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SUMMARY
In previous work, a series of theoretical considerations have been made aimed at
identifying the source and assessing prominent factors influencing the thermoelastic
response from laminated composites. In this paper four different methods of interpreting 
the data are investigated and the theoretical thermoelastic response is compared to 
experimental data to identify the source of the thermoelastic response.
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Introduction

Thermoelastic stress analysis (TSA) is based on infra-red thermography, where the 
small temperature changes resulting from changes in elastic stresses are obtained by 
measuring the change in infra-red photon emission. The technique has advantages over 
other experimental techniques through its ability to provide full-field, non-contact stress
data from structures under dynamic load in practically real time. A full understanding of 
the effect of the fundamental uncertainties, such as the source of the thermoelastic 
signal and the influence of the applied loading conditions, on the response is critical if 
quantitative stress data is to be extracted from the thermal measurements.

Previous research [1] has shown that the interpretation of the thermoelastic response 
from orthotropic composite materials requires special consideration. The influence of 
the surface resin rich layer that occurs in composite components as a consequence of the 
manufacturing process has been investigated and was used as a basis for calibration. 
The work [1] showed that for E-glass/epoxy pre-preg laminates consideration of the 
surface resin layer as the source of the response does not provide satisfactory
agreement. In the current paper it is shown that the ‘strain witness’ assumption [2, 3] is 
only valid for composite laminates with sufficient surface resin thickness to prevent heat 
conduction. To interpret the thermoelastic response from an orthotropic laminated 
composite material the usual approach [4, 5, 6], is to assume that the response is a 
function of the surface ply stresses and their associated coefficients of thermal 
expansion (CTE). In this work a further two theoretical approaches are explored; (i) the 
thermoelastic response of the laminate is governed by its global mechanical and thermal 
properties, and (ii) a combination of the ply by ply mechanical properties combined 
with global thermal properties. This gives four possible means of interpretation, all of 
which are discussed in the paper.



Influence of the surface resin rich layer on thermoelastic response

In previous studies [2, 3] it has been assumed that the response is from the surface resin 
layer, it is said to act as a ‘strain witness’. Therefore the resin must be such that it 
prevents the temperature change that occurs in the surface ply from conducting through 
the resin to the material surface. To act as a strain witness the surface layer must be thin 
compared to the thickness of the specimen so that the laminate strains are fully 
transmitted from the surface ply to the surface of the resin. If the resin is acting as a 
strain witness then the strain in a given direction in the resin layer is equal to the strain 
in the same direction in the laminate so the sum of the principal strains in a composite 
laminate can be related to the stresses in the resin layer as follows:
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where E is Young’s modulus and  is Poisson’s ratio, x and y are the change in the 
principal stresses and the subscript c and r represent composite and resin respectively. 

The temperature change, T in the surface resin layer is related to the measured strain 
by substituting the right hand term in Equation (1) to give:
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where T is the surface temperature, is the density and Cp is the specific heat at 
constant pressure,  is the coefficient of thermal expansion (CTE) in the principal stress 
directions.

For an orthotropic material the stresses are coupled with CTEs in the direction of 
interest as follows[4]:
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It would therefore be very convenient to be able to apply the strain witness assumption 
to composite components so that the coupling between the stresses and the CTE can be 
neglected in the analysis. 

Equation (2) shows that for laminates made with the same resin with different lay-ups,
the thermoelastic temperature change from the surface resin layer should be the same if 
the sum of the direct strains is constant. Previous work by the authors [1] has shown that 
this is not the case. It should be noted that the stresses in the orthotropic layers of a 
composite laminate vary with fibre orientation and moreover it is certain that the stress 
carried by the resin surface layer will be small compared to that of laminate. This means 
the stress induced temperature change in the resin surface layer will be different to that 
in the surface ply of the laminate and depending on the ply orientation may cause large 
temperature gradients between the surface layer and the orthotropic substrate. Heat 
transfer between the resin and the laminate and vice versa is therefore a distinct 
possibility. The measured surface temperature changes could therefore be a result of the 



‘strain witness’ effect, a result of heat transfer through the resin giving a response from 
the surface ply, or a combination of both. The response is clearly dependent on the 
thickness of the surface resin and the orientation of the subsurface ply.

