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Abstract: Observations on the Vancouver mass transit system suggest that noise, vibration and corrugation
of the rail appear to be associated with close conformity between the transverse profiles of the wheel and
rail. To investigate this, a dynamic model of the wheel and rail under conditions of close conformity has
been developed. Previous work has suggested that motion of the wheel could be neglected, so the model
comprises two subsystems: (a) the rail and its supports, and (b) the contact between wheel and rail. A
dynamic model of a continuously supported rail is presented, which is consistent with similar models in the

literature. Conformal contact has been represented in two ways: (a) as a single highly eccentric elliptical -
contact, and (b) as a two-point contact. Novel ‘rolling contact mechanics’ have been incorporated in both

these models. The complete system is closed: oscillations of the rail give rise to fluctuating contact forces,
which in turn excite the rail. A linear stability analysis of the system shows it to be stable under all
conditions examined, thus precluding the possibility of self-excited oscillations occurring on a perfectly
smooth rail. The model can then be used to investigate the forced response to existing roughness on the
railhead, which is the subject of a companion paper (1).

Keywords: wheel-rail, contact, corrugation, conformity

angular displacement of contact point

NOTATION v M rail mass matrix
’ ' M. spin moment
The convention is used throughout that any quantity X may N normal rail force
be expressed as Xo + X, denoting respectively the steady P normal contact force
component and the harmonically fluctuating component. O, Oy components of tangential contact force Q
, r rail profile radius
a, b, c semi-axes of contact ellipse, ¢ = \/(ab) T, F see Appendix 2
A see equation (14) R wheel radius
B see equation (12) R = Kr; R. = \/(R|R))
c see equation (23) s spin pole position
Cy creep coefficients o s see equation (20)
D see equation (28) S see equation (20)
e see equation (28) 7 tangential rail force
F see equation (30) ' u vector of generalized coordinates
g see equation (30) : U rail potential energy
G shear modulus Ur, Uy, U: velocity components of rail relative to wheel at
- Hy rail receptance matrix contact point
"Hi, H: general transfer function matrices v train speed
J see equation (28) W, W3 rail displacement components
k wave number L W frictional power dissipation
Ky ‘Henz’ spring stiffness B contact coordinates
K conformity factor = p/(p — 1) v
K rail stiffness matrix a contact angle (see Figs 5 and 9)
M rail moment 0 0,,0: components of contact displacement
4 input displacement
n 2e equation (13)
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A conicity angle
u coefficient of friction
v Poisson’s ratio
&, &, E. components of creepage
wheel profile radius
rail rotation
input rotation
angular frequency
- spin angular velocity
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1 INTRODUCTION

1.1 The Intercity scene

The propensity of railway rails to develop corrugations or
ripples on the running surface through the action of the
wheels has been observed throughout railway history. The
nature and wavelength of the ripples are varied. Grassie
and Kalousek (2) have recently presented a detailed review
of their different characteristics, causes and treatments. The
short-pitch (30-60 mm) corrugations found on the passen-
ger railways of Europe have been particularly resistant to
explanation and modelling. The most satisfactory theory at
the present time is that presented by Hempelmann and
Knothe (3), which is based on a hypothesis advanced by
Frederick (4) and Valdivia (5). In outline, the hypothesis is
that the dynamic characteristics of the wheel—-rail system,
in response to excitation by random roughness of the
running surface of the rail, acts as a filter such that the
dynamic contact force is amplified in one or more narrow
bands of frequency. A ‘damage mechanism’, in this case
wear, then gives rise to a slow progressive modification to
the initial random profile in those distinct frequency bands.
If the phase of the periodic wear is appropriate, the random
profile will develop into a regular wave which deepens
progressively with time.

For Intercity track, in which the rail is supported by
concrete sleepers in ballast through a soft rail pad, two such
frequencies have been identified: one at an anti-resonance
associated with the so-called ‘pinned-pinned resonance’,
when the rail bends into a half-wavelength between
adjacent sleeper supports (occurring in the range 800—
1100 Hz depending on sleeper spacing); the other in which
the sleeper acts as a dynamic vibration absorber attached to
the rail through the elastic rail pad (occurring in the range
300-500 Hz). With fixed critical frequency bands it would
be expected that the corrugation pitch would vary in direct
proportion to the vehicle speed, whereas the wavelengths
observed in practice vary little with train speed. This
paradox is explained in Hempelmann's theory by his
finding that at wavelengths less than 1.3 times the contact
patch length (i.e. about 20 mm) the phase of the incre-
mental wear is such as to attenuate any incipient corruga-
tion. Thus, it is argued, with high-spesd passenger trains
the ‘pinned-pinned’ frequency is dominant, producing
corrugations of about the observed wavelength (40—
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50 mm). With lower speed (freight) traffic this frequency
band is inactive since it would produce corrugations of
wavelength less than 20 mm. The 300-400 Hz band is then
active, again producing corrugations of the observed wave-
length. In this way mixed traffic can reinforce waves of
roughly the same pitch.

1.2 The urban mass transit scene

More recently, new mass transit systems in the large cities
of the world have frequently developed short-pitch corruga-
tions soon after opening, which has led to a heightened
awareness of the problem. In Vancouver, six months after
the opening in 1986 of the ‘Skytrain’, 83 per cent of the
track was corrugated and the noise level was very high.
This led to an in-depth investigation of the problem
reported by Kalousek and Johnson (6), which gave rise to
the present project. The most important conclusions of that
investigation for the purpose of the present study may be
summarized as follows:

1. Vehicles are driven and braked by linear induction
motors, so that no driving or braking forces are exerted
at the wheel treads.

