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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

MUTUAL FEATURES FOR PATTERN CLASSIFICATION

by Heiko Claussen

The mean of a data set is one trivial representation of data from one class. This thesis
discusses mutual interdependence analysis (MIA) that is successfully used to extract more
involved representations, or “mutual features”, accounting for samples in the class. MIA aims to
extract a common or mutual signature that is invariant to changes in the inputs. For example, a
mutual feature is a speaker signature under varying channel conditions or a face signature under
varying illumination conditions. By definition, the mutual feature is a linear combination of
class examples that is equally correlated with all training samples in the class. An equivalent
view is to find a direction to project the dataset such that projection lengths are maximally
correlated. The MIA optimization criterion is presented from the perspectives of canonical
correlation analysis and Bayesian estimation. This allows to state and solve the criterion for
mutual features concisely and to infer other properties of its closed form, unique solution
under various statistical assumptions. Moreover, a generalized MIA solution (GMIA) is defined
that enables utilization of a priori knowledge. MIA and GMIA work well even if the mutual
signature accounts only for a small part of the energy in the inputs. Real world problems do not
exactly fit the signal model of an equally correlated common signature. Therefore, the behavior
of MIA is analyzed in situations where its model does not exactly fit. For these situations it
is shown that GMIA continues to extract meaningful information. Furthermore, the GMIA
result is compared to ubiquitous signal processing methods. It is shown that GMIA extends
these current tools visualizing previously hidden information. The utility of both MIA and
GMIA is demonstrated on two standard pattern recognition problems: text—independent speaker
verification and illumination—independent face recognition. For example, GMIA achieves an
equal error rate (EER) of 4.0% in the text—independent speaker verification application on
the full NTIMIT database of 630 speakers. On the other hand, for illumination-independent
face recognition, MIA achieves an identification error rate of 7.4% in exhausive leave—one—out
tests on the Yale database. Overall, MIA and GMIA are found to achieve competitive pattern

classification performance to other modern algorithms.
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Chapter 1

Introduction

In modern applications, machines aim to automate or support processes that were solely
performed by humans in the past. On one hand, the goal is to improve their speed, quality,
reliability and reproducibility. On the other hand, such automations promise a reduction in
costs and enable new products and services. Successful examples include optical character
recognition for automatic sorting of mail or support of border control using biometric scanners.
Reasons for the improvements using machines are their large memory, fast computational speed,
low access and response times, exact timing, etc. However, while many tasks seem intuitive for
the human, it is challenging to define the necessary signal processing procedures in a machine.
For example, how to recognize a person on a gray scale image under different scaling, resolution,

camera angles, illumination conditions, presence of occlusions etc.?

A first step to design a system that automates tasks which are successfully performed by a
human is to model the human behavior, senses etc. To enable this, interdisciplinary knowledge
from, e.g., natural sciences, psychology and the humanities, is utilized. For example, listeners
were asked to define tones of equal distance in frequency. These experiments showed that the
sensitivity of the human ear is nonlinear over frequency. Features that are based on these results
are successfully used for speaker verification and audio compression. However, are behavioral
studies sufficient to model complex and abstract tasks optimally? It can be assumed that a more
general understanding of human thinking is necessary to describe initial human learning patterns
leading ultimately to artificial intelligence. Moreover, this generalization can help to verify if the
current process of feature extraction is feasible or in some way limiting when modeling complex
tasks. In the following, these points are addressed in context to knowledge of objects, i.e., how
can a machine detect, recognize or classify an object. The task of a machine that models the
human behavior appears similar to the way a newborn human gains knowledge of the world.
For before a newborn starts to speak, it is able to recognize familiar faces or objects. However,
it is difficult to analyze this process scientifically because of ambiguity in the interpretation of
responses and the missing ability to recall memories of this initial learning phase. One possible

theory that describes this initial learning phase is given by:
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There can be no doubt that all our knowledge begins with experience. For
how should our faculty of knowledge be awakened into action did not objects
affecting our senses partly of themselves produce representations, partly arouse the
activity of our understanding to compare these representations, and, by combining
or separating them, work up the raw material of the sensible impressions into that
knowledge of objects which is entitled experience? (Kant, 2003, p.41, originally
published 1781)

Following this hypothesis, the sensor data can be transformed into knowledge of objects
therefore enabling a machine to perform abstract tasks. Note that this view aligns with current
signal processing approaches used to model human behavior. Thus, the current way of modeling
appears not to limit the automation of complex and abstract tasks. However, as the machine
will not produce representations of objects itself, the challenge remains to define these features
whose combination and correlations make up the raw material of knowledge on which decisions
are based. It can be assumed that it is initially necessary to detect patterns before characteristic
features can be defined. A possible definition of a pattern is a recurring structure, style or form
of elements or events that contains information which can be used to predict or classify future
appearances. For example, to learn the first language, a child needs to find links between words
and objects, feelings, behaviors, etc. The goal is to find features that represent characteristic
patterns in the data. This thesis focuses on the design and analysis of a novel set of features for

pattern classification.

1.1 Problem Statement

There are multiple approaches and philosophies to define characteristic features. For example,
one can manually define features based on behavioral experiments as discussed above. The
disadvantage of such approaches is that they are not well adapted to new scenarios or data. That
is, it is not feasible to define or detect features manually for every new input. Therefore, modern
approaches tend toward an automatic extraction of features. Each of the methods for automatic
feature extraction uses a different viewpoint and criteria to find its ‘optimal’ representation.
Most pattern recognition problems implicitly assume that the number of observations is much
higher than the dimensionality of each observation. This allows one to study characteristics
of the distributional observations and design proper discriminant functions for classification.
Generally, one can distinguish between supervised and unsupervised approaches. While a priori
information about the class labels is available in the supervised case, unsupervised methods

extract both features and class labels from the data.

Ubiquitous methods for automatic feature extraction include principal component analy-
sis (PCA) (Pearson, 1901), independent component analysis (ICA) (Jutten and Herault,
1991), Fisher’s linear discriminant analysis (FLDA) (Fisher, 1936), canonical correlation

analysis (CCA) (Hotelling, 1936) etc. In the following, a sketch of these methods is given
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to describe how each of them defines and captures the desired characteristics in the data. For
instance, PCA defines directions in the input space as features of interest. The first direction is
the one that maximizes the variance of the input data projections. The following directions are
found in the same way but are also orthogonal to the previous ones. Thus, principal components
capture the directions of maximum variance in the input set. Another view on characteristics in
the data is taken by ICA. Rather than capturing directions of high variance in the data, ICA aims
to find statistically independent representations. That is, the occurrence of one feature does
not contain information about the state of another one. Note, that there is no measure used in
ICA to evaluate the importance of each feature. Thus, one has additionally to find the feature
affiliations between the training and testing set. Other approaches like FLDA use class label
information aiming to extract characteristics that are maximally discriminative between classes.
The empirical cost function of FLDA finds features that maximize the ratio of the between-
and within-class scatter of the training data. Again another view is taken by CCA. Here, it
is assumed that two datasets contain information about a common source. CCA finds pairs
of projecting directions in both datasets that are maximally correlated. These directions are
assumed to represent the characteristics of interest. A more detailed discussion of these and

other related methods is given in chapters of the thesis.

Most available methods aim to extract features that capture differences, e.g., between classes.
They suffer if the training data include various distortions. For example, in face recognition,
most of the image variations are captured in differences of illumination conditions. Thus, by
focusing on differences between the training instances, one focuses on the distortion rather than
the information represented by the face. This illustrates that, e.g., the use of PCA is problematic
in such applications, as discussed in a later chapter. Remaining with this example, one can
imagine that pictures from dissimilar faces in the training set are taken in different illumination
conditions, e.g., one person is photographed on a cloudy and the next one on a sunny day. The
difference in illumination will be represented as most discriminant feature to distinguish these
people using the FLDA approach. Clearly this is not desirable. Also, imagine the training set to
include only a small number of classes. Is is sensible to detect these classes dependent on their
differences that clearly can not capture a sufficient representation of the world? That is, if new

unseen instances appear, will this system be able to classify them as unknown?

In these situations it appears meaningful to focus on the extraction of common or ‘mutual’
features from a given class. The question is if there exists such an invariant class representation
or signature in the data and if it can be extracted. For example, assume a number of speech
recordings from one speaker. Each of them is recorded over different nonlinearly distorted
telephone channels. Is it possible to extract a feature that is equally present in all recordings?
Clearly, such an invariant would be independent of the channel conditions in the training set.
Assuming that this mutual feature represents the speaker, it can be used to detect him or her in
future recordings even if these are distorted by unknown nonlinearities. The goal of this thesis
is to find and analyze an invariant representation of high dimensional instances of a single class.

These mutual features are evaluated in applications for pattern classification.
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1.2 Challenges

Initially, it appears straightforward to extract a common pattern from a set of inputs. One may
suggest to simply use the mean or median as this common representation. However, both of
these representations have only limited capabilities to cancel distortion effects that are present
in the inputs. Other possibilities are to approximate the mutual pattern in high dimensional
representations by regression or curve fitting. This would enable the cancellation of noise and
possibly some of the distortions. However, these approaches would also simplify the structure
of the data, potentially canceling information. Clearly, there are many ways to approach this
problem. Thus, the question remains how to define, measure and finally extract this desired

commonality?

There are numerous feature extraction methods available that extract various characteristics from
the data. As a starting point it is meaningful to evaluate their criteria for usability to extract
mutual signatures. For example, one method that extracts invariance from the data is minor
component analysis (MCA) (Xu et al., 1992) discussed later in the thesis. Is MCA already a
good solution for our problem or are there issues when using it on high dimensional data? Even
if no suitable solution for our problem is available, this search may unveil numerous measures

of similarity supporting the design of a new approach.

It can be observed that methods are not only used because of their performance. Another
important factor is the comprehensibility of the method itself and its underlying theory. For
example, PCA is ubiquitously used because of its simplicity. Thus, users have a high confidence
in its results and implementation. To enable a wide use, it is the goal to find a basic method
for the extraction of mutual signatures that can be solved in closed form. Only after defining a
plausible theory and simple solution does it appear meaningful to increase the complexity of the

method enabling improvements of its performance.

In real world applications, it is common to cut long or continuous signals into segments using
windowing functions. Gabor’s uncertainty principle (Gabor, 1950) states that there exists a
window size dependent trade—off between the frequency resolution and the time resolution of a
signal. Therefore, the window size is usually selected dependent on the application. It appears
meaningless to extract commonalities from infinitely small data segments. Naturally, a method
to extract the mutual signature will be limited by the window choice. Thus, challenges are to
analyze segmentation effects and to find limitations of the method designed for mutual feature

extraction.

If it is true that the degree of commonality between inputs is dependent on their representation,
e.g., window size, one can assume that the desired mutual signature is not equally present in all
inputs. For instance, imagine that one input segment contains speech while another one is partly
silence. It can be concluded that a larger amount of speaker dependent information is present
in the first segment. This effect is expected for many applications. However, in this thesis it is

assumed that a mutual signature is an invariant of a set of inputs. Clearly, one challenge is to
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tackle problems where this model of similarity does not hold exactly.

The goal is to find a method to extract a mutual signature from high dimensional data. Note that
many signal processing approaches suffer from the curse of dimensionality (Bellman, 1961)
as discussed later in this thesis. In a nutshell, the curse of dimensionality points out that the
number of samples necessary to estimate a distribution with a fixed error increases exponentially
with the number of dimensions. Therefore, it is important to evaluate the properties of a high
dimensional space. Is it possible to avoid this problem such that a limited number of instances

suffice to extract a mutual signature?

Finally, it is important to test the designed feature extraction method and theory. In a first step, it
is advantageous to show certain properties of the mutual signature extraction on synthetic data.
However, the usefulness of a theory is finally tested by its application in the real world. The goal
is to employ mutual features in multiple applications from different signal processing fields. In
this way, the wide applicability of the approach is tested. However, it is expected that some
standard, application dependent procedures can not be used because of differences in feature
extraction philosophy. Thus it will be challenging to redesign the pre- and post—processing to

enable a successful utilization of mutual features.

1.3 Contributions

This section gives a summary of selected contributions that originated from the work discussed

in this dissertation. Their sequence is consistent with their appearance in the thesis.

e A novel algorithm called mutual interdependence analysis (MIA) is proposed to extract
a common signature from a high dimensional dataset. Problems related to the high
dimensional space are avoided by constraining the solution, e.g., to the span of the inputs

(see Section 4.1).

e It is proved that there exists, up to its sign, a unique solution to the MIA problem for
linearly independent inputs (see Section 4.1). In this case, the scatter onto the MIA result

is zero. MIA captures an invariance in the data.

o It is shown that the mean subtracted space of linearly independent inputs does not include
the mutual signature (see Sections 4.1 and 4.2). Thus, this common preprocessing step

cancels a pattern in the data.

e The similarities of MIA with other related signal processing approaches, e.g., MCA
(Introduction of Chapter 4), Bayesian estimation (Section 4.4), linear discriminant
analysis (LDA) and CCA (Section 4.2), are evaluated. Each brings insight to the properties
of MIA. Selected properties are defined in corollary 4.3—4.6.

e The MIA approach is generalized to account for variability in the MIA assumptions,

for example, if the common signature is not equally present in the inputs. The new
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method is called generalized MIA (GMIA). A dual form of the GMIA algorithm is
presented to enable efficient computation of problems with large number of inputs or
high dimensionality. An iterative method is sketched to find a mutual signature for high

dimensional problems with large number of inputs (see Section 4.4).

e It is shown that MIA finds patterns that are hidden to ubiquitous signal processing
methods. It is verified that MIA extracts a mutual signature from synthetic data.
Moreover, it is demonstrated when and how MIA, GMIA or the mean represent a common
signature in the inputs (see Section 5.1). It is illustrated on synthetically mixed face
images that MIA can be used to extract illumination invariant representations from two—

dimensional data (see Section 5.2).

o A successful application of GMIA for text-independent speaker verification is shown in
Chapter 6. GMIA achieves an equal error rate (EER) of 4.0% using the full NTIMIT
database of 630 speakers. A higher—order statistics based speech activity detector is im-
plemented (see Section 6.4.1). Moreover, a modified short time autocorrelation (MSTAC)

approach is defined to increase the quality of voiced speech extraction (see Section 6.4.2).

e MIA is employed for illumination—independent face recognition in Chapter 7. The mutual
face method achieves an error rate of 7.4% in exhaustive leave—one—out tests on cropped
images of the Yale face database. MIA achieves comparable or better results than standard

methods.
The discussed work in this thesis resulted in the following publications:

e Claussen, H., Rosca, J., Damper, R., 2009. Signature extraction using mutual interdepen-

dencies. Pattern Recognition. In review.

e Claussen, H., Rosca, J., Damper, R., 2009. Generalized mutual interdependence analysis.
In: International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan,
pp- 3317-3320.

e Claussen, H., Rosca, J., Damper, R., 2008. Mutual features for robust identification and
verification. In: International Conference on Acoustics, Speech and Signal Processing.
Las Vegas, NV, pp. 1849-1852.

e Claussen, H., Rosca, J., Damper, R., 2007. Mutual interdependence analysis. In: Inde-
pendent Component Analysis and Blind Signal Separation. Springer—Verlag, Heidelberg,
Germany, pp. 446-453.

1.4 Thesis Outline

Here, the structure of the thesis is described providing the reader with an overview of each

chapter. Goals of this section are also to show the interconnection between chapters and to
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provide the reader familiar with the subject the possibility to focus on his/her points of interest.

Chapter 1 motivates the concept of mutual features for pattern classification. Characteristic
class information is often not captured by highly variable signal components. For example,
in face recognition, class independent information like illumination can contribute more to the
signal variation than the edges of local features like mouth, eyes, nose etc. A representation
that is invariant to the changes in the training data is assumed to be invariant to unknown
changes in the inputs. Therefore, such a mutual signature is expected to be robust to distortions
like differences in illumination representing a powerful feature for classification. Moreover,
this chapter discusses challenges related to finding this mutual signature and provides a list of

selected contributions of work presented in this thesis.

Chapter 2 provides a description of approaches that are either related to the method discussed
in this thesis or ubiquitously used in classification and feature extraction tasks. The goals of
this chapter are to give an overview of related concepts and to show their interconnection.
This illustrates how the proposed mutual signature approach extends the present landscape of
feature extraction methods. Additionally, the overview provides a foundation for demonstrating
similarities between the mutual signatures based and ubiquitous methods later in this thesis.
This analysis aids the understanding of mutual features for pattern classification visualizing its
properties and leading to a generalization of the approach. Readers can skip this section if they
are familiar with PCA, MCA, CCA, Bayesian estimation, Gaussian mixture models as well as
FLDA and its similarity to CCA.

Chapter 3 discusses selected higher—order and nonlinear methods. This gives a new perspective
to feature extraction problems. Described concepts are used in later chapters, e.g., a kurtosis—
based feature for voice activity detection. Moreover, this chapter motivates pattern analysis in
high dimensional spaces. That is, by viewing a problem in a high dimensional space it is possible
to use linear methods to solve nonlinear problems in its lower dimensional representation, e.g.,

the dual space. Readers that are familiar with these concepts can skip this section.

Chapter 4 gives a detailed motivation to the extraction of mutual features for pattern classi-
fication. Thereafter, an algorithm called mutual interdependence analysis (MIA) is proposed.
It is proved that this problem has, up to its sign, a unique solution. Subsequently, MIA is
reinterpreted from the point of view of a modified CCA problem. Properties of MIA are
analyzed showing, e.g., when the MIA criterion has a defined solution or is equivalent to the
sample mean. A regularization of MIA is proposed to enable matrix inversions if inputs are
nearly collinear. In real world applications, it may not be appropriate to assume a common
signature to be equally present in the inputs. That is, for speaker verification it can be expected
that an input instance containing mostly silence captures less speaker characteristic information
than one without pauses. This problem is addressed by the introduction of a generalized MIA
(GMIA) criterion motivated from a Bayesian point of view. The generalization enables the use of
prior knowledge regarding the model misfit and the mutual signature. For instance, it is possible

to provide an expectation of this signature. A dual GMIA solution is given to tackle problems
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of either high dimensionality or large number of inputs. MIA can be solved in closed form by
constraining the space of solutions. This chapter demonstrates how to change the constraint

from the span of the inputs to an alternate function space.

Chapter 5 evaluates MIA and GMIA on synthetically generated data. It is shown that MIA
extracts an invariant in the data given the synthetic model. Furthermore, GMIA extracts a
common signature that is hidden to ubiquitous methods such as PCA, ICA and the mean. This
chapter shows results of a statistical experiment that demonstrates when MIA, GMIA or the
mean are preferable. For example, MIA and GMIA are effective if the common signature
represents a small part of the signal energy. Furthermore GMIA is preferable over MIA if the
assumption of equal presence of the mutual signature in the inputs does not hold. The application
of MIA is shown on both one- and two—dimensional data. Finally, differently illuminated face
images are generated. It is demonstrated that MIA extracts an illumination invariant ‘mutual

face’.

Chapter 6 discusses the implementation of a GMIA-based method for text-independent speaker
verification on challenging data. Common methods and features for speaker verification are
discussed providing a background of the field. Thereafter, the algorithms used for preprocessing,
e.g., for voice activity detection and voiced speech detection, are described. It is discussed how
GMIA signatures are extracted from each class. In the following, the selected background model
is specified. It estimates the quality of the input by computing the highest score with all learned
signatures. The decision on acceptance is dependent on the difference between this high score
and the score with the signature of the claimed identity. This implementation achieves equal
error rates of 4.0% on the full NTIMIT database of 630 speakers.

Chapter 7 describes the implementation of a MIA-based method for illumination—robust face
recognition. The Yale database was selected providing challenging data including variation
in illumination conditions, facial expressions, occlusions and misalignment. Semi—automatic
preprocessing of this data is discussed. Thereafter, the extraction of the mutual faces as well as
the computation of similarity scores are described. Mutual faces for illumination—robust face
recognition achieve an identification error rate of 7.4% in exhaustive leave—one—out tests on the
Yale database.

Chapter 8 concludes the thesis by first reminding the reader of the goals and challenges followed

by a discussion on how these points were addressed.

Chapter 9 describes promising areas of further work. For example, links to kernel support vector
machines are suggested that could lead to new MIA applications and further understanding. The
applications for text—independent speaker verification and illumination—robust face recognition
are based on multiple assumptions. This chapter pinpoints simplified models and implementa-

tions that may limit the current results.



Chapter 2

Related Work

This chapter provides a basis of concepts used in prominent algorithms for statistical signal
processing, feature extraction and classification. Furthermore, the interconnectedness of the
discussed algorithms is illustrated enabling comparison of their properties and assumptions.
These concepts build the foundation for new and improved algorithmic approaches as well as

their analysis and advancement discussed in later chapters of this thesis.

Section 2.1 discusses principal component analysis (PCA) as well as its application in the
Karhunen—Loeve transformation and whitening. Because of its popularity, PCA is used as an
entry point into the discussion of algorithmic concepts. Thereafter, Section 2.2 introduces the
alternative minor component analysis (MCA) method. Section 2.3 shows how the PCA and
MCA concepts can be combined in extreme component analysis (XCA) resulting in possibly
better data representations. In the following, Section 2.4 discusses the Bayesian inspired linear
discriminant analysis (LDA) method for classification. Section 2.5 introduces Fisher’s linear
discriminant analysis (FLDA) and illustrates the conditions under which the results with its
empirical cost function are equivalent to LDA. Thereafter, in Section 2.6 canonical correlation
analysis (CCA) is discussed. It is shown that CCA results in FLDA if the classification table is
used as second input. To demonstrate similarities to the regression domain, Section 2.7 analyses
similarities of least squares estimation (LSE), total least squares estimation (TLS) and ridge
regression (RR). Section 2.8 uses the Bayesian general linear model (BGLM) to derive RR
from a Bayesian perspective and to illustrate the algorithmic incorporation of prior knowledge.
Thereafter, Section 2.9 discusses the design, training and use of Gaussian mixture models

(GMM). Section 2.10 completes this chapter with its summary.

2.1 Principal Component Analysis

Principal component analysis (PCA) (Pearson, 1901) is a popular technique for feature
extraction. Originally, PCA was designed to find a hyperplane that fits a cloud of N points

X € RPXN of dimensionality D with a minimum mean square error. Here, the principal

9
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FIGURE 2.1: Geometrical interpretation of PCA: The principal components represent a set of
orthogonal directions that point toward the maximum data variance.

components w; € RP are defined as orthogonal directions that span this hyperplane. That
is, the first principal component represents a one—dimensional hyperplane that fits the data
with minimum mean square error, the second principal component satisfies this criterion in the
orthogonal subspace etc. The name ‘principal component’ is deduced from the principal axis of
an elliptic input data cloud that are found by this method. The cost function of PCA is given by:

N wl X X7 . w
WpCcA — argmax T
w,||wl|=1 ws - w

A geometrical interpretation of PCA is shown in Figure 2.1. The first principal component (PC)
w1 points in the direction of the maximal input data variance. The second principal component
points in the direction of the maximal variance in the orthogonal subspace (I — w; - w1) - X
to the first principal component and so on. Hence, a subset of the first [NV principal components
spans the N—dimensional space that retains a maximum of the input data variance. This property
of PCA is utilised for data compression in the Karhunen—-Loeve transformation (Section 2.1.1).
Because of the orthogonality of the principal component directions, the input data projections on
them are uncorrelated. Therefore, the covariance matrix of the points in the projected input space
is diagonal. Consequently, PCA can be described by an eigenvalue decomposition diagonalising
the covariance matrix of the input data. Thus, the eigenvector with the largest eigenvalue
corresponds to the first principal component, the one with the second largest eigenvalue to
the second principal component, etc. An important preprocessing step of PCA is mean input
subtraction. Because of their relation to PCA, multiple methods including minor component
analysis (MCA) rely on this preprocessing. The problem that this preprocessing step leads to is

discussed in Section 4.1.

