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Neural networks have been used extensively in material science with varying success. 

It  has  been  demonstrated  that  they  can  be  very  effective  at  predicting  mechanical 

properties such as yield strength and ultimate tensile strength.  These networks require 

large amounts of input data in order to learn the correct data trends.  A neural network 

modelling process has been developed which includes data collection methodology and 

subsequent filtering techniques in conjunction with training of a neural network model. 

It has been shown that by using certain techniques to ‘improve’ the input data a network 

will not only fit seen and unseen Ultimate Tensile Strength (UTS) and Yield Strength 

(YS)  data  but  correctly  predict  trends  consistent  with  metallurgical  understanding. 

Using the  methods  developed  with  the  UTS and YS models,  a  Low Cycle  Fatigue 

(LCF) life model has been developed with promising initial results.

Crack  initiation  at  high  temperatures  has  been  studied  in  CMSX4 in  both  air  and 

vacuum environments, to elucidate the effect of oxidation on the notch fatigue initiation 

process.  In air, crack initiation occurred at sub-surface interdendritic pores in all cases. 

The sub-surface crack grows initially under vacuum conditions, before breaking out to 

the top surface.    Lifetime is then dependent on initiating pore size and distance from 

the notch root surface.  In vacuum conditions, crack initiation has been observed more 

consistently from surface or close-to-surface pores - indicating that surface oxidation is 

in-filling/”healing” surface pores or providing significant local stress transfer to shift 

initiation to sub-surface pores.   Complementary work has been carried out using PWA 

1484 and Rene N5.  Extensive data  has been collected  on initiating  pores for all  3 

alloys.   A model  has been developed to predict  fatigue life based upon geometrical 

information from the initiating pores.  A Paris law approach is used in conjunction with 

long crack propagation data.  The model shows a good fit with experimental data and 

further improvements have been recommended in order to increase the capability of the 

model.
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Nomenclature and Acronyms

'
fσ - Fatigue strength coefficient

'
fε - Fatigue ductility coefficient.

0∏ - Potential energy of an un-cracked plate

∏ - Potential energy supplied by internal strain energy and external forces

ϒe - Surface energy of the material

σf - Fracture stress
ϒp - Plastic work term 

σy - Yield stress

ε − Strain

E - Elastic modulus

E - Energy

J - J integral

K - Stress intensity factor

KIC - Fracture toughness (mode I)

Kth - Threshold stress intensity factor

Nf - Number of cycles to failure

Nv Valence-electron concentration

Ws - Work required to create new surfaces.

APB - Anti Phase Boundary
ARD - Automatic Relevance Determination
BEI - Backscattered Electron Image
CRP - Collaborative Research Project
CRS - Creep Rupture Strength
DOE - Design of Experiments
DS - Directionally Solidified
EDM - Electronic Discharge Machining
EDX - Energy Dispersive X-ray
EPSRC - Engineering and Physical Sciences Research Council
FBTA - Finite Body Tessellation Analysis
FCC - Face Centre Cubic
FEA - Finite Element Analysis
FEG - Field Electron Gun
HCF - High Cycle Fatigue
HU - Hidden Unit
LCF - Low Cycle fatigue
LEFM - Linear Elastic Fracture Mechanics
LPE - Log Predictive Error
MLP - Multi Layer Perceptron



MSE - Mean Squared Error
NN - Neural Network
NRC - National research council (Canadian partners in CRP)

OA - Orientation A
OB - Orientation B
ORT - Orientation
OX - Orientation X
PM - Powder Metallurgy
PX - Polycrystalline
QQ - QinetiQ
RMS - Root Mean Square
RR - Rolls Royce
SEI - Secondary Electron Imaging
SEM - Scanning Electron Microscope
SEN - Single Edge Notch
SENB - Single Edge Notch Bend
SSE - Sum Squared Error
SX - Single Crystal
TE - Test Error
UTS - Ultimate Tensile Strength
YS - Yield Stress



Alloys

CM247 Cannon-Muskegon alloy CM247
CMSX-4 Cannon-Muskegon alloy CMSX-4
IN939 INCOLOY alloy 939
Inconel 617 INCONEL Alloy 617
M21 Alloy M21
M313 Alloy M313
MERL 76 Pratt and Whitney Alloy MERL 76
Nim739 Nimonic Alloy 739
Nimonic 901 Nimonic Alloy 901
PWA 1480 Pratt and Whitney Alloy 1480
PWA 1484 Pratt and Whitney Alloy MERL 1484
U720 Udimet 720



1 Introduction
This thesis is presented in two distinct but linked sections.  Both pieces of work have 

been carried out as part of an Engineering Doctorate sponsored by QinetiQ.  A theme of 

fatigue in nickel base superalloy runs throughout and other strong links can be drawn 

between the chapters.  Literature reviews of neural networks and Ni based superalloys 

are pertinent to the neural network modelling and are therefore both included before the 

neural network modelling section.  An introduction to the second section on fatigue life 

and crack initiation in notch bend bars is included in section 6

1.1 Neural Networks for Fatigue Life Prediction
Nickel based super alloys were developed initially for their high temperature resistance. 

Creep  and  oxidation  resistance  are  major  design  considerations  for  turbine  blades 

whereas turbine discs require high strength to cope with forces at high rotational speed. 

Fatigue performance of superalloys is becoming increasingly important as aero engine 

lives  are  extended  and  there  is  a  push  to  extend  intervals  between  inspections  and 

overhauls.   Fatigue lifing of aero engines is normally based on a safe life approach 

where lives are determined by physical test programs.

Much is known about how alloying additions affect the microstructure and therefore the 

mechanical properties of a superalloy and new alloying combinations can be formulated 

with reasonable confidence of the expected material performance.  As superalloys get 

closer to the limit of their performance due to extreme heat, corrosive atmospheres and 

high rotational forces further improvements in mechanical performance are generally 

small.

A  modelling  technique  that  allows  predictions  to  be  carried  out  on  multiple 

combinations of alloying conditions, processing routes and heat treatment temperatures 

will provide a powerful tool in the evolution of new alloys.

Neural networks have been used extensively in material  science with varying 

success.   It  has  been  demonstrated  that  they  can  be  very  effective  at  predicting 

mechanical properties such as yield strength, ultimate tensile strength and even crack 

growth rates given the correct information.  These networks require large amounts of 

input data in order to learn the correct data trends and tensile strength related data is 

relatively easy and cheap to accumulate.  Fatigue life data on the other hand is costly 

and  time  consuming  to  generate  and  not  normally  provided  by  the  material 

manufacturer.
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The development  of a neural  network modelling process which includes data 

collection from a variety of sources and subsequent filtering of said data in conjunction 

with training of a neural network model will provide a framework to develop such a 

tool.
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2 Neural Network Design and Architecture

2.1 What is a Neural Network?
Neural networks can be used to analyse trends in data or be trained to predict results for 

previously  unseen  data.   A  neural  network  is  composed  of  simple  computational 

elements  called  nodes,  whose  behaviour  is  based  upon  the  function  of  the  animal 

neuron.  The processing ability of the network is stored in the weights associated with 

the interconnecting unitsi 

The  following  sections  will  describe  the  construction  of  a  Multi  Layer  Perceptron 

network as used by Neuromat.  Reference has been made to other types of network 

comparing their respective advantages and disadvantages.

2.2 McCulloch-Pitts Neuron 
The history of neural networks can be traced back to the work of trying to model the 

neurons in the human brain. The first model of a neuron was created by physiologists, 

McCulloch and Pitts (1943). The model they created has two inputs and a single output. 

McCulloch and Pitts noted that a neuron would not activate if only one of the inputs 

was active. The weights for each input are equal, and the output is binary. Until the 

inputs  sum  to  a  certain  threshold  level,  the  output  remains  zero  (Figure  1).   The 

McCulloch-Pitts neuron has limitations.   It  cannot solve the “exclusive or” function 

(XOR) or the “exclusive nor” function (XNOR).

2.3 Perceptron
Frank  Rosenblatt,  using  the  McCulloch-Pitts  neuron,  went  on  to  develop  the  first 

perceptronii.   This perceptron, which could learn through the weighting of inputs, was 

instrumental  in  the  later  formation  of  neural  networks.   A  basic  perceptron  is 

represented in Figure 2.

If the perceptron is used to look at a simple linear problem the activation of the neuron 

is defined by:iii

∑ +=
i

ii xwa φ Equation 1

Where W are the weights, X is inputs and φ the bias value.  The output, Y, is then given 

by applying a threshold to the activation
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Y= 0 if outputa <

Y = 1 if outputa ≥
Equation 2

Given a set of inputs and results, the perceptron can be trained to predict the results by 

adjusting the weights and bias accordingly.  In order to do this a random set of inputs 

and weights is chosen and an output is recorded.  The difference between the output and 

the  real  data  is  calculated  in  an  error  function.   The  weights  and  bias  are  then 

systematically changed until the error is minimised.  The choice of starting values and 

weights along with the algorithms required to minimise the error function are a whole 

area of research in themselves.

In order to model more complex non linear problems the summation function 

within the hidden unit can be changed.  The activation function is often chosen to be the 

logistic sigmoid (Equation 3) or the hyperbolic tangent (Equation 4).

1/(1+e-x) Equation 3
tanh(x) Equation 4

These functions are used because they are mathematically convenient and are close to 

linear near origin while saturating rather quickly when getting away from the origin. 

This allows MLP networks to model well both strongly and mildly nonlinear mappings. 

For example, a hidden unit utilising a hyperbolic tangent would contain two contain two 

functions: 

∑ += )2()2( φhwy Equation 5







+= ∑

j
jj xwh )1()1(tanh φ Equation 6

The input data xj are multiplied by weights wj
(1), the sum of all these products form the 

argument  of  the  hyperbolic  tangent.   The  output  y  is  described  by  the  function  h 

multiplied by another weight w(2), the product of which is then added to a second bias 

θ(2).   Combining these equations gives the output y as a non-linear function of  wj
(1). 

Varying the weights will change the shape of the hyperbolic tangent.

The neuron, or perceptron, is the base upon which neural networks are built.  A single 

neuron cannot do very much.  However, several neurons can be combined into a layer 
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or multiple layers that have greater power.  A neural network has a layer of input nodes 

and a hidden layer comprised of neurons which then in turn feed one or more output 

nodes. There may be more than one hidden layer.  Each node in each layer is connected 

to all nodes in preceding and following layers (Figure 3).  The equations for a multiple 

hidden unit network are the same as for a single unit.  The parameters must now be 

summed over all hidden units as well as inputs.

2.4 Multi-layer perceptron
This is  perhaps the most  common network architecture in use today.   This class of 

network consists of multiple layers of computational units, typically interconnected as a 

feed-forward network. In this case each neuron in one layer is directly connected to all 

neurons of the subsequent layer (Figure 4).  Each unit performs a biased weighted sum 

of  inputs  and passes  this  activation level  through a  transfer  function to  produce  an 

output. Such networks can model functions of almost arbitrary complexity, with the 

number of layers, number of units in each layer and type of function within each hidden 

unit determining the model complexity.

Multi-layer networks use a variety of learning techniques, the most common being 

back propagation.  Output values are compared with known data in order to calculate a 

predefined error-function. Using this information, the algorithm adjusts the weights of 

each connection in order to reduce the value of the error-function.  This is an iterative 

process  which  seeks  to  minimize  the  error  function  value.   The  danger  is  that  the 

network  over  fits  the  training  data  and  fails  to  capture  the  true  statistical  process 

generating the data.  An example of over fitting is given in Figure 5, where the red line 

represents a well trained model and the black line demonstrates over fitting. A simple 

heuristic, called early stopping, often ensures that the network will generalize well to 

examples not in the training set.

Other  typical  problems  of  the  back-propagation  algorithm  are  the  speed  of 

convergence and the possibility of ending up at local minimum rather than the global 

minimum of the error function. 

2.5 Backpropagation
As  the  algorithm's  name  implies,  the  errors  (and  therefore  the  learning)  propagate 

backwards from the output nodes to the inner nodes. A summary of the backpropagtion 

technique is as follows
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• Present a training sample to the neural network. 

• Compare the network's output to the desired output from that sample. Calculate 

the error in each output neuron. 

• For  each  neuron,  calculate  what  the  output  should  have  been,  and  a  scaling 

factor,  how much lower or higher  the output  must  be adjusted to  match  the 

desired output. This is the local error. 

• Adjust the weights of each neuron to lower the local error. 

• Assign "blame" for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights. 

• Repeat the steps above on the neurons at the previous level, using each one's 

"blame" as its error.

Backpropagation neural networks are good at prediction and classification.

2.6 Early stopping
Early stopping has two main advantages; it enables fast training of neural networks and 

it can be applied successfully to networks in which the number of weights far exceeds 

the sample size.  The technique involves the following stages:

• Divide the available data into training and validation sets. 

• Use a large number of hidden units. 

• Use very small random initial values. 

• Use a slow learning rate. 

• Compute the validation error rate periodically during training. 

• Stop training when the validation error rate begins to increase

There are still several unresolved practical issues in early stopping

• How many cases should be assigned to the training and validation sets 

• Should the split into training and validation sets be carried out randomly or by 

an algorithm? 

• What  constitutes  an  increase  in  validation  error,  over  and  above  natural 

fluctuation during training?

2.7 Fitting and over-fitting.
A neural  network  is  able  to  fit  an  extremely  complex  function  given  that  it  has  a 

sufficiently  large  number  of  hidden  units.   Problems  are  caused  when  the  neural 
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network fits the data so well it is modelling noise in the data rather than the underlying 

trend, this process is known as overfitting.  An example of overfitting is given in Figure

5, the black dots represent the training data and the model prediction is the solid black 

line.  When the unseen test data is added (x) it is apparent that the model does not fit to 

this data and that the red line (simpler model) would provide a much better fit.

2.8 Regularization
Regularization  is  any  method  of  preventing  overfitting  of  data  by  a  model.  Most 

regularization methods work by implicitly or explicitly penalizing models based on the 

number of their parameters.  Regularization is discussed in more depth with respect to 

Neuromat software in a later chapter.

2.9 Other types of network
Recurrent network

Recurrent network (RN) is a model with bi-directional data flow. While feed forward 

network propagates data linearly from input to output, RN also propagates data from 

later processing stages to earlier stages.

