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ABSTRACT

Title: Some Aspects of RANS Based Jet Noise Prediction

by Mahdi Azarpeyvand

The main objectives of this thesis are the comparison and improvement of RANS

based jet noise prediction schemes. Such schemes use a RANS flow simulation to which

is coupled acoustic source and propagation models allowing a prediction of far-field noise

to be made. In the present work a modified RANS k − ε turbulence model is used to

provide the necessary CFD results. The acoustic source models discussed are a Lighthill

Acoustic Analogy based method and the MGBK method. This latter allows different

components of the noise sources, i.e. self- and shear-noise to be considered. Propaga-

tion modelling that takes account of the sound-flow interaction effect is used. This is

based on the Lilley equation and both direct and asymptotic solutions are used. Differ-

ent aspects of the source models are considered such as: mathematical models, source

compactness, anisotropy, etc. Special attention will be given to the definition of param-

eters used in the source term, namely time-scale, length-scale and convection velocity.

The relation of these parameters with the underlying physics of noise production and

radiation mechanism will be studied and it will be shown that these quantities play a

central and important role in the accuracy of the prediction. Moreover, the frequency

dependency of these parameters will be considered using the available experimental data

and also physical insights gained from the study of the turbulence. A time scale model

will be introduced based on the cascade of the turbulent energy, while the length scale

and convection velocity models are based on physical reasoning or experimental data.

Numerical results are presented for single flow, coaxial and short-cowl nozzles at differ-

ent working conditions. Comparisons will be made for sound pressure level and source

distribution with experimental data obtained from the JEAN and CoJeN tests. Results

generally have shown that using the turbulent energy transfer rate time scale, along with

the frequency dependent length scale and convection velocity remarkably improves the

prediction. However, some mismatches between the peak frequency of the prediction and

data can be observed at small and large angles. Different causes for these mismatches

are suggested and discussed critically.
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Chapter 1

Introduction and Background

This thesis is concerned with methods for predicting the noise that arises from aircraft

engine exhaust jets. While jet noise is only one of several noise sources on modern aircraft

powered by high bypass ratio engines, it is a major contributor to the overall noise of

such aircraft and there has been an ongoing interest in finding improved prediction

methods for sixty years.

Aviation has an indisputable position in modern society in the 21st century. Air

travel in Europe rose three-fold between 1980 and 2000, and due to the demand it

is set to double by 2020. It is evident that aircraft noise is becoming an increasingly

important factor in everyday life. It has become a major concern of people living around

busy airports like London Heathrow. Reports are frequently published concerning the

physiological and psychological effects of load and constant background noise in living

areas close to airports. Public pressure on governments to act is high. For instance

the UK Government recently announced spending of 5 million pounds a year over five

years to help insulate schools and other public buildings under the Heathrow flight path.

While such steps go some way to alleviate the problem it is unlikely that this will prevent

the introduction of increasingly strick regulations that restrict the amount of noise that

aircraft are allowed to generate.

Furthermore, we have to accept that air transport is a significant contributor to global

and local air pollution as well as local ambient noise, and these problems are likely to

become more serious if present growth trends continue. From a design point of view,

1
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Figure 1.1: A380 aircraft at landing

the various problems are interlinked and it is unlikely that an optimal solution that

minimises say, NOx emissions, will correspond to an optimum noise solution. There is

therefore considerable pressure on engine manufacturers to develop novel noise reduction

techniques. Correspondingly, there is a pressing need to develop tools that can accurately

predict noise produced by a novel power plant.

1.1 Aircraft Noise in General

The broadest classifications of aircraft noise are those of airframe and engine noise.

Airframe noise is part of the non-propulsive noise of an aircraft in flight. Landing

gear, flaps and slats all contribute to airframe noise and are mostly used on takeoff

and approach when the aircraft is near the ground. Unsteady turbulent flow from the

wing and tail trailing edge, turbulent flow through or around flaps and slats, flow past

landing gear and other undercarriage elements, fuselage and wing turbulent boundary

layers, and panel vibrations, all contribute to airframe noise. Airframe noise is most

significant during approach when the engine noise is low.

Fan, compressor, turbine and combustor, and exhaust noise (jet noise) are all catego-

rized as the engine noise sources or propulsive noise sources. These are the four sections

that a typical turbofan engine is composed of, as illustrated in figure 1.2. Air is drawn

into the compressor at the front of the engine, and after it has been compressed it is

mixed with fuel and burnt in the combustion system. Some of the energy in the gas
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Figure 1.2: Modern GE turbofan jet engine, 1970s.

stream is extracted by a turbine to enable the compressor to be self sustaining. The

remaining gas is then expelled through a nozzle at the rear of the engine to provide the

overall thrust. The compressor and turbine units produce tonal noise as a result of the

interaction of the airflow over the rotating and stationary blades, which occur at the

blade passing frequency, or BPF, and its harmonics. Another feature of the compressor

and turbine associated noise is random aerodynamic noise which is due to the interac-

tion of unsteady flow with the stators, also known as broadband noise, and also rotor

self-noise. The burning process also produces random noise of a low order, but the jet

of gas propelled through the nozzle to mix with the atmosphere produces is probably

the most powerful form of random noise. This is jet noise.

Figure 1.3 shows the noise sources of a turbofan engine and the relative contributions

at the inlet and exhaust. The characteristic directions of radiation are rearwards for

the jet, turbine and half the fan noise, and forwards for the compressor, and the rest of

the fan noise. A breakdown of the noise components of a typical engine during takeoff

and approach to landing is shown in figure 1.4. The figure clearly indicates that a large

part is played by engine noise. Airframe noise becomes the dominant part of the aircraft
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noise during approach.

Figure 1.3: Typical noise pattern around a turbofan engine

Figure 1.4: A breakdown of the noise components of a typical engine during takeoff
and approach to landing.

1.2 Jet Noise in Particular

Among all of the aircraft noise sources mentioned above, the jet noise and its prediction

has been the subject of continuing interest and studies from the time when the first set
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of commercial jets were introduced, and still remains as one of the most complicated

problems in aeroacoustics because of the unresolved details of the noise generation mech-

anism. In 1952 Lighthill published the first of his two papers on aerodynamic sound in

the Proceedings of the Royal Society of London [1]. This is discussed in the next section.

1.3 Acoustic Analogies

Lighthill’s solution to the jet noise problem, usually referred to as Lighthill’s Acoustic

Analogy (AA), is actually a rearrangement of the equations of continuity and momentum

to give the homogenous acoustic wave operator on the left hand side, and the terms

remaining are placed on the right hand side and are viewed as the source terms. In this

way the jet is viewed as a volume distribution of quadruple sources that radiate sound

into an ambient medium at rest.

Because Lighthill’s equation arises from a rearrangement of the Navier-Stokes equa-

tion, it is in a strict sense exact. Furthermore, because it has the form of a simple

wave equation, a straightforward mathematical solution in terms of a Green’s function

can always be written down. In practice however, this apparent simplicity makes some

difficulties.

The first difficulty with Lighthill’s Acoustic Analogy concerns the complexity of the

source term, which depends on several aspects of the fluctuating turbulent flow. How-

ever, Lighthill showed that a great deal of information is available from the equations

despite the fact that the details of the turbulence were not known. Simple turbu-

lence closure models such as the 1-equation mixing length theory of Prandtl give rise

to similarity solutions for axisymmetric round jet flows where velocities and lengths are

non-dimensionalised using the jet exit velocity and jet diameter. This allows a scaling

argument to be made that shows the total acoustic power radiated from an isothermal

jet scales as eight powers of the jet velocity UJ .

Another difficulty with Lighthill’s Acoustic Analogy concerns directivity. Jet noise

is highly directional in nature and there is more than one reason for this. Firstly, the

mean flow of the jet can be thought of as convecting the turbulent eddies that constitute

the sound sources and this gives rise to convective amplification. Secondly, the sound
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produced within the jet must propagate through the jet flow, giving rise to flow acoustic

interactions (i.e. refraction effect).

While the convective amplification effects can be incorporated within Lighthill’s Anal-

ogy using suitable Doppler factors applied to the equivalent acoustic sources, the mean

flow effects can only be included in a somewhat ad hoc way. This phenomenon is

commonly referred to as the “refraction effect” and was first observed in experimental

evidence found by Atvars et al. [2]. The refraction effect can be explained as fol-

lows. Once produced by the source, sound waves have to pass through the jet plume

in which flow velocity and perhaps temperature vary in the axial and radial direction.

This phenomenon is analogous to the Snell’s law in optics. The effect depends on the

frequency content and wave-length relative to the shear layer width of the jet, and will

be even more significant if the sources are deeply buried in a rapidly spreading shear

layer. Many attempts have been made to include the refraction effect in the solution

to the jet noise problem, but they mostly ended up with sophisticated and unsolvable

equations. However, the most satisfying approach, at least from a theoretical viewpoint,

is due to Lilley who rearranged the mass and conservation equations to arrive at a third

order inhomogeneous wave equation, with the flow-sound interaction effect included in

the propagation operator [3]. There have been some efforts to simplify Lilley’s equation,

but the most cited works are perhaps those of Tester and Morfey [4], and Mani et al.

[5]. However, the complexity of the problem confines the solution to only low and high

frequency asymptotic solutions for simple jet flows.

1.3.1 Traditional Methods of Jet Noise Prediction

One of the strengths of Lighthill’s Analogy is that it effectively decouples the acoustic

problem from the flow problem and, as discussed above, even modest knowledge about

the flow allows scaling laws to be developed. While such laws do not give an absolute

prediction for noise, the practical utility of the approach is that careful measurements

made on one jet can be used to predict noise from other jets. In the years following

Lighthill’s theory this was the basis of most jet noise prediction. For example, in the early

1970s Lush [6] made a series of jet noise measurements and developed a comprehensive

scaling law for third octave jet noise spectral intensity including convective directivity.
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Lush realized that such a scaling law would not predict noise emitted in directions close

to the jet axis where it is affected by “cone of silence effects” arising from flow-acoustic

interaction, but otherwise the agreement is very good.

Lighthill’s U8
J law works very well for low Mach number jet flows. Later Ffowcs-

Williams investigated scaling law for very high-speed jets [7] and found that acoustic

power radiated from such a jet varies as the third power of the jet velocity. Scaling

laws turn out to be a bit different when we deal with hot jets, due to the different

nature of the source contributing to noise production. Monopole and dipole sources

appear to be equally dominant factors in hot jets. Morfey [8] has shown that at low

Mach numbers, radiation is associated with dipole volume acceleration, and quadru-

ple volume displacement sources. He then showed that the acoustic power scales as

(∆T/T )2(UJ/c0)6. A Monopole source can also dominate the noise radiation at low

Mach numbers in heated jets. Lush and Fisher found that, in this case, the far field

intensity varies as (∆T/T )2(UJ/c0)4 [9].

(∆T/T )2(UJ/c0)4

The latest improvements on scaling laws are reported by Tam [10], and Viswanathan

[11]. Tam examined some heated supersonic jets and utilized the scaling law A(UJ/c0)
/
(R/DJ)2,

where R is the distance of the observer from the jet exit. A and n are two calibrating co-

efficients which are functions of jet total temperature and microphone azimuthal location

(TJ/T∞, θ). Viswanathan has also found that the noise characteristics of unheated and

heated jets at every radiation angle can be described in terms of two independent param-

eters: the total temperature ratio (TJ/T0) and the velocity ratio (VJ/c0). The velocity

exponent for scaling jet noise is then defined uniquely for each angle and temperature

ratio [11].

1.3.2 Developments in Methods of Jet Noise Prediction

While the traditional methods for noise prediction have proved themselves remarkably

successful at making predictions from limited knowledge, they are clearly limited by the

underlying assumptions about the self similarity of jet flows. This also limits their use
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as an aid to engine designers because they are able to predict noise only for jet flows

where the underlying source parameters remain largely unchanged. Given the need to

reduce jet noise this is a severe shortcoming.

Engine manufacturers are increasingly looking toward novel designs involving fea-

tures such as chevrons that alter the turbulence characteristics of the flow, or non-

axisymmetric flows that may help shield the major noise sources within the jet. If

reasonable predictions are to be made for such complex flows a new range of predic-

tion tools is required. However, to offset the increasing difficulty of the problems being

posed is the fact that our knowledge of, and ability to predict, turbulent flow fields has

increased hugely due to the advent of Computational Fluid Dynamics (CFD).

The application of CFD to jet noise prediction can be achieved in one of two ways.

In the first class, the aerodynamic field and the acoustic field are simultaneously cal-

culated by solving the compressible unsteady Navier-Stokes equations. Dealing with

this method requires very high numerical resolution due to the large difference in the

length scale present between the acoustic variable and flow variables. This approach is

computationally demanding and unsuitable for normal design use, but allows for more

physical investigations of noise source and propagation mechanisms. Direct Numerical

Simulation (DNS) and Large Eddy Simulation (LES) fall into this class.

In DNS, the Navier-Stokes equations are solved for all the scales of the flow, with

no turbulence modelling. This requires resolving all spatial and temporal scales of the

turbulence which necessitates use of a very fine mesh to capture the smallest eddies

of the turbulence, the Kolmogorov scales say. One of the very first DNS calculations

of a turbulent jet was performed for a Reynolds number 2000, supersonic jet at Mach

1.92 by Freund et al. [12]. However, even in the case of low Reynolds number flows,

DNS remains very expensive in terms of computational time. Indeed, in this case, the

time step is imposed by the sound velocity, whereas the pressure fluctuations associated

with acoustic phenomena are typically at least ten times smaller than the hydrodynamic

pressure fluctuations associated with turbulent events, and thousands times weaker than

the mean flow that carries them. So, in this situation, a very wide range of scales have

to be accurately simulated, leading to very expensive simulations. As a result, DNS can

only be used for a small number of academic problems, which nevertheless provide data
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of great interest for the understanding of physical phenomena [12, 13, 14].

In LES, the governing equations are the Navier-Stokes equations explicitly filtered

in space, and a turbulence model is used to represent the subgrid-scale stress tensor

(a comprehensive review can be found in [15, 16]). According to the previous studies

on the DNS and LES, the grid requirements of both are difficult to achieve, and their

application is limited to some laboratory experiments with typical jet exit Reynolds

numbers of about 105.

A second class of methods used for applying CFD to jet noise prediction are two

step methods that split the solution into different distinct parts, with the flow field

being solved separately from the acoustic field. Needless to say, such an approach is

essentially a development of Lighthill’s work in that the CFD is now used to calculate the

equivalent acoustic sources that are then introduced into an acoustic solver. Propagation

of the sound can be handled using either Integral methods (Lighthill’s Analogy, Kirchhoff

integral, Ffowcs-Williams Hawking (FW-H), etc.) or Linearized Euler equations (LEE).

More often than not the CFD solver chosen for this type of two step modeling is

based on the Reynolds-Averaged Navier-Stokes equations (RANS). Due largely to its

inherent speed, this is a popular tool for industry and it is a natural development to use

it as the basis for acoustic predictions.

This type of approach was somewhat prefigured by Proudman who, shortly after

the appearance of Lighthill’s theory, published his work which relates jet noise to the

turbulence characteristics of jet flow [17]. According to his method, the total acoustic

power in the far field can be found from αρ0

(
v
c0

)5
ε, where c0, and ρ0 are the ambient

sound speed and the density in the far field, ε designates the dissipation rate of the

isotropic turbulence, and the turbulence velocity is defined by v2 = 2k/3, where k is

the turbulent kinetic energy. Finally α is a kind of calibrating coefficient that provides

an overall estimate of the power of the sources and is expressed in terms of the spatial

correlation function of the turbulence.

In fact, Proudman’s method is a kind of noise scaling law which links the acoustic

power to turbulence values without further ado. As with the original scaling laws of

Lighthill it does not provide spectral or directivity information about the noise. Indeed

this will be the case with any RANS based method without further explicit modeling of
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the acoustic sources, as the CFD does not provide sufficient information.

Perhaps one of the earliest and certainly the best known two-step method is the one

developed by Mani, Gliebe and Balsa in the late 1970s (the MGB Method) [5, 18, 19].

These authors employed an empirically derived steady flow prediction to provide the in-

put to an acoustic analogy model based on Lighthill’s Analogy and used Lilley’s Analogy

to derive the flow-acoustic interaction. This method was improved by Khavaran [20, 21]

who replaced the empirical basis of the flow prediction with a CFD calculation based

on a k− ε turbulence model. This technique is generally referred to as the Mani-Gliebe-

Balsa-Khavaran method (MGBK). One of the first applications of the MGBK method

was made by Khavaran and Georgiadis [22] for supersonic elliptic jets. Hamed et al.

[23] used the method for high bypass coplanar coaxial jets and Barber et al. applied

the method to axisymmetric multi-stream [24] and high speed jet flows [25] while the

mean and turbulence parameters were obtained using the WIND flow solver. Compar-

ison of the MGBK noise prediction for a coaxial jet using different RANS codes was

investigated by Koch et al. [26]. Frendi et al. [27, 28] applied the MGBK methodol-

ogy to a supersonic jet flow, while a multiple time scale approach was used and results

were in acceptable agreement with experimental data. This method was also used for

jets with chevron mixers by Koch et al. [29] and Engbolm et al. [30]. More recently,

researchers at the NASA Glenn Research center have been working on further improve-

ment of the MGBK method by including the turbulence anisotropy effect [21], source

compactness effect [31], alternative source terms function [31, 32], and also refraction

effect [33, 34, 35]. This new refined MGBK package is now called JeNo [36].

In addition to the MGBK method, a number of other RANS-based jet noise prediction

methodologies have also been developed and used. Self [37], Self and Bassetti [38] have

used a fourth-order space-time velocity correlation model for definitions of source terms

and also made use of many length scale definition for the case of isothermal single

flow jets. A similar methodology was also applied to isothermal coaxial jets by Page

et al. [39]. Another RANS-based model has been developed by Tam [40]. According

to this method the radiated noise originates from two types of sources, those radiated

by fine-scale eddies, and those produced by large-scale ones. The application of this

method to other geometries and working condition have also been tested [41, 42, 43].

However, it has been shown that Tam’s method is similar to the Acoustic Analogy
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method if consistent assumptions are made on the turbulence statistics [44]. It is also

worth mentioning here that an alternative approach for the case of noise from a coaxial

jet flow, commonly referred to as the four-source model, has been developed by Fisher

et al. [45, 46] and Preston [47]. This methodology is based upon the fact that the jet

stream of a coaxial jet has four distinct regions, and each behave as single stream jets.

An accurate and reliable prediction of jet noise using acoustic analogies requires that

the dynamics of the jet flow be accurately modelled. Of particular importance is the

spatio-temporal correlation of the Lighthill stress tensor as it will be used directly to

evaluate the radiated acoustic field. A limited amount of experimental research has

been performed to investigate the aerodynamic and acoustic aspects of jet flows. One

of the most famous works is that of Harper-Bourne [48], who tested a low speed jet flow

and measured the fourth order and second order two-point space-time correlation using

hot wire anemometry. More recently Kerherve et al. [49] performed a two-point laser

Doppler velocimetry (LDV) measurement for a Mach 1.2 cold supersonic jet to be used

for statistical modelling of aeroacoustic source terms. Bridges and Wernet have also

conducted a test using particle image velocimetry (PIV) to measure two-point space-

time velocity correlations in a hot, high speed jet flow [50].

Subsequent to the work of Mani, Gliebe, Balsa and Khavaran, there has been much

interest in improving RANS based two step techniques. One of the most important

improvements is that of the source term definition. In addition to the importance of

the accuracy of the CFD results and also the acoustic model, it has been shown that

there are many factors that play a role in the accuracy of the source term, such as

the source model and the defining parameters used to link the source model to the

nature of the jet flow plume. Although the model used for the source terms is of great

importance, a proper definition of the defining parameters in the source term model,

e.g. time scale, length scale, and convection velocity, can be even more important.

Furthermore, frequency dependency of these parameters is very important as well. Such

a dependency was observed before when Fisher and Davis presented their paper in 1963

[51]. Frequency dependency of time scale, length scale, and convection velocity has

been also comprehensibly investigated by Harper-Bourne for a low speed (MJ = 0.18)

jet flow [48]. Morris and Boluriaan [52] and Self [37] have recently implemented this

frequency dependence in their statistical noise prediction methodologies, and have shown
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that noise prediction improvement is possible if frequency dependent parameters are

used. More recently, Kehereve et al. [49, 53] have conducted research which shows the

frequency dependency of the turbulence properties derived from two-point laser Doppler

velocimetry measurements in high speed subsonic jets.

1.4 Objectives of original contributions the Present Work

The central goal of this thesis is to develop a jet noise prediction methodology based

on Lighthill’s Acoustic Analogy which provides an acceptable level of agreement with

measured data and is also computationally feasible. This approach consist of two steps:

In the first step one needs to determine the mean and turbulence properties of the

flow from Computational Fluid Dynamics analysis (CFD) using the Reynolds Averaged

Navier-Stokes (RANS) equations along with a two-equation turbulence model, namely

k − ε or k − ω. The second step requires modeling of the acoustic source terms and

noise radiation and propagation mechanisms. The need to define the source terms arises

because a steady RANS calculation provides no time dependent quantities required for

the acoustic calculation. In particular the turbulent correlations (or equivalent) must be

modeled. Although the accuracy of the final prediction depends heavily on the accuracy

of both steps, understanding the underlying physics of the noise production and radiation

mechanism also has a crucial role in improving noise prediction. The specific objectives

of the research are as follows:

1. Provide a mathematical model for jet noise prediction based on an Acoustic Anal-

ogy. Lighthill’s equation along with Lilley’s equation will be derived. In addition,

the MGBK method will also be derived to take account of the shear-noise. It will

be also shown that using the MGBK method one can also address some other

phenomena, such as turbulence anisotropy and source compactness.

2. Provide a general description of different turbulent processes occurring in a jet

flow plume. We will then investigate how these processes contribute to the noise

production and radiation mechanism. The most important question that arises is

whether all turbulence regions are contributing to the noise radiation or whether

consideration of a limited number of regions is adequate.
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3. Consider frequency dependency of different parameters used in the source term

definition, such as time scale, length scale, and convection velocity. Various models

will be introduced and their corresponding physical meaning will be explained.

4. Propose and validate a new time scale based upon the turbulent energy transfer

rate. How the frequency dependency is taken into account using the new time

scale will be discussed. It will also be shown that significant improvement in the

noise prediction at low and high frequencies can be obtained using this time scale.

The original contribution in this thesis, to the field of aeroacoustics, is the considera-

tion of various scales in order to better understand the underlying physical mechanisms

of jet noise production and propagation. The thesis is aimed to study in depth the

most fundamental definitions used in prediction of jet noise, namely time- and length-

scale, and their connection to the underlying physics of noise production/propagation

mechanism. This involved investigating various time scale and length scale models. The

frequency dependency of these parameters have also been carefully studied. Most im-

portantly, a new time scale based on turbulent energy transfer rate has been developed

and used for various kinds of jets operating at different conditions. It has been shown

that even a simple model using Lighthill’s Acoustic Analogy can provide very acceptable

results, given that the appropriate time-scales and length-scales are chosen. This thesis

provides, for the reader, a convenient collection and outline of the most used jet noise

prediction models to date, such as Lighthill, MGBK and models based on the turbulent

energy spectrum.

1.5 Outline of the Thesis

This thesis is organized as follows: The mathematical derivation of jet noise radiation

is given in Chapter 2. In this chapter Lighthill’s Acoustic Analogy is derived and re-

quired discussions are provided. In addition, the MGBK methodology is derived and

its application discussed. The high frequency solution of Lilley’s equation, as suggested

by Balsa [54] is also used in the MGBK method. In Chapter 3, different turbulence

regions and associated phenomena are explained. Discussions are given for the most im-

portant regions responsible for the noise production and radiation mechanism. Chapter
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4 concerns the frequency dependency of some of parameters used in the source terms of

the Acoustic Analogy, such as time scale, length scale and convection velocity. Various

models are introduced. A new time scale based on the turbulent energy transfer rate

with inherent frequency dependency will be introduced. In addition to the frequency

dependency of the time scale, that of the length scale and convection velocity are also

considered by best fitting to the available measured data. Chapter 5 presents numerical

results and discussions for noise prediction for the case of unheated and heated subsonic

single-stream jets. Comparisons are made between the predicted noise level results using

the MGBK method and measured data. The jet noise source distribution is also con-

sidered in this chapter. Comparisons of noise prediction and source distribution with

experimental data for the case of a coplanar and short-cowl nozzles with experimental

data are given in Chapter 6. Predictions are made using the MGBK method.

