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The ability to separate acoustically radiating and non-radiating components in fluid flow
is desirable to identify the true sources of aerodynamic sound, which can be expressed in
terms of the non-radiating flow dynamics. These non-radiating components are obtained
by filtering the flow field. Two linear filtering strategies are investigated: one is based on
a differential operator, the other employs convolution operations. Convolution filters are
found to be superior at separating radiating and non-radiating components. Their ability
to decompose the flow into non-radiating and radiating components is demonstrated on
two different flows: one satisfying the linearized Euler and the other the Navier-Stokes
equations. In the latter case, the corresponding sound sources are computed. These
sources provide good insight into the sound generation process. For source localization,
they are found to be superior to the commonly used sound sources computed using the
steady part of the flow.

I. Introduction

Aircraft noise severely impacts the quality of life of residents living near airports and is a problem that
will become even more pressing in the future, with air traffic forecast almost to double in the next two
decades. One of the most dominant sources of aircraft noise is jet noise. It has been greatly reduced
following the advent of high bypass-ratio engines that reduce significantly the jet exit velocity. Further
increase in bypass ratio would adversely affect the propulsive efficiency. Hence we need other means of noise
reduction. However, despite more than 50 years of research in aeroacoustics, controlling the sound radiated
by turbulent jets remains difficult. One reason is that no definite answer has been found on how turbulent
flows generate sound.1 A major obstacle is the lack of understanding of the true sources of sound in a jet.

One way to derive sound sources from a fluid-flow is to use an acoustic analogy. In an acoustic analogy,
the complex flow field is first replaced by a simpler flow, in which the propagation of sound is more straight-
forward. For example, Lighthill’s acoustic analogy2 relies on a quiescent medium, while Lilley’s analogy3

uses a parallel flow. Secondly, an expression for the sound sources is obtained by assuming that the sound
propagates through the simpler flow. These sound sources can be used to predict the sound radiating to the
far-field. The advantage of the method is to greatly simplify the propagation of sound: complex propagation
effects are put within the sources themselves. This is also a disadvantage if we want to identify the true
sound source; the sound sources obtained by means of acoustic analogies contain a mixture of the true sound
sources, complex propagation effects, and nonlinear hydrodynamic-wave sources present in the original flow.
Identifying the radiating core of the source a posteriori is very difficult.4

An alternative method for identifying the physical sound sources is proposed by Goldstein.5 He suggests
that the governing equations for the acoustic field are the Navier-Stokes equations linearized about the
non-radiating flow. The resulting sources depend largely on the non-propagating flow field and because
they are devoid of propagation effects and hydrodynamic wave sources, they can be identified as the true
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sources of sound. Thus we can compute the sound sources if we are able to separate the radiating and
non-radiating parts of the flow. One way to do this is to filter the flow field by means of a linear filter. The
filter should remove all the radiating components of the flow, which are those that satisfy the dispersion
relation |k| = |ω|/c∞, where k is the wavenumber, ω the frequency and c∞ the speed of sound.

However, in subsonic flows, acoustic fluctuations, which travel to the far field at the speed of sound, have
a much smaller amplitude than hydrodynamic fluctuations, which are convected with the flow. Also, the
acoustic waves interact nonlinearly with the hydrodynamic waves convected with the flow. Also, the acoustic
waves interact non-linearly with the hydrodynamic waves. Hence, it is difficult to separate hydrodynamic
and acoustic waves in a flow.

The main objective of this paper is to show that it is possible to separate acoustic and non-acoustic fields
in fluid-flow equations by using linear convolution filters. The filters we use are problem dependent and are
designed based on the physics of the problem – mainly the difference in the dispersion relationship satisfied
by the acoustic and hydrodynamic waves. The filtered flow is then used to compute the sound sources. The
sound sources based on a non-radiating base flow are easier to interpret physically than those obtained by
decomposing the flow-field into its mean and fluctuating parts.

In the next section, we present an expression for aerodynamic noise sources based on a generalised wave
equation. We neglect energy sources, thus limiting us to flows where temperature effects are negligible.
However, the present work can be extended easily for more general flows. In section III, we show how to
construct a non-radiating filter for linearised Euler equations by using a simple example of harmonically
excited parallel flow. Then, in section IV, we apply a similar filtering procedure to the Navier-Stokes
equations for an axisymmetric jet that is excited at the inflow by two frequencies. The non-radiating base
flow is used to compute the corresponding sound sources.

