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CLASSICAL AND NON-CLASSICAL SCHOTTKY GROUPS

by Jonathan Peter Williams

This thesis looks at two disparate problems relating to Schottky groups, and
in particular what it means for a Schottky group to be classical or non-
classical.

The first problem focusses on the uniformization of Riemann surfaces
using Schottky groups. We extend the retrosection theorem of Koebe by
giving conditions on lengths of curves as to when a Riemann surface can be
uniformized by a classical Schottky group.

The second section of this thesis examines a paper of Yamamoto ([40]),
which gives the first example of a non-classical Schottky group. We firstly
expand on the detail given in the paper, and then use this to give a second
example of a non-classical Schottky group. We then take this second example

and generalise to a two-variable family of non-classical Schottky groups.
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Chapter 1

Introduction

Schottky groups were first constructed by Schottky in 1882, but were not
studied in greater detail until work of Chuckrow [13], Maskit [26] and Marden
[25], along with others, in the late 1960s/early 1970s, and then more recently
by Maskit [30], Hidalgo [16] and Tan, Wong and Zhang [39] in the 21st
Century.

A Schottky group is defined by its construction as follows. Let D be a
region on the Riemann sphere bounded by 2n disjoint simple closed curves,
Cy,C1,...,C,, Cl. The C;s are paired to the C!s by loxodromic M&bius trans-
formations, 7;, such that v;(C;) = C! and that v(D)N D = . If " is the
group generated by the 7; then I' is a Schottky group. Alternatively a purely
loxodromic, free, finitely generated Kleinian group with non-empty domain
of discontinuity is a Schottky group [26].

A Schottky group is classical if there exist some set of generators for the
group such that there exist a set of curves C,C1,...,C,, C), as above such

that the curves are Euclidean circles. Marden, [25], showed that not every



Schottky group is classical. Zarrow, [41] claimed to have discovered the first
explicit example of a non-classical Schottky group, but this was later shown
to be classical by Sato, [35]. The first explicit example of a non-classical
Schottky group was given by Yamamoto [40].

In Chapter 2 we discuss some of the background of Schottky groups, look-
ing initially at Kleinian groups as a natural precursor to studying Schottky
groups. After looking at Schottky groups in general we look at some of the
reasons why deciding if a Schottky group is classical or not is far from triv-
ial. We also discuss Koebe’s retrosection theorem, which shows that Schottky
groups can be used to uniformize Riemann surfaces. With this in mind we
give some background on Riemann surfaces and ring domains. We finally
discuss non-classical Schottky groups in more detail.

Koebe’s retrosection theorem states that all closed Riemann surfaces can
be uniformized by Schottky groups, and it has been conjectured that every
closed Riemann surface can be uniformized by a classical Schottky group.
In Chapter 3 we work towards this by showing that there exists a value k
such that a Riemann surface of genus g with ¢ homologously independent
simple closed curves of lengths less than &£ can be uniformized by a classical
Schottky group.

It is particularly difficult to decide if a given Schottky group is classical
or non-classical, and there are many questions for which more examples of
non-classical Schottky groups would be useful. For example it is not known
what properties Riemann surfaces uniformized only by non-classical Schot-
tky groups have, or even if there are surfaces which only have non-classical

uniformizations. As mentioned there is only one known example of a family



of non-classical Schottky groups, given by Yamamoto. His paper [40] is not
particularly easy to read, with many details omitted or left for the reader.
We begin Chapter 4 by rewriting Yamamoto’s paper with a different order,
with details included and with any typographical errors corrected. We then
go on to use this proof as a skeleton to find another family of non-classical
Schottky groups, and then to generalise this approach to a two variable fam-
ily of non-classical Schottky groups. We give the explicit bounds on the two
variables in Appendix A.

Finally in Chapter 5 we discuss two areas for further study. We inves-
tigate finding inequalities involving fixed points and multipliers of Schottky
generators which allow us to decide whether that given generator set has
a set of classical SG-curves. We also discuss the effect of applying Nielsen
transformations to the generators of Schottky groups, using the construction
of Chuckrow [13], and build a graph analogous to the Andrews-Curtis graph
for Schottky generators. We mention some interesting questions about this
Schottky graph, and suggest that questions on Schottky groups might be
answered by studying the Andrews-Curtis or Schottky graphs.



Chapter 2

Background

2.1 Kleinian Groups

We begin by defining Kleinian groups, and some important properties of

these groups. We use [28] as a source for this section.

We denote the extended complex plane C U {oo} as C. Mébius transfor-

mations are then defined as maps f : C — C of the form

az+b
cz+d

fiz—

where a,b,c,d € C and ad — bc = 1. If we regard straight lines in C as circles
in C passing through oo then we can see that Mdbius transformations send
circles in C to circles in C.

Mobius transformations can be classified into three different types, based

on the number of fixed points of the transformation. A Mébius transforma-

az+b

cz+d =z

tion has either one or two fixed points, which we obtain by solving
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A Mobius transformation, f, is said to be parabolic if f has exactly one
fixed point. Every parabolic transformation is conjugate to z — z + 1.

If a transformation has two fixed points then it is conjugate to one with
fixed points at 0 and oo, and hence there exists a Mobius transformation g
such that gfg'(z) = k?z, with k € C and |k|* > 1. We call k? the multiplier
of f. If |k|> = 1 then the transformation is called elliptic, and is conjugate
to a rotation z — €z for @ real. Otherwise it is called a lozodromic Mdbius
transformation.

Within the loxodromic Mobius transformations if k? € RT then the
transformation is called hyperbolic. The hyperbolic transformations can be
thought of as dilations. Loxodromic Mobius transformations have two fixed
points, one of which is referred to as the attracting fixed point, and the other
the repelling fized point. Given the distince fixed points z,y of a loxodromic
transformation f we say that x is attracting if lim, . f™"(z) — z for all
z # y. Then y is the repelling fixed point. The attracting fixed point of f is
the repelling fixed point of f~!, and vice versa. We will be concentrating on
loxodromic transformations later.

We can write the transformation f(z) in matrix form, for example as

a b
c d

where we again have that ad —bc = 1. This is very useful since we are able to
compose two Mobius transformations simply by multiplying the correspond-

ing matrices. These matrices are elements of

a b
SLy(C) = a,b,c,d € C, ad — bc =1
c d
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We have though that the transformation f can be represented by two ele-
ments of SLy(C), that is

a b —a —b

and

c d —c —d
If we form the quotient group PSLy(C) = SLy(C)/{£1} by factoring out the
centre, where [ is the identity matrix, then there exists an isomorphism from
the group of Mobius transformations to PSLy(C).

We can find a general form of a loxodromic Mobius transformation given

its pair of fixed points, z,y, and its multiplier, k2. We can choose a square
root of the multiplier and then for x # oo # y the transformation can be

written as:

1 ok —yk ay(k — k1)
r—=yYy Et—k  ak—ykt

and for x = oo as

k=t y(k— k1)
f =
0 k
and for y = oo as
k x(k™' —k)
f =
0 k=t

A subgroup of PSLy(C) is said to be discrete if it does not contain a
sequence of distinct elements converging to I. We now define a Kleinian

group, and some terminology related to Kleinian groups.

Definition 2.1.1. A Kleinian group, ', is a discrete subgroup of PSLy(C)
[31].
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Definition 2.1.2. A Kleinian group, I, acts properly discontinously at a
point = € C if there exists a neighbourhood U, about z such that v(U,)NU, =

() for all but finitely many v € T.

Definition 2.1.3. The open set in C which consists of all the points at which
[' acts discontinously is called the domain of discontinuity and denoted by

Q(T). Its complement in C is called the limit set, and is denoted A(T').

The limit set can also be defined in terms of accumulation points. A point
z € C is called an accumulation point (or limit point) of a Kleinian group,
[, if there exists a sequence of distinct elements of I', say {v;}, and a point
z € C such that ~;(z) — x, [28]. The limit set A(T') is then simply the set of
all accumulation points of I.

A Kleinian group whose limit set consists of more than two points is
called non-elementary. If [' is non-elementary then I' contains a loxodromic
element, and the limit set of I' is the closure of the set of loxodromic fixed
points.

One of the uses of the domain of discontinuity is that in general C/T
is not Hausdorff, while Q(I")/T" is a Riemann surface, as discussed in §2.4.
Often the easiest way to describe a Kleinian group is to describe Q(I")/T,

usually in terms of the fundamental domain for I'.

Definition 2.1.4. A fundamental domain for a Kleinian group [ is an open
subset D of the domain of discontinuity which (i) has the identity element in
I" as its stabilizer, (ii) satisfies v(D) N D = () for all v in " not the identity,
(iii) has sides paired by elements of I', (iv) for every z € Q(T") thereisay € I’
with y(2) € D, (v) the sides of D only accumulate at limit points, and (vi)

only finitely many translates of D meet any compact subset of Q(T).
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2.2 Schottky Groups

Schottky groups are a class of Kleinian groups which are particularly inter-
esting for a number of reasons. One such reason is their link to uniformizing
Riemann surfaces, as will be seen in §2.4, and another is due to their simple

construction which we detail below. We begin by defining SG-curves.

Definition 2.2.1. Take 2¢g disjoint Jordan curves in C, which are not nested
and hence define an open region D with the 2¢g curves as boundary. We label
these curves in pairs as Cy, C1, ..., Cy, Uy, and will refer to them as the defining

curves for the Schottky group or for ease of reference as SG-curves.

We now detail the set-up to define a Schottky group. Suppose there
exist loxodromic Mdbius transformations 74, ..., v, such that v;(C;) = C}. An

example with g = 2 is shown in Figure 2.1.
Yi
@ /\\
C/
C, D .
Y,
TN /
C;
CZ

Figure 2.1: An example of four curves, two loxodromic Md&bius transforma-

tions and the region D.



2.2. SCHOTTKY GROUPS 9

Each curve C; (or C!) separates C into two regions, and we define the
outside of C; (or C!) to be the part of C — C; (or C — C!) containing other
SG-curves, and the inside to be the region containing no other SG-curves.
We can also define the inside of an SG-curve to be the part of C — C; (or
C — C!) containing only one of all of the fixed points for the generators of
I'. Explicitly, C; has the repelling fixed point of +; inside it, and C} has the
attracting fixed point of v; inside it.

We have that D = C \ |J,(C; U C!). For any of the loxodromic Mé&bius
transformations, we have that v;(D) could either intersect D or have empty
intersection with D. We have from the definition of the fundamental domain
that D N ~;(D) = 0 for all 7; not equal to the identity in I', and hence we
have the property that each 7; sends the inside of C; to the outside of C;, and
the outside of C; to the inside of C}. So, for example, in Figure 2.1, v, sends
C; to C] and sends Cs, C] and CY to curves inside C]. Figure 2.2 shows the

image of D under v, and we see that D N~ (D) = ().

Definition 2.2.2. A Schottky group is then simply defined as the group

generated by the loxodromic transformations, I' = (71, ...7,).
We also define a Schottky system for use later:

Definition 2.2.3. A Schottky system is the name given to a Schottky group
and a specified set of SG-curves. The set of SG-curves used is not unique to

the group, and there are many Schottky systems for a given Schottky group.

We will see later in this section that given a Schottky group and specified
SG-curves that changing the curves slightly will not alter the Schottky group,
but will change Schottky system.
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O

/vl\ le(m
~O

C@

G, C
Y2
27N

Figure 2.2: The image of D under ~.

The domain of discontinuity of a Schottky group can be written as

yel’

where D denotes the closure of D. We have that as more and more Mdbius
transformations are applied, the diameters of the (C'), for C' an SG-curve,
tend to zero. These image curves will all be inside of a particular curve, and
after a finite number, say k, of applications of v to C' we have that " (C) is
inside v*(C') for n > k. Thus we have that the limit set A(I') can be seen as
the set of accumulation points of this nesting of images of the SG-curves and
is a Cantor set. This idea can be seen schematically in Figure 2.3, whereby
each SG-curve has three curves nested inside it.

Schottky groups have some interesting properties as shown in a proposi-

tion of Maskit:
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C, Y,

® ng
Q¢ S

/
2

2 @ o ° C
8 Ge

Figure 2.3: Images of D after two M&bius tranformations (inside C] are v, (D)
shaded lightly, and v,72(D), 717, * (D) and v, (D) shaded more darkly; in-
side C) are v, ' (D) shaded lightly, and v, '72(D), 7, 'v, (D) and v, 'y, *(D)
shaded more darkly; with similarly shaded regions inside Cy and C} ).

Proposition 2.2.4. ([28] X.H.2) Let I be a Schottky group on the genera-
tors vi, ..., Yn. Then: I is free on the n generators; is purely loxodromic; has
D as a fundamental domain; T is Kleinian with Q(L)/T a finite Riemann

surface.

There is also a converse result to the above proposition. From the fol-
lowing theorem of Maskit we can see that we have necessary and sufficient

conditions for a Kleinian group to be Schottky:.

Theorem 2.2.5. ([26]) Every Kleinian group which is purely lozodromic,
finitely generated, free and having non-empty domain of discontinuity is a

Schottky group.
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We can look at the effect that changing generators of our Schottky group
has on a given Schottky system. Suppose our group I[' can be represented by
two different sets of generators I' = (71, ...,7,) and I' = (¥, ...,7,). The map
vi — 7; extends to an automorphism I' — I'.

There are three elementary automorphisms, the Nielsen transformations,

which we look at.

(i) We can replace the first generator v, by its inverse v, *:

<’yla R3] 7g> — <71717 R3] 79>

(ii)) We can swap the first generator y; with any other generator ~;:

<717 ceey Viy ooy ’Vg> — <7l7 Y1y ey ’Vg>

(iii)) We can replace the first generator 7; by the product of the first two

generators:

<’yla Y25 -0 ’Vg> — <72717 V2,5 ey ’Vg>

We can then look at other generator sets for I' as being multiple appli-
cations of Nielsen transformations (i) - (éi7) on (v, y2) due to the following

theorem of Nielsen:

Theorem 2.2.6. ([33]) If I is free on xy,...,z, and also free on yy, ..., yy

then a finite sequence of Nielsen transformations will change x1,...,x, to

Y1y ooy Yn-

For each application of a Nielsen transformation applied to I' we see that
the Schottky system changes; either we find we have the same SG-curves as
the original system, but with a new labelling or we have that some of the

new SG-curves were not in the original Schottky system. We will look at the
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effect of the three automorphisms, (i)-(iii), in turn. Throughout this section
we use C; to refer to the SG-curves of the initial Schottky system for I', and
K; used for SG-curves for the Schottky system once a transformation has
been applied. We begin with transformation (i).

If we look at transformation (i), we replace the first generator by its

inverse:
<’yla "'77g> — <71_17 ”.7,),g>

In terms of the SG-curves then this can be seen as keeping the SG-curves
exactly the same, but simply swapping the direction of the v; arrow around,
that is labelling C} as K7 and labelling C] as K. This is the case because our
new first generator sends C; to C; now, rather than the other way around.

This is shown in in Figure 2.4.

Z><ﬁ6f©

— T —

Figure 2.4: The original defining curves for a Schottky group and the new

curves, after the automorphism (i).
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Looking now at the second automorphism, (ii), we see this involves swap-

ping the positions of two generators.

<717 ooy Viy veny /Yg> — <P)/Z7 <Y1y ey 7g>

In terms of the SG-curves again we may keep the same SG-curves as in the
initial Schottky system and just have a relabelling. We swap the subscripts
on the labels for the curves, swapping ¢ subscripts for 1 subscripts, and vice
versa. Explicitly we relabel C) as K;, C] as K., C; as K; and C] as K| as

can be seen in Figure 2.5.

SASH=RS
O~C -0
[ @“Q“

Figure 2.5: The original defining curves for a Schottky group and the new

curves, after the automorphism (ii)



2.2. SCHOTTKY GROUPS 15

The third automorphism is more complicated - it actually produces a new
set of curves, rather than just a relabelling. This construction of new curves

comes from a paper of Chuckrow [13]. We have the transformation

<717 Y25 ey ’Vg> — <72717 Y25 ey ’Vg>

Given the SG-curves, from the initial Schottky system, for (y1,72, ...,7,) we
look for the new SG-curves for (271, 72, ..., V4)- The old curves and the new

curves are shown on Figure 2.6, with explanations afterwards.
- Q
C, O /\ @

O/\

Figure 2.6: The original defining curves for a Schottky group and the new

curves, after the automorphism (iii).