In TSA, a cyclic load is applied to achieve pseudo adiabatic conditions. The question is 
at what frequency is heat diffusion through the resin rich surface layer prevented so that 
it can act as a strain witness. To address this, an aluminium strip specimen of 
dimensions 105 x 13 x 1.2mm was prepared with part of the surface coated with epoxy 
resin (60 m thick) and the other part coated with two passes of RS matt black paint. 
This specimen was devised as it is impossible to remove the epoxy layer effectively 
from the surface of a composite laminate. Furthermore, it is extremely difficult to 
manufacture a fibre reinforced polymer composite without a surface resin layer, 
particularly if a vacuum consolidation is used. Therefore it was decided to add a resin 
layer to a simple specimen. To examine if at practical laboratory loading frequencies 
adiabatic conditions could be achieved the specimen was subjected to a constant 
uniaxial stress range of 52.2 MPa whilst the loading frequencies was varied from 10 to 
60 Hz. Under pure tension loading, the stress is uniform and therefore no heat transfer 
in the specimen, enabling the diffusion characteristics of the coatings to be examined in 
isolation.  If the response is constant over the frequency range this is a good indication 
of adiabatic behaviour.

The temperature changes measured from the painted and epoxy coated parts of the 
specimen are shown in Figure 1. Using the material properties for the aluminium given 
in Table 1 it is possible to derive a theoretical temperature change for the aluminium; 
this is shown in Figure 1. It is also possible to derive the temperature change for the 
epoxy acting as a strain witness using the values given in Table 1. It is assumed that the 
emissivity of the paint and the epoxy is 0.92 [7, 8]. The response from the painted 
surface is constant over the frequency range and virtually identical to the calculated T 
value. This is a clear indication that the response is adiabatic and the paint coating is 
sufficiently thin to allow complete heat transfer from the surface of the aluminium to its 
surface.  The measurements from the resin do not correspond with the calculated value 
for the strain witness response and show a monotonic decrease over the frequency 
range. As the frequency increases the values approach the strain witness value. 
However, at lower frequencies these results indicate that there is heat transfer from the 
interface between the epoxy and the aluminium to the surface of the resin. As the resin 
layer is usually much thinner than 60 m in a polymer composite this clearly indicates 
that the orthotropic surface layer has a significant role in the thermoelastic 
measurements. 

To apply the findings of the above to composite laminate, a 2D heat transfer model was 
constructed to determine the thickness of the surface resin required to prevent heat 
conduction in order for the ‘strain witness’ assumption to be applicable. The model was 
constructed using ANSYS with PLANE55 thermal elements. The model showed that a 
loading frequency above 33 Hz is required for the ‘strain witness’ treatment to be 
applicable. This finding is somewhat supported by the data in Figure 1 as at around 
30Hz the response seems to become uniform. However the difference between the 
experimental and calculated value could be attributed to differences in mataterial 
properties and the emissivity. The same model was implemented for a unidirectional 



laminate (to consider the resin layer and composite material interface). The initial 
uniform temperature in the surface layer was calculated using Equation (2) and at the 
interface, using Equation (3), see Table 4. The FE results showing the relationship 
between the resin thickness and the loading frequency for thermal equilibrium to be 
achieved in the surface resin layer for UD(0) and UD(90) are shown in Figure 3. This 
clearly shows that for a loading frequency of 10 Hz, for the given temperature gradient 
the resin layer thickness should be minimum of 90 m for UD(0) and 100 m for 
UD(90) so that the surface measurements are not affected by the heat transfer. The 
thickness of the resin layer for the specimens used in this work is 30 m according to 
Figure 3, a loading frequency of approximately 67 Hz for UD(0) and 112 Hz for 
UD(90) are required to achieve adiabatic conditions for the ‘strain witness’ treatment to 
be valid. This shows that for the material considered in this work (considering the 
temperature gradient between the interface and surface layer), the result of heat transfer 
through the resin gives a response from the surface ply. Therefore, in the next section in 
the paper explores fully the interpretation of the fibre orientation on the thermoelastic 
response.  

