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1. Introduction

In this paper we deal with different approaches to metrics of low differentiability in

general relativity. While normally relativity is formulated for smooth metrics, most of

the relevant differential geometric results actually hold in the case where the metric

is only locally C2− = C1,1, i.e., the first derivative being locally Lipschitz continuous.

In particular, this condition directly gives unique (local) solvability of the geodesic

equation. Moreover, by Rademacher’s theorem the second derivatives are in L∞
loc, hence

the Riemann tensor can be regarded as a distribution.

When further lowering the differentiability of the metric one meets conceptual

problems as one reaches the limits of classical (i.e., linear) distribution theory. Since

Einstein’s equations are nonlinear, one cannot simply pass from smooth solutions of

the field equations to weak ones. In particular, the curvature tensor is only linear in

the second derivatives of the metric but nonlinear in the lower order terms. Hence one

cannot simply calculate the curvature from a general distributional metric.

In a classic paper [1] Geroch and Traschen studied the question under which minimal

conditions on the metric one can compute the curvature. To be precise, they isolated

a class of metrics—which we will refer to as gt-regular—for which on the one hand

one may calculate the classical distributional curvature, and which on the other hand

possesses a certain stability property. That is, they defined a notion of convergence for

gt-regular metrics which implies the convergence of the respective curvature tensors in

the class of distributions. Note that it is this stability property which makes it sensible

to use gt-regular metrics to model singular matter configurations in relativity. A slightly

more general class of metrics allowing for a distributional curvature tensor but lacking

stability in the above sense was introduced by Garfinkle [2]. Finally, we also mention

that the class of gt-regular metrics recently was rederived in a coordinate-free manner

in [3], see also [4].

Although belonging to the Geroch-Traschen class is a sufficient condition to allow

one to compute the distributional curvature, the question of necessity is more subtle.

There are, however, indications that the gt-regular metrics form the largest “reasonable”

class of distributional metrics: for example the only slightly more general Garfinkle class

fails to be stable, while even for gt-regular metrics one cannot formulate the Bianchi

identifies for example.

However Geroch and Traschen also proved that a gt-regular metric allows only for

a limited range of concentration of the gravitating source: the curvature tensor of a gt-

regular metric is supported on a manifold of codimension at most one. This explicitly

excludes many interesting scenarios, in particular, strings of matter and point particles.

In order to model a wider class of spacetimes some authors were lead to use

alternative mathematical tools to describe space-times of low regularity. In particular,

the theory of algebras of generalised functions due to J.F. Colombeau [5, 6, 7] proved

to be useful in the context of cosmic strings [8, 9], Kerr-Schild geometries [10], and

impulsive pp-waves [11, 12]. Also it was used to study the initial value problem for
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the wave equation in conical space-times [9] and in singular space-times with locally

bounded metrics [13]; for a recent overview see [14]. This approach goes beyond the

limits of classical (linear) distribution theory—hence also beyond the class of gt-regular

metrics—as it allows one to assign a product to an arbitrary pair of distributions.

It is based upon regularising distributions via convolution and the use of asymptotic

estimates in terms of a regularisation parameter. In many cases it also allows one to

compare the result of a calculation in the algebra of generalised functions with classical

distributions; this concept, called association, basically consists in looking at the weak

limit as the regularisation parameter goes to zero.

In the case where we are given a gt-regular metric we therefore have two approaches

at hand to compute the curvature: the classical distributional one due to Geroch and

Traschen and the generalised function approach using Colombeau’s construction. The

natural question therefore arises as to whether these two approaches lead to the same

answer. In this paper we give a complete and positive answer to this question. Along

the way we prove several results on convergence of sequences of metrics generated via

smoothing by convolution of gt-regular metrics which are of interest in their own right

and provide refined stability results on the Geroch-Traschen class of metrics.

2. Prerequisites

In this section we introduce some notation and recall known material on linear and

nonlinear distributional geometry to make the presentation self-contained. In particular,

we define the notions of gt-regular as well as generalised metrics and collect some basic

results on smoothings via convolution with strict delta nets.

We begin with some notational conventions. Throughout this paper Ω denotes an

open subset of R
n and M an oriented, smooth manifold of dimension n. Given two

subsets U and V of Ω or of M we use the notation V ⊂⊂ U if the closure V̄ of V is still

a subset of the interior U◦ of U . Moreover, K and L will always denote compact sets

and C will denote a generic constant.

2.1. Linear distributional geometry

The space of distributions on M is the dual space (in the sense of the usual (LF)-

topology) of the space of compactly supported n-forms, i.e., D′(M) = (Ωn
c (M))′.

Distributional sections of a vector bundle E → M over M are defined as elements

of the dual space of the compactly supported sections of E∗⊗Λn(M), where E∗ denotes

the bundle dual to E and Λn(M) = T ∗M ∧ . . . ∧ T ∗M . Likewise distributional sections

can be viewed as C∞-linear maps from the sections of the dual bundle Γ(E∗) to D′(M)

or as sections of E with distributional, coefficients, that is we have

D′(E) := (Γc(E
∗ ⊗ Λn(M))′ ∼= LC∞(M)(Γ(E∗),D′(M)) ∼= D′(M)⊗C∞(M) Γ(E). (1)

The space of distributional tensor fields (tensor distributions) of type (r, s) is denoted

D′r
s(M). There is a well-developed theory which parallels the smooth one but suffers
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from the natural limitations of distribution theory, e.g. in all multilinear operations

only one factor may be distributional, while all others have to be smooth [15, 16]. For

a pedagogical account see [17, Sec. 3.1].

Next we recall the definition of the (local) Sobolev spaces of integer order, i.e., for

m ∈ N0 and 1 6 p 6∞ we set

Wm,p(Rn) := {u ∈ D′(Rn) : ∂αu ∈ Lp(Rn) for all multi-indices with |α| 6 m}
and denote the respective norms by ‖ ‖m,p. For any Ω we set

Wm,p
loc (Ω) := {u ∈ D′(Ω) : χu ∈ Wm,p(Rn) for all test-functions χ ∈ D(Ω)}.

Note that u ∈ D′(Ω) is in Wm,p
loc (Ω) iff on any open V ⊂⊂ Ω it agrees with a function in

Wm,p(Rn). The spaceWm,p
loc (Ω) is a Fréchet space with its topology induced by the family

of semi-norms pχ(u) := ‖χu‖m,p or alternatively by the ‖ ‖m,p-norms on all relatively

compact subsets V of Ω, which we denote by ‖ ‖Wm,p(V ).

On M we define the local Sobolev spaces by means of local charts: denote by

(Uα, φ
α) the charts of some atlas for M , then we set

Wm,p
loc (M) := {u ∈ D′(M) : φα∗u ∈ Wm,p

loc (φα(Uα)) for all α},
where φα∗ denotes the push forward under the chart. Wm,p

loc (M) is again a Fréchet space

with its topology defined via the semi-norms of φα∗u in Wm,p
loc (φα(Uα)), and one may

show that this definition does not depend on the atlas. Finally, for E →M one defines

the space of Wm,p
loc -sections likewise via vector bundle charts but for our purpose it will

be sufficient to think of them as sections with Wm,p
loc -coefficients, i.e.,

Wm,p
loc (E) = Wm,p

loc (M)⊗C∞(M) Γ(E).

