Meltwater Injections and their Impact on Atlantic Meridional Overturning Circulation and Climate during the time period of Heinrich Event 1 and the Last Deglaciation

By

Jennifer D. Stanford

Thesis for the degree of Doctor of Philosophy

November 2008

UNIVERSITY OF SOUTHAMPTON
UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF OCEAN AND EARTH SCIENCES

Doctor of Philosophy

MELTWATER INJECTIONS AND THEIR IMPACT ON ATLANTIC MERIDIONAL OVERTURNING CIRCULATION AND CLIMATE DURING THE TIME PERIOD OF HEINRICH EVENT 1 AND THE LAST DEGLACIATION

By JENNIFER D. STANFORD

The temporal relationship between meltwater pulse 1a (mwp-1a) and the climate history of the last deglaciation remains a subject of debate. By combining the GRIP δ^{18}O ice core record on the new Greenland Ice Core Chronology 2005 (GICC05) timescale with the U/Th-dated Barbados coral record, it is conclusively derived that mwp-1a did not coincide with the sharp Bølling warming, but with the abrupt cooling of the Older Dryas. To evaluate whether there is a relationship between meltwater injections, North Atlantic Deep Water (NADW) formation and climate change (i.e., the long term change in the average weather), a high-resolution magnetic (κ_{ARM}/κ) proxy record of NADW flow intensity from Eirik Drift, south of Greenland, is presented. A record of mean sortable silt grain sizes (an established proxy for near bottom current flow speed), obtained from the same samples on which the κ_{ARM}/κ was measured, shows remarkable similarity to the magnetic record and validates κ_{ARM}/κ as a proxy for NADW flow intensity. The record of κ_{ARM}/κ indicates only a relatively minor 200-yr weakening of NADW flow, coincident with mwp-1a. This compilation of records also indicates that during Heinrich event 1 (H1) and the Younger Dryas there were no discernible sea-level rises, and yet these periods were characterised by intense NADW slowdowns. Records of planktonic foraminiferal δ^{18}O, as well as lithic and foraminiferal counts from Eirik Drift are combined with previous studies from the Nordic seas and the ‘Ice Rafted Debris (IRD) belt’, and portray a sequence of events through the interval of H1. These events progressed from an onset of meltwater release around 19 ka BP, through the ‘conventional’ H1 phase from ~17.5 ka BP, to a final phase between 16.5 and 14.6 ka BP, characterised by a pooling of fresh waters in the Nordic Seas, which were injected hyperpycnally. This build up of fresh waters was purged from the Nordic Seas, preconditioning the Nordic Seas for convective deep-water formation. This allowed the abrupt re-start of NADW formation in the Nordic Seas at the Bølling warming. In contrast to previous estimates for the duration of H1 (i.e., 1000 years to only a century or two), the total, combined composite signal of H1 presented here had a duration of nearly 4000 yrs (~19–14.6 ka BP), now spanning the established period of NADW shutdown. Clearly, deep-water formation and climate are not simply controlled by the magnitude or rate of meltwater addition. Instead, the results presented here emphasise that the location of meltwater pulses may be more important, with NADW formation being particularly sensitive to surface freshening in the Arctic/Nordic Seas.
CONTENTS

1 Introduction .. 1
 1.1. Rationale 1
 1.2. Thesis layout 3

2 Background .. 5
 2.1. Global Thermohaline Circulation and climate modulation 5
 2.1.1. The THC/MOC stability and climate modulation 8
 2.2. Overview of the climate history of the last glacial cycle 10
 2.3. Dansgaard-Oeschger Cycles and Heinrich Events 13
 2.3.1. Mechanisms for Heinrich Events 20
 2.4. Climate Event Stratigraphy of the Last Deglaciation 25
 2.5. Eirik Drift, south of Greenland: the study setting 31
 2.5.1. Modern oceanographic setting of Eirik Drift 32
 2.5.1.1. Surface Waters 32
 2.5.1.2. Deep and Intermediate Waters - Hunter et al. (2007b) 33

3. Methods .. 37
 3.1. ITRAX-XRF Core Scanning 40
 3.2. Sampling of cores TTR-450 and TTR-451 42
 3.3. Palaeomagnetic and Environmental Magnetic Measurements 44
 3.3.1. Magnetic Susceptibility 44
 3.3.2. Anhysteretic Remanent Magnetisation 46
 3.3.3. Natural Remanent Magnetisation 52
 3.3.4. SIRM and backfield single remanence curves, magnetic hysteresis loops and FORC diagrams. 61
 3.4. Scanning Electron Microscope (SEM) study of magnetic mineral grain sizes 66
 3.5. Sortable silt material, preparation and analyses 67
 3.6. Studies of planktonic foraminifera carbon and oxygen stable isotope ratios, planktonic foraminifera (>150 µm) counts and coarse sediment fraction (>150 µm) counts and analyses 72
 3.6.1. Sampling and preparation 72
 3.6.2. Ice rafted debris counts and total planktonic foraminiferal abundances in the sediment size fraction coarser than 150 µm 73
 3.6.3. Carbon and oxygen stable isotope ratios 76
 3.7. Accelerated Mass Spectrometric (AMS) 14C datings 83
4. Results

4.1. Core descriptions, ITRAX-XRF results, and bulk sediment δ^{18}O.

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1. Description of core TTR-450</td>
<td>86</td>
</tr>
<tr>
<td>4.1.2. Bulk sediment C and O stable isotope ratios for TTR-450</td>
<td>87</td>
</tr>
<tr>
<td>4.1.3. ITRAX-XRF core scanning results for core TTR-450</td>
<td>88</td>
</tr>
<tr>
<td>4.1.4. ITRAX-XRF core scanning reproducibility</td>
<td>96</td>
</tr>
<tr>
<td>4.1.5. Description of core TTR-451, ITRAX-XRF core scanning results and bulk sediment C and O stable isotope ratios</td>
<td>103</td>
</tr>
<tr>
<td>4.1.6. Bulk sediment C and O stable isotope ratios for core TTR-451</td>
<td>104</td>
</tr>
<tr>
<td>4.1.7. ITRAX-XRF core scanning results for core TTR-451</td>
<td>109</td>
</tr>
<tr>
<td>4.1.8. Conclusions</td>
<td>115</td>
</tr>
</tbody>
</table>

4.2. Environmental Magnetic and Paleomagnetic Results for marine sediment cores TTR-450 and TTR-451

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1. Background</td>
<td>116</td>
</tr>
<tr>
<td>4.2.2. Environmental Magnetic Results for Core TTR-450</td>
<td>117</td>
</tr>
<tr>
<td>4.2.3. Paleomagnetic and Directional Magnetic Records for core TTR-450</td>
<td>121</td>
</tr>
<tr>
<td>4.2.4. Environmental Magnetic Results for Core TTR-451</td>
<td>124</td>
</tr>
<tr>
<td>4.2.5. Paleomagnetic and Directional Magnetic Results for core TTR-451</td>
<td>129</td>
</tr>
<tr>
<td>4.2.6. Conclusions</td>
<td>131</td>
</tr>
</tbody>
</table>

4.3. Investigation of the magnetic parameter κ_{ARM}/κ as a measure of magnetic grain size, and comparison with sortable silt grain size data.

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1. Background</td>
<td>133</td>
</tr>
<tr>
<td>4.3.2. κ_{ARM}/κ record for the top ~120 cm of core TTR-451.</td>
<td>134</td>
</tr>
<tr>
<td>4.3.3. Magnetic Grain Sizes: Hysteresis loops, SIRM and backfield remanence curves, and FORC Diagrams.</td>
<td>135</td>
</tr>
<tr>
<td>4.3.4. Scanning Electron Microscope (SEM) study of magnetic grain sizes.</td>
<td>138</td>
</tr>
<tr>
<td>4.3.5. Mean sortable silt measurements versus the magnetic ratio κ_{ARM}/κ as near bottom current flow speed proxies.</td>
<td>146</td>
</tr>
<tr>
<td>4.3.6. Comparison of core top mean sortable silt grain size measurements with near bottom current flow speed.</td>
<td>150</td>
</tr>
<tr>
<td>4.3.7. Conclusions</td>
<td>159</td>
</tr>
</tbody>
</table>

4.4. Records of planktonic foraminiferal δ^{18}O and δ^{13}C, lithic counts and planktonic foraminiferal abundances for marine sediment core TTR-451.

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1. Records of planktonic foraminiferal δ^{18}O and δ^{13}C</td>
<td>165</td>
</tr>
<tr>
<td>4.4.2. Records of planktonic foraminifera abundances and IRD (>150 µm)</td>
<td>167</td>
</tr>
</tbody>
</table>
4.4.3. Conclusions 173
4.5. Age-model and chronology of marine sediment core TTR-451 175
 4.5.1. AMS14C chronology of core TTR-451 176
 4.5.2. Fine-tuning the age-model for core TTR-451 179
 4.5.2.1. TTR-451 age-model between 11 and 15 ka BP 179
 4.5.2.2. TTR-451 age-model below 15 ka BP 182
4.5.3. Validation of the TTR-451 chronology 187
4.5.4. Summary 190

5. Discussion 191
 5.1. Timing of meltwater pulse 1a and climate responses to meltwater injections 193
 5.1.1. Revised ages of mwp-1a and Greenland climate events 195
 5.1.2. Record of $\kappa_{\text{ARM}}/\kappa$ from TTR-451 as a NADW flow intensity proxy 199
 5.1.3. Wider implications 202
 5.1.4. Conclusions 203
 5.2. Do the Sunda Shelf and Barbados timings for mwp-1a agree? 205
 5.2.1. Conclusions 214
 5.3. The Paleoceanographic evolution of Heinrich event 1 in the North Atlantic: A new perspective 215
 5.3.1. Re-evaluation of terrestrial records of ice-sheet and glacier extent, and temperature for the LGM, H1 and the Bølling warming. 218
 5.3.2. The records of Eirik Drift core TTR-451 226
 5.3.3. Comparison of the TTR-451 records from Eirik Drift through H1 with coeval data from the IRD Belt and the Nordic Seas 229
 5.3.4. Investigation of the H1 δ^{18}O light excursions in the Nordic Seas and at Eirik Drift. 231
 5.3.5. A new conceptual model for the Nordic Seas and northern North Atlantic during H1 243
 5.3.5.1. Phase 1. The onset of AMOC collapse (~19 - 17.5 ka BP) 243
 5.3.5.2. Phase 2. The 'main' phase of H1 (17.5 - 16.5 ka BP) 245
 5.3.5.3. The H1 'clean-up' and resumption of the AMOC (16.5 - 14.6 ka BP) 247
 5.3.6. Conclusions 251

6. Conclusions and wider implications 252

7. References 261

Appendices
LIST OF FIGURES AND TABLES

It should be noted that supplementary information, units and citations which are
given in the figure and table captions themselves are not replicated in this listing.

Figures

1.1 Location map of marine sediment cores TTR-450 and TTR-451 2
2.1 Schematic diagram of the global thermohaline circulation 8
2.2 Schematic representation of the Atlantic THC stability with freshwater forcing 9
2.3 a). The Vostok δD ice core record
b, c, d) Records of atmospheric carbon dioxide, methane and dust concentrations measured from air bubbles in the Vostok ice core
e, f, g) The GISP2 δ¹⁸O ice core record and the Ca²⁺ and Mg²⁺ ion series
h) The benthic δ¹⁸O record measured on the species Cibicidoides wuellerstorfi from marine core MD95-2042 and synchronised on the GISP2 timescale.
2.4 a) The GISP2 δ¹⁸O ice core record, with the D-O stadials numbered 0 to 24
b, c, d) The Mg²⁺, K⁺ and Ca²⁺ continentally sourced ion series measured in the GISP2 ice core.
2.5 a, b) The GISP2 ice core δ¹⁸O record and the Byrd ice core δ¹⁸O ice core synchronised using methane concentrations
c, d) The benthic δ¹³C and δ¹⁸O record from the species Cibicidoides wuellerstorfi from Iberian margin marine sediment core MD95-2042
2.6 Schematic representation of the bipolar seesaw 23
2.7 a, b) The GRIP ice core δ^{18}O record and the Ca$^{2+}$ ion series on the latest GICC05 chronology
c) Greyscale record from the Cariaco Basin measured on core PL07-39PC
d) Cariaco Basin SST values calculated from Mg/Ca for the planktonic foraminifera G. ruber from core PL07.
e) 230Pa/231Th record from core GGC5 recovered form the Bermuda Rise, plotted on an inverted axis.

2.8 a) the EDML δ^{18}O ice core record on the GICC05 timescale and the June insolation curve at 65 °N
b) Atmospheric methane concentrations measured in the EDML ice core.
c) The GRIP δ^{18}O ice core record on the GICC05 timescale.
d) The GRIP, GISP2 and NGRIP Ca$^{2+}$ ion series plotted on the GICC05 timescale.

2.9 Map of the North Atlantic region showing the location of surface water currents and surface water circulation.

2.10 Map of the North Atlantic region showing the water masses contributing to the formation of North Atlantic Deep Water

3.1 Regional bathymetric map of Eirik Drift, south of Greenland

3.2 Summary flow diagram of the analyses performed, and the sampling techniques used, on sediments from cores TTR-450 and TTR-451

3.3 Schematic diagram illustrating the sampling of the top two sections of core TTR-451. U-channel 3 was a 0.5 cm thick filled u-channel lid.

3.4 Volumetric low-field magnetic susceptibility obtained from 2 cm3 subsamples from u-channels

3.5 Representative ARM AF demagnetisation curves for core TTR-450.

3.6 Representative ARM AF demagnetisation curves for core TTR-451.

3.7 Continuous u-channel ARM measurements from core TTR-451.
3.8 Comparison of the continuous u-channel and discrete sample ARM data, measured after stepwise AF demagnetisation treatment at 20, 25 and 30 mT.

3.9 Directional vector components of the geomagnetic field.

3.10 Representation NRM AF demagnetisation intensity decay curves for core TTR-450.

3.11 Representation NRM AF demagnetisation intensity decay curves for core TTR-451.

3.12 Representative Zijderveld diagrams of discrete sediment samples from cores TTR-450 and TTR-451.

3.13 Continuous u-channel NRM measurements from core TTR-451.

3.14 Comparison of the continuous u-channel and discrete sample NRM data, measured after stepwise AF demagnetisation treatment at 20, 25 and 30 mT.

3.15 An example major magnetic hysteresis loop and SIRM and backfield single remanence curves from sample TTR-451 2-7.

3.16 Location map of the study region.

3.17 Summary flow diagram of the preparation techniques for sortable silt analyses.

3.18 The >150 µm size fraction sample from core TTR-451, showing some of the key lithic grains.

3.19 Plot of carbonate sample weight versus the reference gas volume.

4.1 The key ITRAX-XRF core scanning results for the elements K, Ca, Ti and Fe (a-e), bulk sediment carbon (δ¹³C) and oxygen (δ¹⁸O) stable isotope ratios, and the core log for core TTR-450.

4.2 Cross-plot of the K and Ca intensities in counts per second (cps).

4.3 Ratios of Fe/Ti (a), Fe/K (b), Ti/K and Ca/K for core TTR-450.

4.4 Cross-plot of the Ti and Fe intensities.
4.5 Cross-plots of the K intensity versus the Fe intensity and the Ti intensity

4.6 Comparison of Ca, K, Ti and Fe intensity data from two datasets acquired in an identical manner from section 4 of core TTR-450.

4.7 Cross-plots of the calcium, potassium, titanium and iron datasets 1 and 2 (re-run) for each element, which were acquired from section 4 of core TTR-450.

4.8 Frequency distribution histograms showing the Ca, K, Ti and Fe intensities for datasets 1 and 2 acquired from section 4 of core TTR-450.

4.9 Cross-plots of the calcium, potassium, titanium and iron datasets 1 and 2 (re-run) for each element, which were acquired from section 4 of core TTR-450.

4.10 The key ITRAX-XRF core scanning results for the elements K, Ca, Ti and Fe, bulk sediment carbon (δ^{13}C) and oxygen (δ^{18}O) stable isotope ratios and the core log for core TTR-451.

4.11 The bulk sediment stable oxygen (δ^{18}O) and carbon isotope (δ^{13}C) records for core TTR-451.

4.13 Cross-plot of the K and Ca intensities

4.14 Ratios of Fe/Ti (a), Fe/K (b), Ti/K and Ca/K for core TTR-451.

4.15 Cross-plot of the Ti and Fe intensities

4.16 Cross-plots of the K intensity versus the Fe intensity and the Ti intensity

4.18 Environmental magnetic and paleomagnetic records from core TTR-450 acquired from discrete sediment samples.

4.19 Cross-plot of κ and κ_{ARM} values of discrete sediment samples from core TTR-450.

4.20 Cross plot of the NRM/ARM and NRM/κ data for core TTR-450.
4.21 Environmental magnetic and paleomagnetic records from core TTR-451 acquired from discrete sediment samples.

4.22 Cross-plot of \(\kappa \) and \(\kappa_{\text{ARM}} \) discrete sediment sample data from core TTR-451.

4.23 Cross plot of the NRM/ARM and NRM/\(\kappa \) data for core TTR-450.

4.24 Record of component declination angles for core TTR-451.

4.25 The low-field magnetic susceptibility (\(\kappa \)) record for the upper 120 cm of core TTR-451, the susceptibility of anhysteretic remanent magnetisation (\(\kappa_{\text{ARM}} \)), and the ratio of \(\kappa_{\text{ARM}}/\kappa \).

4.26 Cross-plot of the \(\kappa \) and \(\kappa_{\text{ARM}} \) data from discrete samples recovered from the upper 120 cm of core TTR-451.

4.27 The magnetic susceptibility, \(\kappa_{\text{ARM}} \), and \(\kappa_{\text{ARM}}/\kappa \) records for the upper \(\sim \)120 cm of core TTR-451.

4.28 Magnetic mineral analyses of eight sediment samples from the top \(\sim \)120 cm of core TTR-451. Magnetic hysteresis loops and SIRM and backfield single remanence curves are shown, along with the corresponding FORC diagram.

4.29 Magnetic hysteresis ratios \(M_r/M_s \) versus \(H_r/H_c \) reported on a Day diagram for core TTR-451.

4.30 Cross-plot of average magnetic grain size indicators \(\kappa_{\text{ARM}}/\kappa \) versus the hysteresis parameters \(M_r/M_s \).

4.31 An example SEM image from sample TTR-451 2-14.

4.32 Cross-plot of the percentage area of the polished thin section covered by (titano)magnetites versus the magnetic measurement \(\kappa_{\text{ARM}} \).

4.33 Cross-plot of the magnetic proxy \(\kappa_{\text{ARM}}/\kappa \) for (titano)magnetite average grain sizes versus measured (titano)magnetite grains sizes using SEM image analysis.

4.34 Comparison of sortable silt grain size distributions and mean sortable silt grain sizes of duplicate results for a selection of samples analysed at the beginning and end of each batch.
4.35 Comparison of the κARM/κ record and mean sortable silt grain sizes for the top ~120 cm of core TTR-451.

4.36 Results of the sortable silt grain size analyses for a selection of samples.

4.37 Cross-plot of the κARM/κ and mean sortable silt values for the upper ~120 cm of core TTR-451.

4.38 Normalised κARM/κ and mean sortable silt records for the upper ~120 cm of core TTR-451.

4.39 Histogram plot of the scaled κARM/κ and mean sortable silt data.

4.40 Cumulative probability distribution function of the κARM/κ and mean sortable silt data.

4.41 Velocity profiles calculated from LADCP data for the D298 CTD stations nearest the sites for cores TTR-451, TTR-450, D298-P1 and D298-P3.

4.42 Cross-plot of the core top mean sortable silt grain sizes versus the mean scalar velocities of the two nearest CTD stations to the core sites.

4.43 a, b, c) Records of 'whole-core' and discrete sample magnetic susceptibility data for core TTR-451, and a comparison of the δ18O_{npl} record with δ18O_{gb} data, as well as the global ice volume corrected δ18O_{npl} record. Also, the δ13C_{npl} record is compared to δ13C_{gb} data.

d, e) The total number of planktonic foraminiferal tests >150 µm per gram of dried sediment and their flux.

f, g) The number of lithic grains and ash free lithic grains >150 µm per gram of dried sediment and their flux >150 µm cm^{-2} yr^{-1}.

h) The number of shards of volcanic glass and basaltic glass >150 µm per gram of dried sediment.

i, j, k) The numbers of hematite stained grains, detrital carbonate and igneous grains >150 µm per gram of dried sediment.
4.44 a) Records of 'whole-core' and discrete sample magnetic susceptibility data for core TTR-451.
b) The $\delta^{18}O_{\text{npl}}$ record is compared to $\delta^{18}O_{\text{gb}}$ data
c) The $\delta^{13}C_{\text{npl}}$ record is compared to $\delta^{13}C_{\text{gb}}$ data.
d, e) The numbers of lithic grains and ash free lithic grains >150 μm per gram of dried sediment and their fluxes
f, g, h) The percentage compositions of volcanic glass, hematite stained grains, detrital carbonate and igneous grains

4.45 AMS14C calibration plots generated using Calib5.0.1.

4.46 a) Depth versus age plot for core TTR-451.
b) Magnetic susceptibility records for TTR-451
c, d) The GRIP and GISP2 ice core δ^{18}O records plotted versus the new GICC05 timescale based on layer-counting.

4.47 a) The whole-core magnetic susceptibility (κ) record for TTR-451 and the GRIP δ^{18}O ice core record versus GICC05 age.
b) These records are cross-plotted.

4.48 a) The magnetic susceptibility (κ) records for TTR-451 and the hybrid Greenland ice core air-temperature proxy record plotted versus GICC05 age.

4.49 a) The de-trended magnetic susceptibility (κ) records for TTR-451 and the hybrid Greenland ice core air-temperature proxy record plotted versus GICC05 age.
b) The de-trended discrete sample magnetic susceptibility (κ) data are cross-plotted versus the GRIP + GISP2 hybrid ice core data.

4.50 a) Depth versus age plot for core TTR-451.
b) The magnetic susceptibility records for TTR-451.
c, d) The GRIP and GISP2 ice core δ^{18}O records plotted versus the new GICC05 timescale based on layer-counting.
e) The GRIP and GISP2 δ^{18}O records are combined to form a regional air-temperature proxy in unit standard deviation.

4.51 a) The GRIP ice core δ^{18}O record plotted versus the new GICC05 timescale based on layer-counting.
b) counts of lithic fragments, larger than >150 μm, per gram dry sediment weight in Eirik Drift core TTR-451.
c) Record of K_{ARM}/K for Eirik Drift core TTR-451 from discrete samples and whole core measurements presented alongside the 231Pa/230Th record of core GGC5.
d) Records of palaeointensity for cores TTR-451 and PS 2644-5.
e) Right coiling vs. left coiling $N. pachyderma$ for core TTR-451.
5.1 Location of core TTR-451. Also shown are the locations of marine core GGC5 and the GRIP ice core drill site.

5.2 a) The GRIP ice core \(\delta^{18}O\) record.
b) The sea-level record based on U/Th-dated corals from Barbados.

5.3 a) The GRIP ice core \(\delta^{18}O\) record plotted versus the previous (modelled) ss09sea timescale and the new GICC05 timescale based on layer-counting.
b) The sea-level record based on U/Th-dated corals from Barbados.
c) Record of rate of sea-level change, determined as the first time derivative of the solid line in (b).
d) Counts of lithic fragments, larger than 150 \(\mu m\), per gram dry sediment weight in Eirik Drift core TTR-451.
e) Record of \(\kappa_{ARM}/\kappa\) for Eirik Drift core TTR-451 from discrete samples.

5.4 a) The GRIP ice core \(\delta^{18}O\) record on the GICC05 timescale on the basis of layer-counting.
b) The U/Th-dated Acropora palmata corals from Barbados in black, which are corrected for a constant uplift of 0.34 m kyr\(^{-1}\), and the \(^{14}C\) dated Sunda Shelf sea level record.

5.5 a) The GRIP ice core \(\delta^{18}O\) record on the GICC05 timescale on the basis of layer-counting.
b) The U/Th-dated corals from Barbados in black, which are corrected for a constant uplift of 0.34 m kyr\(^{-1}\).

5.6 a) The GRIP ice core \(\delta^{18}O\) record on the GICC05 timescale on the basis of layer-counting.
b) The U/Th-dated corals from Barbados in black, which are corrected for a constant uplift of 0.34 m kyr\(^{-1}\).

5.7 Map of the North Atlantic showing the core sites and the likely surface and deep hydrographies for the LGM.

5.8 a) The EPICA Dronning Maud Land record on the GICC05 timescale and the northern hemisphere summer insolation at 65 °N.
b) The GRIP + GISP2 composite \(\delta^{18}O\) ice core record in unit standard deviation on the GICC05 timescale.
c) The difference between the GRIP and NGRIP ice core \(\delta^{18}O\) records.
d) The concentration of Ca\(^{2+}\) (p.p.b.) in the Greenland ice cores.
e) Composite sea-level record.
5.9 The GRIP ice core δ^{18}O record plotted versus the GICC05 timescale.

c) Records of the flux of planktonic foraminifera >150 μm cm$^{-2}$ yr$^{-1}$ for core TTR-451 and the number of planktonic foraminifera >150 μm per gram of dry sediment for core SU90-09.

d) Records of the flux of ash free lithic grains cm$^{-2}$ yr$^{-1}$ (purple) and total lithic grains cm$^{-2}$ yr$^{-1}$ for core TTR-451.

e) δ^{18}O$_{npl}$ records for TTR-451 and SU90-09.

f) Abundance of basaltic grains in core TTR-451.

g) δ^{18}O$_{npl}$ records for TTR-451 and MD95- 2110.

h) Record of κ_{ARM}/κ for Eirik Drift core TTR-451 (in black).

5.10 Benthic and planktonic δ^{18}O records for core MD95-2010 for H4 and H6, generated from *C. teretis* and *N. pachyderma*.

5.11 Melt water volume, in terms of its contribution to global sea level rise, versus its average suspended particle concentration values (C_{av}) for scenarios 1 and 2. The scenarios are defined in the main text.

5.12 Schematic diagrams of the evolution of H1 in the Nordic Seas and the North Atlantic.

6.1 a) The κ_{ARM}/κ record for NADW intensity from TTR-451, scaled to AMOC strength, assuming that the Bølling AMOC intensity equals 75% of the modern AMOC strength, along with the freshwater forcing in Sv derived from the Barbados sea level record.

b) A cross-plot of the derived AMOC intensity versus freshwater forcing.
Tables

3.1 AMS14C samples from cores TTR-450 and TTR-451. 83

4.1 Variance analyses between datasets 1 and 2 for the calcium, potassium, titanium and iron elemental data (n = 1219). 101

4.2 Magnetic properties of sediment samples from core TTR-451. 140

4.3 Selected results from the SEM image analyses. 147

4.4 Results of the statistical analysis of the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt grain size data. 159

4.5 AMS14C measurements from monospecific samples of *N. pachyderma*, left-coiling, and their calibrated (calendar) ages for core TTR-451. 177

5.1 U/Th and 14C ages of the samples identifying meltwater pulse 1a in the Barbados coral record. 198

5.2 Sunda Shelf and Vietnamese Shelf AMS 14C datings. 207

5.3 Volumes of freshwater required to be mixed with the sediment loads in order for the meltwaters to plunge subsurface (ie., for the average suspended particle loads to exceed the critical particle concentration (C_c)). $C_c = 43.5$ kg m$^{-3}$. 239

5.4 Average suspended particle concentrations values (C_{saw}) calculated from mixing the estimated sediment volumes for each scenario with the meltwater volume derived from Equation 5.1. 240
DECLARATION OF AUTHORSHIP

I, JENNIFER DAWN STANFORD, declare that the thesis entitled “Meltwater injections and their impact on Atlantic meridional overturning circulation and climate during the time period of Heinrich event 1 and the last deglaciation” and the work presented in the thesis are both my own, and have been generated by me as the result of my own original research. I confirm that:

• this work was done entirely or mainly whilst in candidature for a research degree at this University;

• where any part of the thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;

• where I have consulted the published work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on the work done by myself jointly with others, I have made clear exactly what was done by the others and what I have contributed myself;

• parts of this work have been published as:

Signed:

Date:
ACKNOWLEDGEMENTS

The author would like to acknowledge and thank the following:

The crew and scientists onboard RV Professor Logachev during the cruise TTR-13 and the RRS Discovery during cruise D298.

Professor Eelco J. Rohling for his insightful comments and for his help in formulating ideas. The author would also like to thank Dr. Sheldon Bacon and Professor Dorrik A. V. Stow, who have co-supervised this thesis, Professor Alan Kemp who was her panel chair, and Dr. Samantha Gibbs and Mr. Adrian Lester who proof read chapters.

Sincere thanks are extended to Mr. Mike Bolshaw, Mr. Ross Williams, Dr. Richard Pearce, Dr. Guy Rothwell, Mr. Robert Jones and Mr. John Ford for their advice and help with analytical procedures and data acquisition. The author would also like to acknowledge Professor Andrew P. Roberts and Dr. Christopher Rowan for their analytical advice and help with the interpretation of the magnetic data, Professor Pieter M. Grootes and Leibniz Labor, Kiel, for the AMS14C datings, BOSCORF for use the ITRAX core-scanner and their facilities, and Dr. Ian R. Hall and Helen Medley at the School of Planetary, Earth and Ocean Science at Cardiff University for the use of the Multisizer 3 coulter counter and for their help with the sortable silt grain size analyses.

Professor Eelco J. Rohling, Professor Andrew P. Roberts, Dr. Sally Hunter, Dr. Sune O. Rasmussen, Professor Edouard Bard and Professor Rick Fairbanks, who contributed helpful ideas and data for Stanford et al. (2006).

On a personal note, the author would like to thank her close friends and family for their support.

This study was funded as part of the NERC Rapid Climate Change Program under Grants NER/T/S/2002/00453 and NER/T/S/2002/00436.
Frequently Used Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AABW</td>
<td>Antarctic Bottom Water</td>
</tr>
<tr>
<td>AAIW</td>
<td>Antarctic Intermediate Water</td>
</tr>
<tr>
<td>AMOC</td>
<td>Atlantic Meridional Overturning Circulation</td>
</tr>
<tr>
<td>AMS(^{14})C</td>
<td>Accelerated Mass Spectrometric (^{14})C</td>
</tr>
<tr>
<td>ARM</td>
<td>Anhysteretic Remanent Magnetisation</td>
</tr>
<tr>
<td>CGFZ</td>
<td>Charlie Gibbs Fracture Zone</td>
</tr>
<tr>
<td>DSOW</td>
<td>Denmark Strait Overflow Water</td>
</tr>
<tr>
<td>DWBC</td>
<td>Deep Western Boundary Current</td>
</tr>
<tr>
<td>EGC</td>
<td>East Greenland Current</td>
</tr>
<tr>
<td>EGCC</td>
<td>East Greenland Coastal Current</td>
</tr>
<tr>
<td>FORC</td>
<td>First Order Reversal Curve</td>
</tr>
<tr>
<td>H1</td>
<td>Heinrich event 1</td>
</tr>
<tr>
<td>IRM</td>
<td>Isothermal Remanent Magnetisation</td>
</tr>
<tr>
<td>ISOW</td>
<td>Iceland-Scotland Overflow Water</td>
</tr>
<tr>
<td>LGM</td>
<td>Last Glacial Maximum</td>
</tr>
<tr>
<td>LSW</td>
<td>Labrador Sea Water</td>
</tr>
<tr>
<td>MOC</td>
<td>Meridional Overturning Circulation</td>
</tr>
<tr>
<td>NAD</td>
<td>North Atlantic Drift</td>
</tr>
<tr>
<td>NADW</td>
<td>North Atlantic Deep Water</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Remanent Magnetisation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SIRM</td>
<td>Saturated Remanent Magnetisation</td>
</tr>
<tr>
<td>SQUID</td>
<td>Superconducting Quantum Interference Device</td>
</tr>
<tr>
<td>THC</td>
<td>Thermohaline Circulation</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>XRF</td>
<td>X-Ray Fluorescence</td>
</tr>
</tbody>
</table>
CHAPTER 1

1. INTRODUCTION

1.1. Rationale

It has been widely speculated that fresh water additions in the North Atlantic would result in decreased rates of North Atlantic Deep Water (NADW) formation, reducing the poleward oceanic heat transport (e.g., Stommel, 1961; Rooth, 1982; Broecker, 1991). Palaeoceanographic inferences drawn from studies of deep-sea cores, as well as ocean-atmosphere models, give support to this hypothesis (e.g., Boyle and Keigwin, 1987; Broecker, 1994; Sarthein et al., 1994; Keigwin & Lehman, 1994; Rahmstorf, 1994; 1995; Schiller et al., 1997; Bianchi & McCave, 1999; Curry et al., 1999; van Kreveld et al., 2000; Ganopolski and Rohmstorf, 2001; McManus et al., 2004; Rahmstorf et al., 2005; Robinson et al., 2005; Marchitto et al., 2007; Peck et al., 2007a, b; Keigwin and Boyle, 2008). Observations of present–day surface freshening around the Arctic and the Nordic Seas (e.g., Lindsay & Zhang, 2005; Rignot and Kanagaratnam, 2006), and recent inferences of reduced NADW formation (e.g., Bryden et al., 2005), underline the need to better understand the ocean/climate relationship in both the past and the present day context.

Given this requirement to further our knowledge on how the ocean-climate
system responds to North Atlantic freshwater injections, this thesis aims to provide new insight into past oceanic responses to meltwater injections, focussing on the time period of Heinrich Event 1 (dated at around 17.5-16 ka BP) (ka BP refers to thousands of years before 1950 AD) (e.g., Bard et al., 2000; Hemming, 2004) and the last deglaciation, during which time period northern hemisphere climate (e.g., Grootes and Stuiver, 1997; Stuiver and Grootes, 2000; Johnsen et al., 2001; Rasmussen et al., 2006) and ice sheet volumes (e.g., Fairbanks, 1989; 1990; Bard et al., 1990a, b; 1996; Peltier and Fairbanks, 2006) fluctuated rapidly.

Figure 1.1 Location map of marine sediment cores TTR-450 and TTR-451 (bathymetry is from the GEBCO Digital Atlas published by the British Oceanographic Data Centre on behalf of the Intergovernmental Oceanographic Commission of UNESCO (IOC) and the International Hydrographic Organisation (IHO) (2003)). The 1000, 2000 and 3000 (heavy, black) contours are denoted.

This report presents new insights from the study of marine sediment cores TTR13-AT450G and TTR13-AT451G (hereafter TTR-450 and TTR-451) recovered from Eirik Drift, south of Greenland (Figure 1.1). This site is sensitive to changes in both deep and surface water hydrography in relation to the outflow
from the ‘critical’ regions of NADW formation, the Arctic and Nordic Seas (e.g., Dickson and Brown, 1994; Bacon, 1998; 2002). Proxy records generated from core TTR-451 are compared with previously published datasets from around the North Atlantic, and allow the synthesis of ocean-wide reconstructions. This has provided an impact assessment for the oceanographic changes associated with ice sheet volume reductions (meltwater injections) that occurred during the time period of H1 and the last deglaciation. Insight has also been gained into the how linearly the Atlantic Meridional Overturning Circulation (AMOC) and climate responded to very different magnitudes and rates of North Atlantic meltwater injections (i.e., whether the amount of decrease in AMOC intensity was directly proportional to the amount of freshwater forcing). Better constraints on the timing and impact of deglacial meltwater injections are needed in order to provide a more robust test bed for coupled ocean-climate models.

1.2. Thesis layout

The next chapter outlines the context of the study presented in this thesis, by presenting an overview of existing literature on (1) the global thermohaline circulation and its role in climate modulation, (2) the climate history of the last glacial cycle and the last deglaciation, (3) the mechanisms for the climate transitions during the last glacial cycle (based upon evidence from palaeo-records and ocean-climate models) and (4) the deep and surface water hydrographies around Eirik Drift/Cape Farewell, south of Greenland. The overview of the deep water hydrographies has been largely published by Hunter et al. (2007a) as a Geological Society, London, Special Publications, for which the author of this thesis was a co-author and contributed by aiding the interpretation of the geophysical data used.

Chapter 3 describes the location of cores TTR-450 and TTR-451, and the laboratory methods which were used in this study. An overview of the equipment used is provided in this chapter, along with a critical assessment of the sampling methods and laboratory techniques employed for the generation of the proxy records.
Chapter 1. Introduction

The fourth chapter presents the results from this study, which include sedimentary core descriptions, core scanning X-ray fluorescence (XRF) counts, environmental magnetics and palaeomagnetics, bulk and planktonic foraminiferal stable carbon and oxygen isotope ratios, lithic (ice-rafterted debris – IRD) and total planktonic foraminiferal counts, mean sortable silt grain size analyses and Accelerated Mass Spectrometric (AMS)\(^{14}\text{C}\) datings. The development of the age-model for core TTR-451 is presented in sub-chapter 4.5. The magnetic susceptibility data was generated in part by Dr. Sally Hunter.

Chapter 5 provides discussion on three key areas of research. The first section entitled ‘The timing of mwp-1a and climate responses to meltwater injections’ was largely published in *Paleoceanography* (Stanford et al., 2006). For reference, a copy of the published paper is provided in the Appendix 4 to this thesis. This piece of work was done in collaboration with E. J. Rohling, S. E. Hunter, A. P. Roberts, S. O. Rasmussen, E. Bard, J. McManus, and R. G Fairbanks. The second section focuses upon the timing of mwp-1a in the Barbados and Sunda Shelf sea level records. Presented in this section is a careful re-evaluation of the Sunda Shelf record in order to reconcile these two sea level indicators. The final section presents a new concept for the sequence of events that were associated with Heinrich event 1 in the northern North Atlantic and the Nordic Seas. Here, proxy records from TTR-451 are compared with other well-dated surface ocean and climate records.

The appendices of this thesis include: calibration plots of the AMS\(^{14}\text{C}\) datings from the Sunda and Vietnamese Shelves (appendix 1), and a digital appendix which provides the data used within this thesis (appendix 2).
Chapter 2

2. Background

2.1. Global Thermohaline Circulation and climate modulation

The Thermohaline Circulation (THC) globally redistributes heat, and it is also critical for distribution of carbon and nutrients (e.g., Broecker, 1991; Dickson and Brown, 1994; Ganachaud and Wunsch, 2000). The THC is driven by a combination of wind stress, convection, and (tidal) mixing/turbulence, resulting in a process of high-latitude sinking of relatively saline surface waters to form intermediate and deep water masses and upwelling at low latitudes and in the Pacific (e.g., Broecker, 1991; Wunsch, 2002). Nearly all but the top 100 m of the oceans is stratified and stable, hence returning the deep water masses to the surface requires turbulent mixing and Ekman divergence via wind stress and tidal stirring (Wunsch, 2002). In general, upwelling of the deep-water masses occurs in the Indian and Pacific Oceans, which returns as relatively warm surface currents. Often used incorrectly as a synonym for the THC, the Meridional Overturning Circulation (MOC) is a closely related concept, which refers to the north-south flow as a function of depth and latitude, including the wind-driven processes, and Ekman and meridional overturning cells (Rahmstorf, 2003).

The THC is primarily driven by high-latitude cooling and sinking of surface
water masses (e.g., Broecker, 1991; Dickson and Brown, 1994). In the North Atlantic, relatively warm and saline surface waters are transported northeast across the North Atlantic, from the tropics to the Nordic Seas and Arctic, via the wind driven Gulf Stream and the density/thermohaline driven North Atlantic Drift (NAD) (e.g., Schmitz and McCartney, 1993) (Figure 2.1). Transporting up to 10^{15} W of heat (Ganachaud and Wunsch, 2000), the Gulf Stream/NAD is thought to maintain temperatures in Northwest Europe at around 5-8 °C warmer than if it were ‘switched off’ (Broecker, 1991; Seager et al., 2002). At high latitudes within the northern North Atlantic, wind driven evaporative cooling releases the heat carried within the Gulf Stream/NAD to the atmosphere, causing surface water masses to become not only colder, but also more saline. These surface waters therefore become denser than the surrounding water masses, and resultant convective instability causes them to sink to form intermediate and deep water (e.g., Broecker, 1991; Wunsch, 2002).

Primarily a process that occurs within the Nordic Seas, the evaporative cooling of the Gulf Stream/NAD results in the formation of North Atlantic Deep Water (NADW) (e.g., McCartney, 1992; Dickson and Brown, 1994; Rudels et al., 2002; Bacon, 2002). Other localised key sites of deepwater formation as a result of convective processes include: the Labrador Sea, forming Labrador Sea Water (LSW); the Mediterranean Sea, forming the Mediterranean Outflow current; and the Weddell Sea and Ross Sea, forming Antarctic Bottom Water (AABW) (e.g., Wust, 1935; Worthington, 1976; Schmitz and McCartney, 1993; Dickson and Brown, 1994; Schmitz, 1996; Pickart et al., 2003). These deep waters spread out at depth. Generated from partial freezing, AABW is the coldest and densest of the deep-water masses (Wust, 1935; Dickson and Brown, 1994). A further important water mass is Antarctic Intermediate Water (AAIW), however, its method of formation is still debated (e.g., Wust, 1935; Santosa and England, 2004 and references therein). The intermediate and deep water masses in the vicinity of Eirik Drift spread out at depth, and Coriolis force causes westward intensification of the currents, forming the so-called Deep Western Boundary Current (DWBC) (review in Hunter et al., 2007a, b).
Chapter 2. Background

The Nordic Seas are bounded to the south by the Denmark Strait (~640 m deep sill) and the Iceland-Scotland Ridge (~450 m deep sill and ~850 m deep in the Faroe Bank Channel), and NADW overflows these ridges as Denmark Strait Overflow Water (DSOW) and Iceland-Scotland Ridge Overflow water (ISOW) respectively, before mixing with other water masses to form the DWBC (e.g., Bacon, 1998; Bacon, 2002; Hunter et al., 2007b). However, the mechanisms that govern NADW overflow over the topographic high of Denmark Strait remains poorly understood (review in Bacon, 2002), with suggestions of intermediate waters forming from; (a) deep winter mixing (Swift, 1986), (b) the mixing within the East Greenland Current and the western Greenland Sea gyre (Strass et al., 1993), (c) the mixing of deep Arctic waters with re-circulated Atlantic waters carried in the lower portion of the EGC (Rudels et al., 1998; 2002), and (d) the transformation of Atlantic waters that are circulated around the Arctic, giving the water mass the properties of DSOW, and separate to the EGC (Mauritzen, 1996). It seems unlikely however, that DSOW overflows the Denmark Strait with the properties (density) of fully formed NADW (Bacon, 2002). The combined southward outflow of NADW from the Nordic Seas is compensated in terms of mass balance by the northward inflow of the Gulf Stream/NAD (e.g., Schmitz and McCartney, 1993).

In essence, the global THC is driven by the thermal, and hence density gradients between equator (warm and less dense) and pole (cold and more dense). Zones of higher surface water salinity occur in evaporative regions i.e. the tropics and subtropics, and impart an influence upon the equator-pole density gradient. The effect of salinity therefore makes the THC into a non-linear and bistable system (e.g., Rahmstorf, 2000) (Figure 2.2). Using a simple box model, Stommel (1961) was the first to demonstrate that increasing salinity at high-latitudes (deep-water formation regions) would invigorate the THC and increase the flow of saline waters to high-latitude regions, thereby forming a positive feedback loop. Based upon this observation, it is suggested that increased wind stresses within the subpolar gyre would locally increase surface water salinity, which would have stabilising effect on the THC (Schiller et al., 1997; Timmermann and Goose, 2004).
Figure 2.1. Schematic diagram of the global thermohaline circulation (modified after Broecker, 1991). Warm surface currents are represented in orange, and deep/bottom water currents in blue. Shaded blue zones indicate the key areas of deep-water formation.

2.1.1. The THC/MOC stability and climate modulation

The stability of the MOC in ocean circulation models has been described in terms of the strength of the MOC versus freshwater forcing/reduced salinity in the northern Atlantic (e.g., Rahmstorf, 1995; 2002; Manabe and Stouffer, 2000; Rahmstorf and Ganopolski, 1999; Rahmstorf et al., 2005). Results from ocean-circulation models show that with reduced northern Atlantic salinity, the MOC intensity is eventually reduced to a complete shutdown, and that it recovers with increasing salinity along a different pathway, forming a hysteresis loop (e.g., Rahmstorf, 1995; Rahmstorf et al., 2005) (Figure 2.2.). This hysteresis behaviour of the THC to freshwater forcing has also been observed in laboratory experiments (Mullarney et al., 2007).
Figure 2.2. Schematic representation of the Atlantic THC stability with freshwater forcing (modified from Rahmstorf, 2002). Stable equilibrium states are indicated by solid lines, whereas the dashed line represents unstable states. Arrows show the transitions between states. ‘S’ indicates the ‘Stommel bifurcation’ point after which NADW formation is shut down. Arrow (a) represents advective spindown (i.e., when the overturning remains collapsed due to reduced salt transport) and (b) the resumption of the THC, with (a) and (b) forming the complete hysteresis loop.

Comparison of temperatures at equivalent latitudes between the North Pacific and the North Atlantic would suggest that the Gulf Stream/NAD heat supply to the northern North Atlantic equates to around 5-8 °C of warming (Broecker, 1991; Rahmstorf, 2002). Coupled climate models indicate that if the THC was ‘switched off’, the cooling around the northern North Atlantic would be of a similar value, with maximum temperature decreases in the Nordic Seas where sea-ice margin expansion and positive feedbacks exacerbate the cooling (Schiller et al., 1997; Rahmstorf, 2000; 2003). A weakening or shutdown of the THC/MOC due to freshwater forcing, cutting off the northern North Atlantic heat supply, has been widely speculated as the cause of past cold events observed in the palaeo-records (e.g., Broecker and Denton, 1989; Broecker, 1991; Stocker et al., 1992; Rahmstorf, 1995; 2000; 2002; Schiller et al., 1997; Manabe and
2.2. Overview of the climate history of the last glacial cycle

Studies of ice cores recovered from Greenland (e.g., GRIP, NGRIP, GISP2 and DYE-3) and Antarctica (e.g., Vostok, Byrd, Taylor Dome, and most recently EPICA, Dronning Maud Land) provide high-resolution proxies for past changes in temperature, aridity and atmospheric circulation, as well as direct measurements of atmospheric methane and CO₂ concentrations trapped in air bubbles within the ice (e.g., Dansgaard et al., 1993; Grootes et al., 1993; Jouzel et al., 1993; Taylor et al., 1993; Mayewski et al., 1994; 1997; Grootes and Stuiver, 1997; Bender et al., 1999; Petit et al., 1999; Severinghaus and Brook, 1999; Blunier and Brook, 2001; Johnsen et al., 2001; Brook et al., 2005; Rasmussen et al., 2006; EPICA community members, 2006), and are often considered as the ‘master records’ for climate event stratigraphy (Rohling et al., 2003). For the Greenland δ¹⁸O ice core record (a proxy for air temperature above Greenland), data correlation have been made as far afield as the North Pacific Ocean (e.g., Hendy and Kennett, 1999; 2003) and East Asia (e.g., Wang et al., 2001; Yuan et al., 2004).

The Greenland and Antarctic ice core δ¹⁸O and δD records show that the last glaciation started at around 115,000 ka BP and took around 80,000 yrs to reach peak glacial conditions (the Last Glacial Maximum – LGM) (Dansgaard et al., 1993; Grootes et al., 1993; Jouzel et al., 1993; Petit et al., 1999; Johnsen et al., 2001; EPICA community members, 2006; Figure 2.3a, e). Using the relationship that 0.33 ‰ increase in δ¹⁸O corresponds to a 1°C temperature increase, Cuffey and Clow (1997) estimated that LGM temperatures above Greenland were around 15 °C colder than today. Comparison of these high-latitude values with low-latitude estimates, which were around 3°C colder than the present day (Pierrehumbert, 1999), a much larger equator-pole temperature gradient was developed during Northern Hemisphere glaciation. The global temperature decrease allowed for mountain snowlines to descend (e.g., Denton et al., 1999),
and the formation of continental ice sheets across the Northern Hemisphere (e.g., Bowen et al., 2002; Dyke et al., 2002). As a result, sea-level was around 120 m lower at the LGM than the present-day (e.g., Fairbanks, 1989; Lambeck et al., 2002; Siddall et al., 2003; Peltier and Fairbanks, 2006). Reduced global temperatures also allowed for the southward expansion of polar sea-ice (e.g., Gildor and Tziperman, 2003; Pflaumann et al., 2003; Nørgaard-Pederson et al., 2003; Weinelt et al., 2003; de Vernal et al., 2005). Model simulations of the LGM show that such vast expanses of ice expansion over the Northern Hemisphere would have caused significantly reduced atmospheric temperatures and change in geostrophic wind pathways and patterns (e.g., Ganopolski et al., 1998; Kageyama et al., 2001).

The globally lowered land and ocean temperatures at the LGM (e.g., Alm, 1993; Atkinson et al., 1987; Grootes et al., 1993; Jouzel et al., 1993; Johnsen et al., 2001; Mix et al., 2001; Petit et al., 1999; Weinelt et al., 2003; Pflaumann et al., 2003; de Vernal et al., 2005; 2006; EPICA community members, 2006; Weldeab et al., 2007) led to a weaker global hydrological cycle (e.g., Wang et al., 2001; Gasse, 2000; Weldeab et al., 2007). Direct measurements from trapped air bubbles contained within the ice cores from Antarctica show that global atmospheric methane and CO$_2$ concentrations were markedly lower during the LGM (190 ppm) in comparison to interglacials (280 ppm) (Figure 2.3b, c) (Chappellaz et al., 1993; Petit et al., 1999). During the last glacial cycle, the Greenland ice cores also record increased concentrations of continentally sourced [K$^+$, Ca$^{2+}$ and Mg$^{2+}$] ions (Mayewski et al., 1994; 1997; Rohling et al., 2003) (Figure 2.3f, g) and high levels of electrical conductivity (which reflect concentrations of CaCO$_3$ bearing dust) (Taylor et al., 1993). These suggest that generally windier/dustier conditions were coincident with the globally reduced temperatures during the last glacial cycle and the LGM, most likely resulting from the coupled effect of increased aridity along with a significant re-arrangement of the atmospheric circulation patterns, forced by the expansion of the polar ice caps (Mayewski et al., 1997). Evidence for a more vigorous atmospheric circulation has also been found in Chinese Loess deposits (e.g., Kukla, 1988; 1990), as well as the Antarctic ice core record (Figure 2.3d), with
Figure 2.3. (a). The Vostok δD ice core record (Petit et al., 1999). Higher values indicate warmer air temperatures. Records of atmospheric carbon dioxide (b), methane (c) and dust (d) concentrations measured from air bubbles in the Vostok ice core (Petit et al., 1999). (e) The GISP2 δ18O ice core record (Grootes et al., 1993) and the Ca²⁺ (f) and Mg²⁺ (g) ion series (Mayewski et al., 1994). (h) The benthic δ¹⁸O record measured on the species *Cibicidoides wuellerstorfi* from marine core MD95-2042 and synchronised on the GISP2 timescale (Shackleton et al., 2000). More enriched values represent greater ice-sheet volumes, and hence, lower sea-level. MIS stands for Marine Isotope Stage. (i) the July insolation curve at 65 °N (Berger, 1991; 1999).

marked increases in dust concentration towards full glaciation (Jouzel et al., 1993; Petit et al., 1999; EPICA community members, 2006).

It has been suggested that glacial-interglacial cycles may have been forced by insolation changes (Milankovitch, 1949), but it is likely that secondary feedback mechanisms due to the extension of the North Hemisphere ice margins (e.g., albedo, deflection of atmospheric planetary waves, freshening of the North Atlantic and weakening/rearrangement of the THC, and reductions in greenhouse gases) may have been important in achieving full glacial conditions (e.g., Broecker, 1991; Chappellaz et al., 1993; 1997; Rahmstorf, 1995; Brook et al., 1996; reviews in Broecker, 2000a and Maslin et al., 2001; Raymo et al., 2004; Lynch-Stieglitz et al., 2007). Further discussion of this topic is outside of the scope of this thesis.

2.3. Dansgaard-Oeschger Cycles and Heinrich Events

Dansgaard-Oeschger (D-O) cycles were identified in the Greenland ice core δ¹⁸O records as a series of asymmetrical ‘warm’ events and cold ‘stadials’ that punctuated Northern Hemisphere climate of the last glacial cycle with millennial-
scale (~1500 yr) timings (e.g., Dansgaard et al., 1993; Grootes et al., 1993) (Figure 2.4a). The D-O warmings are numbered GIS 1 to GIS 24 (Figure 2.4a) and are characterised by sharp temperature increases in the order of around 10 °C (Dansgaard et al., 1993; Severinghaus and Brook, 1999). Synchronous with the cold portions of the D-O cycles were abrupt increases in the glaciochemical series (Figure 2.4b-d) (Mayewski et al., 1994; 1997; Rohling et al., 2003) and ECM values (Taylor et al., 1993) recorded in the Greenland ice cores. This suggests that dustiness, and hence, aridity and the vigour of the atmospheric circulation, in the Northern Hemisphere increased rapidly to maximum values within a few decades (e.g., Taylor et al., 1993). Atmospheric concentrations of CH$_4$ also increased from glacial values by around 15 % during D-O interstadials (Chappellaz et al., 1993; Petit et al., 1999), synchronous with drying pulses north of 10 °S in Africa (Gasse, 2000). Speleothem δ18O records from China suggest reductions in East Asian monsoon intensity were synchronous with D-O stadials (Wang et al., 2001; Zhou et al., 2008).

Records of lithic counts from marine cores in the North Atlantic show increased Ice Rafted Debris (IRD) concentrations that were contemporaneous with the D-O stadials in Greenland indicating melt water was being injected into the North Atlantic during these cold intervals (e.g., Bond et al., 1992; 1993; 1997; 1999; Bond and Lotti, 1995; Grousset et al., 2000; Sarnthein et al., 2000; van Kreveld et al., 2000). Note, however, that these IRD rich layers are not exclusive to the last glacial cycle, but occurred pervasively during the last interglacial (Oppo et al., 1998) and throughout the Holocene until the Laurentide and Fennoscandian ice sheets had disappeared (e.g., Bond et al., 1997; 1999), but with much smaller magnitude than during glacials.

Proxy palaeo-temperature records obtained from marine sediment cores have sparked debate about the global synchronicity of D-O climate events (e.g., Vidal et al., 1999; Hendy and Kennett, 2003; Kiefer et al., 2001). However, in the marine realm, this debate suffers from large dating uncertainties between core sites, which often are greater than inferred phase offsets. For the Greenland and Antarctic ice core records, methane synchronisation has allowed for sensible
Figure 2.4. a. The GISP2 δ^{18}O ice core record (Grootes et al., 1993), with the D-O stadials numbered 0 to 24 (Dansgaard et al., 1993). H1 to H6 denotes the Heinrich events, and their timings are indicated by blue shaded bars (Bond et al., 1993). The orange shaded bar represents the Holocene. b-d are the Mg$^{2+}$, K$^+$ and Ca$^{2+}$ continentally sourced ion series measured in the GISP2 ice core (Mayewski et al., 1994; 1997). The grey shaded bars show the D-O millennial scale variability in the GISP2 ion series and are denoted after Rohling et al. (2003).

phase lag comparisons of millennial scale temperature oscillations (Bender et al., 1994; Blunier et al., 1997; 1998; Blunier and Brook, 2001; EPICA community
This shows an out of phase relationship, and also that the temperature transitions were much sharper and asymmetrical in Greenland than in Antarctica (e.g., Stocker et al., 2002; Stocker and Johnsen, 2003; Figure 2.5). Furthermore, the EPICA EDML ice core temperature record shows Antarctic counterparts to all the D-O events are recorded in the Greenland ice cores (EPICA community members, 2006).