A simple recurrent network (SRN) is a variation on the multi-layer perceptron, 

sometimes called an "Elman network". A three-layer network is used, with the addition 

of a set of "context units" in the input layer. There are connections from the middle 

hidden layer to these context units fixed with weight 1. At each time step, the input is 

propagated  in  a  standard  feedforward  fashion,  and  then  a  learning  rule,  usually 

backpropagation,  is  applied.  The  fixed  back  connections  result  in  the  context  units 

always  maintaining  a  copy  of  the  previous  values  of  the  hidden  units  (since  they 

propagate over the connections before the learning rule is applied). Thus the network 

can maintain a sort of state, allowing it to perform such tasks as sequence-prediction 

that are beyond the power of a standard multi-layer perceptron.

Hopfield network

The Hopfield net is a recurrent neural network in which all connections are symmetric, 

this  network  has  the  property  that  its  dynamics  are  guaranteed  to  converge.  If  the 

connections are trained using Hebbian learning then the Hopfield network can perform 

robust content-addressable memory, robust to connection alteration.

As a  consequence  there  is  no  separate  input  or  output  layer  but  instead each  node 

receives input signals and every node has an output. The connection weights between 
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each pair of nodes are symmetrical; that is, they are equal for messages passed in either 

direction.

Input  signals  are  applied  to  all  nodes  simultaneously.  Random  starting 

connection weights are used to generate an output signal which is then immediately fed 

back to all nodes as a new input. This process is repeated until the network reaches a 

stable state. The final outputs are taken as the response of the network.

The  trained  network  contains  multiple  patterns  stored  in  the  coded  form  of  the 

connection weights. When an input is presented to the trained network, the output given 

is the stored pattern that is closest to the input pattern. This is a type of associative 

memory.

Boltzmann machine

The Boltzmann machine can be thought of as a noisy Hopfield network. Invented by 

Geoff  Hinton  and  Terry  Sejnowski  (1985),  the  Boltzmann  machine  was  important 

because it was one of the first neural networks in which learning of latent variables 

(hidden units) was demonstrated. Boltzmann machine learning was slow to simulate, 

but the Contrastive Divergence algorithm of Geoff Hinton (introduced in about 2000) 

allows models  including  Boltzmann machines  and Product  of  Experts  to  be  trained 

much faster.

Support vector machine

A support vector machine (SVM) is  a recently developed form of machine learning 

algorithm.  The  training  of  SVMs  is  based  on  quadratic  programming,  a  form  of 

optimization that (usually) has only one global minimum. Therefore, and because SVMs 

have means to reduce the danger of overfitting, some practitioners prefer SVM training 

to neural network training.
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Self-organizing map / Kohonen Net

A Kohonen network is a two-layered network, much like the Perceptron. But the output 

layer for a two-neuron input layer can be represented as a two-dimensional grid, also 

known as the "competitive layer". The input values are continuous, typically normalized 

to any value between -1 and +1. Training of the Kohonen network does not involve 

comparing the actual output with a desired output. Instead, the input vector is compared 

with the weight  vectors leading to the competitive layer.  The neuron with a weight 

vector most closely matching the input vector is called the winning neuron.

Only the winning neuron produces output, and only the winning neuron gets its weights 

adjusted. In more sophisticated models, only the weights of the winning neuron and its 

immediate neighbours are updated. 

After training, a limited number of input vectors will map to activation of distinct output 

neurons.  Because the weights are modified in  response to the inputs,  rather than in 

response to  desired outputs,  competitive learning is  called  unsupervised learning,  to 

distinguish it from the supervised learning of Perceptrons.

Instantaneously trained networks

Instantaneously trained neural networks (ITNN) are also called "Kak networks" after 

their  inventor  Subhash  Kak.  They  were  inspired  by  the  phenomenon  of  short-term 

learning  that  seems  to  occur  instantaneously.  In  these  networks  the  weights  of  the 

hidden  and  the  output  layers  are  mapped  directly  from  the  training  vector  data. 

Ordinarily, they work on binary data but versions for continuous data that require small 

additional processing are also available.

Spiking neural networks

The Spiking (or pulsed) neural networks (SNN) are models which explicitly take into 

account timing of inputs. The network input and output are usually represented as series 

of spikes (delta-function or more complex shapes). SNNs have an advantage of being 

able to  continuously process information.  SNNs are often implemented as  recurrent 

networks.
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2.10 Analysis of Significance of Inputs.
This is often called sensitivity analysis.  The basic principle of it is that on a trained 

system the test data is changed for each input while keeping the other inputs fixed.  The 

relative  effect  on  the  output  is  recorded  for  each  variation  in  input..  With  this 

information, the relative importance of the inputs can be calculated. 

Neural nets are non-linear by nature, so their sensitivities are non-linear as well. 

There  is  no  such  thing  as  a  significance  factor  for  an  input  -  there's  a  non-linear 

significance function that may or may not depend on other input valuesiv.  A selection of 

methods and their relative advantages and disadvantages are discussed by Sarlev but no 

recommendation is given to which method performs best.  The methods used depend on 

the type of network and training algorithm in use.

Neuromat  uses  Automatic  Relevance  Determination  (ARD)  to  associate 

significances with the inputs.

2.11 Neural Networks to Predict Material Properties
Neural networks have been used extensively in the literature to look at mechanical and 

compositional  properties  of  steelsvi and  weldsvii and  to  model/controlviii casting 

processes.

Evansix compared  a  number  of  well  known parametric  models  and a  multilayer 

neural network to determine whether the latter can produce improved long term rupture 

life predictions for 2.25Cr-1Mo steel.  Even the more complex non-linear models (e.g. 

Manson-Haferd) produced implausible extrapolations. In contrast, the optimised neural 

network was able to identify general patterns in the training data that were useful for 

extrapolation purposes and this, as reflected in an average error of some 4-5%.

Huang and Blackwell have successfully trained and tested a neural network with 

mechanical property variables relating to the temperatures and strain rates used when 

hot forming IN718 sheetx.  Model inputs were temperature, strain and strain rate with 

stress  as  an  output.  The  output  of  the  model  was  used  to  define  a  constitutive 

relationship for this material that could be used in the finite element modelling of the 

sheet forming process.  A model with 5 hidden units was trained on 70 lines of input 

data  and  tested  against  a  further  60.   Tests  against  randomly  selected  unseen  data 

produced good results within tight error bounds.
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H.  Badeshiaxi has  written  a  useful  review  of  neural  networks  in  material  science, 

initially concentrating on steels, but going on to talk about work in Ni base superalloys, 

ceramics and composites.  Most relevant papers concerned with mechanical properties 

of superalloys are mentioned in further detail bellow.

Schooling, Brown and Reedxii have developed a neural network model for prediction 

of fatigue behaviour.   The model has 6 inputs;  temperature,  yield strength Young’s 

modulus, ultimate tensile strength and Nv number (number of valence. electrons divided 

by the number of  atoms).   64 sets  of  input  data  were used constructing the model 

although there is no mention to which alloys were included.  It was shown that that is 

possible to model trends in fatigue crack growth behaviour with variation in material 

properties.  A trend for increased stage II fatigue life with increased instability to sigma-

phase formation was shown to exist, although the observed effect was small due to the 

small range of Nv in Ni-based superalloys.

Jones and Mackayxiii have modelled YS and UTS of wrought polycrystalline Ni base 

superalloys.  Inputs consisted of chemical composition and test temperature and totalled 

16.   The  training  dataset  consisted  of  200 datapoints  and  utilised  a  50/50  split  for 

training  and testing.   Performance  was  quantified  by  calculating  RMS error  values 

between training and testing data. The model performs well predicting the YS of a “γ/γ’ 

superalloy”.   The  physical  significance  of  the  models  was  investigated  by  varying 

compositional and temperature.  Alloy compositions for Astroloy and Waspalloy were 

used.

Ward and Knowlesxiv have modelled the yield strength of Ni based superalloys using 

a neural network within a Bayesian framework based on work by Mackay.  Although 

there is no reference to the exact program used, a network employing 6 or 7 hidden 

nodes was developed.  Automatic Relevance Determination was used to influence the 

importance of inputs.  A database with around 200 datapoints ranging over 36 different 

alloys was used to train the network.  Significance values for inputs were generated post 

testing and largely agreed with the literature.  

Predictions against Nimonic 115 were good, error bars were shown to predict an 

uncertainly level of +/_ 50MPa.  It is assumed that Nim115 was previously unseen data 

although the  paper  does  not  state  this  categorically.   Further  studies  looking at  the 

theoretical effect of changing  γ’ volume fraction showed sensible results.   The most 

influential parameters were found to be temperature, followed by the γ ' and γ" formers 

Al, Ti, Tl/AI and Nb and the refractory elements Mo W and Ta. The other elements 

included were found to have little influence on yield strength.
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Further work by Warde and Knowlesxv looks at the use of neural networks to aid 

alloys design.  Two neural network models (YS and UTS) were used in the optimisation 

of a number of Ni based superalloys.  The number and range of input variables was 

increased so that the compositional window for new alloys was within the bounds of the 

neural network.

Elements  Cr.  Co,  Mo,  Ta,  Al,  Ti  were  set  at  3  different  levels;  min,  max  and 

average, based upon values in the training dataset.  All other additions were held at a 

constant  level.   The  neural  network  model  was  then  run  for  every  combination  of 

alloying element resulting in 729 new alloys.  This list was narrowed down on the basis 

of the predicted YS and UTS follower by the use of MTDATA1 to evaluate thermal 

stability of the alloys.

At the time of writing, the authors had no facility to predict Fatigue or CRS values

Tancret  and  Badhesia  have  produced three  papers  looking  at  mechanical  properties 

modellingxvi, phase diagram and segregation simulationxvii and experimental resultsxviii of 

an  alloy  design  process  incorporating  neural  network  modelling.   Results  are 

summarised in a final paperxix 

Neural network modelling was used to predict mechanical properties: yield stress, 

ultimate tensile stress, tensile ductility, creep rupture stress and the γ≅  and γ≅’  lattice 

parameters aγ and aγ’.  The training data was collected from industrial sources and from 

the scientific literature.  The databases contain information on the alloy compositions, 

on  the  heat  and/or  mechanical  treatments,  and  on  test  conditions  temperature  and 

lifetime in the case of creep rupture.

Models are shown to perform well against known data (examples are given for UTS 

and tensile ductility models) and selected unknown data (CRS model shown).

The aim of the work was to come up with a new alloy composition avoiding expensive 

alloying elements such as Co, Mo, Ta, Nb, Hf and Re.  Neural network models were 

used to test new alloy compositions in order to find suitable compositions that met the 

design requirements.   However,  because undesirable  phases may form in these new 

alloy compositions, a phase diagram and chemical segregation simulation method was 

used in parallel with the neural network models217.

Once the new alloy was cast, the results of mechanical tests were compared with initial 

property predictions made using the neural network models.  Experimental results agree 

1 MTDATA - Windows software and thermodynamic databases for the calculation of chemical speciation 
phase diagrams and mechanical properties.

12



well with the averaged predictions achieved from neural network models (Figure 6 & 

Figure 7).

Fuji,  Mackay and Badheshiaxx used a neural network for the prediction of crack 

propagation  rate  in  Ni-based  superalloys,  using up  to  51 input  variables  with  1894 

combinations  of  fatigue  crack  growth.   Input  variables  included  ∆K,  composition, 

temperature,  grain size,  heat treatment,  loading condition,  atmosphere,  R-ratio,  load, 

waveform sample thickness and yield strength.  All data for the database was collected 

from published literature.  It was found that using a committee of models reduced the 

test error by ~3% over the best single model for this type of problem.  The effect of 

grain size alone was evaluated, confirming that an increase in grain size should lead to a 

decrease in the fatigue crack growth rate.

A  software  package  called  NEUROMAT  based  on  the  work  of  Mackay  has  been 

developed by Badhesia, Ward, Knowles . (currently being used at QinetiQ as part of its 

NN capability) information available at Neuromat websitexxi.

A cut down version of the software is also available onlinexxii and allows for CRS, 

UTS and YS of  Ni-based  superalloys  to  be  calculated.  The input  variables  include 

composition and four heat treatments, of which temperature and duration have to be 

specified. 

A neural network for life prediction was developed and demonstrated for predicting 

the  elevated  temperature  (0.7–0.8  Tm)  creep–fatigue  behaviour  of  Ni-base  alloy 

INCONEL 690xxiii.

A design of experiments method was used to select a test matrix which would provide a 

statistically significant variation in fatigue life over the testing region.  A 25-2 factorial 

design required 16 tests to be carried out at each test temperature containing 5 extrinsic 

parameters at 2 levels.

The back-propagation neural network technique, when based upon a statistically 

designed training set, was shown to have the potential for achieving superior creep–

fatigue life cycle predictions when compared to the modified Coffin–Manson, linear life 

fraction and hysteresis energy methods, with 100% of the predictions at 1000°C and 

90% of the predictions at 1100°C lying within an error band of +/- 2.
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2.11.1 Summary of Literature

Neural networks have been used extensively in material science for material property 

predictions.   Models  range  from process  modelling  with  a  small  number  of  inputs 

(generally  mechanical  properties  and  processing  parameters)  through  to  material 

property prediction from chemical composition and heat treatment of the alloy.

It has been shown that for a single alloy system a training dataset can be generated 

experimentally using design of experiments method to insure that results are statistically 

significant.  Training neural networks on this dataset provided accurate predictions for 

the creep fatigue behaviour of Inconel 690.

Increasing  the  size  and  complexity  of  models  requires  a  large  and  carefully 

selected dataset.  Results from more complex models are often quoted as a function of 

training test error rather than using them to predict properties of unseen alloys. 

Models based upon chemical compositions and heat treatments have been used 

to  assess the significance of  inputs.   This can be done by looking at  the automatic 

significance output from some models or by systematically varying inputs recording the 

effect  on  the  output  of  the  model.   Presented  results  have  shown good correlation 

between model significances and actual metallurgical theory.

Neural network models have been used as a tool in the design of a completely 

new alloy in combination with phase / chemical segregation simulations.  The resulting 

alloy has been shown to have mechanical properties close to those originally predicted 

by the neural network model.
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Figure 4 a typical feed forward network

Figure 5 An example of overfitting (after Neuromat reference manual)

Figure 6 Evolution of yield stress as a function of 

temperature

solid circles indicate measurements; solid line 
indicates mean Gaussian processes predictions; 
broken lines indicate predicted error bounds (after 
Tancret  Badhesia)

Figure 7 Evolution of creep rupture stress as 

function of temperature

solid circles indicate measurements; solid line 
indicates mean Gaussian processes predictions; 
broken lines indicate predicted error bounds (after 
Tancret  Badhesia)
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3 Fatigue
3.1 Introduction to Fatigue
It is rare that a component is simply subjected to static loads that do not vary with time. 