In case p = 2 we use the usual convention and write Hm
loc for Wm,2

loc and in case m = 0

we obtain the usual (local) Lebesgue spaces which we denote by Lploc.

In [1] Geroch and Traschen defined the following class of metrics which we will call

gt-regular.

Definition 2.1 (gt-regular metrics).

(i) We call a section of any vector bundle of regularity H1
loc ∩ L∞

loc gt-regular.

(ii) A gt-regular metric g is a gt-regular section of T 0
2 (M) which is a Semi-Riemannian

metric (of fixed index) almost everywhere.

The motivation for Geroch and Traschen to introduce this notion is that it follows

from the coordinate definition that for a gt-regular metric it is possible to give a

distributional definition of the Riemannian curvature tensor.

2.2. Smoothings

Next we recall the convergence properties of smoothing via convolution. The mollifiers

we are going to use will be slightly more general than the standard ones obtained by

scaling one fixed test-function with unit integral. More precisely we shall use.

Definition 2.2 (Smoothing with strict delta nets).
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(1) A net (ψε)ε∈(0,1] of smooth functions on R
n is called a strict delta net, if

(i) supp(ψε)→ {0} for ε→ 0

(ii)
∫

ψε → 1 for ε→ 0

(iii) ψε is uniformly bounded in L1, i.e., ∃ Cψ : ‖ψε‖L1 6 Cψ for all ε sufficiently

small.

(2) For any strict delta net (ψε)ε we denote by dψε the diameter of the support of ψε,

i.e., dψε := sup{|x| : x ∈ supp(ψε)}.
(3) For any f ∈ L1

loc(Ω) we call the convolution fε of f with a strict a delta net (ψε)ε
a smoothing of f , i.e., for x ∈ Ωψε := {y ∈ Ω : dist(y, ∂Ω) > dψε} we set

fε(x) := f ∗ ψε(x) =

∫

B(x,dψε)

f(x− y)ψε(y) dy,

where B(x, r) denotes the open ball of radius r around x.

We recall the following results on smoothings (which are a mild generalisation of

the ones found e.g. in [18, §5.3, §C.4]).

Lemma 2.3 (Smoothing via convolution). The smoothing of any f ∈ L1
loc(Ω) has the

following properties.

(i) fε ∈ C∞(Ωψε) and fε → f almost everywhere.

(ii) If f is continuous the convergence is actually uniform on compact subsets of Ω.

(iii) If f ∈ Wm,p
loc (Ω) for 1 6 p <∞ then fε → f in Wm,p

loc (Ω)

Note that for f ∈ L∞
loc(Ω) the last item implies fε → f in Lploc(Ω) for all p < ∞

but not p = ∞. Indeed, the latter would contradict non-separability of L∞. For later

reference we remark that also in this case fε is nevertheless locally uniformly bounded.

More precisely, we have for all 1 6 p 6∞ and all f ∈ Lploc(Ω) that for any V ⊂⊂ Ω

‖fε‖Lp(V ) 6 ‖ψε‖L1‖f‖Lp(W ) 6 Cψ ‖f‖Lp(W ), (2)

where W is any relatively compact subset of Ω with V ⊂⊂W .

2.3. Nonlinear distributional geometry

In nonlinear distributional geometry [19], [17, Ch. 3] (in the sense of J.F. Colombeau[5,

6, 7]) one replaces the vector space D′(M) of distributions by the algebra of generalised

functions G(M) to overcome the problem of multiplication of distributions.

The basic idea of the construction is smoothing of distributions (via convolution)

and the use of asymptotic estimates in terms of a regularisation parameter. The (special)

Colombeau algebra of generalised functions on M is defined as the quotient

G(M) := EM(M)/N (M)

of moderate nets of smooth functions modulo negligible ones, where the respective

notions are defined by

EM(M) :={(uε)ε ∈ C∞(M) : ∀K compact∀P ∈ P(M)∃N ∈ N : sup
p∈K
|Puε(p)| = O(ε−N)}
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N (M) :={(uε)ε ∈ C∞(M) : ∀K compact∀P ∈ P(M)∀m ∈ N : sup
p∈K
|Puε(p)| = O(εm)},

with P(M) denoting the space of linear differential operators on M . Elements of G(M)

are denoted by u = [(uε)ε] = (uε)ε + N (M). With componentwise operations, G(M)

is a fine sheaf of differential algebras where the derivations are Lie derivatives with

respect to classical vector fields defined according to the formula LXu := [(LXuε)ε].

The spaces of moderate resp. negligible sequences and hence the algebra itself may be

characterised locally, i.e., u ∈ G(M) iff φα∗u ∈ G(φα(Uα)) for all charts (Uα, φ
α), where,

on the open set φα(Uα) ⊂ R
n, partial derivatives replace differential operators in the

respective estimates.

The G(M)-module of generalised sections in E →M can be defined along the same

lines using analogous asymptotic estimates. However, as in the case of Wmp
loc -valued

sections it is more convenient to use the following algebraic description of generalised

tensor fields

G(E) = G(M)⊗ Γ(E).

Hence generalised tensor fields are just given by classical ones with generalised coefficient

functions. Moreover, we have the following chain of isomorphisms

G(E) ∼= LC∞(M)(Γ(E∗),G(M)) ∼= LG(M)(G(E∗),G(M)). (3)

Spaces of generalised tensor fields will be denoted by Grs(M). Note that in contrast to

classical distributions (c.f. (1)), generalised sections map generalised (and not merely

smooth) sections of the dual bundle to generalised functions. It is precisely this property

that allows one to raise and lower indices with the help of a generalised metric (see below)

just as in the smooth setting.

Smooth functions are embedded into G(M) simply by the “constant” embedding σ,

i.e., σ(f) := [(f)ε]. On Ω compactly supported distributions are embedded into G via

convolution with a mollifier ρ ∈ S(Rn) with unit integral satisfying
∫

ρ(x)xαdx = 0 for

all |α| > 1; more precisely setting ρε(x) = (1/εn)ρ(x/ε), we have ι0(w) := [(w ∗ ρε)ε].
(The fact that all moments of ρ vanish is used to prove that ι0|C∞ = σ in the quotient,

which implies that the product of smooth functions is preserved in the construction—

a distinguished feature of this approach, see below.) In case supp(w) is non-compact

(hence w∗ρε is not defined), one employs a sheaf-theoretic construction ([17, Sec. 1.1.2])

or alternatively uses an additional cut off at a different rate of growth (cf. [20]): We set

ψε(x) := χ(x/
√
ε)ρε(x) where χ ∈ D(B2(0)), χ = 1 on B1(0) and

D′(Ω) ∋ w 7→ ιψ(w) := [(w ∗ ψε)ε] ∈ G(Ω) (ε small enough),

to obtain an embedding of distributions by convolution with a strict delta net which

obviously commutes with derivatives. Note that this construction depends on the choice

of the mollifier ρ (but not on χ), which allows for a flexible way of modelling singular

objects. Moreover this construction can be lifted to M decomposing w via a partition

of unity subordinate to the charts of an atlas and chartwise convolution (cf. [17, Thm.