Heinrich (1988) described cm–scale horizons in North Atlantic marine cores that were rich in IRD, containing nearly 100 % lithic fragments, and which have since been termed ‘Heinrich layers’ (Broecker, 1994). Further studies have shown that these Heinrich layers occurred quasi-periodically at intervals of around 7000 yrs (7200 +/- 2400 in Sarnthein et al., 2000), with the highest concentrations of IRD found within the central North Atlantic – the so called ‘IRD (Ruddiman) Belt’ (Ruddiman, 1977), and coincide with highs in magnetic susceptibility, reduced numbers of planktonic foraminifera and planktonic foraminiferal δ¹⁸O light excursions (e.g., Heinrich, 1988; Bond et al., 1992; 1993; 1997; 1999; Broecker et al., 1992; Grousset et al., 1993; 2000; 2001; Andrews et al., 1994; 2003; Robinson et al., 1995; Rasmussen et al., 1996a, b; Cortijo et al., 1997; Elliot et al., 1998; 2002; Stoner et al., 1996; 2000; Vidal et al., 1999; Bard et al., 2000; Broecker, 2000a; Scourse et al., 2000; van Kreveld et al., 2000; Hemming et al., 2002; Hemming and Hajdas, 2003; review in Hemming, 2004; Knutz et al., 2001; 2002; 2007; Peck et al., 2006; 2007a, b; 2008; Figure 2.4).

The excellent preservation of bioturbation in sediments that immediately precede Heinrich layers is thought to indicate that these ice-rafting events were near instantaneous, with ‘iceberg armadas’ filling the North Atlantic (e.g., McCave et al., 1995a; Hemming, 2004). Bond et al. (1993) correlated the associated inferred cooling that is recorded in North Atlantic sediment cores with the most extreme of the D-O stadials recorded in the Greenland δ¹⁸O stratigraphy; the so-called ‘Heinrich stadials’ (Figure 2.5). Alkenone thermometry suggests that sea surface temperatures (SSTs) were reduced by up to 8 °C in the eastern North Atlantic during Heinrich events (Bard et al., 2000) and δ¹⁸O records from the
northern North Atlantic and the Nordic Seas have been used to infer that extreme
temperature reductions allowed for the southward migration of the sea ice margin
(e.g., Dokken and Jansen, 1999; Hilliare-Marcel and de Vernal, 2008). Generally harsher conditions are also recorded in terrestrial climate archives synchronous with Heinrich events (e.g., Allen et al., 1999; Genty et al., 2003; Clemens, 2005)

Concomitant with the temperature deteriorations observed in the Greenland ice
core $\delta^{18}O$ records, increased concentrations of continentally source ions in the
GISP2 glaciochemical series (Mayewski et al., 1994; 1997; Rohling et al., 2003)
(Figure 2.4), suggest more arid condition prevailed during H events than the
preceding and succeeding D-O stadials, and spectral analysis of the
glaciochemical series suggests a periodicity of ~6100 yrs (Mayewski et al., 1997). During these time periods, a southward migration of the inter-tropical
convergence zone has been inferred (e.g., Gasse, 2000), and when compared to
background glacial conditions, generally drier conditions have been found in
archives from the Mediterranean (e.g., Cacho et al., 1999; Bartov et al., 2003),
the tropical Indian Ocean (e.g., Burns et al., 2003), and in the Caribbean
(Schmidt et al., 2004). Conversely, it is suggested that the western North
Atlantic may have experienced a wetter climate during H events (e.g., Grimm et
al., 1993). It has also been suggested that increased storminess across the North
Atlantic was associated with Heinrich events (Rashid and Boyle, 2007). Further palaeo-environmental studies from both the marine and terrestrial realm have
shown that H events had a near global impact with climate deteriorations as far
afiel as South America (Lowell et al., 1995; Denton et al., 1999), the South
China Sea (Wang et al., 1999; Kiefer et al., 2001), the Pacific Ocean (Hendy and
Kennett; 1999; 2003), and East Asia (Wang et al., 2001; Zhou et al., 2008).

Relatively light benthic foraminiferal $\delta^{13}C$ values and Cd/Ca ratios for cores
from the North Atlantic suggest that North Atlantic deep waters were poorly
ventilated during H events and D-O stadials due to decreased AMOC vigour
(e.g., Boyle and Keigwin, 1987; Boyle et al., 1992; Sarnthein et al., 1994; Curry
et al., 1999; 2000 van Kreveld et al., 2000; Shackleton et al., 2000; Knutz et al.,
Figure 2.5. a. The GISP2 ice core δ¹⁸O record (Grootes et al., 1993) and the Byrd ice core δ¹⁸O ice core (b), synchronised using methane concentrations (Blunier et al., 1998). c & d. The benthic δ¹³C and δ¹⁸O record from the species *Cibicidoides wuellerstorfi* from Iberian margin marine sediment core MD95-2042 (Shackleton et al., 2000). e. Planktonic δ¹⁸O record for the
species *Globigerina bulloides* in MD95-2042 synchronised on the GISP2 timescale (Shackleton et al., 2000). f. Planktonic δ¹⁸O record for the species *Neogloboquadrina pachyderma* (left-coiling), and g. Percentage dry weight of the sediment fraction >125 μm for core MD95-2024, Labrador Sea (Stoner et al., 2000).

2001; Moreno et al., 2002; Peck et al., 2007a; Figure 2.5), and similar inferences have be drawn from environmental magnetic studies of reduced ISOW/NADW intensities during the D-O stadials of MIS 3 (Kissel et al., 1997; 1999a, b; Moros et al., 1997; Laj et al., 2002; Snowball and Moros, 2003). A study of planktonic foraminiferal abundances from the Nordic Seas indicates that relatively warm (4-7ºC) surface waters were only evident during D-O interstadials, and not during D-O stadials Heinrich events, and therefore, provides further indication of compromised AMOC vigour during D-O stadials and Heinrich events (Rasmussen and Thomsen, 2008).

Recent attention has been given to studies of intermediate and deep water circulation in the North Atlantic spanning the time period of Heinrich Event 1 (17.5 -16 ka BP). Records of ²³¹Pa/²³⁰Th from the North Atlantic show evidence that the AMOC was near completely shutdown during H events (McManus et al., 2004; Gheraudi et al., 2005; Hall et al., 2006), similar to inferences drawn from records of benthic foraminiferal δ¹³C (e.g., Sarnthein et al., 1994; Peck et al., 2007b). It is additionally suggested that past reductions in AMOC intensity would have likely reduced the surface to deep water exchange, increasing ¹⁴C reservoir ages, or ΔR, of the oceans (e.g. Hughen et al., 2000; 2004; Muscheler et al., 2000; 2008; Waelbroeck et al., 2001; Laj et al., 2002; Robinson et al., 2005; Cao et al., 2007). Studies of past changes in ¹⁴C reservoir ages suggest that poorly ventilated waters filled the North Atlantic and Pacific basins to intermediate depths during the time period of H1 (Robinson et al., 2005; Marchitto et al., 2007; Keigwin and Boyle, 2008). However, this entire period of NADW slowdown is not supported by neodymium isotope ratios in a southeastern Atlantic core (Piotrowksi et al., 2004).
2.3.1. Mechanisms for Heinrich Events

Due to high percentages of anomalous detrital carbonate comprising the IRD fraction in cores recovered from the IRD Belt, the cause of H events has been attributed to the periodic collapse of the Laurentide ice sheet (Bond et al., 1992; 1993; 1997; 1999; Bond and Lotti, 1995; Broecker, 1992; 1994; MacAyeal, 1993; Grousset et al., 2000; 2001). Lithological studies of the IRD admixtures, along with geochemical provenance studies, and dating of the typical lithic fragments confirms that the majority of IRD was sourced from the Laurentide ice-sheet, with lesser involvement of the British and Fennoscandian Ice sheets (Bond et al., 1992; 1997; 1999; Bond and Lotti, 1995; Grousset et al., 2000; 2001; Scourse et al., 2000; Hemming et al., 2002; Hemming and Hajdas, 2003; review in Hemming, 2004; Knut et al., 2001; 2007; Peck et al., 2006; 2008). Based upon the large volume of IRD that was deposited in the North Atlantic (100-350 km3 – Hemming, 2004), and the widespread planktonic foraminiferal calcite $\delta^{18}O$ anomalies that coincided with these IRD increases, relatively large volumes of freshwater were being injected into the North Atlantic during Heinrich events. This has led to the suggestion that in response to these North Atlantic fresh water perturbations, the AMOC would have either slowed or shut down (e.g., Bond et al., 1993; Schiller et al., 1997; Ganopolski and Rahmstorf, 2001; Vellinga and Wood, 2002; Schmittner et al., 2003; Rahmstorf et al., 2005).

The Heinrich (IRD) events occurred on sub-orbital timescales. Therefore, they are thought to have resulted from internal harmonics in the ocean-climate system and ice-sheet instabilities, as opposed to an external solar forcing. A number of hypotheses have been suggested for the cause of Heinrich events, and debate still remains whether they display periodic or stochastic behaviour (Bond et al., 1997; Mayewski et al., 1997; Alley et al., 2001a, b). Here, a brief overview of the triggers for Heinrich events is provided.

Because of the apparent global synchronicity between glacier growth during H-events, the ‘Global Climate Model’ was used to explain the periodic decay of ice sheets as a process of global cooling and resultant ice-sheet growth and
destabilisation (Broecker, 1994; Lowell et al., 1995). It has also been suggested that global cooling may have resulted in icesheet growth and jökulhaupt type outburst flooding events (Hulbe, 1997; Hulbe et al., 2004; Alley et al., 2006). The ‘binge-purge’ mechanism was suggested by MacAyeal (1993) to explain why the ice sheets destabilised near instantaneously and with such regular pacing. MacAyeal (1993) suggested that global cooling and ice sheet growth would have caused increased geothermal heat and friction at the base of the ice sheet, which would have resulted in destabilisation of the ice-streams. Alternatively, internal oscillations in the ice sheet–climate system have been invoked to explain the periodic ice sheet surges (Calov et al., 2002). Additionally, an ocean-climate model has been used to suggest that AMOC slowdowns may have caused enough increased global ocean heat uptake and steric sea level rise to have floated off the grounded ice-shelves (Shaffer et al., 2004; Flückiger et al., 2006). It has also been suggested that increased tidal ranges may have destabilised the Laurentide ice shelf around the Hudson Strait (Arbic et al., 2004; 2008).

However, several lithological studies of IRD admixtures, along with geochemical provenance studies, as well as evidence of freshwater injections have suggested that precursor IRD events, which were sourced from the British, Icelandic and Fennoscandian ice sheets, preceded the Laurentide ice-sheet surges (Bond et al., 1992; 1997; 1999; Bond and Lotti, 1995; Elliot et al., 1998; Darby and Bischof, 1999; Grousset et al., 2000; 2001; Scourse et al., 2000; Hemming et al., 2002; Hemming and Hajdas, 2003; review in Hemming, 2004; Lekens et al., 2005; 2006; Knutz et al., 2001; 2007; Menot et al., 2006; Peck et al., 2006; 2007a). This has lead to the suggestion that the early surging from European and Fennoscandian ice sheets acted as a stimulus for the reaction of the Laurentide ice sheet (e.g., Grousset et al., 2000), which was the ‘key-player’ in Heinrich events (e.g., Marshall and Koutnik, 2006). Note also, that an early timing for IRD pulses from around the Arctic Canadian Archipelago has also been inferred from IRD in Arctic cores (e.g., Darby et al., 1997; 2002; Stokes et al., 2005). Scourse et al. (2000) hypothesised that the comparatively smaller European and Fennoscandian ice sheets, which have a higher frequency (1-3 kyr) pacing for
surging, would have had a shorter response time than the larger Laurentide ice sheet, to an external forcing. Alternatively, sea level rise due to precursor IRD events has been invoked as a mechanism for destabilising the Laurentide ice-shelves (MacAyeal et al., 1993; van Kreveld et al., 2000).

However, it has been suggested that warming may have triggered these early precursor IRD events from the more sensitive, smaller, British and Fennoscandian ice sheets, which then may have triggered the Laurentide IRD event (e.g., Stocker and Wright, 1991; McCabe and Clark, 1998; Knutz et al., 2001; Hulbe et al., 2004; Lekens et al., 2005; 2006; McCabe et al., 2007), and it has been suggested that Southern Ocean warming, and surface advection of relatively warm saline waters to northern high latitudes may have been the cause (e.g., Knorr and Lohmann, 2007). Inferred warming trends prior to the onset and during Heinrich event 1 have been recorded in marine archives from the Caribbean (Rühlemann et al., 1999), the northeast Atlantic (Weinelt et al., 2003; Peck et al., 2008), within the southern sector of Nordic Seas (Rasmussen and Thomsen, 2008), and the Indian Ocean (Peeters et al., 2004). Rasmussen and Thomsen (2008) interpret the inferred warming of the Nordic Seas prior to Heinrich events to represent increased inflowing relatively warm (4-7°C) Atlantic surface waters. With a duration of 1600 to 2000 yrs, Rasmussen and Thomsen (2008) suggest that these long-lived increases in surface water temperatures corresponded to one or two ‘normal’ D-O events.

Based upon the out of phase nature of the climate shifts between Antarctica and Greenland (e.g., Blunier et al., 1998; Blunier and Brook, 2001) – the so called ‘bipolar seesaw’ has been proposed as a concept to explain these timing offsets, and provides a concept to explain the pattern of D-O cycles (Broecker, 1998; Stocker, 1998; Seivdov and Maslin, 2001; Seivdov et al., 2005). The concept of the bipolar seesaw originates from the observation that the THC in its present-day ‘on’ mode draws heat from the Southern Ocean (Stocker et al., 1992), and an ocean-circulation model has shown that in the ‘off’ mode, the SST difference changes from positive to negative when moving across the equator (i.e. cooling in the north and warming in the south) (Stocker et al., 1992; Stocker and
Johnsen, 2003). Ocean-climate models have been used to show that the opposite is true when switching the THC back to an ‘on’ state (Weaver et al., 2003). Stocker and Johnsen (2003) formulated an energy balance (the ‘thermal bipolar seesaw’) based upon the assumption that the heat storage in the southern hemisphere was proportional to the temperature difference between the reservoir and the southern end of the seesaw. Therefore according to the box model, the southern temperatures reflect a ‘faded memory’ of the past northern hemisphere temperatures (Stocker and Johnsen, 2003; Figure 2.6). The bipolar seesaw is a simple concept which can be considered limited due to SST transmission to the ice-sheet interiors and terrestrial ice-sheets causing thermal damping (Stocker and Johnsen, 2003). However, Stocker and Johnsen (2003) also show that when the GRIP δ18O ice core record is convolved using the Laplace transform, and with \(\tau = 1120 \) yrs (the timescale of the heat reservoir), the modelled curve bears remarkable resemblance to the Antarctic Byrd ice core δ18O record. Knutti et al. (2004) have also used an extended bipolar seesaw model to show a strong hemispheric coupling during Marine Isotope Stage (MIS) 3, which reconciles model and palaeo-proxy archives.

![Figure 2.6](image.png)

Figure 2.6. Schematic representation of the bipolar seesaw where \(Ts(t) \) is the thermal anomaly of the heat reservoir and \(TN(t) \) is the time-dependent temperature anomaly on the northern side of the seesaw whereas \(-TN(t)\) represents the southern end. The double arrow represents the diffusively parameterised heat exchange in the reservoir within the box model (Stocker and Johnsen, 2003).
Chapter 2. Background

Although it is likely that freshwater additions (as evident from the large quantities of IRD) impinged upon the MOC during H events, inconsistencies remain between the coupled ocean circulation models and the palaeo-data, with respect to the nature of the slow downs/shutdowns of the MOC and the amount of surface freshening required to cause the slowdown/shutdown (Lohmann and Schultz, 2000; Seager and Battisti, 2006). For example, records of sea level from the Red Sea (Siddall et al., 2003) and ice-volume from benthic foraminiferal $\delta^{18}O$ (Shackleton et al., 2000; Waelbroeck et al., 2002) show that periods of sea level rise coincided with increased air temperatures over Antarctica, and not coeval with the timings of warming in the Greenland ice core $\delta^{18}O$ records. Furthermore, IRD pulses have been recorded in Southern Ocean cores, which coincided with the increased rates of sea level rise, predating those in the North Atlantic (Kanfoush et al., 2000).

Calculations from North Atlantic IRD fluxes (MacAyeal, 1993) would suggest that around 3.5 m sea-level rise (or 0.16 to 0.08 Sv of freshwater over 250-500 yrs) was associated with H events. A model study of the magnitude of planktonic $\delta^{18}O$ change recorded in North Atlantic marine sediment cores for Heinrich event 4 reveals only 2 +/-1 m of sea-level rise (Roche et al., 2004a). Coupled ocean circulation models, however, require much larger threshold values of freshwater forcing to invoke a shutdown of the AMOC, for example, 0.625 Sv in Schiller et al., (1997) and a range between 0.15 and 0.5 Sv in Rahmstorf et al. (2005).

Reconciliation between the ocean circulation models and observational palaeo-proxy data may be gained from sea-level records of coral horizons from Barbados (e.g., Fairbanks, 1989; Peltier and Fairbanks, 2006), the Huon Peninsula (Yokoyama et al., 2000) and Papua New Guinea (Chappell, 2002; Cutler et al., 2003), which have been interpreted to show a 10 to 15 m sea-level rise just prior to Heinrich event 1 (H1), at around 19 ka BP. Due to relatively minor increases in IRD concentration in North Atlantic marine cores during this interval of sea-level rise at around 19 ka BP, in comparison with the IRD associated with the main phase of H1 (e.g., Grousset et al., 2000; 2001), it
remains questionable where this freshwater could have been sourced. As previously discussed, North Atlantic cores indicate precursory IRD pulses and sea-surface freshening episodes, sourced from the Greenland and British Ice sheets prior to the main Laurentide phase of H1 (e.g., Bond and Lotti, 1995; 1999; Grousset et al., 2000; 2001; Hemming, 2004; Knutz et al., 2007; Peck et al., 2006; 2008), but it is questionable whether these relatively minor ice sheet surges could account for the magnitude of sea level rise observed. It is possible that a component of the sea level rise during Heinrich events and Antarctic warming transitions may have been sourced from the Southern Hemisphere (Rohling et al., 2004), or alternatively, from the southern Laurentide ice sheet (Hill et al., 2006).

Increased IRD concentrations and significant reductions in sea surface salinity have been recorded in Arctic and Nordic Seas cores, with timings just prior to or contemporaneous with the start of H events (Darby et al., 2002; 2003; Lekens et al., 2006). This has invoked the suggestion that the higher-latitude ice-sheets may have been of greater importance than originally thought for triggering AMOC slow downs, with relatively fresh water injected into the critical regions of NADW formation (Lekens et al., 2006). Similar suggestions of an ‘out of the Arctic’ melt water forcing have been made for the Younger Dryas cold event that occurred at the end of the last glacial period/deglaciation (Moore, 2005; Tarasov and Peltier, 2005). Further reconciliation between the observed climate signals, AMOC responses and coupled ocean-circulation models maybe achieved, when considering additional feedback mechanisms on northern North Atlantic climate and the MOC that may have amplified and propagated the climate signals, such as increased storminess, dustiness and albedo (e.g., Broecker, 2001; Wunsch, 2006), or seasonality changes (e.g., Denton et al., 2005; Seager and Battisti, 2006).

2.4. Climate Event Stratigraphy of the Last Deglaciation

The Greenland ice core $\delta^{18}O$ records show that the first sharp temperature rise of the last deglaciation occurred in the Northern Hemisphere at around 14.6 ka BP.
Figure 2.7. a The GRIP ice core $\delta^{18}O$ record (a) and the Ca$^{2+}$ ion series (b) on the latest GICC05 chronology (Fuhrer et al., 1993; Rasmussen et al., 2006; Andersen et al., 2006). c. Greyscale record from the Cariaco Basin measured on core PL07-39PC (Hughen et al., 2000). Lower values represent drier/windier conditions. d. Cariaco Basin SST values calculated from Mg/Ca for the planktonic foraminifera *G. ruber* from core PL07-39PC (Lea
et al., 2004). e. 230Pa/231Th record from core GGC5 recovered from the Bermuda Rise (McManus et al., 2004), plotted on an inverted axis. Lower values represent a more vigorous AMOC. f. Sea level change recorded in fossil coral data (Fairbanks, 1989; Bard et al., 1990b; Edwards et al., 1993; Cutler et al., 2003; Chappell, 2002).

(e.g., Dansgaard et al., 1993; Grootes et al., 1993; Jouzel et al., 1993; Grootes and Stuiver, 1997; Johnsen et al., 2001; Rasmussen et al., 2006). This was characterised by a series of rapid climate ameliorations and deteriorations termed the ‘late glacial oscillation’ (Björk et al., 1998; Figure 2.7a).

The last deglaciation encompasses one of the most marked climate transitions, the Bølling warming (~14.6 ka BP), when Greenland temperatures rapidly increased in the order 10 °C in just a couple of centuries (Dansgaard et al., 1993; Severinghaus and Brook, 1999), and a similarly abrupt amelioration occurred in Europe (Atkinson et al., 1987). At around 14 ka BP, the Bølling warm period abruptly ended with the Older Dryas; a relatively minor cold ‘snap’ (Björck et al., 1998; Rasmussen et al., 2006). The Allerød warm period followed the Older Dryas, which was briefly interrupted by the Inter-Allerød cooling, at around 13.1 ka BP (Rasmussen et al., 2006). The Younger Dryas extreme cold event is dated between ~12.8 and ~11.6 ka BP (Rasmussen et al., 2006) and was the last of the rapid climate events of the ‘late glacial oscillation’, and it terminated the Allerød warm period (Figure 2.7a). The Younger Dryas was then followed by the Holocene. The climate transitions into the Bølling-Allerød warm period and the Younger Dryas are sometimes considered to represent the last of the D-O cycles of the last glacial period (e.g., Broecker, 2000a; Rahmstorf, 2002). The Greenland temperature history of the last deglaciation is mirrored in numerous high-resolution marine (e.g., Hughen et al., 1996; Waelbroeck et al., 2001; Lea et al., 2003) and terrestrial (von Grafenstein et al., 1999; Wang et al., 2001) records.
Proxies for the dust concentrations in the Greenland ice cores show rapid responses to the climate changes (Taylor et al., 1993; Mayewski et al., 1994; 1997), where coolings are associated with sharp dust increases (Figure 2.7b and 1.9d), indicative of rapid re-arrangement of the atmospheric circulation. Dry/wet phases in Europe (von Grafenstein et al., 1999), Africa (Gasse, 2000) and Cariaco Basin (Hughen et al., 2000 – Figure 2.7), indicate that the Inter Tropical Convergence Zone (ITCZ) shifted southwards during the cold intervals.

Records from sediment cores show that the MOC in both the Atlantic (McManus et al., 2004) and the Pacific (Marchitto et al., 2007) basins underwent a sharp increase in intensity at the Bølling warming, up to intensities similar to those of the present day (Figure 2.8e). Similar inferences have been drawn from Δ¹⁴C ages of the oceans (e.g., Hughen et al., 1998; 2000; 2004; Robinson et al., 2005; Keigwin and Boyle, 2008) and from studies of benthic foraminiferal δ¹³C (e.g., Sarnthein et al., 1994). During the Bølling-Allerød warm interval, the Northern Hemisphere ice-sheets and glaciers rapidly retreated from their LGM/H1 positions (e.g., McCabe and Clark, 1998; Dyke et al., 2002; Bowen et al., 2002; Ivy-Ochs et al., 2004; Licciardi et al., 2004) and atmospheric methane concentrations increased (e.g., EPICA community members, 2006 – Figure 2.8b), possibly as a result of associated vegetation changes (e.g., Allen et al., 1999; Alley and Clark, 1999). The time-transgressive/gradual retreat of polar waters across the North Atlantic during the warm Bølling-Allerød period was most likely also a reflection of the shrinking Northern Hemisphere ice-sheets (Ruddiman and McIntyre, 1973).

The largest recorded meltwater pulse (mwp-1a) (around 20 m sea-level rise in ~500 years) occurred during the last deglaciation (e.g., Bard et al., 1996; Hanebuth et al., 2000; Fairbanks, 1990; Fairbanks et al., 2005) (Figure 2.7f). U/Th dated fossil coral sea-level records indicate timing for mwp-1a coincident with the Older Dryas cooling event at around 14.2 ka BP (Fairbanks et al., 2005; Peltier and Fairbanks, 2006). However, a radiocarbon dated sea-level record from the Sunda Shelf has been suggested to date mwp-1a some 300 years earlier, placing the event coincident with the Bølling warming, at around 14.6 ka BP.
Chapter 2. Background

(Hanebuth et al., 2000). Based upon this earlier timing for mwp-1a, subsequent papers have used an isostatic rebound model to suggest an Antarctic meltwater origin (Clark et al., 2002), and an ocean circulation model to infer that an Antarctic meltwater origin could have caused the sharp increase in AMOC intensity that occurred at, and likely caused the Bølling warming (Weaver et al., 2003).

At around 12.8 ka BP (Rasmussen et al., 2006), the ice sheets and glaciers that were in retreat during the Allerød began to quickly re-advance (e.g., Denton et al., 1999; Dyke et al., 2002; Ivy-Ochs et al., 2004), polar waters once again migrated southwards across the North Atlantic (Ruddiman and McIntyre, 1973), and sea-ice margins extended southward (deVernal and Hilliare-Marcel, 2000), associated with the Northern Hemisphere cooling of the Younger Dryas back to glacial temperatures.

During the Younger Dryas, the atmosphere shifted back to a glacial (D-O stadial) configuration (Figure 1.8b and c) (e.g., Taylor et al., 1993; Mayewski et al., 1994; 1997; Gasse and van Campo, 1994; von Grafenstein et al., 1999; Gasse, 2000; Hughen et al., 2000; Haug et al., 2001; Wang et al., 2001), and concentrations of atmospheric CH$_4$ dropped by around 30% (Chappellaz et al., 1993; EPICA community members, 2006; Figure 2.8b). Marine sediment core records of δ13C and Δ14C indicate that during the Younger Dryas ocean ventilation was reduced (Keigwin and Lehman, 1994; Sarnthein et al., 1994; Hughen et al., 1998; 2000; Austin and Kroon, 2001; Robinson et al., 2005; Bondevik et al., 2006; Marchitto et al., 2007), and the record of 231Pa/230Th from Bermuda Rise suggests that the AMOC was in nearly completely shutdown (McManus et al., 2004; Figure 2.7e). Consequently, the mechanism for the Younger Dryas has been widely attributed to North Atlantic freshening (Broecker, 2000a), possibly sourced from Lake Agassiz (e.g., Teller et al., 2002; Broecker, 2006). However, records of IRD and planktonic foraminiferal δ18O, as well as ocean circulation models suggest relatively early meltwater injections from out of the Arctic (Darby et al., 1997; Moore, 2005; Tarasov and Peltier, 2005), and off east Greenland (Jennings et al., 2006).
Figure 2.8 a. In black, the EDML δ^{18}O ice core record on the GICC05 timescale (EPICA community members, 2006) and in grey, the July insolation curve at 65 °N (Berger, 1991; 1999). b. Atmospheric methane concentrations measured in the EDML ice core (EPICA community members, 2006). c. GRIP δ^{18}O ice core record on the GICC05 timescale (Andersen et al., 2006; Rasmussen et al., 2006; 2007; Svensson et al., 2006; Vinther et al., 2006). d. The GRIP (black), GISP2 (dark grey) and NGRIP (light grey) Ca$^{2+}$ ion series plotted on the GICC05 timescale (Fuhrer et al., 1993; Mayewski et al., 1994; Bigler et al., 2004; Andersen et al., 2006; Rasmussen et al., 2006; 2007; Svensson et al., 2006; Vinther et al., 2006).

On the southern hemisphere, the chronology of the last deglaciation seems
different. Antarctic ice core δ^{18}O and δD records, show the deglacial temperature rise started some 5000 yrs earlier than in Greenland at around 18 ka BP (Figure 2.8) (Bender et al., 1994; Jouzel et al., 1993; Blunier et al., 1998; EPICA community members, 2006), near synchronous with the global increase in atmospheric CO$_2$ (Marchitto et al., 2007). However, some glaciers on the Southern Hemisphere (e.g., Denton et al., 1999; Lamy et al., 2004) appear to have responded synchronously with those in the Northern Hemisphere (Denton et al., 1999). At around 14.5 ka BP, air temperatures above Antarctica decreased, initiating a period known as the ‘Antarctic Cold Reversal’ (Blunier et al., 1997), which lasted until around 12.5 ka BP.

The apparent asynchrony between the northern and southern hemisphere’s deglacial climate history has led to a modified bipolar seesaw model, in which the ‘south dials north’ (i.e., the climate transitions were led from the Southern Hemisphere) (Stocker, 2003). Stocker (2003) suggests that the shutdown of the THC during Heinrich event 1 would have led to warming in the south, turning the THC back ‘on’ due to advection of saline waters and southern sourced meltwater injections, causing the Bølling warming. Alternatively, the Indian Ocean may have also provided a source of relatively warm and saline waters to the North Atlantic via the Agulhas Current, and may have triggered the abrupt AMOC resumption at the Bølling warming (Peeters et al., 2004). The warming in the north is suggested to have cooled the south (the Antarctic Cold Reversal), and the resultant meltwater release into the North Atlantic would have switched the ‘conveyor’ ‘off’ again, causing cooling in the north (the Younger Dryas). The resultant southern warming is thought to have ‘kick-started’ the THC in the Northern Hemisphere, and finally the Southern and Northern Hemisphere climates warmed, marking the start of the Holocene.

2.5. Eirik Drift, south of Greenland: the study setting

It is widely accepted that North Atlantic Deep Water (NADW) is exported from the Nordic Seas as a product of the cooling and sinking of northward flowing, relatively warm and saline, surface waters (the Gulf Stream/NAD), and that it
forms the Deep Western Boundary Current (DWBC) after the entrainment of intermediate water masses (e.g., Dickson and Brown, 1994; Bacon, 1998; Hunter et al., 2007a). South of the Denmark Strait, the DWBC is responsible for the construction of Eirik Drift: an elongate, mounded contourite drift, located on the slope and rise off the southern tip of Greenland, south of Cape Farewell (Chough and Hesse, 1985; Arthur et al., 1989; Hunter et al., 2007a). Eirik Drift contains a semi-continuous sediment record from the Early Eocene, through to the Holocene/present day (Hunter et al., 2007a). Sediments on Eirik Drift represent the first deposition of particles carried in NADW as it flows over the Denmark Strait and rounds the southern tip of Greenland. Therefore, sediments from Eirik Drift provide an excellent opportunity to study past changes in NADW flow intensity associated with past rapid climate changes.

2.5.1. Modern oceanographic setting of Eirik Drift

2.5.1.1. Surface Waters

The East Greenland Current (EGC) and East Greenland Coastal Current (EGCC) are southward flowing western boundary currents that today transport relatively fresh and cold waters out of the Arctic (Aagaard and Carmack, 1989; Bacon et al., 2002), and which dominate surface waters above Eirik Drift (Figure 2.9). The EGC/EGCC freshwater flux today comprises continental runoff, icebergs, sea-ice, precipitation, as well as a component of admixture from the subpolar gyre/Nordic Seas surface waters (e.g., Rudels et al., 2002; Sutherland and Pickart, 2008). Sutherland and Pickart (2008) have estimated the EGC/EGCC total transport to be around 2 Sv (during the summer of 2004), of which the total freshwater flux was calculated as between 59 to 96 mSv (referenced to a salinity of 34.8), increasing along their southward paths. Located directly beneath the EGC and EGCC, sediments from Eirik Drift preserve a record of past changes in freshwater discharge from the East Greenland margin, the Arctic and the Nordic Seas (one of the key regions of present-day NADW formation (e.g., Bacon, 1998; 2002)).
2.5.1.2. Deep and Intermediate Waters – Hunter et al. (2007a)

The modern DWBC in the region of Cape Farewell is concentrated between the 1900 and 3000 m isobaths towards the bottom of the continental slope (Clarke, 1984). The DWBC transport is commonly accepted to be around 13-14 Sv (1 Sv = 1 x 10⁶ m³ s⁻¹); for example, Dickson and Brown (1994) quoted 13.3 Sv for the flow below the 27.80 isopycnal. Although this value is often referred to it is largely based on a single dataset collected in 1978 by the R.V. Hudson (Clarke, 1984). Bacon (1998) calculated a much lower value of 6 Sv from data collected
in 1991 by the *RRS Charles Darwin*, and argued that a comparison of data collected between 1958 and 1997 illustrates decadal variability in the DWBC, which he attributed to changes in the output from the Nordic Seas.

Figure 2.10. Map of the North Atlantic region showing the water masses contributing to the formation of North Atlantic Deep Water (modified from Schmitz, 1996; Pickart *et al.*, 2003, and after Hunter *et al.*, 2007a). Boxed numbers indicate the volume flux in Sverdrups of the water masses (see text for description).
Chapter 2. Background

The DWBC in the vicinity of Cape Farewell is composed of four main water masses (e.g., Dickson and Brown, 1994): the Denmark Strait Overflow Water (DSOW), Iceland Scotland Overflow Water (ISOW), Labrador Sea Water (LSW) and modified Antarctic Bottom Water (AABW) (Figure 2.10).

DSOW is composed of Nordic Seas intermediate waters that cross the Denmark Strait sill (maximum depth of 550 m). After crossing the sill the overflow waters descend rapidly, entraining ambient waters, primarily LSW. The resultant modified DSOW is identifiable as the lower layer of the DWBC off Cape Farewell. The transport of DSOW across the Denmark Strait and into the DWBC is estimated to be around 2.9 Sv (Dickson and Brown, 1994; Figure 2.10), increasing to around 10 Sv via entrainment of ambient waters en route to Cape Farewell.

Similarly, ISOW comprises Nordic Seas intermediate waters that cross the Iceland-Scotland Ridge to the east of Iceland. Dickson and Brown (1994) estimated the total eastern overflows to be around 2.7 Sv, of which 1.7 Sv flows through the Faeroe Bank Channel (maximum depth of around 850 m). The remainder overflows via a series of five smaller channels between Iceland and the Faeroes. The density of ISOW is reduced by entrainment of ambient waters as it travels around the Reykjanes Ridge and into the Irminger Basin via the Charlie Gibbs Fracture Zone (CGFZ), such that it forms the upper layer of the DWBC at a depth of around 2000 m. The contribution of this modified ISOW to the DWBC off Cape Farewell is estimated at between 2 and 3 Sv (Dickson and Brown, 1994; Schmitz, 1996).

LSW is formed by wintertime deep convection in the Labrador and Irminger Seas. Originally, as the name suggests, it was thought to be formed solely in the Labrador Sea, but more recent work (Bacon et al., 2003; Pickart et al., 2003) has concluded that a second formation site exists in the Irminger Sea. LSW spreads across the North Atlantic and populates the low-velocity layer between about 700 m and 1500 m off the east coast of Greenland. LSW contributes a significant proportion of the DWBC at around 4 Sv off Cape Farewell.
However, inverse modelling has produced a value as high as 8 Sv (Alvarez et al., 2004).

AABW spreads north from its point of formation in the Antarctic and after modification joins the southward-flowing DWBC at various points in the North Atlantic. Estimates of the component joining off Greenland are in the region of 1-2 Sv (Schmitz and McCartney, 1993; Schmitz, 1996). A further 2 Sv is thought to be entrained, equally split between sites off Newfoundland and Florida.

In summary, the DWBC off Cape Farewell provides the major input to North Atlantic Deep Water (NADW). NADW is usually considered to have formed by the time the DWBC reaches the Grand Banks of Newfoundland after further addition of LSW, AABW and ISOW in the Labrador Basin, although further modification does occur along its southward path. Therefore, the deep water transported in the vicinity of Cape Farewell is referred to as Proto North Atlantic Deep Water in Figure 2.10. The transport of DWBC is typically considered to be between 16 and 18 Sv as it flows across the equator and into the South Atlantic (Schmitz and McCartney, 1993). Although we still lack detailed knowledge about the drivers and variability of the DWBC, we can assume that, as NADW is essentially the lower limb of the AMOC, the strength of the DWBC off Cape Farewell has a major influence upon the AMOC, and hence, most likely North Atlantic climate also.
CHAPTER 3

3. METHODS

The aim of the investigation has been to reconstruct past surface and deep-water hydrographies around Eirik Drift, south of Greenland during the time period of Heinrich event 1 and the last deglaciation. This has been achieved through multi-proxy study of 14.7 cm diameter gravity cores TTR13-AT450G (2326 m water depth; 57°59.998’N and 45°49.002’W) and TTR13-AT451G (1927 m water depth; 58°30.886’N; 44°54.333’W) (hereafter TTR-450 and TTR-451, respectively), which were obtained during the Training-Through-Research (TTR-13) cruise in 2003, with RV Professor Logachev (Figure 3.1.).

Analyses from cores TTR-450 and TTR-451 include ITRAX core scanning X-Ray Fluorescence (XRF) counts, environmental rock magnetics and palaeomagnetics, bulk and foraminiferal stable carbon and oxygen isotope ratios, lithic (ice-rafted debris – IRD) and total planktonic foraminiferal counts, mean sortable silt grain size analysis and Accelerated Mass Spectrometric (AMS) 14C datings. Petrological studies were also performed using X-ray diffraction and scanning electron microscopy (SEM). Analyses were carried out on the whole core, as well as u-channel, discrete and toothpick samples. Except for where specified analyses were conducted in laboratories within the National Oceanography Centre, Southampton. This chapter provides a description on the
Chapter 3. Methods

sampling techniques, a background to each analysis, as well as details on the methods that were used.

Figure 3.1. Regional bathymetric map of Eirik Drift, south of Greenland showing the locations of cores TTR-450 and TTR-451. The bathymetry is from the GEBCO Digital Atlas published by the British Oceanographic Data Centre on behalf of the Intergovernmental Oceanographic Commission of UNESCO (IOC) and the International Hydrographic Organisation (IHO) (2003). The 1000, 2000 and 3000 (heavy, black) contours are denoted.

Prior to sampling, cores TTR-450 and TTR-451 were photographed and the sediment was visually logged, taking note of sedimentary and grain size changes. The split sediment cores were also scanned with the NOCS BOSCORF ITRAX-XRF core scanner. Figure 3.2 summarises the analyses that were performed and the sampling technique used for sediments from cores TTR-450 and TTR-451. For an overview of the sampling procedure see Figure 3.3.
Figure 3.2. Summary flow diagram of the analyses performed, and the sampling techniques used, on sediments from cores TTR-450 and TTR-451.
3.1. ITRAX-XRF Core Scanning

The NOCS BOSCORF ITRAX-XRF core scanner provides a non-destructive means of acquiring a suite of high-resolution elemental profiles. Measurements were made on cores TTR-450 and TTR-451 as a first line approach to identify intervals of sediment that were of interest for further study. The intensity of elements such as iron and titanium were of particular interest to compare with magnetic measurements. Details of the NOCS BOSCORF ITRAX-XRF core scanner are given in Croudace et al. (2006) and a technical account of the ITRAX-XRF method and comparison with discrete sample data is given in Jansen et al. (1998).

Data are acquired by irradiating the sediment via an intense micro-X-ray beam. The incident X-rays emit an electron from an inner atomic shell and an electron from the outer shell replaces the resultant vacancy (Jansen et al., 1998). Electromagnetic radiation, in the form of X-rays, is produced as the electron gives up its surplus energy, equal to the energy difference between the two electron shells. The emitted radiation is characteristic for each couple of atomic shells. Different elements are therefore identified based upon the energy and wavelength spectra of X-ray emitted. The incident X-ray beam only interacts with small sediment volumes, and hence the ITRAX-XRF core scanner only provides data from a thin, less than a few hundred micron thick, surface layer of the sediment. For light elements (e.g., Al and Si), the response depth is only a few µm, whereas for the heavier elements (e.g., Ca and Fe) this depth increases to tens and hundreds of µm, respectively (Jenkins and De Vries, 1970; Jansen et al., 1998). The acquired data is expressed in terms of the intensity of the emitted X-rays in counts per second (cps) or kilo counts per second (kcps).

The ITRAX-XRF core scanner is an automated system as data is collected incrementally by moving the split core section through the X-ray-beam using a stepped motor-drive (Croudace et al., 2006). The ITRAX-XRF core scanner has advantages over the traditional XRF method that uses discrete sediment samples, which is both destructive as well as time consuming. However, a disadvantage
of the ITRAX-XRF core scanner technique is that heterogeneities in the core surface such as roughness, water content, porosity and grain size can result in biased data. For discussions see Jansen et al. (1998), Kido et al. (2006) and Böning et al. (2007).

It is common for ITRAX-XRF results to be calibrated against data acquired using discrete samples and traditional XRF methods to give normalised results of percentage by mass of the oxide (weight %) (e.g., Jansen et al., 1998; Kido et al., 2006; Böning et al., 2007; Spofforth et al., 2008). As this study focuses upon relative changes in the concentration of elements and not absolute values, calibration was not deemed as essential.

Using the NOCS BOSCORF ITRAX-XRF core scanner, XRF data were acquired along a central 2 cm wide strip of the split core sediment surface of cores TTR-451 and TTR-450. The top two sections of core TTR-451, which together span a total core length of around 120 cm, were subsampled using a 0.5 cm thick u-channel lid. This u-channel lid was used to make the XRF measurements and X-radiograph images (not shown). In order to remove contamination of the split core and u-channel sediments, the surface was scraped using a glass slide. Due to the lengthy time required for the XRF spectra acquisition, the sediment surface was covered with Mylar film in order to prevent desiccation.

The XRF measurements were made at increments of 500 µm. A 50 second count time was used for the XRF measurements. Mean square error (MSE) values of <40 cps were achieved by fine-tuning the settings using the Core Scanning Navigator user interface graphical software. The 3 kW molybdenum target tube was operated at 30 kV and 30 mA. These settings are considered suitable for most elements (Croudace et al., 2006).

The XRF intensities were calculated from the raw XRF spectra, and were processed using the Q-spec spectral analysis programme. Over time the 3 kW molybdenum target tube decays, resulting in reduced total intensities of the
emitted X-ray beam. As measurements were made over a number of weeks, the ‘line camera signal’ (i.e., the total intensities), which is recorded for each individual core section by the \textit{Q-spec} spectral analysis programme, was used to correct for shifts to reduced intensities, over time.

3.2. Sampling of cores TTR-450 and TTR-451

Discrete samples from cores TTR-450 and TTR-451 have provided sediment for environmental and magnetic studies, and subsamples of them have been used for further analyses. Sampling was done at 2.35 cm intervals in a continuous strip and using palaeomagnetic cubes. Toothpick samples were taken at 5 cm intervals from both TTR-450 and TTR-451 for bulk sediment stable oxygen and carbon isotope ratio analyses. Discrete sediment samples were additionally taken for AMS14C datings.

![Figure 3.3. Schematic diagram illustrating the sampling of the top two sections of core TTR-451. U-channel 3 was a 0.5 cm thick filled u-channel lid.](image)

Two u-channels were sampled in parallel from the top two \sim 60 cm sections of core TTR-451 and have been used for further magnetic investigation, as well as planktonic foraminiferal stable oxygen and carbon stable isotope studies, and counts of IRD and total foraminiferal abundances. A u-channel is a 2 x 2 cm
square-cross-section, transparent plastic liner in which continuous samples are taken from the centre of the split core section (Tauxe, 1993; Weeks et al., 1993). The relatively short ~60 cm long individual core sections were spliced into one length of u-channel. An additional sample set was removed from these upper two sections of TTR-451 using a 0.5 cm thick u-channel lid that provided XRF data. As core edges can be affected by sediment flow, no samples were removed less than 1 cm from the core liner. Sedimentary boundaries were noted upon removal of these u-channels, providing further information to allow depths to be accurately inter-calibrated between sample sets. Figure 3.3 illustrates schematically the sampling techniques for these upper two core sections of TTR-451.

![Figure 3.4](image)

Figure 3.4. Volumetric low-field magnetic susceptibility obtained from 2 cm³ subsamples from u-channels 1 (black) and 2 (green). With no relative vertical movement of the u-channels to each other, the peak R² value of 0.72 was obtained where n=55. For details of the magnetic susceptibility see 3.3.

Magnetic measurements of the u-channel sediment samples prior to and after sub-sampling have also given stratigraphic control between sample sets. Both visual and cross correlations of the different magnetic parameters, as well as
stepped/lagged correlations (carried out both manually and by using the *X-corr* function in *Matlab*), to find the peak R^2 value, allowed for the sample set intercalibration of depths within half the sample resolution of the dataset. An example is shown in Figure 3.4.

3.3. Palaeomagnetic and Environmental Magnetic Measurements

The palaeomagnetic and environmental magnetic measurements made on sample sets from cores TTR-450 and TTR-451 included magnetic susceptibility (κ), Natural Remanent Magnetisation (NRM) and Anhysteretic Remanent Magnetisation (ARM). Saturated Isothermal Remanent Magnetisation (SIRM) and backfield single remanence curves, magnetic hysteresis loops as well as First Order Reversal Curve (FORC) diagrams were generated. This section provides an introduction to the magnetic parameter and a rationale for why it was measured, and an overview of the techniques and laboratory instruments. Also discussed in this chapter is a critique of the methods, as well as error identification, quantification and reduction.

3.3.1. Magnetic Susceptibility

Magnetic susceptibility (κ) is defined as the ‘ratio of induced (temporary) magnetisation acquired by a sample in the presence of a weak magnetic field, to the applied field itself’ (Verosub and Roberts, 1995). Variation in magnetic susceptibility is primarily controlled by the quantity and grain size (domain configuration) of ferromagnetic (iron, nickel and copper) and ferrimagnetic (e.g., magnetite) material present within the sample (e.g., Verosub and Roberts, 1995; Stoner *et al*., 1996). Large ferrimagnetic (>10 μm) and superparamagnetic (>0.03 μm) grains result in enhanced magnetic values whereas, for sediments with low ferromagnetic concentrations, variations in magnetic susceptibility are more likely influenced by paramagnetic (e.g., Fe, Mg silicates), antiferrimagnetic (e.g., haematite) and diamagnetic (e.g., calcium carbonate and silica) grains (Stoner *et al*., 1996). Low-field magnetic susceptibility measurements are relatively rapid to make and provide a first line approach to characterising
Chapter 3. Methods

sediment components. Therefore, it is commonly one of the first measurements to be made on sediment cores after recovery.

Previous study of cores in vicinity of Eirik Drift have shown that sediments have a relatively strong magnetic character, which likely results from transport of (titano)magnetite out of the Nordic basaltic province by North Atlantic Deep Water (NADW) (e.g., Kissel et al., 1997; 1999a, b; Moros et al., 1997; Laj et al., 2002; Snowball and Moros, 2003). Eirik Drift represents a key region for deposition of suspended matter transported out of the Nordic Seas, especially for transportation via deep-water overflow through Denmark Strait (between Iceland and Greenland).

Unlike cores recovered from the ‘IRD belt’ (for definition see Hemming, 2004) that show a strong magnetic signature during North Atlantic ice-rafting events (e.g., Grousset et al., 1993; Robinson et al., 1995), relatively high abundances of coarse grained quartz and detrital carbonate (IRD), combined with reduced (titano)magnetite input result in distinct lows in magnetic susceptibility in high latitude marine sediment cores during these same IRD events (e.g., Stoner et al., 1996; Kissel et al., 1997; 1999a; Moros et al., 1997; Dokken and Jansen, 1999; Laj et al., 2002). Magnetic susceptibility was therefore measured on sediments from cores TTR-450 and TTR-451 in order to give stratigraphic control, as well as a key environmental proxy.

Low-field volumetric susceptibility (κ) was acquired from discrete sample cubes, which were continuously sampled at 2.35 cm intervals down cores TTR-450 and TTR-451, and measured using a Kappabridge KLY-4 with the Sufam user interface software. A higher resolution low-field magnetic susceptibility dataset was also obtained from core TTR-451 using a Geotek MSCL 6.1 magnetic susceptibility logger, with a Bartington Instruments MS2E1 point sensor, and was measured at 0.5 cm intervals using a stepper motor and placing the probe in contact with the split ‘whole core’ sediment surface. The ‘whole core’ magnetic susceptibility data was obtained not only to provide a more detailed record, but also to cross-validate the discrete sample dataset. However, as the MS2E1 point
sensor is only sensitive to the uppermost few millimetres of sediment, slight variation in the near surface sediment composition may cause discrepancy between the two sets of measurements.

Low-field magnetic susceptibility was additionally acquired from 0.5 cm thick sub-samples of the 2 x 2 cm u-channels. Measurements were made using a Kappabridge KLY-4 with Sufam user interface software. These additional magnetic susceptibility measurements were not used for interpretation, but have allowed for inter-calibration of datasets and better stratigraphic control (see section 3.2).

3.3.2. Anhysteretic Remanent Magnetisation

Anhysteretic Remanent Magnetisation (ARM) is defined as the magnetisation acquired when a sample is subjected to a direct current (DC) bias field, which is of the order of the Earth’s magnetic field, in a decreasing alternating magnetic field that is steadily reduced from a preset value to zero (Verosub and Roberts, 1995; Evans and Heller, 2003). Magnetic particles with remnant coercivities less than or equal to the maximum field will become magnetised along the direction of the biasing DC field. It is customary to express ARM in terms of its anhysteretic susceptibility (κ_{ARM}), whereby the ARM intensities are normalised by the bias field applied.

Variations in ARM intensity are interpreted to reflect changes in ferrimagnetic material concentration within the sediment samples. Unlike magnetic susceptibility, ARM tends to be sensitive to variations in the small (<10 μm), single domain and pseudo-single domain grain sizes (Verosub and Roberts, 1995; Stoner et al., 1996). Previous study of marine sediment cores recovered from the northern North Atlantic show a high degree of covariance between records of magnetic susceptibility and ARM, and supports the assumption that the magnetic signal results from the transport of (titano)magnetites out of the Nordic Basaltic Province. Reduced ARM intensities along the NADW flow path would suggest that the magnetic mineral content of sediments in that region
originates from this single common source (e.g., Kissel et al., 1999a; Laj et al., 2002).

The ratio of susceptibility of anhysteretic remanent magnetisation (κ_{ARM}) to low-field magnetic susceptibility (κ) is a measure of average magnetic grain size where the magnetic mineralogy is dominated by (titano)magnetite (Banerjee et al., 1981; Verosub and Roberts, 1995). The ratio of $\kappa_{\text{ARM}}/\kappa$ is particularly sensitive to grain size variations within the 1 to 10 μm size range, and is inversely correlated with magnetic grain sizes; i.e., with the coarser grain sizes represented by lower values (Banerjee et al., 1981). Significant proportions of superparamagnetic (SP) grains within a sediment sample, which exclusively contributes to κ and not κ_{ARM}, means that variations in $\kappa_{\text{ARM}}/\kappa$ need interpreting with caution (King et al., 1982; Verosub and Roberts, 1995).

Based upon these assumptions from previous work (e.g., Kissel et al., 1997; Laj et al., 2002), it was therefore likely that a $\kappa_{\text{ARM}}/\kappa$ record from core Eirik Drift would reflect variations in the size of the coarsest magnetic grains that can be carried by NADW out of the Nordic Seas and that settle out on Eirik Drift as NADW rounds the southern tip of Greenland. The ratio of the magnetic parameters $\kappa_{\text{ARM}}/\kappa$ would therefore likely provide a proxy for NADW flow intensity.

ARM data were acquired at 2.35 cm intervals along a continuous strip of cores TTR-450 and TTR-451, using discrete sediment sample cubes. ARM was imparted using a 50 μT DC bias field and a 100 mT peak alternating field (AF), with measurements made using a long-core 2G Enterprises cryogenic magnetometer. A technical report on the NOCS 2G Enterprises cryogenic magnetometer is given in Roberts (2006).

The ARM was imparted using an in-line solenoid that is located within the axial demagnetisation coil (z axis coil). The decay rate of the imparted field (including AF demagnetisation) affects the successfulness of the treatment, which for long core magnetometers, is equal to the speed at which the sample is passed through
Chapter 3. Methods

the field (Roberts, 2006). This is given the term translation speed for which, at higher velocities, samples experience fewer AF half cycles. For long-core magnetometers, as the sample is passed through the coil at a constant speed, an AF field decays in space rather than time (Roberts, 2006). Although this has greater implications for u-channel measurements, it is noted here that the NOCS 2G cryogenic magnetometer has a translation speed of 1 cm/s (Roberts, 2006), which is recommended by Brachfield et al. (2004).

Superconducting quantum interference device (SQUID) sensors, which are immersed in liquid helium, detect weak magnetisations of the sediment samples by inducing a small persistent DC supercurrent into the SQUID pick-up coil array, and give rise to the generic name ‘cryogenic’ magnetometer (Roberts, 2006). Samples are loaded onto a sample holder and passed through the centre of the SQUID sensors through an access space at room temperature. A stepper motor with computer controlled micro-switches at either end of a pulley system controls the position of the sample through the SQUID sensors with precise positional control of within a few tenths of microns. Such positional control is essential for accurate remanence stability critical assessment through stepwise AF demagnetisation treatments.

AF demagnetisation treatment (the application of a linearly decaying alternating field) using the NOCS 2G Enterprises cryogenic magnetometer is done ‘in-line’ using three mutually orthogonal demagnetisation coils positioned along the x, y and z axis of the sample. The field is ramped up in the demagnetisation coil to the desired field and the sample is passed through the coil whilst the field is ‘tracked’ at a constant peak value. This AF field is ramped down to zero and the process is repeated for each coil individually, prior to the samples being passed back through the SQUID sensors and the magnetisation measured. The narrow access 2G Enterprises cryogenic magnetometer within NOCS is fitted with high-resolution SQUID sensors. The response curve of these pick-up coils within the SQUID sensors has a relatively sharp peak (Weeks et al., 1993; Roberts, 2006), and the ratio of the half width versus the maximum height of the curve (half power width) is around 5 cm for the NOCS 2G Enterprises cryogenic
magnetometer (Roberts, 2006). With such a narrow response curve, on which samples need to be centred, positional precision is therefore essential for accurate measurement of ~2 cm wide discrete samples.

A further complication of measurements made with long-core magnetometers are ‘flux jumps’ where strongly magnetic material, with intensities ≥1 A/m, cause non-reversible jumps in magnetisation, because the SQUID electronics are unable to count the large magnetic flux at a fast enough rate (Roberts, 2006). Identification of flux jumps can be done by assessing the linearity of decay of the magnetisation measured after each AF demagnetisation treatment, and may be resolved by re-measurement of the sample. For further operational details of SQUID magnetometers see in Goree and Fuller (1976), Weeks et al. (1993), Clarke (1994), and Roberts (2006).

![Figure 3.5. Representative ARM AF demagnetisation curves for core TTR-450.](image)
Initially, ARM data were obtained from every tenth discrete sample down-core, and measured after AF demagnetisation at peak fields of 10, 20, 30, 40, 50, 60 and 80 mT. Such a high, and somewhat unconventional number of AF demagnetisation treatments were used for assessment of remanent stability. Representative AF demagnetisation curves for a selection of samples are shown in Figure 3.5 and 3.6. The smooth nature of the curves indicates a good stability of remanence. Subsequently, therefore, the remaining samples were measured after AF demagnetisation at peak fields of 20, 25 and 30 mT. The ARM intensities were automatically corrected for the sample volumes with the Longcore user interface software, and the data were therefore output in the GCS unit emu/cm3 (10^{-3} emu/cm3 = 1 A/m; SI unit).

Figure 3.6. Representative ARM AF demagnetisation curves for core TTR-451.
In order to cross-validate ARM measurements from the discrete sample set, and to provide additional evidence for stratigraphic control, ARM was measured at 1 cm intervals along a continuous u-channel sample of sediments from the upper two sections of TTR-451, which spans a total core length of ~120 cm of the core. ARM was imparted along the axis of the u-channel using a 100 mT alternating field and a 50 µT DC bias field and using the previously described NOCS 2G Enterprises cryogenic magnetometer. Measurements were made after stepwise AF demagnetisations of 0, 10, 20, 25, 30, 50 and 60 mT peak fields, and comparison of the ARM measurements after each treatment reveals no evidence of flux jumps (Figure 3.7).

