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Abstract

UNIVERSITY OF SOUTHAMPTON

ABSTRACT
FACULTY OF MEDICINE, HEALTH AND LIFE SCIENCES,
SCHOOL OF BIOLOGICAL SCIENCES

Doctor of Philosophy
THE ECOLOGY OF JAGUARS IN A HUMAN-INFLUENCED LANDSCAPE
by Rebecca Jacqueline Foster

Despite intense persecution over the last century, the jaguar (Panthera onca) has sustained a
wide geographic distribution, perhaps due to its elusive nature and rather flexible ecology. This
study investigated jaguar ecology under anthropogenic pressures in Belize, Central America. A
suite of methods including camera-trap surveys, diet analysis, discussions with local
stakeholders, and population simulations were used to study a population of jaguars spanning
the boundary of a protected forest.

Camera-trap data combined with capture-recapture population models are increasingly used to
estimate the density of mammals such as jaguars with individually identifiable coat patterns. A
review of current methods highlighted problems associated with estimating the sizes of low-
density populations. Simulations to assess the robustness of the method found that camera
failure can negatively or positively bias the abundance estimate, depending on the particular
nature of capture histories. The most commonly used model estimator in the literature was
nevertheless robust to failures of up to 10% of trap-occasions. Pooling trap-occasions reduced
the effect of camera failure. Sub-sampling data from large-scale surveys indicated a threshold
survey area of ~170 km®, below which estimates of density were inflated and unreliable. For
surveys exceeding this threshold size, jaguar density varied across the landscape from the
protected forest to the human-influenced lands such that <30% contiguous forest precipitated
reduction. Reduced densities with distance from contiguous forest and proximity to human
habitation may result principally from direct conflicts with people.

The influence of anthropogenic factors on the coexistence of jaguars and pumas (Puma
concolor) was investigated by comparing their habitat use and feeding ecology. Diet was
analysed from the largest sample to date of scats from one area identified to species. Jaguars and
pumas made similar use of the secondary rainforest, despite differences in diet. Although both
cats relied heavily on one species of small prey (5-10 kg), for jaguars this was the nine-banded
armadillo (Dasypus novemcinctus) while for pumas it was the paca (Agouti paca). Both cats
took some larger prey, mainly white-lipped peccaries (Dictolyes pecari) by jaguars and red
brocket deer (Mazama americana) by pumas. Energetics models indicated that reproduction
may be limited for either species if large prey are unavailable for females with dependents.
Outside the forest block, jaguars rarely ate large wild prey species; instead, a diet of smaller
wild prey was supplemented with large domestic stock. Pumas were scarce outside the protected
forest, possibly reflecting a reluctance to utilise domestic species near human developments and
competition with humans for their preferred prey of paca and deer, which are also prized
regionally as game species.

Human-induced mortality of jaguars outside the protected forest was mainly associated with
livestock predation. Both sexes were equally active on pastures and were persecuted at a similar
rate. Many of those killed were young individuals in good body condition, suggesting high
turnover rates augmented by immigration. Population simulations indicated that the observed
levels of human-induced mortality could be maintained only with immigration from the
protected forest. Without natal dispersers (2-4 year olds) immigrating in, the hunted population
had zero probability of persisting beyond 20 years. Simulations indicated that the jaguar
populations inhabiting the two main protected forest blocks in Belize could persist in isolation
and maintain low levels of emigration to the unprotected population. However the probability of
all three populations persisting for 100 years fell to ~50% if the migration of natal dispersers
from the protected to unprotected population exceeded ~12% per year.
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Chapter 1: Carnivores in human-influenced landscapes

Introduction

Twenty-three percent of terrestrial mammalian species are threatened with
extinction, averaging approximately one third of the species in each order (mean + SD =
0.35 £0.29, IUCN 2007). Contemporary declines in terrestrial mammal populations are
associated with regions of high human density or their resultant impacts such as
intensive agriculture, urbanisation and hunting (Ceballos and Ehrlich 2002, Cardillo et
al. 2004). An estimated 83% of the land on Earth is influenced by human activity
(Sanderson et al. 2002a). The current human population is predicted to increase from
6.6 billion to 9 billion by 2042 (US Census Bureau 2007). The survival of terrestrial
mammal species will increasingly depend on their ability to co-exist with people in
human-influenced landscapes.

Carnivores have a worldwide distribution. Many have suffered population
declines and range contractions over the past 200 years; for example the range of tigers
(Panthera tigris) has decreased by 93% (Dinnerstein et al. 2007), grizzly bears (Ursus
arctos horribilis) by 95-98% (Pyare et al. 2004), and the range of grey wolves (Canis
lupus), originally the widest of all mammals, has reduced by one-third (Mech and
Boitani 2004). Twenty-eight percent of terrestrial carnivore species are now threatened
(IUCN 2007). The population status of only 108 of 245 terrestrial carnivores is known,
but of these 82% are in decline (IUCN 2007). It is not surprising then that biological
characteristics associated with extinction vulnerability are frequently found in carnivore
species (Gittleman et al. 2001): low genetic variability; small geographical range; few,
small or declining populations; low population densities; large home ranges; large body
size; and specialized niche requirements. The effect of these biological traits may be
exacerbated by human activity and modification of the landscape. For example, Cardillo
et al. (2004) showed that carnivore biology interacts with human population density to
determine extinction risk: 38% of the variation in extinction risk of carnivore species
with low exposure to humans was explained by biology, specifically density and
geographic range; whilst in those with high exposure to humans, biology (geographic
range, density and gestation length) explained 80% of the variation.

Carnivore declines may be expected where there is human population growth
(Woodroffe 2000) because human activity, whether intentional or accidental, is major
cause of carnivore mortality (Woodroffe and Ginsberg 1998, Woodroffe 2001, Riley et

al. 2003) and this has been correlated with local human density (in Africa) (Harcourt et
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al. 2001). Despite this, human density alone is a weak indicator of carnivore extinction
(Woodroffe 2000, Linnell ef al. 2001) because there is variation in the ability of
different carnivore species to adapt to human-modified habitats, and temporal and
spatial variation in people’s activities and attitudes towards carnivores (W oodroffe
2000); for example Linnell et al. (2001) showed that certain large carnivores are able to
persist today in North America and Europe, even though human density is high and the
landscape is heavily modified, because human behaviour is now controlled (reserves are
protected effectively and hunting regulations are enforced). As such, social, cultural and
economic factors, as well as carnivore biology, will influence the ability of carnivores to
survive the threats arising from a growing human population in a landscape increasingly
dominated by people.

This doctoral study was conceived with the aim of improving understanding of
the ecology of jaguars (Panthera onca) in a human-influenced landscape. The jaguar
has persisted despite intense persecution over the last century, perhaps due to its elusive
nature and rather flexible ecology. However the limits of its adaptability to
anthropogenic pressures are still unknown and in need of further research, the premise
for this thesis. This study was designed to investigate the ecology of jaguars utilising a
human-influenced landscape in Belize, Central America. The jaguar population in this
region is considered to have a high probability of survival (Sanderson et al. 2002b) and
provides an important link in the corridor through Central to South America. This study
explores density, demographics, habitat use and diet in a jaguar population spanning the
boundary of a protected forest; and assesses the sustainability of lethal control in
response to livestock predation.

The aim of this chapter is to review contemporary anthropogenic threats faced
by terrestrial carnivores and discuss factors which may influence their resilience in an
increasingly human-dominated world. Cats are highlighted as a carnivore family at
particular threat from human activities, and the jaguar as one which is relatively poorly
known. The ecology and conservation of jaguars are then discussed, identifying gaps in
our current knowledge and explaining how this thesis attempts to fill them. The specific

thesis objectives and study area are described at the end of this chapter.
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Threats facing carnivores

The over-riding human threat facing all terrestrial mammals is habitat
transformation, which impacts ~86% of all threatened mammal species (Baillie et al.
2004). Habitat transformation degrades or destroys the habitat required for forage, prey
or refugia; and, through fragmentation of the landscape, intensifies all other
anthropogenic threats by bringing species into closer contact with humans and their

activities.

Habitat fragmentation

Habitat fragmentation is of particular concern for large carnivores because they
often have large home ranges and so are forced to move through, or utilise, human-
influenced landscapes; for example in a retrospective study of 12 large carnivore species
(> 11 kg), Woodroffe (2001) found that relative extinction ‘proneness’ increased with
female home range size, regardless of body size or density. Indeed female home range
size has been shown to determine the critical reserve size (size at which probability of
survival is 50%) in large carnivores (Woodroffe and Ginsberg 1998). Ultimately the
effectiveness of any reserve will depend not only on the ranging behaviour of the target
species, but also the size and physiognomy of the reserve and the spatial needs of
humans occupying the same landscape (Revilla ez al. 2001).

As the size of optimal habitat decreases, not only do the available resources
within the fragment decrease, but the effect of a smaller core to edge ratio increases the
impact of human activity from the surrounding matrix (‘edge-effects’). For carnivores
these ‘edge-effects’ may include the impact of hunters removing prey from further
inside the core habitat, and, for wide-ranging carnivores, the overlapping of their home
ranges or dispersal movements with the human matrix and its associated threats. It has
been suggested that for extremely wide-ranging carnivores such as African wild-dogs
(Lycaon pictus) which suffer high rates of human-induced mortality outside reserves,
protected areas < 10,000 km? will be insufficient to ensure their survival (Woodroffe
and Ginsberg 1999, Woodroffe et al. 2007b). Even species with relatively small home
ranges may endure edge-effects; for example Revilla et al. (2001) showed that survival
probability of a medium-sized carnivore (6-7 kg), the Eurasian badger (Meles meles), in
a protected area of 550 km? in Spain increased with distance into the reserve. They

estimated that edge-effects (human-related mortality of badgers living close to the edge
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of the reserve) reduced the effectiveness of the protected area by 36%. A study of
Iberian lynx (Lynx pardina) from the same region attributed the high annual mortality of
male dispersers (86%) compared to male residents (12%) to movement across high risk
areas within a fragmented habitat (Ferreras et al. 1992). Smaller fragments or reserves
are often indicative of more intense human activity outside the fragment, which in turn
exacerbates the edge-effects further; for example reserve size in Africa and the USA is
negatively correlated with the surrounding human population density, thus smaller
reserves are located in more adverse landscapes and may suffer more intense edge-
effects than large reserves (Harcourt et al. 2001, Parks and Harcourt 2002).

A subtle effect of habitat fragmentation is that the vulnerability of competitively
inferior species within carnivore guilds may increase in human-influenced landscapes:
fragmentation may prevent subordinate species re-colonising isolated habitats following
competitive exclusion by dominant species, and so alter local extinction rates (Creel
2001). Subordinate species may be displaced to marginal areas by dominant
competitors, potentially increasing the risk of contact with humans (Woodroffe 2001).

Extreme fragmentation can isolate populations, for example the Asiatic lion
(Panthera leo persica) is restricted to a single site, the Gir Forest in north western India
which is surrounded by human development (Sunquist and Sunquist 2002). Small
isolated populations may be subject to inbreeding depression, for example the Florida
panther (Puma concolor coryi) (Hendrick 1995).

The subsequent threats discussed here may be the direct result of, or intensified

by, habitat fragmentation.

Reduction of wild prey abundance

Prey density is a key factor determining carnivore density both within and
between species: within carnivore species, population density is positively correlated
with prey biomass density; and as carnivore size increases the number of carnivores
supported by a given prey biomass decreases (10,000 kg of prey supports ~90 kg of
carnivore) (Carbone and Gittleman 2002). Reductions in prey availability, either
through direct competition with man or indirectly through habitat loss, may have
repercussions for carnivore survival; for example Karanth et al. (2004) demonstrated a
functional relationship between abundances of tiger and their prey and suggest that wild

prey depletion may be a principal cause of tiger population decline.
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The response of carnivores to lowered prey availability varies: it may reduce
fecundity, reduce neonatal, juvenile and adult survival, increase home range and
increase the number of transients and dispersers (for a review see Fuller and Sievert
2001). Thus, within a human-dominated landscape it is likely that depletion of wild prey
will both lower the ability of populations to compensate for human-related mortality,
and further increase risk of contact with humans through home range expansion and
utilisation of domestic livestock as an alternative to wild prey.

In some situations management of game species may be detrimental to
carnivores. In African National Parks, where hunting is prohibited, high densities of
large ungulates support high densities of large carnivores, lions (Panthera leo) and
hyaenas, which in turn competitively exclude smaller carnivores, cheetahs (Acinonyx
Jjubatus) and African wild dogs; in contrast cheetahs and wild dogs can exist in Game
Reserves because there hunting is allowed which depresses prey densities, thus lion and
hyaena densities are lower (Creel ef al. 2001). The decline of the Iberian lynx in Spain
has been linked to the introduction of myxomatosis to control rabbits (Oryctolagus
cuniculus) the main prey of lynx (Rodriguez and Delibes 2002). More recently in Spain,
high densities of wild boar (Sus scrofa) and red deer (Cervus elaphus) promoted for
sport hunting have also been found to reduce the availability of rabbit, the preferred

prey of the threatened wildcat (Felis silvestris) (Lozano et al. 2007).

Direct persecution

Many carnivore species are targeted for the harvest and trade of body parts,
recreational sport hunting, and in response to real or perceived threats to human life or
livelihood. Some carnivore populations, in particular canids such as coyotes (Canis
latrans) and red foxes (Vulpes vulpes), may persist despite intensive persecution
because reproduction compensates for harvest mortality (e.g. Knowlton 1972, Harris
and Saunders 1993, Knowlton 1999). Often populations cannot compensate for
sustained exploitation; for example Stoner et al. (2006) found that hunting intensity >
40% of adult pumas for > 4 years reduced density and resulted in a population that was
younger, less productive and socially unstable compared to an un-hunted population.
Novaro et al. (2005) demonstrated that the hunting of culpeo foxes (Pseudalopex
culpaeus) in Argentina is non-compensatory: human-induced mortality and natural
mortality were additive so the persistence of local populations was dependent on

emigration from protected areas.
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Historically many terrestrial carnivore populations were heavily exploited for
the fur trade; this has declined since the 1980s following the 1973 implementation of an
international treaty (CITES) banning trade in wildlife products derived from endangered
species (Johnson ef al. 2001). Although large-scale commercial hunting for the wildlife
trade has diminished, illegal hunting and sale of body parts continues on the black
market; for example international trade in tiger parts for traditional Chinese medicine
remains extensive and threatens the few remaining tiger populations (Dinerstein et al.
2007).

Pro-active or retaliatory lethal control to defend human life and livelihood from
threats of carnivore attack is common throughout the world (Thirgood et al. 2005,
Sillero-Zuibiri and Laurenson 2001). In particular, efforts to protect livestock or game
species can impact heavily on carnivore populations, for example this has led to the
extinction of Falkland Island wolf (Dusicyon australis), and dramatic range contractions
of grey wolves and red wolves (Canis rufus) in the US and the African wild dog
(Woodroffe et al. 2005). Indiscriminate pro-active lethal control to pre-empt livestock
predation may exacerbate the problem through the injuring of individuals such that they
can no longer hunt wild prey, or the removal and replacement of ‘well-behaved’
residents with naive immigrants who predate livestock (Rabinowitz 1986a, Frank and
Woodroffe 2001).

Trophy hunting of large charismatic carnivores is popular and lucrative (Frank
and Woodroffe 2001). It is often regarded as a conservation tool because off-take rates
are considered low and high prices may offer economic incentives in areas where eco-
tourism may not be suitable (Lindsey et al. 2007). However the selective harvesting of
specific age or sex classes can disrupt the social system and demography of the
population; although the extent to which this may influence population growth is not
well known (Milner et al. 2007). Large males are often targeted for trophy hunting; the
removal of resident males from a population has been documented to increase rates of
infanticide by new males which move into the area, for example in lions (Loveridge et
al. 2007), leopards (Panthera pardus) (Balme et al. 2007), and brown bears (Swenson
et al. 1997). More subtle effects have also been noted, for example it has been suggested
that the reproductive rates in a hunted population of brown bears were lower (smaller
litter sizes) than a non-hunted population because females utilised sub-optimal foraging

grounds in order to avoid potentially infanticidal immigrant males (Wielgus and
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Bunnell 2000); and lion prides may suffer cleptoparasitism of kills by hyaenas where

adult males have been removed (Milner et al. 2007).

Incidental deaths and disturbance

Carnivores may be killed ‘accidentally’ by human activities, for example in road
traffic accidents or through the poisoning or trapping of non-target species in vermin
control (e.g. Ferreras et al. 1992, Nielsen and Woolf 2002, Seiler et al. 2004, Fournier-
Chambrillon et al. 2004, Haines et al. 2005, Virgos and Travaini 2005, Orlowski and
Nowak 2006, Gaydos et al. 2007, Riley et al. 2007). Non-natural incidental deaths may
have a considerable impact on the survival of small, endangered populations, especially
if mortality is non-compensatory. For example a seven-year study of the endangered
Iberian lynx population in the Dofiana area of south-western Spain revealed that 75% of
mortality (18/24 deaths) was due to human activities: 37% of deaths were attributed to
capture in traps and snares set for fox and rabbits or attack by poachers’ dogs, a further
21% were killed in road traffic accidents and 17% drowned in wells (Ferreras et al.
1992). Such high rates of non-natural mortality raised concerns for the survival of the
population, estimated to be only 40-50 individuals.

Various studies have shown temporal and/ or spatial avoidance by carnivores of
areas with high human activity, such as settlements and roads, or otherwise pristine
areas disturbed by hunters, ecotourism or field researchers; for example sun bears
(Helarctos malayanus) and tigers (Griffiths and van Schaik 1993), pumas (Janis and
Clark 2002), bobcats (Lynx rufus) (George and Crooks 2006, Riley et al. 2003, Riley
2006) and wolves (Theuerkauf et al. 2003). The relationships between such behaviour
and survival are not always clear, although behavioural plasticity can often facilitate
persistence in human-dominated landscapes (discussed later). In sensitive species
however, disturbance from human activities may negatively impact on normal activity
budgets and potentially lower survival, for example Kerley et al. (2002) suggested that
reduced foraging efficiency of female tigers caused by human disturbance at kill sites in
Russia may lower survival and reproduction.

Large carnivores are frequently reported to avoid paved or high-use roads, for
example wolves (Theuerkauf er al. 2003, Whittington et al. 2004) and pumas (Dickson
et al. 2005). Such behaviour, whilst reducing vehicle mortality, could facilitate
population isolation in highly fragmented habitats, for example a genetic study of

bobcat and coyote populations on either side of a busy highway near Los Angeles found



Chapter 1: Carnivores in human-influenced landscapes

that individuals used it as a home range boundary and it limited gene flow between

populations on either side (Riley et al. 2006).

Disease transmission from domestic carnivores

Domestic carnivores can act as reservoirs of parasites and infectious pathogens
which may ‘spill over’ into wild carnivore populations; for example domestic dogs have
been linked to outbreaks of rabies in African wild dogs and Ethiopian wolves (Canis
simensis) and canine distemper in lions (RoelkeParker ef al. 1996, Woodroffe et al.
1997, Randall et al. 2006, Cleaveland et al. 2007). Such diseases may lower the
resilience of wild populations or drive them to extinction if populations are small, for
example the African wild dog population of the Serengeti was extirpated by rabies
originating from local domestic dogs (Woodroffe et al. 1997). The risk may be greater
where veterinary care is low, populations of domestic carnivores are high and there is
close contact with wild species; for example during the 1990s the annual growth of the
Zimbabwean domestic dog population on reserve boundaries was estimated to be ~
6.5%, raising concerns about risks of disease transmission to wild carnivores which prey
on diseased dogs (Butler et al. 2004). More recently several studies have highlighted the
potential risk of disease transmission to wild carnivores from domestic dogs and cats
living in villages neighbouring national parks in South America (Fiorello et al. 2004,
Fiorello et al. 2006, Fiorello et al. 2007, Whiteman et al. 2007). Evidence of exposure
to domestic carnivore parasites and pathogens has been detected in at least six species of
wild neotropical felids and canids (Deem and Emmons 2005, Whiteman et al. 2007).
Whiteman et al. (2007) suggest that the solitary behaviour of many neotropical
carnivores, with the exception of coati (Nasua nasua), may prohibit outbreaks of canine
distemper virus in rainforest environments such as the Amazon, although they caution
that escalating habitat fragmentation may increasingly bring wild and domestic

carnivores into contact and reverse this trend.

Introduced species

Introduced and domestic mammals can negatively impact on endemic carnivore
species in other ways, not only as potential disease reservoirs. Hybridisation with
domestic cats threatens the genetic integrity of European wildcats (Beaumont et al.
2001, Pierpaoli et al. 2003). Endangered European mink (Mustela lutreola) have

declined across their range, partly due to competition with the introduced American
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mink (Mustela vison) (Mustelid Specialist Group 1986, Dunstone 1993). Domestic dogs
in India may compete with endangered Indian wolves (formerly Canis lupus pallipes,
now C. indica) for blackbuck (Antelope cervicapra) prey (Jhala 1993). Less commonly
a non-carnivore species may impact negatively on a carnivore. The island fox (Urocyon
littoralis) declined following the introduction of feral pigs in the Californian Channel
Islands because the pigs provided additional prey for the natural predator of the fox, the
golden eagle (Aguila chrysaetos). Eagle numbers increased as did predation on the fox

(Roemer et al. 2001).

The resilience of carnivores and concerns for cats

The preceding introductory review demonstrates how carnivores face a range of
anthropogenic threats. Habitat fragmentation and ranging behaviour both play an
important role in the level of exposure to these threats. However some carnivore species
are more resilient than others; some may even flourish in human-dominated landscapes.
The resilience of carnivores to anthropogenic threats depends on the ability of
individuals to adapt their behaviour to human-disturbed environments; demographic
compensation to mitigate effects of human-induced mortality; and dispersal to connect
fragmented populations (Weaver et al. 1996). For instance, in a simplified scenario
Weaver et al. (1996) demonstrated how, within the same landscape, the relative
resilience of three sympatric carnivores to disturbance, persecution and fragmentation,
may differ based on their foraging behaviour, fecundity and dispersal ability (illustrated

in Table 1.1).

Table 1.1 The resilience of three sympatric carnivores to disturbance, persecution and
fragmentation at the individual, population and meta-population level. Based on
Weaver et al. (1996)

Species Diet Reproduction Dispersal Resilience
Gray wolf ~ Generalist omnivore High annual High dispersal ability HIGH
productivity
Puma Generalist carnivore; requires Biennial productivity Intermediate dispersal i
specific habitat for stalking
prey
Grizzly Omnivore; requires high quality ~ Triennial productivity Females philopatric to LOW
bear forage at certain times of year maternal home range
Level individual population meta-population
Threat disturbance persecution fragmentation

In reality, mechanisms of resilience are complex, as shown in Figure 1.1.

Individual resilience (through behavioural flexibility) will influence both population and

10
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meta-population resilience: it will affect the probability that individuals will avoid
human-induced mortality during their life-time, allowing successful dispersal and
reproduction. Local population resilience (through demographic compensation) will
depend on reproductive and social flexibility (Frank and Woodroffe 2001) in response
to anthropogenic threats. In highly exploited populations immigration (dispersal ability)
may also be important if reproduction does not compensate for mortality. Finally, meta-
population resilience (through successful dispersal between populations) will depend on
(and influence) population resilience, and depend on dispersal ability, which in turn

depends on individual resilience.

Meta-population resilience

f—Dispersal ability —j

— Population resilience,\
Reproductive rate & flexibility Social flexibility

Individual resilience
Behavioural flexibility

Figure 1.1 Levels and mechanisms of resilience to anthropogenic threat

Individual Resilience

Behavioural plasticity within a species allows individual adaptation to a
changing environment, even in the face of rapid anthropogenic change (e.g. Beckmann
and Berger 2003a). Frequently this involves shifts in activity to avoid contact with
people or areas of high human activity; and/or changes in foraging behaviour related to
the depletion of the preferred natural prey or the superabundance of anthropogenic
sources of food such as garbage or livestock. Frank and Woodroffe (2001) suggest that
selection for behavioural plasticity under conditions of competition from larger
predators and a fluctuating prey base has pre-adapted certain species to survive in
human-influenced landscapes. As such we may expect smaller, omnivorous carnivore
species to be more resilient to many human threats than larger, strictly carnivorous

species. It could also be argued that carnivores which hunt by stalking, such as many
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felids, have evolved cryptic behaviours with which to catch prey and that this elusive

behaviour may pre-dispose them to successfully avoid humans.

Behavioural response to human activity

Behavioural adaptation to human disturbances which may pose a threat (e.g.
hunters or traffic) usually involves spatial or temporal avoidance. For example, activity
often becomes more nocturnal in highly exploited populations so as to avoid hunters
(e.g. coyotes, Kitchen ef al. 2000) and in or near urban areas, as documented in bobcats
and coyotes (Riley ef al. 2003, Riley 2006, George and Crooks 2006), black bears
(Ursus americanus) (Beckmann and Berger 2003a) and grey wolves (Theuerkauf et al.
2003). Disturbance may range from hikers to hunters; and from relatively pristine
habitat to more developed landscapes with agriculture, roads and urban settlements.
Avoidance of ‘benign’ human activity may be disadvantageous if it disrupts foraging or
other behaviours to such an extent that survival may be compromised (e.g. Kerley et al.
2002). In some cases, habituation to predictable human activities may be preferable to
avoidance behaviour (George and Crooks 2006).

Different levels of ‘tolerance’ to urban areas are observed among carnivore
species (e.g. Crooks 2002, Riley et al. 2003, Riley 2006). Urban tolerance is likely to be
associated with the degree of diet flexibility and the availability of food resources
within urban areas compared to rural or wild areas (next section), as well as species-
specific responses to human activities, roads and the urban environment per se. Within
developed areas some species are more sensitive to roads than others, for example Riley
(2006) found that bobcats appeared to avoid crossing paved roads, whilst foxes crossed
roads regularly. Intraspecific variation in use of urban areas has also been documented,
for example, in southern and northern California male bobcats used areas near or in
urban areas more than did female bobcats (Riley ef al. 2003, Riley 2006). If female
carnivores tend to be less tolerant of landscapes with high human activity this
knowledge should be incorporated into management plans (Riley 2006). There is
evidence to support the hypothesis that ‘street wise’ individuals which regularly use
developed habitats may learn to utilise roads safely whilst naive individuals who use
urban areas less often are at greater risk of vehicle mortality; for example raccoons
(Procyon lotor) in urban areas of north-eastern Illinois suffered less traffic mortalities

than raccoons in suburban and rural areas (Prange et al. 2003).
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Behavioural response to prey availability

Flexibility in foraging behaviour and diet will allow prey switching if the
preferred prey become depleted; for example, African wild dogs are able to survive on
small prey in areas where their preferred large ungulate prey is scarce (Woodroffe et al.
2007a). The narrower the diet, the less resilient the species will be to environmental
changes, therefore omnivorous generalists will be more resilient than strictly
carnivorous specialists. Many carnivore species utilise anthropogenic sources of food.
Strictly carnivorous species such as large felids will predate on domestic livestock,
bringing them into direct conflict with people, in the long run a negative adaptation; for
example lions (Patterson et al. 2004), and pumas (Mazzolli et al. 2002). Omnivorous
species however, such as canids, ursids, hyaenids and some mustelids, may greatly
benefit from foraging on garbage, at relatively low risk. These species may thrive in
urban habitats; for example urban densities exceeding rural densities have been
recorded in many generalist carnivores including raccoons (Smith and Engeman 2002,
Prange et al. 2003), grey foxes (Urocyon cinereoargenteus) (Riley 2006), black bears
(Beckmann and Berger 2003b), coyotes (Fedriani et al. 2001) and San Joaquin kit foxes
(Vulpes macrotis mutica) (Cypher and Frost 1999).

Population Resilience

High reproductive rates, reproductive and social flexibility (Frank and
Woodroffe 2001) and dispersal ability between populations, will help a population
compensate for human-induced mortality. There is high variability among carnivores
and their resilience to human-induced mortality may be difficult to predict; for example
mustelids and small felids are not resilient to non-selective methods of red fox control,
yet the high reproductive rate, density dependent reproduction and broad diet of foxes
allow them to persist under such conditions (Virgos and Travaini 2005).

Reproductive rate tends to scale with size: large species reproduce later and
more slowly than small species, but, in the absence of human-induced mortality, also
live longer. Under conditions of intense anthropogenic mortality it may be expected that
smaller carnivores may be more resilient than larger carnivore species.

The energy requirements of a female increase when she is pregnant, lactating, or
with dependents. In order to reproduce females must have access to abundant food. In

fragmented and disturbed habitats generalist species will be more likely to secure
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sufficient food resources for reproduction than those with specialist diets, or those
which compete with humans for wild prey; for example tigers (Sunsquist et al.1999). It
is also likely that diet will influence the interval of dependency (period between birth
and dispersal) and so influence reproductive rate. Species which must learn specialized
hunting strategies from their mother will likely remain dependent longer than those with
generalist diets.

Many mustelids are able to delay implantation of the embryo (Ferguson et al.
20006) so that females can select mates when they are available but delay development
and birth until the environmental conditions are favourable. This flexible reproductive
strategy may increase the resilience of the mother and her progeny to periods of
resource scarcity. Spotted hyaenas (Crocuta crocuta) can alter the sex ratio of their off-
spring in response to clan size (Holekemp and Smale 1995) this may also increase
population resilience particularly against selective exploitation of a particular sex.

Coyotes have been show to increase their litter size in response to high levels of
persecution (Knowlton 1972). Indeed the resilience of coyote populations to
exploitation is formidable. Group-living in carnivores may facilitate larger litter sizes,
or group-hunting; therefore species such as coyotes that are socially flexible (able to
shift from solitary to pair or group-living) according to conditions will likely achieve
higher reproductive rates. Social flexibility can also help secure mates, for example the
formation of coalitions in male cheetahs (Sunquist and Sunquist 2002). In species which
are not socially flexible the negative effects of increased mortality may be exacerbated
by the disruption it causes to the social system, for example increased levels of
infanticide.

Several studies of large carnivores suggest that reproduction does not increase in
response to exploitation, for example pumas (Stoner et al. 2006); and the sustainability
of heavily exploited carnivore populations may entirely depend on immigration from
neighbouring unexploited populations, for example cuelpos (Novaro et al. 2005),
wolverines (Krebs et al. 2004), wolves (Jedrzejewska et al. 1996), lynx (Slough and
Mowat 1996) and pumas (Sweanor et al. 2000). This emphasises the importance of
corridors of permeable habitat between exploited and un-exploited populations, as well
as the need for flexible dispersal ability.

Usually in carnivores, as in other mammals, females tend to be philopatric,
staying close to their natal range; their dispersal is generally governed by the

availability of resources such as den and food. In contrast males disperse in search of a
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territory where they can secure females. Strong philopatry in females may be beneficial
if conditions are favourable but detrimental if a population is suffering from intense
human-induced mortality: the sex ratio may become male-biased and reproduction may
decrease as new males are recruited into the area but resident females are killed (e.g.
Robinson et al. 2008). Flexibility in male dispersal is also important in maintaining a
balance between travelling far enough to promote genetic mixing but not so far that
human-induced mortality during dispersal becomes a risk. For example, male red foxes
and male badgers are more likely to disperse at low population densities (see Frank and
Woodroffe 2001). This behaviour probably functions to increase the probability of

finding a mate.

Concerns for cats

Understanding mechanisms of individual and population resilience can help to
identify taxa which may be at particular risk from anthropogenic threats. As discussed,
resource generalists with flexible reproduction, social systems and dispersal may be
better adapted to a human-influenced landscape than more specialist species. In a study
of habitat fragment use by carnivores in California, Crooks (2002) found that both body
size and resource specialisation of carnivores were associated with patch occupancy.
Small generalist carnivores such as raccoons, grey fox and domestic cats occupied most
fragments; and within the larger carnivores, coyotes occurred in most patches whilst
pumas were highly sensitive to fragmentation. A similar pattern was observed in a study
of carnivores in the hyper-fragmented forest landscape of southern Brazil: all cat
species, jaguar, puma, ocelot (Leopardus pardalis) and jaguarondi (Herpailurus
yaguarondi), were only found in the larger fragments, whilst matrix-tolerant
opportunistic omnivores, tayra (Eira barbara), crab-eating fox (Cerdocyon thous) and
coati, occupied most forest fragments and were not sensitive to patch size (Michalski
and Peres 2005).

Many extant carnivores are now adapted to omnivorous diets, an asset in human-
influenced landscapes. Cats (family Felidae) are perhaps the most carnivorous of all the
Carnivora families and therefore least adaptable to reductions in the availability of wild
prey; whilst simultaneously posing the greatest perceived threat to humans and their
livestock. Forty-seven percent of cat species are threatened and a further 22% are near
threatened (IUCN 2007). All 36 cat species are facing population reduction, comprising

41% of all carnivore species known to be in decline (JUCN 2007). In comparison, only
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23% (8/35) of dog species (family Canidae) are considered threatened (although six are
data deficient); and of the 108 terrestrial carnivore species for which suitable data exist,
stable or increasing populations are found only in canids (16 species) and mustelids
(three species) (IUCN 2007). Prey depletion has been attributed to population decline in
92% (33/36) of cat species (IUCN 2007). In contrast only one canid is threatened due to
prey depletion (the endangered dhole, Cuon alpinus) (IUCN 2007), presumably because
of the more varied omnivorous diets of dog species.

Within the Felidae the larger species may be considered to be most at risk in
human-influenced landscapes: in addition to reasons already discussed such as relatively
large home ranges, low reproductive potential and decline in prey through habitat loss,
they face direct competition with man for the same game species (e.g. Nuiiez et al.
2000a, Leite et al. 2002) and the increased threat of direct persecution associated with
both livestock predation and trophy-hunting of large charismatic carnivores. In
particular, livestock loss is considered the greatest source of conflict between humans
and large cats, and the major cause underlying their disappearance from considerable
areas of their former range (Mazzolli et al. 2002). The current ranges of the two largest
cats, the tiger and the lion, are 7% and 17% of their historic ranges respectively
(Dinnerstein, 2007, Anon 2007). Both species are endangered; tigers are most at risk,
with a total effective population size estimated at below 2,500 mature breeding
individuals, and no subpopulation containing more than 250 (Cat Specialist Group
2002). In contrast, the range contraction of the third largest cat, the jaguar, has been less
severe, despite intense exploitation for its skins throughout the 20™ century (Smith
1976, McMahan 1982, Payan and Trujillo 2006) and on-going persecution to protect
livestock (Rabinowitz 2005). Jaguars show wide variation in their diet, activity patterns
and land tenure system (e.g. Schaller and Crawshaw 1980, Rabinowitz and Nottingham
1986) and their resilience thus far is undoubtedly linked to this behavioural and social
flexibility. Unlike other widely distributed large carnivore species, the jaguar population
has not yet been genetically isolated in any part of its range, suggesting that it is able to
utilise human-dominated landscapes (Eizirik et al. 2001, Rabinowitz 2006). Maintaining
population connectivity throughout the jaguar range will be essential for its long-term
survival; however the limits of its adaptability to anthropogenic pressures are still

unknown and in need of further research.
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Jaguar ecology and conservation

Jaguars are the largest of the six felids which inhabit the neotropics (Table 1.2).
They utilise a wide range of lowland habitats (up to about 2,000 m) including rainforest,
wet grasslands, mangroves and even arid scrub, although they tend to be associated with
water (Emmons and Feer 1990, Kitchener 1991, Nowell and Jackson 1996, Reid 1997).
Historically (circa 1900) the jaguar ranged from the southern USA to southern
Argentina, occupying ~19.1 million km”. Over the past 100 years their range has
contracted by at least 37%, mainly in northern Mexico, the southern US, northern Brazil
and southern Argentina (Sanderson et al. 2002b). They have been completely extirpated
from El Salvador, Uruguay, and the US, as well as from large areas of Argentina (the
Argentine Monte and Pampas grasslands), Panama and Nicaragua (Emmons and Feer
1990, Sanderson et al. 2002b). Their status is currently unknown in 3.3 million km? of
their historic range. Of the remaining 15.8 million km” where they once ranged, they
now occupy just 8.75 million km* (Figure 1.2). This comprises 48 geographically
distinct areas, varying from 114 km?” to 7 million km”. The largest is centred on the
Amazon Basin in South America, and forms 88% of the known range of jaguars. In
Central America the tropical moist lowland forest of the Selva Maya of Guatemala,
Mexico and Belize forms another contiguous area and has been identified as one in
which the probability of the long-term survival of the jaguar remains high (Sanderson et
al. 2002b).

Jaguars are sympatric with another large cat, the puma, across their entire range.
Together they are the top predators of the neotropics. Because the puma is a potential
competitor of the jaguar, any discussion of jaguar ecology should consider the puma
also. Pumas have the largest geographic range of any terrestrial mammal in the Western
hemisphere, spanning Canada to southern Argentina and Chile; however, although
widespread they are generally uncommon or rare (Emmons and Feer 1990, Sunquist and

Sunquist 2002).
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Table 1.2 Body size of the neotropical Felidae (from Emmons & Feer 1990 and Reid
1997)

Head-Body (mm) Tail (mm) Weight (kg)

Jaguar Panthera onca 1100 - 1850 440-560 30 - 158
Puma Puma concolor 860 - 1540 610-960 24 -120
Oceolot Leopardus pardalis 640 - 875 260 - 419 7 — 145
Jaguarundi  Herpailurus yaguarondi 505 - 940 330 - 609 4 - 9
Margay Leopardus wiedii 490 - 797 351 - 533 26- 9
Oncilla Leopardus tigrinus 426 - 648 245 - 340 14— 3

A

Jaguar Range

histonc range

1999 range

0 740 1.500 3.000 km
L L 1 1 1 1 1 1

Figure 1.2 The historic and current (1999) known range of jaguars through Central and
South America (from Sanderson et al. 2002b).

The conservation issue

Both jaguar and puma populations are in decline, with total effective populations
estimated at less than 50,000 breeding individuals (Cat Specialist Group 2002).
Compared to puma, the future of jaguar is more uncertain since their distribution is
more restricted both in terms of geography and diversity of habitats utilized

(Hoogesteijn 2000). The probability of the long-term survival of the jaguar is
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considered high in 70% of its known occupied range; however of those areas still
considered to have a substantial jaguar population, adequate habitat and a stable and
diverse prey base only 3% is effectively protected (Sanderson et al. 2002c). In order to
survive, the species requires space, prey and connectivity between populations. Their
need for huge interconnected areas makes informal protection of large areas between
reserves, through participation of the land owners and users, critical for their
conservation (Hoogesteijn 2000, Miller and Rabinowitz 2002).

The long-term survival of the jaguar through Mexico, Guatemala and Belize will
require improved connectivity between reserves (Ceballos ef al. 2002). However levels
of ranching and arable agriculture are increasing, and suitable habitat is becoming
surrounded by a contiguous matrix of human development. As their environment is
fragmented by deforestation, and hunters remove available prey, the cats are forced into
human habitation and face direct conflict with people. With an abundance of livestock
as prey, farms and ranches that link forest fragments are potentially resource rich
corridors for cats. However, predators are rarely tolerated, even in the absence of cases
of livestock depredation in the area (Hoogesteijn 2000, Rabinowitz 1986a). Unless
conflicts of interest between farmer and cats can be resolved, and lethal control is
replaced with alternative methods of livestock protection, farms and villages may
function as sinks for cats from surrounding areas.

Identifying solutions to conflicts between jaguars and people needs to become a
research priority (Sunquist 2002), and first requires a sound understanding of the
ecology of jaguars in these areas. The problem is being extensively investigated in
South America, for example in Venezuela (Scognamillo et al. 2002, Polisar et al. 2003),
Brazil (Crawshaw 2002, Crawshaw and Crigley 2002, Dalponte 2002, Conforti and
Azevedo 2003, Zimmermann et al. 2005) and Argentina (Schiaffino et al. 2002).
However livestock depredation and solutions to the illegal hunting of jaguars and their
wild prey has not yet been sufficiently addressed in Central America (Vaughan and
Temple 2002). Given the variation in jaguar ecology, habitat and prey availability
across its range (next section), and the variation in culture and socio-economic
development between range countries, site-specific research is required to understand

the ecological processes and develop conservation strategies appropriate to each society.
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Jaguar ecology

The jaguar has a stocky, heavy body with short massive limbs associated with
reduced cursorial behaviour and dense forest habitat, and robust canines and large head
allowing a more powerful bite than other large cats (Seymour 1989, Sunquist and
Sunquist 2002). As in other cat species males are larger than females. Mean body
weight varies by up to 100% across their range; those living further from the equator
tend to be larger (Iriarte ef al. 1990). This extreme variation in size is believed to reflect
variation in the availability of large prey in different habitats: the largest jaguars occur
in open flood plains areas, the Llanos in Venezuela and the Pantanal in Brazil, and take
the largest prey, whilst the smallest jaguars inhabit the dense forest areas of Central
America and Amazonia and take smaller prey (Hoogesteijn and Mondolfi 1996, de
Oliveira 2002). Compared to jaguars, pumas are longer-limbed and more slender
(Sunquist and Sunquist 2002). They are generally smaller than jaguars in areas where
they co-exist (see Table 1.4) but increase in size outside the jaguar range (Iriarte et al.
1990). As with jaguars their body size increases with distance from the equator, again
thought to be associated with prey availability and habitat characteristics (Iriarte ef al.

1990).

Density

Estimating and monitoring population density is essential for ecological studies
and wildlife conservation. Formerly, density estimates of elusive, wide-ranging species
such as jaguars have been derived from long-term telemetry studies, using estimates of
home range size based on relatively small sample sizes (n =2 to 8, e.g. Schaller and
Crawshaw 1980, Quigley and Crawshaw 1992, Ceballos et al. 2002, Nuiiez et al. 2002,
Azevedo and Murray 2007). However the small sample sizes and presence of unknown
individuals within the study area limits this technique. The recent development of
camera-trap technology utilised in combination with standard capture-recapture
population models has allowed non-invasive monitoring of large numbers of individuals
and statistically rigorous density estimates (Karanth 1995, Karanth and Nichols 1998).
The use of camera-trap capture-recapture methods to estimate density is becoming more
popular; however it is not without problems (e.g. Harmsen 2006, Soisalo and Cavalcanti
2006, Dillon and Kelly 2007). Chapter 2 reviews methods of density estimation using

camera-trap methodology with closed population capture-recapture population models,
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and the problems associated with contemporary estimates of abundance and density of
low density, wide-ranging, large species such as jaguars. Chapter 3 manipulates
empirical data to assess the influence of trap effort on abundance estimates.
Contemporary estimates of jaguar density in different areas of their range vary
by an order of magnitude from ~1 to ~12 per 100 km? with no obvious relationship with
broad habitat type (Table 1.3). This to be expected since site-specific factors such as
levels of prey availability and direct persecution from humans, and fine-scale habitat
variables, such as seasonal flooding or the availability of permanent water sources, will
influence population size in an area. Density estimates from sites where there has been
long-term protection with no human persecution may give good estimates of the local
carrying capacity, for example those from Gallon Jug Private Estate and Cockscomb
Basin Wildlife Sanctuary both located within the Belizean rainforest (Table 1.3).
Estimates of jaguar density are lacking outside of the borders of reserves or
private lands such as the large ranches of Brazil and Venezuela, (Table 1.3). Although it
is important to monitor jaguars in these potential source populations it is also necessary
to assess their density in the human matrix outside of these lands; this will help to reveal
whether stable resident populations of jaguars can co-exist with people or whether
jaguars utilising these disturbed areas are mainly transients in search of suitable habitat
to establish a home range. Chapter 4 uses large-scale camera-trap surveys to estimate
and compare the density of jaguars inhabiting a protected rainforest with those utilising
the neighbouring landscape, a matrix of agriculture, communities and unprotected forest

and savannahs.
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Table 1.3 Jaguar density at different sites in the neotropics based on telemetry and/ or
camera-trap data. Repeated surveys at the same site are shown as separate
estimates; alternate methods of estimation using the same data are shown as ranges.

Country Habitat Density Method Study
1100 km? (SE)
Mexico Dry tropical deciduous forest 1.7 telemetry 1
Semi-deciduous & seasonally flooded forest  4.5-6.7 telemetry 2
Guatemala  Subtropical moist forest with seasonally ~0.7-1.7 camera 3
inundated bajo forest
Belize Subtropical moist forest with seasonally 8.8(2.3),11.3(2.7) camera 4a
inundated bajo forest
Tropical evergreen seasonal broadleaf 5.3(1.8) camera 4b
secondary forest
Tropical evergreen & semi-evergreen 8.8(3.7),18.3(5.2),4.8 camera 5
broadleaf lowland secondary forest (1.0), 11.5(5.5)
Deciduous semi-evergreen seasonal forest 7.5 (2.7) camera 6a
with pine
CostaRica  Tropical lowland primary rainforest 7.0 (24)t camera & telemetry 7
Brazil Atlantic forest - Semi-deciduous rainforest 2.2 (1.3) camera, telemetry 8
3.7 telemetry 9
Pantanal - Seasonally inundated alluvial 4.0 telemetry 10
plains: pasture, grassland, cerrado, gallery 7 telemetry 1"
forest, deciduous & semi-deciduous forest 1.6 telemetry 12
5.7(0.8)-10.3 (1.5) camera & telemetry 13
5.8 (1.0)-11.7 (1.9)
Bolivia Open canopy forest with palms 1.7(0.8),2.8 (1.8) camera 14, 6b
Chaco alluvial plain forest 51(2.1),5.4 (1.8) camera 15a, 6¢
2.1 camera 16a
Chaco-chiquitano transitional dry forest 1.1 camera 16b
...with scrub 4.0(1.3) camera 6d
2.3(0.9),2.6(0.8),3.1(1.0) camera 15b

Teffective sample area < 100 km? (86 km?)

1 - Chamela-Cuixmala Biosphere Reserve, Jalisco, Nufiez et al. (2002); 2 - Calakmul Biosphere Reserve,
Campeche, Ceballos et al. (2002); 3 - Mirador-Rio Azul National Park, Novack (2003); 4 — a) Gallon Jug
Private Estate b) Fireburn Private Reserve, Miller (2006); 5 - Cockscomb Basin Wildlife Sanctuary,
Harmsen (2006); 6 a) Chiquibul Forest Reserve, b) Madidi National Park, Tuichi Valley ¢) & d) Kaa-lya
National Park, Gran Chaco, Silver et al. (2004); 7- Cocovado National Park, Salom-Pérez et al. (2006); 8 -
Morro do Diabo State Park, Cullen et al. (2005); 9 - Iguagu National Park, Crawshaw et al. (2004); 10 -
Acurizal & Bela Vista Ranches, Pantanal, Schaller & Crawshaw (1980); 11 - San Francisco Ranch,
Pantanal, Azevedo & Murray (2007); 12 — Pantanal, Quigley & Crawshaw (1992); 13 - Fazenda Sete
Ranch, Pantanal, Soisalo & Cavalcanti (2006); 14 - Madidi National Park, Tuichi Valley, Wallace et al.
(2003); 15 — a) & b) Kaa-lya National Park, Gran Chaco, Maffei et al. (2004); 16 — a) Kaa-lya National
Park, Gran Chaco, b) Kaa-lya National Park, Gran Chaco Maffei et al. (2005).

Spacing and habitat utilisation

Assuming that there is no selection pressure for cooperation, female solitary

carnivores may be expected to space themselves according to prey abundance and
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availability. As such exclusive female ranges are expected if resources are stable and
even, shifting to larger overlapping ranges under conditions of temporally or spatially
variable resources (Sandell 1989). Male solitary carnivores are expected to space
themselves according to both the distribution of receptive females and the food
resources. As such male home ranges should be larger than predicted from energy
requirements alone; exclusive male home ranges are expected when females are
abundant and evenly distributed, whilst overlapping ranges and ‘free-roaming’ males
are expected if receptive females are scarce or unevenly distributed (Sandell 1989).
Jaguar home ranges, which tend to be larger for males, vary in size considerably
throughout their geographic range (Table 1.4), are positively correlated to body size
(Scognamillo et al. 2002), and are presumably associated with availability and
distribution of prey in different habitats. Indeed variation in home range size with
seasonal changes in resources has been documented at several sites (e.g. Crawshaw and
Quigley 1991, Nuiiez et al. 2002, Scognamillo et al. 2003, Table 1.4). Jaguars, like
most large cats, are generally considered solitary. As with other aspects of their ecology,
their land tenure system appears to be flexible. In accordance with theory about the
spacing of solitary carnivores (Sandell 1989), the male range often overlaps with several
females (e.g. Schaller and Crawshaw 1980, Scognamillo et al. 2002). Overlap between
the home ranges of individuals of the same sex (male-male and female-female) has been
frequently documented, however in such situations temporal avoidance appears to be
common (Rabinowitz and Nottingham 1986, Crawshaw and Quigley 1991, Nufez et al.
2002). Azevedo and Murray (2007) found that although the ranges of same sex jaguars
in the Pantanal overlapped by up to 50% they still maintained exclusive core areas; in
contrast the core areas of different sex individuals showed high levels of overlap.
Female-female overlap appears to be greater for related individuals than non-kin, for
example range sharing between mother and daughter (e.g. Crawshaw and Quigley
1991). Extensive male-male overlap with no stability in occupancy observed in the
Belizean rainforest has been attributed to the limited availability of travel routes through
the dense forest and the local super-abundance of small prey (Rabinowitz and
Nottingham 1986, Harmsen 2006). Here males utilised small transient feeding areas
(~2.5 km?) for up to two weeks before shifting to another part of their range; similar
behaviour has also been documented in the Peruvian Amazon (Rabinowitz and

Nottingham 1986, Emmons 1987).
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Activity patterns of jaguars are highly variable within and between study sites;
primarily nocturnal activity was documented in the Venezuelan llanos (Scognamillo et
al. 2003), the dry forests of Mexico (Nufiez et al. 2002), and the Belizean rainforest
(Rabinowitz and Nottingham 1986, Weckel et al. 2006a, Harmsen 2006); and
crepuscular activity peaks were reported in the Bolivian Chaco (Maffei et al. 2004).
Crawshaw and Quigley (1991) reported that jaguars were more active during the day in
Brazilian Pantanal, whilst in the Peruvian Amazon jaguars were active equally day and
night (Emmons 1987). Activity is probably influenced by a number of factors such as
the ambient temperature (Crawshaw and Quigley 1991), the activity of prey species, the
intensity of human disturbance and periods when females are in oestrus. Studies which
collected data on both jaguars and pumas, found similar activity patterns in both species
(Nufiez et al. 2002, Scognamillo et al. 2003, Harmsen 2006).

Three telemetry studies have monitored jaguars and pumas simultaneously (see
Table 1.4): in the Pantanal, Brazil, Schaller and Crawshaw (1980) found spatial
separation between jaguars and a single puma; in contrast Nufiez et al. (2002) found
extensive overlap both within and between the pumas and jaguars inhabiting the dry
forest of Jalisco, Mexico; in the llanos of Venezuela, Scognamillo et al. (2003) found
up to 60% home range overlap between jaguars and pumas, however they noted that at a
fine scale only 15% of puma locations were within 200 m of jaguar locations. Indeed
broad assessments of home range overlap may fail to detect subtle differences in the
temporal and spatial distribution of jaguars and puma. A recent camera-trap study in the
Belizean rainforest revealed that jaguars and pumas avoid one another more than they
avoid con-specifics: although jaguars and puma utilised all the same locations they did
not do so at the same time; in contrast, no temporal avoidance was detected between
jaguars (Harmsen et al. in press).

Studies of broad habitat preferences of jaguars and pumas based on telemetry are
not unanimous but do show a tendency for jaguars to utilise forested areas and avoid
more exposed areas such as open pasture (Schaller and Crawshaw 1980, Crawshaw and
Quigley 1991, Silveira 2004, Cullen et al. 2005). In contrast pumas will utilise more
open habitats, including disturbed areas such as croplands and pasture (Scognamillo et
al. 2003, Silveira 2004). Little information is available regarding the extent to which
jaguars and pumas utilize human-influenced landscapes, the impact of human activity,
or how these factors may influence the spatio-temporal distribution of these species.

Chapter 5 uses long-term camera-trap data to compare habitat use and activity within
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and between jaguars and pumas in an undisturbed protected forest with those of a

neighbouring human-influenced landscape.

Diet

Jaguar diet is highly variable, with more than 85 prey species taken across their
geographic range, and between eight and 24 prey species documented in the diet at any
one site (Rabinowitz and Nottingham 1986, Emmons 1987, Seymour 1989, Aranda and
Sénchez-Cordero 1996, Taber et al. 1997, Garla et al. 2001, Crawshaw and Quigley
2002, Dalponte 2002, Leite et al. 2002, Nufiez et al. 2000a, Polisar et al. 2003,
Crawshaw et al. 2004, Novack et al. 2005, Azevedo 2008). Peccaries, deer, large
cavimorph rodents, armadillos and coatis are the main prey taken (de Oliveira 2002). In
an analysis of diet studies from 10 different geographic locations, Gonzélez and Miller
(2002) found that jaguars utilise medium (1-10 kg) and large prey (> 10 kg) equally
however the use of medium prey may be a consequence of the removal of larger prey by
humans hunting game. For example, the high proportion of small prey in the diet of
jaguars in the Paraguayan Chaco has been attributed to a reduction in the peccary
population caused by intensive commercial hunting of peccaries by people (Taber et al.
1997).

Optimal foraging theories predict that when prey are scarce they should be taken
opportunistically according to their availability, but when prey are abundant predators
should select large prey in order to maximize energy intake (Griffiths 1975). Emmons
(1987) suggested that in rainforest environments solitary hunters such as jaguars have to
be opportunistic because encounters with prey are unpredictable and vision is limited by
dense vegetation; in an open environment, assuming that prey are abundant, predators
can be more selective. Indeed a review of 16 jaguar diet studies confirmed that mean
weight of vertebrate prey differed with habitat type, with larger prey taken in open
floodplain areas (de Oliveira 2002).

It has been suggested that where jaguars and pumas co-exist, pumas take smaller
prey species; particularly in closed environments such as dense forest where jaguars
may be more efficient at hunting (Iriate et al. 1990, Taber et al. 1997). Harmsen (2006)
reviewed seven diet studies of sympatric jaguars and pumas. Diet overlapped by ~80%
in open habitats; however in closed rainforest environments the similarity between

jaguar and puma diets was much lower (~20%) with pumas taking smaller prey species
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than did jaguars. The ability for pumas to exploit smaller prey such as cotton rats (100
g) may give them an advantage in disturbed habitats (Nufiez et al. 2000a).

To date most studies of jaguar and puma diets have utilized scat diameter,
footprints and other sign to identify scats to species level (for example Rabinowitz and
Nottingham 1986, Emmons 1987, Aranda and Sdnchez-Cordero 1996, Garla et al. 2001,
Dalponte 2002, Leite et al. 2002, Nuiiez et al. 2000a, Azevedo 2008). However,
diameter width has been demonstrated to be < 40% accurate (Taber et al. 1997, Farrell
et al. 2000), and the use of tracks to identify scats requires a suitable undisturbed
substrate: footprints are rarely found in dense secondary rainforest where leaf litter may
cover the ground, or in areas of human development where high levels of human traffic
may obscure tracks or cats utilise man-made paved or rock roads (R. Foster pers. obs.).
Farrell et al. (2000) developed a molecular assay to correctly distinguish jaguar and
puma genetic sequences from mitochondrial DNA derived from scats, and the method
has been used in more recent diet studies (Polisar et al. 2003, Novack et al. 2005,
Weckel et al. 2006b). Chapter 6 compares the breadth and overlap of diets of jaguars
and pumas utilizing a protected forest with those utilizing the neighbouring human-
influenced landscape. Scats are identified to species level using genetic analysis

allowing interspecific diet comparisons.

Reproduction

Jaguars may come together at any time of the year to breed during the 6-17 day
period when the female is in oestrus. Gestation lasts 91-101 days (in captivity), after
which the female gives birth to up to four cubs, usually two, which will stay with her for
up to 24 months (Kitchener 1991, Sunquist and Sunquist 2002). Cubs are fully
dependent on their mother’s milk for the first 10-11 weeks, and will continue to suckle
until 5-6 months old (Sunquist and Sunquist 2002). Cycling could resume 2-3 weeks
following lactational anestrus (Soares et al. 2006). By the age of 15-18 months young
jaguars travel and hunt independently within their mother’s range, although they may
still come together at kill sites (Quigley and Crawshaw 2002, Sunquist and Sunquist
2002). Pregnancy and the long period of association during which the mother is
lactating and/or hunting to feed both herself and her off-spring, is energetically
demanding for the female. In areas where humans have reduced the abundance of wild
prey species, females may not be able to find sufficient prey in order to reproduce, or

may begin hunting domestic animals in order to support herself and her off-spring.
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Chapter 6 uses simple harvest models to determine the minimum sizes of wild prey
populations necessary to sustain off-take by a breeding female, and indentifies the
conditions under which livestock predation may become necessary for reproduction.
Jaguars are usually independent by the age of 24 months, however the age of
dispersal or the social circumstances associated with it are poorly known (Sunquist and
Sunquist 2002). Dispersal does not appear to be linked with the onset of sexual
maturity, estimated at 24-30 months for females and 36-48 months for males (Sunquist
and Sunquist 2002). Few data are available on dispersal distances however telemetry
studies in the Brazilian Pantanal suggest that males disperse further than females
(Quigley and Crawshaw 1992, Quigley and Crawshaw 2002). Dispersal through the
human matrix may increase the likelihood of conflict with humans, particularly in areas
where the habitat is highly fragmented (e.g. Sdenz and Carrillo 2002). Understanding
such movement patterns is necessary in order to predict the risk of conflict with people

and human-induced mortality in different sex and age classes.
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Table 1.4 Adult jaguar mass and home range from telemetry studies. Data on sympatric pumas are included where available.

Country Habitat Study Jaguar Puma
Home range (km?) Mass (kg) Home range (km?) Mass (kg)
male female male female male female male female
Mexico Dry tropical deciduous forest 1 - 250-60w 35%-55t  35%-55t 6090w  25¢-60w 25%-50f  25%-50f
Semi-deciduous & seasonally flooded forest 2 33-41 32-59 - - - - -
Belize Tropical evergreen & semi-evergreen 3’ 28-40 (10)' 57
broadleaf moist lowland secondary forest
Venezuela Llanos - seasonally inundated: open pasture, 4 93d-100d 51w -8(0d 82-93 46-58 1741044  23dw-47d  50-52 24-28
grassland & savannah woodland; non-flooded
evergreen forest & dry forest
Brazil Pantanal - Seasonally inundated: pasture, 57 (90) 25-38 61-75 232 55
grassland, cerrado, gallery forest, deciduous 6 20w -79d 5w -70d 75-85
& semi deciduous forest 152t 97t-168t
7% 67 38 100 62
8 574-1764 574176 -
Brazil Atlantic forest - Semi-deciduous rainforest 9 88-177 44-133 90-98 55-86
10 87-139 70 -

1 - Chamela-Cuixmala Biophere Reserve, Jalisco, Nufez et al. (2002); 2 - Calakmul Biosphere Reserve, Campeche, Ceballos et al. (2002);
3 - Cockscomb Basin, Rabinowitz & Nottingham (1986); 4 - Hato Pifiero Ranch, Scognamillo et al. (2003), 5 - Acurizal & Bela Vista Ranches,
Pantanal, Schaller & Crawshaw (1980); 6 - Miranda Ranch, Pantanal, Crawshaw & Quigley (1991); 7 - San Francisco Ranch, Pantanal,
Azevedo & Murray (2007); 8 - Fazenda Sete Ranch, Pantanal, Soisalo & Cavalcanti (2006); 9 - Morro do Diabo State Park, Cullen et al.
(2005); 10 - Iguacu National Park, Crawshaw et al. (2004).

Home ranges are 95% MCP unless indicated: fk 95% fixed kernel; ? method not given; t minimum estimates based on track data
w wet season home range; d dry season home range; t dry & wet season home ranges combined
t Authors do not distinguish between sexes
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Jaguars, people and livestock

Jaguar populations suffered intense persecution for the commercial skin trade
throughout the 20" century; during 1969 alone ~10,000 jaguar skins were imported into
the US (Smith 1976, McMahan 1982, Rabinowitz 2006). In 1973 the jaguar was
included in an international treaty (CITES) to ban trade in wildlife products derived
from endangered species. All countries within the jaguar range are now members of
CITES and commercial jaguar hunting has declined (Sunquist and Sunquist 2002).
Today direct persecution from livestock owners, combined with reductions in habitat
and wild prey, pose the main threat to jaguars.

Cattle were introduced to South America during the 16" century by European
colonisers (Jarrige and Auriol 1992), prior to this Bovidae never occurred on the
continent (Polisar et al. 2003). Over the past 40 years the cattle population of Central
and South America has doubled to ~380 million, concurrent with human population
growth and deforestation (World Resources Institute, WRI, 2007). Because the extent
and intensity of pastoral ventures differ across the continent, so too do people-jaguar-
livestock interactions, and the ecological, economical and social factors which drive
them. In particular it is important to distinguish between the extensive ranches of
Brazilian Pantanal or Venezuelan llanos where essentially feral cattle roam freely with
wild prey species through the natural mosaic of grasslands and forests, compared to
regions where forested areas are cleared specifically for small intensive pastures such as
the Atlantic forests of Brazil or the lowland rainforests of Belize (Crawshaw and
Quigley 1992, Hoogesteijn 2000, Conforti and Azevedo 2003, R. Foster pers. obs.).

In some areas of Venezuela and Brazil the only jaguar habitat outside of
protected areas exists within large expanses of ranch land. Here cattle ranches of 100
km? to 800 km? with tens of thousands of cattle are common (e. g. Polisar et al. 2003).
Management is limited such that the cattle have become part of the natural ecosystem.
The home ranges of several jaguars and pumas may fall easily within the ranch
boundaries and they may come to rely heavily on the cattle as a prey source. Extensive
on-going research is being conducted on the jaguars inhabiting such areas (e.g.
Crawshaw 2002, Quigley and Crawshaw 2002, Polisar et al. 2003, Soisalo and
Cavalcanti 2006, Azevedo and Murray 2007).

The situation in Belize is rather different. The cattle population of Belize has

doubled since 1979, and is currently ~75,000 head, yet 72% of the land is still forested
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(Belize Government 2006, WRI 2007) and, although livestock production is common
and increasing, it is characterised by many small holdings and few large holdings. Of
the 1600(+) registered livestock farmers, 11% own 71% of the cattle (Brechin and Buff
2005), and the larger established cattle ranches rarely exceed 10 km? (R. Foster pers.
obs.). As a consequence, many farms and villages lie in close proximity to the forest and
almost every livestock holding is at risk of predation. This can be particularly damaging
to the small-scale farmer unless preventative action is taken when depredation begins
(R. Foster pers. obs.). In areas with a high proportion of forest cover, such as Belize,
research has not yet addressed how jaguars living near the forest edge utilise the
boundary between forest and human habitation. The aim of this thesis, to understand the
ecological processes occurring ‘at the edge’, will be instrumental in predicting the likely
impact on the jaguar population of continued lethal control and the inevitable

agricultural expansion and intensification that faces Belize (Chapter 7).

Factors influencing livestock predation

Both jaguars and pumas prey on livestock. Studies from different locations cite
different levels of predation by either species. For example jaguars were reported to
prey more heavily on livestock than did pumas in fragmented forest habitats of the
Brazilian Amazon, southern Brazil and Belize (Michalski et al. 2006, Conforti and
Azevedo 2003, Azevdeo 2008, Brechin and Buff 2005) and in the Brazilian Pantanal
(Azevedo and Murray 2007). The reverse was reported in the Venezuela llanos (Polisar
et al. 2003) and the cerrado/forest transition zone of central-western Brazil (Palmeira et
al 2008). As such a suite of interacting factors may influence depredation. These
include innate and learned behaviour; the health, status and sex of individual cats;
habitat and the division of space and resources between jaguar and puma; the abundance
and distribution of natural prey; and livestock husbandry practices (Linnell ez al. 1999,
Polisar et al. 2003).

Adult male carnivores are usually responsible for more depredation events than
any other age or gender class and this appears to hold true for jaguars (Linnell et al.
1999, Rabinowitz 1986a, Sdenz and Carrillo 2002). The sex bias is not fully understood
but may be due to greater risk taking in males and/or greater encounter rates with
livestock due to their larger home range (Linnell et al. 1999). It has been proposed that
the injuring of healthy jaguars through indiscriminate shooting may further exacerbate

the problem. Evidence suggests that injured or infirm jaguars unable to hunt wild prey
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are forced to take easier domestic animals (Rabinowitz 1986a, Hoogsteijn 2000).
Chapter 7 identifies specific characteristics of jaguars that are associated with livestock
predation and are thus at risk of lethal control. Understanding which individuals within
a population are most at risk is necessary in order to predict the effect of lethal control
on population dynamics, for example the removal of females will directly lower the
reproductive potential of the population whilst the removal of males may have more
subtle effects through the disruption of social dynamics.

It has been argued that most large cats will occasionally kill accessible livestock
that they encounter, even if the biomass of natural prey is adequate; however, work in
Venezuela has shown that the highest depredation rates occur in areas where abundance
of wild prey is relatively low (Linnell et al. 1999, Polisar et al. 2003). Indeed in Brazil
the decline of white-lipped peccary has coincided with an increase of predation on
domestic prey (Conforti and Azevedo 2003, Crawshaw et al. 2004); similarly the
overexploitation of caiman in the Pantanal resulted in increased cattle predation
(Hoogesteijn 2000). In contrast, ranches rich in wild prey may suffer little or no
depredation, suggesting a preference for wild prey when it is available (e.g. Miller
2002). It is likely that there is an interaction between the availability of wild versus
domestic prey. In Venezuela the frequency of cattle depredation was inversely related to
availability and vulnerability of natural prey and directly related to availability and
vulnerability of livestock (Polisar ef al. 2003). Chapter 6 estimates the abundance of
wild prey required to sustain off-take by the observed jaguar density, discussing
competition with man for game species and the extent to which wild prey depletion may
intensify livestock predation.

Livestock management plays a pivotal role in determining the level of
depredation. If livestock are kept in open pastures or constantly herded or confined at
night within a fence, depredation requires the development of specialised behaviour in
the predator. In contrast, if the livestock are free-ranging and unattended there is
unlikely to be any perceptual difference between the livestock and natural prey except
that the domestic animal is easier to kill (Linnell et al. 1999). Under these circumstances
depredation may be more common. However, it can also be argued that a fenced pasture
enclosing a high density of livestock is equivalent to a patch whose value never
becomes marginal (Polisar et al. 2003). If the fence keeps the livestock in, but fails to
keep predators out, repeated predation events can be expected. Numerous authors

suggest that improvements to livestock management are fundamental to lowering rates
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of depredation (e.g. Linnell ez al. 1999, Hoogesteijn 2000, Miller 2002, Mazzolli et al.
2002). Habitat factors are equally important, indeed several studies indicate that higher
predation rates are associated with proximity to forest cover (e.g. Polisar et al. 2003,
Michalski et al. 2006, Azevedo and Murray 2007). Chapters 5 and 7 examine how
habitat factors and livestock husbandry influence jaguar encounter rates with human

habitation and livestock predation and thus the risk of lethal control.

