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Abstract

The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions
has been driving research in this area for several decades. We present here a large-eddy simulation investigation of theinteraction
between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on
shock/turbulent boundary layer interactions, we have usedan inflow technique which does not introduce any energetically-significant
low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy
simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency
possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement withthe experimental
findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The
long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was found to coincide with the
global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions.

Keywords shock boundary layer interaction· global mode· compressible turbulence· LES · low-frequency unsteadiness· separation
bubble· digital filter · inflow turbulence

PACS 47.40.Nm· 47.40.Ki · 47.27.ep

1 Introduction

Sixty years after the very first observations, shock-wave/boundary-layer interaction (SBLI) research is still an active and challenging
field [9]. Such interactions are of practical interest in a number ofexternal and internal flow problems in aerospace such as airframe
design and turbomachinery. In some instances, the interaction can significantly alter the heat exchange and produce important unsteady
pressure loads which can greatly shorten the structural lifetime [9]. The two-dimensional interactions most commonly studiedare the
interaction of a normal/oblique shock wave with a laminar/turbulent flat plate boundary layer and the case of a flow over a bump or over
a compression corner. A review of the aforementioned interactions can be found in Adamson and Messiter [3]. The case of an incident
oblique shock is historically the least well studied, and isthe case on which we focus our attention. A sketch of such an interaction is
given in figure1. For a sufficiently large shock strength, the associated adverse pressure gradient induces a separation of the boundary
layer. At the leading edge of the separation bubble, compression waves form the reflected shock, which thus originates further upstream
than the idealized inviscid theory would predict. The flow deviation along the downside of the bubble produces an expansion fan,
quickly followed by reattachment compression waves. Further downstream, the boundary layer recovers to an equilibrium state after a
long relaxation process. A snapshot from the present numerical simulation is provided in figure2 to illustrate the main structures.

Despite the success of the free-interaction theory to describe the initial stage of the laminar interaction [46, 28], theoretical knowl-
edge of the transitional and turbulent cases is extremely limited. In particular, the low-frequency unsteadiness of the reflected shock,
although widely acknowledged, is not fully understood [11]. One peculiarity of the observed reflected-shock unsteadiness is its relative
low-frequency compared to the characteristic frequency ofthe incoming turbulent boundary layer [9]. The mechanism causing the
low frequency is the focus of much of today’s research on SBLI. So far, the published explanations are mainly of a speculative nature.
The most common approach is to try to relate upstream events in the incoming turbulent boundary layer with the shock motion. The
idea dates back at least to Plotkin [38], who modeled the shock as being randomly perturbed by upstream disturbances but subject to a
linear restoring mechanism, forcing the shock to come back to its initial position. Although this approach was successful at predicting
some statistical quantities like the wall-pressure root-mean-square, it does not provide a physical explanation of the low-frequency
mechanism and is a purely stochastic approach. Furthermore, correctly capturing the flow-variable standard deviationdoes not imply
that the relevant time scales have been properly resolved ormodeled. That being said, there is undoubtedly a correlation between the
impact of an eddy into the shock and the shock displacement. This led Andreopoulos and Muck [4] to suggest that the frequency of the
shock motion scales on the bursting frequency of the incoming boundary layer. Indeed, Erengil and Dolling [16] have shown that the
small-scale motions of the shock are caused by its response to the passage of turbulence fluctuations through the interaction. However,
such events occur at higher frequencies than the ones we are interested in and cannot be directly related to the large-scale/low-frequency
motions of the reflected shock.

1

http://www.springerlink.com/content/tu262148132n8867/


wall

incident shock

refle
cte

d sh
ock

b b
b

b

b

b

b

b

b
b b

sonic line

ex
pa

ns
io

n
fa

n

co
m

pr
es

si
on

w
av

es

flow direction

relaxation

separation bubble

sh
ear laye

r

Figure 1: Sketch of the oblique shock / boundary-layer interaction

Ünalmis and Dolling [50] have investigated the correlations in a Mach 5 compression-corner flow between an upstream Pitot
pressure and the shock-foot location, and found that an upstream shock position was correlated with higher upstream pressure, and
vice versa. It was then argued that the shock position could be driven by a low-frequency thickening and thinning of the upstream
boundary layer. Later, Bereshet al. [5] looked at relatively low-frequency correlations in the same compression-corner flow and found
significant correlations between upstream velocity fluctuations and the shock motions at 4–10kHz, one order of magnitude smaller than
the characteristic frequency of the large-scale structureof their incoming turbulent boundary layer (U∞/δ0 ∼ 40 kHz, whereU∞ is the
upstream freestream velocity andδ0 the 99% upstream boundary-layer thickness). Note that in the shock-reflection case we consider
in this paper, the upstream boundary-layer characteristicfrequency is about 50kHz while the reported most energetic low-frequency
shock motions are at about 0.4 kHz[11].

However, Bereshet al. [5] observe that the “low-frequency thickening/thinning of the upstream boundary layer does not drive the
large-scale shock motion”. This seems to be in contradiction with the earlier results of̈Unalmis and Dolling [50], but later Houet
al. [24] made a similar analysis as Bereshet al. [5] in a Mach 2 compression-corner flow and showed, using conditional averaging,
a clear correlation between the shock motion and a thickening/thinning of the upstream boundary layer. It is logical that a change in
the upstream mean boundary-layer properties would affect the shock position since a fuller velocity profile would be less prone to
separation under the same adverse pressure gradient. This is confirmed, for example, by Bereshet al. [5] who find that their studied
correlations improve as they approach the wall.

The aforementioned studies provide clear evidence of a connection between the shock position and the upstream conditionally-
averaged boundary-layer profile. However, the events whichare responsible for the substantial differences in the conditionally-averaged
profiles had to be clarified, and more importantly, the timescale on which they occur considered with care. Indeed, to be compatible
with the shock-motion timescales, those events must be at least an order ten-boundary-layer-thicknesses long. The emergence of time-
resolved particle image velocimetry (PIV) approaches madethe above considerations possible. For example, Ganapathisubramaniet
al. [18] have recently reported very long coherent structures of about fifty boundary-thicknesses long (termed “superstructures”), using
PIV and Taylor’s hypothesis (note that the use of Taylor’s hypothesis may be valid as shown by Dennis and Nickels [8]). In their paper,
one can find the scaling argument that the low frequency induced by the superstructure scales onU∞/2λ , whereU∞ is the upstream
freestream velocity andλ the size of the superstructure. In the shock-reflection casewe investigate in this paper, we know from
Dupontet al. [11] that the energetically significant low-frequency shock oscillations are at aboutU∞/115δ0, whereδ0 is the upstream
99% boundary-layer thickness. Using the above superstructure-scaling argument, the energetically-significant low frequencies seen in
the shock-reflection experiment of Dupontet al. [11] would be associated with structures of size in the order of 50δ0 long, consistent
with the value quoted by Ganapathisubramaniet al. [18].

Yet, it should be noted that it is uncertain whether such longevents are caused by an experimental artifact (such as Görtler-like
vortices formed in the expansion section of the wind-tunnelnozzle [5]). Although numerical simulations could, in theory, answer that
question, it is not yet possible to perform direct numericalsimulations (DNS) which can allow the development of such superstructures
and at the same time cover long-enough time series to study the low-frequency shock motions. The reader can refer to the DNS of
Ringuetteet al. [39] where the authors find long coherent structures up to the maximum domain size tested (48δ0). However, it is also
unsure whether the recycling/rescaling technique used by the authors could be forcing such structures. In this paper, we will consider
the opposite numerical exercise, where we avoid forcing anyparticular low-frequency/large-wavelength motions and see whether the
reflected-shock low-frequency motions can be observed.
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Furthermore, the following two remarks should be considered. First, it must be emphasized that the way the correlation function
are built will inevitably govern the level of understandinggained from the resulting correlation values. For example,the correlations
mentioned in the above paragraphs are built as follows: the motion of the shock or a predefined separation line is detectedand then
correlated to an earlier event in the incoming boundary layer, assuming that the upstream event has travelled the separating distance
at a constant predefined velocity (usually the local mean velocity). This approach will by construction remove the possibility that the
shock motion may be related to a downstream event. Second, such an algorithm always involves in one way or another the choice
of arbitrary threshold values, which directly influence thelevel of correlations seen. For example, Ganapathisubramani et al. [18]
define as the separation front the spanwise line from which the velocity is less than 257m·s−1 and 187m·s−1, due to the difficulty in
finding the zero-velocity contour line from the PIV, and the impossibility of using a criterion based on the zero skin-friction contour.
With these assumptions, the authors find that the motion of the separation line is correlated to the presence of low- and high- speed
regions. The analysis of DNS data allows the study of different possible correlation approaches, which may be difficult or impossible
to implement experimentally, and the resulting effect on the interpretation of such correlations. For example, Wu and Martin [55]
find that “the streamwise shock motion is not significantly affected by low-momentum structures in the incoming boundarylayer”.
However, using a similar criterion as the one used by Ganapathisubramaniet al. [18], the authors found much higher correlation values,
similar to the ones found in the experiment. This demonstrates the sensitivity of the correlation techniques in the aforementioned
experimental compression-corner investigations. Of course, the ability of numerical simulations to perform time-resolved high-spatial
numerical measurements greatly enhances the level of complexity the data analysis can reach. For example, one can look at possible
upstream-propagating mechanisms using frequency/wave-number analysis of the wall-pressure distribution (as shownlater).

Thus, an alternative (more recent) approach has been to try to relate the low-frequency shock motions to a possible intrinsic
mechanism. Recently, Pirozzoli and Grasso [37] performed a DNS corresponding to experiments at Mach 2.3 [11] (mentioned in more
detail later in the text), but at a significantly lower Reynolds number than in the experiment. In their paper, the authorsargue that
the low-frequency originates in an acoustic-feedback-loop mechanism. They suggest that the interaction of the shear-layer coherent
structures with the tip of the impinging shock produces acoustic waves which can propagate upstream inside the subsonicregion and
in turn enhance the shedding of coherent structures at the separation line. This two-dimensional mechanism would then lock itself into
a resonant mode and produce the low frequency. However, it isimportant to note that the integration time obtained by Pirozzoli and
Grasso’s [37] DNS was much too short to cover any low-frequency oscillation, making the interpretation of their two-point correlation
plots subject to caution. The present LES will also address the question of whether or not such upstream propagating acoustic waves
can be detected.