II. Derivation of aerodynamic noise sources

II.A. General source driving small fluctuating quantities in a flow

The definition of fluctuating components is based on filtering the flow field with a linear filter. For a function
f , the filtered field f is defined by

f = Lf, (1)

where L is a linear operator. The fluctuating quantities are then obtained by subtracting the filtered quantity
from the original one:

f ′ ≡ f − f. (2)

The aim now is to write the equations governing the evolution of the fluctuating quantities. We start by
writing the Navier-Stokes equations:

∂ρ

∂t
+
∂ρvj

∂xj
= 0, (3)

∂ρvi

∂t
+
∂ρvivj

∂xj
+

∂p

∂xi
=
∂σij

∂xj
, (4)

where ρ, p and v = (vi) denote the density, pressure and flow velocity, and σij the viscous stress tensor.
Using equation (2), each term in the above equations can be decomposed into a filtered component and a
corresponding fluctuating component. If from the resulting equations, we substract the equations obtained
by applying the filter L to equations (5) and (6), we obtain the governing equations for the fluctuating
quantities

∂ρ′

∂t
+
∂(ρvj)′

∂xj
= 0, (5)

∂(ρvi)′

∂t
+
∂(ρvivj)′

∂xj
+
∂p′

∂xi
=
∂σ′ij
∂xj

. (6)

Taking ∂(6)/∂xi − ∂(5)/∂t gives

∂p′

∂xixi
− ∂2ρ′

∂t2
+
∂2(ρvivj)′

∂xi∂xj
=

∂2σ′ij
∂xi∂xj

. (7)
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We now decompose the non-linear term (ρvivj)′ in equation (7). By making use of Favre average defined
by

f̃ ≡ ρf

ρ
, (8)

from equation (2), we get

(ρvivj)′ = Tij + ρvivj − ρṽiṽj , (9)

where
Tij = −ρ(ṽivj − ṽiṽj). (10)

Decomposing ρvivj in terms of filtered and fluctuating components gives

ρvivj − ρṽiṽj = ṽiṽjρ
′ + ρṽjv

′
i + ρṽiv

′
j︸ ︷︷ ︸

linear terms

+ ρv′iv
′
j + ṽiρ

′v′j + ṽjρ
′v′i︸ ︷︷ ︸

higher order terms

.
(11)

The first group of terms on the right hand side of equation (11) consists of linear terms in the fluctuating
quantities, whereas the second group is of order two or three in the fluctuating quantities. In particular, the
term ρv′iv

′
j contains the third order term ρ′v′iv

′
j . Combining equations (7), (9) and (11) gives

∂p′

∂xixi
− ∂2ρ′

∂t2
+

∂2

∂xi∂xj
(ṽiṽjρ

′ + ρṽjv
′
i + ρṽiv

′
j) =

∂2σij

∂xi∂xj
− ∂2Sij

∂xi∂xj
, (12)

where
Sij = Tij + ρv′iv

′
j + ṽiρ

′v′j + ṽjρ
′v′i. (13)

The double divergence of (Sij), denoted by s, can be seen as a source driving the fluctuating quantities:

s = − ∂2Sij

∂xi∂xj
. (14)

Note that we have put the terms which are linear in the fluctuating quantities on the left hand side, and
the remaining terms on the right hand side of equation (12). The rationale is that linear terms correspond
to propagation effects. Depending on the choice of the filter L, the terms that are nonlinear in perturbations
can either be neglected (as small higher order terms), or can act as acoustic sources. This will become clear
in the following subsections. Also, we have left the viscous stress tensor out of Sij , because it is generally
responsible for dissipating waves rather than generating them.

An underlying assumption has been made here regarding the source definition. The definition implies an
absence of back reaction from the fluctuating quantities to the source.

II.B. Source associated with a steady baseflow

A traditional way of decomposing the flow is to use a time average filter. For a given position x and time t,
the time-averaged filtered quantity f(x, t) is given by

f(x, t) = f0(x) = lim
T→+∞

1
T

∫ T

0

f(x, τ) dτ, (15)

where f0 denotes the associated mean flow quantity.
In such cases, the fluctuating components are essentially of two kinds:

f ′ = fh + fa, (16)

where fh corresponds to hydrodynamic waves and fa to acoustic waves, assuming that such a decomposition
is possible. The hydrodynamic waves are convected with the flow, while the acoustic waves travel at the local
speed of sound. The associated source term s is responsible for driving both hydrodynamic and acoustic
waves.

