
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Serialization and Asynchronous Techniques for Reliable
Network-on-Chip Communication

Simon Ogg

Thesis for the degree of Doctor of Philosophy

May 2009

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

SERIALIZATION AND ASYNCHRONOUS TECHNIQUES FOR RELIABLE

NETWORK-ON-CHIP COMMUNICATION

by Simon Ogg

The Network-on-Chip (NoC) paradigm has been proposed as a potentially viable on-

chip communication infrastructure for multiprocessor SoC. This thesis investigates

the development and validation of efficient links that improve NoC performance,

power consumption and reliability. There is emphasis on low-level simulation and

validation of the NoC links throughout and gate level circuits are given to provide

practical implementations.

The first part of the thesis investigates the use of compression in bit-serial

point-to-point links as a means of increasing the available bandwidth of the links in

NoC. A bit-serial link reduces the cost of interconnect by reducing the number of

wires, but at the expense of reduced throughput. Compression is used to improve the

throughput of the serial link by reducing the amount of data transmitted through

unused significant bit removal. The compression is performed in real time and the

overhead of the extra circuitry is small. The link is modelled in VHDL and simulated

to check functionality and correct operation.

The second part of the thesis investigates the development of serial

asynchronous links to overcome issues such as power and interconnect area overhead

in NoC links. Serialization is used to reduce the interconnect cost of a link by

reducing the number of wires needed. The combination of asynchronous circuitry and

serialization allows for a lower wiring area and reduced power NoC link, in particular

for increased link length. The serial asynchronous link is compared to a fully

synchronous link of similar characteristics. Power, area and throughput is compared

between the asynchronous and synchronous solutions. Validation is performed on

FPGA to confirm the correct functionality of the serialized asynchronous link.

Unreliability due to soft errors is becoming an issue with scaling of

technology. The third part of the thesis investigates a novel data coding technique for

the asynchronous links developed earlier which offers resilience to soft errors.

Resilience is achieved by coding the data using symbols for each bit and a common

reference so that transient errors on the NoC link wires can be detected by comparing

the symbols and reference to obtain validity of the data and the value of the data.

Practical circuits are shown and simulated as well as the area and power estimates.

Contents

Chapter 1. Introduction...1

1.1. Bus Based Communication...4

1.2. Network-on-Chip ..8

1.3. Motivation...12

1.4. Contributions and Thesis Structure...13

1.5. Publications...14

Chapter 2. Literature Review ...16

2.1. Bus Based Communication...16

2.2. NoC Based Communication ...19

2.2.1 NoC Link Level Interconnect ..19

2.2.2 Serialization of NoC Links ..21

2.3. Reliability in NoC ...25

2.4. Concluding Remarks...28

Chapter 3. Bit-Serial Compression using Unused Significant Bit Removal.........29

3.1. Motivation...30

3.2. Compression ...37

3.3. Proposed Compression Technique: Unused Significant Bit Removal40

3.3.1 Fixed Block Sizing...41

3.3.2 Dynamic Block Sizing ...43

3.4. Experimental Results ..48

3.5. Concluding Remarks...56

Chapter 4. Asynchronous Serialized NoC Links ..57

4.1. Motivation...59

4.2. Asynchronous Link ...61

4.2.1 Synchronous to Asynchronous Interface ...64

4.2.2 Asynchronous Serializer ..65

4.2.3 Asynchronous Wire-Buffer..66

4.2.4 Asynchronous De-Serializer ..67

4.2.5 Asynchronous to Synchronous Interface ...67

4.3. Word Level Acknowledgement ..69

4.4. Calculation of Upper Bound Throughput ...72

4.4.1 Per Transfer Acknowledgement ..73

4.4.2 Per Word Acknowledgement ...74

4.5. Experimental Results ..76

4.5.1 Area overhead ..78

4.5.2 Power Consumption...80

4.5.3 Maximum Throughput ...84

4.5.4 Latency...85

4.6. Summary of per-word and per-transfer schemes ..85

4.7. Practical Validation of the Proposed Link ..89

4.7.1 Functional Checking ..92

4.8. Concluding Remarks...95

Chapter 5. Resilient Asynchronous Links ...96

5.1. Review of Current Asynchronous Coding and Motivation97

5.2. Proposed Resilient Link..100

5.3. Proposed Link Architecture ..104

5.3.1 TX DATA Circuit ..105

5.3.2 TX REF Circuit..107

5.3.3 RX DATA Circuit..108

5.3.4 RX REF Circuit..110

5.4. Resilience ..112

5.5. Experimental Results ..114

5.5.1 Throughput and Latency ..116

5.5.2 Area Overhead ...117

5.5.3 Power Consumption...118

5.5.4 Limits of Resilience ...119

5.6. Wire Buffering ..123

5.7. Concluding Remarks...126

Chapter 6. Conclusions and Future Work ..127

6.1. Conclusions...128

6.2. Future Research ..130

6.2.1 Custom ASIC Validation ...130

6.2.2 Symbol Exploration ...130

6.2.3 Pair Wise Data and Reference ...132

Appendix A VHDL Modules for Compression ...133

Appendix B MPEG Background Information ..134

Appendix C Reducing Wire Delay ...139

Appendix D FPGA Design Flow ...141

Appendix E Area Estimation of Phase Encoding..143

References ...147

List of Figures

Fig. 1-1 Example SoC Fujitsu MB86H70 HDTV Processor [3]2

Fig. 1-2 Example of Geometry Size Reduction on Global Interconnect3

Fig. 1-3 Simple Shared Bus ...4

Fig. 1-4 DSP to RAM communication ..4

Fig. 1-5 Shared Bus..5

Fig. 1-6 General AMBA based design architectures [19]..7

Fig. 1-7 Example Network-on-Chip ..9

Fig. 1-8 Generic Network Interface [27] ...9

Fig. 1-9 Packets and Flits...10

Fig. 1-10 Wormhole routing ..10

Fig. 2-1 Communication Architectures for TCP/IP network interface system [62]16

Fig. 2-2 Surfing Link [88]..20

Fig. 2-3 Repeater effects on long wires [93]..21

Fig. 2-4 Capacitive Crosstalk...22

Fig. 2-5 Serialized Scheme using ring oscillators [100] ..23

Fig. 2-6 SILENT Encoding Scheme [103] ..24

Fig. 2-7 Synchronous with clock and Asynchronous Dual Rail25

Fig. 2-8 Default Backup Paths in NoC [117]...26

Fig. 2-9 Asynchronous Test Wrappers [125]...27

Fig. 2-10 Organisation of Chapters..28

Fig. 3-1 Serial versus Parallel example..30

Fig. 3-2 Various Improvements to Serial Links...31

Fig. 3-3 Common mode Noise on Differential Signal ...32

Fig. 3-4 Example of Redundant Bits..32

Fig. 3-5 Example of Transition Reductions...33

Fig. 3-6 Transmission Minimized Differential Signalling...34

Fig. 3-7 Bit-Serial link ...36

Fig. 3-8 Bit-Serial with compression ...36

Fig. 3-9 Snapshot of common lossless compression schemes.....................................37

Fig. 3-10 Example 8x8bit block of data...40

Fig. 3-11 Example of compression ..41

Fig. 3-12 Generic Diagram of Compression Scheme ..43

Fig. 3-13 Compressed Data Format ...45

Fig. 3-14 Algorithm for dynamic block sizing ..45

Fig. 3-15 Example initialization, evaluation and update cycle46

Fig. 3-16 Implementation for dynamic block sizing, USBR47

Fig. 3-17 Intra-coded pictures from MPEG stream bike.m1v and football.m1v.........49

Fig. 3-18 Average Reduction in Bits Transmitted ...51

Fig. 3-19 Average Reduction in Transitions..52

Fig. 3-20 Test bench and power simulation setup ...54

Fig. 4-1 NoC with Synchronous Link..59

Fig. 4-2 Synchronous with Serialization Link ...60

Fig. 4-3 Proposed Serialized Asynchronous Architecture ...60

Fig. 4-4 Block Diagram Asynchronous Link...61

Fig. 4-5 C-Element...62

Fig. 4-6 4 Phase (top) and 2 Phase (bottom) Handshaking..63

Fig. 4-7 David Cell ..63

Fig. 4-8 Chain of David Cells ..64

Fig. 4-9 Synchronous to Asynchronous Interface..65

Fig. 4-10 Asynchronous 32 to 8 Bit Data Serializer..66

Fig. 4-11 Asynchronous Wire Buffer ..66

Fig. 4-12 Asynchronous 8 to 32 Bit Data De-Serialiser ..67

Fig. 4-13 Asynchronous to Synchronous Interface..69

Fig. 4-14 Ack. every transfer(top) vs ack. every word (bottom)70

Fig. 4-15 Serial Asynchronous word-level acknowledgement70

Fig. 4-16 Word level serializer ..71

Fig. 4-17 Word level de-serializer ...72

Fig. 4-18 Cycle Delay for the Per-transfer...73

Fig. 4-19 Delay for per-transfer and per-word...74

Fig. 4-20 Wire Delay for 0.44 um pitch global wire ...75

Fig. 4-21 Wire Length versus Throughput ..76

Fig. 4-22 Simulated Implementations..77

Fig. 4-23 Bandwidth vs. Wires ..78

Fig. 4-24 Wire Area ...79

Fig. 4-25 Definition of Usage in our Simulations..81

Fig. 4-26 Number of Buffers vs. Power @ 100 MHz..82

Fig. 4-27 Buffers v Power @ 300 MHz...83

Fig. 4-28 Buffers versus Static power..83

Fig. 4-29 Average Power for 50% usage ...84

Fig. 4-30 Average Static power breakdown ..84

Fig. 4-31 Switch clock speed versus Throughput ..85

Fig. 4-32 Latency through the link ..85

Fig. 4-33 Relative timing drift ...87

Fig. 4-34 First and Last flit acknowledgement ..88

Fig. 4-35 Synchronous Link RTL & Test Bench...91

Fig. 4-36 Asynchronous Link TRL & Test bench ...91

Fig. 4-37 Floorplan Constraints of FPGA..92

Fig. 4-38 Timing Capture of Asynchronous Per-Transfer Link93

Fig. 4-39 PAR simulation of asynchronous Per Transfer Link94

Fig. 4-40 State Listing of Asynchronous Link when VALIDOUT is high94

Fig. 5-1 Current asynchronous links [110, 111, 113, 114] ..98

Fig. 5-2 Overview of proposed link...100

Fig. 5-3 Symbol and reference phase relationship...101

Fig. 5-4 Example symbol phase relationship for 4 bit wide data...............................102

Fig. 5-5 Encoding State Diagram of proposed Link ..103

Fig. 5-6 Link showing circuit modules connectivity ...105

Fig. 5-7 TX DATA Circuit ..105

Fig. 5-8 REFCHANGED Circuitry..105

Fig. 5-9 Transition Table for REFCHANGED circuitry ...106

Fig. 5-10 Present-next Table for TX REF circuit ..107

Fig. 5-11 TX REF Circuit ..107

Fig. 5-12 DATA and SYMVALID truth table...108

Fig. 5-13 RX DATA Circuit ..109

Fig. 5-14 Truth Table for REFINC ..110

Fig. 5-15 RX REF Circuit ..111

Fig. 5-16 RX DATA timing...112

Fig. 5-17 Probability of corruption for a single transient ..113

Fig. 5-18 Test bench setup ...114

Fig. 5-19 Reference and symbol signalling ...115

Fig. 5-20 Transients on a symbol wire...115

Fig. 5-21 Transients on a reference wire ...116

Fig. 5-22 Transients on a SYM[A,B] pair ...116

Fig. 5-23 Corruption of the Data on positive symbol edge..119

Fig. 5-24 Corruption of the Data on negative symbol edge.......................................120

Fig. 5-25 Example corruption of data for various transient widths120

Fig. 5-26 Transient width vs Bit Error for 300 data bits..122

Fig. 5-27 Simple Wire Buffers...123

Fig. 5-28 Latched or Registered Wire buffers ...123

Fig. 5-29 Wire Buffer ..124

Fig. 5-30 Improved Wire Buffer ..125

Fig. 6-1 Possible states for 2 wire symbols..130

Fig. 6-2 Coding using 3 wires per Symbol ..131

Fig. 6-3 Pair-Wise Symbols...132

Fig. A-1 Top level RTL Serial Link ..133

Fig. A-2 Top Level RTL partitioning, USBR..133

Fig. B-1 Layered Hierarchy of the Video Sequence..135

Fig. B-2 Part of the MPEG Video Decoding Structure ...136

Fig. B-3 Luminance and Chrominance Blocks of Macro-block, tyre........................137

Fig. B-4 Luminance and Chrominance Blocks of Macro-block, Wall137

Fig. B-5 Byte aligned and bit-packed for 10 bit numbers stored in memory138

Fig. C-1 Wire Delay...139

Fig. C-2 Wire Delay (Buffered)...139

Fig. C-3 Basic Asynchronous Cycle ..140

Fig. C-4 Buffered Wires ..140

Fig. C-5 Registered Buffered Wire ..140

Fig. D-1 Synchronous FPGA Design Flow ...141

Fig. D-2 Asynchronous FPGA Design Flow ...142

Fig. E-1 Multiple Rail Phase Encoding Link...143

Fig. E-2 Gate Count for 1 Bit Wide M-Rail phase encoding.....................................143

Fig. E-3 Partial Matrix Encoder...144

Fig. E-4 Gate and Area Cost for 1 bit and 8 bit M-Rail Phase Encoding..................146

List of Tables

Table 3-1 Example Huffman Coding...35

Table 3-2 Sub-word Encoding ...36

Table 3-3 Amount of Data Transferred (Bits) ...50

Table 3-4 Number of Transitions...50

Table 3-5 Area of design for standard and fixed block size of 64 (µm2)....................54

Table 3-6 Power used when transferring the bike picture data example (mW)...........55

Table 4-1 Area overhead of the synchronous and proposed link.................................80

Table 4-2 Breakdown of implementation I1 ..80

Table 4-3 Breakdown of Implementation I2..80

Table 4-4 Breakdown of implementation I3 ..80

Table 5-1 Comparison of proposed and existing links ..104

Table 5-2 Test bench handshake parameters ...114

Table 5-3 Area Overhead of Links (µm
2
) ..117

Table 5-4 Dynamic and Static Average Power (µW) ..118

DECLARATION OF AUTHORSHIP

I, Simon OggSimon OggSimon OggSimon Ogg declare that the thesis entitled

Serialization and Asynchronous Techniques for Reliable NetworkSerialization and Asynchronous Techniques for Reliable NetworkSerialization and Asynchronous Techniques for Reliable NetworkSerialization and Asynchronous Techniques for Reliable Network----onononon----Chip Chip Chip Chip

CommunicationCommunicationCommunicationCommunication

and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

� this work was done wholly or mainly while in candidature for a research

degree at this University;

� where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated;

� where I have consulted the published work of others, this is always clearly

attributed;

� where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work;

� I have acknowledged all main sources of help;

� where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have

contributed myself;

� none of this work has been published before submission, orororor [delete as

appropriate] parts of this work have been published as: [please list

references]

Signed:Signed:Signed:Signed: ………………………………………………………………………..

Date:Date:Date:Date:…………………………………………………………………………….

Acknowledgements

I would like to thank my supervisor Professor Bashir Al-Hashimi for his support and

help throughout my PhD. I am also grateful to Professor Alex Yakovlev (Newcastle

University) for the valuable technical input especially on asynchronous matters.

I would like to acknowledge Physical Sciences Research Council (EPSRC) for

funding the project under grant no. EP/C512804.

I would also like to acknowledge Dr Tom Kazmierski and Dr. Koushik

Maharatna for the feedback during the 9 month report and MPhil transfer report

respectively.

List of Abbreviations

SoC System-on-Chip

NoC Network-on-Chip

MSB Most Significant Bit

LSB Least Significant Bit

LEDR Level Encoded Dual Rail

LETS Level Encoded Transition Signalling

FPGA Field Programmable Gate Array

PE Processing Element

DFT Design For Test

DFM Design For Manufacture

IP Intellectual Property

IC Integrated Circuit

AMBA Advanced Microcontroller Bus Architecture

LCD Liquid Crystal Display

ASB Advanced System Bus

APB Advanced Peripheral Bus

AHB Advanced High Performance Bus

AXI Advanced eXtensible Interface

UART Universal Asynchronous Receiver/Transmitter

ADC Analog to Digital Convertor

DAC Digital to Analog Convertor

RAM Random Access Memory

ROM Read Only Memory

DSP Digital Signal Processor

SERDES Serializer / Deserializer

WAFT WAve Front Train

RTL Register Transfer Level

FSM Finite State Machine

Page 1 of 158

Chapter 1. Introduction

Demand for cheaper and higher performance electronic products increases year on

year and is likely to keep increasing. One way of reducing the costs and improve

performance is to integrate more and more functionality into a single microchip which

would have previously required several discrete device on a circuit board to form a

system. The integration of several devices to form a system on a single microchip is

called system-on-chip (SoC) [1]. All these functional units need to be able to

communicate with each other to pass data or control information in order for the

system to work. They way these functional units of the SoC communicate with each

other is termed as on-chip communication in this thesis. As SoC devices integrate

more and more functional units the on-chip communication can become increasingly

complex. A SoC could contain many different processing units, such as a digital

signal processor (DSP), random access memory (RAM), read only memory (ROM),

Microprocessor, analog to digital converter (ADC), digital to analog converter

(DAC), universal asynchronous receiver/transmitter (UART) and various other

elements. Fig. 1-1 shows an example High Definition TeleVision (HDTV) SoC from

Fujitsu which integrates several different processing units and interfaces to form a

complete video processing engine.

In future applications the SoC platforms could contain hundreds or possibly

thousands of processing units. These could potentially be huge multi-processor arrays

for highly parallel applications or perhaps custom SoCs that have many units to

perform different functions. These functional units could be a mix of pre-designed

blocks supplied from different design houses as well as custom designed circuitry.

These functional units are often referred to as Intellectual Property (IP) cores [2].

Often the pre-designed blocks have been verified for a particular process technology

and the issue of how best to connect all the functional units, or blocks, poses a

challenge. When future SoC platforms are going to contain hundreds or thousands of

processing units then bus based communication may be difficult to implement and

scale poorly. A Network-on-Chip based communication system will be more

desirable as the mechanism for passing data from one IP core to another. Such SoC

platforms of the future could consist of multi-media processing applications that

require real time streaming of data that require heavy bandwidth, systolic arrays of

Page 2 of 158

processing units that pass data through several processing units each of which

performs computation on the data or highly parallel multi-core processors.

Fig. 1-1 Example SoC Fujitsu MB86H70 HDTV Processor [3]

Key challenges for future SoC designers include issues such as clock synchronization,

signal integrity, process variation and power consumption [4]. Clock synchronization

will become an issue due to the uncertainty of interconnect delay caused by process

variation which is difficult to control. Signal integrity will be affected by the

continuous smaller geometries that allow denser and more tightly packed circuits to

integrate into smaller areas. Power consumption will require reduced power supplies

and system level power saving mechanisms in order to reduce power. Leakage power

will also become problematic as the power is wasted through currents flowing through

transistors which are switched off increases with smaller geometries.

The International Technology Roadmap for Semiconductors (ITRS) [5] states

that scaling of global interconnect and decreased reliability are two of the many

challenges facing silicon design. The scaling of global interconnect performance

relative to device performance will impact the communication mechanism and

synchronization in large SoC designs. Research into Network-on-Chip is an active

area which proposes the use of on-chip networks as a communication mechanism.

Network based on-chip communication is a promising approach to overcome the

global interconnect scaling problem stated by the ITRS. Consider Fig. 1-2, the local

wires in the cores (A) reduce along with the size of the core and the transistors. The

global wires that are used to connect between the cores (B) are still the same length.

The cores and their associated local wiring are able to operate at faster speeds,

whereas the speed to communicate between the cores remains relatively similar.

Effectively the global wires remain fixed whereas the gates and local wires scale with

Page 3 of 158

the process [6.]. As wire delays are effectively fixed by the particular technology

being used global wires may have to have repeaters or registered buffers used along

the length of the wires in order to pipeline the data so that several items of data can be

travelling at the same time on different points along the length of the wire.

A
A A

B

B

Original Process

A

Process Shrink

Fig. 1-2 Example of Geometry Size Reduction on Global Interconnect

Reliability is also a concern, the ITRS [5] states that technology scaling leads to more

transient and permanent failures of signals, logic values, devices and interconnects.

Making robust designs will become a priority as systems become too large to be

effectively tested during manufacture. Such solutions include redundant logic and on-

chip re-configurability for fault tolerance, adaptive and self-correcting circuits and

software based fault tolerance. Shrinking geometries, lower power voltages and

higher frequencies have a negative effect on reliability, intermittent faults arising from

process variation and manufacturing are increasing and smaller transistors and lower

power voltages means that circuits are more susceptible to neutron and alpha particles

which cause transient faults [7].

This thesis addresses some of the challenges of performance and reliability in

Multi-processor SoC based communication systems by providing solutions that can be

implemented within the NoC framework. The rest of this chapter will explain the

principles of on-chip communication and provide an overview of bus based and NoC

communication. Section 1.1 introduces bus based communication. Network-on-Chip

communication is discussed in section 1.2. The motivation for the work in this thesis

is presented in section 1.3 along with the contributions and thesis structure in 1.4.

Finally section 1.5 gives the publications that have arose from the work in this thesis.

Page 4 of 158

1.1. Bus Based Communication

There currently exists many available on chip bus topologies [8-12]. Buses are the

simplest and most widely used interconnection network [13]. In its simplest form a

bus can be considered a shared medium with which the cores on the bus can transfer

data to and from the other cores. Fig. 1-3, shows an example bus with a

microprocessor, digital signal processor (DSP), random access memory (RAM) and

an input-output device (I/O). Only one core on the bus can send a message at a time.

 Micro-
processor

DSP RAM I/O

Fig. 1-3 Simple Shared Bus

Consider Fig. 1-4, if the DSP is transferring data to the RAM then the other cores

cannot use the bus while this is happening. If the microprocessor tries to send a

message to the I/O at the same time this will cause bus contention [14]. Typically

arbitrators are used when there is more than a single core that can send a message.

The arbitrator decides which core should have use of the bus when two or more cores

need to use it at the same time. As only one core can send a message on the bus at any

given time the bus is effectively reserved for that core until it decides to release the

bus. This is one of the major problems of bus based systems and efforts have been

made to try and alleviate this as much as possible. Prioritising can be used to ensure

that important transactions, such as critical interrupts or control information, are

performed before the less important ones, such as non-critical data transfers.

 Micro-
processor

DSP RAM I/O

Fig. 1-4 DSP to RAM communication

Bus operations can be can be categorized into three units; cycles, messages and

transactions [14]. Messages are a logical unit of information such as a read message

or write message. A message requires a number of cycles to complete when being

sent from the sender to receiver device. A transaction is a sequence of messages, for

example to read from a memory the transaction consists of a read message and a reply

with the data. Recently bus architectures have started to use split transactions, where

Page 5 of 158

the request is separated from the reply. This is particularly useful for read requests

where the target device may not be ready to send the data. Rather than have the bus

being held waiting for the target core to send the data, the bus is released and other

transactions can take place, the target core will send the data later. Bus based

communication does not scale well [15] since the addition of more cores means more

competition for the use of the bus, increasing the amount of time cores need to wait

for control of the bus and also limiting the bandwidth. As there is some overhead in a

bus transaction such as arbitration, addressing and possibly acknowledgement

messages can be sent as a block or burst of information. Burst messages for example

allow several data items to be read or written to a device across a bus without need to

arbitrate and address each data item.

Bus bridges [16] are a mechanism that can be used to effectively split the bus

into several sections. In Fig. 1-5 for example, a bridge could be introduced to split the

DSP and RAM from the microprocessor and I/O. The DSP can send messages to the

RAM at the same time the microprocessor can send messages to the I/O device.

However, if transfers go through the bridge, such as the microprocessor sending

messages to the RAM, then the transfers may have slightly increased latency due to

the data having to go through the bridge and also both halves would be in use

effectively blocking the use of the bus on both sides until the transfer is complete.

Having bridges is also useful if slow cores are on one side of the bridge and fast cores

on the other, since the fast side of the bus can operate at the highest possible speed

which some cores on the slow side may not be able to operate at.

Micro-

processor
DSP RAM I/O

B
R

ID
G

E

Fig. 1-5 Shared Bus

One of the most popular SoC bus solutions are the bus types defined in the Advanced

Microcontroller Bus Architecture (AMBA) from ARM [8]. Over several years the

AMBA specifications have been refined to meet the requirements of more complex

SoC designs. The various bus types specified range from the simple bus architectures

used to access peripherals to more complex multi-master high performance bus

Page 6 of 158

architectures. A bus master is a core which initiates communication, a bus slave is the

target core which responds or is the target of the communication. The main bus types

are summarised briefly in [17, 18] which are:

• APB (Advanced Peripheral Bus) is a single master, non pipelined low speed

synchronous bus used to interface to peripherals which must all be slaves. The

bus can be implemented with dual read-write or tri-state. It does not support

burst messages.

• ASB (Advanced System Bus) was the 1
st
 generation AMBA system bus

introduced in 1995. It is a synchronous multi-master bus and supports burst

messages and any master can lock the bus as required. It does not support split

transactions. It is a non-multiplexed bus with a single data bus.

• AHB (Advanced High-performance Bus) is the 2
nd

 generation AMBA system

bus introduced in 1999. It is a synchronous non-multiplexed multi-master bus.

It is pipelined and supports burst messages. Also supported are split

transactions where the slave can trigger the release of the bus and complete the

transaction at a later time. It is a non tri-state multiplexer implementation.

• AXI (Advanced eXtensible Interface) is the 3
rd

 generation AMBA bus

introduced in 2003. It is a channel based architecture supporting multiple

outstanding burst, out of order completion. Can be implemented as a shared

bus, multi-layer or a mixture of both. Multi-layer is a term used to define a bus

interconnect where some or all of the bus masters each have their own bus

layer which connects to every slave on the bus.

The evolution of early general architecture for AMBA based designs is now

discussed. Older systems which used tri-state buses which had several cores attached

often had high capacitance on the bus [19] due the number of drivers attached. More

modern buses are multiplexed based so that the capacitance seen by the drivers is not

affected by the number of cores attached to the bus. Even with a multiplexed bus the

performance of the bus is reduced when the number of cores using the bus increases,

this is because the bus is effectively a shared communication medium where only one

device on the bus can get control and use it at any point in time. The solution [19] was

to partition the different cores onto separate buses. Fig. 1-6a shows example

partitioning for early AMBA based designs. The main components of interest are the

Page 7 of 158

ARM processor and the LCD Controller which all require high speed access to

memory on the ASB bus. Most of the bus traffic such as CPU fetches from memory

and LCD direct memory access (DMA) is on the ASB bus. The APB bus is separated

or de-coupled from the ASB bus with a bridge. One of the problems with this

architecture is the LCD competes with the ARM processor for external memory

accesses. Devices could cause waits on the bus for a large amount of time locking out

DMA accesses to DRAM.

Fig. 1-6b shows that the SoC designs from ARM split the external static

memory and DRAM interfaces onto separate buses coupled via a bridge. This allows

DMA to fetch data from DRAM while at the same time the processor can access

ROM or peripherals. The critical path in this design is the ARM to DRAM controller

which is split by the ASB to ASB bridge. A further iteration of the architecture is

shown in Fig. 1-6c where a multi-port memory controller is used to alleviate issues

where the LCD controller can access the SDRAM without interfering with the ARM

processor transactions. Another advantage is that the high-bandwidth data transfer

required for the LCD controller occurs on its own local bus, reducing power

consumption.

 (a) Shared Data Bus (b) Bridge to DRAM (c) Multi-port

Fig. 1-6 General AMBA based design architectures [19]

The overall general trend to relieve bottlenecks in bus based communication designs

is to split or partition the bus in some way. While partitioning the bus clearly

alleviates some problems, over-partitioning and adding too many bridges will also

cause problems such as additional latency through the bridges.

Page 8 of 158

1.2. Network-on-Chip

Splitting a single bus into multiple buses and partitioning the cores onto the most

appropriate bus is one way to raise throughput or avoid competition between bus

masters. Another approach is to use a crossbar switch [20-22], which can connect one

set of cores to another set. The crossbar switch can connect any core in one set to any

core in another set and effectively become a point to point link between the two cores.

Only one device can control or be controlled at any one time. The advantage of a

crossbar switch is that it can support any number of simultaneous transactions

between cores as long as no conflicts occur. The disadvantage of crossbar switches is

that they are expensive, especially when the number of cores in a set increase as the

area of the crossbar switch would increase squarely with the number of cores.

Crossbar switches are also used in Network-on-Chip. However, the switches tend to

have a smaller number of input and output channels and are distributed around the

chip as opposed to one large crossbar switch which could connect each core with

every other core. Having several smaller crossbar switches distributed around the chip

as the communication mechanism also allows for better scalability since another

switch can easily be added to the system without impacting the existing interconnect

of switches too much.

Network-on-Chip (NoC) is a current area of research interest which proposes a

network type architecture to allow the different functional units within a SoC to

communicate with each other [23, 24]. A NoC typically consists of several point to

point links connecting switches (routers) together and the functional blocks. For

example, Fig. 1-7 shows 8 functional blocks (A-H) connected via 8 switches (1-8).

Each functional block will interface to a switch through a network interface. The

topology shown in Fig. 1-7 is a 2D mesh. The topology of the network is not fixed

and could be a 2D mesh, Torus, Hypercube, Star [25, 26] or other common topology.

The topology does not have to have a regular structure and could also be application

specific topology with an irregular layout. Such application specific topologies could

be optimized by the designer to arrange it so that low speed cores do not have the

same level of interconnectivity or access to the network as high speed cores which

require higher bandwidth. However, application specific NoCs could be restrictive if

the application changes and different communication requirements are needed.

Page 9 of 158

 A

Switch

1

B

Switch

2

C

Switch

3

H

Switch

8

D

Switch

4

G

Switch

7

F

Switch

6

E

Switch

5

Network Interface

Fig. 1-7 Example Network-on-Chip

A generic network interface is shown in Fig. 1-8. The network interface converts the

packet based communication to the protocols that is used by the IP cores. It is

responsible for packetizing the data and scheduling the packets. The network interface

will take the read and write requests from the core and transform them into packet

based transactions that conform to the NoC packet protocol. Data is then moved from

source to destination through the network via the switches as a packet.

OCP/IP
to

Packet

Network Interface

IP
 I

/F

Packet
to

OCP/IP

R
O

U
T

E
R

IF

Outbound Queue

Inbound Queue

IP CORE ROUTER

Fig. 1-8 Generic Network Interface [27]

A packet can be considered as a group of bytes consisting of header, payload and the

tail [28], Fig. 1-9. The packet can be further broken down into Flits, a logical unit of

certain width that the packet is broken down into. The packets of data are built by the

network interface and then forwarded to the switch. The switch then looks at

information in the header to decide where to forward the packet to. The packet may

hop through one or more switches in order to arrive at the destination where the

packet will be accepted and the data pushed back out into the destination core across a

common IP core interface. A packet generally consists of:

Page 10 of 158

• Header: generally this contains information about the path of the packet, the

source, destination, type of packet etc. The contents and size of the header is

dependent on the complexity of the NoC architecture.

• Payload: contains any data that is to be transferred from one core to another.

• Tail: contains termination codes that represent the end of packet. Also can

contain a checksum that can be used for error detection.

PAYLOAD HEADER TAIL

FLIT FLIT FLIT FLIT FLIT

Fig. 1-9 Packets and Flits

There are three popular techniques for sending packets of data, these are Store and

Forward, Virtual Cut Through and Wormhole [29]. Wormhole routing is the choice of

technique for NoC in which each flit of a packet is sent, Fig. 1-10. Switch 1 receives a

flit and asks switch 2 if it is ready to receive the flit, switch 2 acknowledges and the

flit is sent. Each switch can hold a single or multiple flits. Wormhole routing does not

suffer the latency problem of store and forward and also does not require each switch

to have buffer space for the entire packet. Latency is defined in this case the time it

takes for the first flit of data to go from the source to the destination. Naturally

wormhole type routing will have lower latency as the flits will arrive faster at the

destination since they are free to move from router to router without having to wait

for the whole packet to fill the router in schemes such as store and forward.

Switch

1

Switch

2

Switch

1

Switch

2

Flit(1) Flit(1) Flit(2)

Fig. 1-10 Wormhole routing

The switches in the NoC structure are responsible for routing the packets in the

correct direction based upon information in the header. Various schemes can be used

from simple static XY routing [30-32] to complex dynamic (adaptive) schemes [33-

35]. Simple static routing if often the choice for SoC designs due to the lower cost and

more simple implementation of the system [36]. Static routing is often used when the

Page 11 of 158

traffic around the NoC is known before implementation so an appropriate topology

and bandwidth can be chosen. If traffic patterns are not known before design time

then more complex dynamic routing that attempts to balance the routing to ease

congestion could be used. Dynamic routing also is useful when faults exists such as a

dead switch, a dynamic routing scheme could simply adapt and find a new route

around the fault area. Dynamic routing could require complex and possibly

impractical solutions which could lead to high overheads when implementing the

NoC. Much work has been done with many publications and research groups focusing

on this area and the reader is referred to literature [37-44] for further reading if

required.

Circuit switching and packet switching techniques are the main techniques to

create a connection between source and destination [45]. Packet switching is more

common and is referred to as packet switching because the information to tell the

switch where to send the data next is embedded in the packet. Circuit switching is

when the connection is setup before the data is sent and maintained until the

connection is terminated. Advantages of circuit switching are stable connection, high

bandwidth but suffer from an initial circuit setup penalty when setting up the

connection. Packet switching advantages include congestion avoidance and fault

tolerance as each packet can take different routes, disadvantages are that there is a

penalty for each packet due to header information, nodes need buffering and difficult

to guarantee quality of service (QoS) [46].

