T.CAS. Yo P{‘bcezAiﬂss PP |SS* — Iseg

ICAS-90-6.8.2

AN

PARALLEL IMPLEMENTATION OF AN EXPLICIT FINITE VOLUME EULER_SOLVER ON N_ARRAY

OF TRANSPUTERS

S.R.
Department of ship Bcience,
Highfield, Southampton.

ABSTRACT

Transputers are specially developed micro-
bProcessors which can be linked together to
ferm parallel computers. This paper looks
at the ease with which arrays of
transputers can be used to solve numerical
fluid dynamic algorithms. An explicit two-

dimensional finite volume scheme for
solving the compressible Euler equations
has been implemented to run across an

array of transputers. The method used is
based on a cell-vertex scheme and a
Hultiple-Grid scheme is used to accelerate
convergence.

part of the work has been the

general Harness process
communications between
Numerical algorithms can be
array of
write

each

The main
development of a
to control
transputers.
made to run on a variable sized
transputers without the need to
communications software for
application. The effectiveness the
parallel implementation of the Euler
solver was measured. It was found that the
speed-up in overall time to convergence
obtained by increasing the number of
transputers was dependent on the physical
size of the problem. The larger the number
of Transputers, the more efficiently each
Transputer was used. With a small domain
of 16 by 16 finite-volume cells the code
ran 9.7 times faster on 18§ Transputers
compared to a single Transputer. For a 48
by 48 cell problem a speed-up of 13.4 was
obtained with 16 Transputers. For
Transputer arrays with more than 4
Transputers the time to carry out one
timestep was inversely proportional to
the number of Transputers in the array.

of

NOMENCLATURE

density
cartesian coordinates
velocity in x,y direction
local speed of sound
pressure

specific energy

Ratio of Specific Heats
Temperature

Specifc Heat capcity
Speed-Up

Code Efficiency

<

L T O T T R

~PTOE KRy

2unnn3
<

"epvright pogq by ICAS and AIAA. All rights reserved.

Turnock

University of Southampten,

509 5NH. United Kingden.

INTRODUCTIONM
The method of solution of large-scale
Computational Fluid ynamic (C.F.D.)
problems on concurrent Cemputational
machines is an area of research which is
rapidly developing as mere advanced
pParallel computers are designed. Tha
actual ability of current C.F.D. codas to

take full advantage of these new machines
is limited by the difficulties in
transpcrting existing sequential code onto
the new machines.

The aim of this research has been to
investigate the ease with which an
explicit finite volume scheme for solving
the compressible Euler equations cculd be
mounted on a parallel computer based on an
array of Transputers. Jong] investigated
pPerformance-cost comparisons for a numbor
of different machines based on
computational speed divided by systenm
cost. It was found that Transputer based
Parallel computational machines were the
most cost effective devices.

Transputer based concurrent cormputers are
Multiple—Instruction—Multiple—Data streamn
(M.I.M.D.) parallel machines. They permit
both data transfer and the execution of
instructions to be executed concurrently.
The advantage of transputer type parallel
bProcessing systems is that the same basic
processing unit is used for both smal}l-

scale and large-scale Computational
applications. CcCode can be developed on
inexpensive machines with a small number
of transputers and then executed on a
large array of transputers. The
improvement in speed of execution when
increasing the number of transputers in an
array is a basic measure of the

performance of a particular application,

The main component of the work has been
the development of a Communication Harness
to handle communication between the
various processes executing in paralle] on
different Transputers. The Communications
Harness, running in parallel with g
numerical fluid dynamic algorithm,
transfers information around an array of
transputers, The soparation of a
particular application inte a
Communications Harness and a numerical
Component permits a numerical algorithm to
be developed independently of any
particular transputer systenm,

An explicit finite volume numerical
algorithnm for the colution of the
compressible Euler equations is a good

test of the effectiveness of transputers
in solving more general fluid problems.
The Euler Solver provides a wvariable
conputational 1lcad for investigating the
performance of the Communications Harness
in relation to the numerical algorithm.
Altering the number of finite-volume cells
changes the computational locad on the
Transputer array.

Concurrent Algorithms

The method by which a numeric algorithm is
sub-divided so that the various components
can execute concurrently is dependent on
the size of the individual computational
tasks and the system upon which it is to

be run. Fundamental to this is the
independence of the sub-divisions. An
independent task requires no additional

information from other tasks while it is
executing. The parallelism strategy used
will be dictated by the ease with which
the algorithm can be broken into
independent processes or processes which
require a minimal exchange of information.
There are three approaches to implementing
a Parallel algorithm.

1) FARM: A central control process
scnds independent data packets out to
worker processes. Each worker Processes

the data and sends a processed data packet
back to the central controller and waits
for another data packet to process. As
each worker is an independent unit,
increasing the number of workers will
increase the speed with which data packets
can be processed. The limit to
performance is the speed with which the
control process can send and receive data.

2) PIPE (Algorithmic): Data packets are
sent along a line of parallel processes.
Each Parallel process carries out a
particular part of the overall algorithm
before passing it on to the next process.
The cspecd of processing data is determined
by the processing time of the slowest
individual process. Increasing the number
of workers will not necessarally improve
performance unless all workers can process
data at a greater rate.

