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The Network-on-Chip (NoC) paradigm has been proposed as a potentially viable on-

chip communication infrastructure for multiprocessor SoC. This thesis investigates 

the development and validation of efficient links that improve NoC performance, 

power consumption and reliability. There is emphasis on low-level simulation and 

validation of the NoC links throughout and gate level circuits are given to provide 

practical implementations. 

The first part of the thesis investigates the use of compression in bit-serial 

point-to-point links as a means of increasing the available bandwidth of the links in 

NoC. A bit-serial link reduces the cost of interconnect by reducing the number of 

wires, but at the expense of reduced throughput. Compression is used to improve the 

throughput of the serial link by reducing the amount of data transmitted through 

unused significant bit removal. The compression is performed in real time and the 

overhead of the extra circuitry is small. The link is modelled in VHDL and simulated 

to check functionality and correct operation. 

The second part of the thesis investigates the development of serial 

asynchronous links to overcome issues such as power and interconnect area overhead 

in NoC links. Serialization is used to reduce the interconnect cost of a link by 

reducing the number of wires needed. The combination of asynchronous circuitry and 

serialization allows for a lower wiring area and reduced power NoC link, in particular 

for increased link length. The serial asynchronous link is compared to a fully 

synchronous link of similar characteristics. Power, area and throughput is compared 

between the asynchronous and synchronous solutions. Validation is performed on 

FPGA to confirm the correct functionality of the serialized asynchronous link. 

Unreliability due to soft errors is becoming an issue with scaling of 

technology. The third part of the thesis investigates a novel data coding technique for 

the asynchronous links developed earlier which offers resilience to soft errors. 

Resilience is achieved by coding the data using symbols for each bit and a common 

reference so that transient errors on the NoC link wires can be detected by comparing 

the symbols and reference to obtain validity of the data and the value of the data. 

Practical circuits are shown and simulated as well as the area and power estimates. 
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Chapter 1. Introduction 

Demand for cheaper and higher performance electronic products increases year on 

year and is likely to keep increasing. One way of reducing the costs and improve 

performance is to integrate more and more functionality into a single microchip which 

would have previously required several discrete device on a circuit board to form a 

system. The integration of several devices to form a system on a single microchip is 

called system-on-chip (SoC) [1]. All these functional units need to be able to 

communicate with each other to pass data or control information in order for the 

system to work. They way these functional units of the SoC communicate with each 

other is termed as on-chip communication in this thesis. As SoC devices integrate 

more and more functional units the on-chip communication can become increasingly 

complex. A SoC could contain many different processing units, such as a digital 

signal processor (DSP), random access memory (RAM), read only memory (ROM), 

Microprocessor, analog to digital converter (ADC), digital to analog converter 

(DAC), universal asynchronous receiver/transmitter (UART) and various other 

elements. Fig. 1-1 shows an example High Definition TeleVision (HDTV) SoC from 

Fujitsu which integrates several different processing units and interfaces to form a 

complete video processing engine. 

In future applications the SoC platforms could contain hundreds or possibly 

thousands of processing units. These could potentially be huge multi-processor arrays 

for highly parallel applications or perhaps custom SoCs that have many units to 

perform different functions. These functional units could be a mix of pre-designed 

blocks supplied from different design houses as well as custom designed circuitry. 

These functional units are often referred to as Intellectual Property (IP) cores [2]. 

Often the pre-designed blocks have been verified for a particular process technology 

and the issue of how best to connect all the functional units, or blocks, poses a 

challenge. When future SoC platforms are going to contain hundreds or thousands of 

processing units then bus based communication may be difficult to implement and 

scale poorly. A Network-on-Chip based communication system will be more 

desirable as the mechanism for passing data from one IP core to another. Such SoC 

platforms of the future could consist of multi-media processing applications that 

require real time streaming of data that require heavy bandwidth, systolic arrays of 
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processing units that pass data through several processing units each of which 

performs computation on the data or highly parallel multi-core processors. 

 

 
Fig. 1-1 Example SoC Fujitsu MB86H70 HDTV Processor [3] 

Key challenges for future SoC designers include issues such as clock synchronization, 

signal integrity, process variation and power consumption [4]. Clock synchronization 

will become an issue due to the uncertainty of interconnect delay caused by process 

variation which is difficult to control. Signal integrity will be affected by the 

continuous smaller geometries that allow denser and more tightly packed circuits to 

integrate into smaller areas. Power consumption will require reduced power supplies 

and system level power saving mechanisms in order to reduce power. Leakage power 

will also become problematic as the power is wasted through currents flowing through 

transistors which are switched off increases with smaller geometries. 

The International Technology Roadmap for Semiconductors (ITRS) [5] states 

that scaling of global interconnect and decreased reliability are two of the many 

challenges facing silicon design. The scaling of global interconnect performance 

relative to device performance will impact the communication mechanism and 

synchronization in large SoC designs. Research into Network-on-Chip is an active 

area which proposes the use of on-chip networks as a communication mechanism. 

Network based on-chip communication is a promising approach to overcome the 

global interconnect scaling problem stated by the ITRS. Consider Fig. 1-2, the local 

wires in the cores (A) reduce along with the size of the core and the transistors. The 

global wires that are used to connect between the cores (B) are still the same length. 

The cores and their associated local wiring are able to operate at faster speeds, 

whereas the speed to communicate between the cores remains relatively similar. 

Effectively the global wires remain fixed whereas the gates and local wires scale with 
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the process [6.]. As wire delays are effectively fixed by the particular technology 

being used global wires may have to have repeaters or registered buffers used along 

the length of the wires in order to pipeline the data so that several items of data can be 

travelling at the same time on different points along the length of the wire. 

 

A 
A A 

B 

B 

Original Process 

A 

Process Shrink 

 

Fig. 1-2 Example of Geometry Size Reduction on Global Interconnect 

Reliability is also a concern, the ITRS [5] states that technology scaling leads to more 

transient and permanent failures of signals, logic values, devices and interconnects. 

Making robust designs will become a priority as systems become too large to be 

effectively tested during manufacture. Such solutions include redundant logic and on-

chip re-configurability for fault tolerance, adaptive and self-correcting circuits and 

software based fault tolerance. Shrinking geometries, lower power voltages and 

higher frequencies have a negative effect on reliability, intermittent faults arising from 

process variation and manufacturing are increasing and smaller transistors and lower 

power voltages means that circuits are more susceptible to neutron and alpha particles 

which cause transient faults [7]. 

This thesis addresses some of the challenges of performance and reliability in 

Multi-processor SoC based communication systems by providing solutions that can be 

implemented within the NoC framework. The rest of this chapter will explain the 

principles of on-chip communication and provide an overview of bus based and NoC 

communication. Section 1.1 introduces bus based communication. Network-on-Chip 

communication is discussed in section 1.2. The motivation for the work in this thesis 

is presented in section 1.3 along with the contributions and thesis structure in 1.4. 

Finally section 1.5 gives the publications that have arose from the work in this thesis. 
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1.1. Bus Based Communication 

There currently exists many available on chip bus topologies [8-12]. Buses are the 

simplest and most widely used interconnection network [13]. In its simplest form a 

bus can be considered a shared medium with which the cores on the bus can transfer 

data to and from the other cores. Fig. 1-3, shows an example bus with a 

microprocessor, digital signal processor (DSP), random access memory (RAM) and 

an input-output device (I/O). Only one core on the bus can send a message at a time. 

 Micro-
processor 

DSP RAM I/O 

 
Fig. 1-3 Simple Shared Bus 

Consider Fig. 1-4, if the DSP is transferring data to the RAM then the other cores 

cannot use the bus while this is happening. If the microprocessor tries to send a 

message to the I/O at the same time this will cause bus contention [14]. Typically 

arbitrators are used when there is more than a single core that can send a message. 

The arbitrator decides which core should have use of the bus when two or more cores 

need to use it at the same time. As only one core can send a message on the bus at any 

given time the bus is effectively reserved for that core until it decides to release the 

bus. This is one of the major problems of bus based systems and efforts have been 

made to try and alleviate this as much as possible. Prioritising can be used to ensure 

that important transactions, such as critical interrupts or control information, are 

performed before the less important ones, such as non-critical data transfers. 

 Micro-
processor 

DSP RAM I/O 

 
Fig. 1-4 DSP to RAM communication 

Bus operations can be can be categorized into three units; cycles, messages and 

transactions [14]. Messages are a logical unit of information such as a read message 

or write message. A message requires a number of cycles to complete when being 

sent from the sender to receiver device. A transaction is a sequence of messages, for 

example to read from a memory the transaction consists of a read message and a reply 

with the data. Recently bus architectures have started to use split transactions, where 
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the request is separated from the reply. This is particularly useful for read requests 

where the target device may not be ready to send the data. Rather than have the bus 

being held waiting for the target core to send the data, the bus is released and other 

transactions can take place, the target core will send the data later. Bus based 

communication does not scale well [15] since the addition of more cores means more 

competition for the use of the bus, increasing the amount of time cores need to wait 

for control of the bus and also limiting the bandwidth. As there is some overhead in a 

bus transaction such as arbitration, addressing and possibly acknowledgement 

messages can be sent as a block or burst of information. Burst messages for example 

allow several data items to be read or written to a device across a bus without need to 

arbitrate and address each data item. 

Bus bridges [16] are a mechanism that can be used to effectively split the bus 

into several sections. In Fig. 1-5 for example, a bridge could be introduced to split the 

DSP and RAM from the microprocessor and I/O. The DSP can send messages to the 

RAM at the same time the microprocessor can send messages to the I/O device. 

However, if transfers go through the bridge, such as the microprocessor sending 

messages to the RAM, then the transfers may have slightly increased latency due to 

the data having to go through the bridge and also both halves would be in use 

effectively blocking the use of the bus on both sides until the transfer is complete. 

Having bridges is also useful if slow cores are on one side of the bridge and fast cores 

on the other, since the fast side of the bus can operate at the highest possible speed 

which some cores on the slow side may not be able to operate at. 

 
Micro-

processor 
DSP RAM I/O 

B
R

ID
G

E
 

 
Fig. 1-5 Shared Bus 

One of the most popular SoC bus solutions are the bus types defined in the Advanced 

Microcontroller Bus Architecture (AMBA) from ARM [8]. Over several years the 

AMBA specifications have been refined to meet the requirements of more complex 

SoC designs. The various bus types specified range from the simple bus architectures 

used to access peripherals to more complex multi-master high performance bus 
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architectures. A bus master is a core which initiates communication, a bus slave is the 

target core which responds or is the target of the communication. The main bus types 

are summarised briefly in [17, 18] which are: 

• APB (Advanced Peripheral Bus) is a single master, non pipelined low speed 

synchronous bus used to interface to peripherals which must all be slaves. The 

bus can be implemented with dual read-write or tri-state. It does not support 

burst messages. 

• ASB (Advanced System Bus) was the 1
st
 generation AMBA system bus 

introduced in 1995. It is a synchronous multi-master bus and supports burst 

messages and any master can lock the bus as required. It does not support split 

transactions. It is a non-multiplexed bus with a single data bus. 

• AHB (Advanced High-performance Bus) is the 2
nd

 generation AMBA system 

bus introduced in 1999. It is a synchronous non-multiplexed multi-master bus. 

It is pipelined and supports burst messages. Also supported are split 

transactions where the slave can trigger the release of the bus and complete the 

transaction at a later time. It is a non tri-state multiplexer implementation. 

• AXI (Advanced eXtensible Interface) is the 3
rd

 generation AMBA bus 

introduced in 2003. It is a channel based architecture supporting multiple 

outstanding burst, out of order completion. Can be implemented as a shared 

bus, multi-layer or a mixture of both. Multi-layer is a term used to define a bus 

interconnect where some or all of the bus masters each have their own bus 

layer which connects to every slave on the bus. 

The evolution of early general architecture for AMBA based designs is now 

discussed. Older systems which used tri-state buses which had several cores attached 

often had high capacitance on the bus [19] due the number of drivers attached. More 

modern buses are multiplexed based so that the capacitance seen by the drivers is not 

affected by the number of cores attached to the bus. Even with a multiplexed bus the 

performance of the bus is reduced when the number of cores using the bus increases, 

this is because the bus is effectively a shared communication medium where only one 

device on the bus can get control and use it at any point in time. The solution [19] was 

to partition the different cores onto separate buses. Fig. 1-6a shows example 

partitioning for early AMBA based designs. The main components of interest are the 
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ARM processor and the LCD Controller which all require high speed access to 

memory on the ASB bus. Most of the bus traffic such as CPU fetches from memory 

and LCD direct memory access (DMA) is on the ASB bus. The APB bus is separated 

or de-coupled from the ASB bus with a bridge. One of the problems with this 

architecture is the LCD competes with the ARM processor for external memory 

accesses. Devices could cause waits on the bus for a large amount of time locking out 

DMA accesses to DRAM. 

Fig. 1-6b shows that the SoC designs from ARM split the external static 

memory and DRAM interfaces onto separate buses coupled via a bridge. This allows 

DMA to fetch data from DRAM while at the same time the processor can access 

ROM or peripherals. The critical path in this design is the ARM to DRAM controller 

which is split by the ASB to ASB bridge. A further iteration of the architecture is 

shown in Fig. 1-6c where a multi-port memory controller is used to alleviate issues 

where the LCD controller can access the SDRAM without interfering with the ARM 

processor transactions. Another advantage is that the high-bandwidth data transfer 

required for the LCD controller occurs on its own local bus, reducing power 

consumption. 

     (a) Shared Data Bus        (b) Bridge to DRAM                 (c) Multi-port 
 

Fig. 1-6 General AMBA based design architectures [19] 

The overall general trend to relieve bottlenecks in bus based communication designs 

is to split or partition the bus in some way. While partitioning the bus clearly 

alleviates some problems, over-partitioning and adding too many bridges will also 

cause problems such as additional latency through the bridges. 
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1.2. Network-on-Chip 

Splitting a single bus into multiple buses and partitioning the cores onto the most 

appropriate bus is one way to raise throughput or avoid competition  between bus 

masters. Another approach is to use a crossbar switch [20-22], which can connect one 

set of cores to another set. The crossbar switch can connect any core in one set to any 

core in another set and effectively become a point to point link between the two cores. 

Only one device can control or be controlled at any one time. The advantage of a 

crossbar switch is that it can support any number of simultaneous transactions 

between cores as long as no conflicts occur. The disadvantage of crossbar switches is 

that they are expensive, especially when the number of cores in a set increase as the 

area of the crossbar switch would increase squarely with the number of cores. 

Crossbar switches are also used in Network-on-Chip. However, the switches tend to 

have a smaller number of input and output channels and are distributed around the 

chip as opposed to one large crossbar switch which could connect each core with 

every other core. Having several smaller crossbar switches distributed around the chip 

as the communication mechanism also allows for better scalability since another 

switch can easily be added to the system without impacting the existing interconnect 

of switches too much. 

Network-on-Chip (NoC) is a current area of research interest which proposes a 

network type architecture to allow the different functional units within a SoC to 

communicate with each other [23, 24]. A NoC typically consists of several point to 

point links connecting switches (routers) together and the functional blocks. For 

example, Fig. 1-7 shows 8 functional blocks (A-H) connected via 8 switches (1-8). 

Each functional block will interface to a switch through a network interface. The 

topology shown in Fig. 1-7 is a 2D mesh. The topology of the network is not fixed 

and could be a 2D mesh, Torus, Hypercube, Star [25, 26] or other common topology. 

The topology does not have to have a regular structure and could also be application 

specific topology with an irregular layout. Such application specific topologies could 

be optimized by the designer to arrange it so that low speed cores do not have the 

same level of interconnectivity or access to the network as high speed cores which 

require higher bandwidth. However, application specific NoCs could be restrictive if 

the application changes and different communication requirements are needed. 
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Fig. 1-7 Example Network-on-Chip 

A generic network interface is shown in Fig. 1-8. The network interface converts the 

packet based communication to the protocols that is used by the IP cores. It is 

responsible for packetizing the data and scheduling the packets. The network interface 

will take the read and write requests from the core and transform them into packet 

based transactions that conform to the NoC packet protocol. Data is then moved from 

source to destination through the network via the switches as a packet. 
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Fig. 1-8 Generic Network Interface [27] 

A packet can be considered as a group of bytes consisting of header, payload and the 

tail [28], Fig. 1-9. The packet can be further broken down into Flits, a logical unit of 

certain width that the packet is broken down into. The packets of data are built by the 

network interface and then forwarded to the switch. The switch then looks at 

information in the header to decide where to forward the packet to. The packet may 

hop through one or more switches in order to arrive at the destination where the 

packet will be accepted and the data pushed back out into the destination core across a 

common IP core interface. A packet generally consists of: 
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• Header: generally this contains information about the path of the packet, the 

source, destination, type of packet etc. The contents and size of the header is 

dependent on the complexity of the NoC architecture. 

• Payload: contains any data that is to be transferred from one core to another. 

• Tail: contains termination codes that represent the end of packet. Also can 

contain a checksum that can be used for error detection. 

 
PAYLOAD HEADER TAIL 

FLIT FLIT FLIT FLIT FLIT 
 

Fig. 1-9 Packets and Flits 

There are three popular techniques for sending packets of data, these are Store and 

Forward, Virtual Cut Through and Wormhole [29]. Wormhole routing is the choice of 

technique for NoC in which each flit of a packet is sent, Fig. 1-10. Switch 1 receives a 

flit and asks switch 2 if it is ready to receive the flit, switch 2 acknowledges and the 

flit is sent. Each switch can hold a single or multiple flits. Wormhole routing does not 

suffer the latency problem of store and forward and also does not require each switch 

to have buffer space for the entire packet. Latency is defined in this case the time it 

takes for the first flit of data to go from the source to the destination. Naturally 

wormhole type routing will have lower latency as the flits will arrive faster at the 

destination since they are free to move from router to router without having to wait 

for the whole packet to fill the router in schemes such as store and forward. 
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Fig. 1-10 Wormhole routing 

The switches in the NoC structure are responsible for routing the packets in the 

correct direction based upon information in the header. Various schemes can be used 

from simple static XY routing [30-32] to complex dynamic (adaptive) schemes [33-

35]. Simple static routing if often the choice for SoC designs due to the lower cost and 

more simple implementation of the system [36]. Static routing is often used when the 
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traffic around the NoC is known before implementation so an appropriate topology 

and bandwidth can be chosen. If traffic patterns are not known before design time 

then more complex dynamic routing that attempts to balance the routing to ease 

congestion could be used. Dynamic routing also is useful when faults exists such as a 

dead switch, a dynamic routing scheme could simply adapt and find a new route 

around the fault area. Dynamic routing could require complex and possibly 

impractical solutions which could lead to high overheads when implementing the 

NoC. Much work has been done with many publications and research groups focusing 

on this area and the reader is referred to literature [37-44] for further reading if 

required. 

Circuit switching and packet switching techniques are the main techniques to 

create a connection between source and destination [45]. Packet switching is more 

common and is referred to as packet switching because the information to tell the 

switch where to send the data next is embedded in the packet. Circuit switching is 

when the connection is setup before the data is sent and maintained until the 

connection is terminated. Advantages of circuit switching are stable connection, high 

bandwidth but suffer from an initial circuit setup penalty when setting up the 

connection. Packet switching advantages include congestion avoidance and fault 

tolerance as each packet can take different routes, disadvantages are that there is a 

penalty for each packet due to header information, nodes need buffering and difficult 

to guarantee quality of service (QoS) [46]. 

NoC schemes can also exploit circuit switching and packet switching together 

in order to get the best of each world. Circuit switching techniques which establish a 

connection before the data is sent allows the user to have a Guaranteed Throughput 

(GT) since the bandwidth has been basically reserved until the connection is removed. 

Packet switching uses wormhole routing which generally provides a Best Effort (BE) 

approach. AEtheral is a proposed NoC that takes advantage of both GT and BE 

architecture [47]. This is achieved by using a GT and BE router used in parallel, the 

GT router has a higher priority for use of the links that the BE router. The BE router 

can only use the links if the GT router is not using them. Using this approach it is 

possible to guarantee a QoS for certain application which require a guaranteed 

throughput. 
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As technology scales down soft errors are also becoming a concern [48-51]. A 

soft error is where a signal or piece of data is wrong within a circuit, but the circuit 

itself is not broken or faulty. A soft error can occur because of alpha particles, cosmic 

rays and thermal neutrons [52], as well as crosstalk and signal integrity problems. 

Radiation hardening and error detection and correction techniques are often used to 

alleviate soft error problems. Radiation hardening is where the designers increase the 

capacitance of certain nodes in a circuit by increasing the transistor sizes so that it is 

less likely a particle can upset the node and affect the circuit. Error detection and 

correction can be done through data coding that adds redundancy to the data in order 

to be able to see if a single or multiple bit error has occurred. 

1.3. Motivation 

A general overview and principles of communication structures, both bus based and 

NoC based, has been given in section 1.1 and 1.2. Bus based systems are already well 

established and different standards are supported by many IP companies. It is likely 

that as the number of cores on bus based systems grow the approach to overcome the 

communication bottlenecks will be to partition or split the bus into several segments. 

Network-on-Chip may be the way forward to replace the traditional bus based 

infrastructure, especially as the number of cores increase. Evidence from industry 

shows that Network-on-Chip has already become reality. Intel has produced an 80-

core chip, the teraflops research chip [53]. The chip contains 80 simple processor 

cores each of which contains a 5-port messaging passing router. They are connected 

together with a 2D mesh network. In addition each fine grain power management 

allows the compute engines or routers of each core to be activated or put to sleep 

depending on the performance required. Other companies such as Philips and Arteris 

[47, 54] are also active in Network-on-Chip research. 

NoC appears to provide a more structured and scalable solution to the 

communication bottleneck in SoC. A regular topology means that partitioning like in 

bus designs is not needed. The packetizing of data and the fact that the packets may 

have to be forwarded through several switches may mean higher latencies in some 

situations. Switch complexity is also an issue, the more complex you make a switch 

the more resources such as power and area are used. Working NoCs that offer 

significant advantages that outweigh the shortcomings will need to be demonstrated in 
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order to gain a foothold in the commercial world. Some encouraging research chips 

from Intel and Philips may signal the start of a trend towards Network-on-Chip. 

Considerable work is being undertaken in Network-on-Chip which is now a 

very active research area. Much of the research focuses on high-level issues such as 

routing and traffic performance. The motivation of the research presented in this 

thesis falls broadly into three areas, compression to improve bandwidth, asynchronous 

techniques to improve the power and simplify clocking and finally data coding to 

improve reliability of NoC links. 

• Compression – Recent research [55, 56] has shown that compression is useful 

to increase the available bandwidth and also a way to decrease power. This 

research explores the use of compression in bit-serial links for NoC with the 

aim to provide a simple compression scheme that is tightly integrated into 

serial transmission schemes. Power and area of the compression hardware will 

be examined as well as the reduction in transmitted data size. 

• Asynchronous - Most of the work on Network-on-Chip has been synchronous 

interconnect [28, 57, 58]. The application of asynchronous techniques coupled 

with serialization is investigated with the intention of reducing the number of 

wires between switches of the NoC. 

• Reliability – Soft errors pose an increasing problem as technology shrinks [59, 

60], with up to 80% of errors being transient. The research investigates data 

coding that is compatible with the asynchronous NoC links. The coding 

schemes are introduced as a way of increasing the resilience of single event 

transients on asynchronous links 

It is important when evaluating the benefits of NoC that high level issues such as 

routing and scheduling need to be considered together with the low level issues such 

as physical link design, data transfer and communication protocol. This forms the 

focus of this thesis. 

1.4. Contributions and Thesis Structure 

This thesis investigates low-level improvements to Network-on-Chip communication 

links. With a particular focus on serialised links, compression is examined and also 

asynchronous techniques are considered. Chapter 2 provides a literature review and 



Page 14 of 158 

discusses a range of recent research in on-chip communication and what is being 

proposed to further improve certain aspects of communication such as power, 

throughput and latency. 

Chapter 3 presents a simple real-time compression scheme that can be used in 

a bit-serial link. A bit-serial link would reduce the cost of interconnect by reducing 

the number of wires, but at the expense of reduced throughput. To improve the 

throughput compression is used. The compression is based on a differential encoding 

scheme that is applied to a certain number of data items. The number of data items 

can be fixed or dynamic. For dynamic sizing and algorithm has been developed and 

presented. Experimental results have been shown for the transfer of decoded mpeg 

picture data across a link. Power simulations were performed. 

Chapter 4 extends on the theme of serialization and presents a link architecture 

and circuitry for serialization in the asynchronous domain. Serialization is used to 

reduce the interconnect cost of a link and asynchronous circuitry is used to provide 

some of the advantages of asynchronous solutions such as the removal of global 

clocks in the NoC. The circuits were simulated and compared to a fully synchronous 

link of similar characteristics. Power, area and throughput were compared between 

the asynchronous and synchronous solutions. Validation on FPGA was performed to 

check the functionality of the circuits. 

Chapter 5 presents a novel coding scheme for transient error resilience on 

asynchronous links. Data is transmitted using data symbols and a reference symbol, 

the phase relationship between the data and reference symbol is used to determine the 

data and the validity. 

1.5. Publications 

The research presented in this thesis has lead to the following publications: 

• “Improved data compression for serial interconnected network on chip 

through unused significant bit removal”, Ogg, S.; Al-Hashimi, B, 2006., 19
th

 

International Conference on VLSI Design, Hyderabad, India. 

•  “Serialized Asynchronous Links for NoC”, Ogg, S.; Valli, E.; Al-Hashimi, B.; 

Yakovlev, A.; D’Alessandro, C.; Benini, L., 2008, Design Automation and 

Test Europe (DATE), Munich, Germany. 
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• “Asynchronous Transient Resilient Links for NoC”, Ogg S, Al-Hashimi B., 

Yakovlev A., 2008, CODES+ISSS, Atlanta, USA. 

• “Reducing Interconnect Cost in NoC through Serialized Asynchronous 

Links”, Ogg, S.; Valli, E.; D’Alessandro, C.; Yakovlev, A.; Al-Hashimi, B.; 

Benini, L., 2007, First International Symposium on Networks-on-Chip, 

Princeton, USA. (POSTER) 
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Chapter 2. Literature Review 

In the previous chapter the principles of bus based and NoC based communication 

have been discussed. Current and previous research on how to improve on-chip 

communication in SoC will be presented in this literature review. The literature 

review is classified into 3 sections. Section 2.1 discusses bus based systems. Section 

2.2 discusses current research on NoC based systems. Reliability is discussed in 

section 2.3. Concluding remarks given section 2.4. 