The details of the RANS CFD analysis are given in Appendix A. This includes a

discussion of the grid and turbulence model sensitivity for axisymmetric jet flows. The

CFD results are provided for three jet configurations, namely single-flow, coplanar, and

short-cowl nozzles, operating at different velocities and temperatures.



Chapter 2

Noise Generation and Radiation

Modeling

In mathematics you don’t understand things. You just get used to them.

“Johann von Neumann”, (1903-1955)

This chapter concerns the mathematical modelling of noise production and radiation

from a jet flow and is split into two parts. In the first part, Lighthill’s Acoustic Analogy

is derived and discussions are provided. This method makes use of the fourth order

correlation function when the turbulence is isotropic and it is assumed that noise is

dominated by self noise.

The second part of the chapter is devoted to the derivation of the MGBK method

which can also take account of the shear-noise. Aside from the shear-noise, source

compactness and turbulence anisotropy are also taken into account, which in fact extends

the application of the analogy. A list of possible second-order correlation functions, both

spatial and temporal parts, is also given in this section.

2.1 Lighthill’s Analogy

The fundamental equation that forms the basis of aeroacoustics was developed by

Lighthill [1] who introduced his acoustic analogy in 1952 to deal with the problem

15
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of jet noise. The formulation is derived from the Navier-Stokes equation in combination

with the equation of mass continuity,

∂ρ

∂t
+

∂

∂xj
ρuj = 0, (2.1)

∂

∂t
ρui +

∂

∂xj
(ρuiuj + δijp− eij) = 0, (2.2)

where eij denotes the viscous stress tensor, which can be expressed in terms of the

velocity gradient for a Stokesian gas as:

eij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
, (2.3)

where µ is the fluid viscosity.

Subtracting the space derivative of the momentum equation, (2.2), from the time

derivative of the continuity equation, (2.1), one obtains:

∂2ρ

∂t2
− ∂2

∂xi∂xj
(ρuiuj) =

∂2

∂xi∂xj
(pδij − eij) (2.4)

The expression is equivalent to:

∂2ρ

∂t2
− ∂2

∂xi∂xj
(ρuiuj) =

∂2

∂xi∂xj
(pδij − eij) + c2

0

∂2ρ

∂t2
− ∂2

∂xi∂xj
(c2

0ρδij) (2.5)

Equation (2.5) can be rearranged in order to obtained a wave equation on the left-hand

side and the acoustic sources on the right-hand side:

∂2ρ

∂t2
+

∂2ρ

∂x2
i

=
∂2

∂xi∂xj
(ρuiuj) +

∂2

∂xi∂xj

[
(p− c2

0ρ)δij

]− ∂2eij

∂xi∂xj
(2.6)

A decomposition of the flow variable can be introduced:

p = p0 + p′

ρ = ρ0 + ρ′
(2.7)

where the prime denotes the small perturbations from a state where the fluid is at rest

with a uniform density ρ0 and a uniform pressure p0. Using the above variables in
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equation (2.6), one can obtain

∂2ρ′

∂t2
− c2

0∇2ρ′ =
∂2Tij

∂xi∂xj
, (2.8)

which is usually referred to as the Lighthill equation. The Tij term is the Lighthill stress

tensor which is given by

Tij = ρuiuj + δij

[
(p− p0)− c2

0 (ρ− ρ0)
]− eij . (2.9)

Mathematically, equation (2.8) is a hyperbolic partial differential equation, which de-

scribes a wave propagating at the speed of sound in a medium at rest, on which fluctuat-

ing forces are externally applied in the form described by the right hand side of equation

(2.8). The equation has the same form of the wave propagation equation that governs

the acoustic field produced by a quadrupole source (indicated by the double divergence

on the right hand side) in a non-moving medium. It can be shown that for isothermal

jet flows, Tij is approximately equal to ρuiuj inside the flow, and approximately equal to

zero outside this region. Hence, upon assuming that the density fluctuations are negli-

gible (relative to ρ0) within the moving fluid, the following approximation to Lighthill’s

stress tensor can be used

Tij ≈ ρ0uiuj . (2.10)

So, the right hand side of the Lighthill equation can be treated as a known source term,

assuming knowledge of the turbulent flow. It is worth mentioning here that the energy

associated with the Reynolds stress term ρ0uiuj (i.e. the aerodynamic source) is much

greater than the energy consumed to radiate the sound.

In the absence of any solid boundary the solution to equation (2.8) can be expressed

in terms of the free-space Green’s function. Hence,

ρ′(x, t) =
1

4πc2
0

∫
1
R

[
∂2Tij

∂yi∂yj
(y, τ)

]

τ=t−(R/c0)

dy, (2.11)

where the integration is to range over all y in the volume V where Tij is non-zero, also

R = |x− y|,
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is the source to the observer distance. Since the observation location is many wave-

lengths away from the source position, and also because the observation distance is

large compared with the source region dimensions, one can show that [55]

∂2

∂xi∂xj
Tij(y, τ) ≈ xixj

c2
0x

3

∂2

∂t2
Tij(y, τ) (2.12)

Finally, the acoustic pressure can be obtained after substitution of (2.12) in (2.11) and

using the far-field pressure-density relation p′ = c2
0ρ
′,

p′(x, t) ≈ 1
4π

xixj

x3

∫
1
c2
0

∂2Tij

∂t2
(y, t− R

c0
)dy. (2.13)

Accordingly, the average intensity can be determined from the normalized pressure au-

tocorrelation function

Γ(x, t) ≡ 1
ρ0c0

p′(x, t)p′(x, t + τ) (2.14)

where the overbar notation shows an ensemble average. Finally, using equation (2.13)

in (2.14), the normalized pressure autocorrelation function can be obtained from

Γ(x, t) =
1

16π2ρ0c2
0

xixjxkxl

x6

∫ ∫
∂2

∂t2
Tij (y1, t1)

∂2

∂t2
Tij (y2, t2)dy1dy2 (2.15)

with
t1 = t− |x−y1|

c0
,

t2 = t + τ − |x−y2|
c0

.
(2.16)

It is possible to show Tij is generally a reasonable stationary random function of time

[55], so correspondingly the density fluctuations must also be a function of this type. So

that [55]:

∂2Tij(y1, t1)
∂τ2

∂2Tkl(y2, t2)
∂τ2

= lim
T→∞

1
2T

T∫

−T

∂2Tij(y1, t1)
∂τ2

∂2Tkl(y2, t2)
∂τ2

dt =
∂4

∂τ4
Tij(y1, t1)Tkl(y2, t2).

(2.17)

Some other assumption need to be made, which are not mentioned here for brevity, but

they can be found in [55]. However, by substituting (2.13) into (2.14), and by using the

far-field assumption (|x− y1| = x − x
x .y1 + O(x−1)) and (2.17), the following relation
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Figure 2.1: Coordinate system used in the calculations

can be found

Γ(x, t) =
ρ0

16π2c2
0

xixjxkxl

x6

∫ ∫
Rijkl(y1, η, τ +

x
x

.
η

c0
)dy1dη, (2.18)

where η = y2 − y1, and Rijkl is the Lighthill stress term correlation function in a fixed

reference frame,

Rijkl(y1, η, τ) = Tij(y1, t)Tkl(y1 + η, t + τ). (2.19)

Upon taking its Fourier transform, the acoustic intensity spectrum can readily be found,

as

I(x, ω) =
1

32π3ρ0c5
0x

2

∞∫

−∞

∂4

∂τ4

∫

y1

∫

η

Rijkl(y1, η, τ) e
jω[τ−x

x
· η
c0

]
dy1dηdτ, (2.20)

Equation (2.20) can be used to find the sound spectrum as soon as a mathematical

model for the correlation function Rijkl, i.e. equation (2.19), has been introduced,

to allow integration. We will come back to the definition of the above fourth-order

correlation function later.
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Introduction of moving reference frame. When the acoustic sources are in uniform mo-

tion with the eddy convection speed Uc, the space retarded time covariance of Tij is mea-

sured in the moving frame. In other words, experimentally the correlation Rijkl(y1, η, τ)

in a jet flow has a form describing a moving, fluctuating pattern. This can be readily

dealt with most neatly by transforming to a reference frame moving with the pattern

convection velocity. The following transformation is taken,

ξ = η −Ucτ ; Uc = (U1, 0, 0). (2.21)

Inserting the new variable, equation (2.21), into equation (2.18), taking the Fourier

transform, yields,

I(x, ω) =
ω4

32π3ρ0(1−Mc cos θ)5c5
0x

2

∞∫

−∞

∫

y1

∫

ξ

R
(m)
ijkl(y1, ξ, τ) e

jω[(1−Mc cos θ)τ−x
x
· ξ
c0

]
dξdy1dτ,

(2.22)

where θ is the polar angle of the observer to the jet downstream axis direction. Although

the above equation is an alternative form for the power spectral density of equation

(2.18), it is more useful since the effects of source convection are more easily brought

out. In equation (2.18) the space-time source field correlation is referred to a stationary

coordinate frame and is designated Rijkl. In equation (2.22) the same correlation is

referred by transformation to a coordinate frame moving with velocity Uc, and is denoted

by R
(m)
ijkl.

Before proceeding with the integration, one needs to provide a reasonably accurate

estimation of the fourth order cross-correlation function. It has been shown before that

the most significant contribution to noise radiation is due to the longitudinal-longitudinal

correlation, R
(m)
1111(y1, ξ, τ). This will be denoted by R(m) hereafter for brevity. Many

different forms for R(m)(y1, ξ, τ) have been considered by various authors and these will

be discussed later in section 4.2. For the present, a simple Gaussian correlation function

is taken for both temporal and spatial parts [38, 44]. It is given by

R(m)(y, ξ, τ) = A2ρ2
0v

4e
−

(
τ

τA

)2

e
−

{(
ξ1−Ucτ

L1

)2
+

(
η2
L2

)2
+

(
η3
L3

)2
}

, (2.23)

where v denotes the characteristic turbulent velocity scale and τA and L1 are correlation
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time and longitudinal length scales which will be referred to as the acoustic scales to

distinguish them from their k − ε derived counterparts, which will be referred to as

the turbulent scales. In addition, L2 and L3 are cross-stream length scales that are

proportional to the longitudinal scale, while A is a numerical constant of the order 1 and

is a function of Reynolds number (in terms of turbulent velocity and lateral dissipation

scale, Reλ = vλg

ν ). Experimental data show that coefficient A must be in range of 0.58

to 0.7, but closer to 0.7 is more likely to occur [56].

The other factor in (2.22) which needs further explanation is the wavefront direction
−→x ·−→ξ . In the geometric far-field of the jet the path difference in equation (2.22) has the

simple form
x · ξ
x

= ξ1 cosα + ξ2 sinα cosβ − ξ3 sinα sinβ. (2.24)

In order to carry out the integration with respect to ξ, a convenient coordinate trans-

formation has one of the axes ξi aligned with vector k, such that k.ξ = kξ1 cosα. How-

ever, when turbulence is isotropic, the final result should be independent of the direction

of wave number k. Assuming that the lateral scales are acoustically compact (i.e. turbu-

lence length scale small relative to the acoustic wave-length), after substituting equation

(2.23) and (2.24) in equation (2.22), the following relation can be obtained,

I(x, ω) =
A2ρ0

32π3c5
0(1−Mc cos θ)5

ω4

x2

∫

y1

L1L2L3τ
Av4e

−
(

ωL1
2c0

)2

e
−

(
ω(1−Mc cosθ)τA

2

)2

d3y1.

(2.25)

Although Lighthill Acoustic Analogy is a rearrangement of the Navier-Stokes equa-

tion, there are some assumptions to this formulation that limit its applicability. It is

worth listing them here:

1. The sound is radiated into free space.

2. The sound induced by fluid flow is weak (i.e., the backward-interaction of acoustic

phenomena on the fluid flow is negligible.) In other words, the fluid flow is not

sensitive to the sound induced by the fluid flow, and because of this reason the

theory is effectively confined in its application to completely subsonic flows.
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3. Taking accounts of the refraction effect using Lighthill’s Acoustic analogy is a very

difficult task since that must be considered as a part of the source term definition,

Tij .

4. Nearly parallel mean flow assumption needs to be used to numerically solve the

Lighthill Acoustic Analogy equation.

5. In addition, the integral relation (equation (2.25)) will only give an estimation of

the radiated noise from quadruple sources inside the jet flow, and does not account

for monopole and dipole sources associated with the mean velocity gradient and

density variation.

Lighthill’s acoustic analogy is therefore successfully applicable to the analysis of en-

ergy “escaped” from subsonic flows as sound, and not to the analysis of the change in

character of generated sound which is often observed in transitions to supersonic flow

due to high frequency emission associated with shock waves.
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2.2 MGBK Method

The simple form of the Lighthill analogy and also the conditions under which it is

applicable, limits its application to very special cases. A more general formulation that

can be used is the MGBK method. This is an updated version of a noise-prediction

program, called “MGB” developed during the 1970s by Mani, Gliebe, and Balsa [5].

These authors provided a comprehensive analysis of the shielding effects of parallel jets

when velocity and temperature profiles are functions of the radial variable only. The

MGB method was then modified and improved by Khavaran, and is now referred to as

MGBK method.

The MGBK method has been used many times for noise prediction of jet flows at

different working conditions. One of the most important advantages of the MGBK

method is its fast compatibility for any required adjustment to the flow condition or

the source term. Source compactness [57], flow anisotropy [57], different shapes of the

correlation functions, correlation model separability [31, 32], refraction and shielding

effects [58], all have been investigated using the MGBK method. Use of the MGBK

method for subsonic jet flows has been numerously reported in the literature [31, 32, 57].

Prediction of radiated noise from supersonic jets has also been studied using the MGBK

method [27, 28].

The starting point of this model is the far field approximation of the Lighthill acoustic

analogy, as given by Ribner [59],

p2(x, τ) ∝
∫

y

I1111(y, τ)(axx + 4axy + 2ayy + 2ayz) dy (2.26)

where the directivity factors axx, axy, ayy, and ayz are found from

axx =
cos4 θ

(1−Mc cos θ)4
,

axy =
g2
s cos2 θ

2(1−Mc cos θ)2
,

ayy =
3
8
g4
s ,

ayz =
1
8
g4
s . (2.27)
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where gs is the value of the following function at the source point,

g2(r) =
(1−Ms cos θ)2(c0/cs)2 − cos2 θ

(1−Mc cos θ)2
. (2.28)

The proportionality factor, I1111, in equation (2.26) is proportional to,

I1111(y, τ) ∝ 1
R2

(1−Mc cos θ)−1(1−Ms cos θ)−2

∫
∂4

∂τ4
vivjv′kv

′
ld

3r (2.29)

where Ω is the observer frequency which relates to the source frequency through [27],

Ω = ω
√

(1−Mc cos θ)2 + (αck0.5/c0)2, (2.30)

where the term αck
0.5/c0 accounts for the finite life-time of the eddy as it is convected

downstream. The constant αc is found from the measured data to be approximately 0.5.

Regarding the fourth-order correlation function in equation (2.29), it has been shown

that for a homogeneous and isotropic turbulent flow, it consist of a sum of second-order

velocity correlation [60],

vivjv
′
kv

′
l = vivj v

′
kv

′
l + viv

′
k vjv

′
l + viv

′
l vjv

′
k. (2.31)

It seems that this formulation was first introduced and experimentally examined by

Uberoi [61, 62]. The modelling of the second-order correlation function will be discussed

later in section 2.2.1.

Despite the popularity of the Ribner directivity equation, it is correct only when the

shielding function, g2, is positive. In the case of any turning point one needs to modify

the directivity terms using Lilley’s equation.

Up to this point, the effect of the sound-flow interactions on sound radiation mecha-

nism from quadrupole sources has been considered. As has been shown earlier, in section

2.2, dipole sources, known as shear-noise, can be taken into account using the MGBK

method, so one needs also to address the effects of the refraction on sound radiation

from dipolar sources. In what follows, the method first developed by Mani et al. [5] is

used. As before, Lilley’s equation for an inviscid flow, linearised about uni-directional

transversely sheared mean flow is taken as the basis of the study. This can be written
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as,

L(p) = c−2
s D3p−D∆p− d

dr
(log c2)D

∂p

∂r
+ 2

dU

dr

∂2p

∂x∂r

= ρD ∇.∇.(v1v1 − v1v1)− 2ρ
dU

dr

∂

∂x
∇.(v1v2 − v1v2) (2.32)

where t denotes time, p is acoustic pressure, v1, and v2 are the axial and radial turbulent

velocity fluctuations respectively. L is the Lilley wave operator term, and D is the

convective derivative, D = ∂
∂t + U ∂

∂x , and

∆ =
∂2

∂x2
+

∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
. (2.33)

The first term on the right hand side of (2.32) denotes the typical quadrupole source

term, which is due to the turbulence-turbulence interactions. The second term is at-

tributed to the mean flow and turbulence interaction, or shear noise, which its noise

radiation in the absence of refraction can be accounted for by MGBK method. In what

follows, Balsa’s [54] work for the high frequency Green’s function solution for an ax-

isymmetric Lilley’s equation is utilized. For a monopole source convecting downstream

the jet with convection velocity Uc, the Green’s function satisfies:

L(G|Uc, x) = e−jΩtδ(x− Uct)δ(r − rs)δ(φ− φs)/r. (2.34)

Let SM and SD be the Green’s functions to the equations of the self- and shear-noise

terms of Lilley’s equation:

L(SM |Uc, x) = ρD
{
e−jΩtδ(x− Uct)δ(r − rs)δ(φ− φs)/r

}
, (2.35)

L(SD|Uc, x) = −2ρe−jΩt dU

dr
δ(x− Uct)δ(r − rs)δ(φ− φs)/r, (2.36)

Subsequently, it can be readily shown that

SM = −jρΩ
(

1−Ms cos θ

1−Mc cos θ

)
G. (2.37)

Assuming that dnU
drn = 0 for n > 2, a similar relation can be found for a dipole source,

SD = −2ρ
dU

dr
G. (2.38)
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It should be noted here that the density gradients are neglected in the derivation of the

above relations. The density gradient can produce an additional dipole-like source which

was studied by Mani [63]. The following dependency can be readily deduced from the

Green’s functions of the monopole and dipole sources,

SD

SM
= −j

2dU/dr

Ω
1−Mc cos θ

1−Ms cos θ
. (2.39)

In order to find G, after using the sequence of Fourier transformations, one finds that

equation (2.34) reduces to,

d2Ḡ

dr2
+

[
1
r

+
d

dr
log(

cs

c0
)2 +

2s

k −Ns

dN

dr

]
dḠ

dr
+

[
(k −Ns)2

(cs/c0)2
− s2 − n2

r2

]
Ḡ =

j

c0

√
2π

ejnφs

Ns− k

δ(r − rs)
r

(2.40)

where Ḡ is given by,

Ḡ =
ejωt

√
2π

∞∫

−∞
e−jsxdx

∞∫

−∞
ejnθGdθ, (2.41)

(−∞ ≤ s ≤ ∞, n = 0, ±1, . . .)

The first order derivative of Ḡ in (2.40) can be eliminated by a standard transformation.

Defining

P =
√

r
cs

c0

1
−k + Ns

Ḡ (2.42)

Equation 2.40 then reduces to

Prr +
{

k2g2(r; σ)− n2 − 1/4
r2

}
P =

j

k2
√

2π

cs

c2
0

1
(1−Nσ)2

ejnφs
δ(r − rs)√

r
(2.43)

where k = ω/c0, σ = s/k, N = (U − Uc)/c0, and

g2(r; σ) =
(1−Nσ)2

(cs/c0)2
− σ2 (2.44)

Looking at the above equations one can deduce that the behaviour of P depends on

the algebric sign of g2. P is oscillatory for g2 > 0, and exponential for g2 < 0. The

location in the shear layer where g2 changes sign is known as the turning point (rσ).

When a negative region exists, fluid shielding of the source is possible and the amount

of shielding depends on the proximity of the source with respect to the turning point as
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well as the number of turning points. For single flow cold jet, it is reasonable to assume

that only one turning point occurs.

By evaluating the axial wave number, σ, at the point of stationary phase, rσ, equation

(2.44) reduces to,

g2(r) =
(1−Ms cos θ)2(c0/cs)2 − cos2 θ

(1−Mc cos θ)2
. (2.45)

In case of no turning point, the Green’s function can be found as

G =
1

4πc0kR

cs/c0

(1−Ms cos θ)2

(
ξs

rsgs

)1/2

ejω(R/c0−t)e
jk

[∞∫
0

(g−g∞)dr−ξ0 cos(φ−φs)

]

(2.46)

where

ξ =

r∫

0

gdr (2.47)

Considering the case in which the shielding function, g2 has a unique turning point at

r = rσ (so that rσ > ro), the solution of the Green’s function is given by

G =
1

4πc0kR

cs/c0

(1−Ms cos θ)2

(
ξs

rsfs

)1/2

ejω(R/c0−t)e
jk

[
∞∫

rσ

(g−g∞)dr−jkg∞rσ−ξ0 cos(φ−φs)

]

(2.48)

where f2 = −g2.

After taking the derivatives of the Green’s function of each source with respect to

the coordinates to make a quadrupole like sources, and then averaging circumferentially

with respect to φ and φs, the following equations giving the directivity factors can be

obtained

D
(M)
ij =

1
4π2

π∫

−π

π∫

−π

∣∣∣∣
∂2SM

∂xi∂xj

∣∣∣∣dφsdφ,

D
(D)
ij =

(
2dU/dr

Ω
1−Mc cos θ

1−Ms cos θ

)2

D
(M)
ij .

(2.49)
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Figure 2.2: Position of the turning points. Shaded areas denote shielding of source

and these yields,

D
(M)
11 =

cos4 θ

(1−Mc cos θ)4
βxx,

D
(M)
12 =

g2
s cos2 θ

2(1−Mc cos θ)2
βxy,

D
(M)
22 =

3
8
g4
sβyy,

D
(M)
23 =

1
8
g4
sβyz. (2.50)

The shielding coefficients, βxx, βxy, βyy, and βyz depend upon the case encountered

in figures 2.2 and 2.3, and Table 2.2. The parameters β01, β02, β12 are defined as,

β01 = exp

{
−2Ω/c

rσ1∫
rs

∣∣g2(r)
∣∣1/2

dr

}
,

β02 = exp

{
−2Ω/c

rσ2∫
rs

∣∣g2(r)
∣∣1/2

dr

}
,

β12 = exp

{
−2Ω/c

rσ2∫
rσ1

∣∣g2(r)
∣∣1/2

dr

}
.

(2.51)

In order to better understand the anisotropy effects two parameters are defined,

βc = 1 − v2
2/v2

1 and Υ = L2/L1, with v1 being the stream-wise turbulent velocity, and

v2, and v3 the cross-stream turbulent velocities. For an axisymmetric jet flow v2
2 ≈ v2

3.