Because of correlations, the resulting transfer of the inputs to another coordinate system by
PCA might already lead to a dimensionality reduction. In this case, where the data can be
fully described in a lower dimensional subspace, the dimensionality reduction is equivalent to a

lossless data compression.
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2.1.1 Karhunen-Loeéeve Transformation

In the literature, the term PCA is interchangeable with Hotelling (Hotelling, 1933) and
Karhunen-Lo¢ve transformation (KLT) (Karhunen, 1947). In this thesis, the approach of
using principal components for dimensionality reduction is referred to as Karhunen—Loeve
transformation although the idea was initially introduced by Hotelling. The reason for this is the
generalisation of the theory by Karhunen and Loeve. In contrast to the early work of Pearson and
Hotelling, Karhunen and Lo¢ve represent a stochastic process as an infinite linear combination
of orthogonal random functions. Here, the basis is dependent on the inputs. This is unlike the
Fourier transform where the basis is constrained to sinusoidal functions. In the following, the

discrete case is also denoted KLT despite its original definition in the infinite dimensional space.

The goal of this transformation is to find the set of N vectors &; € RP that represent the original
data x; € RP while spanning a lower, d—dimensional space. This is achieved by a projection
of the original data onto the set of orthonormal directions w; € RP with i = 1,...,d that are

found to minimise the mean square error £/ {||ac - ﬁc||2} The projection can be formalised as
A d T
& =3 (w) -z)w;.

Figure 2.2(a) illustrates an example of the KLT for d = 1 given the input data from Figure 2.1.
A constraint of the KLT is the orthogonality of the data elements in the resulting space and
||lw|| = 1. Hence, Z;V: 1 ZijZr; = 0,Vi # k. Because of the orthogonality constraint, the KLT
results in an uncorrelated representation of the data. It is assumed that uncorrelation minimises
‘redundancy’ of the data representation and that the *information content’ of each data vector
is dependent on its variance. Therefore, by representing the data with an uncorrelated basis
while disregarding directions of minimum variance, the data are compressed with a minimum
loss of information. This assumption can be equated with the approach where the data are
represented by projections on the eigenvectors of its covariance matrix. The eigenvectors
with the highest eigenvalues represent the directions of maximum variance. Thus, the lower
dimensional result, with the minimum mean square error to the original data, can be found in
the case only eigenvectors with the lowest eigenvalues are disregarded. For illustration of this
approach, the eigenvectors E' are assumed to be sorted by their corresponding eigenvalues. The

concept of the Karhunen—Lo¢ve transformation is shown in:

D
x = Z(mT E). E'=%+e
i=1
d D
=T = Z(JZTE’)E’ ; e= Z (7 - EY) - E!
i=1 i=d+1

While & represents the compressed data in the direction of the d eigenvectors E' with the largest

eigenvalues, e represents the data parts which are lost in the compression process.
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(a) Karhunen—Lo¢ve transformation (b) Whitened input space

FIGURE 2.2: Demonstration of the KLT and whitening. (a) The KLT compresses data

by projection onto the first d principal components. (b) Whitening cancels all second order

information of a dataset by scaling the principal component directions to unit variance. Note
that there exist no distinct principal component directions in the whitened space.

2.1.2 Whitening

The whitening procedure (Hyvérinen et al., 2001) is an important preprocessing step for signal
processing algorithms that are based on higher—order statistics such as independent component
analysis (ICA) (see Section 3.1). Therefore, this section shows the definition and some features
of this method. A random vector (RV) z is called whitened if its elements are zero—mean,
uncorrelated and of unit variance. Figure 2.2(b) shows the result of a whitening procedure
applied to the data in Figure 2.1. The transfer of a vector x to the whitened space is achieved by

multiplication with a so—called whitening matrix V:

z=V - -x

PCA and whitening aim to find an uncorrelated representation of a dataset. Thus, both methods
solve the eigenvalue decomposition of the sample covariance matrix Cxx = E {ac : acT}. In
the following let D and FE represent the diagonal eigenvalue and eigenvector matrix of Cx x

respectively. Hence, the eigenvalue decomposition of C' x x is given by:

E{z-2"}=E-D-E"

Note that the covariance matrix of a whitened vector results in the identity matrix. While the
unit variance constrained results in ones at the diagonal elements of its covariance matrix, the
uncorrelation of the different vector elements forces all off—diagonal values to zero. Using these

constraints, a whitening matrix V' can be derived as follows:
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E{z-zT} = 1T
= V-E{sc-wT}-VT
_ p9.gT. g.D.ET.E.D95
=V = D'.E

The resulting matrix V transfers E - D - ET, by multiplication from both sides, into the identity
matrix. There are no restrictions concerning the statistical properties of the variables that are
whitened or processed by PCA. However, the first- and second—order statistics of the data have

to be known or measurable.

2.2 Minor Component Analysis

In contrast to PCA, minor component analysis (MCA) aims to find directions w; € RP of
minimum variance in the data X € RP*N_ 1t is hypothesised that important information of
a system is present in directions where the output data are constrained. This concept will be
of importance in later chapters of this thesis. MCA is used for spectral estimation, curve and
hyper—surface fitting, cognitive perception and computer vision. Xu et al. (1992) coined the
name minor component analysis to refer to neural network fitting methods that compute minor
components. The authors also suggested that their iterative MCA algorithm solves the total least

squares (TLS) problem discussed in Section 2.7.1. The MCA criterion is given by:

wl - X -XT . w
w? - w

WpCcA = arg min 2.1

w,[|w]=1

If the rank of the covariance matrix Cxx = X - X T of the zero mean inputs is smaller than
D — 1, there exists no unique solution to equation (2.1). Note that MCA minimises the Rayleigh
quotient r = % Thus, MCA finds the smallest eigenvalue/eigenvector pair of C x x.

An iterative solution to equation (2.1) is suggested in Xu et al. (1992) using the derivative of the

. . or _ 2 _ wl Cxx ww SN
Rayleigh quotient 57 = —+— (Cxx -w — =—_ 22— ) as cost function:

'th.CXX-'wt-wt>

wipr =wy —a | Cxx-w — T
wy - Wy

Note that the learning rate « influences the convergence of the algorithm. After each iteration,
the resulting vector is normalised: w1 = sziﬁ\l Additional minor components can be found
in orthogonal input spaces using a Gram—Schmidt-like deflation process. For example, the
second minor component uses Xo = (I — w; - wl) - X as the input space of the algorithm.

Figure 2.3 illustrates the MCA method geometrically given the dataset of Figure 2.1. Note
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FIGURE 2.3: Geometrical interpretation of MCA: The minor components represent a set of
orthogonal directions that point toward the minimum data variance.

that the minor component directions are equivalent to the principal component directions in
reverse order (see for illustration Figure 2.1). Further information about MCA, including its
probabilistic model, can be found in Thompson (1979), Oja (1992) and Williams and Agakov
(2002).

2.3 Extreme Component Analysis

The goal of extreme component analysis (XCA) (Welling et al., 2004) is to combine the
concepts of PCA and MCA to find a maximum likelihood representation of the training data
X € RPxN given a fixed number of d components. PCA (Section 2.1) models the data as a
signal embedded in background noise. It is assumed that the d directions of maximum variance
represent most information while the disregarded D — d dimensions contain random Gaussian
noise. On the other hand, MCA (Section 2.2) assumes a high variance background model with
the d constrained directions of minimum variance representing the important information of the
data. XCA assumes that all directions of extreme variance contain information about inherent
data structure. Therefore, a combination of principal and minor components is assumed optimal.
Welling et al. (2004) shows that the extreme components of a dataset are principal components
if the ordered eigenvalues become invariant after some value. This situation is referred to as
log—convex spectrum. However, the extreme components are minor components if the large
eigenvalues are invariant while the lower eigenvalues show structure (referred to as log—concave
spectrum). This suggests that a dataset with a constant plateau between its high and low
eigenvalues can be better modelled by XCA than by either PCA or MCA.

The method proposed by Welling et al. (2004) to find d extreme components can be described
as follows. First, d principal and d minor components are extracted from the data. In a second
step, subsets g of d eigenvalues from mixed PCA/MCA eigenvector combinations are evaluated

using the XCA cost function:
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J(g) = Zlog M 4+ (D — d) log | trace (Cxx) — Zlog M2 (2.2)

i€g 1€g

Here, C x x and A represent the covariance matrix of the inputs and its selected eigenvalues
respectively. Note that because PCA and MCA assume the eigenvalues of the discriminant
vectors to be contiguous, only d compositions of g have to be evaluated. The eigenvectors
that correspond to the combination of eigenvalues yielding the lowest cost in equation (2.2) are

selected as extreme components of the dataset.

2.4 Linear Discriminant Analysis

In contrast to the previously—introduced methods that focus on feature extraction and dimen-
sionality reduction, linear discriminant analysis (LDA) (Duda and Hart, 1973, p. 130) is mainly
used for classification. The LDA model assumes the probability distributions p(x|k) with
k = 1,...,K of all K classes to be Gaussian with mean u(k) and equal covariance C.
Therefore, it is possible to find linear boundaries between classes that describe equal posterior
probabilities. In this thesis, this simple classification approach is used as introduction to the
following sections. Let P(k) denote the probability of the occurrence of class k. Utilising

Bayes theorem (Bayes, 1763) one can find the posterior probability of class k as:

o plalk) - P(k)
P = SR pal) - PO)

(2.3)

By assuming

1 1 T
p(xlk) = ——=-exp {— (e —p®) Cc (- p® } (2.4)
L) e (o)

one can locate the separating hyperplane of classes k£ and [ where « satisfies:

p(k|z)
log = (2.5)
UED)
Therefore, the sign of log ]; ((];I‘:)) can be used for classification. A positive result represents a

higher probability that & is member of class k than class . An example of a two—class LDA
problem is illustrated in Figure 2.4(a). By inserting equations (2.3) and (2.4) in (2.5), one can

find the following logarithmic likelihood ratio test for classification:

T k1 T P(l)
k) _ 0 .ol p>2. (k) MY .ot (u® — O
(p, n ) C -z 23 ((u + 1 ) C (,u o )) + log %) (2.6)

By performing K similar tests, LDA can find the most probable class membership of a new data

point . An example of LDA in multi—class problems is shown in Figure 2.4(b).
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FIGURE 2.4: Classification with LDA. (a) LDA finds the linear function of equal posterior

class probability between two identically Gaussian distributed classes. (b) For multi—class

problems, LDA estimates pairwise linear boundaries between the classes that contribute section
wise to the global classifier.

A more general solution to this classification problem is given by quadratic discriminant analysis
(QDA) (Hastie et al., 2001). Here, the covariance matrices of the Gaussian priors are not

assumed to be equal.

2.5 Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant analysis (FLDA) (Fisher, 1936) is a prominent empirical extension
to the Bayesian—motivated LDA in Section 2.4. In contrast to LDA, FLDA does not assume
prior knowledge of the class probability distributions. However, it effectively uses the intuition
that members of one class are well represented in a space where they have small variance. This
classification concept will be of importance in Chapter 4. Originally, FLDA was defined for the
case of two classes. The goal is to find a linear function that ‘optimally’ discriminates between
them. Figure 2.5 illustrates this concept by comparing class separability using FLDA with a PCA
based approach. In the following, we will also refer to its natural multi—class generalisation as
FLDA and denote N*) to be the number of samples in class k. A prominent application of
FLDA is the Fisher face approach (Belhumeur et al., 1997) for face recognition. The empirical

cost function of FLDA is given by:

“ wW.Sg- W
WELDA = arg max | B |

_ 2.7
W Sy W )

Its goal is to find a projection W that maximises the quotient of the determinants of the
between—class scatter matrix Sp = fo:l NE) . (u(k) — ,LL) . (u(k) — u)T and the within—
class scatter matrix Sy =Y, S® =370 Y o (@i — p®) - (@ - ,u,(k))T. This
problem is known as generalised Rayleigh quotient and can be solved by the generalised
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eigenvector problem:
SB-wi:/\i-SW-wi (28)

The resulting generalized eigenvectors w; form the columns of the projection matrix W.
Similarly to the Karhunen-Loeve transformation (Section 2.1.1, Karhunen 1947), one can
further reduce the dimensionality of the projections € = W - x by disregarding the
generalized eigenvectors with the lowest eigenvalues. This method is called reduced-rank LDA.
Classification using Fisher’s LDA is done in this projected space. The Fisher and Bayesian
inspired LDA versions are equivalent for two—class problems of Gaussian variables with equal
prior probabilities P(k) and equal, invertible covariance matrices C' = c® = c®, In this
case, Fisher’s LDA can be solved by the simple eigenvector problem: .S I}/l -Sp-w =\ w. By
substituting the previously introduced definitions of the scatter matrices Sy and S into this

eigenvector problem we obtain:

(i: N C(k))l _ (i N () ) - (u® - M)T> W= \-w
k=1

k=1

This can be further simplified to:
1 o1, (u(k) _ “m) : (uw) _ ,,,m)T W=\ w (2.9)
4

It can be shown that w = C~!. (,u(k) — u(l)) is a solution to the eigenvector problem in
equation (2.9). In the following, the data are represented by their projections on w. In this
one—dimensional projected space, T = % . <[1,(k) + /l(l)) represents the point of equal posterior

probability. Hence, the hyperplane of FLDA can be found in the original space as:

0 = @_%.(ﬁ<k>+ﬁ(l>)
_ wT.w_%.(wT 1 ®) 44T u(”)

It can be easily seen that equation (2.6) is equivalent to equation (2.10). This proves that FLDA
is equivalent to LDA for two—class problems of Gaussian variables with equal prior probabilities

and equal, invertible covariance matrices.

2.6 Canonical Correlation Analysis

If a common source s € RY influences two datasets X € RP*N and Z € REXN of
possibly different dimensionality, canonical correlation analysis (CCA) (Hotelling, 1936) can

be used to extract this inherent similarity. The goal of CCA is to find two vectors to project the



Chapter 2 Related Work 18

Class 1 Class 1
~ Class 2 ~ Class 2

2nd Input Dimension
o

2nd Input Dimension
(=)

-5 . -5 .
-5 0 5 -5 0 5
1st Input Dimension 1st Input Dimension
(a) First principal component direction (b) First FLDA direction
100 T 100 T T T
[ IClass 1 [ IClass 1
Il Class 2 I Class 2

o 80f 1 «» 80f 0 1
< €
5 i £
g f 5
< 6or 1 5 601
[a} [a}
S S
5 40f 1 o 40f
o) o)
€ £
> >
Z 20t H ‘ ] Z 20t H ﬂ

oL H | . oI H ‘ il I I

-5 0 5 -4 -2 0 2 4

Projection Length Projection Length
(c) PC projection histogram (d) FLDA projection histogram

FIGURE 2.5: Comparison of FLDA and PCA for classification. (a) The first principal
component represents the direction of maximum variance in the data. (b) FLDA finds a
direction that maximises the overall variance of data projections while minimizing the variance
of projections from each class. (c) The histograms of the class projections on the first principal
component strongly overlap. Note that this projected space is not optimal for classification. (d)
Using the FLDA classifier, the histograms of the class projections separate better than in (c).

datasets onto such that their projection lengths are maximally correlated. Let C x z denote the
cross—covariance matrix between the datasets X and Z. Then the CCA problem is given by
maximisation of the objective function:

T .
J(a,b) = a Cxz-b @.11)

\/aT-C’XX'a-\/bT-CZZ-b

over the vectors a and b. The1CCA problem can be solved by a singular value decomposition
(SVD) of C;gX -Cxz- C;§Z (Mardia et al., 1979). The solution can be obtained by solving

the two eigenvector problems:
_1 _1
(CX}-CXZ-CEIZ-CZX~CX2X> a=\a (2.12)

and
_1 _1
(CZ2Z‘CZX'C;(1X'CXZ'CZ22)’b:)"b‘ (2.13)
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One can hypothesise that the maximally correlated projections X* - @ and Z” - b represent an

estimate of the common source.

Canonical correlation analysis can be used to extract classification relevant information from a
set of inputs. Indeed, let X be the union of all data points and Z the table of corresponding
class memberships, k =1,...,Kandi=1,...,N:

1, ifx; e X%
Zu=1 o "EE (2.14)
0, otherwise.

All classification relevant information is represented by this classification table. Therefore, this
information is retained in those input components of X that originate from a common virtual

source with the classification table.

In the following, we align the domain specific notation of CCA and FLDA to simplify their
comparison. While CCA is defined using covariance matrices, FLDA uses scatter matrices S.
The sample covariance matrix C'xx = %S x X, the scatter of the points in X. Analogous to
the correlation matrices, we denote Sxz = S5 to be the cross scatter matrix. The sample
covariance matrices in equation (2.11) can be replaced by their corresponding scatter matrices
because of the scaling invariance of the CCA criterion. In the following, 1 is a matrix of ones
and P =1 — % - 1 represents a mean subtracting projection matrix. If Z - Z7 is of full rank,
the scatter matrices can be computed as follows:

.XT

Sxx = (X-P).(Xx-PT=x.XT_-_.X.

[[=

1
N

Sxz = (X-P)-(Z-P)TzX-ZT-(Z-ZT)1~<Z-ZT—;T~Z-1-ZT>
Szz = (Z.P)-(Z-P)T:Z-ZT—%-Z-;ZT

Note also that the scatter matrix S x x can be decomposed to a within- and between—class scatter
matrix (Duda and Hart, 1973, p. 119) Sxx = Sw + Sp with

Sw=Xx-(1-2"-(z-2")" z) X"

and
1

Sp=X-2"-(2-2") - 2-X"- - X-1-X" .
The CCA problem can be solved by the two eigenvector problems (2.12) and (2.13). By replac-
ing the sample covariance matrices with their corresponding scatter matrices, the eigenvector

problems can be rewritten as equations (2.15) and (2.16) below:

_1 _1
(SXQJ(-sz-Szlz-Szx-SXQX>-a = A-a ,or

((SWJrSB)ié'SB'(SWJrSB)ié) a = A-a .
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This further implies:

Sp-a = A (Sw+Sp)-a ,or
Spra = — - Sy-a. (2.15)

Similarly:

_1 _1
(SZQZ'SZX'S;(}X'SXZ'SZQZ>‘b:)"b (2.16)

Note that the eigenvector equation (2.15) is equivalent to the FLDA formulation in equa-
tion (2.8). The two equations have the same eigenvector as solutions. In other words, the
FLDA discriminant features (w’s) are the same as the directions a, which are solutions of the
modified CCA criterion. The equivalence between this special CCA approach and FLDA has
been also shown in slightly different ways (Bartlett, 1938; Mardia et al., 1979; Hastie et al.,
1994; Bach and Jordan, 2005). This validates the use of a classification table as second CCA
input set. Furthermore, it shows that CCA is a generalization of FLDA contributing a statistical

foundation to this empirical approach.

2.7 Least Squares Estimation

The goal of least square estimation (LSE) (Kay, 1993) is to find a linear model that optimally
describes the relation between the inputs X € RV*P and the observed outputs y € RY.
A common application of LSE is the prediction of future outputs given new inputs. In the
following, we discuss LSE and its properties due to similarities in its mathematical formulation

with work in Chapter 4. The ordinary LSE signal model is given by:
y=X-B+n (2.17)

with E{n} = 0 and the covariance matrix of m being C,, = o2 - I. As illustrated in
Figure 2.6(a), the optimality criterion of LSE is given by the minimum sum of squared residuals.
Thus, its cost function can be found to: J(8) = ||y — X - B]|>. By setting the gradient of the

cost function to zero, the estimator results in:

TXT .y (2.18)

BLS = (X T.X )
By inserting the signal model into the LSE function, it can easily be seen that LSE is
unbiased: B g = E{(XT X)L xT (X B+ n)} = B. Kay (1993, Theorem 3.2)
shows that if a pdf p(x,3) satisfies the regularity condition: E {(mgépiém’ﬁ)} = 0 Vg,
an unbiased estimator 3 may attain the Cramer-Rao lower bound (CRLB) if and only if
(Sbg(spiﬁ(fﬂ) =1(B) - (g(x) — B). Here, I(B) and g(x) represent the Fisher information matrix
and the minimum variance unbiased estimator (MVU) BMVU = g(x) respectively. Note that

I1(B) equals the covariance matrix of BMVU. In the following it is shown that for the special
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case n ~ N(0,02 - I), By is the best linear unbiased estimator (BLUE):

51 5 b
Oggg’”m = w(—log(m?)?—202<y—Xﬂ)T-<y—X-B>>
- %(XT-y—XT-X-,B)
T. —
- XU2X'<(XT'X) I'XT'y_’B)

Note that in this case, I(8) = XZZ;X and Byvy = (XT~X)71 X7 .y = Bis.

This result can be generalised to arbitrary pdf’s of n with E’{n} = 0 and covariance
matrix C,,. In this case the Gauss-Markov theorem states that the BLUE is found to be
BeLue = (XT-C,!- X)_l -XT.CLt -y (Kay, 1993).

2.7.1 Total Least Squares

Total least squares estimation (TLS) is a generalised version of the ordinary LSE. It is also
known as “orthogonal regression”, “errors in variables” and “rigorous least squares”. While
the term TLS is relatively new, its general idea goes back to Adcock (1877). An overview
of TLS, including recent advances and more detailed historical information, can be found in
Markovsky and Huffel (2007). The goal of TLS is to model not only noise in the input data
X = [z1,...,zn]T € RV*P but also measurement uncertainties in y € R™. This can be

realised by modification of the ordinary LSE model in equation (2.17) to:

y+Ay=(X+AX) -

TLS finds the linear transformation 3 that minimises the residuals in both inputs and outputs.
Similarly to ordinary LSE, A = [AX, Ay] is assumed to be zero mean and Gaussian distributed
with covariance matrix Ca = o2 - I. Geometrically, the TLS approach can be viewed as the
search for a linear function that minimises the sum of squared orthogonal distances to the input
points. A visualisation of the approach as well as a comparison to ordinary LSE is shown in
Figure 2.6. The cost function J (3) of the TLS method can be found using the normal equation

of the linear model:

x ]| f ]

Projection of the data points onto the normalised normal vector of the linear model results in:
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LS Estimato \ TLS Estlmatck
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X 0 z X 0 z

(a) Ordinary least squares estimation (b) Total least squares estimation

FIGURE 2.6: Comparison of ordinary and total least squares estimation. (a) Ordinary least

squares estimation finds a linear approximation of the data that minimises the squared distances

to the outputs y. (b) Total least squares estimation minimises the orthogonal distances to the
desired linear data representation.