2.1. Bus Based Communication 

Bus based communication has been used and still is the conventional choice for on-

chip communication offering high performance buses and standardised interfaces [8-

11]. The concept of a bus is well established so much of recent research concentrates 

on aiming to gain improvements through changing the bus topologies for improved 

performance, smarter handling of transactions for performance and coding of the data 

to improve power. Bus topologies have been explored in [61-63] for SoC applications, 

presenting methodologies to optimize the communication architecture for several 

communicating cores. An example TCP/IP interface system was used in [62] to 

illustrate how selection of bus topology can impact the performance. Three 

communication architectures were considered; a dedicated point to point link to a 

single multi-port memory, a shared 128 bit bus to a single-port memory and a 3x 32 

bit split bus to multiple single port memories, Fig. 2-1. In their TCP/IP application the 

single shared bus (Fig. 2-1b) performed worse than the dedicated links (Fig. 2-1a) in 

terms of processing time which was up to 40% higher because of the waiting time 

introduced when two components try to access the same memory on the shared bus. A 

split bus approach (Fig. 2-1c) reduces bus conflicts but also reduces bandwidth when 

compared to the shared bus architecture. 

 (a) (c) (b)  
Fig. 2-1 Communication Architectures for TCP/IP network interface system [62] 
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Lahiri [64] has proposed a method of optimizing communication architecture at run-

time. Additional layers of circuitry called communication architecture tuners sit in an 

existing topology. The extra circuitry allows the more critical data to be handled 

differently which can lower communication latencies. The results for their examples 

show that the number of deadlines missed and average processing time for a system 

can be improved with the inclusion of communication architecture tuners. 

Bus encoding is another method that is often used to reduce power or avoid 

crosstalk. Stan [65, 66] proposes techniques for reducing the switching power on the 

data and address buses. An extra bit is introduced to the regular data bus called the 

‘invert bit’ which signifies whether the data on the bus should be inverted or not. The 

data is inverted if more than half of the bits change on the subsequent data item. This 

is a simple and effective method of ensuring that no more than 50% of the data lines 

will switch because if there is more than half of the bits changing in the subsequent 

data item the data will be inverted. This technique effectively caps the switching 

activity to a maximum of 50%. This could be applied to NoC and would also require 

extra wires to signify if the data is inverted or not. The technique could be attractive 

on wider parallel links as adding an extra wire would not be much additional 

overhead, but for narrow or bit serial links the overhead of adding and extra wire may 

make it not worthwhile. 

The use of grey coding for address buses has also been suggested [66]. Since 

the addresses are generally sequential, grey coding would help to make sure that only 

one or a few bits change on subsequent address values. The author recommends both 

grey coding and bus inversion for the address bus to allow for situations when the 

addressing is non-sequential such as interleaving accesses or branch/jump situations. 

Working-Zone encoding [67] has been proposed as a way to exploit locality between 

addresses on the address bus. This technique used a table to keep track of preferred 

address areas and if the address matched a certain space instead of using the whole 

address it could be expressed as a working zone area with an offset. Bus encoding 

which exploits localities in addresses is probably unsuitable for NoC applications 

since there is no address bus, the address will be embedded in the header of a packet 

followed by the data. 

Osbourne [68] extends the bus invert idea and uses it in an AMBA based bus. 

Instead of a single invert bit, four invert bits are used for each of the four byte lanes 
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on the data bus. Each byte of the 32 bit data bus can be independently inverted 

allowing a finer-grain control of what part of the data gets inverted. Power savings 

were achieved with their example sets of data reporting a 20% saving in power for 32 

bit transfers. Bus invert techniques to reduce crosstalk noise, delay and power has 

been proposed in [69], indicating that average power on the bus can be reduced by 

almost 10%. Aghaghiri [70] proposes an encoding technique for memory buses using 

sector based coding techniques. Sectors spaces are defined that correspond to certain 

address areas. The data within a sector is then encoded with respect to the sector head 

which allows the encoding to exploit localities. Other coding techniques are used for 

error control schemes, Bertozzi [71] presents the idea that energy in the 

communication link can be reduced which has the side effect of reducing reliability. 

Coding is then introduced as a way of compensating for the reduced reliability 

allowing detection or correction to flag or recover corrupted data. It is shown that 

error control coding can enhance communication reliability while allowing a 

reduction in energy. 

The Working-Zone encoding [67] is extended to include data buses in [72] 

which sends a 1-hot encoded offset if the data is similar or differs slightly from the 

previously sent data. Bus encoding to reduce cross-talk is proposed in [73] by 

effectively mapping data onto codewords which reduce or stop transitions on 

neighbouring wires. An adaptive dictionary based encoding scheme ADES is 

proposed in [74]. This reduces the power consumption of data buses by effectively 

splitting the word into three parts, an upper, index and lower part. It then maintains a 

dictionary of the most frequently occurring words. If the transmitted word occurs in 

the dictionary it sends an index and the lower part of the word. The upper part of the 

word is not sent. The receiver then matches the index to its own copy of the dictionary 

and attaches the upper part of the word. Table based encoding, where the sender and 

receiver keeps a table of the most frequently used data could be useful at the network 

interface level where only 1 destination expects to communicate with a single source. 

It would probably be difficult to use at the router level since sequential packets 

arriving at the router may not be from the same source (or sequential flits in the case 

of circuit switched routers) which would mean that commonality or locality of the 

data is reduced as the router would be effectively seeing interleaved data from several 

different sources each having their own most frequently occurring data words. There 
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is also the issue of coherence, the sources do not know about the most frequently 

occurring words of the other sources. 

2.2. NoC Based Communication 

Introduction and concepts of network on chip have been covered in chapter 1 and 

more detailed NoC architectures have been proposed in [15, 28, 47, 57, 58, 75-81]. 

Numerous publications deal with issues such as improving the routing algorithms, 

providing deadlock free mechanisms, fault tolerance and energy efficiency which 

have been proposed in the literature [37, 39-42, 82-84]. Bus based systems become 

difficult to scale when more cores are added. By the end of the decade the major 

challenges faced by designers will be to provide functionally correct, reliable 

operation of the interacting components [23]. On-chip communication will be a 

limiting factor for performance and possibly energy consumption. Synchronization of 

future chips will be difficult with a single clock source so a globally asynchronous 

locally synchronous (GALS) approach may be beneficial and are a current active 

topic of interest [85-87]. It is not clear from these publications if considering the high 

level NoC issues such as routing algorithms are beneficial without considering the 

low level implementation issues, in particular, the links. Higher level optimization 

such as more complex routing strategies, or smarter switches will almost certainly 

lead to more additional circuitry in the switch and increase the overhead. Lower level 

optimization such as the physical links could be beneficial. As the number of cores on 

a chip with a NoC communication structure increases, so does the number of links 

and switches. Future chips with many cores may need a considerable number of 

switches and links in order to be fully connected, especially so in a mesh type 

structure. Section 2.2.1 discussed NoC link level improvements and section 2.2.2 

discusses serialization of NoC links. 

2.2.1 NoC Link Level Interconnect 

The Network-on-Chip links which connect the switches have received some research 

attention. Since the links are generally identical between all the switches any 

refinement in a link should improve the whole network. The long wires in NoC and 

short clock periods is problematic since the delay for driving data across a long wire 

grows with the resistance and capacitance [88]. At the simplest level the wires can be 

pipelined by dividing the long wire into several buffered segments. This buffering 
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could be achieved with simple inverters or registered buffers in a synchronous 

environment. Greenstreet [88] presents a novel way of long wire signalling in which 

the buffers along the length of the wire are so-called ‘soft latches’ that help keep all 

events in a close relationship to the reference event or ‘fast’ signal, Fig. 2-2. The basic 

operation of the circuit is that if the request or reference signal arrives before the data 

the ‘fast’ signal activates an extra set of transistors in the inverter in the data path and 

decreases the delay in the data path thereby attracting the data to the reference signal. 

 
Fig. 2-2 Surfing Link [88] 

Asynchronous NoC architecture has been proposed in [89, 90] where the whole NoC 

infrastructure is completely asynchronous. Advantages such as the removal of global 

clocking, lower power and higher skew tolerance have been suggested. A more 

localised asynchronous solution which proposes an asynchronous point to point link 

has been shown in [91] using wrapper circuitry and clock pausing techniques to 

minimise the risk of meta-stability. A delay insensitive chip area interconnect has 

been proposed in [92]. The scheme uses a 1-hot encoding technique to transmit 2 bits 

of data at a time on a 1 of 4 wires with a 5
th

 wire signifying the end of a packet. The 

1-hot encoding minimizes crosstalk since only 1 of the 4 wires will have a transition 

on it. 

The future of wires has been investigated in [93]. In this work the authors 

show how delay scales non-linearly with long wires and how adding repeaters can 

improved and make the delay linear with length. Fig. 2-3. shows how the wire delay 

can be changed by adding repeaters. The addition of repeaters does not come free. 

The authors note that adding repeaters can increase the number of vias from the upper 

layer metal down to the substrate and usually repeaters tend to be used in certain areas 

or clusters on the device, rather than allowed to be placed anywhere. Repeating a 

whole bus is not a trivial task and requires a considerable amount of area. 

Source synchronous links have been used in [94] where the source transmits 

data synchronised to a local clock along with a strobe signal for timing reference at 
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the receiver end. This has the advantage that the clock which drives the various 

processing units does not necessarily have to be phase aligned with each other easing 

the global clock skew constraints. 

 

Fig. 2-3 Repeater effects on long wires [93] 

Pulse based on-chip interconnect has been investigated in [95] with emphasis on 

reducing the global metal area footprint using serial transmission. In this work the 

author develops minimally spaced global wire interconnect and analyzes the effects of 

repeater optimization for throughput and latency. Increasing the number of repeaters 

increases the throughput as this effectively pipelines the wire, but the latency can also 

increase with the addition of repeaters and requires careful consideration to optimize. 

2.2.2 Serialization of NoC Links 

Serialization of the data to reduce the interconnect is also a current area of interest. 

Serialization leads to fewer wires, better spacing within the same area, lower static 

power and the possibility of better timing and synchronization. Fewer wires mean that 

the wiring area can be reduced, it also has the added effect of reducing the number of 

repeaters and metal vias that are associated with the wiring. If the wiring area is 

reduced it may be possible to take advantage of the freed up area by spacing out the 

wires more and thus reduce capacitive crosstalk between the wires since it is based on 

the distance between the wires. The capacitive crosstalk between wires is shown in 

Fig. 2-4. If the distance between the wires A and B increases then the capacitance 

between the wires (Cwire) should reduce. Crosstalk can increase the propagation 

delay of signals travelling down the wire decreasing the performance and also affect 

the signal integrity of adjacent wires by inducing a voltage on adjacent wires that 

could cause a transient which if wide enough may cause a logic level change. 

Crosstalk energy minimization by coding the data has been proposed in [96, 97]. 

However while coding reduces crosstalk power by reducing the number of 
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simultaneous transitions it does not reduce crosstalk itself [98], which can only be 

minimized by spacing the wires and reducing the capacitance. 

 A 

B 

Cwire 

 

Fig. 2-4 Capacitive Crosstalk 

Lower static power is achieved using serialization. Since the number of wires and 

therefore the repeaters are reduced the static power consumed by the repeaters is 

reduced. This reduction of static power is proportional the reduction in wiring for a 

constant repeater size. Better timing margins and synchronization through 

serialization are an effect of reduction or removal of wire to wire capacitance. 

Reducing the wire capacitance reduces the propagation delays which would allow 

tighter timing as clock periods can be shortened to take into account that the signal 

propagate along the wire faster. 

Some research between the trade-offs of parallel and serial interconnect has 

been shown in [99] for NoC applications. The authors modelled a physical link 

between two points. The model of the interconnect consisted of a cascade output 

driver and several repeaters distributed along the length of the wire. The work shows 

that the leakage current per driver could increase by a factor of 5x when moving from 

130 nm to 70 nm technology. Hence the more parallel drivers that are used the more 

leakage current could impact the interconnect between the two switches. The work 

continues to suggest that in their work the improvements in power in and area for 

serial links could be 5x and 17x respectively due to the lower number of wires and 

repeaters in serialized links. 

A serialized scheme [100] shows a serial data transfer method implemented on 

chip. The serial link consists of a data and control line, Fig. 2-5. Data is synchronised 

by ring oscillators in the transmitter and receiver which is activated by the control 

line. Data is shifted out serially and counters in the in the transmit and receive circuits 

ensure that there is a fixed number of oscillations each time the control line is 
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activated. The circuit has been fabricated in 0.6 um and a 1 GHz operating frequency 

has been achieved on a 40 mm line length. 

 
Fig. 2-5 Serialized Scheme using ring oscillators [100] 

Serial solutions and ways to improve them have been carried out by Lee [101, 102]. 

The work shows the implementation of a 5 mm link with a 1.6 um wire pitch. Using 

low swing differential signalling they managed to carry a packet at 1.6 GHz with a 

power consumption of 0.35 pJ/bit. If a full swing link was used it is suggested that the 

power would increase threefold. Novel signalling and drivers can be costly to 

implement but using serial interconnect would mean that only a few need to be used 

in comparison to a fully parallel interconnect. Also proposed by Lee is SILENT [103], 

a method of coding the data to reduce energy. The coding scheme is differential and 

basically puts a ‘1’ in the bit position when that particular bit has changed. Fig. 2-6, 

for example shows five 8 bit words that are to be transmitted bit-serially. The first 

word (W0) has 5 transitions, the second word (W1) has 7 transition in the original 

data. If the first word is 01010001 and the second word is 01010010 we can see that 

the only bits that change from W0 to W1 are the two least significant bits. The first 

and second words (W0 and W1) can be XORed together to form a new word (EW1) 

which represents the difference between the two words which will be 00000011. 

When the silent encoding is applied it can be seen that the second word in the encoded 

data (EW1) now only has 2 transitions since the only the difference has been encoded. 

Effectively each data is being XORed with the previous data, encoding the 

differences. Reduction in transitions for data values are shown to be around 40% for 

their examples and they do show a 80% reduction for transitions on an instruction 

address bus. Since NoC is a packet based method of transaction, there is no separate 

data and address bus so the 80% reduction in transitions would be unlikely in a NoC 

environment. 
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 Data # Tr 

W0 01010001 5 

W1 01010010 7 

W2 01010011 5 

W3 01010100 7 

W4 01010101 7 
 

 Data # Tr 

EW0 01010001 5 

EW1 00000011 2 

EW2 00000001 2 

EW3 00000111 2 

EW4 00000001 2 
 

0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 

 

W0 W1 W2 W3 W4 

0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 

 

EW0 EW1 EW2 EW3 EW4 

Original Data Data coded with Silent 

Original Data sent serially = 31 Transitions 

Data Coded with Silent sent serially = 13 Transitions 

 
Fig. 2-6 SILENT Encoding Scheme [103] 

More advanced serial techniques are presented in [104, 105]. These rely on wire 

pipelining where the next bit or bits of data is present on the wire before the previous 

bit has been consumed by the receiver. Wave-pipelining has also been shown in 

[106]. On-chip transmission lines can be found in [107, 108], this should allow for 

very fast speeds which standard lossy resistive wires cannot achieve. The fast 

asynchronous shift register presented in [104] uses level encoded dual rail which 

basically uses 2 wires for data and 2 wires for control in a differential manner, giving 

a total of 4 wires for a fully bit-serial data channel. The encoding works by pushing 

the data out serially and only switching the control if the subsequent data bit remains 

the same. This means that for each bit transferred two transitions will occur on either 

the data or the control. A very fast data rate is reported of 67 Gbps. Lee [105] has also 

shown a novel circuit for fast serialisation and de-serialisation called Wave Front 

Train (WAFT). In the work presented the conventional D-type flip flops common in 

shift-registers are replaced with delay elements for timing and uses signal propagation 

as the shifting mechanism. The WAFT serializer/des-serializer (SERDES) operates 

based on the fact that the delays of the serializer and de-serializer are the same, 

variations between the two will produce jitter and degrade the performance of the 

SERDES. Operation speed of 3 Gbps using 0.18 um technology has been proved to be 

feasible. A wave pipelined NoC interconnect implemented on FPGA has been shown 

in [109] using synchronous and asynchronous techniques. 
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2.3. Reliability in NoC 

As technology scales down and integration increases errors will become more 

prominent [59]. Errors can be transient or permanent, permanent errors tend to be 

related to the manufacturing process, whereas transient errors are generally caused by 

surrounding environment of the affected circuitry. In synchronous systems the data is 

sampled every clock edge, so the data is only affected if the transient fault occurs 

around the same time as the clock edge. Asynchronous circuits on the other hand are 

always waiting for signals to change and generally rely on a change of data or control 

signals to function and are therefore more at risk from transient faults since no clock 

is used and a transient can affect the circuit at any time. Dual-rail, 1-of-4, Level 

Encoded Dual-Rail (LEDR) and Level Encoded Transition Signalling (LETS) [110-

113] are all commonly proposed ways of data coding that allow asynchronous data 

transfer with completion detection. Completion detection is a means of detecting 

when the data is valid or not, as in the asynchronous domain there is no clock to say 

when signals are going to be sampled, so coding the data is often used to differentiate 

between 1, 0 and no data. For example, Fig. 2-7a shows a data signal associated with 

a clock, when the clock goes high the data is sampled as the data will be valid on the 

clock edge. If a clock is not used it is impossible to tell when the data should be 

sampled as there is no reference point to indicate when the data is valid. Fig. 2-7b, 

shows a common data coding method used in asynchronous circuits called Dual Rail. 

With dual rail two signals are used, it is a return to zero signalling method meaning 

that the signals have to return to zero after each valid data. If a ‘0’ is to be transmitted 

one of the signals goes high and returns to zero (DATA_A) and if a ‘1’ is to be 

transmitted the other signal goes high (DATA_B). Completion detection can easily be 

accomplished in dual-rail by ORing the two signals together which can be used to 

latch data. If a transient occurs on these dual rail signals then unwanted invalid data 

will be seen at the receiver end if the transient is large enough to generate a valid 

signal through completion detection. 

 

DATA 

CLK 

0 0 1 1 0 

DATA_A 

DATA_B 

0 0 1 1 0 
(a) (b)  

Fig. 2-7 Synchronous with clock and Asynchronous Dual Rail 
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Multiple rail phase encoding [114] has shown inherent resilience to single event 

transients due to the nature of the of the coding such that the information is retrieved 

when two edges of a set of signals change in close relationship to each other and the 

arrival order of those signals dictate the data. If the transient occurs outside the time 

when the group of signals are changing there will be no effect at the receiver end as 

the receiver has to see all of the signals change before data is validated. A single event 

upset hardened pipeline interconnect is shown in [115]. A single event upset is a 

change in state of a node within an electronic circuit which causes an error. An 

scheme which uses two coding techniques combined, one for crosstalk minimisation 

and the other for transient resilience, is reported in [116]. This self-correcting green 

coding scheme uses triplication to make the data resilient to transients by using 3 

signals per data bit and a majority voter decoder then should still be able to recover 

the correct data even if a transient is present on one of the signals. At a slightly higher 

level, fault tolerance can be built into the routers, such as in [117] where default 

backup paths (DBP) are used as a method to bypass the routers main circuitry, Fig. 

2-8a. As can be seen if the crossbar switch or other critical part of the router is faulty 

the DBP can be used as a simple connection to bridge one input port to one output 

port in a permanent fashion. While this would not offer flexibility in terms of routing 

direction it would offer connectivity in a uni-directional path. For example in Fig. 

2-8b shows a mesh NoC structure with several routers and processing elements (PE). 

Fig. 2-8c shows the worst case scenario if all routers fail, the DBP provides an 

effective uni-directional ring that would allow data to be passed around the NoC 

albeit at a much reduced throughput. A region based routing scheme has been 

proposed in [118] which combined with a segment routing algorithm can be used for 

regular mesh network topologies in the presence of link failures. 

 

(a) (b) (c) 
 

Fig. 2-8 Default Backup Paths in NoC [117] 
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Multi-path routing has been proposed in [119] for an in-order type packet delivery 

with integrated support for tolerance against transient and permanent errors. Multiple 

copies of the packets are routed on different paths from the source to the sink. This 

uses spatial and temporal redundancy to reduce the risk of the packet being affected 

by faulty links or routers that could otherwise corrupt or block a packet being sent 

along a path. 

Permanent or manufacturing faults are beyond the scope of this thesis but a 

brief overview is given for completeness. Reliability analysis for on-chip networks 

has performed in [120] where models for NoC link failure due to manufacturing 

variation have been explored. Manufacture test for NoC has been covered in [121-

124] where the NoC is used as the test access mechanism to the cores to check for 

manufacturing faults such as stuck at faults. Numerous cores may make boundary 

scan become too slow, so the NoC is used to inject and retrieve the test patterns to the 

various cores on chip. Recently [125] has shown a design for test (DFT) architecture 

for asynchronous NoC. Each router is surrounded by an asynchronous test wrapper 

which is used to insert test vectors or retrieve the responses, Fig. 2-9. The Generator-

Analyzer-Control (GAC) unit is responsible for test vector generation, configuration 

and analysis of the results. The Wrapper Control Module (WCM) controls the setup 

and configuration the associated wrapper. 

 
Fig. 2-9 Asynchronous Test Wrappers [125] 



Page 28 of 158 

2.4. Concluding Remarks 

Considerable work has been achieved to improve the performance and reliability of 

on-chip communication. The literature review has highlighted areas of research that 

address these problems. In bus based systems different bus topologies and bus bridges 

have been introduced to split the bus into several segments so that localised 

communication between devices on each segment do not interfere with each other. 

Power reduction using data coding is a popular proposed technique to reduce 

switching power on bus based systems. Research activity in NoC based 

communications has lead to several possible areas that could enhance or improve 

certain aspects of the NoC. Routing methods and algorithms have been proposed to 

improve the efficiency of packet routing. Asynchronous techniques have been 

introduced which help reduce power and clock skew. Serial point to point links 

between the NoC switches have also been considered, to reduce the interconnect cost 

in terms of area and power. Reliability in NoC is another promising area with coding 

techniques and error detection being proposed. 

The focus of the work in this thesis is on the links that connect the switches 

together in a NoC communication structure. While the work focuses on a small part in 

the field of NoC, small improvements on a single link could prove valuable when 

considered as part of a larger NoC. The next three chapters present work that has 

attempted to address issues associated with interconnect cost of the links for NoC. 

The area of work covered covers compression, serialization asynchronous and 

reliability and is split among the chapters as shown in Fig. 2-10. 

 

 

Compression Serialization Asynchronous Reliability 

Chapter 3 Chapter 4 Chapter 5 

 
Fig. 2-10 Organisation of Chapters 
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Chapter 3. Bit-Serial Compression using 
Unused Significant Bit Removal 

Long parallel links provide high data rates at the cost of large wiring area, routing 

difficulty and noise [126]. Leakage power in parallel links is also high relative to 

serial links due to the many repeaters and buffers used on long links. Serial links 

could also have reduced dynamic power since long parallel links will have a higher 

capacitance due to the wire to wire capacitance associated with long runs of closely 

spaced metal wires requiring higher power drivers and repeaters to achieve the same 

propagation delay compared to a single wire without any wire to wire capacitance. 

Serial links in Network-on-Chip provide advantages in terms of reduced wiring area, 

reduced switch complexity and routing and potential power savings [99]. Wiring area 

reduction reduces the real-estate cost of the interconnect and can reduce the number 

of repeaters required for a NoC link. Routing is made easier in serial links due to the 

reduced amount of wires and associated vias and repeaters. Crosstalk can also be 

reduced as the link does not require several parallel wires to transmit data which can 

have a large wire to wire capacitance and couple signals together in a parallel link. 

However, serial links offer lower bandwidth in comparison to parallel 

schemes. Poor bandwidth increases the risk of congestion and possible lower 

throughput or stalling of data. This chapter proposes a simple yet effective real-time 

compression technique, based on removing unused significant bits which reduces the 

amount of data sent over serial links. The proposed technique reduces the number of 

bits and the number of transitions when compared to the original uncompressed data. 

A case study showing the results of compression on two MPEG1 coded picture data 

shows bit and transition reductions of data over a bit-serial link. 

Section 3.1 motivates the work and section 3.2 highlights some of the existing 

compression techniques. Section 3.3 describes the proposed compression technique 

and the experimental results are given in section 3.4. Concluding remarks are given in 

section 3.5 
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3.1. Motivation 

Data can be transferred from one point to another using parallel and serial schemes. 

Parallel transfer is when each bit of the data is transferred at the same time on 

different wires. Bit-Serial is when each bit of the data is transferred one after the other 

on the same wire. 

 

1011 1 

0 

1 

1 

Parallel Serial 

1011 1 

0 

1 

1 
 

Fig. 3-1 Serial versus Parallel example 

Consider the situation where the inverting buffers in the serial and parallel examples 

are the same in Fig. 3-1. Some initial high level conclusions can be drawn about the 

two methods by observation if the buffers are the same. Serial techniques will use less 

wires and drivers so the overall area of the communication channel could be smaller 

and wire area is reduced. The overall speed of parallel techniques will be faster, the 

data 1011 will require 4 cycles to transfer serially compared to just 1 cycle for 

parallel. Crosstalk will be reduced for serial since serial techniques will have no data 

wires next to each other whereas parallel data will have crosstalk between adjacent 

wires. Crosstalk is when a signal transmitted on one wire creates an unwanted effect 

on another wire and is caused by capacitive, inductive or conductive coupling. Serial 

techniques will possibly have a higher dynamic power depending on the data, 

consider that 1011 has just been transferred in both case and 1010 will be transferred 

next. The serial bus will have 4 transitions to transfer 1010. The parallel bus will just 

have 1 transition. The only time on the serial bus when no transitions occur is when 

the serial bus is transmitting all 1’s or all 0’s. The parallel bus has a number of 

buffers, whereas the serial bus only has one, hence the parallel bus could have higher 

leakage power. Leakage power occurs in the transistors inside logic gates due to a 

small amount of current that still flows even though the transistor is off [127]. Various 

methods can be used to improve parameters such as power, skew and transfer speed in 

serial links. Consider the simple methods of Fig. 3-2. 
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  Vcc 

Vcc (reduced) 

(a) Reducing Supply Voltage 

 

(b) Differential Signalling 

 

(c) Reducing Number of Bits 

 

(d) Reducing Number of Transitions  
Fig. 3-2 Various Improvements to Serial Links 

The voltage swing can be reduced by lowering the supply voltage of the drivers in the 

serial link shown in Fig. 3-2a. This has the effect of lowering the dynamic power as 

switching power is related to voltage, 01

2

2

1
PCfVP Lclockdddynamic ⋅⋅⋅⋅= [128], where Vdd 

is the supply voltage, fclock is the clock frequency, CL is the load capacitance and P01 is 

the probability of a 0 to 1 transition.  