Table 1: Mechanical and physical properties of unidirectional E-glass/epoxy pre-
impregnated composite, epoxy and aluminium

Young’s 
Modulus 

(GPa)
Poisson’s ratio

CTE,
(x 10-

6/oC)Specimen

E1 E2 12 21

Density, 
ρ (kg/m3)

α1 α2

Specific 
heat 

capacity,
Cp

(J/(kgoC))

Thermal
Conductivity

k
(W/moC)

UD 34.2 10.0 0.325 0.100 1230 9 31 843 -

Epoxy 4.2 n/a 0.413 n/a 1207 52 n/a 1230 0.175

Aluminium 68 n/a 0.330 n/a 2700 21 n/a 900 -

.
Figure 1: Change in the surface temperature of aluminium coated with an epoxy layer 

and paint coating



Figure 2: The relation between the thickness of the resin rich and the required loading 
frequency to achieve adiabatic conditions (from 2D FE analysis)

Thermoelastic response of a composite lamina 

In most studies of composite materials using TSA [4, 6] it has been the case that the 
materials examined and the loading are such that the material axes (1, 2) (i.e. axis 
system referenced to the fibre direction) coincide with the principal stress axes (x, y) in 
the lamina, see Figure 3(a).  However, when a lamina is subjected to general stress at an 
angle in relation to the principal material direction, the principal stress axes will not 
coincide with the material axes (see Figure 3(b)). The temperature change measured in 
TSA is a scalar physical quantity that is independent of the system axis. Therefore an 
expression of the T in one axis system (e.g. the 1, 2 axes) in terms of another axis 
system (i.e. the x, y axes) should be equal. The only tensor quantities in Equation (2) are 
the coefficient of thermal expansion and the stresses. Therefore, the product of these 
terms in any two arbitrary axes (e.g. i, j) should be equal: 
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i, j i, j x,y x,y 1,2 1,2
                                                                                     (4)

To prove that the equation is valid, it is necessary to perform the transformation of the 
CTE and the stress: 
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where T is the transformation matrix 

The coefficients of thermal expansions are second-order tensors and therefore they 
transform like the strain components, (i.e. s = 2xy). In which, xy is the shear CTE on 



the x axis along the y direction and yx is the y axis along the x direction (i.e. yx =xy) 
and s is the total measure of the CTE in the x-y plane (also known as the engineering 
shear coefficient of thermal expansion). 

Therefore, the transformation relation is given as:
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The transformation of stress is given as:
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By multiplying Equations (6) and (7) it can be shown that:
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Therefore the general term    T

i, j i, j
  can be concluded to be an invariant. However, in 

the lamina principal material directions 6 = 0 and in the principal stress directions s is 
zero so for these two cases equation (8) reduces to:

Figure 3: Schematic diagram of the coordinate system and nomenclature (a) on axis laminate

 (b) off-axis laminate
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To compare the measured  T value with a measured strain value for validation 
purposes , it is necessary to reformulate Equation (8) in terms of applied strain in the 
laminate:
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where [Q]1,2 is the material stiffness matrix. 

Equation (10) can be expanded as:           
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When a uniaxial tensile stress is applied to a balanced orthotropic laminate the shear 
strain in the laminate (sL) is zero, x = xL and y = yL so Equation (11) can be 
simplified as:
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For a balanced orthotropic laminate constructed from ±45o angle ply Equation (12) can 
be further simplified to:
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The introduction of stress invariant concept, in order formulate the temperature change 
from the orthotropic substrate clears any confusion relating to the use of reference axes
for the system [9]. It is clear that a consistant use of any axes system is acceptable.  