The linear stability analysis performed by Robinet [40] shows the existence of a stationary unstable global mode for the laminar
interaction case at sufficiently large shock angle but this instability mechanism has not been directly linked to the low-frequency
oscillations of turbulent interactions. The present paperwill extend the linear stability analysis to the turbulent interaction case and the
results will be compared to the LES data, constituting, to our knowledge, the first published attempt of this kind.

Finally, one cannot yet rule out the possibility of experimental and numerical artifacts (like side-wall corner flows inthe wind tun-
nel [13], or the use of recycling/rescaling inflow generators in thesimulations [1]1) which could be at the origin of the low frequencies
seen in both numerical simulation and experimental results. In the present LES approach, we try to make sure that this is not the case.
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Figure 2: Snapshot from the numerical simulation: shock system (made visible by choosing a velocity-divergence-levelrange), pressure
(black and white) and turbulent kinetic energy (color) fields (both shown on a quadratic scale for highlighting purposes), with sonic line
(thick black line) and mean-separation-bubble contour (white line)

The case of a shock-wave generated by a 8-degree wedge interacting with a turbulent boundary-layer at Mach 2.3 and Reδ1
≈ 2×104

has been experimentally investigated for several years by the IUSTI group in Marseille (France) [13, 11], whereδ1 is the boundary-layer
displacement thickness (in its compressible-flow formulation) upstream of the interaction. The flow conditions they use are within
reach for LES. Indeed, Garnieret al. [19] were the first to perform an LES of that configuration. The authors report relatively
good agreement with the mean experimental fields, giving confidence that LES is capable of reproducing the key physics involved
in such interactions. However, those authors did not investigate the low-frequency unsteadiness since it would require much longer
integration times to cover enough low-frequency oscillations. In fact, the experimental finding is that the period is ofthe order

1Private communication with Dr. Eric Garnier, ONERA (2007)
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of 115δ0/U∞ while the LES of Garnieret al. [19] covered only about 88δ0/U∞. Similarly, the DNS of Pirozzoli and Grasso [37]
covered only 25δ0/U∞, despite the use of a Reynolds number about a third that of theexperiment. This is again too short to properly
investigate the low frequencies. Although it is in principle possible to perform a DNS of the IUSTI experiment at the trueReynolds
number, obtaining a signal at least several low-frequency-period long is still too expensive. The relative success of LES approaches to
predict the mean properties of SBLI in past publications [19, 32, 47] makes it the preferred candidate in order to achieve long time series.

In this paper, we present an LES approach to cover about 104δ0/U∞ after the initial transient (corresponding to about 90
low-frequency cycles). First, we introduce our LES approach with a particular focus on the inflow generation method, based on the
digital filter technique of Kleinet al. [30]. Indeed, as mentioned above, the rescaling/recycling technique is believed to potentially
affect the SBLI dynamics by introducing a relatively low-frequency tone into the computational box (directly related to the length of the
recycling box) which could interfere with the SBLI dynamics. Then, we compare the obtained LES flow statistics against the available
PIV data [12]. This is followed by a sensitivity study of the results to the grid resolution, computational domain width and choice
of subgrid-scale model. We then present our linear stability analysis approach, and finally analyze the long-run LES data, where we
compare our results with the unsteady experimental wall-pressure measurements.

2 Numerical approach

2.1 Governing equations

After some algebraic manipulation, the approximated form of the filtered dimensionless compressible Navier–Stokes equations (ex-
pressed in conservative form) is composed of one continuityequation, three momentum equations and the energy equation:

∂ρ
∂ t

+
∂ρ ũi

∂xi
= 0, (1)

∂ρ ũi

∂ t
+

∂ρ ũi ũ j

∂x j
+

∂ p
∂xi
− 1

Re
∂ τ̆i j

∂x j
≈−∂σi j

∂x j
, (2)

∂ Ĕt

∂ t
+

∂ (Ĕt + p)ũ j

∂x j
− 1

Re
∂ τ̆i j ũi

∂x j
+

1
(γ−1) Re PrM2

∂
∂x j

[
µ̃

∂ T̃
∂x j

]
≈−ũi

∂σi j

∂x j
− 1

(γ−1)M2

∂
∂x j

[ρΘ j ] , (3)

whereρ is the fluid density,ui the instantaneous velocity vector,p the pressure,T the temperature andt the time. The streamwise, wall-
normal and spanwise directions are denoted byx, y andz respectively. The resolved equation of state, the resolvedtotal energy/pressure
relation and the resolved viscous shear-stress relations are:

p =
1

γM2 ρT̃, (4)

Ĕt =
p

γ−1
+

1
2

ρũi ũi , (5)

τ̆i j = µ̃
(

∂ ũ j

∂xi
+

∂ ũi

∂x j
− 2

3
δi j

∂ ũk

∂xk

)
. (6)

The resolved dynamic viscositỹµ is assumed to follow a power-law dependence with the temperature:

µ̃ =
[
T̃
]Ω

(Ω = 0.67). (7)

The overbar and tilde notations were used to denote the spatial-filter and Favre-filter operators, respectively:

ai(x) =

∫

D

G
(
x−z ; ∆

)
ai(z) d3z, with:

∫

D

G
(
x−z ; ∆

)
d3z = 1 ; (8)

ãi =
ρai

ρ
. (9)

The functionG
(
x−z ; ∆

)
is the filter function, with characteristic length scale∆. The integration is performed on a compact subset of

R
3, denotedD . The usual indicial notation was used, andδi j denotes the Kronecker-δ function, Re the Reynolds number, Pr the Prandtl

number (taken to be 0.72),M the Mach number andγ the specific heat ratio (taken to be 1.4). The reference values to normalize the
flow variables are taken in the potential flow, upstream of theinteraction. The reference length scale will vary during the text and will
be explicitly defined where it is used. The subgrid-scale (SGS) stress tensor on the right-hand side of equations (2) and (3) is:

σi j = ρ (ũiu j − ũiũ j) , (10)

and the subgrid-scale Reynolds heat flux on the right-hand side of equation (3) is:

Θ j = T̃uj − T̃ũ j . (11)
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Note that the right-hand sides of equations (2) and (3) are incomplete. The list of the neglected SGS terms can be found in Touber and
Sandham [49] together with the motivations which led to the above approximate form of the filtered equations. The SGS stress tensor is
modeled via the classical eddy-viscosity approach:

σi j −
1
3

δi j σkk =−2ρνt S̃⋆
i j , (12)

whereνt is the eddy viscosity and̃S⋆
i j the deviatoric part of the strain-rate tensor computed fromthe filtered velocity field:

S̃i j =
1
2

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)
, and: S̃⋆

i j = S̃i j −
1
3

δi j S̃kk. (13)

The eddy viscosity is then obtained from the Mixed-Time-Scale (MTS) model by Inagakiet al. [27] which is essentially based on
a dimensionally-consistent physical argument relating tothe asymptotic behavior of the eddy viscosity as one approaches the wall and
the potential flow:

νt = CMTSkesTS, (14)

kes=
[
ũi− ˜̃ui

][
ũi− ˜̃ui

]
, T−1

S =

(
∆√
kes

)−1

+

(
CT

|S̃⋆|

)−1

, ˜̃ui =
ρ ũi

ρ
, (15)

where the constantsCMT S andCT were originally set to 0.05 and 10 by Inagakiet al. [27], based ona priori tests in channel and
backward-facing step flow data. In the current implementation of the model, we used:

CMTS= 0.03, CT = 10, (16)

based on application of the SBLI code to compressible turbulent channel flow. In addition, the dynamic Smagorinsky model[21, 22, 36,
53] was coded based on Vreman’s [53] implementation in order to quantify the model effects on the results.

The filter used in the code is a simple top-hat filter with characteristic width equal to the grid spacing. The flow is filteredonly in the
streamwise and spanwise directions, avoiding issues related to filtering in the stretched-grid direction. When the dynamic Smagorinsky
model is used, the test filter is also a top-hat filter with characteristic width two times the grid spacing. Finally, the filter size was defined
as:

∆2
= ∆x ·∆z. (17)

Once the eddy viscosity is obtained (from either one of the above SGS stress tensor models), the SGS heat flux is modeled as:

Θi =− νt

Prt

∂ T̃
∂xi

, (18)

whereνt is taken from the SGS stress tensor model. The SGS turbulent Prandtl number Prt should, in theory, be computed dynamically
as in Moinet al. [36]. However, we consider it to be constant here (as in Garnieret al. [19]), with Prt = 1.0.

The aforementioned governing equations are solved using a 4th-order central spatial differencing scheme for the spatialderivatives
and the 3rd-order explicit Runge–Kutta scheme to integrate in time. The boundary treatment is also of 4th order [6]. The code makes
use of the entropy splitting of the Euler terms and the laplacian formulation of the viscous terms to enhance the stability of the non-
dissipative central scheme (see Sandhamet al. [42]). In addition, a variant of the standard total variation diminishing scheme is used
for shock capturing [57], coupled with the Ducros sensor [10]. Periodic boundary conditions are used in the spanwise direction, while
the no-slip condition is enforced at the wall, which is set tobe isothermal. The top (freestream) and outflow boundaries make use of
an integrated characteristic scheme [48, 44] in order to minimize unwanted reflections from the computational-box boundaries. The
oblique shock is introduced at the top boundary using the Rankine-Hugoniot relationships. The inflow condition is the subject of the
following section. Finally, the code was made parallel in all three directions using MPI libraries.