3.2.10]). Such a procedure is, of course, dependent of the choice of charts and partition
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functions, hence non-geometric in an essential sense. There is, however, a version of the

construction possessing a canonical and invariant embedding of D′(M) resp. D′r
s(M),

the so-called full Colombeau algebras, see [21], resp. [22]. For the purpose of the present

work it is, however, more convenient to use the (technically less demanding) special

version: In fact we are going to derive convergence results for embedded distributions

in the Wm,p
loc - and D′-topologies respectively, which take place on (relatively) compact

sets and so will be independent of the choice of charts, partition functions and also of

ρ.

Finally, in light of Schwartz’ impossibility result [23], the setting introduced above

gives a minimal framework within which generalised sections of vector bundles, and, in

particular, tensor fields may be subjected to nonlinear operations, while maintaining

consistency with smooth and distributional geometry: tensor products of smooth

sections are preserved as well as derivatives of distributional sections.

The interplay between generalised functions and distributions is most conveniently

formalised in terms of the notion of association. A generalised function u ∈ G(M) is

called associated to zero, u ≈ 0, if one (hence any) representative (uε)ε converges to zero

weakly. The equivalence relation u ≈ v :⇔ u − v ≈ 0 gives rise to a linear quotient of

G that extends distributional equality. Moreover, we call a distribution w ∈ D′(M) the

distributional shadow or macroscopic aspect of u and write u ≈ w if, for all compactly

supported n-forms ν and one (hence any) representative (uε)ε, we have

lim
ε→0

∫

M

uεν = w(ν).

By (3), embeddings and association extend to generalised sections in a natural way.

Finally we recall the basic notions of Semi-Riemannian geometry in the generalised

setting.

Definition 2.4 (Generalised metric). A symmetric section g ∈ G0
2(M) is called a

generalised Semi-Riemannian metric if detg is invertible in G(Vol2(M)), i.e., for any

representative (det(gε))ε of detg we have

∀K compact ∃m ∈ N : inf
p∈K
| det(gε(p))| > εm.

Here Volq(M) denotes the bundle of q-densities on M . The following

characterisation of generalised metrics captures the intuitive idea of a generalised metric

as a net of classical metrics approaching a singular limit: g is a generalised metric iff

on every relatively compact open subset V of M there exists a representative (gε)ε of g

such that, for fixed ε, gε is a classical metric and its determinant, detg, is invertible in

the generalised sense. The latter condition basically means that the determinant is not

too singular.

A generalised metric induces a G(M)-linear isomorphism from G1
0(M) to G0

1(M).

The inverse of this isomorphism gives a well-defined element of G2
0(M), the inverse

metric, which we denote by g−1, with representative (g−1
ε )ε. The generalised covariant

derivative, as well as the generalised Riemann, Ricci and Einstein tensors, of a
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generalised metric is defined by the usual formulae at the level of representatives. For

further details see [24] and [17, Sec. 3.2].

3. Notions of nondegeneracy

In this short section we discuss some notions of nondegeneracy for metrics of low

differentiability.

In the purely distributional setting, that is considering a metric as a symmetric

element of D′0
2 (M), one finds two different notions of nondegeneracy in the literature,

i.e.,

(A) Marsden in [15] defines g to be nondegenerate if g(X,Y ) = 0 for all smooth vector

fields X implies that the smooth vector field Y vanishes.

(B) Parker in [16] defines g to be nondegenerate if it is nondegenerate off its singular

support.

Note that notion (A) is strictly weaker than the usual pointwise condition. For example

ds2 = x2dx2 (4)

on R is nondegenerate in the sense of Marsden but is clearly not invertible on the whole

of R. On the other hand condition (B) does not put any restrictions on g at the points

where g is not smooth. So the best option for a distributional metric would be to call

it nondegenerate if both (A) and (B) hold.

On the other hand, in our view, the notion of nondegeneracy for gt-regular metrics

was not unambiguously defined in [1]. The original statement saying that “the inverse

of the metric exists everywhere” is mathematically best interpreted by saying that in

the L∞
loc ∩ H1

loc-class of g there exists a representative which is invertible everywhere.

This, however, would allow metric (4) to again count as nondegenerate: simply set the

coefficient equal to 1, for example, at x = 0.

However, a natural notion of nondegeneracy for gt-regular metrics is available (see

also [4]). Note that the space H1
loc ∩ L∞

loc is actually an algebra. Indeed, fg clearly is in

L∞
loc ⊆ L2

loc and to show that ∂j(fg) ∈ L2
loc we use the Leibnitz rule (which applies in all

W 1,p
loc , p > 2) to write ∂j(fg) = (∂jf)g + (∂jg)f which is a sum of products L2

loc × L∞
loc

hence in L2
loc. Also a function f ∈ H1

loc ∩ L∞
loc which is locally uniformly bounded away

from zero, i.e., which satisfies

∀K compact ∃CK : |f(x)| > CK > 0 almost everywhere on K, (5)

is invertible and 1/f ∈ H1
loc ∩ L∞

loc is again locally uniformly bounded away from zero.

Therefore we employ the following definition of nondegeneracy for gt-regular metrics

(see also [3], p. 14).

Definition 3.1 (Nondegeneracy of gt-regular metrics).

We call a gt-regular metric g nondegenerate if its determinant is locally uniformly

bounded away from zero, i.e.,

∀K compact ∃CK : | detg(x)| > CK > 0 almost everywhere on K. (6)
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Hence the determinant detg of a nondegenerate gt-regular metric g is an invertible

density of regularity H1
loc ∩ L∞

loc with (detg)−1 ∈ H1
loc ∩ L∞

loc again locally uniformly

bounded away from zero. Hence by the cofactor formula the inverse g−1 of g is again

of regularity H1
loc ∩ L∞

loc and nondegenerate in the sense that its determinant det(g−1)

is locally uniformly bounded away from zero.

However, this notion of nondegeneracy still does not have optimal stability

properties with respect to smoothing via convolution and we will come back to discuss

this issue in section 4.

To end this section we remark that the problems discussed above all originate

from the fact that neither the distributional nor the gt-setting can provide pointwise

resp. pointwise everywhere control on the metric. In contrast to this the condition of

nondegeneracy employed for generalised metrics in Definition 2.4 allows for a pointwise

control on generalised points as is shown in [17, Thm. 3.2.4].

4. Smoothing gt-regular metrics

In this section we provide a detailed account on stability properties of gt-regular metrics

under smoothing with strict delta nets and of convergence results of embeddings of gt-

regular metrics into the Colombeau algebra.

We introduce the following notation: given a gt-regular metric g with local

components gij we will write gεij for their smoothings, i.e., gεij = gij ∗ ψε, with (ψε)ε
being a strict delta net, and denote the resulting metric by gε.

To begin with we collect some convergence results for products of nets of functions

in H1
loc ∩ L∞

loc generated by smoothing via convolution with strict delta nets. Given a

function f ∈ H1
loc ∩ L∞

loc we have from Lemma 2.3 (iii) that fε → f ∈ H1
loc ∩ Lploc for all

p < ∞. Also given f1, . . . , fm ∈ H1
loc ∩ L∞

loc the product f1 · · · fm is in H1
loc ∩ L∞

loc and

(f1 · · · fm)ε = (f1 · · · fm)∗ψε → f1 · · · fm in H1
loc∩Lploc for all p <∞. We shall, however,

be interested in convergence of curvature quantities derived from the componentwise

smoothing of gt-regular metrics. Hence we have to study convergence properties of

(derivatives of) f1 ε · · · fmε rather than (f1 · · · fm)ε.