It can be seen that reducing Vdd will have a square law reduction on dynamic 

power, this is referred to as voltage scaling. However, one must be careful as lowering 

Vdd will also mean longer rise and fall times due to the threshold voltage, which 

means potentially slower clock speeds. Rise time is given by 
ddp

L

r
VK

C
t

⋅

⋅
=

3
[128] 

where CL is the load capacitance, Kp is the CMOS process constant and Vdd is the 

supply voltage. 

The driver and receiving buffer could be implemented differentially [129] as 

shown in Fig. 3-2b. This would make the link more immune to common mode noise. 

Common mode noise is when external interference affects two or more parts of a 

circuit in a similar way. In this case any noise affecting one wire would affect the 

other the wire to the same extent and because the data is obtained from the difference 

of the two wires the noise does not impact the ability to retrieve data. Consider Fig. 

3-3, the unwanted noise (shown as spikes on the data waveform) on the standard 

single ended signalling could interfere with the signal enough to cause errors at the 

receiver end, especially if the noise causes the amplitude to cross the switching 

threshold the receiver circuitry. The differential signalling uses two wires, one with 

the signal (DATAp) and one which is the complement (DATAn). If the same noise 

affects both these signals a clean data signal is still retrieved by taking the difference 
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(DATAp-DATAn) of the differential pair as the common mode noise will be 

cancelled out by the process of taking the difference. 

 

Differential Signalling 

DATAp 

DATAn 

DATA 

DATAp-DATAn 

standard  single ended signalling 

unwanted noise 

 
Fig. 3-3 Common mode Noise on Differential Signal 

The problem with this method is that now two wires are needed and careful 

balancing of the wire lengths and the driving transistors would be required to keep 

symmetry. Reducing or removing bits in the serial link, shown in Fig. 3-2c, for a 

given amount of data to be transferred is a way to possibly lower power and definitely 

increase the transfer speed. Consider the situation in Fig. 3-4 where the data sequence 

is transmitted across a serial link. Each 8 bit data is shifted out LSB first across the 

serial link in turn. There is considerable redundancy here because the 4 MSBs in this 

sequence, outlined by the box, do not change. So a way of exploiting this redundancy 

could be used to reduce the number of bits that is sent which is the essence of the 

technique discussed in this chapter. 

 

…01010010 01010001 01010011 

Transmitted bit-serially 

same data 

01010011 

01010001 

01010010 

01010111 

01011111 

01010111 

01010011 
01011111 

DATA 

 
Fig. 3-4 Example of Redundant Bits 

Reducing transitions is an effective way of reducing the dynamic power, Fig. 3-2d. 

Referring to 01

2

2

1
PCfVP Lclockdddynamic ⋅⋅⋅⋅=  [128] it is shown that the probability of a 
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0 to 1 transition occurring, P01, is directly related to dynamic power. Reducing the 0 to 

1 transitions will reduce power. Transition encoding which encodes data only when it 

changes can reduce the number of transitions. If the first data is sent and then only the 

differences are sent in subsequent data the number of transitions should be reduced 

and is the method used in SILENT [103] and is shown in Fig. 3-5. Observing the 

figure it can be seen that the original un-coded data has 5 transitions in the first byte 

and 6 transitions in the second and third byte. Consider the original data and the bits 

which are underlined, these are the only bits that change on each subsequent byte. If 

the data is encoded so that ‘1’ is used to show that the bit has changed from the 

previous data we get the resulting encoded data shown. When this is transmitted bit-

serially it is shown that there are 5 transitions in the first byte and 2 transitions in the 

second and third byte. The transition encoding reduces the number of transitions that 

are present in the data when the data is sent. 

 

…01010010 01010001 01010011 

…00000011 00000010 01010011 

Transmitted bit-serially 

5 6 6 

5 2 2 

01010011 

01010001 

01010010 

01010111 

01011111 

01010111 

01010011 
01011111 

ORIGINAL 

01010011 

00000010 

00000011 

00000101 

00001000 

00001000 

00000100 

00001100 

ENCODED 

Transmitted bit-serially 

transitions 

transitions 

 

Fig. 3-5 Example of Transition Reductions 

Transmission Minimized Differential Signalling (TMDS) is used in the Digital Video 

Interface standard, [130] is another method of reducing transitions. It works by 

serially XORing or XNORing the data from the LSB to the MSB. The XORed or 

XNORed word is selected by inspecting the number of transitions and inserting a 9
th

 

bit to signify if the XORed or XNORed word has been used. Finally a 10
th

 bit is 
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added to signify if the 9 bits will be inverted or not as the transmitter attempts to keep 

an average equal number of 1’s and 0’s to balance the line. 

 

0 1 0 1 0 1 0 1 
0 0 1 1 0 0 1 1 (XOR) 

1 0 0 1 1 0 0 1 (XNOR)   1 0 0 1 1 0 0 1 0 

  0 0 1 1 0 0 1 1 1 

XOR or XNOR bit 

0011001110 1100110001 0011001110 1100110001 

Inversion Bits to equalize 1’s and 0’s in bitstream 

8 bits 
9 bits 

10 bits 

8 bits 

10 bits 10 bits 10 bits 

0 0 1 1 0 0 1 1 1 

XOR has least transitions 

 

Fig. 3-6 Transmission Minimized Differential Signalling 

TMDS is useful to reduce the number of transitions and to remove any DC imbalance 

on the cables but it comes at the cost of using 10 bits for every 8 bits of data, 

effectively increasing the amount of bits to be sent by 25%. 

Several methods have been considered with respect to NoC. Voltage scaling 

by reducing the supply voltage [71], for instance, could reduce power in a single serial 

link or certain sets of links could be grouped together to share a supply voltage which 

could be altered. Differential signalling could be implemented on-chip and provide a 

low-swing signalling that can provide some benefits with respect to common mode 

noise immunity. Differential signalling would require a differential driver and 

receiver for each signal as well as two physical wires. Bit reduction and transition 

reduction appear to be promising ways of improving certain aspects of NoC serial 

links, such as switching power reduction and reducing the required bandwidth needed 

to send information. Reducing the number of transitions will reduce dynamic power 

and reducing the number of bits should free up bandwidth. To reduce the number of 

bits and transitions compression can be used. 

Compression schemes such as run-length encoding could be used where there 

are long runs of ‘1’s and ‘0’s where the number of uninterrupted ‘1’s and ‘0’s are 

sent. However this would be inefficient for NoC data where unlikely that the data 

contains long runs of the same bits. 

Huffman coding is where frequently occurring fixed sized data words are 

converted into shorter sized data words and rarely occurring fixed size data words are 
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converted into longer sized data words [131]. Huffman coding is suitable for data 

when knowledge of the data is known beforehand and that certain patterns of data will 

occur more regularly than others. This results in a smaller number of bits transmitted 

when the uncompressed data stream contains large amounts of the often occurring 

fixed size data words. One problem with Huffman coding is that if the original source 

data starts to contain many of the less frequently occurring fixed sized data words the 

resulting data to be transmitted could become greater. For example, consider the 3 bit 

fixed sized data to variable sized code table in Table 3-1. If the source data to be sent 

was 000 010 001 000 000 001 then by sending the code words 0 1110 10 0 0 10 

instead of the original data we send 11 bits instead of 18 bits. However, if the original 

data was 101 100 011 000 011 100 the resulting data to be sent would increase to 

11010 11000 1111 0 1111 11000 resulting in an expansion to 24 bits. 

 

Table 3-1 Example Huffman Coding 

Original Code word 

000 0 

001 10 

010 1110 

011 1111 

100 11000 

101 11010 

110 11011 

111 11001 

 

Sub-word encoding could be used to compress data. This could be achieved by 

sending the data and then sending only the sub-words that change. For example 8 bit 

words could be split into two 4 bits words and 2 extra bits could be sent to signify if 

the sub-word is being sent or not. Consider the example in Table 3-2, the original data 

consists of 6 x 8 bit words. The resulting encoding data consists of 2x bits to show if 

the left or right 4 bit sub-word is present or not and the sub-words themselves if they 

are to be sent. The resulting data is 44 bits compared to the original 64 bits. This 

compression technique is suitable for data where there is localisation of the data 

between one word and the next. The encoding does require a small amount of 

overhead to signify which sub-words are present for each data word. The amount of 

overhead is dependent on how many sub-words the data word will be split into. 
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Table 3-2 Sub-word Encoding 

Original Data Sub-word info + words 

0000 0001 11 0000 0001 

0000 1001 01 1001 

1011 0111 11 1011 0111 

1010 0111 10 1010 

1010 0111 00 

1011 0011 11 1011 0011 

 

To study the effects of compression a simple bit-serial point to point link is studied. A 

simple overview of a bit serial point to point link is shown in Fig. 3-7. It consists of 

shift registers to perform the operation of load and unloading of parallel data and 

shifting data in and out serially.  

 

Serial Data 
SHIFT REGISTER 

DATA 

SHIFT REGISTER 

DATA 

 
Fig. 3-7 Bit-Serial link 

To compress data a compressor and de-compressor must be used. The compressor and 

de-compressor will add extra hardware overhead to the solution, however, the 

reduction in the amount of data that is sent over the serial link means that a reduced 

number of bits will be sent which also can lead to a reduced number of transitions that 

may help reduce power in the link. The area, power and performance trade offs will 

be considered in the experimental section of this chapter. The remainder of this 

chapter investigates the use of compression for bit-serial links and proposes a 

technique to compress data for bit-serial transmission, called Unused Significant Bit 

Removal. 

 

Serial Data 
SHIFT REGISTER 

DATA 

SHIFT REGISTER 

DATA 

COMPR DECOM 

 
Fig. 3-8 Bit-Serial with compression 
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3.2. Compression 

Communication bandwidth is becoming a major bottleneck in terms of system 

performance [55]. Compression is becoming more common for the transfer and 

storage of data within systems. Compression is the reduction in size of data used to 

represent some particular information. Compression can broadly fall into two main 

categories, lossy and lossless. Lossy compression is where the compression is 

achieved through removing unwanted or unperceivable parts of information. An 

example of this is JPEG [132] where high compression ratios of pictures are obtained 

by the removal of information which is generally not noticeable with the human eye. 

In effect the decompressed data is a representation that is similar to the original data. 

Lossless compression is where the decompressed data is exactly the same as 

the original data, i.e. no information is lost. Losing information, especially instruction 

code or critical system data within a SoC environment would almost certainly cause a 

system failure and therefore lossless compression schemes will be considered for SoC 

communication. There are many different compression algorithms ranging from 

simple differential compression to schemes based on the more complex Lempel-Ziv 

method [55, 74, 133-136]. The different compression algorithms vary in complexity 

and performance in terms of compression ratio and overhead. The more complex 

compression algorithms tend to achieve better compression ratios at the expense of 

processing time or hardware, Fig. 3-9. 

Differential 
based  

Table based 

Lempel-Ziv 
based 

Compression Level 

Lower Higher 

Complexity / Overhead 

Lower 

Higher 

 
Fig. 3-9 Snapshot of common lossless compression schemes 
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Perhaps the simplest method of compression is differential based compression [55]. 

Differential based compression is where data is sent and then the difference between 

that and subsequent data is sent. This relies on that fact that only some of the bits will 

change between subsequent data. Assume there is a number of N data words of width 

W bits, the total number of bits needed to send would be: 

WNTotal ×= bits. 

Now assume that all the data words are examined and find that several of the bits 

remain the same over the N data words, let the amount of bits that remain the same be 

BITSSM. There will also be some extra overhead that signifies which bits remain the 

same and which change, let the size of the overhead be OVHD bits. The data could 

now be transmitted by sending the information about which bits change, the first 

entire data word and then just transmitting only the bits that change, thus the new total 

number of bits that would need to be sent would now be: 

)()1(1 SMnew BITSWNWOVHDTotal −×−+×+= bits. 

For example, assume 20 data items of 32 bits each. This would require in total 640 

bits to be transferred. Now assume that the 8 most significant bits of the data items are 

the same and the information about how many bits remain the same uses an additional 

32 bit word (meaning a overhead of 32 bits), the new total number of bits that need to 

be transmitted is: 

520)832()120(32132 =−×−+×+=newTotal bits 

So 520 bits could now be sent instead of 640 bits. Slightly more complex is table 

based compression [55, 137]. In this case both a table of frequently occurring data is 

kept at the source and also the destination. The table could be static if the most 

popular data words are known before hand or it could be updated during operation for 

a dynamic approach where knowledge of that data is not known before hand. For each 

data item the source would check if it matches a entry in the table. If a match is found, 

rather than sending the actual data a shorter codeword can be sent which says which 

entry in the table should be used for the data item. This technique would suit 

situations where certain data words are more popular than others. It would require a 

table of popular words both at the transmitter and receiver side and the size of the 

table will affect how many entries can be used and therefore the amount of 
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compression that can be achieved. There exists other compression schemes such as 

the more complex Lempel-Ziv algorithm [133] which builds on the table based 

schemes even further. In this case a dictionary is maintained and a tree like structure 

containing strings of data is obtained. Schemes based in the Lempel-Ziv method 

required a large amount of data to operate on in order to achieve worthwhile 

compression. Schemes such as these are unlikely to be suitable for SoC 

communication, which is the essence of this thesis, due to the complexity of the 

algorithms which may lead to a large implementation overhead. Table based 

compression could be useful in a point to point application but within a NoC 

communication structure a table would be needed at a destination for every possible 

source that could transfer data to it. This would add considerable overhead to the NoC 

as the tables would probably be implemented using content addressable memory 

(CAM ) based memory elements and several of these at every destination point would 

mean considerable hardware overhead. 

In NoC, data is routed from one core to another through switches, the links 

between the switches could be parallel or serial, each of which has advantages and 

disadvantages. A serial link, for example, has lower wiring density and reduced 

crosstalk, but reduced bandwidth when compared to parallel. As discussed in Chapter 

2, Morgenshtein [99] analysed serial and parallel links in NoCs and concluded that 

on-chip interconnects could benefit from serial links and Kimura [100] and Lee [102] 

have both implemented serial links in practice and shown they are viable for use in 

high speed, low power on chip network communication. Whilst there exists 

publications that deal with reducing power of parallel links [65, 66, 68], there is little 

reported work on reducing power in serial links apart from Lee [103] who has 

recently proposed a coding technique, SILENT, for serial transmission on NoC that 

reduces power effectively. With their example application the number of transitions is 

reduced by 40%. However, it is important to note that in their scheme the original 

amount of data is not reduced. 

The previous work [99, 101, 103] has demonstrated the benefits in terms of 

area and power when employing serial links to connect the switches of a NoC. The 

motivation of this chapter is to investigate and develop a technique that will allow 

data transfers to overcome bandwidth limitations associated with serial links. This is 
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achieved through the proposed simple compression technique that exploits the bit 

level similarities of successive data words. 

3.3. Proposed Compression Technique: Unused Significant 
Bit Removal 

As the bandwidth in the NoC is limited there exists a motivation for compressing data 

in serial linked NoC to reduce the overall bits being transmitted. The reduction in bits 

transmitted by Unused Significant Bit Removal (USBR) would directly give spare 

bandwidth capacity within the network communication structure. The proposed 

technique is aimed at a block of data where the most significant bits are less likely to 

change than least significant bits, such as situations where the variance of the data is 

sometimes small for a certain number of words. If the variance of the data is small 

then it is likely that the significant bits will change less and USBR can be used to 

compress the data. Fixed block sizes and dynamic block sizing are considered when 

applying the compression to a block of data. Consider Fig. 3-10, the binary data given 

has the most significant bit that changes in each word underlined (Fig. 3-10a). 

For the rest of this chapter data is shown pictorially as a group of squares 

representing bits with the most significant bit change shown as a shaded square (Fig. 

3-10b). It can be seen that the two most significant bits in this example do not change, 

so redundant information is present which need not be transferred (Fig. 3-10c). The 

USBR technique removes these bits which do not change and sends some extra bits 

which signify what bits change and how long the block of data is. The extra bits 

added can be considered as additional overhead. This scheme does impose an 

additional penalty in terms of latency as the data is buffered up as each word is 

analyzed. The additional latency will depend on the block size over which the 

compression is applied. 

 D0 00111100 
D1 00111001 
D2 00011101 

D3 00000001 
D4 00001100 
D5 00000011 
D6 00011111 
D7 00010100 
 

Most Significant Bit that Changes Bits do not change 

(a) (b) (c) 

 
Fig. 3-10 Example 8x8bit block of data 
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3.3.1 Fixed Block Sizing 

As an example, assume an overhead of 8 bits is used, 3 of which signify what bits 

change (2
3
 can signify that 1 to 8 bits change) and 5 of which signify the block length 

(2
5
 = 32, in length if necessary) giving a total overhead of 8 bits. Referring to the 

example in Fig. 3-11 it can be seen that 14 bits are removed from the block (Fig. 

3-11b). The overhead of 8 bits is then added to the start of the block (Fig. 3-11c). The 

overhead would show that the 6 least significant bits change in the block and the 

block length is 8. Note that the 1
st
 data word stays complete as a starting reference 

point for the subsequent data words which have been reduced to 6 bits each. The 

number of bits is reduced from 64 to 58 in this example. It is important to note at this 

point that the compression method is suitable for data where the most significant bits 

change less often then the least significant bits. For data where the least significant 

bits change less often a transformation of the data could be done before hand so the 

least significant bits are swapped with the most significant bits. For random data 

where all the bits change compression may not be suitable. 
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LSBSCHANGE MSBSSAME 

BITWIDTH 
Block Length No. Bits Change 

00111100 

00111001 

00011101 

00000001 

00001100 

00000011 

00011111 

00010100 

 

01100111 

00111100 

  111001 

  011101 

  000001 

  001100 

  000011 

  011111 

  010100 

01100111 

00111100 

  111001 

  011101 

..etc 

 

No. Bits Change = 6 Block Length = 8 

1st word 

2
nd

 word 

Overhead 

(a) (b) (c) 

……. 
Sent bit serially  

Fig. 3-11 Example of compression 

A block diagram of a fixed block size compression scheme is shown in Fig. 3-12. The 

data is written into a FIFO which acts as a buffer or queue for the data. At the same 
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time the data is monitored by the MASK unit to see which bits change as the data is 

being written into the FIFO. The MASK unit is basically a module which examines 

each piece of data in turn and determines which bits have changed over a certain 

amount of data and then generates information that signifies which significant bits 

remain the same, this information can then be used to ‘mask off’ the bits so they are 

not transmitted. Once the FIFO is full the mask value is generated which says which 

bits have changed and which have stayed the same. This mask information is 

considered as additional overhead and is then loaded into the parallel to serial shift 

register first and shifted out. The controller FSM then loads the 1
st
 data word into the 

parallel to serial shift register and shifts out the 1
st
 word serially. The subsequent data 

words are each loaded into the parallel to serial shift register but the FSM now only 

clocks out the bits that have changed before loading the next parallel data word. At 

the receiving end the opposite occurs, firstly the mask value which holds the 

information about which bits change is loaded. The 1
st
 data word is then shifted in and 

clocked out as parallel data. The FSM then uses the mask information to control the 

serial to parallel loading at the correct time when the appropriate number of 

subsequent data bits have been shifted in. As the subsequent bits are shifted in they 

are written to only the bit positions they correspond to and form the next data word 

which is then clocked out in a parallel format. With fixed block sizing the amount of 

data that is collected before a decision is made about which bits changed is fixed. The 

FIFO that collects this data must be large enough to accommodated this. 

In the examples it has been assumed the overhead data, which contains 

information about the bits that change and in the case of dynamic block sizing the 

block length, is the same as the bit width. So for example if we have 16 bit data then 

our overhead will also be 16 bits. For fixed block sizing if the block size is hard coded 

into the transmitter and receiver we can provide information about which bits change 

using 4 bits (2
4
 = 16) which leaves 12 bits of the overhead unused. However, hard 

coding the block size into the transmitter and receiver means less flexibility should 

the block size need to be changed. 
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Fig. 3-12 Generic Diagram of Compression Scheme 

Up to now the block length has been considered as a fixed. The block length in the 

example is 8. To determine what the optimum block length is without knowledge of 

the data to be compressed is not an easy task. A general guideline is to make the fixed 

block size similar to any inherent groups of consecutive data that show minimal data 

variance. As stated in Appendix A, a fixed block size of 64 is used for MPEG picture 

data. This is because picture data is often processed in units that consist of six groups 

of 64 words, the less complex the picture, the less variance there generally is within 

each group. It is important not to make the block size too large as this would impact 

the size of any buffer which has to hold the data. Increasing the buffer size will 

increase the area cost of implementation. Conversely, making the fixed block size too 

small will lead to compression inefficiencies where the any potential gains from 

removing redundant bits would be impacted by an increased amount of overhead bits 

being used for the increase in the number of blocks resulting from higher 

fragmentation of the data. 

3.3.2 Dynamic Block Sizing 

An alternative to fixed block length is to dynamically alter the length on a block by 

block basis. This is useful for situations where there is no inherent grouping of data 

that can be seen. If the block length is fixed the implementation of performing the 

proposed compression technique becomes simple since the block length stays 
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constant. Using an algorithm to allow dynamic block sizing based on information 

about the data can be done but this will impact the area of the transmitter and receiver 

since the circuitry would be more complex. Dynamic block sizing will now be 

discussed in more detail. 

It is common to buffer data within the network switch interface to store data 

before being packetized to make sure data is transferred efficiently. For dynamic 

block sizing a queue such as a FIFO could be used to provide information about how 

to compress the buffered data. The information in the queue would consist of some 

overhead information which signifies the block length and the number of bits which 

change or stay the same. Extra circuitry would be needed to gather information about 

the most suitable way to organize the data into blocks and provide the number of data 

words over which compression is applied. This extra information about the length of 

the block would also have to be transmitted along with the number of bits that change 

so that the receiver would know how many data words to decompress using the 

current information of how many bits change and how many remain the same. The 

extra circuitry would require some sort of numeric addition and comparison in order 

to find out what block size or number of words to apply compression. In order to 

make a decision about block sizing an algorithm is used to determine the block size 

base on the number of bits that change over a particular number of data words. In 

order to keep it simple the algorithm only examines each data word once when it is 

written into the FIFO. It may be possible to achieve better optimization of the 

algorithm if several passes of examining the data are done but this would require the 

data to effectively wait in a memory while there was several sweeps through the data 

in order to find the best block sizing and therefore the transmission of the data would 

not take place until the block sizing had taken place. By just examining each data 

word once when it is being written into the FIFO we know that the data will be ready 

to be transmitted as soon as the algorithm determines the first block size. 

A simple algorithm is proposed that effectively uses pointers which point to 

the start of 3 successive minimum length blocks in the data. Using 3 pointers allows 

the algorithm to make two decisions, to continue to merge blocks together or to store 

information about the current merged block and start a new block. To get the 

minimum length for a block it is necessary to know when compression will be 
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worthwhile. Referring to Fig. 3-13 the following equation must be satisfied in order to 

achieve compression. 

( ) BITWIDTHLENGTHOVHDBITWIDTHLSBSLENGTH CH ×<++×− )1(  
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where, LENGTH = length of the block, 

LSBSCH = number of Least Sig. Bits that change 

OVHD = overhead in bits 

BITWIDTH = bit width of the data words 

 

 
Fig. 3-13 Compressed Data Format 

The basic outline of the algorithm is given in Fig. 3-14. It consists of an initialization 

phase followed by an evaluation and update loop. 

 1 // Initialize the pointers by getting the first three minimum blocks 

2 GetNextBlock(p0) 

3 GetNextBlock(p1) 

4 GetNextBlock(p2) 

5  

6 while (not at end of data) // Main loop 

7 { 

8  // bias = 4 

9  

10  // Net savings merging p0 + p1 

11  // = - potential savings lost + overhead + bias 

12  

13  // Net savings merging p1 + p2 

14  // = - potential savings lost + overhead 

15  

16  // Evaluate the merging options 

17  if merging block 0 and 1 gives best savings 

18   p0 = Merge(p0,p1) 

19   p1 = p2 

20   GetNextBlock(p2) 

21  

22  else if merging block 1 and 2 gives best savings 

23   store p0 info in queue 

24   p0 = Merge(p1,p2) 

25   GetNextBlock(p1) 

26   GetNextBlock(p2) 

27  

28 } end while 

29  

30 GetNextBlock(p) 

31 { // Gets the minimum sized block that will achieve compression } 

32  

33 Merge(p,p) 

34 { // Merges the two blocks together} 

  
Fig. 3-14 Algorithm for dynamic block sizing 
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An example initialization, evaluation and update cycle is shown in Fig. 3-15. First, 

three minimum length blocks are found. These three minimum length blocks are then 

evaluated for two possible merging options, merging block 0 and block 1 or merging 

block 1 and block 2. In the example shown in Fig. 3-15, merging block 0 and block 1 

results in the loss of 4 bits. However, the merge operation would also remove one set 

of overhead bits, in this case 8 bits. Furthermore a bias value is used when calculating 

the potential savings when merging block 0 and block 1. This is done to encourage the 

algorithm not to fragment the data into too many blocks. The resulting net savings for 

merging block 0 and block 1 will therefore be -4+8+4 giving a total of +8. Merging 

block 1 and block 2 in Fig. 3-15 shows that 9 bits are lost and 8 bits are saved through 

removing overhead bits. This gives a total net saving of -1. Merging block 0 and 1 

gives the best overall net bit savings. The merge is performed and the pointers are 

updated. This whole process is continuously performed again. Anytime block 1 and 

block 2 is merged the information about block 0, the length and number of bits that 

change, is stored in a queue to allow the already buffered data to be compressed. The 

queue will contain the length and changing bits information that allows the data in the 

buffer to be compressed. 