2.2 Inflow boundary conditions

DNS and LES of turbulent boundary-layer flows suffer from theneed to prescribe accurate three-dimensional and time-dependent
inflow-boundary conditions. This is a rather important issue due to the sensitivity of the governing equations to the choice of boundary
conditions. Perhaps the most common approach is the rescaling/recycling technique proposed by Lundet al. [33]. This is one of the
most accurate approaches since it only requires one empirical relation, introducing almost no inflow transient. However, we argue that
this technique suffers from two important drawbacks for thepresent SBLI study. First, the extension of the method (originally designed
for incompressible flows) to compressible flows raises the issue of the rescaling of the thermodynamic variables and the so-called pres-
sure drift (see Sagautet al. [41] and references therein). Secondly, the recycling nature of the method will, by construction, introduce a
distinct low-frequency tone that can interfere with the study of the low-frequency content in SBLI [1]2. All the LES [19, 32, 47] and most
of the DNS [54, 1] results available so far on SBLI have used the recycling technique. However, for their DNS, Pirozzoli and Grasso [37]
have chosen to use a long domain to simulate the transition toturbulence (note that to achieve this, they forced the flow atthe wall over
a short streamwise distance). Similarly, for his compression-ramp DNS, Adams [2] used a precursor flat plate DNS where a bypass-
transition technique was used. Although very appealing, the overall computational cost of those approaches is prohibitive if we want to

2Private communication with Dr. Eric Garnier, ONERA (2007)
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cover several low-frequency cycles. Alternative techniques are often referred to synthetic turbulence approaches. One of them was de-
veloped by Sandhamet al. [43] and extended to higher Mach numbers by Li [31]. In this approach, the inflow conditions are prescribed
analytically via the introduction of several modes aimed atmimicking the main features of the turbulent flows such as theinner-layer
near-wall streaks and their lift up. As with any synthetic turbulence approach, it suffers from the level of approximation introduced
at the inflow by producing a long transient during which the flow slowly recovers the modeling errors. Despite that major drawback,
synthetic approaches are increasingly becoming popular. Whereas Sandhamet al.’s [43] method does not attempt to match the proper
statistical moments, other synthetic approaches like the digital-filter (DF) approach [30] are designed to matchad-hocfirst and second
order statistical moments and spectra. In that case, the lack of proper phase information is responsible for the observed inflow transient.

Table 1: Digital Filter coefficients

velocity component u v w
TBL SBLI TBL SBLI TBL SBLI

Ix in δ vd
1 units 10 10 4 4 4 4

NFy = 2Iy/∆y (grid points) 35
a
– 65

b
20

a
– 35

b
45

a
– 85

b
25

a
– 45

b
30

a
– 40

b
15

a
– 20

b

NFz = 2Iz/∆z (grid points) 15 20 15 20 30 30

a if y≤ ylim , whereylim = 1 δ vd
1

b if y > ylim , whereylim = 1 δ vd
1

Before running the SBLI LES, we performed two LES of a flat-plate turbulent boundary layer in order to compare Li’s [31]
extension of the synthetic turbulence approach of Sandhamet al. [43] with a new modified version of Kleinet al.’s [30] digital filter
approach. The modifications introduced are originally due to Xie and Castro [56] and greatly speed up the original version of Kleinet
al. [30] by applying the filtering operation only in 2D (rather than in 3D) and correlating the new 2D field with the previous one. In
addition, we propose here some modifications to Xie and Castro’s [56] work in order to further speed up the technique and extend itto
compressible flows. The details of the new digital filter technique are given in appendixA.

The digital-filter coefficients used in both the turbulent-boundary layer test simulation (denoted TBL) and the actual shock/boundary
layer interaction simulations (denoted SBLI) are given in table1. Interestingly, the digital-filter technique was found to be relatively ro-
bust to the choice of filter coefficients, which is a desirablefeature. However, this is only true as long as the prescribedlength scales are
at least as large as the integral length scales of the real flow. Failing to meet that requirement can lead to laminarization issues [29, 52]
just as when only white noise is added to the flow. The prescribed mean-velocity profile was obtained from the semi-analytical method
described in Li [31] and the prescribed Reynolds stresses were obtained from anearlier simulation under similar flow conditions as the
one considered here.

Table 2: Numerical details for the turbulent-boundary-layer simulations

Streamwise dir.x Wall-normal dir.y Spanwise dir.z
Domain size Lx, Ly, Lz in δ vd

1 400 50 20
Lx, Ly, Lz in δ0 28 3.5 1.7

Number of points (Nx, Ny, Nz) 401 151 81
Grid resolution (wall units) ∆x+ ≈ 33 ∆y+

min≈ 1.6 ∆z+ ≈ 10

Both the digital-filter (DF) technique (described in appendix A) and the synthetic turbulence (ST) technique of Sandhamet
al. [43, 31] were compared on a Mach 2 and Reδ vd

1
≈ 2500 turbulent flat-plate boundary-layer flow (δ vd

1 is the displacement thickness
at the inlet computed from the van-Driest-transformed velocity profile using the incompressible-flow definition of the displacement
thickness). The numerical details are given in table2. Figure3(a) compares the skin-friction evolution obtained for both thedigital
filter and the synthetic inlet conditions. The two techniques produce a transient of about 20 boundary-layer thicknesses, as expected for
such synthetic approaches [29]. Despite the fundamental differences in the formulation of each technique, the skin friction appears to
converge to the expected levels at a similar streamwise location. This indicates that the near-wall region is not sensitive to the prescribed
inlet method. This is probably because the near-wall turbulence structures recover the modeling errors fairly quicklyand neither of
the two approaches perform better there. However, figure3(b) compares the van Driest velocity profiles (expressed in the classical
inner-layer scaling, denoted by the exponent “+”) obtainedatx/δ0∼ 15 where some differences are found in the outer-region. Although
both approaches produce the expected near-wall asymptoticbehavior of a turbulent flow, the wake-region does not appearto be realistic
in the case of the synthetic turbulence. This is further seenin the turbulence statistics at the same streamwise station, as shown in
figure4. Figure4(a) is shown in inner-layer scaling where the compressibility correction of Huanget al. [25] is used for comparison
with the DNS data of an incompressible turbulent boundary layer [45]. Figure4(b) is plotted using the displacement thickness. Both
figures exhibit the presence of a second spurious peak in the root-mean-square (RMS) profiles for the synthetic turbulence method.
This unexpected distribution of the turbulence energy is due to the presence of a low-frequency, large-wavelength mode, which was
introduced at the inlet, and is found to survive for long streamwise distances, even up to the outflow boundary, but eventually converging
to the profile obtained with the digital filter. The ability ofthe last outer mode to survive for such distances was not observed in
Sandhamet al. [43]. We speculate that this is due to the higher Mach and Reynolds numbers used here, potentially stabilizing this outer
mode, whereas the method was found to be successful in a subsonic boundary layer.
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With respect to the SBLI simulations, we clearly do not wish to force a particular low-frequency/long-wavelength mode as this
could directly impair the low-frequency study in the interaction. This is the main reason for choosing the digital filter, since it is able
to produce realistic inflow conditions with the guarantee toavoid any cyclic pattern. In fact, the digital-filter formulation is convenient
since it provides a direct control on the size of the coherentstructures introduced at the inlet. In the present SBLI study, the integral
lengthscale used in the exponential correlation function (see equation (28)) is set to be less than 0.6δ0. Of course, larger structures can
develop in the domain by the time the flow reaches the interaction. However, since the available domain before the interaction is an
order 10δ0 long, no structure longer that about ten boundary-layer-thicknesses long can form upstream of the interaction. Evidences on
the absence of any upstream low-frequency forcing are provided later in the paper.
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2.3 Numerical details for the different simulations presented

For convenience, we provide here the numerical details for all the simulations we will be referring to in the following sections. All of
the reported simulations concern the LES of an oblique shock-wave generated by a 8-degree wedge angle impinging on a Mach2.3
flat-plate-turbulent-boundary-layer at Reδ imp

1
= 21×103, consistent with the flow conditions of the IUSTI experiment[11]. Note the use

of the superscript “imp” on the displacement thickness. This indicates that the displacement thickness used to computethe Reynolds
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number was evaluated at the nominal impingement location inthe absence of the shock during a precursor simulation.
Statistical results involve the grid, domain and subgrid-scale model sensitivity studies. For the grid sensitivity study, we have

successively doubled the number of grid points in the three directions of the reference grid (see table3 for details). Note that the
reference grid is similar to the one used by Garnieret al. [19] except in the wall-normal direction where we chose to truncate the
problem closer to the wall, at about four boundary-layer thicknesses, in order to reduce the number of grid points used. We thus rely on
the ability of the integrated characteristic boundary condition at the top boundary to significantly reduce most of unwanted reflections
and preserve the quality of the simulation in the interaction. The domain sensitivity study was performed only in the spanwise direction
(see table4) – this is believed to be the most sensitive domain length. The subgrid-scale model effect was investigated by comparing
the MTS model results against the results from the dynamic Smagorinsky model and an implicit LES (see table4 for details).

Table 3: Numerical details for the grid sensitivity study

Case Reference Grid Refined inx Refined iny Refined inz
Domain size
Lx×Ly×Lz in δ vd

1 450×70×24 450×70×24 450×70×24 450×70×24
Lx×Ly×Lz in δ imp

1 71.9×11.2×3.8 71.9×11.2×3.8 70.0×10.7×3.6 72.3×11.3×3.8
Lx×Ly×Lz in δ0 25.4×4.0×1.4 25.5×4.0×1.4 25.4×4.0×1.4 25.4×4.0×1.4
Number of points
Nx×Ny×Nz 451×81×73 901×81×73 451×161×73 451×81×145
Grid resolutiona

∆x+×∆y+
min×∆z+ 40.6×1.6×13.5 20.3×1.6×13.5 40.6×1.5×13.5 40.6×1.6×6.8

Grid stretchingbβy 5.50 5.50 4.75c 5.50
Time step∆tU∞/δ vd

1 0.025 0.045 0.045 0.045
Statistics acquisition
sampling rate 1 every 5 steps 1 every 5 steps 1 every 5 steps 1 every 5 steps
number of FTTd 9 6 11 7
SGS model MTS MTS MTS MTS

a measured upstream of the interaction and at the wall for the wall-normal direction
b the stretching function used is:y = Ly sinh(βy( j−1)/(Ny−1))/sinh(βy)
c note that we chose to keep the same near-wall resolution as the reference grid and increase the outer-

layer resolution to better capture the shocks
d Flow-Through-Time: time it takes to go across the computational domain at the upstream freestream

velocity

In the later sections of the paper, we consider the SBLI dynamics. The integration times covered by the above simulations
were found to be insufficient to investigate the low-frequency content, if any, of the interaction. To overcome this issue, the small-span
LES was continued for an extended amount of time as it is clearly the cheapest case we could run. For that reason, our results on the
unsteady aspects of the interaction were obtained from the time-integration of the small-span LES over 4 million iterations, after a
start-up transient of half a million iterations. This represents about 408 flow-through-times. Using the experimentalvalue of 115δ0/U∞
for the period of the most energetic low-frequency oscillation, the current LES signal should cover about 90 cycles at such frequency.
This makes a Fourier analysis possible at low-frequencies,which was missing in previous studies of this kind.