If one is interested in the source of sound, problems might arise from the realization that the source
s, based on the steady flow, also includes some propagation effects. This can be illustrated by considering
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the nonlinear terms in fluctuations on the right hand side of equation (13). For example, ρv′iv
′
j can be

decomposed as
ρv′iv

′
j = ρ(viavja + viavjh + vihvja + vihvjh). (17)

Here, the term that is nonlinear in acoustic quantities, viavja, will be small and can be neglected. The term
vihvjh would be a source term for both acoustic and hydrodynamic perturbations. The remaining terms
that are linear in the acoustic field are propagation terms that should be transferred to the left hand side
because they modify the medium in which the acoustic waves propagate. This is an example of a source
that drives both acoustic and hydrodynamic waves. It is not clear how one would separate the sources that
drive the acoustic field from those that drive the hydrodynamic field. One way to overcome this problem is
investigated in the following subsection.

II.C. Source associated with an unsteady silent baseflow

Let L be a filter that removes all acoustic components of the flow field. Hence, f becomes non-radiating
(silent base flow), and the fluctuating component f ′ is only made of acoustic waves:

f ′ = fa. (18)

In other words, the filter removes the radiating acoustic components of the flow, while leaving the mean and
hydrodynamic components unchanged. In the rest of the paper, the filters which ensure that the base flow
does not contain any radiating acoustic components will be called non-radiating filters. Filters which remove
radiating acoustic components from the base flow while leaving the mean and hydrodynamic components
unchanged will be referred to as optimal non-radiating filters.

In the source region, the acoustic fluctuations are several orders of magnitude smaller than the mean and
hydrodynamic fluctuations. In particular, the high-order terms in equation (13) are negligible compared to
Tij . For an optimal non-radiating filter, in the source-region, the source term reduces to

s ≈ − ∂2Tij

∂xi∂xj
. (19)

II.D. Non-radiating filter

In the frequency domain, the filtered quantity is obtain by Fourier transforming f :

F (k, ω) =
∫ +∞

−∞

∫
S

f(x, t)ei(ωt−k·x) d2x dt, (20)

where (k, ω) is the frequency-domain coordinate system. Goldstein5 showed that, for an unbounded turbulent
flow through a quiescent medium, if the filter L is such that

F (k, ω) = 0 when |k| = |ω|/c∞, (21)

then L is non-radiating, i.e. f does not contain any radiating acoustic components.
If in addition to being non-radiating, L is such that f contains all the mean and hydrodynamic com-

ponents, leaving only acoustic radiating components in f ′, then L is an optimal non-radiating filter. Non-
radiating filters are highly desirable because, as shown in section II.C, they lead to an unambiguous expression
of the sound sources.

Differential filter

Obtaining a non-radiating filter in the time-domain is desirable because it could be implemented easily within
explicit time-domain methods. One such filter is the d’Alembertian operator, defined by

�2 =
1
c2∞

∂2

∂t2
−∇2. (22)

If f = �2f , then it can be shown that

F (k, ω) =
(
|k|2 − ω2

c20

)
F (k, ω), (23)
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which proves that F satisfies equation (21). The d’Alembertian filter can be used directly in the time domain,
using equation (22), or by windowing in the frequency domain, using equation (23).

Another important feature of differential filters is that they are local. In reality, the source of sound
is also local, i.e independent of what may occur away from the point of interest. This issue was raised by
Jordan et al.1 and is a critique directly applicable to convolution filters.

Convolution filters

Convolution filters are of the form f = w ∗ f , where

f(x, t) =
∫ +∞

−∞

∫
V
w(y, τ)f(x− y, t− τ) dy dτ, (24)

where w is a function defining the behaviour of the filter and V denotes the entire spatial domain. These
filters use information from the entire signal f , which gives more flexibility to extract the desired features
from f . In addition, from the convolution theorem, we have

F (k, ω) = W (k, ω)F (k, ω), (25)

where F , W , and F are respectively the Fourier transforms of f , w and f . Convolution filters can therefore
be conveniently applied as windowing operations in the frequency domain. For signals that involve large sets
of data, this is more efficient than using equation (24).

