated by the loxodromi
 transformations, � = h
1; :::
gi.We also de�ne a S
hottky system for use later:De�nition 2.2.3. A S
hottky system is the name given to a S
hottky groupand a spe
i�ed set of SG-
urves. The set of SG-
urves used is not unique tothe group, and there are many S
hottky systems for a given S
hottky group.We will see later in this se
tion that given a S
hottky group and spe
i�edSG-
urves that 
hanging the 
urves slightly will not alter the S
hottky group,but will 
hange S
hottky system.



2.2. SCHOTTKY GROUPS 10
D

γ

γ

1

2

C1

C2 C2
/

C1
/

γ (   )D
1

Figure 2.2: The image of D under 
1.The domain of dis
ontinuity of a S
hottky group 
an be written as
(�) = [
2� 
(D)where D denotes the 
losure of D. We have that as more and more M�obiustransformations are applied, the diameters of the 
(C), for C an SG-
urve,tend to zero. These image 
urves will all be inside of a parti
ular 
urve, andafter a �nite number, say k, of appli
ations of 
 to C we have that 
n+1(C) isinside 
n(C) for n > k. Thus we have that the limit set �(�) 
an be seen asthe set of a

umulation points of this nesting of images of the SG-
urves andis a Cantor set. This idea 
an be seen s
hemati
ally in Figure 2.3, wherebyea
h SG-
urve has three 
urves nested inside it.S
hottky groups have some interesting properties as shown in a proposi-tion of Maskit:



2.2. SCHOTTKY GROUPS 11
g

g

C

C

C

C

1
1

2

2

/

/

1

2

D

Figure 2.3: Images ofD after two M�obius tranformations (inside C 01 are 
1(D)shaded lightly, and 
1
2(D), 
1
�12 (D) and 
1
1(D) shaded more darkly; in-side C1 are 
�11 (D) shaded lightly, and 
�11 
2(D), 
�11 
�12 (D) and 
�11 
�11 (D)shaded more darkly; with similarly shaded regions inside C2 and C 02 ).Proposition 2.2.4. ([28℄ X.H.2) Let � be a S
hottky group on the genera-tors 
1; :::; 
n. Then: � is free on the n generators; is purely loxodromi
; hasD as a fundamental domain; � is Kleinian with 
(�)=� a �nite Riemannsurfa
e.There is also a 
onverse result to the above proposition. From the fol-lowing theorem of Maskit we 
an see that we have ne
essary and suÆ
ient
onditions for a Kleinian group to be S
hottky.Theorem 2.2.5. ([26℄) Every Kleinian group whi
h is purely loxodromi
,�nitely generated, free and having non-empty domain of dis
ontinuity is aS
hottky group.



2.2. SCHOTTKY GROUPS 12We 
an look at the e�e
t that 
hanging generators of our S
hottky grouphas on a given S
hottky system. Suppose our group � 
an be represented bytwo di�erent sets of generators � = h
1; :::; 
gi and � = h
1; :::; 
gi. The map
i ! 
i extends to an automorphism �! �.There are three elementary automorphisms, the Nielsen transformations,whi
h we look at.(i) We 
an repla
e the �rst generator 
1 by its inverse 
�11 :h
1; :::; 
gi ! h
�11 ; :::; 
gi(ii) We 
an swap the �rst generator 
1 with any other generator 
i:h
1; :::; 
i; :::; 
gi ! h
i; :::
1; :::; 
gi(iii) We 
an repla
e the �rst generator 
1 by the produ
t of the �rst twogenerators:h
1; 
2; :::; 
gi ! h
2
1; 
2; :::; 
giWe 
an then look at other generator sets for � as being multiple appli-
ations of Nielsen transformations (i) - (iii) on h
1; 
2i due to the followingtheorem of Nielsen:Theorem 2.2.6. ([33℄) If � is free on x1; :::; xn and also free on y1; :::; ynthen a �nite sequen
e of Nielsen transformations will 
hange x1; :::; xn toy1; :::; yn.For ea
h appli
ation of a Nielsen transformation applied to � we see thatthe S
hottky system 
hanges; either we �nd we have the same SG-
urves asthe original system, but with a new labelling or we have that some of thenew SG-
urves were not in the original S
hottky system. We will look at the



2.2. SCHOTTKY GROUPS 13e�e
t of the three automorphisms, (i)-(iii), in turn. Throughout this se
tionwe use Ci to refer to the SG-
urves of the initial S
hottky system for �, andKi used for SG-
urves for the S
hottky system on
e a transformation hasbeen applied. We begin with transformation (i).If we look at transformation (i), we repla
e the �rst generator by itsinverse: h
1; :::; 
gi ! h
�11 ; :::; 
giIn terms of the SG-
urves then this 
an be seen as keeping the SG-
urvesexa
tly the same, but simply swapping the dire
tion of the 
1 arrow around,that is labelling C1 as K 01 and labellingC 01 as K1. This is the 
ase be
ause ournew �rst generator sends C 0i to Ci now, rather than the other way around.This is shown in in Figure 2.4.
K1

Kg Kg
/

K1
/

Cg

C

C
/

C
/

1
1

g

Figure 2.4: The original de�ning 
urves for a S
hottky group and the new
urves, after the automorphism (i).



2.2. SCHOTTKY GROUPS 14Looking now at the se
ond automorphism, (ii), we see this involves swap-ping the positions of two generators.h
1; :::; 
i; :::; 
gi ! h
i; :::
1; :::; 
giIn terms of the SG-
urves again we may keep the same SG-
urves as in theinitial S
hottky system and just have a relabelling. We swap the subs
riptson the labels for the 
urves, swapping i subs
ripts for 1 subs
ripts, and vi
eversa. Expli
itly we relabel C1 as Ki, C 01 as K 0i, Ci as K1 and C 0i as K 01 as
an be seen in Figure 2.5.
C1

C1
/

i

i

Cg
/Cg

C C i
/ /

/
K K

1 1K K

i

KKg g
/

Figure 2.5: The original de�ning 
urves for a S
hottky group and the new
urves, after the automorphism (ii)



2.2. SCHOTTKY GROUPS 15The third automorphism is more 
ompli
ated - it a
tually produ
es a newset of 
urves, rather than just a relabelling. This 
onstru
tion of new 
urves
omes from a paper of Chu
krow [13℄. We have the transformationh
1; 
2; :::; 
gi ! h
2
1; 
2; :::; 
giGiven the SG-
urves, from the initial S
hottky system, for h
1; 
2; :::; 
gi welook for the new SG-
urves for h
2
1; 
2; :::; 
gi. The old 
urves and the new
urves are shown on Figure 2.6, with explanations afterwards.
C 1

C 2

C 1
/

C 2
/

C 3

C g

C 3
/

C g
/

2
/K

3
/

K 2

K 1

K 3

K g
K

K

K /
1

g
/

Figure 2.6: The original de�ning 
urves for a S
hottky group and the new
urves, after the automorphism (iii).We take K1 to be the 
urve C1 from the initial S
hottky system. Sin
e the



2.2. SCHOTTKY GROUPS 16�rst generator for � is now 
2
1 we 
an see that K 01 is by de�nition 
2
1(C1).We 
an see that K 01 is therefore inside the original C 02. We 
hoose the new K2to be a 
urve whi
h has C 01 and C2 on its inside, and all other Ci 
urves onits outside. Then we have that by de�nition K 02 = 
2(K2), and is thus insideC 02. We also have that K 01 and K 02 are not nested. The remaining 
urves areun
hanged, and so Ki = Ci and K 0i = C 0i for 3 � i � g.As 
an be seen from the diagram, the new 
urves may bear little resem-blan
e to the old 
urves.



2.3. CLASSICAL SCHOTTKY GROUPS 172.3 Classi
al S
hottky GroupsWe begin this se
tion with the de�nition of a 
lassi
al S
hottky group.De�nition 2.3.1. A S
hottky group, � is said to be 
lassi
al if for at leastone set of generators at least one set of SG-
urves 
an be taken to be Eu-
lidean 
ir
les in C . That is that there exists a S
hottky system whi
h
onsists of � and Eu
lidean 
ir
les.De�nition 2.3.2. A parti
ular generator of a S
hottky group, 
i, is referredto as a 
lassi
al generator if the SG-
urves Ci and C 0i for that generator are
ir
les in C .There are two 
onditions in the de�nition of a 
lassi
al S
hottky group,the fa
t that we have `at least one set of generators...' and the fa
t thatwe have `at least one set of SG-
urves...'. We shall brie
y look at these
onditions, and the reasons why they make de
iding whether a given S
hottkygroup is 
lassi
al or not su
h a diÆ
ult question to answer.2.3.1 `At least one set of SG-
urves...'For a �xed generator set for a S
hottky group � = h
1; :::; 
gi we 
an alterthe SG-
urves slightly and 
reate a new set of SG-
urves and hen
e newS
hottky system. If we take the C1 and C2 
urves and deform them, or keepthe 
urves the same shape but move them, or a 
ombination of both, thenthe image 
urves will also be slightly 
hanged. As long as the �xed points ofthe generators of � and images of 1 are still inside the new 
urves, and aslong as the new 
urves do not interse
t ea
h other, or their images, then thenew 
urves are new SG-
urves by de�nition.



2.3. CLASSICAL SCHOTTKY GROUPS 18We 
an formalise this pro
ess as follows. Assume we have a spe
i�
 S
hot-tky system with a given set of SG-
urves for our S
hottky group, labelled inthe usual way. We de�ne a ring domain pre
isely in x2.5, but for this se
tionwe just de�ne a ring domain to be the open region in C between two nestedJordan 
urves. By 
ompa
tness arguments there exist disjoint ring domainsdi, one about ea
h Ci, su
h that: the di do not interse
t ea
h other; theimages of the ring domains under 
i do not interse
t ea
h other; the imagesof the ring domains under 
 do not interse
t the di. For ea
h di we 
an takeany Jordan 
urve whi
h separates the boundary 
urves, and these 
urves 
anbe the new Ci for a di�erent S
hottky system. Their images under 
i will bethe new C 0i, and we know that none of the 
urves will interse
t sin
e the ringdomains do not interse
t. We then have a set of 2g non-interse
ting, non-nesting 
urves, paired by the generators of the group. These are therefore anew set of SG-
urves for �.Finally we give the following example whi
h shows that a spe
i�ed gen-erator set 
an have more than one set of SG-
urves, simply by moving oneset of SG-
urves.Take our 
urves to be C1 = fjz � 10ij = 1g and C2 = fjzj = 1g withtransformations f(z) = (10 + 10i)z + 99� 100iz � 10iand g(z) = 10z � 1zwith C 01 and C 02 de�ned as C 01 = f(C1) and C 02 = g(C2). Then we have thatC 01 = fjz�10�10ij = 1g and C 02 = fjz�10j = 1g as on the left of Figure 2.7.If we move C1 and C2 by 12 to the right we see that the image 
urves move to



2.3. CLASSICAL SCHOTTKY GROUPS 19C 01 = fjz � 323 � 10ij = 43g and C 02 = fjz � 323 j = 43g as shown on the right ofFigure 2.7. Also we 
an easily observe that the property of insides of 
urvesgoing to outsides of 
urves et
 (that is 
(D) \ (D) = ; for 
 2 � = hf; giand D = Ĉ n fnew 
urvesg) holds for the moved SG-
urves. Thus we havetwo di�erent S
hottky systems for the same generator set.
32

3

32
3

g

f f

g

0

10i

10

10+10i

0.5+10i

0.5

+10i

Figure 2.7: Two di�erent sets of SG-
urves for the S
hottky group hf; gi.2.3.2 `At least one set of generators...'From x2.2 we know that 
hanging generators 
an alter the SG-
urves quitesigni�
antly.In a similar sense to De�nition 2.3.1 we 
an de�ne the notion of a S
hot-tky group being 
lassi
al on a spe
i�
 generator set if at least one set ofSG-
urves for that parti
ular generator set 
an be taken to be Eu
lidean 
ir-
les. Obviously if we have that � is 
lassi
al on a given generator set, then



2.3. CLASSICAL SCHOTTKY GROUPS 20appli
ations of the automorphisms (i) and (ii) ensure that � is 
lassi
al on thenew set, sin
e these automorphisms do not 
hange the SG-
urves themselves,just the labelling. Automorphism (iii) 
an alter whether a S
hottky group is
lassi
al on its generator set or not sin
e it 
hanges the 
urves dramati
ally.Clearly if � is 
lassi
al on any spe
i�
 generator set then � is 
lassi
al. If� is not 
lassi
al on a spe
i�
 generator set then we 
annot 
on
lude that� is not 
lassi
al. If we were to try to show that a S
hottky group was not
lassi
al by analysing how 
hanging generator sets alters SG-
urves we wouldneed to show that � is not 
lassi
al on any of its generator sets. We dis
ussnon-
lassi
al S
hottky groups in more detail in x2.6.



2.4. RIEMANN SURFACES 212.4 Riemann Surfa
esKleinian groups, and hen
e S
hottky groups, are linked to Riemann surfa
esas mentioned at the end of x2.1. Firstly we de�ne a Riemann surfa
e, viade�nitions of 
harts and an atlas.De�nition 2.4.1. A 
hart is a pair 
onsisting of an open, simply 
onne
tedregion Ui on S and a homeomorphism �i : Ui ! Di whi
h maps Ui onto anopen subset Di of the 
omplex plane C . The homeomorphism � gives a lo
al
o-ordinate system at ea
h point on S.De�nition 2.4.2. An atlas is the name given to a family of 
harts.When two open regions U� and U� on S interse
t, we have that there aretwo images of the interse
tion in C , namely ��(U� \U�) and ��(U� \U�) asin Figure 2.8.
U Uα

Dα Dβ

φβ

t

β

φα

βαFigure 2.8: A Riemann surfa
e, with interse
ting 
harts and a transitionfun
tion.



2.4. RIEMANN SURFACES 22De�nition 2.4.3. A transition fun
tion then takes one image of the inter-se
tion to the other by t�� = �� Æ ��1� : ��(U� \ U�)! ��(U� \ U�). Thesefun
tions represent the transition from one 
oordinate system on (U� \ U�)to another.De�nition 2.4.4. A Riemann surfa
e is a two-real-dimensional 
onne
tedmanifold, S, with a maximal atlas with analyti
 transition fun
tions, that isthat the transition fun
tions are di�erentiable [5℄.For � a S
hottky group we have that S = 
(�)=� is a 
onne
ted Riemannsurfa
e. The proof of this 
an be found in [28℄ (II.F.6).This link between Riemann surfa
es and S
hottky groups 
an be des
ribedas the pro
ess of using S
hottky groups to uniformize 
losed Riemann sur-fa
es.De�nition 2.4.5. A 
olle
tion of g disjoint, homologi
ally independent, suf-�
iently smooth, simple 
losed 
urves s1; :::; sg on a 
losed Riemann surfa
eS of genus g are de�ning 
urves for a S
hottky uniformization, or SU-
urves,if one 
an 
hoose a S
hottky group �, with generators 
1; :::; 
g, so that thereis a fundamental region D bounded by SG-
urves C1; C 01; :::; Cg; C 0g 2 
(�),with 
i(Ci) = C 0i su
h that si is the image of Ci (and C 0i) under the map� : 
(�)! 
(�)=�. We say then that S is uniformized by a S
hottky group.Theorem 2.4.6. Koebe Retrose
tion Theorem ([6℄,[18℄) Every 
losedRiemann surfa
e 
an be uniformized by a S
hottky group.We look to extend this theorem to 
lassi
al S
hottky groups in Chapter3.
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Figure 2.9: An example of SU-
urves on a 
losed Riemann surfa
e.It 
ould be that properties of the SG-
urves relate to properties of theSU-
urves, or of the surfa
e, S. In [37℄ Sibner shows that a 
losed symmerti
Riemann surfa
e of genus g 
an be represented by a S
hottky group whi
hhas a standard fundamental domain whi
h exhibits the symmetry.It will be ne
essary to look at 
ollars about the SU-
urves on S. The
ollar lemma states:Theorem 2.4.7. ([11℄) Let S be a 
ompa
t Riemann Surfa
e of genus g �2, and let s1; :::; sg with lengths l(s1); :::; l(sg) be pairwise disjoint simple
losed geodesi
s on S. Then the 
ollarsC(si) = fp 2 S j dist(p; si) � w(si)gof widths w(si) = ar
sinh" 1sinh �12 l(si)�#are pairwise disjoint for i = 1; :::; g.An example of a pair of 
ollars is shown on Figure 2.10. We now look atthe pre-image of su
h a 
ollar, under �, in 
(�).
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Figure 2.10: An example of a pair of 
ollars about SU-
urves on a 
losedRiemann surfa
e.