We take K to be the curve C; from the initial Schottky system. Since the
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first generator for I' is now 97y, we can see that K7 is by definition vo7y,(CY).
We can see that K7 is therefore inside the original C%,. We choose the new K,
to be a curve which has C] and C, on its inside, and all other C; curves on
its outside. Then we have that by definition K} = v,(K3), and is thus inside
C%. We also have that K| and K/, are not nested. The remaining curves are
unchanged, and so K; = C; and K] = C! for 3 < < g.

As can be seen from the diagram, the new curves may bear little resem-

blance to the old curves.
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2.3 Classical Schottky Groups

We begin this section with the definition of a classical Schottky group.

Definition 2.3.1. A Schottky group, I is said to be classical if for at least
one set of generators at least one set of SG-curves can be taken to be Eu-
clidean circles in C. That is that there exists a Schottky system which

consists of I' and Euclidean circles.

Definition 2.3.2. A particular generator of a Schottky group, ~;, is referred
to as a classical generator if the SG-curves C; and C! for that generator are

circles in C.

There are two conditions in the definition of a classical Schottky group,
the fact that we have ‘at least one set of generators...” and the fact that
we have ‘at least one set of SG-curves.... We shall briefly look at these
conditions, and the reasons why they make deciding whether a given Schottky

group is classical or not such a difficult question to answer.

2.3.1 ‘At least one set of SG-curves...’

For a fixed generator set for a Schottky group I' = (71, ...,7,) we can alter
the SG-curves slightly and create a new set of SG-curves and hence new
Schottky system. If we take the C} and C5 curves and deform them, or keep
the curves the same shape but move them, or a combination of both, then
the image curves will also be slightly changed. As long as the fixed points of
the generators of [' and images of oo are still inside the new curves, and as
long as the new curves do not intersect each other, or their images, then the

new curves are new SG-curves by definition.



2.3. CLASSICAL SCHOTTKY GROUPS 18

We can formalise this process as follows. Assume we have a specific Schot-
tky system with a given set of SG-curves for our Schottky group, labelled in
the usual way. We define a ring domain precisely in §2.5, but for this section
we just define a ring domain to be the open region in C between two nested
Jordan curves. By compactness arguments there exist disjoint ring domains
d;, one about each C;, such that: the d; do not intersect each other; the
images of the ring domains under 7; do not intersect each other; the images
of the ring domains under v do not intersect the d;. For each d; we can take
any Jordan curve which separates the boundary curves, and these curves can
be the new C; for a different Schottky system. Their images under v; will be
the new C/, and we know that none of the curves will intersect since the ring
domains do not intersect. We then have a set of 2¢g non-intersecting, non-
nesting curves, paired by the generators of the group. These are therefore a
new set of SG-curves for I'.

Finally we give the following example which shows that a specified gen-
erator set can have more than one set of SG-curves, simply by moving one
set of SG-curves.

Take our curves to be C) = {|z — 10i| = 1} and Cy = {|z| = 1} with

transformations
B (10 + 104)z + 99 — 1007
f(z) = 2 — 10
and
10z — 1
9(2) = .

with C] and C, defined as C| = f(C;) and C} = ¢g(Cs). Then we have that
C] = {|z—10—10i| = 1} and C), = {|z— 10| = 1} as on the left of Figure 2.7.

If we move C and C by % to the right we see that the image curves move to
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C) ={|lz—2 —10i| = 3} and C} = {|z — 22| = 5} as shown on the right of
Figure 2.7. Also we can easily observe that the property of insides of curves
going to outsides of curves etc (that is y(D) N (D) = 0 for v € T = (f, g)
and D = C\ {new curves}) holds for the moved SG-curves. Thus we have
two different Schottky systems for the same generator set.

f | f
TN SN

RO

10+10i ‘ 3%+10i

g | g
2N TN
A £ ‘ i 2
/ 10/ ‘ 05/

=

N
e

Figure 2.7: Two different sets of SG-curves for the Schottky group (f, g).

2.3.2 ‘At least one set of generators...’

From §2.2 we know that changing generators can alter the SG-curves quite
significantly.

In a similar sense to Definition 2.3.1 we can define the notion of a Schot-
tky group being classical on a specific generator set if at least one set of
SG-curves for that particular generator set can be taken to be Euclidean cir-

cles. Obviously if we have that I' is classical on a given generator set, then
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applications of the automorphisms (i) and (ii) ensure that I is classical on the
new set, since these automorphisms do not change the SG-curves themselves,
just the labelling. Automorphism (iii) can alter whether a Schottky group is
classical on its generator set or not since it changes the curves dramatically.
Clearly if I' is classical on any specific generator set then I' is classical. If
[' is not classical on a specific generator set then we cannot conclude that
I' is not classical. If we were to try to show that a Schottky group was not
classical by analysing how changing generator sets alters SG-curves we would
need to show that I is not classical on any of its generator sets. We discuss

non-classical Schottky groups in more detail in §2.6.
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2.4 Riemann Surfaces

Kleinian groups, and hence Schottky groups, are linked to Riemann surfaces
as mentioned at the end of §2.1. Firstly we define a Riemann surface, via

definitions of charts and an atlas.

Definition 2.4.1. A chart is a pair consisting of an open, simply connected
region U; on S and a homeomorphism ¢; : U; — D; which maps U; onto an
open subset D; of the complex plane C. The homeomorphism ¢ gives a local

co-ordinate system at each point on S.
Definition 2.4.2. An atlas is the name given to a family of charts.

When two open regions U, and Ug on S intersect, we have that there are
two images of the intersection in C, namely ¢, (U, NUs) and ¢5(U, N Up) as
in Figure 2.8.

Figure 2.8: A Riemann surface, with intersecting charts and a transition

function.
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Definition 2.4.3. A transition function then takes one image of the inter-
section to the other by t,s = dg 0 ¢3" 1 ¢o(Ua NUs) — ¢5(U, N Up). These
functions represent the transition from one coordinate system on (U, N Up)

to another.

Definition 2.4.4. A Riemann surface is a two-real-dimensional connected
manifold, S, with a maximal atlas with analytic transition functions, that is

that the transition functions are differentiable [5].

For I a Schottky group we have that S = Q(I')/I" is a connected Riemann
surface. The proof of this can be found in [28] (ILF.6).

This link between Riemann surfaces and Schottky groups can be described
as the process of using Schottky groups to uniformize closed Riemann sur-

faces.

Definition 2.4.5. A collection of ¢ disjoint, homologically independent, suf-
ficiently smooth, simple closed curves sy, ..., s, on a closed Riemann surface
S of genus g are defining curves for a Schottky uniformization, or SU-curves,
if one can choose a Schottky group I', with generators 71, ..., 7,4, so that there
is a fundamental region D bounded by SG-curves Cy,C1, ..., Cy, Cy € Q(I),
with 7;(C;) = C! such that s; is the image of C; (and C}) under the map
m: Q) — Q) /T. We say then that S is uniformized by a Schottky group.

Theorem 2.4.6. Koebe Retrosection Theorem ([6],[18]) Every closed

Riemann surface can be uniformized by a Schottky group.

We look to extend this theorem to classical Schottky groups in Chapter
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Figure 2.9: An example of SU-curves on a closed Riemann surface.

It could be that properties of the SG-curves relate to properties of the
SU-curves, or of the surface, S. In [37] Sibner shows that a closed symmertic
Riemann surface of genus g can be represented by a Schottky group which
has a standard fundamental domain which exhibits the symmetry.

It will be necessary to look at collars about the SU-curves on S. The

collar lemma states:

Theorem 2.4.7. ([11]) Let S be a compact Riemann Surface of genus g >
2, and let sq,...,s, with lengths 1(s1),...,l(sy) be pairwise disjoint simple

closed geodesics on S. Then the collars
C(s;) ={p € S|dist(p, s;) < w(s;)}

of widths

w(s;) = arcsinh [

rol=| =

sin (
are pairwise disjoint for1=1,...,g.

An example of a pair of collars is shown on Figure 2.10. We now look at

the pre-image of such a collar, under 7, in Q(T).
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Figure 2.10: An example of a pair of collars about SU-curves on a closed

Riemann surface.
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2.5 Ring Domains

We first give two definitions.

Definition 2.5.1. A ring domain in C is a doubly connected domain, that
is, the open region between a pair of nested disjoint Jordan curves ki, ko,

with k5 inside k; as in Figure 2.11.

K,

Figure 2.11: A Ring Domain.

Definition 2.5.2. An SG-curve c is said to separate the boundary compo-
nents of a ring domain A if any line connecting one boundary component of

A to the other crosses ¢ an odd number of times.

Given a collar as described in Theorem 2.4.7, about a curve, s, on a closed
Riemann surface, S, we can look at the pre-image of the collar on the domain
of discontinuity, under 7 : Q(I') — Q(I')/T". The collar has as pre-image an
infinite collection of disjoint ring domains, paired by conjugate elements of
r.

One such pair of ring domains will contain a pair of SG-curves, with the
SG-curves separating the boundary components of the ring domain.

We briefly mention a pair of definitions of properties of ring domains.
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Definition 2.5.3. A ring domain B C C is round if it is bounded by con-
centric Euclidean circles, and hence has the form {z | r < |z — ¢| < s} for

r,s € RY, ¢ € C. If a ring domain is round we will call it an annulus.

Definition 2.5.4. Given two ring domains, A and B with B C A, we say

that B is essential with respect to A if B separates the boundary components

of A.

We now look to define the module and modulus of a ring domain. The
module and modulus are numbers assigned to a given ring domain, which
measure the size of the ring domain, for some definition of size, and are
conformal invariants. We shall briefly discuss conformal equivalence and

invariance.
Definition 2.5.5. A map f is conformal if it preserves angles.

Examples of such functions include rotations, dilations, and in fact any

Mobius tranformation.

Definition 2.5.6. Two objects A and B are conformally equivalent if there

exists a conformal map f such that B = f(A).

Definition 2.5.7. A property p, such as extremal length, module or modu-
lus, is said to be a conformal invariant if, for any conformal map f, p(A) =
p(f(A)). In other words, p is invariant under conformal maps, or that for

two conformally equivalent objects A and B it is true that p(A) = p(B).

Extremal length is an example of a conformal invariant, and we give

some details about it here. Suppose we have a region A, with boundary
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consisting of a set of explicitly defined edges, and a set of rectifiable arcs =
in A, for example joining two edges of A or separating two components of
the boundary of A. Extremal length is a property invariant under conformal
mappings which we descibe shortly. We let m denote extremal length, with
appropriate subscript denoting the specific region which is being considered.
Let A’ represent A after the conformal mapping, and let =' represent = after
the mapping. To be a conformal invariant is the same as requiring that
ma(Z) = ma(Z'). We consider the family of Riemannian metrics which
are conformally equivalent to the euclidean metric. We let P be the set of
length elements, p, on the region A, which are then used to define metrics by
ds = p|dz|. We may look at an arc £ € Z, which has a well defined p-length
given by:

L@mzémm

The open set A has p-area given by:

A(A, p) = //A p’ da dy

These functions are both invariant under change of metric by conformal map-
ping. Now we define the minimum length of any arc in = for a given p by

taking the infimum of the p-lengths over all possible arcs:

L(Z,p) = inf L(£, )

Scaling of the region A by a factor is a conformal map, and so extremal
length must be unchanged when p is multiplied by a constant. We therefore
take the function L(Z, p)?/A(A, p) to form the definition of extremal length

since replacing p by cp for ¢ a constant doesn’t alter the value. We take the
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least upper bound of this function over all p, giving us that the extremal

length of = in A is defined [3] as:

It is useful to work through an example, to give an idea of how extremal
length is calculated. If we take a rectangle R, with sides on x = 0, z = a,
y = 0 and y = b then we can calculate the extremal length of the arcs joining
the vertical sides as follows. Let the set of arcs joining x = 0 with z = a
be denoted =. We may get a lower bound on the extremal length of = by
initially choosing any metric that we like, say p = 1. In this case L(Z,1) = q,

and A(R,1) = ab, and hence 61((5}51))2 = ¢, and hence that

mg(=) > (2.1)

a
b

To find if this bound holds for all p we may pick an arbitrary p, although
we may normalise by choosing for example that L(Z, p) = a. Therefore we

have for a curve £ € =:

L(, p) a

/pda: > / ldx
0 0
/(p—l)daj 0

//R(Z_Wy . 22

We may use this fact to calculate the area A(R,p). It is clear that we

Y,

v

have:

//R(p —1)?dzdy >0 (2.3)
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Expanding the brackets in Equation (2.3), rearranging, and substituting in
the result of Equation (2.2) we get:

g = [[ paeay = [[ o1 dsay
//Rp2dxdy > 2//R(p—1)da:dy+//R1dxdy
A(R,p) > //Rdxdy

So we have that for all p:

(2.4)

We therefore can combine Equations (2.1) and (2.4) to see that mg(Z) = §.

We return now to the concept of the modulus of a ring domain. In
the literature the modulus can be defined in two equivalent ways, both of
which are worth mentioning here. There is some difference of normalisation
in the texts in this area, the main difference being a factor of 27w. The
three sources I use here are Herron, Liu and Minda [15], Lehto and Virtanen
[22] and McMullen [32]. These sources use the same notation for slightly
different definitions, so I will use the subscripts HLM, LV and M respectively
to denote which text the term relates to. Module is denoted by M(A) for a
ring domain A, and modulus will be denoted by mod(A), with appropriate
subscripts. The function p to be defined later will also carry subscripts to
denote source where appropriate. We will be using the definitions of Herron,
Liu and Minda predominantly, but there is value in looking at all the different

definitions and checking that they are consistant.
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Definition 2.5.8. ([22]) A general ring domain A is conformally equivalent
to an annulus of the form {z|r; < |z| < ry}; let f be the map from A to such
an annulus. The module of a ring domain is defined as My (A) = In (:-f)

Equivalently A is conformally equivalent to an annulus A(R), that is,
there exists an angle preserving map from A to A(R), A(R) defined as A(R) =
{z |1 < |2|] < R} for a unique R. The module of the ring domain is then
defined to as My (A) = In(R)

A second definition of module can be constructed as below. We firstly

set, up notation used throughout this section, and in Chapter 3.

Remark 2.5.9. ([22], 1 6.2) Let (—A); and (—A)s denote the components of
the complement of A, and we can let € be the set of curves separating (—A);
and (—A),.

We now go on with the alternate definition. Then let &7 be the family
of all possible metrics on A, defined by line elements p dz where p is a
non-negative function on A such that the metrics are continuous enough for

the following integrations, and that & contains the metric defined by the
function |f'/f|, for f as defined in Definition 2.5.8. For p € &2, let

a,,(A)://D 2 do

where do is the area element on A. Also for a curve C € ¥ we define

€)= [ ola:

and |dz| is the length element. The alternate definition for module can then

be expressed as

i 2ma,(A
(s
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This alternate definition will be useful later.

Definition 2.5.10. The modulus of a ring domain, A, which is conformally

equivalent to an annulus {z|1 < |z|] < R}, is defined in [32] as mody(A) =

InR
2m "

Thus we have that mody(A) = Mpy(A)/2r. Herron, Liu and Minda
give the same definition of modulus, so mody;(A) = modypy(A). Tt is worth

noting then that from the above we have

mody (A) = modypm(A) = plg;, %
(inf l,,(C’))

Ce¥

Calculating the modulus of a ring domain directly is not necessarily easy,
but there exist bounds based on the modulus of a specific domain defined

below.

Definition 2.5.11. Grétzsch’s Extremal Domain is a domain, denoted B(r),
which is conformally equivalent to a ring domain (as detailed below), and
has as its boundary the unit circle |z| = 1 and the segment of the real axis

0 <z <r,r<1. Its modulus is denoted p(r).

Grotzsch’s extremal domain is conformally equivalent to a ring domain,
and in fact conformally equivalent to an annulus. The conformal map which
maps B(r) to an annulus is constructed as follows. We may map the upper
half of Grotzsch’s Extremal Domain conformally to the upper half of the
particular annulus defined by 1 < |2| < e*v(). This map can then be
extended to a map on the whole of B(r) by following this with a reflection in

the real axis [22]. We have Grotzsch’s module theorem, given below, which
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Figure 2.12: Grotzsch’s Extremal Domain.

gives us a bound on the modulus (and hence module) of any ring domain

which is essential with respect to Grotzsch’s extremal domain.