The consequences of livestock predation

As discussed, the magnitude of cattle predation varies with many factors.
Reports of annual stock loss to predation, on farms suffering from jaguar and puma
attacks, range from 0.2% to 2% (Dalponte 2002, Mazzolli et al. 2002, Conforti and
Azvedo 2003, Zimmerman et al. 2005, Michalski et al. 2006, Azevedo and Murray
2007). On extensive ranches where cattle roam freely, otherwise ‘unexplained’ losses
(disease, accidents and theft) cause more deaths annually than depredation events but
are often blamed on cats (Hoogesteijn 2000). Jaguars may range close without ever
taking livestock however preconceptions about their behaviour mean that they are rarely
tolerated, even in the absence of depredation in the area (Hoogesteijn 2000, Rabinowitz
1986a); for example, in the Pantanal 64% of ranchers interviewed said that they could
not tolerate jaguars on their land (Zimmermann et al. 2005). Despite this, few studies of
jaguar ecology have attempted to quantify levels of human-induced mortality, and those
that do make no assessment of the likely impact on the local jaguar population (e.g.
Crawshaw 2002, Conforti and Azvedo 2003, Brechin and Buff 2005, Michalski et al.
2006). Chapter 7 presents data on levels of lethal control of jaguars in southern Belize,
and combined with estimates of jaguar density (Chapter 4) uses individual-based
population simulations to investigate the impact of current levels of human-induced
mortality on the population dynamics and long-term persistence of the Belizean jaguar

population.

Thesis objectives

The goal of this thesis is to improve our understanding of the ecology of jaguars
in a human-influenced landscape, and in doing so provide reliable data which can be
used by policy makers and contribute to the long-term conservation of jaguars in
Central America. Camera traps provided a non-invasive method of studying high

numbers of these elusive cats for which large-scale live-trapping would not have been
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appropriate. However the method still needs to be refined so the research
simultaneously addresses various methodological issues associated with studying
jaguars effectively in this environment.

Camera-trap methodology is described in Chapter 2. The objective of Chapter 2
is to review methods of density estimation from camera-trap data using closed
population capture-recapture population models and to identify the pitfalls of
contemporary population estimates of low density, wide-ranging species. Because the
humid tropics are a harsh environment for camera traps there is no guarantee of
functional consistency throughout a survey, therefore the objective of Chapter 3 is to
evaluate the robustness of the most commonly used closed population estimator to
variable and reduced trap effort resulting from camera failure.

The main objective of Chapter 4 is to compare the demographics, ranging
behaviour and density of jaguars inhabiting a protected lowland rainforest with those
utilising the neighbouring human-influenced landscape in Belize, using camera-trap
data. As density estimation from camera-trap data has not yet been perfected, Chapter 4
also has three methodological objectives which are a prerequisite to the main objective.
The first is to assess the suitability of the ‘mean maximum distance moved” (MMDM)
as a proxy for home range diameter. MMDM is commonly derived from trapping data
when home range is unknown to estimate the effective sampling area and so estimate
density. The second auxiliary objective is to assess the influence of sexual variation in
MMDM on density estimates. The third is to identify the minimum survey area
required for reliable density estimates.

In Chapter 5 the habitat use of jaguars and pumas is explored using camera-trap
data. The main objective is to compare habitat use of the two species between the
protected lowland rainforest and the fragmented landscape. The second objective is to
assess the relative tolerance of jaguars and pumas to human activity. The final objective
is to investigate the habitat factors influencing jaguar and puma activity and livestock
predation around cattle farms and evaluate potential options for managing habitats to
reduce attacks on livestock.

Chapter 6 investigates the diet of jaguars and pumas. The main objective is to
compare food habits between the protected lowland rainforest and the fragmented
landscape, and to evaluate the level of dietary overlap between the two species, using
scats genetically identified to species level. Because diet studies may underestimate diet

richness if sample sizes are too small, the influence of sample size on number of prey
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taxa identified is investigated. The final objective is to assess how prey preferences and
energy requirements may influence habitat use and livestock predation.

Chapter 7 quantifies human-induced mortality of jaguars in the study area and
evaluates whether the current level is likely to be sustainable in the long-term. The first
objective is to report and discuss causes and rates of human-induced mortality and the
characteristics of jaguars killed for attacking livestock; and to assess the effectiveness of
lethal control at reducing livestock losses. The second objective explore the probability
of long-term persistence of the Belizean jaguar population under alternative scenarios of
population isolation/ connectivity and human-induced mortality, using population
simulations and field data collected during this study.

Chapter 8 reviews the main findings of this thesis and discusses the future of
jaguar conservation in Belize. The first objective is to discuss methods of studying
jaguars within a human-influenced landscape. The second objective is to discuss the
adaptability of jaguars to anthropogenic pressures; and the third objective is to discuss

ways in which humans and jaguars can coexist in the future.

Study area

Belize lies below Mexico and to the east of Guatemala (Figure 1.3). It is
approximately 280 x 120 km, with a total land area of 22,970 km?. With a population of
just 292,000, Belize has the lowest human density in Latin America: 12 people/ km?;
however the population is growing at ~2% per year (WRI 2007, Belize Government
2006). Belize currently protects and manages 6280 km? of tropical forest in a network

of wildlife sanctuaries, national parks and forest reserves across the country (Figure

1.4).
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Figure 1.3 Location of Belize (green) in Central America. Inset shows Central America
(shaded grey) within the Americas.
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Figure 1.4 The protected areas of Belize and approximate forest cover (from Meerman
and Sabido 2001). The Cockscomb Basin Wildlife Sanctuary (CBWS) and the study
area are shown.
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The study site lies in the Stann Creek district, southeast Belize, a region
expected to become a major growth zone for the cattle industry in Belize (O. Salas,
Belize Forestry Officer, pers. comm.). The research focuses on the lowland subtropical
broadleaf forest of the Cockscomb Basin and the neighbouring farms and villages
(Figure 1.5). The basin is bordered by the Cockscomb Mountains to the north and Maya
Mountains to the west; and divided into an east and west basin by a series of small hills
which delineate the watersheds of two major rivers. The forest was heavily logged from
1888 until a hurricane hit in 1961, after which selective logging continued until 1986,
creating dense secondary forest in the basin. The basin received protected status in
1986 following the telemetry studies of jaguars by Rabinowitz and Nottingham (1986)
which revealed a high density of jaguars in the area. Logging operations were ended,
hunting was banned and the small community of milpa farmers which had settled at the
logging camp were relocated to the established village of Maya Centre, 10 km outside
the reserve boundary. Today the Cockscomb Basin Wildlife Sanctuary (CBWS)
encloses 425 km? of forest and supports prospering populations of both jaguar and puma
(Harmsen 2006). Maya Centre has a thriving economy based on ecotourism in the
eastern part the sanctuary.

Nine villages and at least 11 cattle farms fringe the CBWS eastern border and/or
the intermediate unprotected forest. Illegal subsistence hunting and fishing occurs at the
edges of the sanctuary from the peripheral communities, and both villages and the farms
suffer intermittent livestock predation. The area towards the sea forms a mosaic of
community and private lands including unprotected broadleaf forest, shrublands, pine
savannah, small-scale tourist resorts, shrimp farms, and citrus and banana plantations.
The region has a distinct wet season (June to December) and receives ~270 cm rain/

year.
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Figure 1.5 Detail of the study area showing the settlements and cattle farms
neighbouring the eastern part of the Cockscomb Basin Wildlife Sanctuary and its forest
buffer, Belize. Location of eastern tip of CBWS = UTM 0348113, 1854515 (WGS 84).
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Chapter 2

Review of abundance and density

estimation from camera-trap data
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Abstract

Estimating and monitoring population density is essential for ecological studies
and wildlife conservation. The recent development of camera-trap technology utilised in
combination with standard capture-recapture population models has allowed non-
invasive monitoring of large numbers of individuals and statistically rigorous density
estimates of otherwise elusive species. Because camera-trapping is increasingly
providing data for conservationists and policy makers, the methodology needs to be
accurate, robust, reliable and comparable. This chapter reviews methods of density
estimation using camera-trap methodology with closed population capture-recapture
population models, and the problems associated with contemporary population

estimates of low density, wide-ranging species.

Introduction

Populations of large wide-ranging carnivores are threatened due to
anthropogenic factors (Chapter 1), yet basic ecological data are lacking for elusive
species which occur at low densities such as forest felids. Formerly, density estimates of
elusive, wide-ranging species were derived from home ranges and level of range of
overlap estimated from long-term telemetry studies; for example tigers (Panthera
tigris), leopards (Panthera pardus) (Rabinowitz 1989a) and jaguars (Panthera onca)
(Schaller and Crawshaw 1980). This method of density estimation is labour intensive,
expensive and invasive, requiring live-trapping and anaesthesia of the target species.
Because of the cost and time constraints imposed by the method, sample sizes are
generally small (e.g. for jaguars n = 2 to 8, Chapter 1) and the presence of unknown
individuals within the study area limit the technique as a robust method of density
estimation.

Over the past 30 years methods of population estimation from capture-recapture
data have improved (e.g. Amstrup et al. 2005), however these methods have been
restricted to species which can be live-trapped easily (e.g. small mammals) or observed
in the field. The recent development of camera-trap technology has provided a non-
invasive method of monitoring elusive, large mammals for which large-scale live-
trapping would not be appropriate. Karanth (1995) made the first attempt to combine the
two, estimating tiger density from camera-trap data using capture-recapture population

models. Since then the use of camera-trap capture-recapture methods to estimate density
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has become popular. Unlike telemetry, the method is non-invasive and sampling periods
are short (~ 3 months); however it is not without problems (e.g. Harmsen 2006, Soisalo
and Cavalcanti 2006, Dillon and Kelly 2007).

Camera traps can be used to answer ecological questions other than estimating
density. Rapid assessments can be conducted to determine presence/absence and
describe diversity in little known regions (e.g. Azlan and Engkamat 2006, Azlan and
Sharma 2006). In addition surveys of specific species can be in used to investigate
habitat preferences (e.g. Maffei et al. 2005, di Bitetti et al. 2006, Harmsen 2006),
activity patterns (Maffei e al. 2005, Harmsen 2006), spatial and temporal distribution
(Harmsen 2006, Weckel et al. 2006a) and demographics (Harmsen 2006). However care
must be taken when interpreting the data and making conclusions about species natural
history, for example di Bitetti ef al. (2006) suggested that the difference in ocelot
(Leopardus pardalis) sex ratio between their study and that of Maffei et al. (2005) could
reflect different social systems in the two populations; in fact skewed sex ratios may be
an artefact of the sampling design arising from a difference between male and female
movement patterns (e.g. Harmsen 2006) thus comparison between studies could be
confounded by of choice of trap location.

Given the utility of camera-trapping, it is likely to be used increasingly to
provide data for conservation policy (Trolle and Kéry 2005) therefore the methodology
needs to be accurate, robust, reliable and comparable. The aim of this chapter is to
review methods of population estimation of low density, wide-ranging, large species
using camera-trap methodology with closed population capture-recapture population
models. The first objective is to describe camera-trap methodology, capture-recapture
closed population models and methods of density estimation from abundance estimates.
The second objective is to discuss contemporary population estimates of low density
wide-ranging large species, in particular highlighting the potential pitfalls associated
with inadequate sample size and capture probability, and choice of method to estimate

density, and to examine factors that may influence the reliability of the density estimate.

Camera-trap methodology

The utility of camera traps to study animals which cannot easily be live-trapped

and marked relies on individual recognition of members of the study population. For
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large felids such as tigers or jaguars the pelt pattern is unique between individuals and is

used to identify each member of the sample (Figure 2.1).

P

S .
A

o .
a) Right flank, female F05-06  b) Right flank, female F05-06  ¢) Right flank, female F05-13

Figure 2.1 Three jaguar flanks, the pattern of spots and rosettes is unique to each
individual: @) and b) are separate photos of the same individual; ¢) is a different
individual.

Camera traps can be ‘active’ or ‘passive’. Active camera traps are triggered
when an animal passes between paired sensors, actively breaking an infrared beam.
Passive camera traps are triggered when a warm-blooded animal passes a heat and
motion sensor; simpler than active traps, they comprise a single unit containing the
camera with a sensor below. For a comparison of the advantages and disadvantages of
passive and active camera traps see Harmsen (2006). This study used passive cameras,
primarily ‘CamTrak’ units (Cam Trak Inc.) which could be set to operate continuously
or only at night, with an enforced delay of 3-45 minutes between each photograph. The
delay prevents film being wasted by herding non-target species such as white-lipped
peccary (Dicotyles pecari) or cattle; however it limits the detection of cubs or juveniles
who may often be following behind their mother. The night setting is useful in areas
where there is human activity during the day and the target species is primarily
nocturnal. This study used a 3 minute delay, combined with continuous or night-only
settings depending on the level of human disturbance at the camera location.

The choice of camera location on the large-scale depends on the statistical
objectives of the study, and on maximising capture rate at the local-scale (Carbone et al.
2001). Given the large survey areas often required, camera location may be constrained
by the logistics of accessing cameras to change film and batteries. Furthermore camera
locations based in areas with human activity will be further limited by cooperation of
local people and the risk of vandalism and theft of the cameras (Chapter 3). As such it is
rare for trap configuration to form neat grids or webs which are preferable for accurate
density estimates. However, wherever possible researchers should strive to maximise

the core to edge ratio of the survey area.
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Two cameras are positioned at each site roughly opposite each other, but slightly
offset such that the flash of one camera will not over expose the photograph from the
opposite camera. Two cameras are favoured over one at each site. This ensures that both
flanks (left and right) of the target species are photographed for identification. In

addition a double station reduces the risk of lost trap-nights through camera failure.

Capture-recapture closed-population models

Abundance can be estimated from the number of individuals detected and the
probability of detection which is estimated from the encounter histories of each
individual during a sampling period (Eqn. 2.1).

(Egn 2.1)
N=

SRS

N = abundance estimate, C = number of individuals detected and p = estimate of

detection probability modelled from the patterns of encounters with individuals.
Individuals may be detected ‘actively’ (e.g. by an observer making instantaneous
observations) or ‘passively’ via a detector at a fixed point (e.g. live traps, mist nets,
camera traps) (Efford et al. 2004). Typically, active detection involves continuous data
collection whilst passive detection involves trapping on a series of distinct occasions.
‘Discrete-time’ closed-population methods have received extensive attention in the
literature and will be considered here. A camera trap is essentially a continuous passive
detector, but the data can be divided into discrete trap occasions, usually 24h periods,
and analysed with discrete time models. Multiple captures of the same individual during
a single occasion are considered a single observation. Each encounter is a ‘capture’ and
each occasion in an individual’s history is coded either as 1 (captured) or 0 (not
captured) (Otis et al. 1978).

Population estimation using capture-recapture methods dates back to the 17"
century and was first applied to wildlife in the 1930s (Manly et al. 2005). Different
capture-recapture methods are based on different assumptions about the population.
Early models assumed that capture probabilities of all individuals in the sampled
population are equal. This assumption is convenient mathematically but has no
empirical justification and is often violated (Burnham and Overton 1978). A unifying

assumption is that every individual in the population has a capture probability (p)

43



Chapter 2: Abundance & density estimation from camera-trap data

greater than zero; if this assumption is violated then the population estimate refers only
to the ‘catchable’ population (Krebs 1999). Individuals must be identifiable throughout
the entire sampling period, either through an artificial marker applied on their first
capture (e.g. tags, fur clips, tattoos) or from unique natural identifiers such as pelt
patterns, for example ocelots (Maffei et al. 2005), jaguars (Silver et al. 2004), tigers
(Karanth 1995); or genotype, for example using hair traps e.g. martens (Martes
americana) (Mowat and Paetkau 2002) or faecal samples e.g. otters (Arrendal et al.
2007), so that their capture histories can be recorded. Closed-population models assume
that the total number of individuals in the population does not alter during the sampling
period, i.e. demographic closure (no births, deaths, immigration or emigration) and
geographic closure (home ranges of all individuals in the population are bounded by the

study area).

The models

Closed-population capture-recapture models utilise the basic concept of the ratio
of ‘marked’ (previously caught) to ‘unmarked’ (not previously caught) individuals
within the population sample to estimate capture probability over repeated trapping
occasions. The simplest closed-population models are based on two trapping occasions
within the sampling period: the Peterson-Lincoln estimator and the Chapman estimator
(see Krebs 1999). However, models based on multiple occasions give more reliable
estimates.

Multi-occasion models can be classified according to the assumptions they make
about capture probability which may vary with time (between trapping occasions)
and/or behavioural response to capture and/or between individuals (Otis et al. 1978).
These three sources of variation can be combined into eight models. The simplest,
referred to as the ‘null model’ (Mj), assumes that capture probability does not vary
between trapping occasions within the sampling period, or within or between
individuals. The model M; extends My allowing variation in capture probability between
trapping occasions but capture probability must remain equal between individuals. In
natural populations this is rarely valid and models which assume equal capture
probability within and between individuals may be biased despite having good precision
(Chao and Huggins 2005a).

The model M, allows capture probability to vary within individuals i.e. the

probability of 1** capture (p) # probability of recapture (c). This may occur if individuals
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show a behavioural response to capture: they become either ‘trap-happy’ (¢ > p) for
example if traps are baited with food or a lure; or ‘trap-shy’ (¢ < p) for example if the
trapping experience was stressful. Models which do not include the behavioural
response may overestimate abundance if individuals are trap-shy or underestimate
abundance if individuals are trap-happy (Chao and Huggins 2005a).

The model My, allows capture probability to vary between individuals. Individual
heterogeneity in capture probability can be expected in most wild animal populations
because individual behaviour (thus the probability of capture) may vary with factors
such as age, sex and social status; for example males may be more active, less risk-
averse and have larger home ranges than females and so have greater a probability of
being detected (e.g. encountering and entering a live trap or passing a camera trap).
Models which assume equal capture probability in the presence of individual
heterogeneity will underestimate abundance (Burnham and Overton 1978, Chao and
Huggins 2005b). The four remaining closed-population models described by Otis et al.
(1978) and White et al. (1982) correspond to each possible combination of the three
types of variation in capture probability: My, Mph, My, and Mpp.

Model estimators

Approaches to formulating estimators (functions of the data that are used to
estimate unknown parameters, e.g. p, ¢ and N) for the eight model classes have
developed rapidly since the 1970s, particularly as computer processing power has
improved. Estimators have been described for all classes (M to M) using a number of
different approaches; for a summary review see Chao and Huggins (2005b).

Maximum likelihood estimators (MLE) were initially described for My, My, My,
My and My, (Otis et al, 1978, White et al. 1982, Pollock and Otto 1983, Rexstad and
Burnham 1991). Maximum likelihood estimation involves the construction of a
likelihood function which states the probability of observing the data (capture histories)
as a function of the unknown target parameters. The unknown parameters are then
estimated as those which maximise the likelihood function. One advantage of using
likelihood estimation for a number of different models is that Akaike’s Information
Criterion (AIC) can be used for model selection (AIC is a measure of goodness of fit of
a statistical model based on its complexity and precision).

MLEs could not be derived for My, because it can have up to N + 1 parameters

(where N = number of individuals observed and pj, p», p3 ... py are the capture
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probabilities of N individuals). Burnham and Overton (1978) took a non-parametric
approach and used a jack-knife technique for M. Jack-knife systematically re-computes
the statistic omitting one observation at a time from the sample; in this case repeatedly
computing the number of individuals, each time deleting successive trap occasions. The
result is that the estimator is a linear function of the capture frequencies (Otis et al.
1978).

MLE:s for My, have now been developed under a unified framework for all eight
models using finite mixture models (Pledger 2000). Individual heterogeneity is
simplified down to a few (usually two) groups of individuals, such that all individuals
within the same group have the same capture probability. This type of model is
considered appropriate if there is a dichotomy in capture rates due to different age
classes or sexes that cannot be observed and modelled as covariates. Finite mixture
models are less appropriate for populations in which there is potentially infinite
variation in capture rate, for example due to individual variation in activity, habitat and
foraging preferences or differences in exposure of individuals to sampling relative to
their home ranges (Pledger 2005). Conn (2006) used field data from a population of
known abundance to demonstrate that models that included individual covariates
performed better than mixture models alone.

Closed-population models (Mj through to My,,) have also been developed which
allow the incorporation of individual covariates (Huggins 1989, 1991). This is not
possible for the original ML models because they include a term for the probability of
capture of unknown animals (those never captured) and as these animals are unknown
they do not have observable covariates. The inclusion of covariates was achieved by
removing this term such that the likelihood is conditional on only the captured animals,
thus covariates are only required for the captured individuals. Any covariates can be
included, for example age or weight. If heterogeneity effects are fully explained by the
covariates then the models can perform well, however they may perform less well than
models with no covariates if heterogeneity effects are not fully determined by the
covariates (Chao and Huggins 2005b).

Estimates from general models (e.g. My +/- covariates) are less biased than
those from simple models (e.g. My) but they are also less precise (larger variances)
because they have more parameters. It may not always be possible to fit general models
to sparse data sets, for example those from populations with low capture and recapture

rates. The models are complex (beyond the scope of this thesis) and often iterative such
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that estimation requires specially developed computer programs such as CAPTURE

(White er al. 1982) and MARK (White and Burnham 1999).

Analysis of capture-recapture data

The program MARK supports the full range of models (M, through to M) for
the full likelihood models of Otis et al. (1978), the finite mixture models of Pledger
(2000) and the conditional likelihood models of Huggins (1989, 1991); and can also call
up the program CAPTURE for the jack-knife and alternate My, models, for example
Chao’s My, estimator. Temporal and group covariates can be included in any of the
likelihood models, and, as discussed, individual covariates can be included in the
Huggins models (White 2005).

Objective model selection procedures such as AIC for likelihood estimators are
available in closed-population computer programs such as MARK, but cannot be used
to select between all the available models; for example AIC values of the full likelihood
models cannot be compared with the AIC values of the conditional likelihood models.
The model-averaging feature in MARK can be used when model selection is uncertain.
Only models of the same data type (e.g. either full or conditional likelihood models) can
be averaged. The output is an estimate and SE which takes into account the model
selection uncertainty (White 2005, Lukacs 2007).

Heterogeneity models which do not use likelihood estimators, for example the
jack-knife estimator for My, have no suitable model selection procedure (Chao and
Huggins 2005b). The program CAPTURE does provide an automated model selection
procedure based on goodness-of-fit tests of models My, M, and M, and between-model
tests of My and My, My and My, and My and M; (White ef al. 1982); but the procedure

does not perform well in simulations (Chao and Huggins 2005b).

Confidence intervals of the population estimate

Population size (N) does not have a normal distribution therefore the classical
method of calculating confidence intervals from +/-1.96 SE(N) is not appropriate and
results in poor coverage of the true population size; furthermore the lower bound may
fall below the number of individuals captured during the survey (Rexstad and Burnham
1991). This problem is solved by constructing the confidence intervals under the
assumption that the number of un-marked individuals in the population is log-normally

distributed. The lower bound cannot fall below the number captured and the upper
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bound tends to be higher than N +1.96SE which gives better coverage (Rexstad and
Burnham 1991).

Testing the closure assumption

Closed-population capture-recapture models assume that the population is both
demographically and geographically closed during the sampling period. A valid test of
demographic closure cannot be devised because behavioural responses in capture
probabilities cannot be distinguished from failure of closure. For example an individual
whose capture rate becomes very low during the study may not be differentiated from
one who emigrates or dies (Otis et al. 1978, White et al. 1982). Closure tests have been
developed which assume that My or My, or M, is the underlying closed-population model
(null hypothesis) and test it against the alternative hypothesis of an open-population
model (Otis et al. 1978, White et al. 1982, Stanley and Burnham 1999). These tests are
not valid if closure is true but a different model holds (e.g. My). For example, the
program CAPTURE computes the closure test assuming that the underlying model is
M; however it often rejects the null hypothesis of closure even when it is true (Type I
error) if capture probabilities vary with behaviour (Otis et al. 1978, White et al. 1982).
The test has low power if sample size is small and it may fail to reject closure even
when the population is open (Type II error) (e.g. Kawanishi and Sunquist 2004).
Furthermore the test is only suitable to detect closure violation at the start or end of the
study period, it is insensitive to individuals which emigrate during the middle of the
study but return later (Otis et al. 1978).

In the absence of a suitable test, the assumption of demographic closure is
generally reasonable as long as the length of the sampling period is appropriate for the
target species. A period of 2 to 3 months is currently considered appropriate for big cats
such as jaguars and tigers (Silver et al. 2004, Karanth and Nichols 1998). Such species
are associated with low capture probability therefore some studies increase the sampling
period in order to achieve sufficient captures for abundance estimation, for example 10
to 13 months of capture-recapture data were used to estimate tiger abundance in
Malaysia (Kawanishi and Sunquist 2004). The authors condensed the data by pooling
consecutive trapping occasions (~ 12 days per occasion) before analysis; closure was
not rejected, but this is not unexpected given the small sample sizes (five to six
individuals and 14 to 25 captures). Even if care is taken to optimise the sampling period

for demographic closure, unexpected events may occur, such the death of a study
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animal in a live trap. It is possible to incorporate these anomalies into the final estimate;
indeed Lukacs’ (2007) definition of closed populations as those ‘free of unknown
changes in abundance’ is fair since it is usually possible to account for known changes,
for example White ef al. (1982) recommend that if trap deaths are < 5% of total
captures, the dead-animal data should be removed before analysis, and then the number
of dead individuals added to the final population estimate.

The assumption of geographic closure is rarely attained in the field unless the
study area encompasses an isolated habitat, for example a lake, an island or a habitat
fragment. Most study areas do not bound the home ranges of every individual captured;
consequently individuals living primarily outside the study area may be captured within
the study area. This ‘edge effect’ is reflected in individual variation in capture rate, and
regarding abundance estimation is partially resolved by population estimators robust to
heterogeneity (e.g. My). Density estimation, however, requires knowledge of the area to
which the abundance estimate is applicable and so must incorporate the edge effect if

the population is not geographically closed.

Density estimation

Density, rather than abundance, is of ecological relevance in population biology,
particularly for wildlife management. The conventional parameterization of density is in
terms of the abundance estimate and the effective area sampled. The effective sampling
(or trapping) area (often called ETA) refers to the area utilised by the study animals.
Unless the sampled population is truly geographically closed, individuals at the edge of
the trapping grid (study area) will live partially outside the study area. If the study area
is large compared to average home range then the ETA approximates to the study area;
density can be calculated from the area bounded by the outer most traps. If the study
area is small compared to the average home range then the ETA exceeds the study area;
density calculated from the area bounded by the outer most traps will overestimate the

true density.

Density estimation and the ETA

The ETA is calculated by adding a boundary strip (width W) to the study area. W
is some statistic based on movement data of the study animals, for example Dice (1938)
proposed using half the diameter of the animal’s home range. If telemetry data are

available W may be based on the known average home range of the species. In the

49



Chapter 2: Abundance & density estimation from camera-trap data

absence of telemetry data various ad hoc approaches are used based on the distances
between captures from the trapping data; for example, half of the maximum distance
moved between captures averaged over all individuals (Y2 mean maximum distance
moved from here on referred to as Y2 MMDM) (Wilson and Anderson 1985) or half of
the asymptotic trap-revealed range length (*2ARL) (Jett and Nichols 1987). Wilson and
Anderson (1985) showed that using 2MMDM to estimate the effective sampling area
produced density estimates that were less positively biased than those based on the
study area alone.

Karanth and Nichols (1998) used 2MMDM to estimate tiger density using
camera-trap data and following their recommendations the method has been used in
many camera-trap studies of large cats, for example Silver et al. (2004). Nichols and

Karanth (2002) summarise the method:

A
The mean maximum distance moved, d , and its variance are estimated as:

>4, Y@, -ay
. var(d)=——
m m(m—1)

(Egns 2.2, 2.3)

A
where d is the mean maximum distance moved; d; is the maximum distance moved
between recaptures for individual i; and m is the number of individuals captured more
than once.

The boundary strip width, W, and its variance are estimated as:

A a? (Egns 2.4, 2.5)
W= var(W) = VarT()

o>

The effective sample area (A(W)) is obtained using a GIS program. Conventionally a
strip of width W is added to the convex hull (minimum convex polygon) of the trap sites
(i.e. the polygon which bounds the outer traps); however it is preferable to add a circle
of radius W around each camera trap and then calculate the area bounded by the merged
perimeter. This ‘concave’ approach will reveal whether there are any ‘holes’ (‘un-
sampled’ areas between cameras) where individuals could have zero probability of

capture (Maffei et al. 2005).
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Density is then calculated as:

A (Egns 2.6, 2.7)

D:N

i vgr(ﬁ(W))Jrvﬁr(zG)
o]+

where N is the abundance estimate, var() is the variance of the abundance estimate

A(W) v%r(ls) =D

(obtained with N from the population analysis), var(A(W)) is the variance of the
effective sampling area. Var(A(W)) can be calculated by approximating the shape of the

sampled area to that of a circle of radius ¢ + W, where c is a constant:

A A ) A A ) A ) A A (Ean 2.8, 2.9, 2.10)
AW)=7m(c+W) var(AW)) =4z (c+ W)~ var(W)

c:\/E—W
V4

Density estimation and the spatial detection model

The calculation of the ETA through the addition of a boundary strip (W) derived
from trapping data is widely applied to density estimates but it is not optimal. Wis a
function of the specific trap spacing and is truncated at the edge of the study area
(Wilson and Anderson 1985, Efford 2004) thus the ETA is underestimated and the
density overestimated (Efford ef al. 2005). An alternative method based on a spatial
model of the detection (capture) process does not require the intermediate step of
estimating the ETA and has performed well in field and simulation studies (Efford
2004, Efford et al. 2004, Efford et al. 2005). The method, described in detail elsewhere
(Efford 2004, Efford et al. 2004), is summarised here.

Animals are assumed to occupy similar-sized, circular stationary home ranges
whose centres have a Poisson distribution of density (D). A Poisson distribution
assumes that home range centres occur independently with respect to each other. It is
assumed that capture does not influence subsequent movement patterns of the animals.
The probability that an animal is captured at a trap at distance (d) from the centre of its
home range is a function of: the probability of capture when trap location equals home
range centre (g(0)); and the decline in capture probability with increasing
distance between trap and home range centre (). The shape of this detection function is

assumed to be half-normal such that ¢ is one standard deviation from g(0) and the
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probability of capture is considered insignificant at ~3 ¢ (the edge of the home range) .
Together D, g(0), o and the configuration of the traps define the detection process. The
trapping process is simulated for a range of known values of D, g(0) and o based on the
trap configuration of the field study, giving a set of capture-recapture data for each
simulation. For each simulation, capture probability (p) and abundance (N) are
estimated using any appropriate closed-population estimator that is robust to
heterogeneity (e.g. My). A statistic (‘HR’) proportional to home-range size is also
calculated for each set of simulated data. Inverse prediction is then used to infer D, g(0)
and o from field estimates of p, N and HR. It is assumed that the field data come from a
study area that spans several home ranges and has sufficient recaptures (at least 20) to
provide information on the spatial scale of movements (Efford et al. 2004).

The program DENSITY (Efford et al. 2004) can be used to estimate density
from capture-recapture data using either the spatial detection function or traditional
‘ETA statistics’ such as 2MMDM. DENSITY allows habitats within the study area to
be masked in areas where it is known that home-ranges can not be centred (e.g. in a
river). The method of inverse prediction does not permit covariates to be included in the
abundance estimators; however a new approach using maximum likelihood based
methods is currently being developed which does allow inclusion of covariates (M.

Efford, creator of DENSITY, pers. comm.).

Density estimates of wide-ranging, low density species

Over the past decade the utility of camera traps to monitor otherwise elusive
species, and the pioneering work of Karanth (1995), which demonstrated how to use
camera-trap data within a capture-recapture framework, have sparked numerous
attempts to estimate densities of cryptic mammals. Most studies have focused on felids,
for example tigers (Karanth and Nichols 1998, O’Brien et al. 2003, Wegge et al. 2004,
Kawanishi and Sunquist 2004), jaguars (Wallace et al. 2003, Maffei et al. 2004, Silver
et al. 2004, Miller and Miller 2005, Cullen et al. 2005, Harmsen 2006, Miller 2006,
Soisalo and Cavalcanti 2006, Salom-Pérez et al. 2007), pumas (Puma concolor) (Kelly
et al. 2008), ocelots (Trolle and Kéry 2003, Dillon 2005, Maffei et al. 2005, Trolle and
Kéry 2005, Di Bitetti et al. 2006, Haines et al. 2006, Maffei and Noss 2008), Geoffroy’s
cat (Oncifelis geoffroyi) (Cuellar et al. 2006), snow leopards (Uncia uncia) (Jackson et
al. 2006), and bobcats (Lynx rufus) (Heilburn et al. 2006); although recently the method
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has been used to estimate tapir (Tapirus terretris) (Noss et al. 2003) and giant armadillo
(Priodontes maximus) (Noss et al. 2004) densities also. Many of the species studied in
this way are wide-ranging and occur at low densities. This is in contrast to the
development of capture-recapture theory which was based largely on small mammals
that occur at high densities with relatively small ranges. As such it is prudent to discuss
some of the problems associated with the application of these methods to the study of
low density wide-ranging species; not least because the results of published studies are

often used to make management decisions and drive policy.

Sample size

Samples sizes of ~10-20 individuals may be too small for reasonable estimates
using capture-recapture closed population models (Otis ef al. 1978, White et al. 1982).
Because many of the species of interest occur at low numbers, relatively small sample
sizes are inevitable; however this is no justification for applying an otherwise
inappropriate method of population estimation. In 64 published abundance estimates
based on camera-trap data of felids the mean sample size was 13 (SD = 10) with a mode
of 5. In particular, some studies have used capture-recapture models to estimate
abundance from exceptionally small samples, for example jaguars n = 4 (Wallace et al.
2003) and ocelot n = 3 (Haines et al. 2006). In such circumstances it may be more

appropriate simply to report the minimum number alive as a conservative best guess.

Capture probability

Models which include behavioural variation in capture probability (e.g. M) may
be appropriate in live-trapping studies where individuals may become trap-shy (in
response to being trapped) or trap-happy (in response to bait). There is little evidence to
date of a behavioural response to camera traps; however during one study which used a
high density of camera traps (1 per km?) in conjunction with impression pads to obtain
pug marks, it seems that the tigers used the impression pads as cues to avoid the
cameras (Wegge et al. 2004).

Models which include temporal variation in capture probability (e.g. M) may be
appropriate if trap effort varies through time. My, assumes constant trap effort on each
trapping occasion (Burnham and Overton 1978) however trap failure during the survey

will break this assumption. Camera traps may fail for a number of reasons yet few
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studies report levels of camera trap failure. Chapter 3 assesses the effect of trap failure
on abundance estimates using the Mj, jack-knife estimator.

Most abundance estimates based on camera-trap data use the My, jack-knife
model, and for good reason. Low sample sizes, common in studies of large felids, will
limit the ability to correctly identify sources of variation in capture probability and
select the appropriate model, for example My, versus M, or M, (Karanth and Nichols
1998). Heterogeneous capture rates of individuals are expected due to a combination of
biological and sampling biases such as sex, social status, age and trap location. Models
which assume equal capture probability in the presence of individual heterogeneity will
underestimate abundance (Burnham and Overton 1978, Chao and Huggins 2005b).
Therefore Nichols and Karanth (2002) recommend the use of the My, jack-knife
estimator given the a priori belief that capture probabilities are heterogeneous, and
because it tends to be more robust than other model estimators to deviations from the
underlying assumptions. Note however that if nearly all individuals are captured it may
overestimate abundance (Chao and Huggins 2005b); given the low capture probability
of many target species this situation is unlikely.

As with other estimators, the My, jack-knife estimator will underestimate
abundance at capture probabilities less than ~0.05 (White et al. 1982). Low capture
probabilities are common in camera surveys of wide-ranging species such as large cats,

and abundance estimates based on samples with average capture probabilities < 0.05 are

published, for example tigers, IA) =0.03 (O’Brien ef al. 2003), ocelots, ;) =0.02 to 0.05

(Maffei et al. 2005). Simulation studies by Harmsen (2006) suggest that such estimates
are likely to be unreliable, but that pooling consecutive trapping occasions before
analysis will increase the capture probability hence the precision of the M}, jack-knife
estimate. Many studies now take this approach to increase capture probability by
increasing the occasion length and simultaneously decreasing the number of occasions
(e.g. Kawanishi and Sunquist 2004, Heilburn e al.2006, Dillon and Kelly 2007, Kelly
et al. 2008). The My, jack-knife estimator requires at least five trapping occasions (Otis
et al. 1978). Published camera-trap studies fulfil this requirement, with seven to 70
occasions of length 1 to 44 days per occasion. Although capture probability can be
increased by increasing the sampling period care must be taken not to violate the
assumption of demographic closure. Several published studies sampled for 6 to 12

months (Karanth 1995, Kawanishi and Sunquist 2004, Haines et al. 2006), which

54



Chapter 2: Abundance & density estimation from camera-trap data

exceeds the recommended sampling period of 2 to 3 months for large cats (Silver et al.
2004). Because the closure test is not powerful with low sample sizes, the capture
histories from such studies should be subjectively assessed for evidence of closure
before population estimation.

The M}, jack-knife estimator does not quantify the degree of heterogeneity
within the population (Chao and Huggins 2005b). Simulations have shown that high
levels of heterogeneity (extreme variation between individuals in capture probability)
can reduce the reliability of the abundance estimate (Harmsen 2006). Pooling occasions
can reduce the level of heterogeneity and so improve the estimates (Harmsen 2006). No
published studies report levels of heterogeneity; although this could be simply assessed
through a frequency of distribution of captures. For example, a bimodal distribution
would suggest that the population consists of two groups, one with a high probability of
capture and one with a low probability of capture perhaps arising from behavioural
differences between the sexes (e.g. Harmsen 2006) or social status (e.g. residents versus

transients).

Methods of density estimation

This chapter has described two different methods of density estimation: the ETA
method in which a buffer based on the home range size of the target species is added to
the survey area, and the spatial detection method which uses inverse prediction.
Camera-trap studies commonly use the ETA method with a buffer width of 2MMDM
derived from the trap data. This is usually justified on the grounds that Wilson and
Anderson (1985) found that a buffer width of 2MMDM performed well in simulation
studies. However the simulations by Wilson and Anderson (1985) are based on densities
of 2,500 to 5,000 individuals /km* which far exceed the natural densities of any large
carnivore.

The spatial detection method has not been used in any published camera-trap
study, yet it could provide a sensible alternative to the ETA method in the absence of
good home range data. Again, simulations and field tests perform well but are based on
relatively high densities (50 to 5,000 individuals /km?) (Efford 2004, Efford et al 2005).

The precision and accuracy of both the ETA method (with 2MMDM) and the
spatial detection method need to be investigated at a scale appropriate for population

densities associated with large, wide ranging carnivores.
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Home range and density estimation using ETA

A few studies do not calculate an ETA for density estimation but simply use the
area bounded by a minimum convex polygon of the outer traps of study area, or the
boundary of a park or reserve (e.g. Carbone et al. 2001, Cullen et al. 2005, Heilburn et
al. 2006). This is acceptable if it is known that the members of the population do not
leave the park boundaries; but failure to account for ETA when individuals do move
beyond the trapping grid will overestimate the true density.

Most published studies do calculate the ETA prior to density estimation, using a
proxy for home range radius (usually 2MMDM) derived from the trap data. Some
studies use few individuals for calculation of MMDM; for example Trolle and Kéry
(2003) and Cuellar et al. (2006) used n = 2, because only 2 individuals were captured at
>1 station. Not only does this indicate that the stations were spaced too far apart (see
later), but such small samples will likely underestimate the mean home range diameter
so it may be preferable to use absolute MDM instead (Kawanishi and Sunquist 2004).
Wallace et al. (2003) chose to use the most conservative estimate of jaguar home range
available in the literature (10 km?) to estimate ETA for their jaguar survey; an approach
which will most likely have overestimated the true density.

Maffei and Noss (2008) emphasize that the only means to confirm whether
MMDM derived from trap data is a valid proxy for home range diameter is to conduct
telemetry and camera trapping simultaneously. Four studies to date have done this, with
differing results: home range diameter derived from camera traps and from telemetry
agreed in a study of jaguars in Costa Rica (Salom-Pérez et al. 2007) and tapirs in
Bolivia (Noss et al. 2003); however camera-trap data underestimated home range
diameter in a study of jaguars in the Pantanal (Soisalo and Cavalcanti 2006), and of
ocelots in Belize (Dillon 2005) and in Bolivia if sample areas were small (Maffei and
Noss 2008). This variation should be of no surprise. The relationship between a proxy
of home range derived from camera-trap data will be a function of the spatial
configuration of the traps in the particular study and the ranging behaviour of the
individuals sampled. As such the suggestion that estimates of MMDM can be calibrated
using telemetry and extrapolated to other studies (Soisalo and Cavalcanti 2006) should

be treated with caution.
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Factors influencing reliability of ETA density estimate

The ranging behaviour of the target species and the spatial configuration of traps
within a survey (survey area, trap spacing and location) will influence sample size,
capture probability and estimates of MMDM, all of which will all influence the

reliability of the abundance and density estimate.

Ranging behaviour

Although it is common to use an average estimate of home range radius to
estimate the ETA, variation in ranging behaviour within the sampled population needs
to be considered before estimating densities. For example, Cuellar et al. (2006) noted
distinct seasonal changes in the ranging behaviour of Geoffroy’s cats in Bolivia, in
addition this species utilises relatively small areas for 2 to 3 months before moving large
distances (25 km) a behaviour which could lead to highly variable density estimates
both within and between sites.

Most large carnivores display sexual differences in their ranging behaviour.
However differences in home range radius between the sexes, and the resultant effect on
the ETA and density estimation has not yet been formerly addressed. Harmsen (2006)
suggested that for species with distinct differences in ranging behaviour (and capture
probability), such as jaguars, it may be appropriate to estimate density separately for
males and females. Not only would this allow a more appropriate ETA to be applied to
the abundance estimate of each sex, but it would also remove extreme heterogeneity in
capture rate from the capture histories and so increase the precision of the abundance
estimate. Sexual differences in MMDM and the resultant affect on density estimates are

investigated in Chapter 4.

Survey area

The study of wide-ranging species requires camera traps spaced over a large area
but this is often limited by the costs and logistics of camera trapping. Various studies
have reported that small survey areas give inflated density estimates (e.g. Cuellar et al.
2006, Harmsen 2006, Jackson et al. 2006, Dillon and Kelly 2007, Maffei and Noss
2008). This positive bias may arise because:

1) Individuals move further than the maximum distance between traps. Consequently

the proxy for home range diameter derived from the camera data underestimates the true
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home range and the ETA. For example, Dillon and Kelly (2007) demonstrate an inverse
relationship between trap spacing and density based on camera-trap data of ocelots.

2) Individual ranges can overlap in relatively small areas (despite maintaining exclusive
ranges elsewhere) particularly if traps are located near a favoured resource; for example
the high densities reported for jaguars in the Belizean forest (Silver et al. 2004,
Harmsen 2006) maybe an artefact of preferentially locating traps along logging roads
which are favoured by jaguars as easy travel routes through the dense forest.
Extrapolating this density to areas without logging roads may be unreliable.

3) Small survey areas may fail to sample the all available habitat types, again
extrapolation to larger areas may not be appropriate.

Some published studies fail to recognise the positive bias of small survey area
on their density estimates. For example, in a study of jaguars in Corcovado National
Park, Costa Rica, Salom-Pérez et al. (2007) surveyed just 29 km? (ETA of 88 km?); this
is likely to overestimate the true density yet the authors claim the opposite arguing that
density is likely underestimated because they only surveyed 20% of the park. This is a
rash claim to make given that their findings suggest that the jaguars of Corcovado are in
a critical condition anyway. In a study of jaguars in Bolivia, Maffei et al. (2004)
extrapolated densities based on three study sites (sample areas of 49 to 130 km?, ETAs
of 128 to 308 kmz) to the entire Bolivian Gran Chaco, an area of 34,400 km? and
concluded that the Chaco supports a viable jaguar population. Such broad claims should
be treated with caution, particularly if used to drive Government policy. Soisalo and
Cavalcanti (2006) demonstrate the consequences of overestimation and extrapolation
using the Pantanal as an example; here they show that underestimation of MMDM by
camera-trap data (compared to telemetry) overestimated the jaguar population by 3.8 to
5 individuals per 100 km”. Extrapolating this estimate across the entire Pantanal
(140,000 kmz) would overestimate the population by 5,320 to 7,000 individuals.

Maffei and Noss (2008) discuss the appropriate minimum survey area relative to
the home range of the target species, using empirical camera-trap and telemetry data of
ocelots (their study, and Dillon 2005), tapirs (Noss et al. 2003), and jaguars (Soisalo
and Cavalcanti 2006). They recommend that if home ranges are known for the site, the
camera survey area should cover at least four times the average home range. Of course
many studies do not have the funds to combine telemetry with camera trapping, and
home range may not be known for the target species at the study site. In these situations

they suggest that MMDM can be considered a valid proxy for home range diameter and
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ETA estimation if a large enough area is surveyed. They recommend surveying the
largest area possible and sub-sampling the data to evaluate the threshold area above
which the density estimates stabilize. For jaguars in the Belizean rainforest this has been
estimated at about 100-150 km” (Harmsen 2006) and is investigated further in Chapter
4.

If cameras are limited, survey areas can be maximized by moving cameras
within the sampling period and combining data from the sub-areas sampled. Various
studies have used this technique, (e.g. Karanth and Nichols 1998, O’Brien et al. 2003,
Wegge et al. 2004, Trolle and Kéry 2005, De Bitetti et al. 2006, Soisalo and Cavalcanti
2006). Most of these studies sequentially sample adjacent trapping grids which are then
combined ignoring temporal variation such that the first day of each sampling block
forms the same trapping occasion (e.g. Soisalo and Cavalcanti 2006). De Bitetti ef al.
(2006) used an alternative approach in which the entire area was surveyed throughout
the sampling period with traps at half density which were shifted to new locations
within the same area half-way through the sampling period. This method may be
considered superior since it reduces the confounding effect of space and time.

When resources are severely limited surveys can utilize single camera stations.
This effectively doubles the area which can be surveyed but increases the risk of trap
failure and variable trap effort. Because left and right flanks can not be identified as the
same or different individuals the analysis must be limited to one side only. Although
this lowers the capture probability it is still possible to use this method for estimation

(Karanth 1995, O’Brien et al. 2003).

Trap spacing

Trap spacing, as well as overall survey area, is important. Dillon and Kelly
(2007) suggest that camera spacing should seek to maximize capture probability by
including at least two traps per average home range. Traps which are spaced too widely
may fail to detect individuals if they occupy home ranges which fall between trap
locations. Thus, a balance should be found between maximizing survey area (e.g.
Maftei and Noss 2008) and optimizing trap spacing (e.g. Dillon and Kelly 2007).

‘Gaps’ within surveys, where individuals could theoretically maintain a home
range and not be detected, can be identified when the buffer based on average home
range radius (or a proxy thereof) is applied to each trap location (Figure 2.2). Essentially

the presence of gaps within a survey breaks the assumption of capture-recapture models
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that the probability of capture of every individual is greater than zero. Noss et al. (2003)
argue that whilst estimates based on such discontinuous surveys may be less precise
because of the increased edge effect, but they are not invalid; and Maffei ef al. (2005)
demonstrated that at the same site density estimates of ocelots did not differ between
continuous and discontinuous surveys. The extent to which ‘gaps’ influence the
reliability of density estimates is likely to be dependent on the spatial aspects of the

survey grid and the ranging behaviour of the target species and warrants further study.

a) Buffer width 3.0 km

b) Buffer width1.5 km

Figure 2.2 An example of continuous and discontinuous effective trapping areas
(ETA). Cameras are spaced ~1-3 km apart. In a) the mean home range radius of the
target species is 3 km therefore the ETA is continuous. In b) the mean home range
radius of the target species is 1.5 km therefore the ETA is discontinuous.
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Trap Location

Harmsen (2006) demonstrated that minor changes in trap location can influence
abundance estimates if moved from a location of low capture probability to one of high
capture probability. Several studies have detected subtle differences in capture rate
associated with certain habitat features, in particular variation in capture rate with road
and trail characteristics such as width, age and substrate (e.g. Maffei et al. 2004, Trolle
and Kéry 2003, De Bitetti et al. 2006, Dillon and Kelly 2007). In order improve
precision of abundance estimates researchers frequently select trap locations which will
optimise capture probability. This is valid, but as discussed earlier, care should be taken
when extrapolating the resultant density estimates to larger areas where habitat may be

less optimal.

Multi-species surveys: pros and cons

Camera traps record any animal that passes, not just the target species, giving
rise to huge datasets. Within the camera-trap literature there is a temptation to use the
same survey to estimate the abundance of multiple species within the study area. For
example, Noss et al. (2003, 2004) used surveys designed to study jaguars to estimate
densities of tapir and giant armadillo. Certainly utilising the same database is cost
efficient and can reveal interactions between sympatric species (e.g. Harmsen et al. in
press); however using the same survey design for density estimations of multiple
species should be treated with caution given that the optimal trap location, spacing and
minimum survey area for one species may not be optimal for another species. Density
estimates of similar species from the same survey may be valid if sufficient information
is known about their ranging behaviour and preferably if the survey is designed a priori
with this in mind; for example a survey originally designed to study jaguars (Maffei et
al. 2004) has been used to estimate puma density (Kelly et al. 2008) and ocelot density
(Maffei et al. 2005).

Recommendations

This chapter has reviewed the current method of density estimation of low-
density, wide-ranging species using camera-trap technology and closed population
capture-recapture models. This approach to density estimation has been instrumental in

facilitating ecological research of elusive species. The technique has been used
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increasingly over the past decade with few attempts to refine the methodology since the
original work of Karanth and Nichols (1998); although it is starting to receive attention
now e.g. Harmsen (2006), Soisalo and Cavalcanti 2006, Dillon and Kelly (2007) and
Maffei and Noss (2008). Researchers’ should remember: ‘garbage in, garbage out’
(Krebs 1999); for example the use of closed-population models for exceptionally low
sample sizes is not appropriate; also consideration should be given to the potential
biases which may arise from aspects of both the sampling design (survey area, trap
spacing, trap location) and the ranging behaviour of the target species prior to
commencing the study. The effects of all these factors on the reliability of density
estimates require more research. Yet whilst the method itself needs to be refined it
continues to be used to assess population of threatened species, and potentially drive
conservation policy. As such researchers and policy makers alike must interpret findings

with caution, taking into account the limitations of the method.
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Abstract

Camera-trap data combined with capture-recapture closed population models are
commonly used to estimate the abundance of elusive, low density mammals. Although
camera-trap technology is improving there is no guarantee of functional consistency
throughout a survey. This study assessed the robustness of the My, jack-knife estimator
to camera failure and night-only sampling in the estimation of jaguar (Panthera onca)
abundance in Belize, Central America. The results suggest that the jack-knife estimator
is robust to trap failure up to ~10% of trap-occasions based on manipulation of
empirical data. Surveys with high capture and recapture rates were less affected by trap
failure than those with low capture and recapture rates. Pooling trap-occasions reduced
the effect of trap failure. Trap failure can negatively or positively bias the abundance
estimate, dependent on the specific nature of the capture histories. Underestimation is
likely if trap failure excludes individuals from the capture history, whilst the causes of
overestimation are less clear; both warrant further investigation. These findings suggest
that published abundance estimates based on camera-trap data should include
information about the level of trap-failure within the survey. Jaguar activity is primarily
nocturnal in the study area. Night-only sampling lowered the number of individuals
detected and the overall capture probability; for surveys in which capture probability
remained above the 0.03 threshold required for reliable estimates (Harmsen 2006) night-
only sampling did not significantly affect the abundance estimate compared to

continuous sampling.

Introduction

The recent development of passive camera traps has made possible the study of
elusive species living at low densities (Karanth and Nichols 1998). Camera traps have
the potential to provide data on large numbers of the population, more so than could be
practically achieved by live-trapping. The use of camera-trap technology with capture-
recapture closed population models is becoming a popular method to estimate the
abundance of elusive, low density mammals (Chapter 2). Its utility means that it will be
used increasingly to drive conservation policy (Trolle and Kéry 2005) therefore the
methodology needs to be accurate, robust, reliable and comparable. The study of elusive
species is, by its very nature, based on low sample sizes and low capture rates which

will both reduce the reliability of population estimates (Chapter 2). This is further
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complicated by sampling biases arising from study design in relation to the ranging
behviour of the target species (Chapter 2). Some of these issues are now beginning to be
addressed (e.g. Harmsen 2006, Maffei et al. 2008). Variable trap effort, arising from
camera failure during the survey period is not uncommon, particularly in sites where the
terrain and logistics prevent daily visits to camera stations; or where human activity
may interfere with cameras; and due to harsh environmental conditions. The extent to
which moderate levels of trap failure bias abundance estimates based on small sample
sizes associated with elusive mammals has not yet been addressed. This aim of this
study is to assess the robustness of the My, jack-knife estimator to variable and reduced
trap effort resulting from camera failure when estimating the abundance of an elusive,
low density mammal, the jaguar (Panthera onca) in Belize, Central America

By nature of their applicability to the detection of elusive mammals, camera
traps are often employed in harsh environments such as humid rainforests, (e.g.
Harmsen 2006) or exposed arid conditions (e.g. Jackson et al. 2006) so exposing them
to conditions which may lower functionality. Even in favourable environmental
conditions camera traps are not always reliable, due to design faults or field
incompetence; furthermore when deployed in areas of human activity cameras are at
additional risk of interference from people. Yet, human-influenced landscapes are
exactly the areas requiring research into the population ecology of large elusive
mammals (Chapter 4). In addition to heightened risks of camera failure through theft
and vandalism, working in human-dominated areas may often necessitate limiting the
trapping periods to night-only sampling. This prevents the wasting of film on high
activity non-target species such as cattle or vehicles (e.g. Karanth and Nichols 1998,
Heilbrun et al. 2006), and is also often preferred by local people going about their daily
activities. Examples of the causes of camera failure experienced when conducting
camera trap surveys for jaguars on unprotected lands in Belize, Central America are

listed in Table 3.1.
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Table 3.1 Examples of camera failure documented during camera-trap surveys of
jaguars conducted in Belize, Central America

Failure Examples

Technical - Faulty circuitry e.g. ‘snapping’: the camera takes consecutive photos
without the sensor being triggered such that the film is full within
24h

- Field incompetence: staff may be well-trained but mistakes are
inevitable e.g. exposing the film, forgetting to switch on the
camera

Climate - Heavy rains may flood cameras overnight

- Heat blindness in exposed areas at high temperatures may prevent
detection of body heat against the ambient temperature

- Humidity can ruin film and drain batteries

People and - Theft and vandalism can result in the loss of many weeks of data

animals - Unexpectedly high levels of traffic of non-target species such as cows
or vehicles may cause a film to run out sooner than anticipated,
or necessitate night-only sampling

- Invertebrates nest in camera lens or block sensors

Capture-recapture models are classified according to the assumptions they make
about capture probability (Otis et al. 1978). The model M}, assumes capture probability
varies between individuals. Heterogeneous capture rates of individuals within a
population are expected due a combination of biological and sampling biases such as
sex, social status, age and trap location. Models which assume equal capture probability
in the presence of individual heterogeneity will underestimate abundance (Burnham and
Overton 1978, Chao and Huggins 2005b). Published abundance estimates derived from
camera-trap data commonly use the M}, jack-knife estimator (Burnham and Overton
1978), following the recommendations of Nichols and Karanth (2002) (see Chapter 2
for more detail).

Accurate capture-recapture abundance estimates require reliable methods of
counting individuals during each occasion. Models of closed populations, such as My,
assume constant trap effort among sampling occasions. If trap effort is variable through
the survey period then the probability of capture of some individuals may fall to zero if
the only station that they ever pass is a ‘failed” camera. This will violate the assumption
underlying capture-recapture models that all individuals have a probability of capture >
0. Few studies report levels of trap failure during surveys, yet given the range of factors
which may result in camera failure (Table 3.1) it is unlikely that many camera-trap
surveys maintain constant trap effort. It is therefore appropriate to investigate how
robust are closed population models to variation in trap effort; and what level of trap

failure, if any, is acceptable. In this study trap failure is simulated in three datasets for
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which camera failure was known to be minimal, to determine whether it is appropriate
to apply standard methods of capture-recapture population estimation to poor datasets.
The same datasets are also manipulated to determine the influence of night-only

sampling on abundance estimates.

Methods

Camera-trap data collected during three surveys were manipulated in order to
assess the effect of variable trap effort (camera failure) and reduced trap effort
(continuous versus night-only sampling) on jaguar abundance estimates using the jack-
knife estimator for model M. The surveys were conducted in a protected forest where
human interference, thus camera failure, was minimal (B. Harmsen, Panthera Belize,
pers. comm.). Estimates of camera failure during surveys conducted on neighbouring
lands with human activity ranged from 1.9% to 17.6% of the trap-nights, spanning from
0% to 90% at any given camera station. Consecutive failures at the same station ranged
from 0% to 45% of the trapping period. When stations with more than 10 failed nights
were removed these failure rates fell, ranging from to 2.3% to 4.4% (0% to 20% at any

given station), with consecutive failures at 0% to 20% (Chapter 4).

The effect of camera failure on abundance estimates

Data from three camera-trap surveys of jaguars conducted in a protected forest
in 2004, 2005 and 2006 were manipulated in order to assess the effect of camera failure
on abundance estimates using the jack-knife estimator for model My. A 62-day period
was selected (22" March to 22" May) from each year. These datasets were complete
(no camera failure) and identical in all 19 camera locations, giving 1178 trap-occasions

per survey. The data for 2004 and 2005 came from Harmsen (2006).

Simulation of camera failure

Camera failure rate was set at 10% trap-night failure (118 failed trap-occasions
during the entire survey period). The number of consecutive failures at the same station
was set to a maximum of 30% of the survey period (19 consecutive occasions). Camera
location (1-19), occasion (1-62) and number of consecutive failed occasions (1-19) were
selected randomly, and repeated until the total number of failed trap-occasions was
equal to 118. The final randomly selected value of consecutive failed occasions was

constrained if it otherwise caused the total number of failed trap-occasions to exceed
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118. Duplicate failures on the same trap-occasion were rejected. This process was
repeated 20 times, giving 20 sets of failed trap-occasions. Each set of failed trap-
occasions was applied to the trapping records of each survey such that captures were
removed if they occurred on a simulated failed trap-occasion. Abundance was then
estimated from the new trapping records, 20 for each survey plus the original estimate
based on the complete trapping record. Abundance was estimated for every trapping
record both as the number of individuals captured (minimum number alive), and using
the jack-knife estimator for model M, in the program CAPTURE (Rexstad and
Burnham 1991). The full procedure was repeated with camera failure rate set at 5% and
20% (59 and 236 failed trap-occasions during the entire survey period, respectively).
The number of consecutive failures at the same station was kept at a maximum of 30%
of the survey period (19 consecutive nights).

Harmsen (2006) demonstrated that pooling data from consecutive trap occasions
reduces the number of occasions with no captures and so increases the capture
probability, which in turn can improve the precision of the estimate. It was
hypothesised that pooling occasions would improve robustness to camera failure
therefore the simulated capture histories were collapsed from 62 occasions (62
consecutive days) to nine occasions (nine consecutive weeks, note that the final week

consisted of only six days) and the abundance estimates were repeated.

Robustness of the jack-knife M, model to camera failure

The mean (N ), SE and 95% CI (+/-1.96SE) were calculated for each set of 20
abundance estimates. Three measures of performance of My, were calculated in order to
compare the actual estimate (N, no trap failure) with the simulated estimates under each

level of trap failure for each survey:

SE(N)

1. The coefficient of variation (CV) of the estimate = x100

~——2=x100
N

3. Confidence interval coverage = % of nominal 95% Cls that contain the actual value

2. The relative bias =
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The program CAPTURE calculates the average capture probability ( p , termed

‘p-hat’) from the trapping record for each abundance estimate. Simulation studies by
Harmsen (2006) showed that p-hat > 0.03 is necessary for a reliable estimate using the
jack-knife My, estimator. Closed population models rely on recaptures, so high capture
ratios are preferred. Trap failure may alter this ratio in either direction; with
consequences for the abundance estimate. In order to quantify this, the capture
frequency ratio was calculated as (Eqn 3.1):

Number of individuals with recaptures (Egn 3.1)
Number of individuals with one capture

A capture frequency ratio >1 indicates that more than half of the individuals in the
trapping record were recaptured. Together the p-hat and the capture frequency ratio
reflect the nature of the capture history, thus will likely determine the effect of
simulated trap failure on the abundance estimate. The mean p-hat and mean capture
frequency ratio were calculated for each set of 20 simulations and compared at each

level of trap failure and with the actual p-hat and capture frequency ratio of each survey.

Trap effort as a temporal covariate in MLE M;, mixture models

Trap effort was calculated for each occasion of every simulated dataset.
Abundance was estimated for each simulated dataset using the maximum likelihood
estimator (MLE) for the mixture model with two groups (My;) in the program MARK
(White 2005). This was repeated with the addition of trap effort as a temporal covariate
(model Mp.rap) and the AIC values compared to determine whether inclusion of trap
effort improved the model likelihood. The intention was to investigate whether the
inclusion of trap effort as a temporal covariate in maximum likelihood models could
improve the reliability estimate over the simple M model. This was attempted for
several of the simulated datasets but had to be abandoned because the Mp.ap model
generally failed to converge, probably because the data were too sparse (K. Burnham,

creator of program MARK, pers. comm.).

The effect of continuous versus discrete trap effort on
abundance estimates

Abundance was estimated as minimum number alive, and using the jack-knife
estimator for model My, for the three surveys (2004, 2005 and 2006) including and

excluding daytime captures to determine whether trapping only at night significantly
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affects the estimate. All photographs had a time and date stamp. Daytime captures were
defined as those occurring between sunrise and sunset. Daily sunrise and sunset times

(2004-2006) were acquired from the US Naval Observatory (2007).

Results

Jaguar abundance estimates based on the full trapping-records with continuous
detection (day and night) for a 62-day period (March to May) in 2004, 2005 and 2006
are compared with abundance estimates based on variable and reduced trap effort to
determine the robustness of the My, jack-knife estimator. In 2004 20 individuals were
captured a total of 74 times, giving an abundance estimate of 40 (95%CI 27-88). In
2005, 18 individuals were captured a total of 48 times, giving an abundance estimate of
20 (95%C1 19-37). In 2006, 17 individuals were captured a total of 103 times, giving an
abundance estimate of 19 (95%CI 18-36).

The effect of camera failure on abundance estimates

The average number of individuals captured in each set of 20 trapping records
was the same as for the original trapping records of each survey until trap failure
reached 20%; at this level the average number of individuals captured reduced (Figure
3.1). This suggests that if the minimum number alive is considered a reasonable index
of the actual population then trapping records which have suffered 5% or 10% trap

failure may remain acceptable as conservative estimates of the actual population.
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Figure 3.1 Effect of trap failure on number of individuals captured (‘minimum number
alive’).Three levels of trap failure (5%, 10% and 20%) were applied 20 times to the
trapping records of three surveys (2004, 2005 and 2006). The mean and 95% CI of the
20 counts for each level of simulated trap failure are shown for each of the three
surveys. 0% trap-occasion failure is the count based on the original data.
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Number of captures and number of individuals

The loss of captures from the trapping records tended to increase with increased
trap failure, for both the un-pooled (62 occasions) and pooled (nine occasions) capture
histories (Table 3.2). The proportional increase in loss of captures with increased
randomly distributed trap failure indicates a random distribution of captures through
time. The loss of individuals also increased with trap failure but varied less consistently
(Table 3.3), presumably because the loss of an individual would depend on how many
times it occurred in the trapping record. The variation between the three surveys in loss
of captures and individuals probably reflects differences between the original trapping
records of the three surveys; for example the ratio of captures to recaptures, and the

number and distribution of captures throughout each survey period.

Table 3.2 Mean % loss of captures when three levels of trap failure (5%, 10% and
20%) were applied 20 times to the capture histories of three surveys (2004, 2005 and
2006). The % mean loss of captures are shown for the 62 one-day occasions; a similar
pattern was observed for the same capture histories pooled into 9 one-week occasions.

% failure Mean % captures lost (SD)

2004 2005 2006
5 49(28) 45(36) 43(29)
10 7.8(35) 7.2(3.8) 7.8(4.0)
20 18.0 (5.4) 17.2(6.4) 18.2 (4.5)

Table 3.3 Mean % loss of individuals when three levels of trap failure (5%, 10% and
20%) were applied 20 times to the capture histories of three surveys (2004, 2005 and
2006).

% failure Mean % individuals lost (SD)

2004 2005 2006
5 23(41) 08(27) 21(29
10 2.0(3.00 36(41) 1.2(2.4)
20 8.8(5.6) 6.9(5.9) 4.1 (4.7)

Capture probability ( ;))

For the un-pooled capture histories, the average capture probability (p-hat)
associated with each original trapping record was > 0.03, the threshold required for a
reliable estimate using the jack-knife estimator (Harmsen 2006). The average p-hat
during the 2006 survey was more than twice that of the 2004 and 2005 surveys, > 0.05,
the threshold required for a precise and reliable estimate (Harmsen 2006). P-hat tended

to decline in 2005 and 2006, but increase in 2004, with increased trap failure (Figure
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3.2a). When the capture histories were pooled from 62 one-day occasions to nine one-
week occasions p-hat increased by an order of magnitude, and became more stable to

increased trap failure (Figure 3.2b).
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Figure 3.2 Effect of trap failure on average capture probability (p-hat) calculated using
the jack-knife estimator for model M;. Three levels of trap failure (5%, 10% and 20%)
were applied 20 times to the capture histories of three 62-day surveys (2004, 2005 and
2006). Capture histories were pooled into nine one-week occasions. The mean and
95% Cl of the 20 p-hats for each level of simulated trap failure are shown for each of
the three surveys, for both the un-pooled (62 occasions, upper panel) and pooled (9
occasions, lower panel) capture histories. 0% trap-occasion failure is the p-hat based
on the original data.