NoC schemes can also exploit circuit switching and packet switching together

in order to get the best of each world. Circuit switching techniques which establish a

connection before the data is sent allows the user to have a Guaranteed Throughput

(GT) since the bandwidth has been basically reserved until the connection is removed.

Packet switching uses wormhole routing which generally provides a Best Effort (BE)

approach. AEtheral is a proposed NoC that takes advantage of both GT and BE

architecture [47]. This is achieved by using a GT and BE router used in parallel, the

GT router has a higher priority for use of the links that the BE router. The BE router

can only use the links if the GT router is not using them. Using this approach it is

possible to guarantee a QoS for certain application which require a guaranteed

throughput.

Page 12 of 158

As technology scales down soft errors are also becoming a concern [48-51]. A

soft error is where a signal or piece of data is wrong within a circuit, but the circuit

itself is not broken or faulty. A soft error can occur because of alpha particles, cosmic

rays and thermal neutrons [52], as well as crosstalk and signal integrity problems.

Radiation hardening and error detection and correction techniques are often used to

alleviate soft error problems. Radiation hardening is where the designers increase the

capacitance of certain nodes in a circuit by increasing the transistor sizes so that it is

less likely a particle can upset the node and affect the circuit. Error detection and

correction can be done through data coding that adds redundancy to the data in order

to be able to see if a single or multiple bit error has occurred.

1.3. Motivation

A general overview and principles of communication structures, both bus based and

NoC based, has been given in section 1.1 and 1.2. Bus based systems are already well

established and different standards are supported by many IP companies. It is likely

that as the number of cores on bus based systems grow the approach to overcome the

communication bottlenecks will be to partition or split the bus into several segments.

Network-on-Chip may be the way forward to replace the traditional bus based

infrastructure, especially as the number of cores increase. Evidence from industry

shows that Network-on-Chip has already become reality. Intel has produced an 80-

core chip, the teraflops research chip [53]. The chip contains 80 simple processor

cores each of which contains a 5-port messaging passing router. They are connected

together with a 2D mesh network. In addition each fine grain power management

allows the compute engines or routers of each core to be activated or put to sleep

depending on the performance required. Other companies such as Philips and Arteris

[47, 54] are also active in Network-on-Chip research.

NoC appears to provide a more structured and scalable solution to the

communication bottleneck in SoC. A regular topology means that partitioning like in

bus designs is not needed. The packetizing of data and the fact that the packets may

have to be forwarded through several switches may mean higher latencies in some

situations. Switch complexity is also an issue, the more complex you make a switch

the more resources such as power and area are used. Working NoCs that offer

significant advantages that outweigh the shortcomings will need to be demonstrated in

Page 13 of 158

order to gain a foothold in the commercial world. Some encouraging research chips

from Intel and Philips may signal the start of a trend towards Network-on-Chip.

Considerable work is being undertaken in Network-on-Chip which is now a

very active research area. Much of the research focuses on high-level issues such as

routing and traffic performance. The motivation of the research presented in this

thesis falls broadly into three areas, compression to improve bandwidth, asynchronous

techniques to improve the power and simplify clocking and finally data coding to

improve reliability of NoC links.

• Compression – Recent research [55, 56] has shown that compression is useful

to increase the available bandwidth and also a way to decrease power. This

research explores the use of compression in bit-serial links for NoC with the

aim to provide a simple compression scheme that is tightly integrated into

serial transmission schemes. Power and area of the compression hardware will

be examined as well as the reduction in transmitted data size.

• Asynchronous - Most of the work on Network-on-Chip has been synchronous

interconnect [28, 57, 58]. The application of asynchronous techniques coupled

with serialization is investigated with the intention of reducing the number of

wires between switches of the NoC.

• Reliability – Soft errors pose an increasing problem as technology shrinks [59,

60], with up to 80% of errors being transient. The research investigates data

coding that is compatible with the asynchronous NoC links. The coding

schemes are introduced as a way of increasing the resilience of single event

transients on asynchronous links

It is important when evaluating the benefits of NoC that high level issues such as

routing and scheduling need to be considered together with the low level issues such

as physical link design, data transfer and communication protocol. This forms the

focus of this thesis.

1.4. Contributions and Thesis Structure

This thesis investigates low-level improvements to Network-on-Chip communication

links. With a particular focus on serialised links, compression is examined and also

asynchronous techniques are considered. Chapter 2 provides a literature review and

Page 14 of 158

discusses a range of recent research in on-chip communication and what is being

proposed to further improve certain aspects of communication such as power,

throughput and latency.

Chapter 3 presents a simple real-time compression scheme that can be used in

a bit-serial link. A bit-serial link would reduce the cost of interconnect by reducing

the number of wires, but at the expense of reduced throughput. To improve the

throughput compression is used. The compression is based on a differential encoding

scheme that is applied to a certain number of data items. The number of data items

can be fixed or dynamic. For dynamic sizing and algorithm has been developed and

presented. Experimental results have been shown for the transfer of decoded mpeg

picture data across a link. Power simulations were performed.

Chapter 4 extends on the theme of serialization and presents a link architecture

and circuitry for serialization in the asynchronous domain. Serialization is used to

reduce the interconnect cost of a link and asynchronous circuitry is used to provide

some of the advantages of asynchronous solutions such as the removal of global

clocks in the NoC. The circuits were simulated and compared to a fully synchronous

link of similar characteristics. Power, area and throughput were compared between

the asynchronous and synchronous solutions. Validation on FPGA was performed to

check the functionality of the circuits.

Chapter 5 presents a novel coding scheme for transient error resilience on

asynchronous links. Data is transmitted using data symbols and a reference symbol,

the phase relationship between the data and reference symbol is used to determine the

data and the validity.

1.5. Publications

The research presented in this thesis has lead to the following publications:

• “Improved data compression for serial interconnected network on chip

through unused significant bit removal”, Ogg, S.; Al-Hashimi, B, 2006., 19
th

International Conference on VLSI Design, Hyderabad, India.

• “Serialized Asynchronous Links for NoC”, Ogg, S.; Valli, E.; Al-Hashimi, B.;

Yakovlev, A.; D’Alessandro, C.; Benini, L., 2008, Design Automation and

Test Europe (DATE), Munich, Germany.

Page 15 of 158

• “Asynchronous Transient Resilient Links for NoC”, Ogg S, Al-Hashimi B.,

Yakovlev A., 2008, CODES+ISSS, Atlanta, USA.

• “Reducing Interconnect Cost in NoC through Serialized Asynchronous

Links”, Ogg, S.; Valli, E.; D’Alessandro, C.; Yakovlev, A.; Al-Hashimi, B.;

Benini, L., 2007, First International Symposium on Networks-on-Chip,

Princeton, USA. (POSTER)

Page 16 of 158

Chapter 2. Literature Review

In the previous chapter the principles of bus based and NoC based communication

have been discussed. Current and previous research on how to improve on-chip

communication in SoC will be presented in this literature review. The literature

review is classified into 3 sections. Section 2.1 discusses bus based systems. Section

2.2 discusses current research on NoC based systems. Reliability is discussed in

section 2.3. Concluding remarks given section 2.4.

2.1. Bus Based Communication

Bus based communication has been used and still is the conventional choice for on-

chip communication offering high performance buses and standardised interfaces [8-

11]. The concept of a bus is well established so much of recent research concentrates

on aiming to gain improvements through changing the bus topologies for improved

performance, smarter handling of transactions for performance and coding of the data

to improve power. Bus topologies have been explored in [61-63] for SoC applications,

presenting methodologies to optimize the communication architecture for several

communicating cores. An example TCP/IP interface system was used in [62] to

illustrate how selection of bus topology can impact the performance. Three

communication architectures were considered; a dedicated point to point link to a

single multi-port memory, a shared 128 bit bus to a single-port memory and a 3x 32

bit split bus to multiple single port memories, Fig. 2-1. In their TCP/IP application the

single shared bus (Fig. 2-1b) performed worse than the dedicated links (Fig. 2-1a) in

terms of processing time which was up to 40% higher because of the waiting time

introduced when two components try to access the same memory on the shared bus. A

split bus approach (Fig. 2-1c) reduces bus conflicts but also reduces bandwidth when

compared to the shared bus architecture.

 (a) (c) (b)
Fig. 2-1 Communication Architectures for TCP/IP network interface system [62]

Page 17 of 158

Lahiri [64] has proposed a method of optimizing communication architecture at run-

time. Additional layers of circuitry called communication architecture tuners sit in an

existing topology. The extra circuitry allows the more critical data to be handled

differently which can lower communication latencies. The results for their examples

show that the number of deadlines missed and average processing time for a system

can be improved with the inclusion of communication architecture tuners.

Bus encoding is another method that is often used to reduce power or avoid

crosstalk. Stan [65, 66] proposes techniques for reducing the switching power on the

data and address buses. An extra bit is introduced to the regular data bus called the

‘invert bit’ which signifies whether the data on the bus should be inverted or not. The

data is inverted if more than half of the bits change on the subsequent data item. This

is a simple and effective method of ensuring that no more than 50% of the data lines

will switch because if there is more than half of the bits changing in the subsequent

data item the data will be inverted. This technique effectively caps the switching

activity to a maximum of 50%. This could be applied to NoC and would also require

extra wires to signify if the data is inverted or not. The technique could be attractive

on wider parallel links as adding an extra wire would not be much additional

overhead, but for narrow or bit serial links the overhead of adding and extra wire may

make it not worthwhile.

The use of grey coding for address buses has also been suggested [66]. Since

the addresses are generally sequential, grey coding would help to make sure that only

one or a few bits change on subsequent address values. The author recommends both

grey coding and bus inversion for the address bus to allow for situations when the

addressing is non-sequential such as interleaving accesses or branch/jump situations.

Working-Zone encoding [67] has been proposed as a way to exploit locality between

addresses on the address bus. This technique used a table to keep track of preferred

address areas and if the address matched a certain space instead of using the whole

address it could be expressed as a working zone area with an offset. Bus encoding

which exploits localities in addresses is probably unsuitable for NoC applications

since there is no address bus, the address will be embedded in the header of a packet

followed by the data.

Osbourne [68] extends the bus invert idea and uses it in an AMBA based bus.

Instead of a single invert bit, four invert bits are used for each of the four byte lanes

Page 18 of 158

on the data bus. Each byte of the 32 bit data bus can be independently inverted

allowing a finer-grain control of what part of the data gets inverted. Power savings

were achieved with their example sets of data reporting a 20% saving in power for 32

bit transfers. Bus invert techniques to reduce crosstalk noise, delay and power has

been proposed in [69], indicating that average power on the bus can be reduced by

almost 10%. Aghaghiri [70] proposes an encoding technique for memory buses using

sector based coding techniques. Sectors spaces are defined that correspond to certain

address areas. The data within a sector is then encoded with respect to the sector head

which allows the encoding to exploit localities. Other coding techniques are used for

error control schemes, Bertozzi [71] presents the idea that energy in the

communication link can be reduced which has the side effect of reducing reliability.

Coding is then introduced as a way of compensating for the reduced reliability

allowing detection or correction to flag or recover corrupted data. It is shown that

error control coding can enhance communication reliability while allowing a

reduction in energy.

The Working-Zone encoding [67] is extended to include data buses in [72]

which sends a 1-hot encoded offset if the data is similar or differs slightly from the

previously sent data. Bus encoding to reduce cross-talk is proposed in [73] by

effectively mapping data onto codewords which reduce or stop transitions on

neighbouring wires. An adaptive dictionary based encoding scheme ADES is

proposed in [74]. This reduces the power consumption of data buses by effectively

splitting the word into three parts, an upper, index and lower part. It then maintains a

dictionary of the most frequently occurring words. If the transmitted word occurs in

the dictionary it sends an index and the lower part of the word. The upper part of the

word is not sent. The receiver then matches the index to its own copy of the dictionary

and attaches the upper part of the word. Table based encoding, where the sender and

receiver keeps a table of the most frequently used data could be useful at the network

interface level where only 1 destination expects to communicate with a single source.

It would probably be difficult to use at the router level since sequential packets

arriving at the router may not be from the same source (or sequential flits in the case

of circuit switched routers) which would mean that commonality or locality of the

data is reduced as the router would be effectively seeing interleaved data from several

different sources each having their own most frequently occurring data words. There

Page 19 of 158

is also the issue of coherence, the sources do not know about the most frequently

occurring words of the other sources.

2.2. NoC Based Communication

Introduction and concepts of network on chip have been covered in chapter 1 and

more detailed NoC architectures have been proposed in [15, 28, 47, 57, 58, 75-81].

Numerous publications deal with issues such as improving the routing algorithms,

providing deadlock free mechanisms, fault tolerance and energy efficiency which

have been proposed in the literature [37, 39-42, 82-84]. Bus based systems become

difficult to scale when more cores are added. By the end of the decade the major

challenges faced by designers will be to provide functionally correct, reliable

operation of the interacting components [23]. On-chip communication will be a

limiting factor for performance and possibly energy consumption. Synchronization of

future chips will be difficult with a single clock source so a globally asynchronous

locally synchronous (GALS) approach may be beneficial and are a current active

topic of interest [85-87]. It is not clear from these publications if considering the high

level NoC issues such as routing algorithms are beneficial without considering the

low level implementation issues, in particular, the links. Higher level optimization

such as more complex routing strategies, or smarter switches will almost certainly

lead to more additional circuitry in the switch and increase the overhead. Lower level

optimization such as the physical links could be beneficial. As the number of cores on

a chip with a NoC communication structure increases, so does the number of links

and switches. Future chips with many cores may need a considerable number of

switches and links in order to be fully connected, especially so in a mesh type

structure. Section 2.2.1 discussed NoC link level improvements and section 2.2.2

discusses serialization of NoC links.

2.2.1 NoC Link Level Interconnect

The Network-on-Chip links which connect the switches have received some research

attention. Since the links are generally identical between all the switches any

refinement in a link should improve the whole network. The long wires in NoC and

short clock periods is problematic since the delay for driving data across a long wire

grows with the resistance and capacitance [88]. At the simplest level the wires can be

pipelined by dividing the long wire into several buffered segments. This buffering

Page 20 of 158

could be achieved with simple inverters or registered buffers in a synchronous

environment. Greenstreet [88] presents a novel way of long wire signalling in which

the buffers along the length of the wire are so-called ‘soft latches’ that help keep all

events in a close relationship to the reference event or ‘fast’ signal, Fig. 2-2. The basic

operation of the circuit is that if the request or reference signal arrives before the data

the ‘fast’ signal activates an extra set of transistors in the inverter in the data path and

decreases the delay in the data path thereby attracting the data to the reference signal.

Fig. 2-2 Surfing Link [88]

Asynchronous NoC architecture has been proposed in [89, 90] where the whole NoC

infrastructure is completely asynchronous. Advantages such as the removal of global

clocking, lower power and higher skew tolerance have been suggested. A more

localised asynchronous solution which proposes an asynchronous point to point link

has been shown in [91] using wrapper circuitry and clock pausing techniques to

minimise the risk of meta-stability. A delay insensitive chip area interconnect has

been proposed in [92]. The scheme uses a 1-hot encoding technique to transmit 2 bits

of data at a time on a 1 of 4 wires with a 5
th

 wire signifying the end of a packet. The

1-hot encoding minimizes crosstalk since only 1 of the 4 wires will have a transition

on it.

The future of wires has been investigated in [93]. In this work the authors

show how delay scales non-linearly with long wires and how adding repeaters can

improved and make the delay linear with length. Fig. 2-3. shows how the wire delay

can be changed by adding repeaters. The addition of repeaters does not come free.

The authors note that adding repeaters can increase the number of vias from the upper

layer metal down to the substrate and usually repeaters tend to be used in certain areas

or clusters on the device, rather than allowed to be placed anywhere. Repeating a

whole bus is not a trivial task and requires a considerable amount of area.

Source synchronous links have been used in [94] where the source transmits

data synchronised to a local clock along with a strobe signal for timing reference at

Page 21 of 158

the receiver end. This has the advantage that the clock which drives the various

processing units does not necessarily have to be phase aligned with each other easing

the global clock skew constraints.

Fig. 2-3 Repeater effects on long wires [93]

Pulse based on-chip interconnect has been investigated in [95] with emphasis on

reducing the global metal area footprint using serial transmission. In this work the

author develops minimally spaced global wire interconnect and analyzes the effects of

repeater optimization for throughput and latency. Increasing the number of repeaters

increases the throughput as this effectively pipelines the wire, but the latency can also

increase with the addition of repeaters and requires careful consideration to optimize.

2.2.2 Serialization of NoC Links

Serialization of the data to reduce the interconnect is also a current area of interest.

Serialization leads to fewer wires, better spacing within the same area, lower static

power and the possibility of better timing and synchronization. Fewer wires mean that

the wiring area can be reduced, it also has the added effect of reducing the number of

repeaters and metal vias that are associated with the wiring. If the wiring area is

reduced it may be possible to take advantage of the freed up area by spacing out the

wires more and thus reduce capacitive crosstalk between the wires since it is based on

the distance between the wires. The capacitive crosstalk between wires is shown in

Fig. 2-4. If the distance between the wires A and B increases then the capacitance

between the wires (Cwire) should reduce. Crosstalk can increase the propagation

delay of signals travelling down the wire decreasing the performance and also affect

the signal integrity of adjacent wires by inducing a voltage on adjacent wires that

could cause a transient which if wide enough may cause a logic level change.

Crosstalk energy minimization by coding the data has been proposed in [96, 97].

However while coding reduces crosstalk power by reducing the number of

Page 22 of 158

simultaneous transitions it does not reduce crosstalk itself [98], which can only be

minimized by spacing the wires and reducing the capacitance.

 A

B

Cwire

Fig. 2-4 Capacitive Crosstalk

Lower static power is achieved using serialization. Since the number of wires and

therefore the repeaters are reduced the static power consumed by the repeaters is

reduced. This reduction of static power is proportional the reduction in wiring for a

constant repeater size. Better timing margins and synchronization through

serialization are an effect of reduction or removal of wire to wire capacitance.

Reducing the wire capacitance reduces the propagation delays which would allow

tighter timing as clock periods can be shortened to take into account that the signal

propagate along the wire faster.

Some research between the trade-offs of parallel and serial interconnect has

been shown in [99] for NoC applications. The authors modelled a physical link

between two points. The model of the interconnect consisted of a cascade output

driver and several repeaters distributed along the length of the wire. The work shows

that the leakage current per driver could increase by a factor of 5x when moving from

130 nm to 70 nm technology. Hence the more parallel drivers that are used the more

leakage current could impact the interconnect between the two switches. The work

continues to suggest that in their work the improvements in power in and area for

serial links could be 5x and 17x respectively due to the lower number of wires and

repeaters in serialized links.

A serialized scheme [100] shows a serial data transfer method implemented on

chip. The serial link consists of a data and control line, Fig. 2-5. Data is synchronised

by ring oscillators in the transmitter and receiver which is activated by the control

line. Data is shifted out serially and counters in the in the transmit and receive circuits

ensure that there is a fixed number of oscillations each time the control line is

Page 23 of 158

activated. The circuit has been fabricated in 0.6 um and a 1 GHz operating frequency

has been achieved on a 40 mm line length.

Fig. 2-5 Serialized Scheme using ring oscillators [100]

Serial solutions and ways to improve them have been carried out by Lee [101, 102].

The work shows the implementation of a 5 mm link with a 1.6 um wire pitch. Using

low swing differential signalling they managed to carry a packet at 1.6 GHz with a

power consumption of 0.35 pJ/bit. If a full swing link was used it is suggested that the

power would increase threefold. Novel signalling and drivers can be costly to

implement but using serial interconnect would mean that only a few need to be used

in comparison to a fully parallel interconnect. Also proposed by Lee is SILENT [103],

a method of coding the data to reduce energy. The coding scheme is differential and

basically puts a ‘1’ in the bit position when that particular bit has changed. Fig. 2-6,

for example shows five 8 bit words that are to be transmitted bit-serially. The first

word (W0) has 5 transitions, the second word (W1) has 7 transition in the original

data. If the first word is 01010001 and the second word is 01010010 we can see that

the only bits that change from W0 to W1 are the two least significant bits. The first

and second words (W0 and W1) can be XORed together to form a new word (EW1)

which represents the difference between the two words which will be 00000011.

When the silent encoding is applied it can be seen that the second word in the encoded

data (EW1) now only has 2 transitions since the only the difference has been encoded.

Effectively each data is being XORed with the previous data, encoding the

differences. Reduction in transitions for data values are shown to be around 40% for

their examples and they do show a 80% reduction for transitions on an instruction

address bus. Since NoC is a packet based method of transaction, there is no separate

data and address bus so the 80% reduction in transitions would be unlikely in a NoC

environment.

Page 24 of 158

 Data # Tr

W0 01010001 5

W1 01010010 7

W2 01010011 5

W3 01010100 7

W4 01010101 7

 Data # Tr

EW0 01010001 5

EW1 00000011 2

EW2 00000001 2

EW3 00000111 2

EW4 00000001 2

0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1

W0 W1 W2 W3 W4

0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1

EW0 EW1 EW2 EW3 EW4

Original Data Data coded with Silent

Original Data sent serially = 31 Transitions

Data Coded with Silent sent serially = 13 Transitions

Fig. 2-6 SILENT Encoding Scheme [103]

More advanced serial techniques are presented in [104, 105]. These rely on wire

pipelining where the next bit or bits of data is present on the wire before the previous

bit has been consumed by the receiver. Wave-pipelining has also been shown in

[106]. On-chip transmission lines can be found in [107, 108], this should allow for

very fast speeds which standard lossy resistive wires cannot achieve. The fast

asynchronous shift register presented in [104] uses level encoded dual rail which

basically uses 2 wires for data and 2 wires for control in a differential manner, giving

a total of 4 wires for a fully bit-serial data channel. The encoding works by pushing

the data out serially and only switching the control if the subsequent data bit remains

the same. This means that for each bit transferred two transitions will occur on either

the data or the control. A very fast data rate is reported of 67 Gbps. Lee [105] has also

shown a novel circuit for fast serialisation and de-serialisation called Wave Front

Train (WAFT). In the work presented the conventional D-type flip flops common in

shift-registers are replaced with delay elements for timing and uses signal propagation

as the shifting mechanism. The WAFT serializer/des-serializer (SERDES) operates

based on the fact that the delays of the serializer and de-serializer are the same,

variations between the two will produce jitter and degrade the performance of the

SERDES. Operation speed of 3 Gbps using 0.18 um technology has been proved to be

feasible. A wave pipelined NoC interconnect implemented on FPGA has been shown

in [109] using synchronous and asynchronous techniques.

Page 25 of 158

2.3. Reliability in NoC

As technology scales down and integration increases errors will become more

prominent [59]. Errors can be transient or permanent, permanent errors tend to be

related to the manufacturing process, whereas transient errors are generally caused by

surrounding environment of the affected circuitry. In synchronous systems the data is

sampled every clock edge, so the data is only affected if the transient fault occurs

around the same time as the clock edge. Asynchronous circuits on the other hand are

always waiting for signals to change and generally rely on a change of data or control

signals to function and are therefore more at risk from transient faults since no clock

is used and a transient can affect the circuit at any time. Dual-rail, 1-of-4, Level

Encoded Dual-Rail (LEDR) and Level Encoded Transition Signalling (LETS) [110-

113] are all commonly proposed ways of data coding that allow asynchronous data

transfer with completion detection. Completion detection is a means of detecting

when the data is valid or not, as in the asynchronous domain there is no clock to say

when signals are going to be sampled, so coding the data is often used to differentiate

between 1, 0 and no data. For example, Fig. 2-7a shows a data signal associated with

a clock, when the clock goes high the data is sampled as the data will be valid on the

clock edge. If a clock is not used it is impossible to tell when the data should be

sampled as there is no reference point to indicate when the data is valid. Fig. 2-7b,

shows a common data coding method used in asynchronous circuits called Dual Rail.

With dual rail two signals are used, it is a return to zero signalling method meaning

that the signals have to return to zero after each valid data. If a ‘0’ is to be transmitted

one of the signals goes high and returns to zero (DATA_A) and if a ‘1’ is to be

transmitted the other signal goes high (DATA_B). Completion detection can easily be

accomplished in dual-rail by ORing the two signals together which can be used to

latch data. If a transient occurs on these dual rail signals then unwanted invalid data

will be seen at the receiver end if the transient is large enough to generate a valid

signal through completion detection.

DATA

CLK

0 0 1 1 0

DATA_A

DATA_B

0 0 1 1 0
(a) (b)

Fig. 2-7 Synchronous with clock and Asynchronous Dual Rail

Page 26 of 158

Multiple rail phase encoding [114] has shown inherent resilience to single event

transients due to the nature of the of the coding such that the information is retrieved

when two edges of a set of signals change in close relationship to each other and the

arrival order of those signals dictate the data. If the transient occurs outside the time

when the group of signals are changing there will be no effect at the receiver end as

the receiver has to see all of the signals change before data is validated. A single event

upset hardened pipeline interconnect is shown in [115]. A single event upset is a

change in state of a node within an electronic circuit which causes an error. An

scheme which uses two coding techniques combined, one for crosstalk minimisation

and the other for transient resilience, is reported in [116]. This self-correcting green

coding scheme uses triplication to make the data resilient to transients by using 3

signals per data bit and a majority voter decoder then should still be able to recover

the correct data even if a transient is present on one of the signals. At a slightly higher

level, fault tolerance can be built into the routers, such as in [117] where default

backup paths (DBP) are used as a method to bypass the routers main circuitry, Fig.

2-8a. As can be seen if the crossbar switch or other critical part of the router is faulty

the DBP can be used as a simple connection to bridge one input port to one output

port in a permanent fashion. While this would not offer flexibility in terms of routing

direction it would offer connectivity in a uni-directional path. For example in Fig.

2-8b shows a mesh NoC structure with several routers and processing elements (PE).

Fig. 2-8c shows the worst case scenario if all routers fail, the DBP provides an

effective uni-directional ring that would allow data to be passed around the NoC

albeit at a much reduced throughput. A region based routing scheme has been

proposed in [118] which combined with a segment routing algorithm can be used for

regular mesh network topologies in the presence of link failures.

(a) (b) (c)

Fig. 2-8 Default Backup Paths in NoC [117]

Page 27 of 158

Multi-path routing has been proposed in [119] for an in-order type packet delivery

with integrated support for tolerance against transient and permanent errors. Multiple

copies of the packets are routed on different paths from the source to the sink. This

uses spatial and temporal redundancy to reduce the risk of the packet being affected

by faulty links or routers that could otherwise corrupt or block a packet being sent

along a path.

Permanent or manufacturing faults are beyond the scope of this thesis but a

brief overview is given for completeness. Reliability analysis for on-chip networks

has performed in [120] where models for NoC link failure due to manufacturing

variation have been explored. Manufacture test for NoC has been covered in [121-

124] where the NoC is used as the test access mechanism to the cores to check for

manufacturing faults such as stuck at faults. Numerous cores may make boundary

scan become too slow, so the NoC is used to inject and retrieve the test patterns to the

various cores on chip. Recently [125] has shown a design for test (DFT) architecture

for asynchronous NoC. Each router is surrounded by an asynchronous test wrapper

which is used to insert test vectors or retrieve the responses, Fig. 2-9. The Generator-

Analyzer-Control (GAC) unit is responsible for test vector generation, configuration

and analysis of the results. The Wrapper Control Module (WCM) controls the setup

and configuration the associated wrapper.

Fig. 2-9 Asynchronous Test Wrappers [125]

Page 28 of 158

2.4. Concluding Remarks

Considerable work has been achieved to improve the performance and reliability of

on-chip communication. The literature review has highlighted areas of research that

address these problems. In bus based systems different bus topologies and bus bridges

have been introduced to split the bus into several segments so that localised

communication between devices on each segment do not interfere with each other.

Power reduction using data coding is a popular proposed technique to reduce

switching power on bus based systems. Research activity in NoC based

communications has lead to several possible areas that could enhance or improve

certain aspects of the NoC. Routing methods and algorithms have been proposed to

improve the efficiency of packet routing. Asynchronous techniques have been

introduced which help reduce power and clock skew. Serial point to point links

between the NoC switches have also been considered, to reduce the interconnect cost

in terms of area and power. Reliability in NoC is another promising area with coding

techniques and error detection being proposed.

The focus of the work in this thesis is on the links that connect the switches

together in a NoC communication structure. While the work focuses on a small part in

the field of NoC, small improvements on a single link could prove valuable when

considered as part of a larger NoC. The next three chapters present work that has

attempted to address issues associated with interconnect cost of the links for NoC.

The area of work covered covers compression, serialization asynchronous and

reliability and is split among the chapters as shown in Fig. 2-10.

Compression Serialization Asynchronous Reliability

Chapter 3 Chapter 4 Chapter 5

Fig. 2-10 Organisation of Chapters

Page 29 of 158

Chapter 3. Bit-Serial Compression using
Unused Significant Bit Removal

Long parallel links provide high data rates at the cost of large wiring area, routing

difficulty and noise [126]. Leakage power in parallel links is also high relative to

serial links due to the many repeaters and buffers used on long links. Serial links

could also have reduced dynamic power since long parallel links will have a higher

capacitance due to the wire to wire capacitance associated with long runs of closely

spaced metal wires requiring higher power drivers and repeaters to achieve the same

propagation delay compared to a single wire without any wire to wire capacitance.

Serial links in Network-on-Chip provide advantages in terms of reduced wiring area,

reduced switch complexity and routing and potential power savings [99]. Wiring area

reduction reduces the real-estate cost of the interconnect and can reduce the number

of repeaters required for a NoC link. Routing is made easier in serial links due to the

reduced amount of wires and associated vias and repeaters. Crosstalk can also be

reduced as the link does not require several parallel wires to transmit data which can

have a large wire to wire capacitance and couple signals together in a parallel link.

However, serial links offer lower bandwidth in comparison to parallel

schemes. Poor bandwidth increases the risk of congestion and possible lower

throughput or stalling of data. This chapter proposes a simple yet effective real-time

compression technique, based on removing unused significant bits which reduces the

amount of data sent over serial links. The proposed technique reduces the number of

bits and the number of transitions when compared to the original uncompressed data.

A case study showing the results of compression on two MPEG1 coded picture data

shows bit and transition reductions of data over a bit-serial link.

Section 3.1 motivates the work and section 3.2 highlights some of the existing

compression techniques. Section 3.3 describes the proposed compression technique

and the experimental results are given in section 3.4. Concluding remarks are given in

section 3.5

Page 30 of 158

3.1. Motivation

Data can be transferred from one point to another using parallel and serial schemes.

Parallel transfer is when each bit of the data is transferred at the same time on

different wires. Bit-Serial is when each bit of the data is transferred one after the other

on the same wire.

1011 1

0

1

1

Parallel Serial

1011 1

0

1

1

Fig. 3-1 Serial versus Parallel example

Consider the situation where the inverting buffers in the serial and parallel examples

are the same in Fig. 3-1. Some initial high level conclusions can be drawn about the

two methods by observation if the buffers are the same. Serial techniques will use less

wires and drivers so the overall area of the communication channel could be smaller

and wire area is reduced. The overall speed of parallel techniques will be faster, the

data 1011 will require 4 cycles to transfer serially compared to just 1 cycle for

parallel. Crosstalk will be reduced for serial since serial techniques will have no data

wires next to each other whereas parallel data will have crosstalk between adjacent

wires. Crosstalk is when a signal transmitted on one wire creates an unwanted effect

on another wire and is caused by capacitive, inductive or conductive coupling. Serial

techniques will possibly have a higher dynamic power depending on the data,

consider that 1011 has just been transferred in both case and 1010 will be transferred

next. The serial bus will have 4 transitions to transfer 1010. The parallel bus will just

have 1 transition. The only time on the serial bus when no transitions occur is when

the serial bus is transmitting all 1’s or all 0’s. The parallel bus has a number of

buffers, whereas the serial bus only has one, hence the parallel bus could have higher

leakage power. Leakage power occurs in the transistors inside logic gates due to a

small amount of current that still flows even though the transistor is off [127]. Various

methods can be used to improve parameters such as power, skew and transfer speed in

serial links. Consider the simple methods of Fig. 3-2.

Page 31 of 158

 Vcc

Vcc (reduced)

(a) Reducing Supply Voltage

(b) Differential Signalling

(c) Reducing Number of Bits

(d) Reducing Number of Transitions
Fig. 3-2 Various Improvements to Serial Links

The voltage swing can be reduced by lowering the supply voltage of the drivers in the

serial link shown in Fig. 3-2a. This has the effect of lowering the dynamic power as

switching power is related to voltage, 01

2

2

1
PCfVP Lclockdddynamic ⋅⋅⋅⋅= [128], where Vdd

is the supply voltage, fclock is the clock frequency, CL is the load capacitance and P01 is

the probability of a 0 to 1 transition.

It can be seen that reducing Vdd will have a square law reduction on dynamic

power, this is referred to as voltage scaling. However, one must be careful as lowering

Vdd will also mean longer rise and fall times due to the threshold voltage, which

means potentially slower clock speeds. Rise time is given by
ddp

L

r
VK

C
t

⋅

⋅
=

3
[128]

where CL is the load capacitance, Kp is the CMOS process constant and Vdd is the

supply voltage.

The driver and receiving buffer could be implemented differentially [129] as

shown in Fig. 3-2b. This would make the link more immune to common mode noise.

Common mode noise is when external interference affects two or more parts of a

circuit in a similar way. In this case any noise affecting one wire would affect the

other the wire to the same extent and because the data is obtained from the difference

of the two wires the noise does not impact the ability to retrieve data. Consider Fig.