2.5. RING DOMAINS 252.5 Ring DomainsWe �rst give two de�nitions.De�nition 2.5.1. A ring domain in C is a doubly 
onne
ted domain, thatis, the open region between a pair of nested disjoint Jordan 
urves k1, k2,with k2 inside k1 as in Figure 2.11.
k1

k2

Figure 2.11: A Ring Domain.De�nition 2.5.2. An SG-
urve 
 is said to separate the boundary 
ompo-nents of a ring domain A if any line 
onne
ting one boundary 
omponent ofA to the other 
rosses 
 an odd number of times.Given a 
ollar as des
ribed in Theorem 2.4.7, about a 
urve, s, on a 
losedRiemann surfa
e, S, we 
an look at the pre-image of the 
ollar on the domainof dis
ontinuity, under � : 
(�) ! 
(�)=�. The 
ollar has as pre-image anin�nite 
olle
tion of disjoint ring domains, paired by 
onjugate elements of�. One su
h pair of ring domains will 
ontain a pair of SG-
urves, with theSG-
urves separating the boundary 
omponents of the ring domain.We brie
y mention a pair of de�nitions of properties of ring domains.



2.5. RING DOMAINS 26De�nition 2.5.3. A ring domain B � C is round if it is bounded by 
on-
entri
 Eu
lidean 
ir
les, and hen
e has the form fz j r < jz � 
j < sg forr; s 2 R+ , 
 2 C . If a ring domain is round we will 
all it an annulus.De�nition 2.5.4. Given two ring domains, A and B with B � A, we saythat B is essential with respe
t to A if B separates the boundary 
omponentsof A.We now look to de�ne the module and modulus of a ring domain. Themodule and modulus are numbers assigned to a given ring domain, whi
hmeasure the size of the ring domain, for some de�nition of size, and are
onformal invariants. We shall brie
y dis
uss 
onformal equivalen
e andinvarian
e.De�nition 2.5.5. A map f is 
onformal if it preserves angles.Examples of su
h fun
tions in
lude rotations, dilations, and in fa
t anyM�obius tranformation.De�nition 2.5.6. Two obje
ts A and B are 
onformally equivalent if thereexists a 
onformal map f su
h that B = f(A).De�nition 2.5.7. A property p, su
h as extremal length, module or modu-lus, is said to be a 
onformal invariant if, for any 
onformal map f , p(A) =p(f(A)). In other words, p is invariant under 
onformal maps, or that fortwo 
onformally equivalent obje
ts A and B it is true that p(A) = p(B).Extremal length is an example of a 
onformal invariant, and we givesome details about it here. Suppose we have a region �, with boundary
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onsisting of a set of expli
itly de�ned edges, and a set of re
ti�able ar
s �in �, for example joining two edges of � or separating two 
omponents ofthe boundary of �. Extremal length is a property invariant under 
onformalmappings whi
h we des
ibe shortly. We let m denote extremal length, withappropriate subs
ript denoting the spe
i�
 region whi
h is being 
onsidered.Let �0 represent � after the 
onformal mapping, and let �0 represent � afterthe mapping. To be a 
onformal invariant is the same as requiring thatm�(�) = m�0(�0). We 
onsider the family of Riemannian metri
s whi
hare 
onformally equivalent to the eu
lidean metri
. We let P be the set oflength elements, �, on the region �, whi
h are then used to de�ne metri
s byds = �jdzj. We may look at an ar
 � 2 �, whi
h has a well de�ned �-lengthgiven by: L(�; �) = Z� � jdzjThe open set � has �-area given by:A(�; �) = ZZ � �2 dx dyThese fun
tions are both invariant under 
hange of metri
 by 
onformal map-ping. Now we de�ne the minimum length of any ar
 in � for a given � bytaking the in�mum of the �-lengths over all possible ar
s:L(�; �) = inf�2�L(�; �)S
aling of the region � by a fa
tor is a 
onformal map, and so extremallength must be un
hanged when � is multiplied by a 
onstant. We thereforetake the fun
tion L(�; �)2=A(�; �) to form the de�nition of extremal lengthsin
e repla
ing � by 
� for 
 a 
onstant doesn't alter the value. We take the



2.5. RING DOMAINS 28least upper bound of this fun
tion over all �, giving us that the extremallength of � in � is de�ned [3℄ as:m�(�) = sup� L(�; �)2A(�; �)It is useful to work through an example, to give an idea of how extremallength is 
al
ulated. If we take a re
tangle R, with sides on x = 0, x = a,y = 0 and y = b then we 
an 
al
ulate the extremal length of the ar
s joiningthe verti
al sides as follows. Let the set of ar
s joining x = 0 with x = abe denoted �. We may get a lower bound on the extremal length of � byinitially 
hoosing any metri
 that we like, say � = 1. In this 
ase L(�; 1) = a,and A(R; 1) = ab, and hen
e L(�;1)2A(R;1) = ab , and hen
e thatmR(�) � ab (2.1)To �nd if this bound holds for all � we may pi
k an arbitrary �, althoughwe may normalise by 
hoosing for example that L(�; �) = a. Therefore wehave for a 
urve � 2 �: L(�; �) � aZ a0 � dx � Z a0 1 dxZ a0 (�� 1) dx � 0ZZ R(�� 1) dx dy � 0 (2.2)We may use this fa
t to 
al
ulate the area A(R; �). It is 
lear that wehave: ZZ R(�� 1)2 dx dy � 0 (2.3)



2.5. RING DOMAINS 29Expanding the bra
kets in Equation (2.3), rearranging, and substituting inthe result of Equation (2.2) we get:A(R; �) = ZZ R �2 dx dy � ZZ R(2�� 1) dx dyZZ R �2 dx dy � 2 ZZ R(�� 1) dx dy + ZZ R 1 dx dyA(R; �) � ZZ R dx dy= abSo we have that for all �:mR(�) = sup� L(�; �)2A(�; �) � ab (2.4)We therefore 
an 
ombine Equations (2.1) and (2.4) to see that mR(�) = ab .We return now to the 
on
ept of the modulus of a ring domain. Inthe literature the modulus 
an be de�ned in two equivalent ways, both ofwhi
h are worth mentioning here. There is some di�eren
e of normalisationin the texts in this area, the main di�eren
e being a fa
tor of 2�. Thethree sour
es I use here are Herron, Liu and Minda [15℄, Lehto and Virtanen[22℄ and M
Mullen [32℄. These sour
es use the same notation for slightlydi�erent de�nitions, so I will use the subs
ripts HLM, LV and M respe
tivelyto denote whi
h text the term relates to. Module is denoted by M(A) for aring domain A, and modulus will be denoted by mod(A), with appropriatesubs
ripts. The fun
tion � to be de�ned later will also 
arry subs
ripts todenote sour
e where appropriate. We will be using the de�nitions of Herron,Liu and Minda predominantly, but there is value in looking at all the di�erentde�nitions and 
he
king that they are 
onsistant.



2.5. RING DOMAINS 30De�nition 2.5.8. ([22℄) A general ring domain A is 
onformally equivalentto an annulus of the form fz j r1 < jzj < r2g; let f be the map from A to su
han annulus. The module of a ring domain is de�ned as MLV (A) = ln� r2r1�.Equivalently A is 
onformally equivalent to an annulus A(R), that is,there exists an angle preserving map fromA toA(R), A(R) de�ned as A(R) =fz j 1 < jzj < Rg for a unique R. The module of the ring domain is thende�ned to as MLV (A) = ln(R)A se
ond de�nition of module 
an be 
onstru
ted as below. We �rstlyset up notation used throughout this se
tion, and in Chapter 3.Remark 2.5.9. ([22℄, I 6.2) Let (�A)1 and (�A)2 denote the 
omponents ofthe 
omplement of A, and we 
an let C be the set of 
urves separating (�A)1and (�A)2.We now go on with the alternate de�nition. Then let P be the familyof all possible metri
s on A, de�ned by line elements � dz where � is anon-negative fun
tion on A su
h that the metri
s are 
ontinuous enough forthe following integrations, and that P 
ontains the metri
 de�ned by thefun
tion jf 0=f j, for f as de�ned in De�nition 2.5.8. For � 2P, leta�(A) = ZZ D �2 d�where d� is the area element on A. Also for a 
urve C 2 C we de�nel�(C) = ZC � jdzjand jdzj is the length element. The alternate de�nition for module 
an thenbe expressed as MLV (A) = inf�2P 2�a�(A)� infC2C l�(C)�2



2.5. RING DOMAINS 31This alternate de�nition will be useful later.De�nition 2.5.10. The modulus of a ring domain, A, whi
h is 
onformallyequivalent to an annulus fz j 1 < jzj < Rg, is de�ned in [32℄ as modM(A) =lnR2� .Thus we have that modM(A) = MLV (A)=2�. Herron, Liu and Mindagive the same de�nition of modulus, so modM(A) = modHLM(A). It is worthnoting then that from the above we havemodM(A) = modHLM(A) = inf�2P a�(A)� infC2C l�(C)�2Cal
ulating the modulus of a ring domain dire
tly is not ne
essarily easy,but there exist bounds based on the modulus of a spe
i�
 domain de�nedbelow.De�nition 2.5.11. Gr�otzs
h's Extremal Domain is a domain, denoted B(r),whi
h is 
onformally equivalent to a ring domain (as detailed below), andhas as its boundary the unit 
ir
le jzj = 1 and the segment of the real axis0 � x � r, r < 1. Its modulus is denoted �(r).Gr�otzs
h's extremal domain is 
onformally equivalent to a ring domain,and in fa
t 
onformally equivalent to an annulus. The 
onformal map whi
hmaps B(r) to an annulus is 
onstru
ted as follows. We may map the upperhalf of Gr�otzs
h's Extremal Domain 
onformally to the upper half of theparti
ular annulus de�ned by 1 < jzj < e�LV (r). This map 
an then beextended to a map on the whole of B(r) by following this with a re
e
tion inthe real axis [22℄. We have Gr�otzs
h's module theorem, given below, whi
h
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0 r 1

Figure 2.12: Gr�otzs
h's Extremal Domain.gives us a bound on the modulus (and hen
e module) of any ring domainwhi
h is essential with respe
t to Gr�otzs
h's extremal domain.Theorem 2.5.12. ([15℄) If a ring domain A separates the points 0 and rfrom the unit 
ir
le then modHLM(A) � �HLM(r).The � fun
tion is dis
ussed in all three texts and again there is somedi�eren
e in normalisation. Gr�otzs
h's extremal domain is denoted B(r) inLehto and Virtanen. They de�ne the module of Gr�otzs
h's extremal domainto be MLV (B(r)) = �LV (r). In [15℄ the domain is de�ned in the same way,denoting it RG(r), so B(r) = RG(r). They denote its modulus using �, so Iwill denote it as �HLM(r). Therefore we 
an write the following�LV (r) = MLV (B(r))= 2�modHLM(B(r))= 2�modHLM(RG(r))= 2��HLM(r)
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Mullen doesn't use Gr�otzs
h's extremal domain to introdu
e � but we 
aneasily see that �LV (r) = �M(r).In order to get a better bound on the module or modulus of a general ringdomain than the one in Theorem 2.5.12 we introdu
e Tei
hm�uller's extremaldomain.De�nition 2.5.13. Tei
hm�uller's Extremal Domain is a domain in Ĉ whi
hhas as its boundary the segment of the real axis �r1 � x � 0 and the segmentr2 � x � 1. Its modulus is given in terms of the modulus of Gr�otzs
h'sextremal domain as 2�HLM �q r1r1+r2�.
−r r