3)GEOMETRIC: The algorithm is divided
inte a number of sub-regions and each
worker processes an alleccated sub-region
of the data. If necessary, data from

other sub-regions are communicated between
the individual workers. The addition of
extra workers either allows a larger data
set to be processed in the same time or
allocates smaller amount of data to each
processor. This increases the speed of
calculation. Geometric parallelism can be
used for problems which can be sub-divided
into processes requiring minima) cxchange
ol information. YFor processes with a small
ratio of communications to data
processing, the speed-up should be roughly
Proportional to the number of allecated
vorkers.,

Geometric parallelism is the obvious
method for solving explicit Finite volume
type problems. The process of time
marching to a steady-state solution
requiring information for updating finite-
volume cells only from adjacent cells. The
only exchange of information necessary is
between the boundary cells on adjacent
workers. Therefore, as the number of
workers (Transputers) are increased the
amount of communication remains constant.
For a two-dimensional problem each worker
only ever has to exchange information with
a maximum of four neighbouring workers.

The work described in this paper consists
of two parts, the development of a general
fluid dynamic communications harness and
the implementation of an explicit finite
volume algorithm for solving the
compressible Euler equations. The
numerical algorithm allows the performance
of the Harness to be assessed on various

sizes of Transputer arrays and on the
amount of data assigned to each
Transputer. The implementation of the

humerical algorithm gives an indication of
the ease with which existing algorithms
can be rewritten to exploit the
parallelism of Transputer based machines.

TRANSPUTERS

Transputers are a range of high-
performance VLST teihqalogy devices
2) which consist

developed by Inmos Ltd,
of local memory, four high speed two-way
links and a micro-processor unit all
mounted on a single silicon chip. Figure 1
shows a schematic of the layout of a
typical Transputer.

32 bit
System 3 Micro-
Services 2 Processor
b
1
L
Oon-chip |— D
Memory — a
t
a
External (— u
Memory [(— s
Access ——4 Link (I/0)
Figure 1. Schematic of Diagram of a

Typical Transputer.

The provision of high speed communication
links allows Trancputers to be connected
together to produce a parallel processing

computer. There are no 1limits to the
number of Transputers which can be
connected together. There are no
restrictions to the topology of the

parallel machine as long as each
Transputer is connected to no more than
four others. Massively parallel machines
can be built up from arrays of

Transputers. Software developed on small
array machines can be easily transferred
onto large array machines.

Each Transputer can have external memory

assigned to it. Communication gccurs by
point to point access across the 1links
between individual Transputers. The

distributed nature of memory in a
Transputer machine does not allow global
access to memory except by communication
between Transputers.

A range of Transputers has been developed.
Et present, the T800 Transputer has the
best performance, with a peak of 2 million

floating point operations per second
(2Mflops) and a data transfer rate of 10
or 20 Mbits/sec on each 1link. Internal

memory of 4K of fast access memory is
provided, and up 4GBytes of memory can be
connected to each Transputer.

Comnunications Harness

The passing of data messages between
parallel processes needs to be carefully
controlled. The means by which messages
Eass between Transputers should be made
independent of the processes running on
c¢ach trancputer. It was decided to produce
a comnunications harness to deal with all
types of messages and control their
routeing through a transputer array. This
allcus numerical algorithms to be
developed independently of the specific
transputer machine upon which they are to
be run.

eccrM2
OCCAM2 is a high level language which
exploits th concurrency of the
transputer (2,3} Designed to express
cocncurrent algorithms as communicating
parallel processes, OCCAM2 allows the
prcgrammer to preduce programs which
cxplicitly deal with communication.
cmmunication takes place along one-way
channels. Message protocols define the
type of nessage to be transferred along
these channels. When processes on
different Transputers communicate, the
channels are nmapped onte the joining

trancputer links.

Parallel versions of high-level
pregramming languages such as FORTRAN77
and C do exist. However, it is more
etficient to use OCCAM2 code to deal with
interprccess communication. This can then
act as a harness for embedded FORTRAN77 or
C code. The communication harness
provides all the necessary input and
output routines for the embedded coda.

For this work it was decided to write all
the sortware in 0CCAM2. This allows the
cormunications model and concurrency of

OCCAM2 to be fully exploited in both the
design of the communications harness and
in the numerical algorithm. The
translation of existing FORTRAN77 code
into oCcCcaM2 was found to be a
straightforward task.

Available Parallel Transputer Machines

University there are a
number of commercial and development
transputer machines which have been used
for this work. The independence of the
OCCAM2 code from the transputer machine
upon which it runs allowed the majority
of the code to be developed on the Ship
Science Transputer Systenm and then
transferred onto larger machines to
investigate speed-up performance. Table
1. lists the capabilities of the machines
used in this work.