0
+
1 

2 

0 

1+2 

merge(0,1) merge(1,2) 

net save = 8 net save = -1 

potential savings lost 

-4 + 8 + 4 -9 + 8 

0 

1 

2 

Most Significant Bit which changes 

0 

2 

0 

1 

2 

1. Initialization of pointers 2. Evaluate Merging Options 

3. Update Pointers 

 
Fig. 3-15 Example initialization, evaluation and update cycle 
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Fig. 3-16 shows a possible implementation of the USBR compression technique in 

hardware. The packet header generation is ignored in this diagram and just the 

payload data is considered for clarity. The general structure outlined shows a 

transmitter consisting of a buffer, block sizing unit, queue, controller and parallel to 

serial converter. The receiver consists of a serial to parallel converter where each bit 

can be addressed, and a controller. For the transmitter, the data is written into a buffer 

from the core as normal but at the same time the block sizing unit is collecting 

information on the data and working out ways to try and compress the data. As the 

block sizing unit finds the best way to split the data into blocks the information is 

written into a queue. The controller then takes information from the queue regarding 

the length and number of bits that change and uses these to drive the parallel to serial 

converter correctly. The parallel to serial converter shifts out the overhead 

information from the queue, the entire first data word and then only the bits that 

change within the block for each word. 
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Fig. 3-16 Implementation for dynamic block sizing, USBR 

The receiver shifts in the overhead bits that contain the information which 

specifies the bits that stay the same and the length of the block. The first data word is 

then shifted in and on subsequent data words only the bits which change are shifted in 

to the appropriate bit position. Each time enough bits have been shifted in to form a 
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valid word whole uncompressed data is clocked out in parallel to be used by the 

receiving core. This continues until the end of the block is reached and then the whole 

process is repeated on the next block. An interesting observation with this 

compression method is that the receiver does not have to buffer data in order to 

perform decompression. Each word can be extracted in turn as soon as the necessary 

bits have been shifted in. This is useful with memory accesses since as soon as the 

packet has finished being sent across the serial link the memory should contain the 

updated data. 

The number of bits in the overhead in our examples has been set the same as 

the bit width of the data. However, it is possible to optimize this further as we can use 

some of the bits to say what bits have changed and then optimize the remaining bits to 

say the block length if we constrain the block length to particular sizes. For example 

with a data width of 16 bits we can use 4 bits to say which bits have changed leaving 

12 bits for the block size, 12 bits allowing a block size of up to 4096. Using 8 bits for 

the block size we could have block lengths of up to 256. So if the block sizes were 

constrained to a maximum length of 256 we could just use 12 bits in the overhead (4 

bits to say which bits change in the data and 8 bits for block length). 

3.4. Experimental Results 

In order to confirm the effectiveness of USBR in compressing data over a serial link 

we applied the technique to two MPEG intra-coded pictures shown in Fig. 3-17, a 

series of samples from a sinwave with 88 samples per complete sinwave and some 

randomly generated data. Each example data is used with a 16 bit and 10 bit fixed 

point precision. The resulting bit and transition percentage reduction for each example 

is presented. The amount of overhead was set at 16 bits per block for the fixed block 

size compression and for the dynamic block sizing compression and the bit-width set 

at 16. 
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Fig. 3-17 Intra-coded pictures from MPEG stream bike.m1v and football.m1v 

To count the number of bit or transitions a RTL synthesisable VHDL model of the 

uncompressed, Fixed and SILENT implementations was synthesized and a gate level 

net-list was generated, a brief overview of the VHDL modules can be found in 

Appendix A. A C# application was written for the dynamic scheme to count the bit 

reductions for the dynamic algorithm using the same source data that is supplied to 

the VHDL testbench. In the test bench two modules were used which monitored the 

serial link, one to count the transitions and the other to count the number of bits. The 

test bench and net-list were simulated in Modelsim. The test bench and input data was 

common for all implementations so the stimulus and test data remained the same. The 

test bench was run on the VHDL implementations and the bit reduction and transition 

reduction obtained for: 

• Uncompressed; Serial link without compression 

• Fixed; Serial link with fixed sized block lengths 

• Fixed + SILENT; Serial link with transition reduction [103] 

• Dynamic; Serial link with dynamic sized block lengths 

The reduction in number of bits is shown in Table 3-3 and the reduction in transitions 

is shown in Table 3-4. The example source data that was used was sent through the 

link via the test bench  was generated in several different ways. The arnie1 and 

football1 data was generated by extracting an intra-coded picture from an MPEG 

video stream, the data is basically a text file consisting of integer numbers which 

represent the chrominance and luminance macro block information in an 8 column 

format. The sinwave data consisted of values generated from an excel spreadsheet 

which created a sin wave with 88 sample points per sin wave period. The random data 
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was generated using the random function in excel. The integer numbers range 

between 0 and 65535 for 16 bit precision and 0 to 1023 for 10 bit precision. 

Table 3-3 Amount of Data Transferred (Bits) 

SOURCE Uncompressed Fixed Fixed+Silent Dynamic 

arnie1_10bit 2027520 999792 999792 1144214 

arnie1_16bit 2027520 1683279 1683279 1720560 

football1_10bit 1843200 1055646 1055646 1096359 

football1_16bit 1843200 1719288 1719288 1663466 

sinwave88samples_10bit 11264 7786 7786 7552 

sinwave88samples_16bit 11264 11440 11440 11283 

1024random_10bit 16384 10592 10592 10358 

1024random_16bit 16384 16640 16640 16416 

 

Table 3-4 Number of Transitions 

SOURCE Uncompressed Fixed Silent Fixed+Silent 

arnie1_10bit 675890 483225 338558 326238 

arnie1_16bit 990919 830473 643514 637716 

football1_10bit 629130 506292 347348 338026 

football1_16bit 903604 839816 646606 645462 

sinwave88samples_10bit 3760 3672 2634 2634 

sinwave88samples_16bit 5648 5652 4846 4854 

1024random_10bit 5718 5217 5640 5173 

1024random_16bit 8153 8159 8269 8275 

 

Fig. 3-18 shows the average reduction of the bits being transmitted for the 

example data for 10 and 16 bit precision with a block bit-width of 16. The 

uncompressed labelled bar shows the original amount of data normalised to 100%. 

The other two bars show the resulting transition reduction for Fixed and Dynamic 

implementations. SILENT is excluded here as it reduces transitions not the amount of 

data and therefore would be the same as uncompressed. For 16 bit random and 

sinewave data there is no compression (Fig. 3-18, 1024random_16bit and 

sinwave88samples_16bit), in fact there is slight expansion in size. This is to be 

expected since random data cannot be compressed and a full swing sinewave will use 

all the available values between 0 to 65535 for 16 bit data and therefore all bits will 

generally change within the 64 data samples resulting in no MSBs that stay the same 

and no compression. The Dynamic algorithm performs slightly better on the 10 bit 

random and sinewave data as well as the 16bit football picture with a 1-3% reduction 

is data size. However on the remaining picture examples the Fixed scheme performs 

superior with a 2-7% reduction in size. The fixed scheme performs quite well in 
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comparison to the dynamic, but this could be due to the fact that the fixed scheme 

uses a block size of 64 over which to compress the data, this is exactly the same size 

as the yuv block size in decoded mpeg data so there is some natural synergy in terms 

of the localization of the yuv data fitting perfectly into the block size of the 

compressor. When the data does not have any inherent relation to the block size of the 

compressor (such as the 10 bit random data or sinwave) the dynamic scheme does 

show a slight improvement, albeit 1-2%. 
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Fig. 3-18 Average Reduction in Bits Transmitted 

To examine how the proposed technique reduces the number of transitions and 

therefore the power, Fig. 3-19 shows the average reduction of transitions for example 

data for our proposed compression using a fixed block size of 64 and using 

SILENT[103] which is a technique specifically used for reducing transitions and also 

a combination of both to show the effect of compression and transition reduction 

techniques together. As can be seen, in the cases where the data does not compress 

such the random and sinwave 16 bit examples (Fig. 3-19, 1024random_16bit and 

sinwave88samples_16bit) the proposes compression results in no transition 

reductions, in fact a slight increase is seen of 0.1% which is due to the extra 

transitions within the extra overhead. It can be seen that the transition reduction works 

well on the yuv picture data (Fig. 3-19, football1 and arnie1) resulting in around 50% 

of the original amount of transitions for the 10 bit precision arnie1 picture data and 

72% of the original transitions for the 16 bit football picture data. Our proposed 
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compression does reduce the number of transitions also, 72% for the arnie1 picture 

data and 92% for the football1 picture, but does not achieve the same performance as 

SILENT.  

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

71.5%

83.8%

80.5%

92.9%

97.7%

100.1%

91.2%

100.1%

50.1%

64.9%

55.2%

71.6%

70.1%

85.8%

98.6%

101.4%

48.3%

64.4%

53.7%

71.4%

70.1%

85.9%

90.5%

101.5%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

arnie1_10bit

arnie1_16bit

football1_10bit

football1_16bit

sinwave88samples_10bit

sinwave88samples_16bit

1024random_10bit

1024random_16bit

S
o

u
rc

e
 D

a
ta

Transitions (as % of uncompressed)

Fixed+Silent

Silent

Fixed

Uncompressed

 
Fig. 3-19 Average Reduction in Transitions 

In order to achieve similar transition reduction as SILENT we can combine the 

proposed compression with SILENT and as can be seen the number of transitions is 

now reduced to an amount similar or slightly better than SILENT, 48% for arnie1 10 

bit picture and 71% for football1 16 bit picture. For the sinwave data our proposed 

compression does very little to the amount of transitions, but SILENT does decrease 

the transitions to 70% and 86% for 10 and 16 bit precision respectively. For the 10 bit 

random values SILENT does not perform well, which is to be expected as if the data 

is random and the difference between successive data will also be random too and 

since SILENT works by encoding the difference their will be little or no transition 

reductions. The random 16 bit data shows some interesting properties in that the 

number of transitions slightly increases in all cases. It is believed that because the 

random data cannot be compressed the extra transitions in the overhead will cause the 

number of transitions to increase. The proposed compression does reduce transitions 

by nature of the fact that the number of bits are being reduced. However, if further 

transition reduction is required then is it shown that the technique can be combined 

with SILENT to reduce the transitions further. 
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To give an idea of the cost of the proposed compression in terms of power and 

area, the transmitter and receiver (for fixed block size) net lists generated from the 

RTL VHDL models where used to obtain gate count and used for the basis of a gate 

level power simulation. 

To show how power could be saved within a NoC link a FIFO type buffer 

which was coded and used as a connection between the transmitter and receiver, Fig. 

3-20, as much of the power in a switch is used by the buffers [138, 139]. In Xpipes 

[28] the buffers are distributed along the length of the wire in order rather than have 

the buffers in the switches themselves. This distributed buffers system allows the 

switches to be physically smaller and the buffering occurs along the NoC links. The 

buffers have the capacity to hold two flits each and this is the basis for comparison. 

To give a similar level of capacity the buffers used in the simulation examples 

consisted of a 32 entry 1 bit wide FIFO to allow up to two flits to be buffered if each 

flit is 16 bits. When compressed the flit size could be smaller than 16 bits, but there is 

no guarantee it will be so the maximum possible size of 16 bits must be taken into 

consideration. 

In this architecture it is assumed that the flits will not be interleaved and that a 

packet of data will be allowed to transfer in a wormhole fashion. Interleaving could be 

introduced but would most likely require extra logic in the switches to monitor the 

size of the compressed flits and strip out the interleaved compressed flits as necessary 

to rebuild the separated packets. This would impact the complexity of the switches as 

the compressed flit size could change on a packet by packet basis and each interleaved 

packet could have different compressed flit sizes. 

The transmitter and receiver was synthesised with Synplify-ASIC using ST 

0.12µm CORE9GPLL library. The synthesised design was then used in conjunction 

with the picture data from the bike example of Fig. 3-17 and run through Synopsys 

Primepower to provide gate level power estimations for the design. The simulation 

time for the runs was the same for both implementations to allow a comparison of the 

average power. 
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Fig. 3-20 Test bench and power simulation setup 

As shown in Table 3-5, for the uncompressed implementation the area of the 

hardware is 97403 µm
2
. For fixed block sizing the area is 107750 µm

2
 effectively an 

increase of 10.6%. If we use fixed+SILENT in the implementation to further reduce 

the transition the area of the hardware is 111555 µm
2
 which is a 14.5% increase in 

area. 

Table 3-5 Area of design for standard and fixed block size of 64 (µm2) 

 Transmitter Receiver Buffer Total 

Standard 91916 1596 3891 97403 

 Proposed Fixed  99488 4365 3897 107750 

SILENT[103] 93519 4024 3877 101420 

Proposed Fixed+SILENT 101068 6590 3897 111555 

 

Table 3-6 shows the power for the uncompressed implementation and the fixed block 

size implementation. The two implementations show similar power usage when the 

data goes through a single switch, 0.3949 mW for the uncompressed and 0.4007 mW 

for the fixed block sizing, at first there seems to be no gain in using the compression 

since the power increase in the transmitter section is slightly more than the power 

saved in the buffer. However, this power is for a single buffer only. If the data has to 

go through more than one switch then the additional power saving of each additional 

buffer within each switch exceeds the power increase in the transmitter due to 

compression. For example in a NoC system if the data from the transmitting core has 

to pass through at least 3 switches to arrive at the receiving core then the power is 

reduced from 0.7031 mW down to 0.6332 mW, a power saving of around 10%. 

 

 



Page 55 of 158 

Table 3-6 Power used when transferring the bike picture data example (mW) 

1 Buffer Transmitter Receiver Buffer Total 

Standard 0.1813 0.0595 0.1541 0.3949 

Fixed 0.2208 0.0635 0.1164 0.4007 

2 Buffers  

Standard 0.1813 0.0595 0.3082 0.5490 

Fixed 0.2208 0.0635 0.2328 0.5168 

3 Buffers  

Standard 0.1813 0.0595 0.4623 0.7031 

Fixed 0.2208 0.0635 0.3492 0.6332 
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3.5. Concluding Remarks 

Recent research is indicating that NoC with serial interconnect provides benefits from 

power and area point of view. This chapter has presented an effective compression 

technique that can be employed with such NoC, improving the bandwidth bottleneck 

of bit-serial links. It has been shown that it is possible to compress data over a serial 

link to reduce the amount of data that needs to be transmitted. Fixed and dynamic 

block sizing of the data to which the compression is applied to has been considered. 

Fixed block sizing shows a slight advantage in terms of reducing the amount of data 

when the original uncompressed data has some regular pattern or localisation of data 

words over similar length as the block size. In the case of MPEG the smallest unit of 

picture data that is stored in memory is 64 words (8x8 matrix portion of a picture) so 

data will tend be similar in this 64 word portion of data. Fixed block sizing has shown 

to be effective for the MPEG picture information showing that it is possible to reduce 

the amount of data by a further 6.7% compared to the dynamic block sizing in the 

example test data (Fig. 3-18, arnie1_10bit). Dynamic block sizing tends to perform 

slightly better where the similar localised data is not grouped into regular lengths as is 

the case with MPEG picture data. General guidelines for determining a suitable fixed 

block length and an algorithm for dynamic block sizing has been developed. 

The proposed technique exploits the fact that unused significant bits do not 

need to be transmitted. Furthermore, the technique offers transmission with less 

transition count leading to the potential of lower power. Experimental results have 

been provided to show the transition reductions. A possible implementation of the 

proposed compression technique has been outlined and the area overhead costs from 

synthesised results have been presented showing that a power saving of 10% can be 

achieved for the link with 3 buffers. This power saving is achieved at the cost of an 

increase in area of 10.6%. 
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Chapter 4. Asynchronous Serialized NoC Links 

Chapter 3 considered compression for bit-serial transmission in order to reduce the 

amount of data sent across a NoC link. However, the compression scheme is only 

useful for situations where the most significant bits change infrequently as shown in 

the results section of Chapter 3. The bit-serial compression may not be suitable for 

other types of data and so the option to serialize the data into slices and not use a full 

bit-serial link is explored to allow a higher bandwidth than a fully bit-serial link but 

also offer reduced wiring area than a fully parallel link. This chapter also investigates 

the use of asynchronous techniques to build on serialization to allow for power 

reduction and simplify the clock distribution of the NoC interconnect. 

Synchronous circuit design relies on a common global clock which is used to 

maintain timing and provide a mechanism to allow all signals to be sampled at a well 

defined timing interval defined by the clock period. Synchronous circuits are 

deterministic in their operation and as such are relatively easy to design compared to 

asynchronous which does not have a common timing reference. The majority of NoC 

architectures that have been proposed are synchronous [28, 47, 140]. Recently there 

has been studies of asynchronous NoC [90, 92, 141] which highlight some of the 

problems with synchronous NoC such as global clock power consumption, clock 

skew and electro-magnetic interference. Global clock power can be a significant part 

of the total power for SoC. Processors such as the Pentium Pro or Alpha the clock 

power can be 10-30% of the total chip power [142, 143]. The Intel 80 core teraflops 

processor in which the cores are arranged in a 2D mesh uses about 28% of the total 

power on communication [144]. 

Interconnect between the NoC switches has also received attention in the 

asynchronous domain. An asynchronous point-to-point link that can be used for 

communication has been investigated in [91]. This scheme uses clock pausing 

techniques to pass data from the synchronous to asynchronous domains and provides 

a meta-stable safe interface between synchronous and asynchronous domains. 

However, if number of input/output interfaces increase arbitration is needed so that 

each input/output interface is able to pause the clock, this could lead to an increased 

chance of the clock being paused as the number of interfaces grow which could lead 

to an increase in latency and starting and stopping of data transfers through the 
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interface. Also the scheme needs a carefully calibrated delay line in the consumer and 

producer interface in order to function. 

Interconnect cost, in terms of the number of wires required between switches, 

could also be considerable in NoC architectures since each switch is effectively 

connected by a point-to-point link to a neighbouring switch. The high cost of parallel 

links has been shown in [99], especially when inter-wiring spacing, shielding and 

repeaters are considered. The number of point-to-point links between the switches of 

a NoC will grow as more cores are integrated into a system. 

Serialized transmission for NoC application been demonstrated successfully in 

[103]. Leakage and dynamic power reduction is possible using serialization [126]. 

Leakage power is reduced because of the reduction in the number of repeaters and 

buffers due to the reduced amount of wires. Dynamic power can also be possibly 

reduced since a large parallel link has large wire to wire capacitance which would 

require larger drivers and repeater to obtain the same propagation delay in comparison 

to a serialized linked with reduced wire to wire capacitance. Shielding, if used, on 

parallel links will also add to the total capacitance. However, it is important to take 

into account that the serializer and de-serializer circuitry uses power which may be 

more than the additional power used to driver parallel links. As the length of the links 

increase it may be more favourable to use serialized links as the power increase 

caused by the serializer and de-serializer is offset by the saving of the drivers seeing a 

lighter capacitive load per wire. It has been suggested that for 65 nm that serial links 

are preferred for wire length greater than 2-4 mm when compared to wave pipelined 

and register pipelined parallel links [126]. It is important to note that many factors, 

such as wire spacing, repeater sizes, wire capacitance, data patterns and switching 

activity all have an effect on the power so there is no clear way of knowing if 

dynamic power can be reduced without taking these factors into account and 

analyzing the system as a whole. 

This chapter proposes the application of serialization as a means of reducing 

the interconnect cost in NoC, leading to reduction of wire congestion around the 

switches and the possibility of reducing the spacing between cores if over-cell routing 

cannot be used. Furthermore, the work investigates feasibility and design 

requirements arising from the interfacing of routing units of a fully-synchronous NoC 

scheme with an underlying asynchronous serial physical link. 
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The motivation for the work is given in section 4.1. Section 4.2 given details 

of the asynchronous link. Section 4.3 shows how the proposed link can be modified 

for word level acknowledgement and Section 4.4 determines the upper bound 

throughput of the asynchronous link. Experimental results are given in Section 4.5 

and a summary of the acknowledgement schemes in 4.6. Section 4.7 provides 

practical validation of the asynchronous link using FPGA technology. Concluding 

remarks are given in Section 4.8. 

4.1. Motivation 

To study the feasibility of how an asynchronous serialized link can fit into an existing 

synchronous NoC architecture, a typical synchronous point-to-point link with wire 

pipelining buffers along the length of the wire was used. This would be used in a 

synchronous NoC where the switches and the wire pipelining buffer are clocked 

together such as [28]. This allows for high throughput of data due to the pipelining 

and the use of existing synthesis tools to implement the design. The fundamental 

reasoning for buffered pipelined wires can be found in Appendix C. A single link is 

shown in Fig. 4-1, the two switches are connected together with a wire segmented by 

a series of synchronous two-slot buffers. 
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Fig. 4-1 NoC with Synchronous Link  

To reduce the number of wires in such synchronous links the data can be 

serialised. Consider a simple serialization scheme as shown in Fig. 4-2, the number of 

wires required would reduce from the original amount m to the reduced amount n. 
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However, this would also mean that the 2
nd

 clock (Clock B) driving the serializer, de-

serializer and wire-buffers would have to be introduced. Clock B would have to be 

m/n times faster which could mean a 2
nd

 clock tree spanning the chip area covering 

the NoC structure. Also, if no first-in first-out (FIFO) buffer or clock pausing 

mechanisms are used to pass data between the two clock domains the two clocks 

would have to be tightly phased locked to each other and clock B would have to be an 

integer value times faster than clock A in order that no timing violations occur when 

data or control signals pass between the two domains. 
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Fig. 4-2 Synchronous with Serialization Link 

The introduction of asynchronous elements to the link would allow an 

architecture as shown in Fig. 4-3. The switch would interface directly to a 

synchronous to asynchronous interface and then go through a synchronous serializer. 

The benefit of this approach is that the data is serialized and thus saves wire area but 

also does not require a second higher speed clock to be fed into the serialization 

circuits and to the wire-pipeline buffers. The probability of the meta-stability at the 

interface between synchronous and asynchronous domain that may cause a 

synchronisation failure is significantly smaller in our case because of the relatively 

low frequency of Clock A, compared to frequency of the serialized link. The 

immediate drawback, however, is that extra overhead is introduced by the additional 

circuitry. This could impact area, power, latency and throughput. 
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Fig. 4-3 Proposed Serialized Asynchronous Architecture 
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4.2. Asynchronous Link 

The simplest asynchronous operation is perhaps bundled-data [145] where the data is 

sent with a request signal. A problem with bundled data is that mismatches in the 

delays of the data or request lines could cause meta-stability at the receiver. 

Techniques to improve bundled data such as surfing interconnect have been covered 

in [88]. Other schemes such as 1-of-4 coding [110], LEDR [111] and phase-encoding 

[146] encode the data in such a way that the receiver can recognize valid data, but 

usually require several wires per bit in order to function. Wave pipelining approaches 

are being proposed such as WAFT where a number of wave-fronts are present at one 

time on the data lines. The presented work shows a proof-of-concept implementation 

of an asynchronous link using a bundled-data link. The circuits are kept simple in 

order to provide a fair comparison to synchronous circuit. The remainder of this 

section describes the interface between the synchronous and the asynchronous 

domains and the physical implementation of the link. A more detailed overview of the 

proposed architecture is shown in Fig. 4-4. The architecture consists of a synchronous 

to asynchronous interface, a serializer, a wire buffer, a de-serializer and an 

asynchronous to synchronous interface. Circuits have been designed for the 

implementations of the synchronous to asynchronous interfaces and the serializer and 

de-serializer. The design of each of the modules will be described in detail in this 

section. 
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Fig. 4-4 Block Diagram Asynchronous Link 



Page 62 of 158 

The asynchronous point-to-point link is implemented using standard logic cells and 

two common asynchronous cells, the C-Element [147] and the David Cell [148], 

which are shown in Fig. 4-5 and Fig. 4-7 respectively. 
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Fig. 4-5 C-Element 

The C-Element is a component which has hysteresis where the output reflects the 

state of the inputs when states of the inputs all match. The output remains the same 

until all the inputs change to the opposite state. The C-Element consists of two 

invertors connected back to front in order to hold the output Z at a given state. The 

inputs A and B are connected to transistor which controls the other side of the holding 

invertors, point x in Fig. 4-5. If A and B are both low point x is pulled high and the 

output of the invertors Z goes low. If A and B are both high then point x is pulled low 

and the output Z goes high. If A is high and B is low, or vice versa, then point x 

remains unchanged as does the output Z. The C-Element can be used to establish that 

two events have happened in 4 phase handshaking asynchronous circuits, as the 

output Z will not trigger until both A and B have been set. The output Z will only 

reset once both A and B have reset following the 4-phase handshaking rule. An 

example of 4-phase and 2-phase handshaking is shown in Fig. 4-6 in the 4-phase 

example the request is set, the acknowledge is set, the request reset and the 

acknowledge reset. In the 2-phase example the request is toggled and the 

acknowledge is toggled in response. 
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Fig. 4-6 4 Phase (top) and 2 Phase (bottom) Handshaking 
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Fig. 4-7 David Cell 

The David Cell consists of 3 NOR gates two of which are cross-coupled (x & 

y) and a third which acts as a gating mechanism for the output O2. The David-Cell 

can be used to sequence events or operations and can be chained together to form a 1-

hot sequencing structure. The David-Cell is in a set condition if the output of gate x = 

0 and y = 1, and a reset condition when x =1 and y = 0. Consider a series of David-

Cells connect together as shown in Fig. 4-8. David Cell DC0 is set and DC1 and DC2 

are reset. A and B are both some arbitrary circuits that perform a task when requested 

by the REQ signal and acknowledges completion of the task by the ACK signal. REQ 

to circuit A is currently high requesting that the circuit performs some operation. The 

sequence of event is as follows: 

(a) Circuit A acknowledges is is finished by taking ACK to DC1 high. 

(b) DC1 takes it output 01 high. 

(c) REQ to circuit A goes low. 

(d) ACK to DC1 goes low. 