1 2
0Figure 2.13: Tei
hm�uller's Extremal Domain.From this we 
an get Tei
hm�uller's module theorem, whi
h appears inLehto and Virtanen ([22℄, II 1.3) and in M
Mullen ([32℄, pg 11). As before wetake a ring domain A with 
omplement (�A)1 and (�A)2, where 0 2 (�A)1and 1 2 (�A)2. Then to bound the modulus of A we simply need a pointinside (�A)1 and a point outside (�A)2. We have:Theorem 2.5.14. ([22℄,[32℄) If a ring domain B separates the points 0 andz1 from z2 and 1, then we haveMLV (B) � 2�LV  s jz1jjz1j+ jz2j!and in the notation of M
MullenmodM(B) � 1��M  s jz1jjz1j+ jz2j!
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onversions above, an equivalent formula 
an be written in thenotation of Herron, Liu and Minda and so the version of the theorem we willuse is:Theorem 2.5.15. If a ring domain B separates the points 0 and z1 from z2and 1, then we havemodHLM(B) � 2�HLM  s jz1jjz1j+ jz2j!We 
an see that the three di�erent sets of notation are a
tually 
onsistentwith ea
h other. We may 
onvert from one to the other using rules su
h as�LV = 2��HLM as derived earlier, or modM = modHLM . Table 2.5 showsthe di�erent de�nitions based on the sour
es used, and after ea
h de�nitiongives a way to 
onvert between the three texts.We now need to de�ne the � fun
tion so that we 
an 
onstru
tively useTei
hm�uller's module theorem. From here on, we will use the HLM de�nitionof � and mod, without expli
it use of subs
ripts.Remark 2.5.16. This fun
tion �(r) is de�ned in terms of ellipti
 integrals, inthat �(r) = 14K(p1� r2)K(r)where K(r) = Z 10 dxp(1� x2)(1� r2x2)There exist some useful bounds on the behaviour of �(r) in [15℄, [22℄ and[34℄. For instan
e �(r) < 12� ln(4r ) and �(r) < 12� ln 2(1+p1�r2)r but we will beusing the ellipti
 integral de�nition predominantly. This parti
ular ellipti
integral is known as the 
omplete ellipti
 integral of the �rst kind.
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HLM LV MModule M(A) = ln (R)Modulus mod(A) = 12� ln(R) mod(A) = 12� ln(R)Conversion = modHLM(A) MLV (A) = 2�modHLM(A) modM(A) = modHLM(A)�(r) Modulus of GED Module of GED \positive de
reasing fun
tion of r"Conversion = �HLM(r) �LV (r) = 2��HLM(r) �M(r) = 2��HLM(r)Tei
hm�uller'sModule mod(A) � 2��q jz1jjz1j+jz2j� M(A) � 2��q jz1jjz1j+jz2j� mod(A) � 1���q jz1jjz1j+jz2j�TheoremTable 2.1: Summarising the 
on
epts of module, modulus and �, with notes for 
omparing the texts.
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uss the extremal length of the family of 
urves Cmentioned in the se
ond de�nition of the module of a ring domain.For a ring domain extremal length 
an be rewritten in terms of the termsde�ned in Se
tion 2.4. We 
an see quite easily that the terms in the de�nitionof extremal length 
an be repla
ed by those in the de�nition of module, andhen
e modulus. We see that for a ring domain A with set of 
urves Cas previously de�ned we have a de�nition for extremal length in terms of
omponents of the de�nition of modulus:mA(C ) = sup�2P � infC2C l�(C)�2a�(A)Thus we 
an see that mA(C ) = 1mod(A)
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al S
hottky GroupsWe return now to non-
lassi
al S
hottky groups. It is obvious that 
lassi
alS
hottky groups exist, simply by 
onstru
tion, but it is not obvious thatnon-
lassi
al S
hottky groups exist. In his paper [25℄ Marden proved theexisten
e of non-
lassi
al S
hottky groups using S
hottky spa
e. We give twoequivalent de�nitions of S
hottky spa
e, and then brie
y dis
uss Marden'sproof, and survey what is known in this area.De�nition 2.6.1. The S
hottky spa
e of a given genus g is denoted Sg and isthe set of all equivalen
e 
lasses of S
hottky groups with g generators, wheretwo S
hottky groups � = h
1; :::; 
gi and �0 = h
01; :::; 
0gi are equivalent ifthere exists a M�obius transformation f with f
if�1 = 
0i for all i = 1; :::; g.We put a topology on Sg by requiring that the equivalen
e 
lass [Gn℄ 
on-verges to [G℄ i� there exists h
1; :::; 
gi 2 [G℄ and h
1;n; :::; 
g;ni 2 [Gn℄ su
hthat 
i;n 
onverges to 
i, [29℄,[30℄.In this sense we may think of a point in S
hottky spa
e as being a setof free generators for a S
hottky group, modulo 
onjugation in PSL2(C ).Alternatively we may de�ne S
hottky spa
e in relation to Riemann surfa
esuniformized by S
hottky groups.De�nition 2.6.2. [17℄ S
hottky spa
e 
an be de�ned as the set of equiv-alen
e 
lasses of pairs (X; �), where X is a Riemann surfa
e of genus gand � : �g �! PSL2(C ) is an inje
tive homomorphism, where �g is thefree group on 
1; :::; 
g, where � := �(�g) is a S
hottky group, and where
(�)=� �= X. We have that (X; �) and (X 0; �0) are equivalent if there exists
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0i) = A�(
i)A�1 for all i = 1; :::; g. We have thenthat X 0 is isomorphi
 to X.We de�ne 
lassi
al S
hottky spa
e in a similar way to the �rst de�nitionof S
hottky spa
e, that is the set of equivalen
e 
lasses represented by 
las-si
al S
hottky groups with g generators. We say that a S
hottky group �0 isequivalent to a 
lassi
al S
hottky group � if there exists a M�obius transfor-mation f with f
if�1 = 
0i for all i = 1; :::; g. Note we have that if the 
ihave 
lassi
al SG-
urves then we do not ne
essarily have that 
0i has 
lassi
alSG-
urves. We let S
g denote 
lassi
al S
hottky spa
e.In his paper, [25℄, Marden 
ompares S
hottky spa
e with 
lassi
al S
hot-tky spa
e, to show that non-
lassi
al S
hottky groups exist. He shows thatthe interse
tion of the 
losure of 
lassi
al S
hottky spa
e with S
hottky spa
eis not the whole of S
hottky spa
e, and hen
e there are S
hottky groups whi
hare not 
lassi
al. We brie
y summarise the idea of his main proof. FirstlyMarden shows that if G is a group in the 
losure of 
lassi
al S
hottky spa
ethen G is dis
ontinuous. Marden then takes a S
hottky group H on theboundary of S
hottky spa
e whi
h is not dis
ontinuous; this group existsthrough a result of Chu
krow [13℄. He then 
hooses a sequen
e Gn of S
hot-tky groups, whi
h are not on the boundary of 
lassi
al S
hottky spa
e, andwhose limit is H. He shows that at most a �nite number of the Gn lie in
lassi
al S
hottky spa
e, and hen
e the remaining groups lie in Sg�(S
g\Sg),whi
h is therefore non-empty, and therefore there exist non-
lassi
al S
hottkygroups.It is worth mentioning here about Tei
hm�uller and moduli spa
e, andtheir links to S
hottky spa
e. In a similar vein to the se
ond de�nition of
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hottky spa
e we de�ne these spa
es in terms of surfa
es. A simple wayto de�ne Tei
hm�uller and moduli spa
es involves �rst de�ning the mapping
lass group, [38℄.De�nition 2.6.3. Let Di�(X) be the set of orientation-preserving di�eo-morphisms of a surfa
e X, and let Di�0(X) be the set of those di�eomor-phisms isotopi
 to the identity. We de�ne the mapping 
lass group to beMCG(X) = Di�(X)=Di�0(X).We may also de�ne the mapping 
lass group in terms of the uniformizinggroup �:De�nition 2.6.4. [10℄ For a S
hottky group �, we let the group of orienta-tion preserving automorphisms be denoted by Aut(�) (where an orientationpreserving automorphism is one whi
h 
orresponds to an orientation preserv-ing di�eomorphism). We then have that MCG(�) = Aut(�)=Inn(�).For a given oriented surfa
e X we letM(X) denote the set of all 
omplexstru
tures on X whi
h agree with the di�erentiable stru
ture on X. We 
anthen de�ne the moduli spa
e, Mg, and Tei
hm�uller spa
e, Tg, as follows:De�nition 2.6.5. Moduli spa
e, Mg, of a surfa
e X of genus g, is de�nedby Mg = M(X)=Di�(X). Moduli spa
e is therefore the spa
e of all equiv-alen
e 
lasses of 
ompa
t Riemann surfa
es of genus g, where two surfa
esare equivalent if there is 
onformal di�eomorphism between them.De�nition 2.6.6. Tei
hm�uller spa
e, Tg, of a surfa
e X of genus g, is de-�ned by Tg = M(X)=Di�0(X). Tei
hm�uller spa
e is therefore the spa
e ofall equivalen
e 
lasses of 
ompa
t Riemann surfa
es of genus g where two
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es are equivalent if there is a 
onformal di�eomorphism between themwhi
h is isotopi
 to the identity.A simple example to show the di�eren
e between the two is to 
onsidera surfa
e of genus g > 0 with a given 
omplex stru
ture. We 
onsider thesurfa
e obtained by 
utting one of the handles in two, twisting one se
tion by2� and then glueing them ba
k together. This new surfa
e would 
orrespondto the same point as the original surfa
e in moduli spa
e, but would be adi�erent point in Tei
hm�uller spa
e. This is be
ause the operation des
ribedabove (a \Dehn twist") is not isotopi
 to the identity but the surfa
e obtainedby the twist is still equivalent in moduli spa
e.It is simple to see that moduli spa
e and Tei
hm�uller spa
e are related byMg = Tg=MCG(X). The link with S
hottky spa
e is explained in [29℄. Asdis
ussed in x2.4 we have a Riemann surfa
e uniformized by any S
hottkygroup. Let S be the surfa
e uniformized by �. Looking at the generatorsof �1(S) we 
an see that a parti
ular generator may also be a generator of� or not. Let N be the smallest normal subgroup of �1(S) 
ontaining thosegenerators of �1(S) whi
h are not generators of �. We 
an then de�ne Nalgas the subgroup of the mapping 
lass group whi
h is the subgroup of outerautomorphisms � : �1(S) �! �1(S) with the properties that �(N) = N andthat the indu
ed isomorphism � : �1=N �! �1=N is the identity. S
hottkyspa
e is then Sg = Tg=Nalg.We 
an de�ne another spa
e, known as unmarked S
hottky spa
e as fol-lows.De�nition 2.6.7. Let Nun be the subgroup of the mapping 
lass group 
on-sisting of all outer automorphisms � : �1(S) �! �1(S) with the property that
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hottky spa
e is then de�ned as Sung = Tg=Nun.A point in unmarked S
hottky spa
e is a S
hottky group modulo 
onju-gation in PSL2(C ) [29℄.Finally, in [29℄ Maskit de�nes Stopg , whi
h is topologi
al S
hottky spa
e.This is done in a similar way, by de�ning another subgroup of the mapping
lass group.De�nition 2.6.8. Let Ntop be the subgroup of the mapping 
lass group
onsisting of all outer automorphisms � : �1(S) �! �1(S) with the followingproperty. If a1; :::; ag denote the generators of �1(S) whi
h are not generatorsof � then �(ai) is 
onjugate to ai for all i = 1; :::; p. We then de�ne thetopologi
al S
hottky spa
e as Stopg = Tg=Ntop.A point in topologi
al S
hottky spa
e 
an be regarded as 
onsisting of aS
hottky group with a fundamental domain bounded by 2g SG-
urves. We
an see that points in Stopg 
arry the most information, then points in Sg, andthen points in Sung whi
h 
arry the least information about the group.From the nature of de�ning these S
hottky spa
es using subgroups of themapping 
lass group we have a tower of 
overings as shown below:Tg ! Stopg ! Sg ! Sung !MgWork on the nature of these 
overings 
an be found in [29℄, [30℄ and others.The �rst 
on
rete example of a non-
lassi
al S
hottky group was givenby Yamamoto [40℄. An earlier example given by Zarrow [41℄ was then shownto be 
lassi
al by Sato [35℄. Yamamoto's group is a two generator S
hottkygroup, with SG-
urves C1 the re
tangle with 
orners p2�1+i(1�"=3);p2�



2.6. NON-CLASSICAL SCHOTTKY GROUPS 421 � i(1 � "=3);�p2 + 1 + i(1 � "=3) and �p2 + 1 � i(1 � "=3), and C 01 isde�ned as 
1(C1), C2 := fjz +p2j = 1 � "g, C 02 := fjz � p2j = 1 � "g. As
hemati
 pi
ture of this arrangement is shown in Figure 2.14.
C

C

C /

C /
2 2

1

1Figure 2.14: The de�ning 
urves for Yamamoto's non-
lassi
al S
hottkygroup.The two transformations are
1(z) = i(p2 + 1)zand 
2(z) = p2(1� ")�1z + (1� ")(2(1� ")�2 � 1)(1� ")�1z +p2(1� ")�1and it is shown that for " < 10�20 �" is a non-
lassi
al S
hottky group. Thispaper will be looked at in more detail in x4.1, and generalised in x4.2.Finally in this se
tion we dis
uss the idea of how 
lassi
al a S
hottky group
an be. By de�nition a S
hottky group is 
lassi
al if it is 
lassi
al on at leastone set of generators. We 
an ask the question now as to, in some sense,how 
lassi
al a S
hottky group 
an be, or what it means for one S
hottkygroup to be more 
lassi
al than another. If a S
hottky group is 
lassi
al ona generator set then the group is 
lassi
al, but equally if a S
hottky group
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lassi
al on many di�erent generator sets it is still 
lassi
al. The naturalquestion to ask is how many di�erent generator sets 
an a S
hottky groupbe 
lassi
al on? Does there exist a S
hottky group �
 whi
h is 
lassi
al onall generator sets? We refer to this group �
 as �uber-
lassi
al.As mentioned previously, only one Nielsen transformation alters the SG-
urves themselves, the transformation (iii) in Se
tion 2.2. For a S
hottkygroup � to be 
lassi
al on all generator sets then �rst of all it would have to be
lassi
al on h
2
1; 
2i, and also h
2
2
1; 
2i. By the pro
edure of Chu
krow,as in Figure 2.6, this only allows for 
ertain 
on�gurations. In the notationof x2.3 we would need to be able to �nd a 
ir
le K2 around C 01 and C2, whi
hdoes not interse
t K1; K 01 or K 02. This is possible, but we would also requirethat there was a 
ir
le around C2 and C 01 so that h
1
2; 
1i is 
lassi
al, andso on. These restri
tions from the Chu
krow 
onstru
tion prohibit manyarrangements of original SG-
urves.Aside from the diÆ
ulties of the Chu
krow 
onstru
tion there are also
ertain restri
tions on how a generator set 
an have 
lassi
al SG-
urves, forinstan
e lo
ations of �xed points and 
i(1). For example in a two generatorS
hottky group � = h
1; 
2i, with SG-
urves C1; C 01; C2 and C 02, we have thatboth 
�11 (1) and the repulsive �xed point of 
1 must be on the inside ofC1. These points, along with similar restri
tions for C 01; C2 and C 02, 
an bepositioned su
h that no 
lassi
al SG-
urves exist for those generators, but itis more diÆ
ult to show that for every group there is at least one generatorset where su
h arrangements arise.In [12℄ Button shows that a Fu
hsian S
hottky group is �uber-
lassi
al i�it has two generators whi
h have interse
ting axes.
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ourse the equivalent question regarding non-
lassi
ality is mu
h moresimple. If we want to look for an �uber-non-
lassi
al S
hottky group then werequire that it is non-
lassi
al on all possible generator sets. But of 
ourse fora group to be non-
lassi
al it must be non-
lassi
al on all possible generatorsets. Therefore any non-
lassi
al S
hottky group is �uber-non-
lassi
al.



Chapter 3
Uniformization by Classi
alS
hottky Groups
3.1 TheoremAs dis
ussed in x2.4 Koebe's Retrose
tion Theorem states that every 
losedRiemann surfa
e 
an be uniformized by a S
hottky group. As we have alsomentioned, S
hottky groups exist in two distin
t types, 
lassi
al and non-
lassi
al. An interesting question to ask would be whether every 
losed Rie-mann surfa
e 
an be uniformized by a 
lassi
al S
hottky group, or 
onverselywhat features do Riemann surfa
es that are uniformized only by non-
lassi
alS
hottky groups have. In this se
tion we try to extend Koebe's theorem bylooking at what 
an be said about surfa
es uniformized by 
lassi
al S
hottkygroups.Work on S
hottky uniformizations of surfa
es has been done, parti
ularlyon those with 
ertain symmetries, by people su
h as Hidalgo [16℄. From45
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lassi
al S
hottky groups exist, andan expli
it example of a non-
lassi
al S
hottky group is due to Yamamoto[40℄. The natural question to ask is whether Koebe's theorem holds if werestri
t to 
lassi
al S
hottky groups, that is S
hottky groups where some setof de�ning 
urves 
an be taken to be 
ir
les.In [29℄ Maskit states that a surfa
e of genus p with p suÆ
iently smallhomologously independent simple disjoint geodesi
s 
an be uniformized by a
lassi
al S
hottky group. We prove this in this 
hapter, with a numeri
al esti-mate to formalise `suÆ
iently small'. We de�ne the S
hottky uniformization
onstant, k, to be the smallest positive solution of the following equation:ex sin�x4� + sin�x4� = 2ex2 (3.1)We then have the following theorem:Theorem 3.1.1. Let S be a 
losed Riemann surfa
e of genus g � 2, andlet s1; :::; sg be the de�ning 
urves for a S
hottky uniformization. If these
urves have length less than the S
hottky uniformization 
onstant, k, then,independent of the genus g, there exists a 
lassi
al S
hottky uniformizationof S.Proof. First we give a brief outline of the proof. The aim is to show thatgiven a 
ondition on the length of 
urves on a 
losed Riemann surfa
e, S,we are able to show the existen
e of a set of Eu
lidean 
ir
les whi
h areSG-
urves for a 
lassi
al S
hottky uniformization of S.The surfa
e will have a S
hottky uniformization, S = 
(�)=� by Koebe[18℄, and hen
e we have a set of SU-
urves s1; :::; sg on S and 
orresponding
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urves C1; C 01; :::; C 0g on 
(�), not ne
essarily 
ir
les. These SG-
urvesalong with � form our initial S
hottky system.The aim of our proof is to show that for ea
h given SG-
urve Ci with a
orresponding SU-
urve si there exists a Eu
lidean 
ir
le on 
(�) whi
h ismapped to a 
urve s0 on S su
h that s0 is homotopi
 to si. If this is the 
asethen we 
an use this 
ir
le as our new SG-
urve in a new S
hottky systemfor �. That is that s0 will be an SU-
urve for the S
hottky uniformizationwith a 
lassi
al generator.We take ea
h SU-
urve, �, in the uniformization individually and �nd a
lassi
al SG-
urve for it in the following way. We look at the 
ollar about �on S and lift it to a pair of ring domains in 
(�), one about Ci, 
all this A,and the the other about C 0i. Figure 3.1 shows an example.
C

C
R1 R2

i

i
/

Figure 3.1: An example of the lift of a 
ollar under 
(�)! 
(�)=� to a pairof ring domains R1 and R2 with Ci and C 0i respe
tively as separating 
urvesGiven a 
ondition on the length of �, this 
an then be adapted throughwork of Maskit to give a 
ondition on the extremal length of the family of
urves separating the 
omponents of the boundary of A. We will then relateextremal length to the modulus of A, and from this show that this bound on
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ir
le in 
(�) whi
h 
an be mapped toa 
urve homotopi
 to � on S.We are now able to look at the details of the proof. Let k be the smallestpositive solution of ex sin �x4� + sin �x4� = 2ex2 . If we look at the rearrangedequation x = 4 ar
sin�2ex=2ex+1� we see that there is only one solution, namelythe S
hottky uniformization 
onstant, k. We use this rearranged form later.Using Maple [24℄ we 
an use numeri
al methods to solve this rearranged form,and get that k � 2:371776. We assume that l(si) < k for all si in the set ofSU-
urves on S and we want to show that this implies existen
e of a set of
ir
ular SG-
urves.If all the si on S lift to 
ir
les in 
(�) then S is uniformized by a 
lassi
alS
hottky group. If this is not the 
ase then some SU-
urves do not lift to
ir
les in 
(�), so we 
an take one su
h 
urve and 
all it �. There exists a
ollar about � whi
h then lifts to a pair of ring domains in 
(�), one aboutsome Ci and the other about C 0i. Let R be the ring domain about Ci. Usingthe notation of [22℄ and Remark 2.5.9 we 
an assume, through 
onjugation byan element of PSL2(C ) if ne
essary, that C �R 
onsists of (�R)1 and (�R)2,with 0 2 (�R)1 and 1 2 (�R)2. Let z1 2 (�R)1 be the (not ne
essarilyunique) point whi
h maximises jzj over (�R)1. Similarly let z2 2 (�R)2be the (not ne
essarily unique) point whi
h minimises jzj over (�R)2. We
an see that for a 
ir
le to `�t' inside a ring domain it suÆ
es to show thatjz1j < jz2j. If this is the 
ase then 
learly R 
ontains the essential roundannulus B = fz j jz1j < jzj < jz2jg. Examples of jz1j < jz2j and jz1j > jz2jare given in Figure 3.2. In the �rst we have an essential round annulus, andhen
e a 
ir
le �ts inside the ring domain. In the se
ond we see that jz1j > jz2j
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e the round annulus B may not exist.
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Figure 3.2: Two examples of ring domains, one whi
h admits an essentialround annulus 
entered at 0, and one whi
h does not.We want to �nd a link from a bound on l(si) to the existen
e of annuli.To begin we use a paper of Maskit [27℄ to 
ompare the hyperboli
 length lwith the extremal length, m, of the 
urve family C 
onsisting of all 
urvesseparating (�R)1 and (�R)2. The paper of Maskit uses a di�erent realizationof S, rather than using S = 
(�)=� to de�ne S, it 
an also be written as aquotient of H 2 as S = H 2=�. A geodesi
 on S is lifted by the 
overing mapto a set of hyperboli
 lines 
(�) for 
 2 � and � a hyperboli
 line. Up to
onjugation of the group, we 
an assume that � is a Eu
lidean straight linein H 2 . A 
ollar of the type dis
ussed in Theorem 2.4.7 about the geodesi
 �on S is symmetri
al, and hen
e will be lifted to a symmetri
al 
ollar of the