Next we connect the products of nets of functions that arise in our approach to the

general theory given in [25, Sec. II.7]. In the latter context the product we are dealing

with is called strict product (of type (7.4)), that is, given two distributions u and v we

look at the limit

lim
ε→0

(u ∗ ψε)(v ∗ ψε). (7)

If it exists for all strict delta nets (ψε)ε (it is then automatically independent of the

particular choice of ψε) we call the limit the strict product of u and v and denote it

by [uv]. The strict product can be placed in a hierarchy of products of distributions

(see [25], p. 69) which are all compatible with the Colombeau product in the sense of

association ([25], Prop. 10.3).
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Likewise we can make use of the Wm,p
loc -duality product, that is also contained in

the above mentioned hierarchy. More precisely, one can define (by duality, [25], Prop.

5.2) a continuous product

Wm,q
loc ×W l,p

loc → W k,r
loc (8)

if l,m ∈ Z with l + m > 0, 1 6 p, q 6 ∞ with 1/p + 1/q 6 1 and k, r are defined by

k := min(l,m), 1/r := 1/p+ 1/q. (For the spaces Wm,p
loc for negative k see e.g. [26, Ch.

3]—although we will not need to consider them in the following.) This product is more

special than the strict product, although it is compatible with it, and has the additional

benefit that it is partially associative, i.e., (fu)v = u(fv) for all smooth f . We will have

to deal with products containing many factors and so we have to be careful with the

loss in r in formula (8); only the special case p = q = ∞ does not share this problem

but, on the other hand, this case lacks stability under smoothing as discussed below

Lemma 2.3.

We now give a useful auxiliary result which (partially) follows from the general

statements above and is needed to establish the results later in this section.

Lemma 4.1 (Convergence of products in H1
loc ∩ L∞

loc). Let (ψε)ε be a strict delta net.

(i) If g1, . . . gm ∈ L∞
loc (m ∈ N), then

g1 ε · · · gmε → g1 · · · gm in Lploc for all p <∞.
(ii) If f ∈ Lploc with 1 6 p <∞ and (gε)ε is a locally uniformly bounded net converging

pointwise almost everywhere to some g ∈ L∞
loc, then

fεgε → fg in Lploc.

(iii) If f1, . . . , fm ∈ H1
loc ∩ L∞

loc (m ∈ N), then

f1 ε · · · fmε → f1 · · · fm in H1
loc ∩ Lploc for all p <∞.

Observe that statement (iii) says that the product of the smoothings of gt-regular

functions converges in the same sense (i.e., in H1
loc∩Lploc for all p <∞) as the smoothing

of (a product of) gt-regular functions.

Proof. (i) On any relatively compact set V we have for all p <∞
‖g1 ε · · · gmε − g1 · · · gm‖Lp(V ) 6 . . .+ ‖g1 ε · · · (gj ε − gj) · · · gm‖Lp + . . .

6 . . .+ ‖g1 ε · · · gj−1 εgj+1 · · · gm‖L∞‖gj ε − gj‖Lp + . . . .

Now the respective first terms are bounded by estimate (2) and the convergence is due

to Lemma 2.3(iii).

(ii) On any V as above we write

‖fεgε − fg‖Lp(V ) 6 ‖gε‖L∞‖fε − f‖Lp + ‖f(gε − g)‖Lp .
For the first term convergence follows from Lemma 2.3(iii) and the assumptions on (gε)ε.

To deal with the other term observe that

fgε → fg in Lp(V ). (9)
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Indeed we have convergence almost everywhere by assumption as well as |f(x)gε(x)| 6
C|f(x)| ∈ Lp(V ) almost everywhere. So dominated convergence applies to give the

result.

(iii) Lploc-convergence for all p < ∞ follows from (i) and we only have to show L2
loc-

convergence of the derivatives. By the Leibnitz rule we have to show that for all

1 6 j 6 n and all 1 6 l 6 m

f1 ε · · · fl−1 ε(∂jfl ε)fl+1 ε · · · fmε → f1 · · · fl−1(∂jfl)fl+1 · · · fm
in L2

loc. This, however, follows from (ii) with p = 2, since f1 ε · · · fl−1 εfl+1 ε · · · fmε is

a locally uniformly bounded net which by Lemma 2.3(i) converges pointwise almost

everywhere to f1 · · · fl−1fl+1 · · · fm and (∂jfl ε) = (∂jfl)ε is the smoothing of an L2
loc-

function.

We now obtain as a direct consequence of Lemma 4.1(iii) a stability result for the

determinant of gt-regular metrics.

Proposition 4.2 (Stability of the determinant). Let g be a nondegenerate gt-regular

metric and let (ψε)ε be a strict delta net. Then we have for the determinant of the

smoothing

det(gε)→ detg in H1
loc ∩ Lploc for all p <∞.

In particular, we have for any embedding det(ι(g)) ≈ det(g).

Next we discuss nondegeneracy of the smoothing of a nondegenerate gt-regular

metric. Of course, the key is that the determinant of the smoothed metric has to

be nonvanishing in an appropriate sense, which turns out to be a delicate matter:

Unfortunately Proposition 4.2 does not give pointwise (let alone uniform) control on

the determinant of the smoothing. Recall that such a condition will be needed to prove

that the smoothing of a nondegenerate gt-regular metric is a generalised metric (cf.

Definition 2.4—we will aim at proving this condition for m = 0).

As a preparation we first discuss the scalar case. Suppose f ∈ H1
loc∩L∞

loc is positive

a.e. and locally uniformly bounded away from zero, i.e., satisfies (5). Then we know that

1/f ∈ H1
loc ∩ L∞

loc and we want to secure that 1/fε → 1/f in H1
loc ∩ Lploc for all p < ∞.

This will be achieved if 1/fε is a uniformly bounded net on all relatively compact V for

small ε, which in turn is guaranteed by the following condition

∀K compact ∃C ′
K ∃ε0(K) : fε(x) > C ′

K > 0 ∀x ∈ K, ∀ε 6 ε0(K). (10)

which gives uniform control on the positivity of the smoothing. Unfortunately this

condition does not follow from (5) if we use arbitrary strict delta nets. (As an explicit

counterexample take f(x) = H(−x)+3H(x) with H denoting Heaviside’s step function

and use the strict delta net ψε(x) = 1/ε(2ρ((x − ε)/ε) − ρ((x + ε)/ε)), where ρ is a

standard bump function around zero with unit integral. Then fε(0) = −1 for all ε.)

Indeed to preserve positivity in the above sense during the smoothing (i.e., such

that positivity and (5) imply (10)) one would, in a first attempt, use positive strict delta
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nets. However, recall that in the Colombeau approach it is essential to use mollifiers

with vanishing moments and that such a mollifier cannot be positive. Nevertheless it

is possible to provide strict delta nets which have vanishing moments and at the same

time allow for good control on the L1-norm of their negative parts, which is the essential

ingredient for preserving positivity. More precisely we have the following result which

we prove in the appendix.