3-3, the unwanted noise (shown as spikes on the data waveform) on the standard

single ended signalling could interfere with the signal enough to cause errors at the

receiver end, especially if the noise causes the amplitude to cross the switching

threshold the receiver circuitry. The differential signalling uses two wires, one with

the signal (DATAp) and one which is the complement (DATAn). If the same noise

affects both these signals a clean data signal is still retrieved by taking the difference

Page 32 of 158

(DATAp-DATAn) of the differential pair as the common mode noise will be

cancelled out by the process of taking the difference.

Differential Signalling

DATAp

DATAn

DATA

DATAp-DATAn

standard single ended signalling

unwanted noise

Fig. 3-3 Common mode Noise on Differential Signal

The problem with this method is that now two wires are needed and careful

balancing of the wire lengths and the driving transistors would be required to keep

symmetry. Reducing or removing bits in the serial link, shown in Fig. 3-2c, for a

given amount of data to be transferred is a way to possibly lower power and definitely

increase the transfer speed. Consider the situation in Fig. 3-4 where the data sequence

is transmitted across a serial link. Each 8 bit data is shifted out LSB first across the

serial link in turn. There is considerable redundancy here because the 4 MSBs in this

sequence, outlined by the box, do not change. So a way of exploiting this redundancy

could be used to reduce the number of bits that is sent which is the essence of the

technique discussed in this chapter.

…01010010 01010001 01010011

Transmitted bit-serially

same data

01010011

01010001

01010010

01010111

01011111

01010111

01010011
01011111

DATA

Fig. 3-4 Example of Redundant Bits

Reducing transitions is an effective way of reducing the dynamic power, Fig. 3-2d.

Referring to 01

2

2

1
PCfVP Lclockdddynamic ⋅⋅⋅⋅= [128] it is shown that the probability of a

Page 33 of 158

0 to 1 transition occurring, P01, is directly related to dynamic power. Reducing the 0 to

1 transitions will reduce power. Transition encoding which encodes data only when it

changes can reduce the number of transitions. If the first data is sent and then only the

differences are sent in subsequent data the number of transitions should be reduced

and is the method used in SILENT [103] and is shown in Fig. 3-5. Observing the

figure it can be seen that the original un-coded data has 5 transitions in the first byte

and 6 transitions in the second and third byte. Consider the original data and the bits

which are underlined, these are the only bits that change on each subsequent byte. If

the data is encoded so that ‘1’ is used to show that the bit has changed from the

previous data we get the resulting encoded data shown. When this is transmitted bit-

serially it is shown that there are 5 transitions in the first byte and 2 transitions in the

second and third byte. The transition encoding reduces the number of transitions that

are present in the data when the data is sent.

…01010010 01010001 01010011

…00000011 00000010 01010011

Transmitted bit-serially

5 6 6

5 2 2

01010011

01010001

01010010

01010111

01011111

01010111

01010011
01011111

ORIGINAL

01010011

00000010

00000011

00000101

00001000

00001000

00000100

00001100

ENCODED

Transmitted bit-serially

transitions

transitions

Fig. 3-5 Example of Transition Reductions

Transmission Minimized Differential Signalling (TMDS) is used in the Digital Video

Interface standard, [130] is another method of reducing transitions. It works by

serially XORing or XNORing the data from the LSB to the MSB. The XORed or

XNORed word is selected by inspecting the number of transitions and inserting a 9
th

bit to signify if the XORed or XNORed word has been used. Finally a 10
th

 bit is

Page 34 of 158

added to signify if the 9 bits will be inverted or not as the transmitter attempts to keep

an average equal number of 1’s and 0’s to balance the line.

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 (XOR)

1 0 0 1 1 0 0 1 (XNOR) 1 0 0 1 1 0 0 1 0

 0 0 1 1 0 0 1 1 1

XOR or XNOR bit

0011001110 1100110001 0011001110 1100110001

Inversion Bits to equalize 1’s and 0’s in bitstream

8 bits
9 bits

10 bits

8 bits

10 bits 10 bits 10 bits

0 0 1 1 0 0 1 1 1

XOR has least transitions

Fig. 3-6 Transmission Minimized Differential Signalling

TMDS is useful to reduce the number of transitions and to remove any DC imbalance

on the cables but it comes at the cost of using 10 bits for every 8 bits of data,

effectively increasing the amount of bits to be sent by 25%.

Several methods have been considered with respect to NoC. Voltage scaling

by reducing the supply voltage [71], for instance, could reduce power in a single serial

link or certain sets of links could be grouped together to share a supply voltage which

could be altered. Differential signalling could be implemented on-chip and provide a

low-swing signalling that can provide some benefits with respect to common mode

noise immunity. Differential signalling would require a differential driver and

receiver for each signal as well as two physical wires. Bit reduction and transition

reduction appear to be promising ways of improving certain aspects of NoC serial

links, such as switching power reduction and reducing the required bandwidth needed

to send information. Reducing the number of transitions will reduce dynamic power

and reducing the number of bits should free up bandwidth. To reduce the number of

bits and transitions compression can be used.

Compression schemes such as run-length encoding could be used where there

are long runs of ‘1’s and ‘0’s where the number of uninterrupted ‘1’s and ‘0’s are

sent. However this would be inefficient for NoC data where unlikely that the data

contains long runs of the same bits.

Huffman coding is where frequently occurring fixed sized data words are

converted into shorter sized data words and rarely occurring fixed size data words are

Page 35 of 158

converted into longer sized data words [131]. Huffman coding is suitable for data

when knowledge of the data is known beforehand and that certain patterns of data will

occur more regularly than others. This results in a smaller number of bits transmitted

when the uncompressed data stream contains large amounts of the often occurring

fixed size data words. One problem with Huffman coding is that if the original source

data starts to contain many of the less frequently occurring fixed sized data words the

resulting data to be transmitted could become greater. For example, consider the 3 bit

fixed sized data to variable sized code table in Table 3-1. If the source data to be sent

was 000 010 001 000 000 001 then by sending the code words 0 1110 10 0 0 10

instead of the original data we send 11 bits instead of 18 bits. However, if the original

data was 101 100 011 000 011 100 the resulting data to be sent would increase to

11010 11000 1111 0 1111 11000 resulting in an expansion to 24 bits.

Table 3-1 Example Huffman Coding

Original Code word

000 0

001 10

010 1110

011 1111

100 11000

101 11010

110 11011

111 11001

Sub-word encoding could be used to compress data. This could be achieved by

sending the data and then sending only the sub-words that change. For example 8 bit

words could be split into two 4 bits words and 2 extra bits could be sent to signify if

the sub-word is being sent or not. Consider the example in Table 3-2, the original data

consists of 6 x 8 bit words. The resulting encoding data consists of 2x bits to show if

the left or right 4 bit sub-word is present or not and the sub-words themselves if they

are to be sent. The resulting data is 44 bits compared to the original 64 bits. This

compression technique is suitable for data where there is localisation of the data

between one word and the next. The encoding does require a small amount of

overhead to signify which sub-words are present for each data word. The amount of

overhead is dependent on how many sub-words the data word will be split into.

Page 36 of 158

Table 3-2 Sub-word Encoding

Original Data Sub-word info + words

0000 0001 11 0000 0001

0000 1001 01 1001

1011 0111 11 1011 0111

1010 0111 10 1010

1010 0111 00

1011 0011 11 1011 0011

To study the effects of compression a simple bit-serial point to point link is studied. A

simple overview of a bit serial point to point link is shown in Fig. 3-7. It consists of

shift registers to perform the operation of load and unloading of parallel data and

shifting data in and out serially.

Serial Data
SHIFT REGISTER

DATA

SHIFT REGISTER

DATA

Fig. 3-7 Bit-Serial link

To compress data a compressor and de-compressor must be used. The compressor and

de-compressor will add extra hardware overhead to the solution, however, the

reduction in the amount of data that is sent over the serial link means that a reduced

number of bits will be sent which also can lead to a reduced number of transitions that

may help reduce power in the link. The area, power and performance trade offs will

be considered in the experimental section of this chapter. The remainder of this

chapter investigates the use of compression for bit-serial links and proposes a

technique to compress data for bit-serial transmission, called Unused Significant Bit

Removal.

Serial Data
SHIFT REGISTER

DATA

SHIFT REGISTER

DATA

COMPR DECOM

Fig. 3-8 Bit-Serial with compression

Page 37 of 158

3.2. Compression

Communication bandwidth is becoming a major bottleneck in terms of system

performance [55]. Compression is becoming more common for the transfer and

storage of data within systems. Compression is the reduction in size of data used to

represent some particular information. Compression can broadly fall into two main

categories, lossy and lossless. Lossy compression is where the compression is

achieved through removing unwanted or unperceivable parts of information. An

example of this is JPEG [132] where high compression ratios of pictures are obtained

by the removal of information which is generally not noticeable with the human eye.

In effect the decompressed data is a representation that is similar to the original data.

Lossless compression is where the decompressed data is exactly the same as

the original data, i.e. no information is lost. Losing information, especially instruction

code or critical system data within a SoC environment would almost certainly cause a

system failure and therefore lossless compression schemes will be considered for SoC

communication. There are many different compression algorithms ranging from

simple differential compression to schemes based on the more complex Lempel-Ziv

method [55, 74, 133-136]. The different compression algorithms vary in complexity

and performance in terms of compression ratio and overhead. The more complex

compression algorithms tend to achieve better compression ratios at the expense of

processing time or hardware, Fig. 3-9.

Differential
based

Table based

Lempel-Ziv
based

Compression Level

Lower Higher

Complexity / Overhead

Lower

Higher

Fig. 3-9 Snapshot of common lossless compression schemes

Page 38 of 158

Perhaps the simplest method of compression is differential based compression [55].

Differential based compression is where data is sent and then the difference between

that and subsequent data is sent. This relies on that fact that only some of the bits will

change between subsequent data. Assume there is a number of N data words of width

W bits, the total number of bits needed to send would be:

WNTotal ×= bits.

Now assume that all the data words are examined and find that several of the bits

remain the same over the N data words, let the amount of bits that remain the same be

BITSSM. There will also be some extra overhead that signifies which bits remain the

same and which change, let the size of the overhead be OVHD bits. The data could

now be transmitted by sending the information about which bits change, the first

entire data word and then just transmitting only the bits that change, thus the new total

number of bits that would need to be sent would now be:

)()1(1 SMnew BITSWNWOVHDTotal −×−+×+= bits.

For example, assume 20 data items of 32 bits each. This would require in total 640

bits to be transferred. Now assume that the 8 most significant bits of the data items are

the same and the information about how many bits remain the same uses an additional

32 bit word (meaning a overhead of 32 bits), the new total number of bits that need to

be transmitted is:

520)832()120(32132 =−×−+×+=newTotal bits

So 520 bits could now be sent instead of 640 bits. Slightly more complex is table

based compression [55, 137]. In this case both a table of frequently occurring data is

kept at the source and also the destination. The table could be static if the most

popular data words are known before hand or it could be updated during operation for

a dynamic approach where knowledge of that data is not known before hand. For each

data item the source would check if it matches a entry in the table. If a match is found,

rather than sending the actual data a shorter codeword can be sent which says which

entry in the table should be used for the data item. This technique would suit

situations where certain data words are more popular than others. It would require a

table of popular words both at the transmitter and receiver side and the size of the

table will affect how many entries can be used and therefore the amount of

Page 39 of 158

compression that can be achieved. There exists other compression schemes such as

the more complex Lempel-Ziv algorithm [133] which builds on the table based

schemes even further. In this case a dictionary is maintained and a tree like structure

containing strings of data is obtained. Schemes based in the Lempel-Ziv method

required a large amount of data to operate on in order to achieve worthwhile

compression. Schemes such as these are unlikely to be suitable for SoC

communication, which is the essence of this thesis, due to the complexity of the

algorithms which may lead to a large implementation overhead. Table based

compression could be useful in a point to point application but within a NoC

communication structure a table would be needed at a destination for every possible

source that could transfer data to it. This would add considerable overhead to the NoC

as the tables would probably be implemented using content addressable memory

(CAM) based memory elements and several of these at every destination point would

mean considerable hardware overhead.

In NoC, data is routed from one core to another through switches, the links

between the switches could be parallel or serial, each of which has advantages and

disadvantages. A serial link, for example, has lower wiring density and reduced

crosstalk, but reduced bandwidth when compared to parallel. As discussed in Chapter

2, Morgenshtein [99] analysed serial and parallel links in NoCs and concluded that

on-chip interconnects could benefit from serial links and Kimura [100] and Lee [102]

have both implemented serial links in practice and shown they are viable for use in

high speed, low power on chip network communication. Whilst there exists

publications that deal with reducing power of parallel links [65, 66, 68], there is little

reported work on reducing power in serial links apart from Lee [103] who has

recently proposed a coding technique, SILENT, for serial transmission on NoC that

reduces power effectively. With their example application the number of transitions is

reduced by 40%. However, it is important to note that in their scheme the original

amount of data is not reduced.

The previous work [99, 101, 103] has demonstrated the benefits in terms of

area and power when employing serial links to connect the switches of a NoC. The

motivation of this chapter is to investigate and develop a technique that will allow

data transfers to overcome bandwidth limitations associated with serial links. This is

Page 40 of 158

achieved through the proposed simple compression technique that exploits the bit

level similarities of successive data words.

3.3. Proposed Compression Technique: Unused Significant
Bit Removal

As the bandwidth in the NoC is limited there exists a motivation for compressing data

in serial linked NoC to reduce the overall bits being transmitted. The reduction in bits

transmitted by Unused Significant Bit Removal (USBR) would directly give spare

bandwidth capacity within the network communication structure. The proposed

technique is aimed at a block of data where the most significant bits are less likely to

change than least significant bits, such as situations where the variance of the data is

sometimes small for a certain number of words. If the variance of the data is small

then it is likely that the significant bits will change less and USBR can be used to

compress the data. Fixed block sizes and dynamic block sizing are considered when

applying the compression to a block of data. Consider Fig. 3-10, the binary data given

has the most significant bit that changes in each word underlined (Fig. 3-10a).

For the rest of this chapter data is shown pictorially as a group of squares

representing bits with the most significant bit change shown as a shaded square (Fig.

3-10b). It can be seen that the two most significant bits in this example do not change,

so redundant information is present which need not be transferred (Fig. 3-10c). The

USBR technique removes these bits which do not change and sends some extra bits

which signify what bits change and how long the block of data is. The extra bits

added can be considered as additional overhead. This scheme does impose an

additional penalty in terms of latency as the data is buffered up as each word is

analyzed. The additional latency will depend on the block size over which the

compression is applied.

 D0 00111100
D1 00111001
D2 00011101

D3 00000001
D4 00001100
D5 00000011
D6 00011111
D7 00010100

Most Significant Bit that Changes Bits do not change

(a) (b) (c)

Fig. 3-10 Example 8x8bit block of data

Page 41 of 158

3.3.1 Fixed Block Sizing

As an example, assume an overhead of 8 bits is used, 3 of which signify what bits

change (2
3
 can signify that 1 to 8 bits change) and 5 of which signify the block length

(2
5
 = 32, in length if necessary) giving a total overhead of 8 bits. Referring to the

example in Fig. 3-11 it can be seen that 14 bits are removed from the block (Fig.

3-11b). The overhead of 8 bits is then added to the start of the block (Fig. 3-11c). The

overhead would show that the 6 least significant bits change in the block and the

block length is 8. Note that the 1
st
 data word stays complete as a starting reference

point for the subsequent data words which have been reduced to 6 bits each. The

number of bits is reduced from 64 to 58 in this example. It is important to note at this

point that the compression method is suitable for data where the most significant bits

change less often then the least significant bits. For data where the least significant

bits change less often a transformation of the data could be done before hand so the

least significant bits are swapped with the most significant bits. For random data

where all the bits change compression may not be suitable.

64 bits 58 bits

L
E

N
G

T
H

O

V
E

R
H

E
A

D

LSBSCHANGE MSBSSAME

BITWIDTH
Block Length No. Bits Change

00111100

00111001

00011101

00000001

00001100

00000011

00011111

00010100

01100111

00111100

 111001

 011101

 000001

 001100

 000011

 011111

 010100

01100111

00111100

 111001

 011101

..etc

No. Bits Change = 6 Block Length = 8

1st word

2
nd

 word

Overhead

(a) (b) (c)

…….
Sent bit serially

Fig. 3-11 Example of compression

A block diagram of a fixed block size compression scheme is shown in Fig. 3-12. The

data is written into a FIFO which acts as a buffer or queue for the data. At the same

Page 42 of 158

time the data is monitored by the MASK unit to see which bits change as the data is

being written into the FIFO. The MASK unit is basically a module which examines

each piece of data in turn and determines which bits have changed over a certain

amount of data and then generates information that signifies which significant bits

remain the same, this information can then be used to ‘mask off’ the bits so they are

not transmitted. Once the FIFO is full the mask value is generated which says which

bits have changed and which have stayed the same. This mask information is

considered as additional overhead and is then loaded into the parallel to serial shift

register first and shifted out. The controller FSM then loads the 1
st
 data word into the

parallel to serial shift register and shifts out the 1
st
 word serially. The subsequent data

words are each loaded into the parallel to serial shift register but the FSM now only

clocks out the bits that have changed before loading the next parallel data word. At

the receiving end the opposite occurs, firstly the mask value which holds the

information about which bits change is loaded. The 1
st
 data word is then shifted in and

clocked out as parallel data. The FSM then uses the mask information to control the

serial to parallel loading at the correct time when the appropriate number of

subsequent data bits have been shifted in. As the subsequent bits are shifted in they

are written to only the bit positions they correspond to and form the next data word

which is then clocked out in a parallel format. With fixed block sizing the amount of

data that is collected before a decision is made about which bits changed is fixed. The

FIFO that collects this data must be large enough to accommodated this.

In the examples it has been assumed the overhead data, which contains

information about the bits that change and in the case of dynamic block sizing the

block length, is the same as the bit width. So for example if we have 16 bit data then

our overhead will also be 16 bits. For fixed block sizing if the block size is hard coded

into the transmitter and receiver we can provide information about which bits change

using 4 bits (2
4
 = 16) which leaves 12 bits of the overhead unused. However, hard

coding the block size into the transmitter and receiver means less flexibility should

the block size need to be changed.

Page 43 of 158

D
A

T
A

B
U

F
F

E
R

Serial Data

DATA

MASK

PARALLEL to SERIAL

D0

D1

D2

D3

SERIAL to PARALLEL

OVHD D0 D1 D2 D3

D0

D1

D2

D3

Overhead

Entire 1st word

Changing bits of

subsequent data

FSM MASK

FSM

DATA

control

b
it
s
 c

h
a

n
g

e

control

c
o

n
tr

o
l

d
a

ta

d
a

ta

Fig. 3-12 Generic Diagram of Compression Scheme

Up to now the block length has been considered as a fixed. The block length in the

example is 8. To determine what the optimum block length is without knowledge of

the data to be compressed is not an easy task. A general guideline is to make the fixed

block size similar to any inherent groups of consecutive data that show minimal data

variance. As stated in Appendix A, a fixed block size of 64 is used for MPEG picture

data. This is because picture data is often processed in units that consist of six groups

of 64 words, the less complex the picture, the less variance there generally is within

each group. It is important not to make the block size too large as this would impact

the size of any buffer which has to hold the data. Increasing the buffer size will

increase the area cost of implementation. Conversely, making the fixed block size too

small will lead to compression inefficiencies where the any potential gains from

removing redundant bits would be impacted by an increased amount of overhead bits

being used for the increase in the number of blocks resulting from higher

fragmentation of the data.

3.3.2 Dynamic Block Sizing

An alternative to fixed block length is to dynamically alter the length on a block by

block basis. This is useful for situations where there is no inherent grouping of data

that can be seen. If the block length is fixed the implementation of performing the

proposed compression technique becomes simple since the block length stays

Page 44 of 158

constant. Using an algorithm to allow dynamic block sizing based on information

about the data can be done but this will impact the area of the transmitter and receiver

since the circuitry would be more complex. Dynamic block sizing will now be

discussed in more detail.

It is common to buffer data within the network switch interface to store data

before being packetized to make sure data is transferred efficiently. For dynamic

block sizing a queue such as a FIFO could be used to provide information about how

to compress the buffered data. The information in the queue would consist of some

overhead information which signifies the block length and the number of bits which

change or stay the same. Extra circuitry would be needed to gather information about

the most suitable way to organize the data into blocks and provide the number of data

words over which compression is applied. This extra information about the length of

the block would also have to be transmitted along with the number of bits that change

so that the receiver would know how many data words to decompress using the

current information of how many bits change and how many remain the same. The

extra circuitry would require some sort of numeric addition and comparison in order

to find out what block size or number of words to apply compression. In order to

make a decision about block sizing an algorithm is used to determine the block size

base on the number of bits that change over a particular number of data words. In

order to keep it simple the algorithm only examines each data word once when it is

written into the FIFO. It may be possible to achieve better optimization of the

algorithm if several passes of examining the data are done but this would require the

data to effectively wait in a memory while there was several sweeps through the data

in order to find the best block sizing and therefore the transmission of the data would

not take place until the block sizing had taken place. By just examining each data

word once when it is being written into the FIFO we know that the data will be ready

to be transmitted as soon as the algorithm determines the first block size.

A simple algorithm is proposed that effectively uses pointers which point to

the start of 3 successive minimum length blocks in the data. Using 3 pointers allows

the algorithm to make two decisions, to continue to merge blocks together or to store

information about the current merged block and start a new block. To get the

minimum length for a block it is necessary to know when compression will be

Page 45 of 158

worthwhile. Referring to Fig. 3-13 the following equation must be satisfied in order to

achieve compression.

() BITWIDTHLENGTHOVHDBITWIDTHLSBSLENGTH CH ×<++×−)1(

L
E

N
G

T
H

O

V
E

R
H

E
A

D

LSBSCH

BITWIDTH

where, LENGTH = length of the block,

LSBSCH = number of Least Sig. Bits that change

OVHD = overhead in bits

BITWIDTH = bit width of the data words

Fig. 3-13 Compressed Data Format

The basic outline of the algorithm is given in Fig. 3-14. It consists of an initialization

phase followed by an evaluation and update loop.

 1 // Initialize the pointers by getting the first three minimum blocks

2 GetNextBlock(p0)

3 GetNextBlock(p1)

4 GetNextBlock(p2)

5

6 while (not at end of data) // Main loop

7 {

8 // bias = 4

9

10 // Net savings merging p0 + p1

11 // = - potential savings lost + overhead + bias

12

13 // Net savings merging p1 + p2

14 // = - potential savings lost + overhead

15

16 // Evaluate the merging options

17 if merging block 0 and 1 gives best savings

18 p0 = Merge(p0,p1)

19 p1 = p2

20 GetNextBlock(p2)

21

22 else if merging block 1 and 2 gives best savings

23 store p0 info in queue

24 p0 = Merge(p1,p2)

25 GetNextBlock(p1)

26 GetNextBlock(p2)

27

28 } end while

29

30 GetNextBlock(p)

31 { // Gets the minimum sized block that will achieve compression }

32

33 Merge(p,p)

34 { // Merges the two blocks together}

Fig. 3-14 Algorithm for dynamic block sizing

Page 46 of 158

An example initialization, evaluation and update cycle is shown in Fig. 3-15. First,

three minimum length blocks are found. These three minimum length blocks are then

evaluated for two possible merging options, merging block 0 and block 1 or merging

block 1 and block 2. In the example shown in Fig. 3-15, merging block 0 and block 1

results in the loss of 4 bits. However, the merge operation would also remove one set

of overhead bits, in this case 8 bits. Furthermore a bias value is used when calculating

the potential savings when merging block 0 and block 1. This is done to encourage the

algorithm not to fragment the data into too many blocks. The resulting net savings for

merging block 0 and block 1 will therefore be -4+8+4 giving a total of +8. Merging

block 1 and block 2 in Fig. 3-15 shows that 9 bits are lost and 8 bits are saved through

removing overhead bits. This gives a total net saving of -1. Merging block 0 and 1

gives the best overall net bit savings. The merge is performed and the pointers are

updated. This whole process is continuously performed again. Anytime block 1 and

block 2 is merged the information about block 0, the length and number of bits that

change, is stored in a queue to allow the already buffered data to be compressed. The

queue will contain the length and changing bits information that allows the data in the

buffer to be compressed.

0
+
1

2

0

1+2

merge(0,1) merge(1,2)

net save = 8 net save = -1

potential savings lost

-4 + 8 + 4 -9 + 8

0

1

2

Most Significant Bit which changes

0

2

0

1

2

1. Initialization of pointers 2. Evaluate Merging Options

3. Update Pointers

Fig. 3-15 Example initialization, evaluation and update cycle

Page 47 of 158

Fig. 3-16 shows a possible implementation of the USBR compression technique in

hardware. The packet header generation is ignored in this diagram and just the

payload data is considered for clarity. The general structure outlined shows a

transmitter consisting of a buffer, block sizing unit, queue, controller and parallel to

serial converter. The receiver consists of a serial to parallel converter where each bit

can be addressed, and a controller. For the transmitter, the data is written into a buffer

from the core as normal but at the same time the block sizing unit is collecting

information on the data and working out ways to try and compress the data. As the

block sizing unit finds the best way to split the data into blocks the information is

written into a queue. The controller then takes information from the queue regarding

the length and number of bits that change and uses these to drive the parallel to serial

converter correctly. The parallel to serial converter shifts out the overhead

information from the queue, the entire first data word and then only the bits that

change within the block for each word.

BLOCK SIZING

Serial Data Out

D
a
ta

Pointer
Management

D0

D1

D2

D3

OVHD D0 D1 D2 D3

Serial Data In

D0

D1

D2

D3

Overhead

Entire 1st word

Changing bits of subsequent words

F
IF

O

W
ri

te
_

E
n

p0

p1

p2

ƒ

ƒ

Merge

CTRL

p0 (bits, length)

F
IF

O

D
A

T
A

 B
U

F
F

E
R

Write_En

QUEUE

(bits, length)

D
a

ta

TX
SHIFT
CTRL

PARALLEL TO SERIAL

Load, Shift

Data_OVHD_Sel

RX
SHIFT
CTRL

B
it
_

S
e

l

L
o
a

d
_
P

a
ra

D
a
ta

OVHD_REG

B
it
s

L
e

n
g

th

(bits, length)

D
a

ta

W
ri
te

_
E

n

SERIAL TO
PARALLEL

DATA /
OVHD SEL

DATA FROM
SOURCE
CORE

DATA TO
DESTINATION
CORE

T
R

A
N

S
M

IT

R
E

C
E

IV
E

Fig. 3-16 Implementation for dynamic block sizing, USBR

The receiver shifts in the overhead bits that contain the information which

specifies the bits that stay the same and the length of the block. The first data word is

then shifted in and on subsequent data words only the bits which change are shifted in

to the appropriate bit position. Each time enough bits have been shifted in to form a

Page 48 of 158

valid word whole uncompressed data is clocked out in parallel to be used by the

receiving core. This continues until the end of the block is reached and then the whole

process is repeated on the next block. An interesting observation with this

compression method is that the receiver does not have to buffer data in order to

perform decompression. Each word can be extracted in turn as soon as the necessary

bits have been shifted in. This is useful with memory accesses since as soon as the

packet has finished being sent across the serial link the memory should contain the

updated data.

The number of bits in the overhead in our examples has been set the same as

the bit width of the data. However, it is possible to optimize this further as we can use

some of the bits to say what bits have changed and then optimize the remaining bits to

say the block length if we constrain the block length to particular sizes. For example

with a data width of 16 bits we can use 4 bits to say which bits have changed leaving

12 bits for the block size, 12 bits allowing a block size of up to 4096. Using 8 bits for

the block size we could have block lengths of up to 256. So if the block sizes were

constrained to a maximum length of 256 we could just use 12 bits in the overhead (4

bits to say which bits change in the data and 8 bits for block length).

3.4. Experimental Results

In order to confirm the effectiveness of USBR in compressing data over a serial link

we applied the technique to two MPEG intra-coded pictures shown in Fig. 3-17, a

series of samples from a sinwave with 88 samples per complete sinwave and some

randomly generated data. Each example data is used with a 16 bit and 10 bit fixed

point precision. The resulting bit and transition percentage reduction for each example

is presented. The amount of overhead was set at 16 bits per block for the fixed block

size compression and for the dynamic block sizing compression and the bit-width set

at 16.

Page 49 of 158

Fig. 3-17 Intra-coded pictures from MPEG stream bike.m1v and football.m1v

To count the number of bit or transitions a RTL synthesisable VHDL model of the

uncompressed, Fixed and SILENT implementations was synthesized and a gate level

net-list was generated, a brief overview of the VHDL modules can be found in

Appendix A. A C# application was written for the dynamic scheme to count the bit

reductions for the dynamic algorithm using the same source data that is supplied to

the VHDL testbench. In the test bench two modules were used which monitored the

serial link, one to count the transitions and the other to count the number of bits. The

test bench and net-list were simulated in Modelsim. The test bench and input data was

common for all implementations so the stimulus and test data remained the same. The

test bench was run on the VHDL implementations and the bit reduction and transition

reduction obtained for:

• Uncompressed; Serial link without compression

• Fixed; Serial link with fixed sized block lengths

• Fixed + SILENT; Serial link with transition reduction [103]

• Dynamic; Serial link with dynamic sized block lengths

The reduction in number of bits is shown in Table 3-3 and the reduction in transitions

is shown in Table 3-4. The example source data that was used was sent through the

link via the test bench was generated in several different ways. The arnie1 and

football1 data was generated by extracting an intra-coded picture from an MPEG

video stream, the data is basically a text file consisting of integer numbers which

represent the chrominance and luminance macro block information in an 8 column

format. The sinwave data consisted of values generated from an excel spreadsheet

which created a sin wave with 88 sample points per sin wave period. The random data

Page 50 of 158

was generated using the random function in excel. The integer numbers range

between 0 and 65535 for 16 bit precision and 0 to 1023 for 10 bit precision.

Table 3-3 Amount of Data Transferred (Bits)

SOURCE Uncompressed Fixed Fixed+Silent Dynamic

arnie1_10bit 2027520 999792 999792 1144214

arnie1_16bit 2027520 1683279 1683279 1720560

football1_10bit 1843200 1055646 1055646 1096359

football1_16bit 1843200 1719288 1719288 1663466

sinwave88samples_10bit 11264 7786 7786 7552

sinwave88samples_16bit 11264 11440 11440 11283

1024random_10bit 16384 10592 10592 10358

1024random_16bit 16384 16640 16640 16416

Table 3-4 Number of Transitions

SOURCE Uncompressed Fixed Silent Fixed+Silent

arnie1_10bit 675890 483225 338558 326238

arnie1_16bit 990919 830473 643514 637716

football1_10bit 629130 506292 347348 338026

football1_16bit 903604 839816 646606 645462

sinwave88samples_10bit 3760 3672 2634 2634

sinwave88samples_16bit 5648 5652 4846 4854

1024random_10bit 5718 5217 5640 5173

1024random_16bit 8153 8159 8269 8275

Fig. 3-18 shows the average reduction of the bits being transmitted for the

example data for 10 and 16 bit precision with a block bit-width of 16. The

uncompressed labelled bar shows the original amount of data normalised to 100%.

The other two bars show the resulting transition reduction for Fixed and Dynamic

implementations. SILENT is excluded here as it reduces transitions not the amount of

data and therefore would be the same as uncompressed. For 16 bit random and

sinewave data there is no compression (Fig. 3-18, 1024random_16bit and

sinwave88samples_16bit), in fact there is slight expansion in size. This is to be

expected since random data cannot be compressed and a full swing sinewave will use

all the available values between 0 to 65535 for 16 bit data and therefore all bits will

generally change within the 64 data samples resulting in no MSBs that stay the same

and no compression. The Dynamic algorithm performs slightly better on the 10 bit

random and sinewave data as well as the 16bit football picture with a 1-3% reduction

is data size. However on the remaining picture examples the Fixed scheme performs

superior with a 2-7% reduction in size. The fixed scheme performs quite well in

Page 51 of 158

comparison to the dynamic, but this could be due to the fact that the fixed scheme

uses a block size of 64 over which to compress the data, this is exactly the same size

as the yuv block size in decoded mpeg data so there is some natural synergy in terms

of the localization of the yuv data fitting perfectly into the block size of the

compressor. When the data does not have any inherent relation to the block size of the

compressor (such as the 10 bit random data or sinwave) the dynamic scheme does

show a slight improvement, albeit 1-2%.

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

49.3%

83.0%

57.3%

93.3%

69.1%

101.6%

64.6%

101.6%

56.4%

84.9%

59.5%

90.2%

67.0%

100.2%

63.2%

100.2%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

arnie1_10bit

arnie1_16bit

football1_10bit

football1_16bit

sinwave88samples_10bit

sinwave88samples_16bit

1024random_10bit

1024random_16bit

S
o

u
rc

e
 D

a
ta

Size (as % of uncompressed)

Dynamic

Fixed

Uncompressed

Fig. 3-18 Average Reduction in Bits Transmitted

To examine how the proposed technique reduces the number of transitions and

therefore the power, Fig. 3-19 shows the average reduction of transitions for example

data for our proposed compression using a fixed block size of 64 and using

SILENT[103] which is a technique specifically used for reducing transitions and also

a combination of both to show the effect of compression and transition reduction

techniques together. As can be seen, in the cases where the data does not compress

such the random and sinwave 16 bit examples (Fig. 3-19, 1024random_16bit and

sinwave88samples_16bit) the proposes compression results in no transition

reductions, in fact a slight increase is seen of 0.1% which is due to the extra

transitions within the extra overhead. It can be seen that the transition reduction works

well on the yuv picture data (Fig. 3-19, football1 and arnie1) resulting in around 50%

of the original amount of transitions for the 10 bit precision arnie1 picture data and

72% of the original transitions for the 16 bit football picture data. Our proposed

Page 52 of 158

compression does reduce the number of transitions also, 72% for the arnie1 picture

data and 92% for the football1 picture, but does not achieve the same performance as

SILENT.