At Southampton

Table 1. Transputer Systems Available at
the University of Southampton,

Number of Memory| Speed
Machine Transputer Kbyte| MFlop
Ship Science 4%
System T800 1000 8
Parsys 16%*
SuperNode T800 256 32
Parsys l28+*
MegaNode T800 256 256

The 1links between individual Transputers
on the Ship Science Transputer Systen
have to be manually connected to alter
topology of the transputer array. The two
commercial machines (SuperNode and
MegaNode) allow the individual transputer
link settings to be made from within the
software. All three machines are accessed
via a control (Host) Transputer linked to a
terminal providing keyboard, screen angd
disk storage support.

DEVELOPMENT OF A GENERAL COMMUNICATIONS
HARNESS

The aim in producing the harness was to
allow various strategies for solving
€oncurrent algorithms to be tested. The
harness is designed to remove the need for
rewriting the inter-process communications
when either the topology of the transputer
array or the specific numerical algorithm
1s altered.

Design of communicatjons Harness

The communications requirements of
distributed fluid dynamic algorithms are
of a similar nature and €an be broadly
classed into the following categories:

1) Hearest neighbour communication:
Information sent from one transputer to
ancther, e.qg. the updating of node
information across a common physical
boundary.

2) Global message passing: Information to
ke sent or collected from all the
Transputers in an array, e.q. Examining
the convergence to solution of a series of
processes.

The user

ITnformnation:

3) Process Information: can only
1

dircctly access information on the contro

trancputer. Therecfore, status messages,
graphical output and information from
other Transputers generated when verifying
code have to be sent via the
communications harness.

The maximum 1length of an individual
message and the number of messages the
harness can deal with at any one time are
important design parameters. Large
numbers of small messages are liable to

increase the ratic of communication time
toc calculation time, and may overwhelm the
harness. However, large messages require
greater memory storage at all stages
within the harness which reduces the size
of data an individual transputer can
cperate on.

Yodular Approach

To aid
harness

in the develcopment of the C.F.D.
the individual components of the
harness were written as independent
brocesses. These could be separately
tested and if necessary upgraded without
affczting the overall structure of the
harness. The use of this approach saves
considerable development time and is an
advantage of the use of 0CCAM2. The
innerent flexibility in a modular approach
allows rapid changes to be made to the
overall structure of the harness.

Contrel of Communications

The main purpose of the Harness process is
to control all interprocess communication.
The user processes simply input or output
mescages when necessary (similar to
RELD/WRITE functions in FORTREN77) and
the larness ensures that the information
is sent to the correct destination.

Figure 2 shows a typical transputer array.
One preocess (Host) is used to control all
the others (Guests). The Hest process is

mounted on the Transputer connected to the
PC interface allowing Kkeyboard input,
screen display and disk access. The
individual Host and Guest processes can
communicate with each other only via a
Harness process which runs in parallel
with the application process on each
transputer. The Harnecss determines the
route cuch message will take through the
transputer array to get to its
destination.

G5 G9 G13
1 I 1
Gl6— G — G — G | &G 4
4 8 12 16
I I [[
Gl15— G I— G }—~ G I~ G }G3
3 7 11 15
I [1 I
Gl4—4 G — G HH G] G G2
2 6 10 14
[| [
Gl13—H G —— G +— G HMH G }—G1
1 5 9 1:3
G4 G8 Gl2
G = Guest
H —— Interface
0 PC H = Host

Figure 2. Layout of a Square Array of 16
Transputers showing link
connections.

Routeing Strate

illustrates the simple strategy

Figure 2
through a

chosen for routeing messages
rectangular array of Transputers. Messages
from the Host process pass along the
lowest row of Transputers until they reach
the column which includes their
destination. Nearest neighbour
communication occurs directly between
adjacent Transputers. For a computational
problem with a higher density of messages
than a finite-volume scheme, a more subtle
strategy would be required to aveid bottle
neck preoblems in the bottom row of
Transputers. Figure 2 also shows the
connection of end of row Transputers to
each other to provide a closed ring. This
provides a short route for messages
between the end of row Transputers. An
eguivalent fluid dynamic problem is where
two boundaries are periodic with each
other or the computational grid is closed
("0’ Grid).

assigned an

Each Transputer process is

unique identity number. The Host process
is set as Process 0. For a nearest
neighbour type problem, where each
transputer is exchanging information only
with its direct neighbours, each 1link is
coded as North, South, East or West to
simplify message passing between
neighbouring Transputers. The reqular

ordering of Transputers through the grid
allows a simple algorithm to be used to
determine which link a message needs to be
sent on to reach a given destination.

Communications Overhead

The time each transputer spends dealing
with communications rather than executing
the numerical algorithm is an overhead.
The Harness on each transputer has to
process messages at high pricrity to allow

the overall calculation to proceed without
delays. Similarly, the time a user process
is idle waiting for an incoming message is
an overhead and reduces the efficiency of
the code. Good practice is to ensure that
there is something for each GUEST process

to carry out while awaiting incoming
nessages. This effectively ‘hides’
communication time and minimises the
associated delays.
Deadlock

A potential problem when controlling
concurrent communicating processes is
deadlock. This occurs when every process

is waiting to receive a message and no
messages are sent so that the calculation
can proceed. The provision of buffers and
a routeing strategy which avoids bottle-

necks minimises the risk of deadlock.
However, even the best designed harness
will fail if a wuser process generates
messages which no process is waiting to
receive. Eventually all buffers f£ill up
with redundant messages and deadlock
occurs.
Buffering

The amount of buffering required depends
on the likely amount of communication and
the effectiveness of the routeing strategy
in avoiding bottle-necks. The number of
buffers is restricted by the need to
provide storage space for each additional
buffer. A nearest neighbour problem gives
a light communications 1load across a
Transputer arravy, with messages only
crossing between adjacent Transputers. A
sinmple routeing strategy and a small
number of buffers can adequately control
communications.

