The University of Southampton
University of Southampton Institutional Repository

The remediation of tributyltin-contaminated dredgins and waters

The remediation of tributyltin-contaminated dredgins and waters
The remediation of tributyltin-contaminated dredgins and waters
Tributyltin (TBT) is a pollutant, mainly introduced to the environment as a marine anti-fouling agent. The aim of this work was to assess and develop sustainable and cost-effective remediation technologies for TBT-contaminated dredged materials. For this purpose, analytical methods were developed for sediments and sediment leachates.
For the sediments, a triple extraction followed by derivatisation and measurement by gas chromatography with pulsed flame photometric detection was employed, avoiding the lengthy concentration step of the organic layer. The TBT detection limit of ca 0.04 mg Sn/kg in sediment was below the suggested limit of 0.1 mg/kg for sea disposal of TBT-contaminated dredgings (OSPAR Commission). For the leachates, derivatisation and extraction into hexane was used. Also, a new procedure, with the potential for automation, was developed for the simultaneous analysis of multiple water samples, based on in situ extraction and derivatisation on C18 solid phase extraction cartridges. No legislative limits existed for TBT in leachates, therefore the detection limits of ca 6-10 ng Sn/L achieved were regarded satisfactory, as they were below or similar to the EQS for coastal and estuarine waters or freshwaters (2-20 ng/L TBT). A pilot investigation was carried out on a dockyard to evaluate the use of X-Ray fluorescence as a screening method for the presence of TBT in sediments. Due to tin contamination such a technique was not suitable for the site examined.
Incineration was found to remove TBT but it would incur very high costs. Ultrasonic destruction was not effective enough, even on TBT-spiked water solutions. Carbon products, pure clays, organically modified clays, zero valent iron, fly ash and cements were screened for their abilities to prevent TBT leaching, using a leaching test. The best performer was a powdered activated carbon product which, even mixed with cement that increases the leaching of TBT, delivered a TBT-free (< 5 ng Sn/L) leaching test result 33 days after the mixing. The result showed that this technique could provide a solution for the immobilisation of TBT in contaminated dredgings by mixing this relatively low-cost, multi-purpose and inert additive, with or without cement according to the site specific requirements.
Gkenakou, Evgenia-Varvara
930e5858-c791-4350-818b-ba879813d0ed
Gkenakou, Evgenia-Varvara
930e5858-c791-4350-818b-ba879813d0ed
Howard, Alan
620d87f5-647a-404c-834a-8d8dd09781dd

Gkenakou, Evgenia-Varvara (2008) The remediation of tributyltin-contaminated dredgins and waters. University of Southampton, School of Chemistry, Doctoral Thesis, 203pp.

Record type: Thesis (Doctoral)

Abstract

Tributyltin (TBT) is a pollutant, mainly introduced to the environment as a marine anti-fouling agent. The aim of this work was to assess and develop sustainable and cost-effective remediation technologies for TBT-contaminated dredged materials. For this purpose, analytical methods were developed for sediments and sediment leachates.
For the sediments, a triple extraction followed by derivatisation and measurement by gas chromatography with pulsed flame photometric detection was employed, avoiding the lengthy concentration step of the organic layer. The TBT detection limit of ca 0.04 mg Sn/kg in sediment was below the suggested limit of 0.1 mg/kg for sea disposal of TBT-contaminated dredgings (OSPAR Commission). For the leachates, derivatisation and extraction into hexane was used. Also, a new procedure, with the potential for automation, was developed for the simultaneous analysis of multiple water samples, based on in situ extraction and derivatisation on C18 solid phase extraction cartridges. No legislative limits existed for TBT in leachates, therefore the detection limits of ca 6-10 ng Sn/L achieved were regarded satisfactory, as they were below or similar to the EQS for coastal and estuarine waters or freshwaters (2-20 ng/L TBT). A pilot investigation was carried out on a dockyard to evaluate the use of X-Ray fluorescence as a screening method for the presence of TBT in sediments. Due to tin contamination such a technique was not suitable for the site examined.
Incineration was found to remove TBT but it would incur very high costs. Ultrasonic destruction was not effective enough, even on TBT-spiked water solutions. Carbon products, pure clays, organically modified clays, zero valent iron, fly ash and cements were screened for their abilities to prevent TBT leaching, using a leaching test. The best performer was a powdered activated carbon product which, even mixed with cement that increases the leaching of TBT, delivered a TBT-free (< 5 ng Sn/L) leaching test result 33 days after the mixing. The result showed that this technique could provide a solution for the immobilisation of TBT in contaminated dredgings by mixing this relatively low-cost, multi-purpose and inert additive, with or without cement according to the site specific requirements.

Text
Eva_Thesis.pdf - Other
Download (3MB)

More information

Published date: December 2008
Organisations: University of Southampton

Identifiers

Local EPrints ID: 67188
URI: http://eprints.soton.ac.uk/id/eprint/67188
PURE UUID: 71026a1d-7758-4475-be75-9b593415e899

Catalogue record

Date deposited: 07 Aug 2009
Last modified: 13 Mar 2024 18:45

Export record

Contributors

Author: Evgenia-Varvara Gkenakou
Thesis advisor: Alan Howard

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×