2. Examination by scanning electron microscope of repli-

cas of the running surface revealed periodic scratch

marks, of typical length 100 pm, suggestive of roll-slip
oscillations at the wheel contacts.

The application of a solid lubticant to the wheel treads

reduced the noise level.

4. Steered trucks (bogies) and unusually accurate control
of the track gauge promoted rapid wear of the whee
treads to a profile which was closely conformal with the
transverse profile of the rail.

5. Grinding sections of the system to different rail profiles,
such that contact was made at different locations on the
wheel treads, prevented wear to close conformity and
was found to slow down drastically the formation of
corrugations.

6. Remote control of the trains ensures that they travel over
any prescribed location at the same known speed. This
enabled the variation of corrugation wavelength with
speed to be obtained more precisely than hitherto. It is
shown in Fig. 1. The wavelength increased from about
30 mm at 20 km/h to about 45 mm at 85 km/h. This
corresponds to a variation in vibration frequency from
200.t0 550 Hz. The results are in good agreement with
such results as are available for British Rail track, also
shown in Fig. 1.

7. The spacing of the track supports changed by a factor of
two between straight and curved track, but the pattern of
corrugation wavelength was unaffectad.

(V3]

These observations suggest that wear of the wheel treads
into close conformity with the rail somehow promoted
oscillatory behaviour and periodic slip. The varation of
wavelength with vehicle speed in Fig. 1 is suggestive of a
roll-slip oscillation in which the roll phase corresponds to
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Fig.1 Variation of mean corrugation wavelength with train speed (2, 6)

a fixed distance along the rail (about 30 mm) and the slip
phase to a fixed time (about 0.55 ms). Accordingly, the
present investigation was started with the object of
modelling the dynamic behaviour of conformal wheel—rail
contacts.

1.3 Outline of the present investigation

As a necessary prelude to direct non-linear modelling of
‘roll-slip’ oscillations, a linear dynamic model of wheel—
rail-contact has been developed. This enables the stability
of the system to be assessed, so as to discover whether
close conformity could lead to self-excited oscillations,
perhaps analogous to those occurring during bogie hunting.
It also permits an economical parametric survey of the
sensitivity of a conformal contact to excitation by rail
roughness. Finally, it allows an assessment to be made of
whether predictions of the (linearized) Hempelmann—
Krnothe theory are significantly altered by close conformity
between wheel and rail.

The system comprises two subsystems: (a) the rail and
its supports; and (b) the contact of the wheel with the rail.
Relative motion between the wheel and the rail gives rise to
dynamic normal and tangential (creep) forces at the point
(or points) of contact. Contact forces acting on the rail
excite bending and torsional oscillations of the rail which,
in turn, influence the contact motion, resulting in a closed-
loop system. External forcing is provided by surface
irregularities on the wheel or rail. Energy is supplied by.
forward motion of the wheel through the action of steady
longirudinal and/or lateral creepage, so that the possibility
exists for dynamic instability. The two subsystems, ‘rail
dynamics’ and ‘contact mechanics’, will be modelled
separately and subsequently brought together under condi-
tions of close conformity between the transverse profiles of
the rail and the wheel tread.
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On the basis of earlier work (7) it was concluded that the
impedance of the wheel rim compared with that of the rail
was sufficiently high to neglect motion of the wheel except
in a few very narrow frequency bands. In the work reported
here the wheel has been taken to be rigid.

2 THE RAIL MODEL

For the purpose of studying the effect of close conformity
it was essential to have a rail model capable of accurately
predicting the lateral and rotational motion of the rail in the
frequency range 0-2000 Hz. There are in the literature two
styles of model which, in principle, satisfy this condition,
one by Thompson (8) based on finite element computa-
tions, and the other by Ripke and Knothe (9) in which the
rail section is built up by separately representing the head
by a beam in bending and torsion, and the web and foot by
plates. The approach followed here is a development of the
latter, and is illustrated in Fig. 2.

A variational model has been developed for harmonic
waves on an infinite rail, which is assumed to be
continuously supported by uniformly distributed rail pads,
sleeper mass and ballast. Although it would have been
possible to incorporate discrete supports into the model, the
observation on the Vancouver mass transit that the corruga-
tion wavelength was independent of a change in spacing of
the supports encouraged the authors to take advantage of
the simplicity of a continuous support model. Motion of the
railhead in the cross-sectional plane may be characterized
by two independent in-plane displacements and an in-plane
rotation. The deformation of the plates AB, BC and BD
perpendicular to their planes (see Fig. 2) is approximated
in each case by a cubic function, while in the plane they are
allowed uniform displacement only. Thus each plate contri-
butes five additional degrees of freedom. This number is
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Fig.2  Cross-sectional details of the rail model, showing
the continuous support, and the skeleton of the rail
section showing (at exaggerated scale) the allowed
cross-sectional deformation

reduced when continuity conditions are allowed for: both
components of displacement and also the rotation must be
continuous at the points B’ and D’, so that nine conditions
must be imposed. Thus the remaining number of indepen-
dent degrees of freedom contributed by this motion of the
three plates is just six. Finally, axial motion is allowed for:
uniform axial motion is associated with compressional
waves in the rail, and differential motion in the axial
direction is associated with bending waves in the rail,

The railpads and ballast are represented by linear springs
with hysteretic damping. Separate sets of springs act
vertically and laterally. The spacing of the points of
attachment to the base plates is set equal to the width of the
rail foot divided by /3 so that the correct moment
impedance is obtained, once the vertical and lateral spring
stiffnesses have been adjusted to conform with previously
measured values (7). When modelling the Vancouver track,
the pads are attached to a rigid slab. For European Intercity
track the pads are attached to sleepers supported in ballast,
with the sleeper mass distributed uniformly along the track.
In this larter case, an additional degree of freedom to
describe the vertical displacement of the sleeper mass is
needed.