Capture frequency ratio

For all capture histories, the capture ratio was >1 indicating that more
individuals were recaptured than not. For the un-pooled (62 occasion) capture histories,
the capture frequency ratio was lowest in the original 2004 trapping record (Figure 3.3a
upper); at 20% trap failure the average ratio increased, presumably because high levels
of failure removed individuals with single captures from the trapping record. This
increased proportion of individuals with multiple captures likely explains the increased
average p-hat observed in 2004 with increased trap failure (Figure 3.2a upper). In

contrast capture frequency ratio of the 2005 trapping record decreased at 20% trap

72



Chapter 3: Camera failure & closed population models

failure (Figure 3.3b), presumably because high levels of failure increased the probability
that individuals with recaptures were reduced to single capture individuals. The capture
frequency ratio of the 2006 trapping record remained stable with increased trap failure
(Figure 3.3c) The capture ratios were reduced when the capture histories were pooled in
2004 (Figure 3.3a lower). This is because multiple captures of the same individual

within the same week were condensed into a single capture.

a) 2004 b) 2005 c) 2006

I * $ t . $ t }

Capture ratio (>1:1)
(%)

O T T T T T T T T T T T T
0 5 10 20 0 5 10 20 0 5 10 20

% trap-occasion failure

Figure 3.3 Effect of trap failure on capture frequency ratio (number of individuals
captured more than once/ number of individuals captured once).Three levels of trap
failure (5%, 10% and 20%) were applied 20 times to the trapping records of three 62-
day surveys (2004, 2005 and 2006). Capture histories were pooled into nine one-week
occasions. The mean and 95% CI of the 20 ratios for each level of simulated trap
failure are shown for each of the three surveys, for both un-pooled (62 occasions,
upper panel) and pooled (9 occasions, lower panel) capture histories. 0% trap-
occasion failure is the ratio based on the original data.

Abundance estimates

The mean of each set of 20 abundance estimates was within the 95% CI of the
actual abundance estimate for each survey; and the 95% CI of every simulation estimate
overlapped with the 95% CI of the actual abundance estimate for each survey (Figures
3.4a-c).

For the abundance estimates based on the un-pooled capture histories, the effect

of trap failure varied between the three surveys. In 2004 simulated estimates tended to
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decrease with increased trap failure. In 2005 the simulated estimates were tight relative

to the actual estimate at all levels of trap failure. The same is true for the 2006 survey at

the 5% level of trap failure; however as trap failure increased to 10% and 20% the

simulated estimates tended to increase.

The abundance estimates based on pooled capture histories responded to trap

failure similarly as those based on un-pooled capture histories, with two exceptions: 1)

the precision of the 2004 abundance estimate under conditions of zero trap failure

increased when the capture histories were pooled; and 2) abundance estimates based on

the 2006 pooled capture histories were more stable to increasing trap failure than were

those based on the equivalent un-pooled capture histories.

a) 2004
62 occasions 9 occasions
95 - 95 -
85 4 85 4
75 A 75 4
2 o
© 65 © 65
E £
® 8
§ 55 | § 55 -
3 - 3 T
[ [
3 45 3 451
< <
* T -
35 4 % = 35 4 -
{ R
25{ 25 - - {
15 15
0 5 10 20 0 5 10 20

% trap-occasion failure

% trap-occasion failure

74



b) 2005

40 -

Abundance estimate

15 4

c) 2006

40 -

Abundnace estimate

15 4

35 -

30 -

25

20 -

35 -

30 -

25

20 -

62 occasions

0 5 10 20

% trap-occasion failure

62 occasions

% trap-occasion failure

Chapter 3: Camera failure & closed population models

Abundance estimate

Abundance estimate

40 -

35

30 -

25

20 -

15

9 occasions

40 -

35

30 -

25

20 -

15

0 5 10 20

% trap-occasion failure

9 occasions

0 5 10 20

% trap-occasion failure

Figure 3.4 Abundance estimates based on manipulated trapping records of three 62-
day surveys a) 2004, b) 2005 and ¢) 2006.Trap failure was simulated at 5%, 10% and
20% Capture histories were pooled into nine one-week occasions. The mean and 95%
Cl of the 20 abundance estimates for each level of simulated trap failure are shown for
each of the three surveys, for both the un-pooled (62 occasions) and pooled (9
occasions) capture histories. The red markers show the highest lower 95% CI of the 20
estimates. The green markers show the lowest upper 95% CI of the 20 estimates. 0%
trap-occasion failure is the abundance estimate and 95%CI based on the original data.
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Performance of M, jack-knife estimator

The coefficient of variation of the mean, the relative bias and the 95% CI
coverage were compared between each set of 20 estimates relative to the estimate based
on the original trapping record (un-pooled and pooled) for each survey. The My, jack-
knife estimator performed better at all levels of trap failure with estimates based on the
pooled capture histories than with those based on the un-pooled capture histories (Table
3.4).

The coefficient of variation of the mean for each set of 20 simulations increased
with increased trap failure indicating that, relative to the actual estimate, the simulated
estimates became more variable as trap failure increased. The variation was lower for
the estimates based on the pooled than the un-pooled capture histories.

Relative bias was negligible (<10%) for estimates simulated at 5% trap failure
for the un-pooled capture histories and at 10% trap failure for the pooled capture history
estimates; but both increased with trap failure. In 2004 the relative bias became
increasingly negative (compared to the actual estimate) indicating a tendency to
underestimate abundance with increased trap failure. In 2006 the relative bias became
increasingly positive indicating a tendency to overestimate abundance as p-hat declined
with increased trap failure.

The CI coverage of the estimates based on un-pooled capture histories was good
(85%-100%) for all surveys under all levels of trap failure except for 20% trap failure in
2004, when only 13 (65% ) of the 20 95% Cls included the actual abundance estimate.
The CI coverage of the estimates based on pooled capture histories was consistently
good (90%-100%).

Overall the 2004 dataset was least robust to trap failure. This is expected since
the original 2004 capture history had a relatively low p-hat (Figure 3.2) and a low
frequency of individuals with recaptures (Figure 3.3), resulting in an abundance
estimate with wide confidence intervals (Figure 3.4). Because of the high number of
individuals with single captures only, 20% trap failure resulted in a loss of up to 20% of
the individuals from the 2004 trapping record, causing a negative bias in the abundance
estimate with increased trap failure.

The 2005 dataset was most robust, even though individual loss and capture loss

were almost as high as those in 2004 at 20% trap failure. This robustness is probably
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due to the high frequency of individuals with recaptures, and the relatively high p-hat in
the original 2005 dataset (Figures 3.2 and 3.3).

The 2006 dataset was less robust to trap failure than was 2005 despite having
fewer losses of individuals and captures from the simulated trapping records and a
higher p-hat associated with the original trapping record. This indicates that the effect
of trap failure is dependent on the specific nature of the capture histories as well as the
magnitude of trap failure. Overall a high frequency of recaptures and a high capture
probability in the original trapping record appear to reduce the variation in the

abundance estimate under simulated trap failure.

Table 3.4 Performance of M, jack-knife estimator at different levels of trap failure;
based on 20 simulations at each level of trap failure. Abundance estimates based on
manipulated trapping records of three 62-day surveys a) 2004, b) 2005 and c)
2006.Trap failure was simulated at 5%, 10% and 20% Capture histories were pooled
into nine one-week occasions. The performance of the estimator at each level of trap
failure is compared to the original estimate (0% trap-failure), for both the un-pooled (62
occasions) and pooled (9 occasions) capture histories.

Occasions: 62 occasions 9 occasions

% trap failure: 5 10 20 5 10 20
2004

CV of the estimate 6.2 5.9 10.4 3.0 3.7 4.8
Relative bias -9.6 -17.8  -25.0 -4.8 -6.3 -16.2
Cl coverage 85 95 65 100 100 100
2005

CV of the estimate 1.0 1.6 2.5 1.0 1.6 2.5
Relative bias 1.0 -2.3 -0.5 0.8 -1.8 -0.5
Cl coverage 100 100 100 100 100 100
2006

CV of the estimate 2.1 4.7 8.1 2.5 4.7 3.4
Relative bias 2.1 5.3 124 2.6 6.3 3.2
Cl coverage 100 95 90 90 95 90

The results suggest that, for surveys with similar trapping records as those
investigated here, the M}, jack-knife estimator is robust to failure of 5% of the trap
occasions. The accuracy of the abundance estimate decreases at higher levels of trap
failure: under- or over-estimation of abundance is more likely to occur if > 10% of the
trap occasions fail. The estimator is sensitive to the specific trapping record: the effect
of trap failure > 5% on the abundance estimate depends on whether p-hat increases or
decreases with trap failure, which in turn depends on the ratio of individuals with

recaptures to individuals captured only once. The effect of trap failure is least marked if
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the frequency of recaptures and the p-hat are both high in the original trapping record
and so remain stable despite trap failure. Pooling capture histories increases p-hat and

reduces the effect of trap failure.

The effect of continuous versus discrete trap effort on
abundance estimates

The exclusion of daytime captures from the trapping records reduced the number
of individuals captured by up to 17% (Table 3.5); as such the elimination of daytime
captures reduced the capture probability of some individuals to zero. The exclusion of
daytime captures from the trapping records had no significant effect on the abundance
estimates of 2005 and 2006 surveys (Figure 3.5), even though in 2005 the capture
frequency ratio was reduced by 42% (Table 3.6). The removal of the daytime captures
from these two surveys did not lower the average p-hat below that of 0.03, the threshold
considered necessary for a reliable estimate (Harmsen 2006), (Table 3.6). In contrast,
removal of daytime captures from the 2004 data set decreased the average p-hat to 0.01
such that the resulting abundance estimate was inflated with wide confidence intervals

(Figure 3.5).

Table 3.5 Effect of removal of daytime captures on the number of individuals present in
the trapping record (minimum number alive) in three surveys (2004, 2005 and 2006). %
underestimate is shown.

Trap Effort Minimum alive

2004 % 2005 % 2006 %
Continuous 20 18 17
Night only 19 5.0 15 16.7 16 5.9
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Figure 3.5 Effect of night only versus continuous trapping on abundance estimates
based on three jaguar surveys in the CBWS (2004, 2005 and 2006). Each survey had
62 occasions and 19 stations in identical locations. Suffix -C’ indicates continuous
trapping (day and night captures included). Suffix ‘-N’ indicates night only trapping
(daytime captures are excluded). 95%CI are shown. The upper 95%ClI for 2004-N was
227, exceeding the y-axis shown here.

Table 3.6 Effect of removal of daytime captures on capture probability and capture
frequency ratio in three surveys (2004, 2005 and 2006)

Trap Effort Average p-hat Capture frequency ratio
2004 2005 2006 2004 2005 2006

Continuous 0.03 0.04 0.09 1.9 2.6 2.4
Night only 0.01 0.03 0.06 1.7 1.5 2.2

Discussion

The use of camera-trap technology with capture-recapture closed population
models is becoming a popular method to estimate the abundance of elusive, low density
mammals (Chapter 2). Although camera-trap technology has greatly improved in recent
years there is no guarantee that they will function consistently throughout a survey. This
study assessed the robustness of the My, jack-knife estimator to camera failure and night-

only sampling in the estimation of jaguar abundance.

Camera failure

Continuous sampling over a period of 62 days detected 17-20 individuals in
three separate surveys. Under these conditions the jack-knife estimator for the model My
was fairly robust to camera failure up to ~10% of the trap-occasions. The effect was

least marked in surveys with a high capture probability and a high recapture frequency;
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pooling trap-occasions increased the capture probability and reduced the effect of trap
failure.

When the number of individuals with single captures was relatively high (2004
survey), camera failure caused negatively biased population estimates. It appears that
under conditions in which there are many individuals with single captures, trap failure is
likely to exclude individuals from the trapping record, reducing the minimum number
detected and under-estimating abundance. In contrast, when the recapture rate was high
(2006 survey), increasing camera failure resulted in increasingly positively biased
population estimates. The cause is less clear but maybe associated with a reduction in
capture probability whilst the number of individuals remained relatively stable. Based
on these observations it appears that the effect of trap failure on the reliability of an
abundance estimate depends on specific properties of the trapping record associated
with the distribution of captures and recaptures through the sampled population; which
in turn can either positively or negatively bias the estimate. Further investigation using
simulated capture histories with pre-defined capture probabilities and capture frequency
ratios are warranted and will allow predictions of the likely influence of trap failure
under different conditions. In particular the paradox that trap failure can result in an
overestimate of abundance should be treated with concern. These findings indicate that
published abundance estimates based on camera-trap data should include information
about the level of trap-failure within the survey.

Predicting the likely influence of trap failure on the reliability of an abundance
estimate will require some a priori knowledge of the expected capture histories of the
sampled population under conditions of continuous trap effort. For example, in the
human-influenced landscape studied in this thesis the habitat is heterogeneous, there are
multiple alternative man-made travel routes and camera location may be sub-optimal in
order to reduce risk of interference from people. This is expected to result in low
capture probability and relatively high number of individuals with single captures. As
such it can be expected that camera failure during surveys based in such an area will

likely result in an underestimate rather than an overestimate of the population.

Continuous versus night-only sampling

The extent to which night-only sampling will affect the reliability of an
abundance estimate will depend on the activity patterns of the target species. Jaguar

activity in the area used for this simulation study is primarily nocturnal (Harmsen
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2006); despite this, the exclusion of day-time sampling from the capture histories
lowered the minimum number of individuals detected by up to 17% (from 18 to 15).
When dealing with relatively small populations these differences should not be ignored.
Activity patterns of jaguars are highly variable within and between study sites;
ranging from primarily nocturnal to equally active day and night to primarily diurnal
(Rabinowitz and Nottingham 1986, Emmons 1987, Crawshaw and Quigley 1991,
Nuiez et al. 2002, Scognamillo et al. 2003, Maffei et al. 2004, Harmsen 2006, Weckel
et al. 2006a). Many studies of carnivores report shifts to nocturnal activity areas with
human disturbance (e.g. Kitchen et al. 2000, Beckmann and Berger 2003a, Riley e al.
2003, Theuerkauf et al. 2003, Riley 2006, George and Crooks 2006). It is expected that
jaguars inhabiting areas with human activity will be more nocturnal than those utilising
the protected area where disturbance from humans is minimal. Indeed reports of
daytime sightings in the lands neighbouring the protected area were rare, as were
daytime photographic captures on cameras which were operating both day and night (R.
Foster pers. obs.). Therefore conducting night-only surveys in this area is unlikely to
significantly reduce the detection of individuals. However it will reduce the utility of
camera-trapping as a method of simultaneously monitoring multiple species, for
example sympatric prey species which may have diurnal or crepuscular activity

patterns.
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Abstract

Central America is facing rapid human population growth and associated forest
fragmentation; the long-term persistence of jaguars (Panthera onca) will increasingly
depend on their ability to utilise the human-modified matrix between protected forests.
Little is known of jaguar densities outside expansive forest blocks in this region. This
chapter uses camera-trap data to investigate variation in jaguar density across the
landscape from protected forest to the human-influenced fragmented lands in Belize. As
density estimation from camera-trap data is not yet perfected, this chapter
simultaneously addresses methodological issues involving 1) the estimation of sex-
specific home range diameters from camera data and their inclusion in density estimates
and 2) the minimum survey area required for reliable estimates.

During the 3-year study, six large-scale camera surveys detected 64-74 jaguar
individuals over a total survey area of ~ 850 km”. Males ranged further than females.
Therefore, for a given camera array, the effective trapping area (ETA) was greater for
males than for females. Single-sex density estimates based on single-sex ETAs were
compared to total population density estimates based on average ETAs, and indicated
that male density estimates were equivalent to more than half of the total population
density estimates. This suggested that either the population was truly male-biased, or
that the sampling method was biased. Closer inspection of the data suggested that the
female component of the population could have been underestimated because 1) some
cameras within the survey arrays were spaced further apart than the average female
range and/or 2) females may avoid cameras locations placed on forest trails which are
dominated by males.

Sub-sampling data from large-scale surveys indicated a threshold survey area of
~170 km? below which jaguar density estimates were inflated and unreliable. For
surveys exceeding this threshold, jaguar density varied across the landscape from the
protected forest to the human-influenced lands such that less than one-third contiguous
forest cover precipitated a reduction in density. In the fragmented landscape, below ~
20% contiguous forest cover, the average jaguar did not utilise the available land.
Density was lower but larger ranges were not detected. This suggested that the declining
density with distance from contiguous forest and proximity to human habitation may

result principally from direct conflicts with people.
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Introduction

The tropical moist lowland forests of the Selva Maya, Central America, have
been identified as a region where the long-term persistence of the jaguar (Panthera
onca) is considered high (Sanderson et al. 2002b); yet there are few detailed data on
jaguar density outside of protected areas in this region. The aim of this Chapter is to
compare the demographics, ranging behaviour and density of jaguars inhabiting a
protected lowland rainforest with those utilising the neighbouring human-influenced
landscape, in Belize, Central America. The study uses large-scale camera-trap surveys
combined with capture-recapture closed population models. This method is becoming
increasingly popular as a technique to estimate abundance of elusive, wide-ranging, low
density species; however density estimation from camera-trap data is controversial,
particularly due to difficulties associated with quantifying the effective trapping area of
the sampling grid (Chapter 2). Thus an additional aim of this Chapter is to assess the
influence of variation in ranging behaviour on jaguar density estimates.

The jaguar population ranges from southern Mexico to northern Argentina
(Sanderson et al. 2002b); unlike populations of its larger African and Asian congeners,
the tiger and lion (Panthera tigris and P. leo), it does not appear to be genetically
isolated in any part of its current range (Eizirik er al. 2001, Cat Specialist Group 2002,
Rabinowitz 2006). This is encouraging for the long-term survival of the jaguar; however
the risk of population fragmentation and isolation due to continuous human
development is of concern. The human population density in Latin America has tripled
over the past 50 years (World Resources Institute, WRI, 2007). Currently estimated at
72 people /km? in Central America and 22 people /km? in South America, it is projected
to reach 97 people /km” in Central America by 2050, when it will be second only to
Asia as the region with the highest population density (WRI 2007). The growing human
population is associated with an estimated loss of ~ 4,000 km? of forest per year in
Central America (World Bank 2007). The limits of jaguars’ adaptability to
anthropogenic pressures are unknown, however it is clear that their ability to utilise
human-dominated landscapes will become increasingly important for their long-term
survival. The informal protection of large areas between reserves will be critical
(Hoogesteijn 2000, Miller and Rabinowitz 2002), requiring conservation initiatives

which transcend political boundaries. This is an ambitious goal, but the will is present:
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the Mesoamerican Biological Corridor (MBC) program was created in 1998 to support a
system of 600 protected areas and connecting corridors spanning Mexico and Central
America. In 2006 the MBC consignees, all seven nations of Central America and
Mexico, agreed to establish a network of protected areas and wildlife corridors, within
the MBC, specifically to conserve jaguars.

Within Central America, regions of lowland tropical rainforest have the highest
probability of jaguar survival; in particular the Selva Maya of Belize, Guatemala and
Mexico (Sanderson et al. 2002b). Belize still retains 72% forest cover and ~ 28% of the
land is protected (WRI 2007). Two principal forest blocks have been identified in
Belize as important jaguar strongholds: the Maya Mountain block to the south (~5,200
kmz), and the Rio Bravo block to the north (~1,900 kmz) (Meerman 2004, see Figure
1.4 Chapter 1). It has been suggested that these two populations cannot persist in
isolation and that long-term survival of jaguars in this region will require continued
connection between these two blocks, and with populations in the Guatemalan Petén
and southern Mexico (Meerman 2004). Despite the recognition that long-term jaguar
survival will increasingly depend on their ability to utilise the human matrix between
protected areas, few studies in the region have addressed aspects of jaguar ecology

beyond the Maya Mountain and Rio Bravo forest blocks.

Density, sex ratio & ranging behaviour outside a protected area

Density estimates of jaguars in Belize have mainly been confined to protected
areas: long-term monitoring studies have been running in Gallon Jug Private Reserve
within the Rio Bravo forest block (Miller and Miller 2005) and in the Chiquibul Forest
Reserve/ National Park and the Cockscomb Basin Wildlife Sanctuary, both in Maya
Mountain forest block (Silver et al. 2004, Harmsen 2006). Although it is important to
monitor jaguars in these potential source populations it is also necessary to assess jaguar
density in the human matrix beyond the protected areas. Surveys of jaguar in marginal
habitat will allow better predictions of the jaguar population at the national level. They
will also help to reveal the extent to which these areas may function as sinks, and
whether they can support stable populations of jaguars in co-existence with people or
whether jaguars utilising these disturbed areas are mainly transients in search of better
habitat. To date only two studies of jaguar density have been made outside the Rio
Bravo and Maya Mountain forests blocks, and both in areas of limited or negligible

human development (Miller 2006, M. Kelly unpubl. data).
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The main objective of this chapter is to estimate and compare the density of
jaguars inhabiting the protected tropical lowland rainforest of the Cockscomb Basin
Wildlife Sanctuary (CBWS) with those utilising the neighbouring human-influenced
landscape, a matrix of agriculture, communities and unprotected forest and savannahs
where hunting of wild prey species, rearing of livestock and the lethal control of jaguars
occur. Density is estimated using camera-trap data collected between 2004 and 2006.

Home ranges of solitary carnivores are expected to increase and overlap if
resources are scarce (Sandell 1989); for example Chundawat et al. (2007) found that
female tiger home range was larger in areas of poor quality habitat. However,
predictions of ranging behaviour in a human-influenced landscape may be complicated
by the interaction between the low availability of wild prey and clustered patches
containing a high availability of domestic prey. We may expect a situation in which
some individuals range widely, predominantly utilising wild prey; whilst others
maintain smaller home ranges around communities and livestock holdings, preying on
domestic animals. For example, telemetry of pumas (Puma concolor) on a Venezuelan
ranch found that some pumas focused their activity around fenced maternity pastures,
utilising patches which never became marginal (Polisar et al. 2003).

Camera-trap studies of jaguars in the CBWS previously revealed a male-biased
sex ratio (Harmsen 2006). It is not clear whether this represents the true situation or is
an artefact of the sampling regime and sexual differences in ranging behaviour, but
similar male-skewed ratios have been reported from jaguar camera-trap studies from
elsewhere in Belize and in Bolivia (Silver et al. 2004). The second objective of this
chapter is to compare the jaguar sex ratio and range sizes derived from camera-trap data
between the protected and unprotected area and discuss potential reasons for any
disparity. Implications for population dynamics will be discussed in light of differences

in sex ratio, ranging behviour and density inside and outside the protected area.

Methodological issues

Studies aiming to estimate the density of elusive wide-ranging species from
abundance estimates based on camera-trap data usually follow the method of Karanth
(1995). A proxy for the average home range diameter of the sampled population is
derived from the trap data as the mean of the maximum distance moved by each
individual captured at more than one location (MMDM). A buffer of width 2MMDM is
then added to the sampling grid to calculate the effective trapping area (ETA), and
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density is calculated from the abundance and ETA. The extent to which MMDM is an
appropriate proxy for home range diameter will depend on the survey area (Maffei and
Noss 2008) and the spatial configuration of the trap locations (see Chapter 2 for details).
Comparison with telemetry data can help to verify whether MMDM is an appropriate
proxy at a given site. The third objective of this chapter is to assess the suitability of
MMDM as a proxy for home range within this study by comparing estimates of
MMDM derived from multiple surveys with each other and with estimates of home
range based on previous telemetry data from the area (Rabinowitz and Nottingham
1986).

An average estimate of home range size may not be appropriate to estimate the
ETA if variation in ranging behaviour exists between sub-groups of the sampled
population. For example, differences between the ranges of male and female solitary
carnivores are common, with males occupying larger areas than females; for example
tigers (Sunquist 1981) and leopards (Panthera pardus) (Mizutani and Jewell 1998).
Because of their smaller home range, female jaguars may not be captured at more than
one location (B. Harmsen pers. comm., R. Foster pers. obs.) and so fewer females than
males will contribute to the estimate of MMDM. As such, male-biased surveys
combined with larger male home ranges will inflate the estimate of MMDM and
potentially underestimate the female component of density. The effect of sexual
differences in home range size on density estimation from camera-trap data has not yet
been addressed in the literature. However it has been suggested that for species with
distinct sexual differences in ranging behaviour, it may be appropriate to estimate
density separately for males and females (Harmsen 2006). Thus the fourth objective of
this chapter is compare density estimates based on single-sex abundances and home

ranges with those based on the standard method of averaging over both sexes.

Methods

Camera-trap data were collected over three years (2004-2006) from a range of
habitats and land-use systems: the protected secondary rainforest of the CBWS, forest
buffer (unprotected forest contiguous with CBWS), unprotected fragmented forest,
shrubland, pine savannah, cattle pastures, citrus and banana plantations, shrimp farms,
and villages. In 2005 and 2006, three independent large-scale surveys were conducted

with station locations extending out from the protected forest into the neighbouring
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lands towards the coast (Sit05, Zab05 and Arn06, Figure 4.1). In 2004, 2005 and 2006,
a large-scale survey was repeated (Mar-May) in the protected forest. Data from the 2004
and 2005 protected forest surveys (CBWS04 and CBWS05) are from Harmsen (2006).
The 2006 protected forest survey (CBWS06) was run concurrent with camera stations
outside the reserve, using some locations from the both the Sit05 and Zab05 surveys,
which were contiguous with the reserve stations but not with each other (Ext06). Survey
information is shown in Table 4.1. Most survey cameras were also functional for
variable periods outside of the survey dates between 2004 and 2006; as were additional
camera stations throughout the study area (both inside and outside the protected forest).
Camera station locations are shown in Figures 4.1a-f.

The spacing of survey stations followed the methodology of Silver et al. (2004)
and Harmsen (2006) which was previously used to monitor jaguars in the reserve. Based
on telemetry of jaguars in the Cockscomb Basin (Rabinowitz and Nottingham 1986),
the conservative assumption was made that a jaguar would not have a home range less
than 10 km”. Cameras were located close enough to each other such that, theoretically, a
10 km? circle centred on the camera would overlap with the 10 km? circles of its nearest
neighbours. This equates to a maximum average distance between neighbouring core
stations of ~ 2746 m. A circular home range of 10 km” will fit between any pair of
stations > 3568 m apart. Within this survey design, a jaguar with a home range > 10 km”
could not occupy an area that does not encompass at least one camera. As such the
capture probability of every jaguar within the survey area is more than zero. This
assumption must be upheld in order to accurately estimate the abundance using closed
population capture-recapture data (Chapter 2).

For camera stations outside the reserve the approximate location for a camera
was identified on OS maps using the above criteria, then permission was sought from
the property owners to work on their land and, if granted, the area was surveyed for
signs of cats and prey species. This information was combined with any available local
knowledge on wildlife in the area as well as likelihood of theft, and used to choose a
suitable camera site. At sites outside the reserve where high levels of non-target traffic
were unavoidable (e.g. vehicles or cows) the cameras were set to operate only at night.
All cameras were set with an enforced delay of three minutes between consecutive

exposures.
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Table 4.1 Survey information

Survey Date Length Stations Functional Survey area
(days) trap nights (km?)*
CBWS04 01Mar’04 to 01May’04 62 19 1,178 141
CBWS05 22Mar’05 to 22May’05 62 19 1,178 141
CBWS06 22Mar’06 to 22May’06 62 19 1,178 141
Ext06F 22Mar’06 to 22May’06 62 46 2,749 297
Sit05 31Aug’05 to 310ct’'05 62 27 1,320 165
Zab05 13Dec’05 to 12Feb’06 62 22 958 130
Arn06 18Aug’06 to 26Sep’06 40 22 810 158
All04-06 01Jan’'04 to 31Dec’06 1096 1801 22,100 524

* Survey area calculated as a merged 10 km? circular buffer around each station

1The Ext06 survey combines the CBWSO06 data with additional station locations outside
the reserve (Sit06 and Zab06)

1 Stations < 100 m apart are combined as single locations; four stations from inside
CBWS are excluded because GPS information was not available

Caribbean
Sea

Figure 4.1a All camera locations 2004 to 2006 (All04-06)
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Figure 4.1b CBWS

Figure 4.1c Sit05

Figure 4.1d Arn06
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Figure 4.1e Zab05

Figure 4.1f Ext06

B cews ®  camera station Southern Highway

river — roads & tracks

cattle pasture

Figure 4.1a-f Camera locations during each survey: a) all camera locations 2004 to
2006 (All04-06; b) the protected area (CBWS); c-f) spanning the protected area
boundary (Sit05, Arn06, Zab05, Ext06). Conservative effective trapping area of each
survey is shown in grey as a merged buffer of 10 km? around each camera location
(equivalent to a home range diameter of 3568 m)

Sex ratio

Adult jaguars with a reasonable trapping record can be sexed. Adult male
jaguars are relatively easy to identify because they have prominent testicles (Figure 4.2).
Females can be sexed if there are enough photographs with a clear view beneath the tail.

Because it is easier to assign an adult jaguar as a male than as a female or immature
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male, individuals of unknown sex will be unevenly distributed between males and
females. Individuals outside the reserve tended to have low capture histories and often
not enough photographs with a clear view beneath the tail were available to confidently

sex all individuals.

Figure 4.2 Male jaguar, M03-05; testicles can be seen clearly below the tail

Jaguar sex ratios were calculated for the subpopulations captured a) exclusively
inside the forest block (the protected forest + buffer), b) exclusively outside the forest
block (forest fragments or non-forest), and c) both inside and outside the forest block.
Any individual captured only at the boundary was assumed to utilise both habitats.

Individuals were assigned to a subpopulation based on their entire capture
histories between Jan-04 and Dec-06, the period during which cameras were present
both inside and outside reserve. Estimation of the sex ratio was complicated by the
presence of individuals of unknown sex and of single-side individuals within the
dataset. Five sex categories were defined to account for the presence of unknown sex
individuals: male (M), female (F), unknown (J), male plus unknown (MJ) and female
plus unknown (FJ). Single-side individuals resulted from single cameras failing at
stations such that only the right or left flank of an individual was photographed.
Consequently if there are n single left flanks and m single right flanks within a dataset
the maximum number of individuals is n + m and the minimum number of individuals is
n or m, whichever is the greatest. Maxima and minima individuals were calculated for
sex categories which had multiple single-side individuals. This took into account the
possibility that left sides captured exclusively within the forest block could match with
right sides captured exclusively outside the forest block (and vice versa) such that the
maxima individuals captured exclusively inside or outside the forest block were
coincidental with the minima individuals utilising both habitats, and vice versa (Table

4.2). The procedure was repeated for the subpopulations captured a) exclusively inside
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the protected forest, b) exclusively outside protected forest, and c) both inside and

outside the protected forest (Table 4.2).

Table 4.2 Number and sex of jaguars captured exclusively inside the forest block (or
protected forest), exclusively outside the forest block (or protected forest) and both
inside and outside the forest block (or protected forest), between Jan-04 and Dec-06.
Any individual captured on the boundary was assumed to utilise both habitats. Minima
and maxima are given if single left and right flanks were photographed. M is male, F is
female, J is unknown sex, MJ is male plus unknown sex, FJ is female plus unknown
sex. 88 camera stations were inside the reserve, 93 were outside the reserve and three
stations were on the reserve boundary.

Sex Forest Block* Protected Forest'
in both out total in both out total
M max 23 6 8 37 15 12 10 37
min 22 7 7 36 14 13 9 36
F - 7 1 6 14 3 4 7 14
J max 12 1 10 23 7 2 14 23
min 3 10 1 14 1 8 5 14
MJ max 35 6 18 59 22 14 24 60
min 25 17 8 50 15 21 17 53
FJ max 19 2 16 37 10 6 21 37
min 10 11 7 28 4 12 12 28
Total max 42 8 24 74 25 18 31 74
min 32 18 14 64 18 25 21 64

* ‘Forest Block’ refers to the protected forest plus unprotected forest buffer
T ‘Protected Forest’ refers to the reserve only

All possible combinations of sex ratio (eight in total, Table 4.3) were calculated
for each subpopulation giving three ranges of ratios for each subpopulation: a)
unknown sex excluded; b) unknown sex included as males; ¢) unknown sex included as
females. The eight sex ratios for the subpopulation captured exclusively inside the forest
block were compared with the eight sex ratios for the subpopulation captured
exclusively outside the forest block using a Students paired t-test. The test was repeated
for the subpopulations captured exclusively inside and outside the protected forest.

In addition, all combinations of sex ratio (as in Table 4.3) were calculated for all
individuals captured in the forest block (regardless of whether they were also captured
in the area outside the forest block) and for all individuals captured outside the forest
block (regardless of whether they were also captured in the forest block) giving three
ranges of sex ratio for either group. The procedure was repeated for inside/ outside the

protected forest.
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Table 4.3 Eight possible sex ratios: individuals of unknown sex are a) excluded (two
ratios), b) assumed to be males (two ratios) and c) assumed to be females (four ratios).

Ratios
a) Mmax . F Mmm . F

C) I\/Imin : I:\Jmin I\/Imax : I:\Jmin I\/Imin : I:\Jmax Mmax : I:\Jmax

MMDM as a proxy for home range diameter

The maximum distance moved (MDM) by each jaguar was calculated as the
greatest distance between capture locations within each of the surveys. Individuals who
were not recaptured, individuals who were only recaptured at the same location, and
individuals of unknown sex were excluded. All statistical analyses were conducted

using Minitab Version 14.

Variation in MDM with sex and habitat

It was expected that jaguar MDM varied with sex, with males having a higher
MDM than females as shown by Harmsen (2006) for data collected in the protected
forest between 2002 and 2005. It was unknown whether jaguar MDM also varied with
the habitat utilised by different individuals or whether there was an interaction between
sex and habitat. Variation in MDM with sex and with habitat was investigated using the
entire dataset (All 04-06) because data from the single surveys did not provide sufficient
sample sizes to test for interaction effects. Total trap effort varied from one trap-night to
47 trap-nights per day throughout 2004 to 2006 therefore the mean and maximum
distance between functional stations varied from day to day. It was hypothesised that the
probability of a jaguar being exposed to camera traps would depend on how long it had
existed in the study area. Jaguars with a long trapping history (‘age’) would have
potentially been exposed to a large number of cameras over a large area. Jaguars with a
short trapping history may have been exposed to many or few camera stations
depending on the point at which they appeared in the study period. As such it was
hypothesised that MDM could vary with ‘age’ (time period between first and last
capture) and so ‘age’ was included as a covariate in the analysis.

Each jaguar (with MDM > 0 and known sex) was classified according to its
capture locations: ‘Forest’ refers to individuals who were only captured in the protected

forest, or the unprotected forest buffer, or both (n = 25). ‘Non-forest’ refers to
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individuals who were only captured in locations that were non-forest or forest patches
that were not contiguous with forest block (n = 11). Three locations, sited at the
boundary of pasture and the forest block, were included in this category. Individuals
who utilised both forest and non-forest were excluded from the analysis because the
number of females within this category was only n = 1. The following general linear
model (GLM) was fitted to the square-root transformed data:
MDM = sex | habitat | age + € (GLM 4.1)
F-ratios were calculated using Type-II adjusted sums of squares (Doncaster and Davey
2007).
The GLM 4.1 revealed no significant variation in MDM with habitat therefore it was
deemed appropriate to exclude habitat from the analysis and include individuals who
utilised both forest and non-forest (n = 6) to improve the estimates of mean MDM by
each sex. The ranges of ages for males and females were not balanced therefore ‘age’
was split into five classes (1-200 days, 201-400 days ... up to 800-1001 days). Two
males in the age class 1001-1200 days were excluded because there were no females in
this age class. The mean MDM was calculated for each sex in each age class (n =5) and
the following GLM was fitted to the data, with age class as a covariate:
MDM = sex | age class + ¢ (GLM 4.2)
F-ratios were calculated using Type-II adjusted sums of squares. The mean MDM for
each sex adjusted for age class (least square means of MDM for each sex) were
obtained from the model output. The associated SEs were calculated from the residual
variance (error mean square) obtained by regressing the MDM of each sex against age
class.

It was hypothesised that a dichotomy in MDM may exist among the individuals
who utilised lands outside the protected forest such that individuals with a small MDM
are associated with a high capture frequency on and around cattle farms (the high
density of domestic animals negating the need to travel far in search of wild prey);
whilst a low capture frequency on and around pastures is associated with a bigger MDM
(reflecting the lower availability of prey away from farms and hence the need to range
further). However, the sample sizes (female n = 5, male n = 12) were not considered
large enough to fit a model of farm capture frequency, sex and age to the MDM data so
MDM was plotted against capture frequency on farms for each sex separately for a

simple visual inspection of the data, ignoring the any possible ‘age’ effect.
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Comparison of MDM from camera trap survey data and telemetry

The mean MDM and 95%CI for each survey dataset (2004 to 2006) were
compared with the maximum and minimum home range diameter obtained for male
jaguars (via telemetry) and females (via tracking spoor) in the Cockscomb Basin
(Rabinowitz and Nottingham 1986). A mean MDM of a similar magnitude to the home
range diameters obtained via telemetry would suggest that the MDMs obtained via the
camera surveys in the study area are a good proxy for home range diameter, and so can
be used to estimate the effective trapping area of the surveys grids for density

estimation.

Closed population abundance estimates

Closed population models were used to estimate jaguar abundance inside,
outside and across the reserve boundary using data from six independent surveys.
Where datasets were large enough abundance was also estimated for males and females
separately. Before abundances were estimated, datasets were condensed to minimise the

variation in trap effort between stations caused by camera failure.

Dealing with camera failure

Closed population estimators usually assume constant trap effort during the
sampling period. Because all surveys with cameras located outside of the protected area
suffered camera failure, the trap effort within surveys varied between stations. If trap
effort is variable through the survey period, the probability of capture of some
individuals may fall to zero if the only station that they ever pass within the study area
is a failed camera. If trap effort is not constant it can be included as a covariate within
maximum likelihood models in order to improve the estimate; however the low capture
rates associated with jaguars give datasets that are often too sparse for such an analysis
(Chapter 3). The only alternative is to minimise camera failure, by excluding stations
with high failure rates, and to use an estimator that is reasonably robust. The jack-knife
estimator for the My, model seems to be fairly robust to failure up to ~ 10% of the trap-
nights, based on data collected in the protected area (Chapter 3). For samples with many
individuals with single captures, as may be expected outside the reserve because of the
heterogeneous nature of the habitat and multiple travel routes available, we may
tentatively expect trap failure to underestimate rather than overestimate the population

abundance, however this is not conclusive (see Chapter 3).
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In order to minimise the influence of trap-night failure on abundance estimates,
data were only analysed from stations which did not fail for more than 10 nights during
the survey. This lowered the trap-night failure to < 5% for all surveys (Table 4.4).
Furthermore, capture histories were collapsed from 62 (or 40) occasions to nine (or 10)
occasions, each occasion unit being 6 to 7 days (or 4 days) instead of one day. Only
night captures were used in the analyses to allow an equal representation of all stations
regardless of whether they sampled continuously or at night only. ‘Night” was defined
as those captures occurring between sunset and sunrise. Daily sunrise and sunset times
(2004-2006) were acquired from the US Naval Observatory (2007).

It should be noted that removal of failed cameras from the edge of a survey area
does not compromise the assumption that the stations are close enough together such
that a jaguar with a home range > 10 km? could not live between the two stations with
zero probability of capture; it merely reduces the sampling area. However the removal
of failed stations from within the centre of the survey area will break the assumption of
capture probability greater than zero if the resultant distance between neighbouring

cameras exceeds the MMDM by jaguars (Results section).

Table 4.4 Survey information after the removal of stations with >10 failed trap nights.

Survey Nights Occasions Stations % trap-night Survey area

failure (km?)*
Sit05 62 9 17 4.4 10 + 1207
Zab05 62 9 13 1.9 79
Arn06 40 10 21 3.5 50 + 1051
Ext06 62 9 44 2.2 290

* Survey area calculated as a merged 10 km? circular buffer around each station.
T Survey area is discontinuous because of removal of failed camera stations.

Variation in abundance with habitat and sex

Abundance was estimated for each survey using the My, jack-knife estimator
with the program CAPTURE (Rexstad and Burnham 1991). The data from surveys
which spanned the boundary of the protected area were partitioned according to habitat
blocks for separate abundance estimates. Camera failure did not exceed 5% when the
surveys were partitioned by habitat. The data of the large-scale survey in 2006 (Ext06)

were sub-sampled according to the following schedules:
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4.1 All stations inside and outside the reserve (protected and unprotected forest and
unprotected non-forest)

4.2 Stations in the reserve or its buffer (protected and unprotected forest)

4.3 Stations in the reserve and on its boundary (protected forest)

4.4 Stations used historically for jaguar abundance estimates in CBWS (Silver et al.
2004, Harmsen 2006) includes all stations in the reserve and only two on the
boundary (protected forest)

4.5 Stations in the reserve only (excludes those on the boundary) (protected forest)

The 2005 CBWS survey data (Harmsen 2006) were partitioned and re-analysed
according to schedule 4.4 and 4.5. The 2004 protected area survey was not included
here since no large-scale surveys were conducted outside the reserve during this year for
direct comparison.
The data of each of the three surveys based primarily outside the reserve (Sit05,
Zab05 and Arn06) and of the two components of the Ext06 survey which extended
outside of the reserve (Sit06 and Zab06) were sub-sampled as appropriate according the
following regime:
4.6 All stations inside and outside the reserve (protected and unprotected forest and
unprotected non-forest)
4.7 Stations on and outside the reserve boundary (protected and unprotected forest and
unprotected non-forest)
4.8 Stations outside the reserve boundary (unprotected forest and unprotected non-
forest)
4.9 Stations outside the buffer boundary (unprotected forest patches not contiguous with

reserve and unprotected non-forest)

For each survey and sub-sampled survey, the % cover of the following habitats was
calculated: contiguous forest block (protected forest plus its unprotected forest buffer),
fragmented forest, savannah, plantation (citrus and banana) and cattle pasture. The
methods for deriving habitat cover are described in Chapter 5. The average distance of
survey cameras from the protected forest and from the contiguous forest block were also
calculated.

Survey Ext06 (schedule 4.1) was partitioned into males (n = 20 individuals) and

females (n = 6) for separate sex abundance estimates. The total sample size (n = 28)
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included two of unknown sex. These were excluded and abundance estimated for the
sample ‘males + females’ (n = 26) for direct comparison with the single sex estimates.
The female estimate should be treated with caution since the sample size was low,
although total female captures (pooled over nine occasions) was 14, which exceeded the
minimum number of captures assumed for the model. Female samples sizes were too
low (n = 2 to 4) in the other surveys to estimate female-only abundance, however male-
only and ‘male + female’ abundances (excluding unknown sex) were estimated for the
2004, 2005 and 2006 CBWS surveys (schedule 4.4). Abundance estimates were used to
estimate density (see next section).

Two study animals, one male and one female, which appeared in the trapping
record during the large-scale survey in 2006 (Ext06), were killed outside the reserve
before the survey ended. Therefore the population was not demographically closed and
for part of the survey period the probability of capture of these two individuals fell to
zero. It was recommended that the dead-animal data be removed before analysis, and
then the number of dead individuals added to the final population estimate and 95% CI
the SE is unaffected (G. White, developer of program MARK, pers. comm., J. Nichols,
expert of demographic estimation methods, pers. comm.). Such a method may be
appropriate when dealing with large samples and high capture rates. However capture
rates of jaguars tend to be low (Chapter 2) and this dataset was no exception. Removal
of these data from the trapping record would lower overall capture probability and so
lower the reliability of the estimate. The deaths occurred towards the end of the survey
(during the 7™ and 8™occasion of the nine occasion trapping record) therefore the
capture histories of the two individuals were fairly complete and it was deemed
appropriate to retain the individuals in the trapping record and estimate their final
occasion(s) based on their previous capture history. Both cats had the same capture
probability (0.286) whilst alive. This was used to predict the probability that they would
have been captured during the 8™ and 9™ trapping occasions had they lived. A random
number (r) was generated between 0.001 and 1.000 for each capture occasion that was
missing data for these two cats. If » <0.286, the individual was considered captured,

and if r > 0.286 the individual was assumed not captured.

Density estimates

Jaguar density was estimated from each of the abundance estimates using

estimates of the effective trapping area (ETA) of each survey. Estimates of the ETA
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were based on the most appropriate proxy of home range diameter (MMDM) derived
from the trapping data (based on analysis in the previous section). Where single sex
abundances were estimated, densities were estimated using single sex estimates of ETA
based on sex-specific MMDM. The method of density estimation based on MMDM and
ETA follows Nichols and Karanth (2002) and is described in fully Chapter 2.

Variation in the reliability of the density estimates with ETA was investigated;
for survey areas considered large enough to give a reliable density estimate, variation in

jaguar density with % forest cover was investigated.

Variation in density estimates with ETA

A plot of population density estimate against ETA suggested an inverse
relationship existed between density estimate and the survey area. The data were
modelled using a linear regression to determine whether there was a threshold ETA
below which the sub-sampled survey areas were too small for reliable density
estimation. Sub-sampled survey areas falling below the threshold were excluded from

further analyses.

Variation in jaguar density with forest cover

For surveys (and sub-sampled surveys) above the minimum threshold survey
area, density estimates were plotted against the mean distance of the survey camera
stations from a) the protected forest, and b) the contiguous forest block. Linear
regression was used to model the relationship between density and the % cover of

contiguous forest.

Comparison of single sex and combined sex density estimates

It was hypothesised that density estimates based on abundance estimates and
ETAs derived from the total sample (all individuals) may underestimate the female
density component, and so underestimate the total density. Male and female (single-sex)
density estimates were compared with each other and with ‘male + female’ (combined
sex) density estimates to determine whether single-sex density estimates are more

appropriate than total density estimates.
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Results

During the study 64 to 74 jaguar individuals were photographed. A range is
given because, due to camera failure, single-side individuals were present in the dataset.
These are individuals for whom only one flank was photographed. In total there were 13
single right flanks and 10 single left flanks (representing 10 to 23 jaguars), and 51
double-sided individuals. In addition, cubs < 6 months old (based on size) were
photographed on three occasions, all outside the reserve; they are excluded from
subsequent analyses. Eighteen double-sided individuals were captured exclusively
inside the reserve, 15 double-sided individuals were photographed exclusively outside
the reserve, and 18 double-sided individuals utilised land inside and outside of the
reserve. Of the latter, 13 individuals were captured more than three times on alternate
sides of the boundary of the protected forest (mean + SD = 25 + 38 alternate captures,
range = 4 to 141, n = 13) equivalent to a rate of 0.1 to 6.6 boundary crosses per 28 days,

suggesting that their home ranges spanned the reserve edge.

Sex ratio

During the study (Jan04 to Dec06) 36 to 37 males, 14 females, and 14 to 23
jaguars of unknown sex were detected by the camera traps. A further two females and
two males were trapped and removed by farmers without photographic capture. The
potential range of the sex ratio was consistently more skewed towards males within the
subpopulation captured exclusively inside the forest block than within the subpopulation
captured exclusively outside the forest block, regardless of whether or not individuals of
unknown sex were included as females or as males or excluded (Figure 4.3). If
individuals of unknown sex were all assumed to be female, the sex ratio became female-
biased outside the forest block. The same patterns were observed when comparing sex

ratio of subpopulations found exclusively inside and outside the protected forest.
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Figure 4.3 Maxima and minima jaguar sex ratios of subpopulations captured
exclusively inside the forest block (in) and exclusively outside the forest block (out),
between Jan-04 and Dec-06. Maxima and minima are shown by upper and lower bars.
Three sets of ratios are calculated: individuals of unknown sex are excluded,
individuals of unknown sex are assumed to be males (M), and individuals of unknown
sex are assumed to be females (F). Grey dashed line shows 1:1 ratio.

The observed sex ratio of the subpopulation captured exclusively inside the
forest block was significantly more male biased than was the subpopulation captured
exclusively outside the forest block (mean difference = 1.494, 95%CI for mean
difference = 0.979 to 2.010, n = 8, = 6.85, p < 0.001, Appendix A: Table A4.1)
regardless of whether or not individuals of unknown sex are included as females or as
males or excluded. A similar result was observed for the subpopulation captured
exclusively inside the protected forest versus exclusively on the unprotected lands
(mean difference = 2.636, 95%CI for mean difference = 1.715 to 3.558, n =8, t = 6.76,
p <0.001, Appendix A: Table A4.2).

Sex ratios calculated for the dataset of all individuals captured in the forest block
(regardless of whether they were also detected outside the forest block) and for all
individuals captured outside the forest block (regardless of whether they were also
captured in the forest block) show a similar pattern of a more male-biased ratio inside
the forest block than outside. The same pattern is also observed when comparing ratios
between inside and outside the protected forest. Of note, if all individuals of unknown
sex are assumed to be females, the sex ratio (male to female) outside the protected forest

approximates 1:1 whilst it is ~ 2:1 inside the protected forest. These results support the
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hypothesis that the camera-trap detection rate of females is higher outside the protected
area and the forest block. This may reflect the true distribution of sexes or a sampling

bias between the protected /forested and unprotected /non-forested lands.

MMDM as a proxy for home range diameter

The effects of sex and habitat on estimates of MDM obtained from camera-trap
data of jaguars collected over a 3-year period were investigated. The mean MDMs from
several different surveys were compared with home range estimates derived from

telemetry conducted in the same area 20 years ago.

Variation in MDM with sex and habitat

The MDM by jaguars varied significantly with age (period of time between first
and last capture) and sex; it did not differ between jaguars that only moved through the
forest block versus those that only moved through the non-forest or forest fragments

(Table 4.5).

Table 4.5 Results of GLM 4.1 MDM = sex | habitat | age + €. Interactions were non-
significant (p > 0.1). F-ratios were calculated using Type-Il adjusted sums of squares.
Total DF = 35.

DF MS F-ratio  p-value

Age 1 5339 5.62 <0.05
Sex 1 4310 4.54 <0.05
Habitat 1 1255 1.32 >0.1
Error 28 950

The MDM by jaguars increased with the period of time between first and last
capture (Figure 4.4). This was expected since the number of camera locations, hence

maximum survey area, increased throughout the study period.
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Figure 4.4 Variation in MDM of jaguars with ‘age’ (days known to be alive), sex and
habitat; based on GLM 4.1. F-I = females inside forest block; F-O = females outside
forest block; M-I = males inside forest block; M-O = males outside forest block; where
‘forest block’ is reserve + buffer. Solid line = males, dashed line = females.

The MDM by males was significantly higher than the MDM by females (male
mean + SE = 9491 + 932 m, female = 5742 + 1013 m, pooled n = 30 and 10
respectively; Table 4.6).

Table 4.6 Results of GLM 4.2 MDM = sex | age class + €. Interactions were non-
significant (p > 0.1). F-ratios were calculated using Type-Il adjusted sums of squares.
Total DF = 9.

DF MS F-ratio  p-value
Sex 1 35130005 7.42 <0.05
Ageclass 1 27429504 5.79 0.05
Error 6 4734123

For individuals utilising habitat outside the protected area there are not sufficient
data to determine whether those who tended to be captured around cattle farms ranged
significantly less far than those who did not frequent cattle farms; however Figure 4.5
suggests that the individuals with the highest capture frequencies around cattle farms

also tended to have the lowest MDM, regardless of sex.
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Figure 4.5 Variation in MDM
by jaguars with individual
capture frequency on cattle
farms, 2004 to 2006.
Females = white triangles;
males = black triangles.
Note that ‘age’ (days known
to be alive) is not taken into
account.
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Deriving proxies for home range size from camera-trap data assumes that the
methodology is not biased. It has been previously suggested that camera trapping of
jaguars in dense secondary forest may be male-biased, as a consequence of researchers
placing cameras on accessible roads which are dominated by males (Harmsen 2006). As
such it could be argued that the difference detected between male and female MDM
may be an artefact of camera location choice, i.e. males are observed to travel further
because more of the cameras are in locations favoured by males. However many camera
stations in this study were located in open habitat such as savannah and pasture edges;
furthermore smaller female home ranges, compared to males, are consistent with
telemetry studies of jaguars in some other areas of their range (Crawshaw et al. 2004,
Scognamillo et al. 2003, Cullen et al. 2005, Azevdeo and Murray 2007).

The difference between the distances moved by females and by males is such
that the effective trapping area of males is potentially larger than the effective trapping
area of females, for the same survey grid. This may partly explain the overall male
biased sex ratio: if females have smaller home ranges than males, fewer females will be
detected than males simply because their effective trapping area is smaller. This may
have important implications for the calculation of density based on the ETA method. An
average MDM (based on males and females) could underestimate the female density,
particularly if the estimate of the ETA is male-biased because more males contribute to
the estimate of MMDM and ETA than do females. One option may be to calculate
abundance and density of males and females separately, using ETAs appropriate for

each sex.
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Comparison of MDM from camera-trap survey data and telemetry

Rabinowitz and Nottingham (1986) reported the mean home range size of four
radio-tracked male jaguars in the Cockscomb Basin and neighbouring lands as 33.4
km?, ranging from 28 km? to 40 km? with SD of 5.5 km”. Assuming a circular home
range, this is equivalent to a home range diameter of 6512 m (+SE = 1323 m). The
MDM by male jaguars measured within this study’s surveys, and over the entire study
period (2004-2006), range from 3007 m (£SE =456 m) to 9491 m (SE = 932 m),
within the same order of magnitude as those determined by Rabinowitz and Nottingham

(1986) in the same study area (Figure 4.6).
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Figure 4.6 Maximum distance moved (MDM) by male jaguars during this study’s
camera surveys (black squares) and home range diameter based on historical
telemetry data (white square, from Rabinowitz and Nottingham 1986).

X-axis shows the maximum distance between stations in each survey (10, 16, 19, 22
and 35 km). MDM for the survey with maximum distance between stations of 22 km is
calculated over three repeated surveys in CBWS (2004, 2005 and 2006).

MDM is also shown as calculated over the entire study period Jan04-Dec06, adjusted
for age (maximum distance between stations = 39 km).

Sample sizes and 95%Cl are shown (sample size in parentheses is the pooled n).

Rabinowitz and Nottingham (1986) followed the pugmarks of three female
jaguars in the Cockscomb Basin and neighbouring lands, and estimated a minimum
home range size of ~10 km?, equivalent to a home range diameter of ~ 3568 m.
Determining home range size by following tracks is likely to underestimate the true

home range size; however this is a similar order of magnitude as the MDM by females
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jaguars detected within the surveys, and over the entire study period (2004-2006)
(Figure 4.7) which range from 2854 m (no SE, n = 1) to 5742 m (£SE = 1013 m).
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Figure 4.7 Maximum distance moved (MDM) by female jaguars during camera surveys
(black squares) and home range diameter based on pugmark tracking data (dashed
line, from Rabinowitz & Nottingham 1986, n = 3).

For explanation of X-axis see Figure 4.6 above.

Missing data points (n = 0) indicate that females were not caught at multiple locations
therefore MDM cannot be estimated.

Sample sizes and 95%Cl are shown (sample size in parentheses is the pooled n).

Choice of MMDM for density estimation

Yau (2007) studied the Ext06 dataset (Table 4.2) in more detail by analysing the
affect of sequential removal of cameras from the trapping grid. Although sex
differences were not taken into account Yau (2007) demonstrated that the mean MDM
increased with survey area (based on a minimum convex polygon, MCP, connecting the
outermost traps) and reached an asymptote at a survey area of ~ 139 km?. Survey areas
which are smaller than ~ 139 km? may underestimate the true MDM by individuals in
the study area.

The use of the MCP with an irregular trapping grid for a study of the
relationship between MDM and grid area (as in Yau 2007) is not satisfactory because
the maximum distance between stations (i.e. the potential maximum distance that a
jaguar can move) is not proportional to the MCP area of the grid. Perhaps a more
appropriate analysis would have been to describe the relationship between MDM and
maximum distance between trap locations as cameras are sequentially removed from the
survey grid. The MDM detected for males tends to increase with the maximum distance

between stations; larger surveys with high maximum distance between stations have
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MDM estimates similar in size to those obtained over the entire study period (Figure
4.6). It may therefore be prudent to base male MDM on data from the larger survey
areas or to base it on the MDM calculated over the entire study period (adjusted for
age). In contrast, the MDM detected for females did not appear to be capped by the
maximum distance between the stations (Figure 4.7) presumably because they did not
tend to move further than the maximum distance between cameras in the smallest
survey.

The problem with using movement data collected over 3 years is that home
ranges may shift, regardless of their core size, through time, for example due to seasonal
changes in prey availability or associated with changes in dominance. The output of
GLM 4.1 (Figure 4.4) demonstrated that MDM increased with number of days that an
individual was present in the survey. Such shifts in core home ranges will inflate the
estimate of the instantaneous home range diameter. Although the MMDM calculated
over the entire study period covers the largest area and allows for the greatest detectable
movement (maximum distance between stations = 39 km) it may not be appropriate to
apply this long-term movement data to short-term population data. Box 4.1 (at the end
of this chapter) further discusses the influence of different proxies of home range
diameter on density estimation.

For this study it was decided that the MMDM derived from the Ext06 dataset
was the optimal available proxy for jaguar home range diameter and would be the most
appropriate statistic for all estimates of ETA and density in the study area: the Ext06
survey covered the largest area (maximum distance between stations = 35 km) within a
closed population period (62 days) and had the largest sample of individuals. The
MMDM of both sexes combined was 6940 m (£SE =939 m, n = 21: six females, 14
males and one unknown sex). The MMDM of males was 8776 (xSE = 1082 m) and that
of females was 3312 m (£SE =715 m). A MMDM of 3312 m approximates to a circular
home range of ~ 8.6 km?, smaller than the 10 km* home range on which the camera
spacing was based (< 3568 m between neighbouring stations). The majority of
neighbouring stations were < 3312 m apart; however some exceeded this spacing such
that a female, assuming a home range of 8.6 km?, could theoretically exist with zero
probability of capture. As such, some of the surveys may have failed to fully sample the
female component of the population. The extent of gaps or discontinuities in the female

ETAs varied between the surveys and is illustrated in Appendix B.
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Closed Population Abundance Estimates

CAPTURE occasionally selected the null model (M) as more appropriate than
M;. When My was identified as the most appropriate (model selection criteria 1.0), My,
was selected as next best (model selection criteria > 0.8). Given the relatively high
selection criteria for My, and the fact that My is unlikely to reflect the true situation, My
was used in preference to My, although the M;, estimates are less precise (larger
confidence intervals) than the M estimates. Three estimates used the My, model (Chao

et al. 1992) as CAPTURE selected this over the simpler My model. Capture probability

(IA) ) ranged from 0.062 to 0.366, above the 0.05 threshold advised by Harmsen (2006)

for reliable estimates of jaguar abundance.

Density estimates

Jaguar density was estimated from the abundance estimates for each survey and
sub-sampled survey, and the effective trapping area, ETA (Figure 4.8) based on the
MMDM estimates derived and selected earlier in this Chapter.

Unreliable density estimates based on low ETAs were identified and excluded
and the remaining densities were investigated with respect to habitat cover.

Single sex densities were estimated from single sex abundance estimates and
single sex ETAs (i.e. based on sex-specific MMDM) and compared with combined sex
(male and female) density estimated using combined sex ETA (i.e. based on population

MMDM).
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4.8 b) Zab05 ETA
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4.8 c) Arn06 ETA

4.8 d) Ext06 ETA
Bl FProtected forest Pastures  [J Survey Area — Roads/tracks —— Rivers

B Unprotected forest buffer B Settlements &4 cameras  —— Highway

Figure 4.8 Effective trapping area during each survey: a) Sit05, b) Zab05, ¢) Arn06
and d) Ext06. ETA based on combined sex MMDM = 6940 m. Protected forest,
unprotected forest buffer, pastures, settlements, roads and main rivers are shown.
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Variation in density estimates with ETA

A plot of population density estimate against ETA suggested that small survey

areas were associated with inflated density estimates with wide SEs (Figure 4.9).
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Figure 4.9 Variation in jaguar density estimate with effective trapping area. Data points
are based on sub-sampled data from five separate surveys: white triangle (Sit05), white
square (Zab05), grey triangle (Arn06"), black cross (CBWS05) and white circle (Ext06).
Survey ETAs were based on MMDM = 6940m. Trap effort was night only. SE bars are
shown. n = 26.

T Note that the lowest Arn06 estimate is based on only four individuals and nine
captures. The model assumed at least ten captures so this estimate should be treated
with caution.

Figure 4.9 suggests an inverse relationship of density to survey area. A linear
model of density against 1/area fitted better than 1/density against area. It was
unsatisfactory nevertheless, because the regression was influenced by three outliers and
because it approaches the asymptote slowly resulting in an implausibly low prediction

of asymptotic density, of 0.62 individuals /100 km? at infinite survey area (Figure 4.10).
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Figure 4.10 Predicted density based on the linear regression equation:

density = 0.62 + 1348 1/area (F; 24 = 23.5 p < 0.0001, adjusted r* = 47%, n = 26,
density: /100km?; area: km?). Survey estimates shown by crosses, predicted density
shown by continuous line. 95% CIl shown as dashed lines. Asymptote (area
independent density) of 0.62 /100 km? shown as red dashed line.

An alternative two-process model was fitted to the data by recognising that the area
effect appeared to cease above survey areas of ~ 200 km?. The break from the linear
regression was chosen from the optimal combination of adjusted 7%, p-value and absence
of outliers. This yielded a best-fitting model comprising a linear trend in density with
area for the 10 smallest surveys (F; 9 = 5.82, p < 0.05, adjusted 7= 35%, n = 10):
density =29.4 — (0.139 x area) (density / 100km?; area kmz) (Eqn 4.1)
The mean density of the remaining 16 surveys, of 5.9 individuals / 100 km?, was
substituted into regression Eqn 4.1 to find the threshold above which density does not
vary significantly with survey area, at 169 km?. Figure 4.11 shows the model fit, which
was deemed to better represent the data than the complete inverse model shown in

Figure 4.10.
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Figure 4.11 Variation in jaguar density estimate with effective trapping area. Arrow
indicates survey area below which density varies significantly with survey area (< 169
km?). Dashed line to left of arrow shows predicted density based on Eqn 4.1 (density =
29.4 — (0.139 x area). Dashed line to right of arrow is mean of 16 density estimates
based on survey areas > 169 km? (mean = 5.9 individuals /100km?).

Survey area was not significantly correlated with its percent cover of contiguous
forest block, fragmented forest, savannah, or plantations (Pearson correlations r =
0.398, -0.181, 0.053 and 0.213 respectively, p > 0.050 and n = 24 for all), suggesting
that the observed variation in density with small survey areas (Figure 4.11) was unlikely
to be due to confounding effects of these habitat variables. The percent cover of cattle
pasture was negatively correlated with survey area (Pearson correlation r = -0.637, p <
0.01, n = 24); however there was no significant relationship between density and the %
pasture cover for survey areas < 169 km” (linear regression: F|_g = 0.25, p > 0.6), again
indicating that the positive trend of density with 1/area observed at low survey areas
was due to an effect of survey area per se rather than habitat effects.

Based on these analyses, it was concluded that surveys with ETAs < 169 km?
were too small and likely to inflate density estimates (Figure 4.11). This result accords
with Harmsen (2006) who showed a similar relationship between ETA and density
estimates inside CBWS; and with Maffei and Noss (2008) who suggested that the
survey area should be at least four times the average home range area of the target

species: in this study average home range diameter is 6940 m which approximates to a
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circular home range of 38 km? and a required survey area of at least 152 km?. On the
basis of these analyses, population density estimates based on combined sex ETAs <

169 km?* were excluded from subsequent habitat analyses.

Variation in jaguar density with habitat

Jaguar density estimates showed no trend with mean distance of the survey
cameras from the protected forest but did decline with mean distance of cameras from

the contiguous forest block (Figure 4.12) suggesting that the availability of contiguous

forest may limit density.
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Figure 4.12 Variation in jaguar density estimate with mean distance of survey locations
from the protected forest (squares) and contiguous forest block (crosses). Data points
are based on data from four separate surveys. Survey ETAs were based on MMDM =
6940 m. All ETAS are >169 km? (190 to 532 km?).Trap effort was night only.

Density increased at an accelerating rate with the % of survey area that was contiguous
forest up to a plateau (Figure 4.13). This broken-stick response prompted exploration of
two alternative models to explain the processes best fitting the observed variation in

density.
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Figure 4.13 Variation in jaguar density estimate with % survey area that is part of the
contiguous forest block. Data points are based on data from four separate surveys:
white triangle (Sit05), grey triangle (Arn06), black cross (CBWSO05), white circle
(Ext06). Survey ETAs were based on MMDM = 6940 m. All ETAS are >169 km? (190 to
532 km?).Trap effort was night only.

As a linear relationship between density and % contiguous forest cover was not
suspected, density was inverted to give the available area per jaguar as a response to
forest cover. This variable is not directly related to the mean jaguar home range
(estimated earlier in this chapter as 38.7 km?). Rather it reflects the amount of land that
would be exclusively available to a jaguar if the whole survey area were divided equally
between all members of the population with no range overlap. Area of exclusive use can
be likened to a time-share in the sense that 10 km” exclusive use is equivalent to sharing
20 km? with one other individual, or 30 km? with two other individuals etc.

Two alternative linear models of area per jaguar were proposed and fitted to the data:

1. Constant forest area with decline in % forest cover: As the % contiguous forest
declines below a threshold, the available area per jaguar increases to maintain a
constant area of forest. This model is described by a linear relationship between area
per jaguar and 1/ (%forest cover). Visual inspection of the data (Figure 4.14) revealed a
decelerating rise rather than constant (linear) rise of area per jaguar with 1/ (%forest

cover). The non-linearity was sufficient to reject this model. The deceleration suggests

116



Chapter 4: Jaguar densities inside & outside a protected area

that the observed decline in density with reducing % contiguous forest is insufficient to

sustain a constant absolute amount within the area per jaguar.
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Figure 4.14 Variation in area per jaguar with 1 / % survey area that is part of the
contiguous forest block. Data points are based on data from four separate surveys.
Survey ETAs were based on MMDM = 6940 m. All ETAS are >169 km? (190 to 532
km?).Trap effort was night only.

2. Constant increase in area per jaguar with decline in %forest cover: As the %
contiguous forest declines below a threshold, the available area per jaguar increases
constantly. This model is described by a linear response of area per jaguar to %
contiguous forest. The best-fitting model had a linear trend in the six surveys with the
least % cover of contiguous forest (F 4 =33.1, p = 0.01, adjusted P = 89%, n =5):
100-km® area per jaguar = 0.847 — (0.0218 x % forest) (Ean 4.2)
The mean area per jaguar of the remaining 10 surveys, of 14.7 km” was substituted into
Eqn 4.2 to calculate the threshold of 32% contiguous forest below which area per jaguar

increases with further forest fragmentation, and hence density decreases (Figure 4.15).
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Figure 4.15 Variation in area per jaguar with % survey area that is part of the
contiguous forest block. Data points are based on data from four separate surveys.
Survey ETAs were based on MMDM = 6940 m. All ETAS are >169 km? (190 to 532
km?).Trap effort was night only. Dashed line to left of arrow shows predicted area per
jaguar based on Eqn 4.2. Dashed line to right of arrow is mean of 10 density estimates
(mean = 0.147 x 100 km?per jaguar). Arrow indicates the % survey area that is
contiguous forest above which area per jaguar stabilises.