Harness Structure

At the outermast level, the code mounted
on each Transputer consists of two
Processes running in parallel as shown in
Figure 3. These are the user’s process
(llost or Guest) and the Harness process.

External Links

NSEW NS EW
] 1
{HARHESS [EfRHESS
in out
GUEST
Host Guest
Transputer Transputer

Schematic of Harness process
controlling communication
between GUEST and HOST
processes and the Transputer
external links.

Figure 3.

The basic structure of the Harness is
shown in Figure 4. Harness consists of a
number of processes running in parallel.
Data flows into the Harness process from
any of the four external links connected
to other Transputers. All four channels
are multiplexed onto a single channel,
reducing the need for a buffer for each
individual 1link. The WhichBuffer process

allocates incoming messages to the first
available empty buffer. At present, for
the finite-volume scheme there, are two

input buffers

External Links

[cuest | |l [w
(or HOST)
i i
in out n n
D E [7 Multiplex
e n
c c f
o o [_ Which Buffer ?
d d
P = ¥ 1
Buffer 1 Buffer 2
‘f_ -
R R R
o o o
u u u
t = t
e e e
f
—————L_ SWITCH
N
o]
u
t
External Links

Figure 4. Schematic of Data Flow Through
Harness process

-

Messages from the Guest (or Host) process
are encoded into a standard form in the
Encode process which also acts as an input

burfer. A Route process is assigned to
each input Buffer which determines the
destination of a message. Based on the
meéessage destination, it decides which

external 1link should be used to pass on
the message or whether the message is for
the resident Host (or Guest) process.
Route sends the message to the Switch
process which ensures that the message is
passed out of the Harness either on one of
the four external links or to the Decode
pProcess. The Decode process translates
messages into a form readable by the Guest
(or Host) process.

The structure of the harness ensures that

only rclevant mescages arce cent to the
resident Guest (or Host) process on each
transputer. Other messages are simply

passed through the Harness, leaving by the
link determined by the routeing strategy.

All harness processes run in parallel with
each other. OCCaAM2 currently allows
processes to be assigned one of two
priority levels (High or Low). The overall
Harness process and all its component
processes are set to High priority, so
that incoming messages are dealt with
immediately they arrive. This ensures that
other Transputers further along the array
will have to wait a minimum amount of time
for messages.

Hessage Protocol

Different types of messages are allowed in
OCCAM2. The content of messages is defined
by protocols. The Harness process uses two
simple message protocols:

1) User Protocol. This allows the Guest

(or Host) process to send messages of:
integer, Boolean, real, and string
variables; and one or two-dimensional
arrays of 1real numbers. Larger data

structures are built up from a number of
messages containing different parts of the
structure. A component of the protocol
defines the destination of a message as

either to be sent to the Transputer
connected to the North, South, East, or
West links, or to the Host process. An
individual Process number can also be

used when the Host
individual Guest

stated and this is
process communicates to
processes.

2) Harness Protocol. This comprises a
header of 25 bytes which defines the type

of message, the identity number of the
destination and source transputer. The
remainder of the message is a variable

length one-dimensional array of bytes. The
use of this protocol simplifies the
passage of messages through the Harness,
each component process only having to deal
with one type of message.

The Guest and Host processes use the User
Prctocel to send and receive messages. The

protocol allows flexibility about the
sorts of messages which can be sent
between processes. As well as data the

protocol also allows development messages
(Debugging information) to be sent. The
Encode and Decode processcs use the
protocol definitiens to translate messages
betveen the two protocols. The Harness

Protocol is wused for passing messages
around the array of Transputers.
Measurement of Harness_Performance

The communications between parallel
processes is an overhead to the overall
efficiency of a concurrent numerical

algorithm. The more quickly messages can

be passed between processes, the less
delay there is in the calculation. OCCAM2
provides TIMER channels which allow

measurements to be made of the number of
transputer internal clock pulses a process
uses during execution. Measurements of
the time the Guest and Host processes
spend communicating compared with how long

they spend calculating were made. These
timings were used to define an overall
efficiency for a numerical algorithnm

running on a specific size of transputer
array.

Calculation Time

N =
Calculation Time + Communication Time

Code efficiency N is defined as the ratio
of actual calculation time to overall
calculation time. The size of problem
assigned to each Transputer influences the
efficiency. Increasing the size of
problem on each Transputer increases the
code efficiency as proportionally less
time is spent communicating. However, the
calculation will take longer. Code
efficiency is a useful parameter in
determining the number of Transputers
necessary to perform a calculation and the
amount of local memory each transputer
requires.

