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Abstract 

 

Much of our knowledge of hydrate distribution in the subsurface comes from 

interpretations of remote seismic measurements.  A key step in such interpretations is 

an effective medium theory that relates the seismic properties of a given sediment to 

its hydrate content.  A variety of such theories have been developed; these theories 

generally give similar results if the same assumptions are made about the extent to 

which hydrate contributes to the load-bearing sediment frame.  We have further 

developed and modified one such theory, the self-consistent 

approximation/differential effective medium approach, to incorporate additional 

empirical parameters describing the extent to which both the sediment matrix material 

(clay or quartz) and the hydrate are load-bearing.  We find that a single choice of 

these parameters allows us to match well both P and S wave velocity measurements 

from both laboratory and in situ datasets, and that the inferred proportion of hydrate 

that is load-bearing varies approximately linearly with hydrate saturation.  This 

proportion appears to decrease with increasing hydrate saturation for gas-rich 

laboratory environments, but increase with hydrate saturation when hydrate is formed 

from solution and for an in situ example.   

 

Introduction 

 

In order to assess the significance of gas hydrate as a resource, as a hazard, and as an 

agent in climate change, it is necessary to determine how much hydrate is present in 

subsurface sediments.   The most reliable measure of hydrate saturation comes where 

there is direct sampling and core material is recovered under pressure; hydrate 
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saturations may then be estimated accurately from the volume of methane evolved 

during decompression (e.g., Dickens et al., 1997). Such direct sampling provides 

essential “ground truth” for geophysical estimates of hydrate saturation, but is 

expensive and can only be carried out in a very few locations that may not be 

representative.  Therefore, for most of our information on hydrate volumes we must 

rely on remote geophysical methods.  The replacement of conductive (normally 

saline) pore water with resistive hydrate in the pore space can lead to significant 

anomalies in electrical resistivity, and some progress has been made in the 

measurement of such anomalies (e.g., Schwalenberg et al., 2005).  In  principle, 

hydrate saturations may also be estimated using sensitive measurements of the 

response of the seafloor to tidal variations in seafloor pressure (Latychev & Edwards, 

2003).   However, seismic techniques remain the primary remote methods used to 

determine hydrate content of the subsurface.  With an appropriately designed 

experiment, detailed knowledge may be obtained of P and S wave velocities within 

the hydrate stability zone (e.g., Singh et al., 1993; Hobro et al., 2005; Westbrook et 

al., 2005). 

  

A key step in the process of remotely determining hydrate content is a quantitative 

relationship between that content and the physical properties measured, namely 

seismic velocities.  The elastic properties of the individual components of hydrate-

bearing sedimentary rocks (water, hydrate, quartz, clay minerals, etc) are generally 

well known, though those of clay minerals are difficult to measure and normally must 

be determined indirectly (e.g., Hornby et al., 1994).  Methods that combine these 

component properties into the properties of the composite material are called 

“effective medium theories”, and a key factor in the predictions of such theories is the 

extent to which hydrate is assumed to contribute to the strength of the sediment frame.  

In this paper we discuss briefly the advantages and limitations of such theories and 

then focus on the application of one particular theoretical approach to a range of 

datasets where the hydrate content is known from independent observations.  The 

approach is described in more detail by Chand et al. (2006).  Here we summarise the 

results of Chand et al. (2006) and further develop some of their ideas. 
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Effective Medium Theories 

 

The most widely used effective medium theories were reviewed and compared by 

Chand et al. (2004). The simplest of such theories are essentially empirical 

correlations, such as the “weighted equation” approach applied to hydrate-bearing 

sediments by Lee et al. (1996).  An advantage of this approach is that it can be readily 

adjusted to match any dataset, but because it has no physical basis, its application 

leads to little understanding of the physics involved and it is difficult to apply to areas 

away from or sediment types distinct from those in which the correlations have been 

developed.  Therefore many authors prefer more sophisticated approaches that have 

some physical basis.  Ideally such rock physics based approaches would have no 

adjustable parameters other than the unknown hydrate content.  However, in the case 

of real sedimentary rocks, even if parameters such as composition and porosity are 

perfectly known, assumptions must be made about the way the different components 

are organised and generally these assumptions must be modified in some way to fit 

real data – hence these approaches retain empirical elements. 