Expressions may then be derived for the kinetic and
potential energies per unit length of rail under the assumed
deformation when a harmonic travelling wave e/~ g
imposed. Although the details are somewhat complicated,
these formulas are made up entirely from standard expres-
sions. For the railhead, the strain energy expressions
involve deformations as a beam in bending, a bar in axial
compression and a shaft in torsion. The strain energy
expressions used for the web and base plates allow for out-
of-plane bending and twisting deformations, and axial
compression. Finally, the potential energy in the foundation
springs must be added. The kinetic energy expression is
obtained more straightforwardly, by considering the motion

Proc Instn Mech Engrs Vol 211 Pat F

of each point of the rail section, and of the sleeper mass,
during the assumed deformation.

Assuming that all displacements are small, both kinetic
and potential energy expressions can be approximated by
quadratic forms in the assumed generalized coordinates, as
usual: writing U(k) for the potential energy, T(w) for the
kinetic energy and w for the vector of generalized
coordinates

U(k) = 1u'K(k)u
(h

T(w) = —1?u'™Mu
where K(k) and M are the stiffness and mass matrices, k is
the wave number of the assumed travelling wave, and o is
the angular frequency. Because of the orders of derivatives
which are included in the various expressions for strain
energy, the matrix K(X) takes the form of a quadratic
expression in 42.

Applying Hamilton’s principle, or equivalently by mak-
ing the Rayleigh quotient stationary, the dispersion relation
is obtained from the condition for non-trivial solutions

D(k, ) = det [K(k) — 0>M] = 0 2)

Roots of this equation, most conveniently expressed as a
family of solutions k(w), describe the behaviour of possible
propagating and evanescent waves on the rail. Dispersion
curves for the propagating waves for a BSI113A rail are
shown in Fig. 3. The various branches of the dispersion
relation are associated with different kinds of motion of the
rail section and its supporting sleeper mass. Five wave
types can propagate from low cut-on frequencies. Three of
these, associated with lateral bending, vertical bending and
torsion, are particularly important to this study. The other

D = second torsion (web bending)
E = axial compression
F = sleeper bounce

A = lateral bending
B = vertical bending
C = torsion

2000 :

1500

Frequency (11z)

500

2 L

[N S
[N}

A
4

Wavenumber (rad/m)

Fig.3 Dispersion curves for wave propagation on BR
track (BS113A) using the continuous support
model developed here
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two are (a) a steeply rising line representing axial compres-
sional waves in the rail, and (b) a line which tends towards
the horizontal at high wave numbers, associated with
bouncing of the sleeper mass beneath an immobile rail.
The details of the picture at low frequencies and wave
numbers are quite complicated, as the various types of
motion couple together there. A sixth wave type (involving
web bending in the rail section) appears above a cut-on
frequency which is about 1700 Hz in the results of this
study. At frequencies below this cut-on the associated rail
motion is evanescent.

It is necessary to calculate the response of the rail in the
cross-sectional plane to harmonic loading applied at a
reference point on the railhead. It is convenient to choose

the mid-point O, since the rail sections and supports are

symmetrical about the centre line of the section. The rail
response can then be written in terms of a Fourier integral,
from which the matrix of receptances can be extracted

x<

1 .
H(r o) = 5- j [K(K) — 0?M]~ e df 3)
— _x

The integral can be evaluated by contour integration, taking

advantage of the known analytic dependence on wave num-
ber & to evaluate the residues at the poles of the integrand.
The symmetry about O means that the normal receptance
Hi; is independent of lateral and rotational motion,
governed by receptances Hyy, Hys and H-4. Thus the rail-
head motions w;, w; and ¢ are related to the harmonically
fluctuating com- ponents of applied lateral force 7', normal
force N' and moment M by the matrix relation

] H23 0 H34 T’ I’
wil=10 Hys 0 ||N|=H| N
? Hy 0 Hy || M M

(4)

(The slightly curious index convention is used because the
axial motion wy plays no part here.) Driving-point recep-
tances Ay to harmonic excitation at the mid-point O of the
railhead are shown in amplitude and phase in Fig. 4a to d,
for Intercity track comprising BS113A rail together with
sleepers and ballast as shown in Fig. 2. Good agreement is
found with the predictions of Ripke’s model, shown super-
imposed on the figures. The only regions of significant
disagreement are narrow bands of enhanced or reduced
response associated with discrete sleeper supports, allowed
for in Ripke’s model and absent in that of the authors.