Table 4: Numerical details for the domain and SGS model sensitivity study

Case Large span (5Lz) Small span (Lz/2) Dyn. Smagorinsky Implicit
Domain size
Lx×Ly×Lz in δ vd

1 450×70×120 450×70×12 450×70×24 450×70×24
Number of points
Nx×Ny×Nz 451×81×361 451×81×37 451×81×73 451×81×73
Grid stretchingβy 5.50 5.50 5.50 5.50
Time step∆tU∞/δ vd

1 0.045 0.045 0.045 0.045
Statistics acquisition
sampling rate 1 every 5 steps 1 every 5 steps 1 every 5 steps 1 every 5 steps
number of FTTa 9 73 16 8
SGS model MTSb MTSb Dyn. Smagorinskyb Noneb

a Flow-Through-Time: time it takes to go across the computational domain at the upstream freestream
velocity

b a 6th-order filter was applied every 5 iterations to remove spurious numerical oscillations
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3 Time-averaged fields and flow statistics

3.1 Comparison with the PIV data

In this section, we compare the flow statistics obtained fromthe large-span LES run against the available PIV data [12] of the same
flow. Figure5 gives the time-averaged streamwise-velocity field. The left-hand side of the figure is a superposition of the PIV field (in
filled contours) and the LES field (thick solid lines). The contours were taken at exactly the same levels to allow a direct comparison of
both the spatial structure and amplitude level of the velocity fields. The right-hand side of the figure provides a comparison of the PIV
and LES velocity profiles at four different streamwise locations. Overall, the LES results are in good agreement with thePIV data. One
noticeable difference is in the separation area (highlighted in the contourmaps) where the PIV finds a taller mean separation bubble with
a slightly stronger reserved flow (about 5% of the upstream freestream velocity in the PIV against 3% in the LES). The boundary-layer
thickening, however, is well captured.
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Figure 5: Mean streamwise velocity: PIV vs. LES. Two-dimensional distribution showing the PIV in filled contours and theLES in
solid lines at exactly the same contour levels (left). Profiles at different streamwise locations (right)

Figure 6 is a similar comparison as in the previous paragraph but for the wall-normal velocity component. The initial part of
the interaction is in good agreement with the PIV. In the recovery, the agreement near the wall is satisfactory, but deteriorates in the
outer part of the boundary layer. Larger differences are seen in the separation bubble, as mentioned in the above paragraph. It should be
noted that the PIV is less converged for the wall-normal velocity than for the streamwise velocity and that near-wall PIVmeasurements
are usually less reliable. Furthermore, the flow inside the bubble is very unsteady and the bubble can be nonexistent at times and much
bigger than its mean size at other times. The velocity fluctuations inside the bubble can thus be large compared to the meanvelocity
value, producing high Reynolds-stress values. Therefore,we do not expect a very good agreement between the LES and the PIV inside
the mean separation.

Figure7 gives the map of the root-mean-square (RMS) of the streamwise velocity fluctuations. The LES results are seen to capture
a structure similar to the PIV one inside the interaction. Inparticular, the inclination angle of the high-intensity ridge found inside the
interaction region is in good agreement with the PIV findings. The ridge corresponds to the energetic shear layer formed at the bubble
interface. It can be seen, however, that the shear layer in the LES is slightly thinner than in the PIV. Also, it should be noted that the
fluctuations in the LES upstream of interaction do not penetrate as far into the flow as in the PIV. This is due to the digital-filter settings,
which assigned too few energy in the outer part of the boundary layer. This was improved in a more recent simulation, whichwe do
not report here. However, the lack of incoming outer-layer fluctuations does not seem to survive past the interaction andthe profiles at
x = 340mmare in good agreement.

In figure 8, we report the comparison of the wall-normal velocity fluctuations. It can be seen that the comparison deteriorates
compared to the previous figures: the LES fluctuations are a bit stronger in the post-interaction region and the local maximum seems
to be closer to the wall than in the PIV. The shift in the heightof the ridge of maximum wall-normal velocity fluctuations seems to
correlate well with the taller PIV bubble. It is unclear why the experimental bubble is taller, but one can speculate thisto be related to
the presence of the wind-tunnel side walls, which tend to enhance the size of the separation bubble3. However, note that the contourmap
indicates a good match for the shock-system position, suggesting that the size of the interaction found by the LES is in good agreement
with the experiment.

Finally, figure9 gives the Reynolds shear-stress distributions. It must be emphasized that the shear stress is not easily obtained
using PIV. Nevertheless, despite the lack of convergence inthe PIV data, the qualitative and to some extent the quantitative agreement
between the PIV and the LES is remarkably good. It is interesting to note the small but clear region of high positive shear-stress values
(nearx = 320mmandy∈ [7 mm,10 mm]). This corresponds to the flapping motion of the incident-shock tip. Also, one can detect the

3Private communication with Dr. Jean-Paul Dussauge, IUSTI (2008)
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Figure 6: Mean wall-normal velocity: PIV vs. LES. Two-dimensional distribution showing the PIV in filled contours and the LES in
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mean position of the reflected shock, which is seen to be correctly predicted by the LES.
Generally speaking, the PIV and LES data agree sufficiently well to believe in the ability of LES to reproduce this complexflow field.

Also, the good agreement with the PIV data, taken from the median plane of the wind tunnel, suggests that the 8-degree-wedge-angle
experiment is close to being statistically two-dimensional, as claimed by Dussauge and Piponniau [14], and that the wind-tunnel-corner
flows are not too important in this case. However, it was clearly shown in this section that the separation-bubble predictions were
good for the bubble length but that the bubble height was underpredicted by the LES. This is believed to be the sign of some level of
three-dimensionality in the experiment but we emphasize that the interaction-length prediction would not be in good agreement if the
experiment had been strongly affected by the side walls, as shown for example in the 9.5-degree case [14]. In the 9.5-degree case,
the success of a statistically two-dimensional LES would not be guaranteed and would probably have to account for the wind-tunnel
side-wall effects.4

3.2 Sensitivity of the results to the grid resolution, domain width and choice of subgrid-scale model

In this section, we look at the sensitivity of the base flow to the choice of grid, domain width and SGS model. Figure10(a)gives the
skin friction evolution inside the interaction for different grid resolutions, as defined in table3. Although the statistics were not acquired
over the same amount of samples, the number of samples used inthis study was large enough to consider the results to be statistically
converged. From figure10(a), we do not find the tested grid resolution to produce significant differences in the size of the separation
bubble and skin-friction levels. Garnieret al. [19] also looked at the sensitivity of their results to the grid resolution and could not find

4Private communication with Dr. Eric Garnier, ONERA (2007)
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any significant differences at similar resolutions to the present ones (note that they used the local boundary-layer-edge conditions to
normalize the skin friction and Sutherland’s law for the dynamic viscosity while we use the upstream boundary-layer-edge conditions
and a power law). Thus, we are confident that the grid resolution used is sufficiently fine to only have marginal effects on the statistical
results.

Figure10(b) compares the skin-friction evolution for the different domain widths considered (see table4). Contrary to the grid
sensitivity tests, we find the results to be very sensitive tothe computational-box width. Previous simulations of the IUSTI 8-degree
shock-reflection case made use of spanwise widths of 1.4δ0 in Garnieret al.[19] and 2.2δ0 in Pirozzoli and Grasso [37], while the
experimental separation-bubble length isO(4δ0)-long [11]. In this domain-size effect study, we have tested spanwiselengths ranging
from 0.7δ0 to 7δ0. The separation point is found to move upstream as we reduce the spanwise extent of the domain while the
reattachment point moves further downstream, leading to larger bubbles and slower recovery rates. Figure11(a)further confirms the
changes by looking at the wall-pressure distribution (normalized by the upstream pressure). The wall-pressure distribution is seen to
develop a plateau as the domain width is reduced. This is reminiscent of laminar interactions, but we are certain that theflow remained
fully turbulent in the small-span simulations. In fact, thesmall-span LES was chosen such that despite the increased spanwise coherence
(forced by the periodic boundary conditions) we would stillmaintain a fully turbulent boundary layer. The existence ofa pressure
plateau is thus a direct consequence of the bubble extensiondue to the high level of spanwise coherence. Finally, it is interesting to note
that the increased interaction length due to the reduced size of the domain width does not seem to affect the initial rate of change of the
wall-pressure distribution. This is reminiscent of the free-interaction theory in laminar interactions [46, 28].

Table5 shows the bubble and interaction lengths for the different grids and domain sizes, compared with the values obtained by
Garnieret al. [19] (LES) and Dupontet al. [11] (experiment). This further quantifies the sensitivity of the bubble to the domain width,
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Figure 11: Wall pressure sensitivity to the domain width andthe subgrid-scale model. The pressurep1 is the theoretical freestream
pressure before the incident shock wave

with an extension of the bubble of about 35% between the largeand small-span cases. In addition, table5 suggests that the simulated
normalized shock intensity is higher than in the experiment, probably due to a slightly lower level in the incoming skin friction. In
the table,p2 refers to the theoretical freestream pressure after the incident shock but before the reflected shock andτw is the wall
shear-stress before the interaction. Finally, table5 quantifies the differences found between the interaction lengthL and the separation
lengthLsep. The interaction length is defined as the distance between the location of the reflected-shock extension to the wallX0 and
the inviscid-impingement location of the incident obliqueshockXimp while the separation length is the distance between the separation
point Xsep and the reattachment pointXrea. Experimentalists prefer to use the interaction length while computationalists favor the use
of the separation length, which is evaluated more precisely. In the remaining part of the paper, we will use the separation length rather
than the interaction length. To allow a consistent comparison with the experiment, we have evaluated the experimental separation length
(based on the LES results) to be around 39mm. This will be important for the unsteady aspects.