3.1. THEOREM 50form ��2 � � < arg z < �2 + �	 as in Figure 3.3.
φ φ

β

Figure 3.3: A topologi
al 
ollar about �We have from [27℄ that l � m� where the angle � is the angle width forthe 
ollar, so, in Figure 3.3, we have that � = 2�.The 
ollar on S lifts to a 
ollar in H 2 as in Figure 3.4, where the sidesof the 
ollar are at a hyperboli
 distan
e of w = w(�) from the verti
alhyperboli
 line.
w

1

A

1

10−1

φFigure 3.4: The topologi
al 
ollarThe point A, of distan
e w along the hyperboli
 line through �1; i; 1 isA = e2w � 1e2w + 1 + 2ewe2w + 1 iWe 
an see that sin� = Re(A), and hen
e sin� = e2w�1e2w+1 . Now we want thisangle in terms of l not w, so �rst we need to look at the de�nition of w from
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ollar lemma (Theorem 2.4.7), whi
h states thatw = ar
sinh �1= sinh( l2)�First of all we let x = 1= sinh l2 so that we have w = ar
sinh(x). Now we
an rewrite w in terms of the logarithmi
 de�nition of ar
sinh, so we havethat w = ln(x+px2 + 1). Also we have the standard exponential de�nitionof sinh, whi
h gives us that x = 1= sinh( l2) = 2el=2 � e�l=2 . Combining all ofthis we get sin� = e2w � 1e2w + 1= (x +px2 + 1)2 � 1(x +px2 + 1)2 + 1= x2 + xpx2 + 1x2 + 1 + xpx2 + 1= 2el=2 + 4 + 2e�l=2el + 2el=2 + 2 + 2e�l=2 + e�l= 2el=2el + 1So we have � = 2� = 2 ar
sin�2el=2el+1�. Now we 
an rearrange the inequal-ity of Maskit to get that m � l� = l2 ar
sin�2el=2el+1�Rearranging the expression in Theorem 3.1.1 we get that k2 = 2 ar
sin� 2ek=2ek+1�,and so if we have that l < k from our theorem then we have that l� < kk=2 = 2,and hen
e m < 2.The next detail we need to look at is that of the extremal length of the
urve family C 
onsisting of all 
urves separating (�R)1 and (�R)2. We



3.1. THEOREM 52have that this extremal length is m < 2. Now, from x2.5 we have thatmod(R) = 1m . Hen
e if m < 2 then mod(R) > 12 .Now, Theorem 2.5.15 tells us that mod(R) � 2��q jz1jjz1j+jz2j�. So we havespe
i�
ally that 12 < mod(R) � 2� s jz1jjz1j+ jz2j!From Remark 2.5.16 we get that:12 < mod(R) � 2� s jz1jjz1j+ jz2j! = 12K(p1� r2)K(r)where r =s jz1jjz1j+ jz2jNow re
all that to have an essential round annulus we require that jz1j <jz2j. We 
an write jz2j = Æjz1j for some Æ, and the 
ondition jz1j < jz2j isequivalent to Æ > 1. So now:12 < 12K(p1� r2)K(r) ; r =r 11 + Æ (3.2)We now look at the fun
tion K(r) in more detail, to see how it behavesfor 0 < r < 1. Heuristi
ally we 
an just plot K(r) against r and see that it isan in
reasing fun
tion. Similarly we 
an see that K(p1� r2) is a de
reasingfun
tion, and so we have that K(p1�r2)K(r) is a de
reasing fun
tion for 0 < r < 1,whi
h is pre
isely the range that r satis�es sin
e r originates in the de�nitionof Gr�otzs
h's extremal domain.
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hni
ally we 
an note thatK(r) = �2 1Xn=0 �(2n� 1)!!(2n)!! �2 r2nwhere the double fa
torial is de�ned using a re
ursive de�nition asn!! = 8<: 1 if n = �1; n = 0 or n = 1n[(n� 2)!!℄ if n � 2In [2℄ it is shown that K(r) is stri
tly in
reasing and positive, and it isalso shown that for 0 < r < 1ddr �K(p1� r2)K(r) � = ��2r(1� r2)K(r)2and so we have that K(p1�r2)K(r) is a stri
tly de
reasing fun
tion on 0 < r < 1.Equation 3.2 now be
omes 1 < K(p1�r2)K(r) , whi
h we need to solve. Whenr = p2=2 we have that 1 � r2 = r, and so K(p1� r2) = K(r), and hen
ethat 1 = K(p1�r2)K(r) . Now, sin
e we know that this fun
tion is de
reasing wehave that: 1 < K(p1� r2)K(r) ) r < p2=2Now we simply have that: r < p22r 11 + Æ < p221 < ÆThus if the length of � on S is l(�) < k then jz1j < jz2j and hen
ethere exists an essential annulus. Hen
e we 
an �nd a 
urve homotopi
ally



3.1. THEOREM 54equivalent to � whi
h lifts to 
ir
le in 
(�). We 
an then repeat this pro
essfor all other SU-
urves. If the 
ondition l(si) < k holds for all SU-
urvesin the S
hottky uniformization then S 
an be uniformized by a 
lassi
alS
hottky group.
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ationsWe now 
onsider the impli
ations of our result by looking at Bers' 
onstant.It was hoped that the bound in Theorem 3.1.1 would be su
h that we 
oulduse work done with Bers' 
onstant to show that 
ertain types of Riemannsurfa
es were uniformizable by 
lassi
al S
hottky groups. The bound in ourtheorem is slightly too small for the parti
ular result we were after, and inthis se
tion we brie
y look at impli
ations following our theorem and suggestfurther work.In [7℄ Bers showed the existen
e of a 
onstant B(g), depending only uponthe genus, g, of a 
losed Riemann surfa
e, S, su
h that there exists a pantsde
omposition of S where the length of the 3g�3 
urves do not ex
eed B(g).A pants de
omposition is a way of splitting a 
losed Riemann surfa
e intothree-holed spheres, or `pairs of pants' using 3g � 3 
urves. Mu
h is knownabout Bers' 
onstant, for example, if we take a pair of pants de
ompositionfor a genus two surfa
e S, that is three geodesi
s j1; j2 and j3 whi
h separateS into two three-holed spheres, we have several methods to get a bound onthe lengths of these 
urves.From [11℄ we have that for every 
ompa
t Riemann surga
e of genus gthere exists a set of 
urves de�ning a pants de
omposition whi
h have lengthsde�ned by l(jk) � 4k ln �8�k � for k = 1; :::; 3g � 3. We 
an easily 
al
ulatethat these lengths for a genus 2 surfa
e to be approximately l(j1) � 12:90,l(j2) � 20:25 and l(j3) � 25:51.There are known bounds on Bers' 
onstant given in terms of the genusof the surfa
e, for example, [11℄, B(g) � 21(g � 1). A lower bound is alsoknown for B(g) in that B(g) � p6g � 2 for a genus g surfa
e.
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hottky uniformization we only need g SU-
urves, whi
h 
ouldbe a subset of the 3g � 3 
urves su
h that the 
omplement of the SU-
urvesis 
onne
ted. We do know though there exist multiple sets of g su
h 
urvesin any given pants de
omposition (for g � 2), and hen
e many su
h sets ofSU-
urves with lengths less than B(g).If we had that Bers' 
onstant for a given surfa
e was less than the 
onstantin Theorem 3.1.1 then we would have that that surfa
e was uniformized by a
lassi
al S
hottky group. For instan
e, taking the example given previouslyusing the theorem from [11℄, we 
al
ulated that for any genus 2 surfa
e wehave three 
urves with lengths approximately l(j1) � 12:90, l(j2) � 20:25 andl(j3) � 25:51 whi
h de�ne a pants de
omposition. We would require just twoof these for our S
hottky uniformization, so we 
an take the shortest two,but we 
an see already that these bounds are a lot more than k whi
h is thevalue we require for 
lassi
al S
hottky uniformization. We have that k < 3and so these values are a lot greater.We have the following 
onje
ture related to S
hottky uniformizations:Conje
ture 3.2.1. There exists a 
onstant S(g), analogous to B(g), forwhi
h there exists a de
omposition of S into a 2g-holed spheres, where thelengths of the g 
urves do not ex
eed S(g). Then S(g) � B(g) for g � 2.Looking ba
k at Bers' 
onstant, whilst Bers' proof does not give any in-formation on B(g) aside from its existen
e, work has been done as mentionedabove on bounding B(g) by others. A theorem of Gr�a
io and Sousa Ramos[14℄ states that for genus 2 surfa
es, B(g) = 2 ar

osh(2). If our bound khad been greater than B(2) then we would have all genus 2 Riemann surfa
esuniformized by 
lassi
al S
hottky groups. Unfortunately our bound, k, is less



3.2. IMPLICATIONS 57than this, but it is hoped that S(2) < k then we would have had the desiredresult. The values that we have are very 
lose to that stated in the Gr�a
ioand Sousa Ramos paper, in that k � 2:371776 and B(2) = 2:633915794 sothe values are very 
lose. Work on S(g) is ne
essary to progress this further.Papers su
h as [23℄ might be useful to �nd if the Riemann surfa
es satis-fying the 
onditions of Theorem 3.1.1 are known elsewhere. Other possiblework in improving this 
ould 
ome from investigating whether it is the 
asethat if just one S
hottky uniformizing 
urve has length less than k satisfyingek sin �k4� + sin �k4� = 2e k2 then there exist a full set of de�ning 
urves withshorter length, and hen
e if one 
urve has length less than k we have 
lassi
alS
hottky uniformization.



Chapter 4
Non-Classi
al S
hottky Groups
In this 
hapter we �nd more examples of non-
lassi
al S
hottky groups, us-ing te
hniques from Yamamoto's paper [40℄. Firstly we dis
uss this paperin detail, rewriting the paper with all details in
luded. We then take thisrewritten paper and use it as a skeleton for the proof that a di�erent family ofSG-
urves produ
e a non-
lassi
al S
hottky group. Finally we generalise thestep from Yamamoto's example to our example and produ
e a two variablefamily of non-
lassi
al S
hottky groups through the following theorem:Theorem 4.0.1 Let Ja;" be the free group generated by:la : z 7! k + 1a + 1 izha;" : z 7! k(1� ")�1z + (1� ")(k2(1� ")�2 � 1)(1� ")�1z + k(1� ")�1where k = pa2 + 2a+ 2. Then Ja;" is non-
lassi
al for 0 � a < 1:4 and for" < f(a) for some fun
tion f (given expli
itly in Appendix A).58



4.1. YAMAMOTO'S PAPER 594.1 Yamamoto's PaperAs dis
ussed in Chapter 2 the �rst example of a non-
lassi
al S
hottky groupwas given in a paper of Yamamoto [40℄. In this 
hapter we use notation fromYamamoto's paper, drawing 
omparisons to previously dis
ussed notationwhere appropriate. The S
hottky group G" is de�ned by Yamamoto, and isgenerated by the transformations l and h" below:l : z 7! = i(p2 + 1)zh" : z 7! p2(1� ")�1z + (1� ")(2(1� ")�2 � 1)(1� ")�1z +p2(1� ")�1Yamamoto shows that when " � 10�20 then G" is non-
lassi
al. The SG-
urves are su
h that l sends C1;" to C3;" and h" sends C2;" to C4;", and areexpli
itly de�ned as:C1;" = The re
tangle with verti
es: p2� 1 + i(1� "=3)p2� 1� i(1� "=3)�p2 + 1 + i(1� "=3)�p2 + 1� i(1� "=3)C3;" = l(C1)C2;" = fjz +p2j = 1� "gC4;" = fjz �p2j = 1� "gThe paper gives a proof that G" is non-
lassi
al for " � 10�20, using aproof by 
ontradi
tion. The paper uses a number of te
hni
ally dense lem-mas, and proves these lemmas after proving the main theorem. A lot of thereasoning behind using the lemmas 
omes from the proofs, and so it wouldfeel more natural to prove the lemmas en route to the proof of the main
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Figure 4.1: The de�ning 
urves for Yamamoto's non-
lassi
al S
hottky group.Here " is the distan
e between the inner re
tangle and the 
ir
lestheorem. Some details in the proofs of the main theorem or lemmas are leftto the reader of the paper, but these are generally not trivial 
al
ulations,espe
ially due to the fa
t that in various pla
es in [40℄ there are some in
or-re
t details, through typographi
al error and o

asional mathemati
al error.These details do not a�e
t whether the theorem is true but are worth 
orre
t-ing. In this se
tion we rewrite Yamamoto's paper, making some alterationsto the order of results presented, and 
orre
ting the errors. We also in
ludea number of �gures whi
h help with some of the explanation of the detailsof the proofs.Sin
e the proof of the theorem is te
hni
ally dense in pla
es and 
onsistsof several lemmas on the way we begin by giving an overview of the proof.We take the four SG-
urves de�ned above, and assume we 
an �nd 
lassi
alSG-
urves for G". From the de�nition of 
lassi
al that means we assumethat there exist four eu
lidean 
ir
les C1; C 01; C2 and C 02 whi
h are also SG-
urves for G" and whi
h bound a fundamental domain for G". Considering allpossible images of these four 
ir
les under the group we �nd a parti
ular set,eC, of image 
ir
les whi
h are nested and interse
t the real interval(0;p2+1)
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e. We introdu
e Lemma 4.1.3 whi
h shows that the distan
e between
onse
utive 
ir
les in eC is less than 10�2, where distan
e is measured alongthe real and imaginary axes. Lemma 4.1.3 is proven using Lemmas 4.1.4,4.1.5 and 4.1.6. Lemmas 4.1.4 and 4.1.5 look at lengths of 
omponents of thedomain of dis
ontinuity whi
h interse
t the real and imaginary axes. Lemma4.1.6 then relates the regions in Lemmas 4.1.4 and 4.1.5 with the distan
ebetween 
ir
les in eC. Finally we �nd a parti
ular image of one of C1; C 01; C2or C 02 whi
h is not in eC, whi
h interse
ts (0;p2+ 1) twi
e and has diametergreater than 10�2. This means that this 
ir
le interse
ts at least one of theeC, whi
h means that the original 
ir
les 
annot be SG-
urves, and so ourassumption that the group G" is 
lassi
al is in
orre
t.Theorem 4.1.1. ([40℄) The group G" generated byh" : z 7! p2(1� ")�1z + (1� ")(2(1� ")�2 � 1)(1� ")�1z +p2(1� ")�1and l : z 7! i(p2 + 1)zis a non-
lassi
al S
hottky group if " � 10�20.The �rst step is to use the following lemma, whi
h as stated by Yamamotois a lemma of Marden, the proof of whi
h is given in suÆ
ient detail inYamamoto's paper, and is therefore omitted here.Lemma 4.1.2. ([25℄) Let � be a 
lassi
al S
hottky group generated by twoM�obius transformations. Let 
 be an element of �. Then there exists afundamental domain for � surrounded by four 
ir
les, at least one of whi
hseparates the �xed points of 
.