3 CONTACT MECHANICS

3.1 Low-spin model
3.1.1  Steady creepage

The contact of a wheel tread (profile radius p) with a rail
(profile radius ») is shown in Fig. 5. The contact point
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subtends an angle @ with the centre line of the rail cross-
section, which in turn lies at an angle 4 to the vertical,
Based on the analysis by Johnson ((10), pp. 260-262) the
following relationships are proposed for interactive steady
state creepage (involving creepage components in both x
and y directions):

3uPQ, 0 1/3 .
Crié: = 0 [1 - ( —y_P> J (32)
and

Ca&y + Cos

csin(/l-;-a)_:;‘up& s 0 137
R T G2 Q p

(5b)

where &, and &, are longitudinal and lateral creepages; O,
and 0, are corresponding tangential creep forces; C1, Ca
and Cy3 are Kalkers creep coefficients (11); R, is the
rolling radius of the wheel; P is the normal load; u is the
coefficient of friction; ¢ = (ab)!/?, where a and b are the
semni-axes of the contact area; and

0=(0; + 0" (6)

To remove a minor inconsistency at saturated creepage, it is
convenient to replace C); and Cy (which are of similar
magnitude) by their average Cpp = (C); + C»n)/2.
The relative radius of curvature between the wheel and
the rail is given by
Rz = P = Kr (7)
p~r

where X = p/(p — r) characterizes the degree of confor-
mity. Following Johnson ((10), pp- 96-97), the Hertz
theory for mildly elliptical contacts gives

b~ R 2/3__ K\ 23 ’ )
a~ R[ - RI )

and

Pl
-] ©

¢ =(ab)'* ~ {3(1
where G is the shear modulus, ¥ is Poisson’s ratio, and

R. = (R R)'?

The compression 4. of the contact is expressed by

e

16G?R, -0
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'
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Fig.5 Wheel-rail contact geometry for a single contact
point: 4 is the nominal conicity of the wheel

which gives the linearized stiffness of the “‘Hertz spring’ at
P= P()l

: 1/3
(4P _ [6G°RuR. '
k= <da.->o“ {(1 = v)-‘} an

The effect on steady state creepages of small changes in
force, Ok, Oy, P’, from a reference state Ox0, 050, Fo, 1S
given by differentiation of equations (5a and b):

88 08 05
13 90, 00, OoP|[0Cx

%"v = ag,v _6_5_)/_ §y Q’v (12)
£ 50. 80, 8P |LP
0 0 0

where &, =&+ & and &, =&+ &). The vertical
‘creepage’ & is also included for compatibility with later
matrix equations, but it is uninfluenced by the lateral
creepage and is determined only by the Hertz spring
stiffness, to be allowed for in the next subsection. The
matrix in equation (12) is denoted by B; expressions for thé
derivatives are quoted in Appendix 1. '

3.1.2 Transient creepage

With rapid changes in force, the creepage experiences a
transient delay in reaching the steady state. This effect has
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been analysed in detail by Gross-Thebing (12). A simpli-
fied treatment of transient creepage in closed form is used
here, based on the notion of ‘tangential contact springs’
acting in series with the ‘creepage dashpots® which
represent the velocity-dependent behaviour of equation
(12). Details of the model are presented in Appendix 1.

It is required to calculate the response to small harmonic
variations in force Q, Q) and P’ from a steady reference
state in which the steady creepages are &0 and &,9 and the
forces are Oy, 0,0 and FPo. It is shown in Appendix 1 that
in response to harmonic variations in force of angular
frequency w, there are harmonic variations in velocity v,
vYy, V- of the rail relative to the wheel at the point of
contact, given by

i Ux 1w o
—|v,| =|7A+B | Q) (13)
Vi s |4 Y

v-. P

where ¥ is the vehicle speed. The matrix A allows for the
elastic transient effects, as well as the vertical Hertz spring.
It can be written

ay 0 0
A=1]0 an O (14)
0 0 ass

where the coefficients a;; and az; are given in Appendix 1;
a3y is the compliance of the Hertz spring 1/ky, given by
equation (11). The matrix B is that of the derivatives of
steady creepage, expressed by equation (12).

3.2 High-spin model

Under conditions of close conformity the ellipse of contact
becomes long and thin (b > a), so that the theory under-
lying equation (5a and b) becomes a poor approximation
and a ‘strip theory’ becomes more appropriate [see
reference (10), p. 268]. If the spin creep is high, as a result
of the large values of b, an approximation to the contact
mechanics can be obtained in closed form by neglecting
tangential compliance compared with the slip [see refer-
ence (10), p. 259]. In this simplification there is a point,
labelled C in Fig. 6, where, in the absence of lateral slip,
there would be no relative velocity berween the surfaces.
This point C is known as the ‘spin pole’. Let it be a
distance sb from the centre of the contact 0. The long-
itudinal creepage &/ experienced by 2 strip at location y is
then given by

yo- oo, w:b -
5':'—"-5;—'7;;:&;:— <—V“>77 (15)

where 17 = /b and w; is the angular velocity of spin. In
the wheel—rail contact of Fig. 5
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| Qr=ppP"

N

|

Fig. 6 Strip theory analysis used to obtain the high-spin
contact model for the case of close conformity
(6> a)

at the spin pole £¢ = 0, so that s = (&, V/w.b)
Now the longitudinal traction force per unit width acting
" on the strip is

3uP ,
Q" =upP"= (%)(1 -7 (16)

The traction force O, acting to the right of the spin pole in
Fig. 61is thus given by

b .
Ox =J Q"dy =LuP(2 - 35+ s%) (17a)
b

S

and that to the left of C by

sb

Qs = —j O"dy = -1uP(2 + 35— 5%) (17b)
5 .

whereupon
O = 0n + 0 = —LuP3s — %) (170)

The spin moment M. is given by the sum of the moments
of Qi1 and O, about O, i.e.

M.=M., + M.,

where the two components turn out to be equal
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- P 1
My = ~M4 bJ (1~ 7Yy dy
3uPb s ,
=My == J (I =77)ndy (18)
-1
3uPb -
= - 1 — 57)
TR,

It is now necessary to incorporate lateral Creepage &,

and its interaction with longitudinal and spin creepage.