Lemma 4.3 (Existence of admissible mollifiers). There exist strict delta nets (ρε)ε with

(i) supp(ρε) ⊆ Bε(0) for all ε ∈ (0, 1]

(ii)

∫

ρε(x) dx = 1 for all ε ∈ (0, 1]

which are moderate, have finally vanishing moments and the negative parts have

arbitrarily small L1-norm, i.e., (ρε)ε additionally satisfies

(iii) ∀α ∈ N
n
0 ∃p : sup

x∈Rn

|∂αρε(x)| = O(ε−p)

(iv) ∀j ∈ N ∃ε0 :

∫

xαρε(x) dx = 0 for all 1 6 |α| 6 j and all ε 6 ε0

(v) ∀η > 0 ∃ε0 :

∫

|ρε(x)| dx 6 1 + η for all ε 6 ε0.

We will call strict delta nets (ρε)ε as provided by Lemma 4.3 admissible mollifiers

and from now on consider smoothings generated by convolution with such delta nets.

Also, convolution with an admissible strict delta net provides an embedding ιρ of

distributions in the Colombeau algebra as is shown in Corollary Appendix A.2 in the

appendix.

We next show that smoothing with admissible mollifiers indeed preserves positivity

in an appropriate sense.

Lemma 4.4 (Positive smoothing and convergence of the inverse). Let f ∈ L∞
loc, f > 0

almost everywhere and locally uniformly bounded away from zero, i.e.,

∀K compact ∃Ck : f(x) > CK > 0 almost everywhere on K.

Then for any admissible mollifier (ρε)ε we have.

(i) The smoothing fε = f ∗ ρε(x) is a net, locally uniformly bounded away from zero,

i.e.,

∀L compact ∃C ′
L ∃ε0(L) : fε(x) > C ′

L > 0 ∀x ∈ L, ∀ε 6 ε0(L).

(ii) For any open and relatively compact set V there exists ε0(V ) such that 1/fε is a

smooth and uniformly bounded net on V , i.e., ‖1/fε‖L∞(V ) 6 C for all ε 6 ε0(V )

and
1

fε(x)
=

1

f ∗ ρε(x)
→ 1

f
in Lploc for all p <∞.

(iii) If, in addition, f ∈ H1
loc ∩L∞

loc then we can strengthen the convergence assertion to

1

fε(x)
=

1

f ∗ ρε(x)
→ 1

f
in H1

loc ∩ Lploc for all p <∞.
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Note that although 1/f ∈ H1
loc ∩ L∞

loc even if we drop the positivity assumption in

(ii) and only ask for (5) the convergence result fails in general: such a function could

change sign forcing the smoothing to attain a zero.

Proof. (i) Let L be compact, x ∈ L and choose K compact such that L ⊂⊂ K. We

split ρε into its positive and negative part (i.e., ρε = ρ+
ε − ρ−ε , with ρ+

ε := max(ρε, 0),

ρ−ε := −min(ρε, 0)) to obtain

fε(x) = f ∗ (ρ+
ε − ρ−ε )(x) > f ∗ ρ+

ε (x)− ‖f ∗ ρ−ε (x)‖L∞(L). (11)

Estimating the first term on the r.h.s. of (11) we have

f ∗ ρ+
ε (x) =

∫

f(x− y)ρ+
ε (y) dy > CK‖ρ+

ε ‖L1 > CK .

Using inequality (2) on the second term on the r.h.s. of (11) we obtain for ε small enough

‖f ∗ ρ−ε ‖L∞(L) 6 ‖f‖L∞(K)‖ρ−ε ‖L1 6 ‖f‖L∞(K)
η

2
,

where η is the constant of Lemma 4.3(v). Combining the latter two estimates and

choosing η 6 CK/‖f‖L∞(K) we obtain

fε(x) > CK − ‖f‖L∞(K)
η

2
>
CK
2

=: C ′
L > 0.

(ii) Let V be open and relatively compact. Then by (i) 1/fε ∈ C∞(V ) form a

uniformly bounded net for ε small enough. Moreover, fε → f in Lploc for all p < ∞
by Lemma 2.3(iii). So we find for all p <∞

∥

∥

∥

∥

1

fε
− 1

f

∥

∥

∥

∥

Lp(V )

6

∥

∥

∥

∥

1

fεf

∥

∥

∥

∥

L∞

‖f − fε‖Lp 6
1

CV̄C
′
V̄

‖fε − f‖Lp → 0.

(iii) In view of (ii) it remains to deal with the derivatives and we write for all 1 6 j 6 n
∥

∥

∥

∥

∂j

( 1

fε
− 1

f

)

∥

∥

∥

∥

L2(V )

=

∥

∥

∥

∥

f 2∂jfε − f 2
ε ∂jf

f 2
ε f

2

∥

∥

∥

∥

L2

6

∥

∥

∥

∥

1

f 2
ε f

2

∥

∥

∥

∥

L∞

‖f 2∂jfε − f 2
ε ∂jf‖L2

6
1

C2
V̄
C ′2

V̄

(

‖f 2‖L∞‖∂jfε − ∂jf‖L2+ (‖f‖L∞+‖fε‖L∞)‖(f − fε)∂jf‖L2

)

Now the first term is converges to zero by Lemma 2.3(iii) and the second by dominated

convergence (cf. (9) for p = 2).

Now we return to the issue of nondegeneracy of the smoothings of gt-regular metrics

and take a closer look at the determinant of the smoothing. Note that we have to deal

with det(gε) rather than (detg)ε, which means that we cannot simply use the results

on the scalar case above. We again aim at some uniform control, more precisely at a

condition of the form

∀K compact ∃C ′
K ∃ε0(K) : | det(gε)| > C ′

K > 0 ∀x ∈ K, ∀ε 6 ε0(K), (12)

since this will also imply that the smoothed metric is nondegenerate in the generalised

sense. Of course if g was continuous then the convergence would be locally uniform and
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the determinant det(gε) would obey (12) due to (6). However, in the general case we

shall use the following stability condition for gt-regular metrics.

Definition 4.5 (Stability condition for gt-regular metrics). Let g be a gt-regular metric

and denote by λi, . . . , λn its eigenvalues.

(i) For any compact K we denote by

µK := min
16i6n

ess inf
x∈K

|λi(x)|,

the (essential) absolute infimum of any eigenvalue of g on K.

(ii) We call g stable if for each compact K there is a continuous (0, 2)-tensor field AK

on K such that for 1 6 j, k 6 n

ess sup
x∈K

|gij(x)− AKij (x)| 6 C ′′
K <

µK
2n
. (13)

Note that if g is nondegenerate then µK > 0 for all K. Then the stability condition

means that on compact sets the entries of the metric g differ from those of a continuous

function by an amount proportional to the smallest eigenvalue, i.e, the entries do not

vary too wildly as compared with the smallest eigenvalue. This condition seems to

be quite natural as a consideration of the diagonal case shows and furthermore allows

enough control on the smoothing of the metric to guarantee the eigenvalues, and hence

the determinant, is bounded away from zero uniformly on compact sets for all ε small.

More precisely, we have.