In the limiting case of isotropic turbulence they reduce to Υ = 1, βc = 0. Finally, after

finding the directivity coefficients from equation (2.50), the power spectral directivity of
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Figure 2.3: Position of the turning points. Shaded areas denote shielding of source

Case βxx βxy βyy βyz

a 1 1 1 1
b 1 1 1 1
c β01 0 0 0
d 1 1 1 1
e β02 0 0 0
f β12 β12 β12 β12

Table 2.1: Shielding coefficients βij .

an axisymmetric jet (D(M)
22 = D

(M)
33 and D

(M)
12 = D

(M)
13 ) can be expressed as,

ISelf (x, θ, ω) =
∫

y

∫ +∞

−∞

{
D

(M)
11 + 2ζ1D

(M)
22 + 4 (ζ2 + 2ζ4) D

(M)
12 + 2 (ζ3 + 2ζ5) D

(M)
23

}
ΠMejΩτdτdy,

(2.52)

IShear(x, θ, ω) =
∫

y

∫ +∞

−∞

{
ζ4D

(M)
11 + (ζ1 + ζ5) D

(M)
12

}
ΠDejΩτdτdy, (2.53)

where

ΠM =
(ρo

/
ρs)2

(4πRcsco)2(1−Ms cos θ)2(1−Mc cos θ)2
I1111(y, τ), (2.54)

ΠD =
(

2dU/dr

Ω
1−Mc cos θ

1−Ms cos θ

)2

ΠM , (2.55)
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where the weight coefficients, ζ1, appearing in equation (2.52) and (2.53) are related to

the non-isotropic factors through

ζ1 =
3
2
β2

c +
1
32

[
9

(
Υ + Υ−1

)4 − 48
(
Υ + Υ−1

)2 + 80
]
− βc

4
(6−Υ2 + 3Υ−2),

ζ2 =
1
8
,

ζ3 =
1
8

[
3
4

(
Υ + Υ−1

)4 − 4
(
Υ + Υ−1

)2 + 7− 2Υ2 + 4β2
c

]
+ 2βc(Υ2 − 2−Υ−2),

ζ4 =
1
16

(5 + 2Υ−2 − 8βc),

ζ5 =
1
2
(ζ1 − ζ3).

(2.56)

Now the self-noise and shear noise can be calculated after integrating this source over

the domain and also time.

It is worth mentioning here that aside from the MGBK method which enables us

to calculate the self and shear noise components, Jordan and Gervias [64] developed

an alternative formulation based on Lighthill’s Acoustic Analogy. According to their

method the total radiated noise is given by

I(x, θ, ω) = ρ(16π2c5x2C5)−1

∞∫

−∞

∫

Vy

(
DijklI

(Self)
ijkl (x,y, τ) + DijklI

(Shear)
ijkl (x,y, τ)

)
ejΩτd3ydτ.

(2.57)

Here, I
(Self)
ijkl , and I

(Shear)
ijkl are the acoustic intensity at x due to a volume of turbulence-

turbulence, and turbulence-mean flow disturbances located at the point y, respectively.

The self and shear noise terms used in equation (2.57) can be found from:

DijklI
(Self)
ijkl (x,y, τ) ≡

[
cos4 θ

∫
∂4

∂τ4
v2
1v

′2
1 d3r + 2 cos2 θ sin2 θ

∫
∂4

∂τ4
v1vmv′1v′md3r

+2 cos2 θ sin2 θ

∫
∂4

∂τ4
v2
1v

′2
md3r +3/8 sin4 θ

∫
∂4

∂τ4
v2
mv′2md3r

]
,

(2.58)
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and

DijklI
(Shear)
ijkl (x,y, τ) ≡ 2

[
2 cos4 θ

∫
∂4

∂τ4
UU ′v1v′1 d3r

+cos2 θ sin2 θ

∫
∂4

∂τ4
UU ′vmv′m d3r

]
,

(2.59)

where m = {2, 3} denotes the dummy indices.

2.2.1 Second Order Correlation Function

To carry on with the integration of equations (2.52) and (2.53) one needs a model of the

correlation function, vv′. Different types of correlation functions have been examined

but this has not been exhaustive and further research is required. The correlation must

reflect the underlying physics of the turbulence. The most important features of turbu-

lence, in particular jet turbulence, are its homogeneity, isotropy and axisymmetry. In

most of the practical cases it is believed that turbulence can be considered homogeneous.

Also, it has been shown that turbulence can be assumed axisymmeric [65, 66], but, while

the small scale structures are well approximated as isotropic, this is not so for the large

scale turbulence. The correlation function must be derived in a way to include all these

characteristics.

An explicit representation form of an axisymmetric tensor Qij = viv′j can be given

as [56]:

Qij =
[
ξiξjDr − δij(r2Dr + rµDµ + 2) + λiξjDµ

]
Q1

+
[
ξiξjDr − δij

{
r2(1− µ2)Dr + 1

}
+ λiλj(r2Dr + 1)− (λiξj + λjξi)rµDr

]
Q2

+
[−ξiξjDµ + δij

{
r2(1− µ2)Dµ − rµ

}− λiλjr
2Dr + (λiξj + λjξi)rµDµ + λjξi

]
Q3,

(2.60)

where the unit vector λ = (λ1, λ2, λ3) denotes a principal direction, with r and µ

defined as r2 = (ξ.ξ), (ξ.λ) = rµ, and the derivatives are defined as,

Dr =
1
r

∂

∂r
− µ

r2

∂

∂µ
,

Dµ =
1
r

∂

∂µ
,

(2.61)
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and scalar functions Q1, Q2, and Q3 are arbitrary functions of the correlation distance

vector ξ, τ and source location. From the required symmetry of Qij in its indices it can

be shown that Q3 is a dependent function of Q1 of the form

Q3 = DµQ1, (2.62)

so that, Q has two independent components. Interchangeability of the indices also

requires that [56]

(ξ3
∂

∂ξ2
− ξ2

∂

∂ξ3
)Qi = 0, (i = 1, 2). (2.63)

Hence, the correlation function can be found after defining a set of scalars functions

compatible with the condition of equation (2.63). At this point the space and time sep-

arability of the correlation function has not been considered. By separability is meant

the separability of the correlation into two factors each dependent on space or time vari-

ables. This will be further discussed in the next section.

Separable Two-Point Correlation

One of the most convenient forms of correlation was suggested by Ribner [59, 67] as:

Qij(r, τ) = Ψij(r)g(τ), (2.64)

where, for homogeneous isotropic turbulence the spatial part can be written as [60]

Ψij(r) = k
[
(f + 1/2r f ′)δij − 1/2f ′ rirj/r

]
, (2.65)

and k = 1
2

(
v2
1 + v2

2 + v2
3

)
is the local turbulent kinetic energy, v1 and v2,3 being the

stream-wise, and cross-stream (span-wise) turbulent velocities respectively, and f is

function of r which can take different forms. Among these the following are commonly
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used:

f(r) = e
−π

(
r2
1

L2
1
+

r2
2

L2
2
+

r2
3

L2
3

)

, [31, 32] (2.66a)

f(r) = e
−π

(
r1
L1

+
r2
L2

+
r3
L3

)

, [31, 32] (2.66b)

f(r) = e
−

(
r1
L1

+
r2
2

L2
2
+

r2
3

L2
3

)

, [48] (2.66c)

f(r) = e
−

√(
r1
L1

)2
+

(
r2
2

L2
2
+

r2
3

L2
3

)2

, [48] (2.66d)

f(r) = e−
r2

L2 , [68] (2.66e)

where L1, L2, and L3 are length scales in the axial, radial and azimuthal directions

respectively, and L(L1, L2, L3,
−→r ) is defined by [68]:

L(L1, L2, L3,
−→r ) =

√
L2

1L
2
2L

2
3(r

2
1 + r2

2 + r2
3)

L2
2L

2
3r

2
1 + L2

1L
2
3r

2
3 + L2

1L
2
2r

2
3

, (2.67)

These formulations all requires a knowledge of the fluid dynamics and turbulence, which

one can obtain by measurement or using a CFD turbulence model, such as RANS.

Further details about definition of the length scale will be given in Chapter 3. It is

routinely assumed that L2 = L3 are proportional to L1, as Υ = L2/L1. The spatial

function models (2.50c) and (2.50d) were introduced by Harper-Bourne [48] who showed

that they give a highly acceptable fit with experimental results.

The temporal factor, g(τ), which gives the temporal decay of the correlation has been

modelled in following ways:

g(τ) = e
−( τ

τ0
)2

, [20] (2.68a)

g(τ) = e
−

∣∣∣ τ
τ0

∣∣∣
, [64] (2.68b)

g(τ) = e−
√

(σ/2)2+(τ/τ0)2 , [57] (2.68c)

g(τ) = e−c1(τ/τ0)2−c2
√

c3+(τ/τ0)2 , [58] (2.68d)

where τ0 is a characteristic time scale of the turbulence, and c1, c2, c3, and σ are empirical

constants.

As can be seen, various kinds of temporal functions have been attempted so far. The

Gaussian form has been used more than any other, but Khavaran and Krejsa [57] have
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developed the last function and have stated that it provides an overall improvement in

the predicted spectra at high frequencies compared to the Gaussian model. As with the

length scale, some knowledge of turbulence and fluid dynamics is needed for a definition

of the time scale. A complete review of the characteristic time scale (τ0) and length

scale (L) come later in section 3.

In all cases, the integration of the temporal part g2(τ) over τ , which appears upon

substituting (2.64) in (2.52) and (2.53), can be simplified using the following relation

〈G〉 =
∫ +∞

−∞

∂4

∂τ4
g2(τ)ejΩτdτ = Ω4

∫ +∞

−∞
g2(τ)ejΩτdτ. (2.69)

The following relations for 〈G〉 can be found using different g(τ) functions, listed above.

Using a Gaussian function leads,

〈G〉 =
√

2π

2
τ0Ω4e−

1
8Ω2τ2

0 , (2.70)

and using the second model (exponential form) yields,

〈G〉 =
4τ0Ω4

4 + τ2
0 Ω2

, (2.71)

using the third model (g(τ) = e−
√

(σ/2)2+(τ/τ0)2) gives rise to:

〈G〉 = στ0Ω4 K1(σ
√

1 + (Ωτ0/2)2)√
1 + (Ωτ0/2)2

, (2.72)

where K1(.) denotes the modified Bessel function of the second kind and first order.

Finally, use of the last model with c3 = 0:

〈G〉 =
√

π

8c1
τ0Ω4 Re{eΞ2

erfc(Ξ)}, (2.73)

where Ξ = c2−j(Ωτ0/2)√
2c1

.

Non-Separable Two-Point Correlation
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As stated earlier the choice of the correlation function depends only upon the scalar

functions Q1, and Q2, regardless of whether it is separable or not. The following exam-

ples of scalar functions of a non-separable two-point correlation is given in [57]:

Q1 = −v2
1

3
e−πh(τ){ξ2

1/L2
1+(ξ2

2+ξ2
3)/L2

2},

Q2 = −
(
v2
1 − v2

2

)
e−πh(τ){ξ2

1/L2
1+(ξ2

2+ξ2
3)/L2

2},
(2.74)

where it is concluded that the separable and non-separable functions would lead to iden-

tical results, provided that h(τ) is chosen carefully [57]. So, at the end, the separability

assumption is simply a more convenient way for integrating the source correlation terms.

It can be seen from equations (2.52) through (2.55) that a knowledge of fluid dynamics

and turbulence is required to be used as input for the equations. Such information can

be obtained using a CFD-turbulence model, such as a RANS k − ε method. This will

provide steady values, such as mean velocity, mean flow strain rate, temperature and

sound speed, and also time-averaged turbulence values, such as turbulence kinetic energy,

k, turbulence dissipation rate, ε, turbulence production rate, Pr, etc. The steady values

are used for the definition of the convection factor, C, as well as the flow factor, F ,

while the turbulence values are mostly used for the definition of the source terms, and

particularly for the two-point correlation function. The background theory of turbulence

modelling and explanation of the models used in our CFD simulations are all given in

Appendix A. The next two Chapters will focus on various aspects of turbulence and

noise production and radiation mechanisms, and, accordingly, suggestions will be given

for jet noise prediction improvement.





Chapter 3

Turbulence Parameters

On his death bed, Heisenberg is reported to have said: When I meet God, I
am going to ask him two questions: Why relativity? And why turbulence? I
really believe he will have an answer for the first.

3.1 Introduction

In the previous chapter noise radiation from a turbulent jet flow was considered in

a mathematical fashion and it was mentioned that some information about the flow

dynamics and the turbulence is required. This information can be easily obtained using

any turbulence model, such as RANS and although the accuracy of the information is

quite important, the interpretation of the obtained CFD results and the relation to the

noise production mechanism is even more important. The most important interpretation

to be considered is the appropriate definition of the time and length scales which were

left in Chapter 2 to be studied here.

This Chapter gives an overview of the relationships between turbulence and the noise

generation mechanism. Once this relationship is well understood, some important char-

acteristics of the turbulence, such as the time scale, length scale and convection velocity

will be discussed. In brief, the most important feature of this chapter is the definition

of a new time scale and its frequency dependence. It will be shown how the frequency

dependency (that is known to give improved noise prediction) arises naturally from

37
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the physics of the turbulence, and without any additional or extraneous mathematical

modelling.

Turbulence is essentially random, occurs at high Reynolds number, shows strong

intermittency, and is characterized by a wide range of scales (both in space and time).

Turbulence parameters, for example velocity, can be written in terms of mean and

fluctuating components, as

u = U + v. (3.1)

The mean-flow and turbulence motions have a number of scales associated with them.

We can generally think of turbulence in terms of a cascade: energy enters through a

production mechanism at the largest scale and is transferred by a cascade process to

smaller scales. At the smallest scale it is dissipated. This is neatly summed up by the

well-known quotation:

Big whorls have little whorls, which feed on their velocity; and little whorls

have lesser whorls, and so on to viscosity.

“L. F. Richardson, 1922”

What Richardson calls whorls we would call eddies. Roughly speaking an eddy is a

region over which the flow is correlated. Large eddies are unsteady and break up into

smaller ones and this happens on a characteristic time scale. With the smallest eddies

viscosity dominates and the energy dissipates as heat.

As we move through the cascade, the length scale associated with eddies decreases and

it is useful to identify different regions. The largest scales are produced by transferring

energy form the mean flow and are produced at a length scale characteristic of the

macroscopic problem. The larger eddies form what is known as the energy containing

region and, as the name suggests, they contain the bulk of the turbulent energy. Hence

we expect their typical velocity to be given by v0 = (2/3k)1/2, where k is the turbulent

kinetic energy per unit mass. The energy containing range is bounded below by length

scale lE where the inertial subrange begins. As the length scale decreases viscous forces

become more important and at lD the inertial subrange gives way to the dissipation

range where viscosity dominates and the energy is dissipated.
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Figure 3.1: A schematic of the turbulent eddy cascade for very high Reynolds num-
bers, after [70]

The inertial and dissipation ranges together form the universal equilibrium range.

The importance of this range was recognised by Kolmogorov who postulated that for

length scales below lE the turbulence effectively forgets the details of the production

process. More formally, for l < lE all turbulent flow can be characterized by a universal

description. A schematic of the eddy size in a turbulent flow is shown in figure 3.1.

Borders between the different mentioned ranges can be roughly approximated using the

scales which are more familiar, as [69]

lD = 60η,

lE =
1
6
L0,

(3.2)

where η = (ν3/ε)1/4 is the so-called Kolmogorov length scale, and L0 refers to the largest

eddy size of the turbulence that is comparable to the mean flow scales. The next section

concerns the most important time- and length scales in the turbulence.

3.2 Turbulence and Important Scales

In order to gain a better understating of the turbulence and its behaviour, it will be

instructive to consider in more detail the different scales that exist in a turbulent flow.
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In general terms, turbulence scales can be categorized either in terms of the eddy size,

or the dominant turbulence phenomenon. These two categories will be studied below.

3.2.1 Turbulence Scales in Terms of The Eddy Size

Regarding the variety of eddy sizes in the turbulence, they generally falls into three typ-

ical categories: “integral scale”, “Taylor scale”, and “Kolmogorov scale”. These

scales can cover up to ten orders of magnitude difference in length. A general explanation

of each scale is given below.

Kolmogorov Length and Time Scale

The smallest scales in a turbulent flow are known as the Kolmogorov scales. At

this scale viscosity can be effective in smoothing out velocity fluctuations. These small

motions tend to have small time scales, which are statistically independent of the slow

large-scales motion and of the mean flow. The following relations provide a reasonable

estimation of the Kolmogorov length and time scale in terms of the flow Reynolds number

[69]:
η

L0
∝ (ReL0)

−3/4,

τη

τ0
∝ (ReL0)

−1/2,
(3.3)

where ReL0 = k1/2L0
ν , with L0 being the largest eddies of the turbulence are characterized

by the length scale, which is comparable to the flow scale L, and k the turbulent kinetic

energy.

Dissipation Length and Time Scale (Taylor microscales)

This scale gives a measure of the average dimension of the smallest eddies, at which

molecular viscosity dissipates kinetic energy into heat. The longitudinal Taylor mi-

croscale can be obtained from

λf = −1
2

[
∂2f(r)

∂r2

]

r=0

, (3.4)
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where f(r) is the longitudinal correlation coefficient, and is given by [69]

f(r) =
v1(ξ1)v1(ξ1 + r)

v2
1

. (3.5)

The transverse Taylor macroscale, λg, in isotropic turbulence is equal to λf/
√

2. It

is possible to infer that the dissipation length scale gives a measure of the average size

(diameter) of those eddies that are principally responsible for dissipation of the turbulent

kinetic energy. Furthermore, the following relation with the macroscopic length scales

exists [69]
λf

L0
=
√

20Re−1/2
L0

, (3.6)

In a similar way, one can define a time scale that gives a measure of the most rapid

changes of turbulent velocities, as

τ = −1
2

[
∂2R(t)

∂t2

]

t=0

, (3.7)

where R denotes the Eulerian time correlation of the corresponding velocity signals,

given by,

R(t) =
v1(t′)v1(t′ − t)

v2
1

. (3.8)

Integral Length and Time Scale

The integral length scale is, to a certain extent, a measure of the longest connection,

or correlation distance between the velocities at two points in the shear flow. It can be

understood that the fluctuating velocity correlation will be identically zero beyond some

finite distance. The longitudinal integral length scale is defined by:

Λf =

∞∫

0

f(r)dr. (3.9)

It can also be shown that the transverse length scale Λg is half of the longitudinal length

scale for isotropic turbulence [56]. A general description of the Taylor and integral length

scales is illustrated in figure 3.2.
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Figure 3.2: Estimate of the dissipation and integral lengths

Similar to the integral length scale, the integral time scale can be found from inte-

gration of the temporal correlation function R, as

= =

∞∫

0

R(t)dt, (3.10)

and may be interpreted as the longest life for connection in the turbulent behaviour

of two fluctuating velocity signals at a fixed point in the flow field but at two instants

(Eulerian system).

3.2.2 Turbulence Scales in Terms of The Dominant Physical Phe-

nomenon

Having mentioned most of the possible definitions of the length scale, it can be said

at this point that in most of the applications what we mean by the length scale is a

measure of the eddy size. The eddy size can be somehow estimated using the shear layer

thickness. It has been also principally accepted to use definition l ∝ v3
/
ε , where v is

the fluctuating velocity and v = k1/2. This length scale can be assumed to be the scale

characterizing the large eddies.

On the other hand, the characteristic time scales of a jet flow, in general, are of three

sorts: those related to the development of the whole flow, those associated with the

interaction of the mean flow and the turbulence, and finally those that provide a measure

of the action of the turbulence on itself. These three scales can be characterized as
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“mean flow strain rate scale”, “turbulence production scale”, and “turbulence

decay scale”. The time scale associated with the first phenomenon, τs, gives an estimate

of the rate of change of the mean velocity. The production time scale, τp, shows the time

needed to produce an amount of energy k at the rate of Pr, and finally, the dissipation

time scale, τd, gives an estimate of the time to dissipate an amount of energy k at the

constant rate ε. These scales are given by,

τd ∝ (k
ε ), τs ∝ (|dU/dr|)−1, τp ∝ ( k

Pr ). (3.11)

The dissipation and production time scales in the universal equilibrium range are roughly

equal and are the largest time scales of the turbulence. The strain rate time scale, τs,

gives an estimate of variation of the mean flow velocity in the radial direction, which is

a measure of evolution time of the largest eddies it will be shown that is not of great

concern.

3.2.3 Taylor’s Hypothesis

Since some of the most important assumptions used in noise modelling are made based

on Taylor’s hypothesis, it will be worthwhile to spend some time on its definition and

also its limitations. According to Taylor’s theory, we can relate the spatial correlations

to the temporal correlations using a frozen turbulence assumption. In other words,

Taylor’s hypothesis requires that

∂

∂t
≡ −U1

∂

∂x
, (3.12)

where U1 is a constant mean velocity in the jet flow direction. One can conclude that a

proportional relation between the integral time and length scale exists, as [56]

Λ = U1=. (3.13)

Similarly, it can also be shown that the same relation holds for the Taylor time and

length scales [56], as

λ = U1τ. (3.14)
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It is generally believed that the accuracy of Taylor’s hypothesis depends upon the

isotropy of the flow. Grid turbulence, which shows the best consistency with Taylor’s

hypothesis, has no shear so is very close to isotropic. Anisotropy in the turbulent flow

emerges with the appearance of the large eddies in the turbulence, which are absent in

grid turbulence, but are important features of free shear flows, where Taylor’s hypothesis

is known to fail [71].

3.3 Turbulence and Energy Cascade

In the last section different aspects of a turbulent flow were studied in terms of eddy

size, and the dominant physical processes. This and the next section will concentrate

on the turbulence cascade and the noise production mechanism. The main concern is

to understand which of the turbulence regions is the most important contributor to the

noise generation mechanism. Once this is understood, we will show how the turbulent

energy spectrum can be used for jet noise prediction.

It has been shown that the inertial subrange plays a central role in the noise pro-

duction mechanism [72, 73, 74], and as we mentioned earlier, energy transfer, or the

so-called cascade process, is the most important feature of the inertial subrange. This

section gives an introduction to the definitions used for explanation of the energy cas-

cade, such as turbulent energy flux, strain rate, and energy spectrum.

The inertial subrange transfers turbulent energy from the energetic region (energy-

containing range), to the dissipation subrange (low-energy). No energy production or

dissipation will take place throughout the energy transfer process and a well defined

energy flux rate can be defined, see figure 3.1.

Various models are available for describing the behaviour of the energy spectrum in

different turbulence regions. Among all of them, Pao’s model has been shown to be

superior to the other models for mid and high wave-numbers [69],

E(κ) = αε2/3κ−5/3e−
3
2α(κη)4/3

. (3.15)
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Figure 3.3: Turbulence energy spectrum and its different regions

where κ is the eddy wave-number, and the last exponential factor shows the effect of

the very small eddies. It will be shown later in Chapter 4 that the appearance of this

term is of some importance at high frequencies. Figure 3.3 shows the turbulent energy

spectrum in different regions. It can be seen that the spectrum peaks somewhere in the

energy containing range, and then exhibits a sharp roll off at higher frequencies.

3.4 Turbulence and the Noise Production Process

We have already introduced different phenomena in a jet shear flow and the scales

associated with them. Obviously all of the aforementioned scales are required for a

proper clarification of the turbulence and the various processes involved, but one may

suggest that not all turbulence scales are involved in the noise production mechanism,

and are not therefore of great concern. It has been shown before that the inertial

subrange is the most important turbulence region contributing to the intermediate and

high frequency parts of the noise spectrum [72, 73, 74]. So, in this section we will

concentrate on the role of this region and will also show how one can use the energy

spectrum associated with the inertial subrange to calculate the emanated noise.
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The inertial subrange is in fact a strain-rate field connecting the most energetic part

of the turbulence (Energy-containing range) to the dissipation subrange. It is postulated

that the inertial subrange exists when the Reynolds number is high enough to widely

separate the energy containing and the dissipation ranges in terms of wave numbers (i.e.

κ0 >> κD), which is always the case for typical jet flow noise problems. In this case,

the inertial subrange can cover a wide range of scales, from very small eddies, as small

as 60η, to large vortices of order of L0/6. Thus, the radiated noise from the inertial

subrange is, to a large extent, on a par with the total radiated noise from the turbulent

flow.

One of the first attempts to emphasis the importance of the inertial subrange in the

noise production mechanism has been reported by Meecham [72]. In this work, the

sound spectrum behaviour was found as a function of the exponent of the turbulence

energy spectrum. He used an algebraic model for the energy spectrum in the inertial

subrange, E(k) ∝ κ−α, which is only valid at high frequencies. He finally found that the

frequency sound spectrum scales as

I(x, ω) ∝ x−2ω2−2α, (3.16)

Hence, for a five-thirds law turbulence spectrum α = 5/3, the sound intensity will be

proportional to ω−4/3, but for α = 5/2 turns out to be ω−3. Experimental results for

air jets, jet engines, and rockets have shown that the noise spectrum fall off on the

high frequency side can scale as ω−1 to ω−3, which shows a similar range of exponents.