This is done in Appendix 2, where the relationships
between the creep forces and moment and the creepages
are shown to be

Qx="£{(—‘3—)(z—3s+s3>—“~f’ﬂ(z+3“ s-wJ]

4 r 2
(1%9a)
P ! 3
Qyz—u—[L(2~3S+S3)+—(2+33—5")}
4 r ]
(19b)
and
M. =
3uP — 3
#F6 (1 S)(Z—Ss Ls7) - (1+S)(2+3S——S")-"
16 I3} ] .x‘
(19¢)

in terms of dimensionless ratios t, ry and r, defined in
Appendix 2.

In this treatment, where the elastic strains are neglected
compared with the slip, the transient creep effect contained
in matrix A in Appendix 1 does not arise. The linear
contact mechanics model for harmonically oscillating
creepage then becomes

O« S S S [E&
Oy | =|Su Su Su||&

P 0 0 Suj|é&
by &x
+Ecot(ira) by |6=S|E, | +56
0 &

(20
where S are the derivatives of equations (192) and (19b)

with respect to &,, &y and . after P has been expressed in
terms of &~ via the Hertz spring relation

Vky § (21)
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where ky is given by equation (11). The second term in
equation (20) involves the quantities b, = 80./9%s,
by = 00,/8¢; and 8(= «'), which is the angle subtended
by the displacement of the contact point from its reference
position.

The fluctuations in spin moment are found from

&
ML= [pip2ps]| &} (22)
&

where p; are the derivatives of equation (19) with respect
to &, &, and &:. The fluctuating power dissipation W',
including the spin loss, is given by

W ) .M. .
- =" Oxo§s + Oy08)y + —R;?—) cos (4 + a)f

, 23)

1
+ Q0+ 0460+ —%—- sin(A + a)
1

The question arises: under what conditions is the high-
spin model appropriate? The relevant parameter is
[bsin (L + a)/ual; the model becomes a reasonable ap-
proximation when the value of this parameter exceeds 1.0.
Clearly its value increases with conformity as the ratio b/a
for the contact ellipse increases. The reference conditions
examined below and in the companion paper (1) corre-
spond to a value of approximately 1.5.

4 CONFORMAL CONTACT

4.1 Single moving point of contact

A significant feature of a closely conforming contact is that
small lateral and rotational displacements of the rail
relative to the wheel can cause a relatively large movement
of the contact point across the railhead. The geometry is
shown in Fig. 7. In the steady reference state the contact
point is located at Ag. Oscillating rail displacements w,, w3
and ¢ are assumed to be excited by a ripple on the wheel or
rail surface which imposes a normal displacement 4 e at
A, and a rotation ¥ e'“’. The combination of the imposed
ripple and the rail motion causes an oscillatory lateral
motion 6 of the point of contact where, in the context ofa
linear theory, 8 must be assumed small. From the geometry
of Fig. 7, it follows that the shift of the point of contact
from Ay to A is given by

AoA = rf = K[ry + (wy — r¢)cosc + wysina] (24)
so that 6 may be written in the form
w2
G=K[yp+c|ws with
¢
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N J A=
| /”—‘/; R -;—Q\\ -y
T "

Fig.7 Geometry of a single moving point of contact
between closely conforming surfaces
t=(1/r)[cosc sina —rcosal e
The compr:ssion of the Hertz spring at A is given by
§.=4—wycosa+ (wr—ro) sina (26)
If the rolling radius>at Agis R, and that at Ais (R + RY)
Ry =psin(A + a)f

which introduces a fluctuating longitudinal velocity

vr= -—<%Z> sin (A + a)d ' (27

1

The motion of the contact point is related to the displace-
ments of the wheel and rail by
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v -vy 0 0 0 wa
vy, +| 0 =iw| cosa sina 0 w;
v- iwd —sina cosa rsina @
so that
1 U; W
7120 | =D|ws | +j0+ed
vl ®
with
—psin(A + a)/R; 0
j= 0 , e= 0 28)
0 : —iw/V

The contact forces, Oc = O + 0., etc. acting at A exert
tangential and normal forces (7, + T ") and (N + N')
acting at O, together with a moment (Mo + M"), according
to

T 0 cos ¢ —sina "Q’,
N1 =]0 sina cos .
M’ 0 r(l—cosa) rsina L P
(29)
—FPycosa — Qg sina -]
+6| —FPysina + Ogcose
Pyrcosa - Q}orsina_j
Le.
T O
N'| =F|0,| +6g (30)
M’ P’

The dynamic model of the rail may now be coupled to
one of the contact mechanics models described in the
previous section to obtain a complete model. For the case
of the high-spin model, the result is as shown in the block
diagram of Fig. 8. Static input comes in the form of the
steady reference state: £, &1 and Py. Dynamic input is
provided by sinusoidal irregularities on the wheel or rail
surface in the form of a normal displacement 4 ei* at Ay
and a rotation 1 e'®! about Ap. The various vectors and
matrices S, s, ¢, D, e, F, £ and j have all been defined in
the text, while the box labelled X denotes scalar multi-
plication by the conformity factor and Hy is the matrix of
receptances from the rail model. A very similar diagram
can be constructed for the low-spin model, but it is not
reproduced here. It differs simply in that the box labelled s
is absent, and the matrix S from equation (20) must be
replaced by the matrix

Proc Instn Mech Engrs Vol 211 Parr F

Fig. 8 Block diagram for the complete (linearized) sys-
tem combining a single moving point of contact -
(using the high-spin model) with the dynamic
response of the rail. Input is provided by the
assumed ripple characterized by 4 and v, and
various output quantities are shown at the appro-
priate points on the network. Positive signs are
assumed at all summing junctions

. -1
2]
I,
from equation (13).