 

The rock physics based approaches reviewed by Chand et al. (2004) include the self-

consistent approximation/differential effective medium (SCA/DEM) approach of 

Jakobsen et al. (2000), the three-phase effective medium model (TPEM) of Ecker et 

al. (1998) and Helgerud et al. (1999), and the three-phase Biot theory (TPB) 

developed by Gei and Carcione (2003).   Each of these approaches involves different 

simplifying assumptions regarding the shapes of individual sediment components and 

the way in which they interact with each other. All assume that, on the scale of a 

seismic wavelength, there is a degree of uniformity in the hydrate distribution, and 

that hydrate is disseminated in some way through the pore space.   Hence none of 

these approaches copes well if hydrate occurs dominantly in nodules or veins, a form 

that may be important in some fine-grained sediments (e.g., Holland et al., 2006). 

 

Jakobsen et al. (2000) developed two versions of the SCA/DEM approach: one in 

which the SCA is applied initially to a clay-water mixture, to simulate a 

microstructure in which hydrate is formed inside pores and is not load-bearing, and a 

second in which the SCA is applied initially to a clay-hydrate mixture, to simulate a 

microstructure in which the hydrate forms at pore throats and is load-bearing.  Here 
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we use the term “clay” to indicate clay minerals, rather than as a grain-size descriptor.  

Similarly, Helgerud et al. (1999) describe two versions of the TPEM approach: one in 

which hydrate forms part of the pore fluid and one in which hydrate forms part of the 

sediment frame.   

 

Because of the difficulty of recovering and performing experiments on hydrate-

bearing sediments without causing hydrate dissociation, direct observations of the 

pore-scale distribution of hydrates under in situ conditions are sparse.  Sophisticated 

techniques such as thermal imaging have been developed to determine the hydrate 

distribution within pressurized cores (Weinberger et al., 2005; Expedition 311 

Scientists, 2005), but such techniques do not resolve down to the scale of individual 

pores.  Tohidi et al. (2001) showed that hydrate grown from solution on a two-

dimensional glass substrate formed preferentially in the centres of pores, but the 

extent to which this idealised environment simulates nature is unclear.  

 

As discussed in more detail by Chand et al. (2004), the models that assume hydrate 

forms part of the pore fluid result in similar predictions of P and S wave velocity as a 

function of hydrate saturation (Fig. 1).  Similarly, models that assume that the hydrate 

is load-bearing make result in similar predictions (Fig. 2), but for most hydrate 

saturations the predicted velocities are significantly higher than those of any of the 

models in which hydrate forms part of the pore fluid.  The two models of Helgerud et 

al. (1999) converge with each other at low hydrate saturations and diverge at high 

saturations.  Conversely, the two models of Jakobsen et al. (2000) converge at high 

saturations and diverge at low saturations, so that they predict different results when 

no hydrate is present – a clearly unphysical result.  This result led Chand et al. (2006) 

to develop a modification to Jakobsen et al.’s basic approach in which hydrate is split 

into two component parts.  For clay-rich sediments, a clay-water starting model is 

used throughout and the part of the hydrate that is not load-bearing is treated as 

inclusions (rather than replacing water in the clay-water starting model), while the 

part that is load-bearing replaces clay so that it properly forms part of the sediment 

frame.  The velocities predicted by this modified approach, for the end member cases 

of all and none of the hydrate being load-bearing, converge at low hydrate saturations 

and diverge at high saturations (Fig. 3).  This is physically more realistic result that is 

also compatible with results from the model of Helgerud et al. (1999).  
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Effective Medium Inversion 

 

The models described above can be turned around to infer hydrate saturations from 

observed seismic velocities, provided that other key parameters (porosity, 

composition, and the elastic properties of the components) are known.  A formal 

inverse approach to this problem was developed by Chand et al. (2006).  The 

inversion is able to use measurements of P and S wave velocity, and also, if available, 

P and S wave attenuation.  Formal uncertainties are also estimated, though these take 

into account only the uncertainties in the input parameters; it is difficult to account for 

the uncertainties in the effective medium models themselves.   