The problem is then to define an appropriate window W in the frequency domain, that renders the
corresponding filter w non-radiating. For a non-radiating filter, the window W (k, ω) should go to zero
whenever |k| = |ω|/c∞, i.e

W (k, ω) = 0 if |k| = |ω|
c∞

. (26)

An additional requirement for an optimal non-radiating filter is that

W (k, ω) = 1 when |k| 6= |ω|
c∞

. (27)

As noted by Goldstein,5 it is impossible to satisfy both equation (26) and (27), because the part of the window
where it should go to zero would be infinitely small. In practise, it is sufficient to satisfy equation (27) for the
main hydrodynamic components of the flow when there is a clear separation from the acoustic components
in the k− ω plane.

One example of a non-radiating filter is

W (k, ω) =
[
1− exp

(
− (|k| − |ω|/c∞)2

2σ2

)]
. (28)

This is equal to one almost everywhere, except around components satisfying the dispersion relation, where
it goes to zero. The width of the region over which the window goes from one to zero is approximately equal
to 2σ. The above filter is close to optimal for small values of σ.

An alternative method for defining a non-radiating filter is to focus on capturing the main hydrodynamic
components of the flow. A prior understanding of the hydrodynamic content of the flow is required to do
so. Such understanding can be obtained by a careful analysis of the Fourier transform of the flow field.

III. Filtering a two-dimensional parallel shear layer flow

III.A. Problem description and implementation

This problem is from the Fourth Computational Aeroacoustics Workshop on Benchmark Problems.6 The
shear layer is described in two-dimensions as a parallel flow, with a prescribed velocity profile. The shear
layer models a hot jet of Mach number M = 0.756. A harmonic Gaussian source, of frequency ωs = 76rad/s,
is located at the origin. It generates acoustic waves and excites an instability wave. The flow pressure is of
the form

p = p0 + ph + pa, (29)
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where p0 is the mean pressure, ph the excited instability wave and pa the acoustic waves.
The solution is obtained by solving the Linearised Euler Equations (LEE) using an explicit finite-difference

scheme. The spatial derivatives are obtained by a Dispersion-Relation-Preserving scheme.7 The solution is
integrated in time using a fourth-order six-step Runge-Kutta scheme. The grid is uniform in both directions.
The computational domain is defined by

−70 ≤ x ≤ 600, N1 = 1200, (30)
0 ≤ y ≤ 150, N2 = 903, (31)

where N1 and N2 are the number of grid points in the x and y directions. A thick buffer zone is used
downstream, for outflow boundary condition, to avoid reflections from the outer boundaries. The buffer is
an extension of the zonal characteristic boundary condition developed by Sandberg and Sandham.8 The
buffer contains 800 points. Such a large buffer is required to avoid the contamination of the physical domain
by reflections originating from the exit boundary condition. Small buffers are also used on the other sides
of the computational domain to allow acoustic waves to exit the domain without reflections.

The pressure component is filtered by two filters. First of all, the d’Alembertian filter of equation (22)
is applied at every time step to obtain �2p. Secondly, the solution p is written over 5 periods Ts = 2π/ωs,
using 125 time frames, in order to compute the filtered solution in the frequency domain. Instead of filtering
out the acoustic waves directly, we use a Gaussian window centred around the instability wavenumber k0,

W (k, ω) = exp
[
− (kx − k0)2

2σ2

]
+ exp

[
− (kx + k0)2

2σ2

]
, (32)

where kx is the streamwise wavenumber, k0 = 0.68m−1 and σ = 0.1m−1. The corresponding filtered pressure
is denoted by Gp.

III.B. Results

The pressure field p(x, t) is plotted in figure 1(a). The figure shows the presence of two kinds of waves
radiating from the origin: acoustic waves radiating to the far-field, and hydrodynamic waves growing in the
downstream direction along the x-axis. Figures 1(b) and 1(c) show the filtered pressure obtained by using
respectively the d’Alembertian filter �2 and the Gaussian filter G. A comparison between p and Gp along
the line y = 15m is presented in figure 1(c).

III.C. Discussion

Figures 1(b) and 1(c) clearly show that both d’Alembertian and Gaussian filters render the pressure field
non-radiating. However, the d’Alembertian filter changes the structure of the hydrodynamic waves. This is
a direct consequence of the fact that equation (27) is not satisfied by the d’Alembertian operator.