The subgrid-scale-model effect was investigated by comparison of the MTS model with the dynamic Smagorinsky model and
an implicit LES approach. Figure11(b) gives the wall-pressure rise in the interaction obtained from the different models. We find
that the MTS and the dynamic Smagorinsky (DS) models give very similar results, while the implicit LES stands out. The good
agreement between the two models suggests that the grid is fine enough so that the particular choice of eddy-viscosity model has
little importance. However, the larger separation found bythe implicit LES, as shown in figure12(a), and steeper increase in the
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Table 5: Interaction lengths and normalized shock intensity

Case Ref. 2Nx 2Ny 2Nz Lz/2 5Lz Garnieret al. [19] Dupontet al. [11]
(p2− p1)/2τw 50.2 50.9 50.5 48.6 49.3 48.9 47.5 40.5
L/δ0 5.1 5.4 5.3 5.1 5.9 4.8 4.5 4.2
Lsep/δ0 4.5 4.8 4.8 4.5 6.1 3.9 3.1 3.5a

(Xsep−X0)/δ imp
1 2.0 2.4 2.1 1.7 2.1 2.0 2.5 –

(Xrea−Ximp)/δ imp
1 0.2 0.7 0.7 0.0 2.7 −0.7 −1.8 –

a this value is not in the original paper of Dupontet al. [11] but was estimated based on the LES results
taking(Xsep−X0)/δ imp

1 ∼ 2, giving an experimental value ofLsep≈ 39mm

wall-pressure (figure11(b)) leads us to believe that simply neglecting the SGS terms forthat particular grid would not be correct.
In figure 12(b)we look at the SGS model effect on the incoming velocity profile. The DS model gives a slightly lower friction

velocity than the MTS and implicit LES, as already noticed inthe upstream skin-friction values. The apparent overshootof the log-law
constant is not believed to be related to a resolution issue,since the grid-refinement study did not show any strong deviations in the
results as the grid was refined. In fact, the overshoot is mainly due to the choice of dynamic-viscosity law. In the presentLES, we use
the power law with exponent 0.67. If instead, we use Sutherland’s law (as in Garnieret al. [19]), it can easily be shown that the dynamic
viscosity at the wall would be about 13% greater. To estimatethe effect of a 13% difference in the dynamic-viscosity value at the wall,
the van Driest velocity profile from the MTS model was re-processed using Sutherland’s law and the result is shown in figure12(b).
The difference is clear and the agreement with the log-law ismuch better. Furthermore, it must be noted that there exist some variations
on the value of the additive constant used in the literature (van Driest [51] used 5.24).
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Figure 12: Subgrid-scale model effect on the upstream velocity and the interaction region

Finally, figure13 gives the eddy-viscosity field for the two SGS models tested.The asymptotic behavior of the models in the
upstream boundary layer as we approach the wall differ, as shown in figure13(a). The eddy viscosity from the MTS model approaches
the wall asy+2

, which is a factory+ away from the expected asymptotic behavior, properly captured by the DS model. This issue is
reported in Inagakiet al. [27]. Despite the wrong near-wall behavior of the MTS model, theskin friction in the relaxation part of the
interaction (see figure12(a)) is close to the one from DS, suggesting that the incorrect asymptotic behavior of the MTS model has little
importance. Figure13(b)confirms the overall similar eddy-viscosity distribution between the two models inside the interaction, with
some discrepancies near the shocks.

Since the DS model is significantly more computationally intensive than the MTS model, for no obvious additional improvements
in the SBLI predictions, and that the implicit-LES results differ from the ones with the SGS model on, the choice of the MTSmodel in
the present SBLI studies appears justified.

4 Linear stability study

Before presenting the unsteady aspects of the LES data, we consider in this section the stability properties of the time-averaged flow. As
mentioned in the introduction, Robinet [40] has recently performed a Bi-Global analysis of an oblique shock impinging on a laminar
boundary layer, and found that for a sufficiently large wedgeangle, the flow could become absolutely unstable to spanwisewavelengths
of the order of the separation-bubble length. The question we intend to answer here is whether or not the time-averaged flow of the
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Figure 13: Subgrid-scale model effect on the eddy viscosityto kinematic viscosity ratio

current turbulent interaction has a similar property. To address this issue, we chose to use the SBLI code but modified to detect the most
unstable or least damped mode of any given (3D) base flow.

4.1 Method

As mentioned earlier in the paper, the in-house code solves the 3D compressible Navier–Stokes equations, which we re-write in the
following generic way:

∂q
∂ t

= RHS(q), (19)

whereq is the conservative variable vector[ρ ,ρu,ρv,ρw,ρEt]
T . Let us denote byqb the time and span-averaged field from the LES

results. In this section, we will refer toqb as the base flow. If we use this base flow as the initial condition of the SBLI code, we can
obtain the rate of change ofq needed to satisfy the equilibrium. In other words:

∂qb

∂ t
= RHS(qb), (20)

If we now decompose the flowq into the base-flow componentqb and a perturbationq′ (q = qb +q′), we can write:

∂q′

∂ t
= RHS(q)−RHS(qb), (21)

where RHS(qb) acts like a forcing term in the governing equations. This allows us to look at the time and spatial evolution of a prescribed
initial disturbance on the base flow while maintaining the base flow at its initial state. Thus, we can detect the most unstable (or least
damped) mode. The above forcing was introduced in the SBLI code with no inclusion of the SGS terms to run the stability analysis
as a DNS. However, the TVD-Ducros filter and the integrated characteristic schemes were used and modified in a similar way to the
governing equations given above.

The base flow is the time-averaged flowfield and is not a solution to the Navier-Stokes equations, overwise the left-hand side of
equation (20) would strictly be zero. In fact, the forcing term introduced can be thought of as the divergence of a Reynolds-stress tensor
in the RANS equations. Thus, the above stability-analysis formulation is similar to the linear-stability analysis of the RANS equations,
if we consider small perturbations. It could then be argued that such analysis corresponds to the initial stage of an unsteady RANS
calculation started from the steady-RANS solution, but with the major difference that no modelling is applied to the disturbances. There
are cases where the large-scale flow unsteadiness are found to be relatively well predicted by linear theory. For example, Gasteret
al.[20] compare their experimental measurements of a forced turbulent mixing layer with the results of classical linear-stability theory,
and report a good agreement between the two in both the amplitude and phase distribution. A more recent successful attempt is the
application of the BiGlobal analysis to predict the shock-induced transonic-buffet onset by Crouchet al. [7]. It can thus be argued that
the SBLI case may also be a candidate for the application of linear-stability theory. Indeed, the low-frequency shock motions are known
to occur on timescales two orders of magnitude larger than the characteristic timescale of the turbulence. The separation of timescales,
which appears to be needed for a successful extension of linear-stability theory, is clearly present in the SBLI case. Insuch a framework,
the turbulent nature of the flow is thus only needed to producethe time-averaged base flow.

4.2 Results

To first check the validity of the above modifications of the code, we have run the stability simulation with no initial disturbances
and could maintain the base flow for as long as we have performed the test for (about six flow-through-times, longer than is needed
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for this study). We then introduced white noise disturbances with maximum amplitude of 4, 6 or 8 orders of magnitude smaller than
the free-stream quantities. The white noise was introducedupstream of the interaction inside a square cylinder of section 5 by 5 grid
points spanning the entire box. Alternatively, we have alsoexcited specific spanwise wavenumbers by using sine waves for the initial
condition. The linear-stability simulations were performed for various domain widths, ranging from 0 up to 8 separation-bubble lengths.
The original LES grid resolution was kept in the streamwise and wall-normal directions whereas the spanwise resolutionwas set to 20
and 40 points per separation-bubble wavelength (two resolutions were tested to make sure that the results are grid independent). The
base flows considered here were obtained by time and span-averaging the conservative variables during the reference, the small, and the
large-span LES runs. To remove spurious oscillations in thetime and span-averaged data, the base flows were filtered prior running the
stability simulations.

After a transient state, all the tested cases have shown thatthe disturbances end up picking up a globally unstable mode (following
an exponential growth in time), the structure of which is shown in figure14(a). The mode was found to be stationary until saturation of
the linear regime was reached.
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Figure 14: Existence of an absolutely unstable global mode.(a) Amplitude function (side and top views) of the streamwise momentum
disturbance (ρu-mode), where the white line indicates the base-flow zero-velocity contour. The contours are equally spaced between
plus and minus the maximum amplitude (on a logarithmic scale) (b) Growth rates for different spanwise wavenumbers, where{ρu}′ =
A(x,y)exp(iβz− iωt), with A(x,y) the amplitude function andi the imaginary number ; for the different base flows tested

Contrary to Robinet’s [40] results on a laminar interaction, we find the global mode to be present in 2D (i.e. at zero span-
wise wavenumber) for the present turbulent SBLI case. Furthermore, when trying to enhance higher wavenumbers in the initial
disturbance, we consistently found the smaller wave-numbers to be growing faster. Figure14(b)provides the growth rates obtained at
different wavenumbers from the time evolution of the amplitude of different spanwise-Fourier modes. First, we find the 2D mode to be
the most unstable, although 3D modes with wavelengths of theorder of, or larger than, the separation-bubble length havevery similar
growth rates. Second, we find that the growth rates are low compared to the inverse time scales involved in the turbulence.In fact, the
growth rates are found to be smaller than an inverse time scale based on the free-stream velocity and the separation length. However,
the values provided in figure14(b)should be considered with care as they are shown to be sensitive to the base flow used. Nevertheless,
we can say that if the 2D global mode is active, the associatedamplification mechanism would scale on several bubble-flow-through
times.

If we now consider the 2D structure of the global mode, it is worth noting that the sign of the amplitude function is arbi-
trary. In fact, changing the sign of the initial disturbanceleads to the same picture as in figure14(a)with the difference that the sign of
the amplitude function is reversed. The effect of the global-mode structure on the skin friction is given in figure15. Depending on the
sign of the amplitude function, one can show that the separation and reattachment points are either moved upstream or downstream (in
phase). Furthermore, as shown in figure15(b), the bubble can either break up or the separation can be amplified in the initial portion of
the separation under the influence of the global mode (note that the disturbance amplitude levels were increased to a non-linear level to
make the global-mode effect visible). The relevance of thisremark will be made clearer later in the discussion of the LESdata.