Figure 3.7. Continuous u-channel ARM measurements from core TTR-451.

Owing to the aforementioned response function of the SQUID pick-up coils, the data acquired from the u-channel sample were effectively ‘smoothed’ over a 5 cm sliding window. Figure 3.8 plots the continuous u-channel and discrete sample ARM measurements and the good agreement gives cross-validation of the discrete sample data. Slight discrepancy between the datasets occurs at around 45 cm depth and possibly results from the smoothing of the u-channel measurements.
3.3.3. Natural Remanent Magnetisation

Natural remanent magnetisation (NRM) is the remanent magnetisation present in a sample prior to laboratory treatment. The NRM intensity is determined by the intensity of the geomagnetic field at the time of, or just subsequent to, sedimentary deposition, as well as the concentration, mineralogy and grain size of the magnetic remanence carriers (e.g., McElhinney and McFadden, 1999; Stoner et al., 2000). ARM and magnetic susceptibility both respond to variations in magnetic mineral concentration, and therefore these magnetic parameters can be used to normalise NRM intensities. The resulting NRM/ARM and NRM/κ ratios therefore provide records of the relative changes in the intensity of the Earth’s geomagnetic field (relative palaeointensity), with the effect of variation in the magnetic mineral concentration removed (e.g., Opdyke et al., 1973; Levi

Stacked records of relative palaeointensity from marine sediment cores recovered from the North Atlantic, synchronised to the GISP2 ice-core chronology using evidence from cosmogenic nuclide records (NAPIS-75 - Laj et al., 2000 and the revised GLOPIS-75 – Laj et al., 2004), provides an excellent basin-wide, marine sediment core correlative and dating tool. Two key palaeointensity excursions

Figure 3.9. Directional vector components of the geomagnetic field after McElhinney (1973) and Butler (1992). The total surface geomagnetic field (H) can be described by two components; the vertical (H_v) and the horizontal (H_h). In the geographic north direction, the component of the magnetic field is described as H \cos I \cos D, and H \cos I \sin D describes the east component.
have been correlated between North Atlantic marine cores and well-dated lake sediments. These include the Laschamp event dated at around 41 ka BP (Laj et al., 2000; 2004; Guillou et al., 2004), and the contentious Mono Lake event (Kent et al., 2002; Benson et al., 2003; Zimmerman et al., 2006), dated in the GLOPIS palaeointensity stack at around 67 ka BP (Laj et al., 2004). The Laschamp event is also associated with a directional anomaly with a sharp and distinct negative excursion to lower inclination values (Laj et al., 2000; 2004).

NB: see below for definition of the ‘inclination’ directional component.

The use of palaeointensity as a dating tool has advantages over AMS14C datings, as the latter can have large error not only due to the measurement techniques, but also variable reservoir ages and uncertainties in calibration (e.g., Hughen et al., 2000; 2004; Muscheler et al., 2000; 2008; Reimer and Hughen, 2008). A disadvantage, however, of using palaeointensity for sediment dating is that NRM intensities have a ‘lock-in’ depth, which means that magnetic grains are still be affected by the geomagnetic field just after deposition (e.g., Laj et al., 2000). Therefore, sedimentation rates need taking into account when assessing palaeointensity records.

Over time, it is not just the intensity of the Earth’s geomagnetic field which changes, but also the direction of the geomagnetic field. Changes in the direction of the Earth’s geomagnetic field over time periods of less than 10^5 years are termed as geomagnetic secular variation. The direction of the geomagnetic field and, hence, geomagnetic secular variation can be completely described by two vector components: the angle of inclination and the angle of declination, and are represented schematically in Figure 3.9.

The angle of inclination (I) of the total surface geomagnetic field (H) from the horizontal is defined as positive downward and ranges between -90° and $+90^\circ$ (i.e., the vertical angle between H and the horizontal). Whereas, the angle of declination (D) is the azimuthal angle between geomagnetic north to the horizontal component of H, ranging from 0° to 360°, positive clockwise (e.g., Butler, 1992). The so-called “dipole equation” (Equation 3.1) forms the basis of
our understanding of many of the palaeomagnetic methods. The dipole equation describes how the angle of inclination relates to latitude (McElhinney, 1973). The angle of inclination increases from −90° at the geographic South Pole to +90° at the geographic North Pole.

\[\tan I = \frac{H_v}{H_h} = \frac{2 \sin \lambda}{\cos \lambda} = 2 \tan \lambda \]

(Equation 3.1; McElhinney, 1973)

where \(H_v \) is the vertical component of the surface geomagnetic field, \(H_h \) is the horizontal component and \(\lambda \) is the geographic latitude.

\[J/J_{\text{max}} = 0.019485 \text{ (A/m)} \]

\[J_{\text{max}} = 0.20058 \text{ (A/m)} \]

\[J/J_{\text{max}} = 0.23674 \text{ (A/m)} \]

\[J/J_{\text{max}} = 0.19015 \text{ (A/m)} \]

Figure 3.10. Representation NRM AF demagnetisation intensity decay curves for core TTR-450. \(J/J_{\text{max}} \) is the ratio of the NRM intensity over the 0 mT NRM intensity.
NRM was acquired from the same discrete sediment samples as the magnetic susceptibility and ARM were measured, and collected at 2.35 cm intervals along a continuous strip of cores TTR-450 and TTR-451. Measurements were made prior to the ARM treatment and using the previously described 2G Enterprises cryogenic magnetometer. NRM was measured after stepwise AF demagnetisation treatments of 0, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, and 80 mT. Intensities were automatically corrected for the sample volumes with the Longcore user interface software, and the data were therefore output in the GCS unit, emu/cm3 (10^{-3} emu/cm3 = 1 A/m; SI unit)

![Figure 3.11. Representation NRM AF demagnetisation intensity decay curves for core TTR-451. J/J_{max} is the ratio of the NRM intensity over the 0 mT NRM intensity.](image-url)
Chapter 3. Methods

a. TTR-450 1.65 cm
\[J_{\text{max}} = 0.0195 \, \text{(A/m)} \quad \text{MAD(3)} = 3.9^\circ \]

b. TTR-450 11.40 cm
\[J_{\text{max}} = 0.2006 \, \text{(A/m)} \quad \text{MAD(3)} = 3.1^\circ \]

c. TTR-450 192.55 cm
\[J_{\text{max}} = 0.2367 \, \text{(A/m)} \quad \text{MAD(3)} = 1.9^\circ \]

d. TTR-450 514.15 cm
\[J_{\text{max}} = 0.1902 \, \text{(A/m)} \quad \text{MAD(3)} = 3.0^\circ \]

e. TTR-451 4.60 cm
\[J_{\text{max}} = 0.1398 \, \text{(A/m)} \quad \text{MAD(3)} = 1.8^\circ \]

f. TTR-451 35.15 cm
\[J_{\text{max}} = 0.2488 \, \text{(A/m)} \quad \text{MAD(3)} = 0.9^\circ \]

g. TTR-451 76.78 cm
\[J_{\text{max}} = 0.1195 \, \text{(A/m)} \quad \text{MAD(3)} = 3.7^\circ \]

h. TTR-451 419.73 cm
\[J_{\text{max}} = 0.2698 \, \text{(A/m)} \quad \text{MAD(3)} = 1.3^\circ \]
Representative AF demagnetisation intensity decay curves for sediment samples from core TTR-450 and TTR-451 are shown in Figures 3.10 and 3.11, respectively. Typically, the sediments show smooth decay profiles, indicating that a good stability of remanence was attained. Figure 3.10a shows the demagnetisation curve for the uppermost sample of core TTR-450, which is centred at 1.65 cm core depth, and is representative for the top ~11 cm of the core. For this sample a stable single component was not attained, and the peak NRM intensity (J_{max}; obtained after an AF demagnetisation of 0 mT) for this sample was considerably weaker than NRM intensities acquired from sediment samples collected from lower depths in core TTR-450. This poor remanence stability most likely results from the high proportion of sandy admixture within this upper sedimentary unit and the relatively low concentration of magnetic grains. The data from this portion of core is therefore interpreted with caution. Figure 3.11b shows the demagnetisation curve for a sample centred around 76.8 cm depth of core TTR-451 and shows a rare example of where a stable single component was not attained for this core. Even the relatively sand-rich sediments from the top of core TTR-451 yielded stable remanence curves (Figure 3.10a).

Component declination and inclination directions were calculated from the NRM data using the Z-plot programme. Zijderveld plots, which were generated with the Z-plot programme, define stable primary NRM in the presence of noise and hence, give further evidence for the stability of remanence and the suitability of the acquired NRM data for calculation of palaeomagnetic component directional data. Zijderveld diagrams are plots of vector magnetisation during AF treatment...
and are projected on two orthogonal planes (e.g., Dunlop, 1979). Zijderveld diagrams, which show linear component decay toward the origin during progressive AF demagnetisation, represent samples with stable primary magnetisation directions (e.g., Dunlop, 1979; Weeks et al., 1993; Laj et al., 2000).

![Continuous u-channel NRM measurements from core TTR-451](image)

Figure 3.13. Continuous u-channel NRM measurements from core TTR-451.

The *Z-plot* programme allows for the removal of AF demagnetisation treatment steps from the component directional data calculation where stable primary magnetisation directions did not occur, i.e., if the decay toward the origin is not linear. Critical assessment of the linearity of the decay was provided by maximum angular deviation (MAD)(3) values, which were calculated concurrently within the *Z-plot* software. MAD(3) values less than 3° was considered acceptable. Subsequent to data processing, an average MAD(3) value of 2.3° was achieved for core TTR-450 and 1.5° for core TTR-451. Figure 3.12 shows representative Zijderveld diagrams for cores TTR-450 and TTR-451, and their AF demagnetisation decay intensity curves are presented in Figures 3.9 and 3.10. Combined with their MAD(3) values, these pieces of evidence indicate that the samples had stable and well-defined primary directional components. Figures 3.11a and g show examples when NRM stable primary directions were
not attained and likely resulted from relatively high abundances of coarse material within the samples.

NRM intensities were additionally measured at 1 cm intervals along a continuous u-channel sample of the top ~120 cm of core TTR-451, and using the previously described NOCS 2G Enterprises cryogenic magnetometer. Note that the NRM measurements were performed prior to ARM treatment. Measurements were made in order to cross-validate NRM measurements from the discrete sample set, and to provide additional evidence for stratigraphic control between the sample sets. NRM intensities were measured after stepwise AF demagnetisation in peak fields of 0, 5, 10, 15, 20, 25, 30, 40, 50, 60 and 80 mT. Figure 3.13 shows the NRM data collected after each AF demagnetisation treatment and reveals no evidence of flux jumps.

![Figure 3.13. NRM data collected after each AF demagnetisation treatment.](image)

Figure 3.13. Comparison of the continuous u-channel and discrete sample NRM data, measured after stepwise AF demagnetisation treatment at 20, 25 and 30 mT.
Figure 3.14 plots the continuous u-channel and discrete sample NRM measurements and the good agreement gives cross-validation of the discrete sample data. Note that as with the ARM measurements, the NRM u-channel data was smoothed over a 5 cm sliding window, as a result of the pick up function of the coils. Slight discrepancy between the datasets occurs at around 45 cm depth and possibly results from the smoothing of the u-channel measurements. However, it cannot be ruled out that this discrepancy may also result from lateral variation across the core.

3.3.4. SIRM and backfield single remanence curves, magnetic hysteresis loops and FORC diagrams.

When a sample is as magnetised as its mineralogical composition and the laws of thermodynamics permit, then the sample is said to be fully magnetically saturated. If this magnetisation is measured whilst the sediment is still within the strong DC applied field then this is known as the saturation magnetisation (M_s) (Verosub and Roberts, 1995). Once the applied field is removed or reduced to zero, the magnetic particles within the sample start to lose their alignment, and the magnetisation is therefore reduced. This measured magnetisation is termed the saturation remanence (M_r), and is equivalent to the SIRM.

If a DC field is applied in the opposite direction, so the sample is exposed to what is termed a ‘backfield’, then IRM is overcome and the magnetisation of the sample is reduced to zero (e.g., Verosub and Roberts, 1995; McElhinney and McFadden, 1999). The field in which this occurs is known as the coercivity or coercive force (B_c). If a backfield is applied and then removed, and the remanence of the sample is reduced to zero, then this field is called the coercivity of remanence (B_{cr}). Note that it is sometimes more appropriate to denote the coercive forces (B_c and B_{cr}) in terms of their equivalent fields; H_c and H_{cr}, respectively. If the applied field is repeatedly cycled, and saturation is reached, then the magnetisation of the sample will follow a hysteresis loop. Minor hysteresis loops can also be measured when the maximum applied field does not cause the sample to become magnetically saturated. For further discussions see

Figure 3.15. An example major magnetic hysteresis loop (solid black line), and SIRM and backfield single remanence curves (dashed black line) from sample TTR-451 2-7, which defines the magnetic parameters M_s, M_r, B_c, and B_{cr}. The grey boxes shows the intensity of the DC field in which the sample is magnetically saturated, or when removed results in a measured SIRM. The grey dashed line shows the intensity of the magnetic moment when saturation magnetisation or SIRM is attained.

Figure 3.15 shows an example major hysteresis loop (solid line) and SIRM and backfield remanence curves (dashed curve). When the gradient of the curves are close to zero, the sample is magnetically saturated, and is represented by the grey area of Figure 3.15. Ferrimagnetic material (e.g., magnetite) becomes fully magnetically saturated in applied magnetic fields of around 300 mT, whereas canted antiferrimagnetic minerals (e.g., hematite) saturate in fields in excess of 2.5 T (e.g., Verosub and Roberts, 1995). Hysteresis loops with constricted narrow waists, are typical of sediments dominated by grains with PSD/MD
domain states; whereas larger wasted loops indicate finer average magnetic grain sizes (e.g., Dunlop, 1986; Dunlop et al., 1990; Stoner et al., 1996). Therefore, analysis of the slope of the IRM acquisition curve and the shape of the major hysteresis loop, give indication of the predominant magnetic mineral content, as well as the average grain size of the sample.

Where the magnetic content of a sediment sample is known to be magnetite, magnetic hysteresis loop parameters and their ratios can be used to determine the domain state and grain size of the magnetic material (Day et al., 1977; Dunlop, 2002a, b). For samples containing coarse multi-domain (MD) grains, $M_r/M_s <0.05$ and $B_{cr}/B_c >4$, whilst samples dominated by fine grain single domain (SD) grains, $M_r/M_s >0.5$ and $B_{cr}/B_c <1.5$ (Day et al., 1977). Pseudo single domain grains (PSD) are represented by values that lie in between these two extremes. For magnetite, the SD/MD grain size transition is estimated primarily based upon theoretical calculations, at around 70 ηm. For PSD grains, which show high remanence (SD), but low coercivity (MD) characteristics, the grain size range is estimated between 0.1 and 20 μm (Fabian et al., 1996). Previous studies of marine core sediment samples from the North Atlantic indicate a constant magnetic mineralogy of (titanom)agnetite with predominantly PSD grain sizes (e.g., Stoner et al., 1996; Kissel et al., 1997; 1999a; Laj et al., 2000).

Interpretation of domain state and grain size from hysteresis parameters can be ambiguous due to magnetostatic interactions (e.g., Dunlop, 2002a, b), and where samples contain different admixtures of magnetic particles with variable domain states they do not provide for detailed understanding of the individual components (Roberts et al., 2000).

FORC diagrams provide a better way of characterising individual magnetic components i.e. magnetic grain type and domain state. FORC diagram analyses were first introduced into geomagnetic studies by Roberts et al. (2000) and have since been used to investigate a wide range of magnetic particle systems with both synthetic and natural samples (Pike et al., 1999; 2001; Roberts et al., 2000; Muxworthy and Dunlop, 2002; Carvallo et al., 2003; 2005; 2006).
FORC diagrams are calculated from a large number of partial hysteresis loops or first order reversal curves (FORCs). A FORC is the magnetisation curve measured when the applied reverse field (H_r) is increased until saturation is reached. The FORCs used in the generation of a FORC diagram have different initial values of H_r so that the interior of the major hysteresis loop is filled. The magnetisation in the applied field (H) with the reversal point of the FORC (H_r), is denoted by $M(H_r, H)$. Roberts et al. (2000) define the FORC distribution as the second mixed derivative:

$$\rho(H_r, H) \equiv \frac{\partial^2 M(H_r, H)}{\partial H_r \partial H} \quad \text{(Equation 3.2)}$$

where $\rho(H_r, H)$ is well defined for $H > H_r$. $\rho(H_r, H)$ is the FORC distribution, which at a given point (P) is calculated with a polynomial surface which is fitted onto a local square grid with P at the centre (Pike et al., 1999; Roberts et al., 2000; Carvallo et al., 2006). A FORC diagram is a contour plot of the FORC distributions rotated to a 45° angle, where the coercive field ($H_c = (H - H_r)/2$) is plotted on the horizontal axis and the local interaction field ($H_b = (H + H_r)/2$) is plotted on the vertical axis. For further details and discussions on the generation and interpretation of FORC diagrams the reader is referred to Roberts et al. (2000) and Carvallo et al. (2003; 2006).

Experimental and theoretical studies have shown that magnetic particles with different domain states and interactions plot in different areas of the FORC diagram (e.g., Roberts et al., 2000). SD grains are represented by minimal spread along the (H_b) vertical axis and have closed contours, PSD grains have closed contours, but with a horizontal peak at lower H_c values, and MD grains typically show an open and divergent contour distribution that is spread along the vertical (H_b) axis (Pike et al., 1999; 2001; Roberts et al., 2000; Muxworthy and Dunlop, 2002; Carvallo et al., 2003; 2005; 2006).

In order to better characterise magnetic mineral composition and grain size/domain state of sediments from core TTR-451, SIRM and backfield remanence curves, major magnetic hysteresis loops and FORC diagrams were
generated. Eight of the discrete palaeomagnetic samples, on which magnetic susceptibility, ARM and NRM were measured, were used for this study and samples were selected on the basis of their very different $\kappa_{\text{ARM}}/\kappa$ (inferred magnetic grain size) values.

The eight discrete palaeomagnetic cube samples (samples TTR-451 1-5, 1-8, 1-14, 1-19, 1-24, 2-3, 2-7 and 2-14) were dried and lightly ground, therefore ensuring that the sediments were not only homogenised, but also demagnetised. Subsamples with volumes of ~ 0.8 cm3, were placed into plastic capsules and were tightly packed with cotton wool in order to prevent particles moving whilst measurements were being made. Measurements were made using a Princeton Measurements Corporation, Micromag, Vibrating Sample Magnetometer (VSM), and all analyses were performed at normal room temperature. The principle of how a VSM works is based upon Faraday’s Law, whereby a time-varying magnetic flux induces an electromagnetic field in a conductor. The VSM vibrates the sample sinusoidally in the homogenous area of an electromagnet. The resulting magnetic moment of the sample induces a signal in voltage that is proportional to it in the adjacent pick-up coil (Evans and Heller, 2003).

The SIRM and backfield single remanence curves, magnetic hysteresis loops, and FORCs were generated with maximum applied DC fields of ± 1 Tesla. After each measurement, the samples were treated with a 100 mT AF in order to remove the remanence of the previously imparted strong DC field.

FORC measurements were made with a smoothing time of 150-200 ms. The boundaries for the coercive field (H_c) were set between 0 to 120 mT and the local interaction field (H_b) between -80 and $+80$ mT. The FORC diagrams were generated using the ‘FORC’ analysis programme and is run using Matlab software. A user-defined smoothing factor (SF) determines the size of the local grid on which the polynomial fit of the magnetisation is done, where the area of the grid is given by $(2\text{SF} + 1)^2$ over which ρ is smoothed (Pike et al., 1999). In this study a smoothing factor of 4 was used. A more complete explanation of how FORC diagrams are constructed is given by Muxworthy and Roberts (2006).
3.4. Scanning Electron Microscope (SEM) study of magnetic mineral grain sizes

Scanning Electron Microscopy (SEM) image analysis of polished thins sections were used to validate the assumption that (titano)magnetite dominate the magnetic mineral composition of northern North Atlantic sediments beneath the NADW flow path (e.g., Kissel et al., 1997; Laj et al., 2000). Furthermore, the SEM image analysis study was performed in order to ‘ground-truth’ the magnetic mineral grain size estimates that were gained from the environmental magnetic measurements.

Subsamples, with volumes of around 0.5 cm3 of lightly ground and, hence, homogenised sediments from eight discrete samples TTR-451 1-5, 1-8, 1-14, 1-19, 1-24, 2-3, 2-7 and 2-14, were made into polished thin sections. These samples were selected on the basis of their very different κ_{ARM}/κ values, and the sediment subsamples from which, VSM measurements were made. The polished thin sections were carbon coated and imaged using a Carl Zeiss SMT Ltd., Leo 1450VP (variable pressure) tungsten filament Scanning Electron Microscope (SEM). Mosaics of 15 x 15 SEM images were collected for each sample at a magnification of x1000, and using a backscatter detector where the brightness of the individual grains is related to the relative atomic number and porosity. In total, 1800 separate images were collected, of which every twentieth were analysed.

SEM – Energy Dispersive Spectroscopy (EDS) allowed for identification of (titano)magnetites. These were recognised by an elemental composition of only iron, titanium, silica and aluminium oxides. The titanomagnetites were, by far, the brightest grains within the sediment samples. PGT IMIX image analysis software was used to process the acquired images. The software was calibrated for the brightness of the (titano)magnetite grains in order to automatically count and measure the cross-sectional diameter of titanomagnetite grains. The PGT IMIX image analysis software was additionally calibrated for magnification (1 pixel = 0.359241 µm), so that the data was output in microns.
Although not quantified, error in this analysis can be assumed. Firstly, pitted grains were counted by the image analysis software as multiple grains. During processing, however, this error was reduced by manipulation of the software. Secondly, areas of polished thin sections with no sediment coverage were included in the image analysis, and likely affected the percent area calculations.

3.5. Sortable silt material, preparation and analyses

The grain size distribution of terrigenous particles within the 10-63 µm size range, or sortable silt size range as defined by McCave et al. (1995a, b), is a sensitive index for near bottom current strength. Variations of the mean grain sizes within the sortable silt grain size window have been interpreted to reflect changes in intensity of near bottom strength (e.g., Bianchi and McCave, 1999), as more vigorous flow prevents deposition of the finer grains and therefore biases the mean grain size towards higher values (Ledbetter, 1984; McCave et al., 1995a, b). Records of mean sortable silt grain sizes have shown agreement with geochemical proxies for nutrient concentration along deep and bottom current flow paths (e.g., Hall et al., 2001). For an in-depth review on the background understanding, techniques and pitfalls of the sortable silt method see McCave et al. (2006) and McCave and Hall (2006).

Mean sortable silt grain sizes were measured on samples from core TTR-451 to test whether the magnetic proxy κ_{ARM} versus κ (also measured on samples from TTR-451) is a sensitive index for near bottom current strength. Mean sortable silt grain sizes were additionally measured on core top samples that were collected from cores D298-P1 (3452 m water depth; 57°30.227’N and 48°43.369’W) and D298-P3 (3430 m water depth; 58°13.025’N and 48°21.765’W). These cores were recovered from the western toe of Eirik Drift during the D298 cruise in 2005 with RRS Discovery. Mean sortable silt grain size data were also gained from core top samples of TTR-451 and TTR-450. These core top measurements were made in order to compare with mean scalar current velocities that were calculated from Lowered Acoustic Doppler Current Profiler (LADCP) data that was additionally collected during D298. Figure 3.16
shows the location of the cores relative to the D298 CTD stations that were used in this study.

Figure 3.16. Location map of the study region. The black and red dots represent the cores collected during the TTR-13 and D298 cruises, respectively. The D298 CTD stations that are not used in this study are shown in green and those that are used are shown in blue, with their station numbers denoted, and the 1000, 2000 and 3000 (heavy, black) contours are shown.

The preparation techniques for the mean sortable silt grain size analyses were after McCave et al. (1995b) and are summarised in Figure 3.17. Analyses were conducted on approximately 3 g of dried, lightly ground (homogenised)
subsamples from the upper 48 discrete samples from core TTR-451 (spanning ~120 cm of the core); the same samples from which the κ_{ARM} and κ measurements were made. For details on the magnetic methods see section 3.4.

Mean sortable silt analyses were also carried out on core top samples. Approximately, 1.5 g of terrigenous sediment within the sortable silt grain size range, was required for analysis. Therefore, up to 6 g of bulk sediment was sampled from the core tops of TTR-450 and TTR-451 as the core tops mostly comprised a winnowed foraminiferal sand.

Samples were dispersed overnight in a 0.1 % calgon (sodium hexametaphosphate) solution, under continuous agitation using a ‘shaker bed’ to help disaggregate the sediment. Initial pilot studies showed that the total organic carbon (% TOC) content for core TTR-451 was very low (less than 0.3 %). In accordance to the methods in McCave et al. (1995b), it was considered unnecessary to disperse the sediment in hydrogen peroxide (H_2O_2). Treatment of the sediment with hydrogen peroxide is used to digest organics, but the process is potentially damaging to pyrite and feldspars, and even quartz (e.g., Mikutta et al., 2005).

Samples were wet sieved at 63 µm using RO water, and the greater than 63 µm size fraction was retained and oven dried at 50 °C overnight. The retained coarse fraction was inspected under a binocular microscope to ensure all the silt and clay fraction had been successfully removed.

Samples were dispersed overnight in 500 ml of 1 M acetic acid solution (the reactant in excess to ensure a complete reaction) in order to remove biogenic carbonate. Unlike the conventional preparation method wherein samples are settled overnight between washes (e.g., McCave et al., 1995b); the samples were triple washed with RO water using a centrifuge after 24 hours. This deviation from the published method was for 2 key reasons. Firstly, floculates were evident in suspension after 24 hours of dispersion. SEM imaging, showed that these floculates contained grains within the sortable silt grain size range (10 –
63 µm), and therefore could not be wasted. Secondly, testing of the acetic acid solution with litmus paper indicated a pH of 2 and a pH of 3-4 after the first wash. Therefore, it was considered prudent to remove all of the reactant immediately to prevent removal of detrital carbonate as well as the biogenic carbonate. Smear slide examination under a petrological microscope of a toothpick sample after the removal of the reactant showed complete extraction of the biogenic carbonate, with some detrital carbonate remaining. After triple washing, the remaining solution was tested with litmus paper to ensure that the sediment was dispersed in a dilutant with a neutral ≠ 5-6 pH.

The sediments were then dispersed in 500 ml of 2 M sodium carbonate (NaCO₃) solution (with the reactant in excess) for 5 hours in a heated water bath at 85 °C in order to extract the biogenic silica. Using a centrifuge, the sediments were triple washed with RO water in order to remove both the reactant and the silica in solution. The dilutant was tested with litmus paper to ensure that the remaining solution had a neutral pH. With the neutralisation process of washing, the pH of the solution changed from strongly alkaline (pH close to 14) with the sodium carbonate, to slightly acidic (pH of 5-6) with only RO water, and hence ensured complete removal of the reactant. The samples were dispersed in a 0.2 % calgon solution and stored in the cold and dark in order to prevent algal growth.

The sediment samples were spun overnight to facilitate disaggregation, and then placed in an ultrasonic bath for 2 minutes immediately prior to analysis. The samples were vigorously shaken by hand and 300 µl of sediment solution was immediately pipetted into an Isoton electrolyte solution. The volume of sample was adjusted for the analysis of the D298 core top samples to 400 µl in order to maintain similar grain concentrations during analysis.

The time taken between the shaking of the samples to pipetting likely varied during each batch run as it is logical that the process became faster with repetition. This would imply that the first few samples would be biased towards finer grain sizes as the coarse grains settle out first. This was tested by reanalysis of the first few samples from the start of the batch to the end of the batch.
Figure 3.17. Summary flow diagram of the preparation techniques for sortable silt analyses. Methods are after McCave et al. (1995b)

The sortable silt grain size distributions were measured using a Beckman Multisizer 3 coulter counter at Cardiff University, and the mean sortable silt grain sizes calculated using the Beckman Coulter Multisizer 3 software. A standard solution with known grain sizes was measured prior to the sample batches in order to test the machine accuracy and calibration.
There are three key analytical devices that are used for grain size distribution measurements of deep sea fine-grained sediments; the coulter counter (used in this study), the sedigraph, and particle laser sizers, of which none measure the actual grain sizes. The coulter counter uses electrical conductivity to estimate volume-equivalent spherical diameters (Bianchi et al., 1999; McCave and Hall, 2006). Particles are detected when they are sucked through an aperture and past a laser. The diameter of the aperture determines the grain size range of particles that can be detected. Due to this limited grain size window, coulter counters are only able to record mean sortable silt grain sizes, and not percent sortable silt. The sedigraph estimates particle grain sizes based upon their settling velocities, and hence provides a ‘dynamical’ grain size distribution that is directly related to the depositional setting (e.g., McCave et al., 1995a, b; McCave and Hall, 2006).

Particle laser sizers estimate grain sizes based upon diffraction of coherent light as the particle passes a laser beam. This method is unsuitable for the measurement of platey minerals as their sizes are dominated by their relatively large surface area, and hence are recorded as larger grains. Note that according to Stoke’s law of settling, it is the particle volume and density that dictates its settling velocity and dynamical behaviour within a current. McCave et al. (2006) compare results from sedigraph and laser sizer data, measured on the same sediment samples from the Gardar Drift. This paper shows large discrepancies between their grain size distributions that likely resulted from machine artefact in the laser sizer data. For further discussions see McCave and Syvitiski (1991), Bianchi et al. (1999), McCave et al. (2006), McCave and Hall (2006).

3.6. Studies of planktonic foraminifera carbon and oxygen stable isotope ratios, planktonic foraminifera (>150 μm counts) and coarse sediment fraction (>150 μm) counts and analyses

3.6.1. Sampling and preparation

The planktonic foraminiferal stable carbon and oxygen isotope measurements and the coarse fraction (>150 μm) analyses were carried out on sediment sub-
samples that were removed at continuous 0.5 cm intervals from a 2 x 2 cm square-cross-section u-channel sample. The u-channel sediment spanned the upper two core sections of core TTR-451. This provided an interval of study that was around 120 cm in length down-core.

The u-channel subsamples were freeze-dried, weighed and wet-sieved over a 63 µm sieve and using de-ionised, reverse osmosis (RO) water. The sediment fraction finer than 63 µm was retained. RO water was used as opposed to tap water to ensure that the foraminiferal tests were not contaminated with modern carbonate. Care was taken to minimise the exposure of the sediment samples to the RO water as it is inherently slightly acidic (pH of around 5-6). Exposure of foraminiferal specimens to acidic solutions can cause dissolution of the carbonate tests, resulting in erroneous stable oxygen and carbon isotope ratios.

The retained sediment coarser than 63 µm was inspected using a binocular microscope to ensure that the silt and clay fraction had been successfully removed and was oven dried overnight at 50ºC. The dried sediment samples were dry sieved through 125 and 150 µm meshes and weighed. Using a sediment splitter, the sediment coarser than 125 µm was divided into equal aliquots.

3.6.2. Ice rafted debris counts and planktonic foraminiferal abundances

Contained within marine sediment cores, lithic grains with diameters larger than 150 µm are too large to be carried by bottom currents. Instead, they are transported to core sites within ice-bergs and termed ‘ice rafted debris’ (IRD) (Bond et al., 1992). Counts of IRD have been used in palaeoceanographic studies as an indicator of ice-berg discharge events and high abundances have been associated with Heinrich events (e.g., Heinrich, 1988; Bond et al., 1992; 1993; 1997; 1999; Broecker et al., 1992; Grousset et al., 1993; 2001; Hilliare-Marcel et al., 1994; Darby et al., 2002; Elliot et al., 2002; Hemming and Hajdas, 2003; Hemming, 2004; Peck et al., 2006; 2007 amongst others). For more detailed definition of Heinrich events see chapter 2.3.
Individual grain types have given indication of the source region of the ice-berg discharge. North Atlantic marine sediment core IRD provenance studies (e.g., Bond and Lotti, 1995; Bond et al., 1999; Elliot et al., 1998; Grousset et al., 2000; 2001) have attributed the origin of ice-bergs carrying hematite stained grains of quartz and feldspar to the Greenland and British ice sheets, detrital carbonate to the Laurentide and Fennoscandian ice-sheets, and shards of volcanic glass to the vicinity around Iceland, erupted onto the surface of sea-ice. A previous study by Knutz et al. (2001) suggested that for a marine core recovered from the Barra Fan, igneous and detrital carbonate grains were likely ice-rafted from the British ice-sheet. These previous studies have indicated a time-transgressive pulsing, or phasing, of the circum-North Atlantic ice-sheets over the duration of and just prior to the key IRD events of the last glacial cycle; Heinrich events.

Core TTR-451 is located beneath the pathway of the East Greenland Current, which today is a key carrier of both freshwater and icebergs out of the Arctic. Therefore, it was assumed that sediments from TTR-451 likely contained a past record of IRD deposited from ice-bergs carried out of the Arctic, Nordic Seas and off the East Greenland margin.

Often associated with sediment horizons rich in IRD are reduced abundances of planktonic foraminiferal tests (e.g., Grousset et al., 2001; Knutz et al., 2001; Hemming and Hajdas, 2003; Hemming, 2004). Such reduced numbers of planktonic foraminifera may have resulted from dilution by the increased IRD concentration, or from the significantly lowered sea surface temperatures, which occurred concurrently with these IRD events (e.g., Hemming, 2004; de Vernal and Hilliare-Marcel, 2000; Snowball and Moros, 2003; McManus et al., 2004; Peck et al., 2008). Therefore, numbers of planktonic foraminiferal tests that were larger than 150 µm were also counted from TTR-451 sediments, in order to provide a palaeoclimate indicator, with careful consideration of sedimentation rates. Planktonic foraminiferal species abundances (also a palaeoclimate indicator) were additionally counted from these same samples, but with sizes greater than 125 µm. Counts were performed using a binocular microscope and abundances of planktonic foraminiferal species were field counted.
Figure 3.18. The >150 µm size fraction sample from core TTR-451, showing some of the key lithic grains. Shown here are hematite stained grains of quartz, rhyolitic glass and basaltic glass. For this portion of the core, the sediments were rich in diatoms, which are also highlighted.

The sediment fraction containing grains with diameters larger than 150 µm from the aliquot allocated for the IRD and foraminiferal abundance counts (see section 3.2 for further details) was transferred into a counting slide and weighed. Lithic and total planktonic foraminiferal abundance counts were carried out concurrently and in a systematic manor using a 64 square slide and a binocular microscope. On average, ~500 grains were counted per sample, and the grain types distinguished. Figure 3.18 shows the key lithic grains counted. The total mass of the aliquot of sediment counted was used to quantify the results in terms of numbers of grains or foraminifera tests per gram of dried sediment. A selection of samples was recounted in order to quantify the counting error, and counts of different aliquots of sediment from the same sample were used to test the reproducibility of the results. The results of the above showed a less than 4 % discrepancy between the counts. Both lithic and foraminiferal counts were
converted into flux (numbers cm2 yr$^{-1}$) using the age model and mass accumulation rate of the core.

The identification of grains was aided by analyses of thin sections, SEM-EDS of selected grains, which were placed onto an SEM stub, and mineralogical investigation using X-ray diffraction (XRD) techniques. These investigations were performed using toothpick samples that were collected for pilot study. NB: The latter technique was also applied to ~200 µg of dried and ground bulk toothpick samples that were also used for bulk sediment stable carbon and oxygen isotope studies. XRD measurements were made using a Phillips ExPert Pro X-ray Diffractometer running on a cobalt tube, and with an illuminated area of 17mm. Step sizes of 0.02 degrees were used, with 2 theta per step and 1 sec per step. Mineralogical identification was done using Phillips software and the JCPDS database.

3.6.3. Carbon and oxygen stable isotope ratios

The geochemistry of planktonic foraminiferal calcite tests is intrinsically linked to the carbonate equilibrium of ambient seawater in which it was formed. The analysis of stable oxygen (δ^{18}O) and stable carbon (δ^{13}C) isotopic ratios of foraminiferal tests has been widely used in palaeoceanographic reconstructions of ocean temperatures, salinity, primary productivity, carbonate ion concentration and carbon dioxide concentrations (e.g., Emiliani, 1955; Shackleton and Opdyke, 1973; Duplessy et al., 1984; Imbrie et al., 1984; Zachos et al., 1994; 2001; 2008; Sarnthein et al., 1995; Weinelt et al., 1996; 2003; Shackleton et al., 2000; de Vernal et al., 2002; Raymo et al., 2004; Hilliare-Marcel and de Vernal, 2008).

A more complete hydrographic reconstruction is achieved by combining stable isotope records from different depth dwelling foraminiferal species (e.g., Boyle and Keigwin, 1987; Duplessy et al., 1988; Keigwin et al., 1991; Dokken and Jansen, 1999; Shackleton et al., 2000; Hilliare-Marcel and Bilodeau, 2000; Hagen and Hald, 2002; Peck et al., 2008). Stable oxygen isotope records
generated from foraminiferal tests are also used as a global stratigraphic tool, with Pleistocene fluctuations shown to occur on regular glacial-interglacial time-scales as a result of global ice-volume changes (e.g., Aharon, 1983; Labeyrie et al., 1987; Martinson et al., 1987; Shackleton 1987; Fairbanks, 1989; Raymo et al., 2004). Detailed reviews on foraminiferal calcite stable isotope geochemistry are given in Rohling and Cooke (1999) and Bijma et al. (2002).

The $\delta^{18}O$ and $\delta^{13}C$ notation stands for the ratio of ^{18}O to ^{16}O, and ^{13}C to ^{12}C, respectively, relative to an external standard with known composition (Equation 3.3, where R represents the ratio of $^{18}O/^{16}O$ or $^{13}C/^{12}C$).

$$
\delta_{\text{sample}} = \left[\frac{(R_{\text{sample}} - R_{\text{standard}})}{R_{\text{standard}}} \right] \times 1000 \quad \text{(Equation 3.3)}
$$

For carbonates this reference standard is Pee Dee Belemite (PDB) which, by definition, has $\delta^{18}O = 0$ and $\delta^{13}C = 0$ (Epstein et al., 1953). Today, measurements are commonly made relative to the laboratory standards NBS-18 and NBS-19, provided by the National Institute of Technology (NIST) and the Vienna based International Atomic Energy Agency (IAEA). The NBS-18 and NBS-19 laboratory standards are calibrated against Vienna Pee Dee Belemite (VDPB), and for the former, Vienna Standard Mean Ocean Water (VSMOW) (Coplen, 1988; 1994; NIST, 1992).

There are two key factors that determine the stable oxygen isotope geochemistry of planktonic foraminiferal carbonate, the temperature at which the carbonate was formed and the salinity of the ambient seawater. The reaction for the precipitation of carbonate is: \(\text{Ca}^{2+} + 2\text{HCO}_3^- \rightleftharpoons \text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \), and occurs under equilibrium fractionation. Equilibrium fractionation occurs as a function of temperature and the net effect equates around a 0.2 to 0.25 ‰ $\delta^{18}O$ decrease for every 1 °C increase (e.g., O’Neil et al., 1969; Shackleton, 1974; Kim and O’Neil, 1997), allowing $\delta^{18}O$ ratios to be used as a useful ‘palaeothermometer’ (e.g., Urey, 1947; McCrea, 1950; Shackleton, 1974). However, since temperature decreases with depth, vertical migration of foraminifera at different ontogenic stages will influence the $\delta^{18}O$ ratio of the
foraminiferal carbonate (e.g., Emiliani, 1955; Berger, 1971; Bemis et al., 1998). Some species also grow a secondary calcite layer at depth, which has increased δ¹⁸O ratios (Simstich et al., 2003; Hamilton et al., 2008).

Salinity and the δ¹⁸O of seawater are directly linked through the equilibrium fractionation processes with evaporation and precipitation (Craig and Gordon, 1965). During evaporation at the air-sea interface the lighter (¹⁶O) isotope with a higher vapour pressure become preferentially enriched in the vapour phase. With precipitation, the process works in the opposite sense. Humidity and ‘roughness’ at the air-sea interface may influence the isotopic exchange during evaporation (review in Rohling and Cooke, 1999). The equilibrium fractionation process means that surface seawaters with high evaporation rates have increased salinity and enriched δ¹⁸O, whereas precipitation and riverine runoff that reduce surface water salinity have depleted δ¹⁸O values (e.g., Craig and Gordon, 1965).

Due to the repetition of this distillation process, higher latitude regions receive precipitation/snow with much depleted δ¹⁸O values and hence, the mean value of modern Arctic runoff is around -21 ‰ (Rohling and Bigg, 1998; Bauch et al., 1995; 2005). Meltwater runoff from the Greenland ice sheet has a composition of -20 ‰ or lighter (Reeh et al., 2002). The net effect of equilibrium fractionation is the preferential sequestration of the lighter (¹⁶O) isotope in ice-sheets resulting in long-term storage. Comparison of foraminiferal calcite δ¹⁸O records with sea-level records reveals a relationship between mean ocean δ¹⁸O enrichment and sea level lowering (ice-sheet ‘lock-up’) of 0.012 +/-0.001 ‰ m⁻¹ (Shackleton, 1987; Fairbanks, 1989). Duplessy et al. (2002) suggests an ice volume component of 1.05 ‰.

Sea-ice formation results in very characteristic seawater δ¹⁸O signatures (e.g., Tan and Strain, 1980; Dokken and Jansen, 1999; Hilliare-Marcel and de Vernal, 2008). When low salinity waters freeze to produce sea-ice, isotopically light brines are formed that sink and mix with subsurface waters within the halocline. An additional δ¹⁸O depletion of the residual brine results from an enrichment of sea ice of around 3 ‰ under equilibrium conditions (O’Neil et al., 1969). When
sea-ice melts it results in the addition of isotopically heavy, but low salinity surface waters.

The endmember $\delta^{18}O$ composition of seawater results from advection and mixing of watermasses with their different $\delta^{18}O$ signatures that have resulted from the above described varying processes in the hydrological cycle. Rohling and Cooke (1999) define the $\delta^{18}O$ endmember as the volumetrically weighted average $\delta^{18}O$ composition of its components, and are described by equation 3.4.

$$
\delta^{18}O_{\text{endmember}} = \frac{A\delta^{18}O_A + B\delta^{18}O_B + C\delta^{18}O_C}{A+B+C}
$$

(Equation 3.4)

where A, B and C are the volumes of the components and $A\delta^{18}O_A$, $B\delta^{18}O_B$ and $C\delta^{18}O_C$ are their respective isotopic compositions.

Carbon dioxide in seawater is primarily contained within bicarbonate ions (HCO_3^-), which weakly dissociates to form CO_3^{2-}. The formation of foraminiferal tests are affected by the inorganic carbon pool within the oceans (e.g., Swart, 1983; Wolf-Gladrow et al., 1999; for review see Rohling and Cooke, 1999). The $\delta^{13}C$ composition of foraminiferal tests is primarily controlled by photosynthesis and export productivity. Photosynthesis occurs in the euphotic zone and strongly discriminates against ^{13}C. This, combined with the remineralisation of organic matter, cause ambient near surface waters to become enriched in $\delta^{13}C$. Remineralisation of organic matter at depth causes a transfer of ^{12}C to the deep ocean and, hence, increased export productivity results in increased $\delta^{13}C$ gradients between the surface and the deep ocean. Consequently, the $\delta^{13}C$ composition of foraminiferal tests in marine sediments have been used as a proxy for nutrient concentration and, hence, also deep water ventilation or ‘age’ (e.g., Broecker, 1982; Broecker and Peng, 1982; Boyle and Keigwin, 1987; Sarnthein et al., 1994; Keigwin and Boyle, 2008).

Weathering of sedimentary carbonates, organic carbon burial, and changes in atmospheric CO$_2$ concentration, as well as $\delta^{13}C$ composition, also affect the carbonate ion chemistry of the oceans and can be recorded in foraminiferal
carbonate contained within marine sediment (e.g., Garlick, 1974; for review see Rohling and Cooke, 1999). However, these changes typically occur over geological time-scales that are outside the scope of this study.

Deviations from equilibrium in the formation of foraminiferal carbonate may result from the incorporation of respiratory CO$_2$ (e.g., Grossman, 1987; Wefer and Berger, 1991), which is shown to vary during the foraminiferal life cycle due to decreased metabolic rates with ontogenic stage (e.g., Kroon and Darling, 1995). Vertical migration during ontogeny and, hence, dwelling in water masses with different δ^{18}O and δ^{13}C compositions and temperature during the foraminiferal life cycle, will also result in deviations from equilibrium. Other ‘vital’ effects include; symbiotic photosynthesis (e.g., Spero and Lea, 1993), changes with growth and growth rate (e.g., Spero et al., 1991; Billups and Spero, 1995), carbonate ion concentration (e.g., Spero et al., 1997), and the production of gametogenic calcite (e.g., Duplessy et al., 1981; Spero and Lea, 1993; Bemis et al., 1998).

Ambient water pH has an effect on foraminiferal test formation, as well as differential dissolution post death (e.g., Broecker and Peng, 1982; Dittert et al., 1999; Schiebel, 2002; Schiebel et al., 2007). Ontogenic and vital effects on the stable carbon and oxygen isotopic geochemistry of the foraminiferal calcite may be minimised by study of specimens within a narrow size range and of one species. The effect of differential dissolution of planktonic foraminiferal tests may also be reduced by the above, but can also be assessed by planktonic foraminiferal test appearance, ratios of benthic versus planktonic specimens, and average test weights (e.g., Schiebel et al., 2007). For a comprehensive review and further discussions of the stable isotope geochemistry of foraminiferal calcite tests see Rohling and Cooke (1999), Bijma et al. (2002) and Schiebel and Hemleben (2005).

Carbon and oxygen stable isotope measurements were performed on bulk sediment and planktonic foraminiferal carbonate samples, using a Europa Geo-2020 mass spectrometer. Calibration of laboratory standards shows that the reproducibility of the Geo-2020 mass spectrometer is +/-0.027 ‰ for δ^{13}C and
Chapter 3. Methods

+/−0.053 for δ18O (M. Bolshaw, pers. comm.). The Europa Geo-2020 mass spectrometer has a Carbonate Acid Preparation System (CAPS) individual acid dosing, or ‘drip method’ preparation system where samples were reacted with phosphoric acid at 70 °C to produce CO$_2$ gas. The CO$_2$ gas was analysed relative to a reference gas and results expressed in terms of mass ratios of 45/44 (δ45) or (46/44) δ46.

Samples were run in batches of 19, with 3 laboratory standards (‘SC-1’, which is calibrated to the international NBS-19 standard) placed at the front and 2 laboratory standards at the back of the run. Using the laboratory standard values, measurements were drift corrected and the sample values were linearly shifted to give per mille (δ18O and δ13C) values relative to VPDB (Coplen, 1988; 1994) (Equation 3.3). Further corrections must be applied when converting the mass ratios of δ45 and δ46 onto the VDPB ‰ scale (Rohling and Cooke, 1999). Firstly, for the mass ratio of 17O/18O (Craig, 1957), and secondly, for the fractionation effect of the temperature at which the reaction of the carbonate with the phosphoric acid took place (Swart et al., 1991).

The size of sample analysed dictates whether the sample CO$_2$ gas is frozen in the cold finger or expanded into the bellows (Figure 3.19). Changing between these methods during batch runs would likely produce a shift in values due to variable amounts of fractionation. In order to avoid the above scenario, similar sample sizes were maintained. Additionally, re-analyses samples allowed for the reproducibility of the measurements to be tested for individual sample batches.

The δ18O and δ13C ratios were measured from toothpick size, bulk sediment samples collected at 5 cm intervals from the split core sediment surface of cores TTR-450 and TTR-451. Analyses were done in order to provide an initial stratigraphy and to identify intervals of core for further study. Samples were oven dried overnight at 50°C and lightly ground so that particles sizes were close to fine sand. Approximately 500 µg of sample was analysed and the sample size was varied according to sediment colour, so that samples contained similar quantities of carbonate.
Figure 3.19. Plot of carbonate (SC-1 laboratory standard) sample weight versus the reference gas volume (beam height), measured in nAmps. Measurements were made using a Europa Geo-2020 mass spectrometer. Black dots indicate sample that were frozen in the cold finger and red crosses show samples that were expanded into the bellows. Data is courtesy of M. Bolshaw.

Records of planktonic foraminiferal δ\(^{18}\)O and δ\(^{13}\)C were acquired from the allocated aliquot of sediment subsample of the U-channel sediment collected from the upper ~120 cm of core TTR-451 (see section 3.6.1). Records were generated in order to give palaeoclimate reconstruction. Analyses were performed using monospecific samples of the planktonic foraminifera Neogloboquadrina pachyderma (left coiling); a sub-surface polar species that strongly dominated the sediment samples. Using RO water, approximately 30 individuals were picked from each sample, with sizes ranging between 225 and 275 µm. The sizes were estimated using a calibrated graticule under a binocular microscope. The δ\(^{18}\)O record was corrected for ice volume changes using the sea level relationship of Duplessy et al. (2002).
The second most abundant species was the planktonic foraminifera *Globigerina bulloides*. For samples that contained enough specimens for analysis, δ^{18}O and δ^{13}C data were additionally acquired from *G. bulloides* in order to compare with those obtained from *N. pachyderma* (left coiling). *G. bulloides* was picked within a size range of 250-300 µm, and due to variable abundances, the total number of specimens per sample ranged from 8 to 22. All monospecific samples were oven dried overnight at 50°C, prior to analysis.

3.7. Accelerated Mass Spectrometric (AMS) 14C datings

In total, seven discrete sediment samples provided AMS14C datings from core TTR-451 (Table 3.1). Samples were wet sieved through a 63 µm sieve using RO water, and the coarse fraction retained and oven dried overnight at 50 °C. The most abundant planktonic foraminiferal polar species *N. pachyderma* (left coiling) were picked using RO water, giving carbonate weights in excess of 8 mg for analysis. The picked foraminiferal tests were oven dried overnight at 50 °C and were dated using accelerated mass spectrometry at the department of Leibniz Labor für Altersbestimmung und Isotopenforschung, Kiel.

<table>
<thead>
<tr>
<th>KIA- sample number</th>
<th>Core</th>
<th>Depth (cm)</th>
<th>Number of specimens of N. pachyderma (lc)</th>
<th>Weight of carbonate sample (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIA-26998</td>
<td>TTR-451</td>
<td>12.00</td>
<td>1457</td>
<td>8.389</td>
</tr>
<tr>
<td>KIA-27856</td>
<td>TTR-451</td>
<td>40.00</td>
<td>2252</td>
<td>8.070</td>
</tr>
<tr>
<td>KIA-25853</td>
<td>TTR-451</td>
<td>57.50</td>
<td>1125</td>
<td>8.586</td>
</tr>
<tr>
<td>KIA-27857</td>
<td>TTR-451</td>
<td>76.00</td>
<td>1995</td>
<td>9.910</td>
</tr>
<tr>
<td>KIA-27858</td>
<td>TTR-451</td>
<td>83.50</td>
<td>1300</td>
<td>8.133</td>
</tr>
<tr>
<td>KIA-27859</td>
<td>TTR-451</td>
<td>94.25</td>
<td>1204</td>
<td>10.140</td>
</tr>
<tr>
<td>KIA-25854</td>
<td>TTR-451</td>
<td>102.25</td>
<td>1000</td>
<td>10.793</td>
</tr>
</tbody>
</table>

Table 3.1. AMS14C samples from cores TTR-450 and TTR-451.
CHAPTER 4

4. RESULTS

This chapter presents the analytical results obtained from marine sediment cores TTR-450 and TTR-451. First, a brief description is given of the core sediments and the results obtained from ITRAX-X-Ray Fluorescence (XRF) core scanning, which are presented along with the bulk sediment δ^{13}C and δ^{18}O. These analyses were conducted to provide an initial, low resolution stratigraphy in order to give better indication of where to focus further studies. The reproducibility of the ITRAX core scanning data is tested (sub-chapter 4.1). Next follows the palaeomagnetic and environmental magnetic data, and results are compared with the key elemental data from the ITRAX core scanning (subchapter 4.2).

This chapter then focuses upon the upper two core sections of TTR-451, which together span a core depth of ~120 cm. An environmental magnetic dataset (κ_{ARM}/κ), a record of magnetic grain sizes, is compared with a record of mean sortable silt grain sizes. The relationship between magnetic grain sizes and κ_{ARM}/κ values are investigated further with magnetic measurements and a scanning electron microscopy (SEM) image analysis study (sub-chapter 4.3). Next, results are presented for the high-resolution records of lithic counts, planktonic foraminiferal δ^{18}O, and total planktonic foraminiferal abundance counts (sub-chapter 4.4).
In sub-chapter 4.5, Accelerated Mass Spectrometric (AMS)14C datings are presented along with their calibrated ages, and the age model development for the key interval of study, which spans the upper ~120 cm of core TTR-451. Estimates of ΔR (14C marine reservoir age) values for the Eirik Drift region, for time period of the Heinrich event 1 and the last deglaciation, are also presented.
4.1. Core descriptions, ITRAX-XRF results, and bulk sediment δ¹⁸O.

4.1.1. Description of core TTR-450

Core TTR-450 is a 14.7 cm diameter gravity core with a total length of 569 cm. The core was divided into ten sections, with each section around 60 cm in length and one short (~30 cm) bottom section. For location of TTR-450 see chapter 3 and Figure 3.1. The core was split and logged onboard RV Professor Logachev, and the core log is published in the post-cruise report (Kenyon et al., 2004). The core log that was compiled onboard RV Professor Logachev likely gives the most accurate description of core TTR-450 prior to oxidation of the sediment surface, core top collapse, water loss and shrinkage.

In general, the top ~7 cm of core TTR-450 is a winnowed foraminifera-rich sand, that includes some <0.5 cm lithic fragments, small gastropods and bivalves. The base of the sand is irregular and is gradational over a few centimetres into a foraminifera rich, silty clay unit. The silty clay is continuous over ~155 cm of the core, and contains mm-size lithic fragments which are scattered throughout, and also form localised lithic-rich horizons. Some bioturbation, mainly Planolites burrows, is evident on the scraped and fresh sediment surface. Centimetre-size lithic clasts are abundant between 115 and 125 cm depth.
Throughout the entire silty clay interval (7 - 155 cm depth), the sediment colour varies between dark and light brownish grey, with marked sharp transitions at around 14 cm and 90 cm depth. As the grain sizes appear to remain constant between 7 cm and 155 cm, this entire portion of core TTR-450 is classified as one sedimentary interval, in agreement with Kenyon et al. (2004).

The sediments between 155 and 300 cm are characterised by slightly darker coloured grey silty clay, with higher clay content than the previous interval. Lithic fragments and foraminifera abundances are similar to those in the upper interval, but there are horizons with localised increased concentrations. Between 300 and 569 cm the sediments are classified as silty clay, but with marginally higher silt content. This interval has a gradational upper boundary, associated only with a change in grain size and no distinct sediment colour change. Lithic fragments (>1 cm) are observed throughout this portion of the core. The core logs published in Kenyon et al. (2004) describe greenish grey clay clasts between 190 and 360 cm, and 440 and 510 cm depth, as well as subparallel layering of greenish clay between 500 and 510 cm depth. Because of oxidation of the sediments since opening these cores, these details are no longer visible.

4.1.2. Bulk sediment C and O stable isotope ratios for TTR-450

Within this section the bulk δ^{18}O and δ^{13}C records for core TTR-450 are described. The methods for analyses are provided in chapter 3.6. Note that the terms ‘enriched’ and ‘depleted’, which are used here to describe trends, refer to the 13C isotope with respect to the 12C isotope and the 18O isotope with respect to the 16O isotope. More enriched values are more positive (and greater 13C/12C or 18O/16O isotopic signatures can be described as ‘heavier’), and vice-versa.