The model shown in Figure 4.15 predicts that each 1 % increment in forest cover
above zero causes a decline of ~ 2 km? in the area of exclusive use per jaguar until a
threshold of about one-third contiguous forest cover. Above this threshold the area per
jaguar remains constant at 14.7 km? (and thus density is constant at 6.8 /100 km?).
Given that there was no detectable variation in ranging behaviour between individuals
that used the contiguous forest and those that did not, and that the average range was ~
38.7 km® (see earlier Results) it can be concluded that above one-third contiguous forest
cover the average jaguar shares its range with at least 2.6 (38.7 / 14.7) other jaguars.
This agrees with Harmsen (2006) who found a tendency for range sharing amongst
males in the protected forest with up to five individuals passing the same location in a
given month, most commonly two per month. Below the threshold of one-third
contiguous forest, the available area per jaguar increases by 2 km? for each further 1 %
loss in forest cover. It is not possible to describe this decline in terms of changes in

2. . . 2.
range overlap because a 2 km” increase in exclusive use could reflect a 4 km” increase
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in an area with double occupancy or an 8 km?” increase in an area with four occupants
and so on. However below 21 % contiguous forest cover the exclusive area per jaguar
exceeds the average range of 38.7 km” so it can be assumed that the average jaguar no
longer utilises all available land, for example they may avoid large settlements or busy
plantations. This is investigated further in Chapter 5.

Although the results suggest that jaguar density may depend on the availability
of contiguous forest, the % contiguous forest cover was not independent of the other
habitat types within the surveys areas. More contiguous forest inevitably means less of
other habitats, and indeed it was significantly negatively correlated with the % cover of
fragmented forest, savannah, and plantation (Pearson correlations: r = -0.985, -0.904
and -0.978 respectively, p < 0.0001, n = 14). We cannot know whether jaguar density
responds positively to the availability of contiguous forest or negatively to the
availability of these other habitats, or to some function of all habitats. However it is
reasonable to assume that jaguars will probably be limited by prey availability if the
cover of contiguous forest is reduced. The % pasture cover was not significantly
correlated with % contiguous forest cover within the survey areas (Pearson correlation:
r=-0.356, p > 0.2, n = 14). Although these two habitat variables (like any that represent
% cover) are not strictly independent it is notable that the high jaguar densities around
30% contiguous forest cover are associated with higher % pasture cover than are either
the low densities at < 30% contiguous forest cover or the high densities at > 80%
contiguous forest cover (Figure 4.16). This suggests that jaguar density increases as %
cover of pasture and contiguous forest both increase from zero and the density then
plateaus as % pasture declines again with increasing contiguous forest above ~ 30%

cover.
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Figure 4.16 Variation in jaguar density estimate with % survey area that is part of the
contiguous forest block, at two levels of % pasture cover. Black squares represent
surveys with pasture cover < 1%, white squares represent surveys with pasture cover
that is 2-5%. Dotted line shows predicted density back transformed from Eqn 4.2. Data
points are based on data from four separate surveys. Survey ETAs were based on
MMDM = 6940 m. All ETAs are > 169 km? (190 to 532 km?).Trap effort was night only.

Comparison of single sex and combined sex density estimates

Male density estimates were equivalent to more than half (63 to 79%) of the
total population density estimates for each of the surveys investigated (Figure 4.17).
This suggests that either the population truly is male-biased or that the method of

abundance estimation and/ or ETA estimation for the total population is biased.
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Figure 4.17 Single sex (male = blue, female = red) and total population (black) density
estimates for three repeated surveys in the protected area (CBWS04, 05 and 06) and
the large-scale survey spanning the protected area (Ext06). Densities are based on
ETAs derived from sex-specific and combined sex MMDMs. Male MMDM = 8776 m,
female MMDM = 3312 m and combined sex MMDM = 6940 m. SEs are shown.

Gray data points show total population estimate minus the male estimate for surveys in
which female sample size was too low for separate sex abundance estimate.

If density is estimated for the total population, using an ETA calculated over both sexes,
a survey in which females are under-sampled will result in the total abundance being
underestimated (too small) combined with a male-biased ETA (too large) such that the
total population density estimate will be too low. The reverse situation, in which the
density estimate is too high, may occur if both sexes are properly sampled but the male
ranging behaviour is underestimated. It is likely that both biases exist: females are
under-sampled and the ranging behaviour of males is underestimated. It may be argued
that if both biases exist they may cancel out, but an accurate estimate of the density of

each sex is preferred.

Discussion

This Chapter compares jaguar sex ratio, ranging behaviour and density across
the protected and unprotected Cockscomb forest block and the neighbouring fragmented
landscape in Belize, whilst also addressing methodological issues of density estimation

using camera traps.
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Methodological issues

The overall sex ratio of all sexed individuals photographed across the study area
was male-biased (~2.6 males per female). Given that females are more difficult to sex
than males it is likely that a higher proportion of the unsexed individuals were female.
Under this assumption we may suppose that the observed ratio is the most extreme
scenario for the area, and is expected to be less male-biased than this. Indeed, including
all unsexed individuals as females gives an equal sex ratio of one male per female.
Other jaguar studies have found a similar skew in camera-trap data, ranging from 1.2
males per female to males only, but if the unsexed individuals are included as females
the sex ratio ranges from 0.8 to 4.5 males per female (Wallace ef al. 2003, Maffei et al.
2004, Silver et al. 2004, Miller and Miller 2005, Miller 2006, Soisalo and Cavalcanti
2006).

A population sex ratio derived from camera-trap data may be expected to be
skewed if the sexes differ in their ranging behaviour. Theoretically, a female bias in the
derived sex ratio is expected under the classic cat social system in which the larger
range of one male overlaps with the smaller ranges of multiple females (Harmsen 2006).
However the detected ratio will be influenced by the number of male transients who are
moving through the study area vying for a territory. High levels of male movement and
overlap will shift the bias towards males (Harmsen 2006). The sex with the largest
home range will also have the largest effective trapping area (ETA). Therefore, if male
ranges are non-exclusive and larger than female ranges, fewer females will be detected
than males simply because a smaller area is surveyed for females than for males by the
same camera array. If the true population sex ratio is 1:1, and there are no other
sampling biases in the methodology, then 1:1 ratio of male to female density, calculated
from sex-specific ETAs, would be expected despite the observed skewed population
ratio. Therefore, if a similar number of males and females are expected within a
population, estimating densities separately for each sex may help to reveal whether
there are other biases in the sampling methodology, for example that the survey area is
too small, or the choice of trap spacing and location are favoured by a subsection of the
population (Chapter 2).

Male jaguars in the study area have highly overlapping home ranges, with some
locations visited by up to 5 males within a single month (Rabinowitz and Nottingham

1986, Harmsen et al. in press). In this study, estimates of ranging behaviour
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demonstrated that male jaguars ranged further than females, as previously documented
in the Cockscomb forest (Harmsen 2006, Rabinowitz and Nottingham 1986). However,
using sex-specific ETAs, a 1:1 density sex ratio was not detected; rather male density
tended to be higher than female density, making up more than 50% of the observed
jaguar density. This suggests a bias in the methodology other than that caused by sexual
differences in ranging behaviour. Various studies have reported that small survey areas
give inflated density estimates (see Chapter 2). Sub-sampling of the survey data
revealed that density estimates were inflated and unreliable if derived from surveys
below a threshold of ~170 km?”. The exclusion of these estimates from further analyses
removed some of the positive bias associated with small survey size. Even so, male
density may have been overestimated if the MMDM (mean maximum distance moved)
derived from camera data as a proxy for home range diameter, and used to estimate the
male ETA, was underestimated. This could occur if the survey grid is too small and
males range beyond the camera array (Chapter 2). However, in this study the MMDM
by males compared well with the home range diameters derived from long-term
telemetry in the area (Rabinowitz and Nottingham 1986) so it is unlikely that the male
jaguar density was positively biased by an underestimated ETA. Alternatively, and
more likely, the female component of the population was underestimated. This could
occur if cameras were too widely spaced, and/or because females avoided camera
locations dominated by males. The home ranges of solitary female cats often contract
when they have immobile cubs in a den (e.g. pumas, tigers, Sunquist and Sunquist
2002); and females with dependents may evade areas dominated by males to avoid the
risk of infanticide (e.g. as observed in brown bears, Ursus arctos, Dahle and Swenson
2003). Traps which are spaced too widely or are preferentially placed in areas favoured
by males may fail to detect this section of the female population, trapping only those
which are without dependents. Indeed long-term camera surveys in the CBWS indicate
that adult females reappear every 18-24 months for a brief period (B. Harmsen pers.
comm.) suggesting that under the current methodology the capture probability of
females may fall to zero when they are breeding.

In the current study, if density had only been estimated for the total population,
using an abundance and ETA calculated over both sexes, these potential biases may not
have been realised. This demonstrates that perfecting camera-trap methodology for

accurate density estimation of the whole population will require accurate estimation of
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the home range diameter of each sex and improvements to ensure that both sexes are
fully sampled.

There was detectable variation in sex ratio between different parts of the study
area. The sex ratio was more male-biased inside the protected forest and its buffer, than
in the forest patches and non-forest. However there was no detectable variation in
ranging behaviour in either sex between those using the forest block and those using
forest patches and non-forest (i.e. females who utilised the forest block ranged a similar
distance as females who utilised the fragmented landscape, ditto for males). Therefore
range size cannot explain the detected variation in sex ratios between these habitats.
Rather it may be explained by a different sampling bias: that the choice of camera
locations (primarily trails) within the forest block was favoured by males. Travelling
routes through the dense vegetation of the Cockscomb Basin are potentially a limited
resource for jaguars (Rabinowitz and Nottingham 1986), and are dominated by males
(Harmsen 2006). Females may avoid these male-dominated trails, unless sexually
receptive and in search of a mate. In contrast the fragmented habitat outside of the forest
block is more open with numerous natural and man-made trails and roads. Accessible
travelling routes are unlikely to be limited in this more heterogeneous environment and
may explain the less male-biased sex ratio observed here compared to the forest.
Alternatively, it is possible that there was no sampling bias and the ratio of females to
males was in truth higher outside the forest block than inside. Such a situation could
arise if, for example, females are attracted to areas rich in domestic prey around farms
and villages outside the forest block. These two explanations may not be mutually
exclusive, and it is not possible to distinguish between them in this study. This
emphasizes the need to optimise methods to detect female jaguars off-trail within the
forest block. Camera traps are not suitable as they depend on trails as funnels to direct
the target species past the camera. One possibility currently being explored is the
genetic analysis of scats which are collected off-trail using trained detector dogs. A
recent pilot study has demonstrated a high rate of scat detection off-trail by the dogs, but
methods to genotype scat samples to sex and to the individual are still being refined (A.
Devlin, unpubl. data, B. Harmsen pers. comm.).

This study has highlighted inadequacies with the current method of density
estimation which could potentially bias the estimates. If the biases are not consistent
across the landscape then comparisons of density in different habitats will not be valid.

Firstly, it could be argued that the overall higher densities observed in the forest may be
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an artefact of sampling mainly on trails. Because wide trails are limited in the forest,
many individuals may overlap and exploit the same few access routes. Extrapolating to
the rest of the forest, where there may be fewer trails, could overestimate the true
density (Chapter 2). In contrast, outside of the forest block trails were not limited; they
were abundant and spread more evenly throughout the landscape, therefore
overestimation may be less likely. However, even if many individuals are exploiting
trails within the forest, density would only be overestimated if the survey area was too
small, and the proxy for home range diameter (MMDM) was underestimated. Both
these potential biases were addressed in the study through the exclusion of small survey
areas and the careful choice of home range proxy. Secondly, females may be under
sampled in the forest, compared to the fragmented lands, if males dominate the forest
trails. This bias is more likely, supported by the fact that the sex ratio was more male-
biased in the forest, and implies that the true forest density may be higher than that

estimated here.

Ecological issues

Most contemporary estimates of jaguar density in the Selva-Maya region are
based on survey areas with complete forest cover and negligible human use (e.g.
Ceballos et al. 2002, Novack 2003, Silver et al. 2004, Miller and Miller 2005, Harmsen
2006). In contrast, this study included areas that are not predominantly contiguous
forest. The data clearly indicated that in southern Belize jaguars are not restricted to the
protected forest. Rather, jaguars were living and breeding within the unprotected forest
and the fragmented landscape, and thus should be incorporated into management plans.
Density declined when contiguous forest cover fell below about one-third of the survey
area. This has implications for the extrapolation of such density estimates through time
or space to more fragmented landscapes, and could contribute to better predictions of
the jaguar population at the regional level.

In areas where more than four-fifths of the forested landscape was fragmented,
the average jaguar did not utilise all the available land. This may reflect avoidance of
human activity around large settlements or plantations, or attraction to cattle pastures
with a concentration of activity where there is an abundance of domestic prey. Habitat
use is investigated further in Chapter 5. Home range may be expected to be larger, and
density lower, in areas where prey are scarcer. Although density declined with reduced

contiguous forest cover, home range size did not increase, suggesting that something
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other than, or in addition to, total prey availability (wild and domestic) may be limiting
density outside the forest block. Thus low density further from the contiguous forest and
closer to human habitation may be primarily due to direct conflict with people. Levels
of human-induced mortality throughout the study area are investigated further in
Chapter 7.

The constancy of jaguar density when contiguous forest cover declined from
100% to 30% was surprising for a cat often described as elusive and reluctant to utilise
open areas (Schaller and Crawshaw 1980, Crawshaw and Quigley 1991, Silveira 2004,
Cullen et al. 2005). Not until over two-thirds of the forested landscape was fragmented
did density diminish. This is a positive sign for jaguar conservation and, at face value,
suggests that the jaguar is remarkably adaptable and resilient to human development. A
study of tiger distribution and habitat quality in Nepal and India found that when the
ratio of good habitat (defined in terms of the level of horizontal cover, prey abundance
and human use) to poor habitat fell below 50%, tigers failed to reproduce; and in areas
where the ratio was < 30%, tigers were absent (Smith et al. 1998). In the current study
we may broadly characterize the contiguous forest as good quality habitat, assuming
that here wild prey are abundant and the negative impact of human activities are
minimal. In reality the quality of the contiguous forest may decline from the protected
area core to the outer edge of the unprotected buffer where the risk of direct conflict
between jaguars and hunters may be greater, and wild prey may be depleted. For
example, Chapter 6 shows that smaller wild prey species were taken by jaguars in the
unprotected buffer than in the protected forest. This was largely due to the absence from
the diet of white-lipped peccaries (Dictolyes pecari) in the unprotected forest, a
favoured game species of both hunters and jaguars.

The 30% threshold observed here should not be interpreted as a universal rule
throughout the jaguar range. Variance in the threshold is expected depending on the
relative qualities of the contiguous forest and the fragmented landscape. For example,
the benefit of extensive tracts of contiguous forest will be negligible if wild prey have
been largely hunted out by people. Indeed the phenomenon of empty forests (Redford
1992) should not be overlooked if attempting to gauge predator density simply from the
habitat availability. For example, the average jaguar density estimate from within the
Rio Bravo forest block in the north of Belize is ~ 10 jaguar per 100 km? (Miller 2006);
the forest extends into Guatemala, where the density falls to ~ 2 jaguars per 100 km?

(Novack 2003). It is not clear whether this striking difference in jaguar density is related
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to variance in prey abundance or subtle environmental variation such as the level of
precipitation. Nevertheless it is a reminder that multiple factors may influence
population density and care should be taken if attempting to extrapolate from small
survey areas to the regional level based on habitat variables alone.

The quality of the fragmented landscape (or poor habitat) will also vary across
the region, depending on the extent of fragmentation and types of land use. In this study
human density in the fragmented landscape was low, ~13 people per km?, and forest
patches were common, comprising up to 25% of the total land cover within the
fragmented area of the surveys (mean + SD =16 + 10 % cover, n = 16 survey areas).
Jaguars were widespread throughout the fragmented lands (see Chapter 5). This
situation contrasts with, for example, the hyper-fragmented forest landscape of southern
Brazil where jaguars are restricted to the larger forest patches only (Michalski and Peres
2005). In the current study the forest patches may facilitate jaguar reproduction and
survival by supporting wild prey species and providing refuges for jaguars away from
human activities during the day. Variation in jaguar density with the total % cover of
forest patches was not detected (R. Foster unpubl. data); however the overall
physiognomy of the fragmented landscape (size, shape and distance between patches) is
probably influential and requires further investigation. The clearance of land for
aquaculture or arable agriculture is likely to lower the quality of the human-influenced
lands for jaguars. However, under some conditions, cattle pastures may contribute
positively to the quality of the fragmented landscape, providing a source of large
domestic prey where wild ungulates are lacking, potentially facilitating reproduction
(Chapter 6). In this study the fragmented lands supported the equivalent of up to ~ 8
cattle per km?, similar to the density of large wild ungulates such as white-lipped and
collared peccaries (Tayassu tajacu) inhabiting un-hunted forests in Central and South
America (e.g. Novack 2003, Peres 2005). In reality the densities of livestock were much
higher (~ 200 km™), but localised to small areas (discrete pastures of 0.03 to 2 km?)
within the fragmented landscape (Chapter 5). Although domestic livestock may
facilitate reproduction in an otherwise prey-poor environment, jaguar survival will be
lowered if lethal control is practised to protect the livestock. Population dynamics and
the influence of lethal control on population persistence are explored further in Chapter

7.
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Summary

This study has raised, and attempted to address, some important methodological
issues involving the density estimation of jaguars, which could be applied to other low
density wide-ranging species. In particular, 1) ensuring that the survey area is large
enough, 2) incorporating differences in range size, and 3) ensuring that trap-spacing is
optimal and trap locations are unbiased, have been shown to be important. Jaguar
density estimation using camera traps is far from perfect, and will greatly benefit from
improved data on ranging behaviour, particularly of females. Alternatively the use of
scat detection dogs may provide a complementary way to survey for individuals that
elude the cameras. Within the acknowledged limitations, the method has permitted the
first large-scale investigation of jaguar density in Belize beyond the boundaries of the
tropical moist lowland forests of the Selva Maya. Superficially, the jaguar density in
lands neighbouring the protected forest of the CBWS does not appear to be adversely
affected by the current level of human development and associated deforestation and
fragmentation. However it is unknown whether the unprotected section of the
population can sustain current levels of lethal control in the long-term (see Chapter 7).
Understanding the extent to which jaguars can persist in the fragmented human-
influenced landscape outside protected areas such as CBWS will be crucial in
identifying long-term viable connections between protected areas within the vision of

the Mesoamerican Biological Corridor.
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Box 4.1 The influence of home range diameter proxy on density estimate

Three male-only density estimates were calculated for each of the CBWS surveys (04, 05 and 06) using
three different, yet equally valid, choices of home range proxies for ETA estimation (n refers to number of
individuals with MDM > 0 m):

a) Survey-specific camera data based on movements made during the survey period and within the survey
area only: 2004: 6429 m (+SE = 843, n = 9); 2005: 4593 m, (£SE = 956, n = 9); 2006: 8181 m (+SE = 1287, n
= 9)

b) Long-term camera data based on accumulated movements made over the three repeated surveys: 7288 m
(£SE =950, n=17)

c) Long-term telemetry data collected on from the same area: 6521 m (+SE = 1323, n = 4) (Rabinowitz and
Nottingham 1986)

The three density estimates were compared within each survey year, demonstrating that lack of standardisation

in choice of ETA estimation may make comparison between (or even within) studies invalid (Figure 1).
m survey specific camera data

m long-term camera data Figure 1 Male jaguar density estimates and SEs in the
long-term telermetry data CBWS in 2004, 2005 and 2006 based on three different
10 1 proxies of home range diameter for ETA estimation. Red:
. survey specific (2004 = 6429 m, 2005 = 4593 m, 2006 =

8181 m; blue: calculated over the three repeated surveys
. (7288 m), green: based on historical telemetry data from the
% + + + % area (6521 m).

Within 2004 and 2006 the density estimates are

7 relatively consistent because the home range proxy is similar
between survey-specific, long-term and telemetry data. In
2005 the survey-specific home range proxy was lower than
that based on the long-term camera data or telemetry data,

Male jaguar clensity (/100 kmz}

2004 2005 2006
Year
resulting in a density estimate that was almost twice as high than if long-term camera or telemetry data were
used (an increase from four males /100km? to seven males /100km?). Although the 2005 density estimates are
not significantly different this example serves to highlight the fact that proxies for home range diameter, even if
derived from the same dataset, can vary and so influence the final density estimate.

The extent to which MMDM is an appropriate proxy for home range diameter will depend on the
survey area (Maffei and Noss 2008) and the spatial configuration of the trap locations (see Chapter 2 for
details). If these requirements are not met then long-term data, if available, may be considered more
appropriate than the short-term survey-specific data which may underestimate the home range diameter.
Within a long-term camera study which comprises repeat surveys, preference may be given to long-term data
if, during the shorter survey periods, several of the study animals were only ever captured at a single station
such that their MDM = 0 and is excluded; for example during the three CBWS surveys only ~50% of the study
animals were captured at >1 station and contributed to the estimate of the MMDM and ETA during each survey;
this increased to 68% of the animals when their accumulated movement was calculated over the three survey
periods. Similarly, telemetry data, although providing detailed information on ranging behaviour, are often
limited to just a few individuals, who may or may not be representative of the population as a whole.

If long-term camera or telemetry data are used to estimate home range diameter, it must be assumed
that home ranges are not shifting through time and that the resultant distance could be covered within the time
constraint of the survey period i.e. the ETA that is calculated must be relevant to the sampling period.

These findings bring into question comparisons between different studies which have used alternative
proxies of home range diameter for estimating ETA and density; for example to date researchers have used
various combinations based on telemetry (which may or may not be from the same period or study area) and/or
survey-specific camera data and/or long-term camera data from different survey periods e.g. Silver et al.
(2004), Cullen et al. (2005), Harmsen (2006), Soisalo and Cavalcanti (2006), Salom-Pérez et al. (2007). It
would seem prudent to standardise the methodology so that comparisons can be made with more confidence
both within and between study sites.
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Habitat use by jaguars and pumas in
a human-influenced landscape
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Abstract

Jaguars (Panthera onca) and pumas (Puma concolor) are sympatric across the
entire jaguar range. Where they occur together, both species exist in increasingly
fragmented landscapes where they face direct persecution from people, mainly due to
livestock predation. Pumas are known to inhabit a greater variety of natural habitats
than jaguars, but the influence of anthropogenic factors on the co-existence of these two
similar-sized cats is poorly known. This chapter uses camera-trap data to compare
habitat use of jaguars and pumas in Belize, Central America. The cats did not differ in
their use of a large block of relatively homogenous secondary rainforest. However,
pumas were scarce outside of the forest block whilst jaguars were detected throughout
the human-matrix. Reasons for this discrepancy are discussed, including differential
tolerance to human disturbance and the absence of resources required for puma survival
outside the forest block. Habitat correlates of jaguar activity and livestock predation
around farms permit the first direct assessment of factors influencing depredation by
cats in the region. These findings inform a discussion of potential site-specific

techniques for reducing livestock predation within the context of Belizean livelihoods.

Introduction

Human activity impacts over three-quarters of the land on Earth (Sanderson et
al. 2002a). Habitat transformation is the principal human threat facing all terrestrial
mammals (Baillie ef al. 2004). Degradation of natural habitats destroys forage, prey and
refugia; fragmentation of the landscape further intensifies all other anthropogenic
threats by bringing species into closer contact with humans and their activities. Habitat
fragmentation is of particular concern for large carnivores because they often have large
home ranges and so are forced into the human-matrix. Understanding how large
carnivores use the human-matrix in comparison to the remaining contiguous natural
habitat will be essential for predicting their long-term survival across an increasingly
human-dominated landscape. In areas where multiple carnivores live sympatrically,
such studies are valuable for predicting the interactive impact of human factors on co-
existence: for example the vulnerability of competitively inferior species within
carnivore guilds may increase under the pressure of human activity (e.g. Creel 2001,

Woodroffe 2001).
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This study focuses on the jaguar (Panthera onca) and the puma (Puma
concolor), two similar-sized cats which co-exist throughout the neotropics, a region
where current human population growth is second only to Africa (World Resources
Institute, WRI, 2007). Both species are near-threatened (IUCN 2007) and both are
known to prey on livestock with resulting persecution by people (e.g. Belize:
Rabinowitz 1986a, Brechin and Buff 2005; Costa Rica: Sdenz and Carrillo 2002,
Venezuela: Mondolfi and Hoogesteijn 1982, Polisar et al. 2003; Brazil: Mazzolli et al.
2002, Crawshaw 2002, Conforti and Azevedo 2003, Crawshaw et al. 2004,
Zimmermann et al. 2005, Michalski et al. 2006, Azevedo and Murray 2007; Azevedo
2008, Palmeira et al. 2008). Little information is available, however, regarding the
extent to which jaguars and pumas may favour human-influenced landscapes over
wilderness, the impact of human disturbance on their behaviour, or how anthropogenic
factors may influence the co-existence of these two species. Furthermore, although
factors influencing livestock predation by these cats have been widely studied in South
America (e.g. Hoogesteijn 2000, Polisar et al. 2003, Michalski et al 2006, Palmeira et
al. 2008) data are lacking from Central America, a region with three times the density of
humans (WRI, 2007) and distinctly different biomes and land-use practises than South
America.

The aims of this chapter are to compare habitat use of both species between an
undisturbed protected lowland rainforest and its neighbouring human-influenced
landscape, in Belize, Central America, and to assess habitat factors associated with
livestock predation in this region. The study tests particularly for a species-by-habitat
interaction, and evaluates potential options for managing habitats to reduce livestock

predation.

Habitat use by sympatric jaguars and pumas

Jaguars occupy a variety of lowland habitats (< 2000 m) including rainforest,
wet grasslands, mangroves and even arid scrub, although they tend to be associated with
water (Kitchener 1991, Emmons and Feer 1990, Nowell and Jackson 1996, Reid 1997).
Pumas are found in a wider range of natural environments than are jaguars, covering
every major habitat type of the Americas, including cold coniferous forest, tropical rain
forest and desert, and live at altitudes up to 5,800 m (Emmons and Feer 1990, Nowell
and Jackson 1996, Sunquist and Sunquist 2002). On this level and in the absence of

human-factors, pumas may be considered to have more flexible habits than jaguars. A
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survey of jaguars and pumas in three protected areas in Brazil’s endangered and
increasingly fragmented Atlantic forest identified pumas in all habitats from the coast to
mountain tops; whilst jaguars were only found at < 1000 m, and restricted to two of the
protected forests (Leite and Galvao 2002). Indeed Hoogesteijn (2000) suggested that the
jaguar has a more compromised future than the puma because it has a more restricted
geographic range and exploits fewer habitat types. However this conjecture remains
unverified until more data are available on the response of either species to human
expansion.

Although the puma is relatively well-studied in North America (see Sunquist &
Sunquist 2002), few studies have been published on habitat use of sympatric jaguars and
pumas within the neotropics, and these are limited to the small sample sizes associated
with telemetry, ranging from a single puma and two jaguars (Emmons 1987) to six
pumas and five jaguars (Scognamillo et al. 2003). Although these studies have provided
some insight into the simultaneous habitat use of both species, they are limited to
natural and semi-natural environments: (1) the dry forests of Jalisco, Mexico (Nufiez et
al. 2002) and the rain forests of Manu, Peru (Emmons 1987), both homogenous, un-
fragmented and relatively undisturbed; (2) the mosaic landscapes of the Brazilian
Pantanal (Schaller and Crawshaw 1980) and the Venezuelan Ilanos (Scognamillo et al.
2003), both highly heterogeneous areas of floodplains, cerrado/savannah, forests and
open cattle pastures. None of these studies assessed habitat use in relation to human
activities per se, besides the rearing of cattle in the Pantanal and Venezuelan llanos
where livestock generally exist at low densities in an almost feral state.

With the exception of Harmsen (2006) who used camera traps to compare jaguar
and puma activity within a protected rainforest, there have been no published studies
comparing jaguar and puma habitat use in Central America. This study has the benefit
of comparing habitat use of jaguars and pumas within a large undisturbed area and
within the neighbouring fragmented human-influenced landscape. Such comparisons are
rare; carnivore studies are often limited to populations that have already been influenced
by human activities and so require care when extrapolating evolutionary scenarios about
habitat choice (Nufiez et al. 2002). For example, a study of carnivores in the highly
fragmented landscape of Sdo Paulo, the most densely populated state of Brazil, detected
pumas in fragments of natural vegetation (semi-deciduous forest and cerrado) and
eucalyptus plantations. The jaguar was absent from all habitats, believed to have been

locally extinct for 50 years; however whether this reflected an inability of the jaguar to
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adapt to habitat modification and human disturbance is uncertain as it was also
historically persecuted in this area (Lyra-Jorge et al. 2008).

When considering habitat use of large predators, it is equally important to study
broad habitat selection in heterogeneous landscapes and microhabitat differences within
specific habitats. Even within otherwise homogenous environments, sympatric
carnivores may have subtly different habitat requirements, perhaps related to their mode
of hunting or preferred prey. Furthermore the use of a particular habitat may be
influenced in part by the juxtaposition of other habitats and land-uses systems, such as
the proximity of roads or settlements. Consideration should also be given to sexual
differences in habitat use, particularly with respect to human activities. For example the
preferential use by females of habitats where there is an increased risk of human-
induced mortality (e.g. cattle farms, high traffic roads) or their avoidance of historic den
sites or hunting grounds due to human disturbance may be detrimental to reproduction
and long-term population survival. Accordingly, the main objective of this chapter is to
compare habitat use by jaguars and pumas within an undisturbed forest and across a
range of habitat types and land-use systems. Camera traps were used to monitor activity
(as an index of habitat use) of both species simultaneously. This method allowed more
individuals to be studied than is logistically possible with traditional telemetry studies,
providing sufficient sample sizes for between-species and between-sex comparisons.
Activity is compared between habitats, and with respect to the proximity of various
natural features and anthropogenic factors.

Some species may avoid any kind of human activity, regardless of the natural
habitat or land-use system. Species that are particularly sensitive to human disturbance
will be less flexible even if they occur historically across a wide range of natural
habitats. The second objective of this study is therefore to assess the relative tolerance
of jaguars and pumas to human activity, by comparing their responses to ecotourism

within an otherwise undisturbed protected forest.

Habitat determinants of cat activity and livestock predation

One of the most important tasks facing big cat conservation today is to reduce
livestock predation in order to increase local tolerance of predators (Nowell and Jackson
1996, Hoogesteijn ad Hoogesteijn 2008). Habitat features and livestock husbandry
practises are among a suite of interacting factors believed to influence livestock

predation (Polisar ef al. 2003). Understanding habitat use by jaguars and pumas around
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cattle farms and the local habitat correlates of depredation may help to improve farm
management and so reduce losses of livestock to cats, and subsequently losses of cats to
lethal control. Published studies of the determinants of jaguar and puma predation on
livestock are limited to South America. There may be some similarities between the
Central American situation and studies from southern Brazil (e.g. Michalski et al. 2006)
in terms of average cattle density, ranch size and broad habitat types; however the
majority of South American studies concern expansive ranches in seasonally flooded
savannahs such as the Brazilian Pantanal and Venezuelan llanos (e.g. Polisar et al.
2003, Azevedo and Murray 2007). Ranches exceeding 100 km” with tens of thousands
of cattle are common. Human population is low, livestock management is limited such
that the cattle, which exist at relatively low densities, have become part of the natural
ecosystem (Quigley and Crawshaw 1992), and the home ranges of several jaguars and
pumas may fall within the ranch boundaries (e.g. Schaller and Crawshaw 1980,
Scognamillo et al. 2003). Cattle farms in Belize, Central America, are small in
comparison, averaging ~ 3.6 km? per property and the majority stocking fewer than 50
head (Brechin and Buff 2005). Multiple farms may fall within the home range of the
same cat (R. Foster, pers. obs.). With forest still covering approximately 70% of Belize
(WRI 2007), many farms and villages lie in close proximity to the forest, and almost
every livestock holding is at risk of predation. The final objective of this study is to
assess the habitat factors influencing jaguar and puma activity and livestock predation
around Belizean cattle farms and, where possible, to make recommendations which may

lower losses and the retaliatory killing of cats.

Methods

Camera-trap data were collected over three years (2004-2006) from habitats
across the range of land-use systems in the region: the protected secondary rainforest of
the CBWS, unprotected forest, shrubland, pine savannah, cattle pastures, citrus and
banana plantations, shrimp farms, and villages. Camera locations and survey
information are given in Chapter 4 (Figure 4.1 and Table 4.1). All cameras were set
with an enforced delay of three minutes between consecutive exposures, in order to
avoid wastage of film on herding species such as white-lipped peccaries (Dicotyles
pecari) and cattle. At sites outside the reserve where high levels of non-target traffic

were unavoidable (e.g. vehicles, cattle, people) the cameras were set to operate only at
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night. Only night captures were used in the analyses to allow an equal representation of
all stations regardless of whether sampling was continuous or night-only. ‘Night’ was
defined as those captures occurring between sunset and sunrise. Daily sunrise and

sunset times (2004 to 2006) were acquired from the US Naval Observatory (2007).

Habitat use by jaguars and pumas

Jaguars were individually identified and sexed from the camera-trap
photographs (Chapter 4). No attempt was made to individually identify or sex pumas.
Individual recognition of pumas is difficult because they have a plain brown coat with
no pattern. Harmsen (2006) attempted to individually identify pumas of the CBWS
based on scars and temporary swellings beneath the skin caused by botfly larvae
(Dermatobia hominis), and other identifiers such as tail kinks, black tail markings,
residual juvenile markings, and overall body shape and size. Although pumas could be
identified in certain areas for limited periods, photographs with distinguishing features
were too infrequent for individual recognition over an entire survey period. Pumas are
more difficult to sex from photographs than are jaguars (R. Foster pers. obs.). Given that
they have a similar ratio of body weight to testes weight (Costa el al. 2006) this
difference may be related to their posture and tail position whilst walking. Because
pumas cannot be individually identified, assigning sex requires a good view beneath the
tail in every photograph. In contrast once a jaguar has been sexed this can be linked to
its individual identification such that further photographs do not require a view beneath

the tail.

Measures of habitat utilisation

Three variables representing habitat utilisation by big cats were calculated for
each camera location: presence-absence, absolute capture rate and total individual rate.
Absolute capture rate (per 28 nights), an index of activity, was calculated for jaguars
(males and females separately and combined) and for pumas as:

Total number of captures x28 (Egn 5.1)
Trap effort

The total individual rate (per 28 nights), an index of how many individuals used the

location, was calculated for jaguars (males and females separately and combined) as:

Total number of individuals captured x28 (Egn 5.2)
Trap effort
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Presence/absence and activity were calculated for camera locations that were
functional throughout 3-year study period (Jan04 to Dec06). Individual rate was only
calculated from short-term data derived from six large-scale surveys (Chapter 4). This is
because the period between first and last functional trap night varied between camera
stations such that trap effort was distributed over periods ranging from one month to 36
months. Limiting the analysis to short-term survey data (maximum 62-day survey
period) ensured population closure such that individual rate was comparable between
locations. For locations which were surveyed multiple times, the mean individual rate
was calculated.

Over the 3-year period, the mean number of days that a camera was running
until its first jaguar capture was larger inside the protected forest (mean + SE =22.8 +
2.1 days, n = 81) than outside it (mean + SE = 16.2 + 2.7 days, n = 57). The presence-
absence analysis therefore excluded camera stations without cat captures and < 28 days
of uninterrupted trap effort. The rate analysis also excluded camera stations with < 28
days of uninterrupted trap effort, regardless of whether there was cat activity. Data from
stations located < 100 m apart (e.g. those that were re-located because of risk of
damage) were combined as the same location.

Because sex could not be determined for all jaguars with low capture histories,
where possible, analyses of sex differences were conducted three times: unknown sex

included as males, as females, and excluded.

Habitat and land-use map

A habitat and land-use map of the study area (Figure 5.1) was created manually
in Arc Map (Arc GIS 2004) using a combination of resources: extensive ground-truth
data collected by the author between 2004 and 2006, Ordnance Survey Maps of the
region at a resolution of 1:50,000 (Ministry of Defence 1995), and Land Sat satellite
images of the region for the years 2002, 2004, 2005 and 2006 which were of variable
quality. Vegetation and land-use classification followed the UNESCO system of
nomenclature adapted for the Central American Ecosystems Mapping Project (Meerman
and Sabido 2001) as shown in Table 5.1. Bold text indicates the broad classification
categories, with the vegetation types relevant to the study area below. In keeping with
Meerman and Sabido (2001) woodland categories were clumped with lowland pine

savannah habitats. Example photographs of each habitat type are shown in Appendix C.
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Figure 5.1 Habitat and land-use map of study area. Only major rivers are shown.
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Table 5.1 Vegetation and land-use classification. Bold text indicates the broad
classification categories following UNESCO, with the vegetation types relevant to the
study area below each category

Category

Description

Closed Forest
- lowland broadleaf forest
- lowland pine forest

Woodlands

Shrublands

- lowland shrubland

Dwarf scrub

Terrestrial herbs

- lowland savannah (+/- pine)

Agriculture

Residential

trees =25 m tall with crowns interlocking, 65%(+) sky cover
tropical evergreen seasonal broadleaf lowland forest
tropical evergreen seasonal needle-leaved lowland forest

open stands of trees, > 5 m tall, most crowns not touching,
cover 30%(+) sky
not applicable

woody bushes or small trees 0.5-5.0 m tall; crowns maybe
touching, cover 30%(+) sky

broadleaved lowland shrubland

fire-induced lowland fern thicket

rarely > 0.5-m high
not applicable to this study

grasses, graminoids and other herbaceous plants are
predominant in the cover; woody plants (trees or shrubs) may
be present but not covering > 30%

short grass savannah with needle leaved trees

short grass savannah with shrubs

agro-productive systems

shifting cultivation (milpa)

pasture

semi-woody perennial crops (e.g. banana, papaya)
woody perennial crops (e.g. mango, citrus)
aquaculture

cacao

Settlements

Classification of camera locations

Station locations were classified according to official protection status and

hunting pressure; and forest connectivity and habitat. Cameras were either inside, on the

boundary, or outside, the protected forest; however the true level of protection of the

protected forest was variable throughout the reserve, as was the extent of hunting at

different locations outside the reserve. Camera locations were therefore also categorised

according to the evidence of hunting:

0 = ‘no hunting’ no evidence or local knowledge of hunting during study period

0.5 = ‘potential hunting’ evidence of camera theft or vandalism, no direct evidence of

hunting during study period but anecdotes from local knowledge
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1 = ‘hunters present’ camera-trap photographs of hunters with guns or spotlights, or gun
cartridges found in the field.

With the reserve being bordered by unprotected forest, cameras were categorised
according to whether they were located within or outside the single contiguous forest
block (protected and unprotected forest). Some areas of the forest block adjoined milpa
(‘forest-milpa’ in Figure 5.1, areas of forest dominated by milpa and cacao farms).
Although essentially still a continuation of forest cover, the nature and structure of this
habitat differed from that of the forest block ‘proper’ in that it was littered with trails
and small-scale milpa and cacao farms, and had higher levels of human activity than the
forest block. It was therefore classified separately from the contiguous forest block.
Also, locations at the boundary of the forest block e.g. pasture-forest boundary were
classified as outside the forest block.

The dominant habitat at each camera location was classified into one of five
categories for analysis: protected forest, buffer (unprotected forest contiguous with
protected forest), fragmented forest, savannah, and pasture. The category ‘fragmented
forest’ combined dense shrublands, milpa, forest-milpa, and forest fragments. The
category ‘savannah’ combined lowland savannah (+/- pine) and transitional zones
between savannah and dense shrubland/ forest.

The proximities of every station were calculated to the following attributes:
settlements, roads, flowing water (river or stream), cattle pastures, plantations, forest
block, fragmented forest, and savannah. Settlements included permanent villages
(population mean = SE =516 + 121, n = 9); communities with temporally variable
populations housing seasonal agricultural workers, both large-scale (population 120 to
650 workers, n = 3) and small-scale (population < 50 workers, n = 3); and single
isolated houses located away from villages, for example on cattle farms (n = 24). Roads
refer only to the major roads in the study area, represented by the main bus routes
(‘Highways’ in Figure 5.1). Plantations included semi-woody and woody perennial
crops (banana, papaya, mango, citrus). Forest block refers to the protected forest plus
buffer. Fragmented forest and savannah are as defined above.

At the local scale, capture probability can be maximised if stations are located
such that the target species is funnelled between the two cameras. For example the
funnel may be a stream or trail which passes through dense vegetation. The width of the
funnel may be important, for example Harmsen (2006) found that jaguars prefer wider

trails in the protected forest of this study area. In this study funnels included permanent
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or seasonal man-made trails, streams, unpaved roads wide enough for motor vehicles,
and buffers around the edge of pastures where natural vegetation had been cleared.
Funnel width was calculated as the mean of three measurements: 0 m and + 20 m from
the station, following Harmsen (2006). Pasture cameras with no obvious funnel were

located at the pasture edge usually bordered on one side by forest, milpa or plantation.

Statistical Analyses

Chi-square tests compared frequencies of locations with and without big cats
across habitat/land-use (protected forest, buffer, fragmented forest, savannah and
pasture), species (jaguar, puma), and sex (jaguars only) categories. A further chi-square
test also compared the proportion of big cat scats collected opportunistically inside and
outside the contiguous forest and identified as either jaguar or puma (see Chapter 6)
during the same period (Jan 2004 to Dec 2006). Similarity between scat and camera
data would indicate that the camera methodology is not biased in detecting
presence/absence of jaguars and pumas.

The validity of comparisons of frequencies of locations with and without male
(or female) jaguars in different habitats depended on whether variation in trap effort
between the habitats could have influenced detected differences in the presence and
absence of jaguars. Within each habitat, the trap effort until first capture was calculated
for each location where jaguars were present and the total trap effort was calculated for
each location from which jaguars were absent. For each habitat, if the trap effort at
locations not detecting jaguars was equal to (or greater than) the trap effort until first
capture at locations that did detect jaguars then it was assumed that variation in trap
effort between habitats did not bias the data and comparison of presence/ absence of
jaguars between the habitats was valid. The data were not normally distributed so were
compared using a non-parametric Kruskal-Wallis test. The test was conducted for each
sex separately and revealed in both cases that, for each habitat, trap effort at locations
not capturing jaguars was greater than trap effort until first capture at locations where
jaguars were detected (Kruskal-Wallis test: males n = 161, H=65.9, df =9, p < 0.0001;
females n =153, H=21.5,df =9, p < 0.02). This gave validity to comparisons of
presence/ absence across the five habitats. Note that trap effort until first capture was
unknown for males at three locations, so these were excluded from the analyses.

Jaguar activity and puma activity were compared at locations where both species

were present using a paired #-test. Because pumas were present at so few sites in the
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human-matrix (compared to jaguars) this analysis was limited to locations within the
forest block.

It should be noted that some of the cameras located in savannah or pastures were
also associated with forest habitat, for example they were positioned at the boundary
between pasture/forest or savannah/dense shrubland. Only 15 locations were not
associated with forest (> 50 m from forest habitat). The mean distance from forest (if >
50 m) was calculated for locations at which jaguars were present and those from which
they were absent, though the samples were too small to compare statistically. The
proportions of locations associated with forest and those > 50 m from forest were
compared using a chi-square test to determine whether jaguars were more likely to be
present at locations associated with forest than those not associated with forest.

A two-factor model with repeated measures on one cross factor (Doncaster and
Davey 2007) was used to investigate variation in jaguar activity with jaguar sex and

habitat type (GLM 5.1).

Jaguar activity = sex | habitat + sex | station’(habitat) — sex*station’(habitat) (GLM5.1)
Random factor ‘station’ (which refers to each camera location) is nested within fixed
factor ‘habitat’ which is crossed with ‘sex’. Models with repeated measures, such as
GLM 5.1, have no true residual variation. The highest order term (sex*station’(habitat))
therefore becomes the residual error term for calculation of the F-ratios, and the
possibility of a sex*station’(habitat) interaction remains untested in this model.
Locations with zero jaguar activity were excluded from the analysis. The data were
square root transformed to fulfil model assumptions of homogeneity of variance and
normal distribution of the response residuals. GLM 5.1 was also fitted to jaguar
individual rate to investigate how the number of individuals utilising a location varied
with sex and habitat.

Variation in jaguar activity with proximity to different habitats and land uses
was investigated separately for each sex. Locations inside and outside the contiguous
forest block were analysed independently. Inside the forest block, the following
variables were investigated in relation to jaguar activity: trail width, distance to water,
distance to human settlement, activity of jaguar of opposite sex, and level of hunting.
Outside the forest block, seven additional variables were also investigated: distances to
the forest block, fragmented forest, savannah, pasture, plantation and major roads.

Spearman rank correlations were used to assess the strength and direction (positive or
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negative) of the relationship between activity and each habitat variable. The continuous
habitat variables were then analysed in a stepwise regression to select the most
parsimonious model of variation in jaguar activity. Data were square root transformed
where required to normalise residuals for regression analyses. Variation in puma
activity within the forest block in relation to trail width, distance to water, distance to
human settlement, jaguar activity and level of hunting, was investigated following the

same method.

Tolerance of jaguars and pumas to human disturbance

It was hypothesised that cat activity declines with increased human activity. This
was tested by analysing the relationship between tourist visitation rates in the reserve, as
a proxy for disturbance, and big cat activity at a camera station on the reserve access
road. The road is unpaved and runs 10 km from the main highway through unprotected
forest into the reserve. It is the only road available for tourists to access the park. The
road terminates at the headquarters (HQ), approximately 2.5 km into the reserve. The
majority of visitors arrive via taxi or minibus and usually travel in and out on the same
day. There are basic over-night accommodation facilities for up to 50 people, plus a
camp ground with space for approximately 30 people. Visitors are permitted to hike the
maintained trail system which covers a radius of approximately 2 km around HQ. The
peak tourist season has substantial traffic in and out of the reserve, and human activity
within the vicinity of HQ. In contrast, during the low season tourist rates can fall to
zero. This provided a unique opportunity to directly relate changes in human activity to
shifts in cat activity.

The number of tourists visiting each month between January 2004 and May
2007 were made available from the CBWS records. Visitor rate was calculated for each
calendar month as:

Visitors per month x 28 (Egn 5.3)
Month length (in days)

A camera station was maintained on the access road at the reserve boundary (2.5 km
from HQ, 6.9 km from the nearest village) from Jan 2004 until May 2007. Data from
Jan 2004 to Apr 2005 are from Harmsen (2006) and from Jan 2006 to May 2007 are
from Harmsen and Higginbottom (unpubl. data). It was assumed that this location was

far enough from the village not to be influenced by changes in human activity within the
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community, whilst close enough to the HQ to be affected by fluctuations in tourist
activity. The camera was set to function only at night due to the high intensity of human
traffic into and out of the reserve during the day. Jaguar and puma activity was
calculated for each calendar month using Eqn 5.1.

The proportion of months during which jaguars and pumas utilised the road were
compared using a chi-square test. A 2-sample #-test was used to compare activity
between the species. Harmsen et al. (in press) demonstrated avoidance between jaguars
and pumas in the reserve at a temporal scale similar to that used in this analysis. A
negative association between jaguar and puma activity at this location could mask any
relationship with human activity; therefore a correlation was tested between jaguar and
puma activity. The activity of each species was regressed against tourist rate. Data were
excluded for two months for which there were no visitor statistics available, and for
months during which the trap effort was < 28 nights.

Visitor rates to CBWS are cyclical and tend to peak during the hotter, dry
months and lessen in the wet season. It has been suggested that predator activity
decreases with increased ambient temperature (e.g. Crawshaw and Quigley 1991).
However Harmsen (2006) found that jaguar activity within the reserve did not vary with
season, and it was therefore assumed that any correlation between tourist activity and
jaguar activity reflected a true cause and effect relationship and was not a consequence
of each co-varying with temperature or rainfall. To further substantiate this assumption,
correlations between monthly rainfall and monthly jaguar or puma activity were tested
at five other camera locations which had long-term data (12—18 months) and which
were sited on forest trails or unpaved roads of similar width (mean width + SD =280 +
137 cm, n = 5) as the target station (width = 392 cm). Two locations were on the access
road in forest outside the reserve (4.3 km and 6.6 km from the HQ, 5.1 and 2.8 km from
the nearest village); and three locations were within the reserve (one on an old logging
trail and two on a wardens’ patrol trail, all > 7 km from HQ) with no seasonal tourist
activity and low human use. Rainfall data were obtained from a private biological
research station 17 km from HQ (M. Shave, Possum Point Biological Station, unpubl.

data).
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Determinants of cat activity and livestock predation on farms

Eleven cattle farms were identified within the immediate study area. The farms
ranged in size from 0.04 to 9.25 km? (~ six to 900 cattle). Camera traps were maintained
on or near eight of the farms to monitor jaguar activity (Figures 5.2a-c). The cameras
were maintained for varying periods from 2 to 30 months dependent on cooperation of
the land owners and risk of damage/theft. Data were also collected on rates of predation

on domestic animals on the farms, again dependent on the cooperation of stakeholders.

Unprotected Forest

Faorest with milpa
Fragmented Forest|
Fire Induced Femn
Savannah
Wistland

Pastures
Plantation
Aquaculture
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Cleared Land
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Rivers

Highway

Roads
fle farm cameras

Figure 5.2 a) Farms #01a-d, #03a-b and #07
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Figure 5.2 b) Farm #04
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Figure 5.2 c) Farms #02, #05, #06 and #08

Figure 5.2a-c Location of cattle farms. Camera stations < 20 m from pasture shown.
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It was rarely possible to verify reports of livestock predation, or the identity of
the predator. Farm employees were often illiterate or reluctant to keep written records
and found formal interviews intimidating (R. Foster pers. ob) so data were gathered
during regular informal visits with livestock owners or their employees and
opportunistically by talking with local people. Farm employees were provided with
disposable cameras and encouraged to collect photographic evidence of livestock kills
to ensure that data were not fabricated. Sometimes these photographs were also useful
in identifying the predator, based on the nature of the attack (after Hoogesteijn 2000);
for example see Figure 5.3. Often farm employees did not supply photographs and the
attacks were reported too long after the event to examine the carcasses, which were
disposed of or further damaged by scavengers. However most of the employees were
knowledgeable about their livestock and potential predators. There was no evidence of
them exaggerating the number of livestock kills, because they frequently reported no
attacks. Also, jaguars were not routinely blamed; other causes of livestock death were
also given as snake bite, cattle rustlers, crocodiles and feral dogs.

The available data were used to investigate farm characteristics that may
influence jaguar and puma activity and levels of livestock predation on farms. It was
recognised that sample sizes were limited thus qualitative assessments were sometimes

deemed more appropriate than statistical analyses.

147



Chapter 5: Habitat use by jaguars & pumas in a human-influenced landscape

a) b)

Figure 5.3 a) Calf (150Ib) believed to have been killed by a jaguar. The body was
dragged ~600 m and the internal organs eaten. Note the canine punctures in the side
of the head, width 50 mm, typical of jaguar attack. A jaguar was shot on site eight days
later. b) Adult sheep believed to have been killed by a pack of feral dogs. Note the
tears to the shoulder and ear ripped off; lacerations are typical of dog attack. A pack of
feral dogs were chased from the premises five days later whilst attempting to attack an
adult cow.

Factors influencing cat activity

The analysis of habitat utilisation by cats around farms was restricted to data
from camera stations within 20 m of a pasture. Chi-square tests compared the
proportions of locations with and without jaguars and pumas; and with and without
male and female jaguars. Puma activity on farms was negligible (four captures over
4251 trap-nights) and so is not considered further. GLM 5.1 was used to compare the
activity of male and female jaguars at pasture locations (see p.142) and jaguar activity
was regressed against distance from the forest block.

It was hypothesised that jaguar activity may be influenced by the physiognomy
of a farm, specifically the degree of exposed versus covered (forested, or forested +
plantation) habitat at the pasture edges and the extent of covered patches within the

property. Jaguar activity per farm was regressed against various farm habitat variables.
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Jaguar activity per farm was calculated as the mean activity at locations with > 28 days
continuous trap effort and jaguar presence. Data from Farm #01 were analysed
separately as #01a, #01b, #01c and #01d (Figure 5.2) since these four pasture blocks
were separated from each other by extensive human development (highway, secondary
roads and citrus plantations). Farm #05 was excluded from activity analyses because the
single station at this farm did not function for at least 28 continuous nights, and Farm
#07 was excluded because zero jaguar activity was recorded. Thus total sample size for
these analyses was low (n = 9). Farm habitat variables were derived from the habitat
and land-use map using Arc Map (Arc GIS 2004): the % of pasture edge that was clear
(> 3.5 m wide strip of cleared land or road between pasture edge and adjacent habitat),
the length of covered pasture edge per km? pasture, and the % of the property that had
patches of cover. The two ‘cover’ variables were calculated twice, first as forest and
then as forest + plantation. Accurate magnitudes of the ‘cover’ variables were unknown
for Farm #01c therefore this data point was excluded from these analyses.

Jaguar activity per farm was also compared between farms with and without the
following: forest patches, on-site human residence, streams or rivers, and some pasture
edge cleared. Statistical comparisons were not appropriate for such small samples so

means and standard deviations are presented only.

Factors influencing livestock predation

The primary livestock were cattle, but buffalo, horses, donkeys and sheep were
also present on some of the farms. The farms had continuous breeding seasons with
calves produced year round (although Farm #01 began restricted breeding in 2006).
Therefore stocks can be assumed to have varied evenly throughout the year without a

seasonal peak. Livestock density per km? per farm was calculated as (Eqn 5.4):

Total livestock (Eqn. 5.4)
Property area

where fotal livestock refers to the maximum number of livestock known to have been on
the farm at one time during the study period.

Farm owners and staff provided information on livestock kills for periods
ranging from 11 to 34 months. No predation data were available for Farm #01d so it
was excluded from subsequent analyses. A measure of livestock predation, ‘kill
density’, was calculated for each farm as the number of livestock kills per year per km?

of the property (Eqn 5.5):
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Number of kills / total livestock / number of days monitored x 365 (Egn. 5.5)
Property area

Two competing hypotheses were tested by regressing kill density against stocking
density. First, kill density increases with stocking density, as predator-prey encounter
rate increases. Second, kill density declines with stocking density as herd vigilance
increases and potential risk of injury to the predator from cattle increases. For this
analysis, livestock density of Farm #01 was treated as a single data-point because the
density in each pasture block varied as livestock were frequently divided between the
pastures and moved according to herd management requirements.

It was hypothesised that kill density, like jaguar activity, may be influenced by
the physiognomy of farm. Kill density was regressed against length of covered pasture
edge per km? pasture, the % of the property that had covered patches, and the %
exposed pasture edge. In addition a relationship between kill density and fence index
was tested. Fence index was calculated as (Eqn 5.6):

Fence height (cm) (Ean. 5.6)
Bar width (cm)

where bar width is the mean distance between barbed-wire strings. A high fence index

indicates a fence that is high with narrow gaps between the strings, conversely a fence
with a low index will be lower and/or with wider gaps between the strings.

Kill density was also compared between farms with and without the following:
forest patches, on-site human residence, and streams or rivers. Statistical comparisons
were not appropriate for such small samples so means and standard deviations are
presented only.

It was hypothesised that levels of predation may vary seasonally in response to
seasonal fluctuations in wild prey species. Livestock predation rate was regressed
against monthly rainfall and against monthly rainfall from the previous month (in order
to account for any lag in prey abundance in response to rainfall). The analysis was
limited to the dataset for Farm #01 which provided suitable long-term data on monthly
livestock kills for ~ 3 years. Rainfall data were obtained from a private biological

research station <10 km from the farm (M. Shave unpubl. data).

Results

The utilisation of protected forest, unprotected forest buffer, fragmented forest

patches, savannahs and pasture lands were compared between jaguars and pumas, and
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their tolerance of human disturbance was assessed. Determinants of cat activity and

livestock predation on farms were investigated.

Habitat use by jaguars and pumas

Within the forest block (protected forest plus unprotected buffer) the relative

frequencies of camera stations with and without big cat visits did not differ between
jaguars and pumas (g, = 0.175, p > 0.05, of 106 locations 61 had jaguars and 64 had

pumas, Appendix A: Table AS5.1). Outside the forest block, in contrast, jaguars were

present at more locations than were pumas (47/67 locations were visited by big cats, and
all of these were visited by jaguars while only seven were visited by pumas, ¥, = 49.6, p

< 0.0001, Appendix A: Table AS5.1). The same trend was observed for inside / outside
the protected forest, and inside / outside all forest habitats, with pumas rare on the
outside (Appendix A: Tables A5.2-A5.3).

Relatively fewer puma than jaguar scats were found outside than inside the
forest block (3:66 outside:inside for puma compared to 51:224 for jaguar, ¥/ =8.4,p =
0.004, Appendix A: Table A5.4). Comparison of the scat and camera data suggests that

the uneven ratio (jaguar bias) outside the forest block observed using cameras probably
reflects the true situation and is not an artefact of using night-only camera-trap data.

Despite the relative scarcity of pumas in the human-dominated matrix, at
locations in the forest block where both jaguar and puma were captured they showed no
significant differences in site usage (mean difference in visits per 28 days + 95% CI =
0.580 £ 0.614, n = 45, paired-sample 1 = 1.91, p > 0.05). A particularly high jaguar
activity was noted at one location in the forest block (11 visits per 28 days). This
unusually high activity rate was attributed to a mating event which resulted in 17
captures of a courting pair over two nights. Exclusion of this data point from the
analysis did not alter the conclusion that there is no significant difference between the
activity rates of jaguars and pumas in the forest block (mean difference in visits per 28
days + 95% = 0.379 £ 0.472, n = 44, paired-sample 7 = 1.62, p > 0.10). The mean jaguar
activity £ SE was 1.7 + 0.2 captures per 28 nights and mean puma activity was 1.3 £ 0.2
captures per 28 nights.

Both inside and outside the forest block male jaguars were present at

significantly more locations than were females (males visited 58 of 104 forest block

locations, whilst females visited only 18, }(12 =33.2, p <0.0001; males visited 37 of 63
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locations outside forest block, whilst females only visited 18, 7= 11.6, p < 0.0001

Appendix A: Table AS5.5). The same trend was observed for inside/outside the protected
forest, and inside/outside all forest habitats; and if all individuals of unknown sex were
included as females (Appendix A: Tables A5.6-A5.10).

The presence-absence of male jaguars at camera stations showed no broad-scale
habitat associations ( g; = 9.0, p > 0.05, Table 5.2). Male jaguars were nevertheless
present at a high proportion of the pasture locations (17/21), relative to their presence at

all other locations (72/140, 7 =6.2, p <0.015, Appendix A: Table A5.11).

Table 5.2 Number of locations with and without male jaguars across five habitats.
‘Buffer’ refers to unprotected forest that is contiguous with the protected forest.
‘Fragment’ refers to fragmented forest patches plus milpa-forest (which may or may not
be contiguous with the ‘contiguous’ forest).

Protect Buffer Fragment Savannah Pasture
Presence 42 10 12 8 17 89
Absence 40 6 17 5 4 72

82 16 29 13 21 161

The presence-absence of female jaguars showed significant habitat associations
with females present at a high proportion of fragmented forest locations and absent from
many of the protected forest sites ( }(f =19.6, p < 0.002, Table 5.3). Three cells had
expected counts < 5 therefore the test was repeated comparing locations in protected
forest against all other locations, showing that females were present at few protected
forest (9/83) locations relative to their presence at all other locations (25/70, 3 = 13.2, p
< 0.0001, Appendix A: Table A5.12).

Table 5.3 Number of locations with and without female jaguars across five habitats.
‘Buffer’ refers to unprotected forest that is contiguous with the protected forest.

‘Fragment’ refers to fragmented forest patches plus milpa-forest (which may or may not
be contiguous with the ‘contiguous’ forest).

Protect Buffer Fragment Savannah Pasture
Presence 9 7 12 1 5 34
Absence 74 9 16 10 10 119

83 16 28 11 15 153

Non-forest locations that recorded male jaguars were a similar distance from
forest as those that did not record males jaguars (mean £ SE where present = 235 £ 28

m, n = 13; absent = 282 + 100 m, n = 5). Males were captured up to 438 m from forest
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(the second largest distance from forest available across the camera network), in

savannah. Males were no more likely to be present at forest than non-forest locations
(present at 82/151 sites < 50 m from forest and at 13/17 sites > 50 m from forest, ¥, =

3.06, p > 0.05, Appendix A: Table A5.13). Similar trends were observed if jaguars of
unknown sex were included as males (Appendix A: Table A5.14).

From the smaller sample of female captures, non-forest locations recording
females tended to be closer to forest habitat than those without females (present: mean +
SE =142 + 36 m, n = 2; absent: mean = SE = 302 + 51 m, n = 10). Females were not
detected at locations > 178 m from forest. Despite these stronger associations to forest
than for males, there was no evidence that females were more likely to be present at

forest than non-forest locations (present at 34/145 sites < 50 m from forest and at 2/10
sites > 50 m from forest, }(12 =0.29, p > 0.5, Appendix A: Table AS5.15). Similar trends

were observed if jaguars of unknown sex were included as females (Appendix A: Table
A5.16).

GLM 5.1 of jaguar activity revealed sex-dependent habitat use (Sex*Habitat
interaction in Table 5.4, Figure 5.4). Male activity was higher than female activity in the
protected forest and the unprotected forest buffer, and in the savannah. Male and female
activity did not differ in the fragmented forest or in the pastures. Male activity was
higher in the protected forest than in the fragmented forest or pastures. Female activity
was higher in the fragmented forest than in the savannah or protected forest. The same
trends are observed if jaguars of unknown sex are included as males or included as
females; with the exception that if unknowns are included as females, activity in the

buffer does not differ between the sexes (Appendix A: Tables A5.17-18).

Table 5.4 GLM of jaguar activity with sex and habitat.
T Error variation for interaction is the highest order term in the model:
sex*station’(habitat)

Source d.f. Adj.MS F p

Sex 1 10.09 57.62 < 0.0001
Habitat 4 0.32 144 >0.2
Sex*Habitat 4 1.62 9.26 < 0.0001
Station’(Habitat) 84 0.22 1.26 >0.1
Errort 84 0.18

Total 177
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Figure 5.4 Jaguar activity in five habitats based on night captures from camera-trap
data collected Jan 2004 to Dec 2006. All cameras functioned = 28 continuous nights.
Locations with zero jaguar activity (neither sex present) are excluded. Sample sizes
indicate number of stations in each habitat. Means and 95%CI shown are back-
transformed from square-root values. ‘Protect’ refers to protected forest; ‘buffer’ to
unprotected forest contiguous with protected forest; ‘fragment’ to forest fragments and
milpa-forest which may or may not be contiguous with the forest block.

The number of individual jaguars using a location per 28 days also revealed sex-
dependent habitat use (Table 5.5, Figure 5.5). The patterns tended to replicate those for
activity such that the high male activity observed in the protected forest and the low
female activity observed in the protected forest and savannah (Figure 5.4) reflect the
number of individuals using these habitats. Although male activity was higher in
protected forest than in pastures, the number of individuals using locations in these
habitats did not differ, suggesting that males utilise pasture less often than the protected
forest. Similar trends are observed if unknown jaguars are included as males or included

as females (Appendix A: Tables A5.19-20).

Table 5.5 GLM of jaguar individual rate with sex and habitat.
T Error variation for interaction is the highest order term in the model:
sex*station’(habitat)

Source d.f. Adj.MS F p

Sex 1 3.98 29.21 < 0.0001
Habitat 4 0.06 0.60 >0.6
Sex*Habitat 4 0.77 5.66 0.001
Station’(Habitat) 45 0.11 0.79 >0.7
Error 45 0.14

Total 99
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Figure 5.5 Number of individual jaguars per 28 nights using locations in five habitats,
based on night captures from six large-scale camera-trap surveys Jan 2004 to Dec
2006. All cameras functioned = 28 < 63 continuous nights. Locations with zero jaguar
activity (neither sex present) are excluded. Sample sizes indicate number of stations in
each habitat. Means and 95%CI are shown. ‘Protect’ refers to protected forest; ‘buffer’
to unprotected forest contiguous with protected forest; fragment’ to forest fragments
and milpa-forest which may or may not be contiguous with the forest block.

Within the forest block male jaguar activity positively correlated with trail width
and with female activity, but not with distance from water or settlements or the level of
hunting (Table 5.6). Note that a location with unusually high male and female jaguar
activity known to be associated with a mating event (see p.151) was excluded from
these analyses since it was coincidently on the widest trail. Stepwise regression of the
continuous variables suggested that trail width best explained variation in male activity
(Regression of square root transformed data: F; so=23.80, p < 0.0001, adjusted r* =
31%, Figure 5.6). This concurs with Harmsen (2006) who found trail width to be the
single most important factor influencing jaguar activity within the protected area of the
contiguous forest block from 2002 to 2005. Trails provide accessible routes through the
otherwise dense and homogenous secondary forest. The openness of wider trails may be
favoured by males because they reduce travel times through otherwise dense secondary
vegetation, but also because they may facilitate chemical communication via scats and

scrape marking (Harmsen 2006).

155



Chapter 5: Habitat use by jaguars & pumas in a human-influenced landscape

Table 5.6 Spearman Rank Correlation matrix on activity of male jaguars in the
contiguous forest block. Based on data from 55 camera stations collected Jan 2004 to
Dec 2006 (n = 52 for trail width). *p < 0.05; ** p < 0.01

Distto Distto Hunting Female Male
water settlements activity  activity
Trail width 0.227 -0.445 (**) 0.133 0.278(*) 0.486(%)
Dist to water -0.133 -0.095 -0.056 0.179
Dist to settlements -0.043 -0.330(*) -0.191
Hunting 0.190 0.116
Female activity 0.294(*)
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Figure 5.6 Variation in male jaguar activity with trail width within forest block. Based on
data from 52 camera stations collected Jan 2004 to Dec 2006. All cameras functioned
= 28 continuous nights. Locations with zero activity are excluded.

Regression of square root transformed data: F; s, = 23.80, p < 0.0001, adjusted r* =
31%, sqrt male activity = 0.769 +0.00173(trail width). Back-transformed (curved)
regression line is shown

Within the forest block, female jaguar activity was negatively correlated with
distance from water, but not with trail width, distance from settlements, hunting level,
or male activity (Table 5.7). As in the analysis of male activity, the location with
unusually high male and female jaguar activity known to be associated with a mating
event was excluded. Stepwise regression of the continuous variables suggested that
distance from water best explained variation in female activity (Regression of square
root transformed data: F; 5= 6.20, p < 0.05, adjusted P = 25%, Figure 5.7). It is not
clear why female activity associated with proximity to flowing water. These may be

favoured areas for hunting; alternatively or additionally, females may use streams and
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rivers as travel routes, in contrast to the males who dominate the wider trails traversing

the forest.