4.1. YAMAMOTO'S PAPER 62We are now able to begin the proof of Theorem 4.1.1, pausing to provene
essary lemmas on the way.Proof. We prove that G" is non-
lassi
al by 
ontradi
tion. Suppose thatfor " = 10�20 we have G" is 
lassi
al. Then by Lemma 4.1.2 we have afundamental domain D" for G" bounded by four 
ir
les, our proposed SG-
urves, C1; C 01; C2; C 02, one of whi
h separates 0 and 1, the �xed points ofl. Without loss of generality let C1 be this 
urve. There will be anotherboundary 
urve of D" whi
h also separates the �xed points of l. We leteC = fC1" ; C2" ; C3" ; :::; CN" g be the 
omplete list of images of the SG-
urvesunder G" whi
h satisfy the following 
onditions:(i) Ea
h Cj" separates 0 from 1.(ii) Ea
h Cj+1" separates Cj" from 0.(iii) C1" , Cj" (for j = 2; 3:::N�1) and CN" meet [p2+1;1), (p2�1;p2+1)and (0;p2� 1℄ respe
tively.An example of a set of 
ir
les whi
h satisfy the above is shown in Figure4.2.If Ca and Cb are 
urves in eC whi
h are not separated by other 
urves ineC then Ca and Cb lie on the boundary of a fundamental domain, that is atranslate of D". If Ca = Cj" and Cb = Cj+1" then the translate of D" is 
alledDj".Let ujk" be the point Cj" \ ik�1R+ , where k = 1; :::; 4 and R+ = fx 2 R :x > 0g. We then de�ne �j" = maxkfjujk" � u(j+1)k"jg, the largest distan
ebetween two 
onse
utive 
ir
les in eC, where distan
e is measured along thereal or imaginary axes.
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0 Ö2 -1 Ö2 +1

Figure 4.2: The set eC, with C1" on the outside and CN" nearest to 0.As mentioned in the overview we are looking to show that a parti
ular
ir
le de�ned later has diameter greater than the gaps between the 
ir
les ineC, so we now need to �nd a bound on the gaps between the 
ir
les, that is,a bound on �j".In parti
ular we prove the following lemma whi
h puts an upper boundon �j".



4.1. YAMAMOTO'S PAPER 64Lemma 4.1.3. ([40℄, Lemma 2) For every 0 < " � 10�20 and every posi-tive integer 1 � j < N , �j" < 10�2Proof. To prove Lemma 4.1.3 we move to H", the group generated by h" andL = l2. This group is used as it preserves the real axis, and the intervalsbetween the ujk" points that we are looking at are simply segments of thereal and imaginary axes. Following the standard notation we let 
(H") bethe domain of dis
ontinuity of this group. This allows us to look at the twoaxes separately. To prove this lemma we require a se
ond lemma:Lemma 4.1.4. ([40℄, Lemma 3) The length of ea
h 
omponent of (
(H")\R)[(
(lH" l�1)\iR) whi
h meets the region made up of the union of segmentsgiven as [�(p2+1)3; (p2+1)3℄[i[�(p2+1)4; (p2+1)4℄ is less than 2:01(p2+1)3(2 +p2)p".Proof. To prove Lemma 4.1.4 it is suÆ
ient to prove the following lemma.This simpli�es the details by restri
ting to segments of the real line.Lemma 4.1.5. ([40℄, Lemma 4) The length of ea
h 
omponent of 
(H")\R whi
h meets the region [�p2� 1;�p2 + 1℄[ [p2� 1;p2 + 1℄ is less than2:01(2 +p2)p".Proof. Let W = h"Lh"L�1 with �xed points:w1 = (1� 2"+ "2)(1 +p2) + (1 +p2)p"(1� 2"+ "2)(2� ")w2 = (1� 2"+ "2)(1 +p2)� (1 +p2)p"(1� 2"+ "2)(2� ")We let I1 be the 
omponent of 
(H") \ R whi
h is bounded by the �xedpoints of W . All 
omponents of 
(H") \ R are equivalent under H", but we



4.1. YAMAMOTO'S PAPER 65de�ne three other regions I2 = h�1" (I1), I3 = L�1(I2) and I4 = L�1(I1)to make some of the expli
it 
al
ulations in the proof below simpler.Let J be a 
omponent of 
(H") \ R whi
h is inside C2;" or C4;". We
an write J as 
2q(I ) = hp2q" Lp2q�1 :::hp2" Lp1(I ), where I signi�es one ofI1;I2;I3 or I4 and p2qp2q�1:::p2 6= 0.Cal
ulating the lengths ofI1;I2;I3 orI4 expli
itly from their de�nitionwe �nd that I1 and I2 have the same lengths as ea
h other, and I3 andI4 have the same lengths as ea
h other. The length of I1 (and hen
e I2)is 2(p2 + 1)p(1� 2"+ "2)(2� ")", and the length of I3 (and hen
e I4)is 2(p2� 1)p(1� 2"+ "2)(2� ")". We 
an see that I1 and I2 are longerthan I3 and I4. Looking again at the length of I1 we 
an see that2(p2 + 1)p(1� 2"+ "2)(2� ")" < (2 +p2)2:01p"and so the length of I is less than (2 +p2)2:01p". To 
omplete the proofwe need to show that the length of any image of I under 
2q is no longerthan the length of I , whi
h we do by showing that j
02q(x)j < 1, 8x 2 I .We prove this using indu
tion.Our method of indu
tion involves �rst showing that j
02q(x)j < 1 8x 2 Iis true for q = 1. We then show that assuming it is true for q = n then thisimplies it is true for q = n+ 1.Equivalently we prove in some 
ases that the image of 
2(I ) is no longerthan I , and that if we assume 
2n(I ) is no longer than I then 
2(n+1)(I )is also no longer than I . We will often be using indu
tion to prove stepsalong the way, so we refer to the indu
tion on q as the q-indu
tion for easeof referen
ing.Following the proof in the paper as a guide we now work through the
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tion, labelling the se
tions of the indu
tion for ease ofreading.The q = 1 
ase. If we set q = 1 we have 
2 = hp2" Lp1 . We look at three
ases (i) p1 = 0, (ii) p1 < 0 and (iii) p1 > 0.For referen
e, sin
e they are used frequently in this proof, we mentionthat jh0"(x)j = ���� (1� ")2(x +p2)2 ���� jL0(x)j = ���i(p2 + 1)��� = p2 + 1It is useful to brie
y look at jh0"(x)j to see where this fun
tion is greaterthan one, and where it is less that one. Inside C2;" we have that jh0"(x)j > 1sin
e ��x +p2�� < 1 � " and outside C2;" we have that jh0"(x)j < 1 sin
e��x +p2�� > 1� ".Looking �rst at the 
ase where (i) p1 = 0, we want that j(hp2)0(x)j < 18x 2 I . For this we use indu
tion on p2. Looking at p2 > 0 we see thatfor the initial step of the indu
tion we have jh0"(x)j < 1 for all x 2 I apartfrom some x 2 I2, but we 
an see that the image of I2 under h" remainsthe same size (it is I1). Thus we need to look at h2" for our �rst step of theindu
tion, essentially using a p2 = 2 stage rather than an p2 = 1 stage forthe start of the indu
tion.If we look at j(h2")0(x)j we see that��(h2")0(x)�� = ���� (1� ")4(�2p2x� 3� 2"+ "2)2 ����Analysing this fun
tion we see that if x < �p2 then j(h2")0(x)j < 1. Similarlyif x > 12p2(�1 � 2" + "2) then j(h2")0(x)j < 1. If we take the region wherej(h2")0(x)j > 1, that is �p2 < x < 12p2(�1�2"+"2) we see that I2 is to theleft of this region, I1 and I3 are obviously to the right of this region, and
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i�
ally " < 1 � 10�4) that I4 is also outside thisregion. Therefore we have that for all values of x 2 I we have j(h2")0(x)j < 1.This 
ompletes the p2 = 2 
ase of this indu
tion.Now we need to show that assuming j(hp2" )0(x)j < 1 for p2 = n then it istrue for p2 = n + 1.We 
an write j(hn+1" )0(x)j asj(hn+1" )0(x)j = ���� ddx(hn+1" (x))����= ����d(hn+1" (x))d(hn" (x)) ���� ����d(hn" (x))dx ����< ����d(hn+1" (x))d(hn" (x)) ����= 1� 2"+ "2�hn" (x) +p2�2We only need to show this is true for n � 3, sin
e we already know thisto be true for n = 2. If we apply hn" to any of the four regions whi
h makeup I we see that hn" (x) will be inside C4;". If we take values of hn" (x) tobe any value inside C4;" and substitute these into the above we get thatj(hn+1" )0(x)j < 1 as required.The indu
tion for p2 < 0 follows very 
losely to the above. First we proveit for p2 = �2 and then show that assuming j(hp2" )0(x)j < 1 is true for p2 = n,n < 0 then it is true for p2 = n � 1. The details follow the exa
t methodabove. This proves 
ase (i) above.Looking now at (ii) p1 < 0 we use an indu
tion method in a similar way
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ase, where we 
an writej(
2)0(x)j = j(hp2" Lp1)0(x)j= ���� ddx(hp2" Lp1(x))����= ����dhp2" Lp1(x)dLp1(x) ���� ����dLp1(x)dx ����< 1p2 + 1 ����dhp2" Lp1(x)dLp1(x) ����Then if we let u = Lp1(x) and we have a similar situation as in the p1 = 0
ase in that we have j(
2)0(x)j < 1p2+1 ���dhp2" (u)du ���, requiring an indu
tion on p2.The indu
tion follows that of the indu
tion in 
ase (i), ex
ept where beforewe tested for x 2 I we now test for u 2 Lp1(x). Sin
e p1 < 0 in this 
ase wehave that the regions we 
onsider are all outside C2;", and hen
e using thesevalues we get that j(hp2" Lp1)0(u)j < 1, proving the 
ase of p1 < 0.Finally for the �rst step of our q-indu
tion we prove the 
ase of (iii)p1 > 0 whi
h we 
onsider as having to show that the image of I be
omesno longer under the transformation hp2" Lp1 for p1 positive. We �rst look atp2 > 0, but the proof for p2 < 0 is very similar. We 
an restri
t our values ofx to those only in I1 or I2 be
ause if p1 = 1 we know appli
ation of L sendsI3 and I4 to I2 and I1 and we know that j(hp2" )0(x)j < 1 for all x 2 Ifrom previous work. We therefore need to fo
us on p1 > 1 and x 2 I1 or I2.We 
an therefore see that any image of I1 or I2 under Lp1 will be outsideC2;", and we know that h" is 
ontra
ting outside of C2;" (jh0"(x)j < 1 for��x +p2�� > 1� ", whi
h is pre
isely those points outside C2;"). This meansthat the longest interval for hp2" Lp1(x) will be when p2 = 1. All we need toshow is that h"Lp1(I ) is shorter than I for all p1.



4.1. YAMAMOTO'S PAPER 69We want to look atF1 = ����h"��p2 + 1�2p1 I1a�� h"��p2 + 1�2p1 I1b�����and F2 = ����h"��p2 + 1�2p1 I2a�� h"��p2 + 1�2p1 I2b�����where Ina and Inb are the end points of In. We want to show that theseare both less than jI1a � I1bj. For small values of " we 
al
ulate maxp1 F1and maxp1 F2, and we get that p1 has absolute value less than 1, and that thelengths of F1 and F2 tend to zero as p1 in
reases so all we need to spe
i�
allytest is when p1 is equal to 1.The length of F1 and F2 is shorter than I for p1 = 1 and therefore sowill any image of I under hp2" Lp1 for p1 > 0. Thus we have proven the �rststep of the q-indu
tion.Now we have shown that for any 
ombination of p1 and p2 we have thatj(
2)0(x)j < 1 for any x 2 I . We now move on to the se
ond step of theindu
tion.The indu
tion step of the proof. We assume that j
02q(x)j < 1 forq = 1; 2; :::; n, and try to prove it is true for q = n + 1. We need to provej(hp2n+2" Lp2n+1hp2n" Lp2n�1 :::hp2" Lp1)0(x)j < 1, 8x 2 I or equivalently that theimage of I under 
2(n+1) is no longer than the image of I under 
2n. Toshow that this is true we look at the 
ase where (i) p2n+1 < 0 and the 
asewhere (ii) p2n+1 > 0 seperately.Looking �rst at the 
ase (i) p2n+1 < 0 we see that from our assumptionthat the image of I under 
2n is shorter than I . Sin
e p2n+1 < 0 we havethat the image of I under Lp2n+1
2n will be shorter still. Moreover, sin
e



4.1. YAMAMOTO'S PAPER 70the image of I under 
2n will be inside either C2;" or C4;" (depending on thesign of p2n) we have that the image under Lp2n+1
2n will be inside C1;" andhen
e outside C2;" and C4;". As mentioned previously h" (resp h�1" ) 
ontra
tsregions outside of C2;" (resp C4;") so the image under hp2n+2" Lp2n+1
2n will inturn be shorter than the image under Lp2n+1
2n. Thus the 
ase of p2n+1 < 0is proven.Now �nally we need to prove the 
ase (ii) p2n+1 > 0. In the paperYamamoto des
ribes two 
ases whi
h we will look at here. The two 
asesare (a) � � j
2n(x)j < p2 + 1 and (b) p2 � 1 � j
2n(x)j < �, where� = (2� (1� ")2) 12 is the attra
tive �xed point of h". If we look at 
ase (a)we have that��
02q+2(x)�� = ����d(hp2q+2" Lp2q+1
2q(x))dLp2q+1
2q(x) ���� ����d(Lp2q+1
2q(x))d
2q(x) ���� ��
02q(x)��< ����d(hp2q+2" Lp2q+1
2q(x))dLp2q+1
2q(x) ���� (p2 + 1)p2q+1< ����� (1� e)2(p2 + 1)p2q+1((p2 + 1)p2q+1 +p2)2 �����< 1Now we need to look at 
ase (b). The proof of this is similar to 
ase (a)ex
ept that we need to note that be
ause of the 
onditions of 
ase (b) wehave that jLp2q�1
2q�2(x)j < p2 � 1 and hen
e p2q�1 < 0. Taking the samemethod as above, but expanding ba
k to ��
02q�2(x)�� rather than just ��
02q(x)��we obtain that ��
02q+2�� < 1 as required.This 
ompletes the indu
tion, and hen
e the proof of the lemma.We now show that Lemma 4.1.5 proves Lemma 4.1.4. Using multipleappli
ations of l we 
an see that we 
an extend the proof of Lemma 4.1.5
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eand three times to the region in Lemma 4.1.5 we get that Lemma 4.1.4 istrue for the parts of (
(H") \ R) [ (
(lH"l�1) \ iR) whi
h meet the region[�(p2+1)3;�p2+1℄[[p2�1; (p2+1)3℄[i[�(p2+1)4;�1℄[i[1; (p2+1)4℄.To show that we 
an extend this to the whole region stated in the lemmawe simply need to observe that to �ll in this region we would apply l�1 anumber of times. Sin
e l�1 is 
ontra
ting this does not in
rease the size ofintervals, and so we may extend the regions above to the regions of the realand imaginary axes in the statement of Lemma 4.1.4.Now, to 
omplete the proof of Lemma 4.1.3 we need one �nal lemma,given below with detailed proof.Lemma 4.1.6. ([40℄, Lemma 5) Let � > 0. If jujk" � uj+1k"j < � for atleast two values of k 2 f1; 2; 3; 4g then �j" < 106�.Proof. We let Pj = xj+iyj and Rj be the 
entre and radius of Cj" respe
tively.We let �j be the distan
e between the 
entres of Cj" and Cj+1" , that is �j =jPj � Pj+1j. We de�ne a 
ir
le C 0 whi
h is 
on
entri
 to Cj+1" and tangentto Cj, then C 0 is given by (x� xj+1)2 + (y� yj+1)2 = (Rj � �j)2, and we letT be the point of tangen
y. We de�ne S 0 to be the point on C 0 su
h thatTS 0 is a diameter. Finally we set u0k = C 0 \ ik�1R+ for k = 1; :::; 4. All thisinformation is shown in Figure 4.3Let k1 and k2 denote the two values of k for whi
h jujk" � u(j+1)k"j < �,whi
h exist by the hypothesis of the lemma. Without loss of generality wemay assume \u0k1Pj+1S 0 � \u0k2Pj+1S 0. Let � denote \u0k1Pj+1S 0, and let us
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Figure 4.3: The 
ir
les Cj" , Cj+1" and C 0.�rst 
onsider �2 � � � �.Considering the triangle 4S 0Tuk1 we 
an see, using the sine rule thatsin � > sinuk1S 0T , and similarly for 4S 0Tuk2. Therefore we havesin � + sin\u0k2Pj+1S 0 > sin\u0k1S 0T + sin\u0k2S 0TSin
e S 0T is a diameter, and u0k1 is on the 
ir
le C 0 we have that 4S 0Tu0k1is right-angled. Re
alling that the radius of C 0 is R0j = Rj � �j we have that