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

71.5%

83.8%

80.5%

92.9%

97.7%

100.1%

91.2%

100.1%

50.1%

64.9%

55.2%

71.6%

70.1%

85.8%

98.6%

101.4%

48.3%

64.4%

53.7%

71.4%

70.1%

85.9%

90.5%

101.5%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

arnie1_10bit

arnie1_16bit

football1_10bit

football1_16bit

sinwave88samples_10bit

sinwave88samples_16bit

1024random_10bit

1024random_16bit

S
o

u
rc

e
 D

a
ta

Transitions (as % of uncompressed)

Fixed+Silent

Silent

Fixed

Uncompressed

Fig. 3-19 Average Reduction in Transitions

In order to achieve similar transition reduction as SILENT we can combine the

proposed compression with SILENT and as can be seen the number of transitions is

now reduced to an amount similar or slightly better than SILENT, 48% for arnie1 10

bit picture and 71% for football1 16 bit picture. For the sinwave data our proposed

compression does very little to the amount of transitions, but SILENT does decrease

the transitions to 70% and 86% for 10 and 16 bit precision respectively. For the 10 bit

random values SILENT does not perform well, which is to be expected as if the data

is random and the difference between successive data will also be random too and

since SILENT works by encoding the difference their will be little or no transition

reductions. The random 16 bit data shows some interesting properties in that the

number of transitions slightly increases in all cases. It is believed that because the

random data cannot be compressed the extra transitions in the overhead will cause the

number of transitions to increase. The proposed compression does reduce transitions

by nature of the fact that the number of bits are being reduced. However, if further

transition reduction is required then is it shown that the technique can be combined

with SILENT to reduce the transitions further.

Page 53 of 158

To give an idea of the cost of the proposed compression in terms of power and

area, the transmitter and receiver (for fixed block size) net lists generated from the

RTL VHDL models where used to obtain gate count and used for the basis of a gate

level power simulation.

To show how power could be saved within a NoC link a FIFO type buffer

which was coded and used as a connection between the transmitter and receiver, Fig.

3-20, as much of the power in a switch is used by the buffers [138, 139]. In Xpipes

[28] the buffers are distributed along the length of the wire in order rather than have

the buffers in the switches themselves. This distributed buffers system allows the

switches to be physically smaller and the buffering occurs along the NoC links. The

buffers have the capacity to hold two flits each and this is the basis for comparison.

To give a similar level of capacity the buffers used in the simulation examples

consisted of a 32 entry 1 bit wide FIFO to allow up to two flits to be buffered if each

flit is 16 bits. When compressed the flit size could be smaller than 16 bits, but there is

no guarantee it will be so the maximum possible size of 16 bits must be taken into

consideration.

In this architecture it is assumed that the flits will not be interleaved and that a

packet of data will be allowed to transfer in a wormhole fashion. Interleaving could be

introduced but would most likely require extra logic in the switches to monitor the

size of the compressed flits and strip out the interleaved compressed flits as necessary

to rebuild the separated packets. This would impact the complexity of the switches as

the compressed flit size could change on a packet by packet basis and each interleaved

packet could have different compressed flit sizes.

The transmitter and receiver was synthesised with Synplify-ASIC using ST

0.12µm CORE9GPLL library. The synthesised design was then used in conjunction

with the picture data from the bike example of Fig. 3-17 and run through Synopsys

Primepower to provide gate level power estimations for the design. The simulation

time for the runs was the same for both implementations to allow a comparison of the

average power.

Page 54 of 158

Transmit Receive
Buffer(s)

Synthesised Gate Level Netlist

Bike picture data Output

Fig. 3-20 Test bench and power simulation setup

As shown in Table 3-5, for the uncompressed implementation the area of the

hardware is 97403 µm
2
. For fixed block sizing the area is 107750 µm

2
 effectively an

increase of 10.6%. If we use fixed+SILENT in the implementation to further reduce

the transition the area of the hardware is 111555 µm
2
 which is a 14.5% increase in

area.

Table 3-5 Area of design for standard and fixed block size of 64 (µm2)

 Transmitter Receiver Buffer Total

Standard 91916 1596 3891 97403

 Proposed Fixed 99488 4365 3897 107750

SILENT[103] 93519 4024 3877 101420

Proposed Fixed+SILENT 101068 6590 3897 111555

Table 3-6 shows the power for the uncompressed implementation and the fixed block

size implementation. The two implementations show similar power usage when the

data goes through a single switch, 0.3949 mW for the uncompressed and 0.4007 mW

for the fixed block sizing, at first there seems to be no gain in using the compression

since the power increase in the transmitter section is slightly more than the power

saved in the buffer. However, this power is for a single buffer only. If the data has to

go through more than one switch then the additional power saving of each additional

buffer within each switch exceeds the power increase in the transmitter due to

compression. For example in a NoC system if the data from the transmitting core has

to pass through at least 3 switches to arrive at the receiving core then the power is

reduced from 0.7031 mW down to 0.6332 mW, a power saving of around 10%.

Page 55 of 158

Table 3-6 Power used when transferring the bike picture data example (mW)

1 Buffer Transmitter Receiver Buffer Total

Standard 0.1813 0.0595 0.1541 0.3949

Fixed 0.2208 0.0635 0.1164 0.4007

2 Buffers

Standard 0.1813 0.0595 0.3082 0.5490

Fixed 0.2208 0.0635 0.2328 0.5168

3 Buffers

Standard 0.1813 0.0595 0.4623 0.7031

Fixed 0.2208 0.0635 0.3492 0.6332

Page 56 of 158

3.5. Concluding Remarks

Recent research is indicating that NoC with serial interconnect provides benefits from

power and area point of view. This chapter has presented an effective compression

technique that can be employed with such NoC, improving the bandwidth bottleneck

of bit-serial links. It has been shown that it is possible to compress data over a serial

link to reduce the amount of data that needs to be transmitted. Fixed and dynamic

block sizing of the data to which the compression is applied to has been considered.

Fixed block sizing shows a slight advantage in terms of reducing the amount of data

when the original uncompressed data has some regular pattern or localisation of data

words over similar length as the block size. In the case of MPEG the smallest unit of

picture data that is stored in memory is 64 words (8x8 matrix portion of a picture) so

data will tend be similar in this 64 word portion of data. Fixed block sizing has shown

to be effective for the MPEG picture information showing that it is possible to reduce

the amount of data by a further 6.7% compared to the dynamic block sizing in the

example test data (Fig. 3-18, arnie1_10bit). Dynamic block sizing tends to perform

slightly better where the similar localised data is not grouped into regular lengths as is

the case with MPEG picture data. General guidelines for determining a suitable fixed

block length and an algorithm for dynamic block sizing has been developed.

The proposed technique exploits the fact that unused significant bits do not

need to be transmitted. Furthermore, the technique offers transmission with less

transition count leading to the potential of lower power. Experimental results have

been provided to show the transition reductions. A possible implementation of the

proposed compression technique has been outlined and the area overhead costs from

synthesised results have been presented showing that a power saving of 10% can be

achieved for the link with 3 buffers. This power saving is achieved at the cost of an

increase in area of 10.6%.

Page 57 of 158

Chapter 4. Asynchronous Serialized NoC Links

Chapter 3 considered compression for bit-serial transmission in order to reduce the

amount of data sent across a NoC link. However, the compression scheme is only

useful for situations where the most significant bits change infrequently as shown in

the results section of Chapter 3. The bit-serial compression may not be suitable for

other types of data and so the option to serialize the data into slices and not use a full

bit-serial link is explored to allow a higher bandwidth than a fully bit-serial link but

also offer reduced wiring area than a fully parallel link. This chapter also investigates

the use of asynchronous techniques to build on serialization to allow for power

reduction and simplify the clock distribution of the NoC interconnect.

Synchronous circuit design relies on a common global clock which is used to

maintain timing and provide a mechanism to allow all signals to be sampled at a well

defined timing interval defined by the clock period. Synchronous circuits are

deterministic in their operation and as such are relatively easy to design compared to

asynchronous which does not have a common timing reference. The majority of NoC

architectures that have been proposed are synchronous [28, 47, 140]. Recently there

has been studies of asynchronous NoC [90, 92, 141] which highlight some of the

problems with synchronous NoC such as global clock power consumption, clock

skew and electro-magnetic interference. Global clock power can be a significant part

of the total power for SoC. Processors such as the Pentium Pro or Alpha the clock

power can be 10-30% of the total chip power [142, 143]. The Intel 80 core teraflops

processor in which the cores are arranged in a 2D mesh uses about 28% of the total

power on communication [144].

Interconnect between the NoC switches has also received attention in the

asynchronous domain. An asynchronous point-to-point link that can be used for

communication has been investigated in [91]. This scheme uses clock pausing

techniques to pass data from the synchronous to asynchronous domains and provides

a meta-stable safe interface between synchronous and asynchronous domains.

However, if number of input/output interfaces increase arbitration is needed so that

each input/output interface is able to pause the clock, this could lead to an increased

chance of the clock being paused as the number of interfaces grow which could lead

to an increase in latency and starting and stopping of data transfers through the

Page 58 of 158

interface. Also the scheme needs a carefully calibrated delay line in the consumer and

producer interface in order to function.

Interconnect cost, in terms of the number of wires required between switches,

could also be considerable in NoC architectures since each switch is effectively

connected by a point-to-point link to a neighbouring switch. The high cost of parallel

links has been shown in [99], especially when inter-wiring spacing, shielding and

repeaters are considered. The number of point-to-point links between the switches of

a NoC will grow as more cores are integrated into a system.

Serialized transmission for NoC application been demonstrated successfully in

[103]. Leakage and dynamic power reduction is possible using serialization [126].

Leakage power is reduced because of the reduction in the number of repeaters and

buffers due to the reduced amount of wires. Dynamic power can also be possibly

reduced since a large parallel link has large wire to wire capacitance which would

require larger drivers and repeater to obtain the same propagation delay in comparison

to a serialized linked with reduced wire to wire capacitance. Shielding, if used, on

parallel links will also add to the total capacitance. However, it is important to take

into account that the serializer and de-serializer circuitry uses power which may be

more than the additional power used to driver parallel links. As the length of the links

increase it may be more favourable to use serialized links as the power increase

caused by the serializer and de-serializer is offset by the saving of the drivers seeing a

lighter capacitive load per wire. It has been suggested that for 65 nm that serial links

are preferred for wire length greater than 2-4 mm when compared to wave pipelined

and register pipelined parallel links [126]. It is important to note that many factors,

such as wire spacing, repeater sizes, wire capacitance, data patterns and switching

activity all have an effect on the power so there is no clear way of knowing if

dynamic power can be reduced without taking these factors into account and

analyzing the system as a whole.

This chapter proposes the application of serialization as a means of reducing

the interconnect cost in NoC, leading to reduction of wire congestion around the

switches and the possibility of reducing the spacing between cores if over-cell routing

cannot be used. Furthermore, the work investigates feasibility and design

requirements arising from the interfacing of routing units of a fully-synchronous NoC

scheme with an underlying asynchronous serial physical link.

Page 59 of 158

The motivation for the work is given in section 4.1. Section 4.2 given details

of the asynchronous link. Section 4.3 shows how the proposed link can be modified

for word level acknowledgement and Section 4.4 determines the upper bound

throughput of the asynchronous link. Experimental results are given in Section 4.5

and a summary of the acknowledgement schemes in 4.6. Section 4.7 provides

practical validation of the asynchronous link using FPGA technology. Concluding

remarks are given in Section 4.8.

4.1. Motivation

To study the feasibility of how an asynchronous serialized link can fit into an existing

synchronous NoC architecture, a typical synchronous point-to-point link with wire

pipelining buffers along the length of the wire was used. This would be used in a

synchronous NoC where the switches and the wire pipelining buffer are clocked

together such as [28]. This allows for high throughput of data due to the pipelining

and the use of existing synthesis tools to implement the design. The fundamental

reasoning for buffered pipelined wires can be found in Appendix C. A single link is

shown in Fig. 4-1, the two switches are connected together with a wire segmented by

a series of synchronous two-slot buffers.

Switch

B
u
f

B
u

f Switch

CLK A

DATA

S S S S

S S S S

Fig. 4-1 NoC with Synchronous Link

To reduce the number of wires in such synchronous links the data can be

serialised. Consider a simple serialization scheme as shown in Fig. 4-2, the number of

wires required would reduce from the original amount m to the reduced amount n.

Page 60 of 158

However, this would also mean that the 2
nd

 clock (Clock B) driving the serializer, de-

serializer and wire-buffers would have to be introduced. Clock B would have to be

m/n times faster which could mean a 2
nd

 clock tree spanning the chip area covering

the NoC structure. Also, if no first-in first-out (FIFO) buffer or clock pausing

mechanisms are used to pass data between the two clock domains the two clocks

would have to be tightly phased locked to each other and clock B would have to be an

integer value times faster than clock A in order that no timing violations occur when

data or control signals pass between the two domains.

Switch
B

u
f

B
u

f Switch
m

CLK A

S
e

r

n m

D
e

-S
e

r

n

CLK A CLK B

Fig. 4-2 Synchronous with Serialization Link

The introduction of asynchronous elements to the link would allow an

architecture as shown in Fig. 4-3. The switch would interface directly to a

synchronous to asynchronous interface and then go through a synchronous serializer.

The benefit of this approach is that the data is serialized and thus saves wire area but

also does not require a second higher speed clock to be fed into the serialization

circuits and to the wire-pipeline buffers. The probability of the meta-stability at the

interface between synchronous and asynchronous domain that may cause a

synchronisation failure is significantly smaller in our case because of the relatively

low frequency of Clock A, compared to frequency of the serialized link. The

immediate drawback, however, is that extra overhead is introduced by the additional

circuitry. This could impact area, power, latency and throughput.

Switch

B
u
f

B
u
f Switch

m

CLK A

S
/A

 I
n
t.

 m m

A
/S

 I
n
t

n

CLK A

S
e
ri

n

D
e

-S
e

r

m

1 2 3 4 5

ASYNCH. SYNCH. SYNCH.

Fig. 4-3 Proposed Serialized Asynchronous Architecture

Page 61 of 158

4.2. Asynchronous Link

The simplest asynchronous operation is perhaps bundled-data [145] where the data is

sent with a request signal. A problem with bundled data is that mismatches in the

delays of the data or request lines could cause meta-stability at the receiver.

Techniques to improve bundled data such as surfing interconnect have been covered

in [88]. Other schemes such as 1-of-4 coding [110], LEDR [111] and phase-encoding

[146] encode the data in such a way that the receiver can recognize valid data, but

usually require several wires per bit in order to function. Wave pipelining approaches

are being proposed such as WAFT where a number of wave-fronts are present at one

time on the data lines. The presented work shows a proof-of-concept implementation

of an asynchronous link using a bundled-data link. The circuits are kept simple in

order to provide a fair comparison to synchronous circuit. The remainder of this

section describes the interface between the synchronous and the asynchronous

domains and the physical implementation of the link. A more detailed overview of the

proposed architecture is shown in Fig. 4-4. The architecture consists of a synchronous

to asynchronous interface, a serializer, a wire buffer, a de-serializer and an

asynchronous to synchronous interface. Circuits have been designed for the

implementations of the synchronous to asynchronous interfaces and the serializer and

de-serializer. The design of each of the modules will be described in detail in this

section.

NOC

SWITCH

m

CLK

S
Y

N
C

H
 /
 A

S
Y

N
C

H

IN
T

E
R

F
A

C
E

valid

stall

req

ack

req

ack

A
S

Y
N

C
H

R
O

N
O

U
S

S

E
R

IA
L
IZ

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

W

IR
E

 B
U

F
F

E
R

req

ack

m n n

A
S

Y
N

C
H

R
O

N
O

U
S

D

E
-S

E
R

IA
L
IZ

E
R

NOC

SWITCH

req

ack

n

req

ack

m m

valid

stall

A
S

Y
N

C
H

R
O

N
O

U
S

W

IR
E

 B
U

F
F

E
R

req

ack

n

A
S

Y
N

C
H

 /
 S

Y
N

C
H

IN

T
E

R
F

A
C

E

CLK

1 2 3

4 5

Fig. 4-4 Block Diagram Asynchronous Link

Page 62 of 158

The asynchronous point-to-point link is implemented using standard logic cells and

two common asynchronous cells, the C-Element [147] and the David Cell [148],

which are shown in Fig. 4-5 and Fig. 4-7 respectively.

C Z
A

B

A

B

Z

C ELEMENT

x

Fig. 4-5 C-Element

The C-Element is a component which has hysteresis where the output reflects the

state of the inputs when states of the inputs all match. The output remains the same

until all the inputs change to the opposite state. The C-Element consists of two

invertors connected back to front in order to hold the output Z at a given state. The

inputs A and B are connected to transistor which controls the other side of the holding

invertors, point x in Fig. 4-5. If A and B are both low point x is pulled high and the

output of the invertors Z goes low. If A and B are both high then point x is pulled low

and the output Z goes high. If A is high and B is low, or vice versa, then point x

remains unchanged as does the output Z. The C-Element can be used to establish that

two events have happened in 4 phase handshaking asynchronous circuits, as the

output Z will not trigger until both A and B have been set. The output Z will only

reset once both A and B have reset following the 4-phase handshaking rule. An

example of 4-phase and 2-phase handshaking is shown in Fig. 4-6 in the 4-phase

example the request is set, the acknowledge is set, the request reset and the

acknowledge reset. In the 2-phase example the request is toggled and the

acknowledge is toggled in response.

Page 63 of 158

REQ

ACK

REQ

ACK

Fig. 4-6 4 Phase (top) and 2 Phase (bottom) Handshaking

DC

DAVID CELL

O2

I1
O2

O1
O1

I1
I2

I2
x y

Fig. 4-7 David Cell

The David Cell consists of 3 NOR gates two of which are cross-coupled (x &

y) and a third which acts as a gating mechanism for the output O2. The David-Cell

can be used to sequence events or operations and can be chained together to form a 1-

hot sequencing structure. The David-Cell is in a set condition if the output of gate x =

0 and y = 1, and a reset condition when x =1 and y = 0. Consider a series of David-

Cells connect together as shown in Fig. 4-8. David Cell DC0 is set and DC1 and DC2

are reset. A and B are both some arbitrary circuits that perform a task when requested

by the REQ signal and acknowledges completion of the task by the ACK signal. REQ

to circuit A is currently high requesting that the circuit performs some operation. The

sequence of event is as follows:

(a) Circuit A acknowledges is is finished by taking ACK to DC1 high.

(b) DC1 takes it output 01 high.

(c) REQ to circuit A goes low.

(d) ACK to DC1 goes low.

(e) REQ to circuit B goes high.

Page 64 of 158

DC0
(set) O2

O1

I1
DC1
(reset) O2 I1

DC2
(reset) O2 I1

I2

1 → 0 0 →1 → 0 0 → 1 0

0

0 → 1
1

1

0

1

(a)

(b)

(c) (d) (e)

A B
R

E
Q

A
C

K

R
E

Q

A
C

K

Fig. 4-8 Chain of David Cells

4.2.1 Synchronous to Asynchronous Interface

The synchronous to asynchronous interface is basically a FIFO type structure with a

synchronous side that can write and an asynchronous side that can read. The FIFO can

be considered 32 bit wide and 4 registers deep. A FIFO is used to effectively break

the dependency of the of the asynchronous side from the synchronous side. The

synchronous side can write to the FIFO at the same time the asynchronous side can

read from it. A 4 deep a FIFO was used in the synchronous to asynchronous interface

(marked 1 in Fig. 4-4) and asynchronous to synchronous interface (marked 5 in Fig.

4-4) to give a total of 8 possible spaces for data along the link, the same as the

synchronous link. The synchronous to asynchronous interface (Fig. 4-9) can be

considered in two halves, the synchronous register writer side and the asynchronous

register reader side.

The synchronous register writer is comprised of four registers which can be

synchronously written to when the appropriate WR_EN(x) signal is active. For each

register there is an associated flag. The flag consists of a clocked D-Type flip flop

with data enable. The input of D-Type is attached to VDD so that when WR_EN(x) is

high a ‘1’ is clocked onto the output of the D-Type. The output of the D-Type is the

asynchronous flag FLAG_A(x). This is also fed through two registers flip flops to

give the synchronous flag FLAG_S(x). The use of two flip-flops to build a

synchronizer out of standard logic components is known to ensure sufficient level of

protection against synchronization failures due to meta-stability, more on that can be

found in [149]. The flag can be asynchronously cleared by using CLEAR(x) which is

gated with the asynchronous reset attached to the D-Type. The VALID and STALL

Page 65 of 158

signal is used to determine if there is space for the data on FLITIN to be written into

one of the registers.

The asynchronous register reader comprises of several David-Cells and C-

Elements. At reset DC(0) output O2 is logic ‘1’ and DC(1-3) output O2 is logic ‘0’.

The chain of David-Cells effectively form a 1-hot sequencer where one of them is

always active. The C-Elements control the request and acknowledge handshaking and

trigger the David-Cells in sequence. The multiplexer selects which of the registers

will be output to the next stage, the output O2 of the David-Cells control the

multiplexer.

1 HOT
COUNTER
& WRITE
ENABLE

VALID

WR_EN(0) CLEAR(0)

FLAG_A(0)

STALL

FLAG_S(0)

FLIT_OUT0(31:0)

F
L
A

G

CLK

SEL(0:3)

WR_EN(0:3)

CLK
FLAG_S(1)

FLAG_S(2)

FLAG_S(3)

WR_EN(0)

FLITIN(31:0)

R
E

G
 FLIT_OUT1(31:0)

FLIT_OUT2(31:0)

FLIT_OUT3(31:0)

DOUT(31:0)

SEL(3:0)

DC
(1)

DC
(0)

DC
(2)

C

FLAG_A(1)

REQOUT

SEL(0) SEL(1)

C C C

FLAG_A(0)

DC
(3)

C

SEL(2)

C C C

ACKIN

SEL(3)

C
L
E

A
R

(0
)

C
L
E

A
R

(1
)

C
L
E

A
R

(2
)

C
L
E

A
R

(3
)

FLAG_A(2) FLAG_A(3)

O2 O2 O2 O2

CLK

Fig. 4-9 Synchronous to Asynchronous Interface

4.2.2 Asynchronous Serializer

The asynchronous serializer, Fig. 4-10, consists of several David-Cells which select

each 8 bit slice of the 32 bit data word in turn. At reset the output O2 of DC(0) is logic

‘1’ and output O2 of DC(1-3) are logic ‘0’. The REQIN signal gated with SEL(0)

triggers the start of the REQOUT / ACKIN sequence which is performed 4 times,

each time the next 8 bit slice of the 32 bit data word is selected and latched at the

output. The circuit can easily be modified to serialize more and break the 32 bit word

in smaller slices by increasing the number of David-Cells and making the data path

DOUT narrower.

Page 66 of 158

DC
(1)

& C

DC
(0)

DC
(2)

DC
(3)

C C

C

REQIN

REQOUT

ACKIN

REQIN

ACKOUT

SEL(0)
SEL(1)

SEL(3)

DIN(7:0)

DIN(15:8)

DIN(23:16)

DIN(31:24)

D Q

G

SEL(3:0)

DOUT(7:0)

DIN(31:0)

Fig. 4-10 Asynchronous 32 to 8 Bit Data Serializer

4.2.3 Asynchronous Wire-Buffer

The asynchronous wire buffer, Fig. 4-11 is based on a simple four phase latch control

circuit [150]. It essentially latches the data on the falling edge of REQIN. The C-

Element regulates the request and acknowledge handshaking safely. One point to note

about this circuit is that the REQIN/ACKOUT side is not fully de-coupled from

REQOUT/ACKIN side. If several of the wire-buffers are chained together then at best

only every other buffer in the chain will be in use at a time. This does not present a

problem in our case as the wire-buffering is a mechanism for transporting data rather

than storage.

C
REQIN

REQOUT

ACKOUT

DIN(7:0)
D Q

G

DOUT(7:0)

LE

&

ACKIN

Fig. 4-11 Asynchronous Wire Buffer

Page 67 of 158

4.2.4 Asynchronous De-Serializer

The asynchronous de-serializer shown in Fig. 4-12 takes 4 slices of 8 bits and re-

constructs the original 32 bit data. At reset the output O2 of DC(0) is logic ‘1’.

REQIN will go high signifying the first 8 bit slice is valid on DIN. The output of the

C-Element LE(0) will then trigger and go high and latch the 8 bit slice into place. The

REQIN/ACKOUT cycle is repeated 4 times until the 32 bit word is re-built and then

the REQOUT is taken high to signify to the next stage the valid 32 bit data is ready.

Again, like the serializer, the circuit can easily be altered for larger slice widths by

reducing the number of David-Cells in the chain and altering the data path width.

DC
(1)

C

DC
(0)

DC
(4)

REQIN

REQOUT

ACKOUT

DIN(7:0)
D Q
G

DOUT(7:0)

LE(0)

D Q
G

DOUT(15:8)

LE(1)

D Q
G

DOUT(31:24)

LE(3)

LE(0)

C

LE(1)

C

LE(3)

ACKIN

DOUT(31:0)

Fig. 4-12 Asynchronous 8 to 32 Bit Data De-Serialiser

4.2.5 Asynchronous to Synchronous Interface

The asynchronous to synchronous interface is also a FIFO type structure, with four

latches. The design is very similar to the synchronous to asynchronous interface and

again can be considered in two parts, the asynchronous latch writer and the

synchronous latch reader. Like the asynchronous register reader, the asynchronous

latch writer, Fig. 4-13 bottom, consists of 4 David-Cells and several C-Elements. Four

of the C-Elements in this design are asymmetric, denoted by the ‘+’ sign on one of the

inputs, which means that the output will only be affected by this input going high and

Page 68 of 158

ignored going low. Again, at reset, the output O2 of DC(0) is logic ‘1’ and the output

O2 of DC(1-3) is logic ‘0’. The request acknowledge sequence is triggered by REQIN.

The output O2 of DC(0) and REQIN is fed into a C-Element, which in turn is merged

with inverse of FLAG_A(0). If the latch is empty FLAG_A(0) is ‘0’ and the C-

Element output LE(0) goes to a ‘1’ and ACKOUT is asserted. REQIN will go low and

FLAG_A(0) will get set to a ‘1’ which will ripple through and take the input I1 of

DC(1) high. This will make DC(0) inactive and ripple through the two C-Elements

taking LE(0) to ‘0’ and taking ACKOUT low. The input I1 of DC(1) now goes to ‘0’

and the output O2 of DC(1) is now ‘1’. The sequence repeats for each consecutive

request acknowledge handshake.

The synchronous latch reader is very similar to the synchronous register

writer. There are four latches into which data is latched from the asynchronous latch

writer. There are four flag modules which allow an asynchronous set of the

FLAG_A(x) output and a synchronous clear. FLAG_S(x) is a synchronized version of

FLAG_A(x) done by passing through two clocked flip-flops. A multiplexer allows

one of the four data in the latches to be passed to the switch interface and a small

controller controls the SEL(x), CLEAR(x) and VALID signals based on the

FLAG_S(x) and STALL signals.

Page 69 of 158

DC
(0)

ACKOUT

C

C C

FLAG_A(0)

LE(0)

DC
(1)

C

C C

FLAG_A(1)

LE(1)

DC
(2)

C

C C

FLAG_A(2)

LE(2)

DC
(3)

C

C C

FLAG_A(3)

LE(3)

LE(3:0)

CLEAR(3:0)

FLAG_S(3:0)

DATA0(31:0)

FLAG_A(3:0)

SEL(0:3)

CLEAR(0:3
)

CLK

DIN0(31:0)

LE(3:0)
DATA1(31:0)

DATA2(31:0)

DATA3(31:0)

FLIT_OUT(31:0)

SEL(0:3)

VALID

FLAG_S(0:3)

STALL CLK

REQIN

C C C C

1 HOT
COUNTER
& OUTPUT
CONTROL

L

A
T

C
H

F
L
A

G

Fig. 4-13 Asynchronous to Synchronous Interface

4.3. Word Level Acknowledgement

One of the problems associated with a per-transfer acknowledgement is the need for

the receiver or wire buffers to acknowledge every transfer. As the parallel data gets

more and more serialised the number of request-acknowledge cycles per word

increases. One possible way around this is to use a coarser grain acknowledgement

that acknowledges at the word level, Fig. 4-14. Intuitively it can be seen that a coarser

grain acknowledge at the very least removes 3 acknowledgements in our scheme.

Removing 3 acknowledgements that would be required to send a full word will

shorten the word transfer cycle time and increase throughput.

Page 70 of 158

T
ra

n
s
m

it
te

r S3 S2 S1 S0

R
e

c
e

iv
e
r

A0 A1 A2 A3

WORD (slices S0 - S3)

acknowledgements

data & requests
T

ra
n
s
m

it
te

r S3 S2 S1 S0

R
e

c
e

iv
e
r

A

WORD (slices S0 - S3)

acknowledgement

data & requests

Fig. 4-14 Ack. every transfer(top) vs ack. every word (bottom)

Word level acknowledgement has some implications such as timing closure at the

receiver which must be able to receive multiple transfers correctly and the need for

some self regulated timing mechanism, such as a clock, at the transmitter to space the

burst transfers out such that there is no timing violations incurred at the receive end.

The proposed link (section 4.2) can be modified to use a per-word acknowledgement

scheme by altering the serializer and de-serializer to perform several transfers per

acknowledgement. Fig. 4-15 shows the proposed link with word level

acknowledgement by modifying the serializer, de-serializer and wire buffer.

NOC

SWITCH

m

CLK

S
Y

N
C

H
 /

 A
S

Y
N

C
H

IN

T
E

R
F

A
C

E

valid

stall

req

ack

valid

A
S

Y
N

C
H

R
O

N
O

U
S

S

E
R

IA
L

IZ
E

R

B
U

F
F

E
R

S

valid

m n n

A
S

Y
N

C
H

R
O

N
O

U
S

D

E
-S

E
R

IA
L

IZ
E

R

NOC

SWITCH

ack

req

ack

m m

valid

stall

A
S

Y
N

C
H

 /
 S

Y
N

C
H

IN

T
E

R
F

A
C

E

CLK

1 2 3 4 5

Fig. 4-15 Serial Asynchronous word-level acknowledgement

The buffers along the length of the wire can be replaced by simple buffers or an even

number of invertors. The serializer (Fig. 4-16) uses a multiplexer with each slice of a

word being selected in turn. The VALID signal goes high when there is valid data on

Page 71 of 158

DOUT and signified to the receiver end that the data can be used. The VALID signal

goes high 4 times, once for each slice of the word. The timing of the VALID signal is

derived from the ring oscillator constructed by 5 back to back invertors. To adjust the

frequency of the burst the number of invertors can be altered or different sizes can be

used depending upon requirements. To ensure that VALID only goes high when the

DATA is valid the respective timing between DATA and VALID can also be tuned

by selecting different taps off the ring oscillator if necessary. Furthermore, if tolerance

becomes problematic the VALID signal generation can be combined with the SELect

signals to increase robustness.

&

resetsys

NRESET

C

C

endpulses

endpulses

C

REQIN

ACKOUT

ACKIN

sel(0)

R
E

G

 (
0

)

R
E

G

 (
0

)

R
E

G

 (
0

)

R
E

G

 (
1

)

R
E

G

 (
0

)
sel(1) sel(2) sel(3)

resetsys

DIN(7:0)

DIN(15:8)

DIN(23:16
) DIN(31:28)

DOUT(7:0)

sel(3:0)

VALID

DIN(31:0)

Fig. 4-16 Word level serializer

Page 72 of 158

&

C ‘1’ REQOUT

RESETN

ACKIN

DOUT(31:24)

R
E

G

R
E

G

R
E

G

R
E

G

clear

R
E

G

R
E

G

R
E

G

R
E

G

DOUT(23:16) DOUT(15:8) DOUT(7:0)

DIN(7:0)

VALID(7:0)

ACKOUT
clear

DOUT(31:0)

Fig. 4-17 Word level de-serializer

The de-serializer (Fig. 4-17) employs a shift register. This was done to see the

effects of a shift register based de-serializer versus the original mux based de-

serializer. The data is shifted in on DIN every time VALID goes high and the data

slices are serially shifted onto DOUT. At the same time a single bit pulse is shifted

down a single bit shift register of the same length to provide a REQOUT signal to the

next asynchronous block to inform it the whole word has been built and is valid.

ACKIN clears the single bit shift registers and removes REQOUT completing the

handshake.

4.4. Calculation of Upper Bound Throughput

In order to give insight into the maximum throughput of the per-transfer and per-word

scheme it is necessary to be able to calculate the upper bound rate for the

asynchronous request/acknowledge handshaking. This can be done by examining the

handshaking timing of the data through the link. To evaluate the accuracy of the per-

transfer and per-word performance two equations have been developed which can be

used to calculate the time taken to transfer a word across the link and therefore find

the upper bound of the throughput.

Page 73 of 158

4.4.1 Per Transfer Acknowledgement

For the per-transfer acknowledge scheme (Fig. 4-18) the following equations can be

used to calculate the cycle delay.

dthLinkDataWi

WidthSwitchData
Ser =

TnextflitTackoutTackackTreqackTreqreqTpSerD +++++××=)4(, where

• Ser is the serialization ratio

• Tp is the propagation time along the wires.

• Treqreq is the time of the request to write data into the buffer to the request to

write the data out to the next buffer.