Table 5.7 Spearman Rank Correlation matrix on activity of female jaguars in the
contiguous forest block. Based on data from 17 camera stations collected Jan 2004 to
Dec 2006. *p < 0.05

Distto Distto Hunting Male Female
water settlements activity  activity

Trail width -0.125 -0.374 -0.239 0.402 0.316
Dist to water 0.098 -0.176 -0.129 -0.548(*)
Dist to settlements 0.327 0.148 -0.363
Hunting -0.113 -0.089
Male activity 0.236
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Figure 5.7 Variation in female jaguar activity with distance from water within forest
block. Based on data from 17 camera stations collected Jan 2004 to Dec 2006. All
cameras functioned = 28 continuous nights. Locations with zero activity are excluded.
Regression of square root transformed data: F; 5= 6.20, p < 0.05, adjusted 7* = 25%
sqrt female activity = 0.713 — 0.000797(distance from water). Back-transformed
(curved) regression line is shown

Outside the forest block, activity of male jaguars positively correlated with
distance from pasture and from plantations. These two variables were positively
correlated with each other, however, and with distance from settlements, such that
camera locations which were further from pastures were also further from plantations
and settlements (Table 5.8). Stepwise regression is inappropriate for correlated x-
variables and it is not possible to determine which of the three may explain variation in

male activity. However plots of the data do suggest that male activity declined with
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proximity to areas of human development such as settlements, major roads, pastures and
plantations (Figure 5.8). In contrast to the forest block, male activity does not vary with
trail width in the human matrix. This may be because outside the forest block the habitat

is highly heterogeneous and more accessible, with a denser network of trails and roads.
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Figure 5.8 Variation in male jaguar activity outside forest block with distance from
pastures, major roads, settlements and plantations. Based on data from 28 camera
stations collected Jan 2004 to Dec 2006. All cameras functioned = 28 continuous
nights. Locations with zero activity are excluded.

Outside the forest block, female activity positively correlated with distance from
contiguous forest (Spearman rank correlation: ps = 0.584, p < 0.02, n = 18) and not with
trail width, hunting level, male activity, or distances to: water, major roads, settlements,
fragmented forest, pastures, plantations or savannahs. Stepwise regression of the
continuous x-variables suggested that distance from the forest block best explained
variation in female activity (Regression: F 1= 12.27, p < 0.01, adjusted = 40% );
however two outliers (a pair of locations ~ 500 m apart on the same road) had unusually
high leverage because they were both far from the forest block. Spearman correlation
and stepwise regression analyses re-run without this pair indicated a positive correlation
of female activity with proximity to major roads (Table 5.9) and that variation in female

activity was now best explained by proximity to major roads and distance from the
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contiguous forest (Table 5.10, Figure 5.9). This is difficult to interpret, but it implies
that activity of female jaguars tended to be higher closer to areas of human
development, further from the forest block and nearer the major roads. Although this
contrasts with the activity patterns observed for male jaguars outside the forest block, it
should be remembered that GLM 5.1 of jaguar activity demonstrated no significant
difference between the sexes in pastures or fragmented forest habitats (both associated
with human development) (Figure 5.4). That is, although male activity declines closer to
human development and female activity increases, the net result that both sexes have

similar rates of activity at these locations.

Table 5.10 Multiple regression of female jaguar activity against distance from
contiguous forest block and major roads. Based on data from 16 camera stations
collected Jan 2004 to Dec 2006. All cameras functioned = 28 continuous nights.
Locations with zero activity are excluded. Regression equation is:

Female activity = 0.598 — 0.000190(major road) + 0.000096(contiguous forest)
Adjusted 7 = 50%

Predictor T P-value
Constant 5.70 < 0.0001
Major road -3.60 < 0.01

Contiguous forest 243 <0.05
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Table 5.8 Major Female Male
MALE Water road Settl. Contig. Fragment Pasture Plant. Savannah Hunting activity  activity
Trail width  0.328 0.146 0.019 0.004 0.180 0.214 0.221 -0.314 0.293 0.105 0.132
Water 0.121 -0.075 0.207 0.247 0.178 0.037 -0.559(**)  -0.150 -0.317 -0.001
Major road 0.227 0.077 -0.195 0.301 0.036 0.089 -0.248 -0.338 0.233
Settlement -0.053 0.188 0.632(**) 0.466(*) -0.129 0.030 0.256 0.250
Contiguous -0.225 -0.054 0.256 -0.371 0.004 -0.037 -0.041
Fragment 0.116 0.058 -0.422(%) 0.084 -0.147 0.015
Pasture 0.489(**) -0.411(%) 0.152 -0.050 0.396(%)
Plantation -0.569(**) -0.110 0.012 0.423(%)
Savannah -0.019 0.184 -0.263
Hunting 0.237 0.209
Female activity -0.075
Table 5.9 Major Male Female
FEMALE Water  road Settl. Contig. Fragment Pasture Plant. Savannah Hunting activity  activity
Trail width  0.352 0.169 0.103 -0.185 0.037 0.376 0.389 -0.286 0.150 0.142 -0.159
Water 0.329 -0.132 0.329 -0.428 0.555(*) 0.241 -0.443 -0.296 0.116 -0.126
Major road 0.209 0.106 -0.107 0.451 0.076 0.037 -0.134 0.158 -0.647(*)
Settlement -0.447 0.382 0.185 0.100 0.116 -0.028 0.460 -0.412
Contiguous -0.463 0.012 0.350 -0.237 0.050 0.015 0.359
Fragment -0.227 -0.068 -0.122 0.128 -0.010 -0.075
Pasture 0.152 -0.257 -0.184 0.042 -0.257
Plantation -0.653(**)  0.016 0.418 -0.068
Savannah 0.202 -0.272 0.099
Hunting 0.193 -0.233
Male activity 0.414

Tables 5.8 and 5.9 Spearman correlation matrix on jaguar activity (5.8 male, 5.9 female) outside the contiguous forest block. Data from 28
(Table 5.8, n =26 for trail width) and 16 (Table 5.9) camera stations, Jan 2004 to Dec 2006. *p < 0.05, ** p < 0.01.
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Figure 5.9 Variation in female jaguar activity outside forest block with distance from
major roads and contiguous forest block. Based on data from 16 camera stations
collected Jan 2004 to Dec 2006. All cameras functioned = 28 continuous nights.
Locations with zero activity are excluded.

Inside the forest block, puma activity positively correlated with jaguar activity
(Table 5.11) suggesting that the two species utilise forest block locations with similar
habitat attributes; indeed puma activity positively correlated with trail width (Table
5.11). Stepwise regression failed to show significant influences of the three continuous

habitat variables (log;o transformed data: F s4 =2.91 p > 0.05, adjusted P = 3.4%).

Table 5.11 Spearman Rank Correlation matrix on activity of pumas in the contiguous
forest block. Based on data from 55-59 camera stations collected Jan 2004 to Dec
2006. *p < 0.05 **p < 0.01

Distto Distto Hunting Jaguar Puma

water settlements activity activity
Trail width 0.036 -0.457(*%) 0.111 0.536(**) 0.358(*)
Dist to water 0.007 0.034 0.075 0.133
Dist to settlements -0.058 -0.116 -0.168
Hunting 0.256(*) -0.192
Jaguar activity 0.364(**)

An earlier finding that pumas were active at significantly fewer unprotected sites
than were jaguars (Table AS5.2 in Appendix A) suggested that pumas may be
particularly sensitive to factors associated with human activity, such that habitat use
within the protected forest may differ from that in the unprotected contiguous forest.
Following Harmsen (2006), the data were re-analysed, using locations limited to
protected forest only and excluding all locations with vehicular traffic. Under these

conditions puma activity correlated positively with trail width (Table 5.12), and
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negatively with distance to settlements, presumably because trail width correlated with
settlement distance (narrower trails were further in the protected forest). Stepwise
regression selected trail width as the single best predictor of puma activity (Regression
of logjo transformed data: F 4; = 10.69, p = 0.002, adjusted 7= 19%, Figure 5.10).
Given that male and female jaguars respond differently to habitat variables, variation in

puma activity may be better explained if the data could be separated between the sexes.

Table 5.12 Spearman Rank Correlation matrix on activity of pumas in the protected
forest and excluding locations with vehicular traffic. Based on data from 43-47 camera
stations collected Jan 2004 to Dec 2006. *p < 0.05 **p < 0.01

Distto Distto Hunting Jaguar Puma
water settlements activity  activity
Trail width 0.190 -0.392(*%) -0.080 0.412(**)  0.462(*)
Dist to water 0.016 -0.013 0.244 0.159
Dist to settlements 0.192 -0.041 -0.310(%)
Hunting 0.294(*)  -0.064
Jaguar activity 0.493(*%)
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Figure 5.10 Variation in puma activity with trail width within protected forest, excluding
locations with vehicular traffic. Based on data from 43 camera stations collected Jan
2004 to Dec 2006. All cameras functioned = 28 continuous nights. Locations with zero
activity are excluded.

Regression of log;, transformed data: F; 4 = 10.69, p = 0.002, adjusted r* = 19%, log1o
activity = -0.3083 +0.00198(trail width). Back-transformed (curved) regression line is
shown
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Tolerance of jaguars and pumas to human disturbance

The hypothesis that cat activity declines with increased human disturbance was
tested by analysing the relationship between visitor rates to the reserve and jaguar or
puma activity at the reserve boundary. The relationship between both species was also
investigated to determine whether inter-specific avoidance could be masking
relationships between activity of either cat and tourist activity. The relationship between
cat activity and rainfall was investigated at this site and at five other locations to
validate the assumption that any detected correlation between tourist activity and cat
activity reflected a true cause and effect relationship and was not a consequence of each
co-varying with rainfall.

Visitor rates to the reserve ranged from 88 to 787 people per month. Jaguars

were present on the road during more months than were pumas (jaguars present 30/31
months, pumas present 16/31 months, }(12 =16.5, p <0.0001, Appendix A: Table

AS5.21) and were more active (2-sample r-test: T=4.27, p < 0.0001, df = 43; jaguar
mean + SE =4.74 + 0.54 per 28 nights, puma 2.00 + 0.34 per 28 nights), suggesting that
jaguars had a higher tolerance for human activity than did pumas.

There was no significant negative correlation between jaguar activity and puma
activity at any of the six sites, rejecting the hypothesis that inter-specific avoidance
masked relationships between jaguar or puma activity and rainfall or tourist activity.

Jaguar activity and tourist activity were not constant throughout the year. Jaguar
utilisation of the road decreased during peak tourist periods when vehicle intensity
along the road and human activity at HQ were both high. Jaguar activity declined
linearly with increasing visitor activity (Regression: F 9= 5.84, p < 0.05, adjusted 7=
14%, Figure 5.11). Rainfall had a negative influence on visitor rate and a positive
influence on jaguar activity at the reserve boundary (Spearmann rank correlations:
visitor rate ps = -0.447, p < 0.01, n = 34, jaguar activity ps = 0.491, p < 0.01, n = 31).
However there were no significant influences of rainfall on jaguar activity at the other
five sites, suggesting that the variation in jaguar activity at the reserve boundary was a

response to tourist activity rather than climatic factors associated with season.
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Figure 5.11 Variation in monthly jaguar activity with visitor rates in protected forest.
Based on data from 31 months Jan 2004 to May 2007. All cameras functioned = 28
continuous nights. Linear regression: F; = 5.84, p < 0.05, adjusted 7* = 14%, jaguar
activity = 7.24 — 0.00749(visitor rate)

Puma activity did not depend on visitor rate (Spearman ps = 0.100, p > 0.5, n =
31), or rainfall at any of the six sites. Although there was no detectable decline in puma
activity with human activity, the frequency of months during which pumas avoided the
road, and the relatively low activity when present compared to jaguars suggests that

pumas may be less tolerant of human disturbance than are jaguars.

Determinants of cat activity and livestock predation on farms

Relationships between jaguar activity, livestock predation and farm habitat
attributes tended to be masked by jaguars frequently being removed from farms where
predation occurred, forcibly lowering jaguar activity and predation compared to farms
where action was not taken so quickly. Although the limited sample size precluded
multivariate analyses, it is likely that a combination of factors influence both livestock
predation and jaguar activity on farms. The results presented in this section should be

interpreted with this in mind.

Factors influencing cat activity

Jaguars were present at more cattle-farm locations than were pumas: 21/24 farm

locations were visited by big cats, all of which were visited by jaguars compared to only

three by pumas ( ¥; = 27.0, p < 0.0001, Appendix A: Table A5.22). Jaguar presence at
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farms was more likely to involve males than females (18/24 farm locations were visited
by males and only 7 by females ;= 10.1, p < 0.002, Appendix A: Table A5.23). The

same trend was observed if all individuals of unknown sex were included as females
(Appendix A: Table A5.24).

As there was no sex difference in activity on pastures (see Figure 5.4), the sexes
were pooled for analysis of variation in jaguar activity with farm habitat. There was no
evidence that jaguar activity at locations on farms decreased with distance from the
forest block, which ranged from 0 km (forest/pasture boundary) to 4.2 km (Regression,
Fi 12=0.01, p > 0.9, adjusted r* = 0%). Nor did it vary with the % of property that had
patches of cover, the length of covered edge per km? pasture, or the % of pasture edge
that was clear (Regressions, adjusted r* < 5% and p > 0.1 for all, n = 8 or 9). There did
not appear to be any difference in jaguar activity between farms with forest patches, or
streams or river, compared to farms without; however the data do suggest that there may
be a trend for lower jaguar activity to be associated with those farms which had on-site

human residence (Table 5.13).

Table 5.13 Jaguar activity on farms with and without: forest patches, on-site human
residence, and streams or rivers.

Farm Attribute n Mean activity SD
(/28 nights)

Forest patches yes 6 0.70 0.33
no 3 0.85 0.77

Residence yes 5 0.48 0.27
no 4 1.08 0.47

Streams orriver yes 6 0.63 0.25
no 3 0.98 0.77

Factors influencing livestock predation

There was no evidence of higher livestock predation on farms with greater
jaguar activity (Pearson correlation, p > 0.8, n = 8). However the periods during which
jaguar activity was monitored on farms did not always coincide with periods of
livestock attacks, making direct comparison of jaguar activity with the level of livestock
predation questionable. One dataset (Farms #01a, b and c) provided simultaneous long-
term data on both jaguar activity and predation rate on the livestock each month for ~ 3

years; this is investigated further in Chapter 7.
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Kill density regressed inversely with livestock density (F ¢=22.95, p = 0.002,
r* = 49%, Figure 5.12) suggesting that the presence of high numbers of cattle within a
small area may lessen successful attacks. Alternatively other farm characteristics
associated with high livestock density may lower livestock predation, for example small

farms with large herds may also have better fences.
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Figure 5.12 Predicted kill density based on linear regression equation (through origin):
kill density = 736/ livestock density (F; ¢ = 22.95, p = 0.002, /* = 49%)

Kill density was not influenced by the length of covered pasture edge per km?
pasture, or the % of the property that had patches of cover (p > 0.5, n =9 for all). Kill
density regressed negatively with the % pasture edge that was exposed (square root
transformed data, F g, p < 0.05, adjusted r* =39%), suggesting that kills may be fewer
if there is a buffer between the pasture and the adjacent habitat. Kill density did not tend
to differ between farms with and without human dwellings; however it tended to be
higher on farms with forest patches or streams/rivers (Table 5.14).

All farms had barbed wire fencing which mainly functioned to keep livestock in,
rather than cats out. The quality of fencing varied between the farms: smaller farms
tended to have well-maintained fences, whilst the perimeters of three farms (Farms
#01a, #01c and #03) lacked fencing in places, particularly where pasture bordered dense
forest habitat or river banks. Farms that lacked complete fencing tended to have higher
kill densities (Table 5.14), suggesting that fences are better deterrents than no fences.
Rather than acting as a jaguar deterrent per se, the fences may simply prevent livestock

from wondering into the adjacent forest where they are prone to ambush. Indeed, kill
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density was not influenced by the fence index on the eight properties (Regression, F_7,
p>0.7, adjusted r* = 0%). Fence width was more variable than fence height (mean
width 31 cm, CV = 22%; mean height 143 cm, CV = 12% n = 8) and fence index varied
by 30% between the farms. The two farms with the lowest and highest kill density
(Farm #04 and Farm #06 respectively) both had the highest fence indices (6.5 and 7.0
respectively), suggesting that current fencing standards do little to prevent predation. A
combination of factors may be important, which can only be assessed qualitatively here;
for example Farm #04 not only had a high fence index but also 95% of its perimeter was
clear; in contrast, although Farm #06 had a high fence index, 79% of its perimeter was

forested.

Table 5.14 Kill density (livestock kills/ yr/ km?) on farms with and without: forest
patches, on-site human residence, streams/rivers, complete fencing.

Farm Attribute n Kill density SD
Forest patches yes 5 10.7 14.3
no 5 4.9 6.8
Residence yes 4 6.3 5.7
no 6 8.8 14.0
Streams orriver yes 7 11.0 11.9
no 3 0.3 0.5
Complete fence yes 7 4.5 5.8
no 3 15.5 17.8

There was no relationship between livestock losses on Farm #01 and monthly
rainfall or lagged monthly rainfall (square root transformed data, Regressions, p > 0.2,
adjusted r* < 3%, n =34 and 33) suggesting that if wild prey abundance does fluctuate

seasonally with the rains, it does not influence predation rate on domestic prey.

Discussion

There are few published studies on the habitat use of sympatric populations of
jaguars and pumas. They are known to coexist in homogenous forest environments,
where there is little habitat variation and their daily activity patterns are similar (e.g.
Nuiez et al. 2002, Harmsen 2006). For example in the dry forests of Jalisco, Mexico,
jaguar and puma ranges overlapped spatially and both species were associated with
streams, which provided easy travel routes through the dense vegetation (Nufiez et al.

2002). In contrast, Emmons (1987) detected subtle differences in habitat use between
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the two species in the lowland rainforest of Manu, Peru; here only jaguars were
associated with rivers and this was linked to prey selection rather than accessibility
through the forest. Harmsen et al. (in press) demonstrated that jaguars and pumas in the
homogenous protected forest of the Cockscomb Basin, Belize, utilised the same
locations, albeit not at the same time. Activity of both species increased with trail width,
but no inter-specific habitat use differences were detected in relation to altitude, slope or
proximity to water, although the validity of these analyses may be questionable given
the limited ranges sampled (Harmsen 2006).

In the current study, jaguars and pumas were present at a similar number of
locations and utilised the sites with similar intensity throughout the forest block, across
both the protected sanctuary (previously studied by Harmsen 2006) and the contiguous
unprotected forest buffer. This overall similarity emphasises the extraordinary ability of
these morphologically similar predators to coexist. Neither species were influenced by
the proximity of settlements bordering the buffer edge: activity levels in the protected
core were similar to those at the forest periphery near settlements. The activity of both
species (pumas, and male jaguars) increased on wider paths. Although for pumas this
was only true on undisturbed roads. Wide trails and unpaved roads within forested
habitats may not only facilitate movement through dense vegetation (e.g. Rabinowitz
and Nottingham 1986, Dickson et al. 2005), but also may be preferentially used for
hunting, particularly by pumas and for olfactory communication between conspecifics
through the deposition and display of scrapes and scent marks (Harmsen 2006). Given
that jaguars and pumas appear to have similar habitat requirements within the
homogenous forest environment we may speculate that their co-existence is facilitated
by differential food habits. This is investigated further in Chapter 6.

Heterogeneous landscapes provide opportunities for habitat partitioning between
sympatric species. Where jaguars and pumas are sympatric in mosaic landscapes, pumas
have been reported to utilise more open habitats than jaguars, including disturbed areas
such as croplands and pasture (Scognamillo et al. 2003, Silveira 2004). In contrast
jaguars tend to utilise forested areas and avoid more exposed areas such as open pasture
(Schaller and Crawshaw 1980, Crawshaw and Quigley 1991, Silveira 2004, Cullen et al.
2005). However during this study jaguars were common and pumas were scarce outside
the forest block. This was unexpected, given the greater range of habitats associated
with pumas than jaguars (Sunquist and Sunquist 2002); we may have expected the puma

to use the human-matrix equally, if not more, than did the jaguar.
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Four hypotheses, which are not necessarily mutually exclusive, may explain why

pumas did not utilise lands outside the forest block:

1) Pumas are heavily hunted by humans outside the forest block

2) Pumas have a low tolerance of human disturbance (avoid human activity)

3) An essential resource, present in forest block, is lacking in the human-matrix
4) Pumas are excluded by jaguars outside the forest block

It is unlikely that the rarity of pumas outside the forest block is related to direct
persecution by humans. Pumas were rarely detected on cattle farms and were seldom
held responsible for livestock predation; and there were no verified reports of lethal
control of pumas in the study area (Chapters 6 and 7). Furthermore, historically the
international fur trade focused on spotted cats (e.g. Smith 1976, McMahan 1982,
Nowell and Jackson 1996, Paydn and Trujillo 2006) so it is unlikely that pumas are
hunted in preference to jaguars for illegal markets.

Numerous studies indicate that carnivores, particularly felids, avoid areas with
human activity and/or become more nocturnal in areas with high human-use, including
tigers (Panthera tigris) in a Sumatran rainforest (Griffiths and van Shaik 1993), and
bobcats (Lynx rufus) in a Californian urban nature reserve (George and Crooks 2006).
Even leopards (Panthera pardus), which are considered the large felid least sensitive to
disturbance (Sunquist & Sunquist 2002), are more nocturnal in areas more heavily used
by people, and their activity declines with proximity to settlements (Ngorprasert et al.
2007). There is no a priori reason to suppose that pumas are less tolerant than jaguars of
human activities per se. There are no published data on the response of jaguars to
human disturbance. Various studies have demonstrated temporal and/or spatial
avoidance of areas with human activity by pumas (e.g., van Dyke et al. 1986, Janis and
Clark 2002, Dickson et al. 2005 and Sweanor et al. 2008). However behavioural
responses in these studies were variable: it was not always clear whether prey avoided
human activity, resulting in reduced use of areas by pumas, versus a direct effect of
human disturbance on puma behaviour (e.g. Sweanor et al. 2008). The rarity with which
the author saw either species during four years in the field (12 jaguars, one puma) is
testament to the elusive behaviour of both species around people. This study found that
jaguar activity declined during months when tourist activity increased. Although pumas
showed no detectable response to tourist activity, they completely avoided the disturbed
site for half of the study period; in contrast puma activity rivalled that of jaguar activity

at other sites throughout the protected forest. Although inconclusive, these results
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suggest that, in this area at least, pumas were less tolerant than jaguars of human
disturbance.

Pumas may have been absent from the human-matrix because it lacked an
essential resource, for example specific microhabitat features or prey species. Pumas are
adaptable to a wide range of vegetative and environmental conditions, living in a variety
of habitats from arid scrub to tropical rainforests (Sunquist & Sunquist 2002), including
disturbed habitats (e.g. Silveira 2004), and it therefore seems unlikely that specific
microhabitat requirements prevented their survival outside the forest block in this study.
More feasible is the hypothesis that puma utilisation of the human-matrix is restricted
by prey availability, which may be limited by competition with human hunters and
potentially exacerbated by competition with jaguars. Testing this hypothesis requires
knowledge of the food habits of both species, and the extent to which their diets

overlap. This is explored further in Chapter 6.

Jaguar habitat use

Jaguars utilised the entire study area, and were present in all habitat types
surveyed: savannah, fragmented forest patches (including shrubland) and the contiguous
secondary forest block, and were also recorded around all land-use systems: villages,
plantations, aquaculture, pastureland and forest-milpa. Habitat use nevertheless differed
between the sexes. Males were present at more locations than females across the study
area. This is expected since males had larger home ranges than females thus also had a
higher probability of encountering a camera station (Chapter 4). Males dominated the
protected forest, both in terms of the number of individuals utilising a given location,
and the intensity of use. As described above, in the forest block male activity increased
on wider trails; however female activity did not, rather higher activity was associated
with proximity to flowing water. This disparity in microhabitat use may be a strategy
for females with young to avoid infanticide by males attempting to gain mating
opportunities. Infanticide is common in carnivores, and females with dependents may
avoid areas dominated by males, as reported in brown bears (Ursus arctos) by Dahle
and Swenson (2003). Infanticide has been recorded in the Felidae (e.g. caracal (Caracal
caracal), domestic cat (Felis silvestris catus), leopard, lion (Panthera leo), tiger,
Sunquist & Sunquist 2002) including jaguars (Soares et al. 2006). In this study, whilst
males dominated the wider trails to traverse the forest, females may have used streams

and rivers as alternative safe travel ways through the dense habitat. CBWS has a high
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density of rivers and streams, with approximately 2.5 km of waterways per km?. The
potential number of access ways through the forest is thus high, and detection rate of
females by researchers will be correspondingly low. Consequently the apparent scarcity
and low activity of females within the protected forest compared to males, and
compared other females in habitats outside CBWS, may be an artefact of the
methodology: cameras located on trail systems (man-made or game trails) are
potentially avoided by females unless in oestrus, and cameras located on streams have a
low probability of detection given the high number of alternate waterways available.
Whilst preferential use of streams over trails by females is speculative, increasing trap
effort in such locations may go someway to correct the observed sampling bias within
the protected forest surveys and improve density estimates (Chapter 4) and warrants
further investigation. Research addressing these questions in CBWS is currently
underway (B. Harmsen, Panthera Belize, pers. comm.).

Overall male jaguars were present at more sites in the human-matrix than were
females; however the high activity of males observed in the protected forest was not
observed in disturbed areas such as fragmented forest and pastures, and habitat use
outside the forest block declined with proximity to areas of human development. Intra-
specific variation in use of developed areas by carnivores has been documented, for
example in California male bobcats used areas near or in urban sites more than did
females (Riley et al. 2003, Riley 2006). Indeed male carnivores are often described as
the more risk-prone sex however it is not clear whether this phenomenon arises from
intrinsic risk-taking behaviour per se versus their wider ranges causing more encounters
with people (Linnell ef al. 1999). In this study there was no evidence that female jaguars
were less tolerant of lands with human activity than were males. In fact, outside the
forest block female activity increased closer to areas of human development, and both
sexes were equally active on disturbed lands (pastures and fragmented forests).

Chapter 4 demonstrated that where more than four-fifths of the forested
landscape was fragmented the average jaguar did not utilise all the available land, and it
was suggested that this may reflect habitat preferences within the mosaic landscape,
and/or vacant territories arising from direct conflict with people. With regards the latter
hypothesis, the extent and implications of human-induced mortality are considered
further in Chapter 7. With regards the former, the results of this study cannot reject the
hypothesis that jaguars preferred or avoided certain habitats in the human-matrix;

however the interpretation is not clear. The decline in male activity with proximity to
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settlements and plantations suggests some degree of avoidance of human activity. Also,
males were present at more pasture locations than expected suggesting an attraction to
ranches where there is an abundance of domestic prey; however it should be noted the
number of males present at any location in the human-matrix did not vary between
habitats, thus it does not seem to be the case that more males used pastures than, for
example, forest fragments or savannahs. Females were less common in savannahs than
were males. It is possible that this habitat is simply not productive enough to support the
energetic needs of females with dependents. The energetic needs of jaguars are

investigated further in Chapter 6.

Determinants of cat activity and livestock predation on farms

The study of factors associated with livestock predation aims to seek methods to
reduce losses without the need for lethal control. Both jaguars and pumas attack
livestock; studies from different locations cite different levels of predation by either
species. For example jaguars were reported to attack livestock more heavily than pumas
in fragmented forest habitats of the Brazilian Amazon, southern Brazil and Belize
(Michalski et al. 2006, Conforti & Azevedo 2003, Azevdeo 2008, Brechin and Buff
2005) and in the Brazilian Pantanal (Azevedo and Murray 2007). The reverse was
reported in the Venezuela llanos (Polisar et al. 2003) and the cerrado/forest transition
zone of central-western Brazil (Palmeira et al. 2008). In this study it was not often
possible to assess livestock carcasses and identify predator species; however pumas
were rarely detected on farms and the majority of cat attacks were usually attributed to
jaguars. Indeed when asked about jaguars and pumas it was common for local people to
be unfamiliar with the ‘red tiger’. This is reflected across the country; in a nationwide
survey Brechin and Buff (2005) found that the majority of predation events were
blamed on jaguars and retaliatory killings of cats were of jaguars rather than pumas.
Characteristics of cats associated with depredation and thus at risk of lethal control are
discussed further in Chapter 7.

Given the result that pumas were rarely present on farms in the study area, the
following discussion of habitat factors associated with livestock predation is limited to
jaguars only. Although males were present at relatively more pasture than non-pasture
locations, and females at fewer, they both had similar activity on pasture. Neither jaguar
activity nor predation was influenced by the extent of canopy cover (forested or

plantation) within the property or along its perimeter. Jaguar activity did not vary with
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the extent to which the pasture edge was clear, however predation declined as the
proportion of exposed edge (> 3.5 m wide) increased. These findings suggest that
although jaguar movement through farmlands was uninhibited by physiognomy,
successful predation of livestock required some level of cover for stalking prey. Indeed
several studies indicate that higher predation rates are associated with proximity to
forest cover (e.g. Polisar et al. 2003, Michalski et al. 2006, Azevedo and Murray 2007).

Jaguar activity on the farms was not limited by distance from the forest block.
However, no location was further than 4.2 km, a distance smaller than the average home
range diameters estimated for male and female jaguars in the area (Chapter 4). Indeed in
Costa Rica, Sdenz and Carrillo (2002) reported that 87% of attacked cattle farms were
up to 15 km from protected areas, much further from the forest block than in this study.
Given that 72% of the Belize is still forested (WRI 2007), most farms and villages lie in
close proximity to the forest so we may expect them to be at high risk of depredation if
methods to protect livestock are not employed.

In this study annual livestock (cattle) predation on the farms varied from 0% to
15% of the total stock, with an average of 5% loss across all eight properties. This is
higher than reports for South America, most of which come from Brazil. In the
Brazilian Pantanal losses due to cat predation range from 0.2 to 2.3% (Dalponte 2002,
Zimmermann et al. 2005, Azevedo and Murray 2007); in the Atlantic forest and
Amazonian regions of southern Brazil, where habitat and ranch size is more comparable
to that seen in Belize, losses range from 0.3% to 1.2% (Mazzoli et al. 2002, Conforti
and Azvedo 2003, Michalski et al. 2006, Azevedo 2008). However, annual losses from
individual farms may be high. For example Mazzolli et al. (2002) report cattle losses of
16% of the stock at one of the ranches in their study site. Indeed, although it is
frequently cited that ‘wild felids are only responsible for the loss less than 3% of annual
domestic stock’ (Nowell and Jackson 1996), the losses to individual farmers may be
much higher. Thus the problem needs to be assessed and addressed at the local level.
Attempts to mitigate conflict must be site specific, and take into account local
constraints such as culture, attitudes and economy, as well as the spatial scale of
properties involved and physiognomy of the landscape. Some potential methods to

reduce depredation, relevant to the situation observed in Belize, are discussed below.
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Methods to lower livestock predation in Belize

Farms that lacked complete fencing tended to suffer more predation, suggesting
that fences are better than no fences. However the quality of fencing was generally
poor: low, widely spaced and poorly constructed. Farmers often showed the author
where the jaguar had passed through the fence. Improving fences such that they are
higher with taut strings and narrow spacing may deter predators; however it seems that
economics prevent sufficient investment from the outset, with a tendency to first
purchase cattle, and suffer predation, then to gradually improve fencing when money is
available (R. Foster pers. obs.). Although there is some evidence that electric fencing
may prevent attacks (Schiaffino et al. 2002, R. Foster pers. obs.) this option is again
limited by high costs, as well as high maintenance because vegetation must be regularly
cleared from the fence line to prevent short-circuit. Corrals may provide an alternative
solution, in which livestock are brought into a small well-protected area at night. Costs
of ~ US$2,000 are estimated to build and maintain an electrified 1-ha enclosure, and ~
US$4,600 per year required for staff to round up and release 100 cattle every day; a
barbed wire corral and a night watchman would cost approximately the same (S. Juan,
Farm Manager, pers. comm.). The loss of productivity from corralling cattle at night is
estimated at US $45/year per animal; whilst the cost of losing an animal to a predator is
approximately US$500 (S. Juan pers. comm.). Thus lost productivity due to corralling is
estimated at ~ 9% per year (S. Juan pers. comm.). Investment in a corral (with either
night watch or electrified fencing) is probably only appropriate and affordable for large-
scale operations, and only if enough deaths are prevented so as to offset both the cost of
installing and maintaining the corral, staff wages, and the lost productivity associated
with corralling at night.

Depredation tended to be higher on farms which had forest patches or streams/
rivers. Forest patches potentially provide good stalking cover within a pasture, as do
streams with riparian vegetation as cover, enabling the predator to ambush cattle while
they are drinking. Furthermore, streams in the study area were often unfenced,
providing predators with easy access on to the property. In a nationwide survey, Brechin
and Buff (2005) found that only 28% of ranchers interviewed exclusively used artificial
water sources on their farms; the majority relied to some extent on natural water bodies,
and in 74% of properties these were forested also. Encouraging cattle to utilise artificial

watering troughs, and fencing off streams may help to reduce attacks. Farmers may also
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lower risk of predation by clearing the natural vegetation adjacent to the pastures.
Farmers may be tempted to graze cattle right up to the edges of their property such that
the pasture boundary abuts forested habitats, in order to maximise the space available.
Bringing in the fence line, or clearing a buffer between a fenced pasture edge and the
adjacent vegetation, may help to reduce attacks as predators may be reluctant to cross an
exposed area with no livestock before reaching the grazing lands.

Although this study detected no difference in predation between farms with and
without human dwellings, jaguar activity was lower where people were permanently
present and we may expect that human activity on small holdings could help to reduce
predator attacks. For larger properties it may be advisable to bring herds with vulnerable
calves closer to human dwellings, particularly when sign of predators are detected. This
practise was common on the two largest farms in the study. However it is not unheard
of for jaguars to approach dwellings, with two cases of jaguars attempting to snatch
dogs from doorsteps reported from settlements during the study.

Recent research from Venezuela has highlighted the benefits of incorporating
water buffalo (Bubalus bubalis) into cattle herds, or switching entirely to buffalo, as a
means to reduce losses to predators (Hoogesteijn and Hoogesteijn 2008). Buffalo were
less likely to be attacked and displayed defensive behaviours not observed in the Bos
species; as well as being more productive and more resistance to disease. Buffalo are
well-suited to the expansive ranches in the seasonally flooded savannahs of the
Venezuelan llanos and Brazilian Pantanal (Hoogesteijn and Hoogesteijn 2008), and
their suitability to Belizean pastures, or to the Central American meat market, remains
to be established. Presumably only the larger ranches which have waterholes for
wallowing are appropriate. Given that the majority of cattle owners are small-scale
farmers managing < 50 head (Brechin and Buff 2005) it seems unlikely that buffalo will
provide a universal solution in Belize. Furthermore the market value of buffalo meat
tends to be low (Hoogesteijn and Hoogesteijn 2008). Cultural tastes in Guatemala and
Mexico (the main market for Belizean beef) may not adapt easily and few farmers may
see the economic benefit of switching from beef. An alternative may be to mix some
buffalo with cattle purely for protection, not for meat production. Currently 25 Belizean
holdings do have buffalo, albeit in low numbers (Belize Government 2007). The two
largest farms in this study stocked buffalo. These totalled < 5% of the total stock,
however, with the result that not all the cattle herds shared pastures with buffalo, and it

is not yet clear whether they have reduced overall predation rates.
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Livestock guard dogs (LGDs) have been used successfully in Africa, Europe,
Australia, Canada, USA, India and the Middle East to protect livestock (usually sheep,
but also cattle and horses) from a suite of predators including bears, wolves, pumas,
leopards, cheetahs and hyaenas, in both rangeland and pasture situations (Smith et al.
2000a, Dawydiak and Sims 2004). To date LGDs have not been used to protect cattle
from jaguars in the neotropics. They would not be suited to the expansive and often
poorly managed ranch operations in Venezuela and the Brazilian Pantanal; however
they may be appropriate in the small-scale pastures of Belize. Whether or not LGDs
would be effective against jaguars is debatable. Indeed jaguars are reported as a major
main cause of dog mortality in Belize (Brechin and Buff 2005). Furthermore the
relatively high cost associated with rearing and training LGDs (Smith et al. 2000a)
makes this option unviable for most Belizean farmers.

A growing trend in Belize is to incorporate donkeys into herds. Anecdotal
reports suggest that donkeys work well as guard animals against big cats in the north of
the country. They are less expensive, require less maintenance and have a higher life
expectancy than livestock guarding dogs; however their effectiveness at deterring
predators remains to be formally evaluated (Smith ez al. 2000a).

Repellents may offer a means to lower livestock predation, particularly on small
holdings. They rely on novel stimuli to immediately disrupt the action of a predator.
Examples include capsaicin sprays, strobes, flares, propane exploders, high frequency
and intensity sounds, rubber bullets and jets of water, some of which can be trigged
automatically by motion detectors. To date there has been relatively little research on
felid repellents. They have been shown to offer immediate results in other predators
(e.g. ursids, canids, mustelids) however the effect is usually only temporary due to
habituation to the stimulus, and does not create an aversion to the food source (Smith et
al. 2000b, Shivik et al. 2003). Thus, repellents may not offer a long-term solution on a
large-scale, but they may be sufficient to protect a small focal pasture for a critical
period e.g. during calving. A pilot-study on the response of captive jaguars and pumas
to commercially available ‘ultrasonic cat deterrents’ detected no effect (R. Foster
unpubl. data). Certainly the potential for felid repellents requires further investigation.

The majority of losses reported during this study were of calves, rather than
adults, as has been observed elsewhere (e.g. Polisar et al. 2003, Michalski et al. 2006,
Azevedo and Murray 2007, Palmeira et al. 2008). Thus methods to reduce losses need

to focus on protecting young animals. If money is limited, efforts should ensure that
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priority is given to females with young, locating them in the ‘safest’ pastures (e.g. best
fencing, away from forest edges etc). This can be facilitated by establishing short
breeding seasons of 3-4 months rather than year-round breeding (Hoogesteijn 2000).
Furthermore it has been suggested that synchronised reproduction can reduce overall
losses to predators: in the case of cattle, swamping the predator with vulnerable prey
within a short period may result in fewer losses than if calves are available, albeit in
lower numbers, throughout the year (Palmeira et al. 2008). This strategy may be
appropriate for large-scale operations with hundreds of head cattle, in which the
predator truly is ‘swamped’ with calves, but is unlikely to benefit small-holdings. In
fact, if the herd is small, asynchronous breeding may be preferential. With jaguars and
pumas being generalist predators, if wild prey are available in numbers greater than one
or two calves in a pasture, they may not perceive the pasture as a reliable resource patch
to which they will return.

Research suggests that a low abundance of wild prey is associated with a high
level of predation on domestic animals: in Brazil the overexploitation of wild species by
man has coincided with an increase in cattle predation e.g. white-lipped peccary
(Conforti and Azevedo 2003, Crawshaw et al. 2004, Azevedo 2008) and caiman
(Caiman crocodilus, Hoogesteijn 2000). In contrast, ranches rich in wild prey may
suffer little or no depredation, suggesting a preference for wild prey when it is available
(e.g. Miller 2002). It is likely that there is an interaction between the availability of
wild versus domestic prey. In Venezuela the frequency of cattle depredation was
inversely related to availability and vulnerability of natural prey and directly related to
availability and vulnerability of livestock (Polisar et al. 2003). Promoting wild prey
populations may provide part of the solution to lowering livestock predation. Although
this study did not assess wild prey abundance, hunting was common throughout the
study area. Evidence of hunting was detected across the landscape including savannahs,
farms, the forest block and extending into the protected area. In areas where farms are
bordered by several communities it may be impossible to reduce levels of local hunting;
however in some cases the owners of larger ranches could ban staff from hunting.
Alternatively, the ranchers or communities (as collectives) may consider augmenting
the wild prey on their land with species such peccaries and allow controlled levels of
hunting from which they may get economic returns. Knowledge of the relative
abundance of both wild and domestic prey, and the food habits and preferences of the

predators, is required to assess whether wild prey augmentation or reduced hunting may
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help to lower livestock predation within a given area. There is little value in bolstering
wild prey if this merely supports more predators which continue to attack domestic

stock as well. Food habits of jaguars and pumas are investigated further in Chapter 6.

178



Chapter 6: Food habits of jaguars & pumas in a human-influenced landscape

Chapter 6

Food habits of jaguars and pumas in
a human-influenced landscape
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Abstract

Jaguars (Panthera onca) co-exist with pumas (Puma concolor) across their
entire range. In areas where they occur together their coexistence may be facilitated by
differences in diet. This study describes a comparison of the food habits of jaguars and
pumas in Belize, Central America, between a protected lowland rainforest and the
neighbouring human-influenced landscape. Diets were determined from 362 jaguar
scats and 135 puma scats that were genotyped to species level, representing the largest
analysis to date of the species in sympatry. It was estimated that at least 100 scats are
required to adequately represent diet in this region. The diet breadths of jaguars and
pumas in the protected forest were low and showed little overlap. In this habitat each
relied heavily on a single small (5-10 kg) prey species: jaguars mainly ate nine-banded
armadillos (Dasypus novemcinctus) and pumas principally ate pacas (Agouti paca). It is
suggested that jaguars were exploiting a super-abundant prey resource, whilst pumas
may have been selecting pacas over armadillos. Both cats also took larger prey (>10
kg), mainly white-lipped peccaries (Dictolyes pecari) by jaguars and red brocket deer
(Mazama americana) by pumas; it is proposed that jaguar and puma reproduction may
be limited if large prey are unavailable for females with dependents. In unprotected
fragmented lands, jaguar scats rarely contained large wild prey species; rather, a diet of
relatively small wild prey was supplemented with larger domestic species. The
augmentation of populations of large ungulates such as collared peccaries may provide
an alternative prey source and so reduce jaguar predation on cattle. Pumas were scarce
outside the protected forest. This may reflect a reluctance to utilise domestic species
near human development and/ or competition with humans for their preferred prey

species, paca and deer, which are also prized game species in the region.

Introduction

The coexistence of similar sympatric species may be facilitated by ecological
separation along trophic, spatial and temporal dimensions of their environment (e.g.
Pianka 1969); most commonly through the partitioning of food resources and
differential habitat use (Schoener 1974). The extent to which sympatric species compete
will depend on their level of niche overlap and the availability of resources, thus
ecological separation can reduce exploitative and interference competition between

similar species (e.g. Durant 1998). Changes in the resource spectrum and availability of
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resources may alter the degree of inter-specific competition and the balance of
coexistence (e.g. Bonesi and Macdonald 2004). If alternative exploitable resources are
available phenotypic plasticity may facilitate a shift in resource use so reducing
competition; conversely if alternative resources cannot be exploited the subordinate
species may be competitively excluded (Pfennig ef al. 2006). Human population growth
is placing increasing pressure on natural resources; particularly across the tropics where
the recent increase in hunting of wildlife for meat is considered unsustainable in many
areas (Milner-Gulland et al. 2003), and people may compete with large carnivores not
only for space but also for prey (e.g. Leite and Galvao 2002). Reductions in prey
availability, either through direct competition with man or indirectly through habitat
loss, may reduce carnivore survival (Fuller and Sievert 2001); for example wild prey
depletion is considered a principal cause of tiger (Panthera tigris) population decline
(Karanth ef al. 2004). It has been suggested that when prey become scarce, the long-
term persistence of large felids may depend on diet flexibility and their ability to use
human-disturbed areas (Azevedo 2008). Thus changes to habitat and the availability of
different prey species may alter patterns of co-existence of sympatric species (Nufiez et
al. 2000a). This study focuses on the jaguar (Panthera onca) and the puma (Puma
concolor), two similar-sized cats that co-occur throughout the neotropics. The aim of
this chapter is to compare the food habits of jaguars and pumas inhabiting an
undisturbed protected lowland rainforest with those utilising the neighbouring human-
influenced landscape, in Belize, Central America. Evidence of dietary overlap will be
interpreted in relation to implications for the persistence of these two sympatric felids
and options for conservation management. Until now diet studies of sympatric jaguars
and pumas have been limited by sample size and/or reliable techniques to distinguish
between predator species (Chapter 1). In this study diets are described using scats that
have been genotyped to species level. The scat collection represents the largest dataset
available to date for a comparative study of jaguar and puma feeding ecology.

The Neotropics is one of the most biodiverse ecozones in the world;
Mesoamerica alone supports 2,859 species of terrestrial vertebrates (Myers et al. 2000),
providing a high number of potential prey for neotropical predators such as jaguars and
pumas. At single rainforest sites, as many as 24 different taxa have been detected in
jaguar diet, and 20 in puma diet, (Garla et al. 2001, Leite and Galvao 2002, Moreno et
al. 2006). When describing carnivore food habits, researchers in this region should

consider the potential number of prey taxa available for top predators and evaluate
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whether the scat sample size will adequately represent the true richness of prey taken
and the level of plasticity in the feeding ecology of the target species. This is rarely
done. As a prerequisite to achieving the main aim of this chapter, the first objective was
set as an analysis of prey taxa identified in relation to scat sample size, using published
studies of jaguar and puma diets and new data from this study.

Similar-sized carnivores may coexist by hunting in different areas (e.g. cheetahs
(Acinonyx jubutas) with hyaenas (Crocuta crocuta) and lions (Panthera leo), Durant
1998), at different times (e.g. red foxes (Vulpes vulpes), Iberian lynxes (Lynx pardinus)
and Eurasian badgers (Meles meles), Fedriana et al. 1999; dholes (Cuon alpinus) with
leopards (Panthera pardus) and tigers, Karanth and Sunquist 2000) or by employing
different hunting strategies and using different habitats (e.g. tigers and leopards,
Seidensticker 1976; badgers and lynx, Fedriana et al. 1999), but perhaps most
commonly by using prey of different size-class or taxa (e.g. lions and leopards, Bertram
1982; aardwolves (Proteles cristatus), bat-eared foxes (Otocyon megalotis), black-
backed jackals (Canis mesomelas) and Cape foxes (Vulpes chama), Bothma et al. 1984;
ocelots (Felis pardalis), hog-nosed skunk (Conepatus semistriatus), tayra (Eira
barbara), grison (Galictis vittata) and crab-eating fox (Cerdocon thous) Sunquist et al.
1989; dholes, leopards and tigers, Karanth and Sunquist 2000; Andean mountain cats
(Leopardus jacobitus), colocolos (Leopardus colocolo) and culpeos (Lycalopex
culpaeus), Walker et al. 2007). Where jaguars and pumas occur together they often use
the same habitats and follow similar activity patterns (e.g. Nufez et al. 2002,
Scognamillo et al. 2003, Harmsen 2006). It is therefore reasonable to hypothesise that in
such areas their coexistence may be facilitated by selecting different prey species. The
second objective of this chapter is to describe the diets of jaguars and pumas inhabiting
a protected secondary rainforest, and to evaluate the level of dietary overlap between the
two cats. Prey availability is a prerequisite for determining whether prey species are
taken opportunistically or selectively. One of the intractable problems with dietary
studies of top predators inhabiting densely forested habitats is evaluating prey
availability against which to compare prey consumption. Although relative abundances
of wild prey species were unknown in this study, differences between the relative
occurrence of a given prey species within the diets of sympatric jaguars and pumas
would imply that one or both cats were taking prey selectively.

Optimal foraging theories predict that when prey are abundant predators should

select large prey in order to maximize energy intake, but when prey are scarce they
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should be taken opportunistically according to their availability (Griffiths 1975). The
high proportion of small prey in the diet of jaguars and pumas in the Paraguayan Chaco
has been attributed to a reduction in the availability of larger prey caused by intensive
commercial hunting by people (Taber et al. 1997). It has been suggested that pumas
have a superior ability to exploit smaller prey than jaguars and that this may give them a
competitive advantage in human-influenced landscapes (Nufez et al. 2000a). In the
Atlantic forests of Brazil, jaguars are in decline because local people hunt the same
species (Leite and Galvao 2002), but in some areas jaguars move outside protected
forests and use livestock as an alternative prey resource (e.g. Azevedo 2008). The
utilisation of livestock may allow large predators to supplement their diet with larger
prey where wild animals are otherwise scarce, but it will also bring them into direct
conflict with people. In Belize, although illegal incursions into protected areas to hunt
prized game species occur, it is likely that wild prey abundance and species richness are
lower outside the protected forests where the habitat is fragmented by cattle ranches and
monocultures, and unregulated hunting is common (R. Foster pers. ob., G. Hansom,
Belize Forestry Officer, pers. comm.). Although the hunting of wild game is not
permitted without a valid hunting license (Belize Wildlife Protection Act 2000),
monitoring and enforcement are difficult (G. Hansom pers. comm.). Fire-arms are legal
and landowners are permitted to kill any wildlife that threatens crops or domestic
animals on their property (Belize Wildlife Protection Act 2000). This is often used as a
pretext to hunt game, not only on their property but also beyond. Hunting trips into
forest may last one or two nights, either on foot or by boat. A successful trip will bag
three pacas (Agouti paca) and up to three white-lipped peccaries (Dicotyles pecari) (R.
Foster pers. obs.) White-tailed deer (Odocioleus virginianus) are often hunted in the
savannah areas. Although the use of artificial lights to shoot any animal is prohibited,
spotting for deer is common, even within the closed season (Belize Wildlife Protection
Act 2003, R. Foster pers. obs.). Pacas can sell for ~US$25 each, whilst white-lipped
peccaries and white-tailed deer can each fetch up to ~US$150. The average wage in
Belize is just US$3,740 (World Bank 2008), so for many there is good economic
incentive for hunting, and they may make several trips each month. In this chapter, we
hypothesise that the persistence of jaguars and pumas is facilitated in these unprotected
regions by diet shifts leading to subsistence on smaller prey than those taken by
individuals inhabiting the protected areas, and/or on domestic prey. Since pumas were

rarely detected outside the protected forest in this study (Chapter 5), the third objective
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of this chapter is to focus solely on jaguars in a comparison of diet within a protected
rainforest to diet in the neighbouring human-influenced habitats.

Prey depletion threatens nearly all cat species and has been attributed to
population decline in 92% of cat species (IUCN 2007). Lowered prey availability may
reduce neonatal, juvenile and adult survival (Fuller and Sievert 2001). For big cats,
pregnancy and the long period of association during which the mother is lactating and
hunting to feed both herself and her off-spring, is energetically demanding; and the
availability of large prey may be particularly important to fulfil the high energetic
requirements of rearing young. For example, although an adult tiger could satisfy its
own energy requirements by hunting only small deer, off-take rate would need to
increase to unsustainable levels to support reproduction; the inclusion of some larger
prey in the diet appears necessary for reproduction (Sunquist et al. 1999). The final
objective of this chapter is to investigate the energy requirements of jaguars and pumas
in the study area to asses whether absence of pumas from the fragmented landscape
(Chapter 5) may be linked to prey preferences and availability, and whether jaguars

could persist outside the protected area in the absence of livestock.

Methods

A total of 645 scats (n = 229 this study and n = 416 Harmsen 2006) were
collected opportunistically between 2003 and 2006 throughout the study area from a
range of habitats: protected and unprotected secondary rainforest, shrubland, pine
savannah, and cattle pastures. Local people were also encouraged to collect scats for a
US$2.50 / bag reward. UTM locations of scats were recorded in the field using a GPS
unit or retrospectively using field notes and OS maps. For scats collected by local
people only approximate locations are available within a radius of up to ~ 5 km.
Locations of 96% of the scats were accurately known to be either in the protected forest,
the forest buffer or the fragmented lands. Approximate scat locations are shown in

Figure 6.1.
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Jaguar scats
Puma scats
Frotected forest
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Figure 6.1 Locations of scats collected opportunistically throughout the study area from Jan 2003 to Oct 2006. Point locations may include
multiple scats within a radius of up to ~5 km. Camera stations are shown to indicate areas where researchers conducted fieldwork.
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Each scat was stored with silica granules in a paper bag at room temperature for a
maximum of 9 months until transport to the UK where the scats were stored at 4 °C
prior to genetic and diet analyses. Genetic analysis of the faecal samples was conducted
by the WCS and the American Museum of Natural History Global Felid Genetics
Program. Total DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen,
Valencia, CA, USA) with minor modifications. Primers were adapted from Hoelzel and
Green (1992) to amplify the 16S region of the mitochondrial genome and identify the
species of the extracted DNA (C. Pomilla unpubl. data). DNA was extracted from 588
samples and species of origin was identified for 532 samples (Table 6.1, C. Pomilla

unpubl. data).

Table 6.1 Number and species of origin of scats, collected 2003 to 2006

Species Number of scats
Jaguar Panthera onca 362
Puma Puma concolor 135
Ocelot or margay Leopardus pardalis or wiedii 31
Margay Leopardus wiedii 2
Domestic dog Canis familiaris 2

Prey species eaten by a carnivore can be identified from the remains in the scat.
Hairs from different species differ in colour, pattern, length, width and texture. At the
microscopic level, the medulla width and pattern, and the scale pattern of cells may
differ. Valdes (2006) and Harmsen (2006) created a reference collection and key from
hair and body parts (teeth, claws, hooves, scutes and bone fragments) of Belizean
mammals for use in diet studies from the region. Since many of the scats in this study
originated from areas with livestock, an additional reference collection was created for
hair from common domestic animals (cattle, horse, donkey, sheep, pig and dog). The
two reference collections were used to identify the contents of the scats to species level.
Where species identification from hair remains was ambiguous, inferences were made
about the size class based on bone size and morphology. A total of 27 jaguar scats and
six puma scats did not contain enough remains to identify any prey items. Note, prior to
species-specific genotyping, the prey contents of 329 of the scats were analyzed by
Valdes (2006) for a discussion of the diet of big cats in the protected forest (Harmsen
2006). The prey contents of the remaining 168 scats were analyzed by the author and

following genetic analysis the two diet datasets were combined (this study).
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The % relative occurrence of each prey species in the diet of each cat species
was calculated using Equation 6.1, where ‘prey item’ refers to an identifiable taxon

within a scat.

Number of prey items that are species X x100 (Ean 6.1)
Number of all prey items identified

Eqn 6.1 is often used in to describe diet (e.g. Rabinowitz and Nottingham 1986,
Crawshaw et al. 2004); however smaller species will tend to be over-estimated relative
to larger species by this fraction because they contribute a higher ratio of hair:meat to
each scat. Ackerman et al. (1984) derived a linear relationship between body weight of
prey and collectible scats produced by pumas during feeding trials. This relationship can
be used as a correction factor. Following Ackerman et al. (1984) the biomass of species

X consumed per scat was calculated as:

1.98 + 0.035 x mean live mass of prey species X (Ean 6.2)
The correction factor was not used for prey species < 2 kg as it was assumed that each
occurrence in a scat represented a whole individual (Ackermann et al. 1984).

The relative biomass of species X consumed was then calculated as:

% relative occurrence of species X X biomass of species X consumed per scat (Ean 6.3)
> (% relative occurrence of species); X(biomass of species consumed per scat);

where i = species 1,2, 3, ... x

Table 6.2 shows the potential wild mammalian prey species available in the
study area, and their mean live masses adapted from Reid (1997). As it was possible to
distinguish between adult and juvenile peccary remains based on hoof size and
coarseness of hair, all analyses involving peccary mass discriminated between adults
and young. A juvenile peccary was estimated to weigh 7.5 kg. The live masses of
domestic species were obtained from local knowledge. Cattle range in size from 37 kg
(newborn) to 900 kg (bull) (S. Juan, Farm Manager, pers. comm.). Because the majority
of cattle predations reported during the study with size estimates were of calves (up to ~

250 kg), the live mass used for the correction factor of cattle was 125 kg.
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Table 6.2 Potential mammalian prey species in study area, ordered by average mass, based on Reid (1997).

Average Latin name Common name Mass (kg) Biomass consumed

mass (kg) range average*  per scat (kg) "

> 10 kg
Bos taurus Domestic cow 900.0  125.0° 6.36
Tapirus bairdii Baird’s tapir 180.0 - 300.0 240.0 10.38
Panthera onca Jaguar 30.0-100.0 65.0 4.26
Puma concolor Puma 24.0- 65.0 44.5 3.54
Odocioleus White-tailed deer 34.0 3.17
virginianus 25.0- 430
Dictoyles pecari White-lipped peccary 27.0- 40.0 33.5 3.15
Ovis aries Domestic sheep 30.0 30.0 3.03
Mazama americana Red brocket deer 12.0- 32.0 22.0 2.75
Tayassu tajacu Collared peccary 12.0- 26.0 19.0 2.65
Canis lupus familiaris ~ Domestic dog 15.0 15.0 2.51
Leopardus pardalis Ocelot 7.0- 145 10.8 2.36

5to10 kg
Agouti paca Paca 5.0- 12.0 8.5 2.28
Lutra longicaudis Neotropical river otter 50- 95 7.3 2.24
Ateles geoffroyi Central American spider monkey 50- 9.0 7.0 2.23
Alouatta pigra Yucatan black howler monkey 57- 8.0 6.9 2.22
Felis yaguarondi Jaguarundi 40- 9.0 6.5 2.21
Tamandua mexicana  Northern tamandua 38- 85 6.2 2.20
Procyon lotor Northern raccoon 33- 78 5.6 2.18
Dasypus Nine-banded armadillo 30- 70 5.0 2.16
novemcinctus ’ '

2to 5 kg
Nasua narica White-nosed coati 27- 6.5 4.6 2.14
Eira barbara Tayra 3.0- 6.0 4.5 2.14
Leopardus wiedii Margay 26- 5.0 3.8 2.1
Potos flavus Kinkajou 20- 46 3.3 2.10
Dasyprocta punctata  Central American agouti 3.0- 40 3.5 2.10

/cont next page
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Table 6.2/cont Potential mammalian prey species

Class Latin name Common name Mass (kg) Biomass consumed
range average* per scat (kg) '

Conepatus sp Hog-nosed skunk 1.4- 40 2.7 2.07
Urocyon Grey fox 18- 35 2.7 2.07
cinereoargenteus | '
Galictis vittata Greater grison 1.5- 3.2 2.4 2.06
Coendou mexicanus Mexican porcupine 14- 26 2.0 2.05

<2kg
Various opossums and rodents including:
Didelphis virginiana Virginia opossum 11- 25 1.8 n/a
Didelphis marsupialis ~ Common opossum 06- 24 1.5 n/a
Philander opossum Gray four-eyed opossum 03- 14 0.9 n/a
Chironectes minimus ~ Water opossum 06- 0.8 0.7 n/a
Rattus sp Old World rats 0.1- 05 0.3 n/a
Heteromys sp Spiny pocket mouse 0.04 - 0.09 0.07 n/a

* Average mass is taken as the mid-point of the range; used to calculate the biomass of each species consumed per scat
11.98 + 0.035 x average live weight of species (Ackerman et al. 1984); only calculated for prey = 2 kg

tCalf weight

Note, non-mammalian prey species included birds (unknown size) and iguanas (/guana iguana), estimated to be ~ 5 kg
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Scat sample size required to represent diet

The influence of scat sample size on the number of taxa identified in big cat
diets was investigated using data from 23 published studies of neotropical jaguar and
pumas. Where published studies compared diet in multiple samples from the same
region, for example between habitats or seasons, each sample was treated as a single
data point (jaguar n = 21, puma n = 26, plus data from this study). Data points were
classed as ‘forest’ or ‘grassland, savannah and shrublands’ to account for potential

differences in the number of available prey taxa between ecoregions (Table 6.3).

Table 6.3 Ecoregion classification of the data points derived from 23 published studies
of diets of neotropical jaguar and pumas

Ecoregions Number of data points
Jaguar Puma

1) Forests

- tropical and subtropical moist broadleaf forest' 13 9

- tropical and subtropical dry broadleaf forest? 2 2

- temperate broadleaf and mixed forests® - 6

2) Grassland, savannah and shrubland

- deserts and xeric shrublands*

- tropical and subtropical grassland, savannahs and shrublands®
- flooded grasslands and savannahs®

- montane grasslands and shrublands’

- temperate grasslands, savannahs and shrublands® -

L S
o) = !

Forest: 1 - Aranda and Sanchez-Cordero 1996, Mexico; Azevedo 2008, Brazil;
Chinchilla 1997, Costa Rica; Crawshaw et al. 2004, Brazil; Emmons 1987, Peru;
Facure and Giaretta 1996, Brazil; Garla et al. 2001, Brazil; Kuriowa and Ascorra 2002,
Peru; Leite and Galvao 2002, Brazil; Moreno et al. 2006, Panama; Novack et al. 2005,
Guatemala; Rabinowitz and Nottingham 1986, Belize; Weckel et al. 2006b, Belize; 2 -
Nunez et al. 2000a, Mexico; Taber et al. 1997, Paraguay; 3 - Rau et al. 1991, Chile;
Rau and Jiménez 2002, Chile; Yanez et al. 1996, Chile.

Grasslands, savannahs & shrubland: 4 - Olmos, 1993, Brazil; 5 - Polisar et al. 2003,
Venezuela; 6 - Azevedo and Murray 2007, Brazil; Dalponte et al. 2002, Brazil; 7 -
Romo 1995, Peru; 8 - Branch et al. 1996, Argentina; Yariez et al. 1996, Chile.

Because the range of potential prey species in this study area was wide (Table
6.2), it was deemed appropriate to estimate the number of scats required to adequately
represent diet. The total numbers of species consumed, and the relative occurrence of
each prey species, were calculated for ten randomly selected jaguar scats. Scats were
then added to the sample in groups of five (up to 100 scats), each time recalculating the
species total and the relative occurrence. This was repeated 25 times. The decelerating

regressions of mean species total and mean occurrence of each prey species against the
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cumulative numbers of scats (10, 15, 20 ... 100 scats) were used to estimate the

asymptotic scat count. This process was repeated for puma scats.

Food habits of jaguars and pumas

Relative prey consumption of the most commonly eaten prey species (> 5%
occurrence), were compared between jaguars and pumas, and between locations
(protected forest, unprotected forest buffer contiguous with protected forest, unprotected
fragmented habitat), using chi-square tests. Although it is impossible to determine
where the contents of the scats were hunted and eaten it is assumed that scat location

equates to the hunting area.

Food niche breadth

Food niche breadth was calculated in terms of dietary diversity for jaguars and

pumas following Levins (1968):

1 (Egn 6.4)
B =

n

2.0

i=1

where p; is the relative occurrence of a prey taxon in the diet. B ranges from one
(minimum niche breadth, maximum specialization) to n, where n is the total number of
prey taxa (Krebs 1999); for example, B =5 if the diet consisted of five taxa that were
consumed in equal proportions. The index was standardized following Colwell and
Futuyma (1971) to allow comparisons of diet breadth between predator species and
between locations:

_ (Bm _ Bmin) (Eqn 6.5)

" (Bmax - ijn )

where B, is the observed niche breadth, B,,;, is the minimum niche breadth (1) and
Bnax 1s the maximum niche breadth (n). By, the standardized niche breadth, ranges

between zero and one.

Food niche overlap

The overlap in prey use between jaguars and pumas was calculated using the

Pianka (1973) measure of niche overlap:
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(Ean 6.6)

Zp[jpik

,/ipéipi

Ojx = Pianka’s measure of niche overlap between species j and species k

0, =

pij = proportion resource i is of the total resources used by species j

pir = proportion resource i is of the total resources used by species k

n = total number of resource states

A value of 0 indicates complete dissimilarity, and a value of 1 indicates complete
similarity. Monte Carlo simulations (1000) were run using the program EcoSim 7
(Gotelli and Entsminger 2008) to determine whether the observed overlap was greater
or lower than that expected from random, following Walker et al. (2007). The
randomisation algorithm was constrained to retain zero states (i.e. prey that are never
taken in the actual dataset are also never taken in the simulations) but relax the diet
breadth (i.e. values of relative prey occurrence which are > 0 are replaced with random
prey proportions in the simulations). All prey species were assumed to be equally

available to both cat species.

Mean weight of vertebrate prey

The mean weight of the vertebrate prey items consumed (MW VP) is frequently
reported in diet studies as a method of comparing diet between carnivores. Since body
weight of prey taken is likely to have a skewed frequency distribution, most studies
follow Jacksic and Brakker (1983) and calculate the geometric mean by computing the
arithmetic mean of the log.-transformed values then use exponentiation to return the
computation to the original scale. Walker et al. (2007) suggest that this method
underestimates the mean weights and they recommend using the arithmetic mean for
which asymmetric confidence intervals can be calculated. For this study MW VP was
calculated as a geometric mean for comparison with contemporary studies of jaguar and

puma diet.

Jaguar and puma energetics

The numbers of individuals of each prey species killed per year by adult jaguars

and pumas were estimated from the relative biomass consumed (Eqn 6.3), and estimates
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of jaguar and puma energetic requirements were derived from the literature and field
data. Simple harvest models were used to determine the prey density necessary to

maintain sustainable off-take.