More  commonly,  loads  fluctuate  in  intensity  or  alternate  between  tension  and 

compression.  It is possible for these fluctuating loads to cause cumulative damage to a 

component even when load levels are well below the yield stress of the material.  The 

term fatigue is used to describe this damage accumulation effect.  There are different 

stages of fatigue damage, the progression of which can be broadly classified into the 

following stagesxxiv.

• Sub-structural  and  microstructural  changes  which  cause  nucleation  of 

permanent damage.

• The creation of microscopic cracks.

• The  growth  and  coalescence  of  microscopic  flaws  to  form  ‘dominant’ 

cracks, which may eventually lead to catastrophic failure.

• Stable propagation of the dominant crack.

• Structural instability or complete fracture.

This report looks in more detail at the first three stages of fatigue damage as classified 

by Suresh218 as they deal with the areas defined within the project aims.

3.2 Total Lifetime Approaches
The standard method of recording the fatigue performance of a material is through the 

use of an S-N curve (Figure 10).  An S-N curve relates the applied cyclic stress (or 

cyclic strain) to the number of cycles to failure of a component.  At low stresses/strains 

the cycles to failure of a material can run into millions of cycles whereas at very high 

stresses/strains failure can be within a few cycles.  Cycles to failure are therefore plotted 

on a logarithmic scale.  Typically fatigue lifetimes of 100,000 cycles and below are 

considered to be Low Cycle Fatigue (LCF) compared to High Cycle Fatigue (HCF), 

when components  last  for 100,000 cycles  up to 100,000,000 cycles.   The strain life 

approach can be adopted for LCF.  Strain life data can be fitted to Equation 1 from the 

work of Coffinxxv and Mansonxxvi.
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Where Nf is number of cycles to failure, E is elastic modulus, a and b are constants, '
fσ  

is the fatigue strength coefficient and '
fε  is the fatigue ductility coefficient.  The first 

and  second  terms  on  the  right  hand  side  are  the  elastic  and  plastic  components, 

respectively, of the total strain amplitude.

3.3 Introduction to Fracture Mechanics
The  above  fatigue  characterisation  approaches  are  total  lifetime  approaches.   They 

encompass number of cycles to initiation, as well as number of cycles for propagation, 

of the initiating defect, until component failure occurs.  Most engineering components 

contain an existing defect distribution, as such damage tolerant fatigue lifing approaches 

have been developed which allow the propagation of an existing defect to be assessed. 

A flaw, such as internal porosity, a scratch or a microcrack in a component will act as a 

stress  concentrator,  raising  stresses  locally  in  the  vicinity  of  the  flaw-tip.   Fracture 

mechanics allows the characterisation of these local crack tip stresses and can therefore 

be  used  to  characterise  crack  propagation  through  a  given  material.   When  using 

fracture  mechanics  methods  it  is  important  to  understand  the  assumptions  and 

limitations upon which the methodology is based – a brief introduction of the basics 

follows.

3.3.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) was developed by Griffith218 and is the most 

widely used fracture mechanics approach to characterise fatigue crack growth.  LEFM 

assumes that a material  behaves in a linear elastic fashion i.e.  that  stress is a linear 

function of strain and all deformation is recoverable.  The local stresses near the crack 

tip  can  be  calculated  using  this  approach.   For  example,  consider  a  sharp,  through 

thickness crack, length of 2a, in a thin elastic plate (Figure 11).  The local stresses close 

to the crack tip are given to a first approximation by the following equations, where the 

polar co-ordinates r and  θ have their origin at the crack tip and the stresses tend to 

infinity as r tends to zero (This does not occur in reality due to plastic yielding of the 

material at the crack tip218).
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The Griffith Energy Balance approach states that a crack can form, or an existing crack 

can grow, only if such a process causes the total energy to decrease or remain constant. 

Thus the critical conditions for fracture can be defined as the point where crack growth 

occurs under equilibrium conditions, with no net change in total energyxxvii.

Consider a plate subject to constant stress as described previously (Figure 11), 

plate width >>2a and plane stress conditions apply.  In order for this crack to grow, 

sufficient potential energy must be available in the plate to overcome the surface energy 

of the material.  The Griffith energy balance for an incremental increase in the crack 

area, dA, under equilibrium conditions can be expressed as:

0=+∏=
dA

dW
dA
d

dA
dE s Equation 11

Where  E is the total energy,  ∏ is the potential energy supplied by the internal strain 

energy and external forces, and Ws is the work required to create new surfaces.  For a 

cracked plate (Figure 12) Griffith used the stress analysis of Inglisxxviii to show that:

E
Ba 22

0
π σ−∏=∏ Equation 12

Where 0∏  is the potential energy of an un-cracked plate and B is the plate thickness. 

Since formation of a crack requires the creation of two surfaces, Ws is given by:

es aBW γ4= Equation 13

Where ϒe is the surface energy of the material, giving:

E
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d 2π σ=∏− Equation 14

and

e
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γ2= Equation 15

Equating 7 and 8 and solving for fracture stress gives:
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This is a good approximation as long as the material is brittle, for example it works well 

with glass and some plastics.  Rearranging the equation gives:

ef Ea γπσ 2= Equation 17

Indicating that as the crack length (a) increases,  the fracture strength (σf) decreases. 

Above  σy in a real material  plastic flow occurs.  LEFM predicts that local crack tip 

stresses are greater than  σy  hence we expect yield at the crack tip over a certain area. 

This area is called the plastic zone.  If the crack tip extends, a new plastic zone has to 

form at the crack tip and plastic work is done.  In order for the criterion to be suitable 

for more  ductile  solids,  a  plastic  work term  ϒp  must  be incorporated  in the original 

equation.

( )pe
f

E
a

γγ
π σ += 2

2
Equation 18

Where the term on the left is the force driving crack growth and the term on the right is 

the overall work done in fracture (ϒe +ϒp).  In most engineering materials the term ϒp is 

several orders of magnitude larger than ϒe.

The stress intensity factor,  K, is  the fundamental  parameter  used to describe the 

stress intensity at the crack tip.  The local stresses close to the crack tip are given to a 

first approximation by the following equations, where the polar co-ordinates r and θ 

have their origin at the crack tip, the stresses tend to infinity as r tends to zero218.  This 

does not occur in reality due to plastic yielding of the material at the crack tip.  The 

general equation relating the crack length, applied stress and K is given by:

K = σ π a f
a

W

  
    

  
    Equation 19

Where σ is the far-field applied stress, a is the flaw size and f(a/W) is the compliance 

function to take into account the different component geometry and crack shapes.  If 

two cracks of different geometry have the same value of K, then in theory the stress 

fields around the crack tips are identical assuming the elastic approximation holds.

K can also be equated with the left-hand term in Equation 11, i.e. at fracture 

there is found to be a critical value of K, which is a materials parameter, the fracture 

toughness. (This is true as long as there is sufficient constraint to ensure predominantly 
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plane strain conditions are operating and hence LEFM holds).  More generally K is 

normally given a subscript to denote the mode of loading (Figure 13) i.e. KI, KII or KIII.

aYK IIIIII πσ=,, Equation 20

Where  σ is  the  applied  stress,  a is  a  characteristic  crack  dimension  and  Y  is  a 

dimensionless  constant  that  depends  on  mode  and  loading  conditions  (including 

component and crack geometry).  K can therefore be relatively easily calculated from 

specimen geometry,  loading conditions  and defect  size,  and gives  a  measure  of  the 

magnitude of the crack tip stress field.

∆K is therefore  a suitable  parameter  for the characterisation  of fatigue crack 

growth where the crack growth mechanisms are assumed to be primarily controlled by 

the range of crack tip stresses. Such crack propagation data is typically obtained from 

test coupons of materials containing a pre-existing, relatively large, defect (typically of 

the order of millimetres long). To this defect, defined stress states are applied, allowing 

both ∆K and crack growth rate to be calculated.  Log-log plots of the crack growth rate 

per cycle  (da/dN vs.  ∆K) typically show a sigmoidal  relationship divided into three 

distinct regions (Figure 14).  Regime A shows that at very low ∆K, the crack growth 

rate is negligible.   Below the threshold stress intensity factor,  ∆Kth,  crack growth is 

arrested or imperceptible.  Stage I crack growth is usually predominant in this regime 

and  there  is  a  large  influence  of  microstructure,  mean  stress,  crack  length  and 

environment.

Regime B is denoted the Paris regime, because at intermediate  ∆K values, the 

relationship between da/dN and ∆K is given by the Paris equation:

mKC
dN
da ∆= Equation 21

Where C and m are materials  constants.  This behaviour is relatively microstructure 

insensitive and less affected by mean stress levels (or minimum to maximum load ratios 

(R-ratios)).  If crack growth is predominantly in the Paris regime, and both the initial 

crack length, and the final crack length (e.g. the crack length giving fast failure or undue 

compliance  such  as  general  yield  in  the  un-cracked  ligament)  are  known,  then  the 

number of cycles required for the initial defect to grow to the final crack length can be 

calculated  using integration  approaches  based on Equation  18.   Regime C is  where 

monotonic failure processes are contributing heavily to the fatigue crack growth as Kmax 
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approaches the fracture toughness (KIC) and the crack growth rate rapidly increases with 

increasing  ∆K due to increasing bursts of monotonic failure, until final failure occurs. 

This regime is also heavily influenced by microstructure and mean stress levels, but as it 

contributes to so few cycles of the overall fatigue lifetime is generally considered to be 

of minor importance.

The use of K to define crack tip stresses assumes elastic behaviour, i.e. that the 

crack tip plasticity is sufficiently limited that K still  characterises the near crack tip 

stress  field  (i.e.  that  the  linear  elastic  behaviour  assumption  gives  a  reasonable 

approximation).   If  a  significant  amount  of  plastic  deformation  has  taken  place, 

alternative parameters such as the J-integral  have been employed to characterise  the 

fatigue crack growth218.  ∆K is still valid however if there is limited plastic deformation 

occurring at the crack tip and there is sufficient material around the plastic zone which 

is behaving elastically providing constraint.

3.4 Initiation of fatigue cracks
The principal sites of fatigue crack initiation in engineering components include 

voids,  slag  or  gas  entrapments,  inclusions,  dents,  scratches,  forging  laps  and  folds, 

macroscopic stress concentrations, as well as regions of microstructural and chemical 

non uniformity218.  Studies on a range of superalloys have identified high temperature 

crack  initiation  at  slip  bandsxxix,  inclusionsxxx,  pre-cracked  carbide  particles  and 

preferentially oxidised carbides,xxxi,xxxii.

3.5 Stage I / II / III crack growth
Several fatigue propagation modes have been observed which can be generally linked to 

the three regimes of da/dN versus ∆K behaviour shown in Figure 14.

Stage I

Stage  I  crack  growth  behaviour  occurs  at  low  ∆K levels  (near  threshold)  for  large 

defects and during early stages of small (e.g. freely initiating) crack growth.  When the 

crack and the zone of plastic deformation surrounding the crack tip are confined to a 

few grain diameters, crack growth occurs predominantly by single shear in the direction 

of the primary slip systems218.  Stage I crack growth is characterised by faceted fracture 

surface appearance and is often referred to as crystallographic crack growth, as cracks 

grow along  the  crystallographic  slip  planes  e.g.  {111}  in  face-centred  cubic  (FCC) 

materials.   Stage  I  crack  growth  persists  while  the  crack  tip  plastic  zone  size 
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remains  smaller  than  some microstructural  feature.   It  is  most  pronounced in  those 

materials which exhibit highly planar slip.

Stage II

Stage II crack growth occurs when the plastic zone size becomes larger than the afore-

mentioned  microstructural  feature.   Crack  propagation  is  now  perpendicular  to  the 

applied stress and several slip systems are acting at once.  Examination of the fracture 

surface at a microscopic level may reveal parallel ridges which have formed parallel to 

the crack front.  These closely spaced ridges are called striations,  where each ridge 

represents  one  fatigue  cycle.   Striations  may  not  however  always  be  visible  on  a 

fatigued fracture surface.

Stage III

Stage III crack growth typically occurs under high ∆K values, and rapidly accelerating 

crack growth rates, up to final failure of the component.  On observation of the resulting 

fracture surface there is often evidence of significant plastic collapse of the material.  A 

component spends the shortest proportion of its life in stage III crack growth.

3.6 Extrinsic shielding effects (closure mechanisms)
Crack propagation rates can be significantly affected by shielding effects, these can be 

due to changes  in  the locally  experienced crack  tip  stresses  due to  crack deflection 

(resolved crack tip stresses alter), changes in local materials properties (e.g. stiffness as 

a secondary particle is encountered) or crack closure.  Crack closure is the term used to 

describe load transfer in the wake of a growing crack due to contact between the crack 

faces behind the crack tip.  Crack closure could arise from (1) surface roughness/crack 

path tortuousity (coupled with a degree of mode II shear irreversibility), (2) oxide debris 

entrained  in the crack or (3) plasticity ahead of the crack tip,  leading to significant 

plastic wake material existing along the crack flanks.  All three mechanisms can cause 

contact of the crack surfaces behind the crack tip at a stress intensity factor (Kclosure) 

greater than the applied minimum stress intensity factor (Kmin) and therefore the crack 

tip sees an effective ∆K that is less than the applied ∆K i.e. a reduced crack tip driving 

force.  Closure effects are most significant in the near-threshold regime, where applied 

∆K levels are low and Kmin may be less than Kclosure.  For all of these crack wake effects 

to build up the cracks need to have grown a significant distance.
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3.7 Short crack behaviour
Initiation  and  so-called  short  crack  growth  behaviour  is  technically  important  for 

superalloy  components  (e.g.  turbine  discs  and blades).   A large  part  of  the  overall 

fatigue life may be spent in initiation and so-called short crack growth phases at the 

high stress levels experienced in service.  Useful definitions of what constitutes a short 

crack are given by Suresh218.

• Microstructurally short  cracks,  where  the  crack  length  is  similar  to  a 

characteristic  microstructural  dimension  such  as  grain  size  in  monolithic 

materials.

• Mechanically short cracks, where the crack length is similar to the crack tip 

plastic zone for smooth specimens, or cracks that are engulfed by the plastic 

strain field of a notch.

• Physically short  cracks,  which  may  be  larger  than  any  microstructural 

dimension or plastic zones, but small in relation to the size of the component in 

which they have occurred.

• Chemically short cracks, which are nominally amenable to LEFM analyses, but 

exhibit apparent anomalies in the propagation rates below a certain crack size as 

a  consequence  of  the  dependence  of  environmental  stress  corrosion  fatigue 

effects on crack dimensions.