• Treqack is the time to request to write data into the buffer to the

acknowledgment of the data.

• Tackack is the acknowledgement into the buffer to the acknowledgement out

to the previous buffer

• Tackout is the acknowledgement into the buffer to the output of a new slice of

data.

• Tnextflit is the time taken to get the next flit to be ready on the outputs of the

transmitter.

B
U

F

B
U

F

B
U

F

Tp Tp

Tp Tp

Treqreq

Treqack

Tackack Tackout

T
R

A
N

S
.

Tnextflit

Fig. 4-18 Cycle Delay for the Per-transfer

Page 74 of 158

4.4.2 Per Word Acknowledgement

For the per-word acknowledge scheme (Fig. 4-19) the cycle delay can be calculated

using:

TburstTackoutackTvalidwordTinvSegTpSegD +++×−+××=)1(2 , where:

• Seg is the number of wire segments.

• Tp is the wire propagation delay.

• Tinv is the inverter gate delay.

• Tvalidwordack is the delay from receiving a valid word to acknowledge

output.

• Tackout is the acknowledge in to new flit output.

• Tburst is the burst period of the all the slices of the flit.

R
E

C
V

R

T
R

A
N

S
.

Tp

Tinv

Tvalidwordack

Tackout

Tp Tp Tp Tp

Tp Tp Tp Tp Tp

Tburst

Tinv Tinv Tinv

Tinv Tinv Tinv Tinv

Fig. 4-19 Delay for per-transfer and per-word

The per-word equation can be checked using an example. Consider, Tp=0 since the

simulation is gate level and does not take into account wire delays, Tinv=0.011 ns

from the ST 0.12 CORE9GPLL datasheet, Tburst ~ 1.1 ns from simulation,

Tvalidwordack ~ 0.7 ns and Tackout ~ 1.4 ns also from simulation and Seg = 5 since

four wire buffers were used in simulation meaning the number of wire segments were

five. Using these values the per-word delay is 3.21 ns from which we obtain an upper

bound throughput of around 311 MFlits/s which matches with the supported

bandwidths shown in Fig. 4-23 and Fig. 4-31 of the experimental section. It is

important to note that the simulations do not incorporate wire delay information, but

these can easily be introduced by using data from ITRS (International Technology

Roadmap for Semiconductors) for the wire delay Tp.

With the equation we can now predict the upper bound throughput for

different wire segment lengths. Using a global wiring metal pitch of 0.44 µm we can

Page 75 of 158

look at the ITRS 2003 (Table 81a) and get an RC delay of approximately 50 ps for a 1

mm global wire at 0.44 µm pitch. A simple RC wire delay equation is:

2

2
L

RC
T = where T is the delay, L is the wire length.

Using this equation we can find that RC = 0.0001 when L = 1 mm and T= 50 ps.

Using this value of RC we can now put this back into the equation and see the effect

of wire length versus wire delay for our global wire pitch of 0.44 µm, shown in Fig.

4-20.

Wire Length v Delay for 0.44 um Global Wire

(RC = 0.0001)

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

0 0.0005 0.001 0.0015 0.002 0.0025

Wire Length (m)

W
ir

e
 D

e
la

y
 (

s
)

Fig. 4-20 Wire Delay for 0.44 um pitch global wire

The wire delay can further by used to calculate the upper bound throughput of

the proposed per-word acknowledgement scheme using the delay cycle equation (2).

Using our example of four buffers along the length of the wire the inverter and gate

delays in the equation remain constant while Tp (the wire propagation delay) changes.

The predicted upper bound throughput for a 0.44 µm pitch global wire using the per-

word acknowledge scheme and four equally spaced buffers along the length is shown

in Fig. 4-21. As can be seen the length of the wire has a square law effect on the wire

delay, this is especially prominent on longer wire lengths. The upper bound

throughput stays relatively flat at around 300 MFlits/s up to 2 mm length, then the

throughput starts to fall off drastically.

Page 76 of 158

150

170

190

210

230

250

270

290

310

330

0 2 4 6 8 10 12

Total Wire Length (mm)

U
p

p
e
r

b
o

u
n

d
 T

h
ro

u
g

h
p

u
t

(M
F

li
ts

/s
)

Fig. 4-21 Wire Length versus Throughput

4.5. Experimental Results

The simulations and comparisons are base lined from the XPIPES [28] NoC packet

switched router and synchronous link which was obtained from University of

Bologna. In XPIPES the input or output buffers are distributed along the length of

wire rather than in the router itself. This distributed virtual buffer storage allows flits

to use the buffers as storage and also to pipeline the wire. Each buffer can hold 2 flits,

it is constructed from 2 registers each of which is 1 flit wide and some control logic

which allows basic stall/go flow control of the flits down the length of the link. The

synchronous links has 4 buffers along the length of the wire which means it can hold

up to 8 flits. In the asynchronous serialised links the capacity is the same but the

storage is in the synchronous to asynchronous interface which can hold 4 flits in the

FIFO and in the asynchronous to synchronous interface which can hold another 4 flits

in a FIFO, giving a total of 8 flits capacity, the same as the synchronous link. The

reason the flits can be stored in the FIFO for the asynchronous link is because the

FIFO is already exists in the synchronous/asynchronous interfaces and is used to

allow the data to cross the synchronous/asynchronous domains. In the case of the per

word asynchronous acknowledgement scheme the buffers along the length of the wire

are non-registered and could not be used for storage anyway.

Circuits for the complete link (Fig. 4-9 to Fig. 4-13) were entered into the

schematic editor in Cadence using gate level cells. The gate level cells use transistor

Page 77 of 158

level models for analog level simulation. The results are based on three

implementations that have been compared, Fig. 4-22. First a fully synchronous link

with no serialisation and 32 bit wide data transfer (I1), second our proposed

asynchronous per transfer acknowledge link which serialises the data down to 8 bits

(I2) and thirdly our proposed asynchronous per-word link, also 8 bits (I3). Effects on

power, area throughput are shown. The simulations were performed with foundry

transistor level cells in ST 0.12 µm HCMOS9 technology with the Spectre simulator

in Cadence.

SWITC
H

B
U

F

B
U

F

B
U

F

B
U

F
 SWITC

H

CLK

A
S

Y
N

 I
/F

A
S

Y
N

 I
/F

CLK

S
E

R
IA

L
IS

D
E

-S
E

R
I

32 8 8 8 32
32

8 8 32

I1

I2

SWITC
H

B
U

F

B
U

F

B
U

F

B
U

F
 SWITC

H

CLK

32 32 32 32 32

Proposed Asynch. per-trans.

Synchronous

SWITC
H

SWITC
H

CLK

A
S

Y
N

 I
/F

A
S

Y
N

 I
/F

CLK

S
E

R
IA

L
IS

D
E

-S
E

R
I

32 8 8 8 32
32

8 8 32

I3

Proposed Asynch. per-word

Fig. 4-22 Simulated Implementations

Fig. 4-23 shows the number of wires needed to achieve a certain bandwidth across a

link. The synchronous link with 100, 200 and 300 MHz clock speeds are shown with

the proposed link. As is seen the number of wires increase dramatically in the

synchronous link as bandwidth increases. As the bandwidth required increases the

number of wires for the synchronous link (I1) increases. This is because if the

bandwidth requirement increases and the synchronous clock speed remains the same

then the only way to increase the bandwidth is to make the data path wider by

increasing the number of wires. Essentially the bandwidth is fixed by the number of

data wires and the clock frequency if 1 bit of data is transferred per wire on each

clock as follows:

CLOCKFreqWiresBandwidth ×=

The asynchronous link on the other hand is not governed by a synchronous

clock, but is limited by an upper-bound throughput or cycle time of the asynchronous

Page 78 of 158

circuitry. The upper-bound throughput is determined by the asynchronous

handshaking cycle time. In this example of a 32 to 8 serialized asynchronous link the

upper-bound throughput is ~ 300 MFlit/s, so the asynchronous link will operate

correctly up to this point. For increased bandwidth the asynchronous link could halve

the serialization going from 32 to 16 bits instead of 32 to 8 bits. This would

effectively double the upper-bound throughput to ~600 MFlit/s at the expense of

using 16 wires instead of 8 along the length of the link.

4.5.1 Area overhead

Fig. 4-23 shows that it is possible to achieve the same performance as the

synchronous link but with less wires. For example, the proposed link (I3) can support

300 MFlits/s using a 300 MHz switch clock with 8 wires whereas the synchronous

link (I1) would need 32 wires at 300 MHz which is a 75% reduction. It is interesting

to note that the number of wires in the synchronous link would need to increase if the

switch clock speed was reduced from 300 MHz to 100 MHz and maintain the same

throughput, this would require an increase to 96 wires at 100 MHz.

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350

Bandwidth (Mflits/s)

N
o

.
o

f
W

ir
e
s

I1-Synch@100

I1-Synch@200

I1-Synch@300

I3-Async (proposed)

Fig. 4-23 Bandwidth vs. Wires

Fig. 4-24 shows the wire length and area for the implementations. It is

important to note that a 1:1 trade off between area used by circuitry and area used by

routing is not necessarily true as technology processes with many metal layers can

route the interconnect over the top of the cells. The benefit of reducing the number of

wires can clearly be seen, especially for longer wire lengths. For example, assuming a

wire length of 1000 µm, implementation I3 has a wiring area cost of approximately

Page 79 of 158

7,500 µm
2
 whereas the synchronous implementation I1 is approximately 30,000 µm

2
.

As the wire length increases the proposed asynchronous link schemes (I2 and I3) have

a moderate increase in area cost, unlike the synchronous implementation I1.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 500 1000 1500 2000 2500 3000

Wire Length (µm)

W
ir

in
g

 A
re

a
 (

µ
m

2
)

I1-Synch

I2 & I3-Asynch (proposed)

Fig. 4-24 Wire Area

For the ST 0.12 µm process the minimum metal width for a high layer

(METAL6) which is typically used for global routing is 0.44 µm and the minimum

gap between metal is 0.46 µm. The minimum wire area for the data path with N wires

can be calculated by the following equation using Mwidth = 0.44 µm and Mgap =

0.46 µm.

)(

)1()(

)(

GAPMETALLengthAREA

MgapNmGAP

MwidthNmMETAL

DataWires +×=

×+=

×=

µ

µ

Note that the equation is for a single layer of metal only. For multiple layers

via and there associated design rule areas would have to be taken into account to

provide a more accurate estimation.

The circuit area overhead of the synchronous and proposed asynchronous links

are given in Table 4-1. To find out which portions of the asynchronous link use most

resource a breakdown of the circuit or cell area used for each module for the

implementations I1 through to I3 are shown in Table 4-2 to Table 4-4. The proposed

architectures (I2 and I3) have an area increase of approximately 20% compared to the

synchronous link (I1).

Page 80 of 158

Table 4-1 Area overhead of the synchronous and proposed link

Table 4-2 Breakdown of implementation I1

Module Area (µm2) Qty.

32 Bit Synch Wire Buffer 3966 4
Total 15864

Table 4-3 Breakdown of Implementation I2

Module Area (µm2) Qty.
Synch to Asynch interface 9408 1

Asynch 32 to 8 serializer 869 1
Asynch 8 wire buffer 294 4
Asynch 8 to 32 de-serializer 1030 1
Asynch to Synch interface 6710 1

Total 19193

Table 4-4 Breakdown of implementation I3

Module Area (µm2) Qty.
Synch to Asynch interface 9408 1
Asynch 32 to 8 serializer 734 1
Asynch 8 wire buffer 61 4

Asynch 8 to 32 de-serializer 1301 1
Asynch to Synch interface 6710 1

Total 18396

4.5.2 Power Consumption

The synchronous and asynchronous link implementation was compared in terms of

power. The synchronous and asynchronous links each had 4 buffers along the length

of the wire. On the asynchronous link the buffers were 8 bits wide and on the

synchronous link 32 bits wide. All links had the same capacity to hold up to 8 flits.

The average power was calculated for the transfer of 4 data items (0xAA55AA55,

0x55AA55AA, 0xA5A5A5A5, 0x5A5A5A5A) which exercises the data wires as

much as possible and gives a high switching activity. The time the link is in use when

transferring the 4 data items is approximately 70 ns on the original synchronous

implementation running at 100 MHz. Using this base line transfer time of 70 ns the

Implementation Area (µm2)
Synchronous (I1) 15864

Asynchronous per-transfer ack. (I2) 19193
Asynchronous per-word ack. (I3) 18396

Page 81 of 158

simulation runs were set to 140 and 280 ns. This allows the average power for 50%

and 25% usage to be obtained. The link can be considered ‘in use’ when one or more

of the buffers is occupied by a flit. For example consider Fig. 4-25 showing flits F1

through to F4 occupying the buffers in order of arrival, the link usage time is basically

the time when flit F1 enters the 1
st
 buffer to the time flit F4 exits the 4

th
 buffer. The

same simulation run times of 140 and 280 ns was used for the asynchronous

implementations in order to provide a fair comparison so that the average power can

be seen to transfer the same data in the same period of time. The power for each block

was obtained through Spectre simulations by taking the average of the supply voltage

multiplied by the current over the simulation run time.

 F3 F2 F4 F1

F3 F2 F4 F1

F3 F2 F4 F1

F3 F2 F4 F1

Link usage time

Simulation run time

Buffer 1

Buffer 2

Buffer 3

Buffer 4

Fig. 4-25 Definition of Usage in our Simulations

The power consumption of the synchronous and the proposed asynchronous link are

shown in Fig. 4-26 with switch clock speed of 100 MHz for different numbers of

buffers in the link. As expected when a small number of buffers are used, such as 2,

the synchronous implementation uses less power compared to the asynchronous due

to the extra overhead of the synch/asynch converters and serializers. When the

amount of buffers increase, the power in the synchronous implementation increases,

unlike the asynchronous implementation which remains relatively similar. Comparing

2 buffers against 8 buffers for the wire link it can be seen the that power for the

synchronous implementation (I1) increases 300% from 372 µW to 1498 µW which is

expected since there is four times the number of synchronous buffers. The

asynchronous per-transfer scheme (I2) shows a small power increase of 20% of the

589 µW to 712 µW, while the per-word acknowledgement scheme (I3) shows the

least power increase of 2%, 623 µW to 637 µW, due to invertors being used along the

length of the wire instead of latched buffer elements. Similar power consumption

results can be obtained when the switch clock speed is increased to 300 MHz (Fig.

4-27). As expected the synchronous link power increases with clock frequency and it

Page 82 of 158

can be seen that power increases from 1498 µW to 3229 µW for 8 buffers. The best

power saving is obtained when the switch clock speed is 300 MHz and the number of

buffers is 8, power is reduced by 65% from 3229 µW to 1110 µW when going from

synchronous to asynchronous in this case.

Static power consumption was obtained by re-running the simulation with

both stimulus and clocks being held low so no activity was present within the link.

Static power consumption is the power consumed by the gates when no inputs are

changing. The static power consumption is shown in Fig. 4-28. In the synchronous

link the static power doubled from 23.7 µW to 47.4 µW going from 2 to 4 buffers and

doubling again to 94.8 µW going from 4 to 8 buffers, this is to be expected as

doubling the number of buffers which are the same is going to double the static

power. The asynchronous implementations also increase in static power as the number

of buffers increase, but at a much reduced rate since the buffers are more simple and

in the case of the word-level acknowledgement are just inverters. For example going

from 2 to 4 buffers in the per-transfer acknowledgement scheme increases the power

from 50.15 µW to 50.97 µW and in the per-word scheme the static power increases

from 66.83 µW to 67.14 µW. Each buffer in the per-transfer scheme uses 0.41 µW of

static power and in the per-word scheme 0.17 µW or 0.14 µW depending on if the

inverter is being held constantly high or constantly low due to differences in the size

of the pmos and nmos transistors in the inverters.

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8

No. of Buffers

P
o

w
e
r

(µ
W

)

I1-Synch

I2-Asynch

I3-Asynch

Fig. 4-26 Number of Buffers vs. Power @ 100 MHz

Page 83 of 158

0

500

1000

1500

2000

2500

3000

3500

2 4 6 8

No. of Buffers

P
o

w
e
r

(µ
W

)

I1-Synch

I2-Asynch

I3-Asynch

Fig. 4-27 Buffers v Power @ 300 MHz

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8

No. of Buffers

P
o

w
e
r

(µ
W

)

I1-Synch

I2-Asynch

I3-Asynch

Fig. 4-28 Buffers versus Static power

To give insight as to where the power consumption is in the various components of

the links, Fig. 4-29 shows a breakdown of the power when 1 or more buffers are

occupied by flits 50% of the time (i.e. 50% usage). It can be seen that the dominant

power in the asynchronous implementations (I2 and I3) are the asynch/synch and

synch/asynch conversion circuits. This is expected since these circuits contain clocked

synchronous parts. Comparing the proposed asynchronous links I2 and I3 which

serializes down to 8 bits, it can be seen that that power used is similar. The I3 buffer

power is considerably smaller than I2 at 9 µW versus 82 µW due to the fact that the

buffers are simple invertors along the length of the wire and not latched elements as is

the case for I2 and I3. The de-serializer uses more power I3 as a shift register based

implementation is used instead of de-multiplexer, so all four registers are being

Page 84 of 158

latched every time a slice of the flit arrives as opposed to just one register being

latched in the de-multiplexer version.

0

100

200

300

400

500

600

700

800

I1-Synch 50% I2-Asynch8 50% I3-Asynch8B 50%

Implementation (link usage)

A
v

e
ra

g
e

 P
o

w
e

r
(µ

W
)

Ser/Des

Buffers

Asynch
Synch
Conv.

Fig. 4-29 Average Power for 50% usage

0

10

20

30

40

50

60

70

80

I1-Synch 50% I2-Asynch8 50% I3-Asynch8B 50%

Implementation

A
v

e
ra

g
e

 P
o

w
e

r
(µ

W
)

Ser/Des

Buffers

Asynch
Synch
Conv.

Fig. 4-30 Average Static power breakdown

4.5.3 Maximum Throughput

Fig. 4-31 shows the simulated maximum throughput of the three implementations, I1

the synchronous implementation, I2 the asynchronous per-transfer acknowledgement

and I3 the per-word acknowledgement. This was achieved by simulating with

increasing clock speeds until the throughput saturated. The back to back transfer time

of a single flit was then measured to give the maximum throughput. As can be seen

the per-word acknowledgement (~300 MFlits/s) has a 50% maximum throughput

improvement over the per-transfer acknowledgement (~200 MFlit/s). The removal of

the fine grain per-transfer acknowledgement and replacement with a coarser grained

per-word acknowledgement has clearly improved the maximum throughput. The

Page 85 of 158

synchronous implementation will not be limited by flow control acknowledgements

but by the limits of the technology and will reach the maximum throughput limit

when the setup and hold times start to be violated.

0

50

100

150

200

250

300

350

400

0 100 200 300 400

Switch Clock (MHz)

T
h

ro
u

g
h

p
u

t
(M

F
li

ts
/s

e
c
)

I1-Synch

I2-Asynch per-trans.

I3-Asynch per-word

Fig. 4-31 Switch clock speed versus Throughput

4.5.4 Latency

The latency through the link, Fig. 4-32, can be considered at the time it takes the data

to get from the synchronous to asynchronous interface on the transmit side to the

asynchronous to synchronous interface on the receiver side (tAsynchpath) plus 2 to 3

clocks in order to resynchronize into the synchronous domain (tSynch). The reason

for the 2 to 3 clocks to synchronize into the synchronous domain is because inside the

asynchronous to synchronous interface the flag signals which signify data has arrived

goes through two registers in order to synchronize the flag.

SWITC
H

B
U

F

B
U

F

B
U

F

B
U

F
 SWITC

H

CLK

A
S

Y
N

 I
/F

A
S

Y
N

 I
/F

CLK

S
E

R
IA

L
IS

D
E

-S
E

R
I

32 8 8 8 32
32

8 8 32

tAsyncpath tSynch

Fig. 4-32 Latency through the link

4.6. Summary of per-word and per-transfer schemes

Comparing the two techniques of per-transfer (Section 4.2) and per-word (Section

4.3) acknowledgement it is clear that the per-word acknowledgement offers higher

Page 86 of 158

throughput due to the reduction of the request/acknowledge cycles needed to transfer

a flit. Fig. 4-31 shows that the per-transfer throughput upper bound is around 200

MFlits/s whereas the per-word throughput is bound at around 300 MFlits/s, a 50%

increase.

When considering area both techniques reduce the wiring area by 75%, but the

circuit area of the per-word shown in Table 4-1 is 18396 µm
2
 which is slightly smaller

than the per-transfer scheme at 19193 µm
2
. This mainly due to the buffers along the

length of the wire being latched elements in the case of the per-transfer scheme and

invertors in the per-word scheme.

The power use of the two techniques are very similar, Fig. 4-26 and Fig. 4-27.

Observing the per-transfer scheme (I2) and the per-word scheme (I3) it can be seen

that for 2 wire buffers the per-transfer scheme has a slight advantage in terms of lower

power. However, as the number of buffers in the wire increase to 6 or more the

advantage of lower power swings in favour to the per-word scheme. This is because

the serializer and de-serializer in the per-word scheme uses more power but is offset

against the wire buffers in the per-transfer scheme which are latched based. As the

number of buffers increase, the power in the wire buffers in the per-transfer scheme

overshadows the extra power used by the per-word serializer and de-serializer. Note

that the per-word scheme wire buffers do not increase in power at the same rate due to

the fact that they are simple invertors along the length of the wire and not latched

based elements. The per-transfer acknowledgement scheme does ensure that every

transfer is acknowledged, whereas the per-word scheme needs to ensure that the rate

at which the slices of flits are transferred do not exceed the rate at which the receiver

can consume them. In this respect the per-transfer scheme may be simpler as the

transfers are regulated by the acknowledge signal so the receiver says when it is ready

to receive the next slice of data.

For applications which can be satisfied with the lower per-transfer throughput

and short wire lengths where only 2 buffers are used the per-transfer scheme will give

the benefits of slightly less power usage. Also the per-transfer scheme would be used

in more fault tolerant applications where the data is line coded and requires an

acknowledge response for each valid data detected, such as dual-rail or m-of-n codes

where an acknowledge is needed to signify that the data is valid and has been received

correctly. This is because the per-transfer scheme acknowledges every transfer,

Page 87 of 158

whereas the per-word scheme needs a burst of transfers before acknowledging,

making the per-word scheme unsuitable for line-coded schemes. For applications

which require a higher throughput that cannot be satisfied by the per-transfer scheme

or long wire runs with many buffers that require lower power usage the per-word

scheme would be desirable as this scheme has the power advantage when more and

more buffers are used along the length of the wire.

In future technologies (sub 45 nm) if the tolerances of the on-chip transistors

varies considerably the per-transfer scheme may be more desirable even though the

throughput is lower. This is because with the per-word scheme the wire buffers are a

series of invertors, each of which could have varying tolerances, so as the data and

control signals propagate down the length of the wire the relative timing between

them could drift apart to such an extent that improper latching of signals that are not

yet valid could take place, Fig. 4-33. With the per-transfer scheme the data and

control signals are effectively regenerated at each wire buffer due to the wire buffers

being latched elements with request and acknowledge handshaking. Any drift

between the data and control signals seen at the receiver will come from only the last

buffer, whereas with the per-transfer scheme the drift would be accumulated from all

the buffers along the wire.

B
U

F

B
U

F

2 2 2

2 2 2

Latched based buffers, any drift
is minor and is due only to the
last buffer the signal came out of.
Effectively the signal timing is
being regenerated at each buffer.

Inverter based buffers, drift
between the signals will be more
since there is no retiming of the
signals along the length of the
wire and the drift can
accumulate.

Fig. 4-33 Relative timing drift

The per-word scheme could be improved further by acknowledging the 1
st

slice of the flit rather than acknowledging the last slice of the flit, Fig. 4-34.

Acknowledging the 1
st
 slice of the flit reduces the dead time or waiting between back

to back flit transfers as the acknowledgement circuitry always take a finite amount of

Page 88 of 158

time to generate the acknowledge signals. Furthermore, a NACKing scheme could be

used where the data is continuously transferred across when available and only

stopped if the receiver buffer becomes too full, the receiver would have to send a stop

or nack signal back to the transmitter to halt the transmission of data. This would

require more buffering of data at the receiver end to ensure that no flits are lost or

overwritten in the time it takes to stop the flow of data.

F3 F2 F4 F1

A

Acknowledging the last flit

DATA

ACK

F3 F2 F4 F1

A

F3 F2 F4 F1

A

DATA

ACK

F3 F2 F4 F1

A

Acknowledging the 1st flit

Fig. 4-34 First and Last flit acknowledgement

Serialization at the network interface [151] may give better results in power and

latency as the serialization and de-serialization would only need to take place once at

the network interfaces, rather than at each link. This would mean that the routers

would have to operate faster at be at the same speed as the link. It is difficult to

quantify what effect serialization at the network interface would do to our proposed

link as the XPIPES router is treated as a black box and the link just interfaces to the

outside of the router with no alteration to the router itself. To use serialization at the

network interface a new router would have to be designed and implemented. If a new

router was to be used it may even be beneficial to use an asynchronous router so that

no conversion between synchronous and asynchronous domains would occur once

inside the network.

Page 89 of 158

4.7. Practical Validation of the Proposed Link

The previous section has shown simulation results based on transistor level models

showing power, area and performance. The rest of this section discusses the

implementation on FPGA. Section 4.7.1 shows the functional checking of the link.

To give an insight into how the proposed links operate in practice, practical

implementation on hardware was considered. Two possible technologies for

implementation of digital circuits are Application Specific Integrated Circuit (ASIC)

and Field Programmable Gate Array (FPGA). An ASIC is an integrated circuit

implemented with standard cell logic gates. The cells are used from a pre-existing cell

library that is supplied from the ASIC vendor. The ASIC has to be fabricated by the

vendor once the design has been completed. An FPGA is a pre-fabricated silicon chip

that has many small blocks of logic interconnected by many wires. Each logic block

can be configured to perform logic functions and the wires can be used to selectively

connect these logic blocks together to form a circuit. ASIC implementations allow for

complete control of the placement of gates on silicon and should lead to faster speed

as the logic and propagation delays can be kept to a minimum through optimization of

the gate placements. However, ASICs require several months to design and fabricate,

also if any errors are present the whole design and fabrication process may need to be

repeated. FPGA implementations can be achieved in a short time since the

synthesised design can be mapped to the FPGA structure automatically by place and

route software. This rapid prototyping of designs also allows any errors in the design

to be quickly corrected as well as trying out different circuit configurations. FPGA

does allow functional validation but performance may be slower than ASIC

implementations since the designer is constrained to use the pre-defined FPGA logic

block which may not allow the optimum realisation of a circuit. In order to validate

the link it was decided that FPGA implementation would offer rapid validation and

low risk. While the FPGA implementation will not have the performance of an ASIC

design it does give some confidence of the circuit working, albeit with much lower

throughput.

As the link flow control is effectively governed by the handshaking which

itself is controlled by C-Elements in the control logic it is reasonable to assume that

the handshaking will occur in the correctly ordered sequence regardless of any delay

Page 90 of 158

between the inputs of the C-Elements. There potentially could be delay between the

bundled reference and the data which could cause the data to be latched at the wrong

time, but this could be tuned out by tuning the relative delay between the reference

signal and data signals so that the worst case and best case timing margins are

covered. The functional testing of the link on FPGA should give reasonable

confidence that the handshaking and the control logic is performing correctly but it is

difficult to check that the data will remain aligned to the bundled reference signal over

a large temperature range.

In order to validate the proposed link the circuits (Fig. 4-9 to Fig. 4-13) were

coded in RTL VHDL, synthesised and targeted to a Xilinx Virtex FPGA. A Digilent

XUP Virtex-II Pro Development System
1
 was used as the target test platform. The

development board consists of a XC2VP20 Virtex-II Pro FPGA with various

connectors and peripherals attached on board. The FPGA was utilised along with a

pair of connecters which were used to supply the logic analyzer with the output trace

of the links. An Agilent 16000 series Logic analyzer was used to capture the output

from the FPGA. All 32 data bits, valid signal and clock were routed to the connecter

and the stall signal tied low to allow the logic analyzer to be able to capture the data

free running. A simple walking ‘1’ pattern was used as the stimulus to the link and

was hard-coded as a small pattern generator in the synthesised code. The output of the

link was connected to the I/Os of the FPGA which were routed to a connector on the

test board to allow for capture by the logic analyzer. The code was partitioned for the

synchronous and asynchronous link as shown in Fig. 4-35 and Fig. 4-36 respectively.

The RTL code was contained in TOP.vhd was synthesized and tb_TOP.vhd was a test

bench wrapper use for RTL and post place and route simulation. The DATA, VALID

and STALL signals were mapped to FPGA I/O pins along with a copy of the clock

and the reset signal mapped to a push button switch to allow reset of the circuit.

1
 More info obtained: http://www.digilentinc.com/Data/Products/XUPV2P/XUPV2P_User_Guide.pdf

Page 91 of 158

 tb_TOP.vhd

TOP.vhd

P
A

T
G

E
N

.v
h
d

SYNC_LINK.vhd

B
IT

3
2

_
W

B
U

F
v
h
d

B
IT

3
2

_
W

B
U

F
v
h
d

B
IT

3
2

_
W

B
U

F
v
h
d

B
IT

3
2

_
W

B
U

F
v
h
d

DATA

VALID

STALL

DATA

VALID

STALL

Fig. 4-35 Synchronous Link RTL & Test Bench

 tb_TOP.vhd

TOP.vhd

P
A

T
G

E
N

.v
h
d

ASYNC_LINK.vhd

B
IT

3
2

_
W

B
U

F
v
h
d

B
IT

3
2

_
W

B
U

F
v
h
d

B
IT

3
2

_
W

B
U

F
v
h
d

B
IT

3
2

_
W

B
U

F
v
h
d

DATA

VALID

STALL

DATA

VALID

STALL

T
X

_
A

S
Y

N
C

_
P

T
.v

h
d

R
X

_
A

S
Y

N
C

_
P

T
.v

h
d

Fig. 4-36 Asynchronous Link TRL & Test bench

The wire buffers in the link were constrained to certain areas on the FPGA (Fig.

4-37a) in order to have a long wiring length between the buffers. The connectivity

between the buffers and the I/O is shown in Fig. 4-37b where the wiring can be seen

clearly going from BUF0 to BUF1 to BUF2 to BUF3 and finally to the I/O outputs of

the FPGA. The constraints forced the place and router to put the logic for the wire

buffers in their respective areas to try and emulate long wire lengths. It is unknown

how long the distance between the buffers and this die size information of FPGAs is

not generally available. Some discussion forums
1
 on the internet suggest the die size

for the XC2VP20 is 14mm × 11.4 mm which even allowing for I/O pads it would be

reasonable to assume that the distance between the buffers from the left hand side to

the right hand side of the chip is > 1 mm. The design flows for the synchronous and

asynchronous implementations are shown in Appendix D.

1
 http://www.fpgarelated.com/usenet/fpga/show/36765-1.php

Page 92 of 158

BUF0

BUF1

BUF2

BUF3

RESET

OUTPUTS

(a) (b)

Fig. 4-37 Floorplan Constraints of FPGA

4.7.1 Functional Checking

The 32 bit DATA output and VALID signals were routed to I/O ports that were

routed to a connecter on the development board. The logic analyzer probes were

hooked up to the connecter and used to capture the waveforms. The captured

waveform was checked to make sure that it was a walking ‘1’ pattern to verify that the

data transmitted along the link from the pattern generator logic was correct. Fig. 4-38

shows the captured waveform. Only bits 31 to 20 of the DATA bus has been shown

for clarity, but it is clear that the walking ‘1’ patterns is being received at the end of

the link. One observation is that the DATA bits appear to have 2 transitions on them.

This can be explained by considering the post-place and route simulation waveform

shown in Fig. 4-39. In this simulation waveform the DATA output when VALID goes

high is circled in a solid line, the ‘old’ values in that get observed at the output are

circle in a dashed line. The reason a second high transition is seen on the DATA bits

is because the synchronous side of the receiver is operating faster than the

asynchronous link and the control logic in synchronous side of the receiver is

Page 93 of 158

selecting a FIFO entry and multiplexing the contents out onto the DATA bus before

the asynchronous side has written new data into it. This does not cause any error at

the receiver end though as that VALID signal only goes high when the data is correct.

This can be confirmed by observing the data capture as a list format shown in Fig.

4-40. It is shown that the DATA goes from 0x00000001, 0x00000002, 0x00000004

and so forth which is a walking one pattern in hexadecimal format.

Fig. 4-38 Timing Capture of Asynchronous Per-Transfer Link

Page 94 of 158

0x00000002

0x00000004

0x00000004

0x00000008

0x00000010

The ‘old’ 0x00000002
(VALID remains low)

Fig. 4-39 PAR simulation of asynchronous Per Transfer Link

Fig. 4-40 State Listing of Asynchronous Link when VALIDOUT is high

Page 95 of 158

4.8. Concluding Remarks

This chapter has proposed the use of asynchronous circuit techniques and serialization

for NoC links. The proposed link uses asynchronous techniques which removes the

need for global clocking along the link and also reduces power. The serialization of

the data allows a reduction in the number of wires in the link and therefore a reduction

in interconnect cost with respect to wiring area and the size of the wire buffers along

the link. The proposed asynchronous link has been compared to a synchronous link in

terms of area, power and throughput. The synchronous link is a fully synchronous 32

bit wide link, the asynchronous link goes from 32 bit wide at the start of the link to 8

bit wide along the length of the link and back to 32 bits at the end of the link, thus

serializing the word into 4 slices.