B
x|
J(B) = ! _lly-x-BI? (2.19)

[ﬁ _1}'[_51] 18Il +1

As discussed in Golub and Loan (1980) and Markovsky and Huffel (2007), there exists a closed

form solution to

Brs = arggnin J(B)

if X is of full rank and has unique eigenvalues 0 < ... < 2. In this case, the value of the cost
function equals the smallest eigenvalue of the inputs J (ﬁ) = 02-2. The closed form solution to

this special TLS case is given by:

N —1
Bris=(XT-X-0lI) - XT.y (2.20)

Note that equation (2.20) represents a negatively regularised version of the ordinary LSE in
equation (2.18). This results in a condition number increase of the inverse which leads to a

reduced robustness of TLS to errors.
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2.7.2 Ridge Regression

In many real world applications, inputs are highly correlated. The resulting near collinearity
leads to ill-conditioning of the inverse (X T x )~L. The goal of ridge regression (RR) (Hoerl
and Kennard, 1970) is to overcome this problem by penalising large norms of the estimated
parameters 3. A generalisation of RR is known as Tikhonov regularization (TR). In the
following, let I" represent an arbitrary matrix called Tikhonov matrix. The cost function of

TR is given by:

J(B) =y - X - BII* +|IT - B @21)
Setting the derivative of equation (2.21) to zero, the closed form solution of TR can be found as:

Brg = (XT- X -17.T)"

X7y
In RR the Tikhonov matrix is assumed to be a diagonal matrix of non—negative values (Hoerl
and Kennard, 1970). Usually, a scaled version of the identity matrix I' = /o I is used. Thus,

in the literature the RR solution is commonly given by:

IBRR:(XT'X_QI)_l‘XT"y (2.22)

In the following, the often empirically—found « is referred to as the Tikhonov factor. Using
this assumption, the regularisation can be interpreted as follows. On the one hand, it can be
shown that o introduces a bias that can lead to an estimate BRR with smaller mean square error
than the corresponding least square estimate BLSE. On the other hand, the regularisation can
be simply viewed as a penalty on the sparseness of BRR. It is the intuition that in the case
of strongly collinear inputs a minimum mean square estimator is close to their mean. If the
Tikhonov matrix is not simplified to a scaled identity matrix, it can be used to include prior

knowledge, i.e., smoothness of consecutive variables in Bg.

2.8 The Bayesian General Linear Model

If there is prior knowledge of the model parameters available, it can be advantageous to use a
Bayesian approach. The expected outcome can be predicted based on the posterior probability
using the additionally available information of the input distributions. In this way, it is possible
to find biased estimators that can achieve a lower variance than the corresponding BLUE.
In the following, we introduce the Bayesian general linear model (BGLM) to show a formal

derivation of ridge regression. Furthermore, the BGLM builds on the foundation in Section 4.1
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to motivate the integration of prior knowledge. Similar to regression, the BGLM is used to

model statistically a system and predict future outputs. The general linear model is defined as:

y=X B+n (2.23)

As discussed in Kay (1993), the expected value E {3|y} from the conditional probability
p(Bly) can be introduced as a biased estimator of 8. If n ~ N'(0,Cy,) and 8 ~ N (g, Cp)
are independent Gaussian variables, the joint probability density function (pdf) p(y,(3)
as well as the conditional pdf p(3|y) are Gaussian. Considering our prior assumptions,
p(y) = N(pyy, Cy) and p(y,B) = N ({Zﬂ, [g;y %’;D . Using these assumptions, the
conditional probability can be computed as follows:

p(y, B)
p(y)

p(Bly) =

1 1y )T [ oy Cy5i|_1' [yfuy]
(2m)P+N [Cy CyBH €xp [ 2 [ﬁ_“ﬂ} [Cﬁy Cp B—pg
" Cpy Cp

T
mexp [_% (y - “y) 'Cy1 ) (y - ”y)}

As discussed in Horn and Johnson (1999), the partitioned determinant can be transformed to
‘ [g;yy %y;] ) =|Cyl|Cp — Cpy - C,' - Cyg| . Therefore, the conditional probability can be
simplified to:

exp {_% Hg:ﬁzr. & fgﬂ‘l. ] = -y Cyt (y—ny)H

J6] =
Hew \/(27T)N ‘Cﬁ —Cpy- C;I ' Cyﬂ}

This representation of the posterior probability p(3|y) unveils the covariance matrix
Cpy=Cp—Cpy- C, '. C,p. Using the matrix inversion lemma for partitioned matrices,

the joint covariance matrix of p(y, 3) can be found as:

_ —1 —1 —1 —1 —1 —1
[Cy cyg] 1 [cy +Cy1-Cyp-Cp, -Cpy Cy -C, ~cyﬁ~cﬁy]
C C - 1. -1 —1

By B C,@\y Cﬁy Cy Cﬁ\y

After some computation, the posterior probability p(3|y) can be simplified to:

1

Y (2m)™ |Cﬁ\y‘

E{Bly} =ps+Cpy-Cy' - (y— 1)

p(Bly) = exo |5 (8- £ (o)) G5, B~ E (alw)]|

where

Using the linear signal model y = X - 8 + n as well as the independence assumption of 3
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and n, the y dependent components can be expanded to:

My = E{X‘ﬁ+n}:X-uﬂ
Cy = E{(X~,@+n—X-pB)-(X~,6+n—X-u3)T}:X-C,g~XT+Cn

Coy = E{(B-np)- (X-B+n-X-pg)'}=Cs X"

Thus, the posterior expectation of 3 given y is found as:

E{Bly} = png+Cs X7 - (X-Cs-X"+Cp)""

— g+ (XT.C;Ll.X+051)_

(y— X pp)

1
XU Rl (y— X -pg) (224)

Ridge regression (Section 2.7.2) follows from the result in equation (2.24) by further assuming
rg =0, Cp= U%Iand C,= U%I:
-1
T o T
Bripgr = | X* - X+ 5T X"y
B

For this special case, when the covariance matrices are diagonal and isotropic, the ‘optimal’

2
Tikhonov regularization factor @ = Z—g‘ is unveiled.
B

2.9 Gaussian Mixture Models

Gaussian mixture models (GMM) (Duda and Hart, 1973, p. 170) are a standard and popular
approach for classification and probability density estimation. This section discusses the design,
training and use of GMM’s providing a background for further chapters. GMM’s have been
successfully used in a wide range of statistical signal processing applications including speaker
identification and verification (Reynolds, 1995). The goal of GMM’s is to model datasets that
originate from a mixture of independent Gaussian variables. The general method assumes
the number of mixtures/classes to be known and their parametric distribution families to be
Gaussian. Figure 2.7 shows an example of a GMM. In the following, let ; € R with
i=1...N,p® e RP and C®) € RP*P withk = 1...K representing the N unlabelled
input data points, the mean vector and the covariance matrix of the K classes respectively.
Furthermore, let P(k) be the probability of class occurrence and p(z|k) ~ N (u®), C*)). The
GMM probability density function p(x;|@) with @ = {P(k), u*), C’(’I‘C)}/,CKZ1 is given by:

p(xi|0)

= P(k) coxnd oL (e~ N oW (g )
;\/(2.@17.(0@] p{ 5 (2i=n) 0 ( “’k>}

(2.25)
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FIGURE 2.7: The Gaussian mixture model represents the data by an additive combination of
multiple, differently parametrised and weighted Gaussian probability density functions.

Moreover, the likelihood of X = [z1,..

function in equation (2.25) is given by:

., ] being distributed by the probability density

L(X|0) = Hp x;|0) (2.26)

The problem of finding the missing parameters p(*), C*) and P(k) is commonly solved with
an expectation—-maximization (EM) approach (Dempster et al., 1977). The original idea of the
EM algorithm is based on previous work of, e.g., Hartley (1958) and Baum (1972). To provide
the EM algorithm with an initial starting point, the unknown parameters are guessed. Here it
has to be noted that the initial starting conditions influence the final convergence of the EM
algorithm. Only convergence to a local optimum is achieved. The EM algorithm is a procedure
of two subsequent steps that are iterated until convergence. In the first step, the expectation of
the desired probability density function is computed given a set of inputs and parameters. In the
second step, the maximum likelihood solution to a refined set of parameters is found utilising
the result of the first step. The expectation step for the GMM is given by:

P(k) p(zi| ™, CW)
>ty P() plai|p®, )

miE =

(2.27)

In equation (2.27), the partial membership of each data point x; in each class & is estimated.
The maximisation step of the GMM approach finds the maximally-likely parameters N (k)
and P(k) given my:
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5 1
N i=1
”(k) — Zi\;l mik 4
Zﬁ\;l mi
ck — Zz]\;l Mik (CCZ - ,u(k)) . (zcZ — 'u(k))T

Zi]\il Mik

The probability density function of the GMM that models X in a maximum likelihood sense
is found by insertion of the converged EM solution into equation (2.26). This equation is also
utilised to evaluate the fit of new datasets to this GMM representation. Further information
on the EM algorithm including an introduction and extensions can be found in Bishop (2006,
p-435) and McLachlan and Krishnan (1997) respectively.

2.10 Summary

This chapter described ubiquitous signal processing methods providing a background to later
chapters of this thesis. Different philosophies for the extraction of characteristic information
from an input were discussed. For example, PCA considers the information content of input
projections that represent the highest amount of variance in the data to be maximally important.
In contrast, MCA assumes invariant data projections to characterize the inputs. Again XCA
uses a mixture of both minor and principal components to represent a dataset best. Other
methods, e.g., LDA and FLDA, use class labels to extract features that capture classification
relevant structure. Moreover, it was shown that CCA is a generalization of the empirical FLDA
criterion. CCA aims to extract a common signal from two datasets finding pairs of directions on
which the data projections are maximally correlated. Thereafter, least squares estimation was
recapitulated providing another view on input model generation. Finally, the Bayesian general
linear and Gaussian mixture models were discussed. Both approaches are used in later chapters
of this thesis.
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Higher—Order and Nonlinear Methods

Second-order statistics can be used to find simple and robust solutions to real world problems.
However, in some applications, the inferred Gaussian distribution is insufficient to model the real
distribution of the data. A possible answer to this problem is to use Gaussian mixture models
to approximate these non—Gaussian distributions (Todros and Tabrikian, 2004). However,
multiple Gaussian distributions have to be used to represent a single non—Gaussian distribution.
Therefore, such an approach artificially increases the complexity of the solution. This chapter
gives an introduction to higher—order and nonlinear methods that are designed to tackle the
problem of non-Gaussian distributed data. Although the discussed methods are only partially
linked to later chapters, they provide an important extension to the signal processing concepts

discussed in Chapter 2.

Section 3.1 discusses different independent component analysis (ICA) based algorithms which
use higher order statistics to model the data. Thereafter, Section 3.2 gives an introduction
to a selection of kernel methods that enable simplified nonlinear signal processing. Finally,

Section 3.3 summarizes this chapter.

3.1 Independent Component Analysis

The task of independent component analysis (ICA) (Jutten and Herault, 1991) is to find
and separate a number of linearly mixed statistically independent source signals. Statistical
independence of two random variables s; and so is given if their joint pdf factorises to the
product of their marginal pdf’s: p(s1,s2) = p(s1)p(s2). It follows from this property that
independent random variables are uncorrelated: E{s; so} = E{s1} E{s2}. This attribute
is commonly used to simplify the procedure of finding independent components. The most
prominent ICA application is the “cocktail-party problem” (Cherry, 1953). Here, a microphone
array is used to record a number of people speaking simultaneously in the same room.
Thereafter, ICA is utilised to separate the different speech signals by means of the recorded

data and the assumption of statistically independent sources. Figure 3.1 shows the difference

28
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(a) PCA of subgaussian data (b) ICA of subgaussian data

FIGURE 3.1: Comparison of PCA and ICA using linear transformed subgaussian data. (a) The
principal component directions do not represent the non—Gaussian data structure. (b) ICA finds
non—orthogonal directions that are aligned with the data.

of PCA and ICA on a non—Gaussian dataset. Note that ICA finds a closer representation of
the inherent data structure. In the following, let @, s and A represent the measured data, the
unknown source signals and the mixing matrix respectively. The basic linear and noiseless ICA

model is given by:

r=A-s 3.1

The mixing matrix and source signal are both estimated purely based on the measurements x
and the assumption of statistical independence of s. In order to reduce the influence of noise it
is common to compress the input using the Karhunen-Loeve transformation (Section 2.1.1).
Moreover, because of the uncorrelation of the independent components s it is possible to
simplify the search by whitening (Section 2.1.2) of . In the following, let z denote the whitened

and preprocessed measurements x. The unmixing model of ICA is given by:

s=B- -z

Whitening and preprocessing of the inputs leads to a transfer of A to a new mixing matrix
B! = V. A. The new mixing matrix is orthogonal constraining the search for an unmixing
matrix B to the space of orthogonal matrices. By assuming E {z : zT} —F {s : ST} =1, the

orthogonality of B! can be seen from:

E{z-2") =B ' F{s-s"} . (B Y =B (B Y)Y =1

A way to visualise ICA is to regard the recovered data s as an orthogonal projection of the

whitened data z. Hence, the task of ICA can be pictured as a rotation of the data in the whitened
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space such that the independent components point along the axes. In the following, let w;
denote the orthogonal directions on which the whitened data is projected. Note that because of
ambiguities of ICA (Section 3.1.4), w; can only represent the independent component directions
up to their orientation and sequence (w; = +b;). Here, b; represents column j of the unmixing
matrix B. The solution of ICA is commonly derived using a maximum likelihood approach, by
utilising higher order statistics (i.e., kurtosis) or minimisation of mutual information in the data

representations. These principles are described in the following.

3.1.1 Kurtosis

The fourth—order statistic of the data, called kurtosis, is a simple discriminant for the search of
independent components. Kurtosis is positive for super—Gaussian, negative for sub—Gaussian
and zero for Gaussian distributed random variables. Therefore it is a measure of nongaussianity.

In the case of zero mean variables, the kurtosis value of the vector y is calculated as:

kurt(y) = E{y'} - 3(E {y*})? (3.2)

The link between nongaussianity and the independent component directions can be visualised
using the central limit theorem (Laplace, 1810). According to this theorem, the pdf of a mixture
of non—Gaussian, iid variables is closer distributed to a Gaussian than the pdf’s of the original
variables. Therefore, the variables maximise statistical independence if the data representation
minimises the similarity of its variables to Gaussian distributions. Thus, kurtosis—based ICA
algorithms aim to find directions that maximize the absolute kurtosis value. In the following, let

T

z represents the whitened version of  and y = w* - z. The derivative of the absolute kurtosis

value from equation (3.2) with respect to the projecting direction w is given by:

dabs (kurt(w’ - 2))
ow

= 4sign(kurt(w” - 2)) [E {z(w" 2)°} - 3w Hw\ﬂ

This result can be used to derive a simple version of the FastICA algorithm (Hyvérinen and Oja,

1997; Hyvirinen, 1999). The iterative kurtosis—based FastICA learning rule is given by:

wHEA{z(wT-z)S}—Z%w (3.3)

The advantages of this algorithm are its cubic convergence and the missing learning rate
parameter. This makes it a simple but powerful tool for the search for independent components.
The procedure to find independent components using equation (3.3) can be described as follows.
First, a random start vector w;y is chosen for w. Second, using equation (3.3), the direction w1
is iteratively found that maximises the value of kurtosis. After each iteration, the norm of w;

is reset to unity to retain the unit variance of z. As discussed in Section 3.1, the task of ICA
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is to rotate the whitened independent components in the directions of the axes. Thus, after
convergence, the independent component is aligned with the coordinate axis by multiplication
of the data z with the ‘optimized’ vector ws. To align other components, the process is repeated
with new vectors w; that are constrained to the orthogonal space of previously found directions.

Therefore, the alignment from previous transformations is maintained.

This method can be interpreted visually by rotating the whitened input data cloud to receive
maximal non—Gaussian projections on the axes. If this point of maximisation is reached, the
axes point in the directions of maximally independent components. Although it is possible to
create simple and computational effective algorithms based on kurtosis, this measure is rarely
used in processing of real-life data. The reason for this is its strong dependence on outliers.
Hence, the kurtosis measure is usually replaced by a function that reduces this high emphasis
on distanced values. One example for such a weighting function is 2 log (cosh (a y)) with an

arbitrary factor a.

3.1.2 Maximum Likelihood

A common method for finding independent components is maximum likelihood (ML) esti-
mation. This approach is very important since many other ICA methods can be described
as a special case or derived from it. The aim of this estimation is to find directions in a
multidimensional data set that have the highest probability to represent the original data. Hence,
the probability density functions pj, of all k¥ independent components have to be known or need
to be estimated. Thereafter, an unmixing matrix B is found that transfers the pdf’s of the mixed
data « to match with the estimated pdf’s maximally. In case the input data is whitened, the
ML estimation finds the independent components unbiased by the uncertainty of the initial pdf
estimation. It was shown in Hyvirinen et al. (2001) that the initial pdf only has to be chosen
from the correct family, i.e., sub- or super—Gaussian. Here it should be noted that the ML
estimation does not need whitened input data to find the independent components. However,
pre—whitening of the input is advantageous. This preprocessing step reduces the space of
the sought—after unmixing matrix B to the space of orthogonal matrices. Consequently, the
convergence of the ML based gradient algorithms is significantly improved (Hyvirinen et al.,
2001). This optimisation is also used to derive another version of the FastICA algorithm. In the
following, let s represent the unmixed independent components, A the unknown mixing matrix,
X = [z1,...,xy] € RPN the input data and by, the column k of the unmixing matrix B. The

log likelihood algorithm, including a short derivation, is given by:
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r = A-s
=5 = A . 2=B-z
= 8 = bg

pe(@) = abs(|B)p, (s) = abs (|B]) [ pr (s1)
k

N K
L(B) = HH +@;)abs (| BJ)

=1

arg max(ﬁ (B)) = argglax (i ilog(pk(bg . :1:1)) + Nlog(abs (|B|)))

B i=1 k=1

The log likelihood measure has the same extreme value positions as the likelihood L (B).
However, the logarithm simplifies the algorithm. Therefore, the logarithmic likelihood
formulation is usually preferred. With slight changes to the algorithm, the sum over /N can
be replaced by the empirical expectation operator. Hence, ML estimation maximises the
expectation that resulting variables are generated by processes with pdf’s that are similar to

the estimates.

3.1.3 Mutual Information

Minimisation of mutual information aims to find a data representation that minimises the
dependencies between the input variables. This alternative concept for ICA is included because
of its importance in the literature and for the completeness of this introduction. Additionally to
a discussion of the method, the similarities to different, parallel ICA approaches are analysed.
These similarities suggest the meaningfulness of the methods. The mutual information I(-)

between variables {y; };—1._n is given by:

I(yla~--7yN):ZH(yi)_H(y)

Note that Efil H (y;) > H (y) and I (y) > 0. Suppose that the ICA model of equation (3.1)
holds and y = B - z with B being an orthogonal rotation matrix. In this case it can be
shown that the entropy H (y) is independent of B. Thus, minimisation of mutual information
equals the minimisation of Zf\il H (y;). The alternative definition of mutual information

I(y) = K (p(y)|| [T, p(y:)) illustrates its minimum for independent variables. Here,

SIS N
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FIGURE 3.2: Schematic structure of the Infomax algorithm. The nonlinearity g(-) represents
the node of a neural network. Mixing matrix B is found to transfer input = to a uniform
distributed variable g(y).

represents the Kullback-Leibler divergence (KLD) of the pdf’'s P and Q.
K (p(y)|| Hf\il p(y;)) =0 if the joint pdf p(y) equals the product of the marginal pdf’s
p(yi), which is the definition of independent variables y;. A similar approach is taken in neural
network solutions, the Infomax principle of Bell and Sejnowski (1995) and the ML estimation.

Here, the independent components are found by maximisation of the output entropy H (g(y)).

Figure 3.2 illustrates the structure of the Infomax based ICA algorithm. In the following, s and
A represent the vector of independent components and the mixing matrix respectively. Both are
unknown and have to be estimated based on the output vector x. The output y of the unmixing
matrix B is transferred by a nonlinear function g(-). The optimum of the mutual information
minimising algorithm is found if the transformed output ¢g(y) is uniformly distributed. This ICA
approach is equivalent to a neural network solution where the node utilises the nonlinear function
g(+) and the training adapts the unmixing matrix B to maximise the similarity of the output with
a uniform distribution. Cardoso (1997) and Hyvérinen et al. (2001) show the equality between
output entropy maximization and ML estimation for the case where the nonlinearity g(-) is
chosen to be the cumulative density function (cdf) of the original data . This results from the
uniform distribution of variables that are transformed by their own cdf. Theorem 2.1 by Devroye

(1986) illustrates this transformation to a uniform distributed variable.

Alternatively, the equivalence of output entropy maximisation and the previously—discussed
KLD-based method can be explained as follows. On the one hand, the KLD-based method
aims to find a B that minimises the difference of p(b! - x) to prior known marginal pdf’s p(y;).
On the other hand, the Infomax method transfers the marginal pdf’s to uniform distributions
using the nonlinear function g(-). Thereafter, Infomax aims to find a B that minimises the
difference to the now—uniform distributed marginal pdf’s. This is equivalent to maximisation of

the output entropy. If P = p(g(B . ac)) , the output entropy is given by:

H(P) < log(N) — K(P|lU)

Therefore, the unmixing matrix B is found by minimisation of the Kullback-Leibler divergence
K(P||U). A more detailed discussion of this method can be found in Cardoso (1997).
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3.1.4 Limits of ICA

Using only higher—order statistics leads to one of the major issues of ICA. Because the
fourth—order statistics of Gaussian variables are zero, Gaussian signals cannot be separated by
simple ICA. The border case, which can still be tackled, is a mixture with a single Gaussian
signal. This can be achieved by exclusion of the detectable sub- and super—Gaussian variables.
Another way of looking at the separation problem of Gaussian distributed variables is based on
the central limit theorem. If the pdf of a variable is strongly dissimilar to a Gaussian distribution,
the variable is less likely to be a combination of multiple iid variables. Hence, as discussed
earlier, the difference to a Gaussian distribution can be used as measure of independence
(Hyvdérinen et al., 2001). On the other hand, a Gaussian distributed variable could be interpreted
as a mixture of an infinite number of independent components. Therefore, normal distributed
variables cannot be separated using simple ICA. Another feature that cannot be extracted by
ICA is the orientation of the original components. Moreover, the independence constraint does
not give information about the sequence of the found components. Hence, all permutations and

orientations of the independent components are equivalent ICA results.