It  is  important  to  note  the  difference  between  short  and  long  cracks  as  there  are 

observed differences in the propagation behaviour when compared on a nominal ∆K 

basis.   Generally,  short  cracks  propagate  at  higher  rates  than  long  cracks  when 

compared at similar  ∆K ranges, as shown schematically in  Figure 15.  This indicates 

that ∆K is no longer characterising the crack tip stress state for both long and short 

cracks.  Various arguments have been put forward as to why we see this anomalous 

behaviour  for  small  defects.   Clearly  mechanically  short  cracks  do  not  experience 

LEFM conditions and parameters such as ∆J have been used as correlation parameters 

with some success218.   The early  stages of  short  crack  growth (at  apparent  low  ∆K 

ranges) are also very scattered; this wide variation in crack growth rates is due to the 

strong influence of microstructure for such small defects.  Temporary crack arrests at 

obstacles to slip such as grain boundaries and second phase particles are typically seen. 

The occurrence of such obstacles will vary from crack to crack, leading to the widely 

varied crack growth rates typically observed.  At nominally similar low ∆K ranges for 

large defects (near-threshold), locally, such arrest events are also seen.  These effects 
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are averaged along the length of the defect,  thus showing little scatter from crack to 

crack.

In the long crack case, significant closure effects are also expected to arise near 

threshold, which have not developed in short cracks that have developed insufficient 

crack wake.  At longer crack lengths the short crack behaviour starts to approach the 

crack growth rates seen in long crack specimens.  This is believed to be a combination 

of more typical LEFM conditions being attained, along with the evolution of similar 

closure levels as the crack length increases.

3.8 Creep and Environmental Interactions
Creep  is  a  thermally  activated  process  and  is  therefore  significant  in  elevated 

temperature fatigue behaviour.   Creep is a time-dependent  inelastic  deformation and 

hence significant creep can render the standard LEFM approach invalid.  Creep damage 

processes can also synergistically interact with the damage process at the fatigue crack 

tip.  To characterise creep-fatigue, crack growth rates can be partitioned into fatigue and 

creep  components,  or  the  crack  growth  driving  forces  can  be  split  into  elastic  and 

inelastic components.  This is further complicated by the influence creep may have in 

the  plastic  zone  ahead  of  the  crack,  possible  crack  tip  blunting  by  creep,  and 

environmental interactions.  Oxidation processes (particularly intergranular attack) can 

become more significant at higher temperatures.

3.9 Creep-Fatigue
The characterisation of fatigue crack growth incorporating creep is complicated, as the 

interactions of these effects cannot be described by a straightforward summation of the 

individual effects.  Creep and environmental effects can combine to accelerate crack 

growth,  or,  oppose  each  other,  slowing  the  crack  growth  and  in  some  cases  even 

contributing to crack arrestxxxiii.

The most simplistic method to characterise crack growth in the mixed cycle and the 

time-dependent regime, is the summation of the individual effects of fatigue and creep 

components of the crack growth.
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Where  (da/dN)CR and  (da/dN)F are  the  crack  growth  rates  due  to  creep  and  fatigue 

components  respectively.   This  approach  only  holds  true  if  there  is  no  interaction 
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between the creep and fatigue crack growth, giving a total crack growth rate equal to the 

sum of the individual fatigue and creep components of the crack growth.  When creep-

fatigue interactions occur at the crack tip, the crack growth could either be accelerated 

due  to  creep  crack  growth,  or  slowed  due  to  stress  relief  from creep  deformation. 

Environmental effects are not taken into account if there are any,  as this is a simple 

approach.  The crack growth rate in the mixed crack growth mode regime would be 

underestimated  by  linear  superposition  as  creep  and  environment  effects  tend  to 

accelerate crack growth.

Other  research  has  shown that  using  a  more  sophisticated  approach of  the  time 

integration method proved to be more successful.  The general form of the equation is 
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Where (da/dN)f is the crack growth rate due to simply fatigue unaffected by creep or 

environment  effects.   This  is  obtained  by  testing  at  high  frequencies  in  a  vacuum 

environment.  Data from sustained load tests under conditions that are similar to creep-

fatigue tests is required in order to calculate the integral term of the equation.
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4 Nickel Based Super Alloys

4.1 Development of Nickel Based Alloys
Nickel based super alloys were developed initially for their high temperature resistance. 

As engine materials have to operate at higher and higher temperatures other materials 

are  no  longer  appropriate.   Aluminium  alloys,  although  used  in  high  percentages 

throughout  the  airframe  have  a  service  temperature  of  around  200°C making  them 

unsuitable for any aero engine components.  Stainless steels can operate at up to 700°C 

but are very heavy and corrosion is an issue at elevated temperatures.  Titanium is often 

used  in  compressors  and  is  a  good  mid  temperature  material,  useful  up  to  500°C. 

Nickel  based alloys  (superalloys)  have good high temperature mechanical  properties 

such as resistance to creep, fatigue, creep-fatigue and good strength at high temperature. 

They can operate at temperatures up to 1200°C but are very heavy.  The weight penalty 

of  these  materials  is  an  acceptable  compromise  for  their  very  high  operating 

temperature.

4.2 Microstructure

A typical nickel based superalloy consists of a  γ matrix, a solid solution strengthened 

matrix  consisting  of  mostly  nickel  with  additions  of  molybdenum,  tungsten  and 

chromium.   It  is  a  Face  Centred  Cubic  (FCC)  matrix.   The  main  strengthening 

precipitate γ’ consists of Ni3(Ti,Al), it is also FCC but ordered and coherent with the γ 

matrix.  At smaller sizes it is spherical but at larger sizes it adopts a cuboidal structure 

(Figure 16) to minimise lattice misfit strain.  Increases in the γ’ fraction bring about an 

increased yield strength with blade alloys typically having a γ’ fraction of 70-80%.

Grain boundary carbides also play a role in strengthening cast and wrought forms of 

polycrystalline superalloy but are not relevant to single crystals.  Alloying additions are 

used to improve the performance of nickel based alloys even further.  Aluminium and 

titanium, as mentioned previously, provide precipitate strengthening and are key to the 

formation of γ’.  Chromium additions increase the corrosion resistance of the alloy by 

forming  a  protective  Cr203 layer.   The  addition  of  chromium  limits  the  amount  of 

titanium and aluminium additions possible due to the combination of solubility of each 

element  being  affected  by  each  of  the  other  additions.  A balance  has  to  be  struck 

between  strength  and  corrosion  resistance.   Turbine  blades  typically  contain  lower 

percentages  of  chromium  and  high  percentage  of  titanium  and  aluminium.   Other 
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alloying elements are also used, the additions and reasons for use are discussed further 

when looking at the metallurgy of CMSX-4 in section 4.5.1.

4.3 Deformation of Nickel Base Alloys
Nickel  base  superalloys  have  a  tendency  towards  planar  slip.   As  dislocations  cut 

through the γ’ precipitate they reduce the effective area of the precipitate blocking their 

path.  Successive dislocations therefore have to cut through less and less precipitate thus 

favouring slip along that plane.  However, as the γ’ precipitate is ordered, the passage of 

a  single  dislocation  sets  up  an  anti-phase  boundary  (APB)  with  a  high  associated 

energy.  This state is short lived as the passage of a second dislocation removes the anti-

phase boundary.  It is therefore energetically favourable for dislocations to pass though 

the γ’ in pairs (super dislocations).  In FCC materials, dislocations commonly dissociate 

into two partial dislocations.  If these dislocations separate out the area between then 

becomes known as a stacking fault.   The stacking fault  has a  stacking fault  energy 

(SFE) associated with it, proportional to the stacking fault area.  This dissociation into 

partial  dislocations  makes  cross  slip  (a  dislocation  crossing  from one  slip  plane  to 

another)  difficult.   All  these factors promote planar slip at low temperatures.   More 

intense slip bands mean that stage one crack growth along the slip bands is enhanced, 

and highly faceted  fatigue fracture surfaces  are  often observed where the crack has 

grown along the {111} slip planes.

As  temperature  increases,  thermally  activated  processes  such  as  cross-slip  are 

initiated,  more  wavy slip  is  promoted  and a  second cubic  slip  system also starts  to 

operate.  When a superdislocation (the double pairs of partial dislocations separated by 

the APB) cross-slips from a {111} onto a {100} plane, the APB energy is reduced.  If 

the first dislocation then cross-slips back onto a {111} plane (favourable for lowering 

the SFE between the two partials), it is unfavourable for the APB to follow it due to the 

lower APB energy on {100}, and the superdislocation becomes locked into position. 

This  is  known  as  Kear-Wilsdorf  lockingxxxiv,  (Figure  17),  and  is  thought  to  be  the 

mechanism  responsible  for  the  anomalous  yield  behaviour  of  γ’  (increasing  σy  is 

observed  with  increasing  temperature).   This  complex  dislocation  locking  is  the 

mechanism behind the high strength of nickel-base superalloys at high temperatures.

4.4 Single Crystals
The presence of grain boundaries and the average grain size in polycrystalline alloys is 

an important factor in the fatigue and creep behaviour of nickel based superalloys.  In 
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turbine blades of aircraft jet engines, it is known that the elimination of transverse grain 

boundaries promotes substantial improvements in creep and fatigue lives.  As a result, 

directionally solidified and single crystalline superalloys are widely used as materials 

for turbine blades in gas turbine engines.

Single  crystals  are  cast  using  a  process  called  directional  solidification.   This 

process  requires  the  controlled  withdrawal  of  a  mould  from  an  electrically  heated 

furnace.   A multiple  turn constriction called a ‘pigtail’  is used at  the bottom of the 

mould, this constriction only allows one grain orientation to grow up through the pigtail 

as the mould is withdrawn from the furnace.  During casting, the alloy is cooled through 

portions of the phase diagram where liquid and solid phases co-exist.   This zone is 

called the mushy zone.  If the mushy zone is extensive it allows convection currents to 

form  as  the  casting  solidifies.   These  convection  currents  can  cause  the  tips  of 

solidifying dendrites to be broken off and swirl away to cause randomly occurring grain 

initiation sites ahead of the solidification front.  These inclusions are called freckling. 

An extensive mushy zone can also cause compositional segregation within the solid and 

liquid phases, leading to significant variations in composition between dendrite cores 

and  interdendritic  regions.   Both  of  these  processes  are  deleterious  to  material 

properties, segregation can be removed with subsequent heat treatment, but extensive 

segregation can lead to locally varying melting points, with the risk of incipient melting 

during solution heat  treatment.   Both processes  can be minimised  by using a sharp 

temperature gradient during the casting process.  Single crystals have highly anisotropic 

mechanical properties, both in terms of stiffness and plasticity.  The highest stiffness is 

measured along the close packed <111> direction and the lowest being along the <001> 

direction.   Anisotropic plasticity is caused by slip systems with the highest resolved 

shear  stresses  experiencing  the  most  intense  plastic  deformation,  with  obvious 

implications  for  both  creep  and fatigue  behaviour  (higher  order  plastic  deformation 

phenomena).

4.5 CMSX-4

4.5.1 Microstructure and Physical Properties

CMSX-4 is  a  second generation single  crystal  superalloy containing  3% rhenium in 

particular,  and  other  alloying  additions  to  provide  solid  solution  strengthening. 

Rhenium  is  found  predominantly  in  the  γ matrix,  it  retards  coarsening  of  the  γ’ 

strengthening  phase  and  increases  γ/γ’  misfit.   Rhenium  clusters  act  as  efficient 
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obstacles to dislocation movement in the γ matrix, more so than isolated solute atoms, 

and therefore are believed to contribute significantly to the high strength of the alloyxxxv. 

Rhenium  has  been  linked  to  enhanced  strain  ageing,  since  its  large  atomic  radius 

promotes  the trapping  of  dislocationsxxxvi.   Rhenium has  also been  shown to  reduce 

creepxxxvii 

Chromium provides corrosion and oxidation resistance due to the formation of the 

non-porous surface oxide Cr2O3. However the chromium levels are lowered to allow 

increased  aluminium  and  titanium  levels.   Also  at  high  temperatures  Al2O3 scales 

provide  additional  resistance  to  oxidation.   Cobalt,  when  added  to  Nickel-base 

superalloys, reduces the solubility of aluminium and titanium in the nickel-chromium γ 

matrix.  This encourages the formation of the γ’ phase.  Cobalt can also reduce creep by 

lowering the stacking fault energy, thereby hindering dislocation cross-slip and climb. 

Molybdenum, niobium, tungsten and tantalum are added to the monocrystalline nickel 

base superalloys to solid-solution strengthen the  γ and  γ’ phases and can help reduce 

creep deformation. The addition of carbon removes the detrimental elements such as 

sulphur  and  oxygen.   Molybdenum  can  reduce  creep  at  high  temperatures  since  it 

reduces self-diffusivity.

The  addition  of  molybdenum,  tantalum,  tungsten,  rhenium and  cobalt  has  been 

shown  to  strongly  affect  the  γ/γ’  lattice  misfit  due  to  their  large  atomic  radii.  In 

particular rhenium additions have been shown to produce a more negative misfitxxxviii. 

It has also been shown that the lattice misfit is severely affected by the dendritic 

structure, since the refractory elements are prone to segregationxxxix.

4.5.2 Heat Treatment

Cast superalloys  (such as CMSX-4) are given heat treatment  to strengthen,  improve 

ductility  and  homogenize  their  structure.   In  outline  they  receive  a  lengthy,  staged 

solution heat  treatment  to  reduce dendritic  segregation  effects,  followed by a  single 

stage ageing heat treatment to optimise the γ’ distribution.

4.5.3 Oxidation behavior

CMSX-4  has  a  low  chromium  content  and  therefore  has  relatively  poor  oxidation 

resistance.   This  is  an  accepted  trade  off  in  order  to  gain  improved  mechanical 

properties by using a higher percentage of aluminium and titanium.  Turbine blades are 

manufactured  with  a  protective  coating  to  prevent  oxidation  at  high  operating 
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temperatures thus allowing for the low chromium content.  The literature reflects this in 

that there is very little written about the oxidation of uncoated CMSX-4.

4.5.4 Creep

Creep behaviour  of CMSX-4 is  well  documented.   Tests  are  normally conducted at 

higher temperatures (750°C to 1000°C).  CMSX-4 exhibits excellent creep resistance at 

elevated temperature due to hardening by γ’ precipitates.  At high temperatures, and in 

particular,  low stresses,  rafting is  observedxl.   Rafting  occurs  when the  γ’  begins  to 

deform under stress and high temperature.   Each cubical  particle  shortens along the 

[001] direction and expands along the [100] and [010] directions.  When deformation of 

the particles reaches 15%, adjacent particles may weld together to produce an elongated 

(rafted)  γ’  structure  along  [100]  or  [010]  directions.   Multiple  crack  initiation  is 

common in creep failurexli.