Proposition 4.6 (Nondegeneracy of smoothed gt-regular metrics). Let g be a

nondegenerate, stable, gt-regular metric and let gε be a smoothing of g obtained by

convolution with an admissible mollifier (ρε)ε. Then its determinant det(gε) is uniformly

nonvanishing on compact sets, i.e.,

∀K compact ∃C ′
K ∃ε0(K) : | det(gε(x))| > C ′

K > 0 ∀x ∈ K, ∀ε 6 ε0(K).

In particular, the embedding ιρ(g) of g is a generalised metric.

In the proof of Proposition 4.6 we shall need the following Lemma which exploits

the stability property to give a suitable uniform control on the smoothing.

Lemma 4.7 (Squeezing). Let f ∈ L∞
loc and let L be compact. Suppose that there exists

a continuous function fL on L such that ‖f − fL‖L∞(L) 6 aL. Then we have

∀ compact K ⊂⊂ L ∀σ > 0 ∃ε0(K,σ) : ‖f − fε‖L∞(K) 6 2aL + σ ∀ε 6 ε0(K,σ).

Proof. Let K, L be as in the statement and write

‖f − fε‖L∞(K) 6 ‖f − fL‖L∞(K) + ‖fL − fLε ‖L∞(K) + ‖fLε − fε‖L∞(K). (14)

The first term on the r.h.s. of (14) is bounded by aL and the second converges to zero

thanks to the continuity of fL. Finally, the third one is bounded by (2) and Lemma 4.3

(v) by

‖fLε − fε‖L∞(K) = ‖(fL − f) ∗ ρε‖L∞(K) 6 ‖fL − f‖L∞(L)‖ρε‖L1 6 aL(1 + η)

for all ε small enough.
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Proof of Proposition 4.6. Let K be compact, choose L compact with K ⊂⊂ L and

choose σ such that C ′′
L+σ/2 6 µL/(2n). Now the stability condition (13) together with

Lemma 4.7 implies that ‖gij − gεij‖L∞(K) 6 2C ′′
L + σ < µL/n for all i, j and all ε small.

Hence the maximum difference of the eigenvalues of g and gε is bounded by

max
16i6n

‖λi − λiε‖L∞(K) 6 ess sup
x∈K

‖g(x)− gε(x)‖ 6 n max
16i,j6n

‖gij − gεij‖L∞(K) < µL 6 µK ,

where ‖ ‖ denotes any suitable matrix norm. By definition of µK the modulus |λiε| of

all eigenvalues of gε is uniformly bounded from below on K for ε small enough and so

is the determinant.

Using the result on the determinant we are finally in a position to look at the

stability of the inverse of the smoothed metric. In particular, we have.

Proposition 4.8 (Stability of the inverse). Let g be a nondegenerate, stable, gt-regular

metric and let gε be a smoothing of g obtained by convolution with an admissible mollifier

ρε. Then for any open and relatively compact V there exists ε0(V ) such that the inverse

of the smoothing (gε)
−1 is a smooth and uniformly bounded net on V for all ε 6 ε0(V )

and we have

(gε)
−1 → g−1 in H1

loc ∩ Lploc for all p <∞.

In particular, for any embedding ιρ we have that (ιρ(g))−1 ≈ g−1.

Proof. By Proposition 4.6 | det(gε)| is locally uniformly bounded away from zero on

compact sets hence the components of the inverse of the smoothed metric gijε :=

((gε)
−1)ij = cofgεij/ det(gε) form a smooth and uniformly bounded net on any open,

relatively compact V . To prove the statement on convergence we first write for p <∞

‖gijε − gij‖Lp(V )=

∥

∥

∥

∥

cofgεij
det(gε)

− cofgij
detg

∥

∥

∥

∥

Lp

=

∥

∥

∥

∥

cofgεij detg − cofgij det(gε)

detg det(gε)

∥

∥

∥

∥

Lp

6

∥

∥

∥

∥

1

detg det(gε)

∥

∥

∥

∥

L∞

(‖cofgεij detg − cofgεij det(gε)‖Lp

+ ‖cofgεij det(gε)− cofgij det(gε)‖Lp)

6
1

CV̄C
′
V̄

(‖cofgεij‖L∞‖ detg−det(gε)‖Lp+‖ det(gε)‖L∞‖cofgεij−cofgij‖Lp),

where the respective first terms are bounded by (2) and convergence is due to

Proposition 4.2.

To prove H1
loc-convergence we write

‖∂l(gijε − gij)‖L2(V )

=

∥

∥

∥

∥

(∂lcofgεij) det(gε)− cofgεij ∂l det(gε)

(det(gε))2
− (∂lcofgij) detg − cofgij ∂l detg

(detg)2

∥

∥

∥

∥

L2

6

∥

∥

∥

∥

1

detg det(gε)

∥

∥

∥

∥

L∞

(

‖ detg ∂lcofgεij − detg ∂lcofgij‖L2

+ ‖ detg ∂lcofgij − det(gε) ∂lcofgij‖L2

)
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+

∥

∥

∥

∥

1

(detg det(gε))2

∥

∥

∥

∥

L∞

(

‖(detg)2cofgεij ∂l det(gε)− (detg)2cofgεij ∂l detg‖L2

+ ‖(detg)2cofgεij ∂l detg − (detg)2cofgij∂l detg‖L2

+ ‖(detg)2cofgij ∂l detg − (det(gε))
2cofgij∂l detg‖L2

)

6 C
(

‖∂lcofgεij − ∂lcofgij‖L2 + C ‖∂lcofgij( det(gε)− detg)‖L2

)

+ C
(

‖cofgεij‖L∞‖∂l det(gε)− ∂l detg‖L2 + ‖(∂l detg)(cofgεij − cofgij)‖L2

+ C ‖cofgij‖L∞‖∂l detg((detg)2 − (det(gε))
2)‖L2

)

.

Now the first and third term converges to zero by Proposition 4.2 and the bound from

(2), while for the other terms we again use dominated convergence as in (9).

Finally, we have a corresponding statement on the convergence of the Christoffel

symbols.

Proposition 4.9 (Stability of the Christoffel symbols). Let g be a nondegenerate,

stable, gt-regular metric and let gε be a smoothing of g obtained by convolution with

an admissible mollifier (ρε)ε. Then for any open and relatively compact V there exists

ε0(V ) such that the Christoffel symbols of the first and of the second kind of the smoothing

Γijk[gε] and Γijk[gε] are smooth and L2-bounded nets on V for ε 6 ε0(V ) and we have

Γijk[gε]→ Γijk and Γijk[gε]→ Γijk in L2
loc

In particular, for any embedding ιρ we have

Γijk[ιρ(g)] ≈ Γijk[g] and Γijk[ιρ(g)] ≈ Γijk[g].

Proof. Smoothness of the Γijk[gε] is clear and L2(V )-boundedness follows from estimate

(2) together with the fact that convolution commutes with taking derivatives.

For the Γijk[gε] smoothness follows from the smoothness statement on the inverse

in Proposition 4.8 whereas L2(V )-boundedness follows as above and taking into account

the L∞(V )-boundedness of the inverse, again given in Proposition 4.8.