3.2 Kernel Methods

The kernel methods (KMs) (Shawe-Taylor and Cristianini, 2004) were introduced to tackle
signal processing problems that are poorly modelled by linear systems. These problems include
e.g., analysis of nonlinear relationships between variables, text, images and sequenced data.
Solving such nonlinear problems directly is often infeasible because of their high complexity and
the problematic interpretation of stability and statistical significance of the result. Hence, KMs
use the so called “kernel trick”, i.e., they analyse the inputs in a linearised high—dimensional
space. Therefore, well-researched linear methods can be used in this kernel domain enabling
statistical interpretability of the result. Let &; € RP, Y; € RP with i,5 = 1,...,N and
O(x) = [®1(x),...,Pr(x)] with M > D represent two variables from the input space and
the nonlinear map of « to a higher dimensional kernel-defined feature space respectively. An

example of a kernel matrix is the polynomial kernel of second degree for D = 2:

K(xivyj) = q’(wi)T"I’(yj)

T 2
= [l‘%i’l‘%iv\/il‘li fﬁzi] : [y%j’y%ja\/iylj y2j:| = (@] -y;) (3.4)

Second degree polynomial relationships between the variables in the original two—dimensional
space are simplified to linear relationships in the mapped three—dimensional space. Moreover, it
can be seen in equation (3.4) that the kernel matrix simplifies to the square of a scalar product.
Therefore, if a signal processing algorithm utilises only the kernel matrix, there is no need
to explicitly compute points in the high—dimensional space. Here it should be noted that the

kernel matrix may not contain all information from the original datapoints. One example of
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this is the Gram matrix based kernel: K(z,x);; = ®(x;)T - ®(x;). Because all rotation
matrices R satisfy the orthogonality condition R - RY = I, the Gram matrix based kernel
of inner products is invariant to rotation around the origin. This illustrates the importance of
the problem—dependent kernel choice. In the following, a selection of prominent kernel-based
statistical signal processing methods are discussed. Further information on kernel methods
and their application in support vector machines can be found in Shawe-Taylor and Cristianini
(2004).

3.2.1 Kernel PCA

Kernel PCA (KPCA) utilises nonlinear dependencies for feature extraction and data compres-
sion. The approach is motivated by the successful implementation of the kernel trick in the field
of support vector machines. The experience in this field proved that many natural dependencies
are not purely linear. Therefore, the transfer of a signal processing problem to a nonlinear space
has the potential of finding better solutions. Figure 3.3 illustrates the basic principle of KPCA.
The nonlinearity ® is used to linearise the original input space. Thereafter, the transfered data
are analysed using PCA. Thus, KPCA can be seen as the application of PCA in a kernel-defined
input space. In the following, E* denotes the eigenvector k of the data in this kernel space. The

desired projections onto the eigenvectors in the nonlinear space are given by:

N
EF-®(x)=) af®(z;)" - @ ()
=1

Here, a’ represents the map from the span @ (x) to the eigenvector E*. This repre-
sentation was chosen for variable reduction in the formula. In the following, let D and
K;j = ®(x;)" - ® (x;) represent the diagonal matrix of sorted eigenvalues and the kernel

k _ 1

matrix respectively. The map to the KPCA space a” = — E* can be found by eigenvalue

vV Dk

decomposition of the kernel matrix [E, D] = eig { K }. The KPCA projection on component k
N

is given by: ¥ = 3" a¥ K (x4, ). More details including a stability analysis of KPCA can be

=1
found in Scholkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004).

3.2.2 Kernel CCA

As discussed in Section 2.6, CCA is a powerful linear method generalising e.g., LDA, Fisher’s
LDA and PCA. In parallel to the linear case, the goal of kernel CCA (KCCA) (Bach and Jordan,
2002; Shawe-Taylor and Cristianini, 2004) is to find the common source of a set of variables.
However, rather than linear projections, KCCA finds a set of nonlinear functions such that the
correlations in the transformed kernel space are maximised. For clarity, we assume a set of two
variables z and y € RP. In the following, let f(-) and g(-) represent two nonlinear functions

from reproducing kernel Hilbert spaces (RKHS) 7 and F,; C RP respectively. Furthermore,
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FIGURE 3.3: Linearisation of a feature extraction problem utilizing information of nonlinear
dependencies between variables. This enables the use of linear methods for nonlinear feature
extraction.

let Kf(z,y) = Op(x)! - Of(y), Ff = SN K¢(x;,-) and Fy = SN b K y(y;, ) with
a;,b; € R. Note that K ¢(-,-) and K 4(-, -) represent two kernel matrices and F a vector space
with ‘-’ denoting the location of the arguments. Because of the reproducing property of the
RKHS:

N
f(a:):Zain(a:i7a:):aT~Kf(a:,az):aT-Kf (3.5)
i=1
N
g(y):ZbiKg(yi,y):bT-Kg(y,y):bT-Kg (3.6)
i=1

The objective function that is maximised by KCCA is given by:

T (@), gfy) = ——2 T @ 65)

— 3.7
Jvar (@) var (9(8)) G7

By substituting equations (3.5) and (3.6) in (3.7), the KCCA objective function can be
simplified:

a” Ky K] b

J(a,b) =
JaT Kp K% a6 K, Kb

(3.8)

It should be noted that the points are assumed to be centred in the nonlinear kernel space:
Zfi 1 ®f(x;) = 0. If K isa N x N Gram matrix, this centring can be achieved indirectly by
modification of the kernel matrix K = P - K - P. Here, K represents the kernel representation
of the not—centred datapoints and P = I — %; As discussed in Bach and Jordan (2002),
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equation (3.8) does not provide a useful estimate of the canonical correlations in the kernel
space. The reason for this is the flexibility of the high—dimensional kernel space representation.
The highest correlation is achieved if @ and b are in the column span of K ; and K, respectively.
In this case equation (3.8) simplifies to a minimisation of the angle between a and b. However,
if one of the kernel matrices has full rank, its columns represent the full space. For example, if
K ¢ has full rank, the minimum angle between a and b is zero for all possible vectors b. This
exemplifies the necessity to regularise and constrain the space of solutions. Shawe-Taylor and
Cristianini (2004) suggest a regularisation of the norms of a and b leading to the new objective

function:

a” Ky K] b

T(a,b) = T T T
V(@ —a)a? K; KF-a+alal?) (1-8) b7 K, KL b+ 5]b]?)

Here, the parameters «, 5 € R are empirically found. As discussed in Bach and Jordan
(2002) and Gretton et al. (2005), KCCA can be used as a contrast function to find independent
components. If the space of functions F is large enough, the maximum of equation (3.7) equals
zero if and only if the inputs are statistically independent. The intuition is that for uncorrelated
not independent variables there exists a nonlinear projection such that their maximum correlation

1S non—zero.

3.3 Summary

This chapter provided a background on modern approaches addressing non—Gaussian and
nonlinear problems. A discussion of ICA and its various cost functions provided a different
viewpoint on characteristic information in the inputs. In contrast to previously discussed
methods, ICA finds directions whose data projections are statistically independent. That is, the
projection length of data onto one independent component provides no statistical information
on the projections onto other components. The higher—order statistic kurtosis is used for voice
activity detection in Chapter 6. Additionally, kernel methods were described. That is, nonlinear
problems are linearized by projection through a kernel function to a specific high dimensional
space. Here, the projected problem is addressed linearly. The actual projection to a high
dimensional space cancels mathematically and is thus only performed virtually. This illustrated

how problems can be simplified by viewing them in a high dimensional space.



Chapter 4

Mutual Interdependence Analysis

In complex applications there is a clear trend toward high—dimensional data acquisition. Exam-
ples are image, speech, text processing, bioinformatics and spectroscopy. However, prominent
linear signal processing algorithms for feature extraction, regression and classification (see
Chapter 2) were developed for problems with a much lower dimensionality D than the number
of available datapoints N. One reason for this assumption is that it can prevent issues of high—
dimensional data representations demonstrated by the curse of dimensionality (Bellman, 1961).
The curse of dimensionality points out that a cartesian grid with 0.1 spacing represents 100
points on a unit square but 10'° points on a 10 dimensional unit cube. In the following, a
number of examples are given to illustrate the implications of the curse of dimensionality in
real problems. A first example is the approximation of a Lipschitz function with D variables.
This makes it necessary to perform in the order of N (%)D evaluations on a grid to achieve
a uniform approximation error of €. Also for statistical estimation it can be shown that the
number of instances that are necessary to model a variable with a given estimation error in a
D—-dimensional space could grow non-asymptotically with D. Both examples are discussed in
more detail in Donoho (2000). Another way to visualize the effect of the curse of dimensionality
is the trade off between the number of features e.g., in machine learning. While a large number
of features may contain additional information, the estimation of the dependencies between them
may require impractically large sets of data. Given these problems, it appears ill-advised to use
high—dimensional data representations. One possible solution to the resulting problem of high—
dimensional data processing is dimensionality reduction by feature selection. It is necessary
to automate such preprocessing because of the amount and complexity of data from modern
applications. However, it is unclear if the automatically found compressed space is robust to

unknown errors.

As discussed in Section 3.2, processing in high—dimensional spaces also has multiple advan-
tages. One example is that complex nonlinear relationships can be simplified to linear problems
in a higher dimensional space. In this way, ICA can be solved in the kernel space using the
second order CCA cost function (Section 3.2.2). This suggests that, under some conditions, the

correlations between high—dimensional vectors can be used as measure of their dependence.

38
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FIGURE 4.1: Device and text independent speaker verification using training data from
different, unknown, noisy and nonlinear distorted channels. Does there exists an invariant
representation of the data?

Furthermore, high—dimensional data representations are commonly smooth enabling noise
cancellation. Additional advantages/properties of high—dimensional data representations as for
instance their “concentration of measure” are discussed in Donoho (2000). In summary, taking
both advantages and disadvantages into account, it is possible to design stable algorithms that

work in a high—dimensional space solving the challenges of modern/complex applications.

This chapter focuses on feature extraction in such a high—dimensional input space. The goal is to
extract a single vector that represents the commonalities of a set of inputs. For example, assume
the problem of text independent speaker verification. Figure 4.1 illustrates an application where
the training data are recordings from different, unknown, noisy and nonlinear distorted channels.
Does there exist a single representation of the common invariance in the data? The intuition is
that such a representation could be used to verify the origin of unseen recordings. Chapter 6

discusses this application in detail.

A further application where the extraction of a common representation is of interest is
illumination invariant face recognition. Figure 4.2 illustrates this image recognition problem.
The challenge is that most of the signal energy represents illumination differences rather than
structural characteristics of the face. However, is there an inherent structure common to all
images of the same face? If this is the case and it can be extracted, this representation can
be used as a robust feature for face recognition. More information about this problem and its

solution can be found in Chapter 7.

Note that in this chapter the inputs are assumed to be from a single class. Therefore, in contrast to
FLDA (Section 2.5), no between—class information can be used to find maximally discriminative

features. A reasonable representation w of the high—dimensional inputs x;, which represents
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FIGURE 4.2: Illumination invariant face recognition. The main challenge is the high
contribution of the illumination differences to the variance between images. Does there exist a
mutual, illumination invariant image representation?

them equally, is their mean. However, can a data representation be found that includes additional
prior knowledge, e.g., equal dependence of w on the inputs or smoothness of the result? The
goal of mutual interdependence analysis (MIA) (Claussen et al., 2007) is to find such a signature.
As discussed earlier, the correlation between high—dimensional data vectors can indicate their
dependence. Thus MIA finds a data representation that is maximally but equally correlated with
all inputs. As discussed in Corollary 4.4 and Section 4.3, such representation is in the span of
the inputs. Therefore, MIA finds a vector w that is maximal uniformly correlated with the inputs

X while being in their span: w = X - ¢, where ¢ € RY.

In the following, assume that w € RP is an equally present, invariant component in a set of
N linear independent data vectors x; € R” withi = 1,..., N. Furthermore, let f; represent
the ‘variability’ of each input vector and assume w” - f; = 0 Vi. The mixing model of mutual

interdependence analysis is given by:

T, =w+ f @.1)

MIA aims to extract the invariant component w. The previously discussed correlation based
criterion of MIA can be interpreted geometrically as the minimisation of the scatter of projection
lengths from the inputs onto a desired direction or result w. The scatter, a scaled version of the

empirical covariance, is given by:

N
S'(X\w):Z('wT~wi—wT~u)2:wT-S-'w 4.2)
i=1
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N

where p = % Zfil @; is the D—dimensional sample mean and S = ) (x; — ) - (x; — ,u)T
i=1
is the scatter matrix of the data. Therefore, the MIA problem is to determine w as:
w= argmin S(X|w) 4.3)

'I.D,||'LU||:1,’LU:XC

Note that the definitions of FLDA from Section 2.5 and MCA from Section 2.2 also use
the within—class scatter matrix S. However, in contrast to these, X is not assumed to be
preprocessed by mean subtraction. The MIA optimisation problem from equation (4.3) is, up to
its sign, unique because of its constrained formulation. Also w ‘optimally’ represents the data

samples as one aggregate sample.

As discussed in Section 2.2, MCA has no unique solution if the rank of the scatter matrix
is below D — 1. Thus, to use MCA in a high—-dimensional space with D > N it is
reasonable to define the first minor component as the first unique direction of minimum variance.
In the following, this constrained MCA formulation is assumed. It can be shown that if
rank (S) < D — 1, such a direction represents a non—zero variance and is constrained to the
space of the mean subtracted inputs. In contrast to this, MIA constrains the space of solutions to
the span of the original (not mean subtracted) inputs. The reason for this is that mean subtraction
reduces the rank of S for linear independent inputs. However, in a high—dimensional space it
can be assumed that the inputs are linearly independent. The mean subtracted versions can no
longer fully represent the original inputs because rank (.S) is equivalent to the dimensionality of
the spanned space. This phenomenon and the resulting difference between MIA and MCA are

illustrated in Figure 4.3.

In Section 4.1, a solution to the MIA problem is derived. Furthermore, it is proven that MIA
has a unique solution, up to its sign, for linearly independent inputs. Section 4.2 demonstrates
that an alternative unconstrained MIA criterion can be found. This criterion is used to illustrate
MIA properties. In Section 4.3, a regularised MIA version is derived to ensure the stability of
the MIA result. Thereafter, Section 4.4 discusses MIA from a Bayesian point of view which
is used to generalise the MIA solution. Thus additional prior knowledge and constraints can
be used. Section 4.5 shows how MIA can be constrained to different spaces than the span of
the input. Subsequently, Section 4.6 interprets MIA from the point of linear and kernel ridge
regression. Finally, Section 4.7 summarizes the findings of this chapter.

4.1 Solution to MIA

This section discusses the solution to the MIA problem defined in equation (4.3). Furthermore,
it is shown that MIA has, up to its sign, a unique solution for linearly independent inputs. In
the following, let X = [z1,...,xy] € RP*Y represent a set of N inputs of dimensionality
D. Moreover, let p= 1 X -1 and Y = [z — p|...]oy — p] = X — p - 17 denote the D-
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FIGURE 4.3: Comparison of MCA and MIA. (a) Results of MIA and MCA in a space of

linearly dependent inputs. Note that the span of this input example is not reduced by mean

subtraction and that both methods find the same result. (b) Simulation of the results in a high—

dimensional input space where the inputs are linearly independent. The unconstrained MCA

approach does not have a unique solution if rank (S) < D — 1. It is assumed that MCA points

in the first unique direction of minimum variance. Note that because of the mean subtraction

inflicted rank reduction, MIA has an additional dimension for the optimisation procedure.
Hence, MIA finds a different result than MCA.

dimensional mean and the set of mean subtracted inputs respectively. Therefore, the MIA

problem from equation (4.3) can also be written as:

w = arg min HwT . YH2 4.4

w,||lw||=1,w=Xc
Note that the original space of the inputs spans the mean subtracted space plus possibly one
additional dimension. Indeed, the mean subtracted inputs, which are linear combinations of the
original inputs, sum up to zero. Mean subtraction cancels linear independence resulting in a

one dimensional span reduction.

Theorem 4.1. The minimum of the criterion in equation (4.4) is zero if the inputs x; are linearly

independent.

Proof sketch: If inputs are linearly independent and span a space of dimensionality N < D,
then the subspace of the mean subtracted inputs in equation (4.4) has dimensionality N — 1.
There exists an additional dimension in RV, orthogonal to this subspace. Thus, the scatter of
the mean subtracted inputs can be made zero. The existence of a solution where the criterion in

equation (4.4) becomes zero is indicative of an invariance property of the data. [ |

Using the projection matrix P, the mean subtraction procedure can be simplified to:
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1
Y=X-P wih P=I-_1. (4.5)
Obviously, Zf\il y; = 0. Hence, the nullspace NULL(Y,,Ys,...,yy) is non—trivial. All
vectors w € NULL(Y,, Yo, - ..,y ) will minimise S(X |w). The next theorem shows that

the problem given by equation (4.4) has, up to its sign, exactly one solution.

Theorem 4.2. Assume x1,x2,...,x N are linearly independent. Then, there exists an up to
its sign unique w # 0 in NULL(Y,Ys,---,Yy) such that w is in the span of the inputs x;,
i=1,...,N.

Proof: A solution w # 0 and ¢ € RY of the system of equations:

wl''Y = 0 (4.6)
w = X-c¢ 4.7

will also satisfy the Theorem 4.2 and solve the optimisation criterion of the problem in
equation (4.4) given ||w|| = 1. Indeed, equation (4.6) is equivalent to the existence of w
such that w € NULL(y;,Ys, - - -,Yy) and equation (4.7) specifies that w is in the span of the
inputs x; and w # 0. By substitution of w from equation (4.7) and Y from equation (4.5) in

(4.6), the problem can be condensed to:

- XT.X.-P=0 (4.8)
Given that G = (X7 - X) is a Gram matrix formed by linearly independent vectors
x1,To,...,xyN, G isinvertible (see Theorem 7.2.10 in Horn and Johnson 1999). Let:

c'=dr (xT.x)! (4.9)

Therefore, equation (4.8) becomes: d’-P =0withd = (1 and ¢ € R. When substituting this
into equation (4.9) we obtain: ¢ = ¢ (X7 - X)~!. 1. Hence:

w=C¢X- (XT.x)"t.1 (4.10)

It follows that ﬁ is, up to its sign, a unique solution to equation (4.4). [ |

It can be easily seen that additive components in all data samples will not affect the scatter
matrix S and therefore will not affect the composition of the MIA solution. MIA captures

invariant information present in all samples.
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4.2 Alternative MIA Solution

The assumption that the MIA result is in the span of the inputs gives a possibility to find a, up to
its sign, unique and closed form solution that minimises the scatter of the inputs. Although the
resulting constrained optimization problem in equation (4.3) is well interpretable geometrically,
it is difficult to analyse its properties. In the following, an alternative, unconstrained MIA
solution is derived. This result aids the analysis of MIA properties and reiterates the choice
of the span constraint. Moreover, the alternative approach relates MIA to FLDA and CCA that
were discussed in Section 2. This connection to statistically well understood methods helps the

interpretability of MIA and increases the confidence in its result.

As discussed earlier, it is assumed that the input samples are from a single class. However,
the cost function of FLDA in equation (2.7) is defined using the between class scatter. For the
single class case, the between class scatter is zero. Therefore, FLDA can not be used and a
direct link from MIA to FLDA can not be established. However, the FLDA-like formulation of
the CCA problem in Section 2.6 can be modified to extract an invariant signal from inputs of a
single class. Here, Z is defined as classification table from equation (2.14). One interpretation
of CCA is from the point of view of the cosine angle between the (non mean subtracted) vectors
a” - X and Z" - b. The aim is to find a vector pair that results in a minimum angle. A modified
CCA (MCCA) criterion will be used as follows: First, consider the original inputs rather than
the mean subtracted covariance matrices; Second, the class membership table Z for data from a
single class collapses to a vector and b to a scalar, therefore Z - b = 1 - b. Thus, criterion (2.11)

becomes independent of b resulting in:

4.11)

; J(a) al X1
aNCCA — argmaxJ(a) = argmax
a a \/aT.X.XT.a

This criterion is maximised when the correlation of a with all inputs x; is as uniform as possible.

The solution to this problem can be found by:

a‘gila):X-l—aT‘X-l-(aT-X-XT~a)_1-X~XT~a:O 4.12)

. T x.xT.
Therefore, « X -1 =X - X7 - a witha = %}){(«1 Furthermore

a = lim(a(X-XT+e1) "

e—0

X
a = lim(a(X-XT+gI)_1-X.XT.X.(XT.X)‘l.l)
e—0

a = oX-(XT-X)"1 (4.13)
Note that « is a scalar that results in scale independent solutions and € I enables the inversion
of the rank deficient X - X 7. As can be seen, the solution equation (4.13) of the modified CCA
problem in equation (4.11) is identical to the MIA solution in equation (4.10). Thus, one can

argue that the MCCA and MIA criteria are equal. In the following, we rename anicca to ania.-
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The new formulation of MIA in equation (4.11) highlights its properties:

Corollary 4.3. The MIA problem has no defined solution if the inputs are zero mean i.e., if
X-1=0
This is obvious from equation (4.11).

Corollary 4.4. Any combination ayiia + b with b in the nullspace of X is also a solution to
equation (4.11).
This means that only the component of a that is in the span of X contributes to the criterion in

equation (4.11).

Corollary 4.5. The solution of equation (4.11) is not unique if the N inputs X do not span the

D-dimensional space RP.
This follows from corollary 4.4. A unique solution can be found by further constraining

equation (4.11). One such constraint is that a be a linear combination of the inputs X:

N al’ - X -1
a)pIA — arg max
aa=XxcVal - X -XT-a

4.14)

Corollary 4.6. The MIA solution reduces to the mean of the inputs in the special case when the

covariance matrix C x x has one eigenvalue \ of multiplicity D, i.e., Cxx = A L.
Indeed, equation (4.14) can be rewritten as:

T

dpia = arg max a K (4.15)
wma=Xe \/GT Cxx-a+(al - p)’
After normalising with a = ”§7g” and using the spectral decomposition theorem (Moon and

Stirling, 2000), it can be shown that a” - C x x - a is invariant to a given equal eigenvalues of
C x x. The function under equation (4.15) is monotonically increasing in a’ - y. Therefore, the

. . . T . . . . A
optimum is obtained when ﬁ is maximum resulting in ayga = W.

The invariance in data from one class results in a unique direction that is a characteristic feature
of the data. This may capture information that is powerful enough to distinguish instances from

different classes.

4.3 Regularisation of MIA

. . . 1. .
If the inputs X € RP*Y are nearly collinear, the inverse (X . x ) in equation (4.13)
becomes close to singular. In this case, small variations in the inputs, e.g., because of noise, can
have a large effect on the result. This problem can be prevented by regularisation of the norm

|la|| enabling the computation of the inverse and increasing the stability of the solution. This
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case parallels with ridge regression (discussed in Section 2.7.2). The regularised MIA criterion

is given by:

; Ja) (Xl ael?)  @io
aya = arg max J(a) = arg max —Alla .
a a Val - X - XT.a
Note that components of a that are in the nullspace of X do not affect the result of
equation (4.11) but are penalised in equation (4.16). The intuition is that the regularised MIA
constrains its result to the span of the inputs. Similarly to equation (4.12), the solution to (4.16)

is given as the root of the derivative:

8J(a):X-l—lX-XT-a— 2\
Ja VaT - X -XT . a

a=0

Q

Here, « is an arbitrary scaling factor representing the scale invariance of equation (4.11). Let
2 \al-X-X".a

V= X1 Hence:
a = a(X-XT+v1)7 X1
@ = o(X-XT4vD) X (XT - X4vI) (XU -X+vI) -1
a = aX-(XT-X+vI) -1 (4.17)

Similar to RR, v is chosen empirically. Note that the result of equation (4.17) is close to the mean
of the inputs if a high value is chosen for v. The result of the regularised MIA is given by ﬁ
In Section 4.4, the empirical regularisation is replaced by a statistically motivated integration of

prior knowledge.