On the contrary, the base flow obtained by using the Gaussian filter is in very good agreement with the
original flow in the region where the instability wave is dominant. This is shown qualitatively by comparing
figures 1(a) and 1(c). This suggests that the Gaussian filter is optimal. To confirm this, the filtered pressure
Gp is compared along the line y = 15 in figure 1(d) to an exact solution of the hydrodynamic part of the
flow, obtained by Agarwal et al.9 The agreement is very good.

Thus, filtering in the frequency domain gives sufficient flexibility to obtain an optimal non-radiating filter.

IV. Sources of sound in an axisymmetric jet flow

IV.A. Problem description

In this section, we filter a flow simulated by a DNS of a fixed axisymmetric mean flow excited at the inflow by
two frequencies. The frequencies are chosen to trigger some instability waves in the flow. These instability
waves grow downstream and interact non-linearly, thereby generating acoustic waves. There is some evidence,
from Sandham et al.,10 that non-linear interaction is a significant source of aerodynamic noise in subsonic
jets. In this section, we filter the flow by means of an optimal non-radiating filter, in order to identify the
sources of sound in the jet.
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(d) Profiles of hydrodynamic pressure (solid line) and pressure
Gp (circles), along y = 15

Figure 1: Comparison of total pressure p with the filtered pressure obtained by applying the d’Alembertian
operator �2, and the Gaussian filter L. In the pressure plots, the contour scale is linear and extends from
−5 · 10−5Pa (black) to 5 · 10−5Pa (white).

The main flow characteristics are as follows. The Mach number is 0.9 and the Reynolds number is
3600. The base mean flow is chosen to match the experimental data of Stromberg et al.11 The mean flow is
axisymmetric and the radial and azimuthal components of the mean velocities are set to zero. The excitation
modes excited at the two unstable frequencies are also axisymmetric. The flow is adiabatic so that the theory
of section II.A is applicable.

This case is one of several carried out by Suponitsky and Sandham,12 who have run simulations with
different combinations of excitation frequencies and amplitude. The data used here corresponds to the
simulated case with the largest acoustic radiation. The two excitation frequencies are ω1 = 2.4 and ω2 = 3.4,
where the frequencies are normalized by jet exit velocity and jet diameter. The flow was obtained by
solving the compressible Navier-Stokes equations. The spatial derivatives were carried out by using a fourth-
order central difference scheme, and time integration was performed with a third-order explicit Runge-Kutta
scheme. Entropy splitting of the inviscid flux terms was used to enhance the numerical stability of the code.

IV.B. Flow analysis

All the results are normalized by jet diameter D, jet exit velocity U and far-field density.
Figure 2 shows the fluctuating part of the presssure field, i.e p− p0 where p0 is the mean pressure, in the

upper part of the physical domain. The domain extends over 22 jet diameters in the streamwise direction,
and 30 jet diameters in the transverse direction. The figure clearly shows hydrodynamic waves propagating
along the jet axis and acoustic waves radiating to the far field.

More information can be gained by studying the power spectrum of the pressure field both in the source
region and in the far field. The power spectra corresponding to the pressure signal measured at (10, 0) and
(10, 10) are shown in figures 3(a) and (b), using thick lines. From figure 3(a), the two dominant frequencies
along the jet axis are the excitation frequencies ω1 = 2.2 and ω2 = 3.4. Non-linear interaction also generates
some waves at the difference frequency ∆ω = 1.2, with a smaller amplitude (−10dB compared to the waves

7 of 12

American Institute of Aeronautics and Astronautics



0

3

6

9

12

15

y

0 10 20
x

Figure 2: Fluctuating part of pressure p− p0. The contour scale is linear and extends from −5 · 10−6 (black)
to 5 · 10−6 (white).

of frequency ω1). Higher harmonics can be seen at frequencies 2ω1 = 4.4 and 2ω2 = 6.8, as well as the
interaction frequency ω1 + ω2 = 5.6. However, these higher frequencies have a much smaller amplitude.

Further away from the axis, where the acoustic field dominates, it can be seen from figure 3(b), that the
flow is dominated by the difference frequency ∆ω = 1.2. The next significant components are ω1 = 2.2 and
ω = 0.6, with an amplitude reduced by 20dB compared to the dominant frequency.
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Figure 3: Examples of pressure power spectra along the jet and in the acoustic region. The excitation
frequencies are ω1 = 2.2 and ω2 = 3.4. The acoustic field is dominated by the interaction frequency
∆ω = 1.2. The thick lines correspond to the flow pressure p and the thin lines with circles to filtered
pressure p.