Theorem 2.5.12. ([15]) If a ring domain A separates the points 0 and r

from the unit circle then modyp(A) < pppa(r).

The g function is discussed in all three texts and again there is some
difference in normalisation. Grotzsch’s extremal domain is denoted B(r) in
Lehto and Virtanen. They define the module of Grotzsch’s extremal domain
to be My (B(r)) = pry(r). In [15] the domain is defined in the same way,
denoting it Rg(r), so B(r) = Rg(r). They denote its modulus using p, so 1

will denote it as g (r). Therefore we can write the following

pry(r) = Mpy(B(r))
= 2mmodyry(B(r))
= 2mmodyry(Ra(r))

= 27T/1,HLM(7")
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McMullen doesn’t use Grotzsch’s extremal domain to introduce g but we can
easily see that ppy(r) = par(r).

In order to get a better bound on the module or modulus of a general ring
domain than the one in Theorem 2.5.12 we introduce Teichmiiller’s extremal

domain.

Definition 2.5.13. Teichmiiller’s Extremal Domain is a domain in C which
has as its boundary the segment of the real axis —r; < 2 < 0 and the segment

ry < x < oo. Its modulus is given in terms of the modulus of Grotzsch’s

extremal domain as 27 (1 /“’“Tlm)

I, 0 r

Figure 2.13: Teichmiiller’s Extremal Domain.

From this we can get Teichmiiller’s module theorem, which appears in
Lehto and Virtanen ([22], II 1.3) and in McMullen ([32], pg 11). As before we
take a ring domain A with complement (—A), and (—A),, where 0 € (—A),
and oo € (—A)s. Then to bound the modulus of A we simply need a point
inside (—A); and a point outside (—A),. We have:

Theorem 2.5.14. ([22],[32]) If a ring domain B separates the points 0 and

z1 from z9 and oo, then we have

V4
My (B) <2ury (“ 7|z1||+1||z2|)

and in the notation of McMullen

1 [ |z
dy(B) < — -
mo M( )_ﬂ_IJ'M( |Z1|+|22|>
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Using the conversions above, an equivalent formula can be written in the
notation of Herron, Liu and Minda and so the version of the theorem we will

use is:

Theorem 2.5.15. If a ring domain B separates the points 0 and z; from 2z

and oo, then we have

||z
modgrm(B) < 2ppnm ( ﬁ)
1 2

We can see that the three different sets of notation are actually consistent
with each other. We may convert from one to the other using rules such as
pry = 2wy as derived earlier, or mody, = modgry. Table 2.5 shows
the different definitions based on the sources used, and after each definition
gives a way to convert between the three texts.

We now need to define the p function so that we can constructively use
Teichmiiller’s module theorem. From here on, we will use the HLM definition

of ;1 and mod, without explicit use of subscripts.

Remark 2.5.16. This function p(r) is defined in terms of elliptic integrals, in
that

_1K(V1-=r?)
/JJ(T)—ZW

where

! dx
Ko - | Vi) -ra)

There exist some useful bounds on the behaviour of p(r) in [15], [22] and

VL) Bt we will be

[34]. For instance p(r) < 5= In(2) and p(r) < 5= In
using the elliptic integral definition predominantly. This particular elliptic

integral is known as the complete elliptic integral of the first kind.



HLM LV M
Module M(A) =1n(R)
Modulus mod(A) = 3= In(R) mod(A) = 3= In(R)
Conversion = modypp(A) My (A) = 2mmod g (A) mody (A) = modgpp(A)
w(r) Modulus of GED Module of GED “positive decreasing function of r”
Conversion = parm(r) prv(r) = 27y (r) par (1) = 27 prgg e (1)

Teichmiiller’s

Module

Theorem

mod(A) <2u (

|21
|z1|+]22]

)

M(A) <2 (y/52L)

mod(A) < %M ( |z1‘\2||22|)

Table 2.1: Summarising the concepts of module, modulus and p, with notes for comparing the texts.

SNIVINOA DNIY "¢¢

43
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Finally we will discuss the extremal length of the family of curves %
mentioned in the second definition of the module of a ring domain.

For a ring domain extremal length can be rewritten in terms of the terms
defined in Section 2.4. We can see quite easily that the terms in the definition
of extremal length can be replaced by those in the definition of module, and
hence modulus. We see that for a ring domain A with set of curves &
as previously defined we have a definition for extremal length in terms of

components of the definition of modulus:

ma(%) = sup M

peP ap(A)

Thus we can see that
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2.6 Non-Classical Schottky Groups

We return now to non-classical Schottky groups. It is obvious that classical
Schottky groups exist, simply by construction, but it is not obvious that
non-classical Schottky groups exist. In his paper [25] Marden proved the
existence of non-classical Schottky groups using Schottky space. We give two
equivalent definitions of Schottky space, and then briefly discuss Marden’s

proof, and survey what is known in this area.

Definition 2.6.1. The Schottky space of a given genus g is denoted S, and is
the set of all equivalence classes of Schottky groups with g generators, where
two Schottky groups I' = (y1,...,7,) and I = (v, ...,7;) are equivalent if
there exists a Mobius transformation f with fy,f~' =+ foralli =1, ..., g.
We put a topology on S, by requiring that the equivalence class [G),] con-
verges to [G] iff there exists (y1,...,7,) € [G] and (1, ..., Ygn) € [Gr] such
that -;,, converges to v;, [29],[30].

In this sense we may think of a point in Schottky space as being a set
of free generators for a Schottky group, modulo conjugation in PSLy(C).
Alternatively we may define Schottky space in relation to Riemann surfaces

uniformized by Schottky groups.

Definition 2.6.2. [17] Schottky space can be defined as the set of equiv-
alence classes of pairs (X,0), where X is a Riemann surface of genus g
and o : ®, — PSL,(C) is an injective homomorphism, where ®, is the
free group on 7, ...,7,, where I' := o(®,) is a Schottky group, and where
Q(I')/T = X. We have that (X, 0) and (X', 0’) are equivalent if there exists
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some A € PSLy(C) with o(v}) = Ao(y;)A ! for all i = 1,..., g. We have then
that X' is isomorphic to X.

We define classical Schottky space in a similar way to the first definition
of Schottky space, that is the set of equivalence classes represented by clas-
sical Schottky groups with g generators. We say that a Schottky group I" is
equivalent to a classical Schottky group I' if there exists a Mobius transfor-
mation f with fv;f~' = 7/ for all i = 1,...,g. Note we have that if the ;
have classical SG-curves then we do not necessarily have that v, has classical
SG-curves. We let S7 denote classical Schottky space.

In his paper, [25], Marden compares Schottky space with classical Schot-
tky space, to show that non-classical Schottky groups exist. He shows that
the intersection of the closure of classical Schottky space with Schottky space
is not the whole of Schottky space, and hence there are Schottky groups which
are not classical. We briefly summarise the idea of his main proof. Firstly
Marden shows that if G' is a group in the closure of classical Schottky space
then G is discontinuous. Marden then takes a Schottky group H on the
boundary of Schottky space which is not discontinuous; this group exists
through a result of Chuckrow [13]. He then chooses a sequence G, of Schot-
tky groups, which are not on the boundary of classical Schottky space, and
whose limit is H. He shows that at most a finite number of the G, lie in
classical Schottky space, and hence the remaining groups lie in S, — (S_gﬂSg),
which is therefore non-empty, and therefore there exist non-classical Schottky
groups.

It is worth mentioning here about Teichmiiller and moduli space, and

their links to Schottky space. In a similar vein to the second definition of
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Schottky space we define these spaces in terms of surfaces. A simple way
to define Teichmiiller and moduli spaces involves first defining the mapping

class group, [38].

Definition 2.6.3. Let Diff(X) be the set of orientation-preserving diffeo-
morphisms of a surface X, and let Diffy(X) be the set of those diffeomor-
phisms isotopic to the identity. We define the mapping class group to be
MCG(X) = Diff(X)/Diffy(X).

We may also define the mapping class group in terms of the uniformizing

group I':

Definition 2.6.4. [10] For a Schottky group I', we let the group of orienta-
tion preserving automorphisms be denoted by Aut(T") (where an orientation

preserving automorphism is one which corresponds to an orientation preserv-

ing diffeomorphism). We then have that MCG(T') = Aut(T')/Inn(T).

For a given oriented surface X we let M(X') denote the set of all complex
structures on X which agree with the differentiable structure on X. We can

then define the moduli space, My, and Teichmiiller space, T}, as follows:

Definition 2.6.5. Moduli space, M, of a surface X of genus g, is defined
by M, = M(X)/Diff(X). Moduli space is therefore the space of all equiv-
alence classes of compact Riemann surfaces of genus g, where two surfaces

are equivalent if there is conformal diffeomorphism between them.

Definition 2.6.6. Teichmiller space, Ty, of a surface X of genus g, is de-
fined by T, = M(X)/Diffy(X). Teichmiiller space is therefore the space of

all equivalence classes of compact Riemann surfaces of genus g where two
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surfaces are equivalent if there is a conformal diffeomorphism between them

which is isotopic to the identity.

A simple example to show the difference between the two is to consider
a surface of genus g > 0 with a given complex structure. We consider the
surface obtained by cutting one of the handles in two, twisting one section by
27 and then glueing them back together. This new surface would correspond
to the same point as the original surface in moduli space, but would be a
different point in Teichmiiller space. This is because the operation described
above (a “Dehn twist”) is not isotopic to the identity but the surface obtained
by the twist is still equivalent in moduli space.

It is simple to see that moduli space and Teichmiiller space are related by
M, = T,/MCG(X). The link with Schottky space is explained in [29]. As
discussed in §2.4 we have a Riemann surface uniformized by any Schottky
group. Let S be the surface uniformized by I'. Looking at the generators
of m(S) we can see that a particular generator may also be a generator of
[ or not. Let N be the smallest normal subgroup of 71 (S) containing those
generators of 7 (S) which are not generators of I'. We can then define Ny,
as the subgroup of the mapping class group which is the subgroup of outer
automorphisms ¢ : 71 (S) — w1 (S) with the properties that ¢(N) = N and
that the induced isomorphism ¢ : 7 /N — 71 /N is the identity. Schottky
space is then S, = T,/ Nay.

We can define another space, known as unmarked Schottky space as fol-

lows.

Definition 2.6.7. Let N, be the subgroup of the mapping class group con-
sisting of all outer automorphisms ¢ : m (S) — m(S) with the property that
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¢(N) = N. Unmarked Schottky space is then defined as S;™ = T /Nyp.

A point in unmarked Schottky space is a Schottky group modulo conju-
gation in PSLy(C) [29].
Finally, in [29] Maskit defines S}°?, which is topological Schottky space.

This is done in a similar way, by defining another subgroup of the mapping

class group.

Definition 2.6.8. Let N, be the subgroup of the mapping class group
consisting of all outer automorphisms ¢ : 71 (S) — 71 (S) with the following
property. If ay, ..., a, denote the generators of 71 (S) which are not generators
of " then ¢(a;) is conjugate to a; for all i = 1,...,p. We then define the
topological Schottky space as Sy = Ty /Nip.

A point in topological Schottky space can be regarded as consisting of a
Schottky group with a fundamental domain bounded by 2¢g SG-curves. We
can see that points in S;Op carry the most information, then points in Sy, and
then points in S;™ which carry the least information about the group.

From the nature of defining these Schottky spaces using subgroups of the

mapping class group we have a tower of coverings as shown below:
¢
Ty — S, — Sy — S — M,
Work on the nature of these coverings can be found in [29], [30] and others.

The first concrete example of a non-classical Schottky group was given
by Yamamoto [40]. An earlier example given by Zarrow [41] was then shown
to be classical by Sato [35]. Yamamoto’s group is a two generator Schottky

group, with SG-curves C| the rectangle with corners v2—1+i(1—¢/3), /2~
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1—i(1—¢/3),—vV2+1+i(1—¢/3)and —v/2+1—i(l —¢/3), and C} is
defined as 7, (C}), Cy == {|z+ V2| =1—¢},Ch:={|z —V2| =1—-¢c}. A

schematic picture of this arrangement is shown in Figure 2.14.

Cy

L ol
Figure 2.14: The defining curves for Yamamoto’s non-classical Schottky
group.
The two transformations are
7(z) =i(V2+1)z
and
V2(1—e) e+ (1—¢)(2(1—¢)"2—1)
(1—¢e)tz+v2(1—¢)!

and it is shown that for ¢ < 107%° I, is a non-classical Schottky group. This

Ya(2) =

paper will be looked at in more detail in §4.1, and generalised in §4.2.
Finally in this section we discuss the idea of how classical a Schottky group
can be. By definition a Schottky group is classical if it is classical on at least
one set of generators. We can ask the question now as to, in some sense,
how classical a Schottky group can be, or what it means for one Schottky
group to be more classical than another. If a Schottky group is classical on

a generator set then the group is classical, but equally if a Schottky group
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is classical on many different generator sets it is still classical. The natural
question to ask is how many different generator sets can a Schottky group
be classical on? Does there exist a Schottky group I'. which is classical on
all generator sets? We refer to this group I'. as iiber-classical.

As mentioned previously, only one Nielsen transformation alters the SG-
curves themselves, the transformation (iii) in Section 2.2. For a Schottky
group [" to be classical on all generator sets then first of all it would have to be
classical on (y27y1,72), and also (yay271,72). By the procedure of Chuckrow,
as in Figure 2.6, this only allows for certain configurations. In the notation
of §2.3 we would need to be able to find a circle Ky around C] and C5, which
does not intersect K, K] or K. This is possible, but we would also require
that there was a circle around Cy and C] so that (v,7y2,71) is classical, and
so on. These restrictions from the Chuckrow construction prohibit many
arrangements of original SG-curves.

Aside from the difficulties of the Chuckrow construction there are also
certain restrictions on how a generator set can have classical SG-curves, for
instance locations of fixed points and 7;(c0). For example in a two generator
Schottky group I' = (71, 72), with SG-curves C;, C}, Cy and C, we have that
both 77 (c0) and the repulsive fixed point of 7, must be on the inside of
(. These points, along with similar restrictions for C7,Cy and CY, can be
positioned such that no classical SG-curves exist for those generators, but it
is more difficult to show that for every group there is at least one generator
set, where such arrangements arise.

In [12] Button shows that a Fuchsian Schottky group is iiber-classical iff

it has two generators which have intersecting axes.
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Of course the equivalent question regarding non-classicality is much more
simple. If we want to look for an iiber-non-classical Schottky group then we
require that it is non-classical on all possible generator sets. But of course for
a group to be non-classical it must be non-classical on all possible generator

sets. Therefore any non-classical Schottky group is iiber-non-classical.



Chapter 3

Uniformization by Classical

Schottky Groups

3.1 Theorem

As discussed in §2.4 Koebe’s Retrosection Theorem states that every closed
Riemann surface can be uniformized by a Schottky group. As we have also
mentioned, Schottky groups exist in two distinct types, classical and non-
classical. An interesting question to ask would be whether every closed Rie-
mann surface can be uniformized by a classical Schottky group, or conversely
what features do Riemann surfaces that are uniformized only by non-classical
Schottky groups have. In this section we try to extend Koebe’s theorem by
looking at what can be said about surfaces uniformized by classical Schottky
groups.

Work on Schottky uniformizations of surfaces has been done, particularly

on those with certain symmetries, by people such as Hidalgo [16]. From

45
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§2.6 we know Marden showed that non-classical Schottky groups exist, and
an explicit example of a non-classical Schottky group is due to Yamamoto
[40]. The natural question to ask is whether Koebe’s theorem holds if we
restrict to classical Schottky groups, that is Schottky groups where some set

of defining curves can be taken to be circles.

In [29] Maskit states that a surface of genus p with p sufficiently small
homologously independent simple disjoint geodesics can be uniformized by a
classical Schottky group. We prove this in this chapter, with a numerical esti-
mate to formalise ‘sufficiently small’. We define the Schottky uniformization

constant, k, to be the smallest positive solution of the following equation:

e’ sin (%) + sin (2) = 2¢2 (3.1)
We then have the following theorem:

Theorem 3.1.1. Let S be a closed Riemann surface of genus g > 2, and
let si,...,54 be the defining curves for a Schottky uniformization. If these
curves have length less than the Schottky uniformization constant, k, then,

independent of the genus g, there exists a classical Schottky uniformization

of S.

