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Towards detection of perceptually similar sounds:
investigating self-organizing maps

Christian Spevak; Richard Polfreman; Martin Loomes
Faculty of Engineering and Information Sciences
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College Lane, Hatfield, AL10 9AB
{c.spevak; r.p.polfreman; m.j.loomes} @herts.ac.uk

Abstract

This paper outlines a system for the detection of perceptually simlar sounds (‘sound spotung'), reports on a series
ot prehminary experiments and discusses therr results  The sound spotung system pursues a frame-based approach
and consists of three mam stages. an auditory model, a self-o1gamizing map and a pattern matching algorithm. The
expentments described examine how different types of self-organizing maps classify a set of test sounds preprocessed by
an auditory model and evaluate their performance by means ot visualizations and quality measures. With these outcomes
i mund we suggest direcuions for the further development of the sound spotting system.

1 Introduction

Our research addresses a particular problem within the
field of content-based retrieval, which can be described
as souned spotting. the detection ot perceptually sumilar
sounds 1n a gnven sound document, using a query by ev-
ample, 1 e. selecung a prototype sound and searching for
occurtences of sumilar sounds Solutions to this problem
would be applicable to indexing/retrieval of sounds in dig-
ital archives as well as transcription and analysis of non-
notated music

Over the last ten years a number of researchers have
imvestigated connectionist approaches to model the per-
ception of timbre (Feiten and Gunzel, 1994, Toiviainen,
1997: Towviainen et al., 1998, Cost et al., 1994, De Polt
and Prandoni, 1997). Sounds are preprocessed with a
stmplified model ot the auditory periphery, and the re-
sulung feature vectors are classified by means of a self-
organizing map, which projects multidimensional input
vectors onto a lowdimensional topological surface. An
introduction to this area including a brief literature survey
has tecently been gven by Totviatnen (2000).

Our concept attempts to extend these models by deal-
ing with evolutions of timbre, pitch and loudness 1n a dy-
namic, trame-based approach involving the stages listed
below.

The raw audio data is preprocessed with an auditory
model to obtain a perceptually relevant representation; for
the puipose ot datd reduction the signal 1s subsequently
divided mnto short frames, each of them consisting of a
feature vector

Anelf-orgainzing map (SOM) is employed to perform
a vector quantization and a topology-preserving mapping

of the feature vectors. At this stage a sound signal cotre-
sponds to a trajectory on the map.

Finally pattern matching is applied to detect trajecto-
11es or sequences of feature vectors “similar’ to a selected
prototype. We are currently testing a Dynanuc Program-
ming algorithm (DP matching)

This paper evaluates the peiformance of different sell-
arganizing maps—varying in size, dimensionality, type
of lattice, and shape—n combination with an auditory
model and a set of test sounds. The results of these experi-
ments lead to further suggestions concerning the structure
of the proposed sound spotting system.

Experiments mvestigating the effect of different aud:-
tory representations combined with one particular type of
SOM have already been discussed in a previous paper!
(Spevak and Polfreman, 2000).

2 System components

2.1 Auditory model

The auditory model used here combines an auditory fil-
terbank and an inner han cell model. The filterbank con-
sists of fourth order gammatone filters, which provide a
good fit to human auditory filter shapes (Patterson and
Holdsworth, 1996). The inner hair cell model. developed
by Meddis (1986). simulates mechanical to ncural trans-
duction n each filter channel by modeling the transmitter

"The SOMs comsisted ot approuimately 80 umits, manged n a
liexagonal, sheet-shaped latnice The auditory representations examimned
tncluded the gammatone tilterbank m combmation with an mner han
cell model, Lyon's cochieat model, and mel-frequency cepstral coelh-
vients (MPCC) The gammatone model produced the most convincing
wesults and was theretore chosen tor ths study



release from hair cells mnto the synaptic cleft Its output
1epresents the mstantaneous spihe probability 1 a post-
synaptic auditory nerve fiber, showing features such as
adaptation and phase locking to low-frequency periodic
stimult