The asynchronous link has demonstrated the effectiveness of serialization in

reducing the number of wires without compromising the performance up to the

throughput limitation caused by the asynchronous handshake cycle timing. The

potential problems with synchronous design such as global clock distribution and

clock skew have also been reduced. The proposed asynchronous link also reduces

power by up to 65% compared to the synchronous link when 8 buffers are used.

Furthermore, the area overheads of synchronous and the proposed asynchronous link

have been compared and shown that although the proposed link has a 20% circuit

overhead the number of wires has been reduced by up to 75%. The asynchronous link

has been demonstrated with a per-transfer acknowledgement and per-word

acknowledgement. The per-transfer acknowledgement scheme acknowledges every

transfer of data across the NoC link and the throughput saturates at approximately 200

MFlits/s (Section 4.5.3) and is consequently slower than the per-word

acknowledgement scheme which acknowledges every full word of data received and

the throughput saturates at approximately 300 MFlits/s.

Functional validations of the proposed asynchronous link have been carried

out using FPGA technology. The FPGA implementation confirmed correct operation

but the performance was drastically reduced when compared to the cell based IC

simulations. The speed of the link was 200 MHz for the cell based IC simulations and

approximately 12 MHz for the FPGA.

Page 96 of 158

Chapter 5. Resilient Asynchronous Links

Asynchronous links bring benefits such as simplifying the clocking and reducing

power as shown in Chapter 4. The link implementation in the previous chapter used a

bundle data approach where a reference signal was sent along with the data. Bundled

data is less desirable as if the relationship between the reference signal and the data

varies too much possible timing violations could occur. One way around this is to use

delay insensitive data coding [152]. Delay Insensitive coding is used in asynchronous

circuits to allow the receiver to validate the data regardless of relative timing on the

wires. Delay insensitive coding could be susceptible to transient errors since a

transition on a wire could lead to false data being generated at the receiver end. This

chapter provides an asynchronous coding scheme that offers resilience to transient

errors.

As technology scales down more IP cores are being integrated onto a single

chip. Significant effort into the communication between the cores has resulted in

extensive research of using Network-on-Chip (NoC) as the communication

mechanism as highlighted in chapter 2. The NoC consists of switches and network

interfaces connected together by links. Asynchronous methods of communication are

finding their way into NoCs due to problems of power and clock distribution

associated with synchronous circuits [153]. The asynchronous link can be broadly

categorized into several styles such as bundled data, quasi-delay insensitive (QDI) and

delay insensitive (DI). Bundled data relies on some relative timing to be kept between

the data and a reference signal. DI, or self-timed, uses data encoding so the receiver

knows when it receives valid data. There are numerous delay insensitive encodings

such as Dual-Rail, 1 of 4, LEDR and multiple rail phase-encoding [110, 111, 113,

114].

As circuits shrink and integration increases errors will become more

prominent [59]. Errors can fall into two broad categories, permanent and transient.

Permanent errors are caused by the manufacturing process [154]. Transient errors can

be caused by cross-talk, coupling or noise and particles. Up to 80% of errors can be

caused by transient faults [60]. Dual rail, 1-or-4, Level encoded dual rail (LEDR)

offer little resilience to transient errors which could lead to invalid data to be accepted

at the receiver end of the link. Multiple rail phase-encoding improves on these by

Page 97 of 158

offering an inherent resilience to transient errors during the idle times when data is not

being transmitted but at the expense of complex receivers and transmitters as the

number of wires increase. Resilience to soft-errors in NoC has been demonstrated in

[155, 156] but these schemes use detection and correction at the router level. A link

level detection scheme using hamming codes and interleaving has been shown in [60]

at the expense of including de-interleaving and hamming distance decoding circuitry.

A self correcting green joint coding scheme has been demonstrated in [116] to tolerate

transient errors and reduce crosstalk through bus encoding and triplication error

correction coding. Single event upset hardened pipeline interconnect has been

presented in [115] but is proposed for synchronous links.

This chapter proposes the introduction of additional wires in order to use a bit

symbol to represent the data bits. Using two wires per bit allows the data symbol to

have four phases. Transient error resilience is achieved by exploiting the phase

relationship between the data symbols and a common reference symbol. The chapter

is organized as follows, the motivation for this work and examples of current

asynchronous links is shown in Sections 5.1. Section 5.2 gives an overview of the

proposed resilient link. Section 5.3 describes the proposed asynchronous transient

resilient link architecture and the circuitry. Section 5.5 gives the experimental results

and finally section 5.7 concludes the chapter.

5.1. Review of Current Asynchronous Coding and Motivation

In this section existing asynchronous links are considered and their limitations

discussed. A single ended asynchronous link, such as bundled data uses a single

reference signal to show when the data is valid, Fig. 5-1(a). It can be considered to

have some resilience on the DATA wires as the receiver effectively ignores the data

until the VALID signal is set. The relative timing between the DATA signals and the

VALID signal in deep sub-micron design could diverge due to the tolerances or the

wiring and the transistors in the gates. Delay insensitive codes are one of the ways to

remove the dependency of timing between data and bundled reference signals since

the de-coders do not care when the signals arrive [113].

Dual rail coding Fig. 5-1(b) was introduced to provide a delay insensitive

solution to asynchronous data transfer. This introduced extra wires, 2 per data bit,

which allows a ‘0’ or ‘1’ to be transmitted by asserting one wire or the other. In this

Page 98 of 158

case asserting DATAA[x] transmits a 1 and asserting DATAB[x] transmits a 0. Fig.

5-1(c) shows level encoded dual rail (LEDR), using the same number of wires as

standard dual rail it use uses less transitions per data bit. This is achieved by toggling

the same wire if the data to be transmitted is the same as the previous or toggling the

other wire if the data is different to the previous. Fig. 5-1(d) shows 1 of 4 encoding,

where 4 wires are used to transmit 2 data bits. A single wire is asserted and then de-

asserted to represent 2 bits of data, for example asserting wire A for the receiver to

obtain data ‘00’. Fig. 5-1(e) shows an example of 4 wire multiple rail phase encoding.

The information is contain in the arrival order of the edges rather than the logic level

of the signals, care has to be taken to ensure that the arrival order of the signals

remains the same as they propagate along the link.

DATA[n-1:0]

VALID

ACK

TRANSMITTER

RECIEVER

DATA

VALID

invalid valid

suceptable

A

B

1 0 invalid

DATA A[n-1:0]

ACK

TRANSMITTER

RECIEVER

DATA B[n-1:0]

A

B

1 0 0 0 1 1

DATA A[n-1:0]

ACK

TRANSMITTER

RECIEVER

DATA B[n-1:0]

DATA C[n-1:0]

ACK

TRANSMITTER

RECIEVER

DATA D[n-1:0]

A

B

00

C

D

01 10

DATA A[n-1:0]

DATA B[n-1:0]

DATA C[n-1:0]

ACK

TRANSMITTER

RECIEVER

DATA D[n-1:0]

A

B

0000

C

D

1101

DATA A[n-1:0]

DATA B[n-1:0]

(b)

(a)

(c)

(d)

(e)

Fig. 5-1 Current asynchronous links [110, 111, 113, 114]

Page 99 of 158

Recently a self correcting green join coding scheme for NoC interconnect has been

proposed where the data is first encoded to minimise crosstalk and then a triplication

error correction code applied to allow error correction [116]. The joint coding scheme

increases the number of wires quite dramatically, for the crosstalk minimisation the

increase is 1.25x and for the triplication it is 3x, meaning that the number of wires

increases by 3.75x. This however is mitigated by serialization of the data before the

triplication stage at the expense of higher link frequencies.

A single ended asynchronous link such as bundled data does offer some

resilience to transients during the time period when valid is not asserted, but as

technology scales down the issue of keeping relative timing between the bundled

VALID reference signal and data may become an issue due to the tolerance variability

in deep sub-micron designs. Delay insensitive techniques such as dual rail, LEDR and

1 of 4 were introduced to alleviate the relative timing problems and provide a solution

in which delays do not matter. However, they are susceptible to transient faults which

can corrupt the data. It may be possible to detect certain errors on dual-rail since the

invalid code “11” could be detected which would suggest a single bit error at the same

time data is transmitted. However, if a transient occurs on a one of the dual rail pair of

wires when data is not been transmitted the receiver will see “10” or “01” instead of

“00”. This could mean that the receiver detects this as a valid ‘1’ or ‘0’ data as

opposed to a transient effect. The proposed encoding technique improves on this as it

can cope with a single transient on a single wire of the pair of data wires even when

data is not being transmitted.

A standard error detection scheme like parity checking such as adding an extra

bit to the data converting to dual rail and back to single ended logic and checking the

parity bit would allow the detection of a single error on one of the dual rail pairs.

However, if more than one of the dual rail pairs was in error then a single parity bit

cannot be used to detect both the errors. More complex schemes such as Hamming

codes combine a codeword and data and send them together. For example a (7,4)

Hamming code takes 4 bits of data and adds 3 code bits, resulting in a 7 bit message.

Hamming codes have the advantage that a single bit error not only can be detected,

but corrected too. Two bit errors can only be detected and not corrected though. The

extra overhead for using Hamming codes would consist of extra logic circuitry to

Page 100 of 158

code and decode the data and also 75% extra wires in the case of a (7,4) Hamming

code.

The basic idea of introducing resilience is to provide some form of matching

between different parts of a transmitted symbol so that the fault affecting one part can

be filtered with the help of the other parts since the validity of the overall value is a

‘collective responsibility’ of all parts. In the phase-encoding [114] this is achieved by

mutual adjudication between the wires. In the dual-rail framework, exploited in this

chapter, the dual rail solution is built upon by introducing a pair of reference wires

which can be compared with the pair of data wires in order to obtain the original

transmitted data. The phase relationship between the reference and the data symbols

provides the necessary information to obtain the original data. Both the reference and

data symbols use four phases.

5.2. Proposed Resilient Link

The proposed technique uses a pair of wires per data bit plus a further pair of wires

for a reference which is associated with the data bits, thus the number of wires will be

(n*2)+2 for n bit wide link, Fig. 5-2. Each data bit and the reference is represented by

a symbol on their pair of wires (00, 01, 11, 10). If the data symbol is in phase with the

reference the data is ‘0’. If the data symbol is 180° out of phase with the reference the

data is ‘1’. Should the data symbol be out of phase by ± 90° the data is can be

considered invalid, Fig. 5-3. It is easy to detect invalid data with this system as an

error on one of the wires of the data symbol will cause the symbol to be out of phase

by ± 90° which is detected by the receiver.

TX REF

RX REF

DATA[n-1:0]

VALID

ACK

REFA

REFB

TX DATA
[0:n-1]

RX DATA
[0]

SYMB[0:n-1]

SYMA[0:n-1] TRANSMITTER

DATA[n-1:0]

VALID

ACK

SYMBOL CODING SYMBOL DE-CODING

RECIEVER

Fig. 5-2 Overview of proposed link

Page 101 of 158

The reason of using a reference is that it allows the checking or validity of the symbol

to see if it results in valid data or if there is an error present. A single reference pair of

wires can be grouped with several pairs of data wires to support several bits

transferred at a time. Each time a new piece of data is sent the reference increments

around (moves around the quadrant by 90°) and the data moves either in-phase or

180° out of phase. By doing this there is only 1 transition on each pair of data wires

and 1 transition on the pair of reference wires.

DATA 0 0 1 invalid

DATA SYMBOL[A,B]

00

01

11

10

00

01

11

10

REF. SYMBOL[A,B]

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

Fig. 5-3 Symbol and reference phase relationship

A further example to show how the coding for applies to multiple bits is shown in Fig.

5-4. As can be seen at first DATA[3:0] = “0000” as all the symbols are in-phase with

the reference. The next piece of data SYMBOL3 and SYMBOL2 are in-phase so

DATA3 and DATA2 are ‘0’ and SYMBOL1 and SYMBOL0 are 180° out of phase so

DATA1 and DATA0 are ‘1’, thus DATA[3:0] = “0011”. The next piece of data all

symbols are 180° out of phase so DATA[3:0] = “1111”. Finally the on the last piece

of data SYMBOL3 and SYMBOL1 are out of phase and SYMBOL2 and SYMBOL0

are in-phase, so DATA[3:0] = “1010”

Page 102 of 158

SYMBOL3[A,B]

REF[A,B]

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

SYMBOL2[A,B]

SYMBOL1[A,B]

SYMBOL0[A,B]

DATA3 0 0 1 1

DATA2 0 0 1 0

DATA1 0 1 1 1

DATA0 0 1 1 0

Fig. 5-4 Example symbol phase relationship for 4 bit wide data

Fig. 5-5 shows a state diagram of the coding technique. It can be basically considered

as two cyclic planes. The low plane which cycles the symbol around 180° out of

phase to the reference when the data is 1 and the higher plane which cycles the

symbol around in-phase with the reference when the data is 0. The switching between

the planes is when the data changes, the red arrows showing when the data is 0 and

the coding switches into the in-phase plane and the blue arrows showing when the

data is 1 and switching into the 180° out of phase plane.

Page 103 of 158

REF-SYM

00-00

01-01

11-11

10-10

DATA

0

0

0

0

00-11

01-10

11-00

10-01

1

1

1

1

0

0

0

0

1

1

1

1

in-phase entry

180°-phase entry

Fig. 5-5 Encoding State Diagram of proposed Link

Table 5-1 shows comparison between a number delay insensitive methods of data

transfers that have been proposed for asynchronous links. LEDR, LETS and 1 of 4

encoding both improve on standard dual rail by reducing the transitions per bit but are

still susceptible to transient faults. Multiple rail phase-encoding improves on these by

offering resilience to transient faults and offering a reduced wire count when the

number of bits is greater than four, but this comes at the expense of increasingly

complex transmitter and receiver circuitry as the transmitter grows squarely and the

receiver grows squarely or linearly dependent on the choice of decoding array in the

receiver. The self correcting green coding scheme has high number of wires per bit so

serialization can be employed to mitigate this. Our proposed approach offers a similar

number of transitions per bit as LEDR and 1 of 4 as the number of bits increase from

the point of view of power on the link and resilience to transients that multiple rail

phase-encoding offers but with a linear growth in transmitter and receiver complexity.

Page 104 of 158

Table 5-1 Comparison of proposed and existing links

Link Wires/bit Transitions

/bit

Resilience to

SEUs?

TX/RX growth

Bundled Data 1+1/n 0.5+2/n N -

Dual-Rail [113] 2 2 N Linear

1 of 4 [110] 2 1 N Linear

1 of 4

LETS[112]

2 0.5 N Linear

LEDR [111] 2 1 N Linear

Phase-enc [114] w/n w/n Y Square

S-C Green[116] 3.75 - Y Linear

Proposed 2+2/n 1+1/n Y Linear
where n = number of bits and (w-1)! < 2^n < w!

5.3. Proposed Link Architecture

The link consists of a transmitter for the reference symbol, a receiver for the reference

symbol, transmitters for the data symbol and receiver for the data symbol. A single

transmitter and receiver module pair for the reference is used with one or more

transmitter and receiver pairs for the data as shown in Fig. 5-6 for an n bit wide data

source. For example, an 8 bit wide data source would require 1x TX REF 1x RX REF,

8x TX DATA and 8x RX DATA modules. The SYMVALID outputs of the RX

DATA modules can be ANDed together to form a single SIMVALID signal for the

RX REF module. The VALIDO outputs of the RX DATA modules can also be

ANDed together to provide a single VALIDO signal.

TX DATA
(n-1)

DATAO

VALIDO

ACKO

DATAI

VALIDI

SYMB

SYMA

REFA

REFB

TRANSMITTER RECEIVER

TX REF RX REF

RX DATA
(n-1)

R
E

F
IN

C

S
Y

M
V

A
L

ID

TX DATA
(1)

RX DATA
(1)

DATAI SYMB

SYMA

S
Y

M
V

A
L

ID

DATAO

VALIDO

ACKO

TX DATA
(0)

RX DATA
(0)

DATAI SYMB

SYMA DATAO

VALIDO

ACKO

BIT[0]

BIT[1]

BIT[n-1]

BIT[0]

BIT[1]

BIT[n-1]

Page 105 of 158

Fig. 5-6 Link showing circuit modules connectivity

5.3.1 TX DATA Circuit

The purpose of the TX DATA circuit is to provide a symbol output (SYM[A,B]) that

will be in-phase or 180° out of phase with respect to the reference. The transmitter

data module (TX data) is shown in Fig. 5-7. REF[A,B] is registered into the flip-flops

untouched if DATA is 0 or inverted if DATA is 1 by use of the two XOR gates.

D Q

‘1’

D Q

D Q

REFA

REFB

DATA

R
E

F
C

H
A

N
G

E
D

SYMB

SYMA

Fig. 5-7 TX DATA Circuit

The REFCHANGED signal goes high when the REF[A,B] changes and is a short

pulse where the width is determined by the feedback time of the flip-flop. Consider

the circuitry on it’s own as shown in Fig. 5-8. The output of the XOR gate combining

REFA and REFB is marked with X. The state transitions for two reference changes

are shown in Fig. 5-9.

D Q

‘1’

REFA

REFB REFCHANGED
X

Fig. 5-8 REFCHANGED Circuitry

Page 106 of 158

Examining Fig. 5-9 the stable states are highlighted. Looking when REF[A,B] = “00”

it is shown that REFCHANGED is 0. When REF[A,B] changes to “01” this triggers

REFCHANGED to go from 0→1, in turn Q goes 0→1 which causes REFCHANGED

to go 1→0 and then remain in a stable state. The process is repeated every time

REF[A,B] changes.

Fig. 5-9 Transition Table for REFCHANGED circuitry

REFA REFB X D Q REFCHANGED
0 0 0 1 0 0
0 1 1 1 0 0→1
0 1 1 1 0→1 1

0 1 1 1→0 1 1→0
0 1 1 0 1 0
1 1 0 0 1 0→1
1 1 0 0 1→0 1

1 1 0 0→1 0 1→0
1 1 0 1 0 0
1 0 1 1 0 0→1
1 0 1 1 0→1 1

1 0 1 1→0 1 1→0
1 0 1 0 1 0
0 0 0 0 1 0→1
0 0 0 0 1→0 1

0 0 0 0→1 0 1→0
0 0 0 1 0 0

Page 107 of 158

5.3.2 TX REF Circuit

The purpose of the TX REF circuit is to generate a new reference (REF[A,B]) each

time VALID goes high. This can be achieved by using a gray counter. A present-next

table for gray counter is shown in Fig. 5-10.

Fig. 5-10 Present-next Table for TX REF circuit

REF[] REF[]next
A B A B
0 0 0 1
0 1 1 1
1 1 1 0

1 0 0 0

The next state Boolean equations for the reference are:

REFAnext = REFA . REFB + REFA . REFB

REFBnext = REFA . REFB + REFA . REFB

A basic circuit can be realised by simply mapping these equations to the appropriate

logic gates and 2x flip-flops triggered by the VALID signal. The resulting circuit is

shown in Fig. 5-11. It is basically a grey code counter which increments the output

REF[A,B] through the symbols 00, 01, 11, 10 each time VALID goes high.

D Q REFB

REFA
D Q

REFBnext

REFAnext

R
E

F
A

R
E

F
B

VALID

Fig. 5-11 TX REF Circuit

Page 108 of 158

5.3.3 RX DATA Circuit

The purpose of the RX DATA circuit is to decode compare the symbol and reference

to generated a valid data and also to tell the RX REF circuit when it has detected a

valid symbol in order that the RX REF circuit can register a copy of the current

reference for comparison against the next reference to check that the reference

increments. The DATA decoding is simply comparing the symbol SYMB[A,B]

against the reference REF[A,B]and setting data correctly. SYMVALID is also

generated from comparing the reference and symbol and generating a high signal if

the symbol is in-phase or 180° out of phase otherwise it should be low to signify the

symbol is ±90°out of phase and therefore not valid. The truth table for DATA and

SYMVALID is shown in Fig. 5-12.

Fig. 5-12 DATA and SYMVALID truth table

REFA REFB SYMA SYMB DATA SYMVALID
0 0 0 0 0 1
0 0 0 1 X 0
0 0 1 0 X 0
0 0 1 1 1 1

0 1 0 0 X 0
0 1 0 1 0 1
0 1 1 0 1 1
0 1 1 1 X 0
1 0 0 0 X 0
1 0 0 1 1 1

1 0 1 0 0 1
1 0 1 1 X 0
1 1 0 0 1 1
1 1 0 1 X 0
1 1 1 0 X 0
1 1 1 1 0 1

The Boolean equations for DATA and SYMVALID reduce to:

DATA = SYMA ⊕ REFA

SYMVALID = (REFA ⊕ SYMA) ⊕ (REFB ⊕ SYMB)

The receiver data module (RX Data) is shown in Fig. 5-13. The circuit generates a

SYMVALID signal if the REF[A,B] matches SYM[A,B] or the inverse, which is out

of phase by 180°. When SYMVALID is high and REFINC goes high, DATA and

Page 109 of 158

VALID are registered into their respective flip-flops. ACK going high will clear the

valid signal.

REFB

SYMB

D Q

D Q
VALID

REFA

SYMA

REFINC

SYMVALID

‘1’

SYMA

REFA
DATA

NRESET

ACK

S
Y

M
V

A
L
ID

 a
n
d
 R

E
F

IN
C

SYMA xor REFA

(X)

Fig. 5-13 RX DATA Circuit

Page 110 of 158

5.3.4 RX REF Circuit

The purpose of the RX REF circuit is to generate a signal which signifies that the

reference has incremented around 90° (same as incrementing in gray code). The

instinctive way of doing this is to compare the current reference with the old reference

and then generate a signal if it is incremented. If we define REFINC as the signal

which signifies that the reference has incremented [A,B] as the current reference and

[OA,OB] as the old reference then the truth table for REFINC is shown in Fig. 5-14.

Fig. 5-14 Truth Table for REFINC

A B OA OB REFINC
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

From the truth table we obtain the sum of products Boolean equation for REFINC:

REFINC = A.B.OA.OB + A.B.OA.OB + A.B.OA.OB + A.B.OA.OB

Which further reduces to:

REFINC = A.OB.(B⊕OA) + A.OB.(B⊕OA)

REFINC = A⊕OB . B⊕OA

The circuitry consists of 2x flip-flops, 2x XOR gates, 1x Inverter and 1x AND gate.

The flip-flops functions are to hold the old reference and the remaining gates perform

the function of detecting the current reference is incremented. The complete RX REF

circuit is shown in Fig. 5-15. A further signal is introduced called SYMVALID. This

Page 111 of 158

signal goes high when the RX DATA circuit has found that the symbol it has received

is valid. When SYMVALID goes high the current reference, REF[A,B], is registered

into OLD[A,B] for comparison on the next transfer and REFINC therefore goes low.

SYMVALID

D Q
REFA

REFINC

D Q
REFB

OLDA

OLDB

Fig. 5-15 RX REF Circuit

Page 112 of 158

5.4. Resilience

Although the link is resilient to transient faults it is not totally immune from them. An

example is given in Fig. 5-16 which shows that under certain conditions invalid data

could be latched out on the receiver end. Examining Fig. 5-13 and Fig. 5-15 we can

show the normal sequence of events when a valid reference and data symbol arrives at

the receiver end, Fig. 5-16(a). The valid data symbol (SYM[A,B]) and reference

(REF[A,B]) generates the SYMVALID which combined with REFINC through an

‘and’ gate generates the signal to latch SYMA xor REFA onto the DATA output.

Provided that no transients affect or corrupt SYMA xor REFA before it is latched into

the flip-flop then valid data is obtained. Thus the input to the flip-flop must remain

stable during its setup time period. Fig. 5-16(b) shows what happens if transients

occur within the setup time of the flip-flop which latches DATA. The transient ripples

through and corrupts SYMA xor REFA causing invalid data to be latched onto the

DATA output.

SYM[A,B]

REF[A,B]

SYMVALID

REFINC

SYM[A] xor REF[A]

DATA

SYMVALID and REFINC

tsu tsu (a) (b)

Fig. 5-16 RX DATA timing

The setup time of the flip-flop used is approximately 125 ps nominal which

can be obtained from the data sheet (ST CORE9GPHS HCMOS9 data book [157]).

With this it is possible to find out the probability if the data being corrupted if a

transient fault does occur. Define Tw as the transient width, tperiod as the inverse of the

operating frequency and FFsu as the flip-flop setup time. Assuming that the transient is

Page 113 of 158

caused by the environment, such as particles and that the time it affects the circuit is

completely random and can assume a uniform distribution of the transient occurring

in tperiod it is possible to use the following formula to predict the probability that data

will be corrupted.

period

suw

t

FFT
corruptionP

+
=)(

Using a FFsu of 125 ps the probability of the data being corrupted can be

shown if a single transient occurs on one of the wire pairs and while data is being

transmitted. From this equation Fig. 5-17 was generated which shows the probability

of corruption versus the operating frequency for transients widths of 100, 200, 300

and 400 ps if a transient occurs. As can be seen for a given transient width the

probability of corruption increases with frequency. For a given frequency it can be

seen that the transient width also affect the probability of corruption. For example at

1000 MHz the probability of corruption is approximately 0.23 if a 100 ps transient

affects the symbol and rises to around 0.58 when the transient width increases to 400

ps.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

100.00 1000.00 10000.00

Frequency (MHz)

P
(c

o
rr

u
p

ti
o

n
)

Tw = 100 ps

Tw = 200 ps

Tw = 300 ps

Tw = 400 ps

Fig. 5-17 Probability of corruption for a single transient

Page 114 of 158

5.5. Experimental Results

To evaluate the resilience of the proposed link SpectreVerilog simulations were

performed. The test bench scenario is shown in Fig. 5-18. The receiver and transmitter

are circuit level designs. The driver and receiver (TB driver.v and TB receiver.v) are

verilog modules which generate the appropriate handshaking for the asynchronous

interfaces. The driver and receiver verilog modules use the handshake timings shown

in Table 5-2 for Fig. 5-19 to Fig. 5-21.

Table 5-2 Test bench handshake parameters

Cycle Time Module

DATAVALID to VALIDHIGH 1 ns TB driver.v

ACKHIGH to VALIDLOW 1 ns TB driver.v

VALIDHIGH to ACKHIGH 1 ns TB receiver.v

VALIDLOW to ACKLOW 1 ns TB receiver.v

The pulse stream generator (TB pulses.v) uses a single bit in a 10 bit LFSR

operating at a certain frequency (~115 MHz in the case of Fig. 5-19 to Fig. 5-21) to

generate several 300 ps wide pulses which are then XORed into the chosen signal.

The output of the XOR will then have sporadic transients present within it. This can

be spliced into any of the wires to provide a noisy or transient infected signal as

required during simulation. If more than one wire is needed to have transients present

then further pulse stream generators can be used with different LFSR starting seeds

and frequencies as required.

TX DATA

TX REF

RX DATA

RX REF

TB
driver.v

TB
receiver.v

DATAO

VALIDO

ACKO

DATAI

VALIDI

ACKI

SYMB

SYMA

REFA

REFB

TB
pulses.v

PULSES

SYM or REF SYM or REF (noisey)

TRANSMITTER RECEIVER

Fig. 5-18 Test bench setup

Fig. 5-19 shows the signal waveforms from simulation. As can be seen the

transmitted data (TX DATA) is the same as the received data (RX DATA). Also note

that REF[A,B] can clearly be seen incrementing through 00, 01, 11, 10, 00, …

Page 115 of 158

SYM[A,B] can also be seen to be in-phase for DATAI=0 or 180°-phase for

DATAI=1. Fig. 5-20 and Fig. 5-21 show transients on a SYM and REF wire

respectively. Note that the received data (DATAO) is received correctly even though

transients are corrupting one of the symbol or reference wires.

 1 0 1 0 1 1 0 0

 1 0 1 0 1 1 0 0 DATAI

REFA

REFB

SYMA

SYMB

DATAO

Fig. 5-19 Reference and symbol signalling

 1 0 1 0 1 1 0 0

 1 0 1 0 1 1 0 0

DATAI

TRANSIENTS ON SYM[A]

DATAO

Fig. 5-20 Transients on a symbol wire

Page 116 of 158

 1 0 1 0 1 1 0 0

 1 0 1 0 1 1 0 0

DATAI

TRANSIENTS ON REF[A]

DATAO

Fig. 5-21 Transients on a reference wire

Fig. 5-22 shows transients on both symbols wires during the data transfer

period. The handshaking timing was shortened to 300 ps for each of the parameters in

Table 5-2 for this simulation and data pattern 0xFF00AAAAAA00FF was used.

Again it can be seen that the output data matches the input data and is not corrupted.

DATAI

REFA

REFB

SYMA

SYMB

DATAO

Fig. 5-22 Transients on a SYM[A,B] pair

5.5.1 Throughput and Latency

To give an indication of the maximum operating frequency of the circuits

handshaking parameters shown in Table 5-2 were all set to 0 with the exception of

DATAVALID to VALIDHIGH which was set to 300 ps to ensure that DATA was valid

Page 117 of 158

before the VALID signal goes high. Running a simulation showed that 32 back to

back transfers occurred in a time period of 30.3 ns. Thus a single transfer happens in

0.95 ns, giving a theoretical operating frequency of 1.056 GHz. It is important to note

that the actual operating frequency of a complete link would be lower than this as the

handshaking timing would need to be based on the speed of the handshaking of the

asynchronous circuitry interfacing to the link. To give insight of the extra latency

introduced by the encoding and decoding the time from DATAI to DATAO in the

simulated waveforms was obtained. The latency introduced by the circuitry is 0.8 ns.

However, it should be noted that the latency in a physical implementation will be

more than this as wire delays are introduced and need to be taken into consideration.

5.5.2 Area Overhead

Table 5-3 shows the area overhead of the circuits in the 0.12µm technology used to

simulate the circuits. (ST core9gphs). The TX DATA and RX DATA modules are

significantly larger then for the TX REF and RX REF modules. This is due to

increased complexity to the data modules which need to compared against the

reference in order to generate their outputs. The extra overhead per bit is 409.49 µm
2

and the overhead of the reference is 262.24 µm
2
. For example, for an 8 bit wide link

the total area overhead would be 3538.16 µm
2
 (262.24 µm

2
 + 8*409.49 µm

2
). Also

shown is estimated area of the multiple rail phase encoding scheme [114] which also

offers transient resilience but the complexity of the circuit does not have linear growth

as the number of bits increase, the estimation of the circuitry is shown in more detail

in Appendix E. For a 1 bit link multiple rail phase encoding does offer an advantage

in terms of area, but for 8 bits the area has ballooned considerably to 55435.99 µm
2

due to some of the circuitry growing squarely in size.

Table 5-3 Area Overhead of Links (µm
2
)

Circuit 1 bit 8 bit 16 bit

TX DATA 215.84 1726.72 3453.44

RX DATA 193.65 1549.20 3098.40

TX REF 137.17 137.17 137.17

RX REF 125.07 125.07 125.07

Proposed Total 671.73 3538.16 6814.08

Multiple Rail Phase Encoding[114] 195.67 55435.99 -

Page 118 of 158

5.5.3 Power Consumption

To give insight into the average power consumption within the various circuit

modules the data pattern 0xFF00AAAAAA00FF was sent bit serially from the test

bench driver to the circuit. The breakdown of the power used in the four circuit

modules is shown in Table 5-4. The power was obtained from a SpectreVerilog

simulation by taking the average of the supply voltage multiplied by the current into

each circuit module over the simulation run time. The total dynamic power for the

DATA modules is 199.47 µW. The simulation run time was 100 ns, by multiplying

the power by the simulation run time the energy used to transmit the data can be

obtained. Multiplying the power by the time (199.47 µW × 100 ns) gives an

approximate energy usage of 0.0199 pJ to transfer the whole 56 bit data pattern,

dividing this by 56 gives an energy per bit of 356 fJ/bit. The REF modules power is

85.66 µW giving an energy usage of 0.0086 pJ to transfer the data pattern. The energy

per data transfer is 153 fJ. For example, for an 8 bit wide link the energy for each data

transfer is 3001 fJ (153 fJ + 8*356 fJ).

Table 5-4 Dynamic and Static Average Power (µW)

Circuit Power

(dynamic)

Power

(static)

Power

(total)

TX DATA 91.72 0.72 92.47

TX REF 41.87 0.47 42.34

RX DATA 106.26 0.74 107.00

RX REF 43.00 0.32 43.32

Examining Table 5-4 it is shown that the RX DATA circuit (Section 5.3.3) consumes

the most power of 107 µW. This is because the RX DATA circuit is the most complex

relative to the three other circuit modules with the largest gate count. Examining TX

REF and RX REF circuit modules it is shown that the RX REF consumes more

dynamic power than TX REF (43 µW for RX REF and 41.87 µW for TX REF).

However, static power for RX REF is lower than TX REF (0.32 µW for RX REF and

0.47 µW for TX REF) suggesting that the switching activity for TX REF is lower than

RX REF but the static power is slightly more for TX REF due to higher number of

gates used in the circuit module.

Page 119 of 158

5.5.4 Limits of Resilience

In order to show how corruption of the data can occur the test bench simulation was

run with a transient pulse T that was XOR’d with one of the symbols wires S. The

frequency or repetition rate of the transients was slightly slower that that of the

symbol rate in order that the transient would sweep through and corrupt the symbols

at different points. Fig. 5-23 and Fig. 5-24 shows how the transient affected symbol

wire (S XOR T) leads to a corrupted DATAOUT. Examining Fig. 5-23 we can see

that on the corrupted symbol wire (S XOR T) the transient slowly bleeds into the

rising edge of the symbol causing it to go to logic 0. At a certain point shown in the

waveforms the symbol is low and gets caught in setup and hold time of the flip-flip

which provides DATAOUT based on the corrupted symbol wire. If the setup and hold

time is violated the DATAOUT is inversed as the decoding is basically SYMA ⊕

REFA (Section 5.3.2) hence DATAOUT is logic 0 when it should be logic 1. Fig.