 

Figure 4 illustrates the results of applying such an approach to a dataset from offshore 

Vancouver Island (Hobro et al., 2005).  In this case there is information on porosity 

and lithology from Ocean Drillling Program Site 889, which lies within the survey 

area; the inversion used an exponential decay of porosity with depth and a mean 

sediment composition based on data from this site.  Velocity information comes from 

a low-resolution P-wave tomographic study.  The resolution of such studies is clearly 

an issue in this area and probably in most hydrate provinces: recent work in the same 

area during Integrated Ocean Drilling Program Expedition 311 (Riedel et al., 2006) 

has revealed a highly heterogeneous hydrate distribution.  The tomographic model 

smooths the velocities over length scales of several hundred metres horizontally and 

several tens of metres vertically (Hobro et al., 2005).  Unfortunately, the relationship 

between hydrate saturation and velocity is not linear (Figs 1-3), so even if the 

effective medium model is perfectly accurate, applying the effective medium 

inversion to a mean velocity over a given volume does not necessarily yield an 

accurate value for the hydrate content of that volume.   However, a much larger 

uncertainty comes from the effective medium models themselves.  While the model 

used by Hobro et al. (2005) yields a maximum hydrate saturation of c. 15%, other 

models predict saturations up to double this value (Fig. 4).  Using the model of Chand 

et al. (2006) with the proportion of hydrate that is load-bearing set equal to the 

hydrate saturation, inferred saturations are c. 50% higher than those of Hobro et al. 

(2005), because at low hydrate saturations, the velocities predicted by this model are 

significantly lower (Fig. 3).  This calculation is purely illustrative: such a relationship 



 6 

between hydrate saturation and hydrate cementation is based loosely on some 

calibration data that is described below, and may not be valid for the Vancouver 

Island margin.  

 

The proportion of hydrate that is assumed to be load-bearing is effectively a free 

parameter in the SCA/DEM model, since it is impossible a priori to calculate what its 

value should be in a given geological environment.  Therefore to choose sensibly 

between the results shown in Fig. 4, some calibration data are required for which the 

hydrate content is known independently.  In the next two sections we examine some 

datasets from both laboratory and field studies that might be used for calibration.  An 

unavoidable limitation of such calibration datasets is that they involve higher seismic 

frequencies and correspondingly smaller sampling volumes than the field datasets that 

we wish to interpret.  This limitation does not compromise the calibration if 

heterogeneities are smaller than the seismic wavelength of the calibration data. 

 

Application to Laboratory Data 

 

Our first calibration dataset is the dataset of Priest et al. (2005).  These authors 

prepared methane hydrate bearing sand samples by melting fine-grained ice particles 

in the presence of methane gas, following the method of Stern et al. (1996).  

Velocities were measured at seismic frequencies using a resonant column with both 

torsional and flexural vibrations, to determine P and S wave velocities respectively.  

Hydrate saturations were controlled by controlling the amount of ice/water in the 

system and were therefore accurately known.  The resulting hydrate-bearing sediment 

is essentially dry; absence of residual water was confirmed by freezing the samples 

and checking that there was no significant change in velocities (Priest et al., 2005).   

 

Unfortunately, application of the SCA/DEM approach to a quartz-air mixture leads to 

computed velocities that are much higher than those observed.  In order to match 

these data, Chand et al. (2006) further modified the SCA/DEM approach.  Instead of 

incorporating all of the quartz in the bi-connected SCA/DEM model, only a small 

proportion of the quartz is included at this stage, and the remainder is incorporated as 

isolated inclusions.  Much lower velocities can then be obtained (Fig. 5).  Both P and 

S wave  observations may be matched if between 1% and 5% of the quartz is load-
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bearing (1-5% cementation). Such low percentages are reasonable given the way the 

samples are made.  The percentage increases with differential pressure, which is 

physically reasonable as areas of grain contact will increase with increasing pressure.  

This approach gives us a second empirical factor (the degree of cementation of the 

host matrix) that is required to match real observations.   