4.4 Bayesian MIA Framework

In this section, a Bayesian viewpoint is taken to include prior knowledge into the MIA criteria
from equations (4.3) and (4.14). This is desirable because real data samples do not contain
an exactly equal amount of inherent structure. Thus, this uncertainty is modeled to obtain an
improved result. Moreover, this different view on MIA enables the demonstration of further
MIA properties i.e., the stability of the MIA result for minor variability in the inputs. The
derivation of the Bayesian MIA formulation parallels the one discussed in Section 2.8. However,
the data model and assumptions are changed to fit the MIA problem. In the following let
X =[x1,...,xzn] ERPN w € RP, n € RY and r € RY. Therefore, the MIA equivalent

to equation (2.23) can be found as:

r=XT . w+n (4.18)
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The intended meaning of = is the vector of observed projections of inputs & on w, while n is
measurement noise, e.g., n ~ N (0, C,,). We assume w to be a random variable. Our goal is to
estimate w ~ N (pt,,, Cqp) assuming that w and r are statistically independent. Ideally, the data
r = ( 1 follows from the variance minimization objective if no noise is present and the variance
of projections is zero, which is exactly the MIA criterion (as expressed in Theorem 4.1). We

define a generalized MIA criterion (GMIA) applying an equivalent derivation to Section 2.8:

WeMIA = o+ Cuo X - (X7 Co- X +C5) - (r = X7 - p1y,) (4.19)

— Hw+(X-C}1-XT+C;1) l-X-C]_cl-(r—XT-pw) (4.20)

The GMIA solution, interpreted as a direction in a high dimensional space R”, aims to minimize
the difference between the observed projections r considering prior information on the noise
distribution. It is an update of the prior mean ., by the current misfit » — X - 1., times an input
data X and prior covariance dependent weighting matrix. Equations (4.19) and (4.20) suggest
various properties of MIA. First note that if Cy, = I, pt,, = 0 and C'y = 0, equation (4.19)
becomes identical to (4.10). In general it is desirable that the MIA representation be robust to
small variations in X (e.g., due to noise). Equation (4.19) indicates that small variations in
X do not have a large effect on the GMIA result. Indeed wgnra is an invariant property of
the class of inputs. Furthermore, equations (4.19) and (4.20) allow the integration of additional
prior knowledge such as smoothness of wgnra through the prior C,, correlation of consecutive
instances x; through the prior C'¢, etc. Moreover, the GMIA formulation can be used to define
an iterative procedure tackling datasets with large /N and D. In this case it might be unfeasible to
compute the matrix inverse. This problem could be approached using the following procedure:
First the data is split into subsets that can be handled computationally. Thereafter, wgna is
extracted from the first subset. Following subsets are processed using the previous wgmia as
estimate for p,,. Introducing a decreasing weight, the result converts to a MIA representation

of the whole dataset. Note that the quality of such an iterative approach remains to be tested.

4.5 MIA in Constrained Function Space

In some applications, the components of the result are known a priori e.g., in spectroscopy the
spectral distributions of the elements of interest may be known. However, the mixture may
contain further structure due to noise or additional unconsidered components. Therefore, it may
be advantageous to constrain the search for the mutual component to a specific space. Another
reason for such a constraint is a high number of available inputs. Thus, it may be required to
reduce the size of the inverse in equation (4.10) for computational reasons. In this case, the span
of the inputs may be well represented by a subset of them. In the following it is shown how a

change in the span constraint affects the MIA solution. Let F' € RP*X denote the matrix of
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K components that represent the new span constraint. Furthermore, let X € RP*N 1w € RP,
ceREand P =1- % 1 represent the input data, the mutual component, the weighting vector

and the mean subtracting projection matrix respectively. In parallel to Section 4.1:

w! X P = 0 4.21)
w = F-c 4.22)

By substituting equation (4.22) in (4.21):
' FT.X. P=0 (4.23)

If X7.F.-FT.X isinvertible, the weights can be foundto ¢’ = d-(XT-F.-FT.X)" 1. XT.F.
Therefore equation (4.23) simplifies to d - P = 0 resulting in d = ( 17, Hence:

w=C¢F-F'. X (XT.F-FT.X)'.1 (4.24)

For the constraint basis F', the MIA result is given by the normalized solution m Note that
this solution is not equivalent to MIA in a projected space if the basis F' is not orthonormal.

Furthermore, note that F' - F' has the same effect as Cy, in equation (4.19).

4.6 MIA as Regression

The MIA solution in equation (4.17) has striking similarities to ridge regression (RR) in
equation (2.22). In this section, MIA is interpreted as regression to illustrate the similarities
of both approaches. In a first step, linear and kernel ridge regression are discussed to familiarize
important concepts. Commonly, regression is used to model an observed real valued output
y € RY as linear combination of NV input vectors x; € R”. The learned model BRR can then

be used to estimate future outputs §(x) given the data z as () = 7 - Bpg.

However, regression is also utilized for classification (Hastie et al., 2001, p.81). Here, one
aims to predict the posterior probability p(y = k|x) that an input x is of class k. This
probability is usually unknown during training. Thus, it is common to approximate the posterior
probability for all class elements to 1 and for instances of other classes to 0. In this way,
each ridge regression classifier aims to separate one class from all others. For more than two
classes, this leads to ambiguous class membership regions. To prevent this, the linear classifiers
are combined as described in Bishop (2006, p.183). The advantage of the one—versus—the—
rest approach is that, e.g., by excluding out of class instances, one can find a single class

representation that is independent of other classes. Thus, not all classifiers have to be retrained
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FIGURE 4.4: Linear classification using ridge regression. (a) Three classes of different
covariance are separated in a two dimensional space. Note the missclassification on the
boundary between classes 1 and 2. This is caused by the sensitivity of linear regression to class
instances that are distant to the classification boundary. (b) Masking effect of linear regression.
Each classification boundary aims to separate one class from all others (this is called one—
versus—the—rest classifier). Therefore linear regression fails to separate class 2 from classes 1
and 3 using a single linear boundary. Note that the final boundaries are combinations of the
one—versus—the—rest classifiers preventing ambiguous class membership regions.

if a new class is added. However, one—versus—the—rest based linear classification is not able to
reliably separate multi—class problems in low dimensional spaces. This is exemplified in the

right plot of Figure 4.4 and discussed below.

Figure 4.4 illustrates classification results using linear regression on three classes in a two
dimensional space. In particular, a number of disadvantages of this linear approach are shown.
For example, linear regression is sensitive to outliers. The points of class 1 that are most distant
to the class 2 boundary have a large impact on its direction and position. This results in partial
misclassification of class 1 in the left plot of Figure 4.4. Additionally, the estimate of the
posterior probability p(y = k|x) is not constrained to the interval [0, 1] resulting in problems
with its interpretability. Moreover, linear regression has problems with masking, e.g., if the
centers of more than two Gaussian distributed classes are on one line. This results from the
rigid nature of the linear boundary in combination with the one—versus—the—rest classification
approach. Clearly, it is not possible to find a single linear boundary that separates class 2 from
classes 1 and 3 in the right plot of Figure 4.4. As a result, most of the class 2 instances are

missclassified.

In the following, it is shown how the lack of robustness to outliers as well as the masking
problem can be prevented using a nonlinear extension of ridge regression. As discussed in
Section 3.2, linear methods can be transformed to nonlinear ones by application of the kernel
trick. The resulting kernel ridge regression algorithm is given in Shawe-Taylor and Cristianini
(2004, p.233) as follows:

N
jx) =Y aiK(z,x) with a=(K+AI)"" -y . (4.25)
=1
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FIGURE 4.5: Nonlinear classification using kernel ridge regression with a Gaussian kernel of

variance 0.2. (a) Classification of three classes with different covariances in a two dimensional

space. Note that no training instance is missclassified. (b) Kernel ridge regression does not

suffer from the masking effects of linear regression when using a Gaussian kernel. However,
both kernel and linear ridge regression are one—versus—the—rest classifier.

As discussed in Hastie et al. (2001, p. 84), it is a loose rule for K—class problems that if X' > 3
classes are lined up, it may be necessary to use polynomial terms of orders up to K — 1 including
their cross products to prevent masking in worst—case scenarios. That is, to resolve masking
problems for K = 10 it could be necessary to use a polynomial kernel of degree 9. In the

following, the Gaussian kernel

K(x;,x;) = exp <_||$12—025’7]||>
is selected to represent a solution that is independent of the number of classes. The Gaussian
kernel assumes that each class is well modeled by a combination of radial basis functions.
The feature space of this kernel is of infinite dimensionality (Shawe-Taylor and Cristianini,
2004, p.297) due to the infinite Taylor expansion of the Gaussian function. Kernel ridge
regression classification results of the problems in Figure 4.4 are illustrated in Figure 4.5.
Note that all training data is correctly classified in the left plot of Figure 4.5 demonstrating
an increased robustness to outliers. Furthermore, the right plot of Figure 4.5 shows that kernel
ridge regression does not suffer from masking problems. This demonstrates that although ridge
regression has problems as a linear classifier, its nonlinear extension to kernel ridge regression is
a powerful tool for classification. A drawback of kernel ridge regression to e.g., kernel support
vector machines (KSVMs) (Shawe-Taylor and Cristianini, 2004) is that all training instances are
used to determine the class of new inputs. By selecting a discriminant subset of the training data

as support vectors, new instances can be classified faster using lower computational effort.

The relationship of MIA to the previously discussed regression methods is as follows. While
linear and kernel ridge regression based classification commonly assume a one—versus—the—
rest approach, MIA only considers instances of a single class. Furthermore, MIA assumes no
a priori knowledge of the posterior probability p(y = k|x) defining y = 1. MIA uses high
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dimensional, linearly independent inputs and employs their Gram matrix K;; = a:lT - xj as
kernel. That is, the output of MIA is constrained to the span of its inputs. Thus, the MIA
result of the class k inputs represents a linear regression in the N (k) _dimensional subspace of
RP. The assumption of MIA that the input dimensionality D is much larger then their number
N makes it difficult to illustrate MIA based classification similarly to the previously discussed
regression approaches. That is, while kernel ridge regression only projects the data virtually to
a high dimensional space, MIA starts off and remains in a high dimensional space. However,
it is the intuition that both, disjointness of the subspaces spanned by instances of the classes k
(with X %) € RDXN(k)) and [ (with X € ]RDXN(”) Vk # [ as well as the high dimensionality
of the spaces N¥) > K with k,l = 1,..., K, ensure robustness and prevent masking. This
can be visualized as follows. If two input samples are represented in a two dimensional space,
the MIA result represents the direction where the projections of both points coincide. It is
hypothesized that a projection onto the same point, e.g., from two inputs of a different class, is
unlikely. Such masking is even less likely if D >> N and one can assume that the subspace
spanned by samples of one class is different to the one spanned by inputs from another class.
Furthermore, as the inputs of a single class are linearly independent in their high dimensional
input representation, each of them could be separated using a linear classifier. That is, not even
samples of the same class mask each other in this high dimensional input space. Therefore, it is

assumed, that inputs from different classes will not result in masking problems.

4.7 Summary

Mutual features were found that represent characteristic, high—dimensional patterns from
each class. For instance, a mutual feature is a speaker signature under varying channel
conditions or a face signature under varying illumination conditions. An algorithm called
mutual interdependence analysis (MIA) was proposed to extract these signatures. By definition,
the MIA signature is a linear combination of class examples that is equally correlated with all
training samples in the class. It was proved that the MIA criterion has, up to its sign, a unique,
closed form solution for linearly independent inputs. Thereafter, MIA was viewed from the
perspective of a modified CCA problem. This unveiled certain properties of this approach, e.g.,
when the MIA criterion has a defined solution or is equivalent to the sample mean. Subsequently,
a regularized MIA algorithm was proposed that enables the matrix inversion if inputs are nearly
collinear. The MIA assumption of an equally present signature in the inputs of one class is not
always suitable. For example, for speaker verification it can be assumed that a speech instance
with silence contains a reduced degree of speaker characteristic information. This uncertainty
in the actual degree of similarity was modeled using a Bayesian point of view. The analysis
resulted in the generalized MIA criterion (GMIA). Additionally to modeling a misfit in the
MIA assumption, GMIA can utilize a priori information on the mutual signature. This enables
iterative applications of GMIA, e.g., to solve large size problems. The MIA criterion has, up

to its sign, a unique result because of its constrained space of solutions. However, in certain



Chapter 4 Mutual Interdependence Analysis 52

applications, it may be desirable to find solutions in a different, predefined space. Thus, it was
shown how the MIA result can be constrained to a combination of alternate basis functions.
Finally, MIA was interpreted from the point of linear and kernel ridge regression illustrating
the similarities of the methods. This analysis suggested that MIA can be successfully used for

classification without suffering from outliers or masking of classes.



Chapter 5

Synthetic MIA Examples

After the introduction and theoretical analysis of MIA and GMIA in Chapter 4, this chapter
visualizes their behavior on synthetic data. The advantage of artificial data is its full
controllability. This enables the simulation of states of interest and clear interpretation of
the results. Furthermore, with exact a priori knowledge of the signal structure, the feature
extraction results can be statistically analyzed. In the following chapters, GMIA is used for
text-independent speaker verification and illumination—independent face recognition. Both
approaches are different in their input data structure. That is, while speaker verification uses
one—dimensional audio inputs, face recognition is done on two—dimensional images. One goal
of this chapter is to analyze the properties of synthetic examples with both one- and two—
dimensional data inputs. This aids the understanding and confidence in the approaches of the

following chapters.

First, Section 5.1 compares the feature extraction results of GMIA with the mean, PCA and
ICA using one—dimensional synthetic inputs. Thereafter, the extraction performance of GMIA
is statistically analyzed showing when MIA, GMIA or the mean best represent a common
component in the data. Section 5.2 demonstrates how MIA can be used to extract an illumination
independent ‘mutual face’ from a synthetic mixture of differently illuminated face images.

Section 5.3 summarizes the findings of this chapter.

5.1 One-Dimensional Input Examples

In this section, feature extraction is performed on synthetic data in order to visualize differences
between MIA, GMIA and commonly used methods. A random signal model is defined to create
synthetic problems. This way, the feature extraction results can be compared to the true feature

desired. Assume the following generative model for input data x:

53
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T = a18+f1+n1
Ty = s+ fotno

2 (5.1)
Ty = ans+ fy+ny

where s is a common, invariant component or feature aimed to be extracted from the inputs, «;,
1 =1,..., N are scalars (typically all close to 1), f,, ¢ = 1,..., N are combinations of basis
functions from a given orthogonal dictionary such that any two s and f; are orthogonal and n;,
i =1,..., N are Gaussian noises. In the following, it is shown that MIA estimates the invariant

component s.

Let us make this model precise. As before, D and /N denote the dimensionality and the number
of observations. Additionally, K is the size of a dictionary B of orthogonal basis functions. Let
B = [by,...,bx] with by € RP. Each basis vector by, is generated as a weighted mixture of
maximally J elements of the Fourier basis which are not reused ensuring orthogonality of B.
The actual number of mixed elements is chosen uniformly at random, J; € Nand J, ~ U(1, J).
For by, the weights of each Fourier basis element ¢ are given by wj; ~ N(0,1),j =1,..., J;.
Fori =1,..., D (analogous to a time dimension) the basis functions are generated as:

Jk ) . 27riajk oom
Zj:1 wjj, sin ( o + Biky

/D N~k 02
2 Zj:l wjk

Qi € {L?l;}vﬁjk’ € {071}? {ijaﬁjk‘} 7& {alpaﬁlp}vj #lOI’k‘ #p .

by (i) =

with

In the following, one of the basis functions by, is randomly selected to be the common component
s € {by,...,bx}. The common component is excluded from the basis used to generate
uncorrelated additive functions f,,, n = 1,..., N. Thus only K — 1 basis functions can be
combined to generate the additive functions f,, € R”. The actual number of basis functions .J,,
is randomly chosen, i.e., similarly to Jg, with J = K — 1. The randomly correlated additive

components are given by:

J.
Zjil wjg'n

with

cin € {b1,...,bx}; cjn # 8, Vj,n; cjn # cp, Vj#landn =p .

Note that ||s|| = || f,]| = |lnn] = 1,¥n = 1,..., N. To control the mean and variance of the
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FIGURE 5.1: Comparison of results using various ubiquitous signal processing methods. Top

left plot shows, for simplicity, only the first three inputs. The plots of principal and independent

component analysis show particular components that maximally correlate with the common

component s. The GMIA solution turns out to represent the common component best, as it is
maximally correlated to it.

norms of common, additive and noise component in the inputs, each component is multiplied
by the random variable a; ~ N (m1,0%), az ~ N (ma,03) and ag ~ N (ms, o3), respectively.

Finally, the synthetic inputs are generated as:

Ty, =a18+ ann + azng,

with Zl 1Zn (i) = 0. The parameters of the artificial data generation model are chosen as
D =1000, K =10, J = 10 and N = 20. The parameters of the distributions for a1, as and a3

are dependent on the particular experiment and are defined correspondingly.

The GMIA solution is compared in Figure 5.1 (rightmost plot in top row) to the mean of the
inputs as well as PCA and ICA results. The mixing model parameters are chosen as m; = 1,
mg = 10, m3 = 0, o1 = 0.05, 02 = 0.05 and o3 = 0.05. For simplicity, the GMIA parameters
are Cy, = I, C,, = A1 and p,,, = 0. This parameterization of GMIA by A (the variance of
the noise in model (5.1)), is denoted by GMIA(\). Its solution represents the non regularized
MIA when A = 0 and the mean of the inputs when A — oco. That is, for A\ — oo, the inverse
(XT. X +AI)"" — L I simplifying the solution to waa — $ X -1, a scaled mean of the

inputs.

PC10, the tenth principal component and IC1, the first independent component were hand
selected due to their maximal correlation with the common component. Over all compared
methods, GMIA extracts a signature that is maximally correlated to s. All other methods fail to

extract a signature similar to the common component.
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In the following, MIA, GMIA and the sample mean are analyzed and compared in more detail.
This is achieved by graphical representation of their results from a large number of randomly
created synthetic problems, matching model (5.1), for various values of the variance of 1; ().
Each column in Figure 5.2 represents a histogram of experimental results for a given value of A
(x-axis). The y-axis indicates the correlation of the GMIA solution with s, the true common
component. The colour of the point represents the number of experiments, in a series of random
experiments, where this specific correlation value is obtained for the given A. Overall 1000

random experiments are performed, with randomly generated inputs, using various values of \.

For all test cases in Figure 5.2, the weight of the additive noise is chosen as az ~ A(0,0.0025).
There are experiments with three cases: (a) inputs contain equally a common component;

(b) inputs contain approximately a common component; (c) inputs are approximately equal.

In Figure 5.2(a), the remaining mixing model parameters are chosen as m; = 1, mg = 10,
o1 = 0 and oo = 0.05. This situation fits the MIA assumption of an equally present component
with an energy one order of magnitude smaller than the residue f, + m;. The results show
that the common component is best extracted by MIA. In Figure 5.2(b), m; = 1, ma = 10,
o1 = 0.05 and o9 = 0.05. This situation relaxes the strictly equal presence of the common
component. Clearly, the simple MIA result and the mean do not represent s. However, for
some A\, GMIA succeeds in extracting the common component. Figure 5.2(c) illustrates the case
mp = 10, my = 1, 01 = 0.05 and 02 = 0.05. Here, all inputs are similar to the common
component and therefore well represented by a signal plus noise model. The mean of the inputs

is a good solution to this problem.

In summary, MIA and GMIA can be used to efficiently compute features in the data representing
an invariant s, or mutual feature to all inputs, whenever data fits the model from equation (5.1),
even when the weight/energy of s is significantly smaller that the weight/energy of the other
additive components in the model. Moreover, the computed feature wanra is radically different
from the mean of the data in cases like (a) and (b) in Figure 5.2. The invariant feature s may

have a physical interpretation of its own, depending on the problem as we will see next.

5.2 Two-Dimensional Input Examples

Face recognition on differently illuminated images is challenging. The reason is the high level
of variance, in the gray levels of an image, that is accounted for by illumination information.
For example if a face is illuminated from the left, large areas of the left face side are bright
while most of the right face side is dark. In comparison, the fine structures are negligible that
represent person dependent features such as a mole or the shape and position of the eyes, nose
and mouth. Another difficulty is that illumination effects are dependent on the 3D information
of the face. However, this information is usually not available causing difficulties to distinguish

between face characteristics and shadows.
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FIGURE 5.2: Statistical behavior of GMIA. Correlation of wgnmra and s for various A values.
Left vertical regions in the plots (A — 0) correspond to wgnia = wmia. Right vertical
regions (A — 10%) correspond to wgmia ~ M, the mean of the inputs. (a) The common
component intensity is invariant over the inputs and contributes little to their intensities. wyia
best represents the common component. (b) The common component intensity varies over
the inputs with oo = 0.05 and contributes little to their intensities. In this case, GMIA is
preferable to MIA and the mean to learn a feature wgnia that is best correlated with the
common component. (¢) The common component represents most of the energy in the inputs.
In this case, the mean best represents the common component.

The intuition is that MIA captures an invariant from a set of inputs. Thus, the MIA representation
of a face is also referred to as the mutual face. Is it possible to extract an illumination invariant
mutual face from differently illuminated images? If this is the case, this mutual face can be used
for illumination—invariant face recognition. For example, person characteristic features can be

found without confusions caused by illumination conditions like shadows.

In the following, a synthetic model is defined that allows the artificial generation of differently
illuminated faces. Thus, a large number of test cases can be generated enabling a statistical
analysis of MIA for face recognition. Let the face be a Lambertian object (Foley et al., 1997,
p. 723), where the object image has light reflected such that the surface is observed equally
bright from different angles of the observer. Then, one can assume a face image H to be a

linear combination of images from an image basis H,, withn = 1,..., K (Zhou et al., 2007):
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FIGURE 5.3: Frontal images of the first person from the YaleB face database excluding the
ambient and test image. The test image is illuminated frontally.

K
H= Z anH,, (5.2)

n=1

where the «,,’s are image weights. An appropriate set of basis images, to study illumination
effects, is the YaleB database (Georghiades et al., 2001). This database contains 65 differently
illuminated faces from 10 people and for 9 different camera angles to view a face. Each
illuminated face image is obtained for a single light source at some unique but distinct position.
In this report, we use only the frontal face direction but at various light source positions. The
frontal illuminated faces are excluded from the basis and used as test images. Moreover, the
images with ambient lighting conditions are excluded. The set of training images for the first
person, A, of the YaleB database is illustrated in Figure 5.3. Additionally, the test image H ()4 of
this person is shown in Figure 5.4(a).