The experiments were carried out with 64 filter chan-
nels covering a trequency range from 100 Hz to 10 kHz,
using a sampling rate of 22 05 kHz To reduce the amount
ot data?, but still be able to track quick changes of pitch
or timbre, the output was lowpass filtered and decimated
to a trame rate of 100 Hz

2.2 Self-organizing map

Selt-organizing maps constitute a particular class of ai-
theial neutal netwotks, developed by Kohonen (1997)
and mspired by brain maps, such as the tonotopic map
of pitch mn the auditory cortex A SOM 1s able to map
high-dimensional wnput signals onto a low-dimensional
grid while preserving the most important topological re-
lations, so that sumilar mput signals are usually located
close to one another The self-organization takes place
during an unsupervised tramming phase the preprocessed
data 15 1epeatedly presented to the network, which adapts
1ts werght vectors according to the topology ot the nput
signals, thus forming a feature map

2.2.1 The SOM algorithm

In the tollowing the basic SOM algorithm, also known
as meremental learmng?, 1s briefly described A SOM
conststs ot neurons arranged on a low-dimensional latiice
Each neuron 1s assoctated with an n-dimensional weight
vector m = [my, ms my], whete n corresponds to
the dimension of the mput signal The weight vectors are
mttialized randomly or lineatly according to the distiibu-
uon of the tainmg data Traiming 1s performed iteratively,
in each step, a sample vector x 1s chosen randomly from
the set of input data, and the distance to each of the weight
vectors 1s caleulated  The neuron whose weight vector
1 15 most sumilar to the mput vector x, as defined by the
condition

Ix(t) = me(O)f = mun [[x(t) —m, (O, ()
15 dentilied as the best-matchng wint (BMU) or the
winner (winnet-tahes-all” function)  Subsequently the
weight vectors of the best-matching unit and 1ts topolog-
1cal nerghbours aie updated toward the nput vector The
SOM update 1ule 15 expressed by the follow ing equation

m,(t -+ 1) = m,(t) + a(t)h, @) [x(t) - m,(t)], 2)

The anditory model imtially produces a 64-element vector tor each
suuple e aninceases the amount ot data sigmifreantly

We actundly used o taster vanant the burch prating algorthon
wluchiis tunctionafly equisalent
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Table I Sound set comprising simple synthesized tones
and noise signals ‘<’ denotes cteasing and >’ de-
creasing amphtude

# Waveform frequency #
01  noise band, 0-1 kHz 12
02  nowse band, 1-5 kHz 13

Waveform, frequenc)
sme octaves, 2/4 KHz
smne oct , 400/800 Hz

03 white noise 14 sre <, I kHz

04 square, 100 Hz 1S sire >, 1 kHz

05 square, | hHz 16 sine 100 Hz

06 square < | kHz 17  sine, | kHz

07  square >, | kHz 18  sine 500 Hz

08  square, 500 Hz 19  sine SkHz

09 square, S kHz 20 tnangle, | kHz

10 sme sweep 0-10kHz 21 triangle, 100 Hz

11 sme and notse bursts 22 rongle S00 Hz
23 tnangle SAHz

whete m, denotes the weight vector of the 7 th neuion,
X the mput vector, ¢ the discrete tme coordinate, a the
learning rate, and h, the neighbourhood kernel around
the winner unit ¢

The training 1s usually pertormed 1n two phases the
ordering phase, typically consisting ot 1000 steps, and the
fine-tuning phase, extending across 10,000 steps or more,
depending on the size of the map During the ordering
phase both the learning rate and the neighbourhood ker-
nel decrease trom their large nitial values to small values
used tor fine-adjustment, e g the neighbourhood radius
may shink from halt the diameter ot the netwoik to the
distance between adjacent neurons

3 Methodology

3.1 Sound set

The test sound set comprised 23 monophonic synthesized
signals of 2 s duration, sampled at 22 05 kHz Each sam-
ple consists of a 1 s sound event framed by halt a second
of sifence The set includes white and band-limited noise,
steady sine, triangle and square wave signals at various
{requencies, a sine pitch sweep trom 0-10 kHz, sine oc-
taves, sime and square waves with icreasing and decreas-
ing amplitude respectively, and a sample ot quickly alter-
nating tone and notse bursts Table | provides a complete
list