Comparing the overall calculation time for
an identical problem run on different
sizes of transputer arrays indicates the
actual speed-up obtained.

Ty
Tl'l

Speed-up S is defined as the ratio of the
time taken to perform the calculation on
one transputer T; to the time taken on n
Transputers Tp. A theoretical speed-up of
n would occur if no communication took
place between Transputers. For any
algorithm which requires communication, an
efficient Harness minimises the time spent
communicating.

A true bench-mark of the performance of a

numerical algorithm is a difficult
quantity to assess. The performance of
identical «code can vary widely when

implemented on different computers. For
instance with limited memory machines, a
trade-off has to be made between
recalculating parameters when they are
nceded and storing them for the whole
calculation. A larger problem can then be
solved, but the ealculation will take
longer. On computers with shared access,
the actual speed of solution will depend
on the users priority and how many others
are using the computer. No comparisen has
been made between the performance of the
Euler Solver implemented on an array of
Transputers and that of the same algorithm
on other machines. However, the times used
in calculating code efficiency and speed-
up have been given in seconds based on the

clock time of 64 puSec per tick.

0’'s
318125 allows the actual performance of the
:;ode to be assessed.
EULER FLOW SOLVER

he main part of this investigation has
peen the development of software tools to
allow eneral C.F.D. problems to be solved
on transputer arrays. Te validate 1.:he
yarness 2 two-dimensional explici finite
volume scheme developed DY Ni for

ng the compressible Euler equations
vas implemented. A Fortran77 version of

method was available and this was
form the basis

thls —

t;anslatad into OCCANMZ
of the Guest process.

e~
s

E!gerical Method
formulation consists an
the unsteady Euler equations
@ are four component vectors
cartesian x

the basic
solution of
«here B, F,
which correspond to the mass,

and Y momentum, and total energy
conservation equations. This can be
Jritten in compact vector form as:
§ 0T+ 5§ F + 5 G = 0
144 &x sy
vhere the state
vector _ P
U= plu
pv
PE
and
. P u _ pv
r=|pudsp G = puy
o (E+p/p)u p(E+R/)V
E is the total energy per unit mass
E=e + X(u2 + vz)
;hﬁﬁe_ are coupled with the auxiliary
quations for a perfect gas:
P= (y-1)pe and e=0CyT
A
exp?e?dlf"st;ate solution is obtained by
cnnd]{?t time-marching from an initial
Eound lon and applying appropriate
thgizry conditions at the edge of the
al domain. Expressed in integral

coens : i
ervation form the egquation becomes:

i = =
i [[U dn + FP; (Fdy -6dx) =0

My

'he:e maet}_‘hc’d uses a cell-vertex method

fluxes tp each time-step the integral of

Arcung t}fm‘gh the cell edges are summed
e cell to give a first-order

Nifer i

ence in state vector oU at the cell
using
on.

Cantra

npprqximati the

finite-volume

ol = [Fp + Fp oy -~ Fg + Fy 0OY
il R
2 2
ot
+ G t Gy OX ~— G3 + Gy ax
= z ax oy
Where ¢C refers to the centre of the

finite-volume cell and 1,2,3,4 the four
corners of the cell. The difference in
fluxes at the cell centre is distributed
to the four corners of the cell using Ni’s
distribution formula for each corner:

(51
-~

§T,=% (o0 - (ot/ox)oFc (atjoy) &8¢

(at/oy) oGe)

§TU5=% (0Uc (ot/ox)oFc +

(ot/oy) cGc)

+

§U3=% (0T . (ot/ox)oFc +

(ot/oy) oG)

+

§U4=% (0T + (ot/ox) oFe -

The signs of the second-order correction
terms oF and oG depend on the position of
the cell centre relative to the corner and
has an effect similar to the use of upwind
or downwind differencing.

g, o1 = U™ o+ (sUDa (6U1)B *

(6Uy)c + (§U1)D

The state vector Uz at each vertex is
updated by summing the corrections from
the four neighbouring cells A,B,C,D.

Time Step and Numerical gmoothing

To converge to a steady-state solution
local time-stepping is used. The time step
for each finite-volume cell is set to the

maximum that will keep the numeri a}
oheme stable. The formula given bY Ni
is used.
ot < min ox . ay
- —
|ul + a vl + 2
Where a is the local speed of sound for
each cell.
It is necessary to provide numerical
smoothing to capture shock features and
growth of errors. The

prevent oscillatory
method used is that given by Ni where

sxpoothing terms are introduced into the
distribution formula as follows:
§U; = %(oUg - (ot/ox)oFc = (ot/oy) 0Gc

+ u(T -0h

Where U= % U, + Uy + Uy + Uy)

The

and p =0 ((ot/ox) + (ot/oy))
in the

artificial damping factor o is in
range 0 to 0.1.