 

Having achieved a fit to the data in the absence of hydrate, the observations with 

hydrate present may than be matched by varying the degree of hydrate cementation as 

described in the previous section.  At very low hydrate saturations, the predicted 

velocity is insensitive to the degree of cementation.  However at hydrate saturations 

of a few percent, all of the hydrate must be cementing (as concluded also by Priest et 

al., 2005), while at higher saturations, the degree of hydrate cementation required 

drops to about 40% (Fig. 6).  The fact that, for both empirical parameters, the same 

value fits both P and S wave velocities, indicates that the approach taken is not a bad 

approximation to the physics involved.   

 

Application to Borehole Data 

 

The above laboratory work uses a sediment type (pure sand) that is not normally 

present in hydrate provinces in nature, and the hydrate is made in a way that does not 

approximate natural processes of hydrate formation.  Therefore the insights obtained 

regarding the variation of cementation with saturation may have limited applicability. 

Calibration of the effective medium approach with a real field dataset, for which the 

hydrate content is known, is therefore desirable.  Unfortunately, knowledge of in situ 

hydrate contents requires direct sampling, at pressure, by drilling, and few such 

datasets are available.  However, in several hydrate provinces, estimates of hydrate 

saturation are available based on borehole resistivity data.  Hydrate saturations are 

commonly derived from such data using Archie’s law, an empirical effective medium 

approach which appears to give reliable estimates of the pore fluid component in a 

wide range of geological settings. These estimates must be treated with caution 

because of their empirical origin, but they are at least independent of seismic 

measurements. 
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One such dataset that has been widely used is from the Mallik 2L-38 borehole in the 

Canadian Arctic (Collett et al., 1999).  A limitation of this dataset for calibration 

purposes is that porosities are significantly lower than those at equivalent depths in 

deep marine environments and the clay content is relatively low.  Based on resistivity, 

hydrate saturations reach 80% at some depths in the hole, and both P and S wave 

velocities are available from borehole logs. In the absence of hydrate, velocities are 

around 2.2 km/s at a porosity of around 38%.  These velocities are much higher than 

those of the hydrate-free laboratory sand samples described above (Fig. 5), which 

have slightly higher porosity, and also much higher than those of Yun et al.’s (2005) 

sand samples at a similar porosity (37%).  Velocities are higher despite the fact that 

the Mallik material contains about 50% clay minerals, which have lower elastic 

moduli than quartz. This difference illustrates the importance of cementation: at 

Mallik the matrix material (clay) is much more strongly connected than the laboratory 

quartz samples, and in our approach is modelled as 100% load-bearing, in contrast to 

the 1-5% connected laboratory sand sample described above.  The effect of hydrate 

cementation on velocity is much less in such circumstances than in the case of the 

laboratory samples.   

 

When plotted as a function of hydrate saturation, P and S wave velocities are quite 

scattered (Fig. 7) because they depend also on porosity and composition, which vary 

through the interval sampled.  In general, this scatter is larger than the variation of 

predicted velocities with degree of cementation for fixed porosity and clay content, 

though at high hydrate saturations there is some indication that a better fit is achieved 

to both P and S wave velocities if the degree of hydrate cementation is high, in 

contrast to the low degrees of cementation required for the laboratory data described 

above. This effect may be seen much more clearly if the degree of hydrate 

cementation required to match the observations is displayed as a function of hydrate 

saturation (Fig. 8), since then variations in porosity and composition may be 

accounted for directly.  Degrees of hydrate cementation inferred from S wave 

velocities differ little from those inferred from P wave velocities, again suggesting 

that we are achieving a reasonable approximation to the physics involved. 

 

Other datasets may be represented in the same way.  We have also modelled the 

results of Waite et al. (2004), who measured ultrasonic P wave velocities on hydrate-
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bearing samples of partially water-saturated sands.  Hydrate was made in these 

samples by passing gas through the samples at high pressure.  As with the resonant 

column results of Priest et al. (2005), these data are matched by a systematic decrease 

of hydrate cementation with saturation (Fig. 8), though the decrease is not as steep as 

for the dry samples of Priest et al.  Finally, we applied our method to measurements 

of P and S wave velocities made by Yun et al. (2005) on hydrate-bearing sand 

samples made using tetrahydrofuran in solution.  In contrast to the other laboratory 

datasets, these data are matched by very low degrees of hydrate cementation, and the 

inferred degree of cementation increases systematically with hydrate saturation (Fig. 