(e) REQ to circuit B goes high. 
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Fig. 4-8 Chain of David Cells 

4.2.1 Synchronous to Asynchronous Interface 

The synchronous to asynchronous interface is basically a FIFO type structure with a 

synchronous side that can write and an asynchronous side that can read. The FIFO can 

be considered 32 bit wide and 4 registers deep. A FIFO is used to effectively break 

the dependency of the of the asynchronous side from the synchronous side. The 

synchronous side can write to the FIFO at the same time the asynchronous side can 

read from it. A 4 deep a FIFO was used in the synchronous to asynchronous interface 

(marked 1 in Fig. 4-4) and asynchronous to synchronous interface (marked 5 in Fig. 

4-4) to give a total of 8 possible spaces for data along the link, the same as the 

synchronous link. The synchronous to asynchronous interface (Fig. 4-9) can be 

considered in two halves, the synchronous register writer side and the asynchronous 

register reader side.  

The synchronous register writer is comprised of four registers which can be 

synchronously written to when the appropriate WR_EN(x) signal is active. For each 

register there is an associated flag. The flag consists of a clocked D-Type flip flop 

with data enable. The input of D-Type is attached to VDD so that when WR_EN(x) is 

high a ‘1’ is clocked onto the output of the D-Type. The output of the D-Type is the 

asynchronous flag FLAG_A(x). This is also fed through two registers flip flops to 

give the synchronous flag FLAG_S(x). The use of two flip-flops to build a 

synchronizer out of standard logic components is known to  ensure sufficient level of 

protection against synchronization failures due to meta-stability, more on that can be 

found in [149]. The flag can be asynchronously cleared by using CLEAR(x) which is 

gated with the asynchronous reset attached to the D-Type. The VALID and STALL 
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signal is used to determine if there is space for the data on FLITIN to be written into 

one of the registers. 

The asynchronous register reader comprises of several David-Cells and C-

Elements. At reset DC(0) output O2 is logic ‘1’ and DC(1-3) output O2 is logic ‘0’. 

The chain of David-Cells effectively form a 1-hot sequencer where one of them is 

always active. The C-Elements control the request and acknowledge handshaking and 

trigger the David-Cells in sequence. The multiplexer selects which of the registers 

will be output to the next stage, the output O2 of the David-Cells control the 

multiplexer. 
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Fig. 4-9 Synchronous to Asynchronous Interface 

4.2.2 Asynchronous Serializer 

The asynchronous serializer, Fig. 4-10, consists of several David-Cells which select 

each 8 bit slice of the 32 bit data word in turn. At reset the output O2 of DC(0) is logic 

‘1’ and output O2 of DC(1-3) are logic ‘0’. The REQIN signal gated with SEL(0) 

triggers the start of the REQOUT / ACKIN sequence which is performed 4 times, 

each time the next 8 bit slice of the 32 bit data word is selected and latched at the 

output. The circuit can easily be modified to serialize more and break the 32 bit word 

in smaller slices by increasing the number of David-Cells and making the data path 

DOUT narrower. 
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Fig. 4-10 Asynchronous 32 to 8 Bit Data Serializer 

4.2.3 Asynchronous Wire-Buffer 

The asynchronous wire buffer, Fig. 4-11 is based on a simple four phase latch control 

circuit [150]. It essentially latches the data on the falling edge of REQIN. The C-

Element regulates the request and acknowledge handshaking safely. One point to note 

about this circuit is that the REQIN/ACKOUT side is not fully de-coupled from 

REQOUT/ACKIN side. If several of the wire-buffers are chained together then at best 

only every other buffer in the chain will be in use at a time. This does not present a 

problem in our case as the wire-buffering is a mechanism for transporting data rather 

than storage. 
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Fig. 4-11 Asynchronous Wire Buffer 
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4.2.4 Asynchronous De-Serializer 

The asynchronous de-serializer shown in Fig. 4-12 takes 4 slices of 8 bits and re-

constructs the original 32 bit data. At reset the output O2 of DC(0) is logic ‘1’. 

REQIN will go high signifying the first 8 bit slice is valid on DIN. The output of the 

C-Element LE(0) will then trigger and go high and latch the 8 bit slice into place. The 

REQIN/ACKOUT cycle is repeated 4 times until the 32 bit word is re-built and then 

the REQOUT is taken high to signify to the next stage the valid 32 bit data is ready. 

Again, like the serializer, the circuit can easily be altered for larger slice widths by 

reducing the number of David-Cells in the chain and altering the data path width. 
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Fig. 4-12 Asynchronous 8 to 32 Bit Data De-Serialiser 

4.2.5 Asynchronous to Synchronous Interface 

The asynchronous to synchronous interface is also a FIFO type structure, with four 

latches. The design is very similar to the synchronous to asynchronous interface and 

again can be considered in two parts, the asynchronous latch writer and the 

synchronous latch reader. Like the asynchronous register reader, the asynchronous 

latch writer, Fig. 4-13 bottom, consists of 4 David-Cells and several C-Elements. Four 

of the C-Elements in this design are asymmetric, denoted by the ‘+’ sign on one of the 

inputs, which means that the output will only be affected by this input going high and 
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ignored going low. Again, at reset, the output O2 of DC(0) is logic ‘1’ and the output 

O2 of DC(1-3) is logic ‘0’. The request acknowledge sequence is triggered by REQIN. 

The output O2 of DC(0) and REQIN is fed into a C-Element, which in turn is merged 

with inverse of FLAG_A(0). If the latch is empty FLAG_A(0) is ‘0’ and the C-

Element output LE(0) goes to a ‘1’ and ACKOUT is asserted. REQIN will go low and 

FLAG_A(0) will get set to a ‘1’ which will ripple through and take the input I1 of 

DC(1) high. This will make DC(0) inactive and ripple through the two C-Elements 

taking LE(0) to ‘0’ and taking ACKOUT low. The input I1 of DC(1) now goes to ‘0’ 

and the output O2 of DC(1) is now ‘1’. The sequence repeats for each consecutive 

request acknowledge handshake. 

The synchronous latch reader is very similar to the synchronous register 

writer. There are four latches into which data is latched from the asynchronous latch 

writer. There are four flag modules which allow an asynchronous set of the 

FLAG_A(x) output and a synchronous clear. FLAG_S(x) is a synchronized version of 

FLAG_A(x) done by passing through two clocked flip-flops. A multiplexer allows 

one of the four data in the latches to be passed to the switch interface and a small 

controller controls the SEL(x), CLEAR(x) and VALID signals based on the 

FLAG_S(x) and STALL signals. 
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Fig. 4-13 Asynchronous to Synchronous Interface 

4.3. Word Level Acknowledgement 

One of the problems associated with a per-transfer acknowledgement is the need for 

the receiver or wire buffers to acknowledge every transfer. As the parallel data gets 

more and more serialised the number of request-acknowledge cycles per word 

increases. One possible way around this is to use a coarser grain acknowledgement 

that acknowledges at the word level, Fig. 4-14. Intuitively it can be seen that a coarser 

grain acknowledge at the very least removes 3 acknowledgements in our scheme. 

Removing 3 acknowledgements that would be required to send a full word will 

shorten the word transfer cycle time and increase throughput. 
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Fig. 4-14 Ack. every transfer(top) vs ack. every word (bottom) 

Word level acknowledgement has some implications such as timing closure at the 

receiver which must be able to receive multiple transfers correctly and the need for 

some self regulated timing mechanism, such as a clock, at the transmitter to space the 

burst transfers out such that there is no timing violations incurred at the receive end. 

The proposed link (section 4.2) can be modified to use a per-word acknowledgement 

scheme by altering the serializer and de-serializer to perform several transfers per 

acknowledgement. Fig. 4-15 shows the proposed link with word level 

acknowledgement by modifying the serializer, de-serializer and wire buffer. 
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Fig. 4-15 Serial Asynchronous word-level acknowledgement 

The buffers along the length of the wire can be replaced by simple buffers or an even 

number of invertors. The serializer (Fig. 4-16) uses a multiplexer with each slice of a 

word being selected in turn. The VALID signal goes high when there is valid data on 
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DOUT and signified to the receiver end that the data can be used. The VALID signal 

goes high 4 times, once for each slice of the word. The timing of the VALID signal is 

derived from the ring oscillator constructed by 5 back to back invertors. To adjust the 

frequency of the burst the number of invertors can be altered or different sizes can be 

used depending upon requirements. To ensure that VALID only goes high when the 

DATA is valid the respective timing between DATA and VALID can also be tuned 

by selecting different taps off the ring oscillator if necessary. Furthermore, if tolerance 

becomes problematic the VALID signal generation can be combined with the SELect 

signals to increase robustness. 
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Fig. 4-16 Word level serializer 

 



Page 72 of 158 

 

& 

C ‘1’ REQOUT 

RESETN 

ACKIN 

DOUT(31:24) 

R
E

G
 

R
E

G
 

R
E

G
 

R
E

G
  

clear 

R
E

G
 

R
E

G
 

R
E

G
 

R
E

G
  

DOUT(23:16) DOUT(15:8) DOUT(7:0) 

DIN(7:0) 

VALID(7:0) 

ACKOUT 
clear 

DOUT(31:0) 

 
Fig. 4-17 Word level de-serializer 

The de-serializer (Fig. 4-17) employs a  shift register. This was done to see the 

effects of a shift register based de-serializer versus the original mux based de-

serializer. The data is shifted in on DIN every time VALID goes high and the data 

slices are serially shifted onto DOUT. At the same time a single bit pulse is shifted 

down a single bit shift register of the same length to provide a REQOUT signal to the 

next asynchronous block to inform it the whole word has been built and is valid. 

ACKIN clears the single bit shift registers and removes REQOUT completing the 

handshake. 

4.4. Calculation of Upper Bound Throughput 

In order to give insight into the maximum throughput of the per-transfer and per-word 

scheme it is necessary to be able to calculate the upper bound rate for the 

asynchronous request/acknowledge handshaking. This can be done by examining the 

handshaking timing of the data through the link. To evaluate the accuracy of the per-

transfer and per-word performance two equations have been developed which can be 

used to calculate the time taken to transfer a word across the link and therefore find 

the upper bound of the throughput. 
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4.4.1 Per Transfer Acknowledgement 

For the per-transfer acknowledge scheme (Fig. 4-18) the following equations can be 

used to calculate the cycle delay. 

dthLinkDataWi

WidthSwitchData
Ser =  

TnextflitTackoutTackackTreqackTreqreqTpSerD +++++××= )4(  , where 

• Ser is the serialization ratio 

• Tp is the propagation time along the wires. 

• Treqreq is the time of the request to write data into the buffer to the request to 

write the data out to the next buffer. 

• Treqack is the time to request to write data into the buffer to the 

acknowledgment of the data. 

• Tackack is the acknowledgement into the buffer to the acknowledgement out 

to the previous buffer 

• Tackout is the acknowledgement into the buffer to the output of a new slice of 

data. 

• Tnextflit is the time taken to get the next flit to be ready on the outputs of the 

transmitter. 
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Fig. 4-18 Cycle Delay for the Per-transfer 
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4.4.2 Per Word Acknowledgement 

For the per-word acknowledge scheme (Fig. 4-19) the cycle delay can be calculated 

using: 

TburstTackoutackTvalidwordTinvSegTpSegD +++×−+××= )1(2 , where: 

• Seg is the number of wire segments. 

• Tp is the wire propagation delay.  

• Tinv is the inverter gate delay. 

• Tvalidwordack is the delay from receiving a valid word to acknowledge 

output. 

• Tackout is the acknowledge in to new flit output. 

• Tburst is the burst period of the all the slices of the flit. 
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Fig. 4-19 Delay for per-transfer and per-word 

The per-word equation can be checked using an example. Consider, Tp=0 since the 

simulation is gate level and does not take into account wire delays, Tinv=0.011 ns 

from the ST 0.12 CORE9GPLL datasheet, Tburst ~ 1.1 ns from simulation, 

Tvalidwordack ~ 0.7 ns and Tackout ~ 1.4 ns also from simulation and Seg = 5 since 

four wire buffers were used in simulation meaning the number of wire segments were 

five. Using these values the per-word delay is 3.21 ns from which we obtain an upper 

bound throughput of around 311 MFlits/s which matches with the supported 

bandwidths shown in Fig. 4-23 and Fig. 4-31 of the experimental section. It is 

important to note that the simulations do not incorporate wire delay information, but 

these can easily be introduced by using data from ITRS (International Technology 

Roadmap for Semiconductors) for the wire delay Tp. 

With the equation we can now predict the upper bound throughput for 

different wire segment lengths. Using a global wiring metal pitch of 0.44 µm we can 
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look at the ITRS 2003 (Table 81a) and get an RC delay of approximately 50 ps for a 1 

mm global wire at 0.44 µm pitch. A simple RC wire delay equation is: 

2

2
L

RC
T =  where T is the delay, L is the wire length. 

Using this equation we can find that RC = 0.0001 when L = 1 mm and T= 50 ps. 

Using this value of RC we can now put this back into the equation and see the effect 

of wire length versus wire delay for our global wire pitch of 0.44 µm, shown in Fig. 

4-20. 
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Fig. 4-20 Wire Delay for 0.44 um pitch global wire 

The wire delay can further by used to calculate the upper bound throughput of 

the proposed per-word acknowledgement scheme using the delay cycle equation (2). 

Using our example of four buffers along the length of the wire the inverter and gate 

delays in the equation remain constant while Tp (the wire propagation delay) changes. 

The predicted upper bound throughput for a 0.44 µm pitch global wire using the per-

word acknowledge scheme and four equally spaced buffers along the length is shown 

in Fig. 4-21. As can be seen the length of the wire has a square law effect on the wire 

delay, this is especially prominent on longer wire lengths. The upper bound 

throughput stays relatively flat at around 300 MFlits/s up to 2 mm length, then the 

throughput starts to fall off drastically. 
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Fig. 4-21 Wire Length versus Throughput 

4.5. Experimental Results 

The simulations and comparisons are base lined from the XPIPES [28] NoC packet 

switched router and synchronous link which was obtained from University of 

Bologna. In XPIPES the input or output buffers are distributed along the length of 

wire rather than in the router itself. This distributed virtual buffer storage allows flits 

to use the buffers as storage and also to pipeline the wire. Each buffer can hold 2 flits, 

it is constructed from 2 registers each of which is 1 flit wide and some control logic 

which allows basic stall/go flow control of the flits down the length of the link. The 

synchronous links has 4 buffers along the length of the wire which means it can hold 

up to 8 flits. In the asynchronous serialised links the capacity is the same but the 

storage is in the synchronous to asynchronous interface which can hold 4 flits in the 

FIFO and in the asynchronous to synchronous interface which can hold another 4 flits 

in a FIFO, giving a total of 8 flits capacity, the same as the synchronous link. The 

reason the flits can be stored in the FIFO for the asynchronous link is because the 

FIFO is already exists in the synchronous/asynchronous interfaces and is used to 

allow the data to cross the synchronous/asynchronous domains. In the case of the per 

word asynchronous acknowledgement scheme the buffers along the length of the wire 

are non-registered and could not be used for storage anyway. 

Circuits for the complete link (Fig. 4-9 to Fig. 4-13) were entered into the 

schematic editor in Cadence using gate level cells. The gate level cells use transistor 
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level models for analog level simulation. The results are based on three 

implementations that have been compared, Fig. 4-22. First a fully synchronous link 

with no serialisation and 32 bit wide data transfer (I1), second our proposed 

asynchronous per transfer acknowledge link which serialises the data down to 8 bits 

(I2) and thirdly our proposed asynchronous per-word link, also 8 bits (I3). Effects on 

power, area throughput are shown. The simulations were performed with foundry 

transistor level cells in ST 0.12 µm HCMOS9 technology with the Spectre simulator 

in Cadence. 
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Fig. 4-22 Simulated Implementations 

Fig. 4-23 shows the number of wires needed to achieve a certain bandwidth across a 

link. The synchronous link with 100, 200 and 300 MHz clock speeds are shown with 

the proposed link. As is seen the number of wires increase dramatically in the 

synchronous link as bandwidth increases. As the bandwidth required increases the 

number of wires for the synchronous link (I1) increases. This is because if the 

bandwidth requirement increases and the synchronous clock speed remains the same 

then the only way to increase the bandwidth is to make the data path wider by 

increasing the number of wires. Essentially the bandwidth is fixed by the number of 

data wires and the clock frequency if 1 bit of data is transferred per wire on each 

clock as follows: 

CLOCKFreqWiresBandwidth ×=  

The asynchronous link on the other hand is not governed by a synchronous 

clock, but is limited by an upper-bound throughput or cycle time of the asynchronous 
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circuitry. The upper-bound throughput is determined by the asynchronous 

handshaking cycle time. In this example of a 32 to 8 serialized asynchronous link the 

upper-bound throughput is ~ 300 MFlit/s, so the asynchronous link will operate 

correctly up to this point. For increased bandwidth the asynchronous link could halve 

the serialization going from 32 to 16 bits instead of 32 to 8 bits. This would 

effectively double the upper-bound throughput to ~600 MFlit/s at the expense of 

using 16 wires instead of 8 along the length of the link. 

4.5.1 Area overhead 

Fig. 4-23 shows that it is possible to achieve the same performance as the 

synchronous link but with less wires. For example, the proposed link (I3) can support 

300 MFlits/s using a 300 MHz switch clock with 8 wires whereas the synchronous 

link (I1) would need 32 wires at 300 MHz which is a 75% reduction. It is interesting 

to note that the number of wires in the synchronous link would need to increase if the 

switch clock speed was reduced from 300 MHz to 100 MHz and maintain the same 

throughput, this would require an increase to 96 wires at 100 MHz. 
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Fig. 4-23 Bandwidth vs. Wires 

Fig. 4-24 shows the wire length and area for the implementations. It is 

important to note that a 1:1 trade off between area used by circuitry and area used by 

routing is not necessarily true as technology processes with many metal layers can 

route the interconnect over the top of the cells. The benefit of reducing the number of 

wires can clearly be seen, especially for longer wire lengths. For example, assuming a 

wire length of 1000 µm, implementation I3 has a wiring area cost of approximately 
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7,500 µm
2
 whereas the synchronous implementation I1 is approximately 30,000 µm

2
. 

As the wire length increases the proposed asynchronous link schemes (I2 and I3) have 

a moderate increase in area cost, unlike the synchronous implementation I1. 
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Fig. 4-24 Wire Area 

For the ST 0.12 µm process the minimum metal width for a high layer 

(METAL6) which is typically used for global routing is 0.44 µm and the minimum 

gap between metal is 0.46 µm. The minimum wire area for the data path with N wires 

can be calculated by the following equation using Mwidth = 0.44 µm and Mgap = 

0.46 µm. 

)(

)1()(

)(

GAPMETALLengthAREA

MgapNmGAP

MwidthNmMETAL

DataWires +×=

×+=

×=

µ

µ

 

Note that the equation is for a single layer of metal only. For multiple layers 

via and there associated design rule areas would have to be taken into account to 

provide a more accurate estimation. 

The circuit area overhead of the synchronous and proposed asynchronous links 

are given in Table 4-1. To find out which portions of the asynchronous link use most 

resource a breakdown of the circuit or cell area used for each module for the 

implementations I1 through to I3 are shown in Table 4-2 to Table 4-4. The proposed 

architectures (I2 and I3) have an area increase of approximately 20% compared to the 

synchronous link (I1). 
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Table 4-1 Area overhead of the synchronous and proposed link 

 

 

Table 4-2 Breakdown of implementation I1 

Module Area (µm2) Qty. 

32 Bit Synch Wire Buffer 3966 4 
Total 15864  

 

Table 4-3 Breakdown of Implementation I2 

Module Area (µm2) Qty. 
Synch to Asynch interface 9408 1 

Asynch 32 to 8 serializer 869 1 
Asynch 8 wire buffer 294 4 
Asynch 8 to 32 de-serializer 1030 1 
Asynch to Synch interface 6710 1 

Total 19193  
 

Table 4-4 Breakdown of implementation I3 

Module Area (µm2) Qty. 
Synch to Asynch interface 9408 1 
Asynch 32 to 8 serializer 734 1 
Asynch 8 wire buffer 61 4 

Asynch 8 to 32 de-serializer 1301 1 
Asynch to Synch interface 6710 1 

Total 18396  
 

4.5.2 Power Consumption 

The synchronous and asynchronous link implementation was compared in terms of 

power. The synchronous and asynchronous links each had 4 buffers along the length 

of the wire. On the asynchronous link the buffers were 8 bits wide and on the 

synchronous link 32 bits wide. All links had the same capacity to hold up to 8 flits. 

The average power was calculated for the transfer of 4 data items (0xAA55AA55, 

0x55AA55AA, 0xA5A5A5A5, 0x5A5A5A5A) which exercises the data wires as 

much as possible and gives a high switching activity. The time the link is in use when 

transferring the 4 data items is approximately 70 ns on the original synchronous 

implementation running at 100 MHz. Using this base line transfer time of 70 ns the 

Implementation Area (µm2) 
Synchronous (I1) 15864  

Asynchronous per-transfer ack. (I2) 19193  
Asynchronous per-word ack. (I3) 18396 
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simulation runs were set to 140 and 280 ns. This allows the average power for 50% 

and 25% usage to be obtained. The link can be considered ‘in use’ when one or more 

of the buffers is occupied by a flit. For example consider Fig. 4-25 showing flits F1 

through to F4 occupying the buffers in order of arrival, the link usage time is basically 

the time when flit F1 enters the 1
st
 buffer to the time flit F4 exits the 4

th
 buffer. The 

same simulation run times of 140 and 280 ns was used for the asynchronous 

implementations in order to provide a fair comparison so that the average power can 

be seen to transfer the same data in the same period of time. The power for each block 

was obtained through Spectre simulations by taking the average of the supply voltage 

multiplied by the current over the simulation run time. 
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Fig. 4-25 Definition of Usage in our Simulations 

The power consumption of the synchronous and the proposed asynchronous link are 

shown in Fig. 4-26 with switch clock speed of 100 MHz for different numbers of 

buffers in the link. As expected when a small number of buffers are used, such as 2, 

the synchronous implementation uses less power compared to the asynchronous due 

to the extra overhead of the synch/asynch converters and serializers. When the 

amount of buffers increase, the power in the synchronous implementation increases, 

unlike the asynchronous implementation which remains relatively similar. Comparing 

2 buffers against 8 buffers for the wire link it can be seen the that power for the 

synchronous implementation (I1) increases 300% from 372 µW to 1498 µW which is 

expected since there is four times the number of synchronous buffers. The 

asynchronous per-transfer scheme (I2) shows a small power increase  of 20% of the 

589 µW to 712 µW, while the per-word acknowledgement scheme (I3) shows the 

least power increase of 2%, 623 µW to 637 µW, due to invertors being used along the 

length of the wire instead of latched buffer elements. Similar power consumption 

results can be obtained when the switch clock speed is increased to 300 MHz (Fig. 

4-27). As expected the synchronous link power increases with clock frequency and it 
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can be seen that power increases from 1498 µW to 3229 µW for 8 buffers. The best 

power saving is obtained when the switch clock speed is 300 MHz and the number of 

buffers is 8, power is reduced by 65% from 3229 µW to 1110 µW when going from 

synchronous to asynchronous in this case. 

Static power consumption was obtained by re-running the simulation with 

both stimulus and clocks being held low so no activity was present within the link. 

Static power consumption is the power consumed by the gates when no inputs are 

changing. The static power consumption is shown in Fig. 4-28. In the synchronous 

link the static power doubled from 23.7 µW to 47.4 µW going from 2 to 4 buffers and 

doubling again to 94.8 µW going from 4 to 8 buffers, this is to be expected as 

doubling the number of buffers which are the same is going to double the static 

power. The asynchronous implementations also increase in static power as the number 

of buffers increase, but at a much reduced rate since the buffers are more simple and 

in the case of the word-level acknowledgement are just inverters. For example going 

from 2 to 4 buffers in the per-transfer acknowledgement scheme increases the power 

from 50.15 µW to 50.97 µW and in the per-word scheme the static power increases 

from 66.83 µW to 67.14 µW. Each buffer in the per-transfer scheme uses 0.41 µW of 

static power and in the per-word scheme 0.17 µW or 0.14 µW depending on if the 

inverter is being held constantly high or constantly low due to differences in the size 

of the pmos and nmos transistors in the inverters. 
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Fig. 4-26 Number of Buffers vs. Power @ 100 MHz 
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Fig. 4-27 Buffers v Power @ 300 MHz 
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Fig. 4-28 Buffers versus Static power 

To give insight as to where the power consumption is in the various components of 

the links, Fig. 4-29 shows a breakdown of the power when 1 or more buffers are 

occupied by flits 50% of the time (i.e. 50% usage). It can be seen that the dominant 

power in the asynchronous implementations (I2 and I3) are the asynch/synch and 

synch/asynch conversion circuits. This is expected since these circuits contain clocked 

synchronous parts. Comparing the proposed asynchronous links I2 and I3 which 

serializes down to 8 bits, it can be seen that that power used is similar. The I3 buffer 

power is considerably smaller than I2 at 9 µW versus 82 µW due to the fact that the 

buffers are simple invertors along the length of the wire and not latched elements as is 

the case for I2 and I3. The de-serializer uses more power I3 as a shift register based 

implementation is used instead of de-multiplexer, so all four registers are being 
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latched every time a slice of the flit arrives as opposed to just one register being 

latched in the de-multiplexer version. 
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Fig. 4-29 Average Power for 50% usage 
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Fig. 4-30 Average Static power breakdown 

4.5.3 Maximum Throughput 

Fig. 4-31 shows the simulated maximum throughput of the three implementations, I1 

the synchronous implementation, I2 the asynchronous per-transfer acknowledgement 

and I3 the per-word acknowledgement. This was achieved by simulating with 

increasing clock speeds until the throughput saturated. The back to back transfer time 

of a single flit was then measured to give the maximum throughput. As can be seen 

the per-word acknowledgement (~300 MFlits/s) has a 50% maximum throughput 

improvement over the per-transfer acknowledgement (~200 MFlit/s). The removal of 

the fine grain per-transfer acknowledgement and replacement with a coarser grained 

per-word acknowledgement has clearly improved the maximum throughput. The 



Page 85 of 158 

synchronous implementation will not be limited by flow control acknowledgements 

but by the limits of the technology and will reach the maximum throughput limit 

when the setup and hold times start to be violated. 
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Fig. 4-31 Switch clock speed versus Throughput 

4.5.4 Latency 

The latency through the link, Fig. 4-32, can be considered at the time it takes the data 

to get from the synchronous to asynchronous interface on the transmit side to the 

asynchronous to synchronous interface on the receiver side (tAsynchpath) plus 2 to 3 

clocks in order to resynchronize into the synchronous domain (tSynch). The reason 

for the 2 to 3 clocks to synchronize into the synchronous domain is because inside the 

asynchronous to synchronous interface the flag signals which signify data has arrived 

goes through two registers in order to synchronize the flag. 
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Fig. 4-32 Latency through the link 

4.6. Summary of per-word and per-transfer schemes 

Comparing the two techniques of per-transfer (Section 4.2) and per-word (Section 

4.3) acknowledgement it is clear that the per-word acknowledgement offers higher 
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throughput due to the reduction of the request/acknowledge cycles needed to transfer 

a flit. Fig. 4-31 shows that the per-transfer throughput upper bound is around 200 

MFlits/s whereas the per-word throughput is bound at around 300 MFlits/s, a 50% 

increase. 