4.1. YAMAMOTO'S PAPER 73sin\u0k1S 0T = ju0k1�T j2(Rj��j) therefore we havesin � + sin\u0k2Pj+1S 0 > 2Xr=1 ju0kr � T j2(Rj � �j) (4.1)We now want to derive an inequality for 2(Rj��j) in terms of the lengthsju0kj. From the de�nition of the u0k we 
an see that the maximum the sum ofthe ju0kj 
an be is twi
e the diameter of C 0, and the minimum it 
an be is thediameter. Hen
e:ju01j+ ju02j+ ju03j+ ju04j � Diameter of C 04Xk=1 ju0kj � 2(Rj � �j) (4.2)By the triangle inequality we haveju0k1 � T j+ ju0k2 � T j > ju0k1 � u0k2j > ju0k1j (4.3)the last part of the above line being due to the fa
t that the u0kr are on theaxes.Combining inequalities (4.2) and (4.3) into the right hand side of Equation(4.1) we get: sin � + sin\u0k2Pj+1S 0 > ju0k1j4Xk=1 ju0kj (4.4)Sin
e l has �xed points of 0 and 1, and sin
e C 0 separates them, anyimage of C 0 under l will also separate 0 and1 and thus be either one of theeC or outside C1;". The image 
annot be inside Cj sin
e l has 0 as a repulsivepoint. The image 
annot be Cj sin
e Cj is tangential to C 0, so therefore it



4.1. YAMAMOTO'S PAPER 74must be outside Cj. Therefore we have that the images of the uk under lmust be outside the uk themselves, so we have ju0k+1j < (p2 + 1)ju0kj.We know that k1 is just one of the k, and so u0k1 is one of the u0k. We
an therefore writeP4k=1 ju0kj as ju0k1j+ ju0k1+1j+ ju0k1+2j+ ju0k1+3j, where thesubs
ript addition is 
y
li
 through f1; 2; 3; 4g. We therefore have that4Xk=1 ju0kj < ju0k1j+ (p2 + 1)ju0k1j+ (p2 + 1)2ju0k1j+ (p2 + 1)3ju0k1j= ju0k1j�1 + (p2 + 1) + (2p2 + 3) + (5p2 + 7)�= ju0k1j(12 + 8p2)< 24ju0k1jTherefore Equation (4.4) be
omessin � + sin\u0k2Pj+1S 0 > 124 (4.5)Now, sin
e we have assumed � � \u0k2Pj+1S 0 and �2 � � < � we havethat sin � > sin\u0k2Pj+1S 0 and hen
e we have from Equation (4.5) thatsin � > 148 . Later we shall want an inequality for (1+
os �) so from the abovewe have (1 + 
os �)�1 < 4608 (4.6)As mentioned earlier Cj" and Cj+1" , along with two other 
urves, bound afundamental domain for G", so in parti
ular we have that L(Cj")\Cj+1" = ;.The transformation L preserves any line though the origin, so taking the lineL through the origin and Pj we see that the line segment from the point A onCj" whi
h is Rj�jPjj away from the origin and the point B whi
h is Rj+ jPjjaway from the origin is a diameter of Cj" . We 
an see that the image of A



4.1. YAMAMOTO'S PAPER 75under L will be on the line L and further from the origin than B. Hen
e wehave: (p2 + 1)2(Rj � jPjj) > Rj + jPjj(2p2 + 2)Rj > (2p2 + 4)jPjjRj > p2jPjj (4.7)By the triangle inequality it is 
lear that�j � jPjj+ jPj+1j (4.8)Finally sin
e the origin lies inside C 0 (sin
e the origin lies inside Cj+1"whi
h in turn lies inside C 0) we must have thatjPj+1j < Rj � �j (4.9)Combining Equations (4.7), (4.8) and (4.9) we get that�j < p2 + 12p2 Rj < 9Rj10 (4.10)We now let �0 = jujk1" � u0k1j and so we ne
essarily have that �0 < �. We
an see easily that Rj < jPj � u0k1j + �0 from the triangle inequality, and solooking at 4u0k1Pj+1Pj we use the 
osine rule to get:(Rj � �0)2 < jPj � uk1j2= �2j + (Rj � �j)2 � 2�j(Rj � �j) 
os �Therefore we have:(�0)2 � 2Rj�0 < 2�2j � 2Rj�j � 2�j(Rj � �j) 
os �2�j(Rj � �j)(1 + 
os �) < 2Rj�0 � (�0)2 < 2Rj�0 < 2Rj��j < Rj�(Rj � �j)�1(1 + 
os �)�1 (4.11)



4.1. YAMAMOTO'S PAPER 76From Equation (4.10) we get that (Rj � �j)�1 < 10Rj and 
ombining thiswith (4.6) we see that Equation (4.11) be
omes�j < Rj�(Rj � �j)�1(1 + 
os �)�1�j < Rj� 10Rj 4608�j < 5� 104 � (4.12)We now look at the 
ase that 0 � � < �2 . We have that (1 + 
os �)�1 < 1simply be
ause 
os � is positive in this range, and so we have that the aboveall holds for this 
ase, sin
e (1 + 
os �)�1 < 1 < 4608.We now turn our attention to vj" and look to prove the lemma. Re
allingthe de�nition of vj" from before Lemma 4.1.3 we 
an see thatvj" = maxk fjujk" � u(j+1)k"jg< 4Xk=1 jujk" � u(j+1)k"j= 2Xk=1 �jujk" � uj(k+2)"j � ju(j+1)k" � u(j+1)(k+2)"j� (4.13)The last step of the above 
an be seen from Figure 4.4.From the triangle shown in Figure 4.4 we 
an see using Pythagoras thatjuj1"�uj3"j = 2qR2j � y2j . We 
an do the same for other equivalent trianglesand get that ju(j+1)1"�u(j+1)3"j = 2qR2j+1 � y2j+1, juj2"�uj4"j = 2qR2j � x2jand ju(j+1)2" � u(j+1)4"j = 2qR2j+1 � y2j+1. Then some simple algebra gives
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Figure 4.4: The 
ir
les Cj" and Cj+1" .us that Equation (4.13) be
omesvj" < 2 hqR2j � y2j �qR2j+1 � y2j+1 +qR2j � x2j �qR2j+1 � x2j+1 i= 2�qR2j � x2j �qR2j+1 � x2j+1��qR2j � x2j +qR2j+1 � x2j+1�qR2j � x2j +qR2j+1 � x2j+1+ 2�qR2j � y2j �qR2j+1 � y2j+1��qR2j � y2j +qR2j+1 � y2j+1�qR2j � y2j +qR2j+1 � y2j+1= 2 �R2j � x2j � R2j+1 + x2j+1�qR2j � x2j +qR2j+1 � x2j+1 + 2 �R2j � y2j � R2j+1 + y2j+1�qR2j � y2j +qR2j+1 � y2j+1 (4.14)



4.1. YAMAMOTO'S PAPER 78We now have that vj" is less than the sum of two fra
tions, and by repla
-ing the denominators of ea
h fra
tion by the minimum of the two denomina-tors we see thatvj" < 2 �R2j � x2j � R2j+1 + x2j+1�+ 2 �R2j � y2j � R2j+1 + y2j+1�minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o= 2 �2(R2j � R2j+1) + (�x2j + x2j+1 � y2j + y2j+1)�minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o(4.15)Now we need a few more fa
ts to �nish the proof. Firstly we 
an writethe following, using the triangle inequality and the geometry of Figure 4.4:�x2j + x2j+1 � y2j + y2j+1 � jx2j � x2j+1 + y2j � y2j+1j� jxj � xj+1jjxj + xj+1j+ jyj � yj+1jjyj + yj+1j< (jxj � xj+1j+ jyj � yj+1j)(Rj +Rj+1) (4.16)Now, by taking a line through the 
enters of Cj" and Cj+1" and fromEquation (4.12) we 
an see that Rj �Rj+1 < �j + � < (5� 104 + 1)�. FromEquation (4.7) we get jPjj < Rj=p2, and hen
e 
learly jxjj; jyjj < Rj=p2.This gives us that, for example, xj < Rjp2�x2j > �R2j2R2j � x2j > R2j2qR2j � x2j > Rjp2



4.1. YAMAMOTO'S PAPER 79Finally we need to look at jxj�xj+1j+ jyj�yj+1j. We 
onsider a trianglewith one vertex at Pj and one at Pj+1, with two of its edges parallel to theaxes, and with edges of length jxj � xj+1j, jyj � yj+1j and �j. We 
an seethat the minimum that jxj�xj+1j+ jyj� yj+1j 
an be is �j, when one of theother two sides has length zero, and the maximum it 
an be is p2� when thetriangle is isos
eles. Hen
e jxj � xj+1j+ jyj � yj+1j � p2� < p2 � 5� 104 �.Combining all of these 
omments together with Equation (4.16) we getfrom Equation (4.15) thatvj" < 2 �2(R2j � R2j+1) + (�x2j + x2j+1 � y2j + y2j+1)�minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o< 2(Rj +Rj+1) [2(Rj �Rj+1) + (jxj � xj+1j+ jyj � yj+1j)℄minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o< 2(Rj +Rj+1) [2(Rj � Rj+1) + (jxj � xj+1j+ jyj � yj+1j)℄Rjp2 + Rj+1p2< 2p2 h2(5� 104 + 1)� + (p2 � 5� 104)�i< 106� (4.17)as required. This ends the proof of Lemma 4.1.6.We are now able to prove Lemma 4.1.3. We de�ne Ej" to be the doubly-
onne
ted domain surrounded by Cj" and Cj+1" . Thus the boundary of Ej" isa subset of the boundary of a fundamental domain Dj", as in Figure 4.5.At least two 
omponents of Ej"\(R[iR) are in
luded in Dj"\(R[iR), infa
t in Figure 4.5 only two su
h 
omponents 
oin
ide, due to the pla
ing of theadditional two 
ir
les in Dj". Let these 
omponents be A1 and A2 (there may
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Figure 4.5: An example of the domain Ej" and two (dotted) 
ir
les whi
h
ould be added to make a Dj".be others). We 
an see that ea
h of A1 and A2 lies in a 
omponent of (
(H")\R)[(
(lH" l�1)\iR) meeting [�(p2+1)3; (p2+1)3℄[i[�(p2+1)4; (p2+1)4℄and so from Lemma 4.1.4 has length less than 2:01(p2+1)3(2+p2)p". FromLemma 4.1.6 we have that �j" < 106 2:01(p2+1)3(2+p2)p" < 108p". Hen
eif 0 < " � 10�20 then �j" < 10�2 as required. This proves Lemma 4.1.3.We are now able to prove the theorem in question, that is Theorem 4.1.1.Let C be a 
ir
le meeting [�(p2 + 1)5;�(p2 + 1)℄ whi
h is equivalentto C1 under the group generated by l4. We may then apply h" to C andlook at the properties of this new 
ir
le. We see that sin
e C1 separates 0and 1 then so does C. Sin
e C is outside C2;" its image h"(C) will meet[p2� 1;p2 + 1℄ twi
e, as illustrated by Figure 4.6.
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0 Ö2 -1 Ö2 +1

Figure 4.6: The set eC, from Figure 4.2, along with h"(C).We know that 1 and �(p2 + 1)5 are outside of C and so h"(1) andh"(�(p2 + 1)5) will be inside h"(C) and on the real axis. The diameter ofh"(C) will therefore be greater than ��h"(�(p2 + 1)5)� h"(1)��.Cal
ulating this expli
itly we see that���h"(�(p2 + 1)5)� h"(1)��� = ���� �(1� ")2�(p2 + 1)5 +p2 ���� > 10�2However from Lemma 4.1.3 we know that the gaps between the 
urves in



4.1. YAMAMOTO'S PAPER 82eC is less than 10�2, and therefore we see that h"(C) meets some Cj" . Thismeans that all images of C1, C 01, C2 and C 02 are not disjoint, and hen
e theassumption that the group is 
lassi
al is in
orre
t.



4.2. GENERALISING YAMAMOTO 834.2 Generalising YamamotoWe would like to have many more examples of non-
lassi
al S
hotty groups,amongst other things to help progress in the work dis
ussed in Chapter 5.The following is an example of a non-
lassi
al S
hottky group, obtained usingthe methods of Yamamoto. We take his example, and experiment with waysof 
reating new examples. We would like to 
reate a three generator non-
lassi
al S
hottky group, but whilst a lot of the details follow through, thevery last step of Yamamoto's proof does not hold, sin
e we need to pla
efour 
ir
les in Figure 4.5 rather than just two, and they may blo
k all fourse
tions of the axes. Instead we take Yamamoto's example and alter thediagram slightly by adding a gap of 12 above and below ea
h 
ir
le to get anew family of non-
lassi
al S
hottky groups, des
ribed in Se
tion 4.2.1. Inse
tion 4.2.2 we look to further this pro
ess by adding a distan
e of a aboveand below the 
ir
les, and then get a bound on a and note its e�e
t on ".4.2.1 A new non-
lassi
al S
hottky groupWe look for a se
ond example of a non-
lassi
al S
hottky group, and provethe following theorem:Theorem 4.2.1. The S
hottky group J" with generators:l : z 7! 23 �12p13 + 1� izh" : z 7! p132 (1� ")�1z + (1� ")(134 (1� ")�2 � 1)(1� ")�1z + p132 (1� ")�1is non-
lassi
al for " < 5� 10�19.



4.2. GENERALISING YAMAMOTO 84The SG-
urves are shown in Figure 4.7. We 
hange the notation slightlyfrom Yamamoto, and de�ne the 
urves as:C1 = The re
tangle with verti
es: 12p13� 1 + i(32 � "=2)12p13� 1� i(32 � "=2)�12p13 + 1 + i(32 � "=2)�12p13 + 1� i(32 � "=2)C 01 = l(C1)C2 = fjz + p132 j = 1� "gC 02 = fjz � p132 j = 1� "g
C

C C

C

2

1

1

2

/

/

Figure 4.7: The de�ning 
urves for a non-
lassi
al S
hottky group. Thedistan
e between the inner re
tangle and the 
ir
les are " and the distan
eabove and below the 
ir
les are "+ 12 .Proof. The proof follows that of Yamamoto's example, but with di�erentdetails. We again assume that the group is 
lassi
al and look for a 
ontra-di
tion. We assume the existan
e of Ĉ1; Ĉ 01; Ĉ2 and Ĉ 02 whi
h are 
lassi
alSG-
urves for J".We de�ne eC in a similar way as in the proof of Theorem 4.1.1 withdi�erent bounds:



4.2. GENERALISING YAMAMOTO 85eC = fC1" ; C2" ; C3" ; :::; CN" g whi
h is a 
omplete list of images of the SG-
urves under G" whi
h satisfy:(i) Ea
h Cj" separates 0 from 1.(ii) Ea
h Cj+1" separates Cj" from 0.(iii) C1" , Cj" and CN" meet the regions �12p13 + 1;1�, �12p13� 1; 12p13 + 1�and �0; 12p13� 1� respe
tively.We again de�ne �j" = maxkfjujk" � u(j+1)k"jg, and have equivalents toLemma 4.1.3, Lemma 4.1.4, Lemma 4.1.5 and Lemma 4.1.6 for our group J".We give these new lemmas with some details of the proofs.Lemma 4.2.2. For every 0 < " � 5 � 10�19 and every positive integer1 � j < N , �j" < 8� 10�3Proof. We de�ne the real line preserving group K" as K" = hh"; L = l2i. Toprove Lemma 4.2.2 we need Lemma 4.2.3 and hen
e Lemma 4.2.4.Lemma 4.2.3. The length of ea
h 
omponent of (
(K")\R)[ (
(lK" l�1)\iR) whi
h meets the region"�49 �12p13 + 1�3 ; 49 �12p13 + 1�3# [i"� 827 �12p13 + 1�4 ; 827 �12p13 + 1�4#is less than 1681(12p13 + 1)4 2:01p2".Proof. To prove this we use an equivalent to Lemma 4.1.5:



4.2. GENERALISING YAMAMOTO 86Lemma 4.2.4. The length of ea
h 
omponent of 
(K")\R whi
h meets theregion ��12p13� 1;�12p13 + 1� [ �12p13� 1; 12p13 + 1� is less than 13(2 +p13) 2:01p2".Proof. The proof of Lemma 4.2.4 follows that of Lemma 4.1.5, with di�er-en
es in the numeri
al details, but not in the pro
ess used. We omit it herefor simpli
ity.As in Yamamoto's paper, where Lemma 4.1.4 follows from Lemma 4.1.4, herewe have Lemma 4.2.3 follows from Lemma 4.2.4 by the same reasoning.Next, to �nish the proof of Lemma 4.2.2 we require the following.Lemma 4.2.5. If jujk" � uj+1k"j < � for at least two k 2 f1; 2; 3; 4g then�j" < 2:5� 105�.Proof. As in Yamamoto's proof of Lemma 4.1.6 we let Pj = xj + iyj andRj be the 
entre and radius of Cj" respe
tively and �j = jPj � Pj+1j. Wede�ne a 
ir
le C 0 
on
entri
 to Cj+1 and tangent to Cj, then C 0 is given by(x � xj+1)2 + (y � yj+1)2 = (Rj � �j)2 and let T be the point of tangen
y.We de�ne S 0 to be the point on C 0 su
h that TS 0 is a diameter and we setu0k = C 0 \ ik�1R+ .We let k1 and k2 denote two values of k for whi
h jujk" � u(j+1)k"j < �.We assume \u0k1Pj+1S 0 � \u0k2Pj+1S 0. Let � denote \u0k1Pj+1S 0, and let us�rst 
onsider �2 � � � �.Looking at the triangle 4S 0Pj+1uk1 we see, using the sine rule, thatsin � > sinuk1S 0T , and similarly for 4S 0Pj+1uk2. Therefore we havesin � + sin\u0k2Pj+1S 0 > sin\u0k1S 0T + sin\u0k2S 0T