Moreover, it was also shown that the sound intensity diverges for positive exponents of

the energy spectrum, E(κ) ∝ κ−α, that is consistent with the assumption of applicability

of the method for only high frequencies [72].

A more detailed study, which predicts the noise at low frequencies as well as high

frequencies, can be carried out if we make use of a more general model for the turbu-

lent energy spectrum in the inertial subrange. The sound intensity magnitude can be

related to the turbulent energy spectrum using Lighthill’s analogy, and under Taylor’s

assumption,

I(x, τ) ∝ ∂4

∂τ4

∫
κ2Q2(κ, τ)dκ, (3.17)
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where Q(κ, τ) is a correlation variable. One can use the idea of separating the space

and time variables in the space-time correlation function. Thus, in time-stationary,

homogeneous isotropic turbulence,

Qij(κ, τ) = Q(κ)Pij(κ)R(κ, τ), (3.18)

where Pij(κ) = δij − κiκjκ
−2 (κ being wave number). But the temporal part of the

space-time correlation function is scale dependent and equation (3.18) can be written as

Q(κ, τ) = Q(κ)R(κ, τ). (3.19)

The single time correlation function Q(κ) can be given by

4π2Q(κ) = E(κ) ∝




ε2/3κ−5/3 κ > κ0

E0(κ) κ < κ0

, (3.20)

According to the above relations one may deduce that the low frequency noise mainly

depends on the driving mechanism of the turbulence acting on large eddies and is strongly

dependent on the geometrical aspects of the problem. In a contrary manner, the high

frequency noise is characterized by rapid flow fluctuations, and is independent of the

driving forces.

On the other hand, it can be shown that the temporal correlation function R(κ, τ)

has an inertial subrange similarity form, as

R(κ, τ) = R(τ · Ω(κ)), (3.21)

where Ω(κ) is determined by the temporal decorrelation mechanism. The decorrelation

time Ω−1 is in fact a local inertial subrange characteristic. It can take two different

forms, depending on whether the correlation is dominated by the local straining (near

the dissipation range) or by the nonlocal sweeping (near the energy-containing range).

If the inertial subrange is dominated by the sweeping effect of the larger eddies from the

energy containing range, Ω(κ) will be an independent property of the inertial subrange

and depends on sweeping velocity [73, 74]. In contrast, if the local straining dominates

the inertial subrange then Ω(κ) depends only on the inertial subrange properties. Thus,
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Ω(κ) can be written as,

Ω(κ) ∝





V · κ Sweep

ε1/3κα Strain
, (3.22)

where V denotes the sweeping velocity, which is not a local inertial subrange parameter,

and is a property of the larger eddies. Furthermore, Ω defines strain rate and its inverse,

Ω−1, represents the eddy turnover time. (It is worth adding here that the small scales

close to the energy containing range might be randomly swept by the large eddies. This

effect is called “random sweeping”, and has been studied by Chen and Kraichnan [75],

and Nelkin and Tabor [76])

Finally, after substitution of equation (3.22) in equations (3.20) and (3.21) the ra-

diated sound power under the sweeping hypothesis at low and high frequencies can be

found from

I(ω) ∝





ε4/3V
−1

κ−16/3
e ω4 ω ≈ 0

ε−4/3V
13/3

ω−4/3 ω > V κe

, (3.23)

where κe = 0.74l is the turbulence spectra peak frequency.

For high Reynolds number, dimensional analysis shows that eddies close but smaller

than the energy containing eddies are the key contributors to the radiated acoustic power,

so the peak frequency occurs at a frequency slightly higher than those frequencies. So,

the peak frequency of the acoustic power is expected to occur around ω0 ∝ V κe. This

implies that peak frequency of the turbulence energy is linearly related to the peak

frequency of the noise spectrum by a factor of V .

On the other hand, to capture the acoustic power at relatively higher frequencies,

where straining is dominant (i.e. near the border of the dissipation range), one can find

the following relation after substitution of the second relation of equation (3.22) into

(3.17):

I(ω) ∝ ω4−(13/3+α)/α. (3.24)

Under the straining hypothesis it can be shown that α = 2/3. Substitution of Ω from

(3.22) into equation (3.20) and then into (3.17) leads to I(ω) ∝ ω−7/2, which shows

a steeper decay than the high frequency prediction given by the sweeping hypothesis.

Figure 3.4 shows the behaviour of the acoustic intensity spectrum at different frequencies
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Figure 3.4: Behaviour of the sound intensity spectrum in different ranges

bands.

A similar study was also performed by Sarkar and Hussaini [77], who have shown that

the noise spectrum at low frequency scales as ω4, after the peak frequency it behaves

as ω−4/3, but this alter and will reach a sharp roll off as ω−7/2. The behaviour of the

spectra before the peak frequency reveals that the beginning of the inertial range is

mainly dominated by the larger eddies sweeping effect. This effect fades away as the

frequency increases and the straining effect entirely dominates the inertial subrange and

becomes the most important feature of turbulence. Furthermore, Rubinstein and Zhou

[73, 74] have also shown that the Proudman’s acoustic power is equivalent to the results

obtained under the straining hypothesis, while the assumption made by Lilley is more

consistent with the sweeping hypothesis. Proudman’s [17] and Lilley’s [78] relations for

the radiated acoustic power can be found from:

I(ω) ∝





ρε
(v

c

)5
Proudman

ρε

(
Ω0L

v

)4 (v

c

)5
Lilley

, (3.25)

where Ω0 is proportional to the peak frequency of the noise spectrum, and its appearance

in the above equation indicates the existence of temporal properties.
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3.5 Summary

To conclude this chapter, the most important observations and inferences of the above

discussions are listed for future reference:

1. Turbulence is a very complex phenomenon with many scales acting on each other

2. The integral scales represent characteristics of the large eddies, while the Taylor

scales corresponds to the inertial scales

3. The inertial subrange of the turbulence spectrum is the principal contributor to

the noise production mechanism. The most important feature of this subrange is

the energy transfer through vortex stretching

4. The noise production mechanism at low frequencies requires a time scale smaller

than the straining mechanism time scale (regarded here as the sweeping time scale).

It has been shown that randomly sweeping of the small eddies by slightly larger

eddies from the energy containing range is dominant in the low frequency side of

the inertial subrange [73, 74].

5. When the sweeping phenomenon dominates the inertial subrange, the appropriate

time scale is proportional to κ−1. On the other hand, whenever the local eddy

turnover phenomenon is dominant, then the time scale should be proportional to

∝ κ−2/3. Since the wave number and the length scale are inversely proportional,

the above deductions can also be rephrased as follows: If the sweeping or straining

is dominant in the source region, the time scale describing the temporal behaviour

of the source term will be proportional to l and l2/3 respectively [79]. This is a

very important outcome and will be used later for the definition of a new time

scale based on turbulent energy transfer rate.

In the next chapter we shall focus on the most important turbulence parameters used

in the noise prediction equations. It must be realized that in dealing with the solution of

the acoustic analogy, such as equations (2.52), and (2.53), some parameters are required

to be defined, e.g. convection velocity, time scale and length scale. These quantities

must be found from CFD results hand-in-hand with an understanding of the turbulence

and noise production/radiation mechanism. One of the most important issues arising is
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the frequency dependency of these parameters which will be comprehensively studied.

The above studies will be also used for comparison with what will be found in the next

chapter.





Chapter 4

Turbulence Parameters and

Frequency Dependency

...it would be better for the true physics if there were no mathematicians on
earth.

“Daniel Bernoulli”, (1700-1782)

In previous chapters the mathematical modelling of noise radiation from a turbulent

jet flow was discussed. This was followed by a discussion of the physical interpretation

of the processes involved in the mathematical modelling of variables such as length scale,

time scale, and convection velocity. In this chapter we continue this in more detail.

Basic definitions always play an essential role in physics, and aeroacoustics is not an

exception. Up until now there have been many articles published discussing different as-

pects of defining turbulence derived parameters generally used in aeroacoustic problems

[48, 53, 80]. Among all of the important aspects the majority of effort is put into the

nature of the frequency dependency of the parameters involved. It has been shown that

use of frequency dependent parameters improves the final noise prediction. A review

of the history of each parameter in the literature, its definitions, and ultimately model

for its recent frequency dependent behaviour are given in the following three sections.

Utilization of these definitions for jet noise prediction will be left for Chapters 5 and 6,

where numerical results and discussions will be given.

53
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4.1 Length Scale

The length scale associated with the turbulence decay rate has been widely used in the

literature. It is given by

l = cl
k3/2

ε
. (4.1)

The frequency dependency of the length scale was first demonstrated by Harper-Bourne

[48]. His results indicate that for low frequencies the assumption of a constant length

scale is reasonable, but that for higher frequencies a nearly inverse dependence on

Strouhal number is obtained, see figure 4.1. Later, Self [37] proposed a frequency de-

pendent model for the length scale based on experimental results presented in [48]. He

showed that Harper-Bourne’s experimental observations can be fitted into an analytic

formula of the form

l = c1W/(1 + ω/ωc), (4.2)

where W is the shear layer width and

ωc = 2πc2U1/W, (4.3)

and c1 and c2 are calibrating coefficients. An exponential fit to the Harper-Bourne’s

results was given later by Morris and Boluriaan [52]. The longitudinal length scale was

modeled using:

l(ω) = clDJ
1− e−csSt.l/DJ

St
, (4.4)

where l is the turbulence length scale, equation (4.1), the length scale calibration co-

efficient is cl = 1, and Strouhal number is defined as St = fDJ/UJ . The numerator

of the ratio is chosen in such a way that L is constant at low frequencies but then de-

creases with increasing frequency. According to the authors interpretation, cs is a factor

which determines the transition between the low and high frequency behaviors of the

spectrum. In fact, this factor can control both the location of the peak frequency (i.e.

adjusting the local Strouhal number i.e. ωlx/U), and also to some extent the shape of

the spectrum. It was also shown that the low frequency part of the spectrum is much

more sensitive to cs than the high frequency part.
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Figure 4.1: Frequency dependency of the length scale as measured by Harper-Bourne
[48]

Morris and Boluriaan derived a formulation for the radiated noise at 90o which is

based on the Green’s function solution of the linearized Euler equations [52], as

S(x, ω) =
ρ2
0

18c4∞R2
A2cτ c

4
l

∫

V

k4D4
Jω2τ2

d

Ul4
(
1 + c2

τ l
2
xω2

/
U2

) (
1 + s2

d

)3/2

[
1− e−csSt l/DJ

St

]4

dy,

(4.5)

where
sd =

ωlx
U

(1−M cos θ),

lx = clDJs(ω)/St,

s(ω) = 1− exp(−csStlx/DJ).

(4.6)

More recently, Kerherve et al. [53] have performed a similar analysis and used the

complex coherence function technique for the collected data from high Mach number

jet flows (MJ = 0.75, 0.90) and found the following frequency dependent model for the

length scale

l(ω) = l

√
1 + α2

2
e
− α2τ2

d ω2

4(1+α2) , (4.7)

where l is the integral length scale and α = Ucτd
l is a measure of the isotropy of the

turbulence and will be unity under the frozen-turbulence approximation (i.e. Taylor’s

hypothesis).

In summary, one can deduce that despite the fact that it is generally believed that the
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length scale is inversely proportional to the frequency of radiated sound, the experimen-

tal evidence has shown that this fails at low frequencies. According to the experimental

results and analytical relations, the linear proportionality of the length scale and fre-

quency holds as long as the high frequency sources are of interest. In other words,

the length scale becomes independent of frequency for large eddies, when anisotropy

becomes dominant and Taylor’s hypothesis is no longer valid.

4.2 Time Scale

Among all of the possible definitions of the time scale in turbulence the turbulent decay

rate is a very common choice, which has been widely used in aeroacoustic prediction as

well. It is defined as,

τd = cτ
k

ε
. (4.8)

It has been seen before that using this time scale within an aeroacoustics prediction

scheme rarely results in good agreement between predicted and measured acoustic spec-

tra over the entire frequency range of interest, with under-prediction at both the high and

the low ends of the spectrum, (see for example [37, 38]). This basically means that this

time scale has not been capable of providing a physically meaningful interdependence

between the turbulence and noise production/radiation mechanism.

Studies have shown that one of the most important weaknesses of the dissipation

rate time scale, τd, is the lack of frequency dependency and that considering a frequency

dependent time scale can make significant noise prediction improvement [39]. There are

three different approaches towards taking account of the frequency dependency in the

time scale definition: (1) using an ad-hoc mathematical model, (2) splitting the whole

jet flow domain into smaller regions and associating relevant time scale to each region,

and finally (3) the one which makes use of the fact that noise radiation is, to a large

extent, governed by the inertial subrange, and tries to find a time scale related to the

corresponding dominant phenomenon in the inertial subrange. An explanation of each

category is provided below.



Chapter 4 Turbulence Parameters and Frequency Dependency 57

Category I, Frequency dependent models: A suggested solution to this problem is mo-

tivated by measurements originally reported by Fisher and Davis [51] and later confirmed

by those of Harper-Bourne [48] that indicate the acoustic time scale has a frequency de-

pendence. A model to take account of this dependency was suggested by Self [37] and

used to capture the 90 degrees spectrum of a single-stream jet using the Lighthill acous-

tic analogy. Subsequently the model was applied to a co-axial jet [39]. According to this

model, the acoustic time scale varies with frequency as

τ(ω) = cτ
2π

cω2πU/l + ω
, (4.9)

where cτ is a calibrating coefficient that must be obtained empirically, with U being

the local mean velocity, and l = k3/2
/
ε the turbulent length scale. In simple physical

terms, equation (4.8) is equivalent to an assumption that the lifetime of a turbulent

eddy is proportional to the local mean shear, while equation (4.9) essentially allow for

an enhanced decay rate of those eddies whose characteristic size is comparable to that of

the local shear layer width. However, this is a largely qualitative explanation that offers

only a partial insight into the underlying physics that determines the exact nature of the

dependence of time scale on frequency. While superior to the simple model of equation

(4.8), the model described by equations (4.9) shares the assumption that the acoustic

time scale depends on the decay of turbulent eddies, i.e. that it should be derived solely

from a turbulent time scale that is based on the dissipation rate of the turbulent kinetic

energy.

Category II, Different subranges (Multiple time scale): As mentioned in Chapter 3,

and as is well known in the literature, several different processes operate simultaneously

within the jet flow and a characteristic time can be associated with each of them. There

appears to be no a priori reason to favor one of these time scales over the others, but

rather it would seem sensible to assume that the time scale depends foremost on the time

scale associated with the physical process that dominates the behavior of the turbulent

flow in any particular region of the jet. Thus, according to the discussion in Chapter 3,

we are led to consider multiple time scales associated with three physical processes: (1)

production of the turbulent energy (energy containing region), (2) action between the
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mean flow and turbulence, or strain rate, and (3) dissipation of the turbulent energy

(inertial subrange).

Figure 4.2 shows the normalized length scale (U/Uaxis) of an isothermal MJ = 0.75 jet

flow inside and outside the jet stream. The figure supports the assumption the jet domain

can be split to a finite number of regions over the jet axis (usually two or three). One

can readily deduce from the figure that the eddies of equal size are usually aggregated

at a specific distance from the jet exit. This characteristic of the jet flow allows the jet

domain to be split into a finite number of subranges (usually three: dissipation region,

strain-rate region, and production region). Assuming a simple proportional dependence
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Figure 4.2: Normalized length scale (U/Uaxis) at different axial locations

of the time scale on the corresponding turbulent time scale [27, 28], these will be given

by

τp = αI k

Pr
, τs = αII

∣∣∣∣
∂U

∂r

∣∣∣∣
−1

, τd = αIII k

ε
, (4.10)

where Pr denotes the production rate of turbulent kinetic energy (see for example [28]

for a definition of Pr), |∂U/∂r|−1 is a measure of the local strain rate, and as before,

k/ε gives a measure of the turbulent energy decay rate, and αI , αII , and αIII are three

empirical coefficients. Each of the three different processes (and hence the corresponding

time scale) can be associated with a region of the turbulent jet where it is the dominant
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physical process [28, 69]. This is illustrated schematically in Figure 3.1 (although it

should be borne in mind that in reality all three physical processes are present everywhere

in the jet flow).

According to this method, each time scale should be used for noise prediction of

those frequencies radiated from the corresponding region of the jet. This suggests that

in order to accurately predict the noise over the entire frequency range some appropriate

combination of the time scales defined in equation (4.10) should be used. A model of this

type was proposed by Frendi et al. [27, 28] in their “dual time scale” model. A suitable

generalization to include the effect of all three physical processes operating within the

turbulent flow is to assume that the acoustic intensity has the form

IT =
∑

j

wjIj , j = {p, s, d} (4.11)

where Ij refers to sound intensity calculated using each of the time scales in (4.10) and

wj are weight parameters that must be determined empirically. An optimization was

performed by Frendi et al. [27] to determine the three calibration coefficients αI , αII ,

and αIII and it was found that very good agreement with experimental data over the

complete range of frequencies was obtained. Though such a procedure might suggest

the essential correctness of the approach, we now have the difficulty of calibrating three

different time scale coefficients and corresponding length scales coefficients, and the

number of empirical coefficients is raised still further if the weighings (wj) in equation

(4.11) are included.

Category III, Turbulent energy transfer time scale: The difficulties arising with the

first two categories of time scale definition, lack of generality and complexity, can be

resolved by introducing a time scale that is based on the rate of transfer of turbulent

energy between different wave numbers of the turbulent fluctuations. It was shown

in section 3.4 that the noise production mechanism is largely governed by the energy

transfer phenomenon, which is dominant in the inertial subrange. In what follows we

endeavor to find a time scale associated with the inertial subrange. It should, therefore,

be based on the turbulent energy transfer rate.
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The energy transfer rate at wave number κ can be estimated via ε/E(κ), which shows

the rate at which the energy travels through the cascade (dκ/dt ), and E(κ) is the energy

spectrum of the turbulence. So, the time scale can be found through

τ ∝
∫

E(κ)
ε

dκ, (4.12)

In order to proceed with the integration, Pao’s energy spectrum model, equation (3.15),

can be inserted into the above. The integration over wave-number then yields,

τT = αT τd

(
Λ
l

)2/3

e
3
2
C(2π η

l
)4/3 − βT τηErfi(

3
2
α(2π

η

l
)2/3), (4.13)

where αT is now the sole calibrating parameter, Λ denotes the size of the eddy which

can be either found from the experimental results or can be estimated from the shear

layer thickness), l is again the length scale, given by equation (4.1), C is set to 1.5 [56],

τη =
√

ν/ε is the Kolmogorov time scale, and Erfi the imaginary error function, defined

by

Erfi(z) =
2

i
√

π

iz∫

0

e−t2dt. (4.14)

It should be noted here that the exponential factors in the first and second terms of

equation (4.13), which depend on the Kolmogorov scales, can be neglected in comparison

with the other terms, and allows simplification of (4.13) to the following form

τT ≈ αT τd

(
Λ
l

)2/3

. (4.15)

A comparison of the turbulent energy transfer time scale (4.15), (will be called TET time

scale hereafter), and the traditional turbulent decay rate (4.8), (referred to as TDR in

the following), is presented in figures 4.3, through 4.5. The eddy size Λ can be estimated

using either the shear layer thickness, equation (4.2), or the frequency dependent length

scale, equation (4.4) (these two are however equivalent). In this comparison the latter

model is used. Comparisons are provided for three Strouhal numbers, St = 0.1, 1, and

10. Comparison of each pair of lines (line and line-marker) shows the difference of the

TET and the TER time scales at different radial distances from the jet centre-line. It

can be seen that the time scale associated with r = 0 has a “step jump” around x = 6DJ
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which is where it crosses the end of the potential core. Similarly r = DJ and r = 5DJ

experience such a jump when they pass through the jet shear layer. Results obtained on

the centre-line using the two time scales are very similar. The most informative curves

are the ones associated with r = DJ/2 (across the nozzle lip-line). It can be seen from

the figures that the TET time scale provides smaller values than the TDR time scale

at high frequencies (St = 10). Conversely, at lower frequencies the TDR time scale is

smaller than the TDR time scale. In other words, the TET time scale provides smaller

values for small eddies and greater value for large eddies. The two curves cross when

Λ = l. This position moves closer to the jet exit as frequency increases. However, as

mentioned earlier one can also use a shear layer thickness model in order to estimate

the eddies size Λ. In this case the TET time scale depends on the axial position of the

source instead of the source frequency.
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Figure 4.3: Comparison of the TET and TDR time scales at different radial locations,
St = 0.1

Similar results are presented in figure 4.6, but instead of showing time scale versus

source position, it is plotted against the corresponding length scale. In the figure each

pair of lines starts from the jet exit (x = 0) and ends at x = 50DJ , and each pair
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Figure 4.4: Comparison of the TET and TDR time scales at different radial locations,
St = 1.0

corresponds to a radial position. It can be seen from the figure that the lines correspond

to r = 0 and r = 2DJ turn back on themselves. This turning back corresponds to the

step jumps observed in figures 4.3 through 4.5 and arises because of the crossing of the

end of the potential core or the jet outer shear layer. As can be observed from the figure,

each pair of lines meet each other at l = Λ which is also evident from equations (4.13)

and (4.15).

The effect of the Kolmogorov factors in equation (4.13) and comparisons with its

simplified version, equation (4.15), are presented in figure 4.7. For this case a source

with a turbulent dissipation rate ε = 2 ∗ 10+8m2 sec−3 is assumed. The new time scale

clearly manifests a faster decay as we approach the smaller scales. It is seen that the

Kolmogorov scales effect becomes dominant for very small eddies, at which the original

new time scale, equation (4.13), falls exponentially and much faster than the simplified

version without the viscous dissipation factor. However, it is known that the eddies very

close to the Kolmogorov size are not significant contributors to the noise production and
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Figure 4.5: Comparison of the TET and TDR time scales at different radial locations,
St = 10

radiation mechanism. So, it is reasonable to only use the simple form of equation (4.15)

in our noise prediction codes.

Comparisons of noise prediction using the different time scales and length scales will

be given in Chapters 5 and 6, but it is worthwhile mentioning some similarities between

the frequency dependent length scale, equation (4.4), and the TET time scale. In the

frequency dependent length scale a new coefficient, cs, has been utilized to firstly adjust

the shape of the spectrum, and then set the peak frequency location. The two other

factors, cl, and A are also used to correct the maximum SPL value of the spectrum.

In contrast, when using the TET time scale, the multiplier cτ (Λ/l)2/3 determines the

position of the peak frequency, and simultaneously corrects the shape of either side of

the spectrum. Then, the cl and A coefficients can be used for SPL adjustments.
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4.3 Convection Velocity

The definition of convection velocity (and accordingly the convection factor) has received

comparatively more attention in the literature than those of the time and length scales.

The very first experimental researches showed that the convection velocity is roughly

equal to 0.62UJ [80]. Other works suggested that this coefficient may vary within the

jet domain [26, 58, 81]. Furthermore, other research has suggested the frequency depen-

dency of the convection velocity. One of the very first attempts was made by Fisher and

Davis [51], who showed that the convection velocity has an intrinsic frequency depen-

dency. This was then confirmed by Akamatsu [82]. Subsequently, Szewczyk reformulated

the Doppler factor and constructed a new model in terms of the observation angle and

source longitudinal and lateral non-compactness terms [83]. In this method there is a

frequency dependence although this was not an overt aim of the authors. Similar studies

have been reported in [7, 84] as well.