Next, 20 images are synthetically generated as inputs to GMIA()). Each of these images is
a combination of J = 5 randomly selected images H; from the basis set H,. The basis
images are combined according to equation (5.2) using weights o ~ U(0, 1). To retain the image
S7 o H;

scaling: H = ST o
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(a) Test Image H, 64 (b) MIA Image H 1@11 A

FIGURE 5.4: Images used for testing. (a) Frontal illuminated image of the first person from the
YaleB face database. (b) Mutual image that is extracted from 20 randomly generated inputs.
Each input is a combination of 5 randomly selected images of a person.
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FIGURE 5.5: Results of synthetic MIA experiments with various illumination conditions. (a)

Similarity scores of GMIA(\) representation (mutual face) and the test image of the same and

different people from the YaleB database in 50 random experiments. (b) Images of the YaleB

database, ordered from high to low by their similarity score with the mutual face. The score
becomes lower line after line from the top left to the bottom right.

An ‘invariant’ face signature is extracted to represent each person using MIA as follows. Images
are 2D Fourier transformed. Thereafter, GMIA(\) is separately computed for rows and columns
resulting in D = 250 and N = 20. In a final step, GMIA representations for rows and columns
are added and the data is processed using an inverse 2D Fourier transform to obtain a face
signature of the person. This signature is called a mutual face and is e.g., denoted H 1‘(‘/[1 A for
person A. Figure 5.4(b) illustrates a GMIA representation that is generated using the previously
described procedure.

A measure is defined to evaluate the similarity between test and GMIA images for the purpose of
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face recognition. First, the images are filtered on their boundary. Second, the mean correlation

scores of both images are computed separately for rows (S1) and columns (S2). A combined

\/SE+82
V2

score is generated as: S = . Thus, the score is upper—-bounded by the value one.

Now we test if MIA is able to capture illumination invariant facial features and can aid face
recognition. Figure 5.5 illustrates results of synthetic MIA experiments with various illumina-
tion conditions. In particular, we show similarity scores between GMIA()\) representations of
50 randomly generated input sets from person A and the test images from both A and other
persons B # A. MIA (for A = 0) results in an invariant image representation (all 50 scores
are almost equal). Note that there is a A dependent trade—off between the score value and the
variance. For all cases of A, the person A scores higher than person B. Figure 5.5(b) shows
the training database from Figure 5.3 sorted by the score with the MIA representation (mutual
face) of the same person. The score becomes lower line after line from the top left to the bottom
right. The mutual face achieves the highest scores with evenly illuminated images, i.e., where

the illumination does not distort the image.

Results support the intuition that the mutual image is an illumination—invariant representation
of a set of images of one person. The MIA method will be used in a face recognition application

described in a later chapter of this thesis.

5.3 Summary

In this chapter, MIA and GMIA were evaluated using synthetically generated data. Analyses
were performed on both one- and two—dimensional inputs acting as pilot test for following
experiments on real data. In a first step, a synthetic signal model was defined. GMIA was shown
to extract an invariant component from the inputs that is hidden to ubiquitous methods such as
PCA, ICA and the mean. Moreover, simulations were presented that demonstrate when and how
MIA, GMIA or the mean represent a common signature in the inputs. MIA and GMIA work well
even if the mutual signature accounts only for a small part of the signal energy. It was shown
that GMIA continues to extract meaningful information if the common signature is not equally
present in the inputs. Another mixing model was defined for differently illuminated face images.
In this way, random illumination conditions were generated synthetically. MIA was shown to
extract an illumination invariant ‘mutual face’. That is, MIA extracted a similar representation
for different randomly generated input sets. This representation correlates maximally with

evenly illuminated faces of the same class.



Chapter 6

Speaker Verification

Speech is not only a carrier of meaning but contains a large amount of information about the
speaker. For instance it is possible to recognize the gender, language, dialect and emotional state
of the speaker from only a few words. Furthermore, the identity of the speaker can be recognised
or classified as unknown (Holmes and Holmes, 2001, p.220). This information can be used in
many applications e.g., for security, surveillance or human—machine interaction. Although it
seems intuitive for a person to extract this information from speech of even unknown speakers,
it is a challenging task for a machine. Reasons for this are the lack of prior information and
the overall complexity of the task. For example, it is possible for a person to concentrate on
a speaker in a noisy environment e.g., by knowledge of the surroundings, prior expectation of
the disturbance nature, direction of the speech or visual inputs like lip reading. To counter these
advantages, specialised machine models are designed for specific environments and tasks. Thus,
the complexity can be reduced enabling comparable performance of the machine and the human
(Schmidt-Nielsen and Crystal, 2000). However, it is the intuition that tasks involving e.g., a high

amount of memory, speed, continuity or time can be performed better by a machine.

Possible constrained/specialised applications are identification and verification tasks. Verifica-
tion compares the task—relevant features of a new speech utterance with previously learned ones
of the claimed class. The goal is to decide if the class claim is correct or not. On the other
hand, identification compares the features of the new utterance with all stored features in the
database. The task is to decide the category of the utterance. Here, it is distinguished between
open and closed set identification. While open set identification considers unknown categories,
i.e., automatically creates a new class or rejects the utterance, closed set identification chooses
the category with the highest score in the training set. For speaker identification/verification,
one can further distinguish between text—dependent and text—-independent approaches. While
for text—dependent approaches the speaker has to input cooperatively a phrase that is known to
the machine, text—independent approaches deal with any available information. Text—dependent
identification/verification can be further classified into fixed—text, text—prompted and password—
phrase methods. While text independence is preferable for, e.g., surveillance, the higher

accuracy of text—dependent methods is advantageous for, e.g., security applications.
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In this chapter, the application of MIA for text—independent speaker verification is discussed. As
previously explained, the signal quality and background noise are major challenges in automated
speaker verification. For example, telephone signals are nonlinearly distorted by the channel.
In real applications, this distortion can be expected to vary for every connection. Furthermore,
telephone signals are band-limited which cancels part of the speaker characteristic information.
Moreover, background noise like wind, traffic or conversations of other people are challenges
to modern speaker verification systems. The difficulty can be visualized by assuming the task
where a person that is only known from a tape recording should be verified from a cellphone call
with bad reception in a noisy pub. As noted in Schmidt-Nielsen and Crystal (2000), humans are
robust to such changes in environmental conditions. In the following, the problem of background
noise cancellation is disregarded. However, it is assumed that there exists no undistorted or
equally distorted recording for the training or testing phase of the speaker verification system.
The goal of MIA is to extract a signature that represents the speaker mutually in recordings from
different nonlinear channels. Therefore, this feature represents the speaker but is invariant to the
channels. The intuition is that this signature provides a robust feature for speaker verification in

unknown channel conditions.

Section 6.1 provides the background in physical speech production for algorithmic concepts of
later chapters. Thereafter, Section 6.2 gives a short introduction to prominent approaches for
speaker verification. Section 6.3 discusses the choice and properties of the used databases. In
Section 6.4, the preprocessing steps are motivated and explained. Section 6.5 covers the feature
extraction step using MIA. Thereafter, Section 6.6 discusses the design and importance of a
background model. Section 6.7 introduces the tools for evaluation and compares the results of
MIA with alternative speaker verification approaches. Section 6.8 completes this chapter with

its summary.

6.1 Speech Production Background

For the development and comprehension of speaker verification methods, it is important to
understand the basic concepts of speech production. Therefore, this section discusses the
physiological processes that are involved in speech production, introduces important terms and
motivates a linear speech production model. The main organs that are involved in speech
production are the lungs, larynx, pharynx, the nasal cavity and various parts of the mouth
(Holmes and Holmes, 2001, p.11). A cross—sectional view of a human head visualises these
organs in Figure 6.1. Generally, sounds are acoustic pressure waves that are produced by
modulation of the air flow between the lungs and the lips/nose. The source of this wave is
expelled air from the lungs to the trachea that is forced through the vocal folds in the larynx.
The opening between the vocal folds is known as the glottis. During inhalation, the glottis is
fully opened allowing the air to fill the lungs. However, for sound production, the vocal folds
are either periodically opening and closing (creating voiced sounds) or relaxed and open (for

unvoiced sounds). In the following let / - / denote a phoneme, the smallest linguistic unit,
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Nasal cavity
Hard palate

FIGURE 6.1: Cross—sectional view of a human head showing the anatomical structure of organs
involved in speech production.

e.g., /f/ in fill. For voiced sounds like /i/ (in she), the vocal folds open and close cyclically
because of muscle tension and the forced airflow. The vocal folds can be varied in length,
thickness and position by muscular contraction. The frequency of the vibration, also called
fundamental frequency (denoted fj), is determined by these dimensions, the mass of the vocal
folds and the air pressure from the lungs. This fundamental frequency lies typically in the region
between 50-200 Hz for an adult male and about one octave higher for an adult female. In case
the vocal folds are nearly closed but do not open and close cyclically, the airflow from the lungs
is constrained creating a turbulent noise. Speech created in this way is perceived as whisper
(O’Shaughnessy, 1987, p.44). This case is similar for the production of other unvoiced sounds
like /f/. Here, the vocal folds are open leaving the constriction of the airflow to the upper teeth
that are pressed against the lower lip. A comparison of the waveform structures from voiced
and unvoiced sounds is shown in Figure 6.2. In the case of swallowing, the epiglottis folds
down directing food to the esophagus and preventing it from entering the trachea and lungs. The
resonant structures between the larynx and lips/nose are also known collectively as the vocal
tract. The acoustic energy that drives the vocal tract is the glottal volume velocity (Markel and
Gray, 1980, p.2). The volume velocity is a function of the subglottic air pressure and the time
variation of glottal area, i.e., an increased pressure or a decreased acoustic impedance causes an

increase in volume velocity.

In addition to the excitation effects, resonances in the vocal tract play an important role in
the production of sounds. By muscular contraction, the structure of the vocal tract can be
modified i.e., the position of the tongue changes the resonances in the oral cavity and the
lowering of the velum adds the nasal cavity to the vocal tract resonance system. In this way,
different sounds are formed from possibly constant glottal excitation. The resulting resonance

frequencies are called formants. The formants are most prominent for voiced sounds. They are
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Unvoiced (sh) Voiced (e)

Amplitude

Frequency [kHz]

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Time [sec] Time [sec]
(a) The word she in the time domain (b) The word she in the time-frequency domain

FIGURE 6.2: Structure of voiced versus unvoiced sounds. (a) The unvoiced part / [/ of the
word she appears like amplitude modulated noise. The voiced part /i/ has a clear periodic
structure. (b) The time frequency representation of the same waveform unveils the formants
of the voiced /i/. In contrast, the unvoiced sounds are smoothly structured over the whole
frequency range lacking the horizontal line—structure of the voiced sounds. Note, in contrast to
this example, there is not always a clear contour between the voiced and unvoiced sounds.

usually numbered in accenting order with their representing frequency as F1, F2, F3, etc. An
example of formants and their notation is illustrated in Figure 6.2(b). The location and intensities
of the formants are dependent on the physical characteristics of the speaker. Therefore, they
are important features for speaker identification and verification. Only the subset of voiced
sounds, containing the formant structure, is used for speaker verification in this chapter. The
large structural variability of the vocal tract and the complex dampening of the different
tissue densities including mandible, soft palate, hard palate, tongue, nasal cavity etc., make its
exact modelling intractable. Additional modelling difficulties are introduced by coarticulation
caused by transitions/overlap of phonemes. Therefore, the vocal tract characteristic is phoneme
context—dependent cancelling the possibility to model each phoneme with a representing vocal
tract model. Common simplified models assume the vocal tract as a string of filters or a
combination of lossless tubes with different diameters. For example, let E, G, V and L represent
the models of the excitation, glottal shaping, vocal tract and the lip radiation respectively in the
z—transform domain. Then, as discussed in Markel and Gray (1980, p. 6), the speech S can be

modelled as:

S=E-G-V-L 6.1)

Related to their vocal tract properties, sounds can be divided into two classes: vowels and
consonants. Vowels like /a/ (in stack) are generated without major vocal tract restriction. On
the other hand, consonants like /n/ (in nice) are typically generated with substantial restriction
of the air flow in some part of the vocal tract. Therefore, while vowels can be modelled with
a constant speaker dependent vocal tract, consonant models must represent the high number

of possible vocal tract restrictions. For some consonants, the air flow is fully stopped for a
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few milliseconds. These phonemes, like /p/ in pack, are called stop consonants or plosives
because of the following rapid release of the air. Another group of consonants is called fricatives.
Fricatives like /f/ are turbulent noises that are produced by forcing air through a tight channel
i.e., the gap between the upper teeth and the lower lip or the tongue and the soft palate when they
are pressed against each other. A phoneme family that includes both vowels and consonants is
the nasal sounds. Nasalisation occurs when the velum is lowered allowing the nasal cavity to
act as an additional resonator. In this case, the air and sound are partly or fully emitted though
the noise. In English, nasal sounds like /n/ are commonly consonants. However, in other
languages like French or Mandarin, nasal vowels are also linguistically relevant. An important
linguistic property over all languages is that vowels and consonants are alternating i.e., it is
uncommon that more than three vowels or consonants are consecutive. This prior knowledge
about the phoneme structure of speech can be used, e.g., to aid the design of hidden Markov

models (HMM’s) (Baum and Petrie, 1966) in speech recognition.

The property of alternation between vowels and consonants is also used to define syllables,
a combination of multiple phonemes, which are higher level phonological building blocks of
words. Usually, a syllable is a combination of a vowel with possibly multiple consonants.
Additional speech information is transmitted by emphasis, also called stress, of certain syllables
in a word. This allows to distinguish identically spelled words with different meaning like
re-cord and rec-ord. The stress can be provided by changes in pitch, loudness and timing. The
pitch of a sound is closely related to its fundamental frequency. However, while the fundamental
frequency is an accurate quantifiable measure (in Hz), the pitch is defined as an auditory attribute
that allows the qualitative ordering of sounds on a scale from low to high. Thus the term pitch
can be used for instance to describe relative speaker—independent changes in frequency that
are characteristic for the pronunciation of a certain word. Commonly, real sounds are more
complex containing harmonics, an integer multiple of the fundamental frequency. In this case,
the most prominent frequency of a segment is considered its pitch. Comparable to the relation
between pitch and fundamental frequency, the loudness is an subjective measure of the sound
pressure level (in dB). The loudness, measured in phon, considers psychoacoustic effects like
the frequency and timing dependent perception of sound intensity. These effects, illustrating the
sensitivities of the human auditory system, are also used to increase the performance of speech
processing approaches i.e., it is common to pre—emphasise significant frequencies in speaker

recognition applications.

However, the speech content is not only recognised by the concatenation of phonemes
using different stress and other acoustic features. Human languages are highly redundant
methods of information transfer. Thus, even if not all ‘phonemes’, syllables or words are
acoustically identified, it is typically possible to retrieve the meaning of the sentence. The
prior information that is used for this retrieval is, e.g., the current topic of the conversation,
knowledge of the speaker, the language, phonotactics (i.e., which speech sounds can combine
with which other), grammatical structure, gesture and lip movement. Often, the correction or

prediction of ‘misunderstood’ words is performed subconsciously. Prior knowledge also helps
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to identify/verify a person acoustically, i.e., a family member that calls every Sunday noon or
a foreign friend that talks in the mother tongue are easily verified on bad telephone channels.
Moreover, humans can recognise the direction of a sound using the different times of arrival,
intensities, pinna reflections etc. in the ears. Thus, if the locations of all possible speakers are

known, this ability can help to differentiate between them.

6.2 Introduction to Speaker Verification

This section provides a general background to a selection of common approaches used for
speaker verification. It is intended to visualize the differences to procedures used in combination
with MIA for text—independent speaker verification. Moreover, it gives an introduction to

readers that are not familiar with the field of speech processing.

A prominent and established method for extraction of speaker—dependent information is based
on linear predictive coding (LPC). An early application of this method to the field of speech
analysis is discussed in Saito and Itakura (1968). LPC uses a weighted sum of previous signal
values to predict future sample values. The weights are learned from the data using a minimum
mean square error criteria. For speech analysis, LPC is commonly used as spectral estimator. In
the Fourier domain, the LPC model can be viewed as an all-pole filter describing the spectral
characteristic of a speech input. That is, the minimized error signal results by filtering the speech
input with the inverse LPC model. Figure 6.3(a) illustrates the approximation of a spectral
envelope using a 10th order LPC filter. The approximated data is one second of voiced speech
from the NTIMIT database (Fisher et al., 1993) in the spectral domain that is band limited to
3.4 kHz. One property of LPC is that it models the peaks of the spectrum more accurately
than the valleys. This is desirable because of its good correspondence to the human auditory

perception (Deng and O’ Shaughnessy, 2003, p.47).

Ubiquitous speech features are the mel-frequency cepstral coefficients (MFCCs). The goal of
the mel-cepstrum is to compress the spectral information of short speech segments such that
critical auditory information is retained. Auditory experiments show that the sensitivity of the
human ear is nonlinear with the frequency. Starting with 1 kHz, listeners were asked to define
tones of equal distance in frequency. Based on these results, Stevens et al. (1937) define a mel—
scale that is linear in the acoustic perception but nonlinear over frequencies. The conversion
from the frequency f to the mel domain m is approximated as: m = 1127 log, (1 + 7—{;0). Ina
first step of the MFCC extraction, the input is windowed and transfered to the Fourier domain.
It is common to use window sizes in the order of 20 ms to capture the phonetic information
of speech. In the following, let S(i,7) with j = 1,...,D and ¢ = 1,..., N represent the
windowed speech input from window number ¢ of length D in the Fourier domain. Next, the
acoustic perception information is utilized to compress the frequency spectrum using MFCC
filters. This method was suggested by Davis and Mermelstein (1980). The used filters are
triangular and linearly spaced in steps of 100 Hz below 1 kHz. The band edges are aligned
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(a) Spectral estimation with LPC (b) MFCC filters

FIGURE 6.3: Methods for modeling of spectral speech characteristics. (a) Approximation of

the spectral envelope of a down—sampled voiced signal from the NTIMIT database using a 10th

order LPC model. (b) MFCC filters that model the sensitivity of the human auditory system.
The filters are equally spaced below 1 kHz and above follow the mel-scale.

with the center frequencies. In higher frequencies, the spacing between the band edges and
center frequencies follow the logarithmic mel—-scale. The 20 MFCC filters that were suggested
in Davis and Mermelstein (1980) are illustrated in Figure 6.3(b). Note that, in this illustration,
the spacing between the center frequencies above 1 kHz does not correspond to equidistant steps
of 100 mel. The particular spacing is chosen dependent on the application, e.g., correspondent
to bandwidth constraints of the signal. In the following, let M (k,j) with k = 1,..., K and
7 =1,..., D be the spectral representation of the MFCC filter number k. Then, the normalized
spectral energy of the MFCC filtered inputs &,,; is given as:

gmel(iak) = 3
S M (k. 5)])2

As discussed in Quatieri (2001, p.714), the MFCCs are computed using a discrete cosine
transform on the logarithmic &,,¢;:

K
MFCC(i, j) = % > 10g (Emer (i, k)) cos (2; kj)

One disadvantage of the MFCC:s is that the input signal is filtered twice using different filter
characteristics. This has a negative effect on the spectral and temporal resolution of the result.
A variation of the previously discussed mel—cepstral analysis is the sub—cepstrum. Here, the
MEFCC filters are directly used on the input signal. Further information on this method can be
found in Erzin et al. (1995) and Quatieri (2001, p.715).

Commonly, a statistical speaker model is learned from a large number of MFCCs to apply these
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features to speaker verification and identification. Methods that are successfully used for these
tasks are vector quantization (VQ) (Linde et al., 1980), Gaussian mixture models (discussed in
Section 2.9) and support vector machines (SVMs) (Cortes and Vapnik, 1995; Shawe-Taylor and
Cristianini, 2004).

6.3 Databases

One important component that aids the design of a speaker verification application is a database
for training and testing. There are many desirable properties of such a database. For example,
it is important that it is widely used to enable a comparison with other speaker verification
methods or implementations. This can be ensured by using one of the standardized speech
databases of the National Institute of Standards and Technology (NIST) or the Linguistic Data
Consortium (LDC). While NIST is an United States government institute providing various
scientific databases, LDC is an open consortium of universities, companies and government
research laboratories that focuses on speech databases. Another desirable property of a database
is usually that a large number of speakers from different regional and social backgrounds as
well as of different gender are included. Thus, there is a higher confidence that the achieved
verification results are representative for the method rather than the special case that is covered
by the database. Assuming an application of the speaker verification in combination with the
telephone network, it is desirable to use speech instances in the database containing different,
realistic, nonlinear channel distortions and noise. However, in the design phase of a speaker
verification approach, it may be preferable to exclude such nonlinear channels and focus on a
simplified problem. Other requirements may be the amount of data that is available for training
and testing, conversational speech, particular background noises, cocktail party recordings,
healthy versus sick speaker, speech from different emotional states, availability of the spoken

text or phoneme maps, presents of different languages, speech from kids etc.

Various portions of the NTIMIT database (Fisher et al., 1993) are used in this thesis. The
NTIMIT database contains speech from 630 speakers (438 males and 192 females) that is
nonlinearly distorted by real telephone channels. Thus, the intuition can be tested that MIA
extracts an invariant, channel independent representation of each speaker. The database is
relatively large and widely used enabling a comparison to other methods. NTIMIT is a distorted
version of the TIMIT (Garofolo et al., 1993) database which is recorded with a high—quality
microphone in a low noise studio environment. Therefore, the verification problem can be
simplified using TIMIT. As previously discussed, this can be advantageous in the design phase
of an algorithm. However, the invariant recording scenario of TIMIT is not desirable to test
the assumption of MIA’s invariant representation of one speaker in various channels. Thus,
only experiments on NTIMIT are discussed. The databases are segmented into a test and train
portion which both include different speakers. The reason for this is that TIMIT was designed
for speech recognition and the acquisition of acoustic—phonetic knowledge. The test portion

includes 168 speakers (112 males and 56 females) and is used to test smaller size speaker
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verification problems. Additionally available information about the phoneme and text structure
of the recordings is not utilized in this thesis. In both databases, each speaker is represented by
10 utterances that are subdivided into three text types: Type one represents two dialect sentences
that are the same for all speakers in the database, type two contains five sentences per speaker
that are in common with seven other speakers and type three includes three unique sentences.
The segmentation of the data in a training and testing set is alternately done by sentence, i.e., the
first sentence is used for training, the second for testing, the third for training etc. The resulting

training and testing set includes a mix of all text types.

6.4 Preprocessing

As illustrated in equation (6.1), a speech signal can be modeled as an excitation that is
convolved with linear dynamic filters. These filters represent various parts of the vocal tract.
As discussed in Section 6.1, unvoiced sounds are generated using a noise—like excitation and
various constrictions of the vocal tract. On the other hand, voiced sounds are generated at
a constant location, the glottis, and propagate through a speaker dependent vocal tract. This
results in a characteristic formant structure. Thus, by excluding silence and unvoiced sounds,
each input instance can be assumed to contain similar speaker—dependent information. The

detection of these non—voiced intervals is described in this section.

Let E(p), G(p), V®) and L® represent the models of the excitation, glottal shaping, vocal tract
and the lip radiation of person p respectively in the z—transform domain. Moreover, let SV
and M represent the voiced speech and speaker—independent signal parts respectively in the
z—transform domain (e.g., recording equipment, environment, etc.). The data can be modeled
as: SV® = p®) . g®) . y® . @) . M. By cepstral deconvolution, the model is represented

as a linear combination of its basis functions, for each instance i:

a:gp) = log SVZ.(p) = log Ei(p) + log Gl(p) +1og VP +1og LZ(-p) + log M;

This additive model suggests that we can use MIA to extract a signature that represents the
speaker’s vocal tract log V(). Several preprocessing steps are necessary to transform the raw
data such that the additive model holds. To prevent cross interference, each speech utterance of

the training and testing set is preprocessed separately.