The bulk sediment stable oxygen isotope ratios (δ^{18}O) for core TTR-450 ranges between –0.66 and 2.33 ‰ (Figure 4.1g; note the inverted axis), with a mean of 0.59 ‰. Notable δ^{18}O depletions occur between 29 and 61 cm depth, and 90 and 127 cm depth, with minimum values of –0.66 and -0.39 ‰ respectively. Both depletions develop gradually and terminate sharply, returning to more enriched
values. It is noteworthy that the culmination of the $\delta^{18}O$ depletion at around 127 cm depth is coincident with the onset of the increased concentrations of lithic fragments between 115 and 125 cm depth (Figure 4.1). A broad anomaly of relatively enriched $\delta^{18}O$ occurs between 250 and 350 cm depth, with a maximum value of 2.33 ‰. Another, less pronounced enrichment occurs between 487 and 543 cm depth, with a maximum of 1.13 ‰.

The bulk sediment stable carbon isotope ratios ($\delta^{13}C$) are more variable than the $\delta^{18}O$ record (Figure 4.1f), with a range between -3.32 and 2.74 ‰, and a mean of 0.76 ‰. A notable depletion forms a broad anomaly between core depths of 325 and 385 cm, with a minimum of around –2.2 ‰. The start of this $\delta^{13}C$ anomaly has no counterpart in the $\delta^{18}O$ record, however, the $\delta^{13}C$ record returns to heavier values when $\delta^{18}O$ shift to lighter values. Between 482 and 520 cm depth, a shift to light $\delta^{13}C$ values occurs some 20 cm above transition in the $\delta^{13}C$ record.

Further significant $\delta^{13}C$ depletions occur between depths of 20 and 61 cm, and 90 and 115 cm, with minima of –3.32 and –2.56 ‰, respectively. The $\delta^{13}C$ depletion, at 61 cm depth, is coincident with depleted $\delta^{18}O$ values, but terminates later at around 22 cm depth, and develops gradually over ~25 cm of the core, and terminates sharply when the $\delta^{18}O$ returns to heavier values.

4.1.3. ITRAX-XRF core scanning results for core TTR-450

The NOCS ITRAX-XRF core scanner provides a non-destructive means of acquiring a suite of high-resolution elemental profiles. Data were acquired at 500 µm intervals by passing the split core sections through an X-ray beam, and moved incrementally using a stepper motor (Croudace et al., 2006). Described in this section are the key elemental data: potassium, calcium, titanium and iron. For further details on methods see sub-chapter 3.1.

Figure 4.1a shows the potassium intensity record. The element potassium is contained within the terrigenous sedimentary fraction (e.g., Yaroshevsky, 2006). Variations in the intensity of potassium counts therefore likely reflect changing
Figure 4.1. The key ITRAX-XRF core scanning results for the elements K, Ca, Ti and Fe (a-e), bulk sediment carbon (δ^{13}C) and oxygen (δ^{18}O) stable isotope ratios (f and g, respectively), and the core log (Kenyon et al., 2004) for core TTR-450. In panels a to e the data is shown in green/light blue and a 17-point running average is shown in black/dark blue. In panel c, the top 12.5 cm of the Ca data are removed. Int. stands for intensity in counts per second (cps). NB: panel g is plotted on an inverted axis. Shaded zones demarcate intervals that have relatively depleted or enriched δ^{18}O values.
abundances of continental, acidic sediment sources (Yaroshevsky, 2006), which are predominantly contained within the silt and clay sediment fractions. Note, however, that an additional source of potassium is rhyolitic volcanic glass, which has an acidic mineralogical composition. Because of the proximity of the core site to the Icelandic volcanic centre, results need to be carefully interpreted.

The counts of potassium for core TTR-450 are generally around 1000 cps, with high frequency variability between ~1400 and ~500 cps. A significant increase to nearly 2000 cps occurs between about 500 and 535 cm depth. This may reflect the increased greenish-clay content and sub-parallel layering that was described in the core logs (Kenyon et al., 2004). Between 250 and 350 cm depth, the counts of potassium are reduced to around 500 cps. The top ~20 cm of core TTR-450 shows relatively low concentrations of potassium; a reflection of the relatively higher foraminifera content of the sediment, and hence, low concentrations clay and silt.

The calcium intensity record is shown in Figure 4.1b and c, and variations likely represent changes in the abundance of biogenic and detrital carbonate. Calcium intensity values range between ~1000 and ~15000 cps. Lows in the calcium intensity record occur around depths of 30 and 72 cm, 94 and 153 cm, 222 and 260 cm, 303 and 421 cm, and 475 and 530 cm. The top ~12 cm of core TTR-450 shows exceptionally high counts of calcium (55217 cps), and likely reflects the predominantly foraminiferal composition.

In order to assess whether variations in calcium composition result from either relative changes in the clay and silt fraction, or alternatively are due to increased abundances of detrital carbonate, as opposed to a general increase in foraminiferal abundances, the calcium intensity is cross plotted versus the potassium intensity. The latter is an element that has an exclusively terrigenous source. Therefore, if relative changes in calcium do indeed result from variations in foraminiferal abundances and hence, sediment dilution, then the datasets should be expected to show a strong inverse correlation.
Figure 4.2. Cross-plot of the K and Ca intensities in counts per second (cps). The regression line for Cloud A (grey crosses) has an $R^2 = 0.31$ ($Y = 40.65976324 \times X + 10641.98922$), $n = 118$, and for cloud B (black dots), an $R^2 = 0.02$ ($Y = -0.6294532018 \times X + 5584.319186$), $n = 10529$.

In Figure 4.2, the potassium and calcium intensities are cross-plotted and this reveals two separate clouds of data. Cloud A represents the sandy top of the core; here high calcium counts correspond to low potassium counts. Cloud A shows potassium intensities change very little, despite a large range of calcium count values of between ~55000 and 500. There is a linear least squares regression line with a positive trend, but with an R^2 value that is very low (0.31), the statistical relationship is not significant ($n = 118$). The overall trend however, would suggest that as the numbers of foraminifera decrease there is no, or very little, relative increase in the clay and/or silt sediment fraction. Low porosities, large grain sizes and/or high surface roughness may have reduced the validity of the XRF data (Jansen et al., 1998; Kido et al., 2006; Tjallingii et al., 2007).
Figure 4.3. Ratios of Fe/Ti (a), Fe/K (b), Ti/K and Ca/K for core TTR-450. Shown in green are the data and the black line shows a 17-point running average through the data. Panels b-d are shown on a logarithmic scale. Panels e and f are the bulk sediment δ^{13}C and δ^{18}O records, respectively, for core TTR-450. In the top panel is the core log for TTR-450 (Kenyon et al., 2004). Shaded boxes demarcate intervals that have relatively depleted or enriched δ^{18}O values.
Cloud B shows that, below counts of around 500 cps, low counts of calcium correspond to low counts of potassium. Above 500 cps, the overall trend indicates that lower calcium counts occur with higher potassium counts. However, the data is very scattered (r^2 of 0.02), and therefore no statistical relationship can be inferred.

Figure 4.3d shows the ITRAX-XRF calcium counts versus the potassium counts, in order to show trends independent of variations in the terrigenous component of the sediment. Here, the Ca/K ratio shows near identical fluctuations to the raw calcium counts (Figure 4.1b), with distinctive lows between 30 and 72 cm, 94 and 153 cm, 222 and 260 cm, 330 and 421 cm, and 475 and 530 cm depth. These reductions in the concentration of calcium relative to potassium coincide with depletions in the bulk sediment δ^{13}C record.

Figure 4.1d and e show the titanium and iron intensities for core TTR-450. In general, the records of iron and titanium intensities have similar patterns. Highs are observed in both records at around 40 to 55 cm and 85 to 120 cm depth. Peak values occur in the titanium record at around 270 to 305 cm core depth. Relatively smaller amplitude changes can be seen in the iron record for this portion of core. However, between 488 and 540 cm depth, a peak in iron counts is not reproduced in the titanium record. A prominent low is seen in the upper ~12 cm of core TTR-450 due to the predominantly foraminiferal sediment composition.

Variations in the titanium count intensity are interpreted here to reflect the abundance of (titano)magnetites contained within the terrigenous sediment fraction. At Eirik Drift, (titano)magnetites are likely sourced from the Nordic Basaltic Province (north of the Denmark Strait) (e.g., Kissel et al., 1999a), which is located up-stream of the core TTR-450. A previous study has shown that sediments recovered from the northern North Atlantic have high abundances of the clay mineral smectite, which indicates a basaltic sediment origin (Kissel et al., 1997).
If the iron and titanium datasets do reflect the same source and pathway, then a high degree of covariance between the datasets would be expected. Because (titano)magnetites are iron-rich, they are likely to be the primary source of the iron contained within the TTR-450 sediments. However, variable amounts of iron-monosulphides and pyrite may also be reflected in the iron count intensity record. In order to investigate whether iron and titanium have the same origin throughout the core records, the two datasets are cross-plotted (Figure 4.4). If they do indeed have the same source, a positive linear relationship and a high R^2 value would be expected.

![Figure 4.4. Cross-plot of the Ti and Fe intensities in counts per second (cps). A regression line is shown in blue and gives an R^2 value of 0.53 ($Y = 18.9123627 * X + 29098.78647$, n = 10646).](image)

Figure 4.4 shows that the iron and titanium counts correlate with an R^2 value of 0.53 (n = 10646), however, toward the higher counts, the data is scattered, and it is clear that the regression line is effected by outliers. The scatter may in part be due to percentage error, or because of a variable iron source. Figure 4.3a, shows the ratio of the iron and titanium counts. A high Fe/Ti ratio is observed in the upper 12 cm of core TTR-450, most likely owing to iron-oxide coating on the
foraminiferal tests. The remainder of the record shows very few large amplitude changes, suggesting a similar source for both titanium and iron. A shift to lower Fe/Ti values occurs at around 250 cm depth. Kido et al. (2006) and Tjallingii et al. (2007) demonstrate that interstitial water and the sediment surface water film can affect XRF core-scanning results by absorption of the emitted X-rays, with the lighter elements most affected. Therefore, the shift to lower Fe/Ti values maybe explained by a change in the water content or porosity of the sediment.

In order to assess whether iron and titanium ((titano)magnetites) share the same sediment pathway as potassium (continental, acidic source), the potassium, and the iron and titanium datasets were cross-plotted (Figure 4.5). Figure 4.5 reveals similar shaped clouds of scattered data for the potassium versus the iron and the potassium versus titanium plots, but with R² values of 0.28 and 0.13, respectively (n = 10646). These low correlation coefficients indicate that grains rich in potassium were deposited at a different rate to the (titano)magnetite, suggesting different sediment pathways.

Figure 4.5. Cross-plots of the K intensity (cps) versus the Fe intensity (cps) (black dots), and the Ti intensity (cps) (grey open diamonds). Regression lines are shown in blue (K versus Fe) and red (K versus Ti) and reveal R² values of 0.28 (Y = 22.41926174 * X + 50301.3741) and 0.13 (Y = 0.5935070925 * X + 1774.420929) respectively (n = 10646).
The records of titanium and iron intensities are divided by the potassium intensity in order to show relative titanium and iron abundances with respect to the total clay fraction. The results are shown in figures 4.3b & c, respectively. The records show minor reductions that coincide approximately with reductions in the Ca/K record at around 120-153 cm, 230-260 cm and 480-540 cm depth. A low of shorter duration occurs between 350 and 370 cm. Minor reductions in the Ti/K and Fe/K records occur at around ~30 cm and ~80 cm core depths. A prominent high in both records is observed between 250 and 350 cm depth, coincident with the δ\(^{18}\)O enrichment event.

4.1.4. ITRAX - XRF core scanning reproducibility

The reproducibility of XRF measurements acquired using the NOCS ITRAX-XRF core scanner was tested using one section (section 4) of core TTR-450. The section was re-run using identical methods within 24 hours of the previous run. The relatively short time between runs meant that decay of the 3 kW molybdenum target tube would not have affected the data. A lengthy delay of weeks or months between data acquisition would likely result in lowered total counts for the later run.

Prior to the re-measurement of the core section, the Mylar film was left in place so that the surface sediment remained undisturbed, and the core section was placed back into the cold store (~6 °C) overnight in order to prevent desiccation. Unfortunately, this resulted in a need to reload and reposition the core section in the ITRAX core scanner. When acquiring data at such high resolution (500 μm) from split core section halves (as opposed to u-channel samples), good depth control and lateral core positioning is difficult to attain as the core top is selected manually, and the core section is positioned by hand. Therefore, prior to data analysis and run comparison, the core depths for the first dataset were linearly adjusted to match the second dataset using the key transitions in the calcium data, thereby ‘tuning’ the data from the two separate runs to a common depth scale.

Figure 4.6 shows the ITRAX-XRF core scanner data, which were acquired from
Figure 4.6. Comparison of Ca, K, Ti and Fe intensity data in counts per second (cps) from two datasets acquired in an identical manner from section 4 of core TTR-450. Shown in black is dataset 1 and in grey is dataset 2.
the two separate runs. In black are the data from the first run (dataset 1) and in
grey are the data from the second run (dataset 2). Only the calcium, potassium,
titanium and iron data are compared as these relatively heavy elements are
considered to be the most reliably determined with this XRF method (e.g., Jansen
et al., 1998; Böning et al., 2007). Overall, the two datasets for all four elements
show good visual agreement.

The calcium count intensity data (in counts per second – cps) for the two datasets
is shown in Figures 4.6a & b. Clearly, key transitions are present in both
records, but, finer scale features are not. For example, compare section depths
between ~25 and 35 cm. Within this portion of core there are two distinct and
sharp lows, centred at around 26 and 34 cm section depth. These lows are
virtually identical in both datasets in terms of the shape, duration and the
abruptness of the anomalies. Between these two sharp reductions, two lows with
approximately half the amplitude of change occurs in dataset 2, but these are not
present in dataset 1. Conversely, a sharp peak in counts is observed at a section
depth of around 12 cm in dataset 1, which is not present in dataset 2. The
datasets for iron count intensity also show a similar degree of coherency (Figure
4.6g & h). This high general degree of structural similarity between the two
records for the calcium and iron data is reflected in the relatively high R^2 values
of 0.56 and 0.48, respectively (n = 1219) (Figures 4.7a & d).

In the upper 40 cm of the potassium dataset 1, two broad increases are closely
reproduced in dataset 2. Despite visual differences between the potassium
datasets in the lowermost ~25 cm of the core section, in particular the amplitude
of the changes, these data also display a high R^2 value of 0.52 (n = 1219).

Histograms showing the frequency distribution of the two datasets for each
element are plotted in figure 4.8, and a gaussian fit with similar mean and
standard deviation as the data is shown in black to allow for comparison. The
histograms show a bimodal distribution of the calcium data in both datasets
(Figure 4.8a & b), and the calculated standard deviations are very similar with a
value for dataset 1 of 1110.35, and for dataset 2, a value of 1017.08.
The two datasets for iron also show very similar distributions (Figures 4.8g & h), although these are, in contrast to the calcium datasets, distinctly uni-modal, with standard deviations of 6031.54 and 5932.34. The potassium frequency distribution for dataset 1 (Figures 4.8c) shows a more skewed distribution towards lower values than that for dataset 2 (Figure 4.8d). This skewness in the distribution of dataset 1 cannot be explained in terms of the visual differences in the lowermost ~25 cm of the core section, as the values obtained for this lower portion of core are relatively high. However, the standard deviation of the two datasets are again, very similar, with a value of 164.618 for dataset 1 and 150.027 for dataset 2.

![Cross-plots of the calcium (a), potassium (b), titanium (c) and iron (d) datasets 1 and 2 (re-run) for each element, which were acquired from section 4 of core TTR-450. The thin black line is the regression line for the datasets.](image-url)
Figure 4.8. Frequency distribution histograms (grey bars) showing the Ca (a & b), K (c & d), Ti (e & f) and Fe (g & h) intensities in counts per second (cps) for datasets 1 and 2 acquired from section 4 of core TTR-450. The thin black line shows a gaussian fit with similar mean and standard deviation as the data to allow comparison.
Chapter 4. Results

The two datasets of titanium count intensity are presented in Figures 4.6e & f. Here, it is apparent that the correlation between dataset 1 and 2 is much poorer than is the case of the other elements, and when the data are cross-plotted (Figure 4.7c) a R^2 value of only 0.11 is apparent ($n = 1219$). The frequency distributions (Figures 4.8e & f) are however similar, with standard deviations of 186.464 and 187.485, separated by less than 1%.

The population distribution of the datasets is further tested using variance (t- and f-test) analyses. The results are shown in Table 4.1. Comparatively high p-values are obtained for both the iron and titanium datasets, indicating some correlation between the separate runs, but are not statistically significant. No correlation is apparent for the calcium and potassium datasets.

<table>
<thead>
<tr>
<th></th>
<th>Calcium</th>
<th>Potassium</th>
<th>Titanium</th>
<th>Iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 1</td>
<td>4805.7</td>
<td>1190.7</td>
<td>2393.1</td>
<td>81348</td>
</tr>
<tr>
<td>Mean 2</td>
<td>4683.1</td>
<td>1106.4</td>
<td>2398.5</td>
<td>80885</td>
</tr>
<tr>
<td>Variance 1</td>
<td>1233900</td>
<td>27121</td>
<td>34797</td>
<td>36698000</td>
</tr>
<tr>
<td>Variance 2</td>
<td>1067300</td>
<td>22527</td>
<td>35180</td>
<td>35495000</td>
</tr>
<tr>
<td>F-test</td>
<td>1.156</td>
<td>1.204</td>
<td>1.011</td>
<td>1.0339</td>
</tr>
<tr>
<td>F-test p-value</td>
<td>0.011458</td>
<td>0.0012113</td>
<td>0.84886</td>
<td>0.56078</td>
</tr>
<tr>
<td>T-test</td>
<td>2.8222</td>
<td>13.216</td>
<td>-0.70778</td>
<td>1.9021</td>
</tr>
<tr>
<td>T-test p-value</td>
<td>0.0048083</td>
<td>1.4589 *10^{-38}</td>
<td>0.47915</td>
<td>0.057282</td>
</tr>
</tbody>
</table>

Table 4.1. Variance analyses between datasets 1 and 2 for the calcium, potassium, titanium and iron elemental data ($n = 1219$).

Visual correlation of the two elemental datasets for section 4 of core TTR-450 (a homogeneous silty clay) indicates good agreement. However, based upon regression plots and R^2 values, as well as variance analyses, it is apparent that the reproducibility is better for some elements than for others. Deviations between datasets 1 and 2 are unlikely to have resulted from instrumental error, as this would be expected to increase as a percentage error for the elements with the higher counts, whereas this does not occur (for example, the calcium data with the highest R^2 value actually has the second highest count rate). Instead, the discrepancies between the two datasets most likely result from the re-positioning
of the core section within the ITRAX core scanner between the two sets of measurements, and lateral variations across the core. This hypothesis is tested by cross plotting running averages of the elemental data, which is smoothed over 4.5 and 9 mm (Figure 4.9), effectively reducing the minor point-to-point variations between the datasets by smoothing out the noise. If the above were true then one would expect significantly higher correlation coefficients with the greatest smoothing applied.

![Cross-plots of the calcium (a), potassium (b), titanium (c) and iron (d) datasets 1 and 2 (re-run) for each element, which were acquired from section 4 of core TTR-450. The raw data is shown in black, the 9-point running average is shown in blue, and the 19-point running average is shown in purple.](image)

Figure 4.9. Cross-plots of the calcium (a), potassium (b), titanium (c) and iron (d) datasets 1 and 2 (re-run) for each element, which were acquired from section 4 of core TTR-450. The raw data is shown in black, the 9-point running average is shown in blue, and the 19-point running average is shown in purple.
The cross-plots of the smoothed datasets show much improved R^2 values (Figure 4.9), suggesting that the poorer R^2 values for the raw datasets indeed likely resulted from lateral variations across the split core sediment surface, which caused offsets between the very fine (500 µm) individual point measurements.

4.1.5. Description of core TTR-451, ITRAX-XRF core scanning results and bulk sediment C and O stable isotope ratios

Core TTR-451 is a 14.7 cm diameter gravity core, but with a total length of 465 cm. The core was divided into eight sections, with each section around 60 cm in length and one slightly shorter (~47 cm) bottom section. The core was split and logged on board RV Professor Logachev, and the core log is published in the post-cruise report (Kenyon et al., 2004). As previously suggested for core TTR-450, these core logs that were compiled onboard RV Professor Logachev most likely give the most accurate core description, as observations were made prior to oxidation of the sediment surface, core top collapse, water loss and shrinkage. However, sampling of the upper two section of core TTR-451 allowed for an opportunity for detailed logging of the fresh sediment surface. Therefore core log for TTR-451 reported here for the upper 120 cm of the core (i.e. the top two sections of the core) differs from Kenyon et al. (2004) in characterisation of the individual sedimentary units.

Similar to core TTR-450, the top ~3 cm of core TTR-451 is a winnowed unconsolidated foraminifera-rich sand, which also contains some <1 cm lithic fragments, small gastropods and bivalves, some of which were fully articulated and unfragmented. The base of the sand is irregular and is gradational over a few centimetres into a foraminiferal-rich, brownish-grey, silty clay.

The foraminifera-rich silty clay is observed between core depths of 3 to ~27 cm and contains mm sized lithic fragments (identified using a hand lens as basaltic volcanic glass), with localised higher abundances between 3 to 11 cm depth and 18 to 20 cm depth. At the top of this sequence, sand-filled Planolites burrows are evident on the scraped and fresh sediment surface. Irregular, millimetre
thick, red-brown laminae are also evident down to around 12 cm core depth, but maybe an artefact of the core top oxidation, as opposed to textural or grain size changes. A blackish coloured horizon, rich in basaltic volcanic glass is observed between 23 and 26 cm core depths.

A distinct sedimentary unit is observed between 27 and 53.5 cm depth. This interval is light grey-brown silty clay, similar to the sedimentary sequence above, however with less sand sized lithic (ice-rafted debris – IRD) admixtures. Slightly darker brown silty clay, with marginally higher abundances of millimetric lithic fragments is observed between 34 and 41 cm.

At 53.5 cm depth is a sharp boundary. Below this boundary is a homogeneous, stiff, darker coloured brown-grey silt/silty clay with no visible sedimentary structures. This interval has a finer grained sandy admixture and contains fewer lithic fragments than the above intervals, however cm sized lithic clasts are sparsely scattered throughout. The base of this interval is defined by an irregular and bioturbated boundary at around 84 cm core depth, below which is lighter grey, homogeneous and structureless silty clay. This unit contains a higher abundance of mm size lithic fragments (most likely basaltic glass) and darker grey clay clasts. The base of this interval occurs at around 95.5 cm depth and is irregular and slightly bioturbated with *Chondrites* burrows.

The sediments below 95.5 cm depth are characterised by darker brown-grey, homogeneous and structureless silty clay. Sparsely distributed throughout are millimetric to centimetric sized lithic fragments, with localised higher abundances at 224 and 231 cm depth. The sediments below 95.5 cm depth also have much lower abundances of foraminifera and bioturbation is rare.

4.1.6. Bulk sediment C and O stable isotope ratios for core TTR-451

The bulk sediment stable oxygen isotope ratios ($\delta^{18}O$) measurements for core TTR-451 were mainly made by Dr. S. E. Hunter. The $\delta^{18}O$ data have a range of $-9.07 \%_\text{o}$ to $2.46 \%_\text{o}$ (Figure 4.10f; note the inverted axis), with a mean value of
Figure 4.10. The key ITRAX-XRF core scanning results for the elements K, Ca, Ti and Fe (a-e), bulk sediment carbon (δ^{13}C) and oxygen (δ^{18}O) stable isotope ratios (f and g, respectively), and the core log (Kenyon et al., 2004) for core TTR-451. In panels a to e, the data is shown in green/light blue and a 17-point running average through the data is shown in black/dark blue. Int. stands for intensity in counts per second (cps). Note that the bulk sediment δ^{18}O record is plotted on an inverted axis. Trend lines through the δ^{18}O and δ^{13}C records are shown as red dashed lines. Grey shaded bars indicate the key sedimentary transitions.
The bulk sediment δ¹⁸O record increase from a minimum value of around −8.5 ‰ at the base of the core to 2.46 ‰ at the core top. It is very unlikely that such extreme range and negative δ¹⁸O values result from isotopic variation of foraminiferal calcite as it would imply unrealistic sea surface salinity or temperature changes (e.g., O’Neil et al., 1969; Shackleton, 1974).

Figure 4.10e shows the bulk sediment stable carbon isotope ratio (δ¹³C) record for core TTR-451, which has a much smaller range of values in comparison to the δ¹⁸O record, with a minimum of −3.35 ‰, a maximum of 0.80 ‰, and a mean value of −0.87 ‰. Similar to the δ¹⁸O record, the δ¹³C record increases up-core to more positive values (note the inverted axis for the δ¹⁸O record). However, the gradient of this decrease (see trend line in red) is much shallower (note the smaller range on the δ¹³C axis). Notable depletions in both the δ¹³C and δ¹⁸O records occur at around 210 cm and between 325 and 377 cm depth.

In order to investigate the possible cause of the extreme change in δ¹⁸O and δ¹³C values though core TTR-451, the reproducibility of the results were first tested. Widely spaced samples were re-analysed in a random order and the results are shown in Figure 4.11. The δ¹⁸O re-runs are shown in red and suggest good reproducibility of results in the upper 250 cm of the core. In the lower portion of the core, however, results deviate by up to 1.94 ‰. The extreme negative values in the lower portion of TTR-451 are however, reproduced. The δ¹³C duplicate data are shown in blue. The data show relatively good reproducibility in the upper 200 cm of the core; however, below this depth the reproducibility is poor, with deviations up to 1.96 ‰.

Despite the relatively large (nearly 2 ‰) deviations between original and duplicate analyses, the overall decrease to low δ¹⁸O values was reproduced, indicating that laboratory or instrumental error cannot provide explanation for the large drift in the record. Because detrital carbonate can have relatively depleted δ¹⁸O values due to the diagenetic processes of formation (e.g., Hendry et al., 2000; Krajewski et al., 2001; 2002; 2004), and an alternative explanation for the extremely negative δ¹⁸O values in core TTR-451, would be if detrital carbonate
was contained within the sediments. This hypothesis was investigated with thin section descriptions, and principally by analysing the mineralogical content of the bulk sediment samples using X-ray diffraction (XRD). The green circles in Figure 4.10 indicate the samples that were used for the XRD study.

Figure 4.11. a. The bulk sediment stable oxygen isotope (δ¹⁸O) record for core TTR-451. Red dots represent the results from the re-analysis. b. The bulk sediment stable carbon isotope (δ¹³C) record for core TTR-451. Blue dots represent the results from the re-analysis. The grey shaded bar demarcates an interval of no data where the carbonate content was too low for analysis. The green circles indicate the samples that were used for XRD analyses.
Figure 4.12. Mineral composition of bulk sediment samples from core TTR-451. Vertical lines indicate the characteristic d-spacings for minerals: blue = quartz, green = plagioclase feldspar, orange = halite, purple = mica, brown = amphibole, grey = chlorite, yellow = calcite and red = ankerite.
Chapter 4. Results

Analysis of thin sections using petrological microscope indicated that ferroan dolomite was present within the sediment samples, and the XRD results, revealed a peak with a d-spacing, characteristic of ankerite (Figure 4.12), which characteristically has extremely depleted $\delta^{18}O$ values (Hendry et al., 2000; Krajewski et al., 2001; 2002).

4.1.7. ITRAX-XRF core scanning results for core TTR-451

The ITRAX-XRF core scanning results for core TTR-451 are shown in Figure 4.10 and are presented in terms of intensities in counts per second (cps). Only records for the elements potassium, titanium, iron and calcium (K, Ti, Fe and Ca) are shown and discussed as these are considered to be the most reliable elemental data (e.g., Jansen et al., 1998; Böning et al., 2007). Note that data for the uppermost 3 cm of core TTR-451 were not measured, as it was not possible to sample the loosely consolidated core top.

The record of potassium intensity is shown in Figure 4.10a. Values of potassium intensity range from 660 to 4883 cps, with a mean of 2884 cps. In general, the record shows a trend to lower values up-core. Low potassium counts are centred around 32, 44, 53, 69, 79, 109, 120, 184 and 224 cm depth, and a broad low anomaly occurs between core depths of around 240 to 300 cm. A sharp shift to higher intensities occurs at around 300 cm depth. The uppermost few centimetres of core TTR-451 are characterised by low potassium intensities of around 1000 cps.

As previously discussed for core TTR-450, potassium is contained within terrigenous sedimentary fraction, and likely within the clay and silt grain size ranges. Variations in the intensity of potassium counts are interpreted to reflect changing abundances of continental, acidic sediment sources (Yaroshesvsky, 2006). Therefore, the extremely low potassium intensity that is observed in the upper 10 cm of core TTR-451 can be attributed to the high foraminifera abundances, and hence relatively low clay and silt sediment content. Similarly, the sharp low in potassium counts at around 224 cm depth likely results from the
increased abundance of IRD and reduced clay and silt sediment size fractions.

The intensity of the calcium counts is shown in Figure 4.10b. Changes in calcium intensity likely represent variations in the abundance of foraminifera; however, contribution from detrital carbonate (ankerite) may also be reflected in the calcium intensity record for core TTR-451. The uppermost 7 cm of sediment has exceedingly high calcium counts, with a peak value of 130812 cps. These high calcium counts are attributed to the sediment predominantly containing foraminifera in this portion of the core. Below 7 cm core depth, calcium intensities range between 3714 and 18632 cps around mean of 11046 cps.

The calcium intensity record below 304 cm core depth again shows high frequency and high amplitude variability, with prominent lows at around 309, 361 and 416 cm depth, and a broader anomaly between 475 and 402 cm depth. Broad lows in calcium intensity record occur between core depths of 101 and 124 cm depth, and 138 and 304 cm depth. It is also noteworthy that over the entire interval between 101 and 304 cm depth, the variability in the record is of a smaller amplitude and frequency. The calcium intensity in the upper 100 cm of core shows relatively high frequency and high amplitude variability, with prominent lows centred at around 20, 42 and 51 cm depth.

The relationship between the potassium (which is exclusively sourced from terrigenous sediments) and calcium (most likely a reflection of foraminiferal abundances) intensity records for core TTR-451 are assessed in a similar manner to core TTR-450. The potassium and calcium counts are cross-plotted, and reveals two clouds of data (Figure 4.13), similar to results from TTR-450. The linear least squares regression for cloud A has an R^2 of 0.49 ($n = 77$) and represents the uppermost 7 cm of core TTR-451; the winnowed foraminiferal sand. Conversely, cloud B, which represents the remainder of the data below 7 cm core depth, has a statistically weak correlation coefficient of 0.31 ($n = 8443$), and shows no response in calcium intensity with relatively large variation in the potassium intensity.
Chapter 4. Results

The record of Ca/K is shown in Figure 4.14. Below 200 cm depth, the Ca/K record shows very little structure and values remain relatively low. Between depths of 7 to around 200 cm, and especially down to 120 cm, the Ca/K record shows a high degree of variability with notable peak values at around 24, 79, 103 and 129 cm depth. Low Ca/K values in the uppermost 7 cm of core reflect the foraminiferal-rich core top.

Figure 4.13. Cross-plot of the K and Ca intensities in counts per second (cps). Cloud A (grey crosses) has an R^2 value of 0.49 ($Y = -63.57482616 \times X + 169815.5733$), $n = 77$, and cloud B (black dots) has an R^2 value of 0.31 ($Y = 1.458257622 \times X + 6826.960629$), $n = 8443$.

Figure 4.10c & d shows the titanium and iron intensity records for core TTR-451. Similar trends are observed in both records, with good agreement in the lowermost 250 cm of TTR-450. Between core depths of 364 and 405 cm, a broad low is observed in both records, with sharp reductions centred at around 390 and 415 cm depth. Broad lows with reduced variability occur in both the iron and titanium counts between core depths of 131 to 190 cm and 240 to 301 cm. It is noteworthy that both records show a sharp low at around 225 cm depth, coincident with the IRD rich horizon. The sharp, relatively high frequency variability shows good visual correlation, with low counts centred at around 40, 60, 75 and 87 cm depth.
Figure 4.14. Ratios of Fe/Ti (a), Fe/K (b), Ti/K and Ca/K for core TTR-451. In green are the data and the black line shows a 17-point running average through the data. For the Ca/K record the data is shown on an expanded scale with the uppermost 9 cm of data removed. In blue is the complete dataset. (e) & (f) are the bulk sediment δ¹³C and δ¹⁸O records, respectively, for core TTR-451. In the top panel is the core log for TTR-451 (Kenyon et al., 2004). The grey vertical bars show the key sedimentary boundaries.
Unlike the titanium record, the iron intensities are generally lower throughout this upper ~100 cm of the core, and the relative amplitude and sharpness of the shifts are reduced. Furthermore, a prominent low is observed in the titanium counts between core depths of 102 to 120 cm, whereas enhanced iron intensities occur at equivalent depths. The upper ~7 cm of core TTR-450 is characterised by extremely low counts in both the iron and titanium records, and possibly results from the high concentration of foraminiferal tests that are contained within the winnowed core top.

Figure 4.15. Cross-plot of the Ti and Fe intensities in counts per second (cps). A regression line is shown in blue and gives an R^2 value of 0.63 ($Y = 27.47625192 \times X + 31956.43593, n = 8519$).

In a similar manner to results from core TTR-450, the relationship between the iron and titanium counts is investigated for core TTR-451 in order to ascertain their source and sediment pathway. The iron and titanium counts were cross-plotted and the result is shown in Figure 4.15. The ratio of iron over titanium (Figure 4.14a) identifies where discrepancies occur between the two records. The cross-plot (Figure 4.15) reveals a good positive correlation between the iron and titanium intensities, with an R^2 value of 0.63 ($n = 8519$), indicating that for
the most part these two elements share the same sediment source. The source of titanium and iron in TTR-451 is likely to be (titano)magnetites, from the Nordic Basaltic Province (Kissel et al., 1997; 1999a; Laj et al., 2002).

The Fe/Ti record (Figure 4.14a) reveals prominent lows in the Fe/Ti sediment composition at around core depths of 63, 128, 165 and 220 cm. A gradual shift to lower Fe/Ti values occurs between 110 and 63 cm. This shift maybe due to a change in the source of the iron (i.e., iron oxides, pyrite), and IRD (i.e., hematite stained quartz). Alternatively, changes in the sediment porosity and interstitial water content may also provide explanation (Kido et al., 2006). A relatively iron-rich core top is likely due to higher concentrations of iron oxide.

![Figure 4.16. Cross-plots of the K intensity (cps) versus the Fe intensity (cps) (black dots), and the Ti intensity (cps) (grey open diamonds). Regression lines are shown in blue (K versus Fe) and red (K versus Ti) and reveal R^2 values of 0.59 ($Y = 29.714643 \times X + 95279.80246$) and 0.37 ($Y = 0.6808541864 \times X + 3460.088055$), respectively (n = 8519).](image)

In Figure 4.16, the potassium, iron and titanium datasets are cross-plotted. This reveals relatively high correlation coefficients of 0.59 and 0.37 (n = 8519) for the
iron and titanium counts, respectively. Such a good agreement between the datasets indicates that the potassium, iron and titanium are likely contained within the same sediment size fraction, i.e. the clay and silt (Kissel et al., 1997; Moros et al., 1997; Yaroshevsky, 2006). Note that the IRD enriched interval of core TTR-451 at around 225 cm depth has reduced counts of all three elements, validating the above assumption.

In order to show abundances of iron and titanium with respect to the total clay/silt fraction, the ratios of iron and titanium intensities versus potassium intensity are shown in Figures 4.13b and c, respectively. These records show remarkable similarity. Below 130 cm core depth, the records show only low amplitude changes; with only one notable shift to lower values at around 296 cm depth. An additional peak in the Ti/K record occurs at around 53 cm. The top 150 cm of core TTR-451 shows high amplitude variability, with peak Fe/K and Ti/K values at around 34 and 79 cm depth, and between 98 and 139 cm depth.

4.1.8. Conclusions

Core sediment descriptions, bulk oxygen and carbon stable isotope ratios and key ITRAX-XRF elemental data for core TTR-450 and TTR-451 are shown in this sub-chapter. The reproducibility of the ITRAX-XRF data is statistically tested, and results show that discrepancies between duplicate analyses likely results from the fine (500 µm) measurement intervals and offsets between point-to-point comparison. Relatively depleted bulk sediment δ^{18}O values at the base of core TTR-451 were investigated using thin section and XRD analyses. The presence of detrital carbonate (ankerite) was the most likely explanation for these extremely negative δ^{18}O values.

For both cores TTR-450 and TTR-451, analyses of the Ti and Fe intensity counts suggest that they likely reflect variation in the clay and silt sediment fractions and also probably have a common source – (titano)magnetite. These results are compared in the next sub-chapter with the environmental magnetic data from these cores.
Chapter 4. Results

4.2. Environmental Magnetic and Palaeomagnetic Results for marine sediment cores TTR-450 and TTR-451.

This sub-chapter presents the results from the environmental and palaeomagnetic measurements that were made on core material sampled from marine sediment cores TTR-450 and TTR-451. Results include magnetic susceptibility (κ), natural remanent magnetisation (NRM) and anhysteretic remanent magnetisation (ARM). The environmental magnetic results are also compared with the iron and titanium elemental data that was gained from the ITRAX core-scanning XRF, and with the bulk sediment $\delta^{18}O$ data and core logs that were previously described in section 4.1.

4.2.1. Background

Variation in magnetic susceptibility is predominantly controlled by both the quantity and grain size of the magnetic material present, while variation in ARM is produced by changes in the concentration of the ferrimagnetic mineral component (e.g., Verosub and Roberts, 1995; Stoner et al., 1996). The ratio of κ_{ARM} (the anhysteretic susceptibility) over κ is inversely correlated to changes in average magnetic mineral ((titano)magnetite) grain size (i.e., coarser grain sizes are represented by lower $\kappa_{\text{ARM}}/\kappa$ values), and is particularly sensitive to
variations in the 1 to 10 μm size range (Banerjee et al., 1981; Verosub and Roberts, 1995).

The intensity of NRM is determined by the intensity of the geomagnetic field at the time of, or just after sedimentary deposition, and by the concentration, mineralogy and grain size of the magnetic remanence carriers (e.g., Stoner et al., 2000). The ratios of NRM/ARM and NRM/κ provide records of relative palaeointensity with the effect of magnetic mineral concentration removed, and are used in palaeoceanographic study as a relative (correlation) dating tool (e.g., Opdyke et al., 1973; Levi and Banerjee, 1976; Tucker, 1981; Weeks et al., 1993; 1994; Laj et al., 2000; 2004).

Over time, the direction of the geomagnetic field also changes. For the purpose of the present study, we need to consider changes with duration of less than 10^5 years. These are known as geomagnetic secular variations, which can be completely described by two vector components: the angle of inclination and the angle of declination (e.g., Butler, 1998). The above magnetic parameters are more fully defined and described in section 3.3.

4.2.2. Environmental Magnetic Results for Core TTR-450

Low-field volumetric magnetic susceptibility (κ) and ARM were acquired at 2.35 cm intervals along core TTR-450, using discrete sediment samples (for details on methods see chapter 3) and the results are shown in Figure 4.18a & c. A distinct low in magnetic susceptibility occurs between 535 and 480 cm core depth, coincident with a similar magnitude low in the record of ARM. Between 250 and 480 cm depth, magnetic susceptibility values are relatively high, punctuated by small amplitude, high frequency lows. This interval is demarcated by the double headed arrow in Figure 4.18a. Above this level the magnetic susceptibility record has relatively low values, punctuated by small amplitude variations (Figure 4.18a). A marked low in magnetic susceptibility occurs between core depths of 249 and 208 cm, and similar amplitude lows, but over shorter intervals of core, are centred at around 138 and 45 cm core depths.
Figure 4.18. Environmental magnetic and palaeomagnetic records from core TTR-450 acquired from discrete sediment samples. Panel a = volumetric low-field magnetic susceptibility (κ), b = NRM, c = ARM, d = NRM/κ and e = NRM/ARM. The NRM and ARM measurements acquired after the application of Alternating Field (AF) demagnetisation levels of 0, 20, 25 and 30 mT are shown by blue, black, dark grey and light grey lines, respectively. Angles of inclination are shown in f and the MAD3 values in g. The κARM/κ is shown in panel h. Note that lower values are interpreted to reflect coarser magnetic grain sizes (Banerjee et al., 1981). Key ITRAX-XRF data, Fe/K and Ti/K, are shown in panels i and j, respectively, and the bulk stable oxygen isotope stratigraphy is shown in k. The sedimentary core log (Kenyon et al., 2004) is shown in the top panel. The grey vertical bands demarcate excursions in the bulk sediment δ¹⁸O record.

Two prominent lows occur in the ARM record (Figure 4.18c) towards the base of core TTR-450, one centred at around 554 cm depth and another between 532 and 487 cm depth. ARM values gradually increase up-core, peaking at around 340 cm depth, before decreasing gradually to a minimum at around 150 cm core depth. Two further sharp lows occur at around 258 cm and 71 cm. Lower amplitude variability occurs throughout the record. Similar to the magnetic susceptibility record, the core top is characterised by extremely low ARM intensities, likely due to reduced concentrations of ferrimagnetic grains within the foraminifera-rich, sandy horizon.

Cross-plotting of the magnetic parameter κARM versus κ gives an indication of the suitability of the ratio of κARM/κ as a magnetic grain size indicator. Data that cluster around a straight line with a constant slope indicate changes in concentration of the magnetic grains, whereas changes in the slope of the trend line are indicative of changes in magnetic grain size (Banerjee et al., 1981; King et al., 1982). The κ and κARM values from core TTR-450 are cross-plotted in Figure 4.19. The linear trend of the data with R² = 0.54 indicates a limited
change in average grain size. This finding is consistent with previous environmental magnetic studies of marine sediment cores recovered from beneath the North Atlantic Deep Water (NADW) pathway in the vicinity of Eirik Drift (Kissel et al., 1997; 1999a, b; Moros et al., 1997; Laj et al., 2002; Snowball and Moros, 2003), if a constant magnetic mineralogy from a common source (the Nordic Basaltic Province) is assumed (Kissel et al., 1999a; Laj et al., 2002).

Figure 4.19. Cross-plot of κ and κ_{ARM} values of discrete sediment samples from core TTR-450. Equation for the regression line: $Y = 0.2745972812 \times X + 0.008272830852$.

Figure 4.18h shows the down-core variations in the ratio of κ_{ARM} over κ for core TTR-450. The record shows four intervals where $\kappa_{\text{ARM}}/\kappa$ is significantly elevated, i.e. relatively fine magnetic grain sizes (NB: note the inverted axis). These intervals are 536 - 482 cm, 425 - 387 cm, 249 - 208 cm, and 50 - 38 cm. The ITRAX elemental Fe/K and Ti/K data likely reflect variation in concentration of (titano)magnetite (for discussion see section 4.1). Comparison of the $\kappa_{\text{ARM}}/\kappa$ record with the records of Fe/K and Ti/K (Figures 4.17i & j, respectively) show that only one of the $\kappa_{\text{ARM}}/\kappa$ events (536 to 482 cm core depth) is coincident with reduced sediment concentrations of Fe and Ti, and is also coincident with significantly reduced ARM values. Therefore, it is likely that it
is only in this portion of core that decreased concentrations of (titano)magnetite occur along with reduced magnetic grain sizes, whereas the other events only result from decreased average magnetic grain size. Note also that it is only this $\kappa_{\text{ARM}}/\kappa$ event that is concurrent with a bulk sediment $\delta^{18}\text{O}$ anomaly, which is interpreted as a palaeoclimate indicator (Figure 4.18k). However, the sharp reduction in $\kappa_{\text{ARM}}/\kappa$ between 50 and 38 cm depth is contemporaneous with a significant depletion in bulk sediment $\delta^{18}\text{O}$ (Figure 4.18k), although the $\kappa_{\text{ARM}}/\kappa$ anomaly has shorter duration.

4.2.3. Palaeomagnetic and Directional Magnetic Records for core TTR-450

NRM was acquired from the same discrete sediment samples as the magnetic susceptibility and ARM was measured from. These samples were collected 2.35 cm intervals along a continuous strip of core TTR-450 (for further details see Chapter 3). The results from the NRM measurements are presented in Figure 4.18b.

NRM values for core TTR-450 demonstrate a gradual increase from relatively low values at the base of the core, to peak values at around ~ 330 cm depth (Figure 4.18b). Above 325 cm core depth, the NRM reduces to lower values, attaining a minimum at around 275 cm core depth and returning to moderate values at around 257 cm core depth. Above this level, the NRM record is dominated by relatively higher frequency and smaller amplitude variations. Low NRM values in the uppermost ~ 10 cm of the core correspond with the foraminifera-rich sandy top (low concentrations of magnetic carriers).

The records of NRM/κ and NRM/ARM are shown in Figure 4.18d & e. These two datasets show a high degree of structural similarity and correlate well with $R^2 > 0.72$ (Figure 4.20). In general, NRM/κ and NRM/ARM values increase from the base of the core, peaking at around 505 cm. The NRM/κ values subsequently decrease to a minimum at around 450 cm core depth, whereas the NRM/ARM record shows an additional peak at around 480 cm depth, prior to decreasing to a low at around 450 cm core depth.
Figure 4.20. Cross plot of the NRM/ARM and NRM/κ data for core TTR-450. Light grey circles represent the NRM and ARM measured after AF demagnetisation at 20 mT, dark grey triangles are after AF demagnetisation at 25 mT, and black open circles are after AF demagnetisation at 30 mT. N = 231 for data collected after 20 and 30 mT AF demagnetisations and N = 207 for data collected after 25 mT AF demagnetisation.

Above 450 cm core depth, the NRM/κ and NRM/ARM records (Figure 4.18d & e) both increase to peak values at around 406 cm. The NRM/κ record (Figure 4.18d) sharply decreases at 387 cm depth, prior to gradually decreasing to a minimum at around 266 cm. The NRM/ARM record (Figure 4.18e) also has a minimum at 266 cm core depth, but the NRM/ARM values between 406 and 352 cm remain more or less constant.

Both NRM/κ and NRM/ARM values increase at around 253 cm core depth, recovering from their minima at 266 cm depth, and reaching peak values at around 247 cm depth (Figure 4.18d & e). Above this level, both records have peak values at around 153 cm core depth prior to decreasing to a minimum that is
centred on ~120 cm depth. A sharp low occurs in both records, centred at 70 cm depth, after which values gradually decrease towards the core top. Above 8 cm core depth, NRM/κ and NRM/ARM values sharply decline, likely due to reduced concentration of magnetic carriers within the winnowed core top sediment (foraminiferal sand).

Component directions were calculated from the NRM measurements using the Z-plot programme. Maximum Angular Deviation (MAD) values are shown in Figure 4.18f and were generally less than 3°, with an average value of 2.3°, indicating that the magnetisation components were well defined (for further details see chapter 3.3.3).

The calculated component inclination values varied around a mean of 66°. Using the dipole equation (Equation 3.1), the expected inclination for the core site latitude was 72.8°. Therefore, the values for the component inclination were adjusted by +6.2° to fit the expected mean. The component declination values were highly variable, ranging between –289 and 307° and are therefore not presented.

The adjusted component inclination values are shown in Figure 4.18f. The low values calculated for the core top likely result from poor remanence stability (see section 3.3.3), an artefact of the foraminifera-rich sediment composition. Two further excursions to negative inclination values occur at 481 cm and 270 to 254 cm, with minimum values of –21.2° and –9.3°, respectively. The negative excursion at 254 cm is coincident with low values of relative palaeointensity (see arrows in Figure 4.18d, e & g), and likely represents the Laschamp palaeomagnetic event that is dated in the NAPIS-75 and GLOPIS-75 stacked palaeointensity record at around 41 ka BP (Laj et al., 2000; Laj et al., 2004).
4.2.4. Environmental Magnetic Results for Core TTR-451

Low-field volumetric magnetic susceptibility (κ) and ARM measurements were made at 2.35 cm intervals along a continuous strip of core TTR-451. The results are shown in Figure 4.24a. Higher resolution magnetic susceptibility was measured at 0.5 cm intervals with a Bartington Instruments MS2E1 point sensor that was placed in contact with the surface of a split core, and is labelled as ‘whole core’ in Figure 4.24a. For further details on the methods see Chapter 3.

For the uppermost ~350 cm of core TTR-451, the discrete and whole core magnetic susceptibility data show good agreement and cross-validate each other (Figure 4.21a). However, in the lowermost portion of the core below ~350 cm, the two records bear little resemblance (see yellow shaded zone in Figure 4.21a). This disagreement between the discrete and whole core data may result from lateral variation within the core, as the discrete samples were taken from the edge of the core while the whole core data was measured down a central strip. Also, the point sensor data is only sensitive to the top few millimetres of sediments, so the whole core data only records variation in the sediment composition near the split core sediment surface. As the discrete dataset provides average values of a larger volume of sediment, these data are favoured over the whole core data.

Below 235 cm depth, the record of magnetic susceptibility for core TTR-451 shows only low amplitude variability (Figure 4.21a). At around 232 and 216 cm core depth, two spikes are observed. These are approximately coincident with two distinct horizons that are rich in coarse-grained lithics/ice-rafted debris (IRD) (see uppermost panel in Figure 4.21). A broad low in magnetic susceptibility is centred at ~198 cm core depth. A double peak is centred around 170 cm depth. However, the first of the peaks in the whole core data is not duplicated by the discrete sample data. This discrepancy may result from the difference in resolution of the datasets. Magnetic susceptibility values are reduced above this horizon at around 150 cm depth, and return to peak values at around 129 cm core depth. Over this portion of core (160 to 135 cm depth),
some discrepancies exist between the whole core and discrete data, with higher frequency variability in the higher resolution point sensor record.

In the uppermost ~120 cm of core TTR-451, sharp variations in the magnetic susceptibility records are approximately coincident with sedimentary boundaries (see shaded regions in Figure 4.21). The magnetic susceptibility values gradually decrease over an interval spanning 37 cm of the core, attaining minimum values at around 92 cm (Figure 4.21a). This low is sharply terminated at around 84 cm.

Magnetic susceptibility values decrease from 84 cm and level out between 60 and 26 cm depth (Figure 4.21a), and a sharp low occurs above this level. At around 6 cm depth, magnetic susceptibility values return to higher values, although more abruptly in the whole core data than the discrete data. The uppermost 4 cm of core TTR-451, which comprises foraminiferal sand, was too unconsolidated to sample for discrete analysis. However, measurements could be made with the Bartington Instruments MS2E1 point sensor, and the results show significantly lowered values.

The ARM record for core TTR-451 is presented in Figure 4.21c. Low amplitude variability dominates the ARM record below 220 cm core depth. Above this horizon the ARM record shares key features with the magnetic susceptibility record with a broad low between 210 and 182 cm, a significant peak at around 133 cm core depth, and two further distinct and sharper lows between 98 and 84 cm and 25 and 13 cm core depth.

The κ_{ARM} and κ data obtained from the discrete sediment samples are cross-plotted in Figure 4.22. As previously discussed with respect to core TTR-450, plots of $\kappa_{\text{ARM}}/\kappa$ in which the data cluster around a straight line with a constant slope give an indication of changes in concentration of the magnetic grains (Banerjee et al., 1981; King et al., 1982; 1983). Conversely, changes in the slope of the trend line are indicative of changes in magnetic grain sizes (Banerjee et al., 1981; King et al., 1982; Snowball and Moros, 2003).
Figure 4.21. Environmental magnetic and palaeomagnetic records from core TTR-451 acquired from discrete sediment samples. Panel a = volumetric low-field (κ). In green are the whole core data and in black are the discrete data. The yellow shaded box demarcates where the two records
show disagreement. $b = \text{NRM}$, $c = \text{ARM}$, $d = \text{NRM}/\kappa$ and $e = \text{NRM}/\text{ARM}$. The NRM and ARM measurements acquired after the application of Alternating Field (AF) demagnetisation levels of 0, 20, 25 and 30 mT are shown by blue, black, dark grey and light grey lines, respectively. Angles of inclination are shown in f and the MAD3 values in g. The $\kappa_{\text{ARM}}/\kappa$ is shown in panel h. Note that lower values are interpreted to reflect coarser magnetic grain sizes (Banerjee et al., 1981). Key ITRAX-XRF data, Fe/K and Ti/K, are shown in panels i and j, respectively. The sedimentary core log (Kenyon et al., 2004) is shown in the top panel. Vertical shaded grey boxes represent the depths of sedimentary changes.

The linear trend of the κ_{ARM} versus κ data for core TTR-451 (Figure 4.27; $R^2 = 0.60$, $N = 189$) indicates a higher covariance between these data than for core TTR-450 (Figure 4.19), and is more consistent with previous environmental magnetic studies of marine sediment cores recovered from beneath the North Atlantic Deep Water (NADW) pathway (Kissel et al., 1997; 1999a, b; Moros et al., 1997; Snowball and Moros, 2003). A constant magnetic mineralogy with a common source (the Nordic Basaltic Province) has been previously assumed along the NADW flow path, transported via deep overflow through the Denmark Strait and the Iceland-Scotland Ridge (Kissel et al., 1999a, b; Laj et al., 2002). It is therefore likely that $\kappa_{\text{ARM}}/\kappa$ data from TTR-451 record changes in grain size of the magnetic material carried out of the Nordic Basaltic Province by NADW.

Figure 4.21h shows the $\kappa_{\text{ARM}}/\kappa$ record for core TTR-451. The record below ~240 cm shows only low amplitude variability. Two notable lows, indicative of coarser magnetic grain sizes, occur at 232 and 213 cm core depth (note the inverted axis), nearly coincident with two IRD rich horizons that were noted during the core logging (see top panel of Figure 4.21). Above this level, two distinct peaks (inferred relatively fine magnetic grain sizes) are observed in the record.
The first peak occurs at around 206 cm depth, and is characterised by a sharp reduction and gradual recovery of κ_{ARM}/κ values. The second peak is centred around 90 cm depth, and is conversely characterised by a gradual decline in κ_{ARM}/κ values and a sharp recovery. A much smaller amplitude low occurs at around 31 cm core depth, after which the κ_{ARM}/κ record only returns to higher values over a small interval of core, with a prominent low between 25 and 5 cm core depth. Comparison of the κ_{ARM}/κ results with the Fe/K and Ti/K ITRAX XRF data (Figure 4.21i & j, respectively) shows a fairly good degree of coherence in the upper 120 cm of core TTR-451 between the two sets of records. In particular, the sharp lows in the κ_{ARM}/κ record at around 90 and between 25 - 5 cm depth are also reflected in the Fe/K and Ti/K datasets, as well as the sharp increase at around 84 cm depth.
4.2.5. Palaeomagnetic and Directional Magnetic Results for core TTR-451

In a similar manner to core TTR-450, NRM was acquired from discrete sediment samples from core TTR-451 that were removed at 2.35 cm intervals along a continuous strip (for further details see section 3.3). The results from the NRM measurements are presented in Figure 4.21b. NRM values gradually increase from the base, attaining peak values at around 318 cm core depth. Between 318 and 220 cm, the NRM values level out before decreasing into a broad low between 220 and 134 cm. A second broad low in NRM values occurs between core depths of 134 and 31 cm, and a further sharp decrease occurs between 27 and 8 cm.

The palaeointensity records (NRM/\(\kappa\) and NRM/ARM) are shown in Figure 4.21d and e, respectively. These two datasets show a high degree of covariance and a cross-plot reveals \(R^2\) values greater than 0.72 (Figure 4.23). NRM/\(\kappa\) and NRM/ARM values gradually increase from the base of core TTR-451 and peak at around 194 cm core depth (Figure 4.21d & e). A sharp low occurs close to the base of the core at around 456 cm, and a second is centred at around 267 cm. Above 194 cm, NRM/\(\kappa\) and NRM/ARM values decline, reaching minima at around 162 cm. The NRM/\(\kappa\) and NRM/ARM values gradually increase to a core depth of 101 cm, above which values decrease to form a minima between 85 and 58 cm. Above this level, three sharp lows punctuate the NRM/\(\kappa\) and NRM/ARM records at 42, 26 and 19 cm depth.