4.2. GENERALISING YAMAMOTO 87S 0T is a diameter and u0k1 is on C 0, so we have that 4S 0Tu0k1 is right-angled, so sin\u0k1S 0T = ju0k1�T j2(Rj��j) therefore we have the same equation as forLemma 4.1.6: sin � + sin\u0k2Pj+1S 0 > 2Xr=1 ju0kr � T j2(Rj � �j) (4.18)Also, with the same reasoning as in Lemma 4.1.6 we have:ju01j+ ju02j+ ju03j+ ju04j � Diameter of C 04Xk=1 ju0kj � 2(Rj � �j) (4.19)And: ju0k1 � T j+ ju0k2 � T j > ju0k1 � u0k2j > ju0k1j (4.20)Combining the inequalities of Equations (4.19) and (4.20) into the righthand side of Equation (4.18) we get:sin � + sin\u0k2Pj+1S 0 > ju0k1j4Xk=1 ju0kj (4.21)In our proof we have the same reasoning to show that the images ofthe uk under l must be outside the uk themselves, but we have ju0k+1j <23(1+ 12p13)ju0kj be
ause of the 
hange in generators and therefore have thatsin � + sin\u0k2Pj+1S 0 > 11 + 23(1 + 12p13) + 49(1 + 12p13)2 + 827(1 + 12p13)3> 113 (4.22)This implies that sin � > 126 , and hen
e(1 + 
os �)�1 < 1359 (4.23)



4.2. GENERALISING YAMAMOTO 88We know Cj" and Cj+1" , along with two other 
urves, bound a fundamentaldomain for G", so in parti
ular we have that L(Cj") \ Cj+1" = ;. L preserveslines through the origin, so taking the line L through the origin and Pj wesee that the line segment from the point A on Cj" whi
h is Rj �jPjj from theorigin and the point B whi
h is Rj + jPjj from the origin is a diameter. We
an see that the image of A under L will be on the line L and further fromthe origin than B. Hen
e we have:49 �1 + 12p13�2 (Rj � jPjj) > Rj + jPjjRj > 65 + 8p1347 + 8p13 jPjj (4.24)By the triangle inequality it is 
lear that�j � jPjj+ jPj+1j (4.25)Finally sin
e the origin lies inside C 0 we must have thatjPj+1j < Rj � �j (4.26)Combining the inequalities (4.24), (4.25) and (4.26) we get�j < 8(7 +p13)65 + 8p13 Rj < 91Rj100 (4.27)De�ning �0 = jujk1" � u0k1j (and hen
e �0 < �), we 
an derive the sameequation as in (4.11):�j < Rj�(Rj � �j)�1(1 + 
os �)�1 (4.28)From Equation (4.27) we get that (Rj � �j)�1 < 1009Rj and 
ombining this



4.2. GENERALISING YAMAMOTO 89with (4.23) we see that Equation (4.28) be
omes�j < Rj�(Rj � �j)�1(1 + 
os �)�1�j < Rj� 1009Rj 1359�j < 1:51� 104 � (4.29)We have trivially that (1 + 
os �)�1 < 1359 for the 
ase that 0 � � < �2sin
e 
os � is positive in this range. This means that the above holds for all�. We now turn our attention to vj" and proving the lemma. The detailsof this se
tion are the same as in Lemma 4.1.6, so we look straight at thefollowing:vj" < 2(Rj +Rj+1) [2(Rj � Rj+1) + (jxj � xj+1j+ jyj � yj+1j)℄minnqR2j � x2j +qR2j+1 � x2j+1 ; qR2j � y2j +qR2j+1 � y2j+1o(4.30)By taking a line through the 
entres of Cj" and Cj+1" we 
an see that Rj�Rj+1 < �j + � < (1:51� 104 + 1)�. From Equation (4.24) we have a relationbetween jPjj and Rj, and so we have, in a similar way as in Yamamoto'sproof, for exampleqR2j � x2j > 1213p13(p13 + 1)(5p13 + 8)389 + 80p13 RjWe have from work in Lemma 4.1.6 that in our 
ase we have jxj�xj+1j+jyj � yj+1j � p2� < 1:51� 104p2�.Combining all of these 
omments together we get from Equation (4.30)



4.2. GENERALISING YAMAMOTO 90thatvj" < 26(389 + 80p13)12p13(p13 + 1)(5p13 + 8) h2(1:51� 104 + 1)� + 1:51� 104p2�i< 2:5� 105� (4.31)as required. This ends the proof of Lemma 4.2.5We 
on
lude the proof to Lemma 4.2.2 by noting that by de�ning A1and A2 in the same way as before, in that they are se
tions of the real orimaginary axes not 
overed by the boundary of the domains equivalent toDj" in Figure 4.5. We have that ea
h of A1 and A2 lies in a 
omponent of(
(H") \ R) [ (
(lH"l�1) \ iR) meeting ��49(12p13 + 1)3; 49(12p13 + 1)3� [i �� 827(12p13 + 1)4; 827(12p13 + 1)4� and so from Lemma 4.2.3 has length lessthan 1681(12p13 + 1)4 2:01p2". From Lemma 4.2.5 we have that �j" < 2:5 �105 1681(12p13 + 1)4 2:01p2" < 9 � 106p". Hen
e if 0 < " � 5 � 10�19 then�j" < 8� 10�3 as required.Finally as in Yamamoto's proof we let C be a 
ir
le meeting the re-gion h� �23�4 (1 + 12p13)5;�(1 + 12p13)i whi
h is equivalent to Ĉ1 under thegroup generated by l4. The diameter of the image of C under h" is greaterthan�����h" ��23�4 (1 + 12p13)5!� h"(1)����� = 81(1� ")21381 + 344p13 > 8� 10�3Again, sin
e C is outside C2 its image under h" will meet [12p13�1; 12p13+1℄twi
e. Sin
e the distan
e between image 
ir
les eC is less (from Lemma 4.2.2)than the diameter of this 
ir
le h"(C) we see that h"(C) meets some Cj" ,
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ontradi
ting that all images of Ĉ1, Ĉ 01, Ĉ2 and Ĉ 02 are disjoint, and hen
ethe assumption that the group is 
lassi
al is in
orre
t.
4.2.2 GeneralisationWe now look at adjusting the area above the 
ir
les, and see how far the proofholds. We look to get a two variable family of non-
lassi
al S
hottky groups.The key distan
es in the diagrams of initial 
hoi
e of 
urves in the previoustwo se
tions are those along the x-axis, and so we preserve the proximity ofall the 
urves on the axes, and simply in
rease the spa
e above and belowthe 
ir
les in x4.2. We study the following arrangement of SG-
urves:

2+2a

2k-2 a+e

2k+2Figure 4.8: The de�ning 
urves for a 2-variable family of non-
lassi
al S
hot-tky groups.Where we have k = p2 + 2a+ a2. We keep the same notation as in x4.2,



4.2. GENERALISING YAMAMOTO 92and de�ne the 
urves more pre
isely as:C1 = The re
tangle with verti
es: k � 1 + i(1 + a� "3)k � 1� i(1 + a� "3)�k + 1 + i(1 + a� "3)�k + 1� i(1 + a� "3)C 01 = l(C1)C2 = fjz + kj = 1� "gC 02 = fjz � kj = 1� "gWe have the following generators for these SG-
urves:la : z 7! k + 1a + 1 izha;" : z 7! k(1� ")�1z + (1� ")(k2(1� ")�2 � 1)(1� ")�1z + k(1� ")�1We now show that the group generated by these fun
tions is non-
lassi
al,with parti
ular values of a and ". We prove the following:Theorem 4.0.1 The S
hottky group Ja;" = hla; ha;"i is non-
lassi
al for 0 �a < 1:4 and for 0 < " < f(a) for some fun
tion f .The fun
tion f is given expli
itly in Appendix A, but we brie
y des
ribeit here. The fun
tion is the quotient of two expressions in integer powers ofa, in integer powers of pk for k = p2 + 2a+ a2 and in J = (ak + 3k + 4 +3a + a2) 12 (16k + 7 + 10a� 3a2 � 16a3 � 15a4 � 6a5 � a6 + 4k3 + 4ak) 12 . thefun
tion f is positive in
reasing for 0 � a < 1:4 and for inputs of this rangeof a it outputs numbers of the order of the bounds of " in the two examplesof non-
lassi
al S
hottky groups in x4.1 and x4.2.



4.2. GENERALISING YAMAMOTO 93Proof. The proof follows the same skeleton as Yamamoto's proof, with di�er-ent details. We assume that the group is 
lassi
al and look for a 
ontradi
tion.We assume the existan
e of Ĉ1; Ĉ 01; Ĉ2 and Ĉ 02 whi
h are 
lassi
al SG-
urvesfor J�;". We state the lemmas whi
h are equivalents to those in Yamamoto'spaper, but in some 
ases we omit the proofs here. The methods of proof arethe same, but the details are more unwieldy, with 
ompli
ated regions andnumbers. The notations of �j"; ujk" and � are as in the previous se
tions,and Ka;" is the real line preserving group, hha;"; l2ai. We begin by listing theequivalents to Lemmas 4.1.4, 4.1.5 and 4.1.6 without proof, and then provethe equivalent to 4.1.3 afterwards for ease of notation and reading. We 
on-tinue to use the notation of k de�ned above, and introdu
e other shorthands.The key feature is that all the shorthands are purely in terms of the variablea.Lemma 4.2.6. The length of ea
h 
omponent of (
(K")\R)[ (
(lK" l�1)\iR) whi
h meets the interse
tion of intervals��(k + 1)3(a + 1)2 ; (k + 1)3(a+ 1)2 � [ i ��(k + 1)4(a + 1)3 ; (k + 1)4(a + 1)3�is less than 2:01(k + 1)2p"(1 + a)4 p(1 + a)4 + 8k2 + 4k(k2 + 1)Lemma 4.2.7. The length of ea
h 
omponent of 
(K")\R whi
h meets theregion [�k � 1;�k + 1℄ [ [k � 1; k + 1℄ is less than2:01p"(1 + a)(k + 1)p(1 + a)4 + 8k2 + 4k(k2 + 1)



4.2. GENERALISING YAMAMOTO 94Lemma 4.2.8. If jujk" � uj+1k"j < � for at least two k 2 f1; 2; 3; 4g then�j" < 2k(2(X + 1) +p2X )a + 1 �where X is de�ned as:4kpkp(a+ 3)k + k2 + a+ 2(k � 1)�12pkp(a+ 3)k + k2 + a+ 2�p(1 + a)(4k2 � (1 + a)5) + 4k(4 + a+ k2)Lemma 4.2.9. For every 1 � j < N ,�j" < 4:02k(2(X + 1) +p2X )(k + 1)2p"(a+ 1)5 p(1 + a)4 + 8k2 + 4k(k2 + 1)We brie
y explain how these tie together to prove the theorem. We letC be a 
ir
le meeting the region h�(k+1)5(1+a)4 ;�k � 1i whi
h is equivalent to Ĉ1under the group generated by l4. The diameter of the image of C under h"is greater than����h"��(k + 1)5(1 + a)4 �� h"(1)���� = ���� �(a + 1)4(1� e)2�(k + 1)5 + k(a + 1)4 ���� > 10�2Again, sin
e C is outside C2 its image under h" will meet [k� 1; k+1℄ twi
e.The group is non-
lassi
al if the diameter of this 
ir
le is greater than thebound on �j" above. That is that the group is non-
lassi
al if the followingholds:4:02k(2(X + 1) +p2X )(k + 1)2p"(a+ 1)5 p(1 + a)4 + 8k2 + 4k(k2 + 1) < 10�2This 
an be rearranged to give the fun
tion f in the statement of the theorem,thus proving that for a given " (dependent on a) we have that Ja;" is non-
lassi
al.



4.2. GENERALISING YAMAMOTO 95Finally we need to show that we have 0 � a < 1:4. Geometri
ally weneed that �j" is positive, whi
h simpli�es toX > �12 +p2This gives us the bound on a as in the theorem.For 
ompleteness we give the de�nition of the fun
tion f in Appendix A,showing how " relates to a.



Chapter 5
Further Work
5.1 Criterion for showing if a S
hottky groupis 
lassi
alDe
iding whether a given S
hottky group is 
lassi
al or non-
lassi
al is a verydiÆ
ult task, as dis
ussed in x2.3, due to the freedom of 
hoi
e of generatorset and 
hoi
e of SG-
urves. We would like to be able to tell from anygenerator set whether the group is 
lassi
al or not. One possible way wouldbe to 
reate an inequality into whi
h we 
ould enter information from thegenerator set, and if the inequality holds we have a 
lassi
al S
hottky group.Given information su
h as �xed points of the generators, and the multiplierswe 
ould insert this information into an inequality then from this de
ide ifthe group is 
lassi
al on its given generators. We would expe
t that largemultipliers with a long distan
e between �xed points would be 
lassi
al, andsmall multipliers with 
lose �xed points would indi
ate non-
lassi
al.96



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 97Taking this general theory and produ
ing su
h inequalities is not trivial.We would not expe
t a 
omplete answer from this method, simply a 
riterionfor showing if a S
hottky group was 
lassi
al, another for if it was non-
lassi
al, and a grey area in between - that is to say that if a S
hottky groupdidn't satisfy the 
lassi
al inequality then it is not ne
essarily non-
lassi
al,and vi
e versa. Having looked at both an inequality to show 
lassi
ality andan inequality to show non-
lassi
ality we have made some progress on theformer, and so we mention this brie
y now.There is an obvious 
hoi
e of 
urves to look at to give 
lassi
al SG-
urvesfor given generators, and that is to use isometri
 
ir
les.De�nition 5.1.1. Given a loxodromi
 M�obius tranformation g(z) = az+b
z+d ,ad� b
 = 1 we look at 
ir
les whi
h are mapped to 
ir
les of the same radiusby g. The point � = g�1(1) is the 
entre of the isometri
 
ir
le of g, andthe point �0 = g(1) is the 
entre of the isometri
 
ir
le of g�1. We have aunique 
ir
le, I, 
entred at �, whi
h maps under g to a 
ir
le of the sameradius 
entred at �0. This 
ir
le I is 
alled the isometri
 
ir
le of g and itsimage under g, g(I) = I 0 is the isometri
 
ir
le of g�1.Expli
itly given in terms of a; b; 
 and d we 
an write the two isometri

ir
les as I = �����z + d
 ���� = 1j
j�I 0 = ����z � a
 ��� = 1j
j�If the isometri
 
ir
les for a S
hottky group do not interse
t then thegroup is 
lassi
al on its isometri
 
ir
les.