6.4.1 Speech Activity Detection

As a first preprocessing step, silence and background noise are excluded from the wave data.
Speech activity detection (SAD) is usually performed in speech coding or speech recognition

to prevent unnecessary processing in non—speech intervals. There are various features used to
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FIGURE 6.4: Higher order statistics based SAD procedure. (a) Logarithmic kurtosis value of

the waveform for half overlapping intervals of 20ms. Periods of more than two consecutive

intervals under the threshold are classified as silence (b) Original waveform and the found
segmentation between speech and non-speech.

indicate if speech is present in a wave segment e.g., zero—crossing-rate, low—band—energy, full-
band-energy, cepstral coefficients, higher—order statistics etc. One advantage of these features
is that they can be efficiently computed for short time intervals enabling a fine scale for the
rejection of non—speech segments. However, SAD is a non—essential preprocessing step in the
discussed off-line speaker verification approach on the NTIMIT database. It is primarily used
to improve the speed of the following voiced speech segmentation. Therefore it is important
to use a conservative SAD approach that ensures that no speech is cut. To achieve this, a
threshold—based approach is used on the logarithmic absolute kurtosis values for 20 ms, half
overlapping data intervals. The threshold is empirically chosen. If the values of more than two
consecutive intervals fall below this threshold, all but the first and last interval are cut. The
two retained intervals are exponentially smoothed preventing discontinuities at the cutting ends.
This approach is illustrated in Figure 6.4 on a waveform example form the NTIMIT database.
The logarithmic absolute kurtosis value was also used for speech activity detection in Li et al.
(2005).

6.4.2 Voiced Speech Detection

In a second preprocessing step, the unvoiced speech segments are eliminated using a short—
time autocorrelation (STAC) like approach. In the following, the STAC approach is reviewed
to discuss its properties, motivate the used variation and aid a comparison of both methods.
Let w (k) represent a window function with nonzero elements for ¥k = 0...K — 1. The

STAC, which is commonly used for voiced/unvoiced speech separation, is defined as (Deng
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and O’Shaughnessy, 2003, p. 35):

STAC, (i) = Y a(m)w(n—m)z(m—i)w(n—m+:i)

m=—00
The range of the summation is limited by the window w (k). Furthermore, ST AC' is even,
STAC,, (i) = STAC,, (—i), and tends toward zero for ||i| — K. A disadvantage of this
method is that, assuming a finite window function of length K, only the center of the STAC

result is a combination of maximal K non-zero elements i.e., the overlap of the two window

functions reduces as ||i

| increases. The resulting filter effect makes it necessary to use long
windows (Deng and O’Shaughnessy, 2003, p. 46). However, short windows are important
to ensure accurate voiced/unvoiced segmentation. Thus, a different windowing procedure is
employed that reduces this effect and prevents the trend toward zero. In the following, a Hann

window function is used:

w(k):{ 0.5 (1~ cos (#5)), for0<k<K -1

0, otherwise.

The modified short—time autocorrelation (MSTAC) function is given by:

[ee)
MSTAC,, (i) = Z z(m)w(m—n)z(m+i)w(m—n)
m=—o0
The result of this function is computed for i = —% e % and steps in n of size % Note

that in contrast to the STAC, these results are not necessarily even. However, quasi—periodic
signals = (m), e.g., voiced sounds, unveil their periodicity in this domain. The voiced and
unvoiced segments are separated using an empirical decision function that compares the low
and high frequency energies of each MSTAC result. That is, the input segment is assumed to
be voiced if the low frequency energies outweigh the high frequencies and vice versa. For good
resolution, a short window length can be chosen, e.g., 6.3 ms for the discussed examples. Note
that this is possible because information of neighboring windows is utilized. Assuming this
window length, quasi—periodicity frequencies of above approximately 160 Hz are captured. As
discussed in Section 6.1, this is sufficient to capture most of the formants and a large part of
fundamental frequencies. Figure 6.5 illustrates the STAC and MSTAC results for voiced and
unvoiced sounds. In a final preprocessing step, the a priori knowledge is used that NTIMIT
utterances are band limited by the used telephone channels. Thus, the voiced speech is down
sampled to 6.8 kHz. The signal to noise ratio is increased by exclusion of noise above the speech

channel.
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FIGURE 6.5: STAC and MSTAC results of voiced versus unvoiced sound segments. (a)

Unvoiced sounds are represented by a high frequency, voiced sounds by a low frequency STAC

signal. (b) The MSTAC representations trade off the even signal shape against additional

information content from neighboring instances. Note that for steps in n of size %, the end
of one MSTAC segment equals the beginning of the next one.

6.5 Speaker Signature Extraction

For the design of a speaker characteristic feature, it is necessary to make assumptions regarding
speaker—dependent information that is hidden in speech. A way to derive these assumptions is
to analyze available information on the speech production process. However, this gives little
information that can help with certain trade—offs, e.g., window length vs. frequency resolution,
number vs. size of used frequency bands etc. One can assume that sound perception is an
indicator to answers for some of these questions. This implies that the machine uses similar
information to the human to distinguish between people. Although this is not necessarily true,

the perceptual information can be used as a starting point.

In a psychophysical experiment designed to find the sensitivity of humans to changes in
frequency, listeners were asked if two sounds of equal intensity differ. In the F1-F2 range,
70 % of the people noticed a difference of 2 Hz. This variation is defined as a just—noticeable
difference (JND) (Deng and O’Shaughnessy, 2003, p. 241). JNDs represent the resolution of
human audition and are therefore used, e.g., for coding.

Note that to find a speaker characteristic representation in the Fourier domain with a resolution
of 2 Hz, it is necessary to use a window size of minimum 0.5 seconds. However, speech is
clearly not well modeled as a constant signal. Thus, for example in a speaker recognition
application using GMMs, the speaker is modeled in multiple states. The hypothesis is that
GMMs represent a phoneme dependent map of a speaker. To distinguish between different
phonemes, it is common to use window sizes of approximately 10 ms. This window size results
in a frequency resolution of 100 Hz. The resolution is further reduced using MFCC filters.

Clearly, there is an application dependent trade—off between those two extremes. For example,
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one could imagine that for speech recognition, the time resolution is critical. On the other hand,
to detect the invariant identity of a speaker, it may be advantageous to use a higher frequency
resolution resulting in a larger window size. Possibly the performance of a speaker verification
or identification system can be optimized using multiple window sizes to capture both time and

frequency resolution.

In this section, the extraction of a common speaker invariant signature using MIA is discussed.
The assumption is that each speech segment contains such a common characteristic. Obviously,
this is not the case for infinitely small window lengths. Therefore, to show data segmentation
effects, multiple experiments are performed where the data are windowed using different
window sizes. Each utterance is segmented separately to comply with the data model in
equation (6.4). An equal overlap between segments is introduced if more than half of a segment
would be disregarded at the end of an utterance. This step limits the loss of signal energy for

short utterances and long window sizes.

The segmented voiced speech «(®) is nonlinearly transformed to fit the linear model in
equation (5.1). In MIA, correlation coefficients are used as measure of similarity between
two vectors. This measure is sensitive to outliers. Also, low signal values result in negative
peaks in the logarithmic domain. A nonlinear filter and offset are used, before the logarithmic
transformation, to reduce the focus on these signal parts. First, the inputs are transfered to the
absolute of their Fourier representation. Second, each sample is reassigned with the maximum
of its original and its direct neighboring sample values. Third, an offset is added to limit the
sensitivity to low signal intensities that are affected by noise. The resulting signals are transfered

to the logarithmic domain.

Speech has a speaker independent characteristic with maximum energy in the lower frequencies.
As our goal is to extract signatures to distinguish speakers, it is sensible to disregard information
that is common between them. Furthermore, the step prevents the effect illustrated in
Figure 5.2(c). To achieve this, the mean of the original inputs of all speakers is decorrelated from
them. The new inputs are then used to compute the final GMIA signatures for each speaker. The

procedure used to extract GMIA speaker signatures is illustrated in Figure 6.6.

As in the artificial example, the GMIA parameters are C'y, = I, C, = A I and p,,, = 0. Thus,
the GMIA result is a weighted sum of the high dimensional inputs. For example, a window size
of 250 ms and 10 seconds of speech data result in D = 1700 and N = 40. In the nonlinear
logarithmic space it is not meaningful to subtract two features from each other. Therefore, the
parameter A is chosen to the smallest value that ensures positive weights. Note that in the limit

(A — 00), all weights are equal and positive.

A goal of the discussed speaker verification application is to evaluate the performance of a
GMIA-based approach on real world data. Therefore, it is of interest to show results using
only GMIA signatures. This enables a clear interpretation of GMIA without affects from
preprocessing or other methods. However, for an implementation it is important to design a

system that achieves ‘optimal’ results. This is commonly achieved by using preprocessed data
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FIGURE 6.6: Processing chain for text—independent speaker verification using GMIA

and additional features. To satisfy both criteria, GMIA is analyzed alone and with additional
components. For example, a pitch feature is used in combination with the GMIA signature to

improved the overall system performance:

fép) = median <arg max (abs (FFT <abs (sn (i)(p)>>>)>

()

This simple pitch frequency detector can be motivated by a diode based envelope demodulation
circuit. In a first step, the signal is rectified in the time domain using the absolute operator.
Thereafter, the frequency is detected that contributes maximally to the signal energy. Here, the
search over 7 is constrained to the realistic pitch interval 80-300 Hz (Deng and O’ Shaughnessy,
2003, p. 31). In a final step, the median result over all input windows is selected to increase the

robustness of the estimator.

6.6 Background Model

For speaker verification, it is necessary to define a similarity measure between the input and
the learned features of the claimed identity. The goal is to compare the current score with a
baseline that represents the minimum score necessary for the acceptance of the claimant. In this
section, the procedure is described that is used to compute the similarity score from both pitch
and GMIA features. Thereafter, the baseline score level is discussed that results from a speaker

world model called the background model.

In a first step, the similarity scores of both GMIA signature and the pitch feature are computed
separately. As discussed in Section 6.5, a database of features and correspondent identities is

built from the training data and claimant features are extracted from the testing data. The GMIA
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distance of a person from the training data and a claimant is given by the sum of square distances
of their signatures. On the other hand, the pitch distance equals the norm one distance between
the estimated fy values of both individuals divided by 100. The possible range of the GMIA
distance is [0, 4] and of the pitch distance is [0, 2.2]. This results because the GMIA signatures
are norm one and the pitch detection is constrained to frequencies between 80-300 Hz. The
distances are added to a single measure for an implementation with both GMIA and pitch
feature. Otherwise, only the GMIA distance is used. To simplify the following discussions,

the similarity score is defined as this distance measure with a negative sign.

Next, the design of the used background model is discussed. The standard approach is to find
a model for all known impostors and compare the probability that the current instance is from
the claimed identity with the probability that it is fitting the impostor model. A threshold is set
that represents the minimum ratio between these probabilities that is necessary for acceptance.
For noisy conditions, the performance of such a universal background model (UBM) can be
improved by inclusion of noise. However, often it is not realistic to assume a priori knowledge

of the particular kind of background noise or to model all possible backgrounds.

In this chapter, a different philosophy is followed. One difference is that not probabilities but
scores are compared. Recollect that the goal of a background model is to act as comparison
enabling the decision if the score between the input and the claimed identity is sufficient for
acceptance. An input can be distorted by noise which results in a reduction of its maximum
possible score with the undistorted features. Therefore, the goal is to find a comparison score
that represents a high score given the quality of the input. To achieve this, the pair of GMIA
signature and pitch features, from the training data, is used as background model that results in
the highest score with the inputs. The speaker identity is accepted if the score of the input with
the claimed speaker identity is larger than the maximum score minus a threshold. Note that at
least one identity will be accepted for any input. This may be a problem for small databases and
open set tests where no training data are present for an impostor. On the other hand, note that if
the speaker is correctly identified in a speaker identification experiment, he/she will always be

accepted with this speaker verification approach.

One disadvantage of the current implementation is that the scores have to be computed with all
speakers in the database to perform verification. This is no problem because of the necessity to
compute all scores for the following analysis of the approach. However, for an implementation
in a product it is advantageous to select a subset of speakers in the training database as
background speakers. The goal is to select speakers with different characteristics that represent
the space of features. A similar selection procedure for the background model is suggested in
Reynolds (1995).
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6.7 Evaluation of Results

One area of critical importance is the evaluation of the results. All feature pairs (GMIA signature
and pitch value) from the training and testing data are compared to enable a representative
measure. This results in 396900 verification tests for a single experiment on the full NTIMIT
database of 630 speakers. In this section, the used measures for the result evaluation are
introduced. Thereafter the selection of the threshold described in Section 6.6 is motivated.

Concluding, the results of GMIA for text-independent speaker verification are discussed.

Let P, CA, WA, IR, FAR and FRR denote the number of speakers in the database, number
of correctly accepted speakers, number of wrongly accepted speakers, identification rate, false

acceptance rate and false rejection rate respectively. The IR, FAR and FRR are given by:

CA

R = 100 [%]

FRR = 100 (P _PCA> (%]
WA

FAR = 100 (P(P—l)) %]

The IR is of main interest for the evaluation of a speaker identification system. Here, the identity
of the speaker with the highest score is assigned to the current input. On the other hand, in
speaker verification, a speaker is accepted if the score between its own and the claimed identity
signature S¢ exceeds the one with a background speaker model Sp by more than a defined
threshold A. In this way, different speakers from the database could be accepted for a single
claimed identity. The following decision function is used to constrain the possible threshold

values:

Sc —SB

— — <A 6.2
Sc + Sp 6.2)

Note that 0 > gg;gg >1 VYV ||Sc|l > ||Sg||- This is the case for the scores discussed in
Section 6.6. Clearly, the threshold has a direct effect on the FRR and FAR. It is application—
dependent if low FAR or FRR are desirable. For example, in a security—relevant application
it is important to achieve low FAR preferably rejecting a correct speaker rather than accepting
an impostor. However, to enable a comparison of different speaker verification approaches, it
is common to select the threshold such that both FAR and FRR are equal. This point is called

equal error rate (EER).

Figure 6.7(a) illustrates the results of the discussed speaker verification approach using the
NTIMIT test portion of 168 speakers. Only GMIA signatures were used to exclude effects

of the pitch feature. This enables a clear interpretation of the results. Additionally, window size
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FIGURE 6.7: Comparison of speaker verification results using GMIA and mean features.

Optimal performance is achieved for window lengths between 100 — 500 ms. Note that the

performance drops sharply for shorter window sizes. a) GMIA clearly outperforms the mean

based feature. b) The results are affected if not only voiced speech is used. c¢) The sets of male
and female speakers are clearly separated.

effects and the advantage of GMIA over mean features are shown. The performance is optimal
for windows between 100—-500 ms and drops sharply for shorter lengths. This aligns with the
intuition discussed in Section 6.5 that there exists a trade off between the frequency and time
resolution of a speaker—dependent feature. The results of unprocessed speech are compared
to the ones using only voiced speech. In all cases, GMIA is contrasted to the mean input
feature. Figure 6.7(b) shows that voiced speech extraction is important to achieve ‘optimal’
results. Figure 6.7(c) illustrates the classification performance of GMIA using a window of

280 ms. Note that the sets of male and female speakers are clearly separated.

Table 6.1 line 2, column 2 presents EER results of GMIA against previous approaches and
other representative results from the literature. The speaker verification performance can be
improved by inclusion of the previously discussed pitch feature. Results of this procedure are
illustrated in Table 6.1 line 1, column 2. The identification rates of the algorithms are included
for comparison with previous results in the literature. The assumption of differently distorted
inputs results in the chosen data partitioning where the utterances are alternatively separated in

a training and testing set, i.e., five utterances are used to train a speaker signature and five to
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extract a test signature. Note that this partitioning—and therefore the results—are not exactly
comparable to the other methods. Many test procedure variations are used in the literature.
For example, Reynolds (1995) employs eight utterances for training and each of the remaining
two utterances for testing. Furthermore, Reynolds (1995) defines 10 background speakers
per person, that achieve an extreme score (high or low) with the person’s feature set and are
maximally spread, that are excluded from the respective testing set. As this variability prevents
an exact comparison, the goal is not to claim best performance but to demonstrate that MIA
extracts an invariant in the data that can be successfully used to represent a speaker independent

of the spoken text and channel conditions.

6.8 Summary

This chapter discussed the implementation of a GMIA—based approach for text—independent
speaker verification. In a first step, a general speech production background was provided.
This illustrated the concepts, physiological processes and terminology in this field. Thereafter,
methods were described that are commonly used in the speech processing domain, e.g., linear
prediction coding and mel—cepstral coefficients. Moreover, the choice of the database for
training and testing was motivated. Note the previous intuition that a mutual feature is a speaker
signature under varying channel conditions. The NTIMIT database was used to enable both
channel variation and a wide use of the database. Subsequently, the preprocessing of the data,
e.g., voice activity and voiced speech detection, were described. Thereafter, the extraction
processes of a speaker signature using GMIA and a pitch feature were discussed. Furthermore,
the measure of similarity or score between a signature in the database and an input instance was
defined. A background model was used that estimates the quality of each input, i.e., the highest
score between the input with all signatures in the database. The decision on the acceptance
was dependent on the difference between this high score and the score with the signature of the
claimed identity. This implementation achieved an equal error rate of 4.0% on the full NTIMIT
database of 630 speakers.
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Chapter 7

Illumination Robust Face Recognition

Person identification, verification, tracking etc. is of increasing interest in our interconnected
world. With the advances in technology, these tasks can now be reliably performed using
different biometrics. Besides reliability, a goal is to use approaches that are least intrusive
for the tested person. That is, identification should be performed unnoticeably while the
tested person passes by at a distance. One possible approach that promises these capabilities
is face recognition. Additional to its non-intrusiveness, this method can be easily employed
due to the low cost of camera surveillance and its widespread routine deployment nowadays.
Face recognition can be performed on both 2D and 3D representations of a face. Clearly,
the 3D representation captures additional information that results in an improved recognition
performance. For example, an algorithm that uses the 3D shape information of a face is less
prone to errors from different appearances resulting from illumination or make-up. However,
much research effort focuses on face recognition on 2D images. The motivation for this is the

previously mentioned easy employment using available infrastructure.

While face recognition seems intuitive for a human its automatic application in a machine is
challenging. The reason is the high variability of the input information in an uncontrolled
environment. First, a machine needs to detect if a face is present in an image. Here it is
possible that either no, one or multiple faces are visible. If multiple faces are present, they have
to be processed separately. Second, the scaling of the face, that is dependent on the distance
of the person from the camera, needs to be normalized. Third, the system has to account for
the direction of the head. For example, the head may be tilted, the face may be recorded
frontally, from a higher position or from the side. Moreover, the system has to account for
occlusions, for instance, objects covering the face, rain, facial hair, glasses, hats, make—up etc.
Additionally, variations in illumination are challenging for modern face recognition application
as already discussed in Section 5.2. Also, different facial expressions have an impact on the
system. Furthermore, the background of the recording is different for each camera location and
the resolution of the face image varies dependent on the camera and the distance of the person.
Finally, there are many application—dependent effects that result in additional problems. For

example, it may be desirable to find a person based on old pictures that do not account for facial

80
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(a) Original image (b) Distorted image (c) Distorted image upside down

FIGURE 7.1: The Thatcher effect. (a) Original face image. (b) Face image with the eyes
and mouth flipped around a horizontal axis. The distortion is clearly visible. (c) Upside down
representation of the distorted image. Note that the distortion is less obvious than in (b).

changes resulting from the aging process.

The starting point in designing a system that aims to automate tasks that are successfully
performed by humans is to study and model the human approach. This is similarly done
for speaker verification discussed in Chapter 6, e.g., the design of MFCC features based on
human auditory perception. For example, people were asked to classify modified face images
to learn about the features used by humans for face recognition. The hypothesis is that the face
recognition performance is not influenced if feature-independent image information is deleted.
A short summary of various results is given in Jain et al. (2006, pp. 67,68). For instance,
humans use both global and local features. Global features like low spatial frequency—band
representations of a face are sufficient for gender classification. However, local features, that are
captured by the high frequency spatial bands, are necessary for face recognition. A further result
shows that it is harder for humans to recognize faces that are not perceived as ‘attractive’ nor
‘unattractive’. This suggests that there exist specific, observer—dependent features that enable a
classification in these subclasses. This pre—classification thereafter supports the recognition.
Furthermore, the face recognition performance was found to depend on the familiarity of
the observer with similar face images, e.g., from different races or genders. An experiment
that underlines the necessary familiarity of the observer to the recognized image class is
demonstrated by the ‘Thatcher effect’ (Thompson, 1980), illustrated in Figure 7.1. Here, the
eyes and mouth of a person are rotated by 180 degrees leaving the rest of the face unchanged.
While the altered image seems grotesque when viewed normally, this distortion is less obvious
if the head is viewed upside down. This result can be interpreted in two ways. First, larger
differences to a normal image are accepted by the observer if a lower familiarity to the image
class is present. Second, not only the position of local features is important for face recognition
but also their appearance, e.g., their shape. This suggests that face recognition is done in a
hierarchical manner. Another result shows that young children typically recognize unfamiliar
people based on ambiguous clues, e.g., clothing, glasses, a walking stick, hairstyle, hats etc.

This clearly shows that for a human, face recognition is not as simple as usually perceived.



Chapter 7 Illumination Robust Face Recognition 82

Taking this into consideration, it is sensible to break down the face recognition task into
different subproblems, e.g., face detection, scaling etc. In this chapter, MIA is used for feature
extraction under various illumination conditions. In contrast to Section 5.2, the goal is to tackle
a more realistic problem without perfect alignment of faces from the same class. Furthermore,

variations in facial expressions and occlusions like glasses are included.

Section 7.1 provides a short background to face recognition to familiarize the reader with
related approaches. Section 7.2 discusses the choice of the database and compares properties
of different alternatives. Thereafter, Section 7.3 describes the preprocessing and extraction of
‘mutual faces’ that represent the commonalities of a set of inputs from one person. Subsequently,
Section 7.4 discusses the results of MIA for illumination robust face recognition. Finally, the

chapter is summarized in Section 7.5.

7.1 Face Recognition Background

Face recognition algorithms can be classified into feature- and appearance—based approaches.
Feature—based approaches use for example positions or angles and distances between landmarks,
e.g., eye corners, ends of the mouth, eyebrows, chin, tip of the nose, nostrils etc. to distinguish
between faces. It is assumed that local features capture information that is necessary for
face recognition. This is motivated by results of previously—discussed human face recognition
experiments. A further advantage of feature—based approaches is that it is possible to detect
and compensate for variations in the camera angle. For example one can deduce that a face is
rotated from a difference in distances of the eye corners to the tip of the nose. Using an average
3D model of a head, it is possible to approximate the feature positions for the frontal view.
However, a disadvantage of feature based methods is the difficulty of finding local landmarks

reliably. The reason for this are, e.g., variations in lighting, facial expressions or occlusions.

