The use of in-situ deployments to examine the success of water quality mitigation measures on a watercress farm

Melanie J. Dixon[‡] & Peter J. Shaw School of Civil Engineering & the Environment, University of Southampton, Southampton, SO17 1BJ, UK *[‡]* Corresponding author: mjd@soton.ac.uk

Introduction

Watercress has long been believed to affect macroinvertebrate communities in chalk streams ^[1]. Harvesting and washing watercress damages plant tissues and releases isothiocyanates which are potential toxicants to Gammarus pulex (L.)^[2].

Gammarus pulex pair

This study examined whether impacts on G. pulex of watercress farm factory wash water could be mitigated by treating via recirculation through the watercress beds.

Method

Deployments of caged G. pulex [3] were made in water carrier channels in peak growing season on two consecutive years. Borehole water only fed beds were used as controls. A 7-day immobilisation endpoint was recorded.

Cages deployed in carrier below watercress bed

Melanie Dixon

Telephone: +44(0)23 8059 4653 Email: mjd@soton.ac.uk

Results

Immobilisation (as % of total organisms deployed) was greatest in the wash water supply on 6 out of 8 occasions.

One way ANOVA with pairwise multiple comparisons (Holm-Sidak Method) was used to compare effects at each location (see table below).

1	3		
flow	flow Borehole supplied bed	Comparison	Significant Difference?
Washwater supplied bed		1 <i>US</i> . 2	Yes (p=0.010)
		3 <i>vs</i> . 4	No (p=0.335)
		1 <i>vs</i> . 4	Yes (p=0.043)
÷		2 <i>vs</i> . 3	No (p=0.811)
2	4		

Two way ANOVA on ranks with pairwise multiple comparisons was used to compare the response between and within sites. It revealed a statistically significant difference between responses of organisms in the wash water supply carrier to those in the carrier below the bed on 4 out of 8 test occasions.

Conclusions

Impact to G. pulex was variable, but overall reduced to levels comparable to controls after the factory wash water had been fed back through a watercress bed.

Re-direction of watercress wash water through the watercress beds prior to discharge to the receiving water is a positive treatment/measure.

Recent biological surveys ^[4] of the receiving water at the farm indicate that macroinvertebrate communities are recovering.

References

Newman RM et al (1992) The watercress glucosinolate-myrosinase system: a feeding deterrent to caddisflies, snails and amphipods, Oecologia, 92, 1-7

[3] Maltby L et al (1990) Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate, Ecotoxicology and Environmental Safety, **19**, 292-300

[4] ENVIRON (2008) Invertebrate Monitoring 2008, The Bourne Rivulet St Mary Bourne Hampshire, *Report* prepared for Vitacress Salads Ltd, Contract № 68-C13337