Initial and Boundary Conditions

The cell-vertex scheme ensures that the
State vector values U are calculated at
the boundaries of the physical domain. As
an initial condition the flow is assumed
to be at the freestream value. The finite
volume approximation to the integral
equation expresses the difference in state
vector U at a cell-centre in terms of
fluxes across the four edges of the cell.
Six different types of boundary condition
have been implemented for cell edges which
are on the boundary of the domain of
interest. Mapping sub-regions of the
physical domain onto arrays of Transputers
is thereby simplified. The join between
two sub-regions on different Transputers
is classed as a boundary to the sub-region
and is specified during the initial
problem set up. The boundary conditions
are: Internal, where two edges join on the
same transputer; Hormal, a boundary
between sub-regions across which fluid can
flow; Inflow and Outflow, for flow in and
out of the domain which is nearly normal
to the freestreanm direction, updated using
the method of characteristics to determine
the domain of influence; Solid, is treated
as a reflective boundary with slow kept
tangential to the surface (Hall(® }; Free,
for boundaries at a distance where changes
to the far-field can be assumed negligible

Convergence

The calculation is assumed to have
converged to a steady-state when the
mazimum change in the x-momentunm { pu)
component of the state vector U is

everywhere less than 1.0 e™°.

Grid Level

n
3
2
1
C = Calculation &U
T = Transfer &0
I = Interpolate §&U
Figure 5. Saw-toaoth Cycle for Hi's

Multiple~-Grid scheme

Multiple-Grid

To improve the rate of convergence of the

floy _solver the Multiple-Grid scheme of
ni(ds was implemented. The coarsest
level of updating information is
restricted to the arca of grid mapped onto
each transputer and the boundary

information is treated in the same manner
as for the transfer of informaticn on the

finest level of calculation. Only minimal
modification to the code was required to
fully implement the Mutiple-Grid scheme.
Figure 5. shows the saw-tooth cycle for
transferring cell-vertex corrections &U to
coarser and coarser grids. After each
transfer operation, the corrections were
interpolated back to the finest grid and
the state vector U updated.

Parallel Implementation of Fuler Solver

The implementation of Ni’s method for
solving the compressible Euler eguations
is straightforward. The method used is
based on geometric parallelism with a Host
process controlling a number of Guest
Processes. Each Guest process is assigned
a sub-region of the ©physical domain
containing the same number of finite-
volume cells. Figure 6 illustrates the
overall scheme, with the left and right
halves of the figure indicating the role
of the Host and Guest processes.

Host Process Guest Process (1 to n)

Set Up Nets.a'ork-——‘:_dI ST
nitialise

[-
Coarse Grid

]

Start -

Fine Grid Generation

Calculate Edge §U
t ¥

Calculate Swop
Interior Edge
Cells Updates

t 1

Apply Boundary
Conditions

)4
Update State Vector U
i1
No Send Out Convergence
i

Check Glebal
Convergence

Yes

[_Download Data from Transputer arré;]

Schematic of Host and Guest

Figure 6.
processes for Euler Solver.

Initialise and Set Up Network

Each Guest process is told the dimensions
of the Transputer size and its individual
identity number. This information is used
to initialise the Routeing process and for
determining the identity number of a Guest
Transputers four neighbours Transputers.

Grid Generation

The definition of the solution domain for
an explicit finite volume scheme requires

a8 grid mesh mapped over the physical
Space. The generation and guality of this
grid are important parameters in the

efficiency and accuracy of the numerical
scheme. The requirement for the same
physical problem to be solved across
different sizes of Transputer arrays meant
that the pre-processing of the sclution
grid was most easily carried out by making
it an integral part of the Euler Solver.

A simple input file format was adopted.
For each geometric problem, four external
edges are defined, each edge corresponds
to a single type of boundary. As a first
approximation the required number of
interior nodes are produced by direct
interpolation between the four edges. The
initial grid is refined using the elliptic
grid generatio?ayethod described by Steger
and Sorenson i A Successive Over
Relaxation scheme is used to converge the
grid. The edge values of the grid are held
fixed.

The actual generation of the grid is
divided into two steps. On the host
pProcess a coarse grid is elliptically

refined. This grid is then subdivided into
a8 number of regions equal to the number of
Transputers available. The four edges of
each of these sub-regions along with the
corresponding boundary types are sent to
the Guest processes. 0On each Guest the
process is repeated with the required mesh
refined using the elliptie grid generator.
The coordinates of the edge values on
adjacent Transputers are identical and are
held fixed.

grid generation process
problem to be

The format of the
allowus a physical
automatically matched to the number of
Transputers available. More complex
geometries can be solved by breaking the
overall physical domain into several
Scgments each mapped ontoe a number of
arrays within the Transputer array.

Humerical Method

On each Guest process the first operation
at each time-step is the calculation of §u
updates for all the edge cells. Next the
interior cell updates to the state vector
U are calculated. In parallel with this
for any edges in common with other
Trancputers 4&U values for the edge are
exchanged. The communication of edge
updates in parallel with the calculation
of the state vector updates effectively
hides the communication time.

The exchanging of information across a
sub-region boundary takes place in two
stages. First Horth-South edge information
is exchanged and then East-West
information. This ensures that all the
information for ecorner nodes is sent to

all four possible Transputers upon

which the corner node is defined.

The number of messages each Transputer
needs to send and receive at each time
step is proportiocnal to the number of
Normal sub-region boundaries with other
Transputers. For each edge on the
Transputer which is a Normal boundary, two

two-dimensional arrays containing §U
updates are sent.