The second class of face recognition approaches are appearance—based. These approaches are
widely used and successfully applied in modern face recognition systems (Turk and Pentland,
1991; Belhumeur et al., 1997; Moghaddam and Pentland, 1997). The MIA approach for
extraction of ‘mutual faces’, that is discussed in this chapter, falls in this category. Ubiquitous
methods of the same category are the eigenface (Turk and Pentland, 1991) and fisherface
(Belhumeur et al., 1997) approaches. Both methods view each image as a single vector, i.e.,

the lines of the image are concatenated forming a long vector.

The eigenface approach first subtracts the mean of all images in the database from each image
instance. Thereafter, PCA is used to find the vectors or principal components that capture the
maximum variance in the database. PCA is discussed in Section 2.1. Each principal component
represents a linear combination of all mean—subtracted images in the database. These face image
mixtures are called eigenfaces. An example of the first six eigenfaces of the Yale database
(Belhumeur et al., 1997) is given in Figure 7.2. Note that the original images can be recovered

using a combination of the eigenfaces. An approximation of the original images is possible
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FIGURE 7.2: The first six eigenfaces of the Yale database. The eigenvalues of the eigenfaces
reduce line-by-line from the top left to the bottom right.

using a mix of the eigenface subset with the highest eigenvalues. This is discussed in more
detail in Section 2.1.1. A simple face recognition algorithm using eigenfaces can be described
as follows. First, the face images from one person in a training database are represented using a
subset of eigenfaces. The weights of the eigenfaces that were used to represent these images are
statistically modeled using a GMM (discussed in Section 2.9). This procedure is repeated for all
individuals. For testing, the unknown input face is again represented by a mixture of eigenfaces.
The identity is selected that corresponds to the modeled weights that are maximally similar to

the ones of the unknown face.

The fisherface approach uses the available class label information in the training data for feature
extraction. The goal is to find a set of features that are most discriminant between the classes.
For this task, the fisherface approach uses LDA which is discussed in Section 2.4. The most
discriminant vectors that result from LDA are called ‘fisherfaces’ when reshaped to a 2D image.
A face recognition algorithm using fisherfaces can be implemented analogous to the previousely
discussed eigenface approach by simply replacing the eigenfaces with fisherfaces. This method
was shown to be more robust to variations in illumination conditions (Belhumeur et al., 1997).
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7.2 Databases

The selection of the database is a critical task for the evaluation of a face recognition algorithm.
It is important to select a large and widely—used database as discussed in Section 6.3. This way
it is possible to cover a wide variety of possible cases in the field and to enable a comparison
to results from other methods. In the following, two databases are discussed that are not used
in this chapter. The reason for this is their special prominence in the field of face recognition
and research on illumination conditions. One of these large, realistic and well known databases
is FERET (Phillips et al., 2000). This database contains 14,126 images of 1,199 individuals
and is provided by NIST. The database was separately collected from algorithm developers and
includes a variety of conditions, e.g., aging, illumination, facial expressions, scaling, camera
angles etc. However, the goal of this chapter is to analyze the effectiveness of MIA for
illumination independent face recognition. Hence, it is important to choose a database that is
commonly used for the evaluation of this particular effect on algorithms. Therefore FERET was
not used. A database that is widely used to analyze the effect of illumination conditions is the
YaleB database (Georghiades et al., 2001). The database contains 5850 images of 10 people. The
faces were illuminated from 64 different angles with a single light source. Each experiment was
repeated for 9 different angles of the head. Additionally, an image with ambient illumination is
included for each viewing condition. This database was used in Section 5.2. The images of one
viewing condition were taken nearly instantaneously using strobe lights. This results in an exact
alignment and equal facial expressions between all images of a viewing condition. Thus, when
ignoring other than frontal views, it is simple to recognize the person despite the illumination

conditions. Therefore this database was not used.

Another database that is designed to evaluate the effect of varying illumination conditions is
the Yale database (Belhumeur et al., 1997). The difference to the YaleB database is that this
earlier version includes misalignment, different facial expressions and variations in scaling and
camera angles. However, in comparison to the FERET database, the variations in scaling and
camera angle are minor. Thus, no additional component is necessary to account for these effects.
Although, by allowing these variations the algorithm can be tested in a more realistic face
recognition scenario. A disadvantage of the Yale database is its size of only 165 face images of
15 people. Therefore, the database can not be split in a fixed training and testing section. The
testing is done in a leave one out fashion as discussed in Section 7.4 to ensure that the training

and testing data do not overlap.

The original Yale database includes a large amount of background. This is illustrated on one
image instance in Figure 7.3(a). Thus, it is necessary to crop the images to focus on the face
information. Furthermore, it is important to align all images using a defined procedure. For
simplicity, a half automatic cropping and alignment procedure was used. The original images
are 243 %320 pixels in size. A 200x200 pixel image is cut around a manually defined center on
the nose and between the eyes. The cropped image instance is illustrated in Figure 7.3(b). In the

following, it is shown how a mutual face is extracted from the cropped images of each person.
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(a) Original image (b) Cropped image

FIGURE 7.3: Yale database preprocessing. (a) Original image from the Yale database.
(b) Cropped image with the center point on the nose and between the eyes.

(a) Yale face database class (b) Mutual image information

FIGURE 7.4: (a) Image set of one individual in the Yale database. The set contains 11 images
of the person taken with various facial expressions and illuminations, with or without glasses.
(b) MIA result, or mutual face estimated from all images of the set.

7.3 Mutual Face Extraction

As discussed in Foley et al. (1997), the reflected light intensity I of each image pixel can
be modeled as a sum of an ambient light component and directional light source reflections.
Let I, and I, be the ambient/directional light source intensities. Also, let k,, kg, 7 and I'be
ambient/diffuse reflection coefficients, surface normal of the object, and the direction of the

light source respectively. Hence,

I = Ika + Lkqg(7 - 1) .
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(a) Eigenface input (b) Fisherface input (c) MIA input

FIGURE 7.5: Examples of training instances used in (a) eigenfaces, (b) fisherfaces and (c)
MIA: (a) Mean-subtracted face obtained as difference between a face instance and the mean
of all images in the database. (b) Mean-subtracted face obtained as difference between a face
instance and the mean image of all instances for the same person. (c) “Centered” face image,
obtained by subtraction of the mean column value from each image column.

More complex illumination models, including multiple directional light sources, can be
captured by the additive superposition of the ambient and reflective components for each
light source (Foley et al., 1997, see Equation 16.20).

The intuition is that MIA can extract an illumination—invariant mutual image, perhaps includ-
ing I,k,, from a set of aligned images of the same object (face) under various illumination
conditions. In the following, mutual faces were used in a simple appearance-based face
recognition experiment. Prominent methods of this widely researched area include the eigenface
and fisherface approaches as discussed in Section 7.1. Most use mean image subtraction for
preprocessing, which reduces the image space dimensionality compared to the original image
set. This effect is illustrated in Figure 4.3. Therefore, this step cancels potentially discriminant
image information. In contrast, MIA uses centered images (:I;iT -1 =0 Vi) as inputs. Note
that x; represents an input instance of MIA. Usually, this is not equivalent to a whole image, as
for the eigenface and fisherface approach. For the discussed MIA approach, the input instances
are defined as single image columns or rows of the 2D Fourier transformed images. The mean
subtraction centers each image line separately. Figure 7.5 illustrates the difference between
a mean—face—subtracted input instance in the eigenface/fisherface approach and the centered
MIA input.

The procedure to extract the mutual face from the face set of one person can be defined
as follows: First, images are 2D Fourier transformed. Second, each row of the images is
centered and windowed. The windowing represents a high—pass filter operation. Thus, the
approach focuses on the high frequency image information. In the previously discussed results
of experiments on human perception, these frequencies were found to be of critical importance
for face recognition. Thereafter, MIA is performed separately on each set of rows. After
normalizing and reassembling the rows, the procedure is repeated with the columns of the

original images. Thus, two mutual faces are generated, added, and the result is transformed
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High Pass Filter MIA on Columns

Original Images ~ FFT2 Domain Filtered Data

3 .

Mutual Image

®—>

MIA on Rows

FIGURE 7.6: Extraction process of the mutual image representation.

through the 2D inverse FFT. The procedure is shown in Figure 7.6. Note that, for illustrative
purposes, the 2D inverse FFT transformed images of the MIA results on columns and rows are
illustrated before they are combined to a single ‘mutual image’. The procedure to generate a
mutual image representation is repeated for each individual in the database. Thus, a codebook
of mutual faces is generated. In the following, the procedure is discussed that is used to evaluate
the similarity between a new image and the mutual image representations in this database. The

identity of the new face image is selected dependent on this similarity.

7.4 Evaluation of Results

In this section, the method is discussed that is used to estimate the similarity between the mutual
face representations and a new input instance. Furthermore, the testing procedure is described

and the results are presented and compared to other approaches on the Yale database.

The Yale database used with 165 images is small. This results in problems with the testing as
discussed in Section 7.2. To make optimal use of the database, mutual faces are learned on all
but a single test image using the “leave—one—out” method discussed in Duda and Hart (1973,
p-75). The “leave—one—out” method can be summarized as follows. All images but one are
used for training. The remaining image is used for testing against all trained ‘mutual faces’.
Thereafter, the ‘mutual faces’ are trained again with a different left—out image for testing. This
procedure is repeated until each image has been left out once for testing. In this way, a large
training database is available while it is guaranteed that the testing image is not represented in

the training set.

Both ‘mutual faces’ and the test image are cropped to focus on information that is captured in
the face features rather than hairstyle, misalignment or background. The filter used for cropping
is empirically found and applied for all tests. The cropped face representations of both testing

and the correspondent mutual face are illustrated in Figure 7.7.
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(a) Cropped test image (b) Cropped mutual face

FIGURE 7.7: Cropped face representations for test of similarity. One cropping filter was

used for all image instances. The hypothesis is that the remaining face image contains less

information about hairstyle, background or misalignment of the face shape. (a) Test image

segment that is used to compute the similarity to the mutual faces (b) Cropped ‘mutual face’
from the same person as the test image. The test image was not used for training.

As for the generation of the mutual image, the similarity of two images is computed separately
on the corresponding centered rows and columns. The measure of similarity between a test
image and the MIA representation of a person is the mean cosine distance. The resulting scores

S1 and Ss, from the mean cosine distances of the rows and columns respectively, are fused using

S=+ 812 -|-522.

In case the left—out image is one of the three illumination variant cases of the Yale database
(centered light, left light and right light), this approach leads to an identification error rate (IER)
of 2.2%. Overall, in exhaustive leave—one—out tests, the mutual face method results in an
error rate of 7.4%. This shows that the approach using mutual features is robust against
different illumination conditions but suffers from variations in facial expressions and occlusions.
Recognition performance for unknown illumination is comparable or beyond various reported
results obtained with similar data (Table 7.1). Note that a mutual face can be used to extract
landmarks like eye corners, ends of the mouth, eyebrows, chin, tip of the nose, nostrils, etc. The
advantage over extraction of these points from the original training image is that the mutual
face represents the invariant representation excluding, e.g., variations in illumination. It is
expected that this approach can lead to a more robust detection of these landmarks. Thus,
the MIA approach can be used to enhance both feature- and appearance—based methods, only
requires minimal training, and appears insensitive to multiple illumination sources and diffuse

light conditions.
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TABLE 7.1: Comparison of the identification error rate (IER) of MIA with other methods using
the Yale database. Full faces include some background compared to cropped images.

‘ Method ‘ IER [%] ‘ Evaluation ‘ Comments ‘
MIA (Claussen et al., 2008) 7.4 leave—one—out Cropped face (see Figure 7.7)
Minimax Probability Machine (Hoi and Lyu, 2004) 21.2 k—fold cross validation | Cropped face test
Kernel PCA (Yang et al., 2000) 26.0
Fisherface (Belhumeur et al., 1997)% 7.3

: b leave—one—out Cropped face test
Eigenface (Belhumeur et al., 1997) 24.4
Eigenface w/o 1-3 (Belhumeur et al., 1997)b¢ 15.3
MIA (Claussen et al., 2008) 2.2 leave—one—out Only illumination
Minimax Probability Machine (Hoi and Lyu, 2004) 10.1 k—fold cross validation | Without illumination
Fisherface (Belhumeur et al., 1997)% 0.6
Eigenface (Belhumeur et al., 1997)° 19.4 leave—one—out Full face test
Eigenface w/o 1-3 (Belhumeur et al., 1997)b¢ 10.8

7.5 Summary

This chapter discussed an implementation of a MIA-based method for illumination—robust
face recognition. In a first step, a general background to face recognition was provided.
This illustrated some domain specific challenges and exemplified how human perception is
used to define discriminant features. Next, prominent methods, e.g., the eigenface and
fisherface approach, were discussed. The Yale database was chosen to include different
illumination conditions and minor misalignments, occlusions etc. Thereafter, a semi—automatic
preprocessing approach was described. The procedure that is used to extract a mutual face was
discussed. Moreover, a similarity metric or score between an input instance and the mutual faces
from the database was defined. Mutual faces for illumination—robust face recognition achieve

an identification error rate of 7.4% in exhaustive leave—one—out tests on the Yale database.

“Classification was performed using 15 FLDA directions.
®Classification was performed using 30 principal components.
“The first three principal components that represent eigenvectors with maximal eigenvalues were disregarded.



Chapter 8

Conclusions

The goal of this thesis was to research methods that find a unique invariant or signature of a
dataset which can be used for pattern recognition problems. If it is possible to extract such an
essence of an input set it is the intuition that this signature will adequately represent new inputs
of the class despite unseen variability. A novel method, called mutual interdependence analysis
(MIA), was designed in Chapter 4 to extract such mutual features from a set of inputs. By
definition, the MIA invariant is a linear combination of class examples that has equal correlation
with all the training samples in the class. An equivalent view is to find a direction to project
the dataset such that projection lengths are maximally correlated. Both goals have MIA as their
unique solution. It is shown that the scatter of the inputs onto this unique direction is zero for
linearly independent inputs. Using experiments with synthetic data, it was verified in Chapter 5

that MIA results in the desired unique, invariant class representation.

There exist many signal processing methods to extract features for pattern recognition problems.
Some of these were reviewed in Chapter 2. MIA was compared to related work to evaluate its
novelty and contribution. For instance, MIA and MCA share the goal to extract an invariant
in the data. In contrast to MCA, MIA assumes the result in the span of linearly independent
inputs. In this case, the common step of mean feature subtraction reduces the span of the data
for MCA. The invariant in the data is not represented by the mean subtracted space. Thus, only
MIA can extract this invariant. Moreover, this thesis discusses similarities of MIA with Bayesian
estimation and a modified CCA approach. Each brings insights into the value and properties of
MIA. As a result, a generalized MIA solution (GMIA) is found. It is shown in Section 5.1 that
GMIA finds a signal component that is not captured by ubiquitous signal processing methods.
Moreover, simulations are presented that demonstrate when and how MIA, GMIA or the mean
represent a common signature in the inputs. In a nutshell, MIA and GMIA work well if a
signal is equally present in the inputs, even if it accounts only for a small part of the signal
energy. Real world problems usually do not exactly fit a synthetic signal model. Therefore, it is
important to analyze the behavior of MIA in situations where its model does not exactly fit. For
these situations it was shown that GMIA continues to extract meaningful information. GMIA 1is

preferable over MIA if the assumption of an equally present component in the inputs does not
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hold. Clearly, MIA and GMIA extend the current signal processing tools capturing previously

hidden information.

After the theoretical analysis of MIA and verification of the approach on synthetic data it
was shown that mutual signatures are of interest in real world applications. In this thesis,
the performance of MIA and GMIA was demonstrated on both text—independent speaker
verification and illumination—independent face recognition applications. For example, GMIA
achieved an EER of 4.0% in the text—independent speaker verification application on the full
NTIMIT database of 630 speakers. This result supports the assumption that MIA extracts a
common representation from speech recordings over different nonlinearly distorted channels.
Furthermore, data segmentation effects were evaluated indicating a trade—off between the
time and frequency resolution of the mutual signatures. For illumination—-independent face
recognition, the mutual face method achieved an error rate of 7.4% in exhaustive leave—one—
out tests on the Yale face database. It was shown that MIA is more robust to differences in
illumination conditions than to occlusions and differences in facial expressions. Overall, MIA
and GMIA are found to achieve competitive pattern recognition performance to other modern

algorithms.



Chapter 9

Future Work

The utilization of mutual features which are invariants in the training data showed promising
results. While this thesis explores many aspects of this topic, there remain various areas
with potential for further research. This further work can be classified into algorithmic and
application based explorations. On the one hand, the algorithmic work could seek to further
the understanding of methods for the extraction of mutual features. On the other hand, the
application related work could aim to improve results and application dependent know—how in
problems characterized by e.g., high dimensional data, low number of input samples etc. We

discuss these directions in more detail below.

The resolution and amount of sensor data is rapidly increasing with advances in technology.
Thus, modern signal processing applications deal with increasing amounts of data. Future work
could investigate statistical properties of MIA for a large number of inputs and computational
tractability in large dimensions. Signal processing algorithms like PCA, CCA, FLDA etc., use
the dependence between inputs in the form of covariance or scatter matrices. They suffer from
growth of these matrices, e.g., the computational complexity of PCA is O(N2D) (Bach and
Jordan, 2002). It is often possible to use dual formulations of the algorithms to select if the
matrices grow with the number of dimensions or samples. This is exemplified in equations 4.19
and 4.20. A problem arises if both are too high to store all information in the memory. One
possible solution is to approximate the GMIA result iteratively. This could be achieved by
providing an estimate of p,,, from the GMIA results of previous input subsets. The procedure
will converge by increasing the weight of this component. Future work could analyze the
properties of such a procedure, i.e., if it is sensible to estimate a mutual signature iteratively

in the previously sketched manner.

Mutual interdependence analysis is a linear method for extraction of invariants in high—
dimensional spaces. A prominent approach that uses linear classification in high—dimensional
spaces is the kernel support vector machine (KSVM). This method is commonly used for
nonlinear classification in a lower dimensional space. The projection of the lower dimensional

inputs to a possibly infinite dimensional space is performed virtually. KSVMs take advantage
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of the fact that nonlinear problems can be transformed to linear ones by transformation of the
inputs to a specific, higher dimensional space. Figuratively, KSVMs use a ‘key function’, or
kernel, to unlock a particular nonlinear problem. For example, all quadratic problems in the
two—dimensional space are linear in the three-dimensional space: ye, = xil d Ynew = ygl 4 and
Znew = Told * Yoid- Another property of KSVMs is that only a sparse subset of the training data
is used for classification. This results in an improved classification speed over non sparse kernel
methods. A sparse kernel method that is related to MIA is the relevance vector machine (RVM)
(Tipping, 2001). In contrast to the outputs of KSVMs, that represent decisions, the outputs of
RVMs model posterior probabilities. While RVMs achieve comparable performance to KSVMs
they typically lead to sparser models (Bishop, 2006, p.345). Further research could analyze
the similarities between MIA, KSVMs and RVMs. The goal is to find new applications and to
transfer knowledge from these domains. For example, the MIA performance could be improved

using a sparse solution to its problem.

In the following, future work on the application side is proposed. Generally, there exists a trade—
off between the frequency resolution and the time resolution as demonstrated by the Gabor
uncertainty principle (Gabor, 1950). However, additionally to this fundamental principle, there
exists a conceptual trade—off between the time and frequency resolution in text—independent
speaker verification applications as discussed in Chapter 6. That is, while the just noticeable
frequency resolution of the human ear is approximately 2 Hz (Deng and O’ Shaughnessy, 2003,
p. 241), suggesting a window size of 0.5 s, the ‘phoneme’ length is in the order of 10 ms.
Common approaches model the phoneme structure of each person by multiple states. On the
other hand, the GMIA approach finds a single speaker representation with high frequency
resolution. Both methods yield promising results. Therefore, future work is planned to
combine both philosophies to obtain a more powerful classifier. Furthermore, issues such as the
robustness of both approaches to different noise conditions, recording lengths for training and
testing, computational requirements and the minimum number of background speakers could be
analyzed. Moreover, it is possible to increase the confidence in the results by implementing also

algorithms that model the ‘phoneme’ structure, e.g., with the same preprocessing.

Speaker verification approaches can usually not assume that all possible input speakers are
enrolled in the training phase. That is, there is the possibility that an unknown person tries
to gain access under a false identity. Speaker verification tests that assume such conditions are
called open—set tests. For simplicity, such tests were excluded in Chapter 6. However, this test
scenario is of interest in real world applications. Thus, further work could evaluate GMIA based
speaker verification in an open—set test scenario. Additionally, it should be analyzed if these

different assumptions have an effect on the currently chosen background model.

In this thesis, the background speaker model includes all speaker signatures in the database.
A score of an input and a claimed identity is evaluated by comparison to the highest score of
the input with all signatures. However, this exhaustive computation of scores for all enrolled
speakers is undesirable for large scale applications. Hence, future work could include the design

of a search procedure for a representative subset of speaker signatures. The goal is to find a
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small number of signatures that are maximally different from each other such that at least one
of them achieves a high score with potential speech inputs. New background speaker models

could be explored if this approach is not feasible.

There are multiple possibilities to advance the current analysis and procedure for illumination—
independent face recognition. For example, the disadvantage of the used Yale database in
Chapter 7 is its small size of 165 images. This is a drawback that limits the statistical
interpretability and representativeness of the results. Future work could utilize the FERET
database for large scale tests. Multiple preprocessing tools, e.g., for face detection, rescaling,
alignment etc., have to be designed prior to this evaluation. A three—dimensional head model

could be used to recover hidden information resulting from different orientations of the head.

A mutual face was shown to be an invariant representation that excludes illumination conditions.
One disadvantage of features like positions or angles and distances between landmarks, e.g.,
eye corners, ends of the mouth, eyebrows, chin, tip of the nose, nostrils etc. is the lack of
robustness of their automatic detection. The reason for this is the variability in the face images,
e.g., by differences in illumination. Future work could evaluate if mutual faces can be used
as a basis to improve the robustness of detection at this scale. If this is successful, a MIA
supported, landmark—based face or object recognition approach should be implemented and
evaluated. Further research could also include the extraction of mutual representations of local
features like mouth, eyes, nose, etc. The goal is to implement a hierarchical approach for face

recognition that simulates the human face recognition behavior.

MIA was shown to perform worse than GMIA in situations where its model does not hold.
Also, GMIA outperformed MIA in the text-independent speaker verification application if the
parameter A was small but prevented negative combinations of the logarithmic features. It is
expected that this performance gain can also be observed for the face recognition application.
However, it is currently unclear how the parameter A should be selected for optimal performance.
In the future, the effects of A on the illumination—-independent face recognition application could
be analyzed. The goal is to design a method that estimates the optimal parameter given the
current set of inputs. Ideally, A should be chosen automatically based on information theoretic
principles, cross—validation, etc. Finally, alternatives ways of setting C'y and C4, could be

explored to model better the problem.

This chapter indicated some starting points for future explorations. It is expected that most of
these paths of future work will unveil additional questions and increase the understanding of

MIA. One goal is to inspire you, the reader, to help further the knowledge in this field.
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