3.2 Tools

The experiments have been carried out in Marlab®, an
integrated environment tor numeric computation, visu-
alization and programming The simulation of auditory
models and neural networks was tacilitated by the use ot
specialized ‘toolboxes” 1n addition to the main program,
1 particular the Auditory Toolbor (Slaney, 1998) and the
SOM Toolbor for Matlab 5 (Vesanto et al, 2000)
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Figure | Block diagram showing the individual steps carried out during training and simulation of a selt-organizing map

with a set of sounds

3.3 Outline of the experiments

Neural network experiments ate typically made up of two
man patts franung and sunulation In this case the tran-
ing phase mvolved the preprocessing of the entire sound
set with an auditory model and the decimation to a lower
trame rate, the imtiahization and training ot a SOM, and
finally the visuahzation of 1ts cluster structure The simu-
lation phase served to determine the trajectory of a partic-
ular sound by finding the cortesponding sequence ot best-
matching units and producing a visuahization Figuie |
anves an overview ot the individual stages and processing
steps

3.3.1 Visualization of the cluster structure

The U-mati v or untficd distance matiix shows the cluster
structure of a self-orgamzed map by visuahzing the vec-
tor space distances between adjacent map units i difter-
ent shades of grey Clusters of sumilar units stand out as
light patches, surrounded by darker borders This repre-
sentation was used to visually inspect the SOM once the
tamning was completed  (An example 15 shown 1n Fig-
ue 3)

3.3.2  SOM quality analysis

Each ttamcd SOM was subjected to a quality analysis by
determining the ayerage quantization enror and the topo-
graphic crror The tormer measures the goodness ot fit
between the taimnng data and the SOM weights Tt s de-
fined as the mean of the Euclidean distances lix — m ||
between the ttamning vectors x and their respective BMU
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m. The topographic error quantfies the accuracy ot the
SOM in pieserving the topology ot the trauning data It
indicates the percentage of training vectors tor which the
BMU and the second-BMU are not adjacent map units

3.3.3 Visualization of trajectories

The sequence of BMUs corresponding to a sound can be
visualized as a trajectory on the SOM’s two-dimensional
lattice  To analyze the tiajectories cortesponding to the
tests sounds we developed an ammated 1eptesentation
where the tajectory 1s buwlt up trame by trame m slow
motion The representation mncludes a wavetorm picture
of the sound with a moving pointer indicating the curient
position Figure 2 shows an example of a stull rame

Thiee-dimensional SOMs were visualized by a ‘halt-
open box’, consisting of one vertex and the three adjacent
taces seen from the nside, where the position of the cur-
rent BMU was indicated by a red dot and 1ts projections
onto each of the three faces

4 Results
4.1 SODNMsize

How do dittetent SOM «izes influence the mapping of &
given data set, and what 1s the rdeal size? Vesanto et al
(2000) recommend to dernve the number of map units
from the number of tamnmg vectors, using the heutistic
tule iy = 5/ny Following this equation we created
a “medium -sized SOM and compared 1t to a *small and
a4 Clarge’ map comprising of % and 4 tumes the number ot



Figure 2: Still frame from a film visualizing the trajectory
produced by a square wave with increasing amplitude

Table 2: Comparison of quantization error, topographic
error. BMU percentage and training lengths for three dif-
terent SOMSs, consisting of a two-dimensional, hexag-
onal, sheet-shaped lattice. The training data was de-
rived from approximately 435 s of sound. Durations were
recorded on a Pentium 11 450 MHz PC.

map size ‘small’ ‘medinm’ ‘large’
number of units 88 340 1353

(11 x 8) (20 x 17) (41 x 33)
quantization error 0.00186 0.00044 0.00023
topographic error 42% 4.9% 3.6%
BMU percentage 85% 62% 51%
ordering phase I cycle 1 cycle 3 cycles

(<1s) (5s) (115s)
fine tuning phase | cycle 3 cycles 12 cycles

(1s) (155%) (562 s)

map units, respectively. Table 2 details the sizes and typ-
ical measurements, such as errors and training lengths.