When considering area both techniques reduce the wiring area by 75%, but the 

circuit area of the per-word shown in Table 4-1 is 18396 µm
2
 which is slightly smaller 

than the per-transfer scheme at 19193 µm
2
. This mainly due to the buffers along the 

length of the wire being latched elements in the case of the per-transfer scheme and 

invertors in the per-word scheme. 

The power use of the two techniques are very similar, Fig. 4-26 and Fig. 4-27. 

Observing the per-transfer scheme (I2) and the per-word scheme (I3) it can be seen 

that for 2 wire buffers the per-transfer scheme has a slight advantage in terms of lower 

power. However, as the number of buffers in the wire increase to 6 or more the 

advantage of lower power swings in favour to the per-word scheme. This is because 

the serializer and de-serializer in the per-word scheme uses more power but is offset 

against the wire buffers in the per-transfer scheme which are latched based. As the 

number of buffers increase, the power in the wire buffers in the per-transfer scheme 

overshadows the extra power used by the per-word serializer and de-serializer. Note 

that the per-word scheme wire buffers do not increase in power at the same rate due to 

the fact that they are simple invertors along the length of the wire and not latched 

based elements. The per-transfer acknowledgement scheme does ensure that every 

transfer is acknowledged, whereas the per-word scheme needs to ensure that the rate 

at which the slices of flits are transferred do not exceed the rate at which the receiver 

can consume them. In this respect the per-transfer scheme may be simpler as the 

transfers are regulated by the acknowledge signal so the receiver says when it is ready 

to receive the next slice of data. 

For applications which can be satisfied with the lower per-transfer throughput 

and short wire lengths where only 2 buffers are used the per-transfer scheme will give 

the benefits of slightly less power usage. Also the per-transfer scheme would be used 

in more fault tolerant applications where the data is line coded and requires an 

acknowledge response for each valid data detected, such as dual-rail or m-of-n codes 

where an acknowledge is needed to signify that the data is valid and has been received 

correctly. This is because the per-transfer scheme acknowledges every transfer, 
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whereas the per-word scheme needs a burst of transfers before acknowledging, 

making the per-word scheme unsuitable for line-coded schemes. For applications 

which require a higher throughput that cannot be satisfied by the per-transfer scheme 

or long wire runs with many buffers that require lower power usage the per-word 

scheme would be desirable as this scheme has the power advantage when more and 

more buffers are used along the length of the wire. 

In future technologies (sub 45 nm) if the tolerances of the on-chip transistors 

varies considerably the per-transfer scheme may be more desirable even though the 

throughput is lower. This is because with the per-word scheme the wire buffers are a 

series of invertors, each of which could have varying tolerances, so as the data and 

control signals propagate down the length of the wire the relative timing between 

them could drift apart to such an extent that improper latching of signals that are not 

yet valid could take place, Fig. 4-33. With the per-transfer scheme the data and 

control signals are effectively regenerated at each wire buffer due to the wire buffers 

being latched elements with request and acknowledge handshaking. Any drift 

between the data and control signals seen at the receiver will come from only the last 

buffer, whereas with the per-transfer scheme the drift would be accumulated from all 

the buffers along the wire. 
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Fig. 4-33 Relative timing drift 

The per-word scheme could be improved further by acknowledging the 1
st
 

slice of the flit rather than acknowledging the last slice of the flit, Fig. 4-34. 

Acknowledging the 1
st
 slice of the flit reduces the dead time or waiting between back 

to back flit transfers as the acknowledgement circuitry always take a finite amount of 
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time to generate the acknowledge signals. Furthermore, a NACKing scheme could be 

used where the data is continuously transferred across when available and only 

stopped if the receiver buffer becomes too full, the receiver would have to send a stop 

or nack signal back to the transmitter to halt the transmission of data. This would 

require more buffering of data at the receiver end to ensure that no flits are lost or 

overwritten in the time it takes to stop the flow of data. 
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Fig. 4-34 First and Last flit acknowledgement 

Serialization at the network interface [151] may give better results in power and 

latency as the serialization and de-serialization would only need to take place once at 

the network interfaces, rather than at each link. This would mean that the routers 

would have to operate faster at be at the same speed as the link. It is difficult to 

quantify what effect serialization at the network interface would do to our proposed 

link as the XPIPES router is treated as a black box and the link just interfaces to the 

outside of the router with no alteration to the router itself. To use serialization at the 

network interface a new router would have to be designed and implemented. If a new 

router was to be used it may even be beneficial to use an asynchronous router so that 

no conversion between synchronous and asynchronous domains would occur once 

inside the network. 
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4.7. Practical Validation of the Proposed Link 

The previous section has shown simulation results based on transistor level models 

showing power, area and performance. The rest of this section discusses the 

implementation on FPGA. Section 4.7.1 shows the functional checking of the link. 

To give an insight into how the proposed links operate in practice, practical 

implementation on hardware was considered. Two possible technologies for 

implementation of digital circuits are Application Specific Integrated Circuit (ASIC) 

and Field Programmable Gate Array (FPGA). An ASIC is an integrated circuit 

implemented with standard cell logic gates. The cells are used from a pre-existing cell 

library that is supplied from the ASIC vendor. The ASIC has to be fabricated by the 

vendor once the design has been completed. An FPGA is a pre-fabricated silicon chip 

that has many small blocks of logic interconnected by many wires. Each logic block 

can be configured to perform logic functions and the wires can be used to selectively 

connect these logic blocks together to form a circuit. ASIC implementations allow for 

complete control of the placement of gates on silicon and should lead to faster speed 

as the logic and propagation delays can be kept to a minimum through optimization of 

the gate placements. However, ASICs require several months to design and fabricate, 

also if any errors are present the whole design and fabrication process may need to be 

repeated. FPGA implementations can be achieved in a short time since the 

synthesised design can be mapped to the FPGA structure automatically by place and 

route software. This rapid prototyping of designs also allows any errors in the design 

to be quickly corrected as well as trying out different circuit configurations. FPGA 

does allow functional validation but performance may be slower than ASIC 

implementations since the designer is constrained to use the pre-defined FPGA logic 

block which may not allow the optimum realisation of a circuit. In order to validate 

the link it was decided that FPGA implementation would offer rapid validation and 

low risk. While the FPGA implementation will not have the performance of an ASIC 

design it does give some confidence of the circuit working, albeit with much lower 

throughput. 

As the link flow control is effectively governed by the handshaking which 

itself is controlled by C-Elements in the control logic it is reasonable to assume that 

the handshaking will occur in the correctly ordered sequence regardless of any delay 
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between the inputs of the C-Elements. There potentially could be delay between the 

bundled reference and the data which could cause the data to be latched at the wrong 

time, but this could be tuned out by tuning the relative delay between the reference 

signal and data signals so that the worst case and best case timing margins are 

covered. The functional testing of the link on FPGA should give reasonable 

confidence that the handshaking and the control logic is performing correctly but it is 

difficult to check that the data will remain aligned to the bundled reference signal over 

a large temperature range. 

In order to validate the proposed link the circuits (Fig. 4-9 to Fig. 4-13) were 

coded in RTL VHDL, synthesised and targeted to a Xilinx Virtex FPGA. A Digilent 

XUP Virtex-II Pro Development System
1
 was used as the target test platform. The 

development board consists of a XC2VP20 Virtex-II Pro FPGA with various 

connectors and peripherals attached on board. The FPGA was utilised along with a 

pair of connecters which were used to supply the logic analyzer with the output trace 

of the links. An Agilent 16000 series Logic analyzer was used to capture the output 

from the FPGA. All 32 data bits, valid signal and clock were routed to the connecter 

and the stall signal tied low to allow the logic analyzer to be able to capture the data 

free running. A simple walking ‘1’ pattern was used as the stimulus to the link and 

was hard-coded as a small pattern generator in the synthesised code. The output of the 

link was connected to the I/Os of the FPGA which were routed to a connector on the 

test board to allow for capture by the logic analyzer. The code was partitioned for the 

synchronous and asynchronous link as shown in Fig. 4-35 and Fig. 4-36 respectively. 

The RTL code was contained in TOP.vhd was synthesized and tb_TOP.vhd was a test 

bench wrapper use for RTL and post place and route simulation. The DATA, VALID 

and STALL signals were mapped to FPGA I/O pins along with a copy of the clock 

and the reset signal mapped to a push button switch to allow reset of the circuit. 

                                                 
1
 More info obtained: http://www.digilentinc.com/Data/Products/XUPV2P/XUPV2P_User_Guide.pdf 
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Fig. 4-35 Synchronous Link RTL & Test Bench 
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Fig. 4-36 Asynchronous Link TRL & Test bench 

The wire buffers in the link were constrained to certain areas on the FPGA (Fig. 

4-37a) in order to have a long wiring length between the buffers. The connectivity 

between the buffers and the I/O is shown in Fig. 4-37b where the wiring can be seen 

clearly going from BUF0 to BUF1 to BUF2 to BUF3 and finally to the I/O outputs of 

the FPGA. The constraints forced the place and router to put the logic for the wire 

buffers in their respective areas to try and emulate long wire lengths. It is unknown 

how long the distance between the buffers and this die size information of FPGAs is 

not generally available. Some discussion forums
1
 on the internet suggest the die size 

for the XC2VP20 is 14mm × 11.4 mm which even allowing for I/O pads it would be 

reasonable to assume that the distance between the buffers from the left hand side to 

the right hand side of the chip is > 1 mm. The design flows for the synchronous and 

asynchronous implementations are shown in Appendix D. 

                                                 
1
 http://www.fpgarelated.com/usenet/fpga/show/36765-1.php 
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Fig. 4-37 Floorplan Constraints of FPGA 

4.7.1 Functional Checking 

The 32 bit DATA output and VALID signals were routed to I/O ports that were 

routed to a connecter on the development board. The logic analyzer probes were 

hooked up to the connecter and used to capture the waveforms. The captured 

waveform was checked to make sure that it was a walking ‘1’ pattern to verify that the 

data transmitted along the link from the pattern generator logic was correct. Fig. 4-38 

shows the captured waveform. Only bits 31 to 20 of the DATA bus has been shown 

for clarity, but it is clear that the walking ‘1’ patterns is being received at the end of 

the link. One observation is that the DATA bits appear to have 2 transitions on them. 

This can be explained by considering the post-place and route simulation waveform 

shown in Fig. 4-39. In this simulation waveform the DATA output when VALID goes 

high is circled in a solid line, the ‘old’ values in that get observed at the output are 

circle in a dashed line. The reason a second high transition is seen on the DATA bits 

is because the synchronous side of the receiver is operating faster than the 

asynchronous link and the control logic in synchronous side of the receiver is 
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selecting a FIFO entry and multiplexing the contents out onto the DATA bus before 

the asynchronous side has written new data into it. This does not cause any error at 

the receiver end though as that VALID signal only goes high when the data is correct. 

This can be confirmed by observing the data  capture as a list format shown in Fig. 

4-40. It is shown that the DATA goes from 0x00000001, 0x00000002, 0x00000004 

and so forth which is a walking one pattern in hexadecimal format. 

 
Fig. 4-38 Timing Capture of Asynchronous Per-Transfer Link 
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Fig. 4-39 PAR simulation of asynchronous Per Transfer Link 

 
Fig. 4-40 State Listing of Asynchronous Link when VALIDOUT is high 
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4.8. Concluding Remarks 

This chapter has proposed the use of asynchronous circuit techniques and serialization 

for NoC links. The proposed link uses asynchronous techniques which removes the 

need for global clocking along the link and also reduces power. The serialization of 

the data allows a reduction in the number of wires in the link and therefore a reduction 

in interconnect cost  with respect to wiring area and the size of the wire buffers along 

the link. The proposed asynchronous link has been compared to a synchronous link in 

terms of area, power and throughput. The synchronous link is a fully synchronous 32 

bit wide link, the asynchronous link goes from 32 bit wide at the start of the link to 8 

bit wide along the length of the link and back to 32 bits at the end of the link, thus 

serializing the word into 4 slices. 

The asynchronous link has demonstrated the effectiveness of serialization in 

reducing the number of wires without compromising the performance up to the 

throughput limitation caused by the asynchronous handshake cycle timing. The 

potential problems with synchronous design such as global clock distribution and 

clock skew have also been reduced. The proposed asynchronous link also reduces 

power by up to 65% compared to the synchronous link when 8 buffers are used. 

Furthermore, the area overheads of synchronous and the proposed asynchronous link 

have been compared and shown that although the proposed link has a 20% circuit 

overhead the number of wires has been reduced by up to 75%. The asynchronous link 

has been demonstrated with a per-transfer acknowledgement and per-word 

acknowledgement. The per-transfer acknowledgement scheme acknowledges every 

transfer of data across the NoC link and the throughput saturates at approximately 200 

MFlits/s (Section 4.5.3) and is consequently slower than the per-word 

acknowledgement scheme which acknowledges every full word of data received and 

the throughput saturates at approximately 300 MFlits/s. 

Functional validations of the proposed asynchronous link have been carried 

out using FPGA technology. The FPGA implementation confirmed correct operation 

but the performance was drastically reduced when compared to the cell based IC 

simulations. The speed of the link was 200 MHz for the cell based IC simulations and 

approximately 12 MHz for the FPGA. 



Page 96 of 158 

Chapter 5. Resilient Asynchronous Links 

Asynchronous links bring benefits such as simplifying the clocking and reducing 

power as shown in Chapter 4. The link implementation in the previous chapter used a 

bundle data approach where a reference signal was sent along with the data. Bundled 

data is less desirable as if the relationship between the reference signal and the data 

varies too much possible timing violations could occur. One way around this is to use 

delay insensitive data coding [152]. Delay Insensitive coding is used in asynchronous 

circuits to allow the receiver to validate the data regardless of relative timing on the 

wires. Delay insensitive coding could be susceptible to transient errors since a 

transition on a wire could lead to false data being generated at the receiver end. This 

chapter provides an asynchronous coding scheme that offers resilience to transient 

errors. 

As technology scales down more IP cores are being integrated onto a single 

chip. Significant effort into the communication between the cores has resulted in 

extensive research of using Network-on-Chip (NoC) as the communication 

mechanism as highlighted in chapter 2. The NoC consists of switches and network 

interfaces connected together by links. Asynchronous methods of communication are 

finding their way into NoCs due to problems of power and clock distribution 

associated with synchronous circuits [153]. The asynchronous link can be broadly 

categorized into several styles such as bundled data, quasi-delay insensitive (QDI) and 

delay insensitive (DI). Bundled data relies on some relative timing to be kept between 

the data and a reference signal. DI, or self-timed, uses data encoding so the receiver 

knows when it receives valid data. There are numerous delay insensitive encodings 

such as Dual-Rail, 1 of 4, LEDR and multiple rail phase-encoding [110, 111, 113, 

114]. 

As circuits shrink and integration increases errors will become more 

prominent [59]. Errors can fall into two broad categories, permanent and transient. 

Permanent errors are caused by the manufacturing process [154]. Transient errors can 

be caused by cross-talk, coupling or noise and particles. Up to 80% of errors can be 

caused by transient faults [60]. Dual rail, 1-or-4, Level encoded dual rail (LEDR) 

offer little resilience to transient errors which could lead to invalid data to be accepted 

at the receiver end of the link. Multiple rail phase-encoding improves on these by 
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offering an inherent resilience to transient errors during the idle times when data is not 

being transmitted but at the expense of complex receivers and transmitters as the 

number of wires increase. Resilience to soft-errors in NoC has been demonstrated in 

[155, 156] but these schemes use detection and correction at the router level. A link 

level detection scheme using hamming codes and interleaving has been shown in [60] 

at the expense of including de-interleaving and hamming distance decoding circuitry. 

A self correcting green joint coding scheme has been demonstrated in [116] to tolerate 

transient errors and reduce crosstalk through bus encoding and triplication error 

correction coding. Single event upset hardened pipeline interconnect has been 

presented in [115] but is proposed for synchronous links. 

This chapter proposes the introduction of additional wires in order to use a bit 

symbol to represent the data bits. Using two wires per bit allows the data symbol to 

have four phases. Transient error resilience is achieved by exploiting the phase 

relationship between the data symbols and a common reference symbol. The chapter 

is organized as follows, the motivation for this work and examples of current 

asynchronous links is shown in Sections 5.1. Section 5.2 gives an overview of the 

proposed resilient link. Section 5.3 describes the proposed asynchronous transient 

resilient link architecture and the circuitry. Section 5.5 gives the experimental results 

and finally section 5.7 concludes the chapter. 

5.1. Review of Current Asynchronous Coding and Motivation 

In this section existing asynchronous links are considered and their limitations 

discussed. A single ended asynchronous link, such as bundled data uses a single 

reference signal to show when the data is valid, Fig. 5-1(a). It can be considered to 

have some resilience on the DATA wires as the receiver effectively ignores the data 

until the VALID signal is set. The relative timing between the DATA signals and the 

VALID signal in deep sub-micron design could diverge due to the tolerances or the 

wiring and the transistors in the gates. Delay insensitive codes are one of the ways to 

remove the dependency of timing between data and bundled reference signals since 

the de-coders do not care when the signals arrive [113]. 

Dual rail coding Fig. 5-1(b) was introduced to provide a delay insensitive 

solution to asynchronous data transfer. This introduced extra wires, 2 per data bit, 

which allows a ‘0’ or ‘1’ to be transmitted by asserting one wire or the other. In this 
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case asserting DATAA[x] transmits a 1 and asserting DATAB[x] transmits a 0. Fig. 

5-1(c) shows level encoded dual rail (LEDR), using the same number of wires as 

standard dual rail it use uses less transitions per data bit. This is achieved by toggling 

the same wire if the data to be transmitted is the same as the previous or toggling the 

other wire if the data is different to the previous. Fig. 5-1(d) shows 1 of 4 encoding, 

where 4 wires are used to transmit 2 data bits. A single wire is asserted and then de-

asserted to represent 2 bits of data, for example asserting wire A for the receiver to 

obtain data ‘00’. Fig. 5-1(e) shows an example of 4 wire multiple rail phase encoding. 

The information is contain in the arrival order of the edges rather than the logic level 

of the signals, care has to be taken to ensure that the arrival order of the signals 

remains the same as they propagate along the link. 
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Fig. 5-1 Current asynchronous links [110, 111, 113, 114] 
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Recently a self correcting green join coding scheme for NoC interconnect has been 

proposed where the data is first encoded to minimise crosstalk and then a triplication 

error correction code applied to allow error correction [116]. The joint coding scheme 

increases the number of wires quite dramatically, for the crosstalk minimisation the 

increase is 1.25x and for the triplication it is 3x, meaning that the number of wires 

increases by 3.75x. This however is mitigated by serialization of the data before the 

triplication stage at the expense of higher link frequencies.  

A single ended asynchronous link such as bundled data does offer some 

resilience to transients during the time period when valid is not asserted, but as 

technology scales down the issue of keeping relative timing between the bundled 

VALID reference signal and data may become an issue due to the tolerance variability 

in deep sub-micron designs. Delay insensitive techniques such as dual rail, LEDR and 

1 of 4 were introduced to alleviate the relative timing problems and provide a solution 

in which delays do not matter. However, they are susceptible to transient faults which 

can corrupt the data. It may be possible to detect certain errors on dual-rail since the 

invalid code “11” could be detected which would suggest a single bit error at the same 

time data is transmitted. However, if a transient occurs on a one of the dual rail pair of 

wires when data is not been transmitted the receiver will see “10” or “01” instead of 

“00”. This could mean that the receiver detects this as a valid ‘1’ or ‘0’ data as 

opposed to a transient effect. The proposed encoding technique improves on this as it 

can cope with a single transient on a single wire of the pair of data wires even when 

data is not being transmitted. 

A standard error detection scheme like parity checking such as adding an extra 

bit to the data converting to dual rail and back to single ended logic and checking the 

parity bit would allow the detection of a single error on one of the dual rail pairs. 

However, if more than one of the dual rail pairs was in error then a single parity bit 

cannot be used to detect both the errors. More complex schemes such as Hamming 

codes combine a codeword and data and send them together. For example a (7,4) 

Hamming code takes 4 bits of data and adds 3 code bits, resulting in a 7 bit message. 

Hamming codes have the advantage that a single bit error not only can be detected, 

but corrected too. Two bit errors can only be detected and not corrected though. The 

extra overhead for using Hamming codes would consist of extra logic circuitry to 
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code and decode the data and also 75% extra wires in the case of a (7,4) Hamming 

code. 

The basic idea of introducing resilience is to provide some form of matching 

between different parts of a transmitted symbol so that the fault affecting one part can 

be filtered with the help of the other parts since the validity of the overall value is a 

‘collective responsibility’ of all parts. In the phase-encoding [114] this is achieved by 

mutual adjudication between the wires. In the dual-rail framework, exploited in this 

chapter, the dual rail solution is built upon by introducing a pair of reference wires 

which can be compared with the pair of data wires in order to obtain the original 

transmitted data. The phase relationship between the reference and the data symbols 

provides the necessary information to obtain the original data. Both the reference and 

data symbols use four phases. 

5.2. Proposed Resilient Link 

The proposed technique uses a pair of wires per data bit plus a further pair of wires 

for a reference which is associated with the data bits, thus the number of wires will be 

(n*2)+2 for n bit wide link, Fig. 5-2. Each data bit and the reference is represented by 

a symbol on their pair of wires (00, 01, 11, 10). If the data symbol is in phase with the 

reference the data is ‘0’. If the data symbol is 180° out of phase with the reference the 

data is ‘1’. Should the data symbol be out of phase by ± 90° the data is can be 

considered invalid, Fig. 5-3. It is easy to detect invalid data with this system as an 

error on one of the wires of the data symbol will cause the symbol to be out of phase 

by ± 90° which is detected by the receiver. 
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Fig. 5-2 Overview of proposed link 
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The reason of using a reference is that it allows the checking or validity of the symbol 

to see if it results in valid data or if there is an error present. A single reference pair of 

wires can be grouped with several pairs of data wires to support several bits 

transferred at a time. Each time a new piece of data is sent the reference increments 

around (moves around the quadrant by 90°) and the data moves either in-phase or 

180° out of phase. By doing this there is only 1 transition on each pair of data wires 

and 1 transition on the pair of reference wires. 
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Fig. 5-3 Symbol and reference phase relationship 

A further example to show how the coding for applies to multiple bits is shown in Fig. 

5-4. As can be seen at first DATA[3:0] = “0000” as all the symbols are in-phase with 

the reference. The next piece of data SYMBOL3 and SYMBOL2 are in-phase so 

DATA3 and DATA2 are ‘0’ and SYMBOL1 and SYMBOL0 are 180° out of phase so 

DATA1 and DATA0 are ‘1’, thus DATA[3:0] = “0011”. The next piece of data all 

symbols are 180° out of phase so DATA[3:0] = “1111”. Finally the on the last piece 

of data SYMBOL3 and SYMBOL1 are out of phase and SYMBOL2 and SYMBOL0 

are in-phase, so DATA[3:0] =  “1010” 
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Fig. 5-4 Example symbol phase relationship for 4 bit wide data 

Fig. 5-5 shows a state diagram of the coding technique. It can be basically considered 

as two cyclic planes. The low plane which cycles the symbol around 180° out of 

phase to the reference when the data is 1 and the higher plane which cycles the 

symbol around in-phase with the reference when the data is 0. The switching between 

the planes is when the data changes, the red arrows showing when the data is 0 and 

the coding switches into the in-phase plane and the blue arrows showing when the 

data is 1 and switching into the 180° out of phase plane. 
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Fig. 5-5 Encoding State Diagram of proposed Link 

Table 5-1 shows comparison between a number delay insensitive methods of data 

transfers that have been proposed for asynchronous links. LEDR, LETS and 1 of 4 

encoding both improve on standard dual rail by reducing the transitions per bit but are 

still susceptible to transient faults. Multiple rail phase-encoding improves on these by 

offering resilience to transient faults and offering a reduced wire count when the 

number of bits is greater than four, but this comes at the expense of increasingly 

complex transmitter and receiver circuitry as the transmitter grows squarely and the 

receiver grows squarely or linearly dependent on the choice of decoding array in the 

receiver. The self correcting green coding scheme has high number of wires per bit so 

serialization can be employed to mitigate this. Our proposed approach offers a similar 

number of transitions per bit as LEDR and 1 of 4 as the number of bits increase from 

the point of view of power on the link and resilience to transients that multiple rail 

phase-encoding offers but with a linear growth in transmitter and receiver complexity. 
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Table 5-1 Comparison of proposed and existing links 

Link Wires/bit Transitions

/bit 

Resilience to 

SEUs? 

TX/RX growth  

Bundled Data 1+1/n 0.5+2/n N - 

Dual-Rail [113] 2 2 N Linear 

1 of 4 [110] 2 1 N Linear 

1 of 4 

LETS[112] 

2 0.5 N Linear 

LEDR [111] 2 1 N Linear 

Phase-enc [114] w/n w/n Y Square 

S-C Green[116] 3.75 - Y Linear 

Proposed 2+2/n 1+1/n Y Linear 
where n = number of bits and (w-1)! < 2^n < w! 