After message communication and
calculating the interior updates, the

boundary node state vectors are updated
using the assigned boundary conditions.
Finally, the actual interior state vectors
are updated.

Global Convergence

For a distributed problem the
determination of convergence requires that
the maximum convergence on all Transputers
is known and that when all the individual
maxima are below the convergence threshold

the calculation is stopped. This is
achieved by all the Guest Transputers
sending convergence information back to

the Host process. The Host then confirms
that the solution has converged or allows
the calculation to proceed. The global
convergence test causes a delay in
execution while the Transputers await the
instruction to proceed or terminate. The
delay is dependent on the number of
Transputers and the average number of
Transputers each message has to pass
through to arrive at the Host. The larger
a Transputer array the greater the delay
associated with a global convergence test.
A method to reduce this delay is to carry

out a convergence check after a regular
number of timesteps. Effectively this
convergence check synchronises all the

Guest processes at reqular intervals.
Data Retrieval

the
each

steady state solution
Transputer can be

If required
obtained on

downloaded onto the PC terminal for
subsequent processing. For large sizes of
Transputer arrays the amount of data

storage regquired is at least equal to the
total memory capacity of the Transputer
array.

TEST CASE RESULTS

Results are shown for two test geometries
representative of both internal and
external two-dimensional flow. Figure 7
shows the overall grid used to solve a 64
by 64 cell problem flow over a circular-
arc bump placed in a channel with a height
equal to the chord of the bump. The
maximum height of the bump is 10% of its
length.

10% thick Cirecular-Arc

nnel.

____/_

Figure 8. Sub-Division of Channel Grid
Onto 16 Transputer array.

8 shows the sub-division of the
grid corresponding to a 16 Transputer
array. The numbering of the sub-divisions
corresponds to the laycut of Transputers
in Figure 2.

Figure

Results for three different inflow Mach
Humbers corresponding to those shown in
nil4 are given. Figure 9 is for a

Subsonic inflow with Mach number equal to
0.5 and shows an isomach contour plot and
the velocity on the upper and lower edges
of the channel.

1

v

N

TN

Iso-Mach Contour Plot

n.u

== Lowuer

- Ipper

] 4] LN ST 2

Subsonic Flow over 10% Bump in
Channel at Mach Number of 0.5.

A transonic Mach number of 0.675 was used
to generate Figure 10.

Figure 9.

10

Iso-Mach Contour Plot

—= Lower

== Upper

Hach Nunber

um?r*ﬂ*ﬂrﬁ:::;‘- ~--::;:::_:::33‘

Distance

Velocity on Upper and Lower Surface

Figure 10. Transonic Flow over 10% Bump in
Channel at Mach Number of 0.675

A NACAO0012 aerofoil section was also
tested. The grid generated for the NACA
0012 aerofoil section is shown in Figure
11 for a 64 by 64 grid.

Grid for NHACA 0012 aerofoil
with mesh size of 64 by 64.

Figure 11

The corresponding sub-division of the grid
onto sixteen Transputers is given in
Figure 12.

The resultant grid is an ‘0’ grid with two
sides of the Transputer array joined on a
line downstrecam from the trailing-cdge.
Iso-mach contours ar? shown for a test
case given by Jameson 8) with a freestream
Mach Number of 0.5 and angle of attack of
3° in Figure 13.

Sub-Division of Physical
Domain around a NACA 0012
aerofoil for an Array of 1s
Transputers

Figure 12.

Iso-Mach Contours around a NACA
0012 section at incidence of 3°
and at 0.5 Mach No.

Figure 13

CODE_PERFORMAMNCE

Rasults are presented for the performance
of the Euler Solver and llarness on square

arrays of up to 16 Transputers. The 128
Meganocde machine is still not fully
operational. A standard test case for

transenic flow at a Mach number of 0.675
over the 10% thick circular-arc bump was
used for all the performance measurements.
Ho Multiple-Grid acceleration was used.
The data presented is based on the average
tire to perform one iteration with the
came number of finite volume cells on all
Transputers in the array.

In addition to the average Iteration time
the average amount of time each Transputer

spent communicating convergence
information to the Host Transputer was
measured. The nearest neighbour

communication takes place in parallel with
the calculation and cannot be measured.
The nearest neighbour communication time
on each Guest is equal to the difference
in time taken to carry out an identical
calculation with and without communication
across sub-region boundaries.

Figure 14 shows the Speed-Up S obtained
when an identical problem was run on
different numbers of Transputers. It can
be seen that as the overall problem size
is increased (more finite-volume cells per
Transputer) a greater Speed-Up was
obtained. With 16 Transputers a Speed-Up
of 13.4 was obtained for a 2304 cell
problem compared to 9.7 for a 256 cell
problem.