Estimates of prey off-take

The cats were assumed to require 34-43 g of meat per day per kg of body mass
(after Emmons 1987; following Polisar et al. 2003, Novack et al. 2005, Azevedo and
Murray 2007). Body mass of jaguars and pumas varies by a factor of two across their
geographic range (Chapter 1), with Belizean populations being amongst the smallest
(e.g. Iriate et al. 1990). Mean body masses were estimated from adult cats trapped in
Belize: male jaguar 51 kg (n = 8), female jaguar 44 kg (n = 3), male puma 35 kg (n = 3)
and female puma 21 kg (n = 1) (Rabinowitz and Nottingham 1986, R. Foster this study,
O. Figueroa unpubl. data); and used to calculate the annual intake of meat per cat in
each sex/species category. Energetic requirements of females increase during
pregnancy, nursing and when with dependents, for example in domestic cats energy
intake can increase three-fold during peak lactation (Loveridge 1986). Estimates of
female reproductive energy requirements of wild jaguars and pumas either follow
Sunquist (1981) who estimated that a tiger cub requires 25% of its mothers
requirements during its first year and thereafter consumption is equivalent to that of its
mother (e.g. Polisar et al. 2003, Azevedo and Murray 2007), or they assume that female
requirements approximately double when she has kittens (e.g. Nufiez et al. 2000a). In
this study reproductive correction factors were derived from Laundré (2005) who used
an allometric equation to calculate energy demand of wild pumas based on movement
data from telemetry. His estimates indicate that the daily intake of meat of a solitary
female puma increases by a factor of 1.1 during gestation, 1.5 during nursing and 3.2
during dependence (cubs taking solid food) when raising an average litter of 2.6 young.
These correction factors were applied to estimates of solitary female requirements, in
order to calculate the amount of meat required during pregnancy, lactation and
dependency. The estimates were then adjusted by the average lengths of pregnancy,
lactation and dependency (Table 6.4) and combined to give the average annual

requirements of a reproductively active female of each cat species.
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Table 6.4 Reproductive periods of jaguars and pumas derived from Kitchener (1991)
and Sunquist and Sunquist (2002)

Jaguar (days) Puma (days)

Gestation 96 93
Nursing (full-time)* 74 60
Dependents (solid food) 556 480

* Note that jaguars may continue partial nursing for 5-6 months, but this is excluded
from estimates

The mass of each prey species consumed per year for each cat sex/species
category was calculated as the product of the relative biomass consumed and the annual
intake. Note that for prey >15 kg, 30% of the carcass was assumed to be inedible (e.g.
skulls, large bones) following Emmons (1987) and Polisar et al. (2003).The same
assumption was also applied to armadillo which are covered by a hard carapace
(following Novack et al. 2005). In addition, large cats may not fully utilise the edible
parts of a carcass; for example it may be abandoned if it spoils, if there is a high
availability of alternative prey or if they are disturbed. Rates of decomposition and the
tolerance for perished meat are difficult to estimate, making it difficult to estimate the
extent to which the edible parts of a large carcass are utilised by the predator. However,
in this study scats containing remains of white-lipped peccary frequently included
hooves of adults (R. Foster pers. obs., B. Harmsen, Panthera Belize, pers. comm.). The
feet are likely the last part of a carcass consumed, if at all, with priority given to internal
organs and soft tissue. The fact that cats in the protected forest consumed the feet of
white-lipped peccary, the largest wild prey taken, implies that they did not abandon
carcasses, but consumed them fully. Within the protected forest it is assumed that
disturbance at feeding sites is negligible, and decomposition based on field observations
is estimated to be ~ 5 days (B. Harmsen pers. comm.). It can thus be assumed that a
white-lipped peccary (~ 33.5 kg) can be eaten within 5 days. Accounting for 30%
wastage, this would require an average consumption of ~ 4.7 kg per day over the 5-day
period. This is higher than the daily requirements of a jaguar, and allows for a feast-
famine cycle in which they may not succeed in catching prey every day. These figures
can be used to estimate the extent to which carcasses of large domestic species may be
utilised, given that disturbance rates by livestock owners may be high. A solitary
undisturbed jaguar could consume 23.5 kg of a 125-kg calf before decomposition. If

disturbed after two days, as was common, (cow boys frequently moved carcases, R.
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Foster pers. obs.) then a solitary jaguar can only consume ~ 9.4 kg of the 125-kg calf,
whilst a female with two dependents could jointly eat three times this amount.

The number of each prey species killed per year was thus calculated by dividing
the mass of each prey species consumed per year by the mean prey mass (Table 6.2) or,
for domestic species, by the mass of prey assumed to be eaten per carcass (under
different levels of disturbance). The number of kills per year was compared between cat
species, sex, reproductive status (females only) and habitat (protected forest, fragmented

landscape).

Sustainability of prey off-take

Simple models have been developed within the bush meat and fisheries literature
to determine whether hunting is sustainable in the absence of detailed demographic data
(e.g. Robinson and Redford 1991, Wade 1998). Basic life history parameters and
density estimates are used to estimate the maximum number of prey animals available
for off-take per unit area (P,,,,). Hunting is considered unsustainable if extraction
exceeds this threshold. Unless the stochastic nature of reproduction and survival are
incorporated into the model the sustainable harvest will tend to be overestimated; as
such these models are used to determine whether hunting is unsustainable, rather than if
it is sustainable (Slade et al. 1998, Salas and Kim 2002). In this study, a harvest model
of P, (Robinson and Bodmer 1999, Eqn 6.7) was rearranged to estimate the threshold
prey population (D) below which the observed harvest would be unsustainable. For the
purposes of this study D was interpreted as the minimum prey abundance that is
required to sustain the observed levels of off-take by jaguars and pumas, recognising the

fact that this may be an underestimate.

Puix=05Do F Eqn. 6.7
where @ is the prey fecundity and F is a prey ‘mortality factor’. The value of D is
multiplied by 0.5, assuming a 1:1 sex ratio, to give the female density. The value of ¢ is
derived from field data of average numbers of litters per year and young per litter. The
parameter F attempts to account for natural mortality. It is assumed that natural
mortality depends on average lifespan, and F'is approximated to 0.2 for species with
lifespan >10 yrs, 0.4 for 5-10 yrs and 0.6 for < 5 yrs (Robinson and Redford 1991).
However given that the survival of juvenile mammals is usually lower than in

subsequent years, the term ‘@ F* will overestimate survival. If pre-reproductive survival
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is known it can be substituted for the mortality factor to improve the estimate. In this
study no attempt was made to incorporate levels of pre-reproductive survival into the
models. Estimates of ¢ and F for the main wild prey species were derived from the
literature (Table 6.5) and used to estimate the population sizes (D) required to sustain
the levels of off-take by jaguars and pumas (P,,,). Estimates were compared between
species and habitats and used to make inferences about jaguar and puma reproduction

and co-existence in the study area.

Table 6.5 Estimates of ¢ and F for the main wild prey species

Species ¢ (offspring per F (mortality factor)
female per year)
Nine-banded armadillo 4.0 0.4
White-lipped peccary? 15 0.2
White-nosed coati® 4.0 0.4
Paca* 25 0.2
Red brocket deer® 1.2 0.4
Kinkajou® 1.0 0.2

'Loughry and McDonough 2001; 2Gottdenker and Bodmer 1998, *Robinson and
Redford 1986, Marceau 2001, Hass and Valenzuela 2002; *Dubost et al. 2005;
*Hurtado-Gonzales and Bodmer 2006; °Kays and Gittleman (2001), Rehder and Olson
(2007)

Results

A total of 362 jaguar scats were collected between January 2003 and October
2006. Of these, 27 did not contain prey remains, and a further 13 contained only
unidentifiable remains. The 322 scats with identifiable prey items contained 378 distinct
items, of which 348 were identified to species level, six to genus, two to family, five to
sub-order, seven to order, and 10 to class. An average of 1.2 prey items (maximum = 3)
were identified per scat (260 scats only contained one prey item). A size class was
assigned to 372 of the prey items (from 320 scats).

A total of 135 puma scats were collected between February 2003 and September
2006. Of these, six scats did not contain prey remains, and a further two contained only
unidentifiable remains. The 127 scats with identifiable prey contained 140 prey items,
of which 133 were identified to species level, five to sub-order and two to order. An
average of 1.1 prey items (maximum = 3) were identified per scat (114 scats only

contained one prey item). A size class was assigned to 141 prey items (from 128 scats).
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Scat sample size required to represent diet

The sample sizes of scats presented in 23 published studies of jaguar and puma
diet across the neotropics rarely exceeded 75 scats (jaguar mean + SE =52 + 12, n = 21,
puma = 69 £ 17, n = 26). Figure 6.2 shows a trend for the number of taxa detected in the
diet to increase and then plateau with increasing sample size, both for forested and
grassland ecoregions. Given the generally high biodiversity of habitats across the
neotropical geographical ranges of these cats (e.g. Myers et al. 2000), it is unlikely that
smaller sample sizes were coincidentally collected in areas with a lower diversity of
prey. However it is noted that the number of taxa in puma diet plateaus at a smaller
sample size in grasslands than for the other ecoregion/species classes. This is probably
because the majority of data points for this class originate from temperate grasslands of
Argentina and Chile (Table 6.3) where the diversity of terrestrial vertebrates may be
lower than, for example, the moist tropical forests of Central America and Amazonia or
the grasslands of the Pantanal in Brazil. Overall Figure 6.2 suggests that within the
neotropics, particularly the tropical ecoregions, samples with less than approximately
100 scats may fail to detect all taxa present in the diet, and that researchers should
consider the potential prey diversity of the habitat in which they are working when

assessing a suitable sample size to represent diet.
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Figure 6.2 Variation in number of taxa detected in jaguar and puma diets with sample
size from 23 published studies (listed in Table 6.3) from the neotropics. Data points are
categorized according to ecoregion as ‘forest’ (green symbols) or ‘grasslands,
savannahs and shrublands’ (orange symbols). Arrows indicate data from this study.
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The sample size required to reliably represent diet in this study was investigated
by randomly selecting samples of scats and comparing the species total and relative
occurrence of different prey to those obtained from the entire dataset. Prey items that
could not be identified to an acceptable level were excluded from this analysis (e.g.
‘unknown mammal’, ‘carnivore’ etc), leaving 312 jaguar scats (363 prey items) and 126
puma scats (139 prey items) available for random selection of samples.

The species accumulation curves indicated that even 100 randomly selected
scats were insufficient to detect all 20 taxa known to be present in the 312 jaguar scats;
however as few as 45 scats were sufficient to detect the six most common prey (> 5%
relative occurrence) (Figure 6.3). This suggests that analyses based on < 100 samples
may underestimate the true richness of the jaguars’ diet, shown previously in Figure 6.2.
Although the most important prey will be detected, their relative occurrence will tend to
be overestimated as the occurrence of rare prey may not be detected at all. Similarly,
100 randomly selected scats failed to detect all 11 taxa previously identified in the puma
diet with 126 scats; however 40 scats were sufficient to detect the five most common

prey species (Figure 6.4).
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Figure 6.3 Species accumulation curves for jaguar diet. Mean and 95%CI shown for 25
trials. Red dashed line indicates number of species detected with 312 jaguar scats
upper - all taxa, lower - six most common species (= 5% relative occurrence).
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Figure 6.4 Species accumulation curves for puma diet. Mean and 95%CI shown for 25
trials. Red dashed line indicates number of species detected with 126 puma scats
upper - all taxa, lower - five most common species (= 5% relative occurrence).

The minimum number of jaguar scats required to estimate relative occurrence of
the most common prey within + 2 % varied between the six main species, from ~ 65
scats for armadillo to 15 scats for paca (Figure 6.5a-f). For pumas the minimum number
of scats required varied from ~ 65 for paca to 25 for kinkajou (Figure 6.6a-¢). It is not
clear why mean relative occurrence is consistently underestimated for some species
(e.g. armadillo and paca, Figure 6.5a and e) but overestimated for others (e.g. white-
lipped peccary and sheep, Figure 6.5¢ and f). It does not appear to depend on the
frequency with which the target species occurs with other species within the same scat
(e.g. 38% of scats which contained white-lipped peccary also contained other species,

compared to only 12% for scats containing sheep).
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Figure 6.5 Relative occurrences of six principal species in jaguar diet against number
of randomly-selected scats. Mean and 95%CI shown for 25 trials. Dashed lines indicate
% occurrence (and + 2) estimated with all 312 jaguar scats.

a) armadillo, b) coati, ¢) wari, d) collared peccary, e) paca, f) sheep
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Figure 6.6 Relative occurrences of five principal species in puma diet against number
of randomly-selected scats. Mean and 95%CI shown for 25 trials. Dashed lines indicate
% occurrence (and + 2) estimated with all 126 puma scats.

a) paca, b) red brocket deer, ¢) wari, d) armadillo, e) kinkajou

Diet of jaguars and pumas

Across the entire study region of protected and unprotected areas, jaguar diet
included at least 20 species: 15 wild mammals, three domestic mammals, one reptile
and one bird (Table 6.6). Although the diet had a high species richness, it was not
diverse, with By, = 0.143. Four species were frequently used ( > 5% relative
occurrence).The prey most often consumed by jaguars were armadillos, which made up
47% of the prey items and constituted 42% of the total biomass eaten. The next most
frequent prey item were coatis, accounting for 11% of the prey items, then white-lipped
peccaries at 10% (9% adults, 1% juvenile), and collared peccaries at 5% (4% adults, 1%
young). The remaining species each comprised < 5% of the diet. MW VP was 7.6 kg (n
= 372 prey items).
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Table 6.6 Relative occurrences and consumed biomasses of prey species (ordered by
mass) in 322 jaguar scats collected across the study area Jan 2003 to Oct 2006. n =
378 prey items

Prey Species Relative Relative
occurrence (%) biomass' (%)
> 10 kg
Cow 2.9 7.7
White-lipped peccary (adult) 8.7 11.5
Sheep 4.5 5.7
Red brocket deer 2.9 3.3
Collared peccary (adult) 3.7 4.1
Dog 0.3 0.3
Unknown peccary (adult) 0.3 0.3
5-10 kg
Paca 4.5 4.3
Northern tamandua 0.8 0.7
Northern raccoon 0.3 0.2
Nine-banded armadillo 46.4 41.9
White-lipped peccary (juvenile) 1.1 1.0
Collared peccary (juvenile) 1.3 1.2
Iguana 1.3 1.2
Unknown peccary (juvenile) 0.3 0.3
Paca/armadillo 0.3 I
Unknown mammal 0.8 1.0
2-5 kg
White-nosed coati 10.8 9.7
Kinkajou 2.6 2.3
Skunk 0.3 0.2
Grey fox 0.3 0.2
Greater grison 0.8 0.7
Unknown carnivore 1.3 1.2
<2kg
Virginia/common opossum 1.3 0.9
Rodent 0.3 <0.1
Spiny pocket mouse 0.3 <0.1
Unknown size
Unknown mammal 1.1 -
Unknown bird 0.5 -

T n= 372 because sizes of six prey items are unknown (320 scats)
F Combined with unknown mammal category for biomass calculation

Puma diet contained at least 11 species: eight wild mammals, two reptiles and
one decapod (freshwater crustacean) (Table 6.7). Unlike jaguars, there was no evidence
that pumas took domestic species. Four species were frequently used. The species most
frequently consumed by pumas were pacas, which made up 58% of the prey items and
constituted 57% of the total biomass eaten. The next most frequent was red brocket
deer, accounting for 9% of the prey items, then armadillos at 7%, and kinkajous at 6%.

The remaining species each comprised < 5% of the diet. Although puma diet was less
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species-rich than jaguar diet, it was slightly more diverse, with By, = 0.174. MWVP
was 8.5 kg (n = 138).

Table 6.7 Relative occurrences and consumed biomasses of prey species (ordered by
mass) in 127 puma scats collected across the study area Feb 2003 to Sep 2006. n =
140 prey items

Prey Species Relative Relative
occurrence (%) biomass' (%)
> 10 kg
White-tailed deer 0.7 1.0
White-lipped peccary (adult) 3.6 4.9
Red brocket deer 8.6 10.2
Collared peccary (adult) 2.9 3.3
5-10 kg
Paca 57.9 57.3
Nine-banded armadillo 7.1 6.7
White-lipped peccary (juvenile) 4.3 4.2
Collared peccary (juvenile) 0.7 0.7
Iguana 4.3 4.0
2-5 kg
Kinkajou 5.7 5.
Mexican porcupine 2.1 1.9
Unknown carnivore 0.7 0.7
<2kg
Decapod (FW crustacean) 0.7 <0.1
Unknown size
Snake 0.7 -

T n= 139 because size of one prey item is unknown

Comparison of jaguar and puma diets

Puma scats were not found everywhere across the study area: 97% were located
within the forest block, of which 89% were within the protected forest (Table 6.8). For
this reason direct comparisons between jaguar and puma diet are restricted to the

protected forest.

Table 6.8 Location and number of scats with identifiable prey remains

Location Jaguar Puma
Contiguous forest block 268 123
- protected 204 110
- unprotected buffer 38 11
- protected status unknown 26 2
Fragmented landscape 54 4
Total 322 127
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Inside the protected forest jaguar diet was richer than puma diet (14 versus nine
prey species); however puma diet was more diverse (jaguar: By, = 0.113, three
frequently used prey; puma By, = 0.169, five frequently used prey). The same pattern
was observed across the entire forest block of protected forest and buffer areas (jaguar:
16 prey species, By, = 0.108, four frequently used prey; puma: 10 prey species, By, =
0.162, five frequently used prey).

Inside the protected forest, jaguar and puma diets were not similar (Table 6.9).
Diet overlap was 0.246 (Pianka index). This was less than expected by chance: the
simulated mean overlap obtained from 1000 randomisations was 0.479 (variance 0.013),
significantly higher than the observed overlap (p < 0.05). Other studies have also found
low dietary overlap between jaguars and pumas in closed forest habitats (reviewed in
Harmsen 2006). Significantly low niche overlap, as observed here, is conventionally
interpreted as inter-specific competition and resource partitioning (Gotelli and
Entsminger 2008). Competition is best shown by a shifted realised niche in sympatry
compared to the fundamental niche in allopatry, however experimental manipulations
would be required to test for these processes. The same pattern was observed for scats
pooled across the entire forest block with a Pianka index of 0.236, significantly lower
than expected by chance (1000 randomisations, p < 0.05).

Within the protected forest the dominant size class taken by both cats was 5-10

kg. The MW VP taken by jaguars was 7.1 kg (n = 236), and 8.6 kg (n = 121) by pumas.

Jaguars ate more armadillos and coatis compared to pumas (armadillo ;= 68.9, p <

0.0001; coati ;= 12.5, p <0.0001, Appendix A: Tables A6.1-2). Pumas ate more paca
and red brocket deer compared to jaguars (paca ¥, = 132.7, p < 0.0001; red brocket deer
X:=5.3,p<0.05, Appendix A: Tables A6.3-4). Jaguars and pumas did not differ in the
frequencies of white-lipped peccaries or kinkajous taken (white-lipped peccary y; = 2.6,

p > 0.1; kinkajou ¥ =0.5, p>0.5, Appendix A: Tables A6.5-6). However jaguars

tended to take adult white-lipped peccary more frequently than did pumas: 85% of
jaguar scats containing white-lipped peccary remains were identified as adult remains,
compared to only 45% for puma. The same patterns were observed for scats pooled
across the entire forest block (Appendix A: Tables A6.7-12). Across the entire forest
block MW VP of pumas was the same as in the protected forest (8.6 kg, n = 133), but
jaguar MW VP was 6.8 kg (n = 308), lower than the protected forest.
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Table 6.9 Relative occurrences and consumed biomasses of prey species (ordered by
mass) in jaguar and puma scats collected in the protected forest Jan 2003 to Oct 2006.

Prey Species Relative occurrence (%) Relative biomass (%)
Jaguar Puma Jaguar Puma
> 10 kg
White-lipped peccary (adult) 13.8 4.1 18.9 5.6
Red brocket deer 3.3 9.0 4.0 10.7
Collared peccary (adult) 2.9 3.3 3.4 3.7
Unknown peccary (adult) 0.4 - 0.5 -
5-10 kg
Paca 6 58.2 6 57.2
Northern tamandua 1.3 - 1.2 -
Nine-banded armadillo 50.8 6.6 47.9 6.1
White-lipped peccary (juvenile) 1.3 4.9 1.2 4.8
Collared peccary (juvenile) 1.3 0.8 1.2 0.8
Ilguana 1.3 3.3 1.2 3.0
Unknown peccary (juvenile) 0.4 - 0.4 -
Unknown mammal 0.4 - 0.4 -
2-5 kg
White-nosed coati 9.6 - 9.0 -
Kinkajou 4.2 5.7 3.8 5.2
Grey fox 0.4 - 0.4 -
Greater grison 0.8 - 0.8 -
Mexican porcupine - 2.5 - 2.2
Unknown carnivore 0.8 0.8 0.8 0.7
<2kg
Virginia/common opossum 0.4 - 0.4 -
Spiny pocket mouse 0.4 - <0.1 -
Decapod (FW crustacean) - 0.8 - <0.1
Unknown size
Unknown mammal 1.3 - - -
Unknown bird 0.4 - - -
Total prey items 240 122 236 122
Total scats 204 110 202 110
MWVP (kg) - - 7.1 8.6

Variation in jaguar diet across the landscape

Outside the protected forest, jaguar diet contained at least 15 species, including
three domestic mammals (Table 6.10). Five species were frequently taken (including
cattle and sheep) and jaguar diet was more diverse than inside the protected forest (B
= (0.427 outside compared to 0.113 inside). Unlike the protected forest, where almost
50% of the diet depended on armadillo (Table 6.9), the biomass consumed in the
unprotected lands was more evenly distributed between armadillo, cattle, sheep and
coati (Table 6.10). The high reliance of jaguar on domestic species (43% of biomass

consumed) is of concern for conservation management. However, scats from farms may
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have been over represented in the dataset: 45% (41/92) scats collected outside the
protected forest were from farms, but these pastures constituted only ~5 % of the
available lands (Chapter 4) and jaguars were known to be equally or more active in
other unprotected habitats (Chapter 5). It was not considered appropriate to measure the
dietary overlap because the availability of different prey species almost certainly

differed substantially between the areas, given their differences in habitat.

Table 6.10 Relative occurrences and consumed biomasses of prey species (ordered
by mass) in 92 jaguar scats collected outside the protected forest Jan 2003 to Oct
2006. n= 108 prey items.

Prey Species Relative Relative
occurrence (%) biomass' (%)

> 10 kg

Cow 10.2 24.2
Sheep 15.7 17.8
Red brocket deer 0.9 1.0
Collared peccary (adult) 4.6 4.6
Dog 0.9 0.9
5-10 kg

Paca 3.7 3.1
Northern raccoon 0.9 0.8
Nine-banded armadillo 33.3 26.8
Collared peccary (juvenile) 1.9 1.6
Iguana 1.9 1.5
Unknown mammal 0.9 0.8
2-5 kg

White-nosed coati 14.8 11.8
Skunk 0.9 0.7
Greater grison 0.9 0.7
Unknown carnivore 1.9 01.5
<2kg

Virginia/common opossum 3.7 2.3
Rodent 0.9 0.1
Unknown size

Unknown mammal 0.9 -
Unknown bird 0.9 -

T n= 106 because size of two prey items are unknown (92 scats)

Outside the protected forest, jaguar MW VP was 9.5 kg (n = 106), greater than
inside the reserve (7.1 kg, Table 6.9); however this falls to 5.1 kg (n = 77) if domestic
species are excluded. Partitioning the data further, in the unprotected forest buffer
jaguar MWVP was 5.7 kg (n = 42) (or 5.6 kg, n = 41, excluding single domestic prey
item), and 13.2 kg (n = 64) in the unprotected fragmented landscape (or 4.5 kg, n = 36

excluding domestic species). Although the puma sample is small it is worth noting that
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puma MW VP outside the protected forest was 8.4 kg (n = 15) and contained no
domestic species.

Jaguars ate more white-lipped peccaries inside the protected forest than outside
(white-lipped peccary g = 18.1, p < 0.0001, Figure 6.7, Appendix A: Table A6.13). No

scats found outside the protected forest contained white-lipped peccaries, suggesting
that, as a favoured game species by hunters, they may be scarce or absent in the

unprotected lands. Jaguars ate more domestic livestock outside the protected area than
inside (cow Fisher’s exact test odds ratio= 0.02, p < 0.0001; sheep }(12 =39.7,p<
0.0001, Figure 6.7, Appendix A: Tables A6.14-15). No scats found inside the protected

forest contained domestic species; this is expected as there are no livestock holdings

within the protected area, or contiguous forest buffer. Jaguars ate the same amount of
armadillos inside unprotected forest buffer as in the protected forest (armadillo . = 0.1,
p > 0.8, Figure 6.7, Appendix A: Table A6.16), but more coatis and collared peccaries
(coati ¥ = 6.6, p < 0.05; collared peccary Fisher’s exact test odds ratio = 0.27, p < 0.05,
Figure 6.7, Appendix A; Tables A.17-18). Outside the protected forest, jaguars ate more

armadillos, coatis and collared peccaries in the forest buffer than in the unprotected
fragmented landscape (armadillo ;= 7.7, p < 0.01; coati ;= 4.0, p < 0.05; collared

peccary Fisher’s exact test odds ratio = 10.4, p < 0.02, Figure 6.7, Appendix A: Tables
A.6.19-21).
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Figure 6.7 Variation in relative occurrence of main' prey species in jaguar diet in the
protected forest (n = 204 scats), unprotected contiguous forest buffer (n = 38 scats)
and unprotected fragmented landscape (n = 54 scats).
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Variation in jaguar diet through time

Within the protected forest, jaguar diet was relatively stable between the four
years (Figure 6.8). Armadillos, white-lipped peccaries and coatis each comprised > 5%
of the diet every year. The relative occurrences of armadillos and coatis were
moderately consistent between the years and negatively correlated (Spearman rank
correlation: ps = -1.0, p < 0.0001, n = 4). These were the only two prey species whose
occurrences in the diet were correlated over the years. White-lipped peccaries showed
high annual variation, ranging from 8% in 2006 to 22% in 2003. Although this may
reflect inter-annual variation in sampling effort in different parts of the protected forest,
it is consistent with the large ranges of white-lipped peccary herds which moved in and
out of the focal study area during the study period (B. Harmsen pers. comm.) and have
been recorded to range ~ 40 km” in Costa Rica and up to 109 km? in the Brazilian
Amazon (Carillo et al. 2002, Fragoso 1998). Kinkajous, collared peccaries, pacas and
red brocket deer all dropped below 5% occurrence in the diet during some years, and

showed high annual variation.
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Figure 6.8 Relative occurrences of principal® prey species in jaguar diet in the
protected forest over four years (2003 to 2006). Number of prey items shown; number
of scats ranged from 42 to 62 per year.

T refers to species with = 5% relative occurrence during any year

Jaguar and puma energetics

The number of each prey species killed per year by adult jaguars and pumas
were estimated (Table 6.11) and simple harvest models were used to determine the prey
populations necessary to maintain sustainable off-take at these levels (Tables 6.12, 6.13
and 6.14).

Jaguars in the protected forest have a higher kill rate than pumas (Table 6.11).
This reflects the smaller MW VP prey taken by jaguars (predominately armadillos) than
by pumas (predominantly pacas, Table 6.8) and the higher energy demands of jaguars,
which are approximately 50% heavier than pumas in this region. If jaguars in the
protected forest only ate armadillos (or any small species providing a similar biomass
per individual) their kill rate would have to increase by ~ 40%; in contrast if pumas
solely consumed pacas (or any similar-sized species) their kill rate could decrease by ~
15% (Table 6.11). That pumas do not appear to be maximising energy intake by
selecting more pacas in their diet may suggest that local paca densities are lower than

those required to sustain a puma population; in contrast the fact that jaguars are able to
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find and consume so many armadillos suggests that they may be super-abundant in the
area. The prey densities required for sustainable off-take by jaguar and puma
populations in the protected forest (Tables 6.12 and 6.13) are discussed in relation to

expected prey densities in the region (see Discussion).

Table 6.11 Estimates of the total number of prey kills made per year by a big cat inside
the protected forest, and in the unprotected fragmented landscape, under different
scenarios.

Jaguar protected Jaguar fragmented Puma protected
all prey’ only undisturbed  disturbed  no all prey! only
armadilo®  (5nights)® (2 nights)* livestock® paca®
Solitary male 129-163  182-230 82-104 107-136  178-225 60- 76 52- 65
Solitary female 111-141 157-198 71- 89 92-117  153-194 36- 46 31- 39

Breeding female  270-344  383-484 159-199 190-238  376-474 98-126 85-107
pregnant’  122-155  172-218 84-107 119-150 169-213 40- 50 34- 43
nursing”  167-211 235-297 115-146 162-205  230-291 54- 69 47- 59
dependents 356-450  502-634  202-255 235-297  491-620  116-146  100-216

! prey biomass consumed in ratios observed in this study

? hypothetical scenario: only armadillo are consumed

% livestock carcasses undisturbed, consumed until decomposition (five nights)
*livestock carcasses abandoned after two nights due to human disturbance

> hypothetical scenario: livestock kills are replaced with armadillo kills

® hypothetical scenario: only paca are consumed

T although annual rates are given, gestation and lactation are < 365 days

Table 6.12 Estimates of prey population sizes required to sustain off-take by a single
jaguar in the protected forest; and prey densities required to sustain off-take by a
population of jaguars* numbering 10 per 100 km?; five adult males, five adult females,
four of which are breeding.

Armadillo Armadillo (2)t WL peccary Coati Paca

Solitary male 109-138 227-288 34-43 16-20 14-17
Solitary female 94-119 196-248 30-37 13-17 12-15
Breeding female  229-290 479-605 72-91 32-41 27-37

Density /km®  16- 20 32- 41 5- 6 2- 3 2- 2

* In the absence of off-take by pumas
T Population required if all biomass consumed was armadillo
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Table 6.13 Estimates of prey population sizes required to sustain off-take by a single
puma in the protected forest; and prey densities required to sustain off-take by a
population of pumas* numbering 10 per 100 km?; five adult males, five adult females,
four of which are breeding.

Paca Paca (2)t Brocket Armadillo WL Kinkajou

deer peccary
Solitary male 118-150 207-261 13-16 10-12 7- 9 69- 87
Solitary female 71- 90 124-157 8-10 6- 7 4- 5 42- 53
Breeding female 195-246  341-430 21-23 16-20 12-17 112-145
Density /km®  14- 18 25- 32 2- 2 1- 1 1- 1 8- 11

* In the absence of off-take by jaguars
T Population required if all biomass consumed was paca

Breeding females have higher energy demands than males or solitary females
and so must kill more frequently (Table 6.11). A female jaguar with dependents in the
protected forest may have to make up to 1.2 kills per day in order to fulfil her own
needs and those of her off-spring. If she fed only on armadillos this would increase to
1.7 kills per day (Table 6.11). Such high kill rates may prevent ‘armadillo-only’ diets
and necessitate predation on larger prey also.

The MW VP of jaguars in the fragmented landscape was greater than in the
protected forest, and this is reflected in lower kill rates in the human matrix (Table
6.11). This is facilitated by the presence of livestock; if jaguars did not have access to
cattle and sheep, and instead had to increase predation on armadillos, kill rates would
need to more than double (Table 6.11) and the armadillo density would need to be
similar in magnitude to that required in the protected forest (Tables 6.12 and 6.14). Of
note, the densities of coati and paca putatively required to support a jaguar population
do not differ greatly between the protected forest and the fragmented landscape and are
relatively low (Table 6.14). Assuming that pacas are more abundant in the protected
forest than the human matrix, this suggests that jaguars may be selecting against them in
the protected forest.

Jaguars may compensate for disturbance at livestock carcasses by increasing kill
rate (Table 6.11). If a female and her young are forced to abandon livestock carcasses
after 2 nights, rather than feeding for 5 nights, she will have to make an additional 33-42
kills per year (Table 6.11), which increases the number of cattle and sheep deaths from

13-16 and 9-12 respectively, to 32-40 and 23-29 per year.
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Table 6.14 Estimates of prey population sizes required to sustain off-take by a single
jaguar in the fragmented landscape; and prey densities required to sustain off-take by a
population of jaguars numbering a) 4 per 100 km? (two reproductively active females
and two adult males), and b) 10 per 100 km? (four reproductively active females plus
one other, and five adult males).

Armadillo Armadillo (2t Coati Paca

Solitary male 37-47 178-226 11-14  14-18
Solitary female 32-41 154-194 10-12  12-15
Breeding female  79-99 375-475 24-31  30-37
a) Density /km*  2- 3 11- 14 1- 1 1- 1
b) Density /km®*  5- 7 25- 32 2-2 2-3

T Population required if consumed livestock biomass was replaced by armadillo

Discussion

Diet studies of jaguars and pumas in areas with a wide range of potential prey
species may underestimate the true richness of the diet. If sample sizes are too small, the
importance of the more commonly taken prey taxa may be overestimated as the rarer
prey species remain undetected. This study suggests that studies of big cats from
biodiverse regions such as tropical rainforests should aim for samples of ~ 100 scats to
adequately describe diet. Samples half this size will likely detect the principal prey
species, but measures of relative occurrence may be inaccurate. It would help
interpretation of findings from small-sample studies if dietary components were
presented with an accompanying list of potential prey species occurring in the area and
a species accumulation curve. It is noted that felid scats are often difficult to find,
particularly in hot humid climates where fecal material rapidly decomposes or is washed
away in heavy rains. However, often scats are collected opportunistically by scientists
who are simultaneously conducting other research on the target species. As such the
effort put into finding scats may be low priority. The use of scat detector dogs is
becoming more widespread in a range of studies monitoring carnivore diversity and
abundance (e.g. Harrison 2006, Long et al. 2007), and could potentially improve scat
collection rates for diet studies.

In this study jaguar diet was found to be richer than puma diet, reflecting the
greater diversity of habitats utilised by jaguars across the study area (Chapter 5) which
provide a greater range of potential prey than the forest block alone. Even within the
protected forest, however, more species were recorded in jaguar than puma diet, though

this probably reflects the larger sample of jaguar versus puma scats. Indeed the number
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of species detected per scat collected in the protected forest was similar between the two

cats (jaguar 0.07 species per scat; puma 0.08).

Food habits within the protected forest

Across their ranges, the average sizes of prey taken by jaguars and pumas are
positively correlated with their body weights (Iriate et al. 1990, de Oliveira 2002). In
areas where jaguars and pumas are sympatric, pumas tend to be smaller and it has been
suggested that they also take smaller prey species; particularly in closed environments
such as dense forest where jaguars may be more efficient at hunting (Iriate et al. 1990,
Taber et al. 1997). However in a review of eight studies of the diets of sympatric
jaguars and pumas, de Oliveira (2002) found no difference in the average size of prey
between the two cats. Emmons (1987) suggested that solitary predators such as jaguars
and pumas hunt opportunistically in rainforest environments because encounters with
prey are unpredictable and vision is limited by the dense vegetation. In open
environments with abundant prey, predators can be more selective and are predicted to
take larger prey in order to maximise energy intake. Indeed a review of 16 jaguar
studies and 17 puma studies found that average prey size differed with habitat type, with
larger prey taken in open floodplain areas (de Oliveira 2002); however this did not
account for variation in the relative abundance of prey of different sizes across the
different habitats. More recently, studies in the open habitats of the Venezuelan llanos
and Brazilian Pantanal assessed prey availability in relation to diet, finding that jaguars
showed a general preference for large-bodied prey, and pumas took most large prey in
proportion to availability (Polisar et al. 2003, Azevedo and Murray 2007).

Published estimates of MW VP in neotropical forests range from 6.2 kg to 15.6
kg for jaguars and 7.2 kg to 12.7 kg for pumas (Nufiez et al. 2000a, Novack et al. 2005),
and are comparable to estimates in this study. It is possible that high decomposition
rates associated with hot and humid conditions may limit the preferred prey size taken
in the closed environments of tropical rainforests. Given the choice, a solitary cat may
not risk attacking a 240 kg tapir over a 22 kg brocket deer if the spoilage rate prevents
any additional energetic gain. This may help to explain the absence of tapir in the diet in
this study, and from other forests in the Central America region: Belize (Rabinowitz and
Nottingham 1986), Mexico (Aranda and Sanchez-Cordero 1996), Guatemala (Novack et

al. 2005), Costa Rica (Chinchilla 1997). However, the small surface area to volume
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ratio of tapirs, coupled with the paucity of hair on their bodies, may also explain why so

few studies detect tapir remains in jaguar and puma scats.

Diet overlap within the protected forest

Aranda and Sanchez-Cordero (1996) postulated that the co-existence of jaguars
and pumas is facilitated by specialisation on different prey, with jaguars selecting
peccary, and pumas selecting deer. These conclusions were based on their own study in
a Mexican rainforest, and that of Chinchilla (1997) in a rainforest of Costa Rica;
however sample sizes were small, particularly for pumas (n = 11-15 scats). In contrast,
in the tropical dry forests of Mexico, white-tailed deer were the most important prey in
the diet of both cats, consisting 54% and 66% biomass consumed by jaguar and pumas
respectively (Nuifiez et al. 2000a).

In this study, jaguars of the protected forest took more armadillos than did
pumas, whilst pumas took more paca and brocket deer, in accordance with findings in
nearby Guatemalan rainforest within the Selva Maya region (Novack et al. 2005).
Coatis were absent from puma diet yet contributed 9% of the total biomass taken by
jaguars. It is not clear why pumas did not prey on coati, but a similar pattern is seen in
the forests of both Guatemala and Mexico, with low coati predation by pumas compared
to jaguars (Nufez et al. 2000a, Novack et al. 2005).

No differences were detected between the two cats in overall use of either
peccary species; however jaguars seemed to focus on adult white-lipped peccary whilst
pumas took mainly juveniles. This may reflect the size difference between the two cats
and the risks associated with preying on adult white-lipped peccaries which will attack
defensively using their large canines. Polisar et al. (2003) also noted that whilst jaguars
and pumas both took collared peccaries, pumas mainly took juveniles. Fatal injuries
sustained by solitary felids when attacking large prey are not uncommon; for example
Ross et al. (1995) estimated that 27% of mortality in an un-hunted puma population in
Alberta resulted from failed predation attempts.

White-lipped peccaries were found more frequently in the diet of both cats than
were collared peccaries. Garla et al. (2001) also noted higher predation by jaguars on
white-lipped peccaries than collared peccaries in the Atlantic forest of eastern Brazil,
and suggested that this is because white-lipped peccaries are more conspicuous than

collared peccaries, forming larger herds, vocalising and producing strong odours.
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Diet breadth within the protected forest

Within the protected forest, the diets of both cat species each greatly depended
on a single prey species, with armadillos comprising 48% of the biomass consumed by
jaguar, and pacas comprising 57% of puma diet. Consequently the diversity of prey
taken by jaguars and pumas in CBWS (B, = 0.11 and 0.17 respectively) was
considerably lower than the diet breadth recorded in seven studies where jaguars and
pumas co-exist (mean By, = SD: jaguar 0.45 + 0.14, puma 0.51 £ 0.21; from de
Oliveira, 2002). Intense use of a single prey species could reflect a highly selective
predator with a preference for a specific prey, or a more opportunistic predator
surviving in a community where there is one highly abundant species and a low
abundance of alternative prey species. In this study, both cat species inhabiting the
protected forest had similar MW VP and took prey ranging from <1 kg to 34 kg,
demonstrating that both were capable of handling prey of the same size; yet their diet
overlapped little, as has been noted in other densely forested neotropical habitats
(Harmsen 2006). Such a low level of niche overlap suggests resource partitioning
between the jaguars and pumas, which may facilitate their co-existence. It also implies
that one, or both, of the cats may be hunting selectively to some extent, rather than
being limited to opportunistic predation as proposed by Emmons (1987). Experimental

manipulations would be required to test for these processes.

The role of armadillos and pacas

Activity patterns of jaguars vary across their range: they may be equally active
day and night, diurnal, crepuscular or nocturnal (e.g. Emmons 1987, Crawshaw and
Quigley 1991, Nufiez et al. 2002, Scognamillo et al. 2003, Maffei et al. 2004,
Rabinowitz and Nottingham 1986, Harmsen 2006, Weckel et al. 2006a). In the CBWS,
activities of jaguars and pumas mirrored the nocturnal activities of their main prey,
armadillos and pacas respectively (Harmsen 2006). When inactive, pacas and armadillos
rest in burrows (Reid 1997). Hunting them when they are active is therefore likely to
maximise the rate of chance encounter. It may also improve the detection rate, as both
species rustle leaves when they move through the undergrowth; and armadillos in
particular are noisy foragers as they rummage in the leaf litter for arthropods. That cat
activity patterns were so finely tuned to those of armadillo and paca, combined with the
high level of predation on these distinct yet similar-sized species, suggest that jaguars

and /or pumas may have been hunting selectively.
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A dietary preference for armadillos by jaguars is difficult to explain because if
hunting were selective we would expect jaguars to exploit larger prey, for example
pacas, which are on average 3 kg heavier than armadillos and represent a more energy-
rich prey source. If hunting is in fact opportunistic, jaguars may be utilising armadillos
either because they are exceptionally abundant, and /or because other prey species are
unusually scarce. It has been suggested that armadillos may be superabundant within
CBWS and a recent pilot study may support this (Harmsen 2006, B. Harmsen pers.
comm.). Although there are no current data on the abundance of any prey species in the
area, historical data from the area may help. In 1983, before the forest was officially
protected, sign of armadillo within the Cockscomb basin were encountered 100 times
more frequently than were sign of peccaries (Rabinowitz and Nottingham 1986). The
relative occurrence of armadillos in jaguar diet in the area has not altered since that time
(54% Rabinowitz and Nottingham 1986, 51% this study), despite 20 years of protection.
Although the protected forest suffers incursions by poachers seeking game species at the
edges (R. Foster pers. obs.), it is likely that prey populations within the Cockscomb
basin have improved since it became formally protected and the logging camps were
disbanded. Before protection, only 5% of jaguar prey items were white-lipped and
collared peccaries (Rabinowitz and Nottingham 1986) compared to 19% in this study,
suggesting that protection may at least have aided peccary recovery. The continued high
predation on armadillos despite this dramatic increase in use of larger prey supports the
hypothesis that armadillos are indeed abundant in the area and are exploited
opportunistically by jaguars.

Even if armadillos are superabundant in the area, and are easy to detect because
they are noisy foragers, their tough carapace may deter pumas from predating on them
(e.g. Novack et al. 2005). It may be hypothesised that the handling time associated with
killing and eating an armadillo will be relatively high for the energy return (~ 3.5 kg
edible material), compared to a paca which is larger (8 kg edible material) and does not
have protective armour. Jaguars have the strongest bite (for their size) of all the big cats
(Sunquist and Sunquist 2002). Indeed it has been suggested that they evolved taking
large armoured reptiles (Emmons 1987). As such the handling time of an armadillo will
likely be minimal for a jaguar. In contrast, the pumas of CBWS may have more
difficulty, making intense predation on armadillos energetically unviable, and selection
of pacas more profitable. Their reduced handling effort on pacas compared to

armadillos is probably offset against a higher search effort for the relatively agile paca.
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A paca has some probability of escaping an attack, whereas an armadillo is almost
invariably condemned once detected by a jaguar unless it can quickly find refuge in a
burrow or sufficiently thick undergrowth.

In an analysis of camera-trap data collected within the CBWS, Harmsen (2006)
found no differences in habitat use between pacas and armadillos. Both species had
similar capture rates at the edge of streams, and neither were trail walkers, with the
majority of trail footprints detected crossing rather than following trails (57% armadillo
tracks and 69% paca tracks crossed trails). Although Chapter 5 detected no fine-scale
differences in habitat use between jaguars and pumas within the forest, Harmsen (2006)
found that pumas spent more time travelling on trails than did jaguars and suggested
that pumas mainly hunt on trail, whilst jaguars hunt off-trail. It is possible that when
armadillos are in the undergrowth they are less easy to detect from a trail than are pacas,
which are larger (standing up to 0.3 m high, Reid 1997) thus more conspicuous, and so
armadillos may be less likely to be preyed on by pumas than jaguars.

An armadillo density of ~16-20 km™ would be required to sustain off-take by a
jaguar density of 10 individuals per 100-km? at the levels of off-take observed in this
study. With their occurrence in jaguar diet remaining unchanged since 1983, we may
suspect that off-take has also remained sustainable (assuming that jaguar densities have
not increased). If armadillos were the only prey of jaguars in the protected forest an
armadillo density of ~32-41 km™ would be required to allow sustainable off-take.
Published estimates of nine-banded armadillo densities in the neotropics are scarce and
limited to burrow counts, from which it is difficult infer population size, for example in
the Atlantic rainforest of Brazil armadillo burrow density was estimated at 173 ha'',
though the majority were inactive (McDonough et al. 2000). A study in the pine forests
of northern Belize detected 27 burrows per hectare, of which at least 23% were active
(Platt et al. 2004) which equates to ~ 600 active burrows per km”. Burrow use per
armadillo is likely to vary with habitat and predation level (e.g. McDonough et al.
2000). If each armadillo used as many as 10 burrows, we may expect a population
density of ~60 individuals per km?” in the Belizean pine forests. We might therefore
hypothesise that armadillo density within CBWS could be realistically high enough to
support the jaguar population in the absence of alternative prey. That jaguars do not take
more armadillos suggests a need for at least some larger prey in their diet. The simple
models investigated in this study suggest that it may be energetically preferable to

occasionally take larger prey, particularly for a female with dependents. If armadillos
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were the only available prey a female jaguar would need to double her kill rate to ~1.7
kills per day in order to raise two juveniles. It is unknown whether the foraging effort
required to achieve the necessary armadillo encounter rate would be possible. Although
jaguar feeding behaviour may be adaptable to a wide range of prey, reproduction may
depend on a minimum availability of larger prey, below which the long-term persistence
of jaguars may be in jeopardy. Based on the food habits observed in CBWS we can
tentatively predict that jaguar population turnover requires at least 27% of the biomass
taken to be prey larger than 10 kg. This requirement may be more or less strongly sex
dependent, however. The estimate is derived from scats that are probably mostly from
male jaguars (the majority having been found on trails), and females may require a
higher proportion of larger prey particularly when breeding.

Unlike jaguars, whose use of armadillos appears to be limited by the high kill
rates that would be necessary if larger prey were not also taken, kill rate by pumas in the
protected forest could be lowered if they increased their intake of paca in place of
smaller species such as kinkajou. That they do not do this suggests they are limited by
paca availability and encounter rates. Indeed the occurrence of paca in jaguar diet has
almost halved since 1983, from 9.3% to 4.6% (Rabinowitz and Nottingham 1986, this
study). Without long-term monitoring of prey abundance we can only speculate as to
whether this reflects a true decline in paca availability or an increase in the relative
abundance of alternative prey. The estimated intrinsic rate of increase of paca is less
than that of other game species such as peccary (Robinson and Redford 1986). Thus,
whilst peccary populations may have improved with reduced hunting pressure following
establishment of the protected area, the paca population may be kept below carrying
capacity by continued poaching (albeit at a lower level) within the park. If pacas were
the sole prey taken, the estimated density required to sustain a puma population of 10
per 100 km? within the protected forest is only 25-32 km™. Paca densities of up to 93
km™ have been recorded in non-hunted forest in Costa Rica (Beck-King et al. 1999)
indicating that pacas can reach high densities if undisturbed. However in a hunted forest
in Guatemala paca density was just 3.7 km™ (Novack et al.2005). These findings

highlight an urgent need for estimates of both prey and puma densities in the area.

Food habits outside the protected forest

The MW VP taken by jaguars was smaller, and diet was less species-rich, in the

forest buffer than in either the protected forest or the fragmented habitat, presumably
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because hunters deplete the unprotected forest buffer of larger game species such as
deer and peccary and there are no livestock here to supplement jaguar diet. Note that
sample sizes in the forest buffer and fragmented habitat were 38 and 54 respectively,
and so may underestimate the true number of species taken in these areas.

The higher prevalence of coati and collared peccary in jaguar diet in the buffer
than in the protected forest may reflect either the scarcity of prized game species such as
brocket deer and white-lipped peccary and/or potentially a higher abundance of coati
and collared peccary in this ‘edge’ habitat. Novack et al. (2005) detected higher coati
densities in a hunted site closer to a settlement (53 km'z) than a non-hunted site (23 km”
%) in a Guatemalan rainforest. In the same study, although the non-hunted area had
similar densities of collared and white-lipped peccaries (8.1 and 9.6 km™ respectively),
the hunted site had no white-lipped peccary whilst collared peccary persisted albeit at
lower density (2.4 km™). Unlike the white-lipped peccary, which requires extensive
tracts of undisturbed forest, the collared peccary appears to adapt well to disturbed
habitats (e.g. Peres 1996, Reyna-Hurtado and Tanner 2007). The persistence of collared
peccary in areas where other large prey are more quickly depleted by humans may play

an important role in sustaining jaguar populations outside protected areas.

The role of livestock in jaguar diet

Livestock constituted an important part of jaguar diet in the fragmented
landscape, replacing armadillos to some extent and supplementing a diet of otherwise
small prey (MW VP = 4.5 kg without domestic species). This probably reflects the
scarcity of large game species and a lower armadillo density in the human-matrix than
in the protected forest, as well as the presence of farms which provide resource-rich
patches with high densities of livestock (Chapter 5). Although not all jaguars in the
fragmented landscape may feed on livestock, those whose home ranges encompass
pastures have potentially high encounter rates with domestic prey, which may be
exploited by opportunistic predators, particularly if alternative wild prey species are
scarce. Azevedo (2008) found that livestock contributed most to jaguar diet (26% of
biomass consumed) in and around Iguacu, a national park of subtropical forest bordered
by livestock farms in Brazil. An increase in livestock predation in this area has been
linked to a decline in white-lipped peccaries (Conforti and Azevedo 2003, Crawshaw et
al. 2004, Azevedo 2008). Indeed the utilisation of domestic prey is often inversely
associated with the availability of wild prey (e.g. Hoogesteijn, 2000, Miller 2002,
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Polisar et al. 2003), a fact that is recognised by researchers and livestock owners alike.
For example during a survey of 72 Belizean livestock owners who had lost animals to
big cats, many interviewees believed that the over-hunting of wild game species was
responsible for increased depredation (Brechin and Buff 2005).

Jaguars bred outside the protected forest of this study area, as indicated by
camera-trap photographs of at least two different females with cubs (one in the buffer
and one on a cattle farm), during the study period (Chapter 4), and by frequent sightings
of a female with cubs on a different ranch within the study area during 2007 (S. Juan
pers. comm.). It is unknown whether these females were preying on livestock, as
jaguars of both sexes were detected on farms concurrently (Chapters 5 and 7). The scats
are in the process of being gentoyped to distinguish males from females (C. Pomilla,
WCS geneticist, pers. comm.) and these data will be available for further analyses. An
important question to answer is whether female jaguars could afford to reproduce in the
human-influenced landscape in the absence of cattle and sheep. Certainly a female with
sub-adult dependents would benefit from taking down large prey. If undisturbed during
feeding, a calf of 125 kg could provide three times more food to a mother with two cubs
than that provided by an adult white-tailed deer, and 20 times more than from an
armadillo. Estimates based on jaguar diet observed outside the forest block indicate that
breeding females would have to increase kill rate by an additional 150% if armadillos
were substituted for livestock within their diet. Even if a female could achieve the
required foraging effort it is unknown whether the armadillo population could sustain
this level of off-take. The harvest models presented in this study suggest that an
armadillo population of 79 to 99 within the home range of the breeding female would be
required for sustainable off-take. If her home range is approximately 8.6 km? (Chapter
4) and exclusive, a local armadillo density of at least 9-12 km™ is required. Armadillos
may not achieve these densities in the fragmented landscape, which is dominated by
citrus plantations. For example, in Brazil armadillo burrow density in grasslands was
less than one third of that that observed in the rainforest (McDonough et al. 2000).
Although armadillos are not a prized game species in Belize, a firearm is not required to
hunt them as they are easy to kill with dogs or machete (R. Foster pers. obs.). As such,
local attitudes towards armadillos perhaps also reflect the response of jaguars: if you see
one, kill it (R. Foster pers. obs.) It may be expected therefore that armadillo densities

are substantially lower in the human-matrix than inside the forest block.
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Any disturbance to livestock kills may increase depredation and subsequent
losses, as jaguars that are forced to abandon livestock carcasses early will need to kill
again sooner. Estimates from the study area suggest that losses to sheep and cattle
could decrease by 60% if people leave the carcass to be fully utilised rather than moving
it after 2 nights. These estimates are speculative and do not consider the potential
benefits of disturbance which may drive the jaguar from the area, and halt depredation

altogether.

Diet and the absence of pumas from unprotected lands

Nuiez et al. (2000a) proposed that the broader prey niche of pumas and their
ability to take smaller prey may give an advantage over jaguars in human-altered
landscapes, and suggested that persistence of pumas appears more likely than jaguars in
disturbed environments. This does not appear to be true for this study: pumas took
larger prey and fewer species than did jaguars, and their feeding habits, combined with
wild prey availability, may partly explain the scarcity of pumas compared to jaguars
outside the protected forest (Chapter 5). The three most important prey species in puma
diet within the protected forest were paca, white-lipped peccary and brocket deer.
Locally these are also popular game species and it is likely hunting prevents them from
reaching similar densities outside the protected forest to those within it (R. Foster pers.
obs.). The food habits of big cats observed inside the protected forest suggest that the
pumas may be more selective than jaguars, avoiding armadillos in favour of pacas. Such
a feeding strategy will limit their success in the fragmented landscape where pacas are
also favoured by man.

Unlike jaguars, which supplemented their intake of otherwise small prey with
cattle and sheep, there was no evidence that pumas ate livestock. The same phenomenon
was observed in Iguacu, Brazil, where jaguars killed both wild and domestic animals,
but pumas utilised only wild prey (Conforti and Azevedo 2003, Azevdeo 2008). In the
Venezuelan llanos and Brazilian Pantanal where jaguars and pumas coexist and both are
documented to kill livestock, pumas tend to focus on the smaller age classes (e.g.
Gonzdlez-Ferndndez 1995, Crawshaw and Quigley 2002, Scognamillo et al. 2002,
Azevedo and Murray 2007). Across Belize, reports of pumas predating on livestock are
relatively few compared to jaguar (Brechin and Buff 2005).Here pumas are among the
smallest in their range (e.g. Iriate et al. 1990) and are smaller than the sympatric jaguar;

thus their size may deter them from attacking large cattle. However this does not
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explain why they do not utilise the human matrix and eat sheep, pigs, dogs or small
calves. Chapter 5 provided evidence that pumas in Belize tend to be less tolerant of
human activity than jaguars. It seems likely that a combination of food habits, prey
availability and their wariness of people prevents pumas from exploiting the human-
matrix. In contrast, jaguars appear to be living and breeding across the landscape, both
inside and outside the protected forest, albeit at lower densities in the human matrix
than in the reserve (Chapter 4). They persist despite utilising relatively small prey
species, although it is possible that in areas where large wild species have been
depleted, livestock may become an increasingly important supplement in their diet,

particularly for breeding females.

Further work

The discussion presented here is limited by lack of information on the
abundance of wild prey species. Obtaining such data from the protected forest will
improve interpretation of the observed differences between jaguar and puma feeding
habits, and the extent to which these behaviours influence or facilitate their co-
existence. Estimates of wild prey abundance in dense secondary forest using techniques
such as distance sampling may be hindered by the low visibility (Appendix D); however
pilot studies are currently underway to assess the relative abundance of pacas and
armadillos in the CBWS using a number of independent methods that can be cross-
validated, and there are plans to begin monitoring the larger prey species also (B.
Harmsen pers. comm.). Outside the protected lands, data are also needed on the
abundance of wild prey species, including estimates of the intensity and impact of
hunting by humans on wild prey populations. Improved parameter estimates are also
needed for modelling the energy requirements of jaguars and pumas; these will benefit
from sex-specific descriptions of food habits in order to assess whether wild prey
abundance is sufficient for female reproduction. A better understanding of the effect of
the availability of domestic versus wild prey on the food habits of jaguars is also
required, particularly for assessing whether wild prey augmentation, especially large

ungulates, could reduce levels of livestock predation.
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Lethal control and population
persistence of jaguars
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Abstract

Although jaguars (Panthera onca) are well known to suffer persecution for
killing livestock, the intensity of this human-induced mortality and its impact on long-
term population persistence is poorly known. Belize is thought to support one of the last
jaguar strongholds in Central America. Jaguars are common throughout the country, in
the two main protected forest blocks and in the unprotected human-influenced
landscape. Many farms and villages border forested habitat, and with an abundance of
livestock as prey, they are potentially resource-rich areas for cats, resulting in high rates
of conflict between humans and jaguars. This chapter combines field data and
individual-based population simulations to investigate the impact of current levels of
human-induced mortality on the population dynamics and long-term persistence of the
Belizean jaguar population. The study found that human-induced mortality of jaguars
was most common in the unprotected lands, estimated at ~ 45% annually. Male and
female jaguars were equally susceptible to human-induced mortality. Young individuals
in good body condition were frequently killed, indicating high turnover rates potentially
facilitated by immigration. Population simulations indicated that in the absence of
immigration from the two protected populations, and under the current level of human-
induced mortality, the hunted population had zero probability of persisting for more
than 20 years. The two protected populations were large enough to withstand
demographic and environmental stochasticity, assuming no catastrophes, edge-effects or
the negative influence of genetic stochasticity; and could sustain low levels of migration
into the hunted population. However the probability of all three populations persisting
for 100 years fell to ~ 50% if the migration of natal dispersers (2-4 year olds) from the
protected to unprotected population was > 13% per year. If farms and villages do attract
dispersers from the protected forest at this rate, and levels of human-induced mortality
remain high, then the long-term persistence of the jaguar population in Belize may be in

doubt.

Introduction

Human activities may impact on the population dynamics of large carnivores
existing at low densities indirectly through their influence on habitat and prey

availability and directly as human-induced mortality. Habitat loss and prey depletion

226



Chapter 7: Lethal control and population persistence

will lower the carrying capacity of a population, and a scarcity of prey may additionally
lower reproductive rates within the population (Fuller and Sievert 2001). Intentional or
accidental deaths caused by people will impact directly on survival (e.g. grizzly bears
(Ursus arctos horibilis), Knight et al. 1988, Iberian lynx (Lynx pardinus), Ferreras et al.
1992). Frequently, populations of large carnivores are limited by human-induced
mortality; even those existing within protected areas may be influenced, as wide-
ranging individuals that move beyond reserve boundaries are killed by people
(Woodroffe and Ginsberg 1998). It has been suggested that this strong ‘edge effect’ may
be just as important as stochastic effects on long-term persistence of isolated carnivore
populations (Woodroffe and Ginsberg 1998). Under such circumstances the most
appropriate conservation strategy may be to focus on ways to lower human-induced
mortality of the population rather than attempt to restore habitat or prey abundances
outside the protected area. In studies of jaguar (Panthera onca) ecology, direct conflict
with people has been identified as the most common cause of death (Sunquist 2002), yet
few researchers have attempted to quantify levels of human-induced mortality, and
those that do make no assessment of the likely impact on the local jaguar population
(e.g. Crawshaw 2002, Conforti and Azvedo 2003, Brechin and Buff 2005, Michalski et
al. 2006). Consequently there is a need for a better understanding of the potential impact
of jaguar persecution on population dynamics, and an assessment of whether it is
feasible or desirable to lessen death rates. The aim of this study is to quantify human-
induced mortality of jaguars outside protected areas in Belize, with particular reference
to retaliatory killings in response to livestock loss, evaluating whether lethal control is
an effective method of preventing depredation and the whether the current level is likely

to be sustainable for the country’s jaguar population in the long term.

Causes and rates of human-induced mortality

Many large carnivore species are persecuted for the harvest and trade of body
parts, recreational sport hunting, and in response to real or perceived threats to human
life or livelihood (Frank and Woodroffe 2001, Sillero-Zuibiri and Laurenson 2001,
Thirgood et al. 2005, Dinerstein et al. 2007). Additionally, they may be killed
‘accidentally’ by human activities, for example in road traffic accidents or through the
poisoning or trapping of non-target species (Ferreras et al. 1992, Nielsen and Woolf
2002, Taylor et al. 2002, Haines et al. 2005, Riley et al. 2007). For big cats, livestock

predation is considered the principal source of conflict with people, and a major reason
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for their disappearance from considerable areas of their former range (Nowell and
Jackson 1996, Mazzolli et al. 2002). Most large cats will occasionally kill accessible
livestock (Linnell et al. 1999) depending on extrinsic variables such as the availability
of wild versus domestic prey and specific livestock husbandry practises (Linnell et al.
1999, Hoogesteijn 2000, Miller 2002, Mazzolli et al. 2002, Conforti and Azevedo 2003,
Polisar et al. 2003, Crawshaw et al. 2004). The extent to which big cats prey on
domestic animals is also influenced by the individual’s sex, status and health, as well as
hunting behaviours learned with their mother (Rabinowitz 1986a, Hoogesteijn 2000,
Polisar et al. 2003). Understanding which individuals within a population are most
likely to attack livestock and thus are most at risk from persecution can contribute to
predictions about the consequences of lethal control, for example the removal of adult
females will directly lower the breeding potential of the population whilst the removal
of males may have more subtle effects through the disruption of social dynamics, for
example increased infanticide following the removal of resident males, as has been
observed in lions (Panthera leo) and leopards (Panthera pardus) (Loveridge et al. 2007,
Balme et al. 2007).

In developing regions that still retain a high proportion of forest cover, such as
Belize (72% forest, World Resource Institute, WRI, 2007), the contact zone between
people and wildlife is extensive, and increasing as the forests are further fragmented. In
Belize the close proximity of many farms and villages to forest means that almost every
livestock holding may be at risk of jaguar predation. This can be particularly damaging
to small-scale farmers unless preventative action is taken when depredation begins;
usually lethal control is seen as the cheapest and quickest solution (R. Foster pers. obs.).
Furthermore, multiple farms may fall within the home range of the same cat or cats
(Chapter 5) which often leads to the misconception by locals that jaguar abundance may
be higher than reality (R. Foster, pers. obs.). For example, erroneous beliefs by some
livestock owners neighbouring the Cockscomb Basin Wildlife Sanctuary (CBWS), a
protected forest of 425 km? in southern Belize, that the reserve sustains a population of
1000 jaguars encourages a gung-ho approach to lethal control at the periphery (R. Foster
pers. obs.). In reality the CBWS is estimated to support around 40 jaguars (Harmsen
2006) and the impact of continuing lethal-control at its border has not been estimated to
date.

Management of jaguars in Belize is hindered not only by the difficulties of

accurately estimating the density of this elusive species outside protected areas

228



Chapter 7: Lethal control and population persistence

(Chapters 3 and 4), but also by lack of information on rates of lethal control resulting
from rather grey laws surrounding the hunting of jaguars and the reluctance of people to
report these deaths to the Government. The Belize Wildlife Protection Act (2000) states
‘it is not unlawful for any person to take such measures as maybe reasonably necessary
to defend self or property’; thus it is not an offense to kill a jaguar that is threatening life
or livelihood. However the death must be reported within 1 month and the remains are
strictly the property of the Government; trade in jaguar body parts carries a fine of
US$250 for the first offence, rising to US$500 for a second offence and imprisonment
for a third offence (Belize Wildlife Protection Act 2000). Unfortunately the wildlife law
is neither well publicised nor understood within Belize, with many people believing that
it is illegal to kill a jaguar under any circumstances (R Foster pers. obs.). Consequently
informal lethal control of jaguars, although widespread, is covert and rarely reported to
the Government (R. Foster pers. obs., Brechin and Buff 2005). The problem is further
exacerbated because the Government lacks the necessary resources to respond to reports
of depredation in farms and villages, and disillusioned livestock owners and
communities often feel forced to take matters into their own hands (R. Foster pers.
obs.). The first objective of this chapter is to report and discuss causes and rates of
human-induced mortality of jaguars, and the characteristics of those culled jaguars, on
agricultural lands neighbouring a protected forest (the CBWS) in southern Belize.
Jaguar activity on farms and differences in the intensity of livestock loss before and
after lethal control are used to assess whether lethal control of jaguars correctly targets

the livestock predators and effectively lowers losses.

Impact of human-induced mortality on population dynamics

Rates of human-induced mortality of carnivores can be expected to vary across
the landscape, for example they may peak close to highways or livestock holdings (e.g.
Knight et al. 1988) and decline with distance into a protected area (e.g. Revilla et al.
2001). Spatial heterogeneity or gradients in mortality can result in source-sink dynamics
(Pulliam 1988), in which hunted local populations (sinks) are sustained by immigrants
dispersing from neighbouring un-hunted populations (sources). Source-sink like
dynamics arising from spatial variation in hunting have been observed in bobcats (Felis
rufus) (Knick 1990); Canadian and Iberian lynx (Lynx sp.) (Slough and Mowat 1996,
Gaona et al. 1998); pumas (Puma concolor) (Stoner et al. 2006, Robinson et al. 2008;

grizzly bears (Knight ez al. 1988, Schwartz et al. 2006); and culpeo foxes (Pseudalopex
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culpaeus) (Novaro et al. 2005). Although demographic sinks cannot persist
independently, theoretical models demonstrate that they may contribute positively to
meta-population longevity (e.g. Howe et al. 1991). However this assumes that
individuals disperse from source to sink only if the source population exceeds carrying
capacity, i.e. sinks are maintained by the surplus reproduction of the source population.
In contrast, if sinks are ‘attractive’ they can potentially drain individuals from source
populations leading to regional population declines. These so-called ‘ecological traps’
may be common in human-landscapes, particularly where rapid anthropogenic change
has taken place such that behaviours governing habitat choices are no longer optimal
(Pulliam 1996, Remes 2000, Delibes et al. 2001, Kristan 2003, Battin 2004). Livestock
farms may potentially function in this way, attracting carnivores to resource-rich
patches where the probability of mortality resulting from conflict with people is high.
Jaguars are common throughout Belize, both in protected forests and in the
human-influenced landscape (Silver et al. 2004, Harmsen 2006, Miller 2006, this study
Chapter 4), and it is likely that they form a single connected population (e.g. Eizirik et
al. 2001, Rabinowitz 2006). Two separate blocks of protected forest, the ‘Maya
Mountain’ block to the south and the ‘Rio Bravo’ block to the north, make up ~ 35%
and ~ 13% of the country’s broadleaf forest respectively (from Meerman and Sabido
2001). Both forest blocks are buffered by unprotected forest, and the remaining
landscape is a matrix of human development and forest fragments (Figure 1.4, Chapter
1). The two protected blocks have been identified as important jaguar strongholds in
Belize, but concern has been raised that these two local populations may not be large
enough to persist if they become isolated (Meerman 2004). Future isolation of the two
blocks is not an unrealistic prediction as the natural habitat is increasingly being cleared
for human development in the unprotected lands, and they are already separated by a
highway running east-west across the country (R. Foster pers. obs.). Once isolated the
populations may not be large enough to withstand the effects of demographic,
environmental and genetic stochasticity, and/or edge effects, which may lead to the
decline and extirpation of small populations (Schaffer 1981, Woodroffe and Ginsberg
1998). Even if connectivity is retained between the populations, livestock production is
increasing throughout Belize to meet export demand to Mexico (J. Carr, Belize
Livestock Producers Association, pers. comm., WRI 2007), and the human population
is growing with increasingly more vehicles on the roads (WRI 2007, UN Stat Division

2008). Consequently the risk to jaguars both from persecution and accidental deaths

230



Chapter 7: Lethal control and population persistence

such as vehicle collisions is likely to increase in future years, potentially facilitating a
population sink in the unprotected lands. Under the circumstances described we may
envisage four simple hypothetical scenarios: 1) human-induced mortality in the
unprotected lands has no significant impact on local or regional population persistence,
the jaguars of Belize exist as a single, connected population; 2) mortality in the
unprotected lands exceeds reproduction and there is no immigration from the protected
forests (alternatively development in the human-landscape reduces the carrying capacity
to zero), the jaguars of the protected blocks exist as two isolated populations at risk
from stochastic decline; 3) mortality in the unprotected lands exceeds reproduction
(sink), but the population is sustained by random immigration from the protected forest
blocks (sources); 4) individuals are ‘attracted’ from the protected forest blocks to
resource-rich livestock farms in the unprotected lands where mortality exceeds
reproduction (ecological trap). Understanding whether any of these scenarios could be
applicable now, or in the future, to the Belizean jaguar population, and the long-term
consequences they would bring, will help to guide management strategies. Thus the
second objective of this chapter is to simulate the dynamics of the jaguar population of
Belize as a meta-population comprising two un-hunted populations (one in each
protected forest block), and a single hunted population in the remaining lands, using
simple individual-based stochastic demographic models. The models explore the
probability of long-term persistence of the Belizean jaguar population under alternative
scenarios of population isolation/ connectivity (dispersal) and human-induced mortality
to 1) examine whether the protected populations are large enough to persist in isolation;
2) evaluate the level of human-induced mortality that the unprotected population can
sustain in the absence of immigration and compare this with observed levels of human-
induced mortality from the region; 3) evaluate the level of immigration required to
maintain the unprotected population under current rates of human-induced mortality and
identify the threshold above which it becomes an ecological trap with a negative effect

on the protected populations.