One of the most important and cited works on the frequency dependency of the

convection velocity was conducted by Harper-Bourne, where the results showed that

the convection velocity increases gradually with frequency [48]. Although results in [48]

are of much interest and have revealed some hidden aspects of turbulence, it should

also be noticed that the results are for a Mach 0.18 jet, which can be considered as a

very low speed jet. So, its usefulness and applicability for high speed jet flows might

be doubtful. More recent work discussing the frequency dependency of the convection

velocity is given by Kerherve et al. [53], where a complex coherence function technique

for the collected data from a high Mach number jet flow is used. It has been shown that

the high frequency components are convected with a velocity slightly higher than the

local mean velocity, and the classical convection velocity is governed more by the mean

flow than by the intrinsic properties of the turbulence.

In summary, two models for the convection velocity can be proposed: one which is

based on the local eddy velocity, and other based on a frequency dependency assumption.

These two categories are explored further below.

Category I, Convection velocity model based on the local velocity
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The convective velocity is usually considered as the phase speed of the largest instabil-

ities, but it was shown that a one-dimensional correlation function does not discriminate

between large and small scales and includes therefore contributions from the small scales

which are expected to travel with a speed close to the local mean velocity [49, 85, 86].

As a result, the convection velocity is expected to be biased towards the local mean

velocity.

Some other investigations have measured the eddy convection velocity in a mixing

region. These results generally indicate that the convective velocity varies across the

mixing region, but not necessarily with the same rate as the mean velocity changes.

Results reveal that the convection velocity decays with increasing distance from the jet

axis, while very small changes can be observed moving in the axial direction [80, 81, 87].

It is found that the convection velocity towards the outside extremity of the jet is greater

than the local velocity, while this is opposite when the source is located near the flow

centre, and the convection velocity does not exceed 90% of the jet exit velocity [49]. This

could be interpreted as due to the bias of the smaller scales towards the mean velocity.

The general form of the first model of the convection velocity and also the appro-

priate weight coefficients has been the subject of a number of works [51, 87]. It is

widely believed that the relation must be a function of both jet exit velocity and local

characteristics of the flow [32, 55, 80, 81, 88, 89],

Mc = aMLocal + bMJ , (4.16)

where ambient sound speed, c0, is used as the reference speed of sound, a and b are

two weight coefficients and can vary with jet, but generally accepted to be in order of

a = 0.50, and b = 0.30. This model will hereinafter be referred to as “Mean velocity

model”.

Category II, Frequency dependent convection velocity model

In the second model, frequency dependency is also taken into account besides the

other flow parameters. The most cited work in this regard is that of Harper-Bourne [48]

which is for a Mach 0.18 jet. Harper-Bourne showed that the axial phase convection

velocity has a slight increase with frequency, starting from about 0.55UJ at St = 0.1
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and varying to around 0.80UJ for St = 10, (figure 4.8). Using this information, one

can model the convection velocity in terms of frequency and the jet exit velocity, by the

analytic form,

Mc = AMJ(1 + B
StJet

MJ
) ≡ α.

fDJ

UJ
+ β.MJ (4.17)

This will be referred to as the “Frequency dependent model”. The experimental results

of [48] were again modeled recently in a logarithmic form by Raizada and Morris [90],

as

Uc(x, ω) = Uaxis(x) · [0.056 ln (St) + 0.667] (4.18)

.

Figure 4.8: Frequency dependency of the convection velocity as measured by Harper-
Bourne [48]

As mentioned before, the above relations for the time scale, length scale and convec-

tion velocity are necessary for the prediction of the radiated noise from a turbulent jet

flow. Also, in order to calculate these quantities, one needs to provide some CFD results,

which can be achieved using a CFD-RANS turbulence model. As mentioned earlier in

Chapter 1, three different nozzles are considered in this study, namely single flow, coaxial

and short-cowl nozzle. General descriptions of the geometry, grid, CFD simulations and

CFD results can be found in Appendix A. The next two chapters concentrate on some

jet noise prediction examples. Chapter 5 concerns prediction of noise radiated from an

isothermal/heated single flow jet at different Mach numbers and in Chapter 6 radiation

of noise from coaxial and short-cowl nozzles will be studied.





Chapter 5

Numerical Results: Single Flow

Jets

As far as the laws of mathematics refer to reality, they are not certain, and
as far as they are certain, they do not refer to reality.

“Albert Einstein”, (1879-1955)

Introduction

In dealing with the jet noise problem two separate aspects of the problem must be

carefully addressed: the turbulent flow simulation and the acoustic problem. A general

physical description and the various mathematical models used for these two parts were

given in Chapters 2, 3, and 4. In this chapter some comparisons with data will be

made using these models. Three kind of nozzles will be used for the simulation of jet

noise: single flow, coplanar and short-cowl nozzle. These three nozzles, at different

flow speed and temperature conditions have been selected to cover most of the possible

and practical jet flow situations, to demonstrate the validity of the approach when the

physical application changes. This chapter concentrates on single stream jet flows and

numerical results and discussions will be presented for the following cases: Single flow

cold jet at three Mach numbers (MJ = 0.6, 0.75, and 0.90) and single flow heated

jet at two different velocity and temperature conditions (TJ = 450K, MJ = 0.6) and

69



70 Chapter 5 Numerical Results: Single Flow Jets

Figure 5.1: Nozzle geometry of a single stream nozzle

(600K, MJ = 0.75). The geometry and general dimensional information of the nozzles

considered are given in figure 5.1.

Single stream jets are of both theoretical and practical interest. They were used

in older commercial jet engines and are still being used in turbojet engines for military

aircraft. These nozzles have a comparably simple geometry and are designed to compress

and push the flow towards the nozzle exit, resulting in thrust. However, the interaction

of the flow coming out from the nozzle and the ambient medium results in a very

strong turbulent mixing which is the source of significant aerodynamic noise. In spite

of the fact that the application of the single flow nozzle is very limited in comparison

with other sophisticated nozzles, their study may provide some useful insights into the

understanding of the mechanism of noise radiation from more complex nozzles.

This section is divided into two parts. In the first part, noise radiation from an

unheated single-stream jet flow will be considered, and in the second part that of a

heated flow is tackled. Jet noise directivity, and the effect of the turbulent energy

transfer rate time scale (TET) will be examined in this section.

The MGBK method (equation (2.52)) with the high frequency asymptotic solution of

the Lilley equation for the refraction effect (equation (2.50)) are used for the noise pre-

diction. Different turbulence parameters which have been introduced earlier in Chapter

3 will be used and their corresponding effects will be studied. Use of the MGBK method

also enables the further investigating of other important features of the turbulence and

acoustics, such as the acoustic source non-compactness effect, flow anisotropy effect, etc.

These effects will also be briefly studied in the present chapter.
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In dealing with Lighthill’s Analogy or the MGBK method one needs to provide the

essential fluid dynamic information of the jet flow. A Reynolds Averaged Navier Stokes

(RANS) scheme using a simple modified k − ε turbulence model has been used for this

simulation. Such a solution provides the mean flow parameters (e.g. mean velocity,

temperature) as well as an estimate of the turbulent kinetic energy and turbulent dis-

sipation rate. This information is then be used for evaluation of the time scale, length

scale and the convection velocity. Details of the turbulence modeling and CFD results

for all the geometries and conditions presented below are given in Appendix A.

In addition, the acoustic data used in this section for comparison with analytical

results are collected from the JEAN project [91, 92, 93, 94]. Experiments for a single

stream jet were carried out by Jordan et al. at the MARTEL facility at CEAT (Centre

d’Etudes Aero-dynamiques et Thermiques), Universite de Poitiers. Far-field acoustic

measurements were performed at 30 jet diameters and 50 jet diameters from the jet

exit. Results are available from 30 degrees to 150 degrees from the jet downstream axis.

5.1 Unheated Flows

The study of noise generation and radiation from unheated single flow jets is of great

importance because of its relatively easier physical interpretation and source modelling.

In this case, sources can be, to a large extent, represented by quadrupole source models.

On this basis, studies of unheated single flow flows can be very useful and may shed light

on understanding the noise generation and radiation mechanisms of more complicated

cases.

Noise prediction of high Mach number subsonic flows has been investigated many

times and different associated issues have been addressed [38, 39, 44]. In most of these

cases, however, the agreement with the experimental data at low and high frequencies is

not good. Unlike other works that have tried to resolve the problem through making use

of more complex mathematical models or using more sophisticated turbulence modeling

methods, in this thesis it is aimed to resolve the problem using physical reasoning derived

from knowledge of the turbulence. One can say that this problem arises partly on

account of the lack of proper definitions of the basic modelling parameters, such as the
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time scale, length scale and convection velocity. The concepts behind the definition

of these quantities were reviewed in the last two chapters (Chapters 3 and 4). In this

section the new definitions will be used and their effects will be examined for any further

enhancements in jet noise prediction. The new time scale (TET) will be used throughout

the chapter (unless for the purpose of comparison) and the prediction obtained using it

will be compared with those found using other time scales. Furthermore, an explanation

will be provided for mismatches that other authors have observed.

5.1.1 Noise Prediction at Ninety Degrees

Prediction of noise at ninety degrees is known to be the simplest to achieve but is none-

the-less a very informative task. To begin with, we shall use the Lighthill method,

equation (2.25). Convection and refraction effects can be ignored for this case, since the

observer is located at ninety degrees and the Doppler factor will be equal to one. The

dissipation length scale will be used, equation (4.1), and the length scale ratio is assumed

unity, so l1 = l2 = l3. Furthermore, the required CFD data for source modelling are

found using k − ε RANS model and the results are presented in Chapter A.

A simulation was performed for a MJ = 0.75 jet, using three kinds of time scale: the

traditional time scale (TDR), τd, as given by equation (4.8); triple time scale (4.10); and

the new time scale (TET), τT , given by equation (4.13). Figure 5.2 shows the results

obtained using each of the time scales. Results are compared with the measured data

obtained within the JEAN research programme [64]. It can be deduced from the figure

that using the TDR time scale (4.8) can give reasonable agreement with the measured

spectra in the vicinity of the peak frequency. This noise is generally associated with

the region of the jet just downstream of the end of the potential core where the decay

of turbulent energy is the dominant process. However, moving away from this region

leads to progressively poorer agreement as other physical processes begin to dominate.

In these regions an improved prediction of the noise is obtained by using equations

(4.9) to define the time scale, as suggested in [38, 39]. This is because such a model

effectively mimics the strain rate time scale and (to some extent) the production time

scale which are dominant in regions of the jet away from the end of the potential core.

This suggests that in order to effectively predict the noise over the entire frequency range
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Figure 5.2: Comparison of experimental data with predicted spectral density at 90o

to the jet axis using three different time scales and based on the MGBK method (dB
re 10−12Pa2/Hz): R = 50DJ , MJ = 0.75, DJ = 0.05m.

some appropriate combination of time scales, equation (4.10), should be used. This was

first put forward by Frendi et al. [28] in their “dual time scale” model. A generalized

form to include the effect of all physical processes (usually three) operating within the

turbulent flow can be found from:

IT =
∑

j

wjIj , j = {p, s, d}

where Ij refers to sound intensity calculated using each of the time scales in equation

(4.10) and wj are weight parameters that must be determined empirically. Here, we

assumed that all parts contribute equally wd = ws = wp = 1, but in [28] it was assumed

that wd = wp = 1/2 and ws = 0. Performing an optimization to determine the three

calibration coefficients, αI , αII , and αIII in equation (4.10) would result in very good

agreement with experimental data over the complete range of frequencies as is evident

from figure 5.2.

Notice that in this combined time scale approach the relation of the time scales is one

of simple proportionality. The “effective” dependence on frequency now arises naturally
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as the relative importance of different physical processes changes with different areas of

the jet flow. Set against this, we now have the difficulty of calibrating three different

time scales and corresponding length scales, and the number of empirical coefficients is

raised still further if the weighting coefficients (wj) in last equation are included. These

difficulties can be resolved, however, by introducing a time scale that is based on the

transfer of energy between different wave numbers of the turbulent fluctuations (TET

time scale). A description of this time scale has been given in section 4.2. However,

comparison show that the TET time scale provides a very good agreement with the

experimental data, whilst the difficulty of calibrating a large number of coefficients, as

in the triple time scale is circumvented.
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Figure 5.3: Comparison of experimental data with predicted spectral density at 90o

to the jet axis using three different time scales and based on the MGBK method:
R = 50DJ , MJ = 0.90, DJ = 0.05m.

Simulation has also been performed for a single-flow unheated MJ = 0.90 jet. Com-

parison of the results obtained using the TDR and TET time scales are summarized in

figure 5.3. A similar behavior and trend can be observed from this high speed subsonic

jet flow to the MJ = 0.75 jet. Use of the TDR time scale can result in up to 5dB

difference at 200Hz, and 10dB difference at 10kHz, while the results obtained using
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the TET time scale follow the experimental data across the entire frequency range of

interest (200 Hz-20 kHz).

5.1.2 Directivity Effects

Noise prediction at other angles and directivity effects are also interesting. The MGBK

method, equations (2.52) and (2.53), together with the high frequency asymptotic solu-

tion of Lilley’s equations, (2.50) and (2.51) will be used. In dealing with the directivity

factor, equation (2.50) one first need to provide a model for the velocity field inside

the jet flow. Although directly using the CFD results in equations (2.52) and (2.53) is

possible, it may cause error or unexpected noise because of step-jumps occurring at the

potential core or jet shear layer surface. To avoid this a velocity curve-fit has been used

to find the turning point location in equation (2.45). The following relation has been

found to provide an acceptable fit to the computed CFD data:

U(x, r) = UJetH(a− x)H(
DJ

2a
(a− x)− r)+

UJetH(a− x)H(
DJ

2a
(x− a) + r)sech2(

[
DJ

2a
(x− a) + r

]
/c2)+

U(x)|r=0 H(x− a)sech2(r/c1)

(5.1)

where the cylindrical coordinates are denoted by (x, r) H() denotes the Heaviside func-

tion, sech() is the Hyperbolic secant function, and other coefficients can be obtained

from matching the formulation with the CFD results (see Appendix A). The following

values are found for the three jet velocities (MJ = 0.60, 0.75, 0.90): for the MJ = 0.6

case the coefficients are given by

c1 = 0.114x− 0.0111

c2 = 0.0890x + 0.0012

a = 7.5DJ

and for the MJ = 0.75 jet flow, we have

c1 = 0.0979x− 0.0101

c2 = 0.0890x + 0.0012

a = 7.5DJ
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and finally for the MJ = 0.90 the following values are found

c1 = 0.11439x− 0.0101

c2 = 0.0890x + 0.0012

a = 7.5DJ

The mean velocity and its radial derivative inside the jet flow and corresponding com-

parisons with the CFD results for the MJ = 0.75 jet flow are presented in figure 5.4.

It can be seen that the mean velocity model provides a very good level of accuracy at

different axial and radial positions. As mentioned before, using such a model instead of

the CFD results avoids any numerical errors arising due to the step-jumps or disconti-

nuities happening around the shear layer or potential core surface, which can be usually

observed in the CFD results.

Figure 5.4: Velocity curve-fit, MJ = 0.75, DJ = 0.05m.

For a precise jet noise prediction at small angles, the location of the turning points is

of great importance. As discussed previously in section 2.2, turning points occur when

the shielding function, g2, changes sign, equation (2.45), which is:

g2(r) =
(1− U/c0 cos θ)2(c0/cs)2 − cos2 θ

(1−Mc cos θ)2
. (5.2)
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Concerning the above relationship, for an unheated flow (c0/cs) term is always about

unity, so the only effective parameters are the local mean velocity and the observer angle

θ. After substitution of the mean velocity from equation (5.1), the turning point location

for different observer positions at three different Mach numbers are calculated and are

presented in figure 5.5.

As mentioned before in section 2.2, sources radiating from the regions specified in

figure 5.5 to an observer inside the cone of silence will suffer an exponential decay. It

is worth mentioning in this regard that the last angle at which a source encounters

damping is when cos θ∗ = 1
1+U/c0

, where θ∗ will be called the “cone-angle”. Roughly

speaking, the last turning point for MJ = 0.60, 0.70, and 0.90 jet flows will happen

when the observer is located around θ∗ = 51o, 55o, and 58o, respectively. Therefore, it

can be seen that for any angle greater than the cone-angle (θ∗) the refraction effect can

be accounted for by the high frequency approximation with no fear of radiating into the

zone of silence. Furthermore, for a single unheated jet flow more than one turning point

will never occur.

The damping factor, β01, within the zone of silence can be calculated using the first

equation of (2.51). Numerical integration of (2.51-a) is accomplished for the MJ = 0.75

jet when the observer is located at 30DJ . Variation of the damping factor for different

frequencies and observer polar angles (θ) can be seen from figure 5.6. Results show that

the highest level of damping occurs at high frequencies and for observers in the vicinity

of the jet axis. Therefore, it can be deduced that the SPL spectrum for an observer close

to the jet axis will experience comparably sharper roll-off after the peak frequency. It

can be also seen that less sources encounter damping for larger angles and the damping

effect entirely disappears outside the zone of silence, θ > θ∗.
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Figure 5.5: Turning point location for different observer locations, DJ = 0.05m,
R = 50DJ .

Prediction of the far-field noise directivity using the mathematical models given in

section 2.2 is now presented. The turbulent energy transfer time scale (TET), equation

(4.15), dissipation length scale, equation (4.1), and the mean velocity model have been

used in these predictions. Simulations are performed for MJ = 0.6 and MJ = 0.75 jet
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Figure 5.6: Damping factor for radiation into the zone of silence; R = 30DJ

flows for an observer positioned at R = 30DJ and 50DJ from the nozzle exit. Figures 5.7

through 5.10 show comparisons of the numerical results obtained using the TET time

scale against the experimental data. In general, an acceptable agreement over all angles

between 50 and 130 degrees to the downstream axis for different jet working conditions

is achieved. By comparing results with those found by other authors [38], it can be

deduced that these results show an improvement compared to those obtained using the

time scale defined by equations (4.8) or even (4.9).

However, it is noted that there is still a mismatch between the prediction and data

regarding the peak frequency at small angles. It is believed that this discrepancy might

have originated from one or more causes.

First, the radiated noise from large eddies is not properly captured, which leads to

poor agreement at low frequency range for observers located nearby, and accordingly

peak frequency mismatch. The failure to accurately compute the low frequency noises

actually stems from the failure of the retarded-time assumption, which is questionable for

large eddies since their distance to the observer is sometimes less than what is considered
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Figure 5.7: Comparison of experimental data with predicted spectral density at dif-
ferent angles to the jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 30DJ , MJ = 0.60, DJ = 0.05m
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Figure 5.8: Comparison of experimental data with predicted spectral density at dif-
ferent angles to the jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 30DJ , MJ = 0.75, DJ = 0.05m
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Figure 5.9: Comparison of experimental data with predicted spectral density at dif-
ferent angles to the jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 50DJ , MJ = 0.60, DJ = 0.05m.
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Figure 5.10: Comparison of experimental data with predicted spectral density at
different angles to the jet axis using energy transfer rate time scale; based on the

MGBK formulations for directivity, R = 50DJ , MJ = 0.75, DJ = 0.05m.
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as the acoustic far-field. This can be seen from a comparison between the predicted

results at 30DJ and 50DJ , figures 5.7 and 5.10. It can be seen that the discrepancy

existing at small angles decreases with increasing distance (R). The second possible

reason is the use of the high frequency approximated solution of the refraction effect

for all frequencies. The third possibility has to do with the definition of the convection

velocity. As mentioned before in section 3.4, the peak frequency can be estimated by

the eddy-sweeping speed (ω0 ∝ V κe). Thus, the convection velocity value at some

particular location has a direct relation with the peak frequency value. Furthermore, it

is well understood from the literature that the large eddies are convected downstream at

a speed different from the small eddies. This shows that value of the convection speed

of the large eddies can play an important role in the accuracy of the noise prediction

when the observer is positioned close to the jet axis.

Among the above causes, the first one is thought most likely to be the real reason

since it is physically and mathematically justified. The second reason was considered

before in [4] and it was shown that although the behaviour of the flow factor at low

frequencies is different from that in the high frequency range, the low frequency range is

very narrow and can effectively be neglected. So, finally one can conclude that despite of

the effect of all of these three causes, the first one is the most important one. However,

in order to further examine the correctness of this claim, the effect of using different

convection velocity models on the location of the peak frequency will be examined in

section 5.1.4.3.
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5.1.3 Equivalent Source Location

Location of jet noise sources is a far from trivial problem that is of great importance

for both the understanding the noise production and the radiation mechanisms and also

for finding new jet noise reduction strategies. According to the nature of jet turbulence

it can be readily realized that the high frequency noise sources are mostly aggregated

in the vicinity of shear sub-layer, specially where the shear layer is thinner (usually

between the nozzle tip and end of the potential core). In contrast, the low frequency

sources are associated with larger eddies which are mostly formed in the fully developed

region and close to the jet axis. One of the earliest works on this subject was published

by Ribner in 1958 [95]. This work was very short and its most important result was that

the overwhelming bulk of the jet noise is emitted from first eight to ten diameters, which

is regarded as the mixing region. It was found that the sound power distribution in the

mixing region is constant, while it is proportional to the reciprocal 7th power of axial

distance for the fully developed region. Later, Dyer investigated a similar problem [96]

and derived a simple procedure for obtaining axial source distributions in a turbulent jet

flow. Upon using this procedure one can find the frequency of the sources as a function

of location along the jet axis.

In this section a mathematical model for the jet noise source distribution will be ob-

tained which makes use of the CFD-turbulence results as an input for source modelling.

The basis is quite similar to the sound intensity calculation (section 2.1): taking the

overall intensity as an integral over the axial extent of the jet,

I(R, ω) =
∫

Ix(ω) dx, (5.3)

where Ix(ω) defines the axial source distribution at each frequency. Since we are only

interested in the source distribution from the standpoint of the ninety degrees observer,

the following relation can be readily found from Lighthill’s equation,

Ix(ω) ∝
∞∫

−∞

2π∫

φ=0

r∞∫

r=0

L1L2L3τv4e
−

(
ωL1
2c0

)2−(ωτ
2 )2

e−jωτdrdφdτ (5.4)

Source distributions for an unheated MJ = 0.9 jet are presented in Figure 5.11. The
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figure illustrates the axial position at which the source location, Ix, peaks at a par-

ticular frequency. In other words, maximums of Ix at each frequency are found. The

figure shows a comparison of the results obtained using the analytical solution, given

by equation (5.4), when the TDR and TET time scales are used with the experimental

data [97].

It can be seen that the high frequency sources are aggregated in the vicinity of the

jet exit, while the low frequency ones are located further downstream after the potential

core. In addition, it can be seen from the figure that using the TDR time scale results in

a broader acoustic source regime, while the source domain captured using the TET time

scale shows a better agreement with the experimental data. Although some differences

between the experimental data and TET results at low frequency range can be observed,

the curves slope show that they are sharing the same underlying physical phenomena.
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Figure 5.11: Source location based on the MGBK method at 90 degrees, Rr = 50DJ ,
MJ = 0.90, DJ = 0.05m.

Source distributions, Ix, for models based on the TDR time scale, the combined time

scale and the TET time scale have been calculated for MJ = 0.75 and are shown in

figures 5.12 through 5.14. From studying these figures it can be seen that using the

dissipation time scale, τd, results in a source distribution that is roughly of Gaussian

shape for all frequencies. As seen in figure 5.2, using a combination of time scales

provides a more realistic results, but Figure 5.13 reveals source distributions that are of

a markedly different shape to those observed in real jets [97]. However, using the TET
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time scale, τT not only leads to a good agreement in the spectra but also reproduces a

more physically realistic shape of source distribution, figure 5.14.
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Figure 5.12: Predicted noise distribution at each frequency, using dissipation rate
time-scale and based on the MGBK method for 90 degrees, Rr = 50DJ , MJ = 0.75,

DJ = 0.05m.
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Figure 5.13: Predicted noise distribution at each frequency, using combined time-
scales and based on the MGBK method for 90 degrees, Rr = 50DJ , MJ = 0.75,

DJ = 0.05m.
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Figure 5.14: Predicted noise distribution at each frequency, using energy transfer rate
time-scale and based on the MGBK method for 90 degrees, Rr = 50DJ , MJ = 0.75,

DJ = 0.05m.