16

—=e—= 2304 Cell Domaln

P T R "

5

=
-
4
&

1

1 & 9 16
Nusbar of Transputers
Figure 14 The Speed-Up S of Euler Solver

against Number of Transputers
for a given overall number of
finite volume cells

In Figure 15 the Code Efficiency n is
plotted for different numbers of
Transputers and amounts of finite volume
cells per Transputer. As expected, the
smaller the number of cells allocated to
an individual Transputer the lower the
Code efficiency as the Transputer spends a
proportionally greater amount of time
communicating. For only one Transputer the
Code efficiency is close to a 100% as the
only communication which occurs is the
passing of convergence information to the
Host. As the Transputer array size
increases, the code efficiency drops as
the Transputers have to communicate
nearest neighbour information. It is
interesting to note that after 9
Transputers there is no appreciable
decrease in Code Efficiency with 16
Transputers. The amount of time to carry
out a global convergence check is small
compared to that for nearest neighbour
exchange. Therefore, the individual Code
efficiency of a Transputer array will be
determined by the slowest Guest Process.
In the case of 4 Transputers, all 4 have
to exchange information across two edges,
however, for 9 and 16 Transputer arrays
the slowest processes are the interior
Transputers which have to exchange
information across all four edges. The
Code-Efficiency and speed-up will be
determined by the time-delay associated
with communication across all four edges
of a Guest process. This explains why
there is no appreciable decrease in Code
Efficiency between 9 and 16 Transputers.
This allows predictions for the Speed-Up
of larger Transputer arrays to be made as
the individual Code efficiency is
independent of the Transputer array size.

1z

Uz

L AJUDIDII33 mpon

— = 2104

Cells per Transputer

024 Cells

¥
&1

T 256 Cells

16 Calis

_—

16

[[}4
1 4

Nuwlu:r O Transputers

Code Efficiency N against
Number of Transputers for
different numbers of Finite
Volume cells per Transputer

Figure 15.

A performance chart for a given number of
finite-volume cells and the physical time
to carry out a thousand time-steps on a
specific number of Transputers is shown in
Figure 16. An estimated plot for a 121
Transputer array is included. This is
based on individual Transputers in a 16
and . 121 Transputer array having the same

Code Efficiency. For each size of
Transputer array there is a 1linear
relationchip between the number of cells
and the time to carry out a thousand
iterations. Increasing the Transputer
array size increases the speed of solution
but each individual Transputer’s code
efficiency decreases. The minimum number
of cells assigned to an individual

Transputer is 16 so for a given array size
there will be a minimum problem size.
Correspondingly, the amount of memory
assigned to a Transputer determines the
maximum number of cells which can be
allocated to a Transputer. For a given
Computational 1load per cell the total
nunber of finite-volume cells and the
anount of memory assigned to each
individual Transputer will determine the
optimun array size.

E-’ Fid —=— 121 Transpater
< I .
£ ¥’
B 1 U
& I ’ & —_— "
Si i) 4 W
i iy T Vv :
Lo L Ao
im
u [2w
So = ———
ey 10 20 0 0
Nunbuer of Finite Yoluoe Cells (#)1000)
Fiqure 16 Performance Chart of Time to

carry out 1000 iterations
against the overall number of
finite volume cells for
different sizes of Transputer

arrays

12

CONCLUSIONS

It was found that the implementation of a
representative explicit numerical fluid
dynamic algorithm onto an array of
Transputers was a straightforward
exercise.

A Communications Harness was written to
carry out the necessary inter-Transputsr
communication and this greatly eased the
development of the numerical algorithm.
The development of the Harness also allows
other C.F.D. algorithms to be easily
implemented at a future date.

The explicit two-dimensional Euler Solver
provided a good method of testing the
performance of an array of Transputers. It
was found that for Transputer array sizes
greater than four the individual Code
efficiency n was independent of the
Transputer array size. This implies that
the time to converge should be inversely
pProportional to the number of Transputers
which is as expected for geometric
parallelism.

REFERENCES

(1) Jong, J-M., "A Comparison of Parallel
Implementations of the = Flux corrected
Transport Algorithm®, Master of Science
Thesis, Utah State University, 1989.

"Transputer Development
1988

Inmos Ltd.,
Prentice-Hall.

(2)
System",

(3) Hoare, C.A.R. ed., "OCCAM 2 Reference
Manual", INMOS Ltd., Prentice-Hal.i, 1988.

(4) Ni, R.H., "A Multiple-~Grid scheme for

Solving the Euler Equations®™, A.I.A.A.
Journal, VOL 20., No.11l, Nov 1982.
(5) Ni, R.H., "Multigrid Convergence

Acceleration Techniques for Explicit Euler
Solvers and Applications to Navier-Stokes
Calculations.", Von Karman Institute
lecture notes 1986.

(6) Hall, M.G., "Cell-Vertex Multigrid
Schemes For Solutieon of the Euler
Equations", Royal Aircraft Establishment
TM Aero 2029, H.M.S.0. 1985.

and Sorenson, R. "Automatic
g Near a Boundary in
Grid Generation with Elliptiec Partial
Differential eguations", J. Computatiocnal
Physics, Vol 33, pp 405-410 (1979).

(7) Steger, J.
Mesh-Point clusterin

(8) .Jameson, A., "Solution of the Euler
Equations for Two Dimensional Transonic
Flow by a Multigrid Method", MAE Report
No.1613, Princeton University, June 1983.