Proof. First we give a brief outline of the proof. The aim is to show that
given a condition on the length of curves on a closed Riemann surface, S,
we are able to show the existence of a set of Euclidean circles which are
SG-curves for a classical Schottky uniformization of S.

The surface will have a Schottky uniformization, S = Q(I")/T" by Koebe

[18], and hence we have a set of SU-curves sy, ..., s, on S and corresponding



3.1. THEOREM 47

SG-curves Cy, Cy, ..., Cy on Q(I'), not necessarily circles. These SG-curves
along with I" form our initial Schottky system.

The aim of our proof is to show that for each given SG-curve C; with a
corresponding SU-curve s; there exists a Euclidean circle on ©(I') which is
mapped to a curve s’ on S such that s’ is homotopic to s;. If this is the case
then we can use this circle as our new SG-curve in a new Schottky system
for I'. That is that s’ will be an SU-curve for the Schottky uniformization
with a classical generator.

We take each SU-curve, «, in the uniformization individually and find a
classical SG-curve for it in the following way. We look at the collar about «
on S and lift it to a pair of ring domains in ("), one about Cj, call this A,

and the the other about C]. Figure 3.1 shows an example.

B R,

Figure 3.1: An example of the lift of a collar under Q(I') — Q(T')/T to a pair

of ring domains R; and R, with C; and C! respectively as separating curves

Given a condition on the length of «, this can then be adapted through
work of Maskit to give a condition on the extremal length of the family of
curves separating the components of the boundary of A. We will then relate

extremal length to the modulus of A, and from this show that this bound on
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modulus gives us that there exists a circle in (') which can be mapped to

a curve homotopic to o on S.

We are now able to look at the details of the proof. Let k& be the smallest

positive solution of e* sin (%) + sin (%) = 2ez. If we look at the rearranged

26z/2
er+41

equation x = 4 arcsin ( ) we see that there is only one solution, namely
the Schottky uniformization constant, k. We use this rearranged form later.
Using Maple [24] we can use numerical methods to solve this rearranged form,
and get that k£ ~ 2.371776. We assume that [(s;) < k for all s; in the set of
SU-curves on S and we want to show that this implies existence of a set of
circular SG-curves.

If all the s; on S lift to circles in (") then S is uniformized by a classical
Schottky group. If this is not the case then some SU-curves do not lift to
circles in (I"), so we can take one such curve and call it a.. There exists a
collar about « which then lifts to a pair of ring domains in Q(I"), one about
some C; and the other about C!. Let R be the ring domain about C;. Using
the notation of [22] and Remark 2.5.9 we can assume, through conjugation by
an element of PSLy(C) if necessary, that C— R consists of (—R); and (—R)s,
with 0 € (—R); and co € (—R)s. Let z; € (—R); be the (not necessarily
unique) point which maximises |z| over (—R);. Similarly let zo € (—R),
be the (not necessarily unique) point which minimises |z| over (—R),. We
can see that for a circle to ‘fit” inside a ring domain it suffices to show that
|z1] < |z2|. If this is the case then clearly R contains the essential round
annulus B = {z | |z1| < |z| < |22]}. Examples of |z1] < |z2] and |z1| > |22]
are given in Figure 3.2. In the first we have an essential round annulus, and

hence a circle fits inside the ring domain. In the second we see that |z, > |22]
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and hence the round annulus B may not exist.

Figure 3.2: Two examples of ring domains, one which admits an essential

round annulus centered at 0, and one which does not.

We want to find a link from a bound on I(s;) to the existence of annuli.
To begin we use a paper of Maskit [27] to compare the hyperbolic length [
with the extremal length, m, of the curve family C consisting of all curves
separating (—R); and (—R)2. The paper of Maskit uses a different realization
of S, rather than using S = Q(I')/I" to define S, it can also be written as a
quotient of H? as S = H?/T. A geodesic on S is lifted by the covering map
to a set of hyperbolic lines () for v € T" and § a hyperbolic line. Up to
conjugation of the group, we can assume that 3 is a Euclidean straight line
in H?. A collar of the type discussed in Theorem 2.4.7 about the geodesic 3

on S is symmetrical, and hence will be lifted to a symmetrical collar of the
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form {g —¢<argz < g+ ¢} as in Figure 3.3.

B

Figure 3.3: A topological collar about /3

We have from [27] that [ > m# where the angle € is the angle width for
the collar, so, in Figure 3.3, we have that 0 = 2¢.

The collar on S lifts to a collar in H? as in Figure 3.4, where the sides
of the collar are at a hyperbolic distance of w = w(«) from the vertical

hyperbolic line.

Figure 3.4: The topological collar

The point A, of distance w along the hyperbolic line through —1,7,1 is
e —1 N 2ev
Coew 4] ew 4 1’

We can see that sin ¢ = Re(A), and hence sin ¢ = zjz—j Now we want this

angle in terms of [ not w, so first we need to look at the definition of w from
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the collar lemma (Theorem 2.4.7), which states that
w = arcsinh [1/sinh(%)]

First of all we let = 1/sinh so that we have w = arcsinh(z). Now we
can rewrite w in terms of the logarithmic definition of arcsinh, so we have

that w = In(x + 22 + 1). Also we have the standard exponential definition

2
of sinh, which gives us that z = 1/sinh(%) = e Combining all of
this we get
) 6211) -1
sing = P

(z+ Va2 +1)2 -1
(z+VrZ+1)2+1
24+ oV +1
22+ 1+ava? +1
2e!/? + 4 4 2¢7!/?

el +2el/2 +2 4+ 2e /2 4 e
2¢l/?

e+ 1

So we have # = 2¢ = 2 arcsin (281/

2 .
| ) Now we can rearrange the inequal-

ity of Maskit to get that

[

[
0 : 2el/2
2arcsin | 5 1

Rearranging the expression in Theorem 3.1.1 we get that g = 2 arcsin (ii’ﬁ) ,
and so if we have that [ < k from our theorem then we have that é <k =9

and hence m < 2.

The next detail we need to look at is that of the extremal length of the

curve family C consisting of all curves separating (—R); and (—R),. We
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have that this extremal length is m < 2. Now, from §2.5 we have that
mod(R) = +. Hence if m < 2 then mod(R) >

N[

Now, Theorem 2.5.15 tells us that mod(R) < 2pu ( |Z1\‘i:||z2|>. So we have

1 |21]
> ()—“<VVNH@J

From Remark 2.5.16 we get that:

1 | 21| 1KW1 —-r?)
g < modli =2 (\/ W) G

specifically that

where

Now recall that to have an essential round annulus we require that |z;| <
|29]. We can write |23| = 0|2;] for some §, and the condition |z;| < |22] is

equivalent to d > 1. So now:

1 1KWI=12) 1
253 K T V1ixe (3.2)

We now look at the function K (r) in more detail, to see how it behaves
for 0 < r < 1. Heuristically we can just plot K (r) against r and see that it is

an increasing function. Similarly we can see that K (/1 — r2) is a decreasing

K(V1-r?)
K(r)

function, and so we have that is a decreasing function for 0 < r < 1,
which is precisely the range that r satisfies since r originates in the definition

of Grotzsch’s extremal domain.
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More technically we can note that

where the double factorial is defined using a recursive definition as

1 ifn=—-1,n=0o0rn=1
n!l =
nl(n —2)!] ifn>2

In [2] it is shown that K(r) is strictly increasing and positive, and it is

also shown that for 0 < r < 1

d (K(M)) —T

dr K(r) 2r(1 — r2)K (r)?
and so we have that K(K” t;)ﬂ) is a strictly decreasing function on 0 < r < 1.

Equation 3.2 now becomes 1 < K(K” 1;)72), which we need to solve. When

r = v/2/2 we have that 1 — r? = r, and so K(v/1 —r2) = K(r), and hence

K(vV1-r?)
K(r)

that 1 = . Now, since we know that this function is decreasing we

have that:

K(i-r) =7 <V2/2

1<

K(r)
Now we simply have that:

_ V2
r -

2
L V2

1+0 2

1 < ¢

Thus if the length of @ on S is I(«) < k then |z1| < |z2| and hence

there exists an essential annulus. Hence we can find a curve homotopically
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equivalent to o which lifts to circle in (T"). We can then repeat this process
for all other SU-curves. If the condition [(s;) < k holds for all SU-curves
in the Schottky uniformization then S can be uniformized by a classical

Schottky group.
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3.2 Implications

We now consider the implications of our result by looking at Bers’ constant.
It was hoped that the bound in Theorem 3.1.1 would be such that we could
use work done with Bers’ constant to show that certain types of Riemann
surfaces were uniformizable by classical Schottky groups. The bound in our
theorem is slightly too small for the particular result we were after, and in
this section we briefly look at implications following our theorem and suggest
further work.

In [7] Bers showed the existence of a constant B(g), depending only upon
the genus, ¢, of a closed Riemann surface, S, such that there exists a pants
decomposition of S where the length of the 3g —3 curves do not exceed B(g).
A pants decomposition is a way of splitting a closed Riemann surface into
three-holed spheres, or ‘pairs of pants’ using 3g — 3 curves. Much is known
about Bers’ constant, for example, if we take a pair of pants decomposition
for a genus two surface S, that is three geodesics 71, jo and j; which separate
S into two three-holed spheres, we have several methods to get a bound on
the lengths of these curves.

From [11] we have that for every compact Riemann surgace of genus g
there exists a set of curves defining a pants decomposition which have lengths
defined by {(ji) < 4kIn (8%) for k = 1,...,3g — 3. We can easily calculate
that these lengths for a genus 2 surface to be approximately (j;) < 12.90,
[(j2) < 20.25 and [(j3) < 25.51.

There are known bounds on Bers’ constant given in terms of the genus
of the surface, for example, [11], B(g) < 21(g — 1). A lower bound is also
known for B(g) in that B(g) > \/6g — 2 for a genus g surface.
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For our Schottky uniformization we only need g SU-curves, which could
be a subset of the 3g — 3 curves such that the complement of the SU-curves
is connected. We do know though there exist multiple sets of g such curves
in any given pants decomposition (for g > 2), and hence many such sets of
SU-curves with lengths less than B(g).

If we had that Bers’ constant for a given surface was less than the constant
in Theorem 3.1.1 then we would have that that surface was uniformized by a
classical Schottky group. For instance, taking the example given previously
using the theorem from [11], we calculated that for any genus 2 surface we
have three curves with lengths approximately (j;) < 12.90, [(j2) < 20.25 and
[(j3) < 25.51 which define a pants decomposition. We would require just two
of these for our Schottky uniformization, so we can take the shortest two,
but we can see already that these bounds are a lot more than k£ which is the
value we require for classical Schottky uniformization. We have that £ < 3
and so these values are a lot greater.

We have the following conjecture related to Schottky uniformizations:

Conjecture 3.2.1. There exists a constant S(g), analogous to B(g), for
which there exists a decomposition of S into a 2g-holed spheres, where the

lengths of the g curves do not exceed S(g). Then S(g) < B(g) for g > 2.

Looking back at Bers’ constant, whilst Bers’ proof does not give any in-
formation on B(g) aside from its existence, work has been done as mentioned
above on bounding B(g) by others. A theorem of Gréacio and Sousa Ramos
[14] states that for genus 2 surfaces, B(g) = 2arccosh(2). If our bound k
had been greater than B(2) then we would have all genus 2 Riemann surfaces

uniformized by classical Schottky groups. Unfortunately our bound, £, is less



3.2. IMPLICATIONS o7

than this, but it is hoped that S(2) < k then we would have had the desired
result. The values that we have are very close to that stated in the Gracio
and Sousa Ramos paper, in that k£ ~ 2.371776 and B(2) = 2.633915794 so
the values are very close. Work on S(g) is necessary to progress this further.

Papers such as [23] might be useful to find if the Riemann surfaces satis-
fying the conditions of Theorem 3.1.1 are known elsewhere. Other possible
work in improving this could come from investigating whether it is the case
that if just one Schottky uniformizing curve has length less than & satisfying
eF sin (%) + sin (%) — 2e’ then there exist a full set of defining curves with

shorter length, and hence if one curve has length less than £ we have classical

Schottky uniformization.



Chapter 4

Non-Classical Schottky Groups

In this chapter we find more examples of non-classical Schottky groups, us-
ing techniques from Yamamoto’s paper [40]. Firstly we discuss this paper
in detail, rewriting the paper with all details included. We then take this
rewritten paper and use it as a skeleton for the proof that a different family of
SG-curves produce a non-classical Schottky group. Finally we generalise the
step from Yamamoto’s example to our example and produce a two variable

family of non-classical Schottky groups through the following theorem:

Theorem 4.0.1 Let J,. be the free group generated by:

E+1.
l,: 2 — 12

a—+1

1—¢) ! 1-— 2(1—e)2 -1
heo iz k(1 —e)7 2+ (1 —)(k%( i) )

(1—e)lz+k(l—-¢)

where k = va? +2a+ 2. Then J,. is non-classical for 0 < a < 1.4 and for
e < f(a) for some function f (given explicitly in Appendiz A).

58
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4.1 Yamamoto’s Paper

As discussed in Chapter 2 the first example of a non-classical Schottky group
was given in a paper of Yamamoto [40]. In this chapter we use notation from
Yamamoto’s paper, drawing comparisons to previously discussed notation
where appropriate. The Schottky group G. is defined by Yamamoto, and is

generated by the transformations [ and h. below:

l:z = =i(vV241)z
V21 —e) 2+ (1—-e)2(1—¢)2-1)
(1—e)lz+V2(1 —¢) !

Yamamoto shows that when £ < 1072° then G. is non-classical. The SG-

he: 2z

curves are such that [ sends C, to Cs, and h, sends Cy, to Cy,, and are

explicitly defined as:

C1. = The rectangle with vertices: V2—1+i
V2—1—i

—V2+1+i

—V2+4+1—-i

1—-¢/3
1-¢/3
1—¢/3
1—-¢/3

( )
( )
( )
( )
Cse = U(Ch)

Coe = {lz+V2]=1-¢}

Cio = {l2=V3=1-¢}

The paper gives a proof that G, is non-classical for ¢ < 102, using a
proof by contradiction. The paper uses a number of technically dense lem-
mas, and proves these lemmas after proving the main theorem. A lot of the
reasoning behind using the lemmas comes from the proofs, and so it would

feel more natural to prove the lemmas en route to the proof of the main
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Figure 4.1: The defining curves for Yamamoto’s non-classical Schottky group.

Here ¢ is the distance between the inner rectangle and the circles

theorem. Some details in the proofs of the main theorem or lemmas are left
to the reader of the paper, but these are generally not trivial calculations,
especially due to the fact that in various places in [40] there are some incor-
rect details, through typographical error and occasional mathematical error.
These details do not affect whether the theorem is true but are worth correct-
ing. In this section we rewrite Yamamoto’s paper, making some alterations
to the order of results presented, and correcting the errors. We also include
a number of figures which help with some of the explanation of the details

of the proofs.

Since the proof of the theorem is technically dense in places and consists
of several lemmas on the way we begin by giving an overview of the proof.
We take the four SG-curves defined above, and assume we can find classical
SG-curves for GG.. From the definition of classical that means we assume
that there exist four euclidean circles Cy, C7, Cy and C) which are also SG-
curves for G, and which bound a fundamental domain for G.. Considering all
possible images of these four circles under the group we find a particular set,

C, of image circles which are nested and intersect the real interval(0, v24 1)



4.1. YAMAMOTO’S PAPER 61

once. We introduce Lemma 4.1.3 which shows that the distance between
consecutive circles in C is less than 1072, where distance is measured along
the real and imaginary axes. Lemma 4.1.3 is proven using Lemmas 4.1.4,
4.1.5 and 4.1.6. Lemmas 4.1.4 and 4.1.5 look at lengths of components of the
domain of discontinuity which intersect the real and imaginary axes. Lemma
4.1.6 then relates the regions in Lemmas 4.1.4 and 4.1.5 with the distance
between circles in C. Finally we find a particular image of one of Cy, C1, Cy
or C which is not in C, which intersects (0,4/2+ 1) twice and has diameter
greater than 1072. This means that this circle intersects at least one of the
5, which means that the original circles cannot be SG-curves, and so our

assumption that the group G. is classical is incorrect.