8). 

 

Discussion 

 

As with all effective medium methods, the SCA/DEM method requires some 

empirical adjustments to fit real data.  The advantage of the approach we describe 

above is that the adjustments can be related to something physical – the extent to 

which different components are load-bearing or “cementing”. Using a variety of 

published datasets, and assuming that the effect that we model as cementation is 

indeed cementation, we can determine how cementation varies with hydrate saturation 

based on independent determinations of the latter.  Results are consistent whether we 

use P or S wave velocities, and the inferred variations of cementation with hydrate 

content are systematic and approximately linear.  Unfortunately, the slopes of the 

trends in Figure 8 vary in both magnitude and sign depending on how the hydrate has 

been formed.  For samples made in a gas-rich environment. where hydrate may tend 

to form initially at grain contacts (Priest et al., 2005), the inferred hydrate cementation 

decreases with saturation.  For samples formed from solution, the inferred hydrate 

cementation increases with saturation.  For the in situ data from Mallik 2L-38, the 

inferred cementation increases with saturation, but more steeply than for the 

laboratory samples formed from solution.   

 

In many field situations, an analysis of the type described above will not be possible, 

because remote seismic observations form the only constraint available on hydrate 

saturations.  In such situations, the following approach may be taken: 
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1. Define a no-hydrate reference velocity curve based on velocities in regions 

where no hydrate is thought to be present (e.g., close to the seabed and/or 

beneath the base of the hydrate stability field), and use this curve and 

estimates of porosity to determine how the proportion of sediment grains that 

are load-bearing varies with porosity.  This step will be more robust if both P 

and S wave velocity measurements are available. 

2. Generate an empirical, linear or at least monotonic, fit between inferred 

hydrate cementation and hydrate saturation either using borehole data from the 

same area (if there is a borehole sampling hydrate), or from similar hydrate-

bearing sediments elsewhere.   

3. Assume that this empirical fit applies throughout the volume sampled by 

seismic data and hence infer hydrate saturations. 

The above approach is limited by the several assumptions that are required, including 

the assumption that the hydrate is uniformly disseminated in the pore space and that 

within the pore space it takes one of the forms described by the DEM theory. Given 

these assumptions, the main potential for error comes from the second step.  A way 

forward is to develop a larger database of in situ seismic velocity measurements 

where hydrate saturations are known independently.  Such a database is gradually 

emerging through scientific ocean drilling (Trehu et al., 2004; Expedition 311 

Scientists, 2005).   

 

An alternative, more direct approach may be to further develop geophysical 

techniques that remotely determine other sediment physical properties such as 

electrical resistivity.  The resistivity of hydrate-bearing sediments will depend also on 

the way the different components are connected, and in particular the connectivity of 

the fluid component.  Simultaneous remote measurement of both seismic and 

electrical properties would yield an additional constraint that may remove some of the 

ambiguities that come from the use of seismic data alone.  Interpretation of such 

datasets will require a joint effective medium approach that can model both seismic 

velocity and resistivity  (Ellis et al., 2005). 

 

Conclusions 
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From our effective medium calculations and their calibration through laboratory and 

borehole measurements, we conclude the following: 

1. The prediced physical properties of hydrate-bearing sediments depend more 

strongly on the assumed microstructure than on the particular effective 

medium model used to approximate them. 

2. Both laboratory and borehole measurements of the seismic velocity of 

hydrate-bearing sediments may be modelled successfully using a modified 

version of the SCA/DEM approach. 

3. For laboratory samples made in the presence of excess gas, the proportion of 

hydrate that is load-bearing appears to decrease with increasing hydrate 

saturation. 

4. For borehole data from the Canadian Arctic, and for laboratory samples made 

from solution, this proportion appears to increase with increasing hydrate 

saturation. 