IV.C. Flow filtering

We have shown that the acoustic field is dominated by frequency ∆ω = 1.2. We therefore design a filter
which removes the wavenumber components |k| = ∆ω/c∞ = 1.09. The filter is a convolution filter g applied
in the frequency domain, and defined by the window

W (k, ω) =
1
2

[
1 + tanh

( |k| − k0

σ

)]
, (33)
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where k0 = 1.3 and σ = 0.2. The filter can be expressed in the time domain, for any flow component f with
mean f0, as

f = f0 + g ∗ (f − f0). (34)

A first indication of the filter efficiency at removing acoustic components and maintaining hydrodynamic
ones from the flow is given in figures 3(a) and (b), where the power spectra of p and p are plotted for two
different points. The plot in figure 3(a), shows that the frequency content of p and p is identical along the jet
axis, which is what we expect. On the contrary, in the acoustic region, figure 3(b) shows a reduction of 10dB
at the frequency ∆ω, which is the principal acoustic frequency. The filter seems to be able to reduce the
acoustic radiation significantly, while preserving the hydrodynamic features of the flow. This is investigated
further by looking at instantaneous plots of the pressure fields, as well as pressure profiles along the jet axis
and within the acoustic region.

The filtered pressure p and fluctuating pressure p′ = p−p are plotted, for a single time-frame, in figure 4.
Comparing figures 4(a) and 2 shows that the filtered pressure component contains no acoustic waves at
frequency ∆ω. Some higher frequency waves can however be seen. These correspond to weak Mach waves at
frequencies ω1 and ω2. The sound generation mechanism for Mach waves is linear and is well understood. We
would like to identify the non-linear sound source mechanisms and we chose to leave the Mach waves in the
base flow. The effectiveness of the filter can be clearly seen from the fluctuating pressure field p′ in figure 4(b)
that contains only the acoustic waves. This is true even in the source region. This is remarkable considering
that these waves are at least an order of magnitude smaller than hydrodynamic waves. Moreover, this figure
indicates that the source of sound, at this particular time, is somewhere between 2 and 5 jet diameters.
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(a) Filtered pressure p
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(b) Fluctuating pressure p′ = p− p

Figure 4: Filtered pressure and fluctuating pressure fields for a single time frame, obtained by applying the
filter of equations (33) and (34). The filter is non-radiating and is optimal: p contains no radiating acoustic
components (other than Mach waves), and p′ is composed only of acoustic waves.

The filter has also been validated by examining some pressure profiles in both the near-field, where
the hydrodynamic field dominates, and along a sideline where the acoustic field dominates. For an optimal
filter, p should be almost identical to p, because radiating acoustic waves are of a smaller order of magnitude.
Figure 5 confirms that this is the case. In the acoustic region, p′ should be equal to the acoustic components
of the flow, expressed as p− p0. Figure 5 shows that this is true, at least within the range 2 ≤ x ≤ 10. The
difference can be explained, for x < 2, by errors introduced by Fourier transforms near the edges, and for
x > 10 by the presence of Mach waves. These difference should not have major consequences for our purpose
of identifying the sources of sound in the jet, for which, from section II.D, we need to compute p accurately
in the near field, which is easier than computing p′, the latter being more sensitive to numerical errors.

IV.D. Sources of sound

Results

The sources associated with the non-radiating filter defined in the previous section and the time-averaging
procedure of section II.B, are computed using equation (13). In the case of the non-radiating filter, the
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Figure 5: Pressure profiles along the jet axis (y = 0) and in the source region (y = 10). On figure (a), the
filtered pressure p (circles) is compared to the pressure p (solid line). On figure (b), the fluctuating pressure
p′ (dashed line) is compared to the unsteady part of pressure p− p0 (solid line).

fluctuating components are negligible compared to the other terms and the source definition simplifies to
equation (19).

Figures 6(a) and (b) show the corresponding source fields close to the jet exit for 0 ≤ y ≤ 2.5 at a single
time frame. The jet mixing layer corresponds to y = 0.5. Figure 6(a) shows the source obtained by using a
steady base flow, and figure 6(b) the one associated with the non-radiating filter introduced in the previous
subsection.

To analyse more finely the frequency content of the source, the power spectrum of each source is plotted
at points chosen differently for each source, so that they are centred in a region where the magnitude of
the source is significant, based on figures 6(a) and (b). For the steady base flow source, the chosen point
is (x, y) = (5.5, 0.5). The point corresponding to the silent base flow source is (x, y) = (4.5, 0.4). The two
power spectra are plotted in figure 6(c) and (d).