As for convergence the statement on Γijk[gε] simply follows from Lemma 2.3 (iii)

and again the fact that the derivative of the smoothing is the smoothing of the derivative.

For Γijk[gε] observe that we have to deal with a sum of terms of the form

gijε ∂lg
ε
rs = gijε (∂lgrs)ε which due to Proposition 4.8 are precisely of the form covered

in Lemma 4.1 (ii) with p = 2 and m = 1.

5. Compatibility results

We have now collected all prerequisites to precisely state our main result, saying that the

Geroch-Traschen approach to distributional metrics is compatible with the Colombeau

approach.
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Theorem 5.1 (Compatibility for the Riemann curvature). Let g be a nondegenerate,

stable, gt-regular metric and denote its Riemann tensor by Riem[g]. Let gε be a

smoothing of g obtained by convolution with an admissible mollifier (ρε)ε. Then we

have for the Riemann tensor Riem[gε] of gε

Riem[gε]→ Riem[g] in D′.

In other words, for any embedding ιρ(g) of g we have

Riem[ιρ(g)] ≈ Riem[g].

Before giving the proof, which using the results of the previous section is fairly

short, we illustrate the content of the theorem in a diagram.

H1
loc ∩ L∞

loc ∋ g
ιρ−−−→ [(gε)ε] ∈ G

D′





y





yColombeau

Riem[g]
≈←−−− Riem[gε]

Given a nondegenerate, stable and gt-regular metric g we can either derive the Riemann

curvature Riem[g] in distributions or embed g via convolution with an admissible

mollifier to obtain the generalised metric [(gε)]. If we then derive its curvature Riem[gε]

within the generalised setting we find that it is associated with the distributional

curvature Riem[g].

Proof of Theorem 5.1. In coordinates we have

Ri
jkl[gε] = ∂lΓ

i
kj[gε]− ∂kΓilj[gε] + Γilm[gε]Γ

m
kj[gε]− Γikm[gε]Γ

m
lj [gε].

Now by Proposition 4.9 Γijk[gε] → Γijk[g] in L2
loc hence in D′ and we obtain

∂lΓ
i
jk[gε]→ ∂lΓ

i
jk[g] in distributions. By continuity of the product L2

loc×L2
loc → L1

loc we

obtain Γijk[gε]Γ
l
rs[gε]→ Γijk[g]Γlrs[g] in L1

loc, hence again in distributions.

Similarly we also have compatibility results for the Ricci, Weyl and scalar curvature.

To prepare for the formulation and proof of these results we recall from [1] that it is

possible to define the outer product of (any number of copies of inverses of) a gt-regular

metric with its Riemann tensor. Indeed in the smooth case we may write

1

2
grsRi

jkl = grs(∂[lΓ
i
k]j + grsΓim[lΓ

m
k]j) = ∂[l(g

rsΓik]j)− (∂[lg
rs)Γik]j + grsΓim[lΓ

m
k]j,

and we see that the right hand side makes sense in distributions for a gt-regular metric.

Indeed, grsΓikj ∈ L2
loc allows for a weak derivative as well as (∂lg

rs)Γikj ∈ L1
loc ∋ grsΓimlΓmkj.

Moreover, the same holds true for any product of the form ⊗mg⊗l g−1 ⊗Riem[g]: just

use the Leibnitz rule on ∂l(⊗mg ⊗l g−1Γijk). We now have.

Corollary 5.2 (Compatibility for curvature quantities). Let g be a nondegenerate,

stable, gt-regular metric and let gε be a smoothing of g obtained by convolution with

an admissible mollifier (ρε)ε. Then we have (m, l ∈ N)

⊗mgε ⊗l g−1
ε ⊗ Riem[gε]→ ⊗mg ⊗l g−1 ⊗ Riem[g] in D′.
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In particular, the result applies to the Ricci, Weyl and scalar curvature and with other

words we have for any embedding ιρ(g) of g

Ric[ιρ(g)] ≈ Ric[g], W [ιρ(g)] ≈ W [g], R[ιρ(g)] ≈ R[g].

Proof. According to the above discussion we have to deal with the terms

∂l

(

gεi1j1 · · · gεimjmgr1s1ε · · · grlslε Γijk[gε]
)

, ∂l

(

gεi1j1 · · · gεimjmgr1s1ε · · · grlslε

)

Γijk[gε]

and

gεi1j1 · · · gεimjmgr1s1ε · · · grlslε Γimj[gε]Γ
m
lj [gε].

To deal with the first one note that

gεi1j1 · · · gεimjmgr1s1ε · · · grlslε Γijk[gε]→ gi1j1 · · · gimjmgr1s1 · · · grlslΓijk[g]

in L2
loc by Lemma 4.1(ii) for p = 2, hence in distributions and we obtain the desired

convergence of the derivatives. For the second term note that by the Leibnitz rule we

only have to show that

gεi1j1 · · · (∂lgεipjp) · · · gεimjmgr1s1ε · · · grlslε Γijk[gε]→gi1j1 · · · (∂lgipjp) · · · gimjmgr1s1 · · · grlslΓijk[g]

(and analogously for the terms with the derivative falling on the inverse).

However, this holds true in L1
loc, hence D′ by Lemma 4.1(ii) and by continuity

of the product L2
loc × L2

loc → L1
loc. Finally, the same argument applies to

gεi1j1 · · · gεimjmgr1s1ε · · · grlslε Γimj[gε]Γ
m
lj [gε].

Finally, we discuss the relation of our results to the stability results obtained by

Geroch and Traschen in [1] and LeFloch and Mardare in [3]. To begin with we remark

that in their Theorem 4.6, LeFloch and Mardare [3] suppose convergence of g−1
ε to

g−1 in L∞
loc which is not true in case of smoothings via convolution unless the metric

is supposed to be more regular, e.g. continuous. In this case our result coincides with

theirs while in general we deal with nets that converge only in a weaker sense.

On the other hand the relation with the results of Geroch and Traschen is more

subtle. Theorem 2 of [1] asserts that for any sequence of gt-regular metrics gn that

is L∞
loc-bounded together with its inverse (gn)

−1 and for which gn, (gn)
−1 and ∂ign

converge in L2
loc to g, g−1 resp. ∂ig the sequence Riem[gn] of Riemann tensors converges

to Riem[g] in D′. Actually, in the context of the present work, the nondegenerate

and stability conditions we impose on a gt-regular metric ensure that the conditions

required for their Theorem 2 are satisfied as a consequence of our Lemma 2.3 together

with Propositions 4.8 and 4.9. Thus our Theorem 5.1 follows from [1, Thm. 2] but

we feel that our proof is more direct. Indeed a mild variation of our proof provides a

simpler proof of their Theorem.