5-24 shows the situation where the transient bleeds into the falling edge of the symbol

wire, in this situation the DATAOUT is now at logic 1 instead of being at logic 0.

DATAOUT

S

T

S xor T

Fig. 5-23 Corruption of the Data on positive symbol edge

Page 120 of 158

DATAOUT

S

T

S xor T

Fig. 5-24 Corruption of the Data on negative symbol edge

To show that the transient pulse width has an effect on the corruption the transient

width (Tw) was varied between 100 and 400 ps to show the effect on DATAOUT.

Fig. 5-25 shows the effect on DATAOUT, as can be seen when the transient width is

small (Tw = 100 ps) the amount of times DATAOUT out is corrupted and does not

change is small. When the transient width is increased the amount of times

DATAOUT is corrupted becomes larger, the gap or period of time that DATAOUT

stays at logic 0 or logic 1 is increased.

 Tw = 100 ps Tw = 200 ps

Tw = 300 ps Tw = 400 ps

DATAOUT

DATAOUT

DATAOUT

DATAOUT

Fig. 5-25 Example corruption of data for various transient widths

Page 121 of 158

To further verify the probability of a single event transient corrupting the data and to

provide evidence that the estimated probability of corruption in Fig. 5-17 is

reasonable, further simulation was performed which sweeps the a transient through

the symbol in order to corrupt the data. A series of 300 bits of alternating 1’s and 0’s

were sent across the link and one of the symbol wires (SYMA) had a transient pulse

superimposed on it by use of an XOR gate to corrupt the data seen at the input to the

flip-flop in the RX DATA circuit (marked X in Fig. 5-16). The repetition rate of the

transient was 555 MHz, this was chosen to be of a similar frequency to the rate at

which the symbol changes (526 Msym/s) in order that the transient affects each

symbol at a different position over the period it takes to transmit the 300 bits. Fig.

5-26 shows the calculated and simulated probability of a bit error occurring with

transient widths of 100 to 600 ps. The calculated values were obtained by using the

equation from Section 5.4:

period

suw

t

FFT
corruptionP

+
=)(

The flip-flop setup time (FFsu) was 125 ps and the time period (tperiod) was 1.901 ns

(1/526×10
6
), the probability of corruption was obtained for transient widths (Tw) of

100 to 600 ps. The simulated values were obtained from by sweeping a transient

through the symbols and counting the number of bits in error. The transient was

injected into the circuit by use of an XOR gate. One of the symbol wires from the

transmitter was fed into one XOR input, the other input was connected to a pulse

generator. The output of the XOR gate was then connected to the input symbol wire

on the receiver. As can be seen the trend of the curve is similar to calculated, but

slightly lower offset. This could be due to the fact that in simulation even if the

transient affects the symbol enough to encroach into the setup time it may still not be

enough to cause a violation within the analogue simulation. For a transient width of

100 ps the simulation shows that approximately 6% of the time the received data was

corrupted. Increasing the transient width to 600 ps increased the rate of data

corruption to approximately 34%. This level of corruption is to be expected as a

transient width of 600 ps is around 1/3
rd

 of the total time period of the symbol which

is 1.901 ns and will therefore lead to corrupt data 1/3
rd

 of the time.

Page 122 of 158

Fig. 5-26 Transient width vs Bit Error for 300 data bits

Page 123 of 158

5.6. Wire Buffering

The work in this chapter has concentrated on the coding method and the associated

circuitry. For long links wire buffers may be needed to segment the long wire into

shorter sections and allow a pipelined structure to be used. To give an indication of

how the wire buffers could be implemented this section describes two possible

implementations of wire buffers and discusses the complexity. The choice of structure

for wire buffers could range from simple to more complex depending on the needs of

the link. For example several buffers could be placed along the length of the wire but

this would mean the return acknowledgement signal would have to traverse the whole

length of the link back before the next piece of data is transferred, Fig. 5-27.

TX REF

RX REF

ACK

REFA

REFB

TX DATA
[0:n-1]

RX DATA
[0:n-1]

SYMB[0:n-1]

SYMA[0:n-1]

SYMBOL CODING SYMBOL DE-CODING
DATA

ACK

Fig. 5-27 Simple Wire Buffers

A better approach would be to register or latch the signals along the length of the

wire, Fig. 5-28. This would require some sort of memory element or flip flop with

some associated handshaking circuitry.

TX REF

RX REF

ACK

REFA

REFB

TX DATA
[0:n-1]

RX DATA
[0:n-1]

SYMB[0:n-1]

SYMA[0:n-1]

SYMBOL CODING SYMBOL DE-CODING
DATA

ACK

Fig. 5-28 Latched or Registered Wire buffers

Page 124 of 158

If the relative timing between SYM[A,B] and REF[A,B] is known to be close at the

transmitter we could in theory obtaining the acknowledgement handshaking by

observing that REF[A,B] has changed and just registering the SYM[A,B]

independently. This would cause the link not to be truly delay insensitive anymore

since if the SYM[A,B] were generated faster or slower than their associated

REF[A,B] signal you could potentially have a situation where the wrong SYM was

trying to be matched with the REF at the receiver end. An example of such a wire

buffer is shown in Fig. 5-29. Both the SYM and REF signals are registered into a flip-

flop by XORing the signal with a delayed version of itself (the two invertors) to

generate the flip-flop clock or latch signal. The ACK out is generated by ORing the

two clock or latch signals of the REF[A,B]. This sets the S-R flip-flop which is fed

into a C-Element (Fig. 4-5). The C-Element is then set and the ACK out signal set

high. The ACK out also resets the S-R flip-flop and the C-Element now waits for an

acknowledgement from the next wire buffer in order to set ACK out low again and

repeat the process.

REFA

REFB

SYMB[0:n-1]

SYMA[0:n-1]

SYMB[0:n-1]

SYMA[0:n-1]

REFA

REFB

S

R

Q

C

ACK

ACK

WIRE BUFFER

Fig. 5-29 Wire Buffer

This wire buffer would allow pipelining of the signals but it could also propagate

transient faults along the link since the clocking or latching of the signals is done

when a change is detected, it is effectively a ‘dumb’ latching mechanism. In order to

get around this and also make the link back to a true delay insensitive scheme we need

Page 125 of 158

to introduce the circuitry which matches the SYM and REF signals and produces a

valid output when the match is detected. Fig. 5-30 shows an improved wire buffer

which generates the clocking or latching signal when there is a valid match between

the SYM and REF signal shown in the shaded area. It is important to note however

that this shaded circuitry will need to be replicated n times for an n bit wide link and

then gated together to form a single latching signal. The clocking or latching signal is

converted to a pulse to set the flip-flip which triggers the C-Element and handshaking

the same as the previous wire buffer shown. This improved wire buffer should be

truly delay insensitive since the signals are only latched when a valid match between

the SYM and REF signals exists. The latency of the handshaking could increase as the

number of bits n increases since the matching circuitry would have to be gated

together to form a single valid signal, this could introduce another layer or two of

gates into the handshaking feedback timing.

REFA

REFB

SYMB[0:n-1]

SYMA[0:n-1]

SYMB[0:n-1]

SYMA[0:n-1]

REFA

REFB

S

R

Q

C

ACK

ACK

WIRE BUFFER

X n

Fig. 5-30 Improved Wire Buffer

A selection of possible wire buffers has been presented, careful consideration as to the

needs of delay insensitivity, throughput and complexity of the wire buffer needs to be

performed in order that an appropriate choice can be made.

Page 126 of 158

5.7. Concluding Remarks

This chapter has proposed and demonstrated an asynchronous link technique that has

resilience to soft-errors which is achieved by the use of a novel coding technique. The

proposed coding technique has been applied to an asynchronous NoC link. The

coding technique is based on transmitting symbols for each bit and a common

reference signal. The relationship between the data symbols and a reference is

compared in order to decode the data. A single error on one of the symbols can be

detected if there is a mismatch between the symbol and the reference. When

compared to dual-rail the proposed coding increases the resilience of the link to soft-

errors at the expense of extra circuitry required to encoded and decode the symbols.

The proposed link uses a similar number of wires as dual-rail, (⇒ 2) and offers a

similar number of transitions per bit as 1-of-4 encoding (⇒ 1). The link was designed

and simulated in 0.12µm technology.

The proposed link has an area overhead of 409.49 µm
2
 per bit and an

approximate energy usage of 356 fJ/bit. Possible implementations of two wire buffers

for the link have been discussed and examples given, one type of wire buffer could be

used if the relative timing between the reference and the symbols could be kept close

or the alternative wire buffer which checks the validity of the symbol and reference

before buffering the symbol and reference. Simulation of the link using the proposed

coding was carried out using gate level simulation in the analog environment in

SpectreVerilog. The maximum operating frequency of the coding and decoding

circuitry was found to be 1.056 GHz although in practice this would be slower due

handshake timing of the surrounding asynchronous circuitry.

It is hoped that the proposed link makes a valuable contribution to the area of

efficient and reliable NoC architecture for multi-processor SoC.

Page 127 of 158

Chapter 6. Conclusions and Future Work

It is likely that the demand for multiprocessor system on-chip will continue to

increase as more IP cores are integrated onto a single chip. With the increasing

number of cores new communication mechanisms will be needed to address the

scalability of the on-chip communication architecture. Network-on-chip is emerging

as a potential communication structure that addresses the scalability issue using a

packet based approach to communication. The network-on-chip provides IP cores the

means to communicate with each other via a number of on-chip routers and point to

point links. The work presented in this thesis focuses on potential techniques to

improve the point to point links for network-on-chip. The four main areas investigated

in this thesis have been:

(a) Bit-Serial Compression using Unused Significant Bit Removal has been

explored for NoC links. The compression makes use of exploiting data which

does not have rapidly changing bits in the most significant bit positions.

Various data examples have been applied to the compression scheme and the

reduction in data size given.

(b) Asynchronous Serialized NoC Links have been shown that wire reduction can

be achieved through serialization and power reduced and clocking simplified

through asynchronous techniques. Although there is extra overhead for the

synchronous to asynchronous conversion circuitry and serializers the wire area

savings are greater than the extra overhead, especially for longer wires.

(c) Resilient Asynchronous Links have been explored and a new data coding

scheme has been demonstrated which has resilience to single event transient

faults. The coding scheme uses a similar amount of wires as dual-rail

techniques that are commonly used for asynchronous circuits but in addition

give resilience to transient errors.

(d) Gate level design and experimental validation of the developed techniques

have been carried out in order to verify the functionality and give indications

of power, area and performance.

Page 128 of 158

Section 6.1 summarises the main contributions made by the presented work and

section 6.2 outlines possible future research directions which could further the work

presented in this thesis.

6.1. Conclusions

Network-on-Chip is a current area of research that is gaining much attention in the

system-on-chip world. The scalability offered by NoC for multi-core system means

that NoC is rapidly gaining momentum as an alternative to traditional bus based

communication mechanisms. The work presented in this thesis has focused on

efficient NoC links using compression, serialization and asynchronous techniques as

well as introducing resilience to transient errors.

Chapter 3 has shown a simple but effective compression scheme for bit-serial

communication which can be applied to bit-serial NoC links. The compression

technique exploits similarities in the most significant bits in consecutive pieces of

data. The compression scheme has been shown to reduce the amount of data that is

transmitted across the link down to 49% of the original uncompressed size for picture

data. While there is also a reduction in the number of transitions the compression

scheme can be combined with a transition reduction scheme [103] to reduce the

number of transitions further. The compression scheme is suitable for data where the

most significant bits change more than the least significant bits. In situations where

the LSBs change more than the MSBs a transformation of the data could be

performed to swap the LSBs and MSBs around so that the compression scheme could

still be used. For random data compression does not work and can result in expansion

of the amount of data. Furthermore an algorithm was developed to allow dynamic

block sizing of the amount of data to be compressed if a fixed block size solution was

not required.

Chapter 4 has proposed the use of asynchronous serialization of the NoC links

as a means of reducing the number of wires and simplifying clocking. In our

implementations the extra area overhead of the asynchronous circuitry compared to a

typical synchronous link was 20%. However the number of wires was reduced by

75% from 32 wires down to 8. The reduction in number of wires also allowed smaller

wires buffers to be used allowing a reduction in power of up to 65% when 8 wire

buffers are used on the NoC link. There are further benefits of reducing the number of

Page 129 of 158

wires in addition to reducing the wire area, the number of metal to metal layer vias

and cross talk could also be reduced. Validation of the circuits were carried out on

FPGA to allow functional testing on hardware. The FPGA implementation was slower

that the full custom gate simulations but it did allow functional validation of the

circuit proposed on hardware and works as expected in theory. Performance of the

link should be improved if full custom IC implementation is used. This chapter has

shown potential use of serialization in the asynchronous domain and circuit

implementations. A general idea from this chapter is the use of synchronous routers

operating in the synchronous domain interfacing to asynchronous links.

Chapter 5 has proposed a new data coding scheme for asynchronous NoC

links. The coding scheme uses a similar number of wires per bit to existing schemes

such as dual-rail but comes with the additional benefit of offering resilience to

transient errors. The coding scheme has been shown to be resilient to transients

although it can still be susceptible to a transient fault at the critical time when data is

latched in the receiver and has been described and validated in simulation. Example

circuits have been given to implement a link and could be further optimized to reduce

the circuit size as the circuits presented were a first cut implementation to prove the

functionality of the coding. It is hoped that this chapter has contributed a novel coding

scheme that sits along side dual rail as a possible delay insensitive coding scheme

with resilience to transient errors.

The developed techniques and experimental validations contributed towards

the current efforts undertaken by academia and industry worldwide targeting the

development of efficient and reliable on-chip communication for NoC infrastructure

expected to be employed in future multiprocessor SoC. Such systems will be needed

to offer the required performance in modern multimedia applications that have limited

battery life and require reliability.

Page 130 of 158

6.2. Future Research

Chapter 4 discussed serialized asynchronous NoC links and validation on FPGA.

Chapter 5 provided a promising technique which increases the reliability of NoC links

in the presence of soft-errors. As the coding was a new idea towards the end of the

work there is further possibilities to build on this. Further research to build on the

research in this thesis could consists of the following areas:

6.2.1 Custom ASIC Validation

The FPGA validation in Chapter 4 of the serialized asynchronous links provided

functional validation of the link but the performance on FPGA was much slower. A

full IC design using standard gates and a number of custom gates for cells such as C-

Elements would provide functional validation and confidence of higher performance

throughput. The IC could also incorporate a second copy of the NoC link which uses

the transient resilient technique discussed in chapter 5 in order to validate the

reliability on-chip.

6.2.2 Symbol Exploration

In chapter 5, the transient resilient links, the coding uses 2 wires per bit and 2 wires

for the reference. The symbols can be 00, 01, 11 and 10. This allows detection of a

single bit error on one of the pairs of wires but it cannot be corrected it since the

hamming distance to a valid symbol is equally the same. For example if the reference

is 00 and a symbol 00 is sent and a single bit error or transient affects one of the

symbol wires 10 or 01 could be received. The symbol is invalid when comparing it to

the reference as it is 90° out of phase, but is impossible to tell if it should be 00 or 11

since both of these are valid symbols, Fig. 6-1. In the proposed scheme the receiver

circuit will stall the acknowledgement until the transient error goes away or if the

transient hits at a certain point in time it could latch in invalid data.

00 01

10 11

00 01

10 11

Fig. 6-1 Possible states for 2 wire symbols

Page 131 of 158

One possible way around this would be to increase the number of wires for each

symbol and increasing the hamming distance such that if a single bit error occurs the

symbol is ‘closer’ in terms of hamming distance to one of the possible valid symbols.

This would allow valid data to be received even if there are single bit errors present in

the symbols. The negatives aspects of this would be the increased amount of wires

and also the amount of transitions could increase as going from symbol to symbol

could require more than 1 wire to change state to maintain hamming distance greater

than 1. The resulting coding would effectively go from 4 possible symbols to 8.

Consider a scheme using 3 wires per symbol which would give us 8 possible symbols

to use. The scheme can be easily visualized as a cube with the states at each corner,

Fig. 6-2. If symbol is in phase to the reference it will be the same. If the symbol is out

of phase by 180° then the valid symbol will be on the opposite corner. If a reference

of 111 is used and a symbol 111 is sent but there is a single bit error the received

symbol will be 110, 101 or 011. As these three possible symbols in error are closer in

hamming distance to 111 as opposed to 000 we can reasonably assume that the

original uncorrupted symbol is likely to be 111.

001

101

011

111

000

100

010

110

001

101

011

111

000

100

010

110

Fig. 6-2 Coding using 3 wires per Symbol

It is difficult to say how the complexity of the scheme would increase and the

problems associated with increasing the number of symbol but this could be one

possible future research direction for this particular topic. Certainly it can be seen that

going from one symbol to the opposite side of the cube to represent a change in data

would result in all 3 bits of the symbol changing.

Page 132 of 158

6.2.3 Pair Wise Data and Reference

In the original scheme for the transient resilient links a single reference was partnered

with several symbols. It may be advantageous to not have an exclusive reference

signal but instead have two pair-wise symbols and use themselves to detect validity.

Consider Fig. 6-3. A master symbol and a slave symbol (prefixed with M and S

respectively in the figure) is used to represent two bits of data. The master symbol

would rotate 90° anti-clockwise to signify a 1 and 90° clockwise to signify a 0 for the

first data bit. The slave would either be in-phase to signify the second bit is the same

or 180° out of phase to signify the second bit is the opposite. In the example shown in

Fig. 6-3 the master symbol (M_SYMBOL) rotates anti-clockwise from 00 to 01

signifying the first bit (DATA[0])is a 1 and the slave symbol (S_SYMBOL) is in-

phase with it so the second data bit (DATA[1]) is the same and therefore is also a 1.

So the resulting data is 00. Next the master symbol rotates anti-clockwise from 01 to

11 and the slave symbol is 180° out of phase so the data is 01. Finally the master

symbol rotates clockwise so the first data bit (DATA[0]) is now a 0, and the slave is

in-phase, so the data is 00.

DATA[1:0] - 11 01 00

S_SYMBOL[A,B]

00

01

11

10

00

01

11

10

M_SYMBOL[A,B]

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

00

01

11

10

Fig. 6-3 Pair-Wise Symbols

This pair-wise scheme removes the need for an explicit reference and several of these

pair-wise groups can be used together for data several bits wide However it may

increase the complexity to the circuitry since the direction of rotation needs to be

monitored to extract the data. The validity is still kept intact as both symbols are still

in-phase or 180° out of phase with each other and as such single bit errors can still be

detected. However, the single bit error can only occur on one of the wires in the pair-

wise group. Further research is necessary to assess the impact on circuit complexity

and robustness of using such a scheme.

Page 133 of 158

Appendix A VHDL Modules for Compression

An overview of the VHDL modules and there connectivity to the test bench for the

standard bit-serial link and the bit serial link using the proposed compression scheme

is given in Fig. A-1 and Fig. A-2 respectively.

FIFO

FSM

PARALLEL TO SERIAL

WR_DATA

WR_EN

WR_CLK

FULL

SERIALOUT

STROBE

rd_en d
a

ta

lo
a

d
/s

h
fi
t

e
n

BUFFER
SERIALOUT

STROBE
SERIAL TO PARALLEL

DATA

WR_EN

transmit.vhd

receive.vhd

top.vhd

test bench

transition and bit

counter

test bench

output file

capture and

checker

test bench

input file

stimulus

Fig. A-1 Top level RTL Serial Link

FIFO MASK

FSM

PARALLEL TO SERIAL

WR_DATA

WR_EN

WR_CLK

FULL

SERIALOUT

STROBE

mask

muxmask

rd_en d
a

ta

lo
a

d
/s

h
fi
t

e
n

e
n

_
b
y
p
a

s

BUFFER
SERIALOUT

STROBE
SERIAL TO PARALLEL

FSM

s
h
if
t_

e
n

la
tc

h
m

a
s
k

u
s
e

m
a
s
k

DATA

WR_EN

transmit.vhd

receive.vhd

top.vhd

test bench

transition and bit

counter

test bench

output file

capture and

checker

test bench

input file

stimulus

Fig. A-2 Top Level RTL partitioning, USBR

Page 134 of 158

Appendix B MPEG Background Information

This section provides background details on MPEG decoding which is used as the

case study for the results in Chapter 3. It is not intended as a complete description of

MPEG but just enough to justify the concept of frame or picture buffering in a MPEG

decoder. Further information on MPEG video decoding can be found in ISO 11172-2

and ISO 13818-2.

MPEG compression has become the current de-facto standard in digital video

storage. MPEG was developed to allow compressed video to be stored on digital

formats such as compact discs, digital versatile disc (DVDs) and hard drives. MPEG

utilises a block based compression scheme. The picture is divided up into a number of

macro-blocks horizontally and vertically. The information which makes up these

macro-blocks are then pushed through cosine transformation to turn the data into a

frequency representation of the image, just like a Fourier transform turns a signal in to

its frequency components. The transformed data is then quantised to try and zero out a

lot of the high frequency information which our eyes do not really notice. The

quantized data is then compressed using Variable length coding (Huffman) since the

quantised data will probably contain long runs of 0’s in the high frequency areas.

The MPEG video stream has a layered structure consisting of several layers.

The highest layer is a video sequence and sequence header. The next layer down is a

group of pictures followed by picture, slice, macro-block and finally the block layer.

The block layer is the lowest layer which is effectively an 8x8 data matrix which

represents a small portion of the visual image. Fig. B-1 shows an overview of the

layered bit-stream in more detail. Each layer effectively wraps around the next lower

level layer and contains information and data applicable to the current layer.

Complex system on chip devices are integrated more and more cores onto a

single die. These multi-core solutions in System on Chip and Network on Chip the

data that cores work with is often non-random. Certain application such as video

decoding will decode the picture data from the run length encoding bit-stream and

then need to store the picture data in memory to allow out of order picture decoding.

It is preferable to make sure that data stored in memory should be byte aligned. Byte

alignment helps keep coherency between other devices which share the same memory

and access the same data. In MPEG applications after the Huffman decoding and

Page 135 of 158

IDCT the picture data will be buffered in memory since the decoded picture order will

be different to the displayed order and certain picture types require past and future

references.

 group_of_pictures sequence_header group_of_pictures sequence_start sequence_end

picture picture picture picture gop_start ext user picture

picture_start picture_type ext user slice slice slice slice slice

slice_start macroblock macroblock macroblock macroblock macroblock macroblock

macroblock_start stuffing
address

mb_type motion
compensation

block block block block block block

video_sequence

group_of_pictures

picture

slice

macroblock

Fig. B-1 Layered Hierarchy of the Video Sequence

Typically in a MPEG video stream you will have Intra (I), Predicted (P), and

Bi-directional (B) coded pictures.

Decoded order: I – P – B – B – B – P – B – B – B

Displayed order: I – B – B – B – P – B – B – B – P

Assume the data is stored in the YUV colour space format[158] and the data

are values from 0 to 255. Using 10 bits to store fixed point data with this magnitude

should give ±1 LSB after the colour space transformation to 8 bit RGB colour space.

For decoding and subsequent displaying there should be enough memory for at least 3

pictures worth of data. Memory would be needed for Past, Future and Current. If we

also assume we need at least 3 pictures worth of buffer space then we can calculate

how much memory we need to have for the decoding process. For each macro-block

we require 6 * 64 * 16 = 6144 bits. A typical MPEG1 picture is 330 macro-blocks.

MPEG1 therefore needs 330 * 6144 bits ≈ 2 Mbit per picture, so to buffer 3 pictures

we need approximately 6 Mbit for MPEG1. As can be seen a large amount of MPEG

decoding is the buffering of data into memory. If 10 bit signed data is stored in a byte

aligned memory space then each data value will occupy 16 bits. Clearly the MSBs

will not be used and are somewhat redundant. Also because visual pictures do not

have rapidly changing colour information the data can often be similar within a block.

Page 136 of 158

Fig. B-2 shows the data flow, in an Intra-coded picture the data will come

from the IDCT and get written directly to the buffer since all the macro-blocks will be

intra-coded. In predicted and bi-directional pictures the data could directly get written

into memory if the block is intra-coded or get passed to a motion compensation unit

where motion vectors are used to obtain a prediction macro-block which results in the

reading of data from the past or future picture buffers which get added and the result

stored back into a buffer. From this it can be seen that the buffering of pictures

represents the most substantial bandwidth usage in a video decoding system.

Anything that can be done to reduce power or improve bandwidth in this application

would be a great benefit. To reduce the number of bits or transitions some sort of

encoding at the source and decoding at the destination must be done. Provided that the

power used to encode and decode the data is less than the power saved in transferring

the encoded data through the communication path then an overall power saving is

achieved. The encoding could be profiled for different applications. For instance, the

data that is transferred from an IDCT core to a memory, the four luminance blocks in

a macro-block would be very similar if there is not much change within that macro-

block.

IDCT MEM MC

2 3

1

1. Intra-coded direct write.

2. Predictive-coded write to

motion compensation.

3. Read data to reconstruct a

prediction macroblock.

4. Write result back into

buffer. 4

Fig. B-2 Part of the MPEG Video Decoding Structure

It can be seen in Fig. B-3 that the blocks with the luminance information have

a low of changing data since the outline of the bottom of the tyre can be seen clearly

and is in contrast to the background. The lower luminance blocks also show the top of

the wall which is in contrast too. Fig. B-4 shows the macro-block for part of the wall.

Since there are no sharply contrasting features in this macro-block the data values do

not change that much either within the block or from block to block. It can be seen

that in an application such as MPEG there are a reasonable amount of redundant bits

in macro-blocks, infact that is what MPEG coding is used for, to compress video

Page 137 of 158

information. However, when the variable length decoding and IDCT operations have

been performed and the data is being moved around to different cores and memory the

data is now longer in a compressed format. More likely it will be stored as values

representing the YUV colour information. Usually this reading and writing to memory

is over some form of communication link. If a serial link is used then the compression

technique that removes redundant bits in a block could be used.

Fig. B-3 Luminance and Chrominance Blocks of Macro-block, tyre

Fig. B-4 Luminance and Chrominance Blocks of Macro-block, Wall

Since the data in MPEG blocks is often similar for macro-blocks that do not

contain a lot of detail then there is some argument for the use of a simple compression

technique when data is being read and written to memory. Furthermore if the data

precision is less than the byte alignment used in memory then gains can be had for all

blocks since there will be redundant MSBs anyway.

An example of byte alignment is shown in Fig. B-5. Assume the MPEG block

data is 10 bit unsigned data. This means the data range will be 0x000 to 0x3FF.

However, data should always be aligned to the nearest byte boundary. One could

argue that the data could be packed together bitwise as shown in Fig. B-5(B), but this

makes data transfer more difficult since processors and DMAs usually operate on byte

addressing. The high cost of unpacking and repacking the data bitwise in software

Page 138 of 158

would be prohibitive. A software engineer would simply want to read data then use it.

If bit packing was used the software would have to start performing shifts and logical

bitwise operations in order to get the data into a format it could be used in which

burns MIPS and is therefore generally unacceptable.

00000011 0x0000

0x0004

0x0008

1st Data 2nd Data

Address

11111111 00000011 00000001

……..

11111111 0x0000

0x0004

0x0008

1st Data 2nd Data

Address

11110000 0001…. ……..

(A) (B)

Fig. B-5 Byte aligned and bit-packed for 10 bit numbers stored in memory

Page 139 of 158

Appendix C Reducing Wire Delay

This section explains the reasoning why buffered pipelined wires are used in

NoC type applications where point-to-point links may travel relatively long distances

across chip. Wire delay does not grow linearly with length, it grows squarely as

shown in Fig. C-1. This means the wire delay for long global interconnect may be

considerable.

 Not real data,

just a picture

example

length

delay

5 10

2.5

10

delay of 2.5

delay of 10

Fig. C-1 Wire Delay

Long wires present a problem, a solution to this is to segment the long wire

with intermediate buffers if the a gate delay of a buffer is relatively small compared to

the wire delay. Lets say a buffer has a delay of 1. Then by inserting the buffer into a

wire of length 10 we split the length of wire into two 5 length segments separated by a

buffer as shown in Fig. C-2. The segmentation of the wire helps linearise the delay

with respect to the length.

 Not real data,

just a picture

example

length

delay

10

6

delay of 2.5

delay of 1

delay of 2.5

Fig. C-2 Wire Delay (Buffered)

It is perhaps useful to see why segmented or buffered wires are used in the

point-to-point links of network-on-chip in order to see a direction on how to further

improve. If we take a simple request acknowledge cycle, ignoring things like effects

of crosstalk on delay for the moment, we can see a very basic but typical

asynchronous cycle, Fig. C-3. At the bare minimum the cycle time in order for an

asynchronous transmitter is based on the time it takes for data (and possibly bundled

Page 140 of 158

control) to arrive at the receiver. The receiver then has to say when this is valid and

finally send an acknowledgement back to the transmitter to say it is okay to go onto

the next transfer. The transfer cycle needs one complete transfer sent and

acknowledgement received. If the wire length is long then the wire delay would

dominate the cycle time.

ACK

DATA

Transmitter Receiver

Wire length

Logic Delay

Fig. C-3 Basic Asynchronous Cycle

The wire delay can be alleviated by adding simple buffers along the length of

the wire, Fig. C-4. Since the shorter wire segments with intermediate buffers can

reduce wiring delay dramatically the request / acknowledge cycle time would be

reduced.

ACK

DATA

Transmitter Receiver

Wire length

Logic Delay

Fig. C-4 Buffered Wires

It is possible to use latched buffers along the length of the wire, Fig. C-5. This

is what we have done in our asynchronous solution in Chapter 4. With this approach

the cycle time is based on the data sent to the first registered buffer and the

acknowledgement back. The wire is also pipelined, meaning that different data items

can occupy different stages along the wire which should give an increase in

throughput compared to non-registered wire buffers.

ACK

DATA
Transmitter Receiver

Wire length

Logic Delay

Fig. C-5 Registered Buffered Wire

Page 141 of 158

Appendix D FPGA Design Flow

Synchronous

Functional

Simulation

(Modelsim)

Simulation

Pass?

HDL entry

Synthesis

Place & Route

(XST)

Static Timing

Analysis

Generate

Programming

File (ISE)

Download to

FPGA

Y

N

PASS

FAIL

Constraints

Fig. D-1 Synchronous FPGA Design Flow

Page 142 of 158

Asynchronous

Functional

Simulation

(Modelsim)

Simulation

Pass?

HDL entry

Synthesis

(XST)

Generate

Programming

File (ISE)

Download to

FPGA

Y

N

Post-Synth

Simulation

(Modelsim)

Simulation

Pass?

Y

N

Place and

Route

(ISE)

Post-PAR

Simulation

(Modelsim)

Simulation

Pass?

Y

N

Constraints

Fig. D-2 Asynchronous FPGA Design Flow

Page 143 of 158

Appendix E Area Estimation of Phase Encoding

Estimation of the area for Multiple-Rail phase encoding is not easily done. This

section estimate the gates for 1 bit, 8 bit and 16 bit wide implementations of a

multiple rail phase encoded link and should be read in conjunction with section VII of

the work in [114]. The link is divided into four main parts; matrix encoder, delay

array, mutex array and decoding array, Fig. E-1. The matrix encoder takes the input

data and then generates outputs which correspond to which tri-state buffer should be

enable on each wire to drive it such that the correct delay is introduced. The delay

array consist of an array of tri-state buffers and delay elements (which we assume are

two invertors) which provides the phase delay. The mutex array arbitrates the order of

the received signals on the wires by comparing the arrival time of the edges of the

signals. The decoding array take the arrival time information and provides the

necessary data output. The m bit wide data is sent over a link with n wires. The

relationship between the number of bits and the number of wires needed to support

the necessary amount of symbols is:

!2)!1(nn
m <<− , where m is the data bit width.

 Matrix
Encoder

Delay
Array

Mutex
Array

Decoding
Array

DATA DATA

m m n

Fig. E-1 Multiple Rail Phase Encoding Link

For 1 bit wide data the link will use 2 wires and can be implemented with the gates

shown in Fig. E-2.

Matrix Encoder

 Matrix Encoder Outputs

DATA 11 12 21 22

0 1 0 0 1

1 0 1 1 0

2x INV

Mutex Array

2x C-Element

2x AND2

3x OR2

2x NAND2

2x INV

Delay Array

4x INV

4x TBUF

Decoding Array

nil

Fig. E-2 Gate Count for 1 Bit Wide M-Rail phase encoding

Page 144 of 158

For 8 bit wide data the number of wires is 6 and the gate estimate is more difficult,

some discussion about estimation for the link is as follows:

Matrix Encoder
Only a small section of the matrix encoder is shown in Fig. E-3 since there are far too

many entries to feasibly show.

 Matrix Encoder Outputs

DATA 11 12 13 14 15 16 21 22 23 24 25 26 31 32 … 66

00000000 1 0 0 0 0 0 0 1 0 0 0 0 0 0 …

00000001 1 0 0 0 0 0 0 0 1 0 0 0 0 0 …

00000010 1 0 0 0 0 0 0 0 0 1 0 0 0 0 …

00000011 0 1 0 0 0 0 1 0 0 0 0 0 0 0 …

… … … …

Fig. E-3 Partial Matrix Encoder

We can make some estimates based on the fact that we know that each group of

outputs (11-16, 21-26, … 61-66) will only have one output active which controls it’s

associated tri-state buffer. Lets us assume that each output is active for 1/6 of the

amount DATA inputs, so 1/6 of the time wire 1 will switch first, another 1/6 of the

time wire 2 will switch first etc… Each matrix encoder output can be realised as a

sum of products.