We thus have found an unstable global mode in the span- and time-averaged flow field of the turbulent SBLI, the growth rate of
which is greatest at zero spanwise wavenumber. Going back tothe discussion in section4.1, it should be noted that the global-mode
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Figure 15: Global-mode effect on the separation bubble. (a)Global mode fingerprint on the skin friction (curves plottedat different
times). (b) Global change in the skin friction (amplified to anon-linear level for demonstration purpose)

growth rates found in this analysis are at mostO(0.5Lsep/U∞), which converts toωi ∼ O(0.1δ0/U∞) (assumingLsep∼ O(5δ0)). This
implies that if we consider the case where the initial disturbance was 4 orders of magnitude smaller than the base flow, thelinear regime
will span a time∆t ≈ ln(103)/ωi ∼O(70U∞/δ0). Therefore, the linear regime involves timescales about two orders of magnitude larger
than the characteristic timescale associated with the incoming turbulence. This is consistent with the earlier argument that the stability
analysis would be meaningful if it involved timescales larger than the turbulence, so that the turbulence only acts to produce the base
flow but does not play a significant role in the development of large-scale motions, just like in the investigations of Gasteret al.[20]. Of
course, this does not constitute a proof, but the stability results are found to be consistent with the underlying assumptions made earlier.
Based on the results of Gasteret al. [20] and Crouchet al. [7], one cannot rule out the possibility that the aforementioned global mode
is meaningful and responsible for the observed low-frequency shock motions in the IUSTI 8-degree shock-reflection case.

5 Unsteady aspects from the analysis of the LES data

In this section, we look at unsteady aspects of the LES data. As mentioned earlier, the small-span LES is used for this study as it is
the least expensive case to run. The data were obtained as explained in section2.3. Note that despite the larger bubble length found in
the small-span LES, we can still study the unsteady aspects.In fact, Dussaugeet al. [13] have shown that the unsteady aspects of the
interaction scaled relatively well with the interaction length, so that renormalizing the lengths by the separation length ought to remove
the issue related to the use of the small-span LES and its over-predicted separation bubble.

5.1 Comparison with experimental wall-pressure measurements

Figure16compares the experimental signal (Dupontet al. [11]) with the equivalent LES pressure signal. Both signals were normalized
with the upstream pressure and filtered with a 6th-order low-pass Butterworth filter with a cutoff Strouhal number of 2, where the
Strouhal number is defined asf Lsep/U∞ with f the dimensional frequency. Note that we use the separation-bubble length and not the
interaction length. Then, the filtered LES pressure signal was projected by linear interpolation onto the experimentaltime axis. This
allows a direct comparison of the two signals. One can thus see that they share very similar properties, suggesting that the LES must
be reproducing the dynamics reasonably well. A closer look at the signals reveals that the experimental signal is slightly richer at
frequencies near cutoff, but overall, the resemblance is striking.

Figure 17 compares the two signals in a more rigorous way, from a spectral point of view. Figure17(a) gives the power
spectral density (PSD) of the aforementioned two signals, with an additional LES wall-pressure signal taken upstream of the interaction.
This time, the LES signals were not low-pass filtered so that the high-frequency content is retained. However, all signals were segmented
using Welch’s method (with 50% overlaps and Hanning windows). Finally, in order to obtain a smooth PSD at high frequencies, we
processed the LES signals several times with an increasing number of segments and then reconstructed the entire frequency range to
obtain the plots in figure17. Figure17(a)confirms the good agreement suggested in figure16 between the experiment and the LES at
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a 6th-order low-pass Butterworth filter with a cutoff Strouhal number of 2, and the LES signal has then been projected – via linear
interpolation – on the experimental time axis)

low-frequencies. Furthermore, the upstream probe from theLES confirms that the energetic low-frequencies observed near the reflected
shock were not introduced by the inlet conditions and thus that the digital-filter approach met our expectations on that aspect.

Figure17(b)gives the weighted PSD. It is obtained by multiplying the PSDby the frequency (the Strouhal number in our case) and
normalizing by the integrated PSD over a given frequency (Strouhal number) range. This representation is convenient tohighlight the
frequencies which contribute most to the variance of the signal. However, the normalization is arbitrary and one shouldbe careful when
comparing the LES and the experiment as the available frequency ranges of the two signals differ. In figure17(b), we provide an hybrid
normalization, labelled “hybrid norm.”, where one accounts only for the common frequency range covered between the experimental
and LES signals (i.e. between the lowest frequency covered by the LES up to the cutoff frequency of the experimental signal). As
shown in figure17(b), the agreement between the LES and the experiment using the hybrid-frequency range is satisfactory.
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Figure 17: Spectral analysis of the wall-pressure signals:experiment vs. LES

These results imply the following. First, that the region under the reflected shock exhibits significant low-frequency oscilla-
tions. These so-called low frequencies are broadband and cover at least one frequency decade aroundSt ≈ 0.03, giving the reflected
shock a very random-like motion. Furthermore, these frequencies are two orders of magnitude smaller than the energeticfrequencies
related to the turbulence. Since the fluctuations related tothe turbulence contribute to the signal-variance nearly asmuch as the
low-frequencies, it makes the distinction between low-frequency and turbulence-related events extremely difficult when looking at a
raw time-signal as in figure16. Second, the good agreement of the LES with the experimentaldata suggests that the present LES does
capture the important dynamics of this interaction: namely, the frequency of the most energetic low-frequency unsteadiness and the
bandwidth of the low-frequency content. However, the LES slightly underestimates the amount of energy aroundSt ≈ 0.3. Nevertheless,
the overall good agreement is an indirect proof that the experimental observations of the existence of a low-frequency content are not
due to an artifact of the experimental arrangement.

However, it should be recalled that the present low-frequency analysis is obtained from the narrow-span LES, which was shown to
produce a longer separation bubble than expected. One can then wonder why the agreement with the experiment is so good. First, it
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must be recalled that Dussaugeet al. [13] have shown that the low-frequency unsteadiness scaled relatively well with the interaction
length and it is possible that the narrow-span LES benefits from this choice of lengthscale in the definition of the Strouhal number. In
fact, the agreement would be poor if we had used the boundary-layer thickness as the reference lengthscale. Second, assuming that
the global mode found in the previous section is related to the low-frequency oscillations, and in light of the experienced sensitivity
of the growth rates to the amount of reversed flow, it would notbe surprising that the low-frequency oscillations are related to the
separation-bubble properties, and more precisely, to the amount of reversed flow, which is related to the bubble height.It was shown
earlier that the large-span LES underestimated the bubble height and consequently the magnitude of the reversed flow. Since the
narrow-span bubble is longer and taller than the one found inthe large-span case, it is likely that the amount of reversedflow in the
narrow-span LES closely matches the experiment, artificially leading to a good agreement for the low-frequency dynamics.

5.2 Upstream influence and digital filter

Before investigating the wall-pressure fluctuations inside the interaction, we will briefly discuss the upstream influence and the use of
the digital-filter approach. Figure18 shows snapshots of the streamwise velocity-fluctuation field in a plane parallel to the wall at two
different altitudes: aty+ ≈ 12 andy/δ0 ≈ 0.2. The colormap highlights the region of the flow with a velocity deficit. At y+ ≈ 12, we
see a very streaky structure. However, the timescales associated with these near-wall turbulence structures are smallcompared to the
timescales associated with the low-frequency shock oscillations. Aty/δ0 = 0.2 (figure18(b)) no obvious long-coherent structure is
seen. To be more convinced of the absence of such structure inthe present LES investigations, one can develop the time history of the
velocity fluctuations seen along a numerical wire just before the interaction (corresponding tox = 260mm) and aty/δ0 = 0.2, as shown
in figure19, where time is converted into space assuming the fluctuations are convected at the local mean velocityUc, as in figure 4 in
Ganapathisubramaniet al. [17] (Taylor’s hypothesis). The colormap was designed to highlight any large-scale velocity deficit in the
reconstructed flow field. The longest structures one can see are of order 10δ0 long.
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Figure 18: Instantaneous snapshot ofu′/U∞ from the large-span LES case at two different heights

An autocorrelation function (computed from the narrow-span LES atx = 260 mm, y/δ0 = 0.2 and in the middle plane of the
computational box) is shown in figure20, where the same time to space transform as in the previous paragraph was applied. Note
that the space axis is given on a logarithmic scale to cover long distances. The correlation function is seen to drop to zero in less than
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one boundary-layer thickness. Note that it drops faster than the prescribed correlation in the digital filter. This is expected since we
deliberately overestimate the correlation lengthscales to ensure the simulated flow does not relaminarize. Also, it isexpected that the
correlation function in a turbulent boundary layer drops slightly faster than the prescribed exponential function at the inlet. What is
most important to the present study is that the correlation function does remain at zero for large timescales. This was the main objective
that motivated the choice of the digital-filter approach, where no cyclic patterns is enforced, as shown by the correlation function. In
contrast, the correlation function in Wu and Martin’s DNS (figure 4 in [54]) does not drop to zero and does not extend to the period of
the recycling/rescaling technique used by the authors.
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Figure 19: Reconstructedu′/U∞ field from a numerical transverse wire located atx= 260mmandy/δ0 = 0.2. Uc is the mean streamwise
velocity atx = 260mmandy/δ0 = 0.2

From the point of view of the digital filter, we made sure that no structure longer thanO(δ0) was introduced and this is con-
firmed by the observed correlation function. However, once inside the computational domain, nothing can prevent largerstructures
developing, and from figure19 one can see that structures up to 10δ0 long may develop, corresponding to the size of the available
computational domain before interaction. As shown earlier, the narrow-span bubble is about 6δ0 long, while the most energetic
low-frequency oscillations are atSt = f Lsep/U∞ ≈ 0.03. Using the boundary-layer thickness as the lengthscale,the energetic low-
frequency oscillation converts tof δ0/U∞ ≈ 0.005. The timescale associated with this frequency is 200U∞/δ0. SinceUc/U∞ ≈ 0.73, the
lengthscale covered during this time using Taylor’s hypothesis isλ/δ0 ≈ 150. Using the scaling argument of Ganapathisubramaniet
al. [18], one would thus need to have 75δ0-long superstructures in the narrow-span LES to explain theobserved energetic low-frequency
oscillations. This is nearly ten times the size of the longest structures we may have, which makes the “superstructures”or the incoming
flow unlikely to be directly responsible for the low-frequency shock motions observed in the present study. This is not tosay that
upstream disturbances are not important when present in practical applications. We now return to the analysis of the wall-pressure
fluctuations inside the interaction.
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5.3 Analysis of a numerical wall-pressure-probe array

In this section, we further analyze the LES wall-pressure signals from two sets of wall-pressure probes. The first set, which we refer to
as the high-spatial/low-time resolution one, is made of the451 available grid points in the streamwise direction, along the median-line
of the computational-box floor, where the pressure was recorded every one hundred iterations. The second set, which we refer as the
low-spatial/high-time resolution one, is made of one pressure measurement every five grid points along the same line, but at a sampling
rate of one record every ten iterations.