4.5.5 Fatigue Behaviour

At room temperatures  in  polycrystalline  nickel  base  superalloys,  cracks  can  initiate 

from slip bands, grain boundaries, carbides, due to cracking of inclusions/precipitates, 

or at defects.  Cracks that have initiated at inclusions or precipitates usually arise due to 

differences in the thermal expansion coefficients or the strength between the inclusions 

and the matrix.xlii.

Casting micropores have been found to initiate LCF cracks early in the life of MAR-

M200 and CMSX-2 single crystals at 650°Cxliii.  The initiating pore was either at the 

surface or sub-surface and when crack initiation occurred at the surface in CMSX-2, the 

replica record showed that life was mainly spent in crack growth.  Fatigue failure in 

CMSX-2 was found to occur by the growth of a single crack that initiated at porosity 

and in MAR-M200, several cracks that initiated at pores coalesced to final failure.

Crack  initiation  in  CMSX-4 appears  to  be  controlled  by  porosity  and  oxidation 

spikes219.   Oxidation  is  also  suggested  to  be  a  dominant  factor  in  crack  growthxliv 

Oxidation at the crack tip becomes important at higher temperatures with oxide induced 

closure causing crack tip blunting and reducing crack growth ratesxlv.

Ott  et  al  carried out fatigue tests  on CMSX-4 and CMSX-6. Samples  were pre-

strained  in  the  [001]  direction  in  either  tension,  resulting  in  a  raft  structure 

perpendicular  to  the  applied  stress,  or  in  compression,  providing  a  rafted  structure 

parallel to the applied stress, at 1100°C in vacuum to develop a rafted microstructure. 
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Fatigue tests were then carried out on these samples at 950°C in air under strain control 

to assess the effects of rafting parallel and perpendicular to the applied stress compared 

to an unstrained baseline.  The tests were performed with a total strain amplitude of 

1.2%. It was found that this produced a stress of ~500MPa irrespective of the rafting 

orientation.   Fatigue  tests  with  the  tensile  axis  parallel  to  the  [001]  direction  were 

carried out, short cracks were seen to initiate at either surface pores or from cracks in 

the brittle oxide layer.

Schubert et al219 carried out fatigue tests on CMSX-4 at 750°C and 1000°C in air 

and in vacuum.  Testing single edge notch (SEN) type samples with small corner or 

edge cracks simulated small cracks in turbine blades. Tests were carried out at a load 

ratio of 0.1 and a frequency of 5Hz. In addition creep fatigue tests were carried out with 

a trapezoidal 0.1-300-0.1-1 waveform.  Pre-cracking was performed at test temperature 

at 10Hz.  Specimens were orientated such that the tensile axis was parallel to the <001> 

direction,  whilst  the nominal  crack growth direction was either in the <100> or the 

<110> direction.  Fatigue cracks grown in air at 750°C were seen to propagate along γ 

channels  in the nominal  mode I  direction zigzagging between the {111} and {100} 

planes at  low and medium  ∆K levels.   At higher  ∆K a change in the surface crack 

growth mechanism to the {111} planes was observed together with cutting of the  γ’ 

phase.  At 1000°C no cutting of the  γ’ occurred and hence propagation was via cross 

sliding on the {100} planes along the γ channels.

The difference between secondary notch orientations was much more pronounced at 

750°C than at 1000°C. In both cases the change was only evident at low ∆K levels (<20 

MPa√m). Similarly the effect of environment on fatigue crack growth rates was only 

evident at low ∆K levels (<20 MPa√m).

4.5.6 Summary of CMSX-4 findings

Creep  behaviour  of  CMSX-4  is  well  documented  between  750°C-1000°C  where  it 

exhibits  excellent  creep  resistance  due  to  hardening  by  γ’  precipitates.   At  high 

temperatures,  and  in  particular,  low  stresses,  rafting  is  observed.   Multiple  crack 

initiation is common in creep failure.  Fatigue behaviour of CMSX-4 is less commonly 

investigated.   The  literature  suggests  that  initiation  is  controlled  by  porosity  and 

oxidation spikes.  Oxidation is suggested to be a dominant factor in crack growth with 

oxidation induced closure effects retarding crack growth. Oxidation also causes crack 

tip blunting, this is more apparent at higher temperatures.
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Figure 8 - Anatomy of a Jet Engine

Turbine blade
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Figure 9 - Fir tree root fixing for turbine blade

Figure 10 - A typical S-N curve
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Figure 11 - Sharp crack length 2a in a thin elastic plate, with a nominal applied stress σ

2a 
B 

σ  

σ  

Figure 12 - Sharp crack length 2a in an elastic plate, with a nominal applied stress σ
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Figure 13 - Typical opening modes

Figure 14 - Typical da/dN versus ∆K curve

Figure 15 - Typical long crack/short crack behaviour (after Suresh218)
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3D schematic of microstructure SEM picture showing microstructure

Figure 16 - Cuboidal γ'

Figure 17 - Cross-slip pinning mechanism, the dislocation cross-slips onto (010) due to lower APB 
energy and is locked in this configuration

Figure 18 - Definition of secondary orientations A and B and their nominal crack growth directions
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5 Neural Network Modelling
5.1 Program of Work
Fatigue  performance  of  nickel  based  superalloys  is  an  increasingly  important 

consideration when designing new alloys.  Producing a new alloy and carrying out a 

fatigue testing program is an expensive and time consuming process.  The ability to 

predict fatigue performance or trends based upon the alloy composition and processing 

routes would provide a powerful tool in alloy development and could help narrow down 

the combinations of alloying elements before raw material is produced.  Such a tool 

would help reduce costs during an alloy development program.

This  work follows on from an initial  program of work within the Engine Materials 

Lifing group at  QinetiQ, Farnborough.  Neural  network modelling  has already been 

used within QinetiQ to model  YS, UTS and CRS of alloys  based on their  chemical 

composition and processing root.  This work has been used as a precursor to developing 

a modelling technique for predicting fatigue life.  The main aims of this work are:

• Using  current  neural  network  models  as  a  starting  point,  develop  a 

methodology of collection and screening of input data.

• Develop guidelines for training and validation of neural network models for 

prediction of mechanical properties of Ni-based superalloys.

• Search literature and in house QinetiQ data for LCF data to populate a new 

neural network model.

• Use  experience  gained  from  work  with  current  models  to  develop  and 

validate a model for prediction of alloy fatigue life.   Model development 

should include justification of selection of inputs

The first few sections of this chapter discuss work performed with YS and UTS models. 

Large datasets were already available and some initial work had already been carried 

out, this work has been built upon further and reported.  YS and UTS models are much 

simpler to analyse as results are presented as a function of test temperature only for each 

alloy.  They therefore presented good subjects to further develop modelling techniques 

and strategies which could then be applied to an LCF model.

The development of the YS and UTS neural network models was supported with 

statistical  analysis  of  the  data,  first  using  examination  by  Excel  spreadsheet  then 
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progressing onto Minitab statistical analysis software.  Results from the models have 

been compared with unseen test data.

The  second  section  of  this  work  applies  the  methodologies  developed  for,  and 

lessons learned from, development  of YS and UTS models to the development of a 

fatigue life prediction model.  Further work has been carried out to establish the correct 

inputs for the model and initial models have been compared with unseen test data.

The modelling process employed in this work is of a cyclic nature where the 

process of learning from data is seen as a continuous process.  Once a dataset has been 

established and trained, the results have been used to suggest improvements either in the 

modelling  process  or  by  modifying  the  input  data.   The  modelling  process  is  then 

repeated and observations recorded.

Care has been taken not to implement too many changes at once so the effect of each 

one can be established.

5.2 Software Approaches

5.2.1 Neuromat Overview

Neuromat Model Manager is a user friendly neural network modelling software package 

that is available for Linux RedHat.  It is commercially available software supplied by 

Neuromat Ltd in conjunction with Cambridge University.

Neuromat performs the training of multiple  models,  selection of models to form 

committees and ranks their performance.  Models comprising of committees can then be 

re-trained  and  used  to  predict  against  unseen  data  with  reference  to  the  levels  of 

confidence of the prediction and significances of individual inputs.  The key advantages 

of Neuromat are the ability to generate error bars when predicting data and the inclusion 

of an algorithm to determine the significance of inputs to the model.  The methods used 

in Neuromat software are described in more technical detail in the following sections.
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5.2.2 Bayesian learning

The neural  network used in  Neuromat  is  a feed forward network consisting  of two 

layers.  The activation function of the neurons in the hidden layer is a  tanh  function. 

The second layer neuron performs a linear combination of each hidden unit output.  The 

algorithm  used  to  train  the  models  has  been  written  by  D.J.C.  Mackay219.  It 

implements a particular learning method using Bayesian statistics to choose the most 

probable distribution for the weights given the data.  Training of the model is based on 

Bayesian probability theory and treats learning as an inference problem. Rather than 

trying to identify the best set of weights, the algorithm infers a probability distribution 

for the weights from the data presented.  The training method tries to minimise an error 

function M(w) (Equation 24).

wD EEwM αβ +=)( Equation 24

where ED is the sum squared error between the target and the predictions for a given 

choice of weights, and Ew is a regulariser, that is a term which favours small values of 

the weights:

∑=
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1 Equation 25

When  making  predictions,  the  variety  of  solutions  corresponding  to  different 

possible sets of weights are averaged using the probabilities of these sets of weights, a 

process called marginalising.

An advantage of this process is the ability to quantify the uncertainty of fitting.  If 

the probability distribution assigned to a weight set is sharply peaked, the most probable 

values will give the largest contribution to the prediction.  Alternative solutions will 

have little importance and the prediction will be associated with a small uncertainty.  If, 

the  data  is  such  that  different  sets  of  weights  are  all  similarly  probable  (a  wide 

distribution of probabilities) all predictions will contribute in similar proportions and the 

error bar will be large.  Large error bars signify sparse or noisy data and provide a good 

reminder when the network is trying to predict outside the training space (extrapolate 

data). 
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5.2.3 Ranking models

Rankings can be performed by Log Predictive Error (LPE) or Test Error (TE).  TE uses 

a sum of squared errors with regularisation constants α and β to control influence of ED 

and Ew (Equation 24). Where Ed is given as:

2]);([2
1)( mm

D twxywE −∑= Equation 26

LPE  attaches  less  importance  to  points  which  are  outliers  i.e.  badly 

predicted/erroneous data.

∑ +−=
m

m
y

m
ymm ytLPE π σσ 2log(/)(2

1 22
Equation 27

Where  σy
m is  an  error  bound.   Penalty  for  bad  predictions  is  much  less  if  that 

prediction is accompanied by appropriately large error bars.

5.2.4 Data Preparation

The training database is first ‘rearranged’ with every second line being placed at the end 

of the dataset.   The next  step is  the normalisation of the data.   Data  is  normalized 

between −0.5 and 0.5 using Equation 28.
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xxX N Equation 28

5.2.5 Training models

Neuromat  takes  steps  to  avoid  the  overfitting  problem by  dividing  the  data  into  a 

training set and a test set.  Figure 19 shows an example of a model (the black line) 

overfitting to the training data.  When the rest of the data is presented (Figure 20) to the 

model  it  is  associated  with  large  test  errors  as  the  model  does  not  generalise  well. 

Figure 21 shows the relationship between training and test error as the complexity of the 

model increases.  There reaches a point when the model begins to over fit to the data 

and although the training error continues to decrease, the ability to predict unseen data 

reduces.

For most of the experiments detailed in this chapter, data is split 50/50 for training 

and selecting models and committees (NB - New version of software allows this ratio to 
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be changed).  The first half of the database is used to train a number of models.  The 

numbers of models trained is set by the maximum number of hidden units and seeds 

selected.   Neuromat  has  the  capacity  to  create  models  with  up  to  25  hidden units. 

During the training process, Neuromat creates a model for every combination of hidden 

unit and seed.  For example selecting a maximum of 10 hidden units and 5 seeds would 

require the creation of 50 models.  Every combination of 1 to 10 hidden unit models 

starting at any one of 5 seed points will be trained.  The remaining percentage of the 

data is then used to test and rank each model in turn

5.2.6 Committees of models

The complexity of a model depends on its number of hidden units. Therefore, models 

with  different  numbers  of  hidden units  will  give  different  predictions.   Committees 

generally perform better than single models, especially in areas of uncertainty due to 

sparse or noisy data.

In Neuromat, committees are constructed using the best performing models ranked 

on either LPE or TE basis.  Predictions are then made using an average from all models 

in  the  committee.   A  graph  of  combined  test  error  against  number  of  models  in 

committee can be plotted (Figure 22).  This information can then be used to select the 

optimum number  of  models  with  which  to  construct  a  committee.   The  process  of 

selecting models is done by hand.

5.2.7 Significance of inputs.

Significance  values  for  all  inputs  are  generated  during  training.   Neuromat  uses 

Automatic Relevance Determination (ARD) which was developed by Mackayxlvi.  The 

aim  of  ARD  is  to  discover  which  hidden  variables  are  relevant  in  explaining  the 

dynamics of the system of interest.  The ARD is  implemented as a form of Bayesian 

structure  learning  where  a  prior  Gaussian  distribution  is  placed  on  the  weights, 

favouring small magnitudes. The essence of ARD is that each input unit has its own 

prior variance parameter. Small variance suggests that all weights leaving the unit will 

be small, so the unit will have little influence on subsequent values. A large variance 

indicates that the unit is important in explaining the data.
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5.2.8 Neuromat Notation

Neuromat  uses  letter  and  number  notation  to  reference  individual  models  within  a 

committee.  The letter is used to define the number of hidden units within the model; 

a=1, b=2, c=3 etc.  The number represents which initial seed point was used to train the 

model.  For example H3 would refer to an 8 hidden unit model that was seeded with 

seed number 3.
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Figure  19 Examples  of  two possible  data  fits 
(after Neuromat reference manual)

Figure  20 Addition  of  test  data  to  indemtify 
model  overfitting  (after  Neuromat  reference  
manual)

Figure 21  Effect of complexity (number of HU’s) on test and training error

Figure 22 – Test error vs. number of models in a committee
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5.2.9 Matlab

Much of the work done with Neuromat has been mirrored using Matlab.  This was not 

so much an exercise in rewriting Neuromat in Matlab script but using Matlab to run 

experiments to investigate trends in the data and understand how the neural network 

modelling process works.  The Matlab modelling process provides greater transparency 

of Neuromat thus allowing assumptions and methods to be checked in greater detail. 

Matlab also allows much simpler and therefore quicker analysis of network models to 

be performed.