Methods

Eleven cattle farms were identified within the immediate study area (see Figure
5.2, Chapter 5). The farms ranged in size from 0.04 to 9.25 km? (~ six to 900 cattle).

Camera traps were maintained on or near eight of these farms for varying periods (two
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to 30 months), depending on the cooperation of the land owners, in order to create a
database of cats utilising the farm habitat. Data about cat deaths or removals from the
wild were collected opportunistically from local people. Large-scale camera-trap
surveys conducted between 2004 and 2006 were used to estimate jaguar density across
the study area, both in the protected forest and in the neighbouring unprotected lands,
incorporating eight of the cattle farms (Chapter 4). Stochastic demographic models
incorporating observed hunting rates and density estimates were used to assess the

sustainability of human-induced mortality of jaguars in Belize.

Causes and rates of human-induced mortality

One of the most important stages of the research involved gaining the
confidence of the local people to facilitate information exchange and allow collection of
reliable data. The responses of all livestock owners and employees were positive even
though the informal hunting of cats is a sensitive subject. No judgement was made when
pro-lethal control or anti-jaguar attitudes were displayed. Emphasis was placed on the
non-authoritarian role of the researcher, who was there purely for information collection
and dissemination, with the ultimate goal of long-term conflict resolution between
farmers and jaguars. Livestock owners were generally more willing to provide
information if they were offered camera traps on their property. Typically they already
knew if big cats were present, from spoor and predation events; however the
dissemination of camera data was carefully controlled to prevent the possibility of
livestock owners reacting negatively to information about jaguars on their land.
Photographs of cats and other wild animals, when shared appropriately, greatly
increased the interest of local people. The establishment of amicable relationships with
all stakeholders made possible the collection of data on the lethal control of jaguars in
the study area. Despite this, any estimate of lethal control will likely be conservative.

Reports of any human-induced mortality of big cats in the study area were
collected opportunistically (traffic deaths, poaching for trade in body parts, poaching for
live animal trade, ‘incidental’” shootings whilst hunting game, retaliation for livestock
predation). Methods of lethal control across the study area were recorded, along with
long-term data on attempt and success rates of lethal control over a 3-year period on the
largest farm in the area. Jaguar activity on farms and rates of livestock predation
(Chapter 5) were used to determine whether more than one individual frequented the

same farm during the same spate of attacks. Differences in rates of livestock loss before
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and after lethal control were calculated in order to assess the likelihood that the correct
individual was killed. The final destination of the valuable body parts (pelt, canines and

skull) were also recorded where possible (kept, sold or discarded).

Characteristics of ‘problem’ jaguars

Data on the demographics and physical features of jaguars killed by people were
combined with camera-trap data to investigate the relationships between the probability
of human-induced mortality and characteristics such as sex, age, body condition and
habitat use. Characteristics of ‘problem’ jaguars (those that are livestock killers) cannot
be defined per se because it is rarely possible to link an individual to specific livestock
predation events. Rather, characteristics of jaguars that are susceptible to persecution

were investigated, regardless of whether they actually kill livestock.

Demographics and health

Details of any big cat that was killed and reported to the researcher during the
study period were recorded. Historic anecdotes (up to five years prior) were also offered
from some livestock owners and recorded. Whenever possible, reports were verified and
data were collected on: species, sex, weight, dental condition, age (estimate based on
cranial suture closure and tooth development and tooth wear, and camera-trap data
where available), body condition, stomach contents and cause of death. The collection
of these data depended on the condition and availability of the remains once the event
had been reported. Usually the body was skinned immediately, the canines pulled out
and the carcass dumped and scavenged by vultures. Therefore the farm employees were
given cameras and encouraged to photograph the body before skinning the cat. This
allowed individual identification if already present in the database of jaguars
photographed in the study area (Chapter 4), and sometimes also provided data on the
general body condition, depending on the quality of the photographs. Estimates of body
weight were often provided by the farm employees but were probably exaggerated in

accordance with the macho image of killing a big cat.

Habitat use

It was hypothesised that jaguars which predominately inhabit human-dominated
habitats were more likely to suffer human-induced mortality than those which also use

forest buffer contiguous with the protected area. Jaguars photographed more than once
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were classified according to their capture locations and whether they were killed by
people during the study period. A Fishers exact test compared the proportion of
survivors and mortalities between individuals which only used the fragmented

landscape and those which used both the fragmented landscape and the forest block.

Impact of human-induced mortality on population dynamics

The potential impact of human-induced mortality on the jaguar population of
Belize was investigated under different scenarios using individual-based models built
within the software program Vortex (Lacy and Pollak 2005). Although such programs
may not accurately predict the future status of wild populations, they can be used to
explore model assumptions on population dynamics and to compare alternative
scenarios or management strategies (Coulson et al. 2001). Vortex was designed for
long-lived vertebrate populations with relatively low fecundity and it is therefore
suitable to model big cat populations (O’Regan et al. 2002). It models the effects of
deterministic processes (such as density-dependent reproduction and survival, age/sex
specific mortality, and the harvesting of individuals), and the effects of stochastic
processes (demographic and environmental stochasticity, catastrophic events, and
genetic factors) on population dynamics. It can also simulate migration between
populations. The model tracks individuals and is run over a series of time steps (e.g.
years) to predict the future population size. Because of the stochastic component of the
model it is run many times with the same input parameters, each iteration following a
different course. The results are therefore probabilistic, giving a distribution of final

population sizes (Miller and Lacy 2005).

Modelling stochastic and deterministic processes

Demographic parameters such as birth rates, litter size, sex ratio and death rates
derived from field data can be used to estimate the deterministic growth rate of a
population. In reality these life events are probabilistic, fluctuating randomly from year
to year. This demographic stochasticity is modelled by simulating a binomial process in
which the probability of the event (e.g. birth, death) is drawn randomly from a binomial
distribution around the mean. In this study estimates of jaguar life history parameters
were derived from the available literature on jaguars and other big cats. The model

parameters are summarised in Table 7.1 (next section).
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In addition to demographic stochasticity, random fluctuations in the environment
such as the weather, disease, the abundance of predators or prey, or the availability of
nest sites, may cause births and deaths to vary from year to year (Miller and Lacy 2005).
This environmental stochasticity is modelled by assigning a variance to each
demographic parameter (Miller and Lacy 2005). The field data necessary to estimate
environmental variation in demographic rates requires at least 1-2 generations of study,
which may equate to > 20 years of research for long-lived species such as big cats
(Beissinger and Westphal 1998). As no such data are available for jaguars, a coefficient
of variation of 0.3 was chosen following Mills and Smouse (1994) who derived this
value from long-term studies of other mammal populations in order to model a generic
‘felid’ population. This seems reasonable given that the coefficients of variation of
survival of different age/sex groups of pumas in a hunted population in Washington
state ranged from 0.17 (adult females) to 0.6 (adult males) (Robinson et al. 2008).
Environmental variation in reproduction and survival were assumed to be concordant,
1.e. years that were favourable for reproduction were also favourable for survival.

Sometimes it may be appropriate to model rare and extreme environmental
events or ‘catastrophes’ separately from the environmental variation, for example the
effects of hurricanes, floods, droughts and forest fires. Although Belize is occasionally
hit by devastating hurricanes (e.g. Hurricane Hattie in 1961) it is not possible to
accurately predict their occurrence or their effect on reproduction and survival of
jaguars. For this reason catastrophic events were not included in the model.

Genetic factors may become important in the population dynamics of small
populations through inbreeding, the loss of genetic diversity and the accumulation of
deleterious alleles (Frankham 2005). Models of inbreeding require estimates of the
number of ‘lethal equivalents’ per diploid genome, the average number of lethal alleles
per individual if all the negative effects of inbreeding were due to recessive lethal alleles
(Miller and Lacy 2005). Although there is evidence of inbreeding depression in a
number of captive and wild species (Frankham 2005), there are few data on genetic
loads in wild populations (Beissinger and Westpahl 1998). In a review of 38 mammal
species in 40 captive populations, Ralls et al. (1988) found that lethal equivalents
ranged from -1.4 to 30.3 (median 3.14) and showed no obvious phylogenetic
relationships. When unknown, a default value of 3.14 lethal equivalents is often used in
population models (e.g. Eizirik et al. 2002, Wilkinson and O’Regan 2003, van Pelt et al.

2006). Given the wide variation in lethal equivalents between species, however, this
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value seems somewhat arbitrary. Although there is evidence that mammalian carnivore
populations can be negatively affected by inbreeding (for example the reduction litter
size in captive brown bears, Laikre et al. 1996, and the reduction of fecundity and
juvenile survivorship in captive South China tigers, Xu et al. 2007); the magnitude of
inbreeding depression in carnivores may be small relative to other mammals (Xu et al.
2007, Ralls et al. 1988). For these reasons genetic effects were not included in the
model, in accordance with Beier (1993) and Karanth and Stith (1999) who ignored
inbreeding depression in their models of puma and tiger populations.

Density dependence can be incorporated into the model by enforcing a
population ceiling (K, the carrying capacity) above which the population is truncated
across all age classes, and/or by modifying demographic rates as a function of the
population size. The exact form of density dependence modelled may strongly affect the
population dynamics (thus the model predictions) and so should be used with care
(Mills et al. 1996); however it was assumed that the inclusion of density dependence
was more realistic than its exclusion. This seems reasonable for a big cat population.
For example, Kissui and Packer (2004) detected density dependence in lions, with
higher cub recruitment at low population densities. Long-lived large mammals generally
show non-linearity in density dependence, with changes most pronounced at high
population levels (Fowler 1981). Accordingly, the reproductive rate was modelled so
that it declined at high populations close to K, but remained stable at low populations,
following van Pelt et al. (2006). For simplicity the model ignored Allee effects, in the
form of disproportionately low reproductive rates in small populations arising from the
low probability of prospective mates meeting each other. This seems reasonable in a
population of big cats such as jaguars which have the ability to range widely. In addition
density-dependent mortality was modelled by enforcing a population ceiling. This
method results in the equilibrium population remaining below K (Mills et al. 1996). The
initial population sizes (Nyp) and K were derived from density estimates from the study

area (Chapter 4).

Model parameters and sensitivity analysis

The model input parameter values shown in Table 7.1 were derived from the
available literature on jaguars (Mondolfi and Hoogesteijn 1982, Seymour 1989, Nowell
and Jackson 1996, Sunquist and Sunquist 2002) and, where necessary, pumas, leopards,

tigers and lions (Mazédk 1981, van Orsdol et al. 1985, Logan et al. 1986, Lindzey et al.
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1988, Packer et al. 1988, Smith and McDougal 1991,Lindzey et al. 1992, Lindzey et al.
1994, Nowell and Jackson 1996, Sunquist and Sunquist 2002, Kerley et al. 2003, Stoner
et al. 2006, Robinson et al. 2008); see Appendix E for more details. A base model was
run with 100 iterations over 100 years with these parameters and a starting population of
2000 individuals. This represents a jaguar population of Belize prior to deforestation
and human development based on density estimates from the protected forest (Chapter
4) and estimates of original forest cover (WRI 2007). The characteristics of this large
population were examined in order to determine whether the chosen input values were
realistic for the species. The mean stochastic per capita growth rate, -, over 100
iterations and 100 years, and prior to carrying capacity truncation, was 0.037 (SE =
0.0016) individuals per individual per year. There are few datasets of big cat population
growth rates with which to compare this estimate. A recent field study based on long-
term camera-trap data estimated a mean annual multiplicative growth rate (A) of 1.03
(i.e. 3% increase per year) within a wild tiger population (Karanth ez al. 2006). This is
equivalent to a per capita growth rate of 0.03, comparable with that estimated for
jaguars in this base model. This suggests that the base model population behaves as we
may expect for a population of big cats. In the absence of stochastic effects the sex ratio
of adults was 50%, and approximately 2% of individuals survived to be 10 years old.
This is comparable to the observations of Rabinowitz (unpubl. data in Nowell and
Jackson 1996) that few wild jaguars in Belize survived more than 11 years, and of
Harmsen (unpubl. data) who found that jaguars first captured as adults on camera (at

least 3-4 years old) disappeared from the camera record within ~7 years.
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Table 7.1 Model input parameter values for the base jaguar population

Parameter

Female Male
First age of reproduction 3y 4y
Maximum breeding age 10y 10y
Sex ratio at birth 1 1
% adult males in breeding pool 75

% adult females breeding each year (SD) 30-50 (12.5) -

density dependentt
% cub mortality (SD) age 0 -1y 30 (10.0) 30 (10.0)
% juvenile mortality (SD) ages 1-2y 10 (3.3) 10 (3.3)
% sub-adult mortality (SD) ages 2 -3y 15 (5.0) 25 (8.3)
% sub-adult mortality (SD) ages 3—-4y - 25 (8.3)
% adult mortality (SD) age >3y 10-80 age specifict -
% adult mortality (SD) age >4y - 15-80 age specifict
Other input
Initial population size 2000
Carrying capacity (SD) 2000 (100)
Breeding system Polygynous
Maximum litter size 4

% breeding females producing 1 cub pery 20

% breeding females producing 2 cubs pery 45
% breeding females producing 3 cubs pery 20
% breeding females producing 4 cubs pery 15

T Density-dependent reproduction. Modelled in Vortex as: (50-((50-20)*((N/K)*16)))
following van Pelt et al. (2006)

F Age-specific mortality, stable until age 8 years (10% females, 15% males) then
increasing linearly to 80% at age15 years due to tooth wear and injuries. Modelled in
Vortex as: a) females 10+((A>8)*10*(A-8)) and b) males 15+((A>8)*9.29*(A-8))
following van Pelt et al. (2006)

Because data on the life history parameters of some species of big cats are
relatively sparse, estimation of their vital rates for population models are often based on
biological intuition or on the life histories of similar species, as in this study and others
(e.g. Karanth and Stith 1999, Eizirik et al. 2002, Wilkinson and O’Regan 2003, Linke et
al. 2006). It is necessary to fully explore uncertainty in these rates (Beissinger et al.
1998). Therefore a sensitivity analysis was conducted to investigate which parameters
may have greatest influence on the long-term population performance by varying each

parameter in turn through a range of values and re-running the base model.

Scenarios: Initial population sizes and carrying capacities

The jaguar population of Belize was modelled as three sub-populations
comprising two un-hunted populations, one in each protected forest block (the Maya

Mountains, ‘MM’ and the Rio Bravo ‘RB’), and a single hunted population in the
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remaining ‘unprotected’ lands (‘UP’). It was assumed that the MM and RB populations
were at carrying capacity and suffered no human-induced mortality, whilst UP was
below carrying capacity due to lethal control. Density estimates based on camera-trap
data from these three areas were used to estimate each population size.

The population of MM was estimated to be between 277 and 496 individuals
based on density estimates from three of its 13 contiguous protected areas (Mountain
Pine Ridge Forest Reserve and Chiquibul Forest Reserve, M. Kelly, unpubl. data;
CBWS, Harmsen 2006, Chapter 4 this study). Recently concern has been raised
regarding the increase in Guatemalans crossing the border to illegally collect xaté palm
(Chamaerdorea sp.) in the west of MM. These ‘xateros’ may remain in the forest for
many weeks, subsisting on game (G. Hansom, Belize Forestry Officer, pers. comm.),
and may drastically lower the availability of wild prey for jaguars. In addition it has
been suggested that some areas of the MM may be too mountainous and rugged to
support jaguars (Harmsen 2006). For these reasons the population and carrying capacity
of MM was estimated at 350 individuals.

The population and carrying capacity of RB was estimated at 170 individuals,
based on density estimates from one of its three contiguous protected areas (Gallon Jug
Private Reserve, Miller 2006). The RB borders Guatemala, but, unlike MM which has
no forest buffer on the Guatemalan side, the RB is contiguous with the forest of the
Guatemalan Biosphere Reserve Petén which may provide some degree of protection
from foreign hunters and xateros.

The population of UP was based on the author’s own density estimates from the
unprotected lands neighbouring the MM in southern Belize (Chapter 4). Jaguar density
on these lands declines with distance from the forest block, tending to be higher in the
west (closer to the forest block) and lower to the east (near the coast). A conservative
density estimate of 1.6 jaguars/100 km” was used giving a population of 240 individuals
living outside the two protected forest blocks across the entire country. The carrying
capacity of UP was set at 440 jaguars based on field estimates of human-induced
mortality in the unprotected lands (see Results) and the assumption that natural and
human-induced mortality was additive. This is a reasonable assumption, given that
density-independent natural mortality of big cats is expected due to intra-specific
killings and injuries sustained when attacking prey (e.g. as observed in a hunted puma
population, Lindzey et al. 1988, 1992). Further explanation of the three population

estimates are described in Appendix E.
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Apart from Ny and K, demographic parameters were assumed to be the same in
all three sub-populations. In reality there may be more nutritional stress in the UP
population than in MM or RB, because jaguars are more likely to have to compete with
humans for wild prey, potentially lowering the reproductive rates of females. However
the scarcity of wild prey in the unprotected forests may be countered by the abundance
of domestic prey on farms (Chapter 6). Environmental variation in demographic rates
was assumed to be fully correlated between the three subpopulations. This is reasonable

given the small size of Belize.

Scenarios: Dispersal and human-induced mortality

Models were run for each subpopulation in isolation (no migration between
populations) over 100 years and for 500 iterations, and repeated for the UP population
under increasing levels of human-induced mortality. Human-induced mortality was
modelled as an annual % off-take from each age/sex group. Thus an annual off-take of
10% simulated the removal of 10% of each of the following groups every year:
juveniles (age 2y), subadult males (age 3y), subadult males (age 4y), subadult females
(age 3y), adult males (age Sy+), and adult females (age 4y+). Field data suggested that
adults and subadults of both sexes were equally vulnerable to lethal control (see Results
section) thus it was reasonable to apply the same level of human-induced mortality to all
within a given simulation. Juveniles were included also under the assumption that the
removal of a breeding female would result in the death of her dependent off-spring.
Cubs were not included because the annual off-take was applied to the population
before breeding in any given year, i.e. cubs could only be born to adult females who
survived that year’s lethal control, becoming juveniles in the subsequent year and
thereon susceptible to human-induced mortality.

Movement between the subpopulations was modelled as both density-dependent
and density-independent migration. Jaguars are usually independent by the age of 24
months, however the age of dispersal or the social circumstances associated with it are
poorly known (Sunquist and Sunquist 2002). Relatively good dispersal data are
available for other large solitary cats. Often young males are obligate dispersers,
dispersing regardless of the local population density, whilst females tend to be
philopatric and their dispersal may be more related to habitat saturation (pumas, Logan
et al. 1986, Ross and Jalkotzy 1992, Laing and Lindzey 1993, Sweanor et al. 2000,
Stoner et al. 2006; tigers, Smith 1993). Migration between subpopulations was
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modelled as the ‘natal’ dispersal of 2-4 year olds only, although it is recognised that
range shifts in adult jaguars do occur (e.g. Rabinowitz and Nottingham 1986, Harmsen
2006). Density-independent dispersal was modelled as a fixed % of 2-4 year olds
migrating from one population to another each year. This was multiplied by N/K in
order to model linear density-dependent dispersal. For simplicity both sexes were
assumed to disperse equally, although it is recognised that a male-bias may exist in
reality. Increasing the basic level of dispersal from one population to another can be
interpreted as increasing the level of attractiveness of the destination population (an
increasing proportion of individuals disperse to another population rather than within
their own population). In these models, under density-dependence, individuals only
move to a different population if local conditions force them out, i.e. they always
‘choose’ their own population first. In contrast, under density-independent (intrinsic)
dispersal, a certain proportion of the individuals are ‘attracted’ to another population
regardless of the local conditions. Figure 7.1 shows a spatial representation of the
models. For simplicity, movement of jaguars between Belize and its neighbours
(Guatemala and Mexico) were not included in the model. The implications of this are
considered in the Discussion. All models were repeated varying those demographic

parameters deemed influential in the sensitivity analyses
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Results

Given the sensitive nature of lethal control of jaguars, the quality of data varied
with the number and turnover of farm employees. Stronger relationships were formed

with long-term employees and this aided reliable data collection.

Causes and rates of human-induced mortality

The majority of reported deaths were retaliatory following livestock predation
(Table 7.2). However it is likely that other human-caused deaths were under-reported,
particularly those considered criminal such as poaching specifically for trade in animal
parts. Only one (unverified) puma death was reported from the study area; it was shot,
with no reason given, prior to the study period (circa 2000). More jaguar deaths were

reported than pumas or ocelots.

Table 7.2 Reports of human-caused deaths of wild cats April 2004 to November 2006
(31 months) across a study area of ~360 km? unprotected land.
V = verified (evidence seen by researcher) and Unv = unverified.

Ocelot Puma Jaguar
V. Unv. V. Unv. V. Unv.
traffic death - - - - - -
trade in animal parts - - - - - 1
trade in live animals - - - - - ot
‘incidental’ shooting 1 - - - - 1
retaliation for livestock predation 1 - - - 12 3
no reason given 1 - - - - 2
Total 3 0 0 0 12 9

TTwo cubs stolen from mother

Across ~ 360 km? of unprotected lands, 12 jaguar deaths were verified over 31
months, giving a conservative estimate of 4.6 jaguars killed per year (8.1 per year
including the unverified deaths, Table 7.2). This equates to 1.3 deaths per year per 100
km?. The 360 km? study area is considered representative of UP throughout Belize,
consisting of a mosaic of pastures, plantations, settlements, forest, shrublands and
savannah. Extrapolation to the entire UP (~ 15,068 kmz) gives an annual off-take of ~
200 jaguars nationwide. Although this seems remarkably high (45% of the UP
population if natural and human-induced mortality is assumed to be additive), it is
similar to estimates of unverified lethal control based on interviews conducted by

Brechin and Buff (2005) with livestock owners who had lost animals to jaguars
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nationwide. In their study, 54 ranchers and 28 communities, all with cat problems,
killed a total of 64 jaguars and 10 pumas from 2002 to 2004. 46% of the ranchers with
problems admitted to killing cats (39 jaguars) and 48% of the communities with
problems admitted killing cats (25 jaguars). This equates to ~ 20 jaguars per year over
25 ranches that had problems and took action, and ~ 12 jaguars per year over 13
communities that had problems and took action. There are at least 1,600 livestock
owners in Belize (Brechin and Buff 2005). If only 25% of them had problems in a given
year, and 50% of those with problems took action, 200 farms would take action each
year. Using the estimate of 20 jaguars killed per year per 25 farms who take action, this
equates to ~160 jaguars killed per year by ranchers alone. Therefore, the estimate of
~200 jaguars killed per year nationwide may indeed be realistic.

Jaguar death rates on the study farms ranged from zero to three verified deaths
per year. Farm #01, the largest farm (~ 9.25 km?), had the highest death rate (~3 /year).
This death rate resulted from ~14 separate attempts (over ~19 nights) to kill jaguars
each year. Methods of lethal control reported across the study area included: trap and
shoot, trap and take to the zoo, wait at bait and shoot, wait at kill site and shoot, poison
remains of livestock carcass, hunt with dogs. Waiting at the kill site for the jaguar to
return for a second feed was the most commonly used method. All reported cases of
lethal control on farms in the study area were reactive (in response to livestock
predation), rather than pro-active (actively hunting jaguars in the absence of livestock
predation). However evidence suggested that the individual responsible for depredation
was not always the one killed, particularly when traps were baited.

On the largest farm, lethal control of jaguars was followed by a halt to livestock
predation in only three out of eight jaguar deaths (Table 7.3, Figure 7.2). In the other
control attempts, either multiple cats were predating on livestock at the same time or the
methods employed to kill jaguars were not targeting the correct individual, or the
cowboys were wrongly presuming jaguars were responsible for cattle deaths. During the
study period 12-13 jaguars were recorded on the farm, and there was frequently more

than one cat using the farm during a spate of attacks.
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Table 7.3 Cattle losses before and after lethal control of jaguars on Farm #01 between
Jan 2004 and Nov 2006. Minimum numbers of big cats detected < 20 m from pasture

during the period of losses are shown if camera traps were present.

Sex Cattle loss Weeks until Control method Minimum number
( /week) prior losses of cats using farm
to action resumed jaguars  pumas

Male 0.7 for 12 weeks 0 (immediate) Shoot at Kill site 1 0

Male 3.5for 2weeks 23 Bait and shoot unknown unknown

Female 1.1 for 4 weeks 0 (immediate) Trap and shoot 2-3 0

Male 1.0 for 45 weeks ~6 Shoot at kill site 5 1

Female 1.5for 3 weeks 0 (immediate) Shoot at kill site 1 1

Male 1.1 for 6weeks 8 Shoot at kill site 3 0

Female 2.2 for 5 weeks 0 (immediate) Shoot at Kill site 3 0

Male n/a (as above) 0 (immediate) Shoot at kill site/bait 2 0

n/a 1.2 for 24 weeks n/a n/a 3 0
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Figure 7.2 Cattle losses before and after lethal control of jaguars on Farm #01 from
January 2004 to November 2006. Events of lethal control of jaguars are shown as
coloured boxes: red = shot at kill site, blue = shot at bait.

Data from the other farms were less detailed, and are briefly summarised here.
Farm #03 was only ~ 2 km from Farm #01 and both the jaguars (two females) recorded
there were shot on Farm #01. The presence of one coincides with two calf attacks but
there were also periods when both females were present and no livestock were killed.
Two farms reported no livestock losses during the study period (Farms #04 and #08),
despite the presence of up to three jaguars, indicating that livestock predation is not
inevitable if jaguars are in the area. Prior to the establishment of camera traps at Farm
#04, a local resident living within 500 m of the pastures reported attacks on his

unfenced sheep and ducks. He lost nine sheep, four dogs and 19 ducks before baiting
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and shooting a female jaguar. Following her death he reported two small jaguars,
presumably her cubs, in the area, and this was verified by other residents. No cats were
detected at Farm #07, and the owner attributed their only losses (sheep) to feral dogs.
The four remaining farms all suffered livestock predation and jaguars were present.
Farm #05 lost two calves over a three-day period before shooting a male jaguar at the
kill site. The male had first been recorded at the pasture boundary 4 months previously.
Attacks immediately stopped following his death. The cowboy claimed that two jaguars
were feeding at the carcass when he shot the male, and this fits with photo records of a
female jaguar in the local area, albeit not at that farm. She was photographed two
months later with a cub (< 6 months old) on Farm #02. Farm #06 lost two calves, and
another was injured, over a 6-week period. Two male jaguars were photographed on the
farm during that time. Attacks ceased for ~ 4 months after one of them was shot on a
neighbouring farm (Farm #02). Thereafter one calf was lost, coinciding with the
appearance of a third male. Farm #02 lost cattle and sheep throughout the study period,
during which time 9-10 jaguars (and 1-2 cubs) were recorded on the farm. The data
from this farm are not sufficiently detailed to determine whether the removal of a
female in 2004 and a male in 2006 influenced the predation rates.

Although the majority of reported jaguar deaths were reactions to livestock
predation, the thrill of owning, or the prospect of selling, trophies such as the pelt or
canines may be an added incentive. During the study period the author heard reports of
up to 18 skins, eight skulls with canines, five additional sets of canines, and one entire
carcass, in the possession of local people; this included body parts derived from 11 of
the study animals known to have been killed. However, these tended to be trophies kept
by the hunter, as opposed to items sold on an illegal market. Nevertheless, during the
study period two cubs were reportedly taken from their mother for the live trade, and the
author heard of at least four additional attempts to capture jaguars or pumas for
captivity. In addition the author saw evidence of a local hunter selling canines, and
heard of an attempt to sell two skulls and pelts. Although local trade in body parts is
unlikely to be the main incentive for killing a jaguar, the increasing number of rich
foreign tourists and immigrants to Belize may change market forces. For example, one
village was offered US$7,500 for a dead jaguar by a visiting American. The villagers
collectively refused and the man was later arrested (N. Coc, CBWS Park Director, pers.

comm.).
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Characteristics of ‘problem’ jaguars

The 12 jaguars killed during the study period (Table 7.2) were all killed between
April 2004 and July 2006 outside the protected forest, on and around farmland. One was
removed to the zoo, not killed, but her removal still represents a death from the wild
population. No jaguars were reported killed between July 2006 and November 2006.
However, one of the few females recorded in the study area, a young adult, was killed in

February 2007 in a road traffic accident on the highway 10 km from the protected area.

Demographics and health

Of the 12 jaguars killed, seven were male and five female (Table 7.4). This sex
ratio is similar to that derived from camera trapping in the area (Chapter 4), which
suggests that one sex is not more susceptible lethal control than the other. Previous
work has suggested that injured or infirm jaguars unable to hunt wild prey may turn to
easier domestic animals (Rabinowitz 1986a, Hoogsteijn 2000). Although true, in this
study at least one-third of the individuals killed were subadults or young adults (< Sy),
perhaps suggesting high turnover rates as young animals disperse from their natal range
into human contact zones and thus into conflict. Furthermore, for those deaths yielding
data on body condition, ~ 80% were considered to be in good condition (Figure 7.3a),
and at least two-thirds of the females were breeding. Nonetheless, at least 20% of the
jaguars removed for killing domestic animals bore injuries, most of which were old gun
shot wounds. Figure 7.3b shows the teeth of a jaguar that was shot for attacking dogs in
a village. His canines are clearly reduced to nubs, having been destroyed by a previous
encounter with a hunter. Indeed his skull was found to be filled with old gunshot. It is
hypothesised that these injuries forced the cat to begin preying on dogs. Over 40 dogs
were reported taken from the community during one year before villagers took action.
When shot, the cat released the dog it had snatched unharmed, indicating its incapacity

to kill prey efficiently.
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Table 7.4 Characteristics of jaguars killed in the study area April 2004 to November
2006 (n =12). Bodyweights are approximate estimates by cowboys (except 4 and 6
who were both weighed). Age estimates are based on tooth wear, tooth and cranial
development and trapping records.

ID Sex Age Mass Dentition Body condition
(kg)
1 F young adult 36 good good
2 F - 32 good good, pregnant/lactating
3 F young adult 54 good no data
4t F young adult 46 no data good
5 F adult - good good, with cubs
6 F young adult 43 canines broken* broken femur, gunshot pellet behind knee
7" M old adult - no lower incisors, all  good; old gunshot wounds to face, pellets
canines broken embedded in skull, arthritis in hind feet
8§ M adult 68 no data blind in one eye, possibly dislodged retina
from trauma
9 M adult - good good, old gunshot pellets in flesh
10 M young adult 79 good good
11 M adult 63 good good
12 M adult 90 canines broken* good
13 M young adult 45 good no data
14 M adult 104 no data good
151 U adult nodata  no data no data

T Killed prior and subsequent to the official study period (2003 n= 2 and 2007 n=1).
*Canines broken, unclear whether broken prior to death or as a consequence of
trapping/ shooting

:‘-
: -
7 N :

a) Adult male jaguar shot at bait in forest bordering  b) Damaged canines of adult male jaguar shot
cattle farm, good body condition whilst attacking a dog in a village

Figure 7.3 Photographs showing condition of jaguars shot for killing domestic animals

Habitat use

The proportion of jaguars that were killed by humans was significantly higher in
the subpopulation that used only fragmented habitats compared to those that used both
fragmented habitat and the forest block (Fishers exact: odds ratio = 0.05, p < 0.02, Table
7.5). None of the jaguars inhabiting the protected forest were reported killed; therefore
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the protected area density (Chapter 4) is a fair estimate of an un-hunted carrying

capacity for the population models.

Table 7.5 Frequency of human-induced mortality of jaguars and their habitat use.

Survivor  Mortality'

Fragmented habitat only 7 8 15
Fragmented habitat and forest block 8 0 8
15 8 22

TNote that the number of jaguars deaths is n =8, not n=12 (as in Table 7.2), because
photo location records were not available for four of the 12 jaguars that were killed.

Impact of human-induced mortality on population dynamics

The potential impact of human-induced mortality on the jaguar population of

Belize was investigated under different scenarios using individual-based models.

Model parameters and sensitivity analysis

Because of the uncertainty in some of the estimates of demographic rates used in
the model, the sensitivities of the base model parameters were investigated to identify
those which had greatest influence on the population dynamics by assessing the change
in mean stochastic growth rate (r-y,.) as each parameter was varied through a range of
values within the base model. Those parameters considered uncertain and identified as
important could then be compared at different levels within the specific model scenarios
of human-induced mortality.

The maximum age of reproduction, estimated at 10 years, caused -y, to
decline if lowered to 8 years, but had little effect if increased to 12 years, because so
few individuals survived to this age (Figure 7.4a). There are few data on longevity and
age of last reproduction in wild big cat populations but captive data suggest that many
species can continue reproducing into old age (Nowell and Jackson 1996). In the wild,
however, it is suspected that old individuals may be less successful, particularly males,
who may fail to secure mating rights over healthy younger males. For this reason it was
concluded that a maximum age of reproduction of 10 years was a suitable parameter
estimate for the models. The model was not sensitive to the % of adult males in the
breeding pool (Figure 7.4b), because neither genetic effects nor Allee effects were

included in the model.
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Litter size strongly influenced r-,., (Figure 7.4c). If all litters comprised just
one offspring the population would decline, whilst litters of two or more would ensure
population growth. Jaguar litter sizes range from 1-4 with a mean of ~2 (Seymour
1989). This was best approximated in a distribution of litter sizes which gave a mean
litter size of 2.2 cubs (Table 7.1, Methods section).

The model was differently sensitive to natural mortality depending on the
specific age/sex class (Figure 7.4d-1). Altering juvenile mortality, subadult male
mortality or adult male mortality had little effect on r-y,.;. In contrast female and cub
mortality were more important. Doubling adult female mortality (from 10% to 20%)
caused the population growth rate to fall to 25% of its original value, whilst halving it
(from 10% to 5%) caused r-4,; to increase by 30%. This indicates that inaccurate
estimates of adult female mortality could significantly influence the model predictions.
Field estimates of the natural mortality of adults of other big cats fall within a range of ~
5-20%, with pumas at 11-16% (although may be as low as 5% in some populations),
Asiatic lions 8-10%, leopards 10-17% (Nowell and Jackson 1996, Robinson ef al.
2008). For these reasons the specific scenarios modelling the potential impact of
human-induced mortality on the jaguar population (next section) were repeated with X2
and x0.5 of the base model value of adult female natural mortality (10%, Table 7.1,
Methods section). Halving cub mortality (from 30% to 15%) had the same effect on r-
stoch s halving the adult female mortality; however doubling cub mortality (from 30% to
60%) caused population decline. Assuming that the other base model parameters were
realistic, this indicates that cub mortality of 60% is unrealistic in a stable or growing
jaguar population (the desired starting point for the base model and un-hunted
populations in subsequent scenarios in this study). Indeed natural mortality of jaguar
cubs may not be as high as that observed in group-living cats such as lions (14-73%,
Nowell and Jackson 1996), where multiple cubs may compete with adults for an
opportunity to feed (Sunquist and Sunquist 2002) and in which disease may spread
rapidly through prides; or in subordinate cats, such a leopards (41-50%, Nowell and
Jackson 1996), which may lose their cubs to other predators (Sunquist and Sunquist
2002). Cub mortality of 34% has been reported in tigers, mainly due to the high level of
infanticide in this species (Smith and McDougal 1991). Certainly infanticide occurs in
jaguars (Soares et al. 2006) however its prevalence is unknown. Based on this
information it was not deemed appropriate to vary jaguar cub mortality above 30% in

subsequent model scenarios.
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Figure 7.4 Sensitivity of mean stochastic growth rate (r-s;,cr) to base model parameters
varied through a range of values a) maximum age of reproduction, b) % males in
breeding pool, c) litter size (red cross indicates distribution of litter sizes of mean 2.2),
d-i) natural mortality of specific age/sex groups. The model was run for100 years
with100 iterations, Ny= K= 2000, for each sensitivity analysis. 95% CI are shown.
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Dispersal and human-induced mortality

Simulations of the population dynamics of the two protected populations (MM
and RB) as isolated units over 100 years indicated that both are large enough to
withstand demographic and environmental stochasticity (under the model assumptions),
having a mean r-4,., of 0.037 and 0.036 respectively (Figure 7.5a, b). The probability of
extinction of either population over 500 simulations was zero, if extinction is defined as
only one sex remaining. The two populations were stable even if adult female mortality
was doubled, although the probability of extinction in 100 years increased to 0.026 in
MM and 0.084 in RB. In isolation and in the absence of human-induced mortality, the
unprotected population (UP) was also stable, first increasing to a constant size as

determined by the carrying capacity, having a mean r-y,., of 0.41 (Figure 7.5¢).

a) MM, N =K =350 b) RB, Ny =K =170
500 - 500 -
400 - 400 A
) 300 -
200 B Tt 900
& 100 A 100 4 T S e
5 0 T T T T 1 0 T T T T 1
T 0 20 40 B0 80 100 0 20 40 60 80 100
2 Year Year
%
2 ¢) UP, Ny =240, K=440 . . .
= 5}00 o Figure 7.5 Mean size of three jaguar
subpopulations in the absence of
400 oo immigration, emigration, or human-
300 4 oo induced mortality, over 100 years and
F 500 iterations. Upper and lower dashed
2001 lines indicate x0.5 and x2.0 adult
100 - female natural mortality respectively.
. Initial population size and carrying

0 -0 a0 a0 a0 . capacities are shown.
Year
In the absence of immigration from the protected populations, the UP population
was able to sustain low levels of human-induced mortality (Figure 7.6). The probability
of population persistence over 100 years fell dramatically if off-take exceeded ~ 12% of
the population each year. Halving the natural mortality of adult females made little

difference to this threshold, and if their natural mortality was doubled the threshold fell
to ~ 6%.
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a) UP, mean population size after 100 years Figure 7.6 Influence of the level of
human-induced mortality (HIM) on
a) the mean population size and b)
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after 100 years. Populations were
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Closer inspection of the temporal dynamics of the simulated unprotected
populations showed that the mean r-,., of populations exposed to > 8% human-induced
mortality per year for 100 years was negative and an average population was unlikely to
stabilise in 100 years (Figure 7.7). The sustainable threshold for human-induced
mortality appears to be much lower than the 45% annual off-take estimated for the
unprotected lands. Human-induced mortality of 45% per year was unsustainable (Figure
7.7); all 500 simulated populations went extinct within 20 years under such conditions,
even if natural mortality of adult females was halved. This suggests that the current UP
population has sink-like properties and its persistence depends on high levels of

immigration.
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Figure 7.7 Influence of the level of annual human-induced mortality (HIM) on the mean
population size of the unprotected jaguar population, UP, over 100 years. Populations
were simulated 500 times. Mean stochastic growth rates (r-socn) are shown. Ny = 240, K
= 440. Level of HIM observed in current study (45%) is shown as dashed red line.

Simulation of density-dependent dispersal from the two protected source
populations (MM and RB) to the unprotected sink population (UP), where annual loss
to human-induced mortality was 45%, indicated that immigration of 2-4 year olds could
maintain a population, albeit of minimal size, within the unprotected lands even though
the mean growth rate there was negative (Figure 7.8a, b). However, even with an annual
immigration rate of 100% (=100N/K), intense human-induced mortality for 100 years
resulted in a small and probably unviable unprotected population, equivalent to a
density of ~ 1 jaguar per 1750 km? (mean Nygp = SD = 8.7 £ 3.6 jaguars, n = 500
simulations, Figure 7.8a). The protected populations were able to sustain high rates of
emigration because dispersal was density-dependent (a function of N/K). Thus the
annual dispersal rate did not influence final mean population sizes of MM and RB (e.g.
no dispersal: MM mean N;gp £ SD = 307 + 42; 100% dispersal: MM mean N;pp = SD =
302 £ 42; n = 500 simulations), or their probability of persistence over 100 years (1 for
both populations) (Figure 7.8a, c). Including density-dependent dispersal from the

unprotected to the protected populations did not alter the findings because the
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unprotected population was below carrying capacity therefore the number of natal

dispersers available to leave this population was very low.
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Attraction of natal dispersers (2-4 year olds) from protected lands to unprotected

lands (where human-induced mortality was fixed at 45% per year), independent of the

local density, had negative consequences for all three subpopulations if intrinsic

dispersal rate exceeded ~ 8% annually (Figure 7.9). After 100 years in which 10% of 2-

4 year olds dispersed each year, the mean populations of MM and RB fell to

approximately half their initial sizes, and became effectively zero if dispersal was 20%

annually (Figure 7.9a). MM and RB appeared to be able to sustain dispersal rates < 8%,

at least over 100 years, and in doing so could maintain a population of up to 50

individuals in the unprotected lands (Figure 7.10). Above 8% annual dispersal,

reproduction within the protected populations did not exceed losses due to natural
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mortality and emigration and so the mean stochastic growth rate fell below zero (Figure

7.9b). Consequently the unprotected population could no longer be sustained as fewer

individuals were available to re-populate from MM and RB.

The number of 2-4 year olds present in MM and RB at year zero was

approximately 113 and 55 respectively based on a stable age distribution. The

probability of long-term persistence of the all three populations fell to ~ 0.5 if dispersal

was ~ 13% annually (Figure 7.9c). Thus, under the model assumptions, if as few as 15

‘MM’ and seven ‘RB’ natal dispersers were attracted to the unprotected lands each year

(where 45% of the population is killed annually by people) then the long-term

consequences for all three subpopulations could be bleak.
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Figure 7.9 Influence of the level of
intrinsic dispersal on a) the mean
population size b) the mean
stochastic growth rate, and c¢) the
probability of persistence, of the
protected populations (MM and RB)
and unprotected population (UP),
after 100 years. Dispersal is from
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sexes remaining in the population.
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Note that ‘two-way’ intrinsic dispersal (movement from UP to MM and RB as well as

from the MM and RB to UP) was not simulated, as the aim was to specifically model

attraction from protected to unprotected lands. It is acknowledged that the inclusion of

obligate dispersal from UP to MM and RB could potentially increase longevity of the

protected populations and warrants further research.

Discussion

Historically jaguar populations suffered intense exploitation for the commercial

skin trade (McMahan 1982, Rabinowitz 2006). With the implementation of CITES in

the 1970s demand for pelts diminished; however the cattle industry has grown, and

today one of the main threats faced by jaguars is direct persecution from livestock

owners. Indeed in this study the majority of verified jaguar deaths were associated with

livestock predation. However, unlike some areas where jaguars are not tolerated on

ranches under any circumstances (e.g. Pantanal, Brazil: Zimmermann et al. 2005) most

people in this study accepted jaguars frequenting village vicinities and farms in the

absence of depredation (R. Foster pers. obs.). Camera-trap data revealed that attacks on

livestock were not inevitable if jaguars were in the area, with 25% of the cattle farms
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having no problems despite jaguar presence. Specific habitat and livestock management
characteristics of the farms with no attacks are discussed in detail in Chapter 5. Reports
from other parts of Belize, particularly in Mennonite communities, indicate that jaguars
are less tolerated, and pro-active rather than reactive culling is practised (B. Harmsen,
Belize Jaguar Program, pers. comm.). Such behaviour may be counter-productive
because the removal of well-behaved residents through indiscriminate culling may
aggravate the situation if replaced by naive individuals who have not learned to avoid
human activity and livestock. In this study all reported cases of lethal control were
reactive; however livestock losses did not necessarily cease following a jaguar death,
suggesting that the problem individual was not always the one removed. The chosen
method of lethal control may improve the chances of removing the right cat. Methods
that involve the use of bait will always run the risk of drawing in non-livestock killers,
and potentially may give them a taste for livestock. Lacing bait with poison may
additionally kill scavengers. Waiting at the site of a livestock kill and shooting the cat
when it returns for a second feed would seem the most favourable option and was most
commonly practised in the study area. Nevertheless, on the largest farm predation rates
did not always decline when this method was employed. It is not clear whether multiple
cats were attacking livestock or whether the cowboy occasionally blamed jaguars
wrongly. Cattle rustling is a problem in Belize (G. Hanson pers. comm.) and could be
responsible for some otherwise unexplained losses. Attacks are usually obvious (e.g.
machete wounds to cattle, signs that calves were butchered on site, R. Foster pers. ob.)
and it is unlikely that the experienced cowboy mistook rustling events for depredation.
However, well-planned attacks that leave little evidence could be misinterpreted as
depredation by less experienced cattle owners, leading to unnecessary persecution of

jaguars. Alternatives to lethal control are discussed in Chapters 5 and 8.

Characteristics of ‘problem’ jaguars

In general across the carnivores, adult males tend to be responsible for more
depredation events than any other age or gender class, perhaps due to greater risk-taking
behaviour and/or greater encounter rates with livestock due to their larger home range
(Linnell et al. 1999). We may therefore anticipate that more males would be killed on
farms than females. In this study, however, males and females used pastures in similar
numbers and at a similar rate (Chapter 5) and there was no apparent sex bias in the

susceptibility to lethal control, with males and females killed in roughly equal numbers
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for attacking livestock. This is concerning because, as shown by the sensitivity models,
in a polygynous species such as jaguars the loss of adult resident females will impact
more on the local population productivity than the deaths of males.

Injured or infirm jaguars unable to hunt wild prey may turn to domestic animals,
and they often make up a high proportion of the animals killed for livestock predation
(Rabinowitz 1986a, Hoogsteijn 2000). Although a few killed jaguars in this study were
infirm, the majority were young and/or in good condition. Debilitating injuries were
mostly human-induced. Indeed the injuring of healthy jaguars through indiscriminate
shooting is likely to encourage livestock predation rather than prevent it (Rabinowitz
1986a).

All jaguars deaths verified in this study were limited to lands outside the
protected forest. The protected area was buffered from the farms and villages of the
fragmented landscape by unprotected forest with which it was contiguous (Chapter 5).
Although the buffer may be less rich in wild prey than the protected forest (Chapter 6) it
appeared to provide an important refuge for those jaguars which also used the
fragmented habitat. In contrast jaguars that used only the fragmented habitat suffered
high human-induced mortality. Clearance of this forest buffer for other uses would
clearly increase the contact rate between jaguars and humans and ultimately intensify

conflict.

Impact of human-induced mortality on population dynamics

Population models such as those used in this study allow the exploration of
hypotheses about the influence of hunting intensity on big cat populations, which would
be difficult to study in the field. Nevertheless, an increasing body of field research is
being published on the dynamics of hunted populations of pumas in North America, as
good data are becoming available on levels of sport-hunting. For example, Lindzey et
al. (1992) found that a population that suffered a harvest of 27% during one year failed
to attain its pre-removal size two years after the removal. Stoner et al. (2006) found that
an annual removal > 40% for > 4 years resulted in a smaller, younger, less productive
and socially unstable population. Robinson et al. (2008) found that ~27% removal over
5 years resulted in compensatory immigration and a shift in the age/sex class to younger
males and a decline in females. In this study, extrapolation of the field data implied an
annual off-take of ~ 200 jaguars nationwide, estimated to be ~ 45% of the population

that resides outside the two main protected forest blocks of Belize. Based on the puma
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field studies, sustained off-take at such a level could profoundly influence big cat
population dynamics.

The population simulations suggested that, even if lethal control only occurred
outside the two main protected blocks, it could still cause the regional population to
crash under certain conditions. Within the model assumptions, the unprotected
population functioned as a sink, unable to sustain an annual off-take > 8% for 100 years
without high levels of immigration. With continued off-take above this rate, and in the
absence of immigration, the unprotected population had zero probability of surviving
more than 20 years. Density-dependent movement of natal dispersers from the protected
blocks could theoretically sustain current rates of human-induced mortality in the
unprotected lands for 100 years, but the population there would become effectively
unviable (~ 1 jaguar per 1750 km?). However, even if the protected populations became
technically isolated under such a scenario, they seemed resilient to demographic and
environmental stochasticity and had a high probability of persistence in isolation,
assuming no catastrophes, edge-effects or the negative influence of genetic factors.
Intrinsic dispersal, the attraction of natal dispersers from the protected forest to the
unprotected lands, presented less optimistic consequences for the regional population.
Low levels of intrinsic dispersal could be sustained by the protected populations, and
could maintain a population of up to ~ 50 jaguars (~1 jaguar per 300 km?) in the
unprotected lands; although not modelled, in theory this sink population could feedback
at a low rate into the two protected populations allowing genetic mixing and extended
longevity of the regional population (e.g. Howe et al. 1991). At higher rates of intrinsic
dispersal the unprotected population functioned as an ecological trap, the probability of
long-term persistence of the three populations decreased, falling to 50% if as few as 15
and seven 2-4 year olds dispersed from the two protected populations annually into the
unprotected population. If farms do attract dispersers from the protected forest at this
rate, and levels of human-induced mortality remain consistently high in the unprotected
lands, then the long-term persistence of the jaguar population in Belize may be in doubt.
There is some evidence from the study area to suggest that jaguars may be attracted to
the resource-rich pastures. For example jaguars which were most active around cattle
farms also tended to have the smallest ranges, regardless of sex, suggesting a
contraction of their range around the pastures; and jaguar density was higher in survey
areas with > 2% pasture cover than those with < 1% pasture cover (Chapter 4).

Although these observations do not explicitly demonstrate attraction from protected
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forest to pasture they do suggest that cattle farms may be become a focal point of
activity for some individuals. More field data are need on jaguar dispersal, particularly
at the boundary between a protected population and a potential sink.

The population simulations discussed here must be interpreted within the context
of the model assumptions; in particular the following restriction are assumed: 1) no
catastrophes, 2) no genetic factors, 3) no difference in demographic parameters between
populations, 4) no social dynamics, 5) constant level of human-induced mortality, 6)
limited migration between populations, 7) no spatially explicit factors. Catastrophes,
such as hurricanes or floods, and genetic factors (the effects of inbreeding and loss of
genetic heterozygosity), are expected to have negative consequence in small
populations. Thus one may assume that their occurrence in the jaguar population would
either have no effect or lower the probability of long-term persistence. Restrictions 4-7
could have negative or positive impacts.

The mean values of the demographic parameters used in the simulations were
assumed to be the same in all three subpopulations and temporally-independent. In
reality reproduction and survival, particularly of cubs and juveniles, will be influenced
by prey availability. For example if prey are depleted, fewer females may be able to
raise young, particularly if large prey are limited (Chapter 6). Although there are
currently no data on the abundances of prey species in Belize, it is likely that as the
human population grows (20% increase predicted by 2018, WRI 2007), the game
species will decline, particularly in the unprotected lands. Similarly the carrying
capacity of the jaguar population in the unprotected lands will probably decline as forest
is increasingly cleared for settlements and plantations (Chapter 4). Such factors will
lower the population resilience and the probability of long-term persistence.

No attempt was made to incorporate the effect of social structure and dynamics
into the population simulations. Hunted populations with high rates of immigration of
young individuals may be socially unstable (e.g. Stoner ef al. 2006) and may, in turn,
impact on the population dynamics. For example the frequent removal and replacement
of males may elevate levels of infanticide (e.g. Loveridge et al. 2007, Balme et al.
2007) or increase territorial disputes and intra-specific aggression. Intra-specific
aggression may also intensify in isolated populations in which habitat is severely
limited, for example a 21-year study of the causes of mortality in the Florida panther, an
isolated population of ~30-50 pumas in south-eastern USA, found that aggression

between individuals accounted for the deaths of 41% of 47 radio-collared cats, and most
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of the deaths were young males (Taylor et al. 2002). Although infanticide has been
reported in wild jaguars (Soares et al. 2006) nothing is known of its prevalence. The
level of aggression between adults is also poorly known, although rates of serious flesh
wounds detected on camera-trap photographs were considered low in the study area.
Camera-trap photographs of jaguars inside and outside the protected forest collected
over 4 years (~1,200 captures of 68-78 individuals, comprising at least 16 females and
38 males) showed four separate occurrences of flesh wounds on just three individuals,
all male (Harmsen et al. in press, R. Foster unpubl. data). It is unknown whether the
wounds resulted from conflict with conspecifics or were received whilst attacking prey.
However the male bias in injuries may indicate intra-specific aggression as the cause.
As such we may suspect that in a real jaguar population, human-induced mortality will
impact on the long-term persistence not only through the direct removal of individuals
but also through its disruption of social dynamics.

Lethal control was modelled very simply by assuming that the population
inhabiting the two main protected forest blocks suffer no human-induced mortality. In
reality some jaguar deaths caused by humans within the protected forests are inevitable,
mainly from incidental shootings by poachers hunting for game who accidentally
stumble across a cat. This may be particularly common in the Maya Mountain forest
block near the border where Guatemalan xateros illegally set up camps and hunt game
(B. Harmsen, pers. comm.). In the models, human-induced mortality was restricted to
the 15,068 km? of lands outside the two protected forest blocks. It ignored the additional
protected areas which are scattered throughout the country ranging in size from 0.09
km? to 420 km?, and totalling 1,924 km?. These areas may function as important refuges
for jaguars outside the two main protected blocks, and thus the level of human-induced
mortality modelled in this population may be too high. However, the estimate of current
levels of human-induced mortality used in the models was based on an area where lethal
control of jaguars is largely reactive; this may underestimate the true value because pro-
active lethal control is practised in some areas of the country. Thus, although the model
of one unprotected and two protected populations is greatly simplified it is probably a
reasonable approximation of the true situation.

The percentage of human-induced mortality modelled in the population
simulations was held constant through time, assuming that a fixed fraction of the jaguar
population would come into contact with humans each year. It is plausible that the rate

of contact, and consequently lethal control, is density-dependent. It might become
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increasingly smaller as the population declines, as more territories are freed up and
jaguars do not need to roam so close to areas with human activity. Alternatively the rate
of lethal control might increase as the population declines, as resource-rich territories on
cattle farms become vacant and individuals preferentially establish ranges near livestock
rather than around milpa-farms, plantations or savannahs where prey availability may be
lower.

Movement of jaguars between Guatemala and Belize was not incorporated into
the models. To the north-west, Belize is bordered by the forest of the Guatemalan
Biosphere Reserve Petén. Drug trafficking is rife throughout this region (R. McNab,
WCS Guatemala, pers. comm.) and associated with high levels of illegal hunting of wild
prey. Accordingly the only jaguar density estimate from the region is low (1.7
individuals per 100 km?, Novack 2003). The rate of movement of jaguars from Belize
into this area of Guatemala is unknown; however, a camera survey spanning the border
found no overlap in individuals (Miller 2005). To the south-west, the Belizean side of
the Maya Mountains is thickly forested, but across the border the forest has been
extensively converted to agriculture. It is suspected that the emigration of jaguars from
this degraded area, if it still contains any, would have negligible influence on the
Belizean population. However this area could have sink- or trap-like properties.
Guatemalan xateros crossing the border into Belize may locally deplete wild prey, so
increasing the attractiveness of the Guatemalan cattle as alternative prey for jaguars.
Such an ecological trap extending along the Belize-Guatemala border could greatly
increase the pressure on the Belizean jaguar population and warrants further research.

Sexual differences in dispersal type or ability were not included in the model.
Little is known about jaguar dispersal, but males are likely to disperse further and more
readily than females, as observed in pumas, tigers and lions (Sunquist and Sunquist
2002). Sexual differences in dispersal provide different mechanisms of recruitment for
males and females. Field studies of pumas have shown mainly philopatric recruitment
of female off-spring, whilst male recruitment in the population is almost entirely via
immigration (e.g. Lindzey et al. 1992, Sweanor et al. 2000). For example in a
population of pumas in New Mexico, 68% of female recruits were born in the study area
whilst 78% of male recruits were immigrants (Sweanor et al. 2000). These contrasting
recruitment mechanisms can cause in a shift in the structure of hunted populations, as

juvenile males fill the vacated territories and females are not replaced (e.g. Robinson et
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al. 2008). This can lead to a less productive and socially unstable population (Stoner et
al. 2006).

Movement between populations was limited to natal dispersers only; however
adult jaguars expand, contract, and shift ranges (e.g. Crawshaw and Quigley 1991,
Rabinowitz and Nottingham 1986, Harmsen 2006). Shifts in range boundaries are
common in big cat populations following the death of a resident male and may take a
year or more to stabilise (Sunquist and Sunquist 2002). Rabinowitz and Nottingham
(1986) noted that following the death of two adult males, two other males began to shift
into their ranges and the vacancy created by their relocation was filled within 6 weeks
by a third male. It is not unreasonable to expect that, following the removal of a male
from a neighbouring territory in the unprotected lands, male jaguars predominantly
using the protected forest may expand their ranges outwards, in pursuit of increased
access to females. For example, within 6 weeks of the death of a male jaguar on Farm
#02, another male, previously only recorded in the forest block and predominately
within the protected area, was detected on the farm (R. Foster unpubl. data). Thus the
ranges of some individuals will span the boundary between protected and unprotected
lands (e.g. Chapters 4 and 5) and residents of the protected area will occasionally travel
into areas where they may come into conflict with humans. The extent to which this is
important will depend on the physiognomy of the protected area in relation to the rest of
the landscape. A larger perimeter-area ratio will facilitate greater contact with humans
(e.g. Woodroffe and Ginsburg 1998), or conversely, one may argue that the length of
the perimeter of the protected area will limit the rate at which immigrants can replenish
the hunting zone (e.g. Salas and Kim 2002).

The size and spatial arrangement of protected and hunted areas, as well as the
dispersal and ranging behaviour of the target species, will undoubtedly influence
population dynamics. The immigration and human-induced mortality modelled in this
study had no spatial component, other than being limited to the population inhabiting
the unprotected lands. In reality jaguar deaths caused by humans in these lands are
likely to be clustered around pastures and villages, and, to a lesser extent, the highways.
We may expect very high rates of turnover in these high-risk hotspots, whilst human-
induced mortality may be less frequent in areas where monocultures, milpa-farms,
forest fragments and savannah dominate. Rather than the entire human-matrix
functioning as one large population sink, the mosaic of different habitat types and land-

use systems will give rise to a patchy distribution of resource-rich zones where
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mortality is high, and low-risk zones where mortality, and also production, may be low.
The influence on population dynamics of this fine-scale spatial heterogeneity in
mortality needs further investigation. The use of spatially explicit models is the obvious
next step in investigating the impact of lethal control on jaguars (e.g. Ahearn et al.
2001, Ahearn and Smith 2005). Individual-based, spatially explicit, object-oriented
models such as those developed by Ahearn et al. (2001) to model individual tiger
dynamics enhance understanding of interactions between tigers, natural prey and
livestock and the likely consequences of different management scenarios, but require
long-term field studies of predatory, reproductive, territorial and dispersal behaviour.
Such detailed data are not yet available for jaguars; however recent technological
advancements in tools such as camera traps and GPS collars have enhanced the study of
these otherwise elusive cats and our knowledge of their spatial patterns is improving

(e.g. Harmsen 2006, Soisalo and Cavalcanti 2006).

Conclusion

Spatial heterogeneity in hunting and other forms of human-induced mortality
across the landscape can cause source-sink population dynamics. This emphasises the
need for long-term population monitoring of species that face direct persecution from
people. Short-term studies may not detect sink- or trap-like properties of hunted
populations. High numbers of transients competing for a territory may inflate the local
density, masking an unproductive or declining population, particularly if immigration is
male-biased (e.g. Stoner et al. 2006, Robinson et al. 2008). Habitats with high levels of
human-induced mortality that attract individuals can have negative consequences for the
source populations, and, depending on the relative rates of dispersal and mortality, for
the regional population as a whole. This study has shown that ecological traps, in the
form of livestock farms, may pose very real threats to long-term jaguar persistence and
indicates that management plans will not only require accurate knowledge of life
history parameters, but also a better understanding of habitat selection and dispersal
(e.g. Donovan and Thompson 2001). This study also highlights the need to resolve
conflicts of interest between farmers and jaguars, replacing lethal control, at least
partially, with alternative methods of livestock protection (see Chapter 5 for

suggestions).
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Introduction

The objective of this thesis has been to improve our understanding of the
ecology of jaguars (Panthera onca) in a human-influenced landscape. During the course
of the project, it was deemed necessary also to address various methodological issues
associated with studying jaguars effectively in this environment. The aim of this chapter
is to draw together the main findings of the thesis, and to consider the future of jaguar
conservation in Belize. I will pay particular attention to methods to study jaguars within
a human-influenced landscape; the adaptability of jaguars to anthropogenic pressures;

and how humans can facilitate coexistence with jaguars in the future.

Studying jaguars

Research on wildlife conservation must involve the interests of local people and
other stakeholders. The effectiveness of the work will always be dictated by the level of
cooperation that can be sustained with land owners. Diplomacy and patience are
essential, as well as an acceptance that it may not always be possible to collect all the
information that one desires. During this study, the author was fortunate to receive a
high level of interest and support from all private land owners and village chairpersons
who were approached for assistance. Even so, planning large-scale surveys for jaguars
(Panthera onca) across private and communal lands was complicated by the need to
seek access permissions and to anticipate risks of damage to the cameras from people
and domestic animals. The extent to which these extraneous factors governed camera
location meant that camera-traps could not necessarily be deployed in a configuration
that maximised the core to edge ratio of the survey area, as is preferable for accurate
density estimates (Chapter 2). In addition, it did not allow a random stratification of
locations throughout different habitat types for standardised habitat analyses (Chapter
5). Rates of camera failure during surveys were high, due to working in an environment
that is harsh for electronic devices and in which cameras may be vandalised or stolen by
people or chewed and kicked by cattle (Chapter 3). However manipulation of empirical
data showed that camera failure need not mean an unsuccessful survey (Chapter 3). The
jack-knife estimator for the closed population model My, was fairly robust to camera
failures of up to ~10% of the trap-occasions. The effect of failure was least marked in
surveys with a high capture probability and a high recapture frequency, and pooling

trap-occasions reduced the effect further. However it was noted that under some
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circumstances trap failure can result in an overestimate of abundance. Therefore it is
suggested that published estimates based on camera-trap data should always indicate the
level of trap-failure, if any, within the study. This is not currently standard practise.

Camera spacing in the surveys for this study adhered to protocols of published
jaguar surveys which base the distance between neighbouring stations on the diameter
of a circular home range of 10 km?, which is assumed to be the minimum range of a
female jaguar (Wallace et al, 2003, Silver et al. 2004, Miller and Miller 2005, Miller
2006, Harmsen 2006). Chapter 4 suggested that this spacing could be too wide to detect
some female jaguars, resulting in an underestimate of the female component of the
population. This effect may be further exacerbated by female avoidance of camera
locations that are preferentially placed in areas with high male activity, specifically old
logging roads and man-made trails within dense forest. There was some evidence that
female activity increases with proximity to streams, and it was speculated that where
males dominate forest trails females may preferentially use streams as access routes
through the forest. Increasing trap effort in such locations might consequently increase
female capture rate and remove the observed sampling bias within forest surveys.
Conversely, the male sampling bias was less pronounced in the fragmented landscape.
This was attributed to the more heterogeneous environment and open habitat with
numerous natural and man-made trails and roads.

This study involved one of the largest camera survey for jaguars conducted at
one time, using 46 camera stations with an effective sampling area of ~530 km”. When
these data, and those from the other surveys, were sub-sampled they showed that, in this
study at least, survey areas needed to be larger than ~170 km? to avoid unreliable
density estimates. This was approximately five times the average home range of
individuals in the study area. It is similar to the proposal of Maffei and Noss (2008) that
reliable density estimates require a camera survey area at least four times the average
home range area of the target species.

Collecting long-term data on lethal control of jaguars (Chapter 7) requires
discretion, sensitivity and patience in order to build trust with livestock owners and their
staff. It became apparent early in the study that the people were wary of a formal
approach to data collection via structured interviews or datasheets. The author found
that information about farm management, livestock predation and lethal control of
jaguars was best collected surreptitiously through informal visits and casual chats with

stakeholders that did not necessarily focus on jaguars directly. Most stakeholders were
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open with the author, however there will always be a certain stigma attached to foreign
scientists studying local affairs. It was suggested that long-term work on human-jaguar
conflict in the country would benefit greatly from the employment of nationals who are
both sympathetic to the conservation goals and also able to converse fluently in Mayan,
Spanish, English and Creole (Foster 2007). Indeed, a bi-lingual forestry officer
(Creole/English speaker) has recently been employed within the Belize Forest
Department to work specifically on issues related to human-jaguar conflict (B.
Harmsen, Panthera Belize, pers. comm.). Officers who can also converse in Spanish and
Mayan and span cultural barriers would be a great asset as well.

The use of camera traps is often commended as a non-invasive alternative to
live-trapping and telemetry (e.g. Harmsen 2006). Telemetry still has an important role
in studying carnivore ecology, particularly with the recent technological advancements
in GPS collars which provide detailed movement data. However camera-trap data can
be used for more than just abundance estimates; for example recently camera data have
been used to analyse the spatial and temporal interactions of jaguars and pumas (Puma
concolor) (Harmsen et al. in press). In this study camera traps were effective not only to
estimate density (Chapter 4) but also to investigate habitat use (Chapter 5). However
camera traps had limited applications for studying problem jaguars that were killing
livestock. Although it was possible to monitor which cats frequented pastures it was
rarely possible to link an individual to specific depredation events. The use of telemetry
would greatly enhance research on livestock predation. A large-scale study is being
planned to combine GPS telemetry of jaguars captured around cattle farms with
experimental implementation of electric fencing and other measures to protect livestock
from attack (subject to funding: B. Harmsen, pers. comm.). Not only will this reveal any
specific characteristics defining habitual cattle killers, it will also allow empirical tests
of the effectiveness of alternative methods of deterring attacks.

Scat collection and analysis is an important means of investigating the feeding
ecology of otherwise elusive species, and is widely used to infer conclusions about the
diet of carnivores. Chapter 6 demonstrated that diet studies in areas that support a wide
range of potential prey species may underestimate the true richness of the diet and
overestimate the importance of the more commonly taken prey taxa, if the sample size
is not large enough. It was suggested that studies of big cats from biodiverse regions
such as tropical rainforests should aim for samples of at least 100 scats to adequately

describe diet. In this study, many of the scats from the protected forest were collected
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on trails known to be dominated by males (Chapters 5 and 6). A male bias was therefore
likely in scat samples from that area. The use of scat-detector dogs to find female scats

off-trail may help to correct this bias in future studies.