Figure21(a)is obtained from the low-spatial/high-time resolution array and is simply an extension of figure17(b)to all the available
streamwise locations. The contours are isovalues of the weighted PSD. This is similar to figure 5 in Dupontet al. [11], except that the
high-frequency end of the current figure is higher than in Dupontet al.’s [11] paper, owing to the inclusion of the energetically significant
high-frequency oscillations related to the turbulence. Figure21(a)can be interpreted as the map of the most dominant wall-pressure
fluctuations as one moves along the streamwise direction. From this point of view, the separation region clearly stands out. More
precisely, it is worth noticing that the energetic broadband low-frequency peak mentioned earlier is very localized about the separation
point (x = Xsep). In the remaining part of the separation bubble, the energyis well distributed over three decades of Strouhal numbers.
This is in good agreement with Dupontet al. [11]. After the interaction, a new ridge starts forming, similar to the upstream ridge,
but at lower Strouhal numbers. This is due to the thicker post-interaction boundary layer, where similar turbulence structures to the
upstream boundary-layer ones are produced, but of larger sizes, leaving a similar footprint in the spectrum but at lowerStrouhal numbers.

Strouhal number, St = fLsep/U∞
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Figure 21: Energetically significant frequencies as found in the wall-pressure signals. (a) Weighted-power-spectraldensity map. (b)
Frequency/wave-number diagram (where the contour levels –shown on a logarithmic scale – are the premultiplied PSD levels obtained
from the two-dimensional Fourier transform of the space-time correlation function of the wall-pressure probe array. The reference probe
to compute the space-time correlation function was locatedat (x−Xsep)/Lsep= 0.3). The PSDs are premultiplied by (a) the frequency
divided by the total resolved power (as in figure17(b)) for each individual streamwise location, (b) the frequency)

Figure21(b)was obtained from the high-spatial/low-time resolution array. First, we chose a reference point at(x−Xsep)/Lsep≈ 0.3
and computed the two-point correlation function in space and time. Then, the space-time correlation function was Fourier-transformed
in space, with a Hanning window to remove end-effects, followed by a Fourier transform in time to obtain the PSD at different
streamwise wavenumberskx, using Welch’s method (with 50% overlaps and Hanning windows). Finally, the PSD was filtered to remove
spurious oscillations with a non-causal filter and weightedby the frequency. This gives the frequency/wavenumber diagram shown in
figure21(b)where the contours are the weighted PSD levels. In addition,all possible acoustic dispersion relations are indicated on the
figure, whereUi , ci , i ∈ {1,2,3} refer to the theoretical potential freestream velocities and local speeds of sound, where region 1 is
upstream of interaction, 2 after the incident shock but before the reflected shock and 3 after the interaction.cw is the speed of sound at
the wall.

Several observations can be made from figure21(b). First, on the positive wavenumber side, where a large amount of energy is
found for wave speeds ranging fromU1−c1 toU1+c1. Looking more closely at this region, a ridge correspondingto waves propagating
at 0.65U1 seems to emerge. This ridge is related to the shedding of coherent structures in the shear-layer at the bubble interface.It must
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be recalled that the reference point to build the correlation function was at(x−Xsep)/Lsep≈ 0.3 so that in this case, the shedding of the
shear-layer structures at the beginning of the interactionturns out to be the most important contributor of the wall-pressure fluctuations.
However, if we had used as the reference point a position upstream of the interaction, the downstream acoustic wavesU1 + c1 would
have been relatively more important than the shear-layer structures (this is not shown here). This remark is important to stress that the
relative importance (amplitude level) of the structures seen in figure21(b)depends on the choice of reference point and should thus
be considered carefully. However, the structure of the frequency-wavenumber diagram itself does not depend on the location of the
reference point within the region considered. In addition to the aforementioned distinct ridges on the positive-wavenumber side, one
can see more spatially distributed structures such as the wide lobe for positive wavenumbers which is related to the turbulence-induced
pressure fluctuations. The second set of observations concerns the negative-wavenumber side of the figure, where upstream acoustic
waves are clearly detected, comforting the possibility of the feedback-loop mechanism proposed by Pirozzoli and Grasso [37]. But of
greater interest to the present discussion is the ridge at low frequencies corresponding to upstream-propagating low-frequency waves.
A best fit to the ridge gives a convection speed of−0.05U1. Note that replacing the freestream velocity by this convection speed in the
definition of the Strouhal number would make the energetic low-frequency oscillations have a Strouhal number of the order of unity.

5.4 Existence of a phase jump in the wall-pressure fluctuations

One disadvantage of the frequency/wavenumber diagram (figure 21(b)) is that it cannot tell us where the aforementioned slowly-
upstream propagating waves come from. It could, if we were torestrict the streamwise extent on which we perform the analysis and
successively move this frame downstream, since past the source point of those waves, we would not find their presence in the diagram
anymore. However, this is not a convenient approach. Instead, we prefer to look at the phase evolution of the wall-pressure disturbances
at a given frequency. For this, we picked a reference point at(x−Xsep)/Lsep≈ −0.2 and made use of the pressure probes from the
high-spatial/low-time resolution array. The results for three different frequencies are given in figure22. Note that the phase data were
unwrapped so that jumps of 2π were removed. In addition, the phase evolution was filtered to remove the noise. One disadvantage of
this approach is of course that the obtained phase is contaminated by all streamwise wavenumbers (note that the level of contamination
can be estimated from the frequency-wavenumber map described in the previous paragraph).
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Figure 22: Phase evolution at different frequencies with respect to a reference probe at(x−Xsep)/Lsep≈−0.2

One can see in figure22 that for theSt ≈ 1 case, the phase increases nearly linearly. The convectionvelocity Uc can be de-
duced from the slope sinceUc/U∞ = 2πSt/ [dΦ/dξ ], whereξ = (x−Xsep)/Lsep. However, at lower Strouhal number, we observe
interesting changes in the phase evolution, which cannot beexplained by the modulo-2π factor. In particular, we find that for
(x−Xsep)/Lsep∈ [−0.3,0.3], the phase decreases linearly while it increases linearly everywhere else. Furthermore, the change of slope
around(x−Xsep)/Lsep∼ 1/3 is abrupt where a phase-jump of aboutπ occurs. Before the jump, we find an upstream propagation
speed whereas after the jump, we have a downstream propagation speed. This means that the source of the slow-upstream propagating
wave discovered in the frequency/wavenumber diagram is located about one third of the way down the bubble. Interestingly, this is
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reminiscent of the global-mode effect on the initial part ofthe bubble as described in section4.2.
Hudy et al. [26] have investigated the flow behind a fence by mean of wall-pressure measurements and report the existence of a

phase jump ofπ in the middle of the separation bubble, similar to the one observed here. Moreover, the authors suggest that this jump
could be related to the presence of a globally unstable mode.Our stability analysis results combined with the above analysis of the LES
data seem to argue in favor of such a connection.

6 Conclusion

In this paper, we have presented results from several large-eddy simulations of an oblique shock wave generated by an 8-degree wedge
angle impinging on a Mach 2.3 turbulent boundary layer with aReynolds number of about 2×104 (based on the displacement thick-
ness), consistent with the experiments performed at IUSTI [13, 11]. A modified version of the digital filter approach was implemented
to avoid any low-frequency forcing. It was demonstrated that the LES results are in good agreement with the PIV data. Furthermore,
the LES grid resolution used (40.5×1.6×13.5 in wall units) was shown to produce nearly grid-independent results and the choice of
eddy-viscosity model was found to have no noticeable influence on the interaction. The use of a subgrid-scale model, however, was seen
to be preferable to an implicit LES approach. By contrast, the choice of domain width was found to strongly influence the interaction
length.

Using the time and span-averaged LES data, we performed a linear-stability analysis of the obtained base flow and found globally
unstable modes (in the Bi-Global sense) with the most unstable mode being the 2D one, contrary to the 3D global mode found by
Robinet [40] in the case of a laminar interaction. In addition, it was shown that the global-mode growth rate are sensitive to the bubble
size. Furthermore, this global mode was seen to affect the separation bubble by displacing the separation and reattachment points (in
phase) and potentially breaking it up or enhancing the bubble in its upstream section. The timescales involved with suchmotions were
found to be in the order of 102U∞/δ0, supporting the idea that such a linear-stability analysisis relevant only in the framework of a
multi-time scale approach where the globally unstable modeneeds to operate at much larger time scales than the underlying boundary-
layer turbulence.

A very-long LES run was used to demonstrate the existence of energetic broadband low-frequency motions near the separation point
with a peak nearSt = f Lsep/U∞≈ 0.03, in excellent agreement with the experimental findings. The success of the digital-filter approach
to avoid any particular upstream low-frequency forcing wasevidenced and it was explicitly shown that the observed low-frequency
shock oscillations were not connected with the inflow turbulence generation, ruling out the possibility of a numerical artifact. This led
us to conclude that the low frequencies found in the experiment are also unlikely to be due to an experimental artifact [13].

Upon investigation of the wall-pressure signals, it was further shown that the low frequencies are local to the initial stage of the in-
teraction. Interestingly, some long-wavelength/low-frequency waves propagating upstream were found in the first third of the separation
bubble. Upon inspection of the phase evolution at those low frequencies in the LES data, a distinct phase-jump ofπ about one third
of the way down the bubble could be observed, reminiscent of the effect the global mode was found to have on the bubble upstream
section. Although the relevance of the global mode is not proven, it can be argued that the initial shock displacement could be the result
of such a hydrodynamic instability, which would then be competing with the need for momentum balance. The timescales involved in
such a mechanism were shown to be about two orders of magnitude larger than the timescales involved in the boundary-layerturbulence,
which is consistent with the observed low-frequency motions. Furthermore, those timescales were shown to be strongly modulated by
the amount of reversed flow inside the separation bubble. This picture can in principle explain both the low-frequency unsteadiness and
its broadband nature.