Discussion

As shown in figure 6(a), the steady base flow source is spread out over the entire jet mixing-layer, for x ≥ 2.
It consists mostly of high wavenumber structures. A slightly larger feature can be seen around 5.5 jet
diameters. The spectrum corresponding to this particular location, on figure 6(c), shows a peak frequency
at ω = 1.2. This suggests that this point might correspond to a source of sound. However, the source also
contains all of the frequency components observed in the original flow, for example ω1 = 2.2, ω2 = 3.4, but
also 2ω1 = 4.4, ω1 + ω2 = 5.6 and 2ω2 = 6.8. The amplitude of all these waves is roughly the same and is
less than 10dB below the peak frequency at ∆ω = 1.2. One should note, however, that this result does vary
depending on the position of the point used to plot the power spectrum. At other locations, ∆ω is not the
peak frequency. Thus, although the far-field pressure consists mostly of waves at the frequency ∆ω, this is
not the case for the source term.

The source term associated with the silent base flow, shown in figure 6(d), is very different. It is also
located in the jet mixing-layer, but only between 0 and 5 jet diameters. From figure 4(b), this is precisely
the region from where sound seems to be originating. The source term has an interesting quadrupole-like
shape. Note that the centre of this source is actually oscillating back and forth in time. The spectrum shows
a peak close to the interaction frequency ∆ω = 1.2. Other frequencies are present, but at more than 15dB
below the peak level (apart from ω = 0.6 which is only a bit more than 5dB below). Quite remarkably,
the three dominant frequencies shown in this power spectrum, i.e ∆ω = 1.2, ω = 0.6 and ω1 = 2.2, are the
same as the three frequencies dominating the far-field pressure, as shown in figure 3. Although the nature
of the peak frequency ω = 0.6 remains unclear, this is a good indication that the source obtained by using
an unsteady silent base flow is likely close to the true source of sound.
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(a) Sound source s for time-averaged base flow. The contour
scale extends from −5 · 10−2 (black) to 5 · 10−2 (white).
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(b) Sound source s for non-radiating base flow. The contour
scale extends from −5 · 10−3 (black) to 5 · 10−3 (white).
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(c) Source spectrum at position (x, y) = (5.5, 0.5) for a time-
averaged base-flow.
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(d) Source spectrum at position (x, y) = (4.0, 0.4) for a non-
radiating base-flow.

Figure 6: Sound sources based on a time-average filter (figure (a)) and a non-radiating filter (figure (b)).
The power spectrum for those two sources is plotted in figures (c) and (d) respectively.

V. Conclusions and future work

A formal procedure leading to a new definition of the sound sources has been developed. The formulation
is similar to the one by Goldstein5 but leads to a single source expressed as the double divergence of tensor.
Energy source terms are not taken into account. The source is based on a base flow containing all non-
radiating components of the flow. The base flow is constructed by means of a linear filter. The filter
separates the radiating and non-radiating parts of the flow.

The filter can take different forms. A differential filter, taking the form of the d’Alembertian operator
has been tested on a parallel flow problem. It removes the radiating components from the base flow but
modifies the hydrodynamic components significantly. This undesirable property would have to be corrected
in order to employ such filters to obtain the sound sources. A more general family of filters, based on
convolutions carried out in the frequency domain, has been studied. The flexibility offered by convolution
filters was found to be necessary to select precisely the desirable components in the flow. This strategy was
applied successfully to two different flows. In particular, an axisymmetric jet, forced by two unstable modes
interacting non-linearly, was filtered successfully.

The filtered base flow, containing only the non-radiating components, was used to derive the sound
sources. The sources were found to take the form of a quadrupole-shaped structure, oscillating backward
and forward within the first 5 diameters of the jet mixing layer. The frequency content of the source was
found to correlate well with that of the far field radiating field. These sources were also compared to those
obtained by using a more conventional steady base flow, for which the results were more difficult to interpret
physically. An improved picture of the source mechanism , in terms of source localisation and structure, was
obtained through the use of a non-radiating unsteady base-flow.

Future work will focus on analysing the structure of the sound sources discovered through this work. The
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procedure will be applied to other flows, including DNS of mixing-layer flows and fully turbulent jets.
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