Thermoelastic response from a multidirectional composite laminate 

When assessing the behaviour of a general multidirectional composite laminate 
(consisting of lamina with arbitrary orientations) classical laminate plate theory (CLPT) 
is used so that the material can be treated as a homogeneous orthotropic plate. Here the 
mechanical and thermoelastic properties are considered ply by ply and then brought 
together relative to (say) the laminate axis to provide a ‘global’ stiffness and CTE. For 
quasi-isotropic laminates (i.e. (0, 90)s and (0, ±45, 90)s) it is evident that the global CTE 



is equal in the longitudinal and transverse directions (i.e. = xL = yL)  because of the 
stacking sequence. Therefore, it may be pertinent to express the thermoelastic 
temperature change in the following manner:
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where Aij is the global stiffness of the laminate. 

Equation (14) simply assumes that the material response is that of a homogeneous 
orthotropic material. A further and as yet unexplored idea is that the CTE is coupled in 
the stack (i.e. the thermal strain is constant in the through thickness direction) with the 
surrounding layers and this also may have an effect on the response. To explore this, the 
orthotropic nature of the surface ply is retained in the treatment but the CTE is treated as 
a global property as the plies are bonded together and are not free to deform 
independently, which gives the following equation:

    xL 11 12 xL yL 12 22 yL
p

T
T Q Q Q Q

C
        


                                             (15)

The different scale of idealisation in each treatment, aims to provide an insight into the 
thermoelastic behaviour of composite materials. This is achieved by computing the 
thermoelastic temperature change based on each treatment and comparing it with the 
measured temperature change from an orthotropic laminate.

Thermoelastic work

The material used for manufacturing the test specimens was a unidirectional 
glass/epoxy pre-impregnated material. The mechanical properties and physical 
properties such as density, specific heat capacity and CTE were determined according to 
respective ASTM standards from unidirectional composite test coupons as provided in 
Table 1. The global mechanical and physical properties are given in Table 2. To validate 
the theoretical treatments, Unidirectional (UD), Angle ply (AP), off-axis unidirectional 
(OA), cross-ply (CP) and quasi-isotropic (QI) panels were manufactured with different 
stacking sequences and consolidated in an autoclave. Four different sets of CP laminates 
were manufactured; one with a 0o surface ply (CP0) and another with a 90o surface ply
(CP90) and also with 0 and 90 ply groups (i.e. [03,903]s and [903,03]s) to evaluate the 
effect of surface ply on the thermoelastic signal.  Two different sets of QI laminate with 
similar surface layer (i.e. 0o) and similar mechanical properties (i.e.[0,±45,90]s and 
[0,90,±45]s) were manufactured to evaluate influence of sub-surface plies on depth of 
the thermoelastic response. The test specimens were mounted in an Instron servo-
hydraulic test machine and a cyclic tensile load was applied at a loading frequency of 10 
Hz. A strain gauge rosette was attached to the specimens to measure the strain in the 
laminate principal directions. The thermoelastic temperature change (averaged over a 
uniform area) were collected from each specimen. 



Table 2: Global mechanical and physical properties of the laminates

Specimen
Young’s Modulus 

(GPa), EL

Poisson’s 
ratio, LT

CTE, α
(x 10-6/oC)

CP 20.0 0.15 10.59

AP 9.5 0.55 16.20

QI 19.7 0.29 9.25

Table 3: Details of applied load, strains and thermoelastic data from the test

Specimen Load (kN) Applied strain

Mean Amplitude ε xL ε yL

Strain sum, 
∆(εxL+εxL)

Surface 
temperature,T (K)