Theorem 4.1.1. ([40]) The group G. generated by

V21 —e) 2+ (1—-2e)21 —2) 2 -1)
(1—e)lz+v2(1 —¢) !

he :z—

and

Iz i(V2+1)z

is a non-classical Schottky group if ¢ < 10720,

The first step is to use the following lemma, which as stated by Yamamoto
is a lemma of Marden, the proof of which is given in sufficient detail in

Yamamoto’s paper, and is therefore omitted here.

Lemma 4.1.2. ([25]) Let I' be a classical Schottky group generated by two
Mobius transformations. Let v be an element of I'. Then there exists a
fundamental domain for I' surrounded by four circles, at least one of which

separates the fized points of .
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We are now able to begin the proof of Theorem 4.1.1, pausing to prove

necessary lemmas on the way.

Proof. We prove that G. is non-classical by contradiction. Suppose that
for ¢ = 1072° we have G, is classical. Then by Lemma 4.1.2 we have a
fundamental domain D, for G, bounded by four circles, our proposed SG-
curves, C,C1, Cy, Ch, one of which separates 0 and oo, the fixed points of
[. Without loss of generality let C; be this curve. There will be another
boundary curve of D, which also separates the fixed points of [. We let
C = {C} C% C3, ...,CN} be the complete list of images of the SG-curves

under GG, which satisfy the following conditions:

(i) Each CY separates 0 from oo.
(ii) Each C?*! separates C? from 0.

(iii) C1, C7 (for j = 2,3...N —1) and CN meet [v2+1,00), (V2—1,v2+1)
and (0, /2 — 1] respectively.

An example of a set of circles which satisfy the above is shown in Figure
4.2.

If ¢, and C} are curves in C which are not separated by other curves in
C then C, and Cy lie on the boundary of a fundamental domain, that is a
translate of D.. If C,, = CY and Cj, = C?™! then the translate of D, is called
D;..

Let ujk. be the point C? Ni*'R*, where k =1,...,4 and R" = {z e R:
x> 0}. We then define vj. = maxg{|ujte — u(j+1)ke|}, the largest distance
between two consecutive circles in 6, where distance is measured along the

real or imaginary axes.
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\2-1 V2 +1

L/

Figure 4.2: The set C, with C! on the outside and C nearest to 0.

As mentioned in the overview we are looking to show that a particular
circle defined later has diameter greater than the gaps between the circles in
5, so we now need to find a bound on the gaps between the circles, that is,
a bound on vj,.

In particular we prove the following lemma which puts an upper bound

on Vije.
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Lemma 4.1.3. ([40], Lemma 2) For every 0 < & < 1072° and every posi-
tive integer 1 < 7 < N,

vje <1072

Proof. To prove Lemma 4.1.3 we move to H,, the group generated by h. and
L = [?. This group is used as it preserves the real axis, and the intervals
between the u;,. points that we are looking at are simply segments of the
real and imaginary axes. Following the standard notation we let Q(H,) be
the domain of discontinuity of this group. This allows us to look at the two

axes separately. To prove this lemma we require a second lemma:

Lemma 4.1.4. ([40], Lemma 3) The length of each component of (Q(H.)N
R)U(Q(IHI71)NiR) which meets the region made up of the union of segments
given as [—(v/2+1)3, (vV2+1)3Ui[— (V2+1)4, (V2+1)*] is less than 2.01(v/2+
13(2+ v2)/E.

Proof. To prove Lemma 4.1.4 it is sufficient to prove the following lemma.

This simplifies the details by restricting to segments of the real line.

Lemma 4.1.5. ([40], Lemma 4) The length of each component of Q(H.)N
R which meets the region [—\/5 —1,—V/2+ 1ju [\/5 —1,V2+ 1] is less than
2.01(2 + V2)+/z.

Proof. Let W = h.Lh.L ! with fixed points:

w, = (1-=2e+eH)1+V2)+ (1 +V2)\/e(l -2 +2)(2—¢)

wy = (1—=2e+H)1+V2) - (1+V2)\/e(l -2 +¢e2)(2—¢)

We let .#; be the component of Q(H.) N R which is bounded by the fixed
points of . All components of Q(H.) NR are equivalent under H,, but we
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define three other regions % = h_1(.#), S = L7 (#) and 7, = L~ 1(A)
to make some of the explicit calculations in the proof below simpler.

Let # be a component of Q(H.) N R which is inside Cy, or Cy.. We
can write # as o (&) = & LP2-1 kP2 [P (.7), where .# signifies one of
H, S9, S5 or Sy and pogpag-1..-p2 # 0.

Calculating the lengths of .7}, %, .5 or .Z; explicitly from their definition
we find that . and .#, have the same lengths as each other, and .#3 and
7, have the same lengths as each other. The length of .#; (and hence %)
is 2(v2 + 1)\/(1 — 2 +£2)(2 — £)e, and the length of .#; (and hence .7;)
is 2(vV2 —1)/(1 — 2¢ + £2)(2 — €)e. We can see that . and .#, are longer

than .3 and .Z;. Looking again at the length of ., we can see that

2(vV2 + 1)/(1 — 22 +2)(2 — 2)e < (24 V2)2.01/=

and so the length of .# is less than (2 + v/2)2.01y/z. To complete the proof
we need to show that the length of any image of .# under 7, is no longer
than the length of .#, which we do by showing that |y, (z)| < 1, Vo € &,
We prove this using induction.

Our method of induction involves first showing that |v5,(z)] < 1Vx € &
is true for ¢ = 1. We then show that assuming it is true for ¢ = n then this
implies it is true for ¢ = n + 1.

Equivalently we prove in some cases that the image of 7,(.#) is no longer
than .#, and that if we assume 7,,(-#) is no longer than .# then vy(,41)(-%)
is also no longer than .#. We will often be using induction to prove steps
along the way, so we refer to the induction on ¢ as the g-induction for ease
of referencing.

Following the proof in the paper as a guide we now work through the
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details of the induction, labelling the sections of the induction for ease of
reading.
The q = 1 case. If we set ¢ = 1 we have v, = h?2LP1. We look at three
cases (i) p1 = 0, (ii) p1 < 0 and (iii) p; > 0.
For reference, since they are used frequently in this proof, we mention
that
(1-¢)?

=

It is useful to briefly look at |hL(z)| to see where this function is greater

1L ()] =

i(\/§+1)‘:\/§+1

than one, and where it is less that one. Inside Cy,. we have that |hL(z)| > 1
since |z +v2| < 1 — ¢ and outside Cy, we have that |hl(z)| < 1 since
‘x +/2 ‘ >1—c.

Looking first at the case where (i) p1 = 0, we want that |(h*2)'(z)| <1
Vr € .#. For this we use induction on py,. Looking at p, > 0 we see that
for the initial step of the induction we have |h.(x)| < 1 for all x € .# apart
from some x € %, but we can see that the image of .#, under h. remains
the same size (it is .#;). Thus we need to look at h? for our first step of the
induction, essentially using a p, = 2 stage rather than an p, = 1 stage for
the start of the induction.

If we look at |(h2)'(z)| we see that

(1-¢)*
—2v22 — 3 — 2¢ +¢2)2

|(R2)'(2)| = (

Analysing this function we see that if z < —/2 then |(h?)'(z)| < 1. Similarly
if > 2v/2(—1 — 2¢ 4 £2) then |(h2)'(z)] < 1. If we take the region where
|(h2)'(z)| > 1, that is —v/2 < 2 < $v/2(—1—2e +£?) we see that .% is to the

left of this region, .#; and .#3 are obviously to the right of this region, and
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for small values of ¢ (specifically ¢ < 1 x 107*) that ., is also outside this
region. Therefore we have that for all values of x € .# we have |(h2)'(z)| < 1.
This completes the po = 2 case of this induction.

Now we need to show that assuming |(h??)'(z)| < 1 for p, = n then it is
true for py =n + 1.

We can write |(h"*1)(z)| as

0@ = [
- [t a0ot)
d0z(a)) || de
(k1 (2))
EKERE

1 —2¢+4¢&?
(h?(x) + \/5)2

We only need to show this is true for n > 3, since we already know this

to be true for n = 2. If we apply h? to any of the four regions which make
up ¥ we see that hZ(x) will be inside Cy.. If we take values of hZ(z) to
be any value inside Cy. and substitute these into the above we get that
|(h2F1)(x)] < 1 as required.

The induction for p, < 0 follows very closely to the above. First we prove
it for py = —2 and then show that assuming |(hP?)'(x)| < 1 is true for p, = n,
n < 0 then it is true for po = n — 1. The details follow the exact method

above. This proves case (i) above.

Looking now at (ii) p1 < 0 we use an induction method in a similar way
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to the previous case, where we can write

eV (@) = |01y ()
d P21 p1
= | @)

dx
dhP2 [P (x)
dLr (z)

|dhe i (z)
B ‘ dLv (z)
1

V2+1

Then if we let u = LP*(x) and we have a similar situation as in the p; =0

‘ AL ()

dh®? (u)
du

case in that we have |(7;)'(z)| < \/51“

, requiring an induction on ps.
The induction follows that of the induction in case (i), except where before
we tested for x € .# we now test for u € LP'(x). Since p; < 0 in this case we
have that the regions we consider are all outside C; ., and hence using these

values we get that |(h?2LP')'(u)| < 1, proving the case of p; < 0.

Finally for the first step of our g-induction we prove the case of (iii)
p1 > 0 which we consider as having to show that the image of .# becomes
no longer under the transformation hP2LP! for p; positive. We first look at
p2 > 0, but the proof for p; < 0 is very similar. We can restrict our values of
x to those only in % or .%, because if p; = 1 we know application of L sends
S5 and F; to F and # and we know that |(h??)'(x)| < 1 for all z € &
from previous work. We therefore need to focus on p; > 1 and z € .#; or .%.
We can therefore see that any image of .#; or .%, under LP! will be outside
Cs., and we know that h. is contracting outside of Cs. (|hl(z)| < 1 for
‘x + \/5‘ > 1 — ¢, which is precisely those points outside C5.). This means
that the longest interval for h22LP'(x) will be when py = 1. All we need to
show is that h.LP'(.#) is shorter than .# for all p;.
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We want to look at
Fy = |h ((\/5 + 1)2’" f1a> —h, ((\/5 + 1)2’" f1b>

" Fy = |h. <<\/§ + 1)2”1 f2a> — h, ((\/5 + 1)21’1 J2b>

where .#,, and .%,;, are the end points of .%,. We want to show that these

are both less than |.#, — .#,|. For small values of ¢ we calculate max,, F}
and max,, F,, and we get that p; has absolute value less than 1, and that the
lengths of F} and F5 tend to zero as p; increases so all we need to specifically
test is when p; is equal to 1.

The length of F} and Fj is shorter than .# for p; = 1 and therefore so
will any image of .# under h??>L** for p; > 0. Thus we have proven the first
step of the g-induction.

Now we have shown that for any combination of p; and p, we have that
|(72)' ()| < 1 for any x € .#. We now move on to the second step of the

induction.

The induction step of the proof. We assume that |y, (2)| < 1 for
g =1,2,...,n, and try to prove it is true for ¢ = n + 1. We need to prove
|(hP2nt2 LPont1r pPon [P2n=t  pP2 [P1Y ()] < 1, Vo € . or equivalently that the
image of .# under 7y(,4+1) is no longer than the image of .# under v,,. To
show that this is true we look at the case where (i) po,+1 < 0 and the case

where (ii) pan11 > 0 seperately.

Looking first at the case (i) pa2ni1 < 0 we see that from our assumption
that the image of .# under 79, is shorter than .#. Since py,; < 0 we have

that the image of .# under LP>»+l~y, will be shorter still. Moreover, since



4.1. YAMAMOTO’S PAPER 70

the image of .# under 7, will be inside either C5, or Cy . (depending on the
sign of py,) we have that the image under LP>+1~,, will be inside C; . and
hence outside Cy . and Cy .. As mentioned previously h. (resp h-') contracts
regions outside of Cy . (resp Cy.) so the image under h??>m+2 LP2rt1q,, will in
turn be shorter than the image under LP?*+1,,. Thus the case of py,11 < 0
is proven.

Now finally we need to prove the case (ii) pany1 > 0. In the paper
Yamamoto describes two cases which we will look at here. The two cases
are (a) € < |yn(@)] < V241 and (b) V2 — 1 < |y.(2)] < & where
€= (2— (1 —¢)?)2 is the attractive fixed point of h.. If we look at case (a)

we have that

N I At
o e Tagl) |1

0T rale)

< 2 4 1Pt

D) | V2D

_ |0V g e
(V2+ 1)t +V/2)7

< 1

Now we need to look at case (b). The proof of this is similar to case (a)
except that we need to note that because of the conditions of case (b) we
have that |LP2-175, »(x)| < /2 — 1 and hence py,_; < 0. Taking the same
method as above, but expanding back to h;q_Z(x)‘ rather than just h;q(x)‘
we obtain that ‘%HQ‘ < 1 as required.

This completes the induction, and hence the proof of the lemma. O

We now show that Lemma 4.1.5 proves Lemma 4.1.4. Using multiple

applications of [ we can see that we can extend the proof of Lemma 4.1.5
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to the region stated in the statement of Lemma 4.1.4. Applying [ twice
and three times to the region in Lemma 4.1.5 we get that Lemma 4.1.4 is
true for the parts of (Q(H.) NR) U (Q(H.I7') NR) which meet the region
[—(V2+1)%, —V2+1]U[V2 -1, (V2+1)*|Ui[-(V2+1)*, —=1)Ui[L, (V2 +1)1].
To show that we can extend this to the whole region stated in the lemma
we simply need to observe that to fill in this region we would apply ! a
number of times. Since /7! is contracting this does not increase the size of
intervals, and so we may extend the regions above to the regions of the real

and imaginary axes in the statement of Lemma 4.1.4.

O

Now, to complete the proof of Lemma 4.1.3 we need one final lemma,

given below with detailed proof.

Lemma 4.1.6. ([40], Lemma 5) Let n > 0. If |ujpe — ujrike| < n for at
least two values of k € {1,2,3,4} then v;. < 10%7.

Proof. We let P; = x;+iy; and R; be the centre and radius of C? respectively.
We let p1; be the distance between the centres of C? and C?™!, that is p; =
|P; — Pj41]. We define a circle C" which is concentric to CZ*! and tangent
to Cj, then C" is given by (x — z;11)* + (v — yj41)? = (R; — i;j)%, and we let
T be the point of tangency. We define S’ to be the point on C’ such that
TS' is a diameter. Finally we set u}, = C' N *IR* for k = 1,...,4. All this
information is shown in Figure 4.3

Let k; and &y denote the two values of k for which |ujr. — ugjsiyre| < 1,
which exist by the hypothesis of the lemma. Without loss of generality we

may assume Zuy Pj1S" < Zuj, Pj1S". Let 0 denote Zuy Pjy1S', and let us
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Figure 4.3: The circles C?, C/*! and C".

first consider § <6 < .
Considering the triangle AS"T'u;, we can see, using the sine rule that
sin @ > sin ug, S"T, and similarly for AS"Tuy,. Therefore we have
sin @ + sin Zuy, Pj1S" > sin Zuy, ST + sin Zuy, S'T

Since S'T"is a diameter, and u), is on the circle C" we have that AS"Tuj

is right-angled. Recalling that the radius of C" is R} = R; — j1; we have that
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. iy, |
sin éu;ﬂS’T = -1

3R —m;) therefore we have

2 /
wy, —T
sin 6 + sin Zuj, PS> 2| tll (4.1)
r=1

(Rj — 15)
We now want to derive an inequality for 2(R; — ;) in terms of the lengths
|uf|. From the definition of the uj we can see that the maximum the sum of
the |u}| can be is twice the diameter of C’, and the minimum it can be is the
diameter. Hence:

lul| + |ub| + |uf| + |uy] > Diameter of ¢
4

Dol = 2R — ) (4.2)

k=1

By the triangle inequality we have

the last part of the above line being due to the fact that the uj_are on the
axes.