Component directions were calculated from the discrete sample NRM measurements using the Z-plot programme. A good stability of remanence is demonstrated in section 3.3.3. Maximum Angular Deviation (MAD)3 values are shown in Figure 4.21f and were generally less than 2°, with an average value of 1.5°, indicating well-defined magnetisation components. The calculated component inclination values vary around a mean of 67.2°. Using the dipole equation (Equation 3.1), the expected inclination for the core site latitude was 72.8°. The component inclination values were therefore adjusted by +5.6° to fit the expected mean.
Figure 4.23. Cross plot of the NRM/ARM and NRM/κ data for core TTR-450. Light grey circles represent the NRM and ARM measured after AF demagnetisation at 20 mT, dark grey triangles are after AF demagnetisation at 25 mT, and black open circles are after AF demagnetisation at 30 mT. N = 231 for data collected after 20 and 30 mT AF demagnetisations and N = 207 for data collected after 25 mT AF demagnetisation.

The adjusted component inclination record is shown in Figure 4.21f. The record shows a very stable directional component, with only three notable anomalies. Low inclination values occur at the very base of core TTR-451. This may be an artefact of the base of the core as values recover to a higher angle of inclination by 457 cm depth. Two further broad lows occur between core depths of 189 and 122 cm, and 90 and 53 cm. The latter of the two anomalies shows a sharp recovery at around 66 to 63 cm core depth.

Figure 4.24 shows the unadjusted component declination record for core TTR-451. The angle of declination increases from –58 ° at the base of the core, to around 240 ° near the core top. Two sharp increases occur at around 165 cm and 22 cm core depth (red arrows in Figure 4.24). It is likely that the large range of
values down core and these sharp changes result from the rotation of the sediment within the core liner during coring. Therefore, the component declination values are not used further.

Figure 4.24. Record of component declination angles for core TTR-451. Red arrows show where sediments have likely rotated within the core liner.

4.2.6. Conclusions

Sediments from marine sediment cores TTR-450 and TTR-451 show a strong magnetic character and a good stability of remanence is demonstrated in section 3.3, which has allowed for the generation of robust records of palaeointensity, a useful correlative and dating tool (e.g. Laj et al., 2000; 2004). Large variations in the environmental magnetic records that indicate changes in magnetic grain size and concentration are observed in both TTR-450 and TTR-451. For the upper ~120 cm of core TTR-451, these variations occur at distinct sedimentary boundaries and are synchronous with changes in the ITRAX-XRF Fe/K and Ti/K records. These synchronous changes between the Fe/K and Ti/K records indicate that the key magnetic carrier likely is (titano)magnetite. These findings are consonant with previous studies around the northern North Atlantic that suggest a common source for the magnetic material at cores site located beneath the
pathway of North Atlantic Deep Water (NADW), namely, the Nordic Basaltic Province (e.g., Kissel et al., 1997; Laj et al., 2002). Due to the aforementioned high-amplitude variations in the upper ~120 cm of core TTR-451, further environmental magnetic studies shall focus upon this interval of core.
4.3. Investigation of the magnetic parameter $\kappa_{\text{ARM}}/\kappa$ as a measure of magnetic grain size, and comparison with sortable silt grain size data.

This subchapter describes the record of $\kappa_{\text{ARM}}/\kappa$ for the upper ~120 cm of core TTR-451 in detail and the cross validates the measurements with additional κ_{ARM} (u-channel) and κ datasets. As briefly described in section 4.2.4, the uppermost 120 cm of core TTR-451 (for location see Figure 3.1) shows a number of sharp shifts in the environmental magnetic parameters magnetic susceptibility (κ) and susceptibility of Anhysteretic Remanent Magnetisation (κ_{ARM}), and hence also the ratio of $\kappa_{\text{ARM}}/\kappa$. These sharp shifts in the environmental magnetic records correspond to fluctuations in the ITRAX-XRF measurements of Ti/K and Fe/K, as well as changes in the core sedimentology (see section 4.1).

Next, magnetic hysteresis loops and their parameters, Saturated Isothermal Remanent Magnetisation (SIRM) and backfield remanence curves, are presented along with First Order Reversal Curve (FORC) diagrams for a selection of samples. Together, these analyses test the assumption of the (titanio)magnetite dominated magnetic mineral content of the sediments from core TTR-451, and give indication of magnetic mineral, domain states, and hence, also magnetic mineral grain sizes.
Chapter 4. Results

Key results from Scanning Electron Microscopy (SEM) image analysis of polished thins sections are presented to validate the assumption of a (titano)magnetite magnetic mineral composition, and furthermore to ‘ground-truth’ the magnetic mineral grain size estimates that were gained from the environmental magnetic measurements.

Finally, a new record of mean sortable silt grain sizes, which is an established proxy for bottom current flow intensity (McCave et al. 1995a, b; 2006; Bianchi and McCave, 1999; Hall et al., 2001), is presented for core TTR-451. These data were generated from subsamples of the same sediment on which κ and κ_{ARM} were measured, in order to test and corroborate the suggestion that magnetic mineral concentration (κ_{ARM}) and, especially, magnetic mineral grain size (κ_{ARM}/κ) variations reflect changes in NADW flow strength (Kissel et al., 1999a; Laj et al., 2002).

4.3.1. Background

The ratio of κ_{ARM} versus κ is a proxy for magnetic mineral grain size when the sediment’s magnetic mineral content is dominated by (titano)magnetite (Banerjee et al., 1981; Verosub and Roberts, 1995). Previous work supports the assumption of constant magnetic mineralogy along the NADW flow path in the vicinity of Eirik Drift (Kissel et al., 1999a; Laj et al., 2002). Eirik Drift represents a key region for deposition of suspended matter transported out of the Nordic Seas, especially for transportation via deep-water overflow through Denmark Strait (between Iceland and Greenland). The magnetic mineral content of sediments in that region originates from a single common source, the Nordic basaltic province (Kissel et al., 1999a; Laj et al., 2002). The new κ_{ARM}/κ record from core TTR-451 (Eirik Drift) therefore likely reflects variations in the size of the coarsest magnetic grains that can be carried by NADW out of the Nordic Seas and that settle out on Eirik Drift as NADW rounds the southern tip of Greenland. Lower κ_{ARM}/κ values represent coarser grain sizes (Banerjee et al., 1981), and are suggested to reflect increased intensity of NADW formation (Kissel et al., 1999a; Laj et al., 2002; Snowball and Moros, 2003).
4.3.2. $\kappa_{\text{ARM}}/\kappa$ record for the top ~120 cm of core TTR-451.

The records of low-field volumetric magnetic susceptibility, κ, κ_{ARM}, and $\kappa_{\text{ARM}}/\kappa$ that were measured from the discrete sample set of core TTR-451 are shown for the upper ~120 cm of the core in Figure 4.25a, b & c, respectively. A high degree of covariance of the three magnetic records is apparent, and when the κ and κ_{ARM} records are cross-plotted (Figure 4.26) an R^2 value of 0.57 (N=48) is revealed.

Figure 4.25. The low-field magnetic susceptibility (κ) record for the upper 120 cm of core TTR-451 is presented in (a), panel b shows the susceptibility of Anhysteretic Remanent Magnetisation (κ_{ARM}), and panel c shows the ratio of $\kappa_{\text{ARM}}/\kappa$. NB: note the inverted axis.
Significantly lowered magnetic susceptibility and κ_{ARM}, and correspondingly high (note the inverted axis) $\kappa_{\text{ARM}}/\kappa$ values occur between core depths of 98 and 84 cm (Figure 4.25 a, b & c), indicative of sediments with relatively low concentrations of magnetic ((titano)magnetite) material and smaller magnetic mineral grain sizes. At around 84 cm core depth, a sharp increase in the magnetic susceptibility and κ_{ARM} records indicates an abrupt increase in magnetic mineral concentration, and a correspondingly sharp decrease in $\kappa_{\text{ARM}}/\kappa$ values suggests a significant increase in magnetic mineral grain sizes.

Figure 4.26. Cross-plot of the κ and κ_{ARM} data from discrete samples recovered from the upper 120 cm of core TTR-451 (N = 48). Equation for the regression fit line $= Y = 0.3021837913 \times X + 0.00852239289$.

Peak κ_{ARM} values occur at 77.8 cm core depth (Figure 4.25b), whereas the magnetic susceptibility (Figure 4.25b) and $\kappa_{\text{ARM}}/\kappa$ (Figure 4.25c) records have their maximum and minimum, respectively, later than this at 67.4 cm core depth. The magnetic susceptibility and κ_{ARM} values gradually decrease and near plateau between 58.6 cm and 27.9 cm core depth. Slightly higher κ_{ARM} values occur at 56.3, 47.0, and between 32.8 and 27.9 cm core depth. Above 67.4 cm depth, the $\kappa_{\text{ARM}}/\kappa$ record indicates a gradual reduction of magnetic grain size, a maximum $\kappa_{\text{ARM}}/\kappa$ value is reached at 56.3 cm depth after which values gradually decrease,
attaining a minimum at 37.7 cm core depth. A further sharp increase in $\kappa_{\text{ARM}}/\kappa$ values is centred on 30.6 cm depth.

Figure 4.27. The magnetic susceptibility, κ_{ARM}, and $\kappa_{\text{ARM}}/\kappa$ records for the upper ~120 cm of core TTR-451. The whole core and u-channel data, and the resultant ‘hybrid’ $\kappa_{\text{ARM}}/\kappa$ record is shown in grey in cross-validation of the discrete sample data that is shown in black. The low-field magnetic susceptibility (κ) record is presented in (a), panel b shows the susceptibility of Anhysteretic Remanent Magnetisation (κ_{ARM}), and panel c shows the ratio of $\kappa_{\text{ARM}}/\kappa$. NB: note the inverted axis.

The $\kappa_{\text{ARM}}/\kappa$ record shows a sharp decrease in values at 25.7 cm depth, prior to a similarly sharp increase, with maximum at 21.2 cm core depth. $\kappa_{\text{ARM}}/\kappa$ values
Chapter 4. Results

remain relatively high (inferred as reduced magnetic grain sizes) up to 7 cm core depth, after which values decline sharply. A significant and sharp low in the magnetic susceptibility (Figure 4.25a) and κ_{ARM} (Figure 4.25b) records occurs between ~24 and 11.4 cm core depth.

The discrete sample low-field volumetric magnetic susceptibility, κ_{ARM} and κ_{ARM}/κ records were cross-validated with higher resolution records made from 'whole-core' and continuous u-channel measurements (for further details see chapter 3). The whole-core magnetic susceptibility and κ_{ARM} records are shown in grey in Figure 4.27a &b, respectively, along with the resultant 'hybrid' u-channel κ_{ARM} versus whole core κ record which is shown in Figure 4.27c. These higher resolution duplicate records show excellent reproducibility and cross-validation of the discrete sample results.

Only two notable deviations are apparent between the discrete sample and the higher resolution hybrid κ_{ARM}/κ data. A relatively sharp shift to lower values is apparent exclusively in the hybrid κ_{ARM}/κ record between 92 and 86 cm depth and another occurs between 14 and 11 cm depth (Figure 4.27c). These likely result from normalising the smooth κ_{ARM} record by the relatively ‘spiky’ point sensor magnetic susceptibility data. Furthermore, the magnitude of the shift to lower values between 82 and 65 cm depth is greater in the discrete κ_{ARM}/κ record than in the hybrid κ_{ARM}/κ. Overall, however, with consideration of the difference in methods employed for generation of the higher-resolution datasets, the agreement with the far more robust discrete sample method is very good. Note, however, that the non-standard method used in creating the higher-resolution hybrid κ_{ARM}/κ record, allows its use only in validation of the overall trends in the discrete sample dataset, and not for interpretation.

4.3.3. Magnetic Grain Sizes: Hysteresis loops, SIRM and backfield remanence curves, and FORC Diagrams.

Eight discrete samples (encircled in red in Figure 4.27c) were subsampled for further magnetic measurements based on their very different κ_{ARM}/κ ratios, and
Chapter 4. Results

include magnetic hysteresis loops, SIRM and backfield remanence curves, and First Order Reversal Curve (FORC) diagrams (for details on methods see chapter 3). These analyses were performed in order to better characterise the average magnetic grain size within the sediment samples.

Ferrimagnetic material (e.g., magnetite) becomes fully magnetically saturated (i.e., as magnetised as its mineralogical composition and the laws of thermodynamics permit) in applied magnetic fields of around 300 mT, whereas canted antiferromagnetic minerals (e.g., hematite) saturate in fields in excess of 2.5 T (Verosub and Roberts, 1995). Where the magnetic content of a sediment sample is known to be magnetite, certain magnetic hysteresis parameters and their ratios, namely the saturation magnetisation (M_s) versus the saturation remanence (M_r) and the coercivity (B_c) versus coercivity of remanence (B_{cr}), can be used to determine the domain state and grain size of the magnetic material (Day et al., 1977). The magnetic parameters, M_s, M_r, B_c and B_{cr}, are defined in sub-chapter 3.3.4.

For samples containing coarse multi-domain (MD) grains, $M_r/M_s < 0.05$ and $B_{cr}/B_c > 4$, while samples dominated by fine grain single domain (SD) grains, $M_r/M_s > 0.5$ and $B_{cr}/B_c < 1.5$ (Day et al., 1977). Pseudo single domain grains (PSD) are represented by values in between these two extremes. For magnetite, the SD/MD grain size transition is estimated primarily from theoretical calculations, at around 70 nm. For PSD grains, which show high remanence (SD), but low coercivity (MD) characteristics, the grain size range is estimated between 0.1 and 20 µm (Fabian et al., 1996).

Interpretation of domain state and grain size from hysteresis parameters can be ambiguous due to magnetostatic interactions (e.g., Dunlop, 2002a, b), and where samples contain different admixtures of magnetic particles with variable domain states hysteresis parameters do not provide a detailed understanding of the individual components (Roberts et al., 2000).
FORC diagrams provide a better way of characterising individual magnetic components, and were pioneered by Roberts et al. (2000). FORC diagrams have since been used to investigate a wide range of magnetic particle systems with both synthetic and natural samples (Pike et al., 1999; 2001; Roberts et al., 2000; Muxworthy and Dunlop, 2002; Carvallo et al., 2003; 2005; 2006). A FORC diagram is a contour plot of the First Order Reversal Curve (FORC) distribution and it is convenient to change the coordinates from \(H \) and \(H_r \) to \(H_c = (H - H_r)/2 \) and \(H_b = (H + H_r)/2 \), where \(H \) and \(H_r \) are the positive and reverse field in which the samples are magnetically saturated. For further explanation see sub-chapter 3.3.4.

The magnetic hysteresis loops and SIRM and backfield remanence curves for the eight samples selected from core TTR-451 are shown in the left hand panel of Figure 4.28, and the FORC diagrams for each sample are shown in the adjacent right hand panel. For the hysteresis loops and SIRM and backfield remanence curves, the magnetisation intensities have been mass normalised so that the vertical axis units are Am\(^2\)/kg. The magnetic parameters, \(M_s \), \(M_r \), \(B_{cr} \) and \(B_c \) that were acquired from the hysteresis loops are given in Table 4.2, and cross-plots of \(M_r/M_s \) versus \(H_r/H_c \) (Day plot) and \(\kappa_{ARM}/\kappa \) versus \(M_r/M_s \) values are shown in Figure 4.29 and 4.30, respectively.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Depth (cm)</th>
<th>(\kappa_{ARM}/\kappa)</th>
<th>(M_s) (Am(^2)/kg)</th>
<th>(M_r) (Am(^2)/kg)</th>
<th>(H_c \times 10^{-2}) (T)</th>
<th>(H_r \times 10^{-2}) (T)</th>
<th>(M_r/M_s)</th>
<th>(B_{cr}/B_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTR-451 1-5</td>
<td>14.00</td>
<td>0.8039</td>
<td>0.2579</td>
<td>0.05623</td>
<td>1.7035</td>
<td>4.7416</td>
<td>0.2180</td>
<td>2.7834</td>
</tr>
<tr>
<td>TTR-451 1-8</td>
<td>21.05</td>
<td>0.8771</td>
<td>0.2294</td>
<td>0.05287</td>
<td>1.8414</td>
<td>4.9326</td>
<td>0.2304</td>
<td>2.6787</td>
</tr>
<tr>
<td>TTR-451 1-14</td>
<td>35.15</td>
<td>0.5628</td>
<td>0.3611</td>
<td>0.05649</td>
<td>1.3624</td>
<td>4.2361</td>
<td>0.1565</td>
<td>3.1094</td>
</tr>
<tr>
<td>TTR-451 1-19</td>
<td>46.90</td>
<td>0.6260</td>
<td>0.3672</td>
<td>0.05998</td>
<td>1.4090</td>
<td>4.2767</td>
<td>0.1634</td>
<td>3.0352</td>
</tr>
<tr>
<td>TTR-451 1-24</td>
<td>58.65</td>
<td>0.5739</td>
<td>0.3847</td>
<td>0.05786</td>
<td>1.2387</td>
<td>3.4563</td>
<td>0.1504</td>
<td>2.7903</td>
</tr>
<tr>
<td>TTR-451 2-3</td>
<td>67.38</td>
<td>0.4337</td>
<td>0.4585</td>
<td>0.06373</td>
<td>1.1611</td>
<td>3.3653</td>
<td>0.1390</td>
<td>2.8984</td>
</tr>
<tr>
<td>TTR-451 2-7</td>
<td>76.78</td>
<td>0.5626</td>
<td>0.5649</td>
<td>0.08569</td>
<td>1.2456</td>
<td>3.4367</td>
<td>0.1517</td>
<td>2.7590</td>
</tr>
<tr>
<td>TTR-451 2-14</td>
<td>93.22</td>
<td>0.8796</td>
<td>0.2005</td>
<td>0.03650</td>
<td>1.4272</td>
<td>3.6609</td>
<td>0.1821</td>
<td>2.5651</td>
</tr>
</tbody>
</table>

Table 4.2. Magnetic properties of sediment samples from core TTR-451. The magnetic parameters are given to 4 significant figures.
Chapter 4. Results

a. TTR-451 1-5 14.00 cm \(\kappa_{\text{ARM}}/\kappa = 0.839 \)

b. TTR-451 1-8 21.05 cm \(\kappa_{\text{ARM}}/\kappa = 0.8771 \)

c. TTR-451 1-14 35.15 cm \(\kappa_{\text{ARM}}/\kappa = 0.5628 \)
d. TTR-451 1-19 45.90 cm

\[\frac{\kappa_{\text{ARM}}}{\kappa} = 0.6260 \]

![Graph](image)

e. TTR-451 1-24 58.65 cm

\[\frac{\kappa_{\text{ARM}}}{\kappa} = 0.5739 \]

![Graph](image)

f. TTR-451 2-3 67.38 cm

\[\frac{\kappa_{\text{ARM}}}{\kappa} = 0.4337 \]

![Graph](image)
g. TTR-451 2-7 76.78 cm \(\kappa_{\text{ARM}}/\kappa = 0.5626 \)

h. TTR-451 2-14 93.22 cm \(\kappa_{\text{ARM}}/\kappa = 0.8796 \)

Figure 4.28. Magnetic mineral analyses of eight sediment samples from the top \(~120\) cm of core TTR-451. Magnetic hysteresis loops (solid line) and SIRM and backfield single remanence curves (dashed line) are shown in the left hand panel, and the corresponding FORC diagram is shown in the right hand panel. A smoothing factor of 4 is used for the generation of the FORC diagrams. Note that for the hysteresis curves and SIRM/backfield acquisition curves the data have been normalised by mass (i.e. Am\(^2\)/kg) for sample comparison. The \(\kappa_{\text{ARM}}/\kappa \) values are additionally given in the top right hand corner of the FORC diagram.
The magnetic hysteresis loops from TTR-451 all have a constricted (narrow waisted) shape, characteristic of PSD/MD magnetic grain sizes (Dunlop et al., 1990; Roberts et al., 1995). Low SIRM magnetisations indicate a magnetic mineralogy of (titano)magnetite. Samples with higher $\kappa_{\text{ARM}}/\kappa$ values (TTR-451 1-5, 1-8 and 2-14) have lower SIRM intensities, indicating that they predominantly contain finer magnetic grain sizes. For all samples, the hysteresis parameters give ratios M_r/M_s and H_r/H_c of between 0.1 to 0.3, and 2.5 to 3.2, respectively (Table 4.2), which suggests that all samples primarily contain magnetic grains with PSD sizes (Day et al., 1977). A Day plot (Day et al., 1977) of the hysteresis parameters M_r/M_s versus H_r/H_c (Figure 4.29) shows that the data cluster within the centre of the PSD grain size field and have similar distributions as data from other sediment samples recovered from the northern North Atlantic (Kissel et al., 1997; 1999; Snowball and Moros, 2003).

Figure 4.29. Magnetic hysteresis ratios M_r/M_s versus H_r/H_c reported on a Day diagram (Day et al., 1977) for core TTR-451. A PSD average (titano)magnetite grain size is indicated. Sample numbers are given next to each data-point.
In order to investigate the relationship between the $\kappa_{\text{ARM}}/\kappa$ values and the hysteresis parameters (both indicators of average magnetic grain sizes), the ratio of the magnetisations (M_r/M_s) is cross-plotted versus the $\kappa_{\text{ARM}}/\kappa$ data (Figure 4.30). A positive linear relationship is observed between these two datasets, with an R^2 value of 0.78 (see dashed trend-line in Figure 4.30). Sample TTR-451 2-14, however, shows relatively high M_r/M_s values in comparison to its $\kappa_{\text{ARM}}/\kappa$ value and deviates from the trend line. By removing this sample, the correlation coefficient is much improved (see solid trend-line in Figure 4.30) to give an R^2 value of 0.96.

Figure 4.30. Cross-plot of average magnetic grain size indicators $\kappa_{\text{ARM}}/\kappa$ versus the hysteresis parameters M_r/M_s. The dashed trend line is for all data, whereas the solid trend line is without sample TTR-451 2-14 (encircled in red).

The FORC diagrams (Figure 4.28) for all samples show divergent contour distributions which intersect the vertical H_b axis at $H_c = 0$. Following Roberts et al. (2000), these results indicate that the samples predominantly contain
PSD/MD magnetites and are therefore consistent with results from the magnetic hysteresis loop analyses. Samples with higher $\kappa_{\text{ARM}}/\kappa$ values, lower SIRM acquisition intensity, and lower values of M_r and M_s magnetisations (Figure 4.28a, b & h), have FORC distributions with comparatively less spread along the vertical (H_b) axis (less divergent contours), and, for sample TTR-451 2-14, even closed contours. These closed contours at $H_c < 20$ mT are indicative of the presence of non-interacting SD magnetic grains (Roberts et al., 2000). It is also noteworthy that compared to the other FORC distributions, samples TTR-451 1-5 and 1-8 (Figures 4.28a & b) have contours which spread out more along the horizontal (H_c) axis (i.e. have higher peak coercivities). After Roberts et al. (2000), these samples, therefore, show behaviour of PSD/MD type magnetic particles, but are finer grained with the same non-interacting SD type grains present.

Conversely, samples that have the lowest $\kappa_{\text{ARM}}/\kappa$ values, highest SIRM acquisition intensity and highest M_r and M_s values (e.g., TTR-451 2-3 and 2-7; Figures 4.28f & g) have FORC diagrams with contours that are more divergent, shallower and that are more spread out along the vertical (H_b) axis. Therefore, consistent with the inferences drawn from the $\kappa_{\text{ARM}}/\kappa$ and hysteresis parameters, the FORC distributions for these samples indicate a magnetic grain assemblage comprising predominantly PSD/MD type grains, but display more MD like behaviour, i.e. they have coarser magnetic grain sizes (e.g., Carvallo et al., 2003).

4.3.4. Scanning Electron Microscope (SEM) study of magnetic grain sizes.

Subsamples from discrete sediment samples TTR-451 1-5, 1-8, 1-14, 1-19, 1-24, 2-3, 2-7 and 2-14 were lightly ground, resin embedded and made into polished thin sections. Mosaics of 15 x 15 SEM images were collected for each sample at a magnification of x1000. In total 1800 separate images were collected. SEM – Electron Dispersal Spectroscopy (EDS) allowed for identification of (titano)magnetites, recognised by an elemental composition of only iron, titanium, silica and aluminium oxides. *PGT IMIX* image analysis software was
calibrated using the acquired elemental data to automatically count and measure (titano)magnetite grains. The (titano)magnetites were the brightest grains within the sample (Figure 4.31) and easily identified. For details see Chapter 3.4.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Depth (cm)</th>
<th>$\kappa_{\text{ARM}}/\kappa$ (SI)</th>
<th>Average number of grains</th>
<th>% Area</th>
<th>Average diameter (μm)</th>
<th>Longest diameter (μm)</th>
<th>Area equivalent diameter (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTR-451 1-5</td>
<td>14.00</td>
<td>0.804</td>
<td>9.36</td>
<td>0.047</td>
<td>2.66</td>
<td>3.29</td>
<td>2.06</td>
</tr>
<tr>
<td>TTR-451 1-8</td>
<td>21.05</td>
<td>0.877</td>
<td>9.75</td>
<td>0.078</td>
<td>2.76</td>
<td>3.43</td>
<td>2.13</td>
</tr>
<tr>
<td>TTR-451 1-14</td>
<td>35.15</td>
<td>0.563</td>
<td>16.67</td>
<td>0.155</td>
<td>3.16</td>
<td>3.91</td>
<td>2.40</td>
</tr>
<tr>
<td>TTR-451 1-19</td>
<td>46.90</td>
<td>0.626</td>
<td>20.83</td>
<td>0.212</td>
<td>3.06</td>
<td>3.77</td>
<td>2.41</td>
</tr>
<tr>
<td>TTR-451 1-24</td>
<td>58.65</td>
<td>0.434</td>
<td>24.50</td>
<td>0.204</td>
<td>3.10</td>
<td>3.81</td>
<td>2.42</td>
</tr>
<tr>
<td>TTR-451 2-3</td>
<td>67.38</td>
<td>0.574</td>
<td>24.82</td>
<td>0.342</td>
<td>3.22</td>
<td>3.93</td>
<td>2.54</td>
</tr>
<tr>
<td>TTR-451 2-7</td>
<td>76.78</td>
<td>0.563</td>
<td>27.42</td>
<td>0.279</td>
<td>3.20</td>
<td>3.92</td>
<td>2.49</td>
</tr>
<tr>
<td>TTR-451 2-14</td>
<td>93.22</td>
<td>0.880</td>
<td>61.75</td>
<td>0.244</td>
<td>2.36</td>
<td>2.91</td>
<td>1.85</td>
</tr>
</tbody>
</table>

Table 4.3. Selected results from the SEM image analyses.

Figure 4.31. An example SEM image from sample TTR-451 2-14 (image number 1656) and shows characteristic (titano)magnetite grains. Magnification = x1000 and a scale bar is shown in the bottom left corner. 1 pixel = 0.359241 μm
Key results from the SEM image analysis are cross-plotted against the magnetic parameters κ_{ARM} and $\kappa_{\text{ARM}}/\kappa$, and shown in Figures 4.32 and 4.33. Firstly, the assumption is tested that κ_{ARM} for sediments from core TTR-451 is a measure of (titano)magnetite concentration. The cross-plot (Figure 4.32) shows a positive linear relationship, but reveals an R^2 value of only 0.40. This low correlation coefficient may result from bias introduced during the SEM image analysis, as areas of balsam resin without sediment coverage, were also included in the calculation. However, similar to previous magnetic investigations (see section 4.3.3), sample 1-24 appears to be an outlier. With this sample removed, the correlation coefficient is much improved, with an R^2 value of 0.69.

![Figure 4.32. Cross-plot of the percentage area of the polished thin section covered by (titano)magnetites versus the magnetic measurement κ_{ARM}. Sample numbers are shown next to each data point. The dashed trend line is with sample 1-24 (encircled in red) removed.](image)

Secondly, the assumption is tested that magnetic ratio $\kappa_{\text{ARM}}/\kappa$ is a measure of average (titano)magnetite grain size for sediments from core TR-451. The cross-plot of $\kappa_{\text{ARM}}/\kappa$ versus the calculated average (titano)magnetite grain size (Figure 4.33) shows an inverse linear relationship. Note that higher $\kappa_{\text{ARM}}/\kappa$ values are
interpreted as reflecting finer magnetic grain sizes (Banerjee et al., 1981). Therefore, the SEM image analysis results from core TTR-451 (natural sediment samples) corroborate previous laboratory measurements of synthetic magnetite samples (Banerjee et al., 1981). The cross-plot (Figure 4.33) gives an R^2 value of 0.76, indicating some correlation, although an F-test p-value of 0.12 suggests that the correlation is not classed significant with this low number of data points. Bias in the SEM image analysis was likely due to pitted grains being counted as multiple smaller grains (note the relatively high average number of grains per slide, yet fine grain sizes for sample TTR-451 2-14; Table 4.3). This error was reduced to some extent by manipulation of the software, but for differentiation between one or multiple grains remained difficult especially for the fine grains.

Figure 4.33. Cross-plot of the magnetic proxy $\kappa_{\text{ARM}}/\kappa$ for (titano)magnetite average grain sizes versus measured (titano)magnetite grains sizes using SEM image analysis. Sample numbers are given next to each data point.

Overall, there appears to be reasonably good agreement between $\kappa_{\text{ARM}}/\kappa$ for (titano)magnetite average grain size and the measured grain size from the SEM image analysis. The SEM results show that average (titano)magnetite diameters for the selected TTR-451 samples fall within a surprisingly narrow range,
between 2.36 and 3.22 µm. These SEM results are therefore also in good agreement with the results from the hysteresis parameters and FORC diagrams (Figure 4.28 and 4.29), which are interpreted as representing a magnetic mineral composition of PSD type grains, with a grain size range of 0.1 to 20 µm (Fabian et al., 1996).

However, the measured narrow range of grain sizes could have implications if variations in κ_{ARM}/κ are interpreted to reflect average magnetic grain sizes that result from bottom current sorting, and thus used as a dynamic proxy for bottom current flow speed (e.g., Kissel et al., 1999a; Laj et al., 2002; Snowball and Moros, 2003). Firstly, one has to contemplate whether differences in the degree of bottom current sediment sorting would cause variation in such a narrow range of very small grain sizes. Secondly, it should be considered whether the variation in magnetic grain size may result not from the speed of current at the deposition site, but from the speed of current and ability to erode the bedrock at the source. Thirdly, the validity of these magnetic measurements as a near bottom flow speed indicator should be questioned as the magnetic grain size range falls below the grain size threshold for current sorting (McCave et al., 1995b), i.e., the magnetic grains have diameters that are less than 10 µm and therefore should behave cohesively. Therefore, the data from the κ_{ARM}/κ method in core TTR-451 are tested to establish this method’s suitability to portray past bottom current flow speed. This is done by comparison with mean sortable silt grain size measurements made on subsamples of exactly the same sediment samples.

4.3.5. Mean sortable silt measurements versus the magnetic ratio κ_{ARM}/κ as near bottom current flow speed proxies.

The grain size distribution of terrigenous particles within the 10-63 µm size range, or sortable silt size range as defined by McCave et al. (1995b), is considered to be a sensitive index for near bottom current strength. Variations of the mean grain sizes within the sortable silt grain size window have been interpreted to reflect changes in intensity of near bottom strength (e.g., Bianchi
and McCave, 1999) as more vigorous flow prevents deposition of the finer grains, biasing the mean grain size towards higher values (Ledbetter, 1984; McCave et al., 1995b). For in-depth reviews on the background understanding, techniques and pitfalls of the sortable silt method, see McCave et al. (2006) and McCave and Hall (2006).

Figure 4.34. Comparison of sortable silt grain size distributions and mean sortable silt grain sizes of duplicate results for a selection of samples analysed at the beginning and end of each batch. The blue line represents the results from the first run and the green line represents the results from the second run. A 5-point running average is shown by the darker coloured blue and green lines, respectively. The mean sortable silt values are shown by blue and green arrows for the first and second runs, respectively.
The sortable silt grain size distributions were measured at the School of Earth, Ocean and Planetary Sciences in Cardiff University in collaboration with Dr. I. Hall, using a Beckman Multisizer 3 Coulter Counter, and subsamples of the discrete sample-set for which the $\kappa_{\text{ARM}}/\kappa$ measurements were made (for further details see chapter 3). Only the samples from the top ~120 cm of core TTR-451 were used in this study. Mean sortable silt values were calculated using the Multisizer 3 software (see operator’s manual; PN 8321681 Rev. B).

Samples were analysed in two batches. For procedural error identification purposes, the first few samples analysed were re-analysed at the end of sample batches. This was done as sediment samples were added to the electrolyte ‘isoton’ solution after manual shaking of samples, and an aliquot taken using a pipette. Any delay between the shaking of the sample and removal of the aliquot may have biased the mean sortable silt grain sizes to finer diameters as coarser grains would have settled out first (for further discussion see section 3.5). It is likely that this process became faster with repetition, therefore biasing the first few samples analysed towards finer grain sizes. The measures described were used to identify any such bias.

Figure 4.34 compares the sortable silt grain size distributions and mean grain sizes (see arrows in Figure 4.34) for a selection of the duplicate sample analyses. For three of the samples (TTR-451 1-12, 1-15 and 2-23), very little difference is seen between the grain size distributions. Also, the mean sortable silt values between these duplicates differ by <1.29 μm. Sample TTR-451 2-18, however, shows a different grain size distribution for the duplicate analyses, with the first analysis (in blue) significantly biased towards the finer grain sizes, and a total difference in mean sortable silt grain size of 3.53 μm. Sample TTR-451 2-18 was the first analysed within the second batch of samples and these results probably indicate that error was introduced via an increased time lapse between the shaking and pipetting of the sediment for the first analysis. Sample TTR-451 1-12 was the next sample analysed, and the excellent agreement between the data for the duplicate analyses, with the second analysis having a finer mean grain size, would indicate that this error did not propagate through the batch analyses.
For sample TTR-451 2-18, the results from the second analysis were used for the down core record of mean sortable silt grain sizes, as the first is considered to be erroneous.

Figure 4.35 shows the mean sortable silt grain sizes along with the $\kappa_{\text{ARM}}/\kappa$ record for core TTR-451. A good visual correlation is seen, with low grain sizes at the base of the interval of study, a sharp rise at around 84 cm depth, and lowered grain sizes in the top 34 cm of the core. However, the magnitude of the shift to larger grain sizes at 84 cm depth is not reflected in the mean sortable silt grain sizes. Instead the sharp jump in the sortable silt record between 86 and 79 cm depth is preceded by a gradual increase. The biggest difference between the two records is observed in sample TTR-451 2-4 (69.7 cm depth), where a low in mean sortable silt grain sizes is coincident with near minimum $\kappa_{\text{ARM}}/\kappa$ values (maximum magnetic grain sizes). A large deviation between the two records is also observed at 28.1 cm depth (sample TTR-451 1-9), where a relatively large mean sortable silt grain size is coincident with a relatively high $\kappa_{\text{ARM}}/\kappa$ value (inferred fine magnetic grain sizes).

Figure 4.35. Comparison of the $\kappa_{\text{ARM}}/\kappa$ record and mean sortable silt grain sizes for the top ~120 cm of core TTR-451. Data points highlighted in green are those presented in Figure 4.36.
Figure 4.36. Results of the sortable silt grain sizes analyses for a selection of samples. The grain size distributions are shown in grey and a 5-point running average of the data is shown in black. Arrows represent the mean sortable silt grain size for each sample.
Figure 4.36 presents the sortable silt grain size distributions for the samples that are highlighted in green in Figure 4.35. The modality of the grain size distributions indicates how well sorted the sediments are. Samples that are well sorted have a uni-modal, narrow grain size distribution, and are normally indicative of stronger flowing near bottom currents (McCave et al., 1995a, b).

Samples TTR-451 1-9 and 1-15 have distributions that are skewed towards coarser grain sizes and correspondingly coarser mean sortable silt grain sizes (Figure 4.36). Conversely, samples TTR-451 2-4 and 2-19 that have finer mean sortable silt grain sizes have distributions that are clearly skewed towards lower values. However, samples TTR-451 1-11 and 1-23 have poorly sorted grain size distributions and comparison of all the TTR-451 data to examples of grain size distributions in McCave and Hall (2006) would suggest relatively weak bottom currents over Eirik Drift.

Figure 4.37. Cross-plot of the κ_{ARM}/κ and mean sortable silt values for the upper ~120 cm of core TTR-451. The dashed black line is the regression line ($Y = -22.64802209 \times X + 41.43328157$) (N=42). Note that the κ_{ARM}/κ (x) axis is plotted on an inverted scale so that finer grain sizes are towards the y intercept (finer mean sortable silt grain sizes).
The statistical relationship between the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt grain size record for core TTR-451 was tested by cross-plotting the two datasets (Figure 4.37). This reveals a linear, negative relationship (note the inverted x-axis), with an R^2 value which is relatively low at 0.51 ($N = 42$).

The robustness of the correlation between the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt records is statistically tested using variance analyses. As the absolute values of the two dataset values are different by nearly three orders of magnitude, the variances are normalised by scaling the records between one and zero, where one represents the highest value for the sortable silt (coarsest grain size) and the lowest $\kappa_{\text{ARM}}/\kappa$ value (inferred coarsest grain size). The two records are therefore shown in terms of their grain size variation. The scaling of one to zero is used to normalise the datasets rather than their standard deviation as for the latter, variance analyses would be invalid. Figure 4.38 shows the variance normalised $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt records.

![Figure 4.38. Normalised $\kappa_{\text{ARM}}/\kappa$ (black) and mean sortable silt (red) records for the upper ~120 cm of core TT-451. Note that the $\kappa_{\text{ARM}}/\kappa$ record has been inverted so that the two records are compared in terms of their relative grain size variations.](image-url)
Figure 4.39 shows a histogram plot of the scaled $\kappa_{\text{ARM}}/\kappa$ (black) and the mean sortable silt grain size (red) data. Figure 4.40 compares the cumulative probability distribution functions of the two datasets. Figures 4.39 and 4.40 demonstrate that the probability distributions of the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt datasets are similar to one another. The cumulative probability function plot (Figure 4.40) indicates that the greatest difference between the two datasets occurs below normalised values of 0.4 (i.e., the finer grain sizes).

Figure 4.39. Histogram plot of the scaled $\kappa_{\text{ARM}}/\kappa$ (black) and the mean sortable silt (red) data. The black and red lines show a Gaussian fit of the distributions for the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt grain size data, respectively.

The correlation between the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt grain size data is investigated using a two-sample Kolmogorov-Smirnov test in order to test the null hypothesis that the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt data are drawn from the same distribution. A two-sample Kolmogorov-Smirnov test is an alternative non-parametric method for a two-sample t-test and uses the maximal distance
(D-value) between the two cumulative probability frequency distributions of these two populations of data as the statistic.

![Graph showing cumulative probability distribution function of κ_{ARM}/κ (black) and the mean sortable silt (red) data.](image)

Figure 4.40. Cumulative probability distribution function of the κ_{ARM}/κ (black) and the mean sortable silt (red) data.

Table 4.4 presents the results of the two-sample Kolmogorov-Smirnov test between the κ_{ARM}/κ and mean sortable silt grain size data. A D-value of 0.1429 and a p-value of 0.7848 were obtained, indicating that the two datasets are correlated 78.48% of the time. However, although the two-sample Kolmogorov-Smirnov test suggests a good degree of statistical correlation, a p-value of 0.7848 means that the null hypothesis cannot be rejected as there are not enough data to do so.

In summary, both the R^2 value and the two-sample Kolmogorov-Smirnov test indicate that there is some correlation between the κ_{ARM}/κ and mean sortable silt grain size data from core TTR-451, but that this correlation is statistically weak. However, based upon the good visual agreement of the two datasets and a p-
value of 0.7848 from the two-sample Kolmogorov-Smirnov test, there is enough correlation between them for the validation of the $\kappa_{\text{ARM}}/\kappa$ record as a proxy for near bottom current flow intensity.

<table>
<thead>
<tr>
<th>Standard deviation</th>
<th>$\kappa_{\text{ARM}}/\kappa$</th>
<th>Sortable silt</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>42</td>
<td>0.1105</td>
</tr>
<tr>
<td>R^2</td>
<td>0.5090</td>
<td>3.509</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov test (D-value)</td>
<td>0.1429</td>
<td></td>
</tr>
<tr>
<td>Kolmogorov-Smirnov test (p-value)</td>
<td>0.7848</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.4. Results of the statistical analysis of the $\kappa_{\text{ARM}}/\kappa$ and mean sortable silt grain size data.

4.3.6. Comparison of core top mean sortable silt grain size measurements with near bottom current flow speed.

Mean sortable silt grain sizes of fine grained sediment from the Vema Channel could be successfully calibrated to current meter data ($R^2 = 0.81$, $N = 13$) (Ledbetter, 1986), and the suspended sediment concentrations have been linked to abyssal eddy kinetic energy and benthic storms (HEBBLE - Hollister and McCave, 1984). In order to ‘ground-truth’ the mean sortable silt grain size data, and so also the $\kappa_{\text{ARM}}/\kappa$ measurements, as a near bottom current strength index for Eirik Drift, modern core top mean sortable silt grain size data were obtained from 4 sediment cores (TTR-451, TTR-450, D298-P1 and D298-P3). These data were compared with near bottom current velocity data that were acquired from Lowered Acoustic Doppler Current Profiler (LADCP) measurements during the D298 2005 cruise of RRS Discovery. The core top sortable silt grain size data were generated with the same methods as the down core record from core TTR-451, and all measurements were made in Cardiff at the same time (for further details see Chapter 3.5). Figure 4.41 presents the current velocity profiles for the nearest two CTD stations to each core site (for a map of the core sites and CTD stations see Figure 3.16).
McCave et al. (1995b) recommend using geostrophic current velocities to compare with mean sortable silt grain size data, as these data give longer-term averages that would theoretically be more comparable to the long term averages represented in core top samples. However, geostrophic velocities can be subject to large error due to large temporal variability, and require interpolation methods in order to account for a sloping seabed (Hunter et al., 2007b). Therefore, directly measured scalar velocities (gained from u and v) are used here for comparison with the core top mean sortable silt grain sizes. Values were obtained by averaging measurements from the nearest two CTD stations to each core site. Hunter et al. (2007b) show beam attenuation data which was also

Figure 4.41. Velocity profiles calculated from LADCP data for the D298 CTD stations nearest the sites for cores TTR-451, TTR-450, D298-P1 and D298-P3
acquired during the D298 *Discovery* cruise. These data, which indicate the distribution of the sediment load, show a distinct bottom nepheloid layer that is around 300 m thick, and work by Clark (1984) suggested that the Deep Western Boundary Current (DWBC) in the vicinity of Eirik Drift is around 500 m thick. The LADCP data in Figure 4.41 show a distinct change in near bottom current speed at around 500 m from the sea floor in some of the profiles. Therefore, mean scalar current speeds from 0 to 40 m as well as 0 to 500 m above the sea floor are used to compare with core top mean sortable silt grain size data.

![Figure 4.42](image)

Figure 4.42. Cross-plot of the core top mean sortable silt grain sizes versus the mean scalar velocities of the two nearest CTD stations to the core sites. The black crosses and black trend-line concern scalar velocities averaged over the bottom 500 m and the red open circles and red trend-line concern scalar velocities averaged over the bottom 40 m. The blue line shows the calculated fall velocity of particles according to Stoke’s Law.

Figure 4.42 cross-plots the mean scalar velocities versus the core top mean sortable silt grain size data. Also indicated is the predicted settling/fall velocities
of particles \(w_s\) calculated from Stoke’s law (Equation 4.2); where \(g\) is gravity, \(r\) is the radius of the particle, \(\eta\) is the molecular viscosity of seawater that is estimated to be \(1.8 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}\) at 0°C (Soulsby, 1997), \(\rho\) is the density of seawater (1.03 g cm\(^{-3}\)), and \(\sigma\) is the density of the solid, which is assumed to be quartz (2.66 g cm\(^{-3}\)).

\[
w_s = 0.22(\sigma - \rho)gr^2 / \eta \quad \text{(Equation 4.2)}
\]

The relationship between current speed and the sorting of non-cohesive sediment is not only governed by the settling velocities of the particles transported, but also by the fluid shear stress \((\tau)\), which itself is controlled by three variables: the critical erosion stress, the critical suspension stress and the critical deposition stress. Sediment sorting results from grains being trapped in the viscous sublayer of the turbulent boundary layer; whereas other grains with smaller settling velocities are instead transported further downstream by being retained in turbulent suspension (e.g., McCave and Hall, 2006).

The deposition of sediment from suspension is more fully described by equations 4.3 and 4.4 (Sundborg, 1956; Einstein and Krone, 1962); where for deposition as a function of time \((t)\), \(K_t = (tp/h)\), and as a function of distance \((x)\), \(K_x = (xp/hU)\), where the probability of deposition \((p)\) allows for the sorting of sediment through the suppression of deposition of slower settling particles under faster flows with higher boundary shear stress \((\tau_o)\) values. This is therefore an important term, which is defined by \(p = (1 - \tau_d/ \tau_o)\), where \(\tau_d\) is the limiting stress for deposition and is less than \(\tau_o\). Parameter \(h\) is the thickness of suspension, \(U\) is the flow speed, and \(C_o\) is the concentration at a nominal size. Further explanation is beyond the scope of present study. For further discussions the reader is referred to McCave and Hall (2006).

\[
C_t = C_o \exp (-K_tw_s) \quad \text{(Equation 4.3)}
\]
\[
C_x = C_o \exp (-K_xw_s) \quad \text{(Equation 4.4)}
\]
Figure 4.42 shows that broadly speaking coarser core top mean sortable silt grain sizes correspond with faster flowing near-bottom currents over the core sites. The mean sortable silt grain sizes recorded in the core tops of D298-P1 and TTR-450 show positive relationship with current velocity, which supports the use of mean sortable silt grain size measurements from Eirik Drift as a near bottom current flow speed indicator. However similar current speeds were recorded above core sites D2980-P1 and TTR-451, and yet their mean sortable silt grain sizes are very different.

Previous study of profiler and seismic sections as well as regional modern hydrographies (e.g., Hunter et al., 2007a, b) may provide explanation of the discrepancy outlined above. Firstly, it is shown that today, the TTR-451 core site lies just above the main DWBC current core and, therefore, may reflect a relict measurements related to a previous faster flow regime. Secondly, core D298 lies to the southwest of a secondary ridge crest on Eirik Drift, and it is postulated in Hunter et al. (2007a) that this may cause flow separation of the DWBC. Additionally, one has to consider that varying interactions between the seafloor and the current flowing over it may also affect the relationship between mean sortable silt grain sizes and near bottom flow intensity, as boundary layer shear and critical stresses are affected by local topography (McCave and Hall, 2006). This would make the above relationship ambiguous over large distances. One also needs to be critical about the appropriateness of the use of scalar current velocities (see previous discussion). Finally, we acknowledge that four calibration points is a start, but by no means a substantial enough information resource for establishing robust relationships.

4.3.7. Conclusions

Within this sub-chapter $\kappa_{\text{ARM}}/\kappa$ measurements from the top ~120 cm of core TTR-451 are compared with results from SIRM and backfield remanence curves, magnetic hysteresis loops and FORC diagrams to confirm that the $\kappa_{\text{ARM}}/\kappa$ data provides an accurate record of mean (titano)magnetite grain sizes. It is assumed that the (titano)magnetites sourced from the Nordic Basaltic Province and
transported within NADW, and therefore that their grain sizes reflect NADW flow intensity (Kissel et al., 1999a; Laj et al., 2002). These further magnetic measurements corroborates that the sediments contain a predominantly PSD magnetic mineral assemblage, as suggested previously by Kissel et al. (1997; 1999a) and Laj et al. (2002). Comparison with grain sizes of (titano)magnetites estimated from SEM image analysis validates the magnetic measurements, revealing grain sizes between 2-4 µm.

Mean sortable silt grain sizes, an established proxy for near bottom current strength (e.g., McCave et al., 1995a, b; 2006; Bianchi and McCave, 1999; Hall et al., 2001), were measured from the same sediment samples as the κ_{ARM}/κ and the two records show a good visual correlation. Statistical analysis shows correlation, but despite good visually agreement, is weak. Finally, mean sortable silt grain size data from core tops are compared with mean scalar velocities gained from LADCP data, which reveals a general positive trend that validates the use of mean sortable silt grain sizes, and hence also κ_{ARM}/κ, as near bottom current indices at Eirik Drift.
4.4. Records of planktonic foraminiferal δ^{18}O and δ^{13}C, lithic counts and planktonic foraminiferal abundances for marine sediment core TTR-451.

This sub-chapter presents oxygen and carbon stable isotope (δ^{18}O and δ^{13}C) records for the planktonic foraminiferal species *Neogloboquadrina pachyderma* (left coiling) through the top ~120 cm of marine sediment core TTR-451 (for the core location, see Figure 3.1). Using the global ice volume correction of Duplessy *et al.* (2002), the δ^{18}O_{npl} data were adjusted for the global ocean δ^{18}O change from preferential sequestration of 16O relative to 18O in the ice sheets. These ice volume corrected δ^{18}O_{npl} data are also presented within this sub-chapter. Where specimen abundances permitted, the *N. pachyderma* (left coiling) δ^{18}O and δ^{13}C data are compared to those obtained from planktonic foraminifera *Globigerina bulloides*.

A number of previous studies show that ice-rafted debris (IRD)-rich layers in North Atlantic marine sediment cores are often associated with light surface water δ^{18}O isotopic excursions (inferred surface water freshening), and reduction in planktonic foraminiferal abundances (*amongst others* Heinrich, 1988; Bond *et al.*, 1992; 1993; 1997; 1999; Broecker *et al.*, 1992; 1994; Grousset *et al.*, 1993; 2001; Hilliare-Marcel *et al.*, 1994; Knutz *et al.*, 2001; Darby *et al.*, 2002; Elliot *et
Chapter 4. Results

al., 2002; Hemming and Hajdas, 2003; Jennings et al., 2006; Peck et al., 2006; 2007a, b). For further discussion see section 3.6 and the review by Hemming (2004).

Next in this sub-chapter, the planktonic foraminiferal δ^{18}O record for core TTR-451 is compared with total abundances of planktonic foraminifera >150 µm and counts of IRD/lithic grains >150 µm. The 150 µm diameter threshold for IRD is widely used, because larger grains cannot be carried by bottom currents (Bond and Lotti, 1995; Bond et al., 1997; 1999; Broecker, 1994; Grousset et al., 1993; 2000; 2001; Knutz et al., 2001; Darby et al., 2002; Elliot et al., 2002; Hemming and Hajdas, 2003; Peck et al., 2006; 2007a, b). As Icelandic volcanic glass shards >150 µm may be deposited at the TTR-451 core site as air-fall rather than as IRD, these are discounted in the ‘ash-free’ IRD counts also presented here.

IRD provenance studies of North Atlantic marine sediment cores have attributed the origin of hematite stained grains to the Greenland and British ice sheets, detrital carbonate to the Laurentide and Fennoscandian ice-sheets, and shards of volcanic glass to the vicinity of Iceland, transported by sea-ice (e.g., Bond et al., 1992; 1993; 1999; Bond and Lotti, 1995; Elliot et al., 1998; Grousset et al., 2000; 2001; Knutz et al., 2001; Peck et al., 2006; 2007a, b; review in Hemming, 2004). The above studies have also shown a phased pulsing of the circum-North Atlantic ice sheets just prior to and during the main IRD/Heinrich events. Therefore, this sub-chapter presents counts of the individual grain types that together form the total IRD abundances, in order to decipher the origin of the IRD in core TTR-451.

Significant changes in sedimentation rate result in variation in IRD and planktonic foraminiferal abundance records, in terms of numbers per gram of dry sediment, as a function of mass accumulation. For example, a reduction in the quantity of silts and clays being deposited with no change in IRD and planktonic foraminiferal fluxes would result in a relative increase in the numbers per gram of dried bulk sediment. Therefore, the age model which is described in sub-chapter 4.5 is used with the calculated bulk sediment mass accumulation rate
(grams of total dried sediment yr\(^{-1}\)) to determine the fluxes of IRD and planktonic foraminiferal counts (grains or planktonic foraminifera >150 \(\mu\)m cm\(^{-2}\) yr\(^{-1}\)). All records are shown in comparison with the magnetic susceptibility record for TTR-451 to provide stratigraphic reference to the previously described environmental and paleomagnetic records acquired for this core (sections 4.2 and 4.3).

4.4.1. Records of planktonic foraminiferal \(\delta^{18}\)O and \(\delta^{13}\)C

Figure 4.43b & c present the \(\delta^{18}\)O and \(\delta^{13}\)C records for \(N.\) pachyderma (left-coiling) (\(\delta^{18}\)O\(_{npl}\), \(\delta^{13}\)C\(_{npl}\)) for core TTR-451. The global ice volume corrected \(\delta^{18}\)O\(_{npl}\) record is also shown in Figure 4.43b (grey). In addition, \(\delta^{18}\)O and \(\delta^{13}\)C data for the species \(G.\) bulloides (\(\delta^{18}\)O\(_{gb}\), \(\delta^{13}\)C\(_{gb}\)) are shown in Figure 4.43b by red and blue crosses, respectively. The data obtained from \(G.\) bulloides are shown to cross-validate the \(\delta^{18}\)O\(_{npl}\) data, but due to the different depth habitats between species, close agreement is considered unlikely.

At the base of the \(\delta^{18}\)O\(_{npl}\) record (Figure 4.43b), a 0.8 \(\%\epsilon\) shift to lighter values occurs at around 111 cm depth. From around 98 cm, a strong shift to lighter \(\delta^{18}\)O\(_{npl}\) values develops, culminating in a broad peak of light values at around 87 cm depth. This \(\delta^{18}\)O\(_{npl}\) change equates to -1.45 \(\%\epsilon\) (Figure 4.43b) and around -1.5 \(\%\epsilon\) in the ice volume corrected \(\delta^{18}\)O\(_{npl}\) record. Above 87 cm, the \(\delta^{18}\)O\(_{npl}\) record returns to heavier values and levels out at around 75 cm. Over this same interval of core, the \(\delta^{13}\)C\(_{npl}\) values show a progressive increase, and they level out at around 61 cm. The data in the ice volume corrected \(\delta^{18}\)O\(_{npl}\) record, however, do not level out, but instead show a progressive enrichment that culminates at around 31 cm depth, and with a total change of 1.23 \(\%\epsilon\). Above 31 cm, a gradual shift to lighter \(\delta^{18}\)O\(_{npl}\) develops, with a magnitude of around 0.7 \(\%\epsilon\) (or 0.5 \(\%\epsilon\) for the ice volume corrected \(\delta^{18}\)O\(_{npl}\) data). Over this same interval of core, the \(\delta^{13}\)C\(_{npl}\) record shows a relatively minor decrease by around 0.1 \(\%\epsilon\).