The Neural Network Toolbox is a powerful collection of MATLAB functions for 

the design,  training,  and simulation of neural  networks.  It  supports  a wide range of 

network  architectures  and  training  methods  including:  supervised  training  of 

feedforward networks using the perceptron  learning  rule,  Widrow-Hoff rule,  several 

variations on backpropagation (including the fast Levenberg-Marquardt algorithm), and 

radial basis networks; supervised training of recurrent Elman networks; unsupervised 

training of associative networks including competitive and feature map layers; Kohonen 

networks, self-organizing maps, and learning vector quantization. 

The Neural Network Toolbox has comprehensive help files which detail the theory 

and use of all the functions mentioned in this chapter.  The Toolbox is delivered as 

MATLAB M-files, enabling users to see the algorithms and implementations, as well as 

to make changes or create new functions to address a specific application.

Scripts  have been written as part  of this  work to aid the training and prediction 

process and can be found in APPENDIX 2.

The models written to date are currently using ‘trainbr’ function which utilises Bayesian 

Regularisation Backpropagation much the same as Neuromat.  This allows small tests to 

be carried out quickly and simply without having to train a full Neuromat model.  It also 

seemed a sensible starting point as the writers of Neuromat have spent time choosing a 

sensible training method for this sort of problem.

The basis of this work is to investigate how to collect,  process and use data to train 

models, not to investigate neural network models themselves.

Matlab Scripts have been written to pre process the data, train the Networks and 

produce graphs of results  and predictions  all  in  one run.   Matlab scripts  have been 

written to implement the following processes:
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During the training process, a graph of training Sum of Squared Errors (SSE) vs test 

SSE is produced (Figure 23).  The test dataset has to be specified before training.  The 

training vs test SSE can be used to stop the training process at a certain point (a form of 

early stopping).

All the models to date have been trained for a set number of Epochs.  An epoch 

represents  the  presentation  of  the  set  of  training  (input  and/or  target)  vectors  to  a 

network and the calculation of new weights and biases.

Generation  of  a  graph showing each target  data-point  vs the predicted  value 

from the trained model (Figure 24).  The line Y=X signifies a perfect prediction.  The 

graph is one of many ways to see how well  the model has fit  the training data.  A 

similar graph can be produced for prediction against unseen data

Predictions from each individual model are plotted against the actual test data (Figure

25).   At  the  time  of  writing,  no  script  has  been  written  to  select  the  optimum 

combination of models for one or multiple values of hidden units.

A first attempt has also been made at assigning significances to the input variables of 

the trained model.  The example chart shown in Figure 26 is generated calculating the 

sum product  of  each  input  weight  and  all  the  subsequent  weights  of  hidden  units 

between a particular input and the output.  This method is a rather crude treatment of 

analysis of input variables and requires refinement.
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Figure 23 – Example of Matlab output during training

Figure 24 – Example of test vs training error graph generated using Matlab

Figure 25 – Example of Matlab neural network predictions vs. actual data
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Figure 26 – Example of Significances related to input weights generated by Matlab
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5.3 Initial Modelling Work using UTS Database
QinetiQ currently have 3 neural  network models  based around the Neuromat neural 

network program supplied by Cambridge University.  Each Model uses its own database 

comprising of in house data and data available in the literature.

At the time of writing, the UTS database comprises of 1288 lines of data and 32 

inputs shown below.

Nickel Hafnium
Chromium Rhenium
Cobalt Lanthanum
Molybdenum Process
Tungsten Crystallography
Tantalum Solution Temp
Niobium Solution Time
Aluminium Solution Cooling type
Titanium Ageing Temp 1
Iron Ageing Time 1
Manganese Ageing Cooling type 1
Silicon Ageing Temp 2
Carbon Ageing Time 2
Boron Ageing Cooling type 2
Zirconium Test Temperature °C
Vanadium UTS (MPa)

5.4 Data Collection Methodology

5.4.1 Data Sources

An initial search through the literature and QinetiQ internal databases was carried out to 

investigate  the  amount,  and  more  importantly,  the  quality  of  data  available.   Data 

sources include:

• Superalloys conference proceedings

• Nickel Development Institute (NiDI) Handbook

• QinetiQ reports such as MANDATE Brite EuRam FPIV Programme

• INCO Alloy Datasheets

The first steps taken were to take existing QinetiQ data and build a Microsoft Access 

database.  An extra field was included for the full reference source for each record with 

hyperlinks to electronic journal papers where applicable.  This is particularly valuable 

information to QinetiQ and proved useful when checking the data for spurious results.
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5.4.2 Selection of Inputs

Inputs have been selected to describe the chemical composition, processing route and 

heat treatment as they all affect the microstructure and therefore strength of the alloy. 

The  roles  of  alloying  additions  and  processing  routes  are  discussed  in  section  4.2. 

Selecting the right number of inputs depends on several factors:

1. There must be enough inputs to adequately describe the alloy composition 

and other processes that are commonly documented.

2. As the number  of  inputs  increases,  so does the complexity  of the neural 

network and the amount of data required to train it.

3. Input data must be consistently recorded for each record used.

Initial  models  have used the full  chemical  composition of the alloy with further 

work being carried out to determine if some elements could be left out of future models. 

Inputs were chosen based upon information that was readily available in data sources, 

such inputs could only be used if that particular piece of information was recorded for 

every alloy.   Missing data is difficult to represent in a neural network, a cell cannot 

simply be left blank.  A value of zero is generally not an accurate representation for 

unknown data.  Blank cells can be filled with the average value for that input but this is 

not desirable as it is not a true result and could be very different from the actual missing 

value.  A better solution is to remove the record containing the missing data.

With this in mind, if the list of inputs was over defined many sources of data would 

be  unusable.   The  input  data  has  been  divided  up  into  3  categories;  Composition, 

Processing and Heat Treatment.  Varying data in each category will have a measurable 

effect on the strength of the alloy.

5.4.3 Alloy composition

Alloying  elements  that  are  included  specifically  to  strengthen  the  superalloy  are 

discussed in the literature review.  To start off with, full compositional information was 

recorded for each alloy.  The initial list comprised of 19 elements: Ni, Cr, Co, Mo, W, 

Ta, Nb, Al, Ti, Fe, Mn, Si, C, B, Zr, V, Hf, Re, and La.

It is expected that the most important elements will be those that are included for γ’ 

formation and solid solution strengthening. The removal of some of these elements as 
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inputs  is  discussed later  in the chapter.   Alloy compositions  are recorded as weight 

percent to an accuracy of 2 decimal places.

5.4.4 Processing parameters

Information about the processing route of each alloy was limited to; Cast or cast and 

wrought  as  the  first  input  and  Polycrystalline  (PX),  directionally  solidified  (DS)  or 

single  crystal  (SX)  as  the  second.   These  parameters  are  the  only  ones  which  are 

regularly recorded and they all have a significant effect on material properties which 

cannot be described by composition and heat treatment alone.  Processing parameters 

are recorded by allocating a number to each parameter as shown:

Process Crystallography
Cast 0 P

X
0

Wrought 1 D
S

1

PM 2 S
X

2

The disadvantage with this method is that it infers some sort of numerical ranking to the 

processes which may adversely affect the model.  An alternative method could be used 

as shown:

P1 P2 P3 C1 C2 C3
Cast 1 0 0 P

X
1 0 0

Wrought 0 1 0 D
S

0 1 0

PM 0 0 1 S
X

0 0 1

The problem here lies in the creation of 42 more input columns in this case.  It was 

decided  to  use  the  first  method  for  initial  modelling  attempts  in  order  to  keep  the 

number of inputs to a minimum.

2 Whichever method is used to describe level information for processes should also be 

used for cooling rate information (see heat treatments) so the increase in inputs would 

be by 7 and not 3.
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5.4.5 Heat Treatments

The heat treatment used will determine the  γ/γ’ microstructure and grain size (where 

applicable) thus having a large effect on the strength of the alloy.  The most common 

heat treatment cycle is normally a combination of a solution treatment and one or two 

ageing treatments.  Heat treatment information has therefore been split into 9 inputs. 

Information  on heat  treatments  is  recorded with 3 critical  parameters  (Temperature, 

Time and Cooling type).  Cooling rate is also important but was not often included in 

papers and specifications and was therefore left out.  It is also a function of the cooling 

method used, so this parameter should adequately describe the process.

Temperature  and time  inputs  are  simply  recorded  in  °C and hours  respectively. 

Cooling methods are recorded in much the same way as processing information and are 

subject to the same decision as to how to record the levels.

Cooling Method
Air cool 0
Furnace cool 1
Water Quench 2
Oil Quench 3

Some alloys have a multi step heat treatment that does not fit the structure of the input 

database.  For these alloys, a method of reducing complex multi step treatments into one 

equivalent step was used.  A single step was calculated to give an equivalent amount of 

diffusion of Al and Ti in Ni.  An example for the treatment of alloy CM247LC DS is 

given.

The solution heat treatment for CM247LC DS is 1221°C for 2 hours + 1232°C for 2 

hours + 1246°C for 2 hours + 1260°C for 2 hours then rapid fan quench in argon. 

Diffusion of aluminium in nickel (k) has been calculated using the Arrhenius equation.

Equation 29

Where A and Ea are material constants from the literaturexlvii,  R is the gas constant 

and T the temperature in °Kelvin.  The diffusion distance is then calculated:

Distance = √(k.t) Equation 30

Where k has been calculated in Equation 29 and t is the time in seconds.  The time 

required  for  each  step,  at  the  maximum temperature  (1260°C) instead  of  the  actual 

temperature, to give an equivalent diffusion distance was then calculated.  An example 
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is given for diffusion of aluminium in nickel (Figure 27).  Values for titanium were very 

similar.

Temp 
(°C)

Temp 
(°K) R A Q D Time (s)

Diffusion 
distance (cm) 

Eqiv Time 
@ 1553°K

1221 1494 1.987 4.41 73160 8.737E-11 7200 0.000793115 3846.2925
1232 1505 1.987 4.41 73160 1.046E-10 7200 0.000867861 4605.438
1246 1519 1.987 4.41 73160 1.311E-10 7200 0.000971433 5770.2683
1260 1533 1.987 4.41 73160 1.635E-10 7200 0.001085128 7200

Total
Seconds 21421.999

Hours 5.9505552

Constants

Figure 27 – Excel calculations for solution heat treatment approximation

The 4 step solution treatment is therefore substituted with 1 solution treatment step at 

1260°C for 6 hours.

5.5 Predictions using UTS_IW7_Test database.
The IW7 test  database represents the initial  database of raw data,  as inherited  from 

QinetiQ for this work.  The data has been collected by a combination of undergraduate 

students and researchers over the period of several years  The following set of results 

represents  a  summary  of  the  work  completed  prior  to  any  raw  data  analysis  and 

subsequent data clean-up.  The model was trained using a maximum of 18 hidden units 

and 9 seeds.  A maximum of 60 models was selected to train committees.

• Best LPE committee comprises of 4 models.

• Best TE committee comprises of 8 models.

• Best LPE and TE committees had no models in common.
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UTS Predictions for Nim739
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Figure 28 - UTS predictions for Nim739 using UTS_IW7_Test

Both the LPE and TE committees gave good results when tested against unseen Nim739 

data (Figure 28).  The best LPE committee prediction was closer to the test data.  Test 

data was very close to staying within error bounds throughout the temperature range. 

Maximum predicted error was 118 MPa with an average error of +/- 84MPa

When tested against data for M313 the LPE committee prediction was very close to 

the test data again. (Figure 29).  The model had significantly wider error bounds than 

the  prediction  for  Nim739  with  an  average  error  +/-  468MPa  for  the  best  LPE 

committee.  The best TE model committee was not tested using this data.

53



UTS Predictions for M313
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Figure 29 - UTS predictions for M313 using UTS_IW7_Test

The  training  database  was  checked  for  data  that  is  similar  to  data  used  to  test  the 

models.  Although there is no Nim739 data in the database there is IN939 which has an 

almost identical composition.  The IN939 data in the training database has been plotted 

with the ‘unseen’ Nim739’ data and the predicted values for Nim739 (Figure 30).

Comparison of seen vs unseen data
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Figure 30 - Comparison of data for Nim739 and IN939 + Neuromat prediction
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Significance of inputs for best 8 TE models
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Figure 31 - Significance of inputs for best TE committee

Significance of inputs for best 4 LPE models
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Figure 32 - Significance of inputs for best LPE committee.

Significance plots for both committees (Figure 31 &  Figure 32) show that the most 

significant  data  inputs  to  the  models  are;  test  temperature,  cooling  rate  from  heat 

treatment 2 and weight percentage of boron.  It is expected that test temperature should 

be the most significant input but the relative high significances of heat treatment 2 and 

boron in comparison to additions such as Al and Ti is not expected.
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5.6 Supporting work using Matlab
Initial work with Matlab for this dataset produced results that were not repeatable.  A 

network  that  was  trained  and  gave  reasonable  predictions  could  be  retrained  from 

scratch with the same data in an identical manner and yet give very different results.

This was found to be due to the way that the model chooses its starting weights. 

One of the first lines in the code which ‘initialised’ the network randomly selects the 

starting weights and biases (or ‘seeds’).  To make the training process repeatable the 

starting weights and biases can be recorded and re-used to yield similar training results.

The effect of changing initial weights is well illustrated in Figure 33 where each line 

represents the prediction from a single 25 hidden unit model started with random seeds 

on identical training datasets.

Figure 33 – Models trained using the same training in Matlab using different initial 
values

The first attempts using Matlab to generate models were run by hand with no extra 

scripting.  The results in Figure 34 show UTS predictions for alloy Nimonic 739 from 

single models against seen data.
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Figure 34 – Predictions for Nim739 UTS, varying number of HU’s
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5.7 Summary of Preliminary Results

Matlab models have shown that a large number of seed points will give the network the 

best  chance  at  finding an optimum fit  to  the  UTS data  and the difference  between 

networks trained from different seeds can be very large.  It is advisable to select the 

maximum number of seeds points in Neuromat before training the model to give it the 

best chance of arriving at a globally optimised solution

Initial Matlab models have shown that a single model in the region of 16 to 25 

hidden units can provide a reasonable fit to seen data.  No one model fitted all seen test 

alloys well.

Although the first results from the “raw” database proved encouraging, it was 

found that for one ‘unseen’ alloy (Nim739) there was a very similar alloy present in the 

database  so  this  was  not  a  critical  test  of  the  model’s  predictive  ability.   More 

importantly, the results of the significance analysis showed that the model was relying 

heavily on inputs that are believed to be metallurgically less important than others.  The 

predictions  shown  are  the  best  results  achieved  for  this  particular  model/database 

combination.