Combining inequalities (4.2) and (4.3) into the right hand side of Equation
(4.1) we get:

|, |
4
> lui
k=1

Since [ has fixed points of 0 and oo, and since C' separates them, any

sin @ + sin Zuy, Pj1S" >

(4.4)

image of C" under [ will also separate 0 and oo and thus be either one of the
C or outside (1. The image cannot be inside C} since [ has 0 as a repulsive

point. The image cannot be C; since C; is tangential to C’, so therefore it
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must be outside C;. Therefore we have that the images of the u; under [
must be outside the u; themselves, so we have |u},_ | < (V2 + 1)|u}].

We know that k1 is just one of the k, and so u), is one of the uj. We
can therefore write >y, |u| as [u, | + |uf, 1| + |t} o] + [}, 5|, where the

subscript addition is cyclic through {1,2,3,4}. We therefore have that
4
Dolupl < ful |+ (V24 Dl [+ (V2 4+ 1), | + (V2 + 1)Pug, |
k=1

= |u;1|(1+(\/§+1)+(2\/§+3)+(5\/§+7))
= |ui, (12 + 8v2)

< 24|y, |

Therefore Equation (4.4) becomes

1
sin @ + sin Zuy, Pj 115" > 2 (4.5)

Now, since we have assumed 0 < Zu;, Pj, 15" and § < 6 < 7 we have
that sin® > sin Zuy, P;11S" and hence we have from Equation (4.5) that
sin@ > —. Later we shall want an inequality for (14-cos ) so from the above

we have
(1+cosf)™' < 4608 (4.6)

As mentioned earlier CY and C?*! along with two other curves, bound a
fundamental domain for G, so in particular we have that L(C?) NCIT! = (),
The transformation L preserves any line though the origin, so taking the line
L through the origin and P; we see that the line segment from the point A on
C? which is R; — | Pj| away from the origin and the point B which is R; + | P;|

away from the origin is a diameter of C?. We can see that the image of A
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under L will be on the line £ and further from the origin than B. Hence we

have:
(V2+1)*(R; = |Bj) > R;+|P)
2V2+2)R; > (2V2+4)|P)]
By the triangle inequality it is clear that
pi < B+ [Pl (4.8)

Finally since the origin lies inside C’ (since the origin lies inside C?*!

which in turn lies inside C’) we must have that
|Pin| < Rj — py (4.9)

Combining Equations (4.7), (4.8) and (4.9) we get that

241 IR,
uj<\[+ R; < =2

22 710

We now let 1 = |ujk,. — uj, | and so we necessarily have that 5" <. We

(4.10)

can see easily that R; < |P; —uj |+ 7' from the triangle inequality, and so

looking at Auj, Pjy1P; we use the cosine rule to get:
(R; =) < |P;—up|”
= ui+ (Rj — 1j)* — 2u;(R; — ;) cos
Therefore we have:
()" = 2R < 245 — 2R;p; — 2p;(R; — pij) cos 0
20j(Rj — pj) (L +cosf) < 2R — (0)* < 2Ry < 2R;n

pi < Rin(Rj—p)~ (1 +cosf)™ (4.11)
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From Equation (4.10) we get that (R; — ;)" < 7 and combining this
J
with (4.6) we see that Equation (4.11) becomes

pi < Rpn(Rj— ) (14 cos )™
10
i < Rjn—4608
Hj J77Rj
;i < 5x10%y (4.12)
We now look at the case that 0 < 6 < 5. We have that (14 cosf)™" <1

simply because cos# is positive in this range, and so we have that the above

all holds for this case, since (1 + cosf)~! <1 < 4608.

We now turn our attention to v;. and look to prove the lemma. Recalling

the definition of v;. from before Lemma 4.1.3 we can see that

Vje = m}?X{|Ujkg—U(j+1)ks|}

M) =

|Ujks - U’(j+1)ks|

k=1

N

= > (lujke = wigerel = [ugrnme — vGinmezel)  (413)
k=1

The last step of the above can be seen from Figure 4.4.
From the triangle shown in Figure 4.4 we can see using Pythagoras that
|wj1e — w3 | = 2 R? — y]2-. We can do the same for other equivalent triangles

and get that [u(j41)1: — ugr1)se| = 24/ R?+1 - @/]2'+1a |Wje — Ujac| = 2\/3? - 37?

and |uy1)2e — UGrye| = 24/ R —y7,,- Then some simple algebra gives
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Uje

Uiipne

Uii)ie
u(j+1)48

Figure 4.4: The circles C? and CJ*! .

us that Equation (4.13) becomes

vje < [\/RZ—ZJJ \/ j+1 y]+1+\/R — T —\/Rg+1 ?+1]
2 (/= - 2 (/=7 + =)
2 (VR - ¢ S =) (VB -0+ VR - i)

(R2 B x RJ+1 + le) (R2 B y] R?H + y]+1)

\/R2 -t \/ i+l T \/R2 —uit \/RJ+1 Yin

(4.14)
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We now have that v, is less than the sum of two fractions, and by replac-
ing the denominators of each fraction by the minimum of the two denomina-

tors we see that

(R2 B x RJ+1 + le) +2 (R2 B y] R?H + yy2'+1)

m1n{\/R2—x —i-\/R]Jrl T3, \/R]z_yj+\/Rj+l_y]2'+l}

( (R? - R§+1) (_333 + x?+1 - 1/]2' + y]2'+1))

min{\/Ri—x§+\/R]2'+1_x?+1a \/R?—y]2.+\/M}

(4.15)

Now we need a few more facts to finish the proof. Firstly we can write

the following, using the triangle inequality and the geometry of Figure 4.4:

2 2 2 2 2 2 2 2
T+ 2 — Y Y <12 - T Y — Yl

< g — zjsalley + il + 1y — vy + vl

< (Joj =2yl + ly; — Y ) (R + Rjp)  (4.16)

Now, by taking a line through the centers of C? and C?™! and from
Equation (4.12) we can see that R; — Rj 11 < p1; +1 < (5 x 10* + 1)n. From
Equation (4.7) we get |P;| < R;/v/2, and hence clearly |z;|, |y;] < R;/V/2.

This gives us that, for example,

< Rj
. el
J \/g
R2
2 J
T Ty
2
2 2 J

B

S

V
SENE:
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Finally we need to look at |x; — 41|+ |y; —y;+1]. We consider a triangle
with one vertex at P; and one at Pj;, with two of its edges parallel to the
axes, and with edges of length |z; — x11], |y; — yj11] and pj. We can see
that the minimum that |z; — x;41|+ |y; — yj41] can be is p1;, when one of the
other two sides has length zero, and the maximum it can be is /2 when the
triangle is isosceles. Hence |x; — x4 1| + |y; — yj11] < V20 < V25 x 10% .

Combining all of these comments together with Equation (4.16) we get
from Equation (4.15) that

2[2 (R} — R} )+ (—af+af, —yj + y?‘ﬂ)]

mln{\/Rz—x +\/ i1 ?+17\/RJ2‘_%2‘+\/M}

2(Rj + Rj11) 2(R; — Rjy1) + (|lzj — xja| + [y — yja])]

Vje <

<
mm{\/Ri_ijr\/ T~ \/RZ—@/]JH/R2 yf-ﬂ}
o 2Ry + Ry 2R — Ryy) + (J; = | + [y — g0
Rj | Rjp
vzt
< 2V [2( X 104+ 1)+ (V25 x 10Y)y]
< 10%, (4.17)

as required. This ends the proof of Lemma 4.1.6.
O

We are now able to prove Lemma 4.1.3. We define F;, to be the doubly-
connected domain surrounded by C? and C?*!. Thus the boundary of E;. is
a subset of the boundary of a fundamental domain Dj,, as in Figure 4.5.

At least two components of E;.N(RUiR) are included in D;.N(RU7R), in
fact in Figure 4.5 only two such components coincide, due to the placing of the

additional two circles in Dj.. Let these components be A; and A, (there may
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_/

Figure 4.5: An example of the domain E;. and two (dotted) circles which
could be added to make a Dj..

be others). We can see that each of A; and A, lies in a component of (Q(H.)N
R)U(Q(IH.I71)NiR) meeting [—(v2+1)3, (V2+1)*|Ui[—(V2+1)4, (V2+1)]
and so from Lemma 4.1.4 has length less than 2.01(\/§+1)3(2+\/§)\/§. From
Lemma 4.1.6 we have that v;. < 10°2.01(v/2+1)3(2++/2)/z < 10%/z. Hence
if 0 < e <10 % then vj. < 10 2 as required. This proves Lemma 4.1.3.

U

We are now able to prove the theorem in question, that is Theorem 4.1.1.
Let C be a circle meeting [—(v/2 + 1)°, —(v/2 + 1)] which is equivalent
to C; under the group generated by [*. We may then apply h. to C' and
look at the properties of this new circle. We see that since C separates 0
and oo then so does C. Since C is outside Cy, its image h.(C) will meet

[V2 — 1,4/2 + 1] twice, as illustrated by Figure 4.6.
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\2-1 V2 +1

L/

Figure 4.6: The set C, from Figure 4.2, along with he(C).

We know that oo and —(v/2 + 1)® are outside of C and so h.(c0) and
he(—(v/2 + 1)®) will be inside h.(C) and on the real axis. The diameter of
h-(C) will therefore be greater than |h.(—(v/2 +1)°) — h.(c0)|.

Calculating this explicitly we see that

he(—(V2 4+ 1)° ‘—‘ fif)ﬂ/g > 102

However from Lemma 4.1.3 we know that the gaps between the curves in
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C is less than 1072, and therefore we see that h.(C) meets some C7. This
means that all images of C, C], Cy and C) are not disjoint, and hence the

assumption that the group is classical is incorrect.
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4.2 Generalising Yamamoto

We would like to have many more examples of non-classical Schotty groups,
amongst other things to help progress in the work discussed in Chapter 5.
The following is an example of a non-classical Schottky group, obtained using
the methods of Yamamoto. We take his example, and experiment with ways
of creating new examples. We would like to create a three generator non-
classical Schottky group, but whilst a lot of the details follow through, the
very last step of Yamamoto’s proof does not hold, since we need to place
four circles in Figure 4.5 rather than just two, and they may block all four
sections of the axes. Instead we take Yamamoto’s example and alter the
diagram slightly by adding a gap of % above and below each circle to get a
new family of non-classical Schottky groups, described in Section 4.2.1. In
section 4.2.2 we look to further this process by adding a distance of a above

and below the circles, and then get a bound on a and note its effect on .

4.2.1 A new non-classical Schottky group

We look for a second example of a non-classical Schottky group, and prove

the following theorem:
Theorem 4.2.1. The Schottky group .J. with generators:
2 (1

VB e e+ (1—e)(B(1—e)2 - 1)
(1—¢e)tz+ @(1 —¢e)!

he:z =

is non-classical for ¢ <5 x 10719,
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The SG-curves are shown in Figure 4.7. We change the notation slightly

from Yamamoto, and define the curves as:

C; = The rectangle with vertices: % 13—1+1

1 .
LWVI3—1—i

NlWw Nw Nlw N[w

—3VI3+1—i
Cr o= 1(Cy)
Cy = {le+%2=1-¢}
Cy = {lz— Y| =1-¢}

C,

Figure 4.7: The defining curves for a non-classical Schottky group. The
distance between the inner rectangle and the circles are ¢ and the distance

above and below the circles are ¢ + %

Proof. The proof follows that of Yamamoto’s example, but with different
details. We again assume that the group is classical and look for a contra-
diction. We assume the existance of C, C’{,C’g and CA’é which are classical
SG-curves for J..

We define C' in a similar way as in the proof of Theorem 4.1.1 with

different bounds:
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C = {CL,C? C3,...,CN} which is a complete list of images of the SG-

curves under G, which satisfy:
(i) Each C? separates 0 from oo.
(ii) Each C7*! separates C? from 0.

(iii) C}, €7 and C¥ meet the regions [2v/13 +1,00), (3v13 — 1,3V/13 + 1)
and (O,% 13 — 1] respectively.

We again define vj. = maxg{|ur. — u(j1)k-|}, and have equivalents to
Lemma 4.1.3, Lemma 4.1.4, Lemma 4.1.5 and Lemma, 4.1.6 for our group J..

We give these new lemmas with some details of the proofs.
Lemma 4.2.2. For every 0 < ¢ < 5 x 107 and every positive integer
1<j<N,

vje <8x 107"

Proof. We define the real line preserving group K, as K. = (h., L = [?). To

prove Lemma 4.2.2 we need Lemma 4.2.3 and hence Lemma 4.2.4.

Lemma 4.2.3. The length of each component of (Q(K.)NR)U (QUIK.I7')N
iR) which meets the region

[_ﬁ (1\/ﬁ+1>3,g (%\/ﬁ+1>3

U
2

i

S 1\/ﬁ+1 '8 1\/B+1 '
27 \ 2 97\ 2

is less than (113 +1)*2.01 v/2¢.

Proof. To prove this we use an equivalent to Lemma 4.1.5:
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Lemma 4.2.4. The length of each component of Q(K.) "R which meets the
region [—— 13 -1, 1\/_+1] [ V13 -1, 1\/_+ ] 15 less than = (2+
V13) 2.01 v/2¢.

Proof. The proof of Lemma 4.2.4 follows that of Lemma 4.1.5, with differ-
ences in the numerical details, but not in the process used. We omit it here

for simplicity. O

As in Yamamoto’s paper, where Lemma 4.1.4 follows from Lemma 4.1.4, here

we have Lemma 4.2.3 follows from Lemma 4.2.4 by the same reasoning. [

Next, to finish the proof of Lemma 4.2.2 we require the following.

Lemma 4.2.5. If |ujp. — wjq1ke| < 1 for at least two k € {1,2,3,4} then

Vie < 2.0 X 1057,

Proof. As in Yamamoto’s proof of Lemma 4.1.6 we let P; = x; + iy; and
R; be the centre and radius of C? respectively and p; = |P; — Pjq]. We
define a circle C' concentric to Cj;; and tangent to C}, then C" is given by

2 and let T be the point of tangency.

(= 2j41)” + (¥ — yj11)* = (By — 1))
We define S’ to be the point on C” such that 7'S” is a diameter and we set
=C'NiFIRT.
We let ky and k; denote two values of &k for which |ujr. — wjr1yre| < 7.
We assume Zuy P15 < Zuy, Pi S’ Let 0 denote Zuy Pj11S’, and let us
first consider § < 6 < .

Looking at the triangle AS'Pj  uy, we see, using the sine rule, that

sin@ > sinuy, S'T, and similarly for AS'P;j; u,. Therefore we have

sin @ + sin Zuy, Pj1S" > sin Zuy, ST + sin Zuy, S'T
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S'T is a diameter and uj is on C', so we have that AS'Tu; is right-

: |uj,, T :
angled, so sin Zuy, ST = m therefore we have the same equation as for
Lemma 4.1.6:
2
. . jup, — T
sin @ + sin Zuy, Pj1S" > Z m (4.18)
r=1
Also, with the same reasoning as in Lemma 4.1.6 we have:
|u | + |uy| + |us| + |uy] > Diameter of C"
4

Dol = 2(R; - ) (4.19)

k=1
And:

Combining the inequalities of Equations (4.19) and (4.20) into the right
hand side of Equation (4.18) we get:

|, |
4

LA

k=1

sin @ + sin Zuy, Pj1S" > (4.21)

In our proof we have the same reasoning to show that the images of
the uj, under [ must be outside the w; themselves, but we have |u} | <

2(1+ 3V/13)]u},| because of the change in generators and therefore have that

1
sin @ + sin Zu), P; 1S >
ka4 14 2(1 4+ 2VI3) + 21 + 1V13)2 + £(1 + LV/13)°
. (4.22)
13 '
This implies that sin§ > %, and hence

(1+cosf)™' < 1359 (4.23)
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We know C? and C?*!, along with two other curves, bound a fundamental
domain for G, so in particular we have that L(C?) N C?*! = (). L preserves
lines through the origin, so taking the line £ through the origin and P; we
see that the line segment from the point A on C? which is R; — | P;| from the
origin and the point B which is R; + |P;| from the origin is a diameter. We
can see that the image of A under L will be on the line £ and further from

the origin than B. Hence we have:

4 1 ?
—<1+§\/ﬁ> (B; — |Fl) > R;+|Pj]

9
65 + 8v/13
~|P| (4.24)

>
! 47 + 81

By the triangle inequality it is clear that

1 < Pyl + | Pl (4.25)
Finally since the origin lies inside C’ we must have that

|Pj1| < Rj — py (4.26)

Combining the inequalities (4.24), (4.25) and (4.26) we get

8(7 ++/13) IR,

<
M= a5 vz @~ 100

(4.27)

Defining 1" = |ujk,. — u}, | (and hence " < n), we can derive the same

equation as in (4.11):
pi < Ryn(Rj — pj)~H (1 +cos )™ (4.28)

From Equation (4.27) we get that (R; — 11;) " < 35> and combining this
J
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with (4.23) we see that Equation (4.28) becomes

pi < Ryn(Rj—pj)~ (1 +cosf)™

100
. < R 1359

& "9k,

pi < 1-51><10477 (4.29)

We have trivially that (1 + cosf)~! < 1359 for the case that 0 < 6 < %
since cos f is positive in this range. This means that the above holds for all

6.