4.2 Two-point contact

If the situation occurs that the radius of curvature of the
wheel tread is locally less than that of the rail, two-point
contact will take place. This is an extreme case of
‘conformal contact’, and it is of some interest to analyse in
its own right. The detailed form of the wheel and rail
profiles determine the positions of the two contact points,
A and B, which will not change significantly in response to
motion of the rail (see Fig. 9). Since in this case there is no
lateral motion of the contact points, 8 = 0 in the equations
of the previous subsection. A complete model based on
two-point contact can be assembled on similar lines to that
for moving single-point contact. The input is now naturally
expressed as separate vertical ‘ripples’ of displacement
A5€®" at point A and Ag e’ at point B. The resultant
forces acting on the rail are obtained by adding the contact

forces arising at A and B

7] (oF (OF
N = F.—\ Q’L +I;‘B Q,y 3 I)
M| N Py

where the matrices F and Fg are given by the expression
in equation (29), with @ = ¢y and « = ag respectively.
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Fig.9 Geometry of two-point contact, at the points A
~ andB

Since the ellipticity of each contact patch is relatively
small, the low-spin contact model is appropriate in this
case. The resulting block diagram for the complete two-
point contact model is shown in Fig. 10.

5 STABILITY

The next step is to investigate whether the complete closed-
loop models described in the previous section exhibit linear

4, R N
S -
v }

SEEN T

—{ D ) N’

N A

<=
)]
& s
SRR
®

/ :
4 - B

Fig.10 Block diagram corresponding to Fig. 8, for the
complete system assuming two-point contact.
Positive signs are assumed at all summing junc-
tions
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instability. If instability were found, it could be hypothe-
sized that small-amplitude oscillators might in fact grow
until roll-slip oscillation was occurring. To investigate
further would then require a non-linear treatment of the
problem, probably via numerical time-marching simula-
tion. ‘

The somewhat complex interconnected loops of Fig. 8
require rather careful stability analysis. The approach is to
decompose the system into smaller units, each having the
form of the simple two-block feedback system of Fig. 11.
For any such system, standard control theory gives a
criterion for stability, The requirement is that for any input
signals wy(r) and w2(r) with finite energy (in other words,
a finite value of the integrated square of the functions over
all time), the internal signals e;(s) and e:(r) must have
finite energy and satisfy the condition of causality. This
requirement can be tested using the extended Nyquist
theorem (13): in terms of the Laplace transfer function
matrices H;(s) and Ha(s) the system of Fig. 11 is internally
stable if and only if

(a) det(I - H;(sc)Ha(=x)) # 0;

(b) the number of right half-plane poles of the product
Hi(iw)Ha(iw) is equal to ny + na, where n; and 15
are respectively the number of right half-plane poles
(counting multiplicities) of H; and Ha; and

(c) det(I —H(s)H(s)) is non-zero and encircles the
origin n; + ny times as s traverses a contour which
passes down the imaginary axis from infinity, inden-
ting to the left of any imaginary axis poles, then
closes around an arbitrarily large semicircle in the
right half-plane.

The particular aim here is to investigate the influence on
stability of the conformity factor X. To this end, it is useful
to consider first the system with X = 0. This Jeaves the
loop shown in Fig. 12a, which has the form of Fig. 11. If
this subsystem can be shown to be stable, then it remains to
investigate whether the whole system can be destabilized
by introducing a non-zero value of K. For this, the

Wi

Fig. 12a

=

Block diagram of the system of Fig. 8 when
K=0
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Fig. 12b  Block diagram for investigation of the influence

of conformity factor on stability

contribution of K can be isolated in the form shown in Fig.
12b, where the box labelled # is simply the whole of the
rest of the system apart from the block X. In terms of the
matrices defined in the previous section, this transfer
function is found by straightforward algebraic manipulation
to be given by

H =c'(1- HrFSD)"'Hz(g + Fs + FSj) (32)

Again, this system has the form of Fig. 11 so that the
Nyquist criterion can be applied directly.

To apply this stability test, the rail model and contact
model must be run with particular parameter values. The
values selected were those used in a survey of the forced
response behaviour of these modzls to be discussed in the
companion paper (1), and they are listed in Tables ] and 2
of that reference. The Nyquist plot for the outer loop

epresenting the case K = 0 is shown in Fig. 13a. Figure
13b shows a close-up view of the region near the origin. It
is clear that there are no encirclements of the origin, and it
follows that the outer loop is internally stable. Two facts
must be noted in this connection. First, the rail model is a
passive mechanical system and cannot have any poles in
the closed right half-plane. Second, the system as it has

en formulated has an apparent pole-zero cancellation at
zzro frequency (pole in S, zero in D). This arises from the
somewhat artificial introduction of the vertical ¢ creepage’
v: in place of the vertical displacement 6., and it can be

41:0[ | : ' 1

8
s
S
1

T

inary pant

(=]

v
>
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~200~-
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200 0 200 400

Fig. 132 Nyquist plot for the system of Fig. 12a
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readily shown that it does not contribute to the pole count
needed for the Nyquist criterion.