Also note that our results on the stability of the inverse metric and the Christoffel

symbols are more precise and actually provide the best possible Wm,p
loc -convergence: If

we had converge in any smaller Wm,p
loc -space then by completeness the original metric

would have had to be in that space too.
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Finally, we note that Theorem 4 in [1] shows that for any continuous, gt-regular

metric there is a sequence of smooth metrics (actually obtained by smoothing via

convolution) which converges in the above mentioned sense. However, recall from the

discussion preceding Definition 4.5 that the question of nondegeneracy in the continuous

case is much easier to handle. The question of whether the requirement for continuity

could be omitted from the assumptions was left open in [1] with the proof failing to cover

this case. Our results provide a positive answer to this question: For any nondegenerate,

stable, gt-regular metric the smoothing provides a smooth sequence which converges in

the desired sense.
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Appendix A. The existence of suitable mollifiers

As pointed out in Section 2.3 above one crucial feature of the Colombeau approach is

that the space C∞ of smooth functions is a subalgebra of the algebra of generalised

functions G. This is achieved by the fact that the embeddings ι and σ coincide for

smooth functions, i.e., σ(f)− ι(f) ∈ N for all smooth f . The crucial estimate (cf. [17,

Prop. 1.2.11]) in turn is based on the fact that the mollifier used to define ι is assumed to

have vanishing moments. It is actually this requirement that forces us to assume ρ ∈ S
since there do not exist any compactly supported smooth functions with all moments

vanishing. Moreover, a function with all moments vanishing can never be nonnegative

and also has an infinite number of zeroes. It is this property which makes it a nontrivial

task to preserve positivity when embedding distributions into G. One solution to this

problem is discussed in this appendix.

The key step in our approach is to replace the embedding ι by convolution with

a suitable strict δ-net (ρε)ε which eventually has vanishing moments and has negative

part with arbitrarily small L1-norm. Since we are now convolving with a strict δ-net

rather than a model δ-net, i.e., a net obtained by scaling a single function ϕ, we have

to be careful to obtain moderateness of (u ∗ ψε)ε (cf. [17, Prop. 1.2.10]). The latter

property will be a consequence of moderateness of (ρε)ε itself. We start by providing

a suitable net (ψε)ε: the scaled version denoted by (ρε)ε being the admissible mollifiers

used in section 4.

Lemma Appendix A.1 (Existence of suitable mollifiers). There exists a net (ψε)ε of

test functions on R
n with the properties

(i) supp(ψε) ⊆ B1(0) for all ε ∈ (0, 1]

(ii)

∫

ψε(x) dx = 1 for all ε ∈ (0, 1]
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(iii) ∀α ∈ N
n
0 ∃p : sup

x∈Rn

|∂αψε(x)| = O(ε−p)

(iv) ∀j ∈ N ∃ε0 :

∫

xαψε(x) dx = 0 for all 1 6 |α| 6 j and all ε 6 ε0

(v) ∀η > 0 ∃ε0 :

∫

|ψε(x)| dx 6 1 + η for all ε 6 ε0.

In particular,

ρε :=
1

εn
ψε

( .

ε

)

is a strict δ-net, which is moderate, has finally vanishing moments and its negative parts

have arbitrarily small L1-norm, i.e., ρε satisfies (iii)–(v).

This statement can actually be proved by an application of [27, Thm. 3.10] along

the lines of [27, Props. 5.1, 5.2]. However, since this reference uses the language of

“internal sets”—a concept inspired by nonstandard analysis (for related work see also

[28])—we have chosen to include a direct proof.

Proof. We will be concerned with the following sets (m ∈ N0, η > 0)

Am :={ϕ ∈ D(Rn) : supp(ϕ) ⊆ B1(0),

∫

ϕ = 1,

∫

xαϕ(x) dx = 0 ∀1 6 |α| 6 m},

A′
m(η) :={ϕ ∈ Am :

∫

|ϕ| 6 1 + η}.

It is well known that the setsAm 6= ∅ (see e.g. [17, Pro. 1.4.2]; the additional requirement

on the supports asserted here is easily obtained by scaling). Following [27, Prop. 5.1.]

we now prove that also the sets

A′
m(η) 6= ∅, for all m ∈ N0 and all η > 0.

It suffices to prove the result in the 1-dimensional case n = 1: the general case then

follows by taking tensor products of functions of one variable. We proceed by induction.

m = 0: A′
m(η) 6= ∅ even for η = 0, since it suffices to choose 0 6 ϕ ∈ D(R) with

supp(ϕ) ⊆ B1(0) and
∫

ϕ = 1.

m− 1 7→ m: Let ϕ ∈ A′
m−1(η/2) and set ψ := aϕ+ bϕ(./µ), where a, b, and 0 < µ < 1

are to be specified below. We have
∫

ψ = a+ bµ,

∫

xkψ(x) dx = 0 ∀1 6 k 6 m− 1,

as well as
∫

xmψ(x) dx = (a+ bµm+1)

∫

xmϕ(x) dx.

Solving a+ bµ = 1 and a+ bµm+1 = 0 for a and b we obtain

a =
−µm

1− µm (< 0) and b =
1

µ− µm+1
(> 0)
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and so
∫

|ψ| 6 (|a|+ |b|µ)

∫

|ϕ| 6 1 + µm

1− µm
(

1 +
η

2

)

,

which can be made smaller than 1 + η if µ is chosen small enough. So we obtain

ψ ∈ A′
m(η) and we are done.

Now we choose

ϕm ∈ A′
m(1/m) and set Mm := sup

x∈Rn,|α|6m

|∂αϕm(x)|

and define the sets

Am,ε := {ϕ ∈ A′
m(1/m) : sup

x∈Rn,|α|6m

|∂αϕ(x)| 6 1

ε
}.

Note that by the above Am,ε 6= ∅ if ε 6 1/Mm =: ε0(m) and Am+1,ε ⊆ Am,ε for all ε.

Now for m ∈ N, ε 6 ε0(m) we choose ψm,ε ∈ Am,ε and finally set

ψε := ψm,ε ε0(m+ 1) < ε 6 ε0(m).

We then obviously have (i) and (ii) and it remains to verify (iii)-(v).

(iii): Let |α| ∈ N
n
0 . Then since ψε ∈ A|α|,ε for ε 6 ε0(|α|) we obtain supx∈Rn

|∂αψε(x)| 6
1/ε for all such ε.

(iv): Let |α| > 1. Then since ψε ∈ A|α| for ε 6 ε0(|α|) we have
∫

xαψε(x)dx = 0 for all

such ε.

(v): Let η > 0 and choose m such that 1/m 6 η. Since ψε ∈ A′
m(1/m) for all ε 6 ε0(m)

we have for all such ε that
∫

|ψε| 6 1 + 1/m 6 1 + η.

Finally we observe that the mollifiers obtained above in fact provide an embedding

of distributions into the Colombeau algebra.

Corollary Appendix A.2 (An embedding of distributions). Let u ∈ D′(Rn) and let

(ρε)ε be a strict δ-net as in Lemma Appendix A.1. Then the mapping

ιρ : u 7→ [(u ∗ ρε)ε]
is a linear embedding of D′(Rn) into G(Rn) having the distinguishing properties

(i) ιρ ◦ ∂α = ∂α ◦ ιρ for all α ∈ N
n
0

(ii) ιρ|C∞ = σ

(iii) ιρ(u) ≈ u

(iv) ιρ preserves supports.

Proof. The proof is just a mild variation of the usual “standard proofs”. So we only

remark that for proving moderateness of ιρ(u) as well as for proving (ii) and (iv) ((i)

and (iii) follow directly from the properties of the convolution) we just have to use

moderateness of (ρε)ε in the respective proofs of Propositions 1.2.10–1.2.12 in [17].
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