The University of Southampton
University of Southampton Institutional Repository

Population models of sperm-dependent parthenogenesis

Population models of sperm-dependent parthenogenesis
Population models of sperm-dependent parthenogenesis
Organisms that reproduce by sperm-dependent parthenogenesis are asexual clones that require sperm of a sexual host to initiate egg production, without the genome of the sperm contributing genetic information to the zygote. Although sperm-dependent parthenogenesis has some of the disadvantages of sex (requiring a mate) without the counterbalancing advantages (mixing of parental genotypes), it appears amongst a wide variety of species. We develop initial models for the density dependent dynamics of animal populations with sperm-dependent parthenogenesis (pseudogamy or gynogenesis), based on the known biology of the common Enchytraeid worm Lumbricillus lineatus. Its sperm-dependent parthenogenetic populations are reproductive parasites of the hermaphrodite sexual form. Our logistic models reveal two alternative requirements for coexistence at density-dependent equilibria: (i) If the two forms differ in competitive ability, the form with the lower intrinsic birth rate must be compensated by a more than proportionately lower competitive impact from the other, relative to intraspecific competition. (ii) If the two forms differ in their intrinsic capacity to exploit resources, the sperm-dependent parthenogen must be superior in this respect and must have a lower intrinsic birth rate. In general for crowded environments we expect a sperm-dependent parthenogen to compete strongly for limiting resources with the sexual sibling species. Its competitive impact is likely to be weakened by its genetic uniformity, however, and this may suffice to cancel any advantage of higher intrinsic growth rate obtained from reproductive investment only in egg production. We discuss likely thresholds of coexistence for other sperm-dependent parthenogens. The fish Poeciliopsis monacha-lucida likewise obtains an intrinsic growth advantage from reduced investment in male gametes, and so its persistence is likely to depend on it being a poor competitor. The planarian Schmidtea polychroa obtains no such intrinsic benefit because it produces fertile sperm, and its persistence may depend on superior resource exploitation.
competitive coexistence, cost of sex, interspecific competition, lotka–volterra competition coefficients, predator–prey
0022-5193
559-572
Schley, David
0d9ab113-6fb8-4d48-8c32-0241e41e5570
Doncaster, C. Patrick
0eff2f42-fa0a-4e35-b6ac-475ad3482047
Sluckin, Tim
8dbb6b08-7034-4ae2-aa65-6b80072202f6
Schley, David
0d9ab113-6fb8-4d48-8c32-0241e41e5570
Doncaster, C. Patrick
0eff2f42-fa0a-4e35-b6ac-475ad3482047
Sluckin, Tim
8dbb6b08-7034-4ae2-aa65-6b80072202f6

Schley, David, Doncaster, C. Patrick and Sluckin, Tim (2004) Population models of sperm-dependent parthenogenesis. Journal of Theoretical Biology, 229 (4), 559-572. (doi:10.1016/j.jtbi.2004.04.031).

Record type: Article

Abstract

Organisms that reproduce by sperm-dependent parthenogenesis are asexual clones that require sperm of a sexual host to initiate egg production, without the genome of the sperm contributing genetic information to the zygote. Although sperm-dependent parthenogenesis has some of the disadvantages of sex (requiring a mate) without the counterbalancing advantages (mixing of parental genotypes), it appears amongst a wide variety of species. We develop initial models for the density dependent dynamics of animal populations with sperm-dependent parthenogenesis (pseudogamy or gynogenesis), based on the known biology of the common Enchytraeid worm Lumbricillus lineatus. Its sperm-dependent parthenogenetic populations are reproductive parasites of the hermaphrodite sexual form. Our logistic models reveal two alternative requirements for coexistence at density-dependent equilibria: (i) If the two forms differ in competitive ability, the form with the lower intrinsic birth rate must be compensated by a more than proportionately lower competitive impact from the other, relative to intraspecific competition. (ii) If the two forms differ in their intrinsic capacity to exploit resources, the sperm-dependent parthenogen must be superior in this respect and must have a lower intrinsic birth rate. In general for crowded environments we expect a sperm-dependent parthenogen to compete strongly for limiting resources with the sexual sibling species. Its competitive impact is likely to be weakened by its genetic uniformity, however, and this may suffice to cancel any advantage of higher intrinsic growth rate obtained from reproductive investment only in egg production. We discuss likely thresholds of coexistence for other sperm-dependent parthenogens. The fish Poeciliopsis monacha-lucida likewise obtains an intrinsic growth advantage from reduced investment in male gametes, and so its persistence is likely to depend on it being a poor competitor. The planarian Schmidtea polychroa obtains no such intrinsic benefit because it produces fertile sperm, and its persistence may depend on superior resource exploitation.

This record has no associated files available for download.

More information

Published date: 21 August 2004
Keywords: competitive coexistence, cost of sex, interspecific competition, lotka–volterra competition coefficients, predator–prey

Identifiers

Local EPrints ID: 66486
URI: http://eprints.soton.ac.uk/id/eprint/66486
ISSN: 0022-5193
PURE UUID: 3261cbb5-e23e-4bae-b9fa-d734d961b303
ORCID for C. Patrick Doncaster: ORCID iD orcid.org/0000-0001-9406-0693
ORCID for Tim Sluckin: ORCID iD orcid.org/0000-0002-9163-0061

Catalogue record

Date deposited: 24 Jun 2009
Last modified: 14 Mar 2024 02:38

Export record

Altmetrics

Contributors

Author: David Schley
Author: Tim Sluckin ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×