We now turn our attention to vj. and proving the lemma. The details
of this section are the same as in Lemma 4.1.6, so we look straight at the

following:

2(Rj + Rj1) 2(Rj — Rjy1) + (lvj — xja| + [y — yja])]

Vje
" min R —a? + R —y2+ 2
J+1 J+1 ’ yy J+1 “Yin

(4.30)

By taking a line through the centres of C? and C?™! we can see that R; —
Rj1 < pj+n < (1.51 x 10* + 1)n. From Equation (4.24) we have a relation
between |P;| and R;, and so we have, in a similar way as in Yamamoto’s
proof, for example

2 12V13(V13 + )(5\/_+8)R'
R 389 + 80v/13 g

We have from work in Lemma 4.1.6 that in our case we have |z; — 21|+

ly; — yj+1] < V2 < 1.51 x 10%/2n.

Combining all of these comments together we get from Equation (4.30)
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that
26(389 + 801/13
vje < (389 + 80V13) 2(1.51 x 10* + 1)n + 1.51 x 10*V2p
12¢/13(V13 4+ 1)(5v/13 + 8)
< 2.5x10°, (4.31)

as required. This ends the proof of Lemma 4.2.5
O

We conclude the proof to Lemma 4.2.2 by noting that by defining A
and A, in the same way as before, in that they are sections of the real or
imaginary axes not covered by the boundary of the domains equivalent to
Dj. in Figure 4.5. We have that each of A; and A, lies in a component of
(QH.) NR) U (QIHA') NiR) meeting [—3(2v13+1)%, 2(1V13+1)*] U
i[-2£(3V13+1)*, £(3v13 4 1)*] and so from Lemma 4.2.3 has length less
than 18(1/13 4+ 1)*2.01 /22. From Lemma 4.2.5 we have that v;. < 2.5 x

10788 (113 4+ 1)*2.01 v2e < 9 x 10°,/z. Hence if 0 < & < 5 x 107 then

vje < 8 x 107% as required. O

Finally as in Yamamoto’s proof we let C' be a circle meeting the re-
gion [— (%)4 (14 3V13)°, —(1+ %\/ﬁ)] which is equivalent to C; under the
group generated by [*. The diameter of the image of C' under h. is greater
than

2\* 1 81(1 — ¢)?
he|—(=) (1+2V13)° ) —he = >8x 1073
( <3> s )> (OO)‘ 1381 + 344V/13

Again, since C'is outside (', its image under h. will meet [%\/ 13-1, %\/ 13+41]
twice. Since the distance between image circles C is less (from Lemma 4.2.2)

than the diameter of this circle h.(C) we see that h.(C) meets some C7,
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contradicting that all images of Ci, é{, C, and C’é are disjoint, and hence

the assumption that the group is classical is incorrect.

4.2.2 Generalisation

We now look at adjusting the area above the circles, and see how far the proof
holds. We look to get a two variable family of non-classical Schottky groups.
The key distances in the diagrams of initial choice of curves in the previous
two sections are those along the z-axis, and so we preserve the proximity of
all the curves on the axes, and simply increase the space above and below

the circles in §4.2. We study the following arrangement of SG-curves:

2k-2 ate

2+2a

2k+2

Figure 4.8: The defining curves for a 2-variable family of non-classical Schot-

tky groups.

Where we have k = v/2 + 2a + a®. We keep the same notation as in §4.2,
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and define the curves more precisely as:

C7 = The rectangle with vertices: k—1414(1+a—

(
(

5)
k—1—i(l4+a—%)
—k+1+i(l+a—%)
—k+1—i(l+a—2)

Ci = &)
Cy = {lz+kl=1-¢}
Cy = {lz—kl=1-¢}

We have the following generators for these SG-curves:

k+1.
l,: 2 1z

a—+1

1—¢) ! 1-— 2(1—e)2 -1
U (B ot €t e et

’ (1—e)lz+k(l—g)t
We now show that the group generated by these functions is non-classical,

with particular values of a and . We prove the following:

Theorem 4.0.1 The Schottky group J, . = (la, hae) is non-classical for 0 <

a < 1.4 and for 0 < e < f(a) for some function f.

The function f is given explicitly in Appendix A, but we briefly describe
it here. The function is the quotient of two expressions in integer powers of
a, in integer powers of Vk for k = v/2 +2a + a2 and in J = (ak + 3k +4 +
3a + a?)2 (16k + 7 + 10a — 3a2 — 16a® — 15a* — 6a° — a® + 4k3 + 4ak)?. the
function f is positive increasing for 0 < a < 1.4 and for inputs of this range
of a it outputs numbers of the order of the bounds of ¢ in the two examples

of non-classical Schottky groups in §4.1 and §4.2.
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Proof. The proof follows the same skeleton as Yamamoto’s proof, with differ-
ent details. We assume that the group is classical and look for a contradiction.
We assume the existance of C}, CA’{, Cy and CA’Q which are classical SG-curves
for J,.. We state the lemmas which are equivalents to those in Yamamoto’s
paper, but in some cases we omit the proofs here. The methods of proof are
the same, but the details are more unwieldy, with complicated regions and
numbers. The notations of vj.,u;,. and 7 are as in the previous sections,
and K, is the real line preserving group, (h.,[2). We begin by listing the
equivalents to Lemmas 4.1.4, 4.1.5 and 4.1.6 without proof, and then prove
the equivalent to 4.1.3 afterwards for ease of notation and reading. We con-
tinue to use the notation of £ defined above, and introduce other shorthands.
The key feature is that all the shorthands are purely in terms of the variable

a.

Lemma 4.2.6. The length of each component of (Q(K.)NR)U (QUK.I7')N

iR) which meets the intersection of intervals

(k+1)3 (k+1)3]u.[_(k+1)4 (k+1)*
@+ 12 @+ 12| "' (@tr1)?® (a+1)p

1s less than

2.01(k +1)%/
(1+a)t

V(L4 a)t + 8k2 + 4k(k2 + 1)

Lemma 4.2.7. The length of each component of Q(K.) "R which meets the
region [—k —1,—k + 1] U [k — 1,k + 1] is less than

%\/(1 + a)t + 8k2 + 4k(k? + 1)
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Lemma 4.2.8. If |ujk: — uj1ke| < for at least two k € {1,2,3,4} then

2k(2(X + 1) +V2X)
a+1

ng

where X s defined as:

4kVE/(a+3)k+ K +a+2(k—1)!
2/ /la+3)k + B2 +a+2 — /(1 +a) (@2 — (L +a)p) + 4h(d +a+ F2)

Lemma 4.2.9. For every 1 < j < N,

4.02k(2(X + 1) +2X) (k +
Vie <
J (a+1)°

1)2\/5\/(1 +a)* 4 8k2 + 4k(k2 + 1)

We briefly explain how these tie together to prove the theorem. We let

—(k+1)°
(I+a)*

C be a circle meeting the region [ —k — 1] which is equivalent to C;
under the group generated by [*. The diameter of the image of C' under h,
is greater than

. <M> - hs(oo)‘ - ‘_ —(a+ 1)1 —e)

> 1072
(1+a)t (k+1)°+k(a+1)*

Again, since C' is outside C5 its image under h. will meet [k — 1, k + 1] twice.
The group is non-classical if the diameter of this circle is greater than the
bound on v;. above. That is that the group is non-classical if the following

holds:

4.02k(2(X + 1) +v2X) (k + 1
(a+1)°

2
) \/E\/(l + a)t + 8k2 4 4k(k2 +1) < 1072

This can be rearranged to give the function f in the statement of the theorem,
thus proving that for a given ¢ (dependent on a) we have that J,. is non-

classical.
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Finally we need to show that we have 0 < a < 1.4. Geometrically we

need that v;. is positive, which simplifies to

-1

2+/2

This gives us the bound on a as in the theorem. O

X >

For completeness we give the definition of the function f in Appendix A,

showing how ¢ relates to a.



Chapter 5

Further Work

5.1 Criterion for showing if a Schottky group
is classical

Deciding whether a given Schottky group is classical or non-classical is a very
difficult task, as discussed in §2.3, due to the freedom of choice of generator
set and choice of SG-curves. We would like to be able to tell from any
generator set whether the group is classical or not. One possible way would
be to create an inequality into which we could enter information from the
generator set, and if the inequality holds we have a classical Schottky group.
Given information such as fixed points of the generators, and the multipliers
we could insert this information into an inequality then from this decide if
the group is classical on its given generators. We would expect that large
multipliers with a long distance between fixed points would be classical, and

small multipliers with close fixed points would indicate non-classical.

96
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Taking this general theory and producing such inequalities is not trivial.
We would not expect a complete answer from this method, simply a criterion
for showing if a Schottky group was classical, another for if it was non-
classical, and a grey area in between - that is to say that if a Schottky group
didn’t satisfy the classical inequality then it is not necessarily non-classical,
and vice versa. Having looked at both an inequality to show classicality and
an inequality to show non-classicality we have made some progress on the
former, and so we mention this briefly now.

There is an obvious choice of curves to look at to give classical SG-curves

for given generators, and that is to use isometric circles.

az+b
cz+d?

Definition 5.1.1. Given a loxodromic M&bius tranformation ¢(z) =
ad —bec = 1 we look at circles which are mapped to circles of the same radius
by g. The point o = g~1(00) is the centre of the isometric circle of ¢, and
the point o/ = g(00) is the centre of the isometric circle of g='. We have a
unique circle, I, centred at «, which maps under g to a circle of the same
radius centred at «'. This circle I is called the isometric circle of g and its

image under g, g(I) = I' is the isometric circle of g~ L.

Explicitly given in terms of a,b, ¢ and d we can write the two isometric

|
re{l- il )

If the isometric circles for a Schottky group do not intersect then the

circles as

d
24— =
c

group is classical on its isometric circles.
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If we have generator g; with fixed points a; and a, and multiplier v? and
generator g, with fixed points b; and b, multiplier o2 for a two generator
Schottky group, I' = (g1, g2), we can look to get conditions from isometric
circles. So that we have fewer variables in our inequality we apply a Mobius
transformation to send the fixed points to —1 and 1 for ¢; and —X and X
for some X for g;. From §2.1 we have that the transformations g; and g, can

be written as:

1 -1 1 —1
= _|_ + = J—
(V= v+
) %(XU+XU’1)Z+%X2(U—U’1) (5.2)
z) = )
92 %(a—afl)qu%(XUjLXU*l)

The simple conditions that will ensure that the isometric circles do not
intersect are that the centres of the isometric circles must be more than the

sums of the radii apart. We have six inequalities, one for each pair of circles.

For simplicity, if we have ¢;(z) = % and go(z) = ZZIZ: then these six
inequalities are:
d a 2 d+ d 1 N 1 d d . 1 N 1
c c |e| c le| || c lel ||
d d 2 d a - 1 N 1 a d - 1 N 1
d '] d ¢ le|] || c lel ||

When we substitute in the values of a,b,¢,d,ad',b',¢ and d' from (5.1)
and (5.2) into these inequalities, they simplify to give the following four

inequalities.
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v+ > 2
‘0+0_1‘ > 2
X(o+o DNy—7 D+ +7y DNo—o )] > 2X||y =7 +2|c -0

[X(e+o )y =7 )= (y+y No—a )| > 2X[[y =7+ 2|0 — 07|

If a Schottky group satisfies these conditions then it is classical with its
isometric circles as its SG-curves.
The value of X is simple to find using the original four fixed points

ai, az, by and by. If we let B denote the cross ratio of the four fixed points,

that is B = (#2404 then X = 2B — 1+ 2vB? - B.

As mentioned previously, if generators for a Schottky group do not satisfy
the above equations then that does not mean that the group is non-classical,
just that it is not classical on that generator set on isometric circles.

We now look at an example of a Schottky group satisfying the inequalities

above, but not being classical on isometric circles for the given generators. We

523 (4—30i)z+2254
12 —2iz+(4430)

% and 4 + /15 respectively. The fixed points are % — %ﬁ and % + @

take the Schottky group I'y = < >, then we have multipliers

for the first generator, and 15 — % and 15 — % for the second generator.

Using the calculations above we see that B = % + 9722 anq hence that

2520
X = 3\2/(%(97 + v/47209). We find that the inequalities are all satisfied, and

so we know we have some set of isometric circles which are SG-curves for this
group. The isometric circles however are not necessarily the isometric circles
of the generators of I'; since we have moved the fixed points to +1, +X and

moving back to the fixed points of the generators above will preserve circles,
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but not whether they are isometric circles or not. We actually have isometric
circles for different generators, but these in turn give us SG-curves which are
circles. The isometric circles for the generators of I'; given above intersect,
but we do have classical SG-curves on these generators, as shown in Figure

5.1

Figure 5.1: Classical SG-curves for I'.

The circles in Figure 5.1 are C; = {|z| = 9}, C]
Cy={|z—15+2i| =} and C) = {|z — 15 — 2i| = L.

{lz = 15] = 1},

Initial investigations at improving these inequalities or finding an inequal-
ity to show non-classicality have not yet been sucessful. This is partially due
to the lack of non-classical examples on which to work, but particularly on
the fact that showing a group is non-classical is a more difficult problem than
showing that it is classical.

Finally it is worth noting that this question links to the comments on

iiber-classical Schottky groups in §2.6. An iiber-classical Schottky group
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would be classical on all generators, so regardless of which generator set
we used in improved inequalities we would find that they were satisfied.
We might be able to use improved inequalities to define conditions which
an iiber-classical Schottky group would satisfy, and hence prove or disprove
their existence.

For an iiber-classical Schottky group to exist we would like to be able to
use improved versions of these inequalities to investigate conditions for all

possible generator sets to satisfy the inequalities.
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5.2 Andrews-Curtis Graph

In §2.3.2 we described the three Nielsen transformations which are used to
go from one generator set of a Schottky group to another. We look now at
some questions which come about from thinking about these transformations
in further detail. We turn our attention to a two generator Schottky group,
I', and fix a base generator set as I' = (71, 72). If we have a general generator
set for I' written as (x1,22), where each x; is a word in 71,72, v, " and 75

then we can firstly label the three Nielsen transformations from §2.3.2 as:

A: <.§U1,.§U2> — <.§U2,.ZU1>

B: <.§U1,.§U2> — <.§U1_ ,JZ'2>

C: <.§U1,.§U2> — <$2$1,l‘2>

We can then look at other generator sets for I as being multiple appli-
cations of Nielsen transformations A - C' on (71, 72) due to the theorem of
Nielsen [33] given previously (Theorem 2.2.6).

Any pair of generators that generate our group I' can be thought of as
being our base generator set with a finite number of Nielsen transformations
applied. We are able to write any generator set for [' in terms of applications
of A, B and C to our base generator set (i, 7,), for example, (v5', v271) =
BAC(v1, 7).

It may be of use to consider the graph S(I') constructed in the following

way. The vertex set of S(I') corresponds to pairs of generators for I', where

1

any incidences of zz~! or 27!z have been simplified. Two vertices of S(I")
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are joined by an edge if you can get from one generator set to the other
by A,B or C. The edges corresponding to A and B will not be directed
edges since multiple application of either A or B simply moves back and
forth between two pairs of generators. The edges corresponding to C will
be a directed edge since multiple applications of C' take us further from the
original generator set. The graph will be 4-valent, since at any vertex v we
can apply A, B and C, and there will also be a directed edge coming into the
vertex corresponding to application of C' to a different vertex v’ such that
C(v") = v. The following are some examples of rules that result in cycles on

the graph, including:
ABAB = BABA CBCB = BCBC ACABA =CABCAB
It would firstly be interesting to know in greater detail properties of S(T').