The \(\delta^{18}\)O\(_{gb}\) data (Figure 4.43b) plot closely around the \(\delta^{18}\)O\(_{npl}\) values, which validates the \(\delta^{18}\)O\(_{npl}\) record as being representative of the past surface water
conditions above core TTR-451. A maximum difference of around 0.24 ‰ occurs between these two sets of data at around 93 cm depth, just prior to the peak light values at 98 cm. Because *N. pachyderma* (left-coiling) primarily lives within the pycnocline, but with ontogenic migration down to 600 m (Volkmann, 2000; Simstich *et al.*, 2003), whereas *G. bulloides* tend to live within the upper 30 to 60 m of the water column (Schiebel *et al.*, 1997; Barker and Elderfield, 2002), these deviations in δ¹⁸O values during the light δ¹⁸O event may reflect the different depth habitats of the two species. Alternatively, these lighter δ¹⁸O₉ values may reflect the later season of growth for *G. bulloides* (Ganssen and Kroon, 2000). However, it is acknowledged that four data points do not provide substantial enough evidence for further interpretation. The δ¹³C₉ values may reflect the later season of growth for *G. bulloides* (Ganssen and Kroon, 2000). However, it is acknowledged that four data points do not provide substantial enough evidence for further interpretation. The δ¹³C₉ data (Figure 4.43c) do not show agreement with the δ¹³C₉ record, and deviate by up to 0.8 ‰. Due to the ambiguity in these δ¹³C records, they are not interpreted further.

4.4.2. Records of planktonic foraminifera abundances and IRD (>150 µm)

The numbers of planktonic foraminiferal tests >150 µm per gram of dry sediment for core TTR-451 are presented in Figure 4.43d. This record shows a two-step increase from almost zero to around 1500 foraminifera g⁻¹ between 107 and 95 cm depth, above which numbers gradually return to around 200 at around 79 cm. This interval of enhanced planktonic foraminiferal abundances spans the entire period of light δ¹⁸O₉ values (Figure 4.43b). The planktonic foraminiferal abundances remain relatively low until around 41 cm depth. A sharp increase occurs between 29 and 25 cm depth when values increase from around 550 to 2500 foraminifera g⁻¹. Abundances gradually decrease to around 450 foraminifera g⁻¹ until 11 cm. This sharp increase in planktonic foraminiferal concentration is approximately coincident with the δ¹⁸O₉ light excursion which initiates at around 31 cm. The number of foraminifera (>150 µm) g⁻¹ significantly increases from 1000 at around 7 cm to nearly 57,000 at the core top. These high concentrations of foraminiferal tests likely result from bottom current winnowing of the core top sediments.
Figure 4.43 a. Records of ‘whole-core’ and discrete sample magnetic susceptibility data for core TTR-451. b. The $\delta^{18}O_{\text{npl}}$ record (black) is compared to $\delta^{18}O_{\text{gb}}$ data (red crosses), as well as the global ice volume corrected $\delta^{18}O_{\text{npl}}$ record (grey). c. The $\delta^{13}C_{\text{npl}}$ record (black) is compared to $\delta^{13}C_{\text{gb}}$ data (blue crosses). d. The total number of planktonic foraminiferal tests >150 µm per gram of dried sediment. In black are the data are plotted on an expanded scale. e. The flux of planktonic foraminiferal tests >150 µm cm$^{-2}$ yr$^{-1}$. f. The number of lithic grains (black) and ash free lithic grains (blue) >150 µm per gram of dried sediment. g. The flux of lithic grains (black) and ash free lithic grains (blue) >150 µm cm$^{-2}$ yr$^{-1}$. h. The number of shards of volcanic glass (black) and basaltic glass (purple) >150 µm per gram of dried sediment. Panels i, j and k show the numbers of hematite stained grains, detrital carbonate and igneous grains >150 µm per gram of dried sediment. The black arrow shows the timing of a precursory IRD ‘spike’.

Figure 4.43e presents the flux of foraminiferal tests (>150 µm) cm$^{-2}$ yr$^{-1}$. The transformation from numbers per gram (Figure 4.43d) to fluxes (Figure 4.43e) considerably changes the shape of the records. Generally low fluxes occur towards the base of the studied section, with only a relatively small rise of up to 8 foraminifera (>150 µm cm$^{-2}$ yr$^{-1}$) between 107 and 97 cm depth. A sharp rise to around 31 foraminifera (>150 µm) cm$^{-2}$ yr$^{-1}$ occurs at around 83 cm, which declines to around 7 at approximately 79 cm depth. Above this depth, the record fluctuates between these two levels, with increases at around 73, 45 and 27 cm, and decreases at around 62, 38 and 23 cm depth. The flux of foraminifera (>150 µm) cm$^{-2}$ yr$^{-1}$ gradually declines until around 7 cm, after which abundances significantly increase to over 300 foraminifera (>150 µm) cm$^{-2}$ yr$^{-1}$, likely due to bottom current winnowing of the core top sediments.

The record of IRD (>150 µm g$^{-1}$) for core TTR-451 is shown in Figure 4.43f. Relatively low quantities of IRD occur at the base of the interval of study and a
sharp increase, with short duration, occurs at around 101 cm depth, with a magnitude of change from near to zero to over 5000 grains g\(^{-1}\) (see arrow in Figure 4.43). Figures 4.43 h, i, j and k show the records of volcanic glass shards, hematite stained grains of quartz and feldspar, and detrital carbonate and igneous grains, respectively; and their percentage abundances of the total IRD content are presented in Figure 4.44d, e, f and g. Although a small increase in the abundance of hematite stained grains can be seen at the time of the IRD peak at 101 cm depth (see arrow Figures 4.43i), this IRD peak predominantly comprised quartz (note the relatively low percentage compositions in Figure 4.44).

A notable peak in IRD concentration occurs between 99 and 81 cm depth, where the number of grains (>150 µm) g\(^{-1}\) increases from around 1000 to nearly 5000 (3500 excluding volcanic glass). Following this, toward the end of the period, the IRD primarily contains basaltic volcanic glass (Figure 4.44d) with percentage compositions as high as 65%. Although volcanic glass may be deposited directly as air-fall to the ocean surface, the observed basaltic glass in TTR-451 was blocky in appearance (see Figure 3.18). Therefore, the mechanism for its transportation is interpreted to have been air fall onto sea-ice and subsequent transport as IRD, consonant with previous suggestions (e.g., Bond and Lotti, 1995; Bond et al., 1997; 1999).

From about 80 cm depth, the total IRD g\(^{-1}\) (Figure 4.43d) levels out and remains below 1000 grains (>150 µm) g\(^{-1}\) until around 53 cm depth, when concentrations increase to around 1500 grains g\(^{-1}\). Above 53 cm, the abundances of IRD remain at approximately the same level until ~25 cm depth, when the number of grains (>150 µm) g\(^{-1}\) sharply increases to over 13,000 grains g\(^{-1}\). This lithic peak predominantly contains shards of rhyolitic volcanic glass, forming up to 95% of the total IRD (Figure 4.43h and 4.44 d). A relatively smaller increase in basaltic grains occurs at the same time (Figure 4.43h and 4.44d). Other IRD grain types increase later at around 16 cm depth, with a rise from just over 5000 to 12,000 grains >150 µm g\(^{-1}\) (note the ‘ash-free’ IRD counts in Figure 4.43 f), before decreasing towards the core top (~3 cm depth) with abundances around 5000 grains >150 µm g\(^{-1}\).
Figure 4.44 a. Records of ‘whole-core’ and discrete sample magnetic susceptibility data for core TTR-451. b. The $\delta^{18}O_{\text{npl}}$ record (black) is compared to $\delta^{18}O_{\text{gb}}$ data (red crosses). c. The numbers of lithic grains (black) and ash free lithic grains (blue) >150 μm per gram of dried sediment. The percentage compositions of the total lithic grains of volcanic glass, hematite stained grains, detrital carbonate and igneous grains are presented in panels d, e, f and g, respectively. The black arrow shows the timing of an early IRD ‘spike’.
The total and ash-free IRD counts are corrected for the sediment mass accumulation rate (g yr\(^{-1}\)) and the resultant flux data (grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\)) are presented in Figure 4.43g. The IRD flux for core TTR-451 shows no notable increase until around 77 cm depth, when the IRD flux rises from around 4 to 155 grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\), with only a minor peak at around 101 cm depth (from near zero to around 40 grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\)). Between 77 and 26 cm depth, the flux of lithic grains >150 µm remains variable and range between 16 and 146 grains cm\(^{-2}\) yr\(^{-1}\), with low values between 74 to 70 cm, 68 to 52 cm, and 39 to 26 cm. At 26 cm depth, a significant increase in flux in lithic grains >150 µm predominantly comprises rhyolitic glass, with peak values of 146 grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\) (note the difference between the blue and black plots in Figure 4.43g). A second sharp increase in rhyolitic shards occurs at around 15 cm depth, with a peak total value of 230 lithic grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\). A moderate increase in flux of other IRD grain types also occurs at the same depth.

The flux of lithic grains >150 µm gradually decreases towards the top of the core, with a value of around 26 grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\) at 3 cm depth, and a relatively small increase at around 7 cm depth, when the flux increases to around 120 grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\). The convergence of the graphs of the total and the ash-free lithic grains (>150 µm) cm\(^{-2}\) yr\(^{-1}\) shows a sharp decrease in the volcanic glass component. It is noteworthy that these relatively high deposition rates of lithics >150 µm are approximately coincident with the broad low in magnetic susceptibility and the light δ\(^{18}\)O\(_{\text{anpl}}\) anomaly (Figures 4.43a & b).

4.4.3. Conclusions

The record of δ\(^{18}\)O\(_{\text{anpl}}\) for core TTR-451 reveals two light isotopic anomalies; one between 98 and 87 cm, and the other from 31 cm depth and culminating towards the core top. These light δ\(^{18}\)O\(_{\text{anpl}}\) events coincide with increases in both IRD and planktonic foraminiferal abundances. The uppermost peak in lithic grains >150 µm at 26 cm depth is dominated by volcanic glass, in particular rhyolitic shards. Adjustment of the planktonic foraminiferal and IRD counts for the sediment accumulation rate of the core has provided records of flux (cm\(^{-2}\) yr\(^{-1}\)).
These records show no discernable increase with the lowermost δ^{18}O$_{npl}$ light anomaly, whereas large increases in both records coincide with the uppermost δ^{18}O$_{npl}$ light excursion. The fluxes of IRD and planktonic foraminifera both show distinct increases at around 83 and 77 cm depth, respectively, not coincident with the δ^{18}O$_{npl}$ anomalies.
4.5. Age-model and chronology of marine sediment core TTR-451

The chronology of the upper ~120 cm of core TTR-451 is primarily constrained by seven Accelerated Mass Spectrometric (AMS)\(^{14}\)C datings of monospecific samples of *Neogloboquadrina pachyderma* (left coiling) that have been calibrated using Calib5.0.1 (Hughen *et al*., 2004; Reimer *et al*., 2004). Within these AMS\(^{14}\)C age constraints, the age model is further fine-tuned using a robust correlation between the TTR-451 magnetic susceptibility (\(\kappa\)) records and the GRIP and GISP2 ice-core stable oxygen isotope ratio (\(\delta^{18}\)O) records (Grootes and Stuiver, 1997; Stuiver and Grootes, 2000; Johnsen *et al*., 2001; Andersen *et al*., 2006; Svensson *et al*., 2006; Rasmussen *et al*., 2006; 2007; Vinther *et al*., 2006).

Stable oxygen isotope ratios (\(\delta^{18}\)O) of ice from Greenland ice cores reflect temperature and air mass variations over the ice sheet (e.g., Stuiver and Grootes, 2000). More negative values generally represent colder conditions, and less negative values represent warmer conditions. Recent layer-counting has provided a common timescale (the Greenland Ice Core Chronology 2005, or GICC05) for four key ice cores from the Greenland ice sheet back to 14.7 ka BP, and more recently, back to 42 ka BP (DYE-3, GRIP, and NorthGRIP) (Andersen *et al*., 2006; Svensson *et al*., 2006; Rasmussen *et al*., 2006; 2007; Vinther *et al*., 2006).
Within this sub-chapter, the AMS14C results for core TTR-451 are presented, and the methods for age model construction are described, tested and discussed. Note that the published age-model for core TTR-451 in Stanford et al. (2006) is modified here for ages older the 14.7 ka BP (thousands of years Before Present, where Present refers to AD1950), due to extension of the GICC05 timescale into Marine Isotope Stage (MIS) 2, which was not available at the time of original publication (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2007).

4.5.1. AMS14C chronology of core TTR-451

Table 4.5 presents the raw and calibrated results of the AMS14C datings for marine sediment core TTR-451, which were obtained from >8 mg of monospecific samples of *N. pachyderma* (left coiling) (for further details see 3.7). The AMS14C radiocarbon conventional ages have been calibrated using Calib5.0.1, and with the Marine04.14c calibration curve (Hughen et al., 2004; Reimer et al., 2004). A time-dependent reservoir age correction for the global ocean of ~400 years (Austin et al., 1995) is incorporated into the Marine04.14c calibration curve. For core TTR-451, a local reservoir age correction $\Delta R = 0$ was used, as it was aimed instead to diagnose ΔR for Eirik Drift. The calibrated datings are presented in years Before Present (BP), and represent the maximum modal (or peak probable) ages.

The 14C reservoir age of the oceans is strongly controlled by the carbon cycle and surface to deep water exchange, with sequestration of 14C into the ocean interior. Past reductions in Atlantic Meridional Overturning Circulation (AMOC) intensity would have likely reduced the surface to deep water exchange, causing the 14C reservoir age, of the ocean waters to have increased (e.g., Austin et al., 1995; Hughen et al., 2000; 2004; Muscheler et al., 2000; 2008; Waelbroeck et al., 2001; Laj et al., 2002; Robinson et al., 2005; Keigwin and Boyle, 2008; Marchitto et al., 2007). This increase in reservoir age throughout the water column (e.g., Robinson et al., 2005), results in 14C age plateaus (e.g., Hughen et al., 2000; 2004; Cao et al., 2007).
<table>
<thead>
<tr>
<th>KIA-sample number</th>
<th>Depth (cm)</th>
<th>species</th>
<th>AMS 14C age</th>
<th>Calibrated age (Calib 5.0.1.)</th>
<th>2σ age range</th>
<th>Inferred ΔR</th>
<th>2σ range for the ΔR</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIA-26998</td>
<td>12.0</td>
<td>$N. pachy.$ (lc)</td>
<td>10905 ± 60 BP</td>
<td>12535 BP*</td>
<td>12213-12715</td>
<td>437</td>
<td>96-650</td>
</tr>
<tr>
<td>KIA-27856</td>
<td>40.0</td>
<td>$N. pachy.$ (lc)</td>
<td>12220 ± 55 BP</td>
<td>13692 BP</td>
<td>13495-13800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-25853</td>
<td>57.5</td>
<td>$N. pachy.$ (lc)</td>
<td>12690 ± 55 BP</td>
<td>14141 BP</td>
<td>13986-14527</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-27857</td>
<td>76.0</td>
<td>$N. pachy.$ (lc)</td>
<td>12825 ± 55 BP</td>
<td>14420 BP</td>
<td>14154-14843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIA-27858</td>
<td>83.5</td>
<td>$N. pachy.$ (lc)</td>
<td>13460 ± 55 BP</td>
<td>15411 BP*</td>
<td>15136-15769</td>
<td>801</td>
<td>470-1204</td>
</tr>
<tr>
<td>KIA-27859</td>
<td>94.3</td>
<td>$N. pachy.$ (lc)</td>
<td>14750 ± 60 BP</td>
<td>17196 BP*</td>
<td>16720-17568</td>
<td>1242</td>
<td>707-1688</td>
</tr>
<tr>
<td>KIA-25854</td>
<td>102.3</td>
<td>$N. pachy.$ (lc)</td>
<td>14890 ± 60 BP</td>
<td>17432 BP*</td>
<td>16975-17839</td>
<td>647</td>
<td>107-1146</td>
</tr>
</tbody>
</table>

Table 4.5. AMS14C measurements measured from monospecific samples of $N. pachyderma$, left-coiling (lc), and their calibrated (calendar) ages for core TTR-451. Inferred ΔR values are also presented for AMS14C datings that represent the Younger Dryas and Heinrich event 1 (see 4.5.2.). * These datings have relatively large calibrated 2σ errors due to plateaus in the marine04.14c calibration curve (Hughen et al., 2004). KIA = Kiel Institut für Altersbestimmungen.

Figure 4.45 shows the calibration plots for the sample in Table 4.5. The probability plots of ages from samples KIA-27998, KIA-27858, KIA-27859 and KIA-25854 (Figure 4.45a, e, f and g) have skewed, and even bi-modal, distributions that have relatively large 2σ uncertainties. These skewed distributions are due to plateaus in the Marine04.14c calibration curve, and the datings are bracketed by the Younger Dryas and Heinrich event 1 (H1) time periods, when the AMOC was in a state of near complete shutdown (e.g., Austin and Kroon, 2001; McManus et al., 2004). In comparison, sample KIA-25853 (Figure 4.45c) for example has a uni-modal distribution with a relatively small 2σ range.
Figure 4.45. Conventional radiocarbon versus calibrated ages for core TTR-451. The plots were generated using Calib5.0.1., and y-axis values represent conventional radiocarbon ages.
4.5.2. Fine-tuning the age-model for core TTR-451

To reduce the relatively large AMS\(^{14}\)C dating uncertainties for the Younger Dryas and H1, the age-model for TTR-451 is fine-tuned to the GICC05 chronology, using a correlation between the magnetic susceptibility (\(\kappa\)) record for core TTR-451 and the \(\delta^{18}\)O ice core record from GRIP and GISP2 on the GICC05 chronology (Grootes and Stuiver, 1997; Stuiver and Grootes, 2000; Johnsen et al., 2001; Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007; Vinther et al., 2006), similar to methods used previously (e.g., Dokken and Jansen, 1999; Kissel et al., 1999a, b). For further discussions on the construction of the GICC05 ‘Greenland Ice Core Chronology 2005’ see section 5.1.

4.5.2.1. TTR-451 age-model between 11 and 15 ka BP

Figure 4.46 plots the initial age-model for core TTR-451, of which the upper 84 cm is primarily constrained by calibrated AMS\(^{14}\)C datings. Between 84 and 24 cm, TTR-451 sediments represent the Bølling and Allerød warm periods (GI-1e & c) (Björck et al., 1998), during which \(\Delta R\) values are generally thought to have been close to zero (Hughen et al., 2000; Bondevik et al., 2006). Two AMS\(^{14}\)C datings are not used in the upper 90 cm of the core (see [1] and [2] in Figure 4.46), one has an age within the Younger Dryas period, and the other just prior to the Bølling transition.

The AMS\(^{14}\)C dating at 12.535 ka BP (KIA- 26998; Table 4.5) has a bi-modal and poorly calibrated probability distribution function due to a plateau in the marine04.14c calibration curve (Figure 4.45c). Visually robust tie points between the TTR-451 magnetic susceptibility (\(\kappa\)) and the Greenland ice core \(\delta^{18}\)O stratigraphies (see correlation lines in Figure 4.52) indicates that this age is ‘too old’. \(\Delta R\) for this dating is approximated using the difference between the ages derived from the magnetic susceptibility tie points (absolute calendar ages) and the calibrated AMS\(^{14}\)C datings (Table 4.5). The inferred \(\Delta R\) value for the Younger Dryas (\(\Delta R = 437\) yrs, Table 4.5) compares well (just within 1\(\sigma\)) with
Chapter 4. Results

Figure 4.46. a. Depth versus age plot for core TTR-451. Open, red squares indicate calibrated AMS14C datings, and error bars indicate the 2σ uncertainty range (Table 4.5). Numeric markers refer to the main text. Solid black dots indicate tie points from the correlation between the magnetic susceptibility and the GRIP ice-core δ^{18}O record, and open black circles represent extra correlation points between the magnetic susceptibility of core TTR-451 and the GRIP ice core record that are not used to construct the age model, but are shown for validation. 2σ error bars indicate the maximum counting error on the GICC05 timescale. The grey areas represent the times of reduced NADW ventilation associated with the Younger Dryas and Heinrich Event 1 (McManus et al., 2004). b. Magnetic susceptibility records for TTR-451: black denotes the higher resolution whole core data, and grey denotes the lower resolution discrete sample measurements. The green shaded area highlights an interval with reduced...
agreement between the magnetic susceptibility records form these two independent methods. The GRIP (c) and GISP2 (d) ice core $\delta^{18}O$ records plotted versus the new GICC05 timescale based on layer-counting (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007; Vinther et al., 2006). The blue shaded area highlights where the GRIP and GISP2 $\delta^{18}O$ records disagree. e. The GRIP and GISP2 $\delta^{18}O$ records are combined to form a regional air-temperature proxy in units standard deviation. YD = Younger Dryas, and H1 = Heinrich event 1

independently derived ΔR estimates of 371 yrs, based on cores from the Norwegian margin (Bondevik et al., 2006), and 300 yrs for the northern North Atlantic (Austin et al., 1995). Note that the age-model for the Younger Dryas lies just within the 2σ bounds of this dating.

The relatively sharp jump in the TTR-451 magnetic susceptibility (κ) record at around 84 cm depth has a good visual correlation with the onset of the Bølling warming (GI-1e) (Björck et al., 1998) in the GRIP and GISP2 ice core $\delta^{18}O$ records (see correlation lines in figure 4.46), which is dated at 14.6 ka BP (Rasmussen et al., 2006). On the basis of this excellent visual correlation, the AMS14C dating at 83.5 cm depth (KIA-27858, [2] in Figure 4.46a), with a calibrated age of 15.411 ka BP, has an inferred ΔR of around 800 yrs.

As the age-model for the upper ~90 cm of core is constructed primarily on the basis of the AMS14C chronology, and where the age model deviates from its AMS14C datings is on the basis of strong correlation tie points, it provides a test-bed for the robustness of the correlation for continuation of this method further down-core.

The TTR-451 magnetic susceptibility (κ) record and the GRIP $\delta^{18}O$ ice core record were interpolated onto the same time steps (Figure 4.47a) and cross-plotted during the time interval of 11.5 to 15 ka BP, and reveal a statistically
significant R^2 value of 0.71 (N=116) (Figure 4.47b). On the basis of this correlation coefficient, this method of age-model construction is continued down core. This method of correlation is important for H1 and the Last Glacial Maximum (LGM), as during these periods its use becomes necessary because of the likely unreliability of AMS14C datings due to enhanced ΔR values (Hughen et al., 2000; 2004; Laj et al., 2002; Robinson et al., 2005; Keigwin and Boyle, 2008; Muscheler et al., 2008).

Figure 4.47. a. The whole-core magnetic susceptibility (κ) record for TTR-451 and the GRIP δ^{18}O ice core record versus GICC05 age. These records are cross-plotted in (b).

4.5.2.2. TTR-451 age-model below 15 ka BP

Comparison between calibrated ages of AMS14C datings KIA-27859 and KIA-25854 (Table 4.5; [3] and [4] in Figure 4.46a) indicates that 8 cm of core TTR-451 represent only 250 yrs or less. This infers a sharp increase in sedimentation
rates, which would be surprising as there is no correspondingly sharp change in the coarse sediment fraction concentration at around this depth (see section 4.4.2), as would be expected due to dilution changes. As AMS14C dating KIA-27859 has a calibrated age of 17.196 ka BP, which is well within the H1 interval of AMOC collapse (McManus et al., 2004; grey shaded bars in Figure 4.46a), a more likely explanation would be that it is affected by relatively old 14C ventilation ages.

The correlation between the magnetic susceptibility (κ) record for TTR-451 and the GRIP/GISP2 ice core δ^{18}O records for ages older than ~16 ka BP is problematic due to (1) the lack of agreement between δ^{18}O signals between the two ice cores (see blue shaded region in Figure 4.46), and (2) a lack of agreement between the discrete sample and whole-core magnetic susceptibility (κ) records for TTR-451 (see green shaded region in Figure 4.46). As the GRIP and GISP2 δ^{18}O records provide a regional proxy for air temperatures above Greenland and, furthermore, are located in close proximity to one another, it would be incorrect to favour the correlation with one record over the other to TTR-451. To negate this problem, the GRIP and GISP2 δ^{18}O records are combined to form a hybrid Greenland air-temperature record in unit standard deviation (Figure 4.46e). The lack of agreement between the magnetic susceptibility records for core TTR-451 is resolved by the use of the discrete sample data for the correlation, as its methods are more robust than those for the generation of the whole-core data (for further discussions see section 4.2.4).

A distinct visual correlation can be made at 95.5 cm depth in the TTR-451 magnetic susceptibility (κ) record with the GRIP and GISP2 ice core δ^{18}O records at 16.110 ka BP (Figure 4.46). Using this correlation tie-point, sample KIA-27859 from core TTR-451 has an inferred ΔR of 1242 yrs. Keigwin and Boyle (2008) use paired bivalve and planktonic foraminifera AMS14C ages for sediments from Bermuda Rise and estimate a ΔR of 1170 yrs for a foraminiferal sample with a conventional 14C age of 14.800 +/- 0.06 ka BP. KIA-27859, with a conventional 14C age of 14.750 +/- 0.06 ka BP, therefore, has a ΔR value that is in very close agreement.
Initially, the dating at 102.3 cm depth in TTR-451 (KIA-25854), with a calibrated age of 17.432 ka BP (Table 4.5), is used in the age model construction ([4] in Figure 4.46). Ages are interpolated between this AMS14C dating and a relatively robust tie point between the TTR-451 magnetic susceptibility at 174.5 cm depth and 23.370 ka BP in the hybrid Greenland ice core temperature record. Figure 4.48a plots these records against age with only those limited age
controls. A cross-plot of the discrete magnetic susceptibility data and the Greenland hybrid ice core record shows that there is no correlation (Figure 4.48b), with an $R^2 = 0.03$.

The red dashed lines in Figure 4.48 indicate four new tie-points between the TTR-451 magnetic susceptibility and the hybrid Greenland ice core temperature record, which considerably improve the correlation. The AMS14C dating at
102.3 cm depth [KIA-25854, with a calibrated age of 17.432 ka BP; Table 4.5) is rejected as a strict control point on the basis of this correlation exercise, and a ΔR of 647 years is estimated. As this age lies just within the time of the H1 AMOC collapse (grey shaded bars in Figure 4.46a, McManus et al., 2004), an old ^14C ventilation age is not unsurprising. This now places the age model just outside the 2σ errors of the calibrated dating.

Figure 4.50. Depth versus age plot for core TTR-451. Open, red squares indicate calibrated AMS^14C datings, and error bars indicate the 2σ uncertainty range (Table 4.5). Solid black dots indicate tie points from the correlation between the magnetic susceptibility and the GRIP ice-core δ^18O record, and open black circles represent extra correlation points between the magnetic susceptibility of core TTR-451 and the GRIP ice core record.
that are not used to construct the age model, but are shown for validation.

2σ error bars indicate the maximum counting error on the GICC05 timescale. The grey areas represent the times of reduced NADW ventilation associated with the Younger Dryas and Heinrich Event 1 (McManus et al., 2004).

b. The magnetic susceptibility records for TTR-451: black denotes the higher resolution whole core data, and grey denotes the lower resolution discrete sample measurements. The GRIP (c) and GISP2 (d) ice core $\delta^{18}O$ records plotted versus the new GICC05 timescale based on layer-counting (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007; Vinther et al., 2006). e. The GRIP and GISP2 $\delta^{18}O$ records are combined to form a regional air-temperature proxy in units standard deviation. YD = Younger Dryas, and H1 = Heinrich event 1

We note that also the TTR-451 magnetic susceptibility (κ) records show a progressive trend to lower values towards the core top. In order to better assess the correlation between the TTR-451 magnetic susceptibility and the hybrid Greenland temperature record, this trend needs to be removed, so the magnetic susceptibility data are de-trended using a linear fit. The results are plotted in Figure 4.49 and reveal a good visual correlation. A cross-plot of the discrete sample magnetic susceptibility (κ) data on the new age-model against the hybrid Greenland temperature record (Figure 4.49b) gives an R^2 of 0.37 ($N = 70$). Although the correlation coefficient is not statistically significant, a good visual correlation (Figure 4.49a) between these datasets suggests that these tie-points are appropriate to use in the final TTR-451 age-model construction, which is shown in Figure 4.50. The near linear sedimentation rate below 84 cm depth (Figure 4.50a) supports the likelihood that this solution offers an adequate TTR-451 age model.

4.5.3. Validation of the TTR-451 chronology

The relatively high correlation coefficient (0.71) between the TTR-451 magnetic susceptibility record and the GRIP $\delta^{18}O$ ice-core record for the time period 11.5
to 15 ka BP (Figure 4.5), during which period the TTR-451 chronology is primarily constrained by AMS14C datings, indicates that the age-model for this portion of the core is robust. Further validation for this time interval is gained by comparing records of palaeointensity (NRM/ARM) for TTR-451 and core PS 2644-5 that was recovered from the Denmark Strait (67º 52' N, 21º 46' W) (Voelker et al., 1998; 2000; Kissel et al., 1999a, b; Laj et al., 2000; 2002; 2003) (Figure 4.51d). The age-model of core PS 2644-5 is tied to the layer counted GISP2 chronology (Meese et al., 1997) i.e., not GICC05. However, the GISP2 δ^{18}O record agrees well with NGRIP and GRIP on the GICC05 chronology for ages younger than 14.7 ka BP (Rasmussen et al., 2006). Figure 4.51d plots the palaeointensity records for cores TTR-451 and PS 2644-5 and shows good agreement over the time interval 11.5 to 15 ka BP

Further validation of the TTR-451 age model comes from comparison of its k_{ARM}/k record (a bottom current intensity proxy – for further discussions and validation of this proxy see section 4.3) with another (independently dated) record of NADW flow rate, which is based on the 231Pa/230Th ratio in core GGC5 from Bermuda Rise (McManus et al., 2004) (Figure 4.51c). This empirically corroborates the age-model for TTR-451 by a high degree of signal structure similarity. Note that the apparent offset at the Bølling transition results only from sample resolution in the discrete sample k_{ARM}/k series of TTR-451, and is verified by a sharper shift in our higher resolution ‘whole core’ measurements (grey record in Figure 4.51c).

The IRD (grains >150 μm g^{-1}) record for core TTR-451 is plotted versus age (Figure 4.51b). A ~500 year IRD minimum reflects the Bølling warm period and IRD peaks represent H1 and the Younger Dryas cold intervals. This evidence lends further support to the age model for core TTR-451. Finally, figure 4.51e shows the ratio of right coiling versus left coiling $N. \text{pachyderma}$. A sharp increase at around 14.5 ka BP is indicative of increased sea surface temperatures (e.g., Darling and Wade, 2008), and provides additional evidence for the identification of the Bølling warming in core TTR-451. This independently corroborates that the sharp shift to higher magnetic susceptibility values at
Figure 4.51 a. The GRIP ice core δ^{18}O record. plotted versus the new GICC05 timescale based on layer-counting (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007; Vinther et al., 2006). b. counts of lithic fragments, larger than >150 µm, per gram dry sediment weight in Eirik Drift core TTR-451. Black indicates lithic grains excluding volcanic glass, and blue indicates lithic grains including volcanic glass. The Holocene is represented in core TTR-451 by an intensely winnowed (sand) layer. c. Record of $\kappa_{\text{ARM}}/\kappa$ for Eirik Drift core TTR-451 from discrete samples (in black) and whole core measurements (grey). The $\kappa_{\text{ARM}}/\kappa$ data for TTR-451 are presented alongside the 231Pa/230Th record of core GGC5 from Bermuda.
Rise (in red) (McManus et al., 2004). d. Records of palaeointensity (NRM/ARM), after AF demagnetisation at 25 mT, for cores TTR-451 (black) and PS 2644-5 (Denmark Strait) (green). e. Ratio of right coiling (r c) versus left coiling (l c) N. pachyderma for core TTR-451.

around the same depth in core TTR-451 (Figure 4.50b), represents the sharp Bølling warming.

4.5.4. Summary

The chronology of TTR-451 is initially constrained by seven AMS14C datings of monospecific samples of left-coiling N. pachyderma that have been calibrated using Calib5.0.1 with a regional reservoir age correction $\Delta R = 0$ (Table 4.5). Within these constraints, the age model is fine-tuned using correlation between the TTR-451 magnetic susceptibility (κ) record and Greenland ice-core δ^{18}O records, similar to methods used previously (e.g., Dokken and Jansen, 1999; Kissel et al., 1999a, b). The fine-tuned age model remains well within the 2σ bounds on three of the calibrated radiocarbon datings (red circles in Figure 4.50a), just within the 2σ bounds for one dating, and just outside the 2σ bounds for three datings. Note that the fine-tuned age model remains well within the 2σ bounds of the calibrated AMS14C during intervals for which ΔR values is generally thought to have been close to zero (Hughen et al., 2000; Bondevik et al., 2006; Keigwin and Boyle, 2008).

The fine-tuned age model suggests somewhat enhanced ΔR values for the four radiocarbon datings from the Younger Dryas (YD) and Heinrich Event 1 (H1) intervals (Figure 3a), again in agreement with previous suggestions that 14C reservoir ages were substantially increased during those times (Hughen et al., 2000; Bondevik et al., 2006; Keigwin and Boyle, 2008). ΔR values are approximated for these datings for core TTR-451, and these inferred ΔR values compare well with independently derived ΔR estimates (Austin et al., 1995; Bondevik et al., 2006; Keigwin and Boyle, 2008).
Chapter 5

5. DISCUSSION

The temporal relationship between North Atlantic meltwater injections, and in particular meltwater pulse 1a (mwp-1a), and the climate history of the last deglaciation remains a subject of debate. This chapter aims to resolve and reconcile timing discrepancies between sea-level and climate records. With new evidence from core TTR-451 (Eirik Drift, south of Greenland; Figure 3.1), palaeoceanographic reconstructions of Heinrich event 1 (H1) and the last deglaciation provide information on the relationship between meltwater injections, NADW flow intensity and climate. The location of core TTR-451 and the methods are described in chapter 3, the results in section 4, and the age-model for the core in section 4.5.

First, this chapter presents the findings by Stanford et al., which were published in Palaeoceanography in December, 2006. For reference, this paper is provided in its published format in the appendices of this thesis. Here, the timing of mwp-1a in the Barbados fossil coral sea level record is conclusively resolved, and placed in context with the climate history of the last deglaciation, as recorded in the GRIP δ^{18}O ice core stratigraphy on the latest GICC05 chronology. This is done with consideration of the well constrained uncertainties of both records. Also published in Stanford et al. (2006), and presented next in this chapter, is a
high-resolution record of North Atlantic Deep Water (NADW) flow intensity from core TTR-451, Eirik Drift, which spans the time period of the last deglaciation. This provides a tool with which to evaluate whether there is a relationship between meltwater injections, NADW formation, and climate change.

Next in this chapter, the apparent timing discrepancies through the last deglaciation, and in particular mwp-1a, between the Sunda Shelf (14C dated) and the Barbados fossil coral (U/Th) dated sea-level records are investigated. Within the context of their dating and depth uncertainties, the timing of mwp-1a is reconciled between these two records.

Finally in this chapter, high-resolution planktonic foraminiferal $\delta^{18}O$ data, lithic and foraminiferal abundance counts and the record of NADW flow intensity (κ_{ARM}/κ) are presented for core TTR-451. These new records are combined and compared with previously published datasets from marine sediment cores and terrestrial records, to give new reconstruction of the palaeoceanographic evolution of Heinrich event 1 in the North Atlantic, and to provide insight into the mechanism for the abrupt Bølling warming. These records also further elucidate the role of the Nordic Seas during these extreme climate transitions.
5.1. Timing of meltwater pulse 1a and climate responses to meltwater injections

Well-dated fossil corals (Fairbanks, 1989; 1990; Bard et al., 1990a, b, 1996; Fairbanks et al., 2005), and other methods (e.g., Rohling et al., 1998; Hanebuth et al., 2000; Siddall et al., 2003), have documented that global sea level has risen by 120 m or more since the Last Glacial Maximum. The combined use of Accelerator Mass Spectrometry (AMS) 14C and U/Th datings in fossil coral studies offers insight into the real time structure of the deglacial sea level rise, and also allows extension of the radiocarbon calibration curve beyond 10 ka BP (thousands of years Before Present, where Present refers to AD1950) (Bard et al., 1990a, 1998; Reimer et al., 2004: Fairbanks et al., 2005). Fossil coral records contain evidence of a dramatic sea level rise in excess of 20 m at around the time of the last deglaciation, the so-called melt water pulse (mwp-1a) (Fairbanks, 1989; 2005; Bard et al., 1990b; 1996; Hanebuth et al., 2000; Weaver et al., 2003). However, controversy remains about the precise age of mwp-1a, with published values varying from around 14.6 ka BP (Hanebuth et al., 2000) to 14 ka BP (Bard et al., 1996; Fairbanks et al., 2005).

A marked step in the last deglaciation is recognised in Greenland ice core records by the sharp Bølling warming (GI-1e) (Björck et al., 1998), dated at around 14.6 ka BP (Rasmussen et al., 2006). At around 14 ka BP, the Bølling warm period was ended abruptly by the Older Dryas cold event (GI-1d) (Björck et al., ...)
1998; Rasmussen et al., 2006). Based upon an inferred age of around 14.6 ka BP for mwp-1a, this meltwater event has been suggested as a trigger for the Bølling warming (Hanebuth et al., 2000). Isostatic rebound calculations and ocean-climate modelling results have been used to support the suggestion that mwp-1a was derived from Antarctica and was the direct cause for the Bølling warming (Clark et al., 1996; 2002; Kienast et al., 2003; Weaver et al., 2003). In contrast, earlier results from the Barbados fossil coral record were used to infer that mwp-1a should instead be associated with the Older Dryas cooling that terminated the Bølling warming (Bard, 1996; Kroon et al., 1997).

![Figure 5.1](image_url)

Figure 5.1. Location of core TTR-451. Also shown are the locations of marine core GGC5 and the GRIP ice core drill site. The dark grey arrows indicate the NADW flowpath (after Schmitz, Jr. and McCartney (1993)).

To resolve this controversy, we compare the Greenland ice core climate proxy record on the new layer-counted GICC05 time scale (Rasmussen et al., 2006), with the latest U/Th-dated history of deglacial sea-level change (Fairbanks et al.,
2005; Peltier and Fairbanks, 2006). To evaluate the implications of the resolved relative timings between these records with respect to climate change mechanisms associated with meltwater injections, we present a new high-resolution record of NADW flow intensity during the last deglaciation, as recorded in core TTR-451 from Eirik Drift (south of Greenland) (Figure 5.1). The results are then placed within the context of recent suggestions about the location and depth-distribution of meltwater pulses (Aharon, 2005; Tarasov and Peltier, 2005). Modern observations of surface freshening and sea-ice reductions in the Arctic Ocean and Nordic Seas (Dickson et al., 2002; Lindsay and Zhang, 2005) and reduced formation of NADW (Dickson et al., 2002; Bryden et al., 2005) underline the need for a better understanding of the potential ocean-climate responses to meltwater injections.

5.1.1. Revised ages of mwp-1a and Greenland climate events

The fossil reef series indicates a sharp global sea-level rise of about 20 m at around 14 ka BP (Figure 5.2b): meltwater pulse 1a (mwp-1a) (Fairbanks, 1990). Gaussian smoothing through the recently improved data series for Barbados (Fairbanks et al., 2005; Peltier and Fairbanks, 2006) illustrates the history of sea-level change through time (Figure 5.2b), and its first time derivative offers insight into rates of sea-level change (Figure 5.2c). The latter clearly identifies mwp-1a between 14.17 and 13.61 ka BP, with a peak rate of 4.3 cm yr\(^{-1}\) sea-level rise close to 13.86 ka BP. The youngest indicator of low pre-mwp-1a sea level is sample RGF 9-8-2, which was originally U/Th-dated at 14.235±0.050 ka BP (1σ) (Bard et al., 1990a; 1990b) and was recently re-dated at 14.082±0.028 ka BP (1σ) using higher precision mass spectrometry and new decay constants (Fairbanks et al., 2005). This single young point has been questioned (Kienast et al., 2003; Weaver et al., 2003) since Sunda shelf data suggest that mwp-1a started considerably earlier, at around 14.6 ka BP (Hanebuth et al., 2000). However, the Sunda Shelf record relies upon AMS\(^{14}\)C ages, which are subject to much greater uncertainty than U/Th chronologies, especially when corrections for variable \(^{14}\)C reservoir ages are considered. Recent improvements in the resolution of the Barbados record have added 6 new low (pre-mwp-1a) sea-level
points between 14.60 and 14.08 ka BP that comprehensively validate the age of sample RGF 9-8-2 (Table 5.1.) (Fairbanks et al., 2005; Peltier and Fairbanks, 2006).

Figure 5.2 a. The GRIP ice core $\delta^{18}O$ record. The thin grey line is the record plotted versus the previous (modelled) ss09sea timescale (Johnsen et al., 2001). The heavy black line is plotted versus the new GICC05 timescale based on layer-counting (Anderson et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007). b. The sea-level record based on U/Th-dated corals from Barbados (Fairbanks et al., 2005; Peltier and Fairbanks, 2006) (see also Table 5.1). Error bars indicate 2σ limits. c. Record of rate of sea-level change, determined as the first time derivative of the solid line in (b).

Stable oxygen isotope ratios ($\delta^{18}O$) of ice from Greenland ice cores reflect temperature and air mass variations over the ice sheet. More negative values generally represent colder conditions, and less negative values represent warmer
conditions. Recent layer-counting has provided a common timescale for three key ice cores from the Greenland ice sheet back to 14.73 ka BP (DYE-3, GRIP, and NorthGRIP) (Rasmussen et al., 2006; Vinther et al., 2006). The resultant new GICC05 timescale is in good overall agreement with that of the fourth key record from the Greenland ice sheet (GISP2) (Meese et al., 1997). In the GRIP ice-core $\delta^{18}O$ record, a sharp $\delta^{18}O$ shift near the bottom of the layer-counted series (Figure 5.2a, black) marks the abrupt onset of the Bølling (GI-1e) (Björck et al., 1998) warm period. In the GICC05 timescale this warming is dated at 14.64 ka BP, with a maximum error of 186 years (Rasmussen et al., 2006), which is in close agreement with its layer-counted age of 14.65 ± 0.09 ka BP in Cariaco Basin (Lea et al., 2003). These tight constraints place the warming some 60 years earlier than the previous, less certain, ss09sea ice-core timescale (Johnsen et al., 2001) (Figure 5.2a, grey). Note that the total uncertainty of the GICC05 timescale, which amounts to only 186 years at around the Bølling warm transition, mainly consists of the maximum counting error (related to the number of annual layers that were difficult to interpret) and a possible bias (because the rules used for identifying annual layers cannot be independently validated).

Comparison of the GICC05 timescale with the INTCAL04 radiocarbon calibration curve based on volcanic horizons (Rasmussen et al., 2006) indicates that the maximum counting error in GICC05 is a conservative and adequate measure of the total uncertainty of the GICC05 timescale in this interval.

For the first time, the age models of both ice cores and sea-level evolution are constrained with sufficient accuracy to permit sensible comparisons. If the 186-year uncertainty in the GICC05 age of 14.64 ka BP for the Bølling onset were entirely systematically biased toward the younger bound, then its youngest possible age would be 14.45 ka BP. Note that it is unlikely that the errors in the GICC05 timescale are distributed in such a systematic manner, especially given the excellent agreement with ages from Cariaco Basin (Lea et al., 2003). Based on RGF 9-8-2, the maximum age for the onset of mwp-1a would be 14.11 (1σ) or 14.14 ka BP (2σ) (Figure 5.2b). Hence, mwp-1a apparently lags the Bølling onset by 5 to 6 centuries. Even when pushing the edges of the confidence limits in the two timeframes, mwp-1a lags the Bølling onset by 3 centuries. This firmly
corroborates the age offset suggested independently by radiocarbon results, which by themselves are insufficiently precise to be conclusive due to reservoir age uncertainties. Consequently, there is no longer a reasonable case to assume that mwp-1a coincided with the Bølling onset. We therefore reject the hypothesis that mwp-1a may have triggered the abrupt onset of the Bølling warm period (Kienast et al., 2003; Weaver et al., 2003).

Table 5.1. U/Th and \(^{14}\)C ages of the samples identifying meltwater pulse 1a in the Barbados coral record. Radiocarbon ages are reported without reservoir age subtraction. Ages are after Fairbanks et al. (2005). All reported \(^{14}\)C ages are conventional \(^{14}\)C ages before 1950 (5568 yr half life, corrected for fractionation). Errors are given at the 2\(\sigma\) level for both \(^{14}\)C and \(^{230}\)Th ages. All \(^{230}\)Th ages are expressed as years before 1950. The relative sea levels (RSL) are the recovery depths of Acropora palmata relative to the present sea level. Mwp-1a is bracketed in Barbados between samples from cores 9 and 12.

<table>
<thead>
<tr>
<th>sample code</th>
<th>species</th>
<th>RSL (m)</th>
<th>mean U/Th age (y BP)</th>
<th>2(\sigma) (y)</th>
<th>N</th>
<th>mean (^{14})C age (y BP)</th>
<th>2(\sigma) (y)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGF 12-9-5</td>
<td>A. palmata</td>
<td>-57.59</td>
<td>12203</td>
<td>76</td>
<td>1</td>
<td>10485</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>RGF 12-15-4</td>
<td>A. palmata</td>
<td>-63.78</td>
<td>12993</td>
<td>34</td>
<td>2</td>
<td>11464</td>
<td>78</td>
<td>4</td>
</tr>
<tr>
<td>RGF 12-21-2</td>
<td>A. palmata</td>
<td>-69.06</td>
<td>13555</td>
<td>38</td>
<td>1</td>
<td>11903</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>RGF 12-21-6</td>
<td>A. palmata</td>
<td>-69.35</td>
<td>13574</td>
<td>52</td>
<td>1</td>
<td>11945</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>RGF 12-21-7</td>
<td>A. palmata</td>
<td>-69.57</td>
<td>13578</td>
<td>52</td>
<td>1</td>
<td>11909</td>
<td>88</td>
<td>4</td>
</tr>
<tr>
<td>RGF 12-21-10</td>
<td>A. palmata</td>
<td>-69.85</td>
<td>13632</td>
<td>32</td>
<td>1</td>
<td>12075</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>RGF 9-8-2</td>
<td>A. palmata</td>
<td>-88.60</td>
<td>14082</td>
<td>56</td>
<td>2</td>
<td>12615</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>RGF 9-11-2</td>
<td>A. palmata</td>
<td>-90.75</td>
<td>14255</td>
<td>40</td>
<td>3</td>
<td>12735</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>RGF 9-9-7</td>
<td>A. palmata</td>
<td>-89.51</td>
<td>14295</td>
<td>58</td>
<td>1</td>
<td>12795</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>RGF 9-12-7</td>
<td>A. palmata</td>
<td>-92.57</td>
<td>14396</td>
<td>36</td>
<td>2</td>
<td>12780</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>RGF 9-12-5</td>
<td>A. palmata</td>
<td>-92.49</td>
<td>14408</td>
<td>40</td>
<td>1</td>
<td>12780</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>RGF 15-5-3</td>
<td>A. palmata</td>
<td>-91.34</td>
<td>14573</td>
<td>30</td>
<td>1</td>
<td>12730</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>RGF 9-13-3</td>
<td>A. palmata</td>
<td>-93.89</td>
<td>14539</td>
<td>46</td>
<td>1</td>
<td>12680</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>RGF 9-21-11</td>
<td>A. palmata</td>
<td>-106.09</td>
<td>18176</td>
<td>112</td>
<td>1</td>
<td>15405</td>
<td>60</td>
<td>1</td>
</tr>
</tbody>
</table>
Chapter 5. Discussion

The new time constraints instead confirm a previous suggestion (Bard et al., 1996; Kroon et al., 1997) that mwp-1a was associated with the termination of the Bølling warm period (Figures 2a-c). Meltwater addition started within the Bølling, possibly as a direct response to high-latitude warming during that period (McManus et al., 2004), or due to increased heat transport in the Agulhas Current (Peeters et al., 2004), and culminated in a meltwater peak at 13.9 ka BP that coincides with the sharp “Older Dryas” (GI-1d) (Björck et al., 1998) cooling event. At issue however, is whether there was a change in NADW flow intensity coincident with mwp-1a and the Older Dryas.

5.1.2. Record of $\kappa_{\text{ARM}}/\kappa$ from TTR-451 as a NADW flow intensity proxy

Previous studies have invoked a relationship between large meltwater pulses into the Atlantic Ocean and coincident cooling over large parts of the northern hemisphere, through reduction of deep-water formation in the Nordic Seas and the associated oceanic poleward heat transport (e.g., Broecker, 1991; Rahmstorf, 1995). Our new proxy record for the strength of NADW overflow from Eirik Drift (Figure 5.3e) allows us to test the hypothesis that mwp-1a may have caused the termination of the Bølling warm period.

The ratio of susceptibility of anhysteretic remanent magnetization (κ_{ARM}) to low-field magnetic susceptibility (κ) is a proxy for magnetic mineral grain size when sediments are magnetically dominated by (titano)magnetite (Banerjee et al., 1981; Verosub and Roberts., 1995). Previous work supports the assumption of constant magnetic mineralogy along the NADW flow path in the vicinity of Eirik Drift (Kissel et al., 1999a, b; Laj et al., 2002). Eirik Drift represents a key region for deposition of suspended matter transported out of the Nordic Seas, especially for transportation via deep-water overflow through Denmark Strait (between Iceland and Greenland). The magnetic mineral content of sediments in that region originates from a single common source (the Nordic basaltic province) (Kissel et al., 1999a, b; Laj et al., 2002). Our new $\kappa_{\text{ARM}}/\kappa$ record from Eirik Drift therefore reflects variations in the size of the coarsest magnetic grains that can be carried by NADW out of the Nordic Seas and that settle out on Eirik Drift.
as NADW rounds the southern tip of Greenland. Lower κ_{ARM}/κ values represent coarser grain sizes (Banerjee et al., 1981), and therefore, increased intensity of NADW formation (Figure 5.3e; note the inverted scale).

![Graph showing GRIP ice core $\delta^{18}O$ record with various time points and values.]

Figure 5.3 a. The GRIP ice core $\delta^{18}O$ record. The thin green line is the record plotted versus the previous (modelled) ss09sea timescale (Johnsen et al., 2001). The heavy black line is plotted versus the new GICC05 timescale.
based on layer-counting down to 14.73 ka BP (Rasmussen et al., 2006). b. The sea-level record based on U/Th-dated corals from Barbados (Fairbanks et al., 2005; Peltier and Fairbanks, 2006) (see also Table 5.1). Error bars indicate 2σ limits. c. Record of rate of sea-level change, determined as the first time derivative of the solid line in (b). d. counts of lithic fragments, larger than >150 µm, per gram dry sediment weight in Eirik Drift core TTR-451. Black indicates lithic grains excluding volcanic glass, and purple indicates lithic grains including volcanic glass. The Holocene is represented in core TTR-451 by an intensely winnowed (sand) layer, suggesting a strong bottom-current regime. e. Record of κARM/κ for Eirik Drift core TTR-451 from discrete samples (in black). The κARM/κ data for TTR-451 are presented alongside the 231Pa/230Th record of core GGC05 from Bermuda Rise (in red) (McManus et al., 2004).

The κARM/κ record for core TTR-451 in shown in Figure 5.3e, along with another (independently dated) record of NADW flow rate, which is based on the 231Pa/230Th ratio in core GGC5 from Bermuda Rise (McManus et al., 2004). The suggestion that magnetic mineral concentration and grain size reflect changes in NADW flow strength (Kissel et al., 1999a, b; Laj et al., 2002) is empirically corroborated by the high degree of structural similarity between our κARM/κ record and the 231Pa/230Th record from core GGC5 (Figure 5.3e). Note that the apparent offset at the Bølling transition results only from sample resolution (this is verified by a sharper shift in our higher resolution, ‘whole core’ measurements (not shown) that agrees closely with the 231Pa/230Th shift at that time; see Figure 4.58c). Compared to the 231Pa/230Th record, the TTR-451 κARM/κ record offers a higher temporal resolution between the onset of the Bølling and the onset of the Younger Dryas (Figure 5.3e). A distinct NADW slowdown is suggested during the cooling from about 14.2 ka BP that culminated in the Older Dryas at around 14.0 ka BP. This suggests that the Bølling warm period may have been terminated by a reduction in deepwater formation in the Nordic Seas, and consequently reduced oceanic poleward heat transport, coincident with mwp-1a.
5.1.3. Wider implications

Our compilation of records demonstrates that direct climate impacts are not proportional to either the magnitude, or the rate, of meltwater addition (compare Figure 5.3a with 5.3b & c), and neither is the NADW flow intensity (compare Figure 5.3e with 5.3b & c). First, the dramatic mwp-1a event is found to be associated with only a slowdown (not shutdown) of NADW flow, and only a brief (100-150 year) direct climatic anomaly. Second, the widespread and long-lasting Younger Dryas cold reversal (Figure 5.3a) clearly lacks a discernible meltwater pulse (Figures 5.3b & c), but it was characterized by significant NADW slowdown (not shutdown) (Figure 5.3e). Third, there is little evidence (Hanebuth et al., 2000) for rapid sea-level rise/meltwater addition during the 2-3 kyr interval centred on 16 ka BP (“Heinrich event 1” (Hemming, 2004; McManus et al., 2004)), but this major cold period was marked by near NADW shutdown (McManus et al., 2004) (Figure 5.3e).

Non-linear responses of ocean circulation to the magnitude and rate of meltwater additions may be expected in a system with different quasi-stable climate states and abrupt meltwater-driven transitions (Rahmstorf, 1995; Ditlevsen, 1999). However, it has also been argued that the location and nature of meltwater entry may be more important for NADW formation than the magnitude or rate (Moore, 2005; Tarasov and Peltier, 2005); smaller surface-bound additions in critical locations could outweigh large additions elsewhere and over greater depth ranges (hyperpycnal additions).

A considerable component of meltwater associated with mwp-1a is thought to have entered the ocean via the Gulf of Mexico (Flower et al., 2004), in a hyperpycnal manner (Aharon, 2005), and strong mixing with seawater would have reduced its impact on NADW formation (Tarasov and Peltier, 2005; Aharon, 2005). Conversely, surface (iceberg) meltwater injection from Hudson Strait during Heinrich event 1, although not dramatically evident in the sea-level record (Fairbanks, 1989; Aharon, 2005; Peltier and Fairbanks, 2006) (Figures 4b,c), may have sufficiently affected the Nordic Seas to cause a collapse of
NADW formation (Figure 5.3e). The pronounced Younger Dryas event, associated with severely reduced NADW formation (Figure 5.3e), has also been ascribed to a surface (iceberg) meltwater flux, that was small enough to remain undetectable in terms of sea-level, into this critical region (from the Arctic (Moore, 2005; Tarasov and Peltier, 2005)). A meltwater signal into that region has been detected on the SE Greenland shelf (Jennings et al., 2006).

The combined results presented here demonstrate that NADW formation and its associated climatic impacts are not simply governed by the magnitude and/or rate of meltwater addition. If indeed the climate forcing was dependent on freshwater input, then (small) freshwater additions targeted on the Arctic/Nordic Seas appear to carry a much greater risk of disrupting NADW formation. Alternatively, it should be considered that the inferred non-linear responses of ocean circulation to the magnitude and rate of meltwater additions indicate that meltwater input was not necessarily the primary driver. To evaluate this, new records are required that constrain other potential aspects of the ocean-climate interaction, such as sea-ice feedbacks (Li et al., 2005; Wunsch, 2006).

5.1.4. Conclusions

Comparison of the GRIP ice core $\delta^{18}O$ record on the new layer-counted GICC05 time scale with the better constrained U/Th-dated sea-level record conclusively demonstrates that mwp-1a coincided with the Older Dryas and not the Bølling warming. By combining a new proxy record of NADW flow intensity from Eirik Drift with the Barbados sea-level and Greenland ice-core $\delta^{18}O$ records, we show that at the time of mwp-1a and the Older Dryas, there was a brief reduction (not a shutdown) in NADW flow intensity. However, our combination of proxy records also demonstrates that more extreme cooling events (Heinrich event 1 and the Younger Dryas), which were not associated with meltwater pulses large enough to significantly affect the sea-level record, were characterized by nearly collapsed NADW formation. This suggests either that there is a fundamental non-linearity between the rate and magnitude of meltwater injection and the rate of NADW formation, with perhaps a greater importance of the location and
depth-distribution of melt-water injection, or that the primary mechanism for some climate transitions lies elsewhere in the ocean-climate-atmosphere system (e.g., sea-ice feedbacks).
5.2. Do the Sunda Shelf and Barbados timings for mwp-1a agree?