Each product term would be the 8 data inputs ANDed together with four of the

DATA inputs inverted on average. If each matrix encoder output is active for 1/6 of

the 256 possible DATA inputs then we have 256/6 = 43 sums of 8 product terms per

matrix encoder output. The sum of products could be optimized by logic reduction to

get the smallest solution, however without knowing the actual Boolean equations it is

difficult to say the smallest solution size. Let us assume we can on average shrink the

sum of products to a more manageable 8 sums of 4 products, with each product using

2 invertors and 6x6 = 36 matrix encoder outputs the cost of the matrix encoder would

be:

36x (8x AND4)

36x (16x INV)

36x (2x OR4)

36x (1x OR2)

Page 145 of 158

Delay Array
Looking at Fig. 9 in [114] it is clear that for a 6 wire solution there would need to be

36 tri-state buffers and 5x5 = 25 delay elements, assuming we use 2x INV for the

delay elements the cost is:

36x TBUF

50x INV

Mutex Array
The mutex array is now just a 6x2 array of enhanced mutex elements, from section

VII(B) of [114] the cost is:

12x (2x C-Element)

12x (2x AND2)

12x (3x OR2)

12x (2x NAND2)

12x (2x INV)

Decoding Array
Looking at the structure in Fig. 10(b) in [114] we can need a 7 layer logic circuit for

each DATA word output. The 7 layer logic circuit can be realise with 8x AND4 and

6x AND2 gates. However, this has to be replicated 256 times, one for each DATA

word output. The cost is:

256x (8x AND4)

256x (6x AND2)

Totals

The area totals are shown in Fig. E-4. A 16 bit wide link is not estimated since the

size will spiral out of control for the decoding array.

Page 146 of 158

Impl. Matrix

Encoder

Delay Array Mutex Array Decoding Array

1 bit 2x INV 4x INV

4x TBUF

2x C-Element

2x AND2

3x OR2

2x NAND2

2x INV

-

Area 2x 6.052 4x 6.052

4x 10.086

2x 22.189

2x 10.086

3x 10.086

2x 6.052

2x 6.052

-

Area

Totals

12.104 64.552 119.016 -

8 bit 36x (8x AND4)

36x (16x INV)

36x (2x OR4)

36x (1x OR2)

50x INV

36x TBUF

12x (2x C-Element)

12x (2x AND2)

12x (3x OR2)

12x (2x NAND2)

12x (2x INV)

256x (8x AND4)

256x (6x AND2)

Area 36x (8x 14.120)

36x (16x 6.052)

36x (2x 14.120)

36x (1x 10.086)

50x 6.052

36x 10.086

12x(2x 22.189)

12x (2x 10.086)

12x (3x 10.086)

12x (2x 6.052)

12x (2x 6.052)

256x (8x 14.120)

256x (6x 10.086)

Area

Totals

8932.248 665.696 1428.192 44409.856

16 bit - - - -

Area - - - -

Fig. E-4 Gate and Area Cost for 1 bit and 8 bit M-Rail Phase Encoding

Page 147 of 158

References

[1] System on Chip, http://en.wikipedia.org/wiki/System-on-a-chip

[2] A. Deshpande, "Verification of IP-Core Based SoC's," in Quality Electronic

Design, 2008. ISQED 2008. 9th International Symposium on, 2008, pp. 433-

436.

[3] Fujitsu HDTV SoC, http://www.fujitsu.com/global/services/microelectronics/

product/assp/video/index_p2.html

[4] C. C. P. Chen and E. Cheng, "Future SoC design challenges and solutions," in

Quality Electronic Design, 2002. Proceedings. International Symposium on,

2002, pp. 534-537.

[5] ITRS, "International Technology Roadmap for Semiconductors," vol. Design,

2007.

[6] H. Ron, M. Ken, and M. Horowitz, "Managing wire scaling: a circuit

perspective," in Interconnect Technology Conference, 2003. Proceedings of

the IEEE 2003 International, 2003, pp. 177-179.

[7] C. Constantinescu, "Trends and challenges in VLSI circuit reliability," Micro,

IEEE, vol. 23, pp. 14-19, 2003.

[8] AMBA System Architecture,

http://www.arm.com/products/solutions/AMBAHomePage.html

[9] OCP IP Specification 2.2, http://www.ocpip.org/home

[10] CoreConnect Bus Architecture Product Brief,

http://www.ibm.com/chips/products/coreconnect

[11] Sonics Inc., http://www.sonicsinc.com

[12] Wishbone, Rev B.3 Specification, 2002, http://www.opencores.org/

[13] Buses Presentation, 2004,

www.imit.kth.se/courses/2B1447/Lectures/2B1447_L4_Buses.pdf

[14] Bus Contention, http://en.wikipedia.org/wiki/Bus_contention

[15] C. A. Zeferino and A. A. Susin, "SoCIN: a parametric and scalable network-

on-chip," Sao Paulo, Brazil, 2003, pp. 169-74.

[16] C. Sangik and K. Shinwook, "Implementation of an on-chip bus bridge

between heterogeneous buses with different clock frequencies," in System-on-

Chip for Real-Time Applications, 2005. Proceedings. Fifth International

Workshop on, 2005, pp. 530-534.

Page 148 of 158

[17] Advanced Microprocessor Bus Archiecture (AMBA) Bus System,

http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=4165

[18] First Details of AMBA Presentation,

http://www.jp.arm.com/kk/arm_forum2003/ppt/first_details_of_amba.ppt

[19] P. J. Aldworth, "System-on-a-chip bus architecture for embedded

applications," Proceedings - IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pp. 297-298, 1999.

[20] On-Chip Split Bus Versus Switching Interconnects 2006,

http://www.elecdesign.com/Articles/ArticleID/13983/13983.html

[21] P. Wijetunga, "High-performance crossbar design for system-on-chip,"

Calgary, Alta., Canada, 2003, pp. 138-43.

[22] K. Donghyun, L. Kangmin, L. Se-joong, and Y. Hoi-Jun, "A reconfigurable

crossbar switch with adaptive bandwidth control for networks-on-chip," Kobe,

Japan, 2005, pp. 2369-72.

[23] L. Benini and G. De Micheli, "Networks on chips: a new SoC paradigm,"

Computer, vol. 35, pp. 70-8, 2002.

[24] W. J. Dally and B. Towles, "Route packets, not wires: on-chip interconnection

networks," Las Vegas, NV, USA, 2001, pp. 684-9.

[25] S. Murali and G. De Micheli, "SUNMAP: a tool for automatic topology

selection and generation for NoCs," San Diego, CA, USA, 2004, pp. 914-19.

[26] L. Se-Joong, S. Seong-Jun, L. Kangmin, W. Jeong-Ho, K. Sung-Eun, N.

Byeong-Gyu, and Y. Hoi-Jun, "An 800MHz star-connected on-chip network

for application to systems on a chip," San Francisco, CA, USA, 2003, pp. 468-

9.

[27] A. Radulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage, "An

efficient on-chip network interface offering guaranteed services, shared-

memory abstraction, and flexible network configuration," in Design,

Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings, 2004, pp. 878-883 Vol.2.

[28] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip architecture for

gigascale systems-on-chip," IEEE Circuits and Systems Magazine, vol. 4, pp.

18-31, 2004.

[29] D. A. P. John L. Hennessy, David Goldberg, Krste Asanovic, "Interconnect

Networks and Clusters," in Computer Architecture 3rd ed: Morgan Kaufmann,

p. 811.

[30] X. Zhu, Y. Cao, and L. Wang, "A Novel Routing Algorithm for Network-on-

Chip," in Wireless Communications, Networking and Mobile Computing,

2007. WiCom 2007. International Conference on, 2007, pp. 1877-1879.

Page 149 of 158

[31] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, "A virtual channel router for

on-chip networks," in SOC Conference, 2004. Proceedings. IEEE

International, 2004, pp. 289-293.

[32] C. A. Zeferino, M. E. Kreutz, and A. A. Susin, "RASoC: a router soft-core for

networks-on-chip," in Design, Automation and Test in Europe Conference and

Exhibition, 2004. Proceedings, 2004, pp. 198-203 Vol.3.

[33] A. Hosseini, T. Ragheb, and Y. Massoud, "A fault-aware dynamic routing

algorithm for on-chip networks," in Circuits and Systems, 2008. ISCAS 2008.

IEEE International Symposium on, 2008, pp. 2653-2656.

[34] M. Dehyadgari, M. Nickray, A. Afzali-kusha, and Z. Navabi, "Evaluation of

pseudo adaptive XY routing using an object oriented model for NOC," in

Microelectronics, 2005. ICM 2005. The 17th International Conference on,

2005, p. 5 pp.

[35] H. Jingcao and R. Marculescu, "DyAD - smart routing for networks-on-chip,"

in Design Automation Conference, 2004. Proceedings. 41st, 2004, pp. 260-

263.

[36] Routing Table Minimization for Irregular Mesh NoCs,

http://www.ee.technion.ac.il/bolotin/papers/routing_date2007.pdf

[37] D. Andreasson and S. Kumar, "Slack-time aware routing in NoC systems,"

Kobe, Japan, 2005, pp. 2353-6.

[38] G. Ascia, V. Catania, M. Palesi, and D. Patti, "Improving wormhole adaptive

routing in networks on chip," WSEAS Transactions on Computers, vol. 5, pp.

544-51, 2006.

[39] M. Dehyadgari, M. Nickray, A. Afzali-kusha, and Z. Navabi, "Evaluation of

pseudo adaptive XY routing using an object oriented model for NOC,"

Islamabad, Pakistan, 2006, p. 5 pp.

[40] R. Holsmark, M. Palesi, and S. Kumar, "Deadlock free routing algorithms for

mesh topology NoC systems with regions," Dubrovnik, Croatia, 2006, p. 8 pp.

[41] N. Huy-Nam, N. Vu-Duc, and C. Hae-Wook, "Assessing routing behavior on

on-chip-network," Cairo, Egypt, 2006, pp. 62-5.

[42] L. Il-Gu, L. Jin, and P. Sin-Chong, "Adaptive routing scheme for NoC

communication architecture," Phoenix Park, South Korea, 2005, pp. 1180-4.

[43] H. Jingcao and R. Marculescu, "DyAD-smart routing for networks-on-chip,"

San Diego, CA, USA, 2004, pp. 260-3.

[44] O. Tayan and D. Harle, "A Manhattan street network implementation for

networks on chip," Damascus, Syrian Arab Republic, 2004, pp. 683-684.

Page 150 of 158

[45] T. Marescaux, B. Bricke, P. Debacker, V. Nollet, and H. Corporaal, "Dynamic

time-slot allocation for QoS enabled networks on chip," in Embedded Systems

for Real-Time Multimedia, 2005. 3rd Workshop on, 2005, pp. 47-52.

[46] Interconnect-Centric Design for Advanced NoC and SoC, 2004,

www.tkt.cs.tut.fi/kurssit/8404941/S04/chapter9.ppt

[47] K. Goossens, J. Dielissen, and A. Radulescu, "AEthereal network on chip:

concepts, architectures, and implementations," IEEE Design & Test of

Computers, vol. 22, pp. 414-21, 2005.

[48] S. Mitra, P. Sanda, and N. Seifert, "Soft Errors: Technology Trends, System

Effects, and Protection Techniques," in On-Line Testing Symposium, 2007.

IOLTS 07. 13th IEEE International, 2007, pp. 4-4.

[49] R. C. Baumann, "Radiation-induced soft errors in advanced semiconductor

technologies," Device and Materials Reliability, IEEE Transactions on, vol. 5,

pp. 305-316, 2005.

[50] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, "The soft error problem: an

architectural perspective," in High-Performance Computer Architecture, 2005.

HPCA-11. 11th International Symposium on, 2005, pp. 243-247.

[51] S. Mitra, Z. Ming, T. M. Mak, N. Seifert, V. Zia, and K. Kee Sup, "Logic soft

errors: a major barrier to robust platform design," in Test Conference, 2005.

Proceedings. ITC 2005. IEEE International, 2005, p. 10 pp.

[52] Soft Errors, http://en.wikipedia.org/wiki/Soft_error

[53] Teraflops Research Chip Overview,

http://techresearch.intel.com/articles/Tera-Scale/1449.htm

[54] Arteris, http://www.arteris.com/

[55] L. Benini, D. Bruni, A. Macii, and E. Macii, "Memory energy minimization

by data compression: algorithms, architectures and implementation," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, pp.

255-68, 2004.

[56] H. Lekatsas, J. Henkel, V. Jakkula, and S. Chakradhar, "A unified architecture

for adaptive compression of data and code on embedded systems," Kolkata,

India, 2005, pp. 117-123.

[57] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. A. Zeferino,

"SPIN: a scalable, packet switched, on-chip micro-network," in DATE 2003,

Munich, Germany, 2003, pp. 70-3.

[58] D. Wiklund and L. Dake, "SoCBUS: switched network on chip for hard real

time embedded systems," in IPDPS 2003, Nice, France, 2003, p. 8 pp.

Page 151 of 158

[59] E. Dupont, E. Dupont, M. Nicolaidis, and P. Rohr, "Embedded robustness IPs

for transient-error-free ICs," Design & Test of Computers, IEEE, vol. 19, pp.

54-68, 2002.

[60] P. L. Teijo Lehtonen, and Juha Plosila, "Online Reconfigurable Self-Timed

Links for Fault Tolerant NoC," VLSI Design, vol. 2007, 2007.

[61] K. Lahiri, A. Raghunathan, and S. Dey, "Efficient exploration of the SoC

communication architecture design space," San Jose, CA, USA, 2000, pp.

424-430.

[62] K. Lahiri, A. Raghunathan, and S. Dey, "System-level performance analysis

for designing on-chip communication architectures," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 20, pp. 768-

83, 2001.

[63] K. K. Ryu and V. J. Mooney Iii, "Automated bus generation for

multiprocessor SoC design," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 23, pp. 1531-1549, 2004.

[64] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, "Design of high-

performance system-on-chips using communication architecture tuners," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 23, pp. 620-36, 2004.

[65] M. R. Stan and W. P. Burleson, "Bus-invert coding for low-power I/O," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3, pp. 49-

58, 1995.

[66] M. R. Stan and W. P. Burleson, "Low-power encodings for global

communication in CMOS VLSI," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 5, pp. 444-55, 1997.

[67] E. Musoll, T. Lang, and J. Cortadella, "Working-zone encoding for reducing

the energy in microprocessor address buses," Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 6, pp. 568-572, 1998.

[68] S. Osborne, A. T. Erdogan, T. Arslan, and D. Robinson, "Bus encoding

architecture for low-power implementation of an AMBA-based SoC

platform," IEE Proceedings: Computers and Digital Techniques, vol. 149, pp.

152-156, 2002.

[69] M. Lampropoulos, B. M. Al-Hashimi, and P. Rosinger, "Minimization of

crosstalk noise, delay and power using a modified bus invert technique," in

Design, Automation and Test in Europe Conference and Exhibition, 2004.

Proceedings, 2004, pp. 1372-1373 Vol.2.

[70] Y. Aghaghiri, F. Fallah, and M. Pedram, "Transition reduction in memory

buses using sector-based encoding techniques," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 23, pp. 1164-

1174, 2004.

Page 152 of 158

[71] D. Bertozzi, L. Benini, and G. De Micheli, "Error control schemes for on-chip

communication links: The energy-reliability tradeoff," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 24, pp. 818-

831, 2005.

[72] T. Lang, E. Musoll, and J. Cortadella, "Extension of the working-zone-

encoding method to reduce the energy on the microprocessor data bus," in

Computer Design: VLSI in Computers and Processors, 1998. ICCD '98.

Proceedings. International Conference on, 1998, pp. 414-419.

[73] H. Jiun-Sheng, T. Shang-Wei, and J. Jing-Yang, "On-chip bus encoding for

LC cross-talk reduction," in VLSI Design, Automation and Test, 2005. (VLSI-

TSA-DAT). 2005 IEEE VLSI-TSA International Symposium on, 2005, pp. 233-

236.

[74] T. Lv, J. Henkel, H. Lekatsas, and W. Wolf, "A Dictionary-Based

En/Decoding Scheme for Low-Power Data Buses," IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 11, pp. 943-951, 2003.

[75] T. A. Bartic, J. Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde,

and R. Lauwereins, "Highly scalable network on chip for reconfigurable

systems," Tampere, Finland, 2003, pp. 79-82.

[76] L. Benini and D. Bertozzi, "Network-on-chip architectures and design

methods," IEE Proceedings-Computers and Digital Techniques, vol. 152, pp.

261-72, 2005.

[77] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and A. Scandurra,

"Spidergon: A novel on-chip communication network," Tampere, Finland,

2004, p. 15.

[78] M. Dall'Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini, "xpipes:

A latency insensitive parameterized network-on-chip architecture for multi-

processor SoCs," San Jose, CA, United States, 2003, pp. 536-539.

[79] D. Siguenza-Tortosa, T. Ahonen, and J. Nurmi, "Issues in the development of

a practical NoC: The Proteo concept," Integration, the VLSI Journal, vol. 38,

pp. 95-105, 2004.

[80] D. Siguenza-Tortosa and J. Nurmi, "Proteo: a new approach to network-on-

chip," in IASTED Conference on Communication Systems and Networks,

Malaga, Spain, 2002, pp. 355-9.

[81] R. Mullins, A. West, and S. Moore, "The design and implementation of a low-

latency on-chip network," in Design Automation, 2006. Asia and South Pacific

Conference on, 2006, p. 6 pp.

[82] W. Dong, B. M. Al-Hashimi, and M. T. Schmitz, "Improving routing

efficiency for network-on-chip through contention-aware input selection,"

Yokohama, Japan, 2005, p. 6 pp.

Page 153 of 158

[83] M. K. F. Schafer, T. Hollstein, H. Zimmer, and M. Glesner, "Deadlock-free

routing and component placement for irregular mesh-based networks-on-

chip," San Jose, CA, United States, 2005, pp. 238-245.

[84] A. Ejlali, B. M. Al-Hashimi, P. Rosinger, and S. G. Miremadi, "Joint

Consideration of Fault-Tolerance, Energy-Efficiency and Performance in On-

Chip Networks," in Design, Automation & Test in Europe Conference &

Exhibition, 2007. DATE '07, 2007, pp. 1-6.

[85] G. Campobello, M. Castano, C. Ciofi, and D. Mangano, "GALS networks on

chip: a new solution for asynchronous delay-insensitive links," Munich,

Germany, 2006, p. 6 pp.

[86] J. Quartana, L. Fesquet, and M. Renaudin, "Modular asynchronous network-

on-chip: application to GALS systems rapid prototyping," Perth, WA,

Australia, 2005, pp. 397-402.

[87] A. Sheibanyrad and A. Greiner, "Two efficient synchronous ⇔

asynchronous converters well-suited for network on chip in GALS

architectures," Montpellier, France, 2006, pp. 191-202.

[88] M. Greenstreet and J. Ren, "Surfing Interconnect," in 12th ASYNC, 2006.

[89] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno,

"Asynchronous on-chip networks," IEE Proceedings-Computers and Digital

Techniques, vol. 152, pp. 273-83, 2005.

[90] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin, "An

asynchronous NOC architecture providing low latency service and its multi-

level design framework," in 11th IEEE International Symposium on

Asynchronous Circuits and Systems, New York City, NY, USA, 2005, pp. 54-

63.

[91] S. Moore, G. Taylor, R. Mullins, and P. Robinson, "Point to point GALS

interconnect," in International Symposium on Asynchronous Circuits and

Systems, Manchester, UK, 2002, pp. 69-75.

[92] J. Bainbridge and S. Furber, "Chain: a delay-insensitive chip area

interconnect," Micro, IEEE, vol. 22, pp. 16-23, 2002.

[93] R. Ho, K. W. Mai, and M. A. Horowitz, "The future of wires," Proceedings of

the IEEE, vol. 89, pp. 490-504, 2001.

[94] L. Kangmin, L. Se-Joong, and Y. Hoi-Jun, "Low-power network-on-chip for

high-performance SoC design," Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, vol. 14, pp. 148-160, 2006.

[95] Pulsed Based On Chip Interconnect, 2007,

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-698.pdf

[96] P. P. Sotiriadis and A. Chandrakasan, "Bus energy minimization by transition

pattern coding (TPC) in deep sub-micron technologies," in Computer Aided

Page 154 of 158

Design, 2000. ICCAD-2000. IEEE/ACM International Conference on, 2000,

pp. 322-327.

[97] S. R. Sridhara, A. Ahmed, and N. R. Shanbhag, "Area and energy-efficient

crosstalk avoidance codes for on-chip buses," in Computer Design: VLSI in

Computers and Processors, 2004. ICCD 2004. Proceedings. IEEE

International Conference on, 2004, pp. 12-17.

[98] L. Macchiarulo, E. Macii, and M. Poncino, "Wire placement for crosstalk

energy minimization in address buses," in Design, Automation and Test in

Europe Conference and Exhibition, 2002. Proceedings, 2002, pp. 158-162.

[99] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar, "Comparative

analysis of serial vs parallel links in NoC," in International Symposium on

System-on-Chip Tampere, Finland, 2004, pp. 185-8.

[100] S. Kimura, T. Hayakawa, T. Horiyama, M. Nakanishi, and K. Watanabe, "An

on-chip high speed serial communication method based on independent ring

oscillators," United States, 2003, pp. 385-390.

[101] K. Lee, S.-J. Lee, S.-E. Kim, H.-M. Choi, D. Kim, S. Kim, M.-W. Lee, and

H.-J. Yoo, "A 51mW 1.6GHz on-chip network for low-power heterogeneous

SoC platform," San Francisco, CA., United States, 2003, pp. 152-153.

[102] S.-J. Lee, K. Lee, S.-J. Song, and H.-J. Yoo, "Packet-switched on-chip

interconnection network for system-on-chip applications," IEEE Transactions

on Circuits and Systems II: Express Briefs, vol. 52, pp. 308-312, 2005.

[103] K. Lee, S.-J. Lee, and H.-J. Yoo, "SILENT: Serialized low energy

transmission coding for on-chip interconnection networks," in ICCAD, San

Jose, CA, United States, 2004, pp. 448-451.

[104] R. Dobkin, R. Ginosar, and A. Kolodny, "Fast Asynchronous Shift Register

for Bit-Serial Communication," in 12th ASYNC 2006, 2006, pp. 117-126.

[105] S. Lee, K. Kim, H. Kim, N. Cho, and H. Yoo, "Adaptive network-on-chip with

wave-front train serialization scheme," in Symposium on VLSI Circuits,, 2005.

[106] J. Xu and W. Wayne, "A wave-pipelined on-chip interconnect structure for

networks-on-chips," in 11th Symposium on High Performance Interconnects,

2003.

[107] H. Ito, J. Inoue, S. Gomi, H. Sugita, K. Okada, and K. Masu, "On-chip

transmission line for long global interconnects," San Francisco, CA, USA,

2005, pp. 677-80.

[108] K. Masu, K. Okada, and H. Ito, "On-chip transmission line interconnect for Si

CMOS LSI," San Diego, CA, USA, 2006, p. 4 pp.

[109] T. Mak, C. D'Alessandro, P. Sedcole, P. Y. K. Cheung, A. Yakovlev, and W.

Luk, "Implementation of Wave-Pipelined Interconnects in FPGAs," in

Page 155 of 158

Networks-on-Chip, 2008. NoCS 2008. Second ACM/IEEE International

Symposium on, 2008, pp. 213-214.

[110] J. Bainbridge and S. Furber, "Delay insensitive system-on-chip interconnect

using 1-of-4 data encoding," in 7th ASYNC, 2001, pp. 118-126.

[111] M. E. Dean, T. E. Williams, and D. L. Dill, "Efficient self-timing with level-

encoded 2-phase dual-rail (LEDR)," in 1991 University of California/Santa

Cruz conference on Advanced research in VLSI, 1991, pp. 55-70.

[112] P. B. McGee, M. Y. Agyekum, M. A. Mohamed, and S. M. Nowick, "A

Level-Encoded Transition Signaling Protocol for High-Throughput

Asynchronous Global Communication," in Asynchronous Circuits and

Systems, 2008. ASYNC '08. 14th IEEE International Symposium on, 2008, pp.

116-127.

[113] T. Verhoeff, "Delay-insensitive codes — an overview " Distributed

Computing, vol. 3, Number 1, 1988 1998.

[114] C. D'Alessandro, D. Shang, A. Bystrov, A. Yakovlev, and O. Maevsky,

"Multiple-Rail Phase-Encoding for NoC," in 12th ASYNC, 2006, pp. 107-116.

[115] A. Ejlali and B. M. Al-Hashimi, "SEU-Hardened Energy Recovery Pipelined

Interconnects for On-Chip Networks," in Networks-on-Chip, 2008. NoCS

2008. Second ACM/IEEE International Symposium on, 2008, pp. 67-76.

[116] H. Po-Tsang, F. Wei-Li, W. Yin-Ling, and H. Wei, "Low Power and Reliable

Interconnection with Self-Corrected Green Coding Scheme for Network-on-

Chip," in Networks-on-Chip, 2008. NoCS 2008. Second ACM/IEEE

International Symposium on, 2008, pp. 77-83.

[117] M. Koibuchi, H. Matsutani, H. Amano, and T. Mark Pinkston, "A Lightweight

Fault-Tolerant Mechanism for Network-on-Chip," in Networks-on-Chip, 2008.

NoCS 2008. Second ACM/IEEE International Symposium on, 2008, pp. 13-22.

[118] J. Flich, A. Mejia, P. Lopez, and J. Duato, "Region-Based Routing: An

Efficient Routing Mechanism to Tackle Unreliable Hardware in Network on

Chips," in Networks-on-Chip, 2007. NOCS 2007. First International

Symposium on, 2007, pp. 183-194.

[119] S. Murali, D. Atienza, L. Benini, and G. De Micheli, "A multi-path routing

strategy with guaranteed in-order packet delivery and fault-tolerance for

networks on chip," in Design Automation Conference, 2006 43rd ACM/IEEE,

2006, pp. 845-848.

[120] M. Mondal, W. Xiang, A. Aziz, and Y. Massoud, "Reliability Analysis for

On-chip Networks under RC Interconnect Delay Variation," in Nano-

Networks and Workshops, 2006. NanoNet '06. 1st International Conference

on, 2006, pp. 1-5.

Page 156 of 158

[121] L. Chunsheng, Z. Link, and D. K. Pradhan, "Reuse-based test access and

integrated test scheduling for network-on-chip," in Design, Automation and

Test in Europe, 2006. DATE '06. Proceedings, 2006, p. 6 pp.

[122] E. Cota, L. Carro, F. Wagner, and M. Lubaszewski, "Power-aware noc reuse

on the testing of core-based systems," in Test Conference, 2003. Proceedings.

ITC 2003. International, 2003, pp. 612-621.

[123] E. Cota, M. Kreutz, C. A. Zeferino, L. Carro, M. Lubaszewski, and A. Susin,

"The impact of NoC reuse on the testing of core-based systems," in VLSI Test

Symposium, 2003. Proceedings. 21st, 2003, pp. 128-133.

[124] N. John Mark and M. Rabi, "A TDM Test Scheduling Method for Network-

on-Chip Systems," in Microprocessor Test and Verification, 2005. MTV '05.

Sixth International Workshop on, 2005, pp. 90-98.

[125] T. Xuan-Tu, Y. Thonnart, J. Durupt, V. Beroulle, and C. Robach, "A Design-

for-Test Implementation of an Asynchronous Network-on-Chip Architecture

and its Associated Test Pattern Generation and Application," in Networks-on-

Chip, 2008. NoCS 2008. Second ACM/IEEE International Symposium on,

2008, pp. 149-158.

[126] R. Dobkin, A. Morgenshtein, A. Kolodny, and R. Ginosar, "Parallel vs. Serial

On-Chip Communication," in SLIP Newcastle, UK, 2008.

[127] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, "Leakage current

mechanisms and leakage reduction techniques in deep-submicrometer CMOS

circuits," Proceedings of the IEEE, vol. 91, pp. 305-327, 2003.

[128] J. M. Rabaey, Digital Integrated Circuits - A Design Perspective, 1996.

[129] A. Narasimhan, M. Kasotiya, and R. Sridhar, "A low-swing differential

signalling scheme for on-chip global interconnects," in VLSI Design, 2005.

18th International Conference on, 2005, pp. 634-639.

[130] Digital Video Interface Rev 1.0, 1999, http://www.ddwg.org/lib/dvi_10.pdf

[131] D. A. Huffman, "A Method for the Construction of Minimum Redundancy

Codes," Proc IRE, vol. 40, pp. 1098-1101, 1952.

[132] JPEG Standard, ISO/IEC IS 10918-1 | ITU-T,

http://www.jpeg.org/jpeg/index.html

[133] S. Bunton and G. Borriello, "Practical dictionary management for hardware

data compression," Communications of the ACM, vol. 35, pp. 95-104, 1992.

[134] A. V. Flores, "Hardware-based data compression technique," IBM Technical

Disclosure Bulletin, vol. 27, pp. 2177-80, 1984.

[135] J. L. Nunez and S. Jones, "Gbit/s lossless data compression hardware," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, pp.

499-510, 2003.

Page 157 of 158

[136] J. Ziv and A. Lempel, "A universal algorithm for sequential data

compression," IEEE Transactions on Information Theory, vol. IT-23, pp. 337-

43, 1977.

[137] T. Lv, J. Henkel, H. Lekatsas, and W. Wolf, "An adaptive dictionary encoding

scheme for SOC data buses," in Design, Automation and Test in Europe

Conference and Exhibition, 2002. Proceedings, 2002, pp. 1059-1064.

[138] N. Banerjee, P. Vellanki, and K. S. Chatha, "A power and performance model

for network-on-chip architectures," Paris, France, 2004, pp. 1250-1255.

[139] T. T. Ye, L. Benini, and G. De Micheli, "Analysis of power consumption on

switch fabrics in network routers," New Orleans, LA, United States, 2002, pp.

524-529.

[140] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch, "The Nostrum

backbone-a communication protocol stack for Networks on Chip," Mumbai,

India, 2004, pp. 693-6.

[141] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno,

"Asynchronous on-chip networks," in System-on-Chip: Next Generation

Electronics, B. M. Al-Hashimi, Ed.: IEE, 2006, pp. 625-52.

[142] A. Iyer and D. Marculescu, "Power efficiency of voltage scaling in multiple

clock multiple voltage cores," in Computer Aided Design, 2002. ICCAD 2002.

IEEE/ACM International Conference on, 2002, pp. 379-386.

[143] S. Rama, H. Kim, and A. K. Somani, "Low-power high-performance

reconfigurable computing cache architectures," Computers, IEEE

Transactions on, vol. 53, pp. 1274-1290, 2004.

[144] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-GHz Mesh

Interconnect for a Teraflops Processor," Micro, IEEE, vol. 27, pp. 51-61,

2007.

[145] D. Kearney and N. W. Bergmann, "Bundled data asynchronous multipliers

with data dependent computation times," in Advanced Research in

Asynchronous Circuits and Systems, 1997. Proceedings., Third International

Symposium on, 1997, pp. 186-197.

[146] C. D'Alessandro, S. Delong, A. Bystrov, and A. Yakovlev, "PSK signalling on

NoC buses," in PATMOS Leuven, Belgium, 2005, pp. 286-96.

[147] D. E. Muller and W. S. Bartky, "A Theory of Asynchronous Circuits," in

Proceedings of an International Symposium on the Theory of Switching, 1959,

pp. 204-243.

[148] R. David, "MODULAR DESIGN OF ASYNCHRONOUS CIRCUITS

DEFINED BY GRAPHS," IEEE Transactions on Computers, vol. C-26, pp.

727-737, 1977.

Page 158 of 158

[149] L. Morin and H. F. Li, "Design of synchronisers: a review," IEE Proceedings

E (Computers and Digital Techniques), vol. 136, pp. 557-64, 1989.

[150] S. B. Furber and P. Day, "Four-phase micropipeline latch control circuits,"

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 4,

pp. 247-253, 1996.

[151] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit, "An Energy-

Efficient Reconfigurable Circuit-Switched Network-on-Chip," in Parallel and

Distributed Processing Symposium, 2005. Proceedings. 19th IEEE

International, 2005, pp. 155a-155a.

[152] R. Mariani, R. Roncella, R. Saletti, and P. Terreni, "On the realisation of

delay-insensitive asynchronous circuits with CMOS ternary logic," in

Advanced Research in Asynchronous Circuits and Systems, 1997.

Proceedings., Third International Symposium on, 1997, pp. 54-62.

[153] S. Ogg, E. Valli, B. Al-Hashimi, A. Yakovlev, C. A. D'Alessandro, and L. A.

Benini, "Serialized Asynchronous Links for NoC," in Design, Automation and

Test in Europe, 2008. DATE '08, 2008, pp. 1003-1008.

[154] K. Chakrabarty, "Efficient modular testing and test resource partioning for

core-based SoCs," in System-on-Chip: Next Generation Electronics, B. M. Al-

Hashimi, Ed.: IEE, 2006, pp. 751-789.

[155] Arthur Pereira, F. Kastensmidt, Fernanda Lima, Luigi Carro, and A. Erika

Cota, "Dependable Network-on-Chip Router Able to Simultaneously Tolerate

Soft Errors and Crosstalk," in Test Conference, 2006. ITC '06. IEEE

International, 2006, pp. 1-9.

[156] D. Rossi, P. Angelini, and C. Metra, "Configurable Error Control Scheme for

NoC Signal Integrity," in On-Line Testing Symposium, 2007. IOLTS 07. 13th

IEEE International, 2007, pp. 43-48.

[157] ST-Microelectronics, CORE9GPHS HCMOS9 TEC 3.2.a vol. UNICAD2.4 /

December 14, 2001, 2001.

[158] YUV Formats, http://www.fourcc.org/