5.3. Proposed Link Architecture 

The link consists of a transmitter for the reference symbol, a receiver for the reference 

symbol, transmitters for the data symbol and receiver for the data symbol. A single 

transmitter and receiver module pair for the reference is used with one or more 

transmitter and receiver pairs for the data as shown in Fig. 5-6 for an n bit wide data 

source. For example, an 8 bit wide data source would require 1x TX REF 1x RX REF, 

8x TX DATA and 8x RX DATA modules. The SYMVALID outputs of the RX 

DATA modules can be ANDed together to form a single SIMVALID signal for the 

RX REF module. The VALIDO outputs of the RX DATA modules can also be 

ANDed together to provide a single VALIDO signal. 
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Fig. 5-6 Link showing circuit modules connectivity 

5.3.1 TX DATA Circuit 

The purpose of the TX DATA circuit is to provide a symbol output (SYM[A,B]) that 

will be in-phase or 180° out of phase with respect to the reference. The transmitter 

data module (TX data) is shown in Fig. 5-7. REF[A,B] is registered into the flip-flops 

untouched if DATA is 0 or inverted if DATA is 1 by use of the two XOR gates. 
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Fig. 5-7 TX DATA Circuit 

The REFCHANGED signal goes high when the REF[A,B] changes and is a short 

pulse where the width is determined by the feedback time of the flip-flop. Consider 

the circuitry on it’s own as shown in Fig. 5-8. The output of the XOR gate combining 

REFA and REFB is marked with X. The state transitions for two reference changes 

are shown in Fig. 5-9. 
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Fig. 5-8 REFCHANGED Circuitry 
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Examining Fig. 5-9 the stable states are highlighted. Looking when REF[A,B] = “00” 

it is shown that REFCHANGED is 0. When REF[A,B] changes to “01” this triggers 

REFCHANGED to go from 0→1, in turn Q goes 0→1 which causes REFCHANGED 

to go 1→0 and then remain in a stable state. The process is repeated every time 

REF[A,B] changes. 

Fig. 5-9 Transition Table for REFCHANGED circuitry 

REFA REFB X D Q REFCHANGED 
0 0 0 1 0 0 
0 1 1 1 0 0→1 
0 1 1 1 0→1 1 

0 1 1 1→0 1 1→0 
0 1 1 0 1 0 
1 1 0 0 1 0→1 
1 1 0 0 1→0 1 

1 1 0 0→1 0 1→0 
1 1 0 1 0 0 
1 0 1 1 0 0→1 
1 0 1 1 0→1 1 

1 0 1 1→0 1 1→0 
1 0 1 0 1 0 
0 0 0 0 1 0→1 
0 0 0 0 1→0 1 

0 0 0 0→1 0 1→0 
0 0 0 1 0 0 
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5.3.2 TX REF Circuit 

The purpose of the TX REF circuit is to generate a new reference (REF[A,B]) each 

time VALID goes high. This can be achieved by using a gray counter. A present-next 

table for gray counter is shown in Fig. 5-10. 

Fig. 5-10 Present-next Table for TX REF circuit 

REF[ ] REF[ ]next 
A B A B 
0 0 0 1 
0 1 1 1 
1 1 1 0 

1 0 0 0 
 

The next state Boolean equations for the reference are: 

REFAnext = REFA . REFB + REFA . REFB 

REFBnext = REFA . REFB + REFA . REFB 

A basic circuit can be realised by simply mapping these equations to the appropriate 

logic gates and 2x flip-flops triggered by the VALID signal. The resulting circuit is 

shown in Fig. 5-11. It is basically a grey code counter which increments the output 

REF[A,B] through the symbols 00, 01, 11, 10 each time VALID goes high. 
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Fig. 5-11 TX REF Circuit 



Page 108 of 158 

5.3.3 RX DATA Circuit 

The purpose of the RX DATA circuit is to decode compare the symbol and reference 

to generated a valid data and also to tell the RX REF circuit when it has detected a 

valid symbol in order that the RX REF circuit can register a copy of the current 

reference for comparison against the next reference to check that the reference 

increments. The DATA decoding is simply comparing the symbol SYMB[A,B] 

against the reference REF[A,B]and setting data correctly. SYMVALID is also 

generated from comparing the reference and symbol and generating a high signal if 

the symbol is in-phase or 180° out of phase otherwise it should be low to signify the 

symbol is ±90°out of phase and therefore not valid. The truth table for DATA and 

SYMVALID is shown in Fig. 5-12. 

Fig. 5-12 DATA and SYMVALID truth table 

REFA REFB SYMA SYMB  DATA  SYMVALID 
0 0 0 0  0  1 
0 0 0 1  X  0 
0 0 1 0  X  0 
0 0 1 1  1  1 

0 1 0 0  X  0 
0 1 0 1  0  1 
0 1 1 0  1  1 
0 1 1 1  X  0 
1 0 0 0  X  0 
1 0 0 1  1  1 

1 0 1 0  0  1 
1 0 1 1  X  0 
1 1 0 0  1  1 
1 1 0 1  X  0 
1 1 1 0  X  0 
1 1 1 1  0  1 

 

The Boolean equations for DATA and SYMVALID reduce to: 

DATA = SYMA ⊕ REFA 

SYMVALID = (REFA ⊕ SYMA) ⊕ (REFB ⊕ SYMB) 

The receiver data module (RX Data) is shown in Fig. 5-13. The circuit generates a 

SYMVALID signal if the REF[A,B] matches SYM[A,B] or the inverse, which is out 

of phase by 180°. When SYMVALID is high and REFINC goes high, DATA and 
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VALID are registered into their respective flip-flops. ACK going high will clear the 

valid signal.  
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Fig. 5-13 RX DATA Circuit 
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5.3.4 RX REF Circuit 

The purpose of the RX REF circuit is to generate a signal which signifies that the 

reference has incremented around 90° (same as incrementing in gray code). The 

instinctive way of doing this is to compare the current reference with the old reference 

and then generate a signal if it is incremented. If we define REFINC as the signal 

which signifies that the reference has incremented [A,B] as the current reference and 

[OA,OB] as the old reference then the truth table for REFINC is shown in Fig. 5-14. 

Fig. 5-14 Truth Table for REFINC 

A B  OA OB  REFINC 
0 0  0 0  0 
0 0  0 1  0 
0 0  1 0  1 
0 0  1 1  0 
0 1  0 0  1 
0 1  0 1  0 
0 1  1 0  0 
0 1  1 1  0 
1 0  0 0  0 
1 0  0 1  0 
1 0  1 0  0 
1 0  1 1  1 
1 1  0 0  0 
1 1  0 1  1 
1 1  1 0  0 
1 1  1 1  0 

 

From the truth table we obtain the sum of products Boolean equation for REFINC: 

REFINC = A.B.OA.OB + A.B.OA.OB + A.B.OA.OB + A.B.OA.OB 

Which further reduces to: 

REFINC =         A.OB.(B⊕OA)            +           A.OB.(B⊕OA) 

REFINC =                                 A⊕OB . B⊕OA 

 

The circuitry consists of 2x flip-flops, 2x XOR gates, 1x Inverter and 1x AND gate. 

The flip-flops functions are to hold the old reference and the remaining gates perform 

the function of detecting the current reference is incremented. The complete RX REF 

circuit is shown in Fig. 5-15. A further signal is introduced called SYMVALID. This 
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signal goes high when the RX DATA circuit has found that the symbol it has received 

is valid. When SYMVALID goes high the current reference, REF[A,B], is registered 

into OLD[A,B] for comparison on the next transfer and REFINC therefore goes low. 
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Fig. 5-15 RX REF Circuit 
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5.4. Resilience 

Although the link is resilient to transient faults it is not totally immune from them. An 

example is given in Fig. 5-16 which shows that under certain conditions invalid data 

could be latched out on the receiver end. Examining Fig. 5-13 and Fig. 5-15 we can 

show the normal sequence of events when a valid reference and data symbol arrives at 

the receiver end, Fig. 5-16(a). The valid data symbol (SYM[A,B]) and reference 

(REF[A,B]) generates the SYMVALID which combined with REFINC through an 

‘and’ gate generates the signal to latch SYMA xor REFA onto the DATA output. 

Provided that no transients affect or corrupt SYMA xor REFA before it is latched into 

the flip-flop then valid data is obtained. Thus the input to the flip-flop must remain 

stable during its setup time period. Fig. 5-16(b) shows what happens if transients 

occur within the setup time of the flip-flop which latches DATA. The transient ripples 

through and corrupts SYMA xor REFA causing invalid data to be latched onto the 

DATA output. 
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Fig. 5-16 RX DATA timing 

The setup time of the flip-flop used is approximately 125 ps nominal which 

can be obtained from the data sheet (ST CORE9GPHS HCMOS9 data book [157]). 

With this it is possible to find out the probability if the data being corrupted if a 

transient fault does occur. Define Tw as the transient width, tperiod as the inverse of the 

operating frequency and FFsu as the flip-flop setup time. Assuming that the transient is 
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caused by the environment, such as particles and that the time it affects the circuit is 

completely random and can assume a uniform distribution of the transient occurring 

in tperiod it is possible to use the following formula to predict the probability that data 

will be corrupted. 

period

suw

t

FFT
corruptionP

+
=)(  

Using a FFsu of 125 ps the probability of the data being corrupted can be 

shown if a single transient occurs on one of the wire pairs and while data is being 

transmitted. From this equation Fig. 5-17 was generated which shows the probability 

of corruption versus the operating frequency for transients widths of 100, 200, 300 

and 400 ps if a transient occurs. As can be seen for a given transient width the 

probability of corruption increases with frequency. For a given frequency it can be 

seen that the transient width also affect the probability of corruption. For example at 

1000 MHz the probability of corruption is approximately 0.23 if a 100 ps transient 

affects the symbol and rises to around 0.58 when the transient width increases  to 400 

ps. 
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Fig. 5-17 Probability of corruption for a single transient 
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5.5. Experimental Results 

To evaluate the resilience of the proposed link SpectreVerilog simulations were 

performed. The test bench scenario is shown in Fig. 5-18. The receiver and transmitter 

are circuit level designs. The driver and receiver (TB driver.v and TB receiver.v) are 

verilog modules which generate the appropriate handshaking for the asynchronous 

interfaces. The driver and receiver verilog modules use the handshake timings shown 

in Table 5-2 for Fig. 5-19 to Fig. 5-21. 

Table 5-2 Test bench handshake parameters 

Cycle Time Module 

DATAVALID to VALIDHIGH 1 ns TB driver.v 

ACKHIGH to VALIDLOW 1 ns TB driver.v 

VALIDHIGH to ACKHIGH 1 ns TB receiver.v 

VALIDLOW to ACKLOW 1 ns TB receiver.v 

 

The pulse stream generator (TB pulses.v) uses a single bit in a 10 bit LFSR 

operating at a certain frequency (~115 MHz in the case of Fig. 5-19 to Fig. 5-21) to 

generate several 300 ps wide pulses which are then XORed into the chosen signal. 

The output of the XOR will then have sporadic transients present within it. This can 

be spliced into any of the wires to provide a noisy or transient infected signal as 

required during simulation. If more than one wire is needed to have transients present 

then further pulse stream generators can be used with different LFSR starting seeds 

and frequencies as required. 
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Fig. 5-18 Test bench setup 

Fig. 5-19 shows the signal waveforms from simulation. As can be seen the 

transmitted data (TX DATA) is the same as the received data (RX DATA). Also note 

that REF[A,B] can clearly be seen incrementing through 00, 01, 11, 10, 00, … 
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SYM[A,B] can also be seen to be in-phase for DATAI=0 or 180°-phase for 

DATAI=1. Fig. 5-20 and Fig. 5-21 show transients on a SYM and REF wire 

respectively. Note that the received data (DATAO) is received correctly even though 

transients are corrupting one of the symbol or reference wires. 
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Fig. 5-19 Reference and symbol signalling 
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Fig. 5-20 Transients on a symbol wire 
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Fig. 5-21 Transients on a reference wire 

Fig. 5-22 shows transients on both symbols wires during the data transfer 

period. The handshaking timing was shortened to 300 ps for each of the parameters in 

Table 5-2 for this simulation and data pattern 0xFF00AAAAAA00FF was used. 

Again it can be seen that the output data matches the input data and is not corrupted. 
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Fig. 5-22 Transients on a SYM[A,B] pair 

5.5.1 Throughput and Latency 

To give an indication of the maximum operating frequency of the circuits 

handshaking parameters shown in Table 5-2 were all set to 0 with the exception of 

DATAVALID to VALIDHIGH  which was set to 300 ps to ensure that DATA was valid 
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before the VALID signal goes high. Running a simulation showed that 32 back to 

back transfers occurred in a time period of 30.3 ns. Thus a single transfer happens in 

0.95 ns, giving a theoretical operating frequency of 1.056 GHz. It is important to note 

that the actual operating frequency of a complete link would be lower than this as the 

handshaking timing would need to be based on the speed of the handshaking of the 

asynchronous circuitry interfacing to the link. To give insight of the extra latency 

introduced by the encoding and decoding the time from DATAI to DATAO in the 

simulated waveforms was obtained. The latency introduced by the circuitry is 0.8 ns. 

However, it should be noted that the latency in a physical implementation will be 

more than this as wire delays are introduced and need to be taken into consideration. 

5.5.2 Area Overhead 

Table 5-3 shows the area overhead of the circuits in the 0.12µm technology used to 

simulate the circuits. (ST core9gphs). The TX DATA and RX DATA modules are 

significantly larger then for the TX REF and RX REF modules. This is due to 

increased complexity to the data modules which need to compared against the 

reference in order to generate their outputs. The extra overhead per bit is 409.49 µm
2
 

and the overhead of the reference is 262.24 µm
2
. For example, for an 8 bit wide link 

the total area overhead would be 3538.16 µm
2
 (262.24 µm

2
 + 8*409.49 µm

2
). Also 

shown is estimated area of the multiple rail phase encoding scheme [114] which also 

offers transient resilience but the complexity of the circuit does not have linear growth 

as the number of bits increase, the estimation of the circuitry is shown in more detail 

in Appendix E. For a 1 bit link multiple rail phase encoding does offer an advantage 

in terms of area, but for 8 bits the area has ballooned considerably to 55435.99 µm
2
 

due to some of the circuitry growing squarely in size. 

Table 5-3 Area Overhead of Links (µm
2
) 

Circuit 1 bit 8 bit 16 bit 

TX DATA 215.84 1726.72 3453.44 

RX DATA 193.65 1549.20 3098.40 

TX REF 137.17 137.17 137.17 

RX REF 125.07 125.07 125.07 

Proposed Total 671.73 3538.16 6814.08 

    

Multiple Rail Phase Encoding[114] 195.67 55435.99 - 
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5.5.3 Power Consumption 

To give insight into the average power consumption within the various circuit 

modules the data pattern 0xFF00AAAAAA00FF was sent bit serially from the test 

bench driver to the circuit. The breakdown of the power used in the four circuit 

modules is shown in Table 5-4. The power was obtained from a SpectreVerilog 

simulation by taking the average of the supply voltage multiplied by the current into 

each circuit module over the simulation run time. The total dynamic power for the 

DATA modules is 199.47 µW. The simulation run time was 100 ns, by multiplying 

the power by the simulation run time the energy used to transmit the data can be 

obtained. Multiplying the power by the time (199.47 µW × 100 ns) gives an 

approximate energy usage of 0.0199 pJ to transfer the whole 56 bit data pattern, 

dividing this by 56 gives an energy per bit  of 356 fJ/bit. The REF modules power is 

85.66 µW giving an energy usage of 0.0086 pJ to transfer the data pattern. The energy 

per data transfer is 153 fJ. For example, for an 8 bit wide link the energy for each data 

transfer is 3001 fJ (153 fJ + 8*356 fJ). 

Table 5-4 Dynamic and Static Average Power (µW) 

Circuit Power 

(dynamic) 

Power 

(static) 

Power 

(total) 

TX DATA 91.72 0.72 92.47 

TX REF 41.87 0.47 42.34 

RX DATA 106.26 0.74 107.00 

RX REF 43.00 0.32 43.32 

 

Examining Table 5-4 it is shown that the RX DATA circuit (Section 5.3.3) consumes 

the most power of 107 µW. This is because the RX DATA circuit is the most complex 

relative to the three other circuit modules with the largest gate count. Examining TX 

REF and RX REF circuit modules it is shown that the RX REF consumes more 

dynamic power than TX REF (43 µW for RX REF and 41.87 µW for TX REF). 

However, static power for RX REF is lower than TX REF (0.32 µW for RX REF and 

0.47 µW for TX REF) suggesting that the switching activity for TX REF is lower than 

RX REF but the static power is slightly more for TX REF due to higher number of 

gates used in the circuit module. 
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5.5.4 Limits of Resilience 

In order to show how corruption of the data can occur the test bench simulation was 

run with a transient pulse T that was XOR’d with one of the symbols wires S. The 

frequency or repetition rate of the transients was slightly slower that that of the 

symbol rate in order that the transient would sweep through and corrupt the symbols 

at different points. Fig. 5-23 and Fig. 5-24 shows how the transient affected symbol 

wire (S XOR T) leads to a corrupted DATAOUT. Examining Fig. 5-23 we can see 

that on the corrupted symbol wire (S XOR T) the transient slowly bleeds into the 

rising edge of the symbol causing it to go to logic 0. At a certain point shown in the 

waveforms the symbol is low and gets caught in setup and hold time of the flip-flip 

which provides DATAOUT based on the corrupted symbol wire. If the setup and hold 

time is violated the DATAOUT is inversed as the decoding is basically SYMA ⊕ 

REFA (Section 5.3.2) hence DATAOUT is logic 0 when it should be logic 1. Fig. 

5-24 shows the situation where the transient bleeds into the falling edge of the symbol 

wire, in this situation the DATAOUT is now at logic 1 instead of being at logic 0. 

DATAOUT 

S 

T 

S xor T 

 
Fig. 5-23 Corruption of the Data on positive symbol edge 
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DATAOUT 

S 

T 

S xor T 

 
Fig. 5-24 Corruption of the Data on negative symbol edge 

To show that the transient pulse width has an effect on the corruption the transient 

width (Tw) was varied between 100 and 400 ps to show the effect on DATAOUT. 

Fig. 5-25 shows the effect on DATAOUT, as can be seen when the transient width is 

small (Tw = 100 ps) the amount of times DATAOUT out is corrupted and does not 

change is small. When the transient width is increased the amount of times 

DATAOUT is corrupted becomes larger, the gap or period of time that DATAOUT 

stays at logic 0 or logic 1 is increased. 

 Tw = 100 ps Tw = 200 ps 

Tw = 300 ps Tw = 400 ps 

DATAOUT 

DATAOUT 

DATAOUT 

DATAOUT 

 
Fig. 5-25 Example corruption of data for various transient widths 
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To further verify the probability of a single event transient corrupting the data and to 

provide evidence that the estimated probability of corruption in Fig. 5-17 is 

reasonable, further simulation was performed which sweeps the a transient through 

the symbol in order to corrupt the data. A series of 300 bits of alternating 1’s and 0’s 

were sent across the link and one of the symbol wires (SYMA) had a transient pulse 

superimposed on it by use of an XOR gate to corrupt the data seen at the input to the 

flip-flop in the RX DATA circuit (marked X in Fig. 5-16). The repetition rate of the 

transient was 555 MHz, this was chosen to be of a similar frequency to the rate at 

which the symbol changes (526 Msym/s) in order that the transient affects each 

symbol at a different position over the period it takes to transmit the 300 bits. Fig. 

5-26 shows the calculated and simulated probability of a bit error occurring with 

transient widths of 100 to 600 ps. The calculated values were obtained by using the 

equation from Section 5.4: 

period

suw

t

FFT
corruptionP

+
=)(  

The flip-flop setup time (FFsu) was 125 ps and the time period (tperiod) was 1.901 ns 

(1/526×10
6
), the probability of corruption was obtained for transient widths (Tw) of 

100 to 600 ps. The simulated values were obtained from by sweeping a transient 

through the symbols and counting the number of bits in error. The transient was 

injected into the circuit by use of an XOR gate. One of the symbol wires from the 

transmitter was fed into one XOR input, the other input was connected to a pulse 

generator. The output of the XOR gate was then connected to the input symbol wire 

on the receiver. As can be seen the trend of the curve is similar to calculated, but 

slightly lower offset. This could be due to the fact that in simulation even if the 

transient affects the symbol enough to encroach into the setup time it may still not be 

enough to cause a violation within the analogue simulation. For a transient width of 

100 ps the simulation shows that approximately 6% of the time the received data was 

corrupted. Increasing the transient width to 600 ps increased the rate of data 

corruption to approximately 34%. This level of corruption is to be expected as a 

transient width of 600 ps is around 1/3
rd

 of the total time period of the symbol which 

is 1.901 ns and will therefore lead to corrupt data 1/3
rd

 of the time. 
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Fig. 5-26 Transient width vs Bit Error for 300 data bits 
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5.6. Wire Buffering 

The work in this chapter has concentrated on the coding method and the associated 

circuitry. For long links wire buffers may be needed to segment the long wire into 

shorter sections and allow a pipelined structure to be used. To give an indication of 

how the wire buffers could be implemented this section describes two possible 

implementations of wire buffers and discusses the complexity. The choice of structure 

for wire buffers could range from simple to more complex depending on the needs of 

the link. For example several buffers could be placed along the length of the wire but 

this would mean the return acknowledgement signal would have to traverse the whole 

length of the link back before the next piece of data is transferred, Fig. 5-27. 
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Fig. 5-27 Simple Wire Buffers 

A better approach would be to register or latch the signals along the length of the 

wire, Fig. 5-28. This would require some sort of memory element or flip flop with 

some associated handshaking circuitry.  
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Fig. 5-28 Latched or Registered Wire buffers 
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If the relative timing between SYM[A,B] and REF[A,B] is known to be close at the 

transmitter we could in theory obtaining the acknowledgement handshaking by 

observing that REF[A,B] has changed and just registering the SYM[A,B] 

independently. This would cause the link not to be truly delay insensitive anymore 

since if the SYM[A,B] were generated faster or slower than their associated 

REF[A,B] signal you could potentially have a situation where the wrong SYM was 

trying to be matched with the REF at the receiver end. An example of such a wire 

buffer is shown in Fig. 5-29. Both the SYM and REF signals are registered into a flip-

flop by XORing the signal with a delayed version of itself (the two invertors) to 

generate the flip-flop clock or latch signal. The ACK out is generated by ORing the 

two clock or latch signals of the REF[A,B]. This sets the S-R flip-flop which is fed 

into a C-Element (Fig. 4-5). The C-Element is then set and the ACK out signal set 

high. The ACK out also resets the S-R flip-flop and the C-Element now waits for an 

acknowledgement from the next wire buffer in order to set ACK out low again and 

repeat the process. 
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Fig. 5-29 Wire Buffer 

This wire buffer would allow pipelining of the signals but it could also propagate 

transient faults along the link since the clocking or latching of the signals is done 

when a change is detected, it is effectively a ‘dumb’ latching mechanism. In order to 

get around this and also make the link back to a true delay insensitive scheme we need 
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to introduce the circuitry which matches the SYM and REF signals and produces a 

valid output when the match is detected. Fig. 5-30 shows an improved wire buffer 

which generates the clocking or latching signal when there is a valid match between 

the SYM and REF signal shown in the shaded area. It is important to note however 

that this shaded circuitry will need to be replicated n times for an n bit wide link and 

then gated together to form a single latching signal. The clocking or latching signal is 

converted to a pulse to set the flip-flip which triggers the C-Element and handshaking 

the same as the previous wire buffer shown. This improved wire buffer should be 

truly delay insensitive since the signals are only latched when a valid match between 

the SYM and REF signals exists. The latency of the handshaking could increase as the 

number of bits n increases since the matching circuitry would have to be gated 

together to form a single valid signal, this could introduce another layer or two of 

gates into the handshaking feedback timing. 
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Fig. 5-30 Improved Wire Buffer 

A selection of possible wire buffers has been presented, careful consideration as to the 

needs of delay insensitivity, throughput and complexity of the wire buffer needs to be 

performed in order that an appropriate choice can be made. 
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5.7. Concluding Remarks 

This chapter has proposed and demonstrated an asynchronous link technique that has 

resilience to soft-errors which is achieved by the use of a novel coding technique. The 

proposed coding technique has been applied to an asynchronous NoC link. The 

coding technique is based on transmitting symbols for each bit and a common 

reference signal. The relationship between the data symbols and a reference is 

compared in order to decode the data. A single error on one of the symbols can be 

detected if there is a mismatch between the symbol and the reference. When 

compared to dual-rail the proposed coding increases the resilience of the link to soft-

errors at the expense of extra circuitry required to encoded and decode the symbols. 

The proposed link uses a similar number of wires as dual-rail, (⇒ 2) and offers a 

similar number of transitions per bit as 1-of-4 encoding (⇒ 1). The link was designed 

and simulated in 0.12µm technology. 

The proposed link has an area overhead of 409.49 µm
2
 per bit and an 

approximate energy usage of 356 fJ/bit. Possible implementations of two wire buffers 

for the link have been discussed and examples given, one type of wire buffer could be 

used if the relative timing between the reference and the symbols could be kept close 

or the alternative wire buffer which checks the validity of the symbol and reference 

before buffering the symbol and reference. Simulation of the link using the proposed 

coding was carried out using gate level simulation in the analog environment in 

SpectreVerilog. The maximum operating frequency of the coding and decoding 

circuitry was found to be 1.056 GHz although in practice this would be slower due 

handshake timing of the surrounding asynchronous circuitry. 

It is hoped that the proposed link makes a valuable contribution to the area of 

efficient and reliable NoC architecture for multi-processor SoC. 
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Chapter 6. Conclusions and Future Work 

It is likely that the demand for multiprocessor system on-chip will continue to 

increase as more IP cores are integrated onto a single chip. With the increasing 

number of cores new communication mechanisms will be needed to address the 

scalability of the on-chip communication architecture. Network-on-chip is emerging 

as a potential communication structure that addresses the scalability issue using a 

packet based approach to communication. The network-on-chip provides IP cores the 

means to communicate with each other via a number of on-chip routers and point to 

point links. The work presented in this thesis focuses on potential techniques to 

improve the point to point links for network-on-chip. The four main areas investigated 

in this thesis have been: 

(a) Bit-Serial Compression using Unused Significant Bit Removal has been 

explored for NoC links. The compression makes use of exploiting data which 

does not have rapidly changing bits in the most significant bit positions. 

Various data examples have been applied to the compression scheme and the 

reduction in data size given. 