5. Such systematic variations ultimately might be used to infer more accurately 

hydrate saturations from remote seismic data. 
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Figure Captions 

 

Figure 1.  Variation of P wave (larger values) and S wave velocities with hydrate 

saturation at fixed porosity (50%) and clay content (50%), for the four models 

discussed by Chand et al. (2004); other parameters required by the models are given 

by Chand et al. (2004).   Thick solid line corresponds to the SCA/DEM model of 

Jakobsen et al. (2000) with a clay-water starting model.  Thin solid line corresponds 

to the TPEM model of Helgerud et al. (1999) with hydrate forming part of the pore 

fluid.  Dashed line corresponds to the TPB model of Gei & Carcione (2003).  Dotted 

line corresponds to the weighted equation of Lee et al. (1996).   

 

Figure 2. Variation of P and S wave velocity with hydrate content for same materials 

as in Fig. 1, but for models in which hydrate forms part of the sediment frame.  Thick 

line corresponds to the SCA/DEM model with a clay-hydrate starting model.  Thin 

line corresponds to the load-bearing hydrate model of Helgerud et al. (1999).  Grey 

area marks the range of predictions from the rock physics based models (i.e., 

excluding the weighted equation) of Fig. 1. 

  

Figure 3: Results from applying the SCA/DEM approach of Jakobsen et al. (2000) in 

several different ways to a real continental margin sediment.  Sediment properties are 

those described by Hobro et al. (2005).  Upper set of curves correspond to P wave 

velocities and lower set of curves correspond to S wave velocities.  Thin solid lines 

mark results from using clay-water (lower curves) and clay-hydrate (upper curves) 

starting model.  Dotted curves mark results from the model used by Hobro et al. 

(2005) in which the clay-water and clay-hydrate models are linearly mixed.  Other 

lines mark results from the “variable cementation” approach of Chand et al. (2006). 

Thick solid lines mark results from assuming that the hydrate is 0% (lower curves) 

and 100% (upper curves) load-bearing.  Dashed line marks result from assuming that 

the proportion of hydrate that is load-bearing is equal to the hydrate saturation. 

 

Figure 4.  Estimates of hydrate saturation at the base of the hydrate stability field from 

the tomographic velocity model of Hobro et al. (2005): a) using the approach of 

Chand et al. (2006) and assuming that none of the hydrate is load-bearing; b) using 

the approach of Chand et al. (2006) and assuming that all of the hydrate is load-



 16 

bearing; c) using the approach of Hobro et al. (2005); d) using the approach of Chand 

et al. (2006) and assuming that the proportion of hydrate that is load-bearing is equal 

to the hydrate saturation. 

 

Figure 5. a) Squares mark P wave velocities derived from resonant column 

measurements by Priest et al. (2005) for loose sand, and circles for tight sand.  The 

higher velocities correspond to higher effective pressures.  Curves mark predictions of 

modified SCA/DEM model for a quartz-air mixture, labelled with the proportion of 

quartz that is considered load-bearing (see text).  b) Same as a) but for S wave 

velocities. 

 

Figure 6. Triangles with error bars mark velocities derived from resonant column 

measurements by Priest et al. (2005).  Curves mark predictions of the modified 

SCA/DEM model and are labelled with the degree of hydrate cementation, for sand 

with a porosity of 42.1%, which is the mean porosity of the laboratory samples: a) P 

wave velocities; b) S wave velocities (modified from Chand et al., 2006). 

 

Figure 7. Filled circles mark velocities from borehole logs as a function of resistivity-

derived hydrate saturation.  Both parameters are averaged over 10 m intervals down 

the borehole.  Lines mark predicted velocities from the SCA/DEM model for a 

porosity of 38% and a clay content of 57%, which are mean values for the interval 

studied.  Lines are computed for  degrees of hydrate cementation of 0%, 25%, 50%, 

75% and 100%. a) P wave velocity; b) S wave velocity.  

 

Figure 8. Degree of cementation required to match observed velocities using the 

modified SCA/DEM model for a variety of datasets.  Circles mark the Mallik 2L-38 

dataset (Collett et al., 1999); diamonds mark the data of Priest et al. (2005); squares 

mark the data of Waite et al. (2004); and triangles mark the data of Yun et al. (2005): 

a) only P wave velocities used b) only S wave velocities used c) degree of hydrate 

cementation optimised to match both P and S wave velocities, using the misfit 

function defined by Chand et al. (2006). 
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