A detail to be noted in these Nyquist plots and in the one
to follow is that the model has been slightly adjusted at
very low frequencies. The assumption of hysteretic damp-
ing in the rail pads and ballast produces non-physical
results at these low frequencies, manifesting itself in
Nyquist loops which do not close. To cure this in a way
which is simple but physically sensible, the imaginary parts
of the rail receptances at very low frequencies have besn
forced to tznd to zero, producing artificial kinks in the
Nyquist plots but giving the corract topology for the
purpose of the Nyquist criterion.

The Nyquist plot for the conformity factor loop of Fiz.
125 1s shown in Fig. 13c, for the particular case havir:
K = 1. It shows no encirclements ofth* origin, and so th
introduction of the additional feedback loops via K dO_€>
not producs instability. Since cnanging the value of A
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simply amounts to a scaling of this plot relative to the point
(1,0), this remains true for all possible values of K. This
result has been confirmed by checking the Nyquist
criterion for the complete system at a range of values of X,

The corresponding stability analysis has also been
carried out using the low-spin contact model of Appendix
1. The Nyquist plots corresponding to those of Fig. 13 are
different in detail, but are qualitatively very similar to those
shown here for the high-spin model. Neither loop encircles
the origin. )

The conclusion is that the single-point contact model is
stable, for all values of the conformity factor K, at least
when coupled to the continuously supported rail model
employed here, with parameter values appropriate to
British Rail track. The dominant physical reason for this
strong stability appears to be associated with the high level
of vibration damping provided by the infinite rail mode]—
energy in oscillation at the contact region is simply lost by
radiation of bending and torsional waves along the rail.
This conclusion is in a sense disappointing, since it shows
that the model analysed here does not immediately lead to
an explanation of some of the findings on the Vancouver
Skytrain system (scratch marks, and a variation of corru-
gation wavelength with train speed suggesting roll-slip
oscillation). It remains possible that instability might arise
if further features of the physical system were included in
the model. Candidates might be wheel resonances, and
perhaps the constraining effect of adjacent wheels of the
vehicle, reflecting back some of the vibrational energy
radiated along the rail. These are matters for future
research.

6 CONCLUSIONS

A dynamic model of the wheel-rail system has been set up
on the basis of a rigid wheel and a continuously supported
rail. Receptance curves for excitation at the railhead by
vertical force, horizontal force or moment have been
calculated over the range 0-2kHz. These show good
agreement with the model described by Ripke (9), except
in certain narrow frequency bands which are strongly
influenced by the presence of discrete supports.

Two contact mechanics models, which relate dynamic
creep forces to fluctuating creepages, have been proposed.
The first applies under conditions of low-spin creepage,
and includes the transient effect which leads to frequency
dependent creep coefficients. The second applies under the
conditions of high spin which arise with close conformity,
when the contact region becomes hi ghly elliptical. Tangen-
tial elastic deformations, and hence transient effects, are
neglected in this model, but they are in any case expected
to be small under conditions of close conformity and high
spin.

The effect of close conformity has been modelled in two
separate ways. In the first, the wheel and rail are assumed
to touch at one point, giving rise to a highly elliptical
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contact region and high spin. Dynamic torsion of the rail
causes the point of contact to move laterally across the
railhead. In the second model of conformity, two separate
points of contact are assumed. These are taken to be
circular and not to move laterally across the railhead. In
this case, spin is effectively taken into account by imposing
a difference in the steady longitudinal creepages at the two
points of contact.

The stability of motion under these models has been
investigated, using linear theory, and it has been found that
the system is stable within the expected range of para-
meters and conformity. This conclusion holds for both low-
spin and high-spin contact models. It remains to investigate
the forced response of the models to a pre-existing surface
ripple on the rail or wheel, to determine whether wear
processes might be expected to deepen or to erase the
ripple, and hence to lead to growth or decay of short-pitch
corrugations. This issue is discussed in Part 2 of this paper

(1).
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APPENDIX 1

Low-spin contact model

The steady creep equations (52 and b) may be written

1/3

. 0.
&, + kPP = f PP (E)
£ X1)]
\Fevy
where
3u 16 13 |
and
in( 1/3
Cossin( + @) [3(1 - V)R-.-} ]
k" =
T Co R 4G (33)

Kalker’s creep coefficients as a function of (a/b) may be
expressed approximately by

Coo = 1/2(C1y + C22) = — [2.84 +1.20 (_Z)J .(36)

and
C5==OAO+105<g> 37)
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The effect of small changes in O, O, and P from a
reference state Oy, Q,0 and Py is found by differentiation
of (33z and b)

P32 1/3
o _ﬁ[l_(l_g_)

0. @ nP
(38a)
1 0. 2 o -2/3
5 (5) (1-33)
of _PPO), (i -2\
00, O | U wP
(38b)
2 -2/3 .
(0N} _2
3P\ Q uP
e _0fy 1 00,(,_2\"
80, 00. 3uP¥ @ upP
(38¢)
1/3 1/3
ool (1-2)"]
o upP
af. 1 0O o\ .
9P 3P5 0 [1 B (1 _;71—’> ] 59
ofy 1 0O, o\ .
'8"5_3P2=’3°§[1_ (l —ﬁ> J G5
The matrix B is now defined by
af; 6_[‘ | aft
80. 80, oP
B=k|0f, 8/ (af,y_ k) P_w) (39)
BQ: an aop kl
0 0 0