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 98If we have generator g1 with �xed points a1 and a2 and multiplier 
2 andgenerator g2 with �xed points b1 and b2 multiplier �2 for a two generatorS
hottky group, � = hg1; g2i, we 
an look to get 
onditions from isometri

ir
les. So that we have fewer variables in our inequality we apply a M�obiustransformation to send the �xed points to �1 and 1 for g1 and �X and Xfor some X for g2. From x2.1 we have that the transformations g1 and g2 
anbe written as: g1(z) = 12(
 + 
�1)z + 12(
 � 
�1)12(
 � 
�1)z + 12(
 + 
�1) (5.1)g2(z) = 12X (X� +X��1)z + 12XX2(� � ��1)12X (� � ��1)z + 12X (X� +X��1) (5.2)The simple 
onditions that will ensure that the isometri
 
ir
les do notinterse
t are that the 
entres of the isometri
 
ir
les must be more than thesums of the radii apart. We have six inequalities, one for ea
h pair of 
ir
les.For simpli
ity, if we have g1(z) = az+b
z+d and g2(z) = a0z+b0
0z+d0 then these sixinequalities are:�����d
 � a
 ���� > 2j
j �����d
 + d0
0 ���� > 1j
j + 1j
0j �����d
 � a0
0 ���� > 1j
j + 1j
0j�����d0
0 � a0
0 ���� > 2j
0j �����d0
0 � a
 ���� > 1j
j + 1j
0j ����a
 � a0
0 ���� > 1j
j + 1j
0jWhen we substitute in the values of a; b; 
; d; a0; b0; 
0 and d0 from (5.1)and (5.2) into these inequalities, they simplify to give the following fourinequalities.
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��
 + 
�1�� > 2��� + ��1�� > 2��X(� + ��1)(
 � 
�1) + (
 + 
�1)(� � ��1)�� > j2Xj ��
 � 
�1��+ 2 ��� � ��1����X(� + ��1)(
 � 
�1)� (
 + 
�1)(� � ��1)�� > j2Xj ��
 � 
�1��+ 2 ��� � ��1��If a S
hottky group satis�es these 
onditions then it is 
lassi
al with itsisometri
 
ir
les as its SG-
urves.The value of X is simple to �nd using the original four �xed pointsa1; a2; b1 and b2. If we let B denote the 
ross ratio of the four �xed points,that is B = (a1�b2)(b1�a2)(a1�a2)(b1�b2) then X = 2B � 1 + 2pB2 �B.As mentioned previously, if generators for a S
hottky group do not satisfythe above equations then that does not mean that the group is non-
lassi
al,just that it is not 
lassi
al on that generator set on isometri
 
ir
les.We now look at an example of a S
hottky group satisfying the inequalitiesabove, but not being 
lassi
al on isometri
 
ir
les for the given generators. Wetake the S
hottky group �1 = D5z�313 z ; (4�30i)z+ 9152 i�2iz+(4+30i) E, then we have multipliers5+p212 and 4+p15 respe
tively. The �xed points are 152 � 3p212 and 152 + 3p212for the �rst generator, and 15� 5ip24 and 15� 5ip24 for the se
ond generator.Using the 
al
ulations above we see that B = 12 + 97ip422520 and hen
e thatX = ip421260 (97 +p47209). We �nd that the inequalities are all satis�ed, andso we know we have some set of isometri
 
ir
les whi
h are SG-
urves for thisgroup. The isometri
 
ir
les however are not ne
essarily the isometri
 
ir
lesof the generators of �1 sin
e we have moved the �xed points to �1;�X andmoving ba
k to the �xed points of the generators above will preserve 
ir
les,
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ir
les or not. We a
tually have isometri

ir
les for di�erent generators, but these in turn give us SG-
urves whi
h are
ir
les. The isometri
 
ir
les for the generators of �1 given above interse
t,but we do have 
lassi
al SG-
urves on these generators, as shown in Figure5.1
C

C

C

C
1

1

2

2

/

/

0

Figure 5.1: Classi
al SG-
urves for �1.The 
ir
les in Figure 5.1 are C1 = fjzj = 9g, C 01 = fjz � 15j = 1g,C2 = fjz � 15 + 2ij = 12 and C 02 = fjz � 15� 2ij = 12 .Initial investigations at improving these inequalities or �nding an inequal-ity to show non-
lassi
ality have not yet been su
essful. This is partially dueto the la
k of non-
lassi
al examples on whi
h to work, but parti
ularly onthe fa
t that showing a group is non-
lassi
al is a more diÆ
ult problem thanshowing that it is 
lassi
al.Finally it is worth noting that this question links to the 
omments on�uber-
lassi
al S
hottky groups in x2.6. An �uber-
lassi
al S
hottky group



5.1. CRITERION FOR SHOWING IF A SCHOTTKY GROUP ISCLASSICAL 101would be 
lassi
al on all generators, so regardless of whi
h generator setwe used in improved inequalities we would �nd that they were satis�ed.We might be able to use improved inequalities to de�ne 
onditions whi
han �uber-
lassi
al S
hottky group would satisfy, and hen
e prove or disprovetheir existen
e.For an �uber-
lassi
al S
hottky group to exist we would like to be able touse improved versions of these inequalities to investigate 
onditions for allpossible generator sets to satisfy the inequalities.



5.2. ANDREWS-CURTIS GRAPH 1025.2 Andrews-Curtis GraphIn x2.3.2 we des
ribed the three Nielsen transformations whi
h are used togo from one generator set of a S
hottky group to another. We look now atsome questions whi
h 
ome about from thinking about these transformationsin further detail. We turn our attention to a two generator S
hottky group,�, and �x a base generator set as � = h
1; 
2i. If we have a general generatorset for � written as hx1; x2i, where ea
h xi is a word in 
1; 
2; 
�11 and 
�12then we 
an �rstly label the three Nielsen transformations from x2.3.2 as:A: hx1; x2i ! hx2; x1iB: hx1; x2i ! hx1�1; x2iC: hx1; x2i ! hx2x1; x2iWe 
an then look at other generator sets for � as being multiple appli-
ations of Nielsen transformations A - C on h
1; 
2i due to the theorem ofNielsen [33℄ given previously (Theorem 2.2.6).Any pair of generators that generate our group � 
an be thought of asbeing our base generator set with a �nite number of Nielsen transformationsapplied. We are able to write any generator set for � in terms of appli
ationsof A;B and C to our base generator set h
1; 
2i, for example, h
�12 ; 
2
1i =BACh
1; 
2i.It may be of use to 
onsider the graph S(�) 
onstru
ted in the followingway. The vertex set of S(�) 
orresponds to pairs of generators for �, whereany in
iden
es of xx�1 or x�1x have been simpli�ed. Two verti
es of S(�)



5.2. ANDREWS-CURTIS GRAPH 103are joined by an edge if you 
an get from one generator set to the otherby A;B or C. The edges 
orresponding to A and B will not be dire
tededges sin
e multiple appli
ation of either A or B simply moves ba
k andforth between two pairs of generators. The edges 
orresponding to C willbe a dire
ted edge sin
e multiple appli
ations of C take us further from theoriginal generator set. The graph will be 4-valent, sin
e at any vertex v we
an apply A;B and C, and there will also be a dire
ted edge 
oming into thevertex 
orresponding to appli
ation of C to a di�erent vertex v0 su
h thatC(v0) = v. The following are some examples of rules that result in 
y
les onthe graph, in
luding:ABAB = BABA CBCB = BCBC ACABA = CABCABIt would �rstly be interesting to know in greater detail properties of S(�).If we take � to be a 
lassi
al S
hottky group we know from x2.3.2 thatsome generator sets for � may not ne
essarily have 
lassi
al SG-
urves.Chu
krow's 
onstru
tion [13℄ shows that Nielsen transformations 
an totallyalter the shape of the SG-
urves. It would be interesting to know whi
h ver-ti
es of our graph S(�) 
orrespond to generator sets with 
lassi
al SG-
urves.Let v
 be a vertex 
orresponding to a set of generators for whi
h � is 
lassi
alon those generators. Any vertex vi joined to v
 by a sequen
e of A and Bedges will also be 
lassi
al on those generators, sin
e A and B do not 
hangethe SG-
urves. Some verti
es joined to v
 by sequen
es in
luding C may alsobe 
lassi
al as in some 
ases the method of 
onstru
ting new SG-
urves 
anresult in 
ir
les.It would be interesting to know the answers to the following:
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lassi
al verti
es 
onne
ted?� If not, is there a maximum/minimum number of 
onne
ted 
lassi
alsets of verti
es?� For a given base generator set for a 
lassi
al S
hottky group is there amaximum radius in terms of distin
t edges travelled, after whi
h theverti
es 
orrespond to generator sets without 
lassi
al SG-
urves?A similar 
onstru
tion to this is used in studying the Andrews-Curtis
onje
ture, and it is interesting to see the links between the two graphs. Wede�ne the normal 
losure of a set �rst, and then state the Andrews-Curtis
onje
ture [4℄.De�nition 5.2.1. The normal 
losure of a set A in a group G is the smallestnormal subgroup 
ontaining A.Conje
ture 5.2.2. Andrews-Curtis Conje
ture [4℄ If F is free on thegenerators x1; :::; xn and the normal 
losure of fr1; :::; rng is F , then r1; :::; rnmay be 
hanged to x1; :::; xn by a �nite sequen
e of the operations below:A0i: ha1; :::; ai; :::; ani ! hai; :::; a1; :::; aniB0: ha1; :::; ani ! ha1�1; :::; aniC 0: ha1; a2; :::; ani ! ha1a2; a2; :::; aniD0g: ha1; :::; ani ! hga1g�1; :::; ani for g 2 GWe 
an see that these transformations are related to our transformationsA;B and C. A0i and B0 are just generalisations of our A and B. C 0 is



5.2. ANDREWS-CURTIS GRAPH 105obviously 
losely linked to our C, with right multipli
ation rather than left.Expli
itly, C 0hx1; x2; :::; xni � A2BA2BCA2BA2Bhx1; x2; :::; xniIn [8℄ and [9℄ the authors introdu
e the Andrews-Curtis graph, whi
h usesslightly di�erent, but equivalent transformations:(i) hx1; :::; xi; :::; xj; :::; xki ! hx1; :::; xix�1j ; :::; xj; :::; xki(ii) hx1; :::; xi; :::; xj; :::; xki ! hx1; :::; xix�1j ; :::; xj; :::; xki(iii) hx1; :::; xi; :::; xki ! hx1; :::; x�1i ; :::; xki(iv) hx1; :::; xi; :::; xki ! hx1; :::; xwi ; :::; xki for w 2 GThese 
an easily be seen to be equivalent to A0i - D0g. Operation (iv) isequivalent to A0iD0wA0i, (iii) is equivalent to A0iB0A0i. Depending on the signin the index of xj we have that(i) � A0jA02A0iC 0A0iA02A0jor A0jB0A02A0iC 0A0iA02B0A0jand that (ii) � A0jA02A0iB0C 0B0A0iA02A0jor A0jB0A02A0iB0C 0B0A0iA02B0A0jSimilarly we 
an show that A0i - D0g 
an be written in terms of (i) - (iv).We 
an now look at the Andrews-Curtis graph 4n(G;N)



5.2. ANDREWS-CURTIS GRAPH 106We take a group G and N � G, and look at the graph 4n(G;N) wherethe verti
es are n-tuples of elements in N whi
h generate N as a normalsubgroup. We join two su
h verti
es of4n(G;N) by an edge if we 
an obtainone n-tuple from the other using one of the operations (i) - (iv). The linkwith the graph we were looking at for a S
hottky group is that if we let theN = G then the vertex set is those n-tuples whi
h generate G. The edges aredi�erent, sin
e they 
orrespond to 
ombinations of our operations A - C andextra edges due to the 
onjugation edges. The Andrews-Curtis 
onje
ture
an be rewritten as: For n � 2, the Andrews-Curtis graph 4n(Fn; Fn) is
onne
ted.The Andrews-Curtis graph and the graph S(�) have many similarities,and there may be links between the two problems. It may be that one isa subgraph of the other. In [8℄ the authors mention that `still virtuallynothing is known about the properties of the Andrews-Curtis graph for freegroups', and it would seem more likely that for any progress to be made withthe 
lassi
al S
hottky group questions mentioned above, progress would �rsthave to be made with properties of the graph S(�) or the Andrews-Curtisgraph.This problem also has links to �uber-
lassi
al S
hottky groups. We 
ouldinvestigate the question of the existan
e of su
h groups via the graph S(�)inx5.2. As dis
ussed, it would be interesting to know if there is a maximumradius of 
lassi
ality to the graph, and if the radius is in�nite then we wouldhave the existan
e of an �uber-
lassi
al S
hottky group.



Appendix A
Expli
it Formula for "
As dis
ussed in x4.2.2 we now give an expli
it formula for the bound on " interms of a. We set a few preliminary shorthands for 
ompli
ated expressionsin a; �rstly we use k to denote the following:k = p2 + 2a+ a2We then de�ne J in terms of a and k as follows:J = �ak + 3k + 4 + 3a+ a2� 12�16k + 7 + 10a� 3a2 � 16a3 � 15a4 � 6a5 � a6 + 4k3 + 4ak� 12Our bound on " will be given in terms of three expressions, A, B and Cwhi
h are in terms of a, J and k. We give the three de�nitions of A, B andC on the next few pages, and �nally give the inequality giving us the boundon " in terms of A, B and C.
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A = �31 + 3640a11 + 552a13 + 16a15 + 120a14 � 352a� 3066a8�1832a2 + 3440a9 � 18488a6 + 5096a10 � 12224a7 � 17976a5�12180a4 � 5768a3 + a16 + 840a4Jpk + 4Jpk�32k � 336ak + 480a3Jpk + 40a9Jpk + 1008a5Jpk�4k3 + 4a10Jpk � 8208a7k � 4200a8k � 1520a9k � 840a6k3�372a10k � 56a11k � 480a7k3 + 840a6Jpk � 8820a4k�11904a5k � 40ak3 � 180a2k3 � 11592a6k � 840a4k3�480a3k3 � 180a8k3 � 40a9k3 � 4a10k3 � 4a12k � 4600a3k+180a2Jpk + 480a7Jpk � 1604a2k + 40aJpk+180a8Jpk � 1008a5k3 + 1708a12
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B = �337918 + 8516a11 + 974a13 + 16a15 + 153a14 � 1628226a�674679a8 + 3983a12 � 3979981a2 � 153462a9 � 3918453a6�9271a10 � 1905392a7 � 6085238a5 � 7176507a4 � 6318596a3+a16 + 592p2aJpk5 + 736p2aJpk7 + 88p2a2Jpk13+88p2a2Jpk9 + 16p2a3Jpk13 + 16p2a3Jpk9+4p2a4Jpk13 + 4p2a4Jpk9 + 144p2aJpk13�4976p2a11 � 112216k + 680p2a2Jpk5 � 1976p2a10k�477648ak � 136896p2� 49824p2k � 6292k7�512p2a12 � 6316k3 � 2656p2k7 � 3258000p2a4+768p2a2Jpk7 + 16p2a3Jpk11 + 464p2a3Jpk7+4p2a4Jpk11 + 196p2a4Jpk7 + 144p2aJpk11+8p2a6Jpk5 � 1702144p2a2 + 144p2aJpk9+8p2a6Jpk7 + 48p2a5Jpk7 + 448p2a3Jpk5+192p2a4Jpk5 + 48p2a5Jpk5 + 88p2a2Jpk11�280p2a5k5 � 152p2a11k � 40p2a6k5 � 34352a2k3�5336p2ak5 � 223968p2ak � 224p2a2k9 � 672p2ak9�789160p2a4k � 24p2a13 + 12a4Jpk13 + 16a4Jpk9+16a4Jpk11 + 432aJpk13 + 576aJpk9 + 576aJpk11�678304p2a� 2778816p2a3 � 266152a7k � 85056a8k+9136a6k3 � 2860a10k � 196a11k + 7840a7k3 + 352a2Jpk9�19392a9k � 1471244a4k � 1098480a5k � 20964ak3
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C = �15800a4k3 + 1612a5k3 � 32360a3k3 + 3960a8k3 + 1344a9k3+64a3k9 + 60a4k9 + 24a5k9 + 4a6k9 + 4a12k3 + 4a12k+48a11k3 + 48a3Jpk13 + 64a3Jpk9 + 64a3Jpk11�5352p2a2k5 � 1872p2a3k7 � 3912p2ak7 � 362120p2a6k�161544p2a7k � 53720p2a8k � 752448p2a3k � 614504p2a5k�12760p2a9k � 510624p2a2k � 3120p2a3k5 � 1200p2a4k5�720p2a4k7 � 168p2a5k7 � 24p2a6k7 � 3448p2a2k7+264a2Jpk13 � 252a5k7 � 436a2k9 � 32a6k7 + 404p2Jpk7+16p2Jpk17 + 148p2Jpk11 + 164p2Jpk13 + 312a10k3+148p2Jpk9 + 16p2Jpk19 + 32p2Jpk15 � 1464276a3k+272p2Jpk5 + 1496Jpk7 � 896p2k9 + 772a4Jpk5�13080ak5 � 12860a2k5 � 84a6k5 � 600a5k5 � 2700a4k5�1448ak9 � 8876ak7 � 1252a4k7 � 3656a3k7 � 32ak11�131840p2a9 � 1030992p2a7 � 1952848p2a6 � 2873800p2a5�2848p2k5 + 352a2Jpk11 + 32a6Jpk5 + 48Jpk19+112Jpk15 + 64Jpk17 � 7124k5 � 1039132a2k � 96k11�7384a2k7 + 524Jpk13 + 2512aJpk7 + 2504a2Jpk7+592Jpk9 + 608Jpk11 + 2512aJpk5 + 2808a2Jpk5+1440a3Jpk7 + 1808a3Jpk5 + 600a4Jpk7 � 7296a3k5+144a5Jpk7 + 192a5Jpk5 + 24a6Jpk7 + 1220Jpk5�30576p2a10 � 621272a6k � 421872p2a8 � 2012k9



111We then 
ombine these three terms to get our bound on " whi
h dependsonly on a: " < A646416(B + C)
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