CP(0) 0.7 0.55 0.001949 -0.000296 0.001653 291.55

CP(0)3 1.7 1.55 0.001750 -0.000209 0.001541 294.90

CP(90) 0.7 0.55 0.001993 -0.000312 0.001681 290.57

CP(90)3 1.7 1.55 0.001750 -0.000209 0.001541 295.26

OA 0.7 0.60 0.002119 -0.000803 0.001316 293.45

AP 0.5 0.41 0.003371 -0.001640 0.001731 294.91

AP3 1.7 1.60 0.004425 -0.002725 0.001700 295.2

QI (45) 0.9 0.88 0.002281 -0.000694 0.001587 292.03

QI(90) 0.9 0.85 0.003210 -0.001021 0.002189 296.09

Epoxy 1.4 1.30 0.002690 -0.00109 0.001600 291.35

RESULTS AND DISCUSSION

Figure 4 show the thermoelastic data collected from each speciment. It is apparent from 
the thermoelastic images that there are significant differences in the T obtained from 
the different specimens, with the surface ply orientation and lay-up evident in the 
images. This indicates that the response is most likely to be from the orthotropic layer as 
the fibre orientation in the surface layer is clearly visible; however this can only be 
established using accurate material property data. A further observation from the image 
data is that there are significant differences in the thermoelastic temperature change 
obtained from the CP(0) and CP(90) specimens due to the differences in the surface ply 
orientations, and the data becomes much more uniform when the laminate is thicker. A 
similar trend is also observed for AP and AP3 plies indicating the possible influence 
from subsurface plies. This statement is further supported by the observed difference 
between the two different QI laminates, which have similar surface plies and 
mechanical properties yet there are clear differences in the thermoelastic data. The 
measured (with standard deviation) and calculated temperature change are summarised 
in Table 4. In most cases the values predicted by the four methods are very close. By 
accounting for the scatter in the data, it is difficult to establish if one prediction is 



providing better results than another. It is clear that equation (14) generally provides 
values outside of the scatter bands. For laminates with stacked ply group surface layers 
there is a good agreement between the measured data and Equation (3). It is clear that 
for some laminates the stress induced temperature change is less in the surface ply than 
in the resin and for these cases the heat transfer will be from the surface resin to surface 
ply. 

Table 4: Thermoelastic response from the composite specimens

Specimen T, measured
Resin

(Eq. 2)
T, Surface ply

(Eq. 12)
T, Global

(Eq. 14)
T, Mixed

(Eq. 15)

UD(0) 0.147 (±0.0090) 0.129 0.141 0.141 0.141

UD(90) 0.104 (±0.0135) 0.124 0.104 0.104 0.104

CP(0) 0.147 (±0.0089) 0.127 0.135 0.175 0.141

CP(90) 0.129 (±0.0214) 0.130 0.106 0.171 0.104

CP(0)3 0.119 (±0.0069) 0.118 0.125 0.174 0.143

CP(90)3 0.101 (±0.0107) 0.118 0.097 0.173 0.106

AP 0.121 (±0.0152) 0.133 0.125 0.132 0.127

AP3 0.127 (±0.0111) 0.130 0.125 0.135 0.131

QI(45) 0.138 (±0.0012) 0.123 0.136 0.144 0.136

QI(90) 0.112 (±0.0090) 0.120 0.133 0.143 0.129

Figure 4: Thermoelastic images obtained from specimens at loading 
frequencies of 10Hz  a) CP(0), b) CP(90), c) CP(0)3, d) CP(90)3, 

e) AP, f) AP3, g) QI(45) and
h) QI (90)

(a) (b) (c) (d) (e) (f) (g) (h)



CONCLUSIONS

This study has shown that for the material considered, E-glass/epoxy pre-preg 
laminates, of the two standard approaches the orthotropic surface layer interpretation 
provides the best agreement to measured data.  The benefit of considering other 
approaches is demonstrated and this work highlights the importance of careful 
consideration of the source of the thermoelastic signal while working with composite 
materials.
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