If we take ' to be a classical Schottky group we know from §2.3.2 that
some generator sets for ' may not necessarily have classical SG-curves.
Chuckrow’s construction [13] shows that Nielsen transformations can totally
alter the shape of the SG-curves. It would be interesting to know which ver-
tices of our graph S(I') correspond to generator sets with classical SG-curves.
Let v. be a vertex corresponding to a set of generators for which I is classical
on those generators. Any vertex v; joined to v. by a sequence of A and B
edges will also be classical on those generators, since A and B do not change
the SG-curves. Some vertices joined to v. by sequences including C' may also
be classical as in some cases the method of constructing new SG-curves can
result in circles.

It would be interesting to know the answers to the following:
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e Is the set of classical vertices connected?

e If not, is there a maximum/minimum number of connected classical

sets of vertices?

e For a given base generator set for a classical Schottky group is there a
maximum radius in terms of distinct edges travelled, after which the

vertices correspond to generator sets without classical SG-curves?

A similar construction to this is used in studying the Andrews-Curtis
conjecture, and it is interesting to see the links between the two graphs. We
define the normal closure of a set first, and then state the Andrews-Curtis

conjecture [4].

Definition 5.2.1. The normal closure of a set A in a group G is the smallest

normal subgroup containing A.

Conjecture 5.2.2. Andrews-Curtis Conjecture [4] If F is free on the
generators xy, ..., &, and the normal closure of {ry,...,r,} is F, then r,...,r,

may be changed to xi, ..., z, by a finite sequence of the operations below:
Al @y, ey Gy ey @) = (A ey ooy Q)
B": (ay,...,a,) — (a1 Y, ..., ap)
C": (ay,aq,...,a,) — (aiaz, ag, ..., ay)
1

Dy {ay, ..., an) = (garg™', ..., an) for ged

We can see that these transformations are related to our transformations

A,B and C. A, and B' are just generalisations of our A and B. (' is
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obviously closely linked to our C', with right multiplication rather than left.
Explicitly,

Cl<3§'1, T2y ouny .I'n> = AQBAQBCAQBAQB(.Tl, T2y weny .I'n>

In [8] and [9] the authors introduce the Andrews-Curtis graph, which uses

slightly different, but equivalent transformations:

(1) @1y ey Tiy ey Ty oy ) —> (1, ...,xixfl, ooy Ly ey T
(1) (z1, ey @iy ooey Ty oo, Tpp) — (:rl,...,xix;tl, y Ly ey T
(1) (@1, weey Tiy ooy Th) = (T1y ey Ty L oy )

(V) (@1, ey Tiy ooy Tp) = (T1y ooy T oy ) for weG

These can easily be seen to be equivalent to A} - D;. Operation (iv) is

equivalent to A,D! A’ (iii) is equivalent to A;B’'Al. Depending on the sign

w Ty

in the index of z; we have that

(i) = ALALALC ALALA,
or  ABAAC'AAB A

and that
(i) = A;A’QA;B’C’B’A;A’ZA;
or A;B’A’QA;B’C”B’A;A’ZB’A;

Similarly we can show that A} - D can be written in terms of (i) - (iv).

We can now look at the Andrews-Curtis graph A, (G, N)
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We take a group G and N < G, and look at the graph A, (G, N) where
the vertices are n-tuples of elements in /N which generate N as a normal
subgroup. We join two such vertices of A, (G, N) by an edge if we can obtain
one n-tuple from the other using one of the operations (i) - (iv). The link
with the graph we were looking at for a Schottky group is that if we let the
N = G then the vertex set is those n-tuples which generate G. The edges are
different, since they correspond to combinations of our operations A - C' and
extra edges due to the conjugation edges. The Andrews-Curtis conjecture
can be rewritten as: For n > 2, the Andrews-Curtis graph AN, (F,, F,) is
connected.

The Andrews-Curtis graph and the graph S(I') have many similarities,
and there may be links between the two problems. It may be that one is
a subgraph of the other. In [8] the authors mention that ‘still virtually
nothing is known about the properties of the Andrews-Curtis graph for free
groups’, and it would seem more likely that for any progress to be made with
the classical Schottky group questions mentioned above, progress would first
have to be made with properties of the graph S(I') or the Andrews-Curtis
graph.

This problem also has links to iiber-classical Schottky groups. We could
investigate the question of the existance of such groups via the graph S(I')in
§5.2. As discussed, it would be interesting to know if there is a maximum
radius of classicality to the graph, and if the radius is infinite then we would

have the existance of an iiber-classical Schottky group.



Appendix A

Explicit Formula for ¢

As discussed in §4.2.2 we now give an explicit formula for the bound on ¢ in
terms of a. We set a few preliminary shorthands for complicated expressions

in a; firstly we use k£ to denote the following:

k=vV2+2a+a?

We then define J in terms of ¢ and k as follows:

1

J = (ak+3k+4+3a+a®)?
1
(16k + 7+ 10a — 3a® — 16a® — 15a* — 6a° — a® + 4k + 4ak)®

Our bound on £ will be given in terms of three expressions, A, B and C
which are in terms of a, J and k. We give the three definitions of A, B and
C on the next few pages, and finally give the inequality giving us the bound

on ¢ in terms of A, B and C.
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—31 + 3640a'" + 552a'® + 16a'® + 120a'* — 352a — 3066a®
—1832a* + 3440a° — 18488a° + 5096a'° — 12224a” — 17976a°
—12180a" — 5768a® + a'® + 8404 JVk + 4IVk

—32k — 336ak + 480a° JVE + 40a° JVE + 10084° TV 'k

—4k® + 4a JVE — 8208a"k — 4200a®k — 15200k — 840a°k®
—372a"%k — 564"k — 480a"k> + 840a° JVk — 88200k
—11904a°k — 40ak® — 1800k — 11592a°k — 840a*k?
—480a*k® — 180a*k” — 400’k — 4a"k* — 4a'*k — 4600a°k
+180a>JV'k + 48047 JV'k — 16044k + 40aJVk

+180a%JV'k — 1008a°k® + 170842
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—337918 + 8516a' + 974a'® + 16a'® + 153a'* — 16282264

—674679a® + 3983a'? — 3979981a2 — 153462a° — 39184534°

—9271a" — 1905392a" — 6085238a° — 7176507a* — 63185964¢>

+a'® + 592v2aJVES + 736720 JVE" + 88v2a2 IV K
+88v/2a* JVE® + 16v2a® JVE + 16v/2a® JVE?
+4v 20 IVEB + 420 IVE + 144V 20 JVES
—4976v/2a™ — 112216k 4 680v/2a>JVES — 1976v/2a'k
—477648ak — 136896V/2 — 49824V/2k — 6292k7
—512v/2a'? — 6316k% — 2656v/2k" — 3258000v/2a*
+768V2a2 JVE + 16V2a® JVET + 464V 24 JVET
+4v2a* JVET + 19620 IVE 4 144v/2aJVED
+8vV2a8 TV — 1702144242 + 144v/2aJV KO

+8v2ab JVET + 48V2a° JVET + 448V 2a* IV KD
+192v2a* JVES + 48v2a® JVES + 88v2a? JVET
—280V/2a° k" — 152v/2a k — 40v/2a°k® — 34352a%k3
—5336V/2ak® — 223968V 2ak — 224v/2a%k° — 672v/2ak’
—789160v/2a*k — 24v/2a"® + 124 JVE 4 16a* JVE®
+16a* JVE + 432aJVE3 + 5760 JVE® + 576aJVE"
—678304v/2a — 2778816v/2a® — 266152a"k — 85056a°k
+9136a°k> — 28600k — 196a'' k + 7840a"k* + 3520 JVK?

—19392a°k — 14712440 *k — 10984800’k — 20964ak?
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—15800a*k® + 1612a°k® — 32360a°k® + 3960a%k® + 1344a°k®
+64a’k” + 60a*k” + 24a°k® + 4a°k” + 40" k? + 40"k
+48a' 1k + 483 JVEB + 64 JVE? + 6403 JVEM
—5352v2a%k® — 187226’ k" — 3912v/2ak” — 362120v/2a5k
—161544v/2a"k — 53720v/2a’k — 752448v2a*k — 61450420’k
—12760v2a°k — 510624v/2ak — 3120v2a%k® — 1200724 k°
—720V2a* k" — 168V 2a° kT — 24v/2a5k" — 3448v/24k7
+264a2JVE — 252d°k" — 436a°k° — 32a°kT + 404V 2IVET
+16V2JVE' + 148V2JVET + 164V2JVE + 3124'°k°
+148V2JVE? + 16V2JVEY + 32v2JVE'S — 14642764°k
+272V2JVES + 1496 JVET — 896v/2k° + 7724 TV kD
—13080ak® — 12860ak® — 84a°k® — 600a°k® — 2700a*k®
—1448ak® — 8876ak” — 1252a*k" — 3656a°k” — 32ak"'
—131840v2a” — 1030992v/2a” — 1952848+/2a® — 2873800v/24°
—2848v/2k” + 35202 TV + 32a° TVES + 48.TVEY
+112JVES + 64JVET — 7124k° — 1039132a%k — 96k"!
—7384a%k™ + 524JVk"3 + 25120 JVET + 2504 JVET
+592JVE? + 608JVE + 25120 JVE® + 2808a> IV k?
+1440a* JVET 4 1808a® JVE® + 6004’ JVET — 72960°k°
+144a° TVET +1920° JVES + 2405 TVET + 12207 VkD
—30576v/2a'" — 621272a5k — 421872v/24® — 2012k°
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We then combine these three terms to get our bound on ¢ which depends

only on a:

A
<
= 646416(B + C)




Bibliography

[1]

2]

C.Adams, Mazimal cusps, collars, and systoles in hyperbolic sur-

faces, Indiana Univ. Math. J., 47, (1998), no. 2, 419-437.

G.D.Anderson, M.K.Vamanamurthy and M.Vuorinen, Functional
inequalities for complete elliptic integrals and their ratios, SIAM J.

Math. Anal., 21, (1990), no. 2, 536549,
L.Ahlfors, Conformal Invarients, McGraw-Hill, (1973).

J.J.Andrews and M.L.Curtis, Free Groups and Handlebodies, Proc.
Amer. Math. Soc., 16, (1965), 192-195.

A.F.Beardon, A Primer On Riemann Surfaces, London Mathemat-
ical Society Lecture Note Series, 78, Cambridge University Press,
1985.

L.Bers, Automorphic Forms for Schottky Groups, Advances in
Mathematics, 16, (1975), 322-361.

L.Bers, An Inequality for Riemann Surfaces, Differential geometry

and complex analysis, Springer Berlin, (1985), 87-93.

112



BIBLIOGRAPHY 113

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A.Borovik, E.Khukhro and A.Myasnikov, The Andrews-Curtis Con-
jecture and Black Box Groups, Internat. J. Algebra Comput., 13,
(2003), no. 4, 415-436.

A.Borovik, A.Lubotzky and A.Myasnikov, The Finitary Andrews-
Curtis Congecture, Infinite groups: geometric, combinatorial and

dynamical aspects, Progr. Math. 248, Birkhéuser, (2005), 15-30.

X.Buff, J.Fehrenbach, P.Lochak, L.Schneps and P.Vogel, Moduli
Spaces of Curves, Mapping Class Groups and Field Theory, Amer-
ican Mathematical Society, (2003).

P.Buser, Geometry and Spectra of Compact Riemann Surfaces -

Progress in Mathematics vol. 106, Birkhéduser, (1992).

J.Button, All Fuchsian Schottky Groups are classical Schottky Gro-
ups, Geometry & Topology Monographs, 1, (1998), 117-125.

V.Chuckrow, On Schottky Groups with applications to kleinian gro-
ups, Ann. of Math. (2), 88, (1968), 47-61.

C.Gréacio and J. Sousa Ramos, Rigidity and flexibility for surface
groups, Iteration theory (ECIT ’02), Grazer Math. Ber., Karl-
Franzens-Univ. Graz, Graz, 346, (2004), 157-168.

D.Herron, X.Liu and D.Minda, Ring Domains with Separating Cir-
cles or Separating Annuli, J.Analyse Math., 53, (1989), 233-252.

R.A.Hidalgo, I'-hyperelliptic-symmetric Schottky groups, Complex
Variables Theory Appl., 45, (2001), no. 2, 117-141.



BIBLIOGRAPHY 114

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

F.Herrlich, G.Schmithiisen, On the boundary of Teichmdiller disks
in Teichmailler and in Schottky space, Handbook of Teichmiiller
Theory: Volume 1, European Mathematical Society, (2007), 293
352.

P.Koebe, Uber die Uniformisierung der algebraischen Kurven. II.,

Math. Ann., 69, (1910), no. 1, 1-81.

S.L.Krushkal’, B.N.Apanasov and N.A.Gusevskii, Kleinian Gro-
ups and Uniformization in FExamples and Problems, Translations
of Mathematical Monographs, 62, American Mathematical Society,
(1986).

T.Jorgensen, A.Marden and B.Maskit, The Boundary of Classical
Schottky space, Duke Math. J., 46, (1979), no. 2, 441-446.

J.Jost, Compact Riemann Surfaces, Springer Universitext, (2006).

O.Lehto and K.I.Virtanen, Quasiconformal Mappings in the Plane,
Second Edition, Springer-Verlag, (1973).

E.Makover and J.McGowan, The length of closed geodesic on
random Riemann Surfaces, preprint arXiv:math.DG/0504175v1,
(2005).

Maple 10, (¢) Maplesoft, www.maplesoft.com (2005).

A.Marden, Schottky groups and circles, Contributions to analysis
(a collection of papers dedicated to Lipman Bers), Academic Press,

New York, (1974), 273-278.



BIBLIOGRAPHY 115

[26]

[27]

28]

[29]

[30]

31]

32]

33]

[34]

B.Maskit, A Characterization of Schottky Groups, J. Analyse
Math., 19, (1967), 227-230.

B.Maskit, Comparison of Hyperbolic and Extremal Lengths, Ann.
Acad. Sci. Fenn. Ser. A T Math. 10, (1985), 381-386.

B.Maskit, Kleinian Groups, Springer-Verlag, (1988).

B.Maskit, On spaces of classical Schottky groups, In the tradition of
Ahlfors and Bers (Stony Brook, NY, 1998), Contemp. Math., 256,
Amer. Math. Soc., (2000), 227-237.

B.Maskit, On the topology of classical Schottky space, Complex
manifolds and hyperbolic geometry (Guanajuato, 2001), Contemp.
Math., 311, Amer. Math. Soc., (2002), 305-311.

K.Matsuzaki and M. Taniguchi, Hyperbolic Manifolds and Kleinian
Groups, Oxford University Press, 1998.

C.McMullen, Complex Dynamics and Renormalization, Annals of

Mathematical Studies 135, Princeton University Press, (1984).

J.Nielsen, On calculation with noncommutative factors and its ap-
plication to group theory. (Translated from Danish), The Mathe-
matical Scientist, 6, (1981), no. 2, 73-85.

S.-L.Qiu and M.K.Vamanamurthy, Elliptic Integrals and the Mod-
ulus of Grotzsch Ring, Panamerican Mathematical Journal, 5,

(1995), no. 2, 41-60.



BIBLIOGRAPHY 116

[35]

[36]

[37]

[38]

39]

[40]

[41]

H.Sato, On a Paper of Zarrow, Duke Math. J., 57, (1988), no. 1,
205-209.

P.Schmutz, Riemann surfaces with shortest geodesic of maximal

length, Geom. Funct. Anal., 3, (1993), no. 6, 564-631.

R.J.Sibner, Uniformization of symmetric Riemann surfaces by

Schottky groups, Trans. Amer. Math. Soc., 116, (1965), 79-85.

M.Seppila and T.Sorvali, Geometry of Riemann Surfaces and Te-
ichmaller Spaces, North-Holland Mathematics Studies, 169, North-
Holland, (1992).

S.P.Tan, Y.L.Wong and Y.Zhang, McShane’s Identity for classical
Schottky groups, preprint, arXiv:math.GT/0411628v1, (2004).

H.Yamamoto, An example of a non-classical Schottky group, Duke

Math. J. 63, (1991), no. 1, 193-197.

R.Zarrow, Classical and Non-Classical Schottky Groups, Duke
Math. J., 42, (1975), no. 4, 717-724.