Deglacial meltwater pulse (mwp) -1a (about 20 m of sea-level rise in about 500 years) is the largest of the known well-constrained meltwater input events. Deglacial meltwater pulses are of great current interest, because these large-scale events offer ideal test-beds for numerical models of the responses of ocean circulation and climate to meltwater addition. As yet, however, such applications of mwp-1a are compromised by debate about its exact age in the Barbados and Sunda Shelf records. Here we show that careful scrutiny of the available data supports a mutually agreed timing and climatic scenario for mwp-1a.

Six recently added high-precision pre-mwp-1a U/Th datings were found to comprehensively validate the original U/Th age of 14.2 ka BP (re-dated at 14.082 ± 0.028 ka (1 σ)), for the onset of mwp-1a in the Barbados fossil coral record (Fairbanks et al., 2005; Peltier and Fairbanks, 2006; Stanford et al., 2006). However, a radiocarbon-dated record from the wide Sunda Shelf has been used to suggest that the sea-level rise of mwp-1a would be 300-500 years older (Hanebuth et al., 2000). Although relatively small in view of systematic and random dating uncertainties, this timing offset has led to the development of two very different climate scenarios for mwp-1a, when these two datings scenarios are compared to the Greenland ice core δ¹⁸O (temperature) records.
Chapter 5. Discussion

The first scenario relies on the younger (U-series) datings of around ~14 ka BP in the Barbados fossil coral record. These would imply that mwp-1a coincided in time with the Older Dryas cooling event that terminated the Bølling warm episode (Figure 5.4a-c) (Fairbanks, 1989; Bard et al., 1990a & b; 1996; Liu and Milliman, 2004; Fairbanks et al., 2005, Peltier and Fairbanks, 2006; Stanford et al., 2006). A reconstruction of North Atlantic Deep Water (NADW) flow intensity over Eirik Drift, offshore southern Greenland, indicates a coincident ~200 year weakening of the Atlantic Meridional Overturning Circulation (AMOC) (Stanford et al., 2006), coincident with the timing of the Older Dryas cooling.

The second scenario relies on the older (radiocarbon) datings of 14.6 to 14.3 ka BP for mwp-1a from the Sunda Shelf (Hanebuth et al., 2000). These would imply that mwp-1a coincided with the sharp Bølling warming, when Greenland temperatures rose from glacial to near present-day values in only a decade or two (Severinghaus and Brook, 1999; Rasmussen et al., 2006). The AMOC underwent a major abrupt intensification at that time (McManus et al., 2004; Stanford et al., 2006). An isostatic rebound model has been used to suggest that mwp-1a originated from Antarctica (Clark et al., 2002), and an ocean circulation model has used the Sunda Shelf ages for mwp-1a to suggest that a large meltwater event from Antarctica caused the sharp AMOC resumption and attendant Bølling warming event (Weaver et al., 2003).

Presented here is a critical assessment of the various datings for mwp-1a, to evaluate whether and how the sea level records from Barbados and Sunda Shelf might be reconciled with one another. Clearly, such reconciliation and a mutually agreed chronology for the event are essential for a better understanding of ocean/climate responses to the meltwater injection. Key to our assessment is a recalibration of the originally reported radiocarbon convention ages from Sunda Shelf, using the most recent iteration of the calibration curve, INTCAL04/CALIB 5.0.1. (Reimer et al., 2004) (Table 5.2), prior to comparison with the recently improved U-series datings from Barbados (Fairbanks et al., 2005; Peltier and Fairbanks, 2006; Stanford et al., 2006). The peak probability
Table 5.2. Sunda Shelf and Vietnamese Shelf AMS \(^{14}\)C datings. *For dates with multiple 1 \(\sigma\) age distributions using CALIB5.0.1, the relative areas under the distributions are bracketed next to their 1 \(\sigma\) ranges. NB: No ages are assigned for these dates.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5458</td>
<td>18304-2</td>
<td>70</td>
<td>90</td>
<td>80</td>
<td>60</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>5608</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>5609</td>
<td>18304-2</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>5610</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>5611</td>
<td>18304-2</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>5612</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>5613</td>
<td>18304-2</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>5614</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>5615</td>
<td>18304-2</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>5616</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>5617</td>
<td>18304-2</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>5618</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>5619</td>
<td>18304-2</td>
<td>50</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>5620</td>
<td>18304-2</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

Chapter 5. Discussion

Ages are calculated for the sea-level reconstruction, and ages with multiple peak 1 \(\sigma\) probabilities are considered insufficiently constrained (however, their 1 \(\sigma\) and 2 \(\sigma\) age ranges are listed in Table 5.2, and are represented by error bars only in Figure 5.4). For marine datings, we use the Marine04.14c calibration curve (Hughen et al., 2004), and we assume that \(\Delta R=0\). Plots of \(^{14}\)C conventional ages versus calibrated/calendrical ages are given in the appendix 1 of this thesis.
Figure 5.4a shows the GRIP ice-core $\delta^{18}O$ record on the latest, layer-counted GICC05 timescale (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007), the Barbados fossil coral sea-level record (Fig. 5.4b - black), the rate of sea-level change as recorded in Barbados (Fig. 5.4c), and the re-calibrated Sunda Shelf sea-level data (Fig. 5.4b – green and red). Red symbols in Fig. 5.4b

Figure 5.4a. The GRIP ice core $\delta^{18}O$ record on the GICC05 timescale on the basis of layer-counting (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007). b. The U/Th-dated Acropora palmata corals from Barbados in black, which are corrected for a constant uplift of 0.34 m kyr$^{-1}$ (230Th ages are used for the uplift correction) (Fairbanks et al., 2005; Peltier and Fairbanks, 2006) and the 14C dated Sunda Shelf sea level record in green (re-calibrated from Hanebuth et al., 2000). Datings on in situ roots and root fibres from the Sunda Shelf are shown in red, with their 2 σ error bars. c. Record of the rate of sea level change, determined as the first time derivative of the solid line in Figure 5.4b.
highlight results from in situ mangrove roots on Sunda Shelf (Hanebuth et al., 2000). These are considered more reliable than the other results (green), which were described as loose wood fragments and macro-fibres and are more likely to have undergone reworking (Hanebuth et al., 2000). Because of this reworking potential, we consider (after the in situ roots) the youngest ages from the wood fragments/macro-fibres to be the most accurate. Error may also result from compaction due to dewatering and coring, contamination by younger material, as well as the displacement of vegetation from higher elevations during spring tides (Toscano and Macintyre, 2003). We also consider the data comparison using a qualitative but obvious criterion, namely that sea-level cannot have resided at different levels at the same time.

Comparison of the Sunda Shelf and Barbados sea-level records by Hanebuth et al. (2000) suggested a near constant offset in the timings and/or sea-level depths throughout Termination 1. Figure 5.4b shows that the Sunda Shelf sea-level record on our recalibrated age frame instead agrees closely with the Barbados sea-level record. In Figure 5.5, we further scrutinise these records around the timing of mwp-1a, 13 to 15 ka BP. We here show that between ~15 and ~14.2 ka BP the re-calibrated sea-level points from the Sunda Shelf plot closely around the six new pre-mwp-1a U/Th dated sea-level points from Barbados (Fairbanks et al., 2005; Peltier and Fairbanks, 2006). Using the above criteria for evaluating the Sunda Shelf datings, the timing of this pre-mwp-1a lowstand is validated by a dating on in situ mangrove root fibres at around 14.45 ka BP (14.145-14.913 ka BP 2σ). With the INTCAL98 curve, this sample had a calibrated age of 14.35 ka BP (Hanebuth et al., 2000; Table 5.2). Further validation of the age of the pre-mwp-1a lowstand is given by two datings on separate pieces of mangrove wood taken from the same depth in core 18301-2, which yielded dates of 14.23 ka BP (14.088-14.752 ka BP, 2σ) and 14.29 ka BP (14.065-14.934 ka BP, 2σ). Given the reproducibility of the 14C age, and the reworking potential of these loose fragments, we consider these youngest ages to be the most reliable dating for the pre-mwp-1a lowstand, and they agree closely with the Barbados sea level curve (Figure 5.5).
In situ mangrove root fibres that were dated at 13.96 ka BP, and with a ‘tight’ 2σ range of 13.80-14.11 ka BP, give the first clear indication of the mwp-1a sea-level rise at Sunda Shelf. Two further datings of this sea-level rise were obtained from macro-fibres and a loose piece of wood, with slightly older ages of 14.09 ka BP (14.010-14.162, 2σ) and 14.19 (14.033-14.689 ka BP, 2σ), respectively. These observations validate the age of around ~14 ka BP suggested by the Barbados data for the onset of the mwp-1a sea-level rise.

Figure 5.5a. The GRIP ice core δ¹⁸O record on the GICC05 timescale on the basis of layer-counting (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007). The horizontal error bar represents the total counting error at the Bølling warm transition. b. The U/Th-dated corals from Barbados in black, which are corrected for a constant uplift of 0.34 m kyr⁻¹ (²³⁰Th ages are used for the uplift correction) (Fairbanks et al., 2005; Peltier and Fairbanks, 2006). The black vertical error bars represent the
5 m depth uncertainty of the Acropora palmata corals, and the horizontal black error bars represent the 2σ dating uncertainty. The re-calibrated 14C dated Sunda Shelf sea-level record is shown in green (re-calibrated from Hanebuth et al., 2000) (the 2σ error is shown in light green, and 1σ is shown in dark green). The dark green stars represent the maximum modal (or peak probable) ages. The vertical shaded distance represents the estimated 2 m tidal range. Datings on in situ roots and root fibres from the Sunda Shelf are shown in red, with their 2σ error bars. The dashed circle encloses three datings that are considered as anomalous, and the dashed arrows indicate the inferred sea-level fluctuations.

Three datings at depths above the initial mwp-1a sea-level rise have peak probability ages that range between 14.15 and 14.45 ka BP (encircled in Figure 2). We note that these are the only datings taken from core 18309-2 and sister core 18308-2. If we focus on in situ mangrove datings as the best constrained ages, then we would need to assume a rate of sea level rise of around 7.5 cm yr\(^{-1}\) between 14.45 and 14.31 ka BP (see dashed arrow in Figure 5.5), nearly double the minimum estimated rate for mwp-1a in Barbados of around 4.3 cm yr\(^{-1}\). Two datings on mangrove wood fragments at a sea level depth of 95.77 m below present, however, have ages of 14.23 and 14.29 ka BP, therefore just postdating this inferred sea level jump. These datings concern woody fragments from core 18301-2 (the same site as core 18300-2), from which a large number of datings (including the oldest date for mwp-1a on the in situ mangrove root) were obtained. This date of 14.23 ka BP for a piece of mangrove wood would imply an astonishing rate of sea level lowering of around 13.14 cm yr\(^{-1}\) if the 14.15-14.45 highstand in cores 18309-2 and 18308-2 were real (see dashed arrow in Figure 5.5).

Given our criterion that sea level cannot have resided at different levels at the same time, that the three anomalous highstand datings (circled in Figure 5.5) are all from two rather poorly dated cores, and that the anomalous points would
imply an extreme (unrealistic) sea-level fluctuation, we infer that these points (circled in Figure 5.5) are compromised. We therefore remove them from our final compilation of the recalibrated the Sunda Shelf record versus the Barbados fossil coral record (Figure 5.6).

Figure 5.6a. The GRIP ice core $\delta^{18}O$ record on the GICC05 timescale on the basis of layer-counting (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007). The horizontal error bar represents the total counting error at the Bølling warm transition. b. The U/Th-dated corals from Barbados in black, which are corrected for a constant uplift of 0.34 m kyr$^{-1}$ (230Th ages are used for the uplift correction) (Fairbanks et al., 2005; Peltier and Fairbanks, 2006). The black vertical error bars represent the 5 m depth uncertainty of the *Acropora palmata* corals, and the horizontal black error bars represent the 2 σ dating uncertainty. The re-calibrated 14C dated Sunda Shelf sea-level record is shown in green (re-calibrated from
Hanebuth et al., 2000) (the 2 \(\sigma \) error is shown in light green, and 1 \(\sigma \) is shown in dark green). The dark green stars represent the maximum modal (or peak probable) ages. The vertical shaded distance represents the estimated 2 m tidal range. Datings on in situ roots and root fibres from the Sunda Shelf are shown in red, with their 2 \(\sigma \) error bars.

Our re-evaluation highlights some other relevant features in the Sunda Shelf data. The core logs for Sunda Shelf (Supplementary Information with Hanebuth et al., 2000) show significant depositional hiatuses in most cores after about 13.96 ka BP (i.e. when the pre-mwp-1a lowstand mangrove forests drowned). A dating of around 13.30 ka BP in core 18322, taken after the transition from ‘high glacial soils’ to ‘shoreline’ deposits (Supplementary Information with Hanebuth et al., 2000), represents the oldest Sunda Shelf evidence of a high post-mwp-1a sea level. Based on a conservative estimate from Barbados of a peak 4.3 cm yr\(^{-1}\) rate of sea-level rise during mwp-1a, we propose that mangrove forests/coastal swamps may not have been able to accrete fast enough to keep up with this rapid sea-level rise, so that mwp-1a may be represented on Sunda Shelf by a depositional hiatus. In this interpretation, mwp-1a is bracketed by the aforementioned datings of 13.96 ka BP and 13.30 ka BP (Figure 5.6b).

Alternatively, as the coral species A. palmata exhibit growth rates of up to 14 mm yr\(^{-1}\), and can survive in waters deeper than 5 m (Toscano and McIntyre, 2003), one might consider that the last dated coral in the Barbados record prior to mwp-1a (RGF-9-8-2; Peltier and Fairbanks, 2006; Stanford et al., 2006) was playing ‘catch-up’ with the sea-level rise, and might therefore not be truly representative of the onset of mwp-1a. If this was the case, then this would imply a date of mwp-1a in the Barbados records at 14.255 +/- 0.04 ka BP, which, using 2 \(\sigma \) uncertainties, is still separated from the Bølling warming by 159 yrs. However, the large depositional hiatus in the Barbados record after sample RGF 9-8-2 (14.082 ka BP) represents the main phase of mwp-1a, when the coral reef could no longer accrete at a fast enough rate to keep-up with the sea-level
rise and drowned (‘gave-up’). The excellent depth agreement between the Sunda Shelf and the Barbados sea-level record, prior to and after mwp-1a, would suggest that, if coral sample RGF 9-8-2 represented a reef playing catch-up, then it could not have been submerged at depths much greater than 5 m, without implication that the magnitude of mwp-1a in the Sunda Shelf sea level record is vastly underestimated.

5.2.1. Conclusions

Re-evaluation of the Sunda Shelf sea-level record would here imply that its dating for mwp-1a (13.96 ka BP, 2σ of 13.80-14.11 ka BP) post-dated the Bølling warming (14.64 ± 0.186 ka BP; Rasmussen et al., 2006) by 680 yrs (Figure 5.6). When considering 2σ errors on both the GICC05 layer counting and the Sunda Shelf radiocarbon dating, a minimum estimate of 343 yrs separates mwp-1a and the Bølling warming (Figure 5.6). This reconsidered timing for mwp-1a from the Sunda Shelf is in excellent agreement with the U/Th dated onset of mwp-1a of 14.082 ka BP from the Barbados fossil coral record (Fig. 5.6b). On this basis we now reject the hypothesis that mwp-1a could have been the trigger for the Bølling warming (Weaver et al., 2003), and instead coincided with the Older Dryas cooling event that terminated the Bølling warm interval (Bard et al., 1990a & b; 1996; Kroon et al., 1997; Liu and Milliman, 2004; Peltier and Fairbanks, 2006; Stanford et al., 2006).
5.3. The Palaeoceanographic evolution of Heinrich event 1 in the North Atlantic: A new perspective

Heinrich (H) events are characterised in North Atlantic sediment cores by horizons with increased IRD concentrations, low foraminiferal abundances, and light planktonic foraminiferal calcite δ¹⁸O values (meltwater dilution), and they occurred quasi-periodically with a spacing of 5,000 –14,000 yr intervals (e.g., Heinrich, 1988; Broecker, 1991; 1994; Bond et al., 1992; 1999; Bard et al., 2000; Rohling et al., 2003; Hemming, 2004). These layers are particularly distinct in marine cores recovered from the so-called “IRD belt” (40°N to 55°N), but can be recognised throughout most of the North Atlantic (e.g., Heinrich, 1988; Broecker, 1991; 1994; Bond et al., 1992; 1999; Bond and Lotti, 1995; Cortijo et al., 1997; Hemming et al., 2000; 2002; Hemming and Hajdas, 2003 Grousset et al., 2000; 2001; for review see Hemming, 2004). For further discussions see chapter 2 of this thesis.

It is thought that H events mainly represent a periodic collapse of the Laurentide ice-sheet (MacAyeal, 1993), although there are strong indications that the Icelandic, Fennoscandian, and British ice sheets were also involved (e.g., Bond et al., 1997; 1999; Scourse et al., 2000; Knutz et al., 2001; 2007; Grousset et al., 2001; Hemming et al, 2002; Hemming, 2004; Julien et al., 2006; Nygård et al., 2007; Peck et al., 2006; 2007b). Furthermore, records from around the North Atlantic, and even throughout the Northern Hemisphere, indicate dramatic
marine and terrestrial temperature reductions and increased aridity during H events (e.g., Atkinson et al., 1987; Alm, 1993; Bond et al., 1992; Mayewski et al., 1993; 1994; 1997; Vidal et al., 1999; Broecker, 2000a; Bard et al., 2000; Gasse, 2000; Rohling et al., 2003; Hemming, 2004). The most widely accepted theory holds that the low temperatures resulted from reduced oceanic poleward heat transport due to surface freshwater dilution in the North Atlantic and a consequent shutdown of the Atlantic Meridional Overturning Circulation (AMOC) (e.g., Broecker, 1991; Rahmstorf, 1994; Ganopolski et al., 1998; Ganopolski and Rahmstorf, 2002; Rahmstorf, 2002; Schmittner et al., 2002; Kim et al., 2002).

Sediment cores recovered from the IRD Belt suggest a common age for H1 (the last major H event occurring at the onset of the deglaciation) of between 16 and 17.5 thousand years Before Present (ka BP, where Present refers to AD 1950) (e.g., Bond et al., 1992; 1997; 1999; Bard et al., 2000; Rohling et al., 2003; Grousset et al., 2001; Hemming, 2004), and terminating well before the onset of the Bølling warming (14.64 ka BP) (Lea et al., 2003; Rasmussen et al., 2006). Coincident with this timing of H1, 231Pa/230Th ratios recorded in a Bermuda Rise sediment core GGC5 suggest a phase of virtually complete AMOC shutdown (McManus et al., 2004). However, this proxy for AMOC intensity suggests a gradual slowdown from around 19 ka BP into the AMOC collapse, and a sharp AMOC resumption coincident with the timing of the Bølling warming (McManus et al., 2004). This full picture of AMOC changes has been independently corroborated with magnetic grain size measurements in core TTR-451, recovered from Eirik Drift, offshore S. Greenland (Stanford et al., 2006; sub-chapters 4.3 and 5.1 of this thesis). The timing presented by McManus et al. (2004) of the gradual slowdown from around 19 ka BP to full collapse at around 17.5 ka BP has also been corroborated by a record of 231Pa/230Th from a drift deposit in the Rockall Trough (Hall et al., 2006). Reduced deep water ventilation and, hence, also decreased AMOC intensity during H1 has also been inferred from records of δ^{13}C, as well as from deep water 14C ages and Cd/Ca ratios (e.g., Boyle and Keigwin, 1987; Boyle et al., 1992; Sarnthein et al., 1994; Curry et al., 1999; van Kreveld et al., 2000; Robinson et al., 2005; Marchitto et
Marine sediment core TTR-451 from Eirik Drift (for the core location and details see section 3.1; and Figure 5.7) is located beneath the modern pathway of the East Greenland Current (EGC), which today, constitutes the main mechanism for the export of cold and relatively fresh surface waters out of the Arctic (Aagaard and Carmack, 1989; Bacon et al., 2002; Wilkinson and Bacon, 2005). Eirik Drift is a contourite formed from the deposition of suspended sediment in NADW as it rounds the southern tip of Greenland (Chough and Hesse, 1985), and therefore, sediments from core TTR-451 also record changes in the North Atlantic Deep Water (NADW) flow intensity (see also section 4.3 and 5.1).

Figure 5.7. Map of the North Atlantic showing the core sites and the likely surface and deep hydrographies for the LGM after Bard et al. (2000) and Pflaumann et al. (2003). The IRD (hashed area) is after Hemming (2004). The deep currents are shown in grey, the warm surface currents are shown as dashed black arrows, and the cold surface currents as continuous black arrows. The summer and winter sea-ice margins, after Pflaumann et al. (2003) are shown by a ‘dash-dot’ line, and a dashed line, respectively.
Here, we investigate co-registered records of stable oxygen isotope analyses of the calcite tests of the planktonic foraminiferal species *Neogloboquadrina pachyderma* (left-coiling), IRD/lithic counts of grains (>150 µm) per gram of dried sediment, numbers of planktonic foraminifera (>150 µm) per gram of dried sediment, and the ratio of susceptibility of anhysteretic remanent magnetization (κ_{ARM}) to low-field magnetic susceptibility (κ) for core TTR-451. This combination provides an opportunity to study changes in both the surface and deep-water currents that exited the Nordic Seas during H1. Note that the methods and age-model for core TTR-451 are described in sections 3 and 4.5 of this thesis, respectively, and the results in sections 4.3 and 4.4.

These results from Eirik Drift are combined with proxy records from around the North Atlantic and Nordic Seas for the interval that spans H1, from marine sediment cores SU90-09 (43°05N, 31°05W, 3375 m water depth), MD95-2010 (66°41N, 04°34E, 1226 m water depth), and GGC5 (33°42N, 57°35W, 4550 m water depth). These were published previously by Grousset *et al.* (2004), Dokken and Jansen (1999), and McManus *et al.* (2004), respectively, and their locations are shown in Figure 5.7. Also presented here is a re-evaluation of timings of ice-sheet and glacier advances and retreats, and their datings are compared with sea-level and circum-North Atlantic terrestrial temperature proxy records, for the time period of the Last Glacial Maximum (LGM), H1 and through the Bølling warming. These datings are then placed in the context of changes in the North Atlantic surface and deep-water hydrographies. We aim to thus elucidate the evolution of H1 in the northern North Atlantic, with specific attention to the involvement of the Nordic Seas.

5.3.1. Re-evaluation of terrestrial records of ice-sheet and glacier extent, and temperature for the LGM, H1 and the Bølling warming

Reported (Accelerated Mass Spectrometric (AMS)14C) radiocarbon convention ages for terrestrial temperature proxy records (Atkinson *et al.*, 1987; Alm, 1993), terminal moraines, and for marine sediment horizons (Benson *et al.*, 1998; McCabe and Clark, 1998; Giraudi & Frezzotti, 1997; Bowen *et al.*, 2002; Dyke
Chapter 5. Discussion

et al., 2002; Marks, 2002; Ivy-Ochs et al., 2006) are re-calibrated here using Calib5.0.1 (Reimer et al., 2004). These re-calibrated datings are used along with previously published calendar ages (e.g., McCabe et al., 2005; 2007) and 36Cl boulder exposure ages (e.g., Bowen et al., 2002; Dyke et al., 2002; Licciardi et al., 2004; Rinterknecht et al., 2006). These combined timings of glacial advances and retreats are compared to ice core records of stable oxygen isotope ratios (δ^{18}O) from Greenland and Antarctica, which reflect temperature and air mass variations over the ice sheet (e.g., Severinghaus et al., 1998; Severinghaus and Brook, 1999; Stuiver and Grootes, 2000), and are shown on the GICC05 time-scale (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007; EPICA community members, 2006). Because the GRIP and GISP2 ice core δ^{18}O records show significantly different values for the LGM/H1 transition despite their close proximity (Figures 5.7 and 5.8b), we consider (Figure 4.8a) a composite Greenland ice core δ^{18}O (temperature) record in units standard deviation.

From around 26 to 21 ka BP most of the circum-North Atlantic ice sheets had reached their maximum (LGM) extents, as shown by the sea-level records (e.g., Fairbanks, 1989; Bard, 1990a & b; Hanebuth et al., 2000; Yokoyama et al., 2000; Lambeck et al., 2002; Peltier and Fairbanks, 2006), and by datings on terminal moraines (e.g., Bowen et al., 2002; Dyke et al., 2002; Rinterknecht et al., 2006; Figure 5.8e & f). The newly recalibrated radiocarbon convention ages for terrestrial records reveal surprising results. The LGM was a period of relative warmth, evident in Scandinavian pollen records (Alm, 1993) (Figure 5.8f), as well as Coleoptera abundances from the British Isles (Atkinson et al., 1987). However, the Greenland ice core δ^{18}O records show the LGM to have been relatively cold, followed by warming from around 21 ka BP that likely reflects the change to increased summer insolation (Figure 5.8a), and the nearly coincident onset of warming in Antarctica (figure 5.8a). Onset of a southern hemisphere warming trend at this time has also been inferred from marine sediment records (e.g., Arz et al., 1999; Sachs et al., 2001; Kim et al., 2002).

At around 21 ka BP, the British and Laurentide ice sheets underwent the first
Chapter 5. Discussion

retreat from their LGM position (Bowen et al., 2002; Dyke et al., 2002 and references therein). Glaciers in the Austrian Alps, the Apennines, and the western US also started to retreat (Giraudi and Frezzotti, 1997; Licciardi et al., 2004; Ivy-Ochs et al., 2006). Although it is tempting to attempt reconstruction of phase relationships from Figure 5.8f, this is not warranted in view of the dating uncertainties on boulder exposure ages that can exceed 1000 yrs, and of the vast differences in the number of regional datasets. However, the continued ‘early’ activation of the British ice sheet is further corroborated by a record of terrestrial organic matter content (branched and isoprenoid tetraterphe (BIT)-index) in a marine core located in the Bay of Biscay (Menot et al., 2006). The BIT-index serves as a proxy for freshwater discharge and indicates high discharge rates at around 19.5 ka BP.

Nearly 2000 yrs after the initial circum-North Atlantic retreat from the LGM extent that is described above, the Scandinavian ice sheet started its northward retreat at around 19 ka BP (Marks, 2002; Rinterknecht et al., 2006; Figure 5.8f). Seismic mapping and marine sediment cores recovered from the Nordic Seas show that up to 20 m of fine-grained sediment was deposited over an area that exceeded 1600 km² (e.g., Hjelstuen et al., 2004; Lekens et al., 2005), which Lekens et al. interpreted to represent glacial outwash plume deposits. With a basal date in this depositional sequence of around 18.6 ka BP (Lekens et al., 2005), these sediments give evidence of wide-spread and rapid glacial retreat along the Scandinavian ice-margin coeval with the timing of the terrestrial evidence of retreat (see pink line in Figure 5.8f). Further glacial retreats at with similar timing have been documented for the northwest American Cordilleran ice sheet (Clague and James, 2002), the southeast Appalachian margin (Dyke et al., 2002), and for glaciers in the Austrian Alps (Ivy-Ochs et al., 2006) (Figure 5.8f). Although poorly constrained, the ~500 yr duration Eerie interstadial is also dated at around 18.8 ka BP in the southern Laurentide region (Dyke et al., 2002 and references therein). On a global scale, these datings of glacial retreat bracket a time interval when ice volume appears to have begun a first substantial decrease, as suggested by a first rapid step of sea-level rise (Hanebuth et al., 2000; Yokoyama et al., 2000; Figure 5.8e).
Figure 5.8 a. In black the EPICA Dronning Maud Land record on the GICC05 time scale (EPICA community members, 2006) and in grey, the northern hemisphere summer (July) insolation at 65 °N (Berger et al., 1999).

b. The GRIP + GISP2 composite δ¹⁸O ice core record in unit standard
deviation on the GICC05 timescale. c. The difference between the GRIP and NGRIP ice core $\delta^{18}O$ records (‰). d. The concentration of Ca$^{2+}$ (p.p.b.) in the Greenland ice cores. GRIP is shown in black, GISP2 in dark grey and NGRIP in light grey (Fuhrer et al., 1993; Mayewski et al., 1994; Bigler et al., 2004). e. Composite sea-level record. Black dots = the Barbados fossil coral record (Peltier and Fairbanks, 2006), green dots = the Sunda Shelf sea level record (Hanebuth et al., 2000), blue triangles = the Bonaparte Gulf (Yokoyama et al., 2000). The blue shaded area shows the timing of rapid sea level rise at around 19 ka BP. f. Recalibrated temperature records from Scandinavia (Alm, 1993) and Britain (Atkinson et al., 1987); blue = cold, blue dashed = gradual cooling, red = warm, and red dashes = gradual warming. Grey lines show glacial advances, and retreats in black. Dashed lines are where there are no datings. Data is after Marks (2002), Rinterknecht et al. (2006), McCabe and Clark (1998), McCabe et al., (2007) Bowen et al. (2002), Giraudi and Frezzotti (1997), Clague and James (2002), Licciardi et al. (2004) Dyke et al. (2002) and references therein Ivy-Ochs et al. (2006). The pink line represents the timing of extreme rates of sediment deposition in the Nordic seas (Lekens et al., 2005).

After ~ 21 ka BP, a gradual cooling is inferred across Scandinavia (Alm, 1993), while a dramatic disappearance of Coleoptera in the British Isle suggests a rapid deterioration in climate (Atkinson et al., 1987). Between 19.5 and 18.5 ka BP, a lack of 36Cl boulder exposure ages in the British Isles may suggest that the British ice sheet re-advanced in response to the strong cooling (Bowen et al., 2002). AMS14C datings of marine mud from around the British Isles suggest a younger age for this re-advance of around 18.5 to 17 ka BP (McCabe and Clark, 1998; McCabe et al., 2007 and references therein). This re-advance is broadly matched by a 2000 yr advance of glaciers within the Apennines that initiated at around 19.2 ka BP and continued to around 17 ka BP (Giraudi and Frezzotti, 1997). Within the southern Laurentide region the ice-sheet margin began to re-advance at around 18.3 ka BP (e.g., Dyke et al., 2002). As a consequence of
these glacial re-advances, at around 18.3 ka BP, the rate of global sea-level rise would appear to have been significantly reduced (Hanebuth et al., 2000; Yokoyama et al., 2000; Peltier and Fairbanks, 2006; Figure 5.8e). Note, however, that the Scandinavian ice-sheet continued to retreat (Lekens et al., 2005; Rinterknecht et al., 2006).

At around 17.5 ka BP, cooling is indicated in the Greenland ice core δ^{18}O records (Figure 5.8a), with a concomitant sharp increase in the Ca$^{2+}$ ion concentration (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007). This sharp increase in the Ca$^{2+}$ ion series is suggestive of a rapid intensification of the polar atmospheric circulation (Mayewski et al., 1997; Rohling et al., 2003 and references therein). Despite the onset of this cooling in Greenland at around 17.5 ka BP, coeval widespread and significant glacial retreat occurred on a near global scale (e.g., Giraudi and Frezzotti, 1997; McCabe and Clark, 1998; Denton et al., 1999; Dyke et al., 2002 and references therein; Bowen et al., 2002; Clague and James, 2002; Licciardi et al., 2004; Ivy-Ochs et al., 2006; Rinterknecht et al., 2006; McCabe et al., 2007; Figure 5.8f). Ice-free conditions in the Gulf of St. Lawrence by ~16.7 ka BP indicate the scale of this phase of retreat at the southeastern Laurentide margin, and a drawdown of the ice centre around the Hudson Bay region is thought to reflect an important reorganisation of the ice-streams (Dyke et al., 2002).

Conversely to the cooling trend shown in the Greenland ice core records (Figure 5.8b), a slight amelioration is evident in the British climate from the re-appearance of Coleoptera at around 17.2 ka BP. Their species abundances indicate that temperatures were at similar levels to the LGM, with winter temperatures around -25°C (Atkinson et al., 1987). A short lived retreat of the British ice sheet was initiated at around this time (e.g., McCabe et al., 2007). However, by ~16.5 ka BP, the British ice-sheet had advanced back to its LGM (H1) extent before making its final retreat (McCabe and Clark, 1998; McCabe et al., 2007). A similar pattern is evident in the Austrian Alps (Ivy-Ochs et al., 2006), and a shorter duration re-advance occurred in the Apennine region, from around 15.5 ka BP (Giraudi and Frezzotti, 1997).
A gradual reduction in the Ca\(^+\) ion series in the Greenland ice cores from around 16.2 ka BP suggests that the atmospheric polar circulation intensity decreased slightly at around this time, although remaining relatively intense (Figure 5.8b). However, relatively depleted δ^{18}O values recorded in the Greenland ice-cores indicate that temperatures in Greenland did not significantly improve at this time.

From around 15.5 ka BP, significant climate amelioration has been observed in records from the British Isles (Atkinson et al., 1987) and retreat from their H1 glacial maximum extent was well underway on a near global scale (Giraudi and Frezzotti, 1997; Benson et al., 1998; McCabe and Clark, 1998; Clague and James, 2002; Dyke et al., 2002 and references therein; Ivy-Ochs et al., 2006; McCabe et al., 2007; Hendy and Cosma, 2008). Intriguingly, planktonic foraminiferal faunal records from the Gulf of Cadiz indicate a more northward penetration of the Azores Front from around 16 ka BP (Rogerson et al., 2004). Hence, ~1000 yrs prior to the Bølling warming, it would appear that the atmospheric circulation was starting to rearrange back to a position more comparable to the present day, which may have been related to the sustained retreat of the Northern Hemisphere ice sheets.

The southern Scandinavian ice sheet, however, re-advanced at around 15.5 ka BP, most likely owing to positive mass balance due to increased moisture availability (Rinterknecht et al., 2006). However, both the Scandinavian pollen records (Alm, 1993) and the reduced Greenland ice core δ^{18}O values (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2006; 2007) suggest that warming at northern high-latitudes may not have occurred until the sharp Bølling warming at 14.6 ka BP (Rasmussen et al., 2006). At the Bølling warming, when Greenland temperatures are estimated to have risen by up to 15°C (Severinghaus et al., 1998; Severinghaus and Brook, 1999), even ice-sheets that were in positive mass balance, were overwhelmed by the climatic improvement and on a global scale ice-sheets rapidly retreated (Rinterknecht et al., 2006). Glacial retreat of the Scandinavian ice sheet is evident at around this time in Sweden (Lundqvist and Wohlfarth, 2001).
Chapter 5. Discussion

Low latitude sea-surface temperature (SST) estimates from Mg/Ca analyses (Lea et al., 2003) and shifts in the Inter-tropical Convergence Zone (ITCZ) from grey-scale data (Hughen et al., 1996) from Cariaco Basin, along with an East Asian monsoon intensification index from speleothem δ¹⁸O records (Wang et al., 2001) show that relatively cold climatic conditions continued until the abrupt Bølling warming at 14.6 ka BP. These well-dated records show excellent signal comparison with the ice core δ¹⁸O changes in Greenland (Rasmussen et al., 2006; Vinther et al., 2006), which likely record a predominantly winter signal. Denton et al. (2005) suggest that the records that show a close similarity to the Greenland δ¹⁸O records may also be biased toward winter conditions, and speculate that improving summer conditions likely caused the apparent ‘mismatch’ with datings on snowline variations. Denton et al. (2005) also suggest that increased winter sea ice coverage at northern high latitudes likely caused this increased seasonality, consonant with suggestions by Broecker et al. (1999) and Seagar and Battisti (2006).

A more recent study of SST variations from paired Mg/Ca and δ¹⁸O analyses on the planktonic foraminiferal species Neogloboquadrina pachyderma (left-coiling) and Globigerina bulloides from a NE Atlantic sediment core shows distinctly different temperature estimates between these tow species, with G. bulloides indicating much warmer SSTs during H events, than N. pachyderma (Peck et al., 2008). Peck et al. (2008) suggest that discrepancies between these two species result from G. bulloides recording a later and enhanced summer signal, and hence, indicate increased seasonality during H events. Peck et al. (2008) also suggest that this divergence in SST estimates may have resulted from increased meltwater stratification, or the formation of a shallow halocline, similar to the Arctic (Björk et al., 2002). However, evidence of intensified storminess over the North Atlantic (Rashid and Boyle, 2007), would preclude these hypotheses, as this would have likely resulted in increased rates of vertical mixing. We note however, that the divergence in planktonic foraminiferal SST proxy records does not extend towards the end of H events, but instead span the entire period of climate deterioration in the North Atlantic, including H1.
5.3.2. The records of Eirik Drift core TTR-451

Figure 5.9h shows the previously published environmental palaeomagnetic record of anhysteretic remanent magnetization (κ_{ARM}) to low-field magnetic susceptibility (κ), for core TTR-451 (Stanford et al., 2006; see sections 4.3 and 5.1), along with the 231Pa/230Th record of core GGC5, Bermuda Rise (McManus et al., 2004). These records offer two independent proxies for North Atlantic Deep Water (NADW) flow intensity that corroborate each other by a strong empirical relationship. Note that the chronologies of both records have also been developed independent from one another (McManus et al., 2004; Stanford et al., 2006). Both records show a virtually complete collapse of the AMOC initiating at around 18.8 ka BP and an abrupt AMOC resumption at the Bølling warming at around 14.6 ka BP (figure 5.9a & h). Note that the AMOC resumption in both records therefore does not coincide with the ‘conventional’ end of H1 (as recorded in sediment cores from the IRD belt) at around 16 ka BP (e.g., Grousset et al., 2004; Hemming, 2004; Figure 5.9e). This timing for the AMOC flow intensity increase at around 14.6 ka BP underlines previous suggestions that the AMOC “switch on” and the Bølling warming were intrinsically linked (McManus et al., 2004; Stanford et al., 2006).

Figures 5.9e & g show the δ^{18}O record for the planktonic foraminiferal species Neogloboquadrina pachyderma (left-coiling) ($\delta^{18}\text{O}_{\text{npl}}$) from TTR-451, Eirik Drift. From around 16.7 ka BP a strong shift to lighter values develops (increased freshening), culminating in a broad peak of light values at around 15.1 ka BP. The magnitude of this δ^{18}O change equals -1.45 ‰. The IRD flux for TTR-451 (figure 5.9d) shows no notable increase during this time interval. Based on the generally low IRD flux during the interval of the main $\delta^{18}\text{O}_{\text{npl}}$ shift, the change in $\delta^{18}\text{O}_{\text{npl}}$ does not seem to be primarily derived from an iceberg event. Instead, we interpret this shift in $\delta^{18}\text{O}_{\text{npl}}$ during the H1 time period to have originated from iceberg-free freshened surface waters.
Figure 5.9a. The GRIP ice core $\delta^{18}O$ record plotted versus the GICC05 timescale (Rasmussen et al., 2006; Andersen et al., 2006; Svensson et al., 2006; Vinther et al., 2006). c. Records of the flux of planktonic foraminifera >150 μm cm$^{-2}$ yr$^{-1}$ for core TTR-451 (black) and the number of planktonic
foraminifera >150 μm per gram of dry sediment for core SU90-09 (green).
d. Records of the flux of ash free lithic grains cm⁻² yr⁻¹ (purple) and total
lithic grains cm⁻² yr⁻¹ (black) for core TTR-451. The number of lithic grains
>150 μm per gram of dry sediment for core SU90-09 (green). e. δ¹⁸O_npl
records for TTR-451 (black) and SU90-09 (grey) f. Abundance of basaltic
grains in core TTR-451. g. δ¹⁸O_npl records for TTR-451 (black) and MD95-
2110 (blue). Record of δ¹⁸O_e is shown in orange. The pink line represents
the timing of extreme rates of sediment deposition in the Nordic seas
(Lekens et al., 2005). h. Record of κ_ARM/κ for Eirik Drift core TTR-451 (in
black). The κ_ARM/κ data for TTR-451 are presented alongside the ²³¹Pa/²³⁰Th
record of core GGC05 from Bermuda Rise (in red). The record for κ_ARM/κ
reflects variations in the magnetic mineral grain size (Banjere et al. 1981;
Verosub and Roberts, 1995), transported by NADW from a single source of
fine-grained minerals, the Nordic Basaltic Province (Kissel et al., 1999a, b;
Laj et al., 2000).

Grains of basaltic glass have been previously interpreted as an index for ice
rafting from around Iceland (e.g. Bond and Lotti, 1995; Grousset et al., 2001).
Figure 4.9f plots the percentage basaltic glass composition of the total IRD in
core TTR-451. A broad percentage increase, despite the low overall magnitudes,
spans the entire interval of the H1 light δ¹⁸O_npl event. The planktonic
foraminiferal accumulation flux in TTR-451 (figure 5.9c) records generally low
values during the H1 interval, with a notable minimum between 17.2 and
16.5 ka BP.

After the Bølling warm transition at around 14.6 ka BP, a return to heavier
δ¹⁸O_npl values is observed. Just prior to the Younger Dryas cold period, at around
12.9 ka BP, a gradual shift to lighter δ¹⁸O_npl develops (Figure 5.9e & f). The
fluxes of lithic and planktonic foraminifera dramatically increase at around
14.6 ka BP (Figure 5.8d & c) and remain highly variable until the top of core
TTR-451 (about the termination of the Younger Dryas).
5.3.3. Comparison of the TTR-451 records from Eirik Drift through H1 with coeval data from the IRD Belt and the Nordic Seas

Figures 5.9c, 5.9d and 5.9e show the δ¹⁸Oₙₚₙ, numbers of planktonic foraminifera and lithic grains >150 μm per gram of dried sediment for SU90-09, respectively (Grousset et al., 2001). Core SU90-09 was recovered from the central IRD belt. Consonant with previous studies from the IRD belt (e.g., Bond et al., 1992; Broecker et al., 1993; Cortijo et al., 1997; Hemming, 2004), core SU90-09 shows a maximum increase in surface water dilution with isotopically light freshwater during the time period from 17.3 to 16.4 ka BP, including with a δ¹⁸Oₙₚₙ shift of 0.9 ‰ in just over 100 years, at around 17.3 ka BP. This rapid shift followed a more gradual freshening (0.7 ‰ in 900 years), which started at around 18.3 ka BP. The numbers of lithic grains g⁻¹ (IRD concentration) increase at around the same time as the surface water dilution – a ‘typical’ Heinrich layer signature of a massive iceberg derived meltwater discharge (e.g., Hemming, 2004). The numbers of planktonic foraminifera g⁻¹ decrease from 8000 to just a few hundred, with a minimum centred on the timing of the maximum surface water dilution (17.3 to 16.4 ka BP), when N. pachyderma (left-coiling) became the dominant surface dweller (Grousset et al., 2001).

In comparison to core SU90-09, and also previous descriptions of Heinrich layers in cores recovered from the heart of the IRD belt (Bond et al., 1992; 1999; Grousset et al., 2000; 2001; review in Hemming, 2004), the records of δ¹⁸Oₙₚₙ, IRD and planktonic foraminiferal fluxes from core TTR-451 (Eirik Drift) display distinctly different patterns and timings. Instead, our results from Eirik Drift suggest a predominantly non-iceberg (IRD free) freshwater impact.

Figure 5.9g plots the δ¹⁸Oₙₚₙ data and the benthic δ¹⁸O record for the species Cassidulina teretis (δ¹⁸Oₗₕ), for the Nordic Seas marine sediment core MD95-2010 (Dokken and Jansen, 1999). On the basis of an excellent agreement of ΔR estimates for the Younger Dryas obtained from TTR-451 with those from the Norwegian margin (Bondevik et al., 2006), the inferred TTR-451 ΔR values for H1 are used here to convert ages for core MD95-2010 onto the GICC05
Consonant with previous studies of sediment cores from the Nordic Seas (e.g., Duplessy et al., 1991; van Kreveld et al., 1999; Rasmussen et al., 2002a, b; Rasmussen and Thomsen, 2004; 2008), the MD95-2010 record shows a strong freshwater dilution signal (up to -2‰ δ^{18}O$_{npl}$ excursion) that spans across the later phase of H1 (~16.1 to ~15 ka BP) (Figure 5.9g). Comparison of our δ^{18}O$_{npl}$ records from Eirik Drift and the Nordic Seas (figure 5.9g) shows that, apart from the difference in resolution, these records are near identical in both long-term variability and absolute values. This is a strong indication for direct water mass communication between the Nordic Seas and Eirik Drift during H1.

Light δ^{18}O$_{npl}$ and benthic δ^{18}O excursions, with nearly identical pattern, timing and magnitude as seen in cores TTR-451 and MD95-2010, have been described for marine sediment cores from the Nordic Seas, the northern North Atlantic (in particular, the Faroe-Shetland Gateway), and in the vicinity of Eirik Drift (Vidal et al., 1998; Dokken and Jansen, 1999; Rasmussen et al., 2002a; Rasmussen and Thomsen, 2004; Lekens et al., 2005; Hilliare-Marcel and de Vernal, 2008; Meland et al., 2008). There are four current theories to explain this light δ^{18}O isotopic event. The first involves ice-berg derived, low salinity meltwater pulses and deepening of the halocline (e.g., Hilliare-Marcel and Bilodeau, 2000; Rashid and Boyle, 2007). Based upon the generally low H1 IRD flux at Eirik Drift, this is here considered to be unlikely. The second hypothesis involves a reversed thermocline as a result of sea-surface capping, and warming of the subsurface layer (e.g., Mignot et al., 2007; Peck et al., 2008). However, Hilliare-Marcel and deVernal (2008) show measurements of δ^{18}O N. pachyderma sub-populations based upon size in core MD95-2024 (Labrador Sea), which show a negative temperature gradient along the thermocline which led Hilliare-Marcel and deVernal (2008) to reject the above hypothesis. The third theory involves the sinking of isotopically light brines as a result of intense sea ice formation (e.g., Vidal et al., 1998; Dokken and Jansen, 1999; Risebrobakken et al., 2003; Millo et al., 2006; Hilliare-Marcel and de Vernal, 2008; Meland et al., 2008). Finally, the fourth theory suggests the penetration of relatively warm (4-8°C) waters into
Chapter 5. Discussion

231

the Nordic Seas at intermediate depths (<1700 m), which is suggested to represent the North Atlantic Drift (NAD) that flowed subsurface into the Nordic Seas (Rasmussen and Thomsen, 2004). Based upon the new records from Eirik Drift, these latter two theories are here investigated further.

5.3.4. Investigation of the H1 $\delta^{18}O$ light excursions in the Nordic Seas and at Eirik Drift.

Firstly, we shall consider the sea-ice hypothesis for the generation of the H1 light $\delta^{18}O$ event in the Nordic Seas and at Eirik Drift. Reconstructions of the LGM in the northern North Atlantic would suggest that seasonal sea-ice likely extended down to around 40ºN (Mix et al., 2001; Pflaumman et al., 2003). However, a regional $\delta^{18}O_{npl}$ value of around +4.5 ‰ indicates that the Nordic Seas and the northern North Atlantic likely were sea-ice free in summer (e.g., Weinelt et al., 1996; 2003; de Vernal et al., 2002; Meland et al., 2005; Millo et al., 2006). Sedimentation rates, sediment composition and $\delta^{18}O_{npl}$ records from western Fram Strait marine cores suggest that seasonally ‘open’ conditions extended to this region during the LGM (Nøgaard-Pederson et al., 2003).

Dokken and Jansen (1999) propose that freshwater additions into the North Atlantic and weakening of the AMOC would have resulted in high-latitude cooling and rapid extension of the sea-ice margin across the Nordic Seas during H1. Because sea-ice forms from the freezing of surface waters, which at this time were affected by freshwater dilution, the rejected brines would have had relatively light $\delta^{18}O$. Dokken and Jansen (1999), and more recently Meland et al. (2008), propose that brine rejection would have resulted in the convection of the ‘pooled’ isotopically light surface waters to intermediate depths (base of the halocline), accounting for the light H1 $\delta^{18}O$ signal recorded in both surface waters and at intermediate depths. On the basis of very similar $\delta^{18}O$ trends, Dokken and Jansen (1999) extend this hypothesis to account for the Nordic Seas $\delta^{18}O$ during other Heinrich events (Figure 5.10).

Comparison of the $\delta^{18}O_{npl}$ and $\delta^{18}O_{ct}$ data from the Nordic Seas for Heinrich
events 4 and 6 (Figure 5.10), however, show a larger δ¹⁸O shift to lighter values at intermediate depths than for the surface waters. For Heinrich event 6, this difference is approximately double. Furthermore, for H6, the δ¹⁸O values become lighter some 400 yrs prior to the δ¹⁸O data. This timing offset is even more pronounced for H3 as recorded in core ENAM93-21 from the southern Nordic Seas (Dokken and Jansen, 1999).

Figure 5.10. Benthic (orange) and planktonic (blue) δ¹⁸O records for core MD95-2010 for H4 and H6. The records are generated from C. teretis (benthic foraminifera) and N. pachyderma (left coiling) (planktonic foraminifera) (Dokken and Jansen, 1999).

Because sea-ice formation and resultant brine release, mixes the light δ¹⁸O signal in the halocline from the surface down through the water column, it would be expected that the greatest freshening would be seen in the δ¹⁸O planktonic (npl) data than in the δ¹⁸O benthic (ct) data, and if there were any temporal offsets, the δ¹⁸O planktonic (npl) record would shift to lighter values first. Therefore, it is difficult to account for how the δ¹⁸O benthic (ct) isotopic light episode could have had a greater magnitude than the δ¹⁸O planktonic (npl) in the Nordic Seas, or have occurred prior to the δ¹⁸O planktonic (npl) light event (Figure 5.10). Furthermore, as core TTR-451 records near identical absolute δ¹⁸O planktonic (npl) values as core MD95-2010 (Figure 5.9g), a near instantaneous and rapid growth of the sea ice margin would be needed across the entire Nordic Seas and northern North
Atlantic to account for these observations. Such a rapid and instantaneous sea ice growth across such a vast area is considered to have been unlikely. On the basis of these arguments, the hypothesis that brine rejection due to sea-ice formation caused the H1 $\delta^{18}O_{npl}$ light excursion observed in cores from the Nordic Seas and at Eirik Drift is here rejected.

Next we consider the fourth theory that accounts for these light $\delta^{18}O$ isotopic excursions in the Nordic Seas. Rasmussen et al. (1996) and Rasmussen and Thomsen (2004) find that in a number of cores (including ENAM93-21) recovered from the Nordic Seas and the Faroe-Shetland Gateway, a distinct abundance increase occurs of the benthic foraminifera ‘Atlantic species’ group (which include, *Sigmoilopsis schlumbergi*, *Egerella bradyi*, *Alabaminella weddellensis*, *Epistominella decorata*, *Bulimina costata*, *Sagrina subspinescens*, *Gyroidina spp.*), at the same time as the H1 $\delta^{18}O$ light excursion in the Nordic Seas. From these data, Rasmussen and Thomsen (2004) suggest a weak subsurface invasion of relatively warm (4-8°C) Atlantic Waters, at depths greater than 1 km, into the Nordic Seas during H1, which they interpret as a subsurface expression of the North Atlantic Drift (NAD). Differences in the abundance of this ‘Atlantic species’ group have been used to infer that intermediate water depth temperatures were greater in the Nordic Seas during the latter part of H1 than during Dansgaard-Oeschger interstadials (Rasmussen and Thomsen, 2004). Rasmussen and Thomsen (2004) then suggest that the benthic and planktonic $\delta^{18}O$ shift to lighter values in the Nordic Seas during H events is due to a temperature increase caused by the invasion of this relatively warm subsurface watermass.

Similar to suggestions by Meland et al. (2008), we find the above interpretation by Rasmussen and Thomsen (2004) problematic, since these relatively warm inflowing waters would need to acquire a density to enter the Nordic Seas at greater than 1 km water depth. Meland et al. (2008) also suggest that although model experiments show that deep waters may be warmed by a few degrees Celsius (Weaver et al., 1993; Winton, 1997; Paul and Schulz, 2002), they do not account for the shallow Iceland-Scotland Ridge that these waters would need to
cross. Moreover, Meland et al. (2008) note that Mg/Ca temperature reconstructions from benthic foraminifera for core MD95-2010 do not show increased temperatures at intermediate depths in the Nordic Seas during this time period (Dokken and Clark, unpublished data). Finally, relatively large temporal offsets are apparent for nearly all the Nordic Seas cores between the peak ‘Atlantic species’ abundances and the δ^{18}O minima (Rasmussen and Thomsen, 2004).

Our observation of identical absolute δ^{18}O$_{npl}$ values in cores TTR-451 and MD95-2010, strongly suggest that there was direct watermass communication between the Nordic Seas and Eirik Drift during H1. Given that the warm intermediate water hypothesis during H1 (Rasmussen and Thomsen, 2004) cannot satisfactorily explain the δ^{18}O patterns within the Nordic Seas (see above), we now develop an alternative explanation for the light δ^{18}O excursion that extends over Eirik Drift.

Seismic mapping of the Nordic Seas and study of marine sediment cores have revealed that, coeval with the timing of H1, high rates of sediment accumulation occurred within the Nordic Seas (Hjelstuen et al., 2004; Sejrup et al., 2004; Lekens et al., 2005). These sediments are characterised in core MD99-2291 from the Vøring Plateau, southeastern Norwegian Sea, by laminated/partly laminated fine grained clay and silt (with individual laminae between 1mm–150 μm thick), with generally low planktonic foraminiferal abundances and occasional IRD (Lekens et al., 2005). Seismic mapping has revealed that these fine-grained sediments cover an area of around 1600 km2 of the Norwegian sea floor, with an approximate volume of 1000 km3 and attaining a thickness that in places exceeds 20 m (Hjelstuen et al., 2004; Sejrup et al., 2004; Lekens et al., 2005). However, since the Storegga Slide (ca. 8 ka BP; Bondevik et al., 2003) removed a large part of this deposit, calculations of volume are problematic and the cited value represents a minimum estimate (Lekens et al., 2005).

Radiocarbon dating at the base of the fine-grained sedimentary sequence indicates an age of around 18.6 ka BP, and a δ^{18}O$_{npl}$ record through these
Discussion

Chapter 5.

Sediments shows the same absolute values as those in MD95-2010 and TTR-451, and places the timing of the termination of these laminated deposits at 15.1 ka BP, coincident with peak light δ^{18}O values in the Nordic Seas (Lekens et al., 2005). Given the close agreement between the timing of emplacement of these sediments and the rapid retreat of the Fennoscandian ice-sheet (e.g., Rinterknecht et al., 2006), Lekens et al. (2005) suggest that the sediments had a meltwater origin. Based upon the presence of >2 mm IRD and pristine fully articulated bivalves, Lekens et al. (2005) suggest that the sediments were deposited hemipelagically, and classify them as ‘plumites’ (i.e., surface water freshwater events). Lekens et al. (2005) also tentatively suggest that the laminations, which comprise two units (dark fine-grained laminae and lighter coloured coarser-grained laminae), represent winter sea-ice coverage and summer plume deposition, respectively.

Based upon the detailed sedimentary descriptions provided by Lekens et al. (2005) and the volume of sediment that was being delivered into the Nordic Seas over a relatively short time interval (over 1000 km3 in around ~2000 yrs), we question whether these sediments would have spread into the Nordic Seas at the surface. Instead, due to the relatively high sediment concentrations within the meltwater plumes, we suggest that it is more likely that the sediments entered the Nordic Seas subsurface, and thus represent low-velocity hyperpycnal deposits resulting from glacial melting and outwash.