With this in mind, statistical  analysis  of the input data was conducted before 

further models were trained.

o Data spread for each input within the database

 Maxima, Minima, Mean, Distribution etc..

o Analysis of data in large subsets

o Number of data points per alloy 

o Scatter of subsets for alloys with a large number of data points (Alloys 

with  >10  data  points  have  been  identified  and  results  for  each  alloy 

plotted)

o Any repeat tests within database

o Wt% Totals were checked
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5.8 Data Preparation and Analysis
Data was stored within a Microsoft Access database in order to make data analysis and 

data  sorting more straightforward.   Datasets  were exported to Excel  or .txt  files  for 

analysis or to train a neural network model when required.  This insures that the very 

latest database was  always used when producing statistical analysis of data or training a 

neural network.

Each database was exported to a spreadsheet in Excel.  The excel data analysis tool 

for ‘Descriptive Statistics’ was used to analyse the data.  The Descriptive Statistics tool 

generates the following information:

• Mean
• Standard Error
• Median
• Mode
• Standard Deviation
• Sample Variance
• Kurtosis

o Returns  the kurtosis  of  a data set.  Kurtosis  characterizes the relative 
peakedness  or  flatness  of  a  distribution  compared  with  the  normal 
distribution. Positive kurtosis indicates a relatively peaked distribution.  
Negative kurtosis indicates a relatively flat distribution

• Skewness
o asymmetry of a distribution around its mean. Positive skewness indicates  

a distribution with an asymmetric tail extending toward more positive  
values. Negative skewness indicates a distribution with an asymmetric  
tail extending toward more negative values.

• Range
• Minimum
• Maximum

In addition to the analysis  performed automatically by Excel,  two more calculations 

were performed.

1. The percentage of data points for each input that are non zero.  E.g. The column 

for Ni contains 100% non zero values.

2. The distribution above and below 100% for the total weight percent for each 

alloy.  

When  looking  at  analytical  results  for;  Process,  Crystallography  (X)  and  the  three 

cooling rates (CHT1, CHT2 and CHT3) it must be taken into account that these inputs 

are coded 0,1,2,3.
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UTS Data Ni_(wt%) Cr Co Mo W Ta Nb Al Ti Fe Mn

Mean 57.83 15.67 10.34 3.57 1.85 0.91 1.06 2.81 2.60 2.87 0.07
Standard Error 0.19 0.13 0.20 0.10 0.08 0.06 0.05 0.05 0.05 0.18 0.00
Median 57.27 16.00 11.00 3.00 1.00 0.00 0.00 2.50 2.60 0.00 0.00
Mode 57.27 16.00 0.00 3.00 0.00 0.00 0.00 2.50 5.00 0.00 0.00
Standard Deviation 6.68 4.61 7.25 3.60 2.93 2.03 1.75 1.91 1.68 6.48 0.15
Sample Variance 44.64 21.30 52.52 12.96 8.56 4.11 3.06 3.64 2.81 41.94 0.02
Kurtosis 0.59 0.58 -1.20 17.76 3.63 10.17 1.15 -1.01 -1.29 2.90 8.96
Skewness 0.60 -0.32 -0.23 3.58 2.07 3.04 1.61 0.35 0.06 2.11 2.94

Range 36.00 30.00 25.15 25.00 12.20 11.90 6.50 8.00 5.50 27.16 0.80
Minimum 40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 76.00 30.00 25.15 25.00 12.20 11.90 6.50 8.00 5.50 27.16 0.80

Number of records 1288
Percentage of non zero values 100.0% 99.5% 76.4% 86.0% 52.4% 28.3% 44.3% 97.7% 91.9% 38.5% 35.2%

Si C B Zr V Hf Re La Process X

Mean 0.07 0.08 0.01 0.05 0.02 0.08 0.05 0.00 0.61 0.11
Standard Error 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.01
Median 0.00 0.06 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00
Mode 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard Deviation 0.14 0.08 0.03 0.10 0.12 0.30 0.37 0.00 0.72 0.42
Sample Variance 0.02 0.01 0.00 0.01 0.01 0.09 0.14 0.00 0.51 0.18
Kurtosis 12.30 15.04 45.45 65.17 57.14 17.98 53.57 179.71 -0.74 13.01
Skewness 3.23 3.13 6.28 7.61 7.59 4.28 7.42 13.47 0.73 3.74

Range 0.95 0.60 0.25 1.00 1.00 2.00 2.90 0.02 2.00 2.00
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 0.95 0.60 0.25 1.00 1.00 2.00 2.90 0.02 2.00 2.00

Number of records
Percentage of non zero values 36.7% 98.2% 83.6% 64.5% 2.1% 9.5% 2.2% 0.5% 47.3% 7.7%

TempHT1 TimeHT1 CHT1 TempHT2 TimeHT2 CHT2 TempHT3 TimeHT3 CHT3 Temp_C UTS_MPa

Mean 969.30 2.94 0.36 707.91 13.95 0.10 407.20 8.59 0.02 498.01 998.36
Standard Error 10.21 0.06 0.02 8.78 0.30 0.01 10.24 0.20 0.01 9.61 10.38
Median 1100.00 2.00 0.00 760.00 16.00 0.00 620.00 8.00 0.00 609.05 1050.00
Mode 1100.00 4.00 0.00 20.00 24.00 0.00 20.00 2.00 0.00 20.00 1050.00
Standard Deviation 366.31 2.00 0.86 315.12 10.87 0.40 367.46 7.26 0.26 344.73 372.35
Sample Variance 134185.98 4.01 0.74 99301.06 118.09 0.16 135025.68 52.73 0.07 118840.20 138646.36
Kurtosis 2.72 17.90 3.01 0.72 13.37 32.74 -1.90 -0.96 124.29 -1.29 -0.28
Skewness -2.09 2.73 2.14 -1.25 1.84 5.34 -0.06 0.55 11.23 -0.29 -0.60

Range 1295.00 18.83 3.00 1140.00 119.00 3.00 1020.00 32.00 3.00 1080.29 1647.38
Minimum 20.00 0.17 0.00 20.00 1.00 0.00 20.00 0.00 0.00 19.71 35.00
Maximum 1315.00 19.00 3.00 1160.00 120.00 3.00 1040.00 32.00 3.00 1100.00 1682.38

Number of records
Count - zero values 0 0 1089 0 0 1195 0 1 1278 0 0
Percentage of non zero values 100.0% 100.0% 15.5% 100.0% 100.0% 7.2% 100.0% 99.9% 0.8% 100.0% 100.0%

Table 1 Data analysis of UTS database

Analysis shows that there is a good population of data for boron within that database 

and the data is not particularly skewed or have any large outliers (Table 1).

Data for heat treatment 2 (CHT2) shows that 99% of the values are set at 0 which 

corresponds to air cool.  Weight percentage totals show that only 507 entries have a 

total weight percentage that equates to 100% exactly.  Furthermore, there are 135 alloy 

entries outside 100 +/- 0.5% and 22 entries that are less that 99%.

This  data  does  not  represent  mistakes  during  data  entry  but  is  representative  of 

actual data published.  A lot of data is quoted as nominal values within ranges which 

quite often do not add up to 100%.

A  form  within  Microsoft  Access  was  used  with  an  underlying  query  to 

automatically generate graphs to show spread of data points within one alloy type or a 

group of alloys.   Figure 35 shows the full  spread of data points  within the original 

database.   Clusters  of  data  are  observed  at  common  test  temperatures  0°C,  550°C, 

650°C etc.  Large amounts of scatter are visible at these temperatures and require closer 

inspection on an alloy by alloy basis.  Presenting Neuromat with data with such a large 
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spread will cause it to use large error bars in area where there is actually a lot of data. 

Some  obvious  outliers  are  visible  at  20°C  with  UTS  values  of  between  400  and 

600MPa.

Figure 35 – Full spread of UTS data by alloy (UTS vs. Temp)

The two distinct clusters of data can be separated out further by plotting with respect to 

alloy type /  process (Figure 36).  It  can be seen that the higher cluster  is generally 

comprised of powder metallurgy alloys.  Some outliers that have been removed during 

the checking process have also been circled on this graph.

Alloys were examined on an alloy by alloy basis in order to identify incorrect data 

points.  An example of a typical alloy curve within the database is shown in Figure 37. 

Figure 38 shows U720 and all its derivatives which exhibit a high amount of scatter due 

to the subtle alloy variations within the group and the large amount of test data from a 

variety of sources.
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Figure 36 – Identification of outliers in UTS database

Figure 37 – Material curve for alloy R44

Figure 38 – Data for U720 exhibiting large amounts of scatter at common test 
temperatures

5.9 Modifications to database.
Heat Treatments

62



When the data was initially input into the database, heat treatment columns were filled 

from left to right depending on how many heat treatments the alloys received.  Each 

heat treatment step is added for a particular reason and can have different effects on the 

microstructure.  The model should benefit from each treatment (solution and age) being 

identified in its own column.

The heat treatment columns in the database have now been rearranged so that the 

significance’s  would  correspond  to  different  types  of  heat  treatment.   Column 

TempHT1 has been reserved for solution treatments (high temperature relatively short 

duration).   All  heat  treatments  in  column TempHT1  that  were  identified  as  ageing 

treatments  were  moved  to  columns  TempHT2  and  TempHT3  with  single  ages  in 

TempHT2.

Weight Percentages & Inclusion of Ni
The  Nickel  column  can  be  calculated  as  a  function  of  all  the  rest  of  the  alloying 

elements, it  is therefore unnecessary to include this information in order to train the 

neural  network.   The removal  of this  column also generates  the assumption  that  all 

weight percentage totals are now 100%.

Removal of outliers
The graphs for each alloy were used to identify clear outliers.  Data was amended when 

type errors were identified.  Some data was removed when it was believed that it was 

clearly wrong i.e. differed by an order of magnitude from the next nearest result.
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5.10 Models Using refined UTS Database
UTS models trained with full database including test alloys (UTS_17_01_05)

• LPE committee comprises of 15 models (Figure 39) Models range between 5 

and 14 hidden units.

• TE committee comprises of 12 models (Figure 40) Models range between 5 and 

9 hidden units.

Figure  39 - Committee based on LPE 
ranking

Figure  40 -  Committee  based  on  TE 
ranking

The committee models were exported so that they can be run on a as a standard PC as a 

standalone application.  A single text file has been created with all test alloys and all 

variations for sensitivity analysis so that model only needs to be run once in order to 

generate all data required.

Predictions against test alloys (seen data) 

Graphs show that the LPE committee performs better with test alloys 617 (Figure 41) 

and 901 (Figure 42) with very little difference between the two for MERL 76 (Figure

43).  LPE predictions appear to be lower than TE based prediction.

Error  bands  for  MERL 76  predictions  show  decreased  confidence  levels  at  higher 

temperatures which correlate well to the spread of data in the database.
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UTS Predictions for Inconel 617 
(UTS_17_01_05)
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Figure 41 – Neuromat predictions for Inconel 617 UTS

UTS Predictions for Nimonic 901
(UTS_17_01_05)
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Figure 42 – Neuromat predictions for Nimonic 901 UTS

65



UTS Predictions for Merl 76
(UTS_17_01_05)
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Figure 43 – Neuromat predictions for MERL 76 UTS

Significance of input variables.
Significance  values  from each  model  in  each  committee  have  been  recorded.   The 

following  graph  shows  the  average  significance  values  for  each  committee  model 

(Figure 44).

Significance  values  for  composition  inputs  appear  more  consistent  with 

metallurgical understanding than previous models using raw data.  Boron is no longer 

considered to be the element that has most effect on UTS.  The significances of heat 

treatment  steps  are  however  less  believable  with  cooling  rate  of  the  first  ageing 

treatment (CHT2) appearing to have the most effect.  It has however been shown in the 

literature that, in the case of U720, there is significant influence of quenching medium 

on the properties of the alloy due to the effect on tertiary γ’ formationxlviii.
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Average Significance Values for  committees
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Figure 44 – Significance of inputs for input dataset UTS_17_01_05

Sensitivity Analysis

Inconel 617 is present in the training dataset.  The prediction is carried out for an ageing 

treatment at 650°C for 8 hours and shows an average increase in UTS of ~300MPa 

(Figure 45).

Effect of heat treatment on Inconel 617
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Figure 45 – Sensitivity of UTS model to change in heat treatment for Inconel 617

MERL 76 was chosen as an example of a high strength disk alloy within the database. 

The prediction for MERL 76 without any ageing treatments (Figure 46) showed a small 

increase in UTS although error bounds have increased from +/- 100MPa to +/- 400MPa. 

Decreasing  the  1st ageing  temperature  produced  a  small  increase  in  UTS  whereas 
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increasing  the  1st ageing  temperature  produced  a  small  decrease  in  UTS  –  these 

predictions were accompanied by tighter error bounds (+/- 100MPa).
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Figure 46 - Sensitivity of UTS model to change in 1st age temperature for MERL 76

Making changes to the second age rather than the first ageing treatment had no real 

effect on the UTS values over the prediction for the standard spec alloy (Figure 47).
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Figure 47 - Sensitivity of UTS model to change in 2nd age temperature for MERL 76

Predictions  for  un-aged  Nimonic  901  (a  medium  strength  disk  alloy)  suggested  a 

decrease in UTS on average.  The error bounds accompanying this prediction are huge 

(+/- 1350 MPa).  The effect of altering the ageing temperature was negligible (Figure 48) 

but the model does not have sufficient data to predict for this case.
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Effect of heat treatment on Nimonic 901
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Figure 48 Sensitivity of UTS model to change in 1st age temperature for Nimonic 901

Compositional variations

Increasing both aluminium and titanium by 0.5% brought about a predicted decrease in 

UTS.  Decreasing the amount of aluminium and titanium showed a predicted increase in 

UTS.  Error bounds remained roughly the same as for the standard specification of the 

alloy.  The changes in UTS, although small, occurred in the opposite directions to what 

was expected as Al and Ti are γ’ formers.  A 1% increase in niobium content showed an 

increase in UTS of ~30MPa (Figure 49).
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Figure 49 Sensitivity of UTS model to change in composition for Nimonic 901
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UTS models trained with database without test alloys (UTS_19_01_05)

• LPE committee comprises of 5 models (Figure 50) Models range between 7 and 
12 hidden units.

• TE committee comprises of 4 models (Figure 51) Models range between 7 and 
11 hidden units.

Figure  50 - Committee based on LPE 
ranking

Figure  51 -  Committee  based  on  TE 
ranking

The suggested committees are very different for only a small change in the database, 

The LPE committee has reduced from 15 to 5 models.  Extra models in a committee 

improve generalisation but the test error for the 5 model committee was lower (9.0) 

compared with 9.5 for the 15 model committee.