0 1 2 3 4 5 6 7 8 9

x 10
−3

0

0.5

1

1.5

2

2.5

3

3.5

4

I
r

r/
D

J

 

 

f=200 Hz
f=400 Hz
f=800 Hz
f=1600 Hz
f=3200 Hz
f=6400 Hz
f=12800 Hz
f=25600 Hz

Figure 5.15: Radial source distribution based on the MGBK method at 90 degrees
using TDR time-scale, R = 50DJ , MJ = 0.90, DJ = 0.05m.
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Figure 5.16: Radial source distribution based on the MGBK method at 90 degrees
using TET time-scale, R = 50DJ , MJ = 0.90, DJ = 0.05m.

Radial distribution of the sources are also considered here, see figures 5.15 and 5.16.

It can be seen that using the TDR time scale leads to a wider radial distribution, while

the TET time-scale captures all of the sources in the first two diameters from the jet

axis. It can also be seen that the high frequency sources are aggregated near the lip-

line, whereas the low frequencies further downstream near the jet shear layer. Results

also show that the contribution of the high and low frequencies obtained using TET

time-scale is higher than when the TDR time-scale is used, which is why using TET

time-scale results in a better agreement at these range of frequencies.

5.1.4 Source Compactness, Anisotropy and Convection Velocity

In this section the following issues are addressed: source compactness, turbulence anisotropy

and convection velocity. In the first two parts it will be shown how the source compact-

ness and turbulence anisotropy can be taken into account using the MGBK method

and how this improves the results. In the last part, two convection velocity models will

be introduced (based on experimental evidence) and the goal addressed is the question
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raised above regarding the peak frequency mismatch observed for small and large angles

comparisons, and its relation to the definition of the convection velocity.

5.1.4.1 Source Compactness

Source compactness is an important issue that can be addressed easily when the MGBK

method is used. For a compact eddy, the assumption is made that the eddy size, l, is

much shorter than the wave-length of the acoustic disturbance, (ωl/c0 ¿ 1), accordingly

the factor e−jk.ξ is set equal to unity. The derivation presented before in section 2.2 was

based on this assumption. In order to calculate the effect of source non-compactness,

parameters inside the integral over the source domain must be multiplied by the e−jk.ξ

factor, see equation (2.18). Khavaran and Bridge investigated this case using different

types of correlation function and derived the non-compactness factor (NCF) for each

case [31]. Using an exponential function f(ξ) = e−πξ/l leads to

NCF (kl) = 20
(

π
kl

)5
[
3 tan−1

(
kl
2π

)− 2kl
π

5(kl/π)2+12

((kl/π)2+4)2

]

and for a Gaussian correlation function f(ξ) = e−π ξ2

l2 one finds

NCF (kl) = e−
π
2 ( kl

2π )2

In order to gain a better understating of the source compactness effect, the axial

source distribution, Ix, at each individual frequency is calculated. The Gaussian non-

compactness factor is chosen and the resulting distribution amplitudes are normalized so

peaks are unity, see figure 5.17. The damping factor due to the refraction phenomenon,

which was discussed before, is also included in this figure. Figure 5.17 illustrates the

source distribution when the observer is located at R = 30DJ and θ = 30o. The figure

shows that source non-compactness is not a very important issue for low frequencies but

its effect becomes more important with frequency.

Looking at the figure one may also deduce that the damping factor increases with

frequency, such that most of the radiated energy towards the observer will be diminished

in high frequency range. Another interesting point here is the peak position at each

frequency. Comparing the noise spectrum, figure 5.8, with the results presented in
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Figure 5.17: Predicted noise distribution; R = 30DJ , θ = 30o, MJ = 0.75,
DJ = 0.05m. Solid line: neither compactness effect nor damping, Dashed line: With
compactness effect, no damping, Dotted line: with compactness effect and damping

figure 5.17 shows that the most important contributors to the radiated sound at θ = 30o

are the relatively large eddies aggregated in region of x ≈ 6DJ to x ≈ 12DJ , after the

potential core.

A similar simulation is also performed for a microphone at R = 30DJ and θ = 40o,

see figure 5.18. The peak frequency of the spectrum for θ = 40o is about f = 1.5kHz,

and accordingly the most important noise sources are found to be captured in region of

6 < x/DJ < 11, that means the most important constituents to the noise spectrum have

now moved towards the jet exit as the observer recedes from the jet axis. Furthermore,

comparison of figures 5.17 and 5.18 show that the damping effect shrinks as the observer

angle (θ) increases, and will completely fade at the cone-angle θ∗ = 54o, where there

will no longer be any damping.
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Figure 5.18: Predicted noise distribution; R = 30DJ , θ = 40o, MJ = 0.75,
DJ = 0.05m. Solid line: neither compactness effect nor damping, Dashed line: With
compactness effect, no damping, Dotted line: with compactness effect and damping

5.1.4.2 Turbulence Anisotropy

In the derivation of sound intensity using Lighthill’s Analogy, or the MGBK method, the

turbulence was assumed to be isotropic. Strictly speaking, isotropy means independence

of orientation and also implies homogeneity (i.e. independency of position in space).

However, these conditions are only met for special cases, e.g. grid turbulence. The

importance of the jet turbulence anisotropy and its effects on radiated noise have been

emphasized many times [57, 64] and it should be noticed that noise prediction theories

derived under the isotropic assumption are only valid for high frequency sources. It has

been indicated by Ribner that the non-isotropic structures of the turbulence can have an

important effect on the directivity pattern of the narrow band noise at low frequencies

[59]. Furthermore, experimental measurements for low subsonic Mach numbers of 0.1

and 0.3 confirmed a high degree of anisotropy among the large eddies [98, 99]. More

recent measurements by Zysman et al. [100] and Podboy et al. [101] for high speed
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subsonic and transonic jets have also confirmed such a tendency of turbulence towards

anisotropy. Thus, it can be realized that the turbulence isotropy assumption can not

be accurate and appropriate supposition for an entire frequency band prediction, and

should, in some manner, be added to the solver.

The level of the turbulence anisotropy for axisymmetric turbulence can be estimated

through βc = 1 − v2
2/v2

1. The effect of the length scales ratio can also be studied

simultaneously. In this case the ratio of the lateral and longitudinal length scale is

defined by Υ = L2/L1. Figure 5.19 shows the effects of changes in anisotropy level and

length scale ratio on the noise spectrum for a MJ = 0.75 jet flow when the observer is

located at R = 30DJ , θ = 40o.

It is difficult to draw an objective conclusion from the figure, but inserting the above

definition into the acoustic intensity equations, (2.57), gives rise to the following factor

(multiplying by the sound intensity), which expresses the effect on the noise spectrum,

Υ2(1− 2
3βc)−13/2.

It can be seen from figure 5.19, and also can be inferred from the above equation that

decreasing βc (i.e. closer to isotropy) increases the noise level, simultaneously increasing

the length scale ratio also increases the noise level. It should be noted that the above

assumption for the anisotropy treats all the frequencies in the same way, which is clearly

incorrect as the effect vanishes at sufficiently high frequencies where the turbulence is

entirely isotropic. Instead its effect should be maximum at low frequencies. In order to

fulfill such a requirement one needs to provide a frequency, or location (or eddy size)

dependent model. However, there is a little of experimental data in this regard.

5.1.4.3 Convection Velocity

It has been shown that the convection velocity is frequency dependent as first pointed out

many years ago by Fisher and Davis [51], confirmed later by Akamatsu [82] and further

experimentally examined by Harper-Bourne and [48] and Kerherve et al. [53]. However,

the lack of experimental data for the convection velocity at different turbulence scales

and for special purposes prevents detailed quantitative comparison, and consequently

a kind of trial approach has been used to better investigate the relation between the
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Figure 5.19: Effect of turbulence anisotropy on noise spectrum, ∆ = L2/L1, βc =
1− v2

2/v2
1

peak frequency location and the variable convection velocity models which can vary

with location or frequency. Two models were introduced in section 4.3: the first model

was based on the local mean flow parameters and the second model has a frequency

dependent form. In what follows some numerical examples showing the effect of using

each model and ascertain whether they can be of any use to lessen the mismatches

observed in previous noise results (e.g. figures 5.7, and 5.9) will be given. The two
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models are given by:

Mc = aMLocal + bMJ , (5.5)

Mc = α.
fD

UJ
+ β.MJ (5.6)

The first relation will be called the “mean velocity model”, and the second one will

therefore be referred to as the “frequency dependent model”.

Numerical examples are provided to gain a better understanding of the convection

velocity by changing the weight coefficients (a, b, and α, β) but keeping them close to the

values obtained from the experimental data. Predictions are made at two angles θ = 60◦,

and θ = 140◦ (R = 50DJ). The initial values of the weight coefficients can be found

from experimental evidence. The first model has been used by many authors [102, 103].

The values used are usually around a = 0.25, and b = 0.50. In comparison with the

first model, there is less data available for the second model. The most referenced work

on the frequency dependency of the convection velocity is [48], and according to those

results the weight coefficients can be estimated by α = 0.025, β = 0.55.

Figure 5.20: Power spectral density at R = 50DJ , θ = 60◦ for a single flow unheated
M-0.75 jet, using local dependent convection velocity for a) b=0.2; a=0.2, 0.6, 0.7, 0.8,

b) b=0.3; a=0.2, 0.5, 0.6, 0.7, c) b=0.55; a=-0.2, 0, 0.2.
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Figure 5.21: Power spectral density at R = 50DJ , θ = 60◦ for a single flow unheated
M-0.75 jet, using local dependent convection velocity for a) β=0.45; α=-0.025, 0, 0.025,

b) β=0.55; α=-0.025, 0, 0.025, c) β=0.65; α=-0.025, 0, 0.025.

Figure 5.22: Power spectral density at R = 50DJ , θ = 140◦ for a single flow unheated
M-0.75 jet, using local dependent convection velocity for a) b=0.2; a=0.2, 0.6, 0.7, 0.8,

b) b=0.3; a=0.2, 0.5, 0.6, 0.7, c) b=0.55; a=-0.2, 0, 0.2.
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Figure 5.23: Power spectral density at R = 50DJ , θ = 140◦ for a single flow unheated
M-0.75 jet, using local dependent convection velocity for a) β=0.45; α=-0.025, 0, 0.025,

b) β=0.55; α=-0.025, 0, 0.025, c) β=0.65; α=-0.025, 0, 0.025,.

Exploring figures 5.20 through 5.23 provides the following observations. Comparison

of the peak frequency of the experimental results at 140o (Figures 5.22 and 5.23) with

their counterparts (60o) (figures 5.20 and 5.21) shows that the most important contrib-

utors to the radiated noise moves smoothly from the large eddies to the smaller ones as

the microphone moves towards the jet exit and happens around 2000 Hz, while that for

60o is about 1400 Hz. In addition, increasing the jet velocity share in the convection

velocity will generally decrease the noise level in the entire spectrum. Increasing the

local velocity in the first model also decreases the noise, but changing the coefficient of

Strouhal number does not have any significant effect on low frequency noise, while usual

trend can be observed again for the high frequencies.

In regard to the effect of the convection velocity on the peak frequency adjustment,

it can be seen that for small angles the first model has the merit of shifting the peak

frequency to higher frequencies by increasing the convection velocity magnitude, but the

frequency dependent form is not able to make any further improvement for this case.

Inspection of figures 5.22 and 5.23 also shows that increasing the jet exit velocity share

(b) or that of the local velocity (a) shifts the peak frequency to the higher frequencies,
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but the spectrum is more sensitive to the jet velocity than the local velocity. One may

deduce that the dominant eddies responsible for the sound propagation in this case are

slightly smaller than those in energy containing range.

In order to draw a conclusion to the convection velocity discussion it is worth re-

marking on the best fit found using different models and coefficients. Regarding the

local parameter dependency, it can be said that for observers located near the jet axis

(i.e. downstream), more weight must be given to the local velocity term Mc and less to

the jet exit velocity MJ , and as the observer moves upstream (i.e. large polar angles),

more weight should be given to the jet velocity constituent (b). Regarding the frequency

dependent model, the interesting point of using this model is that a very stable and

good agreement at small angles (up to 90o), and in particular for low frequencies can be

achieved, but utilizing this model for large angles (θ = 140◦) is shown to be inappropri-

ate, as it is not capable of adjusting the peak frequency so as to fit to the experimental

data. Finally, it can be understood that neither of the models will perfectly improve

the peak frequency location. So, the final inference is that, as mentioned before, the

peak frequency mismatch is because of the incapability of the analogy to capture the

low frequency noise from close sources.

5.2 Hot Flows

Prediction of radiated noise from a single flow heated jet flow is examined in this section.

The same geometry as the previous simulation for the unheated jet is used. The required

CFD results for MJ = 0.60, TJ = 450K and MJ = 0.75, TJ = 600K are found using a

Reynolds Averaged Navier Stokes (RANS) scheme with simple modified k − ε method.

The following values are chosen in the modified k − ε turbulence model: Cµ = 0.09,

Cε1 = 1.44 and Cε2 = 1.92. Numerical results of the CFD simulation are presented and

discussed in Appendix A.

Once the CFD results are obtained, the source terms can be estimated using the

mean flow and turbulence parameters. They will then be used in the MGBK method to

find the spectral density function. In all of the predictions of this section the turbulent

energy transfer time scale (TET) and the second model of the convection velocity are
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used. It must be noted that dipole sources associated with the density gradient are not

accounted for in the present prediction. In order to deal with the MGBK method, again

we need to find a curve-fit for the mean flow velocity. The curve-fit models presented

for the unheated jet flow (equation (5.3)) can also provide an acceptable agreement for

hot jet flows. It reads as follows:

U(x, r) = UJetH(aDJ − x)H(
aDJ − x

2
− r)+

UJetH(aDJ − x)H(
x− aDJ

2
+ r) sech2(

[
x− aDJ

2
+ r

]
/c2)+

U(x)|r=0 H(x− aDJ) sec h2(r/c1)

(5.7)

The unknown coefficients of the curve-fit can be found by inspection and matching the

relations with the CFD results. The values for the MJ = 0.60, TJ = 450K jet are given

by,

c1 = 0.0950x− 0.0111

c2 = 0.0890x + 0.0012

a = 7.5

and for MJ = 0.75, TJ = 600K jet following coefficients are found to provide the best

fit

c1 = 0.0979x− 0.0101

c2 = 0.0890x + 0.0012

a = 7.5

Before investigating the density spectral function and directivity figures, it might

be useful to know which sources are involved in the radiation of sound into the cone of

silence and must be treated in a special way. The region of the sources that are radiating

into the cone of silence will be called the “effectively damped area” hereinafter. Figures

5.24, and 5.25 show the location of the turning points of Lilleys equation for different

observer angles (by equating equation (2.45) with zero). The following inferences can

be deduced. First, the effectively damped area when the observer is located close to

the axis (θ = 20o) becomes larger as the observer distance, R increases (which means

for a far observer more sources will be involved and accordingly more sources will suffer
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exponential decay). It can also be observed that for larger angles the effectively damped

area is not a strong function of the observer distance. Moreover, as it is expected, the

damped area shrinks with angle and will entirely fade for angles greater than θ = 50o.

In addition, comparison of the damped area for a hot jet (5.25) and a cold jet, Fig.

5.5, reveals that the damped area for an unheated jet at each angle is larger than its

counterpart’s. This is due to the further bending of the waves in heated flow because of

the density variation. It is also worth mentioning that the edge of cone of silence for a

MJ = 0.75 unheated jet is θ∗ = 54o, while that for MJ = 0.75 hot jet is less than 50o,

which is assigned to the (c0/cs) term in equation (2.45), which varies in a hot jet but is

approximately unity in an unheated flow.
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Figure 5.24: Turning point location, R = 50DJ DJ = 0.05m.
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Figure 5.25: Turning point location, MJ = 0.75, TJ/T0 = 2.0, DJ = 0.05m.

Figures 5.27 through 5.28 show comparison of the predicted and measured spectra at

different observer angles for different flow and temperature conditions. Results show a

very good agreement for most of the angles, except for θ = 30o and 40o at R = 30DJ . It

was mentioned before by other authors that at high frequencies the prediction at small

angles usually shows a larger exponential decay than the measurements (e.g. see Figure

6 in [52]). In contrast, it can be seen from the figures 5.27 through 5.28 that both the

prediction and the data experience the same exponential decay. This enhancement is

believed to be because of using the TET time scale, which has a clear effect on the high

frequency noise level. As previously observed, there are some mismatches between the

peak frequencies of the predicted results and the data. As explained before, it is believed

that these are to a great extent due to the failure of the retarded-time assumption. In

other words, the acoustic far-field assumption, which was used for the derivation of the
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Acoustic Analogy, is not properly satisfied. This can readily be perceived by comparison

of the predictions at 30DJ and 50DJ (figures 5.17 and 5.18) that the most important

contributors to the far-field noise at small angles are the large eddies located 10DJ to

15DJ downstream of the jet, so the distance between the observer and the contributing

sources is sometimes even less than 15DJ , which is not sufficiently large to be considered

far-field.

Comparison of the hot jet results and the unheated jet flow results is interesting and

some of help for understanding of noise production mechanism. Comparisons firstly

reveal that agreement between the prediction and data becomes poorer with increasing

jet temperature TJ . This may have its roots in the differences of noise production

mechanisms in each flow. Basically, the MGBK method which is used for our prediction

has just accounted for the turbulence-turbulence quadruple and turbulence-mean flow

dipole sources which are the most important sources in an unheated flow. However,

in a hot flow some other sources may also appear that are due to the variation of the

density inside the jet flow. The density associated sources can be modeled as monopole

or dipole sources [5]. The contribution of those sources has not been taken into account

in this analysis and its consideration needs further investigation.
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Figure 5.26: Comparison of experimental data with predicted spectral density at
different angles to jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 30DJ , MJ = 0.60, TJ/T0 = 2.0, DJ = 0.05m.
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Figure 5.27: Comparison of experimental data with predicted spectral density at
different angles to jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 30DJ , MJ = 0.75, TJ/T0 = 2.0, DJ = 0.05m.
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Figure 5.28: Comparison of experimental data with predicted spectral density at
different angles to jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 50DJ , MJ = 0.60, TJ/T0 = 1.5, DJ = 0.05m.
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Figure 5.29: Comparison of experimental data with predicted spectral density at
different angles to jet axis using energy transfer rate time scale; based on the MGBK

formulations for directivity, R = 50DJ , MJ = 0.75, TJ/T0 = 2.0, DJ = 0.05m.



Chapter 6

Numerical Results: Dual-Stream

Jets

Numerical quantities focus on expected values, graphical summaries on un-
expected values.

“John Tukey”, (1915-2000)

Introduction

Nowadays commercial jet engines invariably use dual-stream nozzles. These nozzle

configurations vary in design complexity depending on the application they are used for,

and consist of two exits for flow (bypass jet engines), i.e. the primary and secondary

nozzles. The primary and the secondary nozzle can have their exits on the same plane,

which is called a coplanar jet, or the secondary nozzle can be recessed back relative to the

primary nozzle. A popular nozzle design often includes an external plug for the primary

nozzle (short-cowl). Furthermore, the nozzle edge can be either smooth or serrated (this

being one of the most attractive developments to aid noise reduction). Although the

dual-stream nozzle has indisputable aerodynamic advantageous, in turn, they also have

significant impact on the intensity and spectral distribution of the noise radiated by the

jet. In the context of this section, noise radiation from coplanar and short-cowl nozzles

working at different bypass velocity ratios (VR=1, 0.9, and 0.63) will be studied. Jet

107



108 Chapter 6 Numerical Results: Dual-Stream Jets

noise directivity and the effects of the new time scale will also be addressed. Predictions

of the locations of the noise sources inside the jet flow will also be considered.

Comparisons are made with experimental data collected from the CoJeN (Compu-

tation of Coaxial Jet Noise) project experiment, which also tackled the CFD and noise

radiation prediction of various types of coaxial nozzles at different working velocities

and temperatures. The experiments were conducted by many European universities

including the ISVR from the University of Southampton .

6.1 Coplanar Jet

In this section, noise radiation from an unheated coplanar jet at three velocity ratios,

velocity ratios (VR) 1.0, 0.9, and 0.63 is considered. In the first case flow comes out

from the primary and secondary nozzles at Vp = Vs = 217.2m/s, and in the second case,

Vp = 240.9m/s and Vs = 217.2m/s. The diameter of the primary nozzle is 99.5mm and

the secondary is 200mm (figure 6.1). In the third case area ratio is AR=4 (Dp = 33mm,

Ds = 75mm), and the primary and secondary jet velocities are 266.8m/s, and 168.3m/s

respectively. The mean flow calculation is performed using Reynolds Averaged Navier

Stokes (RANS) and a simple modified k − ε turbulence model. Further information

about the CFD model, computational grid, and domain, and corresponding results can

be found in Appendix A.4.3. The MGBK method along with the TET and TDR time

Figure 6.1: Coplanar nozzle geometry
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Figure 6.2: Noise prediction at 90o, R = 65.4Ds from a coplanar jet working at
VR=1.0, and VR=0.9 using TET and TDR time scales

scales are used for noise prediction at ninety degrees, while the second form of the

convection velocity (equation (4.17)), and the dissipation length scale (equation (4.1))

are used for these predictions. Directivity effects will also be studied using Balsa’s high

frequency solution to Lilley’s equation [54], equation (2.49).

Study of noise prediction at ninety degrees is of much theoretical importance, and can

help us in understanding the correctness of the mentioned methods. Since for prediction

of noise at 90 degrees there is no need to consider the convection and refraction effects,

more care can be given to other parameters such as the time scale. The effect of using

the TET time scale on the predicted spectrum can be seen in figure 6.2. Predictions

are made for the case one (V R = 1) and case two (V R = 0.9). As before, it can be

readily observed that use of the traditional time scale leads to an underestimation at low

and high frequencies, while the new time scale has the merit of improving both sides of

the spectrum. Furthermore, one may deduce from the similarity of the two spectrums

(V R = 1, and V R = 0.9) that most of contributing sources are those located between

the secondary potential core and the outer shear layer. In other words, sound sources

located between the primary and secondary potential cores are not of importance.

Jet noise prediction at other angles is also considered here. Microphones are posi-

tioned relatively far from the turbulent medium at different angles to the jet axis, as

laid out in table 6.1.
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Table 6.1: Microphone position around the coplanar jet

θ 40 50 60 70 80 90 100 110 120
R(m) 11.69 11.74 12.27 12.39 12.64 13.08 13.10 13.21 13.71

To use the MGBK method this requires finding the regions of the jet where sources

suffer exponential decay because of radiation into the cone of silence. The turning point

locations, equation (2.45), define such a region for each emission angle, see figure 6.3.

It can be seen from figure 6.3 that the domain of the sources involved (damped area)

decreases with angle and disappears after 50 degrees, which means the critical angle

(θ∗) for both of the cases (V R = 1, and 0.9) is slightly higher than 50 degrees. It also

shows that the damped area increases as the primary velocity Vp increases. According

to what was mentioned before in section 2.2, sources inside the damped area will suffer

an exponential decay, which is taken into account in our noise prediction using equation

(2.50).

As mentioned previously in order to deal with the MGBK method one needs to

provide a mathematical formulation for the flow velocity inside the shear layer. The

following equation has been used here and an acceptable agreement is obtained,

U(x, r) = Up H(a− x)H(Ds
2a (a− x)− r)

+Uaxis(x) H(a− x)H(Ds
2a (a + x)− r)H(r − Ds

2a (a− x))

+Us H(a− x)H(r − Ds
2a (a + x))H(Ds

2a (a− x)− r)

+UsH(a− x)H(r − Ds
2a (a− x))sech2

((
r − Ds

2a (a− x)
)/

c2

)

+Uaxis(x) H(x− a)H(r − Ds
2a (a− x))sech2 (r/c1)

where H() denotes the Heaviside function, sech() is Hyperbolic secant, and Uaxis is

the flow speed on the jet axis, which can be readily found from CFD results. Other

coefficients can be obtained after changing them and comparing with available CFD

results. The following are found

a = 7.5Ds

c1 = −0.0101 + 0.0980x

c1 = 0.00123 + 0.8907x
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Using the velocity curve-fit expression, radial derivative of the flow velocity can be

readily obtained, as

d
drU(x, r) = −UsH(a− x)H(r − Ds

2a (a− x))tanh
((

r − Ds
2a (a− x)

)/
c2

)
sech2

((
r − Ds

2a (a− x)
)/

c2

)

−Uaxis(x) H(x− a)H(r − Ds
2a (a− x))tanh

((
r − Ds

2a (a− x)
)/

c2

)
sech2

((
r − Ds

2a (a− x)
)/

c2

)

Results are shown in figure 6.4, and 6.5 where the predicted acoustic spectrums are

shown for emission angles between 40o and 120o; and are compared with measurements.