Living with people

Jaguars were widespread throughout the fragmented landscape. However density
was higher within the contiguous forest. Chapter 4 demonstrated that where more than
four-fifths of the forested landscape was fragmented, not all of the available land was
utilised by jaguars on average, and it was suggested that this may reflect a combination
of habitat preferences within the mosaic landscape and vacant territories arising from
direct conflict with people.

Often male carnivores are more risk-prone than females and so are more likely
to come into conflict with humans (Linnell et al. 1999). In this study there was no
evidence that female jaguars were less tolerant of lands with human activity than males.
In fact, outside the forest block female activity increased closer to areas of human
development, and both sexes were equally active on disturbed lands such as pastures
and fragmented forests (Chapter 5). Consequently both sexes were equally susceptible
to human-induced mortality. This is concerning, as the removal of adult females has a
greater impact on the population than the removal of males (Chapter 7).

Studies across the jaguar’s geographical range indicate a flexible diet (see
Chapter 1). The rather narrow diet of jaguars observed in this study in the protected
forests of the CBWS probably reflects opportunistic exploitation of the superabundance
of armadillos in this area (Chapter 6). The differences in diet observed between the
CBWS, the unprotected forest buffer, and the fragmented lands (Chapter 6) support the
premise that jaguars are indeed opportunistic carnivores with highly flexible feeding
habits. White-lipped peccaries featured in jaguar diet in the CBWS but were absent
from the diet outside the protected forest. In the fragmented landscape domestic animals
replaced large wild ungulates as prey. Although this flexibility in prey choice enables
the jaguar to exploit natural habitats and human-influenced landscapes alike, it also
provokes conflict with people and direct persecution, and therefore could ultimately
cause the jaguar’s demise. Data are urgently required on wild prey abundance to

determine whether prey depletion is exacerbating livestock predation (discussed later).
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At the time of writing, this study has no data with which to investigate sex
differences in prey selection. Genetic techniques to assign sex to jaguar and puma scats
are currently being refined and will eventually permit us to categorise the scats used in
this study by the sex of the cat that produced them (B. Harmsen, pers. comm.). Models
of jaguar energetics suggested that the availability of large prey could limit reproduction
because a diet of only medium/small prey would require unrealistically high hunting
rates for a mother to feed herself and dependents (Chapter 6). Studying sex differences
in diet will help to evaluate this proposition, for example by testing for a higher
frequency of large prey in female diet than in male diet.

Chapter 7 suggested that the long-term persistence of jaguars in Belize could be
at risk if rates of lethal control are not lowered. However this conclusion was based on
models that made numerous as yet un-testable assumptions about demographic rates
(birth rate, sex ratio, survival etc), dispersal and the dependency of these parameters on
density. Indeed many of the input parameters were derived from other big cat species
due to a lack of specific data about jaguars. Models of population persistence will
benefit from field data on demographic rates and dispersal of jaguars. Long-term
population monitoring in the CBWS (currently 7 years) will soon be sufficient to
estimate jaguar survival and recruitment. Previous estimates by Harmsen (2006) of
survival, recruitment, immigration and emigration, based on survey data from CBWS,
were susceptible to biases from the small size of the survey area, and a blurred
distinction between mortality and emigration due to the relatively short study period of
5 years. The survey area has since been enlarged and annual surveys monitoring the
population have continued into 2008, though funding for future surveys is uncertain. It
is important that these annual surveys do continue as they will ultimately provide the
first reliable field-based estimates of jaguar vital rates. The CBWS jaguar monitoring
program needs long-term financial commitment to ensure that this significant goal is
achieved.

Chapter 7 demonstrated that dispersal rate and its characteristics could influence
source-sink dynamics arising from lethal control in a jaguar population, and potentially
lead to population decline. The properties of jaguar dispersal are virtually unknown
from any part of its geographical range, and they require elucidation. Density estimates
from camera-trap studies combined with movement data obtained from radio-collared
members of the population could contribute to a better understanding of jaguar

dispersal. Valid assessments of the probability of long-term jaguar persistence require
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more information about dispersal, and ranging behaviour in general, not only in Belize,
but in other range countries. Basic data on the natural history of the target species are
sometimes undervalued in conservation programs which, understandably, want to solve
practical problems with a high degree of urgency. Whilst the natural histories of other
endangered big cats such as lions (Panthera leo) and tigers (P. tigris) are well known
(e.g. Sunquist and Sunquist 2002) we are only just beginning to accumulate such data
on the jaguar (e.g. Silver et al. in press). Funding for conservation research needs to be
carefully distributed between practical projects to lower human-jaguar conflict and
scientific studies to better understand jaguar ecology.

Compared to jaguars, pumas were relatively scarce in the human-influenced
landscape (Chapter 5). However, Chapter 5 demonstrated the capacity for jaguars and
pumas to coexist within the contiguous forest. It remains unclear how they partition
limiting resources, partly because we cannot know ratios of abundance due to the
difficulty of identifying individual pumas from camera-trap photographs. Pumas in the
CBWS could not be individually identified to a level which allowed reliable density
estimation, although short term recognition of pumas on certain trails indicated that they
were less numerous than jaguars (Harmsen 2006). A recent study by Kelly ez al. (2008)
in the Chiquibul Forest Reserve in western Belize has attempted to estimate puma
density, despite acknowledging a 32% disagreement between investigators in assigning
IDs. There, jaguar density was estimated to be approximately twice the puma density
(7.5 jaguars and 3.4 pumas per 100 km?, Silver et al. 2004, Kelly ez al. 2008). Although
the puma density in the current study was unknown, there was no evidence that pumas
were displaced to marginal habitats by jaguars as may be expected of a subordinate
species in carnivore guilds (Woodroffe 2001). In fact pumas were rarely detected in the
fragmented lands and were more common where jaguar density was highest in the
contiguous forest block (Chapters 4 and 5). However jaguar and puma food habits
differed significantly (Chapter 6) which could facilitate coexistence within the
homogenous forest environment.

Pumas were less tolerant of human disturbance than jaguars (Chapter 5). This
may be a consequence of selective pressures favouring elusive behaviour in pumas
where they coexist with a more dominant species. Where jaguars and pumas coexist,
jaguars tend to be larger (Iriarte et al. 1990), and intra-guild competition may make the
smaller, subordinate puma naturally more wary than the dominant jaguar. Inter-specific

segregation has been detected between jaguars and pumas in the CBWS however it is
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unknown whether this avoidance is mutual or one species is dominant over the other
(Harmsen et al. in press).

The scarcity of pumas in the fragmented landscape compared to jaguars
(Chapter 5) was surprising given the greater range of habitats usually associated with
pumas than with jaguars (Sunquist and Sunquist 2002). It is proposed that puma
abundance may be depressed in the human-matrix by direct competition with man for
their main prey species, pacas and brocket deer, both prime game species among
hunters in Belize (Chapter 6). It remains unclear whether this is further exacerbated by
competition with jaguars. The apparently better prospects for jaguars than pumas in the
fragmented landscape may be influenced by jaguar diet including armadillos and cattle.
Although armadillos are killed by hunters when encountered, they do not tend to be a
focal game species in Belize (R. Foster pers. obs.). Data from the protected forest
suggested that pumas rarely took armadillos (Chapter 6). We may therefore suppose that
pumas are disadvantaged outside the protected forest, where favoured games species
such as paca and large wild ungulates are potentially scarce. Such propositions need
proper qualification by studying wild prey abundance in Belize. Although pumas appear
more sensitive to human activity than jaguars, we should not necessarily be more
concerned about the puma population. The very fact that jaguars appear capable of

exploiting the human-matrix puts them at greater risk of persecution (Chapter 7).

Living with jaguars

Jaguars are a high profile species in Belize. They are economically beneficial as
a flagship for tourism which in turn accounts for 17% of gross domestic product (Belize
Tourism Board 2008). In contrast predation on domestic animals leads to retaliatory
killings by the expanding livestock industry. Unlike other big cats (tigers, leopards, P.
pardus; lions and pumas), and many other large carnivores (bears, Ursus sp.; gray
wolves, Canis lupus; and spotted hyaenas, Crocuta crocuta), there are no reported
unprovoked attacks by jaguars on people, and provoked attacks are extremely rare
(Quigley and Herrero 2005). Indeed on the few occasions that the author encountered a
jaguar, it left rapidly. Although their elusive behaviour minimises contact with people,
their refuge habitats are fragmenting and the human population is growing in Belize at
2.2% per year (World Resources Institute 2007). In the study area, retaliation for

livestock predation seemed the most common precursor to the killing of jaguars,
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although illegal capture for live trade or trade in body parts was probably
underestimated. Chapter 7 suggested that current levels of human-induced mortality are
unsustainable for the jaguar population of Belize, given reasonable assumptions about
the extent to which young jaguars disperse from protected to unprotected lands. A
reduction in human-jaguar conflict in Belize is desirable for livestock owners,
conservationists, and beneficiaries of ecotourism alike, preferably using non-lethal
solutions.

A number of methods have been tried for minimising human-predator conflict
whilst maintaining carnivore populations: 1) targeted lethal control of the perpetrator, 2)
translocation of livestock predators, 3) anti-predator livestock management, 4) wild prey
recovery, and 5) economic incentives to protect the predator. Breitenmoser et al. (2005)
point out that the most appropriate balance between such measures will depend to some
extent on the availability of domestic versus wild prey, and the impact of retaliatory
killing. For example, lethal control may be acceptable in areas with high availability of
wild prey and infrequent depredation on livestock. If wild and domestic prey are equally
available, but domestic prey are preferentially killed, preventative measures will be
required to encourage the predator to switch to alternative prey. In contrast, if wild prey
are depleted and domestic prey are abundant, the best course of action may be
compensation schemes and wild prey recovery programmes. Certainly any attempt to
mitigate conflict must be site specific and take into account local constraints such as
culture, attitudes and economy, as well as the spatial scale of properties involved and
the physiognomy of the landscape. Here I discuss methods of conflict mitigation aimed

at reducing livestock predation and promoting jaguar conservation within Belize.

Targeted lethal control

Currently Belizean law on lethal control of jaguars is difficult to enforce and
does little to prevent indiscriminate killing of non-livestock killers. The correct
individual may not be targeted, and pro-active lethal control is common in some areas
of the country (Chapter 7). Livestock attacks and retaliatory lethal control are rarely
reported to the Government (Brechin and Buff 2005), which limits the ability of the
Belize Forest Department (BFD) to monitor or regulate persecution of jaguars. There
needs to be an increase in public awareness of what action to take when a problem
arises, and simultaneously the BFD require training and resources to help livestock

owners correctly target the individual predators that are killing their animals.
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Methods such as baiting traps may fail to capture the correct individual (Chapter
7). For example, on one of the study farms a female jaguar was caught in a baited trap
and shot, but livestock losses continued. Within 24 hours of her capture camera data
showed two female jaguars passing the same spot; and within a couple of weeks a male
was also photographed there. One method to target known habitual livestock killers is to
wait at the kill site for the perpetrator to return; however there is no assurance that a
second individual will not investigate the kill (Chapter 7). Alternatively dogs can be
used to track the predator’s scent from the kill site. Although this method has a greater
probability of targeting the correct individual, its success, like that of the first, depends
on finding the carcass within 24 hours or so of the attack. A more elaborate technique is
to fit ‘toxic collars’ around the necks of livestock which contain a capsule of poison
below the throat (Nowell and Jackson 1996). In theory this method will target the
correct predator, but it depends on the predator using a throat bite whereas jaguars tend
to kill by crushing the back of the neck at the base of the skull (Hoogesteijn 2000). The
collars are only suitable for adult livestock moreover, and in this study calf predation
was more common than attacks on adult cattle (Chapter 5). Such collars are probably
not affordable for most livestock owners in Belize, costing around US$20 each, and are
currently only used in developed countries (e.g. protecting sheep against coyotes in the
USA, Nowell and Jackson 1996, Mitchell et al. 2004).

No farm is far from the contiguous forest, for example in this study all pastures
lay within 5 km for the forest block (Chapter 5). Since rates of livestock predation in
Belize are relatively high (Chapter 5), even tightly regulated targeted lethal control may

not be a sustainable option for jaguars or people.

Translocation

Instead of killing known livestock predators, an alternative is to capture them
and move them to a location where they will not come into conflict with people. Despite
its high public appeal among lovers of big cats, this rarely succeeds as a strategy to
manage livestock predators (Jackson and Nowell 1996, Linnell et al. 1997). In a review
of translocations of problem carnivores, Linnell et al. (1997) show that for a good
chance of success, the predator must be moved at least 100 km from the capture site to
prevent homing, and the release site must include hundreds or thousands of square
kilometres of land without conflict potential. In addition vacant yet habitable territories

must exist within the new area. For example Seidensticker et al. (1976) describe a
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translocation of a female tiger into the Sundarbans, who was killed by another tiger
within 20 m of the release cage. Elsewhere in India, attempts to return Asiatic lions to
the Gir Forest after they had dispersed into neighbouring agricultural lands have failed
probably because the Gir population is at carrying capacity (Saberwal ef al. 1994).
Although several of the livestock owners and their staff in this study asked about the
potential of translocation as an alternative to killing jaguars, the small size of Belize
means that there is little potential to translocate a jaguar > 100 km, and there are no
sufficiently large areas without potential conflict that are also likely to have vacant
territories. People do not want potential livestock killers moved into their district, and
such action can harm public relations with conservationists. For example, in 1983-4,
two cattle-killing jaguars were translocated ~160 km? from northern Belize to the study
area of this project (Rabinowitz 1986a). The female began killing cattle again within a
month and was shot. The male moved north out of the study area within a week and was
never detected again. Over 20 years later, livestock owners in the area still like to blame
depredation on ‘those jaguars that were brought here by scientists’ (R. Foster pers. ob.).
In addition to its low success rate, translocation is expensive; requiring
experienced trained staff and specialised equipment (Linnell ez al. 1997), as well as
detailed planning. This is exemplified by an event in 2007 when a drugged female
jaguar was brought to the CBWS with no advance warning (Figure 8.1). The cat, which
had been killing sheep, had been shot with a tranquilizer gun by a local resident in
southern Belize. Despite his good intentions the man had failed to alert the BFD or the
managers of the CBWS in advance of his plans, and wrongly assumed that it was
acceptable to release a livestock killer within the CBWS just 10 km from a local
community. The BFD were called in and local jaguar researchers advised that release
within CBWS was inappropriate given its already dense jaguar population and the close
proximity of villages and cattle farms. Eventually the cat was released in the
neighbouring Bladen Nature Reserve further from human habitation and where the
density of jaguars is considered to be lower. As the translocation was unplanned there
were no resources to available to monitor her post-release behaviour or survival.
However a nearby sawmill lost several dogs after her release and reported hearing a

jaguar calling every night for a week.
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Figure 8.1 Female jaguar captured for translocation in Belize

Anti-predator livestock management

Given the high jaguar density and high rates of livestock predation in Belize, the
most appropriate measure to lower human-jaguar conflict may be improvements to
livestock management. Chapter 5 discussed in detail a number of husbandry and farm
management practises that could help to lower livestock predation and thus reduce
lethal control, all of which warrant further research. Candidate options include 1)
improved fencing; 2) electric fencing; 3) night corrals; 4) night watchman; 5) reduced
reliance on natural water bodies; 6) maintain a cleared buffer between the pasture edge
and adjacent forest; 7) bringing herds with vulnerable calves closer to human dwellings;
8) protected calving pastures; 9) incorporation of guard animals into the herd, such as
water buffalo, donkeys, dogs; 10) use of repellents and deterrents. In particular, the
clearance of buffer strips between pastures and natural vegetation, and good quality
fences (Figure 8.2) were associated with lower rates of attack; however sample sizes
were small and it is likely that multiple factors interact to influence depredation rates.
Plans are in progress, subject to funding, to empirically test the effectiveness of

different non-lethal methods to reduce livestock predation (B. Harmsen, pers. comm.).
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Figure 8.2 a) Cleared buffer between pasture and
natural vegetation (above); b) good quality fence:
seven strings of taut barbed wire (right); both on a
farm that was visited by jaguars but reported no
losses 2004-2006.

As in other developing countries, lack of money is the greatest impediment to
livestock owners in Belize implementing any such preventative measures (Chapter 5).
In the short-term, gun shot will always seem cheaper than constructing a fence or
purchasing guardian animals. Economic incentives and subsidies from the international

community may be necessary to encourage predator-friendly farming.

Economic incentives

Around the world, NGOs and Governments offer economic incentives for
people to protect biodiversity (Ferraro and Kiss 2002). Incentives may be positive
(payment for protection) or negative (taxes for non-protection); however positive
incentives are more likely to get local support. Ideally such programs need to internalise
the costs and eventually become self-sustaining. Below I discuss the potential of four
types of positive economic incentives to lower lethal control and promote jaguar
conservation in Belize: compensation for livestock losses, ecotourism, trophy hunting,

and direct payments to protect jaguars and their habitat.

Compensation

Compensating livestock owners for losses aims to increase tolerance towards
predators and so reduce lethal control; however it has had mixed success around the

world (Nyhus et al. 2005). Compensation schemes in developing countries are often

278



Synthesis and way forward

ineffective for a variety of reasons. These include bureaucratic inadequacies in verifying
damages and making prompt payments, corruption, fraudulent claims, the inability of
illiterate famers to make claims, the loss of impetus to properly protect livestock from
attacks, and the need for assured funding for payments which may become
unsustainable if conflict increases as the target species recovers (Nyhus et al. 2005,
Bulte and Rondeau 2005, Rondeau and Bulte 2007). Compensation for losses has been
likened to an agricultural subsidy which may increase marginal revenues so
encouraging farmers to continue rearing livestock, potentially attracting more to the
industry and stimulating agricultural expansion and intensification, with negative
repercussions for the target species (Bulte and Rondeau 2005, Bulte and Rondeau 2007,
Rondeau and Bulte 2007). In addition there is no assurance that lethal control will
cease. For example, Naughton-Treves et al. (2003) found that livestock owners who
were compensated for losses to wolves were no more tolerant of wolves than those who
suffered uncompensated losses. Certainly all of these pitfalls could occur in any
compensation scheme introduced in Belize to promote jaguar conservation. It is clear
that payouts for losses would have to be conditional on first meeting certain approved
levels of livestock protection to prevent attacks and an agreement not to kill jaguars on
the property. If predation escalates, the farm could be issued with a permit to euthanize
the problem cat. Difficulties would arise in verifying that livestock have actually been
killed, since jaguars often drag entire calves into the forest leaving behind no remains as
evidence. Also, it is likely that owners will not be satisfied with financial compensation,
but demand replacement animals of a similar age as those lost. This would require the
scheme to have available a source of domestic animals. Such a programme would be
expensive to set up and maintain.

Carefully designed conditional compensation schemes which only reward good
husbandry and compliance with efforts to protect the target species and its wild prey can
work, if geared to the local ecological, social and economic conditions. For example
successful compensation schemes have been developed in India and Mongolia to protect
snow leopards (Mishra et al. 2003) and in Kenya to protect lions (Bruner 2007).
Ecotourism based on these target species is being used as a means to partially
internalise funding for the pay outs, and so reduce the need for external sources of

money.
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Ecotourism

The function of ecotourism is to provide economic revenues from tourism that
offset the costs of local people cohabiting with and protecting wildlife (Walpole and
Thoules 2005). Its success as a method to conserve wildlife depends on net economic
benefits accruing to all those who accept the costs associated with wildlife protection,
and on an appreciation of the link between those financial gains and conservation
(Walpole and Thoules 2005).

Charismatic species such as big cats are big business for the ecotourism industry
worldwide. A single internet search for ‘ecotourism’ and ‘jaguar’ brings up ~40,000
hits, 43% of which include ‘Belize’. Tourism is important for the Belizean economy.
For example in 1999 tourism revenue made up 69% of the country’s exports (Gossling
1999). Furthermore, the Government levies an environmental departure tax of
US$18.75 on every foreign visitor to support the Protected Areas Conservation Trust
(PACT) which finances conservation management and sustainable development in and
around the protected areas of Belize (Belize Government 2008, PACT 2008).

It is sometimes argued that rainforests are not suited to large-scale tourism
because they are difficult to access, the wildlife is elusive and the climate is
uncomfortable (e.g. Kiss 2004). However Belize also has attractive beaches and the
largest coral reef in the western hemisphere. Tourists who are attracted primarily for a
beach holiday frequently take the opportunity to make excursions inland to the national
parks. The country’s small size means that most sites are easily accessible, and although
highways are still unpaved in places, there is a good infrastructure and the country is
politically stable. Moreover the country is English speaking, attracting generally
affluent North American tourists.

Belize receives increasing tourist numbers every year; in 2007 arrivals were
equivalent in size to the Belizean population (over 250,000 tourists, Belize Tourism
Board 2008). However it is debatable whether the link between the tourist economy and
wildlife protection is widely appreciated, or whether it can promote jaguar conservation
in the long-term, largely due to an imbalance in the distribution of revenue from
ecotourism operations within the country. This is common in developing countries,
where often only 20-40% of the retail tourist price remains within the destination
country’s economy (Gossling 1999), and small-scale community-based ecotourism

cannot compete with large-scale commercial operations (Walpole and Thoules 2005).
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For example, Belize is a popular destination for cruise ships, but the nature of a cruise is
such that excursions on land are limited to short daytrips only and so the ‘cruise-ship
dollar’ often fails to reach local business people (R. Foster, pers. obs.). For those
tourists who spend more time inland, activities are likely to be centred on national parks
and archaeological sites. Communities lying outside the sphere of influence of such
protected areas may receive little or no economic benefit from jaguar conservation. The
phenomenon was clearly observed during this study in the communities at the periphery
of the CBWS unprotected forest buffer. Tourist access to the CBWS is via a single
village, Maya Centre. Here park visitors can purchase entrance tickets, hire tour guides,
buy handicrafts and food, utilise overnight accommodation and even visit a traditional
healer. Five more villages lie along the buffer perimeter but their tourist activity and
income is negligible (R. Foster, pers. obs.). With no economic incentive to protect either
the jaguar or its wild prey, villagers from these communities often hunt game in the
buffer forest and further into the protected area (R. Foster, pers. obs.). Chapter 6 showed
that large game species were lacking in jaguar diet outside the protected forest and this
may in turn exacerbate livestock predation in the villages and on privately owned farms.
Illegal hunting needs to be brought under control and communities need to receive some
tangible economic benefits from the CBWS in order to respect its boundaries. However
poacher patrols and employment opportunities within CBWS are limited because park
funding in inadequate. The CBWS park entrance fees are currently just US$1.25 for
nationals and US$5.00 for foreigners. For most Westerners this is less than they would
readily spend on a trip to the movies or for a cappuccino in a coffee bar (R. Foster pers.
obs.). This is common in developing countries, where entrance fees are often ~0.01-1%
of total travel costs (Gossling 1999). When Costa Rica raised park fees for foreigners
from US$1.50 to US$15; visitors fell by 44% the following year but total revenue
increased (Gossling 1999). Furthermore the reduction in number of tourists probably
lowered the negative impacts associated with long-haul flights and high traffic of people
within the rainforest. Increasing park fees in Belize would allow the protected areas to
hire more wardens for patrols. This would increase local employment opportunities
whilst simultaneously improving protection of the forest wildlife. In 2004, a resident
from a buffer community other than Maya Centre was hired as Park Director of CBWS.
His employment has done much to improve the relationship between his village and

CBWS (R. Foster, pers. obs.); however it is doubtful that ecotourism in CBWS could
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ever provide sufficient economic revenues to all members of its buffer communities to
ensure the protection of game species and livestock predators.

Throughout Africa, and in some Latin American countries, large-scale cattle
ranches are converting to private wildlife reserves for ecotourism. Such a strategy is
less appropriate for Belize where farms are generally small (Chapter 5), the wildlife are
difficult to see and the opportunity to visit the country’s pristine protected areas is
probably more attractive to tourists than visiting a former cattle ranch. Moreover it is
unlikely that many could afford the necessary start-up costs. However the wealthy
owners of the two largest cattle farms in the study area have begun dabbling in the
ecotourism market, offering horse rides or canoe trips on their properties. Unfortunately,
this appears to have done little to increase their tolerance of jaguars when livestock are
taken, other than some unsuccessful attempts at aversive conditioning by one farm

owner (R. Foster, pers. obs.).

Trophy hunting

Unlike ecotourism, in which the link between protecting predators and revenue
derived from tourists (for example, staying in guest houses or eating in local
restaurants) is not always obvious, trophy hunting clearly presents the predator as a
commodity. Indeed, in sub-Saharan Africa trophy hunting is a multi-million dollar
business (Whitman et al. 2004, Frost and Bond 2008). As with ecotourism and
compensation programmes, there are difficulties associated with distributing revenue to
fairly off-set the costs of living with a predator and ensuring that people comply with
the conservation objectives of the programme.

Sport hunting of jaguars is permitted in Bolivia and can cost up to US$10,000
per trip but does little to deal with the causes of depredation, which is induced mainly
by poor livestock management and wild prey depletion (Nunez et al. 2000b). It has been
suggested that controlled sport hunting of habitual livestock killers could contribute to
jaguar conservation by financing better livestock management and compensation
programmes in some Latin American countries (Swank and Teer 1988, unpubl. report
cited in Nowell and Jackson 1996). Trophy hunting of jaguars in Belize has been
proposed by several of the country’s influential businessmen who also own cattle
ranches. However it is unlikely that this could ever be viable method of conserving the
jaguar, even if revenues were reinvested in improved livestock protection. From a

practical point of view, it would be no different from targeted lethal control, so the
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difficulties of killing the correct cat remain. In Africa the open savannahs facilitate
identification of specific individuals for removal. In Belize the vegetation is dense and
jaguars are elusive, making it almost impossible to predict when or where the target
animal will be. Also, in Belize cattle farms are small; with several properties often
falling within the home range of a single cat (Chapter 5), complicating the fair
distribution of eventual revenue. Furthermore the legal killing of some jaguars would
not necessarily prevent the illegal killing of others. Chapter 7 suggests the necessity for
a reduction in human-induced mortality of jaguars; as conservationists we want to find
ways to decrease lethal control rather than promote it. Finally, Belize is party to CITES
which prohibits commercial trade in Appendix I species, including jaguars, between
member countries. Therefore, under current law, foreign hunters would be unable to
take their trophy home, and this would likely lower the attraction of paying for a hunt.
Certain countries have been granted export quotas for some Appendix I cat species (e.g.
leopards) on the recognition that it is not endangered in those countries and that some
killings are sanctioned to protect life/property. However the restrictions remain tight:
trophies must not be sold in the import country and are limited to 2 animals per year per
person. As we know so little about jaguar abundance or its resilience to lethal control
across its geographical range, easing the law to facilitate trophy hunting is unacceptable.
In northern Mexico a different form of trophy hunting is being used to conserve
jaguars. A programme has been established to assist ranches with wildlife management
and organise commercial sustainable deer hunts. The ranchers receive the revenues from

the hunts in return for conserving jaguars and jaguar habitat on their land (Nistler 2007).

Direct payments

It has been suggested that direct payments such as land purchases or leases, tax
breaks and performance payments for supporting conservation are more cost-effective
and practical than indirect incentives such as compensation programmes and ecotourism
(Ferraro and Kiss 2002, Ferraro and Kiss 2003). Indirect incentives are common in
developing countries, but, in attempting to combine conservation and development
goals, they often fail (Ferraro and Kiss 2002). Instead direct payments could be made
for the protection of predators, their wild prey and natural habitat. For example in
Russia owners of livestock and deer farms are paid for the presence of Amur leopards
and Siberian tigers on their property (Hotte and Bereznuk 2001). Thus payments for

promoting wildlife are received regardless of livestock predation, although a
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compensation scheme is also run to pay farmers for their losses. Payments conditional
on wildlife abundance requires some means to monitor the population, and a fair
distribution of rewards may be difficult to achieve (Nyus et al. 2005) particularly for
wide-ranging species such as jaguars. In northern Mexico an innovative approach is
being used in which ranchers are given camera traps and are paid up to US$300 for
photos of jaguars on their land (Nistler 2007). Despite its attractive simplicity, any
programme of direct payment for jaguar conservation in Belize would require a

sustainable source of funding.

Wild prey recovery

In the absence of data on wild prey abundance or the rate of game hunting, it is
impossible to know whether Belizean prey populations are depleted and whether this
could be exacerbating livestock predation. Research must therefore focus on estimating
wild prey populations. A large-scale project, subject to funding, is planned to evaluate
wild prey abundance in the fragmented lands separating the Rio Bravo and Maya
Mountain protected forest blocks (B. Harmsen, pers. comm.). However attempts must
also be made to monitor levels of off-take by hunters, ultimately to better regulate the
practise. This is easier said than done, and despite comprehensive wildlife hunting laws
the BFD has limited resources for the time and expense required for enforcement.

If wild prey are scarce in the fragmented landscape then livestock predation is
inevitable, and recovery of wild prey populations may be the best solution. This may be
achieved by restricting game hunting and/or through population augmentation. Larger
cattle farms could ban staff and locals from hunting on their property. The second
largest farm in this study has recently taken such an approach. Even at this small scale,
however, enforcement is difficult: with the owner rarely on-site and four communities
within 1.5 km of the property, hunting pressure in forests neighbouring the ranch is
likely to be high. Wild prey augmentation remains an untested strategy in Belize.
Chapter 6 suggested that large wild ungulates, such as white-lipped and collared
peccary, are limited in the diet of jaguars inhabiting the fragmented landscape, and that
this absence may encourage predation on cattle. The introduction of peccary from
breeding stocks at the Belize Zoo is not inconceivable (S. Matola, Belize Zoo, pers.
comm.). Augmentation of collared peccary in particular could be viable in the
fragmented landscape as they are relatively adaptable to disturbed habitats (e.g. Peres

1996, Reyna-Hurtado and Tanner 2007). However such a project would need careful
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investigation prior to any introductions to ensure that the habitat can support an

increased peccary population and to guarantee that locals would not over-exploit it.

Public awareness

Whatever methods are employed to reduce jaguar-human conflict, public
awareness of the programmes will play an important role. Because Belize is a small
country, news travels fast whether positive, as with the praise for the first Belizean to
embark on a PhD study of jaguars, or negative as with jaguar attacks on domestic
animals. Unfortunately its small size can also facilitate the rapid spread of myths,
including misconceptions about wildlife which can be detrimental if not corrected. For
example, on several occasions in different parts of the country the author was told of
two types of jaguar, one with large rosettes and the other with ‘bean-like’ pelt pattern,
the former supposedly being much more dangerous. One livestock owner even sorted
through a stack of ~50 jaguar camera-trap photographs, separating them into two
‘different’ cats, one group of which he believed it was legal to shoot.

The Belize Zoo has done much to improve public understanding of jaguars and
has also established a ‘Problem Jaguar Rehabilitation Program’ which takes cats that
were trapped for preying on livestock into captivity as an alternative to lethal control.
Whilst the zoo acknowledges that this does not confront the causes of the problem
(poorly managed livestock, depleted wild prey populations and fragmentation of the
forest habitat) they see positive outcomes arising from not killing the cat. It is a step
towards encouraging livestock owners not to shoot jaguars without first considering the
alternatives and it provides the support that may not always be available from the
Forestry Department. Once in captivity, the ‘problem’ jaguars are slowly habituated to
humans. This may take over a year to achieve. Eventually they are moved to spacious
public exhibits providing education for Belizeans and foreign tourists alike. In particular
~10,000 school children visit the zoo every year, participating in its environmental
education programme. These progressive education programmes have undoubtedly
contributed to raising public awareness of the jaguar in Belize (Matola 2002, R. Foster
pers. obs.). The problem jaguar is eventually transferred to an AZA accredited zoo
where it becomes part of the captive breeding programme, contributing to the genetic
base of the North American captive jaguar population. In return the zoos are required to
exhibit the cat with educational material explaining human-jaguar conflict in

Mesoamerica and the associated conservation issues, and they are obliged to contribute
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funds to the country of origin to support in situ conservation. Despite these benefits, the
programme cannot continue accepting problem cats indefinitely due to the limits of
space and funding, and those it does take represent only a small fraction of those
estimated to be killed every year. Furthermore the system must be rigorously controlled
to avoid abuse, for example in situations where cats are trapped without evidence of

livestock predation or payment is demanded before handing over a trapped cat.

The role of the Government

The BFD must play a greater role in mitigating human-jaguar conflict in Belize.
Until recently they have been limited by the lack of resources, particularly vehicles and
fuel, to respond to reports of livestock predation and other wildlife related issues.
Because of their inability to help effectively in the past, many Belizeans take matters
into their own hands when it comes to livestock predation. Once the BFD begins
actively responding to calls for assistance with problems with jaguars, it is likely that
willingness to report will increase. This year (2008) the Panthera Foundation, a US
based NGO, began employing a Belizean Forestry Officer specifically to deal with
human-jaguar conflict. This is an important step. Even if an alternative to lethal control
cannot always be offered, by working with livestock owners around the country the
officer is able to keep records of jaguar deaths which would otherwise go unreported,
and to build a database of farms and villages that may be particularly susceptible to
attack. These data can then be used to improve methods of recognising the factors
associated with depredation, which in turn can be used to identify site-specific

alternatives to lethal control.

Epilogue

On my last day in Belize, a cowboy who I had known for almost three years told
me that he would not kill anymore jaguars. If only the solution really was that simple! I
took his statement lightly, having witnessed the frustration that repeated depredation
can bring to livestock owners. But if this project was at least partly responsible for his
apparent change in mindset and his refreshing resolution on lethal control then it will
have served a purpose. Changing people’s attitudes is surely the starting point of
successful jaguar conservation in areas where they co-exist with humans. As a first step

we need to understand the basics, such as how many jaguars are there, why they eat
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livestock and what is the impact of lethal control. When I return to Belize in 2009, I
plan to disseminate the findings of this research among livestock owners and local
communities with the intention of dissolving myths about jaguars living in the area.
Once locals and conservationists have a better understanding of jaguar ecology in the
area they can work together to identify some sensible non-lethal alternatives to reduce

both livestock predation and lethal control of jaguars.
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Appendix A: Data tables
Chapter 4

Sex Ratio

Table A4.1 Sex ratio (males/ females) of jaguars captured exclusively inside and
exclusively outside the forest block based on eight possible ratios: individuals of
unknown sex are a) excluded (two ratios), b) assumed to be males (MJ, two ratios) and
c) assumed to be females (FJ, four ratios). Sex ratios differ between inside and
outside: paired t-test n= 8, t= 6.85, p < 0.001. Ratios are based on 64 to 74 individual
capture histories of 36 to 37 males, 14 females and 14 to 23 of unknown sex over the
period Jan 2004 to Dec 2006.

male/ female

Ratio IN ouT
a) Mmin © F 3.1 1.2
Mmax : F 3.3 1.3
b) MJmin @ F 3.6 1.3
MJmax : F 5.0 3.0
c) Muin @ FJmax 1.2 0.4
Mmin . FJmin 2.2 .
I\/Imax : I:Jmin 23 1.1
Mmax FJmax 1 2 05

Table A4.2 Sex ratio (males/ females) of jaguars captured exclusively inside and
exclusively outside the reserve based on eight possible ratios: individuals of unknown
sex are a) excluded (two ratios), b) assumed to be males (MJ, two ratios) and c¢)
assumed to be females (FJ, four ratios). Sex ratios differ between inside and outside:
paired t-test n= 8, t=6.76, p < 0.001. Ratios are based on 64 to 74 individual capture
histories of 36 to 37 males, 14 females and 14 to 23 of unknown sex over the period
Jan 2004 to Dec 2006.

male/ female

Ratio IN ouT

a) Mun : F 4.7 1.3
Mmnax : F 5.0 1.4
MJmax : F 7.3 3.4

C) min - FJmax 1.4 0.4

max FJmin 38 08

M
Mmin © FJmin 3.5 0.8
M
Mmax ©  FImax 1.5 0.5
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Chapter 5

Contingency tables: habitat use by jaguars and pumas

Table A5.1 Number of locations a) inside forest block and b) outside forest block, with
and without jaguars and pumas.

a) inside forest block b) outside forest block
Presence Absence Presence Absence
Jaguar 61 45 106 47 20 67
Puma 64 42 106 7 60 67
125 87 212 54 80 134
2 =0.175,p>0.05 X1 =49.6, p<0.0001

Table A5.2 Number of locations a) inside protected forest and b) outside protected
forest, with and without jaguars and pumas.

a) inside protect forest b) outside protected forest
Presence Absence Presence Absence

Jaguar 46 41 87 59 24 83

Puma 52 35 87 16 67 83
98 76 174 75 91 166
X7 =0.841,p>0.05 X7 =45.0, p<0.0001

Table A5.3 Number of locations a) inside forest and b) outside forest, with and without
jaguars and pumas.

a) inside forest b) outside forest
Presence Absence Presence Absence
Jaguar 80 56 136 28 9 37
Puma 68 68 136 3 34 37
148 124 272 31 43 134
xi=2134,p>0.05 X1 =347, p<0.0001

Table A5.4 Number of jaguar and puma scats found inside and outside the forest block
Jan 2004 to Dec 2006.

Inside Outside
Jaguar 224 51 275
Puma 66 3 69

290 54 344

X:=8.4,p=0.004
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Table A5.5 Number of locations a) inside forest block and b) outside forest block, with
and without male and female jaguars.

a) inside forest block
Presence Absence

Male 58 46 104
Female 18 86 104
76 132 208

i =33.2, p<0.0001

b) outside forest block
Presence Absence

37 26 63
18 45 63
55 71 126

xi=11.6, p<0.0001

Table A5.6 Number of locations a) inside protected forest and b) outside protected
forest, with and without male and female jaguars.

a) inside protected forest
Presence Absence

Male 45 40 85
Female 9 76 85
54 116 170

X7 =352, p<0.0001

b) outside protected forest
Presence Absence

47 32 79
25 54 79
72 86 158

X7 =12.4, p<0.0001

Table A5.7 Number of locations a) inside forest and b) outside forest, with and without

male and female jaguars.

a) inside forest
Presence Absence

Male 70 62 132
Female 30 102 132
100 164 264

i =25.8, p<0.0001

b) outside forest
Presence Absence

25 10 35
6 29 35
31 39 70

21 =20.9, p<0.0001

Table A5.8 Number of locations a) inside forest block and b) outside forest block, with
and without male and female jaguars. Jaguars of unknown sex are included as

females.

a) inside forest block
Presence Absence

Male 58 46 104
Female 24 80 104
82 126 208

xi=43,p<0.05

b) outside forest block
Presence Absence

37 30 67
25 42 67
62 72 134

i =23.3, p<0.0001

Table A5.9 Number of locations a) inside protected forest and b) outside protected
forest, with and without male and female jaguars. Jaguars of unknown sex are included

as females.

a) inside protected forest
Presence Absence

Male 45 40 85
Female 14 71 85
59 111 170

Xl =24.9, p<0.0001

b) outside protected forest
Presence Absence

47 36 83
33 50 83
80 86 166

Xi=47,p<0.05
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Table A5.10 Number of locations a) inside forest and b) outside forest, with and
without male and female jaguars. Jaguars of unknown sex are included as females.

a) inside protected forest

b) outside protected forest

Presence Absence Presence Absence
Male 70 64 134 25 12 37
Female 40 94 134 9 28 37

110 158 268 34 40 74

X7 =13.9, p<0.0001

X7 =13.9, p<0.0001

Table A5.11 Number of locations with and without male jaguars inside and outside
pasture. (Note that nis four more than in Table 5.2 in Chapter 5 because it excluded
the three locations which lie on the boundary of the protected area, and the single
location which was in a citrus plantation. These four data points have been included in
here).

Not Pasture Pasture
Presence 75 17 92
Absence 69 4 73
144 21 165

X =6.2,p<0015

Table 5.12 Number of locations with and without female jaguars inside and outside
protected forest. (Note that nis one more than in Table 5.3 in Chapter 5 because it
excluded the single location which was in a citrus plantation. This data point is included
in here).

Not Protected Protected
Presence 25 9 34
Absence 46 74 120

71 83 154

X7 =132, p<0.0001

Table A5.13 Number of locations associated with forest and >50m from forest with and
without male jaguars

< 50m from forest > 50m from forest
Presence 82 13 95
Absence 68 4 73

151 17 168

X;=23.06, p>0.05

Table A5.14 Number of locations associated with forest and >50m from forest with and
without male + unknown sex jaguars

< 50m from forest > 50m from forest

Presence 88 13 101
Absence 65 5 70
153 16 171

Xi=144,p>02

291



Appendix A: Data tables

Table A5.15 Number of locations associated with forest and >50m from forest with and

without female jaguars

< 50m from forest

> 50m from forest

Presence 34 2 36
Absence 111 10 121
145 12 157

2i=029, p>05

Table A5.16 Number of locations associated with forest and >50m from forest with and

without female + unknown sex jaguars

< 50m from forest > 50m from forest
Presence 47 2 49
Absence 101 10 111

148 12 160

Xi=1.19,p>0.2).

General Linear Models: habitat use by jaguars

Table A5.17 GLM of jaguar activity with sex and habitat. Jaguars of unknown sex

included as males

T Error variation for interaction is the highest order term in the model:

sex*station’(habitat)

Source d.f. Adj.MS F p

Sex 1 11.34 63.66 < 0.0001
Habitat 4 0.33 148 >0.2
Sex*Habitat 4 1.46 8.19 < 0.0001
Station’(Habitat) 86 0.22 1.25 >0.1
Error’ 86 0.18

Total 181

Table A5.18 GLM of jaguar activity with sex and habitat. Jaguars of unknown sex

included as females.

T Error variation for interaction is the highest order term in the model:

sex*station’(habitat)

Source d.f. Adj.MS F p

Sex 1 7.85 4551 < 0.0001
Habitat 4 0.39 1.63 >0.1
Sex*Habitat 4 1.80 10.43 < 0.0001
Station’(Habitat) 86 0.24 1.40 >0.05
Error 86 0.17

Total 181

Compared to GLM 5.1 of jaguar activity (Table 5.4, Figure 5.4 in Chapter 5), similar

trends are observed if unknown jaguars are included as males or included as females.
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Table A5.19 GLM of jaguar individual rate with sex and habitat. Jaguars of unknown
sex included as females.

T Error variation for interaction is the highest order term in the model:
sex*station’(habitat)

Source d.f. Adj. MS F p

Sex 1 4.84 33.98 < 0.0001
Habitat 4 0.07 0.61 >0.6
Sex*Habitat 4 0.67 472 <0.005
Station’(Habitat) 46  0.11 0.79 >0.7
Error' 46 0.14

Total 101

Table A5.20 GLM of jaguar individual rate with sex and habitat. Jaguars of unknown
sex included as females.

T Error variation for interaction is the highest order term in the model:
sex*station’(habitat)

Source d.f. Adj.MS F p

Sex 1 3.29 23.54 < 0.0001
Habitat 4 0.07 00.61 >0.6
Sex*Habitat 4 094 06.74 < 0.0001
Station’(Habitat) 46  0.11 00.80 >0.7
Error' 46  0.14

Total 101

Compared to GLM 5.1 of number of individuals present per 28 nights (Table 5.5, Figure
5.5 in Chapter 5) , similar trends are observed if unknown jaguars are included as males
or included as females with the following exceptions: if unknowns are included as
males the number of individuals utilising fragmented forest locations increases such that
it is no longer less than the number utilising protected forest sites; if unknowns are
included as females the number of individuals utilising contiguous unprotected forest

sites increases such that it is more than the number of females utilising savannah sites.

Contingency table: jaguar and puma tolerance to human activity

Table A5.21 Number of months during which jaguars and pumas were present at the
reserve boundary Jan04 to May07; n = 31 months.

Present Absent
Jaguar 30 1 31
Puma 16 15 31

46 16 62

xi=16.5, p<0.0001
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Contingency tables: cat activity on cattle farms

Table A5.22 Number of locations on farms (< 20 m from pasture) with and without
jaguars and pumas Apr 2004 to Oct 2006.

Present Absent
Jaguar 21 3 24
Puma 3 21 24

24 24 48

i =27.0, p<0.0001

Table A5.23 Number of locations on farms (< 20 m from pasture) with and without
male and female jaguars Apr 2004 to Oct 2006.

Present Absent
Male 18 6 24
Female 7 17 24
25 23 48

X7 =10.1, p<0.002

Table A5.24 Number of locations on farms (< 20 m from pasture) with and without
male and female + unknown sex jaguars Apr 2004 to Oct 2006.

Present Absent
Male 18 6 24
Female 9 15 24
27 21 48
X =16.86, p<0.01
Chapter 6

Contingency tables: jaguar/puma food habits in protected forest

Table A6.1 Number of prey items identified as armadillos in jaguar and puma scats
collected in the protected forest.

Armadillo Not armadillo
Jaguar 122 118 240
Puma 8 114 122

130 232 362

i =68.9, p<0.0001
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Table A6.2 Number of prey items identified as coatis in jaguar and puma scats
collected in the protected forest.

Jaguar

Puma

Coati Not coati
23 217 240
0 122 122
23 339 362

¥l =125, p<0.0001

Table A6.3 Number of prey items identified as pacas in jaguar and puma scats
collected in the protected forest.

Jaguar
Puma

Paca Not paca

11 229 240
71 51 122
82 280 362

X7 =132.7, p<0.0001

Table A6.4 Number of prey items identified as red brocket deer in jaguar and puma
scats collected in the protected forest.

Jaguar
Puma

Deer Not deer

8 232 240
11 111 122
19 343 362

X:=5.3,p<005

Table A6.5 Number of prey items identified as white-lipped peccary in jaguar and
puma scats collected in the protected forest.

Jaguar
Puma

WL peccary Not WL peccary

36 204 240
11 111 122
47 315 362
Xi=2.6,p>0.1

Table A6.6 Number of prey items identified as kinkajou in jaguar and puma scats
collected in the protected forest.

Jaguar
Puma

Kinkajou Not kinkajou

10 230 240
7 115 122

17 345 362

2.=05,p>05
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Contingency tables: jaguar/puma food habits in contiguous forest block

Table A6.7 Number of prey items identified as armadillos in jaguar and puma scats
collected in the contiguous forest block.

Armadillo Not armadillo
Jaguar 161 152 313
Puma 10 125 135

171 277 448

X =775, p<0.0001

Table A6.8 Number of prey items identified as coatis in jaguar and puma scats
collected in the contiguous forest block.

Coati Not coati
Jaguar 35 278 313
Puma 0 135 135
35 413 448

X7 =16.4, p<0.0001

Table A6.9 Number of prey items identified as pacas in jaguar and puma scats
collected in the contiguous forest block.

Paca Not paca
Jaguar 13 300 313
Puma 80 55 135
93 355 448

X:=174.1, p< 0.0001

Table A6.10 Number of prey items identified as red brocket deer in jaguar and puma
scats collected in the contiguous forest block.

Deer Not deer
Jaguar 10 303 313
Puma 12 123 135
22 426 448

Xi=6.5,p<0.02

Table A6.11 Number of prey items identified as white-lipped peccary in jaguar and
puma scats collected in the contiguous forest block.

WL peccary  Not WL peccary
Jaguar 37 276 313
Puma 11 124 135
48 400 448
xi=13,p>02
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Table A6.12 Number of prey items identified as kinkajou in jaguar and puma scats
collected in the contiguous forest block.

Kinkajou Not kinkajou
Jaguar 10 303 313
Puma 7 128 135
17 431 448
2i=10,p>03

Contingency tables: jaguar food habits inside/outside protected forest

Table A6.13 Number of prey items identified as white-lipped peccary in jaguar scats
collected inside and outside the protected forest.

WL peccary  Not WL peccary
In 36 204 240
Out 0 108 108
36 312 348

xi=18.1, p<0.0001

Table A6.14 Number of prey items identified as cattle in jaguar scats collected inside
and outside the protected forest.

Cattle Not cattle
In 0 240 240
Out 11 97 108
11 337 348

Odds ratio = 0.02, p < 0.0001

Table A6.15 Number of prey items identified as sheep in jaguar scats collected inside
and outside the protected forest.

Sheep Not sheep
In 0 240 240
Out 17 91 108
17 331 348

21 =239.7, p<0.0001

Contingency tables: jaguar food habits in protected forest and
unprotected forest buffer

Table A6.16 Number of prey items identified as armadillo in jaguar scats collected
inside the protected forest and inside the unprotected forest buffer.

Armadillo Not armadillo
Protect 122 118 240
Buffer 21 22 43
143 140 283
2.=01,p>08
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Table A6.17 Number of prey items identified as coatis in jaguar scats collected inside
the protected forest and inside the unprotected forest buffer.

Coati Not coati
Protect 23 217 240
Buffer 10 33 43
33 250 283

Xi=6.6,p<0.02

Table A6.18 Number of prey items identified as collared peccaries in jaguar scats
collected inside the protected forest and inside the unprotected forest buffer.

Col peccary Not col peccary
In 10 230 240
Out 6 037 43
16 267 283

Odds ratio = 0.27, p < 0.05

Contingency tables: jaguar food habits in unprotected forest buffer and
fragmented landscape

Table A6.19 Number of prey items identified as armadillo in jaguar scats collected
inside the unprotected forest buffer and in the fragmented landscape.

Armadillo Not armadillo
Buffer 21 22 43
Frag 15 50 65
36 72 108

Xi=7.7,p<0.01

Table A6.20 Number of prey items identified as coatis in jaguar scats collected inside
the unprotected forest buffer and in the fragmented landscape.

Coati Not coati
Buffer 10 33 43
Frag 6 59 65
16 92 108

Xi=4.0,p<0.05

Table A6.21 Number of prey items identified as collared peccaries in jaguar scats
collected inside the unprotected forest buffer and in the fragmented landscape.

Col peccary Not col peccary
Buffer 6 37 43
Frag 1 64 65

7 101 108

Odds ratio = 10.4, p < 0.02
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Appendix B: Effective trapping areas for male and

female jaguars

Ext06

protected forest +
unprotected lands
(forest + non forest)

Ext06
protected forest +
unprotected forest

Ext06
protected forest +
boundary forest

Ext06

protected forest +
boundary forest
(CBWSO04, 05, 06)
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Ext06
protected forest

Sit06

boundary +
unprotected lands
(forest + non forest)

Sit06
unprotected lands
(forest + non forest)

Sit06
unprotected lands
(non forest)

Zab06

protected forest +
unprotected lands
(forest + non forest)
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Zab06

boundary +
unprotected lands
(forest + non forest)

Zab06
unprotected lands
(forest + non forest)

Zab06
unprotected lands
(non forest)

Sit05

protected forest +
unprotected lands
(forest + non forest)

Sit05

boundary +
unprotected lands
(forest + non forest)

Sit05
unprotected lands
(forest + non forest)
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Sit05
unprotected lands
(non forest)

Zab05

protected forest +
unprotected lands
(forest + non forest)

Zab05

boundary +
unprotected lands
(forest + non forest)

Zab05
unprotected lands
(forest + non forest)

Zab05
unprotected lands
(non forest)
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Arn06

protected forest +
unprotected lands
(forest + non forest)

Arn06

boundary +
unprotected lands
(forest + non forest)

Arn06
unprotected lands
(forest + non forest)

Arno06
unprotected lands
(non forest)

DD

Figure B.1 Effective trapping areas (ETAs) for male jaguars and female jaguars based
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on mean maximum distance moved (MMDM) by each sex during the Ext06 survey.
Male ETAs shown in dark grey, based on MMDM = 8776m. Female ETAs shown in
light grey, based on MMDM = 3312m. Camera locations shown as black dots.
Male MMDM is large enough that no gaps or discontinuities exist within the ETAs.
Female MMDM is less than THE spacing between neighbouring cameras in some
surveys, resulting in gaps and discontinuities in some ETAs.
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Appendix C: Examples of habitats in the study area

Figure C.3 Shrubl

ands (fire-induced fern thicket)
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Figure C.6 Agriculture (pasture)

Figure C.7 Agriculture (semi-woody perennial crops: banana)

306



Appendix C: Examples of habitats in the study area

Figure C.10 Residential (settlements)
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Appendix D: Detection frequency of common prey
species in the protected forest

Distance sampling using line transects can be used to estimate mammal and bird
density. A number of lines are randomly positioned through the study area. The
observer travels along a line and records the distance from the line to each animal
observed. In the simplest situation density is calculated as:

n

D=

where 7 is the number of animals observed, L is the transect length and w is the
maximum distance at which an animal was observed. A sample size of at least 60 for
each species of interest is required for reliable estimation of density (Buckland et al.
2004). This may be difficult to achieve in certain habitat types or for certain species due
to variable visibility, low visibility, nocturnal habits and the size of the species. A pilot
study to assess whether transects would be an effective tool in the secondary forest
habitat found throughout the study area was conducted using the tourist trails of CBWS.
42 km of secondary forest trails were walked at an average speed of 2 km/ hour between
Sam and 8am over a period of 14 days. Sightings along with acoustic and physical signs
of prey species were recorded. The study revealed that visibility and prey species
encounter rates were very low (Table 1) and it was decided that establishing and
running line transects throughout the study area would not be time or cost effective

during this study.

Table 1 Detected frequency of common prey species over 42 km of trails in the
protected forest when walking 2 km /hour between 5am and 8am over 14 days.

Species Sightings Sounds  Tracks/Signs
Tapir Tapirus bairdii 0 0 6
White-lipped peccary Dicotyles pecari 0 1 0
Collared peccary Tayassu tajacu 2 0 8
Red brocket deer Mazama americana 1 0 6
Paca Agouti paca 0 0 5
Agouti Dasyprocta punctata 0 0 0
Nine-banded armadillo  Dasypus novemcinctus 1 0 0
Currasow Crax rubra 5 1 0
Crested guan Penelope purpurascens 0 1 0
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Appendix E: Derivation of model input parameters

Demographic rates

1. Age of first reproduction

Age of first reproduction was assumed to be 4 years for males and 3 years for
females based on estimate of 36-48 months for male jaguars (Panthera onca) and 24-30

months for females (Sunquist and Sunquist 2002).

2. Maximum breeding age

Maximum breeding age was assumed to be 10 years, based on the longevity and

age of last reproduction of several cat species, in captivity and the wild (Table A7.1).

Table A7.1 Longevity and age of last reproduction of several cat species (Nowell and
Jackson 1996)

Species Longevity Age of last reproduction

Jaguar c>20y,w~11y -

Lion (Panthera leo) wm 12-16 y wf decline at 11y, cease at 15y
wf 15-16y

Tiger (Panthera tigris) wfupto 16y cldy

Leopard (Panthera pardus) w 10-15y cupto19y

Snow leopard (Uncia uncial) c 21y ci15y

Puma (Puma concolor) w 8-10, upto 13 -

Clouded leopard (Neofelis nebulosa) cupto 17y c12-15y

Canadian lynx (Lynx Canadensis) widy -

Iberian lynx (Lynx pardinus) wuptoi13y w10y

¢ = captivity, w = wild, m = male, f = female

3. Sex ratio at birth

In the absence of relevant data, the sex ratio at birth was assumed to be 1 male

per female.

4. Percent of males in breeding pool

Polygyny is the most common mating system in mammals (Greenwood 1980)

and was assumed for jaguars. The social organisation of cats is often described as one in
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which a dominant male overlaps and breeds exclusively with several females (e.g.
tigers, Sunquist 1981). This can lead to high variance in lifetime reproductive success of
males (e.g. tigers, Smith and McDougal 1991) as transient males must wait for the
resident male to die or be displaced before they have an opportunity to breed. The % of
males in the breeding pool will depend on the level of territoriality and intra-specific
competition within the population. Harmsen et al. (in press) found that male jaguars in
the protected forest of Belize showed high levels of overlap in ranges, low levels of
avoidance between individuals, and a high flux of individuals contributing to low
consistency in home range ownership. As such one may suspect that a high proportion

of the male adults may get the opportunity to breed, and this was set at 75%.

5. Percent of females breeding each year

In captivity, the inter-oestrous period of female jaguars lasts 22-65 days, they
may remain in oestrus for 6-17 days and pregnancy lasts 91-101 days (Kitchener 1991,
Sunquist and Sunquist 2002). Cubs are fully dependent on their mother’s milk for the
first 10-11 weeks, and will continue to suckle until 5-6 months old (Sunquist and
Sunquist 2002). In theory cycling could resume 2-3 weeks following lactational
anestrus (Soares et al. 2006). The offspring will stay with their mother for up to 24
months (Kitchener 1991, Sunquist and Sunquist 2002) but by the age of 15-18 months
young jaguars may travel and hunt independently within their mother’s range (Sunquist
and Sunquist 2002). Based on these data it was assumed that a female jaguar will
produce cubs approximately every 2 years, therefore the % of females breeding each
year was set to 50%. In addition it was assumed that as the population approaches the
carrying capacity competition for space and prey may limit the breeding potential of a
female. Following van Pelt et al. (2006), it was assumed that the proportion of females
breeding will begin to decline when the population (V) is at 80% of the carrying
capacity (K), falling to 30% when N = K (Figure A7.1).
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Figure A7.1 Density dependence in % of females breeding each year (after van Pelt et
al. 2006)

6. Maximum litter size

Estimates of both litter size and cub mortality from field observations are
complicated because researchers may not detect cubs until they leave the den (e.g.
Lindzey et al. 1994), so it is difficult to distinguish between small litter sizes versus
high neonatal mortality. Thus estimates of litter size may already incorporate some
degree of cub mortality. In captivity jaguar litter sizes range from 1-4 with a mean of ~2
(Mondolfi and Hoogesteijn 1982, Seymour 1989). For the input parameters this was
best approximated as a distribution of litter sizes in which 20% of litters were 1 cub,
45% were 2 cubs, 20% were 3 cubs and 15% were 4 cubs, giving a mean litter size of
2.2 cubs. This compares reasonably well with 23 field sightings of jaguars with cubs by
Rabinowitz (1986b) who noted that 35% had 1 cub, 52% had 2 cubs and 13% had three
cubs. In pumas, Lindzey et al. (1994) observed a mean litter size of 2.4 (15% had 1 cub,
35% had 2 cubs, 46% had 3 cubs and 4% had 4 cubs. In tigers litter size varies from 1-
4, typically 2 or 3 (Mazéak 1981).

7. Cub natural mortality (age 0-1y)

Big cat cub mortality tends to be relatively high compared to the other age
groups. Cubs may be killed by other predators whilst their mother is away from the den
(e.g. leopards, Sunquist and Sunquist 2002), or they may be killed by conspecific males
seeking to mate with the mother (e.g. tigers, Smith and McDougal 1991). Cubs may
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also be the first to succumb to nutritional stress and starvation. This may be particularly
common in group-living lions, where multiple cubs may compete with adults for an
opportunity to feed (Sunquist and Sunquist 2002). No survival data are available for
wild jaguar cubs so a mortality of 30% per year (= SD = 10) was selected based on
other big cat species (Table A7.2) and the assumption that jaguar cubs are less likely to

suffer inter-specific predation and starvation than leopards and lions.

Table A7.2 Cub natural mortality (% per year) of several cat species

Species  Mortality Comments Reference
Lion 14-73 - mainly due to food-scarcity; also infanticide 1
33 2
Tiger 41-47 - 57% of deaths were human-induced 3
40 - captivity 3
34 - infanticide most common cause 4
Leopard 41-50 4
Puma 59 - hunted population 5
3-33 - hunted and un-hunted populations 4
Iberian lynx ~ 50-60 - incl. human-induced mortality 6

1 - van Orsdol et al. 1985, 2 - Packer et al. 1988, 3 - Kerley et al. 2003, 4 - Nowell and Jackson 1996, 5 -
Robinson et al. 2008, 6 - Gaona et al. 1998.

8. Juvenile natural mortality (age 1-2 y)

Juvenile mortality was assumed to be less than cub mortality, as observed in

other cat species (Table A7.3), and set at 10% per year (+ SD = 3.3).

Table A7.3 Juvenile mortality (% per year) of several cat species

Species Mortality Comments Reference
Tiger 17 - infanticide most common cause 1
Puma 37-49 - hunted population 2
12 - natural mortality only 3
Eurasian lynx 50 - incl. high human-induced mortality 1

1 - Nowell and Jackson 1996, 2 - Robinson et al. 2008, 3 - Logan et al. 1986

9. Subadult natural mortality (males 2-4 y, females 2-3 y)

Subadult mortality was assumed to be higher than juvenile mortality because of
the risks associated with dispersal and establishing a new territory. Although there are
few data on dispersal in jaguars, in other cats males are more likely to disperse and
move further than females (e.g. pumas, tigers and lions, Sunquist and Sunquist 2002).

Thus the risks associated with dispersal and establishing a territory are probably higher
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for males than for females. There are few data available on the natural mortality of sub-
adult cats. Subadult mortality of leopards is ~ 32% and considered to be relatively high
due to poor hunting success resulting in starvation (Table A7.4). In this study none of
the photo records detected jaguars in poor body condition, suggesting that rates of
starvation are probably low. Therefore, female subadult mortality was set at 15% per

year (+ SD = 5), and male subadult mortality was set at 25% per year (+ SD = 8.3).

Table A7.4 Sub-adult mortality (% per year) of two cat species

Species  Mortality Comments Reference
Leopard 32 - higher than adult mortality due to poor hunting success 1
Iberian lynx ~ 30-50 - non dispersing; incl. high human-induced mortality 2

50 - dispersing female; incl. high human-induced mortality 2

60 - dispersing male; incl. high human-induced mortality 2

1 - Nowell and Jackson 1996, 2 - Gaona et al. 1998

10. Adult natural mortality (males 4+ y, females 3+ y)

Male jaguars, like other cats, have larger ranges than females (e.g. Chapter 1,
Chapter 4) and so are more likely to be involved in territorial disputes than are females.
For this reason male mortality was assumed to be higher than female mortality, which
was set at 15% and 10% per year respectively based on the adult mortality rates of other
cat species (Table A7.5). Mortality was assumed to increase with age if a cat survived to
8 years old, due to the accumulation of injuries, damage to teeth and arthritis. This was

modelled as a linear increase in mortality up to 80% at age 15 years, following van Pelt

et al. (2006) (Figure A7.2).
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Table A7.5 Adult mortality (%) of several cat species

Species  Mortality Comments Reference
Tiger 23 - mortality and permanent emigration 1
Leopard 30 - old male 2
17 - prime male 2
17 - old female 2
10 - prime female 2
Puma <5 - un-hunted 2
22-44 - male, hunted population 3
9-16 - female, hunted population 3
24 - 54% of deaths were human-induced 4
16 - natural mortality only 5
28 - incl. human-induced mortality 6
Iberian lynx ~ 10-30 - with territory 7
30-40 - without territory 7

1 - Karanth et al. 2006, 2 - Nowell and Jackson 1996, 3 - Robinson et al. 2008, 4 - Stoner et al. 2006, 5 -
Logan et al. 1986, 6 - Lindzey et al. 1988, 7 - Gaona et al. 1998.
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Figure A7.2 Liner increase in adult mortality with age (after van Pelt et al. 2006).

Initial population sizes and carrying capacities

1. Maya Mountain protected forest block (MM)

The MM is made up of 13 contiguous protected areas of forest, 12 of which are
broadleaf and one which is pine forest (Table A7.6). The mean jaguar density within the
Cockscomb Basin Wildlife Sanctuary, calculated over 5 annual surveys, is 10.6 jaguars
per 100 km? (Harmsen 2006). This is assumed to be the highest density in the MM. The
mean density from the Chiquibul Forest Reserve, calculated over 3 annual surveys, is
half this value, just 5.2 jaguars per 100 km? (M. Kelly unpubl. data). This is assumed to
be low within the MM due its close proximity to the Guatemala border where prey are

depleted by poachers crossing the national border into Belize. Jaguar density is lower
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still in the pine forest, averaging at 3.2 jaguars per 100 km? over 2 annual surveys (M.
Kelly unpubl. data). Assuming a density of 10.6 jaguars per 100 km?” in the CBWS, 5.2
jaguars per 100 km? in the remaining broadleaf forest, and 3.2 jaguars per 100 km? in
the pine forest, gives a ‘low’ population estimate for the MM of 277 (Table A7.6).
Assuming a density of 10.6 jaguars per 100 km? throughout the entire MM gives a
‘high’ population estimate of 496 (Table A7.6). A conservative estimate of initial

population size, and carrying capacity, was 350 individuals.

Table A7.6 Jaguar population estimates for the Maya Mountain protected forest block.
Areas derived from Meerman and Sabido (2001).

Protected area Area km® Jaguar Population
Low High
1) Broadleaf
Vaca Forest Reserve 212 11.0 225
Sittee River Forest Reserve 381 19.8 404
Chiquibul National Park 1073 55.8 113.7
Silk Grass Forest Reserve 9 0.5 0.9
Chiquibul Forest Reserve 598 31.1 31.1
Caracol Archaeological Reserve 103 54 11.0
Victoria Peak National Monument 20 2.1 2.1
Maya Mountain Forest Reserve 169 88 17.9
Cockscomb Basin Wildlife Sanctuary 495 52.4 52.4
Bladen Nature Reserve 404 21.0 428
Columbia River Forest Reserve 600 31.2 63.6
Sibun Forest Reserve 431 224 457
2) Pine
Mountain Pine Ridge Forest Reserve 493 16 52
Total 4987 277 496

2. Rio Bravo protected forest block (RB)

The RB is made up of three contiguous protected areas of broadleaf forest
(Table A7.7). The mean jaguar density within the Gallon Jug Private Reserve,
calculated over 2 annual surveys, is 10.1 jaguars per 100 km* (Miller 2006). Assuming
this density throughout the RB protected forest block gives a jaguar population of 172
individuals (Table A7.7). A conservative estimate of initial population size, and

carrying capacity, was 170 individuals.
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Table A7.7 Jaguar population estimates for the Rio Bravo protected forest block. Areas
derived from Meerman and Sabido (2001).

Protected area Area km® Jaguar Population

Gallon Jug Private Reserve 623 62.9

Aguas Turbias National Park 36 3.6

Rio Bravo Private Reserve 1049 105.9
Total 1707 172

3. Unprotected lands (UP)

The lands outside the two protected forest blocks totalled 15,608 km?. The
population of UP was based on the author’s own density estimates from the unprotected
lands neighbouring the MM in southern Belize (Chapter 4). Jaguar density on these
lands declines with distance from the forest block, tending to be higher in the west
(closer to the forest block) and lower to the east (near the coast). A conservative density
estimate of 1.6 jaguars per 100 km? was used giving a population of 240 individuals
living outside the two protected forest blocks across the entire country. The carrying
capacity of UP was set at 440 jaguars based on field estimates of human-induced
mortality in the unprotected lands (Chapter 7) and the assumption that natural and
human-induced mortality was additive. This is a reasonable assumption, given that
density-independent natural mortality of big cats is expected due to intra-specific
killings and injuries sustained when attacking prey (e.g. as observed in a hunted puma
population, Lindzey et al. 1988, 1992). Note that the higher carrying capacity in the UP
than the protected forest blocks reflects the larger area of UP rather than a higher jaguar
density (UP is almost three times as large as MM and UP combined).
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