A hyperpycnal flow is defined by Mulder and Syvitski (1995) as a quasi-steady flow of a negatively buoyant watermass, which flows along the basin floor due to its density that is in excess of that of the ambient watermass, owing to the particle load that it carries. This means that hyperpycnal flows can carry sediments finer than medium sand over very large distances (Mulder et al., 2003). Hyperpycnites – (the deposits from hyperpycnal flows) can be generated today from ‘dirty’ rivers, flood events, dam breaks, or Jökulhaups. Lekens et al. (2005) reject the hypothesis that these sediments represent subsurface turbidity current generated deposits based upon the rhythmic nature of the sediments, a lack of erosional contacts and the presence of fully articulated bivalves and IRD.
(Rashid et al., 2003). However, the low-velocity, quasi-steady regime of a hyperpycnal flows from low-velocity floods may not have erosional contacts (Mulder et al. 2003), and we suggest that such processes do not preclude the occurrence of IRD or fully intact bivalves.

Hyperpycnite deposits that form at river mouths during floods are characterised by two units; a coarsening-up sequence as the discharge increases, followed by a fining-up unit as the discharge wanes (Mulder et al., 2001; 2003), and laminae have previously been described (Chough and Hesse, 1980). We suggest that the rhythmic, laminated deposits described in Lekens et al. (2005) may represent annual changes in flow regime, with the lighter coloured coarser grained portions resulting from high summer melt discharges. We note that very similar laminated sedimentary sequences, containing relatively large IRD have been previously described for H1 from the northwestern Bay of Biscay (Zaragosi et al., 2001), and from the North Atlantic (Hesse & Khodabakhsh, 1998; Hesse et al., 1996; Hesse et al., 2004), where they have been interpreted as hyperpycnal deposits that resulted from sediment laden meltwater from the European and Laurentide ice-sheets, respectively. In addition, similar sequences have described in deglacial infill of an East Greenland fjord (Hansen, 2004).

A hyperpycnal method of freshwater delivery into the Nordic Seas provides a mechanism for supplying isotopically (δ18O) light meltwaters to intermediate depths. As the hyperpycnal flows de-watered, relatively fresh, low density, highly buoyant meltwaters would have risen towards the surface (while strongly mixing with ambient waters) (e.g., Hansen, 2004), which would have caused planktonic δ18O anomalies similar to the benthic δ18O anomalies. Evidence from δ18O_{npl} suggests that large amounts of meltwater were supplied to the Nordic Seas during previous H events (Lekens et al., 2006). The proposed hyperpycnal mechanism for delivering the freshwater allows for the observed greater magnitude and earlier timing of the δ18O shift in the benthic data versus that in planktonic δ18O data.
We note, however, that the basal dating of this thick sedimentary deposit suggests that deposition started some 1000 yrs prior to the light $\delta^{18}O_{npl}$ isotopic excursion (pink line in Figure 5.9g). Therefore, prior to the AMOC collapse (Figure 4.9h), and whilst there was still open convection in the Arctic (Nørgaard-Pederson et al., 2003), we suggest the $\delta^{18}O$ signal in the Nordic Seas was not able to develop due to circulation through the Nordic Seas and strong mixing with the inflowing Atlantic waters. With the AMOC in a nearly completely collapsed state from around 17.5 ka BP (McManus et al., 2004; Figure 5.9h) and a further collapsed state from around 16.1 ka BP (record of κ_{ARM}/κ in Figure 5.9h; see also Gheraudi et al., 2005; Peck et al., 2007b), and the Fram Strait ‘closed’ due to resultant significant cooling and extension of the sea ice margin (Nørgaard-Pederson et al., 2003), the freshened waters would have ‘pooled’ towards the surface in the Nordic Seas.

Given these conditions that the Nordic seas overflow and resultant NADW flow had more or less collapsed from around 17.5 ka BP, and that the Bering Strait (today at ~50 m water depth) would have been closed due to the low sea level position (~110 m), mass balance requires that for any additions into the Nordic Seas and Arctic Basin, the same volume needs to have been expelled via surface waters. The majority of these exits through the Denmark Strait by means of the East Greenland Current (EGC). Hence, the $\delta^{18}O_{npl}$ signals observed at Eirik Drift in TTR-451 would likely have resulted from net freshwater (diluted surface water) export from the Nordic Seas, in a configuration reminiscent of the modern Arctic outflow through the Fram Strait.

Figure 5.9f shows the percentage composition of basaltic grains from the total IRD that was deposited at Eirik Drift. High percentage values occur through the entire period of H1 freshwater dilution recorded in TTR-451. As basaltic grains are thought to represent melt of sea ice that had formed around Iceland (e.g., Bond and Lotti, 1995), this evidence lends support to our hypothesis that the light $\delta^{18}O_{npl}$ signal at TTR-451 reflects a significant freshwater (and sea ice) export from the Nordic Seas.
Chapter 5. Discussion

An alternative hypothesis for the apparent mismatch of timings between the increased rates of sediment accumulation in the Nordic seas and the light δ^{18}O excursion in the Nordic Seas and at Eirik Drift may be gained from closer scrutiny of the sedimentary description of core MD99-2291. Lekens et al. (2005) describe a coarsening of sediments, with increased concentrations of planktonic foraminifera, decreased sedimentation rates, and a fewer laminations, which is coincident with the start of the δ^{18}O$_{npl}$ event recorded in the same core. This may indicate that the rate of meltwater injection into the Nordic Seas was increased at this time, with the reduced sedimentation rates and increased proportions of coarser sediment reflecting the more distal transport of finer-grained sediments.

Based upon measurements of modern rivers that produce at least one hyperpycnal flow each year, Mulder and Syvitski (1995) estimate the critical threshold particle concentration required for a watermass to plunge subsurface. Calculated values range from around 38.9 kg m$^{-3}$ for low latitude rivers to around 43.5 kg m$^{-3}$ for high-latitude rivers. Measured annual average suspended particle concentrations are, however, somewhat lower (e.g., 20.7 kg m$^{-3}$ for the Rioni in Russia) as hyperpycnal flows occur during peak discharge. Mulder et al. (2003) suggest that rivers with initial suspended particle threshold concentrations as low as 5 kg m$^{-3}$ can produce hyperpycnal flows during flood.

We test the hypothesis that meltwater may have entered the Nordic Seas hyperpycnally during H1 by calculating average suspended particle concentrations, assuming a particle density of 2650 kg m$^{-3}$ (Mulder and Syvitski, 1995). We calculate this for three different scenarios, and we then consider mixing this sediment load with incrementally increasing volumes of freshwater.

Scenario 1 uses the minimum estimated volume of sediment, which were deposited during H1 in the Nordic Sea. This equals 1000 km3 (Hjelstuen et al., 2004; Sejrup et al., 2004; Lekens et al., 2005). Scenario 2 takes into account that the δ^{18}O light isotopic anomaly in MD99-2291 only spans the upper 1.4 m of the 10.5 m thick laminated section. We therefore reduce the 1000 km3 sediment volume by 87 %. Since the Storegga Slide (ca. 8.2 ka BP; Bugge et al., 1987;
Bondevik *et al.*, 1997), which post-dated H1 by nearly 8000 years, removed a large proportion of the H1 sediment deposits in the Norwegian Sea, the derived 1000 km3 estimate for the H1 deposit is only a minimum (Hjelstuen *et al.*, 2004; Sejrup *et al.*, 2004; Lekens *et al.*, 2005). Although rather unrealistic, scenario 3 calculates the maximum possible sediment load of the H1 meltwaters by including the volume of sediments that were contained within the Storegga Slide (3500 km3 – Bondevik *et al.* (2003)). Therefore, scenario 3 uses a total sediment volume of 4500 km3. The results from the three scenarios are given in Table 5.3, and mixing curves for scenarios 1 and 2 are shown in Figure 5.11.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Volume of sediment (km3)</th>
<th>Volume of fresh water (km3)</th>
<th>Equivalent global sea level rise (m)</th>
<th>C_c (kg m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>1000</td>
<td>61009 (C1)</td>
<td>0.169</td>
<td>43.5 (A1)</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>133</td>
<td>8303 (C4)</td>
<td>0.023</td>
<td>43.5 (A1)</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>1000 + 3500 (Storegga)</td>
<td>273999</td>
<td>0.759</td>
<td>43.5</td>
</tr>
</tbody>
</table>

Table 5.3. Volumes of freshwater required to be mixed with the sediment loads in order for the meltwaters to plunge subsurface (i.e., for the average suspended particle loads to exceed the critical particle concentration (C_c)). $C_c = 43.5$ kg m$^{-3}$ (Mulder and Syvitski, 1995; Mulder *et al.*, 2003). In brackets are the points denoted in Figure 5.11.

Assuming that the -1.45 ‰ $\delta^{18}O_{npl}$ shift at Eirik Drift ($\delta^{18}O_{npl}^{a-b}$) represents a mixed signal out of the Nordic Seas, we use a glacial meltwater endmember $\delta^{18}O$ of -35 ‰ ($\delta^{18}O_g$) to calculate the volume of freshwater that likely entered the Nordic Seas during H1. A volume of 2145900 km3 (V_1) is used for the Nordic Seas, as we assume that mixing was constrained to the Norwegian Sea, Iceland Sea, and only the southern most sector of the Greenland sea (Nørgaard-Pederson *et al.*, 2003). We use the modern volume estimates minus the volume associated with a -110 m sea level change. The $\delta^{18}O_{npl}^{a-b}$ is solved from the following equation, where $\delta^{18}O_{npl}^{a}$ is the initial $\delta^{18}O$ value and V_2 is the volume of
meltwater. We calculate that V_2 equals $\sim 89000 \text{ km}^3$, or 0.246 m of equivalent sea level rise

$$(\delta^{18}O_{\text{npl}}^{a-b}) = \frac{[(V_1 \times \delta^{18}O_{\text{npl}}^{a}) + (V_2 \times \delta^{18}O_{\text{g}})]}{(V_1 + V_2)} \quad \text{(Equation 5.1)}$$

We then mix the derived volume of meltwater (V_2) with the sediment loads used in scenarios 1, 2 and 3. The results are given in Table 5.4, and the mixing curves for scenarios 1 and 2 are shown in Figure 5.11.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Volume of sediment (km^3)</th>
<th>Volume of fresh water (km^3)</th>
<th>Equivalent global sea level rise (m)</th>
<th>C_{sav} (kg m^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>1000</td>
<td>88806 (C_{sv}^{2})</td>
<td>0.246</td>
<td>29.84 (A^2)</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>133</td>
<td>88806 ($C_{\text{sv}}^{2,3}$)</td>
<td>0.246</td>
<td>3.98 (A^3)</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>1000 + 3500 (Storegga)</td>
<td>88806</td>
<td>0.246</td>
<td>134.28</td>
</tr>
</tbody>
</table>

Table 5.4. Average suspended particle concentrations values (C_{sav}) calculated from mixing the estimated sediment volumes for each scenario with the meltwater volume derived from Equation 5.1. In brackets are the points denoted in Figure 5.11.

For scenario 1, a meltwater volume of 61009 km3 is required for the flow to acquire the critical threshold particle concentration of 43.5 kg m$^{-3}$ (Table 5.3). By mixing the 1000 km3 of sediment with the calculated meltwater volume, an average suspended particle concentration of nearly 30 kg m$^{-3}$ is revealed (Table 5.4). This value of 30 kg m$^{-3}$ is similar the observed average suspended particle concentrations of high latitude rivers today, which produce hyperpycnal flows (Mulder *et al.*, 2003). On this basis we consider that for scenario 1, the meltwaters injected into the Nordic Seas during H1 would have done so hyperpycnally.
Figure 5.11. Melt water volume, in terms of its contribution to global sea level rise, versus its average suspended particle concentration values (C_{sav}) for scenarios 1 (black) and 2 (blue). The scenarios are defined in the main text. The plot shows how C_{sav} changes, with incrementally increased meltwater for these two scenarios. C_{sav} sediment particle density of 2650 kg m^{-3}. Points A^{1-3} and C^{1-4} are defined in Tables 5.3 and 5.4. B^{1-4} show their intersect with the two curves.

Scenario 2, with the 87% reduced sediment estimate, requires a volume of meltwater of only 8303 km^3 in order for the sediment load to cause the meltwater flow to exceed its critical particle concentration (43.5 kg m^{-3}) (Table 4.3). This meltwater volume is an order of magnitude less than the calculated meltwater volume (V_2). Mixing this relatively small sediment volume for scenario 2, with calculated meltwater volume, gives an average suspended particle concentration of 3.98 kg m^{-3}, less than the required >5 kg m^{-3} reported in Mulder et al. (2003). Note, however, that for scenario 2, a minimum sediment load is mixed with a
maximum meltwater volume, and moreover, is averaged over an interval of time which spans around 1000 yrs. Because hyperpycnal flows occur during periods of peak flood discharge for modern rivers, and these rivers can have annual average suspended particle concentrations as low as 5 kg m$^{-3}$ (Mulder et al., 2003), and additionally, given the long duration of time (\sim1000 yrs) that our average estimates from the Nordic Seas brackets, during times of peak discharge (i.e., the short duration seasonal melt) the sediment load used in scenario 2 would have caused the meltwaters to enter the Nordic Seas subsurface.

For scenario 3, where the volume of the Storegga slide is added to the volume of laminated sediments in the Nordic Seas, a maximum average suspended particle concentration is estimated. To achieve a critical suspended particle concentration of 43.5 kg m$^{-3}$, a mixed freshwater volume of nearly 274000 km3 (Table 5.3) far exceeds the meltwater volume (V_2) derived from the δ^{18}O$_{npl}$ values of \sim89000 km3. When the sediment volume for scenario 3 (4500 km3) is mixed with V_2, a C_{sav} of 134 kg m$^{-3}$ is revealed. For scenario 3, the meltwater would be injected hyperpycnally into the Nordic Seas. Considering the outcomes for all three scenarios, we conclude that the laminated sediments deposited in the Nordic Seas during H1, represent hyperpycnites formed from hyperpycnal flows, generated from melt of the Scandinavian ice sheet.

At around 15.5 ka BP, intense northern high-latitude cooling (Alm, 1993; Figure 5.8f) caused a re-advance of the Scandinavian ice-sheet (Rinterknecht et al., 2006). Coincident with this timing, the δ^{18}O records from the Nordic Seas and Eirik Drift return to heavier values, and finely laminated silt and clay were no longer being deposited in the Nordic Seas. The gradual return to heavier δ^{18}O$_{npl}$ values in the Nordic Seas and at Eirik Drift indicate that the freshened waters were being purged out of the Nordic Seas, possibly due to wind driven circulation and/or the density gradient had developed between the Nordic Seas and the North Atlantic (e.g., Millo et al., 2006). Only a few centuries after the meltwater purging began to decrease, the AMOC underwent a sharp recovery at the time of (and possibly causing (McManus et al., 2004)) the abrupt Bølling warming (figure 5.9g, h).
5.3.5. A new conceptual model for the Nordic Seas and northern North Atlantic during H1

In this section, a new concept is proposed for the sequence of events associated with the H1 iceberg/meltwater perturbation in the North Atlantic. The sequence is discussed as a succession of three phases, and is placed within the context of previous studies in both the marine and terrestrial realm. Phase 1 (~19–17.5 ka BP) represents the onset of the AMOC collapse, phase 2 (17.5-16.5 ka BP) represents the main phase of H1 in the IRD belt, and phase 3 (16.5-14.6 ka BP) covers H1 in the Nordic Seas and at Eirik Drift and the termination of H1 cooling and resumption of the AMOC at the Bølling warm transition.

5.3.5.1. Phase 1. The onset of AMOC collapse (~19 – 17.5 ka BP)

The AMOC began a gradual slowdown from around 18.8 ka BP, culminating in a collapse from around 17.5 ka BP (McManus et al., 2004; Figure 5.9h; Hall et al., 2006), which coincided with the onset of the main phase of H1 in the IRD belt (e.g., Bond et al., 1992; 1999; Bard et al., 2000; Grousset et al., 2001; Hemming, 2004; Figures 5.9d-f; 5.12a). The AMOC slowdown clearly predates the start of H1 as identified by peak IRD in the IRD belt, by more than 1000 years. Therefore, the widespread iceberg (IRD) event of H1, as identified in the IRD belt, could not be invoked as the root cause of AMOC weakening from around 18.8 ka BP. Instead, precursory freshwater events form a more likely mechanism for the AMOC slowdown.

Precursor IRD events with ages up to 1500 yrs prior to the main H1 IRD event have been identified in North Atlantic sediment cores from the IRD belt, and provenance studies indicate a significant contribution of sediment derived from the European and Scandinavian ice sheets (e.g., Bond et al., 1992; 1997; 1999; Bond and Lotti, 1995; Darby and Bischof, 1999; Grousset et al., 2000; 2001; Knutz et al., 2002; Scourse et al., 2000; Hemming et al., 2000, 2002; Hemming and Hajdas, 2003; Hemming, 2004; Peck et al., 2006; 2007a, b; Knutz et al., 2002; 2007; Walden et al., 2007). This observation of a European/Scandinavian
origin has been validated by the contemporaneous increase in fluvial input found in the northern Bay of Biscay (Menot et al., 2006). This has lead to the suggestion that early surging from European ice sheets likely acted as a stimulus for the reaction of the Laurentide ice sheet (e.g., Grousset et al., 2000; 2001), the ‘key-player’ in the main Heinrich events (e.g., Marshall and Koutnik, 2006). Precursor IRD-rich layers have also been identified within the Arctic, with a possible source from the Canadian Arctic Archipelago (Darby et al., 1997; 2002; Stokes et al., 2005).

Primarily on the basis of model simulations, a number of scenarios have been proposed for the generation of Heinrich event type ice-surges. These models range from a ‘binge-purge’ mechanism due to over-sized and unstable ice-sheets (e.g., MacAyeal, 1993), ice-shelf growth and instabilities (Hulbe et al., 1997), ice-stream surges due to basal instabilities due to reversed ice-air pressure gradients (Alley et al., 2006) and catastrophic jökulhaup outflow events (Johnson and Lauritzen, 1995; Alley et al., 2006), steric warming beneath ice-shelves (Flückiger et al., 2006) and increased tidal ranges (Arbic et al., 2008) causing ice-shelf instabilities.

From around 21 ka BP glacial retreat was occurring on a near global scale (e.g., Dyke et al., 2002; Bowen et al., 2002; Licciardi et al., 2004), and at around 19 ka BP, a ~10 m jump is seen in sea-level records (e.g., Yokoyama et al., 2000; Lambeck et al., 2002). From around 19 ka BP significant warming is inferred from both the Scandinavian pollen records (Alm, 1993) and the Greenland δ18O ice core records (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2007). Based upon the presented compilation of recalibrated terrestrial temperature records presented in here, along with the datings of glacial retreats, and the Greenland and Antarctic temperature records (Figure 5.8), it would appear that these precursory IRD events likely resulted from the post LGM warming.

This timing of northern high-latitude warming (~19 ka BP) coincides with start of the inferred warming trend in the EPICA Antarctic ice core record (EPICA
community members, 2006), and increased northern summer insolation (Berger, 1991; 1999). Consequent warming in the southern hemisphere, sea ice reduction and enhanced global warming due to greenhouse gas and albedo feedbacks (e.g., Bender et al., 1997; Alley and Clark, 1999) may have promoted the carving of the relatively ‘small’ ice sheets from Europe and Scandinavia (e.g., Stocker and Wright, 1991; McCabe and Clark, 1998; Stocker, 2003). A model simulation of freshwater perturbation (~10 m of sea level rise) in the southern hemisphere shows that from an LGM state of overturning, the AMOC would have been enhanced, and would have promoted further warming (Knorr and Lohmann, 2007). We suggest here however, that warming induced northern hemisphere meltwater perturbations at around 19 ka BP caused reduced AMOC intensity (similar to suggestions by Ganopolski and Rahmstorf, 2002), as seen in the record of 231Pa/230Th ratios from the Bermuda Rise (McManus et al., 2004), which is corroborated by the record of $\kappa_{\text{ARM}}/\kappa$ from Eirik Drift (Figure 5.9h).

Alternatively, Peeters et al. (2004) show increased SST in the Cape Basin during the late glacial, and suggest that increased heat flow between the Indian and Atlantic Oceans via enhanced ‘Agulhas leakage’ may have triggered this North Atlantic warming. In response to the cooling associated with the AMOC slowdown (Figure 5.8f; 5.9h), a short duration re-advance of the British and southern Laurentide ice-sheet occurred from around 18.2 ka BP (Bowen et al., 2002; Dyke et al., 2002).

5.3.5.2. Phase 2. The ‘main’ phase of H1 (17.5 – 16.5 ka BP)

The main phase of H1 in the IRD belt (~17.5 to ~16.5 ka BP) is characterised by maximum freshening in the IRD belt, along with intense IRD deposition, and as a result, significantly reduced numbers of foraminifera (Bond et al., 1992; 1999; Bond and Lotti, 1995; Grousset et al., 2000; 2001; Knutz et al., 2002; Scourse et al., 2000; Hemming et al., 2000, 2002; Hemming and Hajdas, 2003; Hemming, 2004; Peck et al., 2006; 2008; Knutz et al., 2002; 2007; Figure 5.9b-d), when there is a sustained and complete shutdown of the AMOC from around 17.5 ka BP (e.g., McManus et al., 2004; Hall et al., 2006) (Figure 5.9h). Significant northern hemisphere cooling at this time is indicated in the Greenland
Chapter 5. Discussion

\[\delta^{18}O \] record (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2007), along with enhanced cooling in Britain (Atkinson et al., 1987) and Scandinavia (Alm, 1993), and significantly reduced North Atlantic SSTs (Bard et al., 2000). It is accompanied by a concomitant sharp increase in the concentration of \(\text{Ca}^{2+} \) in the Greenland ice cores (Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2007).

Coeval with this ‘main’ phase of H1, at around 17.5 ka BP, widespread and significant glacial retreats occurred on a near global scale (e.g., Giraudi and Frezzotti, 1997; Denton et al., 1999; Dyke et al., 2002 and references therein; Bowen et al., 2002; Clague and James, 2002; Licciardi et al., 2004; Ivy-Ochs et al., 2006; Menot et al., 2006; Rinterknecht et al., 2006), and a drawdown of the ice centre around the Hudson bay region most likely led to reorganisation of the northeastern Laurentide ice-streams (Dyke et al., 2002; Figure 5.12b). Significantly increased sedimentation rates along the western Norwegian margin indicate that large volumes of freshwater were being delivered into the Nordic Seas at this time (Hjelstuen et al., 2004; Sejrup et al., 2004; Lekens et al., 2005). We re-interpret these deposits as the result of meltwater that was injected at depth (i.e., hyperpycnally) (Figure 5.12b).

Based upon previous suggestions (e.g., Broecker, 1991; 1994; Rahmstorf, 1994; Manabe and Stouffer, 2000; Ganopolski and Rahmstorf, 2001; Knorr and Lohmann, 2003; 2007; McManus et al., 2004; Rahmstorf et al., 2005), we suggest that the significant freshwater perturbation associated with the iceberg discharges into the North Atlantic (as inferred from the light planktonic \(\delta^{18}O \) isotope values and thick layers of IRD) (e.g., Hemming, 2004; Figure 5.9 c-e) likely kept the AMOC in a collapsed state of overturn (Figure 5.9h). This would have resulted in the significantly reduced northern hemisphere temperatures, and likely increased seasonality (Atkinson et al., 1987; Broecker, 1991; Alm, 1993; Bond et al., 1999; Bard et al., 2000; review in Seager and Battisti, 2006; Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2007; Peck et al., 2008) (Figure 5.8a, f).
5.3.5.3. The H1 ‘clean-up’ and resumption of the AMOC (16.5 – 14.6 ka BP)

The final phase of H1 started at 16.5 ka BP with a rapid reduction in surface-water freshening and IRD deposition in the IRD belt (Figures 5.9c, d, 5.12c). However, sustained cooling is apparent in the Greenland ice core $\delta^{18}O$ records (Figure 5.9a), Britain and Scandinavia (Figure 5.8f), while the Greenland Ca$^{2+}$ ion series suggests that the atmospheric polar circulation intensity although decreases, remains relatively intensified (Figure 5.8b), and the AMOC remained in a collapsed state (Figure 5.9h). The British ice sheet and glaciers in the Apennine region re-advanced at around this time (Giraudi and Frezzotti, 1997; McCabe and Clark, 1998; McCabe et al., 2007). Well-dated records from Cariaco Basin (Hughen et al., 1996; Lea et al., 2003), and speleothem records from China (Wang et al., 2001), also show similar deteriorated climate conditions.

Unlike the decreased freshening inferred from records of IRD and $\delta^{18}O_{npl}$ for cores in the IRD belt, there were no signs of decreased surface water freshening at Eirik Drift or in the Nordic Seas (Figures 5.9e, g). Instead, the surface water freshening at Eirik Drift and in the Nordic Seas in both benthic and planktonic records started to increase at around 16.1 ka BP (Figure 5.9e, g). Given that the $\delta^{18}O_{npl}$ records at Eirik Drift have the same absolute values as those recorded in the Nordic Seas (Figure 5.9e, g), we suggest that this indicates direct watermass communication between the Nordic Seas and Eirik Drift during this latter phase of H1.

Maximum surface freshening at Eirik Drift is suggested at around 15.1 ka BP (Figure 5.9g). Thereafter, surface $\delta^{18}O_{npl}$ values progressively returned to heavier values, coincident with the termination of exceptionally high rates of deposition of fine grained sediments in the Nordic Seas (Lekens et al., 2005). We interpret these sediments to represent hyperpycnal flows, which would have injected significant amounts of freshwater to intermediate depths in the Nordic Seas. As these sediments were deposited and the flows dewatered, the low density, highly buoyant, freshwater contained within these flows would have
surfaced, transferring the light $\delta^{18}O$ signal from intermediate depths to the surface. As the AMOC was in a collapsed state (McManus et al., 2004; Figure 5.9h) and the Fram Strait was closed (Nøgaard-Pederson et al., 2003), these relatively fresh waters would have likely ‘pooled’ in the Nordic Seas and may thus have probably maintained the AMOC in its collapsed state (Figure 5.9h).

Given that NADW flow had more or less collapsed, and that the Bering Strait would have been closed, the relatively fresh waters that had pooled in the Nordic Seas would have been expelled via the Denmark Strait. Hence, the $\delta^{18}O_{npl}$ signals observed at Eirik Drift appear to record the same purged waters from the Nordic Seas. A hyperpycnal delivery of freshwater into the Nordic Seas provides the most plausible mechanism for invoking the benthic and planktonic $\delta^{18}O$ light excursion recorded in the Nordic Seas, as it can account for the greater magnitude of shift to lighter values observed in the benthic $\delta^{18}O$ records relative to the planktonic $\delta^{18}O$ records, as well as the temporal offsets between the two (Figure 5.9g; Figure 5.10). This hypothesis also gives explanation for the widespread distribution of this exact same signal in surface waters across not only the Nordic Seas, but the northern North Atlantic, which other hypotheses such as subsurface warming and sea-ice formation cannot.

From around 15.1 ka BP, the $\delta^{18}O_{npl}$ record at Eirik Drift, and in the $\delta^{18}O_{npl}$ and $\delta^{18}O_{ct}$ records in the Nordic Seas trend to heavier values (Figure 5.9g), concomitant with the termination of the deposition of laminated sediments in the Nordic Seas (Lekens et al., 2005; pink line in Figure 5.9g) and the re-advance of the Scandinavian ice sheet (Marks, 2002; Rinterknecht et al., 2006; Figure 5.8f). These heavier $\delta^{18}O$ values suggest a reduction in fresh water admixture in the Nordic Seas, which would have resulted from this reduction in meltwater input. This reduction in fresh water admixture would have aided by the purging of this relatively fresh watermass out of the Nordic Seas.

Also from around 15.5 ka BP, significant climate amelioration is recorded in the British Isles (Atkinson et al., 1987) and retreat from the H1 glacial maximum extent was well underway on a near global scale (Giraudi and Frezzotti, 1997;
Benson et al., 1998; McCabe and Clark, 1998; Clague and James, 2002; Dyke et al., 2002 and references therein; Ivy-Ochs et al., 2006; McCabe et al., 2007; Hendy and Cosma, 2008). However, warming at northern high-latitudes (Alm, 1993; Rasmussen et al., 2006) and climatic improvement in well-dated low latitude records (e.g., Hughen et al., 1996; Wang et al., 2001; Lea et al., 2003) is not inferred until sharp Bølling (15ºC) warming at 14.6 ka BP (Severinghaus et al., 1998; Severinghaus and Brook, 1999; Rasmussen et al., 2006). This apparent ‘mismatch’ between datings on snowline variations and winter dominated climate records is interpreted to reflect increased seasonality i.e., much cooler winter temperatures and warmer summer temperatures (Broecker et al., 1999; Denton et al., 2005; Seager and Battisti, 2006).

Previous model investigations have suggested that perturbations from the Southern Ocean may have caused the AMOC ‘switch on’ at the Bølling warming (e.g., Weaver et al., 2002; Knorr and Lohmann, 2003). However, these models cannot account for the sharp recovery that is seen in the proxy records (e.g., McManus et al., 2004; Stanford et al., 2006; Rasmussen et al., 2006; Figure 5.9a, h). An ocean-circulation model has also shown that low latitude salt promotion in the North Atlantic whilst the AMOC was in its collapsed state, preconditioned the AMOC for its kick start at the Bølling warming by advecting more saline surface waters to areas of NADW formation (Knorr and Lohmann, 2007). This model outcome agrees well with sea surface salinity estimates in the Caribbean during this final phase of H1 (Schmidt et al., 2004) and the Mediterranean salinity input (Rogerson et al., 2004).

However, in this study, we suggest that the trend to heavier $\delta^{18}O_{\text{npl}}$ values in the Nordic Seas and at Eirik Drift after 15.5 ka BP represents the termination of freshwater injection from the Scandinavian ice sheet into the Norwegian Sea (Lekens et al., 2005), and the purging of the accumulated freshwater out of the Nordic Seas that would have allowed the salinity of the basin to gradually increase. A few centuries after the freshwater signal/purgi ng began to decrease, the AMOC underwent a sharp recovery (McManus et al., 2004; Stanford et al., 2006; Figure 5.9h) at the time of the abrupt Bølling warming (14.6 ka BP).
Figure 5.12. Schematic diagrams of the evolution of H1 in the Nordic Seas and the North Atlantic. Black lines indicate surface water currents, and dashed black lines indicate when the thermohaline surface currents may have had less flow intensity. Solid grey lines represent bottom currents and dashed grey lines indicate when bottom current flow intensity was significantly decreased. Solid blue arrows = inferred ice sheet surges. Solid
green arrow = the Nordic Seas/Eirik Drift surface water mass communication. Light blue shaded zone = sites of NADW. Hashed black zone = IRD belt (after Hemming, 2004). Dot/dashed line represents the summer sea-ice margin. Blue hashed area = subsurface freshening in the Nordic Seas. Brown hashed area = area of high rates of sediment accumulation (Lekens et al., 2005). Orange hashed area represents an area of inferred increased surface water salinity (Schmidt et al., 2004).

(Figure 5.9a). We therefore suggest that by increasing the salinity of the Nordic Seas, this key region of NADW formation (e.g., Dickson and Brown, 1994; Bacon, 1998; 2002) was prepared for the sharp AMOC recovery (Figure 5.12d).

5.3.6. Conclusions

We identify four key oceanographic changes during H1, namely: (1) a slowdown of NADW formation and small-scale precursor events; (2) a large-scale iceberg release and melting in the ‘IRD Belt’ and a shutdown of deep-water formation (3) pooling of hyperpycnally injected freshwater in the Nordic Seas, and sustained AMOC collapse and (4) the subsequent purging of the pooled meltwater out of the Nordic Seas.

The termination of this final meltwater ‘clean-up’ phase is near coincident with the AMOC recovery that accompanied the Bølling warming. The entire sequence of events extends the duration of H1 to almost 4000 years, rather than several centuries as suggested previously (Dowdeswell et al., 1995; Rohling et al., 2003; Hemming, 2004; Roche et al., 2004a, b). This longer duration of the H1 episode now agrees with the entire previously established period of collapsed deep-water formation in the Nordic Seas (McManus et al., 2004; Hall et al., 2006; Stanford et al., 2006).
Since it is speculated that freshwater additions into the North Atlantic may result in decreased rates of North Atlantic Deep Water (NADW) formation, and reduced poleward heat transport (e.g., Stommel, 1961; Broecker, 1991), the remit of study was to further elucidate the role of past freshwater forcing on the rate of NADW formation, the vigour of Atlantic Meridional Overturning Circulation (AMOC), and its impact upon climate, and also to evaluate the linearity of the ocean-climate system response.

This has been achieved through multi-proxy reconstruction from marine sediment core TTR-451, Eirik Drift, south of Greenland, and comparison of these findings with other, well-dated palaeo-proxy records. This study has focussed upon the time period of the last deglaciation (20 – 11 ka BP), which encompasses the climate deterioration and ice-berg discharge event of Heinrich event 1, the abrupt Bølling warming (when Greenland temperatures rose by more than 10°C in only a couple of centuries (Severinghaus and Brook, 1999)), meltwater pulse (mwp)-1a, (a sea-level rise of around 20 m in around 500 yrs (e.g., Bard et al., 1996; Hanebuth et al., 2000; Peltier and Fairbanks, 2006)) and the sharp climate deterioration of the Younger Dryas.
Firstly, the much debated timings of the Bølling and mwp-1a are conclusively resolved by comparison of the GRIP ice core $\delta^{18}O$ record on the new layer-counted GICC05 time scale (Rasmussen et al., 2006) with the better constrained U/Th-dated Barbados fossil coral sea-level record (Fairbanks et al., 2005; Peltier and Fairbanks, 2006). This record comparison confirms previous suggestions (e.g., Bard et al., 1996; Liu and Milliman, 2004) that mwp-1a occurred at around 14.1 ka BP, culminating in a meltwater peak at around 13.9 ka BP. Therefore, mwp-1a was coincident with sharp “Older Dryas” (GI-1d) (Björck et al., 1998) cooling event and not the Bølling warming (14.6 ka BP). Even when considering the 2σ uncertainties of these two ages, mwp-1a lags behind the Bølling warming by over 3 centuries. On this basis, the hypothesis that mwp-1a coincided with, and moreover was the trigger of, the Bølling warming (e.g., Hanebuth et al., 2000; Clark et al., 2002; Kienast et al., 2003; Weaver et al., 2003) is now rejected.

Also presented in this thesis is a re-evaluation of recalibrated accelerated mass spectrometric (AMS)^{14}C dated submerged flood terraces and mangroves from the Sunda Shelf (South China Sea). The Sunda Shelf sea level record has been used previously to question the Barbados dating of 14.1 ka BP for mwp-1a, since it dates mwp-1a at around 14.6 ka BP, co-incident with the Bølling warming (Hanebuth et al., 2000). Careful scrutiny and critical assessment of these recalibrated ages shows a significant depositional hiatus at around 14 ka BP, which most likely represents the rapid sea-level rise of mwp-1a (i.e., when it would have been unlikely for accretion of the mangrove forests to have kept pace with the sea level rise). This re-evaluation of datings of the Sunda Shelf sea level record therefore now supports the dating of mwp-1a from Barbados, at around 14.1 ka BP. The new time constraints that now place mwp-1a at the termination of the Bølling warming suggests that meltwater addition started within the Bølling, possibly as a direct response to high-latitude warming during that period (McManus et al., 2004). At question, however, was whether there was a change in NADW flow intensity coincident with mwp-1a and the Older Dryas, since a previous record of AMOC intensity from the Bermuda Rise does not fully resolve this time period (McManus et al., 2004).
Presented within this thesis is a new record from marine sediment core TTR-451 of NADW flow intensity derived from the ratio of the susceptibility of anhysteretic remanent magnetisation (κ_{ARM}) versus low-field magnetic susceptibility (κ); a proxy for average (titano)magnetite grain size (Banerjee et al., 1981; Verosub and Roberts, 1995). Since previous studies have suggested that the magnetic mineral content of sediments along the flowpath of NADW originates from the Nordic basaltic province (Kissel et al., 1999a; Laj et al., 2002), and deposition on Eirik Drift is dominated by suspended matter transported via deep-water overflow through Denmark Strait, the $\kappa_{\text{ARM}}/\kappa$ record from Eirik Drift is interpreted to reflect variation in the size of magnetic grains that can be carried by NADW, and which settle out on Eirik Drift as the watermass rounds the southern tip of Greenland.

This interpretation of $\kappa_{\text{ARM}}/\kappa$ values from Eirik Drift as a magnetic grain size indicator is tested by further environmental magnetic measurements, namely; the generation of saturated remanent magnetisation and backfield curves, magnetic hysteresis loops and First Order Reversal Curve (FORC) diagrams, and Scanning Electron Mircoscope (SEM) image analysis of bulk sediments. Together, these studies confirm that the magnetic composition of sediments from TTR-451 is dominated by (titano)magnetite, and validates the inverse relationship between $\kappa_{\text{ARM}}/\kappa$ and average (titano)magnetite grain size.

In order to test whether $\kappa_{\text{ARM}}/\kappa$ is a sensitive index for NADW flow intensity, mean sortable silt grain size which is an established proxy for near bottom current strength (e.g. McCave et al., 1995a, b; 2006; Bianchi and McCave, 1999; Hall et al., 2001), was measured from the same sediment samples as the $\kappa_{\text{ARM}}/\kappa$. Comparison of these two records shows a good visual correlation. Statistical analyses reveal correlation, but despite good visual agreement, the correlation is weak. Next, the use of mean sortable silt grain sizes, and hence also $\kappa_{\text{ARM}}/\kappa$, as near bottom current indices at Eirik Drift, were tested by comparison of mean sortable silt grain size data from marine sediment core tops from Eirik Drift, with mean scalar velocities obtained from Lowered Acoustic Doppler Current Profiler (LADCP) data. A general positive trend was revealed and validates the use of
mean sortable silt grain sizes, and hence also κ_{ARM}/κ, as near bottom current indices at Eirik Drift.

Combining the new (κ_{ARM}/κ) proxy record of NADW flow intensity from Eirik Drift with the Barbados sea-level and Greenland ice-core $\delta^{18}O$ records, shows that at the time of mwp-1a there was a ~500 yr reduction in NADW flow intensity. This slowdown was coincident with the brief Older Dryas cold period. This compilation of records also served to demonstrate the characteristic near-collapsed NADW formation during more extreme cooling events which were not associated with meltwater pulses large enough to significantly affect the sea-level record (Heinrich event 1 and the Younger Dryas). These data therefore suggest a fundamental non-linearity between the rate and magnitude of freshwater forcing in the form of meltwater injection and the AMOC intensity as witnessed by the rate of NADW formation, which is summarised in Figure 6.1.

Finally, a new reconstruction for Heinrich event 1 (H1) (16-17.5 ka BP; Bard et al., 2000; Hemming, 2004) is presented, with focus upon the northern North Atlantic and the Nordic Seas. Records of IRD, planktonic foraminiferal counts and $N. pachyderma$ (left-coiling) foraminiferal $\delta^{18}O$ for TTR-451, are compared with records from the IRD belt and the Nordic Seas, and their event stratigraphy is placed in context with re-evaluated terrestrial records of temperature and glacial extent. Identified are four key oceanographic changes. Firstly a slowdown of NADW formation from around 19 ka BP is associated with small-scale precursor events (e.g., Grousset et al., 2000; 2001; Hemming, 2004; Knutz et al., 2001; 2007; Peck et al., 2006; 2007a, b; 2008) and the first significant jump in sea-level (e.g., Yokoyama et al., 2000; Lambeck et al., 2002). A short duration warming at high-latitudes is evident at this time (e.g., Alm, 1993; Andersen et al., 2006; Svensson et al., 2006; Rasmussen et al., 2007), near coincident with warming in the Southern Hemisphere (e.g., Arz et al., 1999; Sachs et al., 2001; Kim et al., 2002; Peeters et al., 2004; EPICA community members, 2006). Increased insolation at this time (e.g., Berger et al., 1999), has been suggested as the cause for this post Last Glacial Maximum (LGM) warming due to enhanced global temperatures as a result of greenhouse gas and albedo
Figure 6.1. a. In black is the $\kappa_{\text{ARM}}/\kappa$ record for NADW intensity from TTR-451, scaled to AMOC strength, assuming that the Bølling AMOC intensity equals 75% of the modern AMOC strength (~15 Sv; McManus et al., 2004). In blue is the freshwater forcing in Sv derived from the Barbados sea level record (Peltier and Fairbanks, 2006) and interpolated onto the same time steps as the $\kappa_{\text{ARM}}/\kappa$ record. b. A cross-plot of the derived AMOC intensity versus freshwater forcing. Ages are given in yrs 1950 BP. In red is drawn the extrapolated hysteresis loop of mwp-1a. H1 = Heinrich event 1 and YD = Younger Dryas.
feedbacks (Bender et al., 1997; Alley and Clark, 1999). Advection of relatively warm waters from the Southern Ocean into the North Atlantic could have caused this warming in the North Hemisphere, ice sheet melt and consequent AMOC slowdown (e.g., Stocker and Wright, 1991; Bender et al., 1997; McCabe and Clark, 1998).

These early precursor meltwater events were followed at around 17.5 ka BP by a large-scale iceberg release and melting in the ‘IRD Belt’ (e.g., Bond and Lotti, 1995; Bond et al., 1999; Bard et al., 2000; Grousset et al., 2000; 2001; Hemming, 2004; Knutz et al., 2001; 2007) that likely caused the shutdown of deep-water formation, which is seen in the Eirik Drift (TTR-451) and Bermuda Rise records (e.g., McManus et al., 2004). At around 16.5 ka BP, IRD deposition ceased in the IRD belt and yet the $\kappa_{\text{ARM}}/\kappa$ record for TTR-451 shows that the AMOC remained in a collapsed state, similar to previous suggestions (McManus et al., 2004; Peck et al., 2007b).

From around 16.5 ka BP, a light δ^{18}O excursion developed in both benthic and planktonic records from the Nordic Seas (e.g., Dokken and Jansen, 1999; Rasmussen and Thomsen, 2004). This light δ^{18}O event is also recorded in δ^{18}O records for N. pachyderma (left coiling) in core TTR-451. On the basis of the character and the widespread nature of the δ^{18}O light excursion observed across the Nordic Seas and the northern North Atlantic, hypotheses of either iceberg release (e.g., Rashid and Boyle, 2007), subsurface warming (e.g., Rasmussen et al., 2006; Rasmussen and Thomsen, 2004), or sea-ice formation (e.g., Dokken and Jansen, 1999) as the cause for this δ^{18}O$_{\text{npl}}$ signal, are rejected.

Since the record of δ^{18}O$_{\text{npl}}$ from Eirik Drift shares not only the same trends, but absolute values as a δ^{18}O$_{\text{npl}}$ record from the Nordic Seas (Dokken and Jansen, 1999), direct surface water communication is suggested. Given that sedimentation rates of fine-grained laminated sediments in the southern Norwegian Sea were greatly enhanced at this time (Lekens et al., 2005), coincident with the timing of rapid glacial retreat from the Scandinavian ice sheet (e.g., Rinterknecht et al., 2006), the δ^{18}O light event in the Nordic Seas is
ascribed here to meltwaters that were likely injected hyperpycnally into the Nordic Seas. Similar to previous suggestions (e.g., McManus et al., 2004; Peck et al., 2007b), the $\kappa_{\text{ARM}}/\kappa$ record for TTR-451 indicates that the AMOC was in a state of complete collapse at this time and, due to significantly reduced ocean circulation, these meltwaters likely ‘pooled’ in the Nordic Seas, possibly maintaining the AMOC in its collapsed state. The agreement between the δ^{18}O$_{\text{npl}}$ records from the Nordic Seas and at Eirik Drift, as the records return to heavier values, are interpreted to reflect a purging of these relatively freshened waters out of the Nordic Seas in a configuration analogous with the modern Arctic outflow through the Fram Strait via the East Greenland Current (EGC) (e.g., Rudels et al., 2002).

A few centuries after the δ^{18}O$_{\text{npl}}$ values in the Nordic Seas and at Eirik Drift returned to these heavier values, and the cessation of Scandinavian ice sheet retreat (Lekens et al., 2005; Rinterknecht et al., 2006), the AMOC underwent a sharp recovery at the Bølling warming (14.6 ka BP). The entire sequence of events extends the duration of H1 to almost 4000 years, rather than several centuries as previously suggested (Dowdeswell et al., 1995; Rohling et al., 2003; Hemming, 2004; Roche et al., 2004a, b). This longer composite duration of H1, presented here, agrees with the entire previously established period of collapsed deep-water formation in the Nordic Seas (McManus et al., 2004; Hall et al., 2006).

In summary, this study shows that mw-1a, the largest documented meltwater pulse of the last deglaciation, coincided with only a short lived and minor reduction in NADW flow intensity, and the relatively minor climate deterioration of the Older Dryas, which terminated the Bølling warming. However, much more extreme climate events (namely, H1 and the Younger Dryas), which are characterised by almost complete collapse of the AMOC have no discernable meltwater pulse associated with them. As summarised in Figure 6.1., this indicates a distinct non-linearity between the rate and magnitude of meltwater injections and the AMOC and climate response. Hysteresis loops of AMOC intensity in response to freshwater forcing produced by coupled ocean-climate
models suggest AMOC shutdown would result from between 0.15 and 0.5 Sv of freshwater forcing (e.g., Rahmstorf et al., 2005) and, moreover, instantaneous AMOC collapses for mwp-1a with only 0.1 Sv meltwater injection (e.g., Manabe and Stouffer, 1997). The freshwater forcings applied in these models are therefore apparently overestimated for H1 and the Younger Dryas, and yet underestimated for mwp-1a (Figure 6.1.). Clearly, reconciliation is required between the palaeo-data and modelled outcomes to better understand the ocean-climate response to meltwater perturbations.

Model simulations have suggested that non-linear responses of ocean circulation to the magnitude and rate of freshwater perturbations could occur in a system with different quasi-stable climate states (Rahmstorf, 1995; Ditlevsen, 1999). Alternatively, it may be that the nature or the location of meltwater entry into the oceans are more important for NADW formation than the magnitude or rate (Moore, 2005; Tarasov and Peltier, 2005). It has been suggested that a considerable component of mwp-1a may have hyperpycnally entered the ocean via the Gulf of Mexico (Flower et al., 2004; Aharon, 2005), and strong mixing with ambient seawater may have reduced its impact on NADW formation (Tarasov and Peltier, 2005; Aharon, 2005). It has also been suggested that although mwp-1a occurred ~1000 yrs prior to the Younger Dryas, it may have pre-conditioned the North Atlantic later AMOC shutdown, by reduction of the Greenland-Scotland Ridge overflow (e.g., Lohmann and Schultz, 2000), and/or by shifting the ocean-climate system to conditions where more than one AMOC state might co-exist (Knorr and Lohmann, 2007). Alternatively, contributions to the mwp-1a sea level rise may also have come from the Southern Hemisphere (e.g., Clark et al., 2002; Weaver et al., 2003; Knorr and Lohmann, 2007).

Conversely, meltwater (iceberg) injections during Heinrich event 1 and the Younger Dryas, are not dramatically evident in the sea-level records (Fairbanks, 1989; Hanebuth et al., 2000; Aharon, 2005; Peltier and Fairbanks, 2006) and yet may have sufficiently affected the Nordic Seas to cause a collapse of NADW formation. Moore (2005) and Tarasov and Peltier (2005) have proposed that if a small meltwater flux, not large enough to discern in sea level records, was
injected into this critical region for NADW formation, it may have triggered the NADW formation collapse associated with the Younger Dryas. Furthermore, the new reconstruction presented here in this thesis for the Nordic Seas and northern North Atlantic for the end of H1, suggests that meltwater injected at intermediate depths into the Nordic Seas may have had a catastrophic impact upon the rate of NADW formation, possibly stabilising the AMOC in its ‘off’ mode.

It is clear from this study (as summarised in Figure 6.1) and from previous model investigations (e.g., Knorr and Lohmann, 2007; Huang and Tian, 2008) that climatic impacts are not simply governed by the magnitude and/or rate of meltwater addition. It would appear that, if indeed the climate forcing was dependent on freshwater input, then (small) freshwater additions targeted on the Arctic/Nordic Seas (a key region of NADW formation today (e.g., Dickson and Brown, 1994; Bacon, 1998; 2002a)) and in interstadial modes of AMOC (e.g., Rahmstorf, 2002) may represent a much greater risk of disrupting NADW formation. Alternatively, it should be considered that the inferred non-linear responses of ocean circulation to the magnitude and rate of meltwater additions indicate that meltwater input was not necessarily the primary driver in AMOC and climate transitions. To evaluate this, new palaeo-proxy records are required that constrain other potential aspects of the ocean-climate interaction, such as sea-ice feedbacks and important seasonality changes (Broecker, 2001; Gildor and Tziperman, 2003; Li et al., 2005; Denton et al., 2005; Wunsch, 2006; Peck et al., 2008).
7. References

References

Berger, A. (1999), Parameters of the Earths orbit for the last 5 Million years in 1 kyr resolution, PANGAEA, doi:10.1594/PANGAEA.56040.

Billups, K., and D. P. Shrag (2000), Surface ocean density gradients during the Last Glacial Maximum, *Paleoceanography, 15, 1*, 110-123.

References

References

References

Hendy, I. L., and J. P. Kennett (2003), Tropical forcing of North Pacific intermediate water distribution during Late Quaternary rapid climate change?, Quaternary Science Reviews, 22, 673-689.

Huybers, P. (2004), Comments on ‘Coupling of the hemispheres in observations and simulations of glacial climate changes’ by A. Schmittner, O. A. Saenko and A. J. Weaver’, *Quaternary Science Reviews*, 23, 207-212.

References

Kiefer, T., and M. Kienast (2005), Patterns of deglacial warming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event 1, *Quaternary Science reviews, 24*, 1063-1081.

Lagerklint, I. M., and J. D. Wright (1999), Late glacial warming prior to Heinrich event 1: The influence of ice rafting and large ice sheets on the timing of initial warming, *Geology, 27*, 1099–1102.

Lindsay, R. W., and J. Zhang (2005), The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point?, *J. Clim.*, 18, 4879-4894.

References

Martinson, D. G., N. G. Pisias, J. D. Hayes, J. Imbrie, T. C. Moore, and N. J. Shackleton (1987), Age dating and orbital theory of the ice-ages: development of high-resolution 0 to 300,000 year chronostratigraphy, *Quaternary Research, 27*, 1-29.

Intensification and variability of ocean thermohaline circulation through the

Rahmstorf, S. (1994), Rapid climate transitions in a coupled ocean-atmosphere

Rahmstorf, S. (1995), Bifurcations of the Atlantic thermohaline circulation in

Rahmstorf, S., and A. Ganopolski (1999), Long-term global warming scenarios
computed with an efficient coupled climate model, *Climate Change*, 43, 353–
367.

Rahmstorf, S. (2000), The thermohaline circulation: a system with dangerous
thresholds, *Climate Change*, 46, 247-256.

Rahmstorf, S. (2002), Ocean circulation and climate over the past 120, 000 years,

Rahmstorf, S., M. Crucifix, A. Ganapolski, H. Goose, I. Kamenkovich, R.
Knutti, G. Lohmann, R. Marsh, L. A. Mysak, Z. Wang, and A. J. Weaver,
(2005), Thermohaline circulation hysteresis: A model intercomparison,

Rashid, H., R. Hesse, and D. J. W. Piper (2003), Distribution, thickness and
origin of Heinrich layer 3 in the Labrador Sea. *Earth Planet. Sci. Lett.*, 205,
281– 293.

Rashid, H., and E. A. Boyle (2007), Mixed-Layer Deepening during Heinrich
Events: A Multi-Planktonic Foraminiferal δ¹⁸O Approach, *Science*, 318, 439-
441.

Rasmussen, T. L., D. Bäckström, J. Heinemeier, D. Klitgaard-Kristensen, P. C.
Knutz, A. Kuijpers,., S. Lassen, E. Thomsen, S. R. Troelstra, and T. C. E. van
Weering, (2002a), The Faeroe–Shetland Gateway: Late Quaternary water
mass exchange between the Nordic seas and the northeastern Atlantic. *Marine

Reeh, N., H. Oerter, H. H. Thomsen (2002), Comparison between Greenland ice-
margin and ice-core oxygen-18 records, *Annals of Glaciology, 35*, 1, 136-
144.

Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, C. J. H. Bertrand,
vande Plicht, and C. E. Weyhenmeyer (2004), IntCal04 terrestrial

Reimer, P. J., and K. A. Hughen (2008), Tree rings floating on ice cores, *Nature
Geoscience, 1*, 218-219.

Rignot, E., and P. Kanagaratnam (2006), Changes in the Velocity Structure of

Rinterknecht, V. R., P. U. Clark, M. Raisbeck, F. Yiou, A. Bitnas, E. J. Brook, L.
Marks, V. Zelčs, J.-P. Lunkka, I. E. Pavlovskaya, J. A. Piotrowski, and A.
Raukas (2006), The last deglaciation of the southeastern sector of the

Risebrobakken, B., E. Jansen, C. Andersson, E. Mjelde, and K. Hevrøy (2003), A
high resolution study of Holocene paleoclimatic and paleoceanographic
changes in the Nordic seas, *Paleoceanography, 18*(1), 1017,

Risebrobakken, B., E. Balbon, T. Dokken, E. Jansen, C. Kissle, L. Labeyrie, T.
Richter, and L. Senneset (2006), The penultimate deglaciation: high-
resolution paleoceanographic evidence from a north-south transect along the

loops: Mineral magnetic characteristics and discrimination of components in
References

References

Ruddiman, W. F., and A. McIntyre (1973), Time-Transgressive Deglacial Retreat of Polar Waters from the North Atlantic, Quaternary Research, 3, 117-130.

Schiebel, R., S. Barker, R. Lendt, H. Thomas, and J. Bollmann (2007),
Planktonic foraminiferal dissolution in the twilight zone, Deep-Sea Research II, 54, 676–686

Severinghaus, J. P., and E. Brook (1999), Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice, *Science, 286, 930-934.*

Shackleton, N. J. (1974), Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus *Uvigerina*: isotopic changes in the ocean during the last glacial, CNRS, Colloques Internationals, 219, 203-209.

Stokes, C. R., C. D. Clark, D. A. Darby, D. A. Hodgson (2005), Late Pleistocene ice export events into the Arctic Ocean form the M’Clure Strait Ice Stream, Canadian Arctic Archipelago, *Global and Planetary change*, 49, 139-162.

References

Toller, J. T., D. W. Leverington, and J. D. Mann (2002), Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation, *Quaternary Science Reviews*, 21, 879–887.

Toscano, M. A., and I. G. Macintyre (2003), Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from *Acropora palmate* framework and intertidal mangrove peat, *Coral Reefs*, 22, 257-270.

Usdowski, E., and J. Hoefs (1993), Oxygen isotope exchanges between carbonic acid, bicarbonate, carbonate and water: A re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between carbonate species and water, Geochimica Cosmochemica Acta, 57, 3815-3818.

Vidal, L., R. R. Schneider, O. Marchal, T. Bickert, T. F. Stocker, and G. Wefer (1999), Link between the North and South Atlantic during the Heinrich events of the last glacial period, Climate Dynamics, 15, 909-919.

References

Weaver, A.J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica (2003), Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval, Science, 299, 1709-1713.

References

Wunsch, C. (2003), Greenland-Antarctic phase relations and millennial time-scale climate fluctuations in the Greenland ice-cores, Quaternary Science reviews, 22, 1631-1646.

APPENDICES

Appendix 1. Radiocarbon (AMS14C) age versus calendar age plots for the Sunda Shelf and Vietnamese Shelf datings.

Appendix 1 presents the calibration plots for the radiocarbon (AMS14C) ages that make up the Sunda Shelf sea level record (Hanebuth et al., 2000). The data were obtained from the Supplementary information with Hanebuth et al. (2000). The plots were generated using Calib 5. 0. 1 (Reimer et al., 2004).

Appendix 2. Digital copy of the thesis and data used within
APPENDIX 1

Radiocarbon (AMS14C) age versus calendar age plots for the Sunda Shelf and Vietnamese Shelf datings.
Appendices

Sunda Shelf Datings
Appendices
Vietnamese Shelf Datings