The MGBK method along with Balsa’s high frequency asymptotical solution for the

refraction effect are used for this predictions. It can be seen that results show an ac-

ceptable level of agreement over all observer angles between 40o to 120o degrees to the

downstream axis. Although there are some discrepancies of the noise at high frequencies

for small angles these results are still better than those obtained using the dissipation

rate time scale (TDR). Mismatches between the peak frequency of the prediction and

experimental data at small and large angles are again interpreted as being due to the

failure of the solution to meet the retarded-time condition, as the distance between the

effective source region and the observer is relatively small and cannot be considered as

being within the acoustic far field. However, the distances used for the CoJeN project are

relatively larger than those that were used in the JEAN project and it is noted that the

current results show a relatively smaller mismatch than those found for the single-stream

jet flow. The other interesting issue is the similarity of VR1.0 and VR0.9 experimental

and prediction results. Knowing that the secondary velocity has been kept fixed, this

suggests that varying the primary velocity does not have a significant effect on the noise

reduction. From an acoustical point of view, this means that the sources embedded

between the primary and the secondary potential cores are considerably shielded by the

secondary potential core and only the noise sources between the secondary potential

core and the outer shear layer are responsible for noise radiation. Further comparison

is provided for a VR=0.63, AR=4 coplanar jet (from JEAN database), figure 6.6. As

it can be seen results are in good agreement with the measured data except for 40 and

50 degrees, where as mentioned before is because of not properly taking account of the

refraction effect.

For further noise reduction, deeper understanding of the physics of noise production is

necessary and studying the location of the noise sources can improve our understanding
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Figure 6.3: Turning point location for a dual-stream jet flow; Left figure: velocity
ratio 1.0; Right figure: velocity ratio 0.9, using equation (2.45)

of noise production and radiation mechanisms. As mentioned before, in section 5.1.3,

the source location, Ix(R, ω), can be found through the following relation

I(R, ω) =
∫

Ix(R, ω) dx

where Ix for an observer located at ninety degrees can be found from,

Ix(ω) ∝
∞∫

−∞

2π∫

φ=0

r∞∫

r=0

L1L2L3τv4e
−

(
ωL1
2c0

)2−(ωτ
2 )2

e−jωτdrdφdτ

Figures 6.7 and 6.8 show the axial locations of peaks of Ix at each frequency when

the observer is positioned at R = 65.4DS , and θ = 90o. Experimental results are

obtained from the CoJeN project using a polar array technique. The effects of using two

time scales, i.e. turbulent dissipation rate (TDR), and turbulent energy transfer rate

(TET), are investigated here. The left hand side contour shows the results obtained from

experiment, and the right hand side figure shows the comparisons between prediction

and data.

Comparisons show that using the TDR time scale gives rise to incorrect estimation of

source location particularly at low frequencies, while results found using the TET time

scale provides better agreement with the experimental data from 200Hz to 10000Hz.

Furthermore, it can be seen that results of the VR1.0 and VR0.9 are very similar. As
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Figure 6.4: Comparison of experimental data with predicted spectral density for a
coplanar jet at different angles to jet axis using energy transfer rate time scale; based

on the MGBK formulations for directivity; VR=1.0
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Figure 6.5: Comparison of experimental data with predicted spectral density for a
coplanar jet at different angles to jet axis using energy transfer rate time scale; based

on the MGBK formulations for directivity; VR=0.90
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Figure 6.6: Comparison of experimental data with predicted spectral density for a
coplanar jet at different angles to jet axis using energy transfer rate time scale; based

on the MGBK formulations for directivity; VR=0.63, Rr = 12m
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mentioned above, the interpretation is that increasing the primary flow velocity does not

notably change the results (either noise level or source location), because the secondary

potential cone is large enough to shield the associated sources.

Figure 6.7: Source Location, VR=1.0; Left figure: Experimental results; Right figure:
(o): data, (- -): TDR time scale, (-): TET time scale

Figure 6.8: Source Location, VR=0.9; Left figure: Experimental results; Right figure:
(o): data, (- -): TDR time scale, (-): TET time scale
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6.2 Short-Cowl Nozzle

The most realistic and practical jet configuration considered in this thesis is the short-

cowl nozzle. The nozzle consists of two flow exits and a plug which is installed in the

primary nozzle. The basic idea behind use of the plug in this kind of nozzle is to lessen

the shock noise and its effects for supersonic applications. The geometry and size of the

nozzle used in this section is depicted in figure 6.9. In a similar fashion, the required

mean and turbulent values of fluid dynamics are obtained by using a modified k − ε

method. Results are collected and discussed in Appendix A.4.4.

Figure 6.9: Short-cowl nozzle geometry

In a similar way as before, we first examine the TET and the TDR time scales by

comparing results obtained using them for an observer located at R = 13.8m, and 90o.

Two velocity ratios (VR) 1.0 and 0.9 are considered in this section. In the first case, flow

comes out from the primary and secondary nozzles at Vp = Vs = 217.2m/s, and in the

second case, Vp = 240.9m/s and Vs = 217.2m/s. Noise prediction is performed using

the MGBK method, while the frequency dependent convection velocity, equation (4.17),

and dissipation length scales, equation (4.1), are used, see figure 6.10. Comparisons

once more show that the TET time scale is superior to its counterpart (i.e. TDR time

scale). It should be noted that because of the complexity of the geometry it is difficult

to account for all of the sources aggregated close to the outer lip. This results in a

secondary roll off in the spectrum which occurs beyond f = 8kHz, figure 6.10.
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Figure 6.10: Noise prediction at 90o for a short-cowl nozzle at two different bi-pass
ratios, VR=1.0, and 0.9

Before exploring the directivity effect turning point locations need to be addressed.

Turning point locations can be found by equating equation (2.45) to zero. Figure 6.11

shows the regions where the sources radiating to the observer inside the cone of silence

θ < θ∗ will be treated in a different way. According to the theory of jet noise refraction,

this special treatment gives rise to an exponential decay and therefore less high frequency

sound radiation to the observer. Comparing results of the short-cowl nozzle with those of

a coplanar nozzle, figure 6.3, one can readily deduce that the geometry used for the short-

cowl nozzle does not have any significant effect on the size and shape of the effectively

damped area. Finding a velocity curve-fit for the flow from a short-cowl nozzle is more

difficult than other flows because of the presence of the nozzle after-body. However, a

curve-fit similar to the model used for coplanar nozzles, with some simplifications, is

used here:

U(x, r) = Up H(a− x)H(Ds
2a (a− 1.5x)− r)+

UpH(a− x)H(r − Ds
2a (a− 1.5x))sech2

((
r − Ds

2a (a− 1.5x)
)/

c2

)
+

Uaxis(x) H(−a + x)H(r − Ds
2a (a− 1.5x))sech2 (r/c1)
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where
a = 7.0Ds

c1 = −0.0101 + 0.0980x

c1 = 0.00123 + 0.8907x

Noise radiation to observers at different angles from 40o to 120o from jet axis for two

different bypass ratios are illustrated in figures 6.12, 6.13. Distance of the observer from

the jet exit is the same as those given in Table 6.1. Curves show good agreement with

data for most of the angles, except those inside the cone of silence or upstream of the

jet exit. Furthermore, as mentioned above, the second roll off which can be observed

at high frequencies is because of not taking account of the high frequency sources near

the outer shear layer. The mismatches between the peak frequencies are, once again,

believed to be due the failure of the assumption made for retarded-time in the solution of

the Lighthill equation. However, comparison of results in 6.12, and 6.13 for small angles

with those made for single-stream jet, such as figure 5.7, reveals that the mismatch in

the current results is smaller. This is not surprising since the present predictions are

made at a distance relatively larger than the distance used in the single flow jet test.

Finally, source location is considered. Equation (5.3) along with the TET and TDR
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Figure 6.11: Turning point location for a short-cowl jet flow at by-pass ratios 1.0 and
0.9; Ds = 0.2734m; using equation (2.45)
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Figure 6.12: Comparison of experimental data with predicted spectral density for a
short-cowl nozzle at different angles to jet axis using energy transfer rate time scale;

based on the MGBK formulations for directivity; VR=1.0
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Figure 6.13: Comparison of experimental data with predicted spectral density for a
short-cowl nozzle at different angles to jet axis using energy transfer rate time scale;

based on the MGBK formulations for directivity; VR=0.9
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time scale are used for this purpose. Calculations are performed for two working con-

ditions, VR=1.0 and 0.9, as shown in figures 6.14, and 6.15. Results reveal that the

agreement obtained using the TET time scale is again much better that using the TDR

time scale, particularly at low frequencies. Furthermore, comparison of figures 6.14 and

6.15 with those obtained for coplanar nozzle (figures 6.7 and 6.8), together with the

directivity results, shows that changing the primary flow velocity has a more notable

effect on the results for the short cowl nozzle than the coplanar one. This is because

the secondary flow in a short cowl nozzle starts upstream of the primary flow. In other

words, the secondary potential core will not cover all of the sources located between the

primary and secondary potential cores, so some of those may contribute to the noise

radiation mechanism.

Figure 6.14: Source Location, VR=1.0; Left figure: Experimental results; Right
figure: (o): data, (- -): TDR time scale, (-): TET time scale
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Figure 6.15: Source Location, VR=0.9; Left figure: Experimental results; Right
figure: (o): data, (- -): TDR time scale, (-): TET time scale





Chapter 7

Conclusion and

Recommendations

Please be good enough to put your conclusions and recommendations on one
sheet of paper in the very beginning of your report, so I can even consider
reading it.

“Winston Churchill”, (1874-1965)

7.1 Conclusions

The goal of the current research project is to advance the development of statistical

CFD-based jet noise prediction methodologies. This involves first determining the tur-

bulent properties in the jet plume using a RANS CFD model and then supplying those

properties to the noise prediction method which is based on Lighthill’s Acoustic Anal-

ogy or an equivalent model, such as the MGBK method. A derivation was given for

Lighthill’s Acoustic Analogy and the MGBK method. The sound and mean flow in-

teraction effect is taken into account using Lilley’s refraction formulation. Numerical

results and discussions are given for the exact numerical solution of Lilley’s equation at

different Mach numbers and observer angles. In addition, the low and high frequency

asymptotic behaviour of the solution is also studied.
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As part of the current research effort CFD analysis of jet flows from various noz-

zles at different working conditions have been modelled. The turbulent and mean flow

properties of the jet flow are obtained using a modified k − ε RANS CFD model. The

sensitivity of the results to the grid and also the choice of turbulence model (k−ε, k−ω)

are considered. Comparisons of results obtained using k − ε and the k − ω have shown

that a modified k − ε model provides a much better self-similarity in the fully devel-

oped region than k − ω. Numerical results are provided for three different nozzles: (1)

single flow (TJ = 300K, MJ = 0.60, 0.75, 0.90), (TJ = 600K, MJ = 0.75), (2) coplanar

(VR=0.9, 1.0), and (3) short-cowl nozzle (VR=0.9, 1.0). The mean velocity, turbulent

kinetic energy, time scale, and length scale variation inside the jet domain at different

radial positions are presented. The potential core length has been found to be about

seven diameters long and the shear layer spreading rate is about 6 degrees. Generally

speaking, most of the powerful sources are aggregated in the first 20 diameters, while

the very high frequency ones are near the jet exit. One can also deduce from the results

that the length scale and time scale behave as a linear function of the axial distance

beyond x = 10Ds, which means the region is dominated by some large eddies. It has

been also shown that most of the high frequency sources in coaxial flows are between

the secondary potential core and the outer shear layer for the velocity ratios considered.

It has been shown that the sources located between the two potential cores are much

weaker and are also completely shielded by the secondary potential core, which implies

they cannot be of great importance in the process of the noise radiation to an observer

located around the jet flow. The convergence of the turbulence quantities, such as the

turbulence kinetic energy, beyond 15Ds shows that the large eddies govern the dynamics

of the flow in that region.

A comprehensive study has been provided for different turbulence scales, associated

physical phenomenon, and time and length scale. Turbulence is studied from two stand-

points, (1) size of the scales, and (2) dominant physical phenomenon. It is shown that

understanding the physics of the turbulence and its connection to the noise production

and radiation mechanism can be of great importance. It is also shown that the inertial

subrange is the main contributor to the noise production mechanism. However, the

inertial subrange shares borders with the dissipation and production regions and there-

fore eddies there are affected through sweeping and straining. General scaling laws for
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radiated noise are provided under the sweeping and straining assumptions.

The main goal of the project has been to investigate the frequency dependency of

the defining parameters, i.e. time scale, length scale, and convection velocity. Various

models based on experimental data and physical reasoning are given. It has been shown

that the sources of the same frequency are usually aggregated at almost the same distance

from the jet exit. This implies that the frequency dependency can also be modeled

using an axial distance or shear layer width dependent relationship. Such relationships,

with explicit frequency dependency factor, are provided for the time scale and length

scale. However, one of the apparent weaknesses of these types of models is their lack of

generality.

It has been shown that one step forward in modelling the frequency dependency of

the defining parameters is splitting the shear layer into a finite number of domains (two

or three usually) and associating a time scale and length scale to each. Furthermore, a

new time scale based on the turbulent energy transfer rate has been introduced which

is shown to be capable of improving aerodynamic noise prediction, particularly in the

low and high frequency bands. It has also been demonstrated that the known frequency

dependence of the timescale no longer needs to be modelled explicitly as it arises as a

natural consequence of the underlying physics.

Numerical results and discussion are provided for noise and axial source distribution

predictions of single stream flows at different Mach numbers and temperatures. The

MGBK method along with the high frequency asymptotic solution of Lilley’s refraction

equation are used, while most of the aforementioned time scales, length scales, and

convection velocities are utilized. Results have shown that the highest level of damping

due to the refraction effect occurs at high frequencies and for the observers in the vicinity

of the jet axis, which implies comparably sharper roll-off after the peak frequency for the

observers near the jet axis. It is shown that despite the difficulties of calibrating various

coefficients, using multiple time scales results in very good agreement with experimental

data over a wide range of frequencies. In this method the “effective dependence on

frequency” arises naturally as the relative importance of different physical processes

changes with different areas of the jet flow. It has also been shown that the difficulty

of calibrating many coefficients can be overcame by using a time scale based on the
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turbulent energy transfer time scale (TET). Noise prediction results obtained using the

TET time scale show a very good agreement in the most of the cases with data at ninety

degrees as well as other angles, except very small and large angles. A comprehensive

discussion is given for causes of the peak frequency discrepancy when the observer is

located near the jet axis or behind the jet exit. It is suggested that the one physically

and mathematically justified reason is the distance between the low frequency sources

and the observer location which is sometimes less than 20D.

Source location (i.e. axial distribution) predictions have also shown the superiority

of the energy transfer time scale over the dissipation and multiple time scales approach.

Furthermore, the effects of source compactness and turbulence anisotropy are also taken

into account and it is shown that their effect can be included in the noise prediction

model using a complementary coefficient. Two types of convection velocities (mean

velocity model and frequency dependent model) have been also examined. Apart from

minor differences their general trend is very similar and no significant improvement has

been obtained.

Numerical comparisons are then extended to modern nozzle geometries, i.e. coplanar

and short-cowl nozzles. Two bypass velocity ratios have been chosen (V R = 0.9 and 1.0)

(TJ = 300K). The jet noise prediction methodology is based upon the MGBK method

and high frequency asymptotical solution of Lilley’s equation. In general, results have

shown that use of the dissipation time scale would lead to an under-prediction at low

and high frequencies, while the new time scale (turbulent energy transfer rate) has the

merit of improving both sides of the spectrum. It has again been shown that the most

important reason of the mismatches between peak frequencies at small and large angles

is due to the relatively small distance between the observer position and the jet shear

flow, which will finally lead to the failure of the solution of Lighthill’s equation to meet

the retarded-time assumption. The source location predictions have also shown that

using the turbulent energy transfer rate time scale offers better agreement than the

dissipation time scale.



Chapter 7 Conclusion and Recommendations 129

7.2 Recommendations for Future Work

When the work contained in this thesis is viewed from a global perspective it becomes

clear that there are several avenues for future exploration. The weakest links in the

statistical jet noise methodologies lay firstly in the deficiencies in the CFD prediction of

the turbulence levels in the jet plume, secondly the understanding the turbulence and

its connection with the noise production mechanism, and finally the noise prediction

modelling itself. Hence, the recommendations for future research fall into the following

categories: (1) CFD, (2) turbulence study, (3) noise prediction modelling.

(1) CFD: The turbulence CFD model used in this thesis is based on 2D axisymmetric

RANS k − ε model. Although the RANS based models provide a very fast solution,

comparisons have shown that they are not able to capture the turbulence levels very

well. So, any further improvement in jet noise prediction will be subject to obtaining

more accurate CFD results.

These improvements could take the form of corrections to existing two-equation tur-

bulence models, such as the variable diffusion correction as investigated by Engblom et

al. [30], modifications for heated jets referred to as the PAB temperature correction

[104], and variable closure coefficients (as shown in this thesis). Furthermore, it has

been shown that the k−ω model provides better agreement in near wall regions. Hence

using the Menter shear stress transport (SST) formulation (uses k − ω near walls and

a standard k − ε model transformed to a k − ω set for regions away from walls such

as in jet mixing regions) might also improve the prediction. Further improvement can

also be achieved by applying more advanced Reynolds stress turbulence models. Al-

though RANS CFD analysis is certainly the fastest and most used turbulence model,

using more advanced hybrid methods, such as Detached Dddy Simulations (DES) will

provide a good chance to improve the quality of the CFD prediction. Although this

approach, as well as LES and DNS models, may at this time be computationally ex-

pensive for industrial and engineering purposes, it would certainly be a useful validation

for improving the present RANS-based noise prediction methods (such as the MGBK

method), particularly for low Reynolds number flows.

In order to make further progress with the refraction effect problem, as well as the
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noise blockage by the mean flow, for more general types of nozzles (such as serrated

and with offset exits) 3D CFD simulation is necessary. As shown in this thesis, the

region of highly damped sources (those radiating into the cone of silence) can be found

using the CFD results. Finding those three dimensional surfaces (critical angles, θ∗)

for non-axisymmetric nozzles will be very useful and can help us to better understand

the refraction effect. Furthermore, noise propagation through the shear layer of a non-

axisymmetric nozzle is another interesting subject which can be tackled using ray tracing

methods which themselves require CFD information. It is generally believed that the

noise radiated from the bottom half of the jet flow is mostly blocked and therefore

its contribution to the observer located above the jet flow is much less than the noise

radiated of the top half of the jet flow. The ray tracing method (or a FEM solution)

can provide some useful information on this issue.

(2) Turbulence study: The main purpose of this research work was to show the

importance of the turbulence study for jet noise prediction. It has been shown that due

to the physics of the jet noise problem, turbulence and noise production and propagation

are inherently linked. However, due to the complexity of the problem, statistical jet

noise methodologies deals with it as a two-part solution problem (i.e. CFD+Acoustic).

Therefore, the turbulence study becomes of much importance since it links these two

parts, namely CFD and noise prediction modelling. Although some of these studies have

been given in this work, such as the turbulent energy transfer time scale, and frequency

dependency of parameters, this area is still open for further theoretical and experimental

research. The following examples are brought here for instance:

(a) Further developing the idea of the straining and sweeping effects on the inertial

subrange and developing more general scaling laws. This will also facilitate understand-

ing of the peak frequency problem and will help to find a non-trial and error method for

calibrating the time scale coefficient.

(b) Implementing more advance turbulent energy spectrum models to better show

the effect of the anisotropy of velocity fluctuations (to find the turbulent energy transfer

rate scales), as [105]
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E(κ) ∝ ε
2/3
effκ−5/3,

εeff = ε
[
1− 0.60sgn

(
Dε
Dt

)
(κlp)−2/3

]3/2
,

(7.1)

where lp = ε2
/∣∣Dε

Dt

∣∣ characterizes a dynamical property of the turbulent-energy-production

process and sgn is the sign function.

(c) One of most important weaknesses of the frequency dependent length scale used

in this thesis is that it is based on results of a very low Mach number flow (MJ = 0.16)

[48]. This means that more experimentation needs to be carried out at higher Mach

numbers and at different positions within the jet flow.

(d) As mentioned in section 5.1.4.2 the anisotropy effect was included in the noise

prediction model using a single parameters, βc, which treats all the eddies (sources) in

the same way. One can readily deduce that such an assumption is not very accurate

because the anisotropy effect should entirely vanish at very small scales where Tay-

lor’s hypothesis holds. This suggests that the anisotropy model should be frequency

or location dependent, increasing (decreasing) with axial distance (frequency). Further

investigation requires more experimentation and turbulence study.

(3) Noise prediction modelling: The noise prediction modelling also suffers from var-

ious weaknesses. As shown before, noise prediction comparisons are usually made at

insufficiently large distances from the jet exit. This is not consistent with the retarded

time assumption and will cause the peak frequency mismatch problem for observers near

the jet axis. The second weakness is that of dipole and monopole sources arising as a

result density variation within the shear layer. It has been shown by Khavaran and

Kenzakowski [106] that the implementation of a set of linearized, inhomogeneous Eu-

ler equations for heated flows will significantly improve the acoustic predictions at the

90-degree observer angle. Furthermore, development of a 3D statistical noise prediction

code along with a 3D ray tracing (or 3D BEM) can be of much help in understand-

ing various noise production and radiation related problems, such as noise blockage,

radiation from non-axisymmetric flows, sound-wing interaction, and most importantly,

development of new ideas for noise reduction.





Appendix A

CFD Simulation

As previously mentioned in Chapter 2, in order to deal with Lighthill’s equation or the

MGBK method one needs to provide some information about the mean values and the

turbulence characteristics of the flow. Such information will be used for identification of

the source terms as well as the description of some phenomena such as convection and

refraction. Finding these quantities is quite a straightforward task using commercial

software, such as FLUENT. Three nozzles are considered in this thesis: (1) Single-flow

nozzle, (2) Coplanar nozzle, and (3) Short-cowl nozzle.

The structure of this chapter is as follows: In section A.1 the most important RANS

turbulence models, namely k−ε, and k−ω, are introduced and the corresponding formu-

lations are given. General descriptions of the problem geometry and mesh used for the

single flow nozzle is given in section A.2. Section A.3 concerns the grid sensitivity of the

solution, as well as the sensitivity of the solution to the choice of the turbulence model.

The CFD results used in Chapters 5, and 6 are presented in section A.4. Numerical

results for an unheated and heated single flow jet will be given in sections A.4.1 and

A.4.2. Section A.4.3 concerns the CFD results of a coplanar nozzle working at different

bypass velocity ratios. Finally, section A.4.4 deals with the CFD runs performed for a

short-cowl nozzle, which is the most realistic model and very similar to real jet engine

nozzles.
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A.1 Turbulence Modeling

Three different regimes: laminar, transitional and turbulent, can generally be noticed

in a flow field. The flow in the laminar regime is quite smooth, and the adjacent layers

of fluid slide past each other in an orderly manner. The change from a laminar flow to

a turbulent one, due to the instability of the laminar state, is called transition. In the

transition region the initially small disturbances are amplified, areas with concentrated

rotational structures are developed and finally the growth and merging of these areas

leads to a fully turbulent flow. Most flows encountered in nature as well as in industrial

applications are turbulent. However, due to its complexity, our understanding of tur-

bulent flows is still incomplete. Turbulence is characterized by a number of properties.

It has been described as a random/irregular motion, both in time and space. The dy-

namics of turbulence involve a wide range of scales. While the size of the large scales is

typically determined by the geometry of the flow, the size of the smallest scale decreases

with increasing Reynolds number (Re), and is determined by the viscous dissipation

process.