(b) Asynchronous Serialized NoC Links have been shown that wire reduction can 

be achieved through serialization and power reduced and clocking simplified 

through asynchronous techniques. Although there is extra overhead for the 

synchronous to asynchronous conversion circuitry and serializers the wire area 

savings are greater than the extra overhead, especially for longer wires. 

(c) Resilient Asynchronous Links have been explored and a new data coding 

scheme has been demonstrated which has resilience to single event transient 

faults. The coding scheme uses a similar amount of wires as dual-rail 

techniques that are commonly used for asynchronous circuits but in addition 

give resilience to transient errors. 

(d) Gate level design and experimental validation of the developed techniques 

have been carried out in order to verify the functionality and give indications 

of power, area and performance. 
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Section 6.1 summarises the main contributions made by the presented work and 

section 6.2 outlines possible future research directions which could further the work 

presented in this thesis. 

6.1. Conclusions 

Network-on-Chip is a current area of research that is gaining much attention in the 

system-on-chip world. The scalability offered by NoC for multi-core system means 

that NoC is rapidly gaining momentum as an alternative to traditional bus based 

communication mechanisms. The work presented in this thesis has focused on 

efficient NoC links using compression, serialization and asynchronous techniques as 

well as introducing resilience to transient errors. 

Chapter 3 has shown a simple but effective compression scheme for bit-serial 

communication which can be applied to bit-serial NoC links. The compression 

technique exploits similarities in the most significant bits in consecutive pieces of 

data. The compression scheme has been shown to reduce the amount of data that is 

transmitted across the link down to 49% of the original uncompressed size for picture 

data. While there is also a reduction in the number of transitions the compression 

scheme can be combined with a transition reduction scheme [103] to reduce the 

number of transitions further. The compression scheme is suitable for data where the 

most significant bits change more than the least significant bits. In situations where 

the LSBs change more than the MSBs a transformation of the data could be 

performed to swap the LSBs and MSBs around so that the compression scheme could 

still be used. For random data compression does not work and can result in expansion 

of the amount of data. Furthermore an algorithm was developed to allow dynamic 

block sizing of the amount of data to be compressed if a fixed block size solution was 

not required. 

Chapter 4 has proposed the use of asynchronous serialization of the NoC links 

as a means of reducing the number of wires and simplifying clocking. In our 

implementations the extra area overhead of the asynchronous circuitry compared to a 

typical synchronous link was 20%. However the number of wires was reduced by 

75% from 32 wires down to 8. The reduction in number of wires also allowed smaller 

wires buffers to be used allowing a reduction in power of up to 65% when 8 wire 

buffers are used on the NoC link. There are further benefits of reducing the number of 
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wires in addition to reducing the wire area, the number of metal to metal layer vias 

and cross talk could also be reduced. Validation of the circuits were carried out on 

FPGA to allow functional testing on hardware. The FPGA implementation was slower 

that the full custom gate simulations but it did allow functional validation of the 

circuit proposed on hardware and works as expected in theory. Performance of the 

link should be improved if full custom IC implementation is used. This chapter has 

shown potential use of serialization in the asynchronous domain and circuit 

implementations. A general idea from this chapter is the use of synchronous routers 

operating in the synchronous domain interfacing to asynchronous links. 

Chapter 5 has proposed a new data coding scheme for asynchronous NoC 

links. The coding scheme uses a similar number of wires per bit to existing schemes 

such as dual-rail but comes with the additional benefit of offering resilience to 

transient errors. The coding scheme has been shown to be resilient to transients 

although it can still be susceptible to a transient fault at the critical time when data is 

latched in the receiver and has been described and validated in simulation. Example 

circuits have been given to implement a link and could be further optimized to reduce 

the circuit size as the circuits presented were a first cut implementation to prove the 

functionality of the coding. It is hoped that this chapter has contributed a novel coding 

scheme that sits along side dual rail as a possible delay insensitive coding scheme 

with resilience to transient errors. 

The developed techniques and experimental validations contributed towards 

the current efforts undertaken by academia and industry worldwide targeting the 

development of efficient and reliable on-chip communication for NoC infrastructure 

expected to be employed in future multiprocessor SoC. Such systems will be needed 

to offer the required performance in modern multimedia applications that have limited 

battery life and require reliability. 
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6.2. Future Research 

Chapter 4 discussed serialized asynchronous NoC links and validation on FPGA. 

Chapter 5 provided a promising technique which increases the reliability of NoC links 

in the presence of soft-errors. As the coding was a new idea towards the end of the 

work there is further possibilities to build on this. Further research to build on the 

research in this thesis could consists of the following areas: 

6.2.1 Custom ASIC Validation 

The FPGA validation in Chapter 4 of the serialized asynchronous links provided 

functional validation of the link but the performance on FPGA was much slower. A 

full IC design using standard gates and a number of custom gates for cells such as C-

Elements would provide functional validation and confidence of higher performance 

throughput. The IC could also incorporate a second copy of the NoC link which uses 

the transient resilient technique discussed in chapter 5 in order to validate the 

reliability on-chip. 

6.2.2 Symbol Exploration 

In chapter 5, the transient resilient links, the coding uses 2 wires per bit and 2 wires 

for the reference. The symbols can be 00, 01, 11 and 10. This allows detection of a 

single bit error on one of the pairs of wires but it cannot be corrected it since the 

hamming distance to a valid symbol is equally the same. For example if the reference 

is 00 and a symbol 00 is sent and a single bit error or transient affects one of the 

symbol wires 10 or 01 could be received. The symbol is invalid when comparing it to 

the reference as it is 90° out of phase, but is impossible to tell if it should be 00 or 11 

since both of these are valid symbols, Fig. 6-1. In the proposed scheme the receiver 

circuit will stall the acknowledgement until the transient error goes away or if the 

transient hits at a certain point in time it could latch in invalid data. 

 

00 01 

10 11 

00 01 

10 11 

 
Fig. 6-1 Possible states for 2 wire symbols 
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One possible way around this would be to increase the number of wires for each 

symbol and increasing the hamming distance such that if a single bit error occurs the 

symbol is ‘closer’ in terms of hamming distance to one of the possible valid symbols. 

This would allow valid data to be received even if there are single bit errors present in 

the symbols. The negatives aspects of this would be the increased amount of wires 

and also the amount of transitions could increase as going from symbol to symbol 

could require more than 1 wire to change state to maintain hamming distance greater 

than 1. The resulting coding would effectively go from 4 possible symbols to 8. 

Consider a scheme using 3 wires per symbol which would give us 8 possible symbols 

to use. The scheme can be easily visualized as a cube with the states at each corner, 

Fig. 6-2. If symbol is in phase to the reference it will be the same. If the symbol is out 

of phase by 180° then the valid symbol will be on the opposite corner. If a reference 

of 111 is used and a symbol 111 is sent but there is a single bit error the received 

symbol will be 110, 101 or 011. As these three possible symbols in error are closer in 

hamming distance to 111 as opposed to 000 we can reasonably assume that the 

original uncorrupted symbol is likely to be 111. 
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Fig. 6-2 Coding using 3 wires per Symbol 

It is difficult to say how the complexity of the scheme would increase and the 

problems associated with increasing the number of symbol but this could be one 

possible future research direction for this particular topic. Certainly it can be seen that 

going from one symbol to the opposite side of the cube to represent a change in data 

would result in all 3 bits of the symbol changing. 
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6.2.3 Pair Wise Data and Reference 

In the original scheme for the transient resilient links a single reference was partnered 

with several symbols. It may be advantageous to not have an exclusive reference 

signal but instead have two pair-wise symbols and use themselves to detect validity. 

Consider Fig. 6-3. A master symbol and a slave symbol (prefixed with M and S 

respectively in the figure) is used to represent two bits of data. The master symbol 

would rotate 90° anti-clockwise to signify a 1 and 90° clockwise to signify a 0 for the 

first data bit. The slave would either be in-phase to signify the second bit is the same 

or 180° out of phase to signify the second bit is the opposite. In the example shown in 

Fig. 6-3 the master symbol (M_SYMBOL) rotates anti-clockwise from 00 to 01 

signifying the first bit (DATA[0])is a 1 and the slave symbol (S_SYMBOL) is in-

phase with it so the second data bit (DATA[1]) is the same and therefore is also a 1. 

So the resulting data is 00. Next the master symbol rotates anti-clockwise from 01 to 

11 and the slave symbol is 180° out of phase so the data is 01. Finally the master 

symbol rotates clockwise so the first data bit (DATA[0]) is now a 0, and the slave is 

in-phase, so the data is 00. 
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Fig. 6-3 Pair-Wise Symbols 

This pair-wise scheme removes the need for an explicit reference and several of these 

pair-wise groups can be used together for data several bits wide However it may 

increase the complexity to the circuitry since the direction of rotation needs to be 

monitored to extract the data. The validity is still kept intact as both symbols are still 

in-phase or 180° out of phase with each other and as such single bit errors can still be 

detected. However, the single bit error can only occur on one of the wires in the pair-

wise group. Further research is necessary to assess the impact on circuit complexity 

and robustness of using such a scheme. 
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Appendix A  VHDL Modules for Compression 

An overview of the VHDL modules and there connectivity to the test bench for the 

standard bit-serial link and the bit serial link using the proposed compression scheme 

is given in Fig. A-1 and Fig. A-2 respectively. 
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Fig. A-1 Top level RTL Serial Link 
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Fig. A-2 Top Level RTL partitioning, USBR 
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Appendix B  MPEG Background Information 

This section provides background details on MPEG decoding which is used as the 

case study for the results in Chapter 3. It is not intended as a complete description of 

MPEG but just enough to justify the concept of frame or picture buffering in a MPEG 

decoder. Further information on MPEG video decoding can be found in ISO 11172-2 

and ISO 13818-2. 

MPEG compression has become the current de-facto standard in digital video 

storage. MPEG was developed to allow compressed video to be stored on digital 

formats such as compact discs, digital versatile disc (DVDs) and hard drives. MPEG 

utilises a block based compression scheme. The picture is divided up into a number of 

macro-blocks horizontally and vertically. The information which makes up these 

macro-blocks are then pushed through cosine transformation to turn the data into a 

frequency representation of the image, just like a Fourier transform turns a signal in to 

its frequency components. The transformed data is then quantised to try and zero out a 

lot of the high frequency information which our eyes do not really notice. The 

quantized data is then compressed using Variable length coding (Huffman) since the 

quantised data will probably contain long runs of 0’s in the high frequency areas. 

The MPEG video stream has a layered structure consisting of several layers. 

The highest layer is a video sequence and sequence header. The next layer down is a 

group of pictures followed by picture, slice, macro-block and finally the block layer. 

The block layer is the lowest layer which is effectively an 8x8 data matrix which 

represents a small portion of the visual image. Fig. B-1 shows an overview of the 

layered bit-stream in more detail. Each layer effectively wraps around the next lower 

level layer and contains information and data applicable to the current layer. 

Complex system on chip devices are integrated more and more cores onto a 

single die. These multi-core solutions in System on Chip and Network on Chip the 

data that cores work with is often non-random. Certain application such as video 

decoding will decode the picture data from the run length encoding bit-stream and 

then need to store the picture data in memory to allow out of order picture decoding. 

It is preferable to make sure that data stored in memory should be byte aligned. Byte 

alignment helps keep coherency between other devices which share the same memory 

and access the same data. In MPEG applications after the Huffman decoding and 
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IDCT the picture data will be buffered in memory since the decoded picture order will 

be different to the displayed order and certain picture types require past and future 

references. 

 group_of_pictures sequence_header group_of_pictures sequence_start sequence_end 

picture picture picture picture gop_start ext user picture 

picture_start picture_type ext user slice slice slice slice slice 

slice_start macroblock macroblock macroblock macroblock macroblock macroblock 
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mb_type motion 
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block block block block block block 

video_sequence 

group_of_pictures 
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slice 

macroblock 

 
Fig. B-1 Layered Hierarchy of the Video Sequence 

Typically in a MPEG video stream you will have Intra (I), Predicted (P), and 

Bi-directional (B) coded pictures. 

Decoded order: I – P – B – B – B – P – B – B – B 

Displayed order: I – B – B – B – P – B – B – B – P 

Assume the data is stored in the YUV colour space format[158] and the data 

are values from 0 to 255. Using 10 bits to store fixed point data with this magnitude 

should give ±1 LSB after the colour space transformation to 8 bit RGB colour space. 

For decoding and subsequent displaying there should be enough memory for at least 3 

pictures worth of data. Memory would be needed for Past, Future and Current. If we 

also assume we need at least 3 pictures worth of buffer space then we can calculate 

how much memory we need to have for the decoding process. For each macro-block 

we require 6 * 64 * 16 = 6144 bits. A typical MPEG1 picture is 330 macro-blocks. 

MPEG1 therefore needs 330 * 6144 bits ≈ 2 Mbit per picture, so to buffer 3 pictures 

we need approximately 6 Mbit for MPEG1. As can be seen a large amount of MPEG 

decoding is the buffering of data into memory. If 10 bit signed data is stored in a byte 

aligned memory space then each data value will occupy 16 bits. Clearly the MSBs 

will not be used and are somewhat redundant. Also because visual pictures do not 

have rapidly changing colour information the data can often be similar within a block. 
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Fig. B-2 shows the data flow, in an Intra-coded picture the data will come 

from the IDCT and get written directly to the buffer since all the macro-blocks will be 

intra-coded. In predicted and bi-directional pictures the data could directly get written 

into memory if the block is intra-coded or get passed to a motion compensation unit 

where motion vectors are used to obtain a prediction macro-block which results in the 

reading of data from the past or future picture buffers which get added and the result 

stored back into a buffer. From this it can be seen that the buffering of pictures 

represents the most substantial bandwidth usage in a video decoding system. 

Anything that can be done to reduce power or improve bandwidth in this application 

would be a great benefit. To reduce the number of bits or transitions some sort of 

encoding at the source and decoding at the destination must be done. Provided that the 

power used to encode and decode the data is less than the power saved in transferring 

the encoded data through the communication path then an overall power saving is 

achieved. The encoding could be profiled for different applications. For instance, the 

data that is transferred from an IDCT core to a memory, the four luminance blocks in 

a macro-block would be very similar if there is not much change within that macro-

block. 

 

IDCT MEM MC 

2 3 

1 

1. Intra-coded direct write. 
 
2. Predictive-coded write to 

motion compensation. 
 
3. Read data to reconstruct a 

prediction macroblock. 
 
4. Write result back into 

buffer. 4 

 
Fig. B-2 Part of the MPEG Video Decoding Structure 

It can be seen in Fig. B-3 that the blocks with the luminance information have 

a low of changing data since the outline of the bottom of the tyre can be seen clearly 

and is in contrast to the background. The lower luminance blocks also show the top of 

the wall which is in contrast too. Fig. B-4 shows the macro-block for part of the wall. 

Since there are no sharply contrasting features in this macro-block the data values do 

not change that much either within the block or from block to block. It can be seen 

that in an application such as MPEG there are a reasonable amount of redundant bits 

in macro-blocks, infact that is what MPEG coding is used for, to compress video 
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information. However, when the variable length decoding and IDCT operations have 

been performed and the data is being moved around to different cores and memory the 

data is now longer in a compressed format. More likely it will be stored as values 

representing the YUV colour information. Usually this reading and writing to memory 

is over some form of communication link. If a serial link is used then the compression 

technique that removes redundant bits in a block could be used. 

 
Fig. B-3 Luminance and Chrominance Blocks of Macro-block, tyre 

 
Fig. B-4 Luminance and Chrominance Blocks of Macro-block, Wall 

Since the data in MPEG blocks is often similar for macro-blocks that do not 

contain a lot of detail then there is some argument for the use of a simple compression 

technique when data is being read and written to memory. Furthermore if the data 

precision is less than the byte alignment used in memory then gains can be had for all 

blocks since there will be redundant MSBs anyway. 

An example of byte alignment is shown in Fig. B-5. Assume the MPEG block 

data is 10 bit unsigned data. This means the data range will be 0x000 to 0x3FF. 

However, data should always be aligned to the nearest byte boundary. One could 

argue that the data could be packed together bitwise as shown in Fig. B-5(B), but this 

makes data transfer more difficult since processors and DMAs usually operate on byte 

addressing. The high cost of unpacking and repacking the data bitwise in software 
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would be prohibitive. A software engineer would simply want to read data then use it. 

If bit packing was used the software would have to start performing shifts and logical 

bitwise operations in order to get the data into a format it could be used in which 

burns MIPS and is therefore generally unacceptable. 

 

 

00000011 0x0000 

0x0004 

0x0008 

1st Data 2nd Data 

Address 

11111111 00000011 00000001 

……..    

    

 

11111111 0x0000 

0x0004 

0x0008 

1st Data 2nd Data 

Address 

11110000 0001…. …….. 

    

    

(A) (B) 
 

Fig. B-5 Byte aligned and bit-packed for 10 bit numbers stored in memory 
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Appendix C  Reducing Wire Delay 

This section explains the reasoning why buffered pipelined wires are used in 

NoC type applications where point-to-point links may travel relatively long distances 

across chip. Wire delay does not grow linearly with length, it grows squarely as 

shown in Fig. C-1. This means the wire delay for long global interconnect may be 

considerable. 

 Not real data, 

just a picture 

example 

length 

delay 

5 10 

2.5 

10 

delay of 2.5 

delay of 10 

 
Fig. C-1 Wire Delay 

Long wires present a problem, a solution to this is to segment the long wire 

with intermediate buffers if the a gate delay of a buffer is relatively small compared to 

the wire delay. Lets say a buffer has a delay of 1. Then by inserting the buffer into a 

wire of length 10 we split the length of wire into two 5 length segments separated by a 

buffer as shown in Fig. C-2. The segmentation of the wire helps linearise the delay 

with respect to the length. 

 Not real data, 

just a picture 

example 

length 

delay 

10 

6 

delay of 2.5 

delay of 1 

delay of 2.5 

 
Fig. C-2 Wire Delay (Buffered) 

It is perhaps useful to see why segmented or buffered wires are used in the 

point-to-point links of network-on-chip in order to see a direction on how to further 

improve. If we take a simple request acknowledge cycle, ignoring things like effects 

of crosstalk on delay for the moment, we can see a very basic but typical 

asynchronous cycle, Fig. C-3. At the bare minimum the cycle time in order for an 

asynchronous transmitter is based on the time it takes for data (and possibly bundled 
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control) to arrive at the receiver. The receiver then has to say when this is valid and 

finally send an acknowledgement back to the transmitter to say it is okay to go onto 

the next transfer. The transfer cycle needs one complete transfer sent and 

acknowledgement received. If the wire length is long then the wire delay would 

dominate the cycle time. 

 

ACK 

DATA 

Transmitter Receiver 

Wire length 

Logic Delay 

 
Fig. C-3 Basic Asynchronous Cycle 

The wire delay can be alleviated by adding simple buffers along the length of 

the wire, Fig. C-4. Since the shorter wire segments with intermediate buffers can 

reduce wiring delay dramatically the request / acknowledge cycle time would be 

reduced. 

 

ACK 

DATA 

Transmitter Receiver 

Wire length 

Logic Delay 

 
Fig. C-4 Buffered Wires 

It is possible to use latched buffers along the length of the wire, Fig. C-5. This 

is what we have done in our asynchronous solution in Chapter 4. With this approach 

the cycle time is based on the data sent to the first registered buffer and the 

acknowledgement back. The wire is also pipelined, meaning that different data items 

can occupy different stages along the wire which should give an increase in 

throughput compared to non-registered wire buffers. 

 

ACK 

DATA 
Transmitter Receiver 

Wire length 

Logic Delay 

 
Fig. C-5 Registered Buffered Wire 
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Appendix D  FPGA Design Flow 

Synchronous 
 

Functional 

Simulation 

(Modelsim) 

 

Simulation 

Pass? 

HDL entry 

Synthesis 

Place & Route 

(XST) 

 

Static Timing 

Analysis 

Generate 

Programming 

File (ISE) 

Download to 

FPGA 

Y 

N 

PASS 

FAIL 

Constraints 

 
Fig. D-1 Synchronous FPGA Design Flow 
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Asynchronous 
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Fig. D-2 Asynchronous FPGA Design Flow 
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Appendix E  Area Estimation of Phase Encoding 

Estimation of the area for Multiple-Rail phase encoding is not easily done. This 

section estimate the gates for 1 bit, 8 bit and 16 bit wide implementations of a 

multiple rail phase encoded link and should be read in conjunction with section VII of 

the work in [114]. The link is divided into four main parts; matrix encoder, delay 

array, mutex array and decoding array, Fig. E-1. The matrix encoder takes the input 

data and then generates outputs which correspond to which tri-state buffer should be 

enable on each wire to drive it such that the correct delay is introduced. The delay 

array consist of an array of tri-state buffers and delay elements (which we assume are 

two invertors) which provides the phase delay. The mutex array arbitrates the order of 

the received signals on the wires by comparing the arrival time of the edges of the 

signals. The decoding array take the arrival time information and provides the 

necessary data output. The m bit wide data is sent over a link with n wires. The 

relationship between the number of bits and the number of wires needed to support 

the necessary amount of symbols is: 

!2)!1( nn
m <<− , where m is the data bit width. 

 

 Matrix 
Encoder 

Delay 
Array 

Mutex 
Array 

Decoding 
Array 

DATA DATA 

m m n 
 

Fig. E-1 Multiple Rail Phase Encoding Link 

For 1 bit wide data the link will use 2 wires and can be implemented with the gates 

shown in Fig. E-2. 

Matrix Encoder 

 Matrix Encoder Outputs 

DATA 11 12 21 22 

0 1  0 0  1 

1 0  1 1  0 

 

2x INV 

 

Mutex Array 

2x C-Element 

2x AND2 

3x OR2 

2x NAND2 

2x INV 

 

Delay Array 

4x INV 

4x TBUF 

Decoding Array 

nil 

 

Fig. E-2 Gate Count for 1 Bit Wide M-Rail phase encoding 
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For 8 bit wide data the number of wires is 6 and the gate estimate is more difficult, 

some discussion about estimation for the link is as follows: 

Matrix Encoder 
Only a small section of the matrix encoder is shown in Fig. E-3 since there are far too 

many entries to feasibly show. 

 Matrix Encoder Outputs 

DATA 11 12 13 14 15 16 21 22 23 24 25 26 31 32 … 66 

00000000 1  0  0  0  0  0 0  1  0  0  0  0 0  0  … 

00000001 1  0  0  0  0  0 0  0  1  0  0  0 0  0  … 

00000010 1  0  0  0  0  0 0  0  0  1  0  0 0  0  … 

00000011 0  1  0  0  0  0 1  0  0  0  0  0 0  0  … 

… … … … 

Fig. E-3 Partial Matrix Encoder 

We can make some estimates based on the fact that we know that each group of 

outputs (11-16, 21-26, … 61-66) will only have one output active which controls it’s 

associated tri-state buffer. Lets us assume that each output is active for 1/6 of the 

amount DATA inputs, so 1/6 of the time wire 1 will switch first, another 1/6 of the 

time wire 2 will switch first etc… Each matrix encoder output can be realised as a 

sum of products. 

Each product term would be the 8 data inputs ANDed together with four of the 

DATA inputs inverted on average. If each matrix encoder output is active for 1/6 of 

the 256 possible DATA inputs then we have 256/6 = 43 sums of 8 product terms per 

matrix encoder output. The sum of products could be optimized by logic reduction to 

get the smallest solution, however without knowing the actual Boolean equations it is 

difficult to say the smallest solution size. Let us assume we can on average shrink the 

sum of products to a more manageable 8 sums of 4 products, with each product using 

2 invertors and 6x6 = 36 matrix encoder outputs the cost of the matrix encoder would 

be: 

36x (8x AND4) 

36x (16x INV) 

36x (2x OR4) 

36x (1x OR2) 
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Delay Array 
Looking at Fig. 9 in [114] it is clear that for a 6 wire solution there would need to be 

36 tri-state buffers and 5x5 = 25 delay elements, assuming we use 2x INV for the 

delay elements the cost is: 

36x TBUF 

50x INV 

 

Mutex Array 
The mutex array is now just a 6x2 array of enhanced mutex elements, from section 

VII(B) of [114] the cost is: 

12x (2x C-Element) 

12x (2x AND2) 

12x (3x OR2) 

12x (2x NAND2) 

12x (2x INV) 

 

Decoding Array 
Looking at the structure in Fig. 10(b) in [114] we can need a 7 layer logic circuit for 

each DATA word output. The 7 layer logic circuit can be realise with 8x AND4 and 

6x AND2 gates. However, this has to be replicated 256 times, one for each DATA 

word output. The cost is: 

256x (8x AND4) 

256x (6x AND2) 

 

 

 

 

Totals 

The area totals are shown in Fig. E-4. A 16 bit wide link is not estimated since the 

size will spiral out of control for the decoding array. 
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Impl. Matrix 

Encoder 

Delay Array Mutex Array Decoding Array 

1 bit 2x INV 4x INV 

4x TBUF 

2x C-Element 

2x AND2 

3x OR2 

2x NAND2 

2x INV 

 

- 

Area 2x 6.052 4x 6.052 

4x 10.086 

2x 22.189 

2x 10.086 

3x 10.086 

2x 6.052 

2x 6.052 

- 

Area 

Totals 

12.104 64.552 119.016 - 

     

8 bit 36x (8x AND4) 

36x (16x INV) 

36x (2x OR4) 

36x (1x OR2) 

 

50x INV 

36x TBUF 

 

12x (2x C-Element) 

12x (2x AND2) 

12x (3x OR2) 

12x (2x NAND2) 

12x (2x INV) 

 

256x (8x AND4) 

256x (6x AND2) 

 

Area 36x (8x 14.120) 

36x (16x 6.052) 

36x (2x 14.120) 

36x (1x 10.086) 

50x 6.052 

36x 10.086 

12x( 2x 22.189) 

12x (2x 10.086) 

12x (3x 10.086) 

12x (2x 6.052) 

12x (2x 6.052) 

256x (8x 14.120) 

256x (6x 10.086) 

Area 

Totals 

8932.248 665.696 1428.192 44409.856 

     

16 bit - - - - 

Area - - - - 

Fig. E-4 Gate and Area Cost for 1 bit and 8 bit M-Rail Phase Encoding 
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