Judging by the quality measures the large SOM shows
the best adaptation to the training data: it has the low-
est average quantization error as well as the lowest topo-
graphic error?, However, the training time increases dis-
proportionately to the SOM size, because the larger num-
ber of units requires more training cycles as well as more
computations during each cycle. Training is performed
quite efticiently for the small and medium-sized SOMs
and becomes very expensive for the large SOM.

The measure BMU percentage expresses the share of
the SOM units that serve as a best-matching unit at least
once when the complete training set is presented to the
ordercd map. In this context the measure provides a use-
tul indication of the SOM's efficiency, because the SOM
is presented with the whole range of data during the train-

*The dilferences between the topographic ercors are not very signit-
teant, because there 18 no obvious correlation between SOM size and
topographic error
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Figure 3: Labeled U-matrix of a 'medium’-sized SOM
trained on the preprocessed test sounds. The numbers
on the map refer to the steady state locations of the test
sounds listed in Table 1. ‘Silence’ is located near the
lower left corner of the map, surrounded by a large cluster
of similar weight vectors.

ing phase and is not expected to generalize to new data.
Therefore interpolated units that do not act as BMUs are
largely superfluous. The BMU percentage and thus the
efficiency of the SOM clearly increase for smaller maps.

The U-matrices of the larger maps exhibited a distinct
cluster structure, as shown in Figure 3, where clusters of
neurons with similar weights are separated fromn one an-
other by larger distances in weight space. Such a clus-
ter structure complicates the targeted detection of similar
trajectories, because the pattern recognition system would
have to distinguish between units located in the same clus-
ter and units located in different clusters. However, the
exact definition of a cluster is ambiguous, because the
borders often become blurred. Therefore *small” SOMs
that reduce most of the clusters 1o single units seem to
be more appropriate. And on top of that smaller SOMs
are computationally much more etficient. But since they
have a lower resolution, it is important to define a criterion
for the desired minimum resolution. Labeling the best-
matching units corresponding to the steady states of the
test sounds showed that in this case even the small SOM
was able to ‘resolve’ the different sounds. However, for
less repetitive sets of sounds® it may be more appropriate
to use a ‘medium’-sized SOM.

4.2 Dimensionality

It is theoretically possible to construct SOMs that span
an arbitrary number of dimensions, but more than three
dimensions are very rarely used in practical applications.

*Since half of the training data consisted of silence and most sounds
had a steady spectrum the actual number of differens training vectors
was much Tower than the overall number




Table 3 Compatison ot quantization error, topographic
eitor and BMU percentage tor one-, two-, and three-
dimensional SOMs consisting of approximately 90 units
artanged 1n a1ectangular latuce

dimenstonality 1 2 3
number of units 88 8 90

(8%) (11 x 8) (6x5x%3)
quantization error 00041 00017 00021
topogtaphic error 24% 16 5% 57%
BMU percentage 3% 80% 71%

Two-dimensional maps are most common, because they
lend themselves very well to visualizauon De Poli and
Tonella (1993) classihed sounds with three-dimenstonal
maps to constiuct a three-dimensional tmbie space orig-
mally detrved from stmilarity ratings by Giey (1977)

We studied the performance of one-, two- and three-
dimensional SOMs of similar size, using a sheet-shaped
rectangular lattice” The exact dimensions and the result-
ing quality measures are listed 1n Table 3

Interestingly the one-dimensional SOM had the low-
est topographic ertor and the highest BMU percentage
indicating an accurate topological organization and high
ethciency On the other hand 1t showed the highest quan-
tization erior, 1¢ 1t approximated the mdnidual train-
ing vectors less closely than the higher-dimensional maps
For the two-dumensional SOM the petformance seemed to
deterorate in connection with a rectangular latuce result-
ing 1 an exceptionally high topographic error (¢f Sec-
uon 4 3) The thiee-dimensional SOM had the lowest
BMU percentage and medium error values  Altogether
1t did not seem to provide any clear advantages over the
two-dimensional map