In most turbulent flows it is impossible to resolve all the length and time scales

with the computational capacity of today, so one needs to introduce models to simulate

some aspects of the flow. Most of the feasible turbulence models are based on statistical

approaches where the governing equations of the flow are averaged in time or space. Two-

equation Models of turbulence have served as the foundation for much of the turbulence

modelling research during the past years. Many kinds of two-equation models, such as

k − ε, k − ω, k − ν2, k − L, etc., have been introduced and checked against each other.

However, the k−ε and k−ω models have received most attention. Here, we shall give the

formulation of these two methods, their theoretical differences and finally a numerical

comparison of the methods for the problem of subsonic unheated MJ = 0.75 round jet.

A.1.1 Mathematical Modelling

The equation governing the mean kinetic energy vivi/2 of the turbulent velocity fluc-

tuations is obtained by multiplying the Navier-Stokes equations by vi, taking the time
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average of all terms, and subtracting the mean flow energy equation. The final equation

of the turbulent energy budget for an incompressible flow, can be found from [69]

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε +

∂

∂xj

[
ν

∂k

∂xj
− 1

2
vivjvk − 1

ρ
pvj

]
, (A.1)

where an overbar is a shorthand for the time average. The quantity ε is the dissipation

rate per unit mass and is defined by the following correlation:

ε = ν
∂vi

∂xk

∂vi

∂xk
, (A.2)

and the specific Reynolds stress tensor is given by

τij = −vivj . (A.3)

Assuming the Boussinesq approximation, the specific Reynolds-stress tensor can be

found by

τij = 2νT Sij − 2
3
kδij , (A.4)

where Sij is the mean strain-rate tensor, and the kinematic eddy viscosity is given by

νT = const. k1/2l, (A.5)

l being turbulence length scale.

Using the DNS results one can show that the turbulent transport and pressure diffu-

sion terms (i.e. the last two terms in Eq. A.1) can be approximated as

1
2
vivjvk +

1
ρ
pvj = −νT

σk

∂k

∂xj
, (A.6)

where σk is a closure coefficient.

Finally, assuming the latter approximation, equation A.6, and also the Reynolds-

stress definition, equation A.1 can be expressed as follows:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε +

∂

∂xj

[(
ν +

νT

σk

)
∂k

∂xj

]
. (A.7)
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To complete the closure of the turbulent kinetic energy equation, it can be supposed

that the energy dissipation rate is related to the turbulent kinetic energy and length

scale via,

ε = CDk3/2/l, (A.8)

where CD is a closure coefficient. This method is called a one-equation model. The

only unknown part of the model is l, which can be estimated from a knowledge of

experimental results.

Besides the one-equation method, as indicated at the beginning of section, two-

equation models play an important role in RANS simulations. The following two sections

provide an overview of the mathematical modelling of the k − ε and k − ω models.

A.1.2 k − ε Method

The most popular two-equation model is the k−ε model. To formulate the k−ε model,

the idea is to derive an exact equation for ε and also to find the suitable closure approx-

imations for the exact equation governing its behavior given equation (A.1). Although

ε can be found by equation (A.2), the precise relation governing it can be derived by

applying the following operator to the Navier-Stokes equation:

2ν
∂vi

∂xj

∂

∂xk
[N(vi)] = 0, (A.9)

where N(ui) is the Navier-Stokes operator, and is expressed as:

N(vi) = ρ
∂vi

∂t
+ ρvk

∂vi

∂xk
+

∂p

∂xi
− µ

∂2vi

∂xk∂xk
. (A.10)

After a considerable amount of algebra, the following equation for ε results [107],

∂ε

∂t
+ Uj

∂ε

∂xj
= −2ν [vi,kvj,k + vk,ivk,j ]

∂Ui

∂xj
− 2νvkvi,j

∂2Ui

∂xk∂xj

−2νvi,kvj,mvk,m − 2ν2vi,kmvi,km

∂

∂xj

[
ν

∂ε

∂xj
− νvjvi,mvi,m − 2

ν

ρ
p,mvj,m

]
(A.11)

The new complementary equation derived has increased the number of unknowns and

the solution is now even more complicated. Once more, with help of DNS results and
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making some approximations, the standard k − ε model can be written as follows:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε +

∂

∂xj

[(
ν +

νT

σk

)
∂k

∂xj

]
, (A.12)

∂ε
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∂xj
= Cε1

ε

k
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∂xj
− Cε2

ε2
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]
, (A.13)

νT = Cµ
k2

ε
, (A.14)

Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3, (A.15)

l = Cµk3/2
/

ε, (A.16)

where equations (A.15), and (A.16) are the closure coefficients and auxiliary relations

respectively. The above system of equations are usually referred to as the RANS k − ε

model.

The k − ε has been changed and improved in many ways, and the RNG k − ε is

known as one of the most well-known changes applied to it. In this model k and ε are

still given by equation (A.12) through (A.14), but a modified changeable Cε2 is defined:

Cε2 = C̃ε2 +
Cµλ3 (1− λ/λ0)

1 + βλ3
, (A.17)

where λ ≡ k
ε

√
2SijSji, and closure coefficients for RNG k − ε are

Cε1 = 1.42, , C̃ε2 = 1.68, Cµ = 0.085,

σk = 0.75, σε = 0.72, β = 0.12, λ0 = 4.38. (A.18)

A.1.3 k − ω Method

In most of the two-equation models the turbulent kinetic energy k is taken as one of

the variables of the solution, but the second variable needs to be chosen. Different

parameters have been examined for this purpose, such as k − L, ε, k − ω, k − ω2, and

k − τ . However, k − ε and k − ω are the most well-known and used turbulence models.

Hence, in this section, the formulation of the k − ω is presented.
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Combining the physical reasoning with the dimensional analysis, Kolomgorov [108]

hypothesized the following equation for the specific dissipation rate of ω can be found,

∂ω

∂t
+ Uj

∂ω

∂xj
= −βω2 +

∂

∂xj

[
σνT

∂ω

∂xj

]
, (A.19)

where β and σ are two closure coefficients. Due to some inherent flaws in this equation,

another set of equations are offered to improve the accuracy of the model for free shear

flows [107],
∂k
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]
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νT =
k

ω
, (A.22)

where the closure coefficients and auxiliary relations are [107]:

α = 13/25, β = β0fβ, β∗ = β∗0fβ∗ , σ = 0.5, σ∗ = 0.5, (A.23)

β0 = 9/125, fβ =
1 + 70χω

1 + 80χω
, χω ≡

∣∣∣∣
ΩijΩjkSki

(β∗0ω)3

∣∣∣∣ , (A.24)

β∗0 = 9/100, fβ∗ =





1, χk ≤ 0
1+680χ2

k

1+400χ2
k
, χk > 0

, χk ≡
1
ω3

∂k

∂xj

∂ω

∂xj
, (A.25)

ε = β∗ωk, l = k1/2/ω. (A.26)

The above formulations are usually referred to as the standard k − ω turbulence

model. In the next section we shall make use of these two RANS turbulence models

(i.e., k − ε, k − ω) for the proposed geometry with different grids to investigate the

sensitivity of the solution to the grid size and also to the choice of the turbulence model.

A.2 Geometry and Mesh Descriptions

A preliminary single-stream nozzle geometry (DJ=50mm, sharp lip) has been used as a

benchmark for the preliminary jet flow calculations. The geometry is depicted in figure

A.1.
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Figure A.1: Problem Geometry

The computation domain chosen for the RANS computations consists of an interior

nozzle domain, before body domain and jet domain which is extended 100DJ axially and

20DJ radially. The Gambit software is used to generate the two-dimensional structures

and grid. The domain is divided into 27 rectangular sub-domains to make the structural

meshing easier. This section concentrates on the simulation of a single flow nozzle.

However the simulation process (meshing and boundary conditions) for the coplanar

and short-cowl nozzle are carried out in a similar fashion.

In order to solve any boundary value problem, one first needs to specify the boundary

conditions. For the cold single flow jet a “velocity-inlet” boundary condition is chosen to

simulate the flow of the incompressible fluid through the entrance plane, while for the hot

jet a “pressure inlet” boundary condition must be used. In addition to the inlet boundary

condition type, two other quantities are required to describe the nature of the turbulent

medium at the jet entrance. The hydraulic diameter and the turbulence intensity are

chosen for this purpose. The turbulence intensity at the core of a fully-developed duct

flow can be estimated from the following formula derived from an empirical correlation

for pipe flows:
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I = 0.16 (ReDH
)−1/8

where DH denotes the hydraulic diameter, and Re is Reynolds number. For fully-

developed internal flows, the hydraulic diameter can be assumed equal to the diameter of

the pipe. Additionally, the “Pressure-inlet” and “Pressure-outlet” boundary conditions

(that are characterized with a very small turbulent viscosity and intensity) are chosen

to replicate the surrounding lines of the computational domain. Furthermore, in order

to decrease the computation time, a symmetry boundary condition on the axis is also

employed in the current 2D simulation. The FLUENT solutions are obtained by running

10000 iterations using the steady-state coupled solver (implicit), axisymmetric mode,

with a second order accuracy.

A.3 Mesh Sensitivity, Near-Field and Self-Similarity As-

sessment

Many grid sizes have been tested to find the best mesh with respect to the CFD accuracy

and also the simulation time. Here, comparisons are presented for two meshes (referred

to as the fine and coarse mesh) to examine the grid sensitivity of the CFD simulations.

The smallest scales used for the fine mesh is in order of 5 ∗ 10−5m, with the grid size

increasing in the axial and the radial directions. The total number of quadrilateral cells

used for the fine mesh is about 200000, while that for the coarse mesh is about 90000.

The finest cells are utilized near the outlet of the nozzle and especially close to the nozzle

lip, where considerable interaction between the jet flow, solid body, and the surrounding

at rest medium occurs. The smallest size for the coarse mesh is 10−3m, which increases

with x and r. Different views of the computational domain using the fine grid mesh can

be seen in figure A.2.

An assessment of the grid sensitivity is presented in figure A.3, where contours of the

mean velocity for a MJ = 0.75 single-flow unheated jet using the coarse and fine grids

are presented. Although results show a reasonable agreement near the nozzle exit, they

are slightly different further downstream. Hence, due to the good performance of the

fine grid, this grid will be used in our future 2D computations. A very similar grid will

be used for the coplanar and short-cowl nozzles, which will be explained later.
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Figure A.2: Problem geometry and mesh distribution

Figure A.3: Sensitivity of the CFD results to mesh size; (a) coarse mesh, (b) fine
mesh

The sensitivity of the plume mean velocity to the choice of turbulence model is

considered for a single flow M0.75 jet. Calculations were performed using Fluent with

the standard k−ω and the modified k−ε turbulence model. In the modified k−ε model

the Cε2 factor has been changed from 1.92 to 1.83 in order to reduce the spreading rate

from about 0.12 to 0.10, which provides better self-similarity in the fully developed

region.

In order to compare the differences of k− ε and k−ω models figures A.4 and A.5 are

presented. The realizability constraint consists of an eddy viscosity limiter and acts in

such a way that the normal Reynolds stress components with the wrong sign (unphysical

behaviour) are avoided. Contours of the mean velocity for both models are shown in

figure A.4. Results of the k − ω models shows an extra lobe near the jet exit - from
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a physical point these cannot be justified. The results using the k − ε model are more

consistent with what is actually expected from the physics of the problem.

Figure A.4: Near-field comparison of k − ε and k − ω models

Figure A.5: Self-similarity comparisons of k − ε and k − ω models (fully developed
region)

Another important test to determine the accuracy of the turbulence model for round

jet flows is the known self-similarity rule in the fully developed medium. Evidently,

a high quality RANS solution must capture this self-similarity. An evaluation of the

self-similarity of the computed jet has been made and is presented in figure A.5, for

the standard k − ε turbulence model (with realizability constraint). The self-similarity

was checked by plotting various radial profiles with a scaling which should collapse the

curves to one single curve. In this scaling r1/2 is the half-width of the jet flow width.
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The figures show that using a k − ε turbulence model (with realizability constraint)

leads to overlaying of all of the curves. An equivalent evaluation of the k − ω model is

also presented in A.5. It is apparent that the calculated flow field does not capture the

self-similarity of the flow.

A.4 Numerical Results and Discussions

Numerical results are presented for three nozzles: (1) Single stream nozzle, (2) Coplanar

nozzle, and (3) Short-cowl nozzle. Simulations are performed using the modified k − ε

model with the fine grid introduced earlier.

A.4.1 Unheated Single Flow Jet, M0.75

Figure A.6: Mean velocity profiles at different axial distances. Solid line:CFD, marker:
Measured data

The first CFD simulation is performed for a MJ = 0.75 unheated single-stream jet.

Figures A.6 through A.10 present the variation of the mean velocity, turbulent kinetic

energy, turbulent length scale, and turbulent time scale inside the jet flow. Figure

A.6 shows the comparison of the mean velocity with the measured data at three axial
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distances (x = DJ , x = 2.5DJ , and x = 5DJ). Comparison shows an acceptable

agreement at different jet regions. The turbulent kinetic energy variation and also

comparison with measured data along the jet lip-line is presented in figure A.7. The

figure clearly illustrates the interactions between the outgoing stream with the lip of the

nozzle and the surrounding at rest medium (r/DJ = 0.5), which creates a region of high

frequency noise sources near the lip (0 ≤ x/DJ ≤ 1). Furthermore, the figure shows that

the most important source are located in a region of 0 ≤ r/DJ ≤ 2 and 0 ≤ x/DJ ≤ 20.

Furthermore, comparison shows that the CFD results are in good agreement with the

measured data.

Figure A.7: Turbulent kinetic energy; MJ = 0.75, unheated single flow jet. Line:
CFD, Marker: Measured data

Figures A.9 and A.10 show the turbulent length (k3/2/ε) and time scale (k/ε). The

smallest scales can be observed at the nozzle lip, which increase along the jet axis and

also the radial direction. The collapse of the length scale and time scale curves on each

other regardless of radial position in the downstream region shows that it is dominated

by some large structures (big eddies).



Appendix A CFD Simulation 145

Figure A.8: Modeled fluctuating velocity; MJ = 0.75, unheated single flow jet

Figure A.9: Turbulent length scale (L = k3/2/ε); MJ = 0.75, unheated single flow jet
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Figure A.10: Turbulent time scale (τ = k/ε); MJ = 0.75, unheated single flow jet

A.4.2 Hot Single Flow Jet, M=0.75

The FLUENT solutions were obtained by running 10000 iterations using the coupled

solver (implicit) with second order accuracy. In addition, the ideal gas law was enabled.

As mentioned in Chapter 2 the mean flow (U , T , c) and turbulent results (k, ε)

are needed for noise prediction of a heated single flow jet (MJ = 0.75). Again the

modified k − ε method has been used to obtain the required information. The similar

fine mesh of the previous simulation is used. The boundary conditions are the same

as the previous model, except for the jet inlet surface. Due to the compressibility of

the flow at temperature of TJ = 600K, a “pressure inlet” boundary condition has been

chosen.

The turbulent kinetic energy variations at different radial locations are shown in

figure A.11. The trend of the curves is more or less similar to those of the unheated jet,

but the magnitude of the values is less than what was found from the unheated jet flow.

This implies that we are now dealing with some weaker sources in the hot jet. However

the temperature variation inside the jet flow means that some new noise sources should
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appear. Comparison with measured data across the centre-line also shows an acceptable

level of agreement.

Figure A.11: Turbulent kinetic energy; MJ = 0.75, TJ/T0 = 2, hot single flow jet,
Line: CFD, Marker: Measured data

Temperature variation, and accordingly density and sound speed variation within

the jet flow plays a very important role in noise prediction. This particularly effects the

refraction and finding the turning point locations, as discussed earlier in section 2.2 (see

figure A.12). Finally, the length scale and time scale are calculated and shown in figures

A.13 and A.14. Results, in general, are very similar to the unheated jet flow results.

There are a few differences inside the potential core and outside the shear layer which

are not very important in regard to the noise generation mechanism.

A.4.3 Coplanar Jets

The CoJeN coplanar nozzle has been used in this part of the work. The nozzle geometry

is shown in figure A.15. The inner nozzle diameter is Dp = 0.0995m and the secondary

diameter is Ds = 0.200m. The grid size and its structure is similar to that used for the

single flow jet, except that the first row of meshes is repeated for the secondary exit.

Two different velocity ratios have been chosen for this simulation. In the first case, the
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(a) Density; MJ = 0.75, TJ/T0 = 2 (b) Temperature; MJ = 0.75, TJ/T0 = 2

Figure A.12: Density and temperature variation within the jet flow, hot single flow
jet

Figure A.13: Length scale (L = k3/2/ε); MJ = 0.75, TJ/T0 = 2, hot single flow jet

primary velocity is Vp = 217.2m/s, and the secondary is Vs = 217.2 (velocity ratio is 1),

and in the second case Vp = 240.9m/s and Vs = 217.2 (VR=0.9).

Figures A.16 to A.17 show the mean velocity and turbulent kinetic energy contours
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Figure A.14: Time scale (τ = k/ε); MJ = 0.75, TJ/T0 = 2, hot single flow jet

Figure A.15: Coplanar nozzle geometry

of V R = 1.0. Figure A.16 shows contour of the mean velocity. It can be seen that the

potential core extends up to 7Ds downstream. Furthermore, the figure shows that the

coplanar jet flow in this case behaves very similar to that of a single flow jet. Figure

A.17 shows the contour of the turbulent kinetic energy inside the shear layer. It can

be seen that the most powerful sources are aggregated close to the secondary lip, while
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much weaker sources can be seen near the primary lip. This occurs because the outgoing

streams are parallel and with the same speed, so there will be a very weak turbulent

interaction between them.

Figure A.16: Mean velocity contour of a coplanar nozzle; VR=1

Figure A.17: Turbulent kinetic energy contour, coplanar nozzle, VR=1

Figures A.18 and A.20 show the variation of the mean velocity, turbulent kinetic

energy, and turbulent scales at different radial positions, respectively. The following

inferences can be deduced: (1) The most powerful sources are aggregated in the region

of x < 15Ds, (2) results overlay on each other after 15Ds which means the region is

dominated by large scale structures, (3) sources located near the secondary lip (r =

0.5Ds) have almost the same source strength up to x = 10Ds where a sharp roll off

occurs. Figure A.20 shows the variation of the length scale and time scale at different

radial positions. One can deduce that the smallest scales are located near the primary

and secondary lips. Furthermore, the overlap of the curves downstream (x > 15Ds)

shows that this region is mostly occupied by large eddies.
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Figure A.18: Velocity profile at different radial positions, coplanar nozzle, VR=1
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Figure A.19: Turbulent kinetic energy, coplanar nozzle, VR=1

Similar figures are also provided for the second bypass velocity ratio case (V R = 0.9).

It can be seen that results are very similar to V R = 1. However the most important

difference is the value of the turbulent kinetic energy at x = 10Ds, where results of

V R = 0.9 peaks, while those of V R = 1.0 starts to roll off, see figures A.24 and A.19.
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Figure A.20: Length scale and time scale, (L = k3/2/ε, τ = k/ε), coplanar nozzle,
VR=1

Figure A.21: Mean velocity contour, coplanar nozzle, VR=0.9

This causes the appearance of a new group of sources - probably due to the difference of

the speed of the outgoing streams which will create a powerful turbulent region. It can

also be seen that there is a considerable difference between the magnitude of the source

strengths near the secondary lip and the primary lip before x < 5Ds. This difference

decreases as we move downstream and will completely vanishes after x = 10Ds. This

means that the curves are related to the same large turbulence structure (i.e. eddy).

Figure A.25 shows the variation of the length scale and time scale at various radial
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Figure A.22: Turbulent kinetic energy contour, coplanar nozzle, VR=0.9
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Figure A.23: Velocity profile at different radial positions, coplanar nozzle, VR=0.9

positions. The length scale curves are very similar to those of V R = 1, but the time

scales obtained for V R = 0.9 are slightly larger than those of V R = 1. Once again, one

can readily see from the figures that the curves start to overlay after about x > 15Ds,

which indicates dominance of the larger scales.
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Figure A.24: Turbulent kinetic energy, coplanar nozzle, VR=0.9
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Figure A.25: Length scale and time scale, (L = k3/2/ε, τ = k/ε), coplanar nozzle,
VR=0.9
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A.4.4 Short-Cowl Nozzle

Numerical results are presented for a short-cowl nozzle working at bypass velocity ratios

0.9. The geometry of the nozzle can be seen in figure A.26. The computational domain

is extended to 60Ds in the axial direction and 25Ds in the radial direction. The flow

domain consists of 17 regions and a total of 320000 cells have been used for the grid.

A “velocity inlet” boundary condition is used at the jet inlet and “pressure inlet” and

“pressure outlet” boundary conditions are used at the domain boundaries.

Figure A.26: Short-cowl nozzle geometry

Figure A.27 and A.28 shows contours of the mean velocity and turbulent kinetic

energy for the first case (V R = 1). It can be seen that the primary potential core length

is about 7Ds, and the secondary potential core, due to the curvature of the secondary

nozzle, is very short and mixes with the primary potential core very soon after leaving the

nozzle exit. The most powerful sources are also mostly aggregated in first ten diameter

(10Ds) from the jet exit. The interaction between two outgoing flows is very small and

no significant turbulent medium emerges between them.

Variation of the mean velocity, turbulent kinetic energy, length scale and time scales

are shown in figures A.29 through A.31. The following inferences can be made. Due

to the special design of the secondary nozzle, the outgoing flow is pushed downwards,

and therefore no powerful source can be seen near the primary nozzle lip. However,

results show that most of the powerful sources are in region of 2Ds < x < 15Ds. This

is very different from what has been observed in single stream and coplanar jets, and is
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Figure A.27: Mean velocity contour of a short-cowl nozzle; VR=1.0

Figure A.28: Turbulent kinetic energy contour of a short-cowl nozzle; VR=1.0

because of the design of the short-cowl nozzle. It can be also seen that beyond 15Ds the

turbulent kinetic energy curves, as well as the length scale and time scale, converge to

one single curve across the radial direction. This is because this region is a production

rate region and the large eddies govern the dynamic of the flow.

Numerical results of a short-cowl nozzle working at bypass velocity ratio V R = 0.9 are

presented in figures A.32 through A.36. Figure A.32 shows contour of the mean velocity

across the computational domain. Owing to the difference of the stream velocities, two

distinct potential cores are now visible. A very small turbulent medium also emerges as

a results of the interaction between the two flows, which is however entirely covered by

the secondary potential core and will not be of great importance in the noise production

mechanism, see figure A.32 and A.33. Figure A.34 shows the variation of the mean

velocity at various radial locations. Figure A.35 illustrates the behaviour of the turbulent
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Figure A.29: Mean velocity variation, short-cowl nozzle, VR=1.0
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Figure A.30: Turbulent kinetic energy variation, short-cowl nozzle, VR=1.0

kinetic energy inside the jet flow at different radial distances. By comparing figure A.35

with A.30, one can also deduce that the sources appearing in the second case are slightly

more powerful than those observed in the first case (VR=1). It can be also seen that

the length scale behaves as a linear function of axial distance beyond x = 10Ds. In

order to further examine the correctness of the presented results, another comparison
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Figure A.31: Length scale and time scale variation, short-cowl nozzle, VR=1.0

with measured data is presented. Figure A.37 illustrates the comparison of the CFD

for a V R = 0.63, Tp = 850K short-cowl nozzle with the measure data at three different

axial distances. As it can be seen, results are generally in good agreement.

Figure A.32: Mean velocity contour of a short-cowl nozzle, short-cowl nozzle, VR=0.9
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Figure A.33: Turbulent kinetic energy contour of a short-cowl nozzle, short-cowl
nozzle, VR=0.9
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Figure A.34: Mean velocity variation, short-cowl nozzle, VR=0,9
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Figure A.35: Turbulent kinetic energy variation, short-cowl nozzle, VR=0.9
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Figure A.36: Length scale and time scale variation, short-cowl nozzle, VR=0.9
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