 An elastic rolling contact with creepage has a contact
area which is divided into a region of adhesion (‘stick’) and
one of slip. A complete solution to the problem of transient
creep requires tangential elastic displacements of the two
bodies at the interface to satisfy the appropriate conditions
of stick and slip throughout the contact area ((10), §3.1).
This was first achieved by Kalker (11) in line contact with
longitudinal creepage only. A numerical approach to a
complete solution with general creepage has been obtained
by Gross-Thebing (12). A simplified approach, using the
elastic foundation or ‘wire~brush’ contact model, has besn
employed by Frederick (14) in his corrugation theory. The
closed-form expressions for non-linear steady creepage
(33a and b) are based on the assumption that the stick area
is an ellipse, similar to the contact ellipse, and tangential 10
it at the leading point (—a, 0). This early theory (15) was
found to have errors of up to 23 per cent in the linear crep
coefficients compared with Kalker’s exact values (11).
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However, a good fit with experiment is obtained if the
linear coefficients are replaced by Kalker’s values, while
retaining the functional form of f, and Sy

The compliance of a stationary contact with an elliptical
stick area has been found by Mindlin (16), with the results

Cas 3uP O, 0\
‘—55270[1 ("Zﬁ) J (302)
Css 3uP O, 0\’
=20 2 (&
by =52t 5 -5 (40b)
where for Poisson’s ratio v = 0.3
Cys = =0.85\/(a/b)[1 + 1.1410g, (b/a)] (41a)
C55 = —085\/(0/b)[1 -+ 1.57]0g10 (b/a)] (41b)

The effect of small changes in Qf, 0Oy, P’ from the
reference state Qy, 0,0, Py depends upon whether the
forces are increasing or decreasing [see Mindlin and
Deresiewicz (17)]. The relationship of equation (40) is
plotted in Fig. 14 for 0,y = 0; P = Py and P= Py + P’
where P’ is negative. The reference state is indicated by
doint A. A small increase in tangential force Qf causes a
nove to point B such that

, 84, , :
6y = (@)AQX (42)
‘here (86:/80;)4 is the derivative of equation (40a). On

1¢ other hand a reduction in O, from either A or B causes
move to point C, D or E, such that

86 |
Or= (=] O 43
: < 3 Q.r)o” (43)
here (86:/90.) is the derivative at the origin. Reloading

1
Py + P')

LAIECHUALTOTCE

Tangex;xtial displacement &,

14 Incremental changes in tangential force due to
small changes in tangential displacement ¢, and
normal force Py [from reference (16)]
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from C, D or E results in changes given by equation (43).
Hence the compliance of an oscillation in QY about O is
also given by equation (43). A small increase P, keeping
O, and Q, constant, causes the contact area to grow
without any change of tangential traction, so that
0 =3}, = 0. A reduction in Py by P’ causes a move from
state A to F in which

(85
Or = (E’;)AP (44)

A subsequent increase in P from F causes no further
changes in &,; nor does an oscillatory variation in 2
Extending the reasoning to a reference state in which both
O and Q.4 are non-zero, during an increase in 0O (ie
Q' >0) together with a decrease in P (ie. P’<0), the
changes in displacement from a reference state A are given

by
[(06:\ ~ (83, (&)
90:), \80,), \épP),
i@, @), @)
st 90/ 4 \00y) s \OP/)u|| 3|

Lo o (B

(45)
For oscillating variations OLe@! etc. equation (45) be-
comes
66x>
- (), o ’
’ 0’
x ady x
[‘X-J 90 0 P’
30,
. 0 0 —_—
| ),
(46)
where

(85 c.
"= \so; o 2Gc

a — aéy - 55
2= \ao, , 26e

and

=-(%)
3 =-\3r/,

is the compliance of the Hertz spring given by equation
(11) in the text. The matrix in equation (46) is denoted
by A.
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Under conditions of varying creepage from a reference
state, it is now assumed that the instantaneous relative
velocity vector v’ between the two surfaces can be
expressed by the simple summation of the steady creepage
and the rate of change of the static compliance, i.e.

Ve . dO
v=VE+— 47

where Vis the vehicle speed. In terms of 0=[0, 0, P,
equation (47) becomes

v = VBQ' +A%% (48)

For harmonic variations in Q' of angular frequency o

/vy = [B + (iw/V)A]Q’ (49)

APPENDIX 2

High-spin contact model

In order to incorporate lateral creepage §,, and its inter-
action with longitudinal and spin creepage in a simple way,
choose a representative strip at a distance L from the spin
pole, where y = L locates the line of action of O, when
s =0,i.e when & = 0. Thus

L= M:1(0)/0a(0) = (3/16)uPb/(1/2)uP = (3/3)b
(50)

Now assume that L remains unchanged for all values of s,
SO that

£ 11 C’):b3 4

Ei=-2E1-9 =501y (512)
and

g0, Q):b3 ' _ [

Eh=+ 222+ ) = 481+ 9) (51b)
where

. _3w:b

G:—S %
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is the representative creepage due to spin. Now take

Q_vl g‘v Qy‘.’ gy
== and =z
Qxl E,tl QxZ x2
Writing
=r2 , £22\1/2
§i=(@En+&)" (52a)
and
"o 1t 2 -
b =(EE+E) (52b)

S
and
2= g—: = [+ + /2

where t =§,/&,. -
Making use of equation (17a and b) from the text, for
which &, =0, the following are-obtained

1 -
On = it S)(z —35+5%) (532)
4 r
and
0o = -#E0 T 21355 (53b)
T ry
Ou =210 55, 5 (342)
4
and
0n=-20 5 0 (545)
: 4 r
M. P =9 5, ) (552)
1 ry
and
Mo = 2420 90 435— 5 (55b)
ra
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