4.3 Lattice

Companing the pertormance of two dimensional SOMs
diftering only mn therr latice structure revealed a strik-
g discrepancy between the topological ertor values as
shown i Table 4 The topological ertor was much higher
tor a rectangular lattice than tor a hexagonal one  Tlus
may be determined by the fact that a umit 1n a hexagonal
lattiee 15 suttounded by siv equidistant neighbours, while
aunttin a rectangular lattice has tour next neighbours and
four *dragonal” neighbours  The latter do not count as
nerghbouts 1 the calculation ot the topological error but
they wie meluded by the Gausstan neighbourhood tunc-
tton used to update the weight vector during the tramning
phase  The differences 1n quintization error and BMU
peicentage are less noticeable but altogether the hexago-
nal lattice seems to be preterable Kohonen recommends
it pacticulaily for visuahzation because a rectangular grid
tends to tavour horizontal and vertical directions (Koho-
nen 1997 p 120)

£ sty hexagon u Littiee canonly be reilized i two dumensions
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Table 4 Comparison of quantzation erroi, topographic
error and BMU percentage tor hexagonal and rectangular
lattice SOMs

Inttice hex rect hex rect

units 88 88 340 340
(I1x 8 (11xs) (20x17) (20x17)

quant err 000186 000168 (00044 0 00043

topogr et 42% 16 5% 49% 12 5%

BMU % 85% 80% 60% 62%

4.4 Shape

The plane sheet 15 not the only possible shape for a selt-
olganiZing map—it can be ‘wrapped around 1 one or
two dimensions resultung i a evlmdric or torardal map
espectinely However neither of these alternative shapes
seemed to be particulaly well suited to own data the ertor
values ncieased and the visuahizations looked contus-
ing because clusters stretched across the edges Toroidal
maps are only recommended if the data itselt has a cyclic
structure Musical keys tor mstance can be arranged 1n
a cucle of fifths  Leman (1994) successfully employed
torordal SOMs for tone cenue recognitton, and Purwins
ctal (2000) turther developed the system to trach modu-
lations 1n tonal music

4.5 Summary

Our nvesugation of self-orgamizing maps combined with
an auditory model to classity sounds suggested that a rel-
atively small SOM based on a hexagonal, sheet-shaped
lattice would be the preferable solution The ditferent
sounds wete clearly separated on the map and grouped
according to therr pitch, or tundamental trequency How-
ever, even with the ‘optimal” SOM the organization of the
sounds on the map was tar trom pertect when compared to
our perception  pairs of sounds having the same distance
on the map could be either perceptualtly sumilar or entirely
ditterent, depending on the respective cluster structure

5 Discussion

A self-organizing map can be a powertul visualization
tool but 1t seems to be less suntable to actually quan-
uty ‘stmularity’ Because ot the tnhomogeneous distribu-
tion of weight vectors the distance between best-matching
units on the map does not constitute a particularly suitable
distance measute tor the corresponding sounds  Toni-
ainen (1996) corroborates this by stating that correlations
between subjective similarity ratings and distance metrics
on the SOM were usually lower than those obtained using
the distances between the preprocessed feature vectors
He argues that the dimensionality 1eduction m the SOM
distorts the mettical relattonships between the input vee-
tors



Considering these results there are several possibili-
ties to complete the sound spotting system described 1n
the introduction. the pattern matching algorithm could e1-
thet be applied to the index number of the best-matching
units (pertorming a st ing matcling task) or to the corie-
sponding weight vectors, or directly to the feature vectars
produced by the auditory model The former two variants
reduce the SOM to a vector quantization device (neglect-
ing the topology-preserving mapping), while the latter by-
passes it completely

Out tuture research will examine these possibihities 1n
detail and assess therr performance by correlating it with
simifatity 1atings obtained from expert listeners, using a
more comprehensive set of sounds
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