A The digital filter approach

Let {rk}1≤k≤p be a set ofp random numbers with zero-mean (rk ≡ ∑p
k=1 rk/p = 0) and unit-variance (rkrk = ∑p

k=1 r2
k/p = 1). LetN be

a positive integer. We define the discrete filter operatorFN:

υk ≡ FN(rk) =
N

∑
j=−N

b j rk+ j , (22)

where{b j}−N≤ j≤N is a set of real numbers to be defined later. Noting that the above filter operator is linear, making the averaging and
filtering operations commute, and that the set{rk}1≤k≤p is composed of zero-mean and unit-variance random numbers,one can easily
show that:

υk = 0, and υkυk+q =
N

∑
j=−N+q

b jb j−q. (23)

We now model the two-point-correlation function to be of theform (in 1D for simplicity):

R(xk +x) = exp

(
− πx

2Ix

)
, (24)

wherexk is a reference point,x some distance away from the reference point andIx a given integral length scale. Note that in the
original paper of Kleinet al. [30], the authors assume a Gaussian auto-correlation function. By contrast, Xie and Castro [56] argue
that auto-correlation functions have a form closer to exponential than Gaussian, hence the current choice in equation (24). This will
inevitably produce an energy-decay rate of -2 in place of theexpected -5/3 law. However, one can argue that this choice offunction is
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correct for the large-scale structures and that most of the discrepancies will occur at the smallest scales [56], which are found to recover
the modeling errors more rapidly than the large-scale structure.
On the computational grid, if we definen such thatIx = n∆x andx = q∆x, equation (24) becomes:

R(xk +q∆x)≡ υkυk+q

υkυk
= exp

(
−πq

2n

)
. (25)

Using equation (23), one finds that the filter coefficients can be computed by solving the following system:

∑N
j=−N+qb jb j−q

∑N
j=−N b2

j

= exp
(
−πq

2n

)
. (26)

The solution is approximated by:

bk ≈
b̃k(

∑N
j=−N b̃2

j

)1/2
with: b̃k = exp

(
−πk

n

)
. (27)

Klein et al. [30] find this to be a good approximation ifN≥ 2n (which is not thought to be a computationally expensive requirement).
Upon application of theFN-operator with the above definition for the convolution coefficients, the initial random field of zero-mean

and unit-variance has been given a coherence integral length scaleIx. Note that the above 1D description can be extended to 2D by
simply defining the 2D convolution coefficients as:b jk = b jbk. This completes the main tools for the digital-filter approach. Let us now
describe the step-by-step procedure in order to produce theinlet flow-variable fluctuations.

First, we choose the integral length scalesIx, Iy, Iz that we want to prescribe. Given the grid spacing, we convertthese into an
equivalent number of grid points, i.e.nIx = Ix/∆x. This sets the filter size:NFx = 2nIx. In the current implementation, we make use of
a zonal approach by defining a different set of filters in the near-wall region and the outer-region, as in Veloudiset al. [52]. Then, we
prepare the convolution coefficients{bk}−NFx≤k≤NFx

using equation (27) (in 1D).
Next, we generate a set of random numbers with a normal distribution about zero and unit variance. Since we need to generate

a large number of these sets of random numbers, it is worth noting the following improvement over the commonly used approach to
obtain a normal distribution. Most pseudo-random number generators will generate uniformly distributed numbers and one usually
achieves a normal distribution simply by adding many (12 in Xie and Castro [56]) of those uniformly distributed sets. However, using
the Box–Muller theorem, one only needs two sets: ifa andb are two independent numbers uniformly distributed in(0,1], combining
them such thatc =

√
−2 ln(a)cos(2πb) andd =

√
−2 ln(a)sin(2πb) will make c andd be two independent numbers from a normal

distribution of unit-standard deviation.
Once we have the normally distributed random numbers with zero-mean and unit-variance, we filter them using the convolution

coefficients computed previously:υk ≡ FNFx
(rk) = ∑NFx

j=−NFx
b j rk+ j (in 1D). The “velocity” fieldυk now has the prescribed length scale

Ix. Next we correlate the newly computed fieldυk with the previous one,υold
k . (Except of course when performing the very first time

step.) The following formula was suggested by Xie and Castro[56]. It avoids the filtering of a 3D field as originally proposed by
Klein et al. [30].

ρk = υold
k exp

(
−π∆t

2τ

)
+ υk

√
1−exp

(
−π∆t

τ

)
, (28)

where∆t is the time step andτ is the Lagrangian time scale (τ = Ix/U in the present calculations, whereU andIx are the prescribed
inlet mean streamwise velocity profile and integral length scale, respectively). The fieldρk now contains all the enforced two-point
correlation functions as well as the prescribed streamwisecorrelations thanks to equation (28). The single-point correlations can now
be specified, as originally proposed by Lundet al. [33]. In 3D, it can be written:




u(0,y,z, t)
v(0,y,z, t)
w(0,y,z, t)


=



〈u(0,y,z)〉
〈v(0,y,z)〉
〈w(0,y,z)〉




︸ ︷︷ ︸
Ui (0,y,z)

+




√
R11 0 0

R21/
√

R11

√
R22−

(
R21/
√

R11
)2

0
0 0

√
R33







ρu(y,z)
ρv(y,z)
ρw(y,z)




︸ ︷︷ ︸
u′i(0,y,z,t)

, (29)

where{Ri j}(i, j)∈{1,2,3} is the prescribed Reynolds-stress tensor.
We thus have built the inflow time-dependent velocity field. We are left with the thermodynamic variables. To generate thether-
modynamic fluctuations, we make use of the previously determined velocity perturbationsu′i , invoking the Strong Reynolds Analogy
(SRA):

T ′

T
=−(γ−1)Ma2 u′

U
, with Ma2 = M2U2

T
, (30)

whereT is the local mean temperature. The validity of the SRA is debatable. In fact, from Guariniet al.’s DNS [23], we know that the
above equation is wrong in general. However, equation (30) is also shown in Guariniet al.’s DNS [23] to be correct in a weaker sense,
that it provides the correct RMS correlation. Recently, Martin [34] obtained good results using the SRA as a mean to initialize the flow
in a DNS. The use of the SRA is thus believed to be acceptable asa first approach.

OnceT ′ is computed from the above equation, assuming that the pressure is constant across the boundary layer (invoking the
boundary-layer approximation) and that the pressure fluctuations are negligible compared to the velocity, density andtemperature
fluctuations (an hypothesis already used in the SRA), one finds that:

ρ ′

ρ
=−T ′

T
. (31)
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All the variables are thus prescribed at the inflow and one goes through the above procedure again at the following time step. In
our simulations, we make use of the Mersenne Twister [35] generator to obtain the uniformly distributed random numbers. Using the
Box–Muller theorem, each time step will thus require two sets of 3×Ny×Nz random numbers (3 components in the inflow plane with
Ny, Nz in the order of 100 –Ny andNz are the number of grid points in the wall-normal and spanwisedirections, respectively). Given the
Mersenne Twister generator period of 219937−1, we are guaranteed not to introduce any cyclic behavior in the computational domain.
In addition, the combined use of the Box–Muller theorem, theMersenne Twister generator and the 2D filtering approach of Xie and
Castro [56] produce an efficient method which was not found to be slower than the analytical approach of Sandhamet al. [43].

Acknowledgements The authors would like to acknowledge the UK Turbulence Consortium EP/D044073/1 for the computational
time provided on the HPCx and HECToR facilities, the UK’s national high-performance computing service, which is provided by EPCC
at the University of Edinburgh and by CCLRC Daresbury Laboratory, and funded by the Office of Science and Technology through
EPSRC’s High End Computing Program. We are also grateful to the University of Southampton for the access to its high-performance
computer, Iridis2. In addition, we would like to acknowledge the financial support of the European Union through the Sixth Framework
Program with the UFAST project (www.ufast.gda.pl). Finally, we are grateful to J.-P. Dussauge and his co-workers at IUSTI, as well
as Eric Garnier at ONERA, for kindly making their data available.

References

[1] Adams, N. A. DNS of Shock Boundary-Layer Interaction – Preliminary Results for Compression Ramp Flow. CTR Annual Re-
search Briefs 1997, Center for Turbulence Research, Stanford University and NASA Ames Research Center, Stanford, California.

[2] Adams, N. A. Direct Simulation of the Turbulent BoundaryLayer along a Compression Ramp atM = 3 and Reθ = 1685.J. Fluid
Mech., 420:47–83, 2000.

[3] Adamson Jr., T. C., Messiter, A. F. Analysis of Two-Dimensional Interactions between Shock Waves and Boundary Layers. Ann.
Rev. Fluid Mech., 12:103–38, 1980.

[4] Andreopoulos, J., Muck, K. D. Some New Aspects of the Shock Wave/ Boundary Layer Interaction in Compression Ramp Flows.
J. Fluid Mech., 180:405–428, 1987.

[5] Beresh, S. J., Clemens, N. T., Dolling, D. S. Relationship Between Upstream Turbulent Boundary-Layer Velocity Fluctuations
and Separation Shock Unsteadiness.AIAA Journal, 40(12), 2002.

[6] Carpenter, M. H., Nordstrom, J., Gottlieb, D. A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy.
NASA/CR-1998-206921, February 1998, 1998.

[7] Crouch, J. D., Garbaruk, A., Magidov, D. Predicting the onset of flow unsteadiness based on global instability.Journal of
Computational Physics, 224:924–940, 2007.

[8] Dennis, D. J. C., Nickels, T. B. On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary
layer. J. Fluid Mech., 614:197–206, 2008.

[9] Dolling, D. S. Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?AIAA Journal, 39(8), 2001.

[10] Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T. Large-Eddy Simulation of the
Shock/Turbulence Interaction.Journal of Computational Physics, 152:517–549, 1999.
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