The  following  predictions  are  tests  against  unseen  data  (red  and  blue  lines) 

previous predictions (seen data) have also been added to the graph to compare how 

much worse (if at all) predictions are when test alloy data is not included in the training 

database.

Predictions for UTS made without Inconel 617 in the database are not as close as those 

made when Inconel 617 was present.  Predictions are better between 800 and 1000°C 

for all models.  The difference between models was negligible in this temperature range 

although error bounds were tighter for models based upon seen data (Figure 52).
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UTS Predictions for Inconel 617 
Models trained with data for 617 vs models trained without.
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Figure 52 – Predictions for Inconel 617 using models trained with and without the test 
data set.

All predictions for MERL 76 UTS lie within 50MPa of each other and lie on existing 
data points for the alloy (Figure 53).

UTS Predictions for Merl 76
Models trained with data for Merl 76 vs models trained without.
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Figure 53 - Predictions for MERL 76  using models trained with and without the test 
data set

Predictions made for Nimonic 901 with unseen data are ~500MPa of the target values. 

Only the error bounds for the LPE committee actually include the target data.  Original 

predictions for seen data were very close to actual data in the database (Figure 54).
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UTS Predictions for Nimonic 901
Models trained with data for 901 vs models trained without.
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Figure 54- Predictions for Nimonic 901 using models trained with and without the test 
data set
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Figure 55 – Significance values for UTS model committees.

Significance analysis shows little difference between committees comprising of a small 

or large number of models (Figure 55).  The significance of Fe is noticeably higher 

when the test alloys are present.  This may be due to the inclusion of Nimonic 901 (35% 

Fe).

Comparison of new UTS models with UTS models trained with old test data

Comparisons have been made between UTS_17_01_05 (current models based on full 

database) and UTS_01_11_04 (Old models – including Ni and some minor data errors). 

Predictions have been made using old test alloys which were not in the old database but 
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are included in the new database therefore new models should give results comparable 

to, if not better than previous results.

UTS Predictions for Nim739
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Figure 56 – UTS predictions for Nimonic 739 (comparison of old and new models

Predictions for Nimonic 739 remain relatively unchanged to previous models (Figure

56).  Error bounds are wider for the new models at low test temperatures despite the 

inclusion of the test alloy in the database.

Results for test alloy M313 show the new models to give less accurate predictions 

but with tighter error bounds (Figure 57).  The LPE committee gave best results for both 

old and new models.

Results  for  test  alloy  M21  show the  new models  to  give  slightly  less  accurate 

predictions but with tighter error bounds (Figure 58).  The LPE committee gave best 

results for both old and new models.
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UTS Predictions for M313
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Figure 57– UTS predictions for M313 (comparison of old and new models

UTS Predictions for M21
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Figure 58– UTS predictions for M21 (comparison of old and new models
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5.10.1  Discussion

New models perform well against all 3 test alloys (In617, Nim901, MERL 76) when 

test alloy data is included in the training dataset.  With the test alloy data removed from 

the dataset predictions were as follows:

• MERL 76 remained unchanged (Figure 53)

• Inconel 617 - less accurate predictions in 0-800°C temperature range (Figure 52)

• Nimonic 901 – predictions out by 100-500MPa with the smaller errors at higher 

temperatures (Figure 54)

• In all cases error bounds were wider when predicting for unseen data

Input  significance  values  have  improved  over  previous  models  they  conform much 

more  closely  with  metallurgical  theory  of  which  additions  improve  alloy  strength. 

Significances  for  compositional  inputs  no  longer  show  Boron  content  to  be  most 

significant.  On average, the most significant inputs (in order) are:

Cr Al Fe C W Mo B

Where Cr provides oxidation resistance and solid solution strengthening and Al is a γ’ 

former.  Fe has two functions, in most alloys it is an impurity and therefore has no effect 

but it is present in the Inconel alloys as a  γ’’ former and therefore directly linked to 

UTS.

The cooling rate of the second ageing treatment is still  found to be a significant 

input to the model and it has been found in the literature to have a pronounced effect on 

strength due to its effect on the formation of the finest γ’ 220.  Some additional points of 

note were:

• The effect of changing ageing temperature and Al and Ti additions appears to 

have the opposite effect to that expected (in most cases the effect is only small)

• Addition of Nb increases UTS.

• Ageing 617 increases UTS

The processes of removing outlying data poses the question as to whether scatter  is 

useful to the modelling process or not.  Reducing alloy data to a smooth data curve such 

as Figure 37 could improve the ‘accuracy’ of the predictions.  Keeping the extra data in 
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gives the model information on scatter and will affect the generation of scatter bands 

within Neuromat.

The information within the model database is a mixture of data from papers; 

where  data  scatter  will  occur  between  repeat  tests  by  the  same  author  or  between 

different authors, and data from alloy specification sheets where one curve is normally 

given.   It  could  be  assumed  that  the  manufacturers  curve  will  often  represent  the 

optimum strength of the alloy.

The  anticipated  use  of  the  neural  network  models  is  to  investigate  new  alloy 

combinations based upon extrapolation from existing test data.  With this in mind, the 

scatter band should represent uncertainty in the model due to lack of information in the 

training dataset for certain alloying combinations.
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5.10.2 Conclusions 

Removing a small amount of erroneous data has had a positive effect on the models. 

There  is  generally  a smaller  difference  between predictions  by LPE ranked and TE 

ranked models.  This is likely to be due to the different ways in which LPE and TE 

rankings treat outlying data.

Some models appear to be insensitive to changes in ageing treatment and composition. 

Changes in UTS values are generally small for a given composition or heat treatment 

variation and in a lot of cases values move in the opposite direction to that which is 

expected.

The significance value for the input Fe is artificially high when Nimonic 901 is present. 

Removing Nimonic 901 (35% Fe by weight) is detrimental to subsequent predictions 

for  that  alloy (Figure 54).   This  suggests  that  the model  is  trying  to  fit  very small 

variations in composition to the large scatter in the data.  In reality, a major cause of this 

scatter can be put down to the testing conditions or small variations in the material that 

are not captured in the chemical composition e.g. levels of porosity.   For any given 

composition and heat treatment UTS values can vary depending on the processing route 

and desired application.

There is a large spread of data points containing Fe in the database – 140 data points for 

IN718 variants alone (Figure 59).  With this amount of information the model should be 

able to predict relatively well for Nimonic 901 whether the small amount of 901 data is 

present or not.
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UTS Results For IN718
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Figure 59 – Spread of data in UTS database for IN718

It has been proposed that alloys with a large data spread such as In 718 (Figure 59) 

should be  re-examined.   Where  alloys  are  all  within  nominal  composition  and heat 

treatment,  results  spread  will  reduce  through  averaging  values  and  a  standard 

composition will be adopted.  For alloys such as In718 where there are several variants 

such as cast and wrought, these distinctions will remain.

Data  from  tests  where  the  composition  or  heat  treatment  has  been  varied  will  be 

checked on a case by case basis.  Baseline data from these tests can be compared with 

expected values to assess whether the UTS, YS etc. at the starting point was consistent 

with other known data before any compositional changes have been made.

More data is required for most alloys in the 100 – 500°C temperature range.  If this is 

achieved by extrapolating from existing data for each alloy it is thought that this should 

help the model make predictions in this temperature range.
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5.11 YS database
Using the work with the UTS dataset as a guideline the following approach was used for 

analysis and subsequent training using the YS data set:

• Cleaning’ of the database was performed – Some data was removed where there 

was a very large spread

• A  standard  composition  was  adopted  for  each  alloy.   Only  tests  that  were 

specifically  investigating  effect  of  compositional  changes  were  allowed  to 

remain unchanged.

• Statistical  analysis  was  used  to  check input  data  spread  and start  looking  at 

candidates for removal from the input dataset.

5.12 Statistical analysis of YS input database.
Minitab software was used to generate information about every input variable to check 

for spread of data and incorrect data entries (Figure 60).  The graphs also proved useful 

in explaining some trends within the network later on.  Graphs of YS vs. temperature 

were also plotted for each alloy as described previously in order to identify outliers and 

areas of large scatter.
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Figure 60 – Input data spread for Cr in the YS database
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Distribution  of  data  for  coded  inputs;  process,  crystallography  and  cooling  rates  is 

presented in Table 2.  Input CHT2 contains very little data for cooling rates type 2,3 and 

4 and is a possible candidate for removal.

 Process  X  CHT1 CHT2
Cast 36.5% PX 89.8% Air 84.5% 96.8%
Wrought 42.1% DS 3.6% Furnace 0.5% 2.2%
PM 21.4% SX 6.6% Oil 9.8% 1.0%
 -  - Water 5.2% 0.0%

Table 2

The input space for each variable vs. test temperature is presented in Figure 61.  Cr and 

Co (top left)  exhibit  a  good spread with respect  to  test  temperature  and no sign of 

correlation.  Cooling rate 3 shows no variation at all.  The bottom right graph is test 

temperature and therefore shows 100% correlation.

Figure 61 – YS database.  All inputs with respect to test temperature
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5.13 Results from models trained on ‘clean’ YS dataset

YS_26_04_05

The original model trained on the clean YS database was presented with all data (786 

lines, 28 inputs, 1 output) in the order found in the dataset.  The input column for La 

was removed as part of the dataset cleaning process.  The model always performs well 

against seen data (Figure 62 & Figure 63) and generally performed well against unseen 

data  (Figure 64).   The model  struggles  to predict  well  against  unseen Nimonic  901 

(Figure 65).
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Figure 62 – YS prediction for Inconel 617 (seen data)
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Figure 63 YS prediction for MERL 76 (seen data)
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Prediction for CMSX4 (unseen data)
 YS_26_04_05
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Figure 64 YS prediction for CMSX-4 (unseen data)

YS Predictions for Nimonic 901
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Figure 65 YS prediction for Nimonic 901 (seen data)

Significance analysis  for both committees  shows good agreement  with metallurgical 

understanding  (Figure  66).   The  model  has  assigned the  largest  significance  to  test 

temperature, with the solution heat treatment temperature and γ’ formers Al and Ti also 

being assigned relatively high significance values.
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Average Significance Values for  committees YS_26_04_05
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Figure 66 – significance of inputs for YS model

Sensitivity analysis using CMSX-4 (Figure 67) and MERL 76 (Figure 68) as test alloys 

shows that the model results move in the correct direction with variation of inputs such 

as process, some alloying inputs and variations on heat treatment.  In practical terms, 

these changes are not actually possible to the extent used in the example but do give a 

good  indication  that  the  model  behaves  in  the  correct  way.   For  example,  a  large 

increase  in  aluminium gave  a  large  increase  in  strength  in  CMSX-4 (aluminium is 

present as a  γ’ former).   A polycrystalline version of CMSX-4 is  predicted to have 

increased strength (which in not inconceivable) polycrystalline disk alloys are some of 

the strongest.  Water quenching gives the biggest reduction in strength – rapid cooling 

allows less time for formation of γ’.  MERL 76 shows a reduction in strength without 

the artificial ageing process.  Changes in the ageing temperature have virtually no effect 

although this is probably too subtle an effect for the model to pick out.
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Sensitivity to Inputs - Model YS_26_04_05 predicting CMSX-4
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Figure 67 – Sensitivity to inputs YS model – CMSX-4 example
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Figure 68 - Sensitivity to inputs YS model – MERL 76 example

YS_02_05_05
This model has been trained using the same YS database but this time data has been 

split into 90% training data and 10% test data to investigate new functionality made 

available in the Neuromat software.  Test errors were similar to those achieved with the 

50/50 data split.  The sensitivity example using CMSX-4 also shows very similar results 

between models.
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Average Significance Values for  committees
(YS_02_06_05)
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Figure 69 Significance of YS input values after training with 90/10 split

Sensitivity to Inputs - Model YS_02_06_05 predicting CMSX-4
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Figure 70 Sensitivity to inputs YS (90/10 split)  model – CMSX-4 example
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5.13.1 Supporting Work with Matlab Neural Network Models

All work conducted so far using Neuromat has used committees of models.  The effect 

of the seed point (where the model starts off) has not been looked at in detail either.

Matlab neural network models have been used to investigate the effect the seeding of 

the neural network models on the fit achieved.

Using seen data as examples, there is a large difference between the fit achieved 

between different alloys.  Using M313 M21 and M22 as examples, the effect of seeding 

has a different effect on each alloy. All three alloys have roughly the same number of 

data points in the database.  All predictions for M22 are very close to actual data for all 

10 networks (Figure 71).  M313 alloy predictions show more variation depending on the 

networks  seed  point  (Figure  72)  whereas  M21  shows  a  huge  range  in  predictions 

depending on what value was used to seed the network (Figure 73).

This suggests that the data fit for M21 has more local minima/maxima that will 

cause the network to converge on an incorrect ‘answer’.  This could indicate that M21 

will be more difficult  to predict and should be represented in the test portion of the 

dataset 

Matlab predictions for M22
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Figure 71 –YS predictions for M313 with 10 networks  all using different seed points in 
Matlab.
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Matlab predictions for M313
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Figure 72–YS predictions for M22 with 10 networks  all using different seed points in 
Matlab.

Matlab predictions for M21
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Figure 73 - YS predictions for M21 with 10 networks  all using different seed points in 
Matlab.

The ability of a single model with a given number of hidden units to fit the test data has 

been  analysed  (Figure  74).  The  range  of  HU’s  in  the  Neuromat  committees  was 

between 6 and 11 for the YS models.  The Matlab models began to fit the data with 5 

hidden  units  with  10  and  15  hidden  units  giving  similar  performance.   Therefore 

showing good correlation with the models selected by Neuromat.
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10 hidden units

15 hidden units

Figure 74 – Effect of number of hidden units on model data fit (YS dataset) M22 alloy 
used as example.
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5.14 Discussion
It has been shown that, with the current dataset, models can be trained to fit the training 

data with minimal test error.  All the YS models trained since the database cleaning 

exercise have predicted very well against seen data.

The  best  model  to  date  is  YS_26_04_05.   The  model  gave  good  predictions  in 

conjunction  with  sensitivity  and  significance  analysis  results  that  tied  in  with 

metallurgical understanding.

The model trained using a 90/10 data split performed as well as models trained using 

50/50 data split.   Experimentally there was no evident benefit  to use either of these 

methods  in  preference.   In  theory  a  90/10  split  will  provide  the  model  with  more 

training data thus increasing the certainty of predictions.  This assumes that the 10% 

data used for testing is representative of the whole dataset and not artificially skewed.

There is insufficient data in input column CHT2.  97% of data is set to (1) – furnace 

cool.  The effect of this input is, on average, quite high this is unlikely to be a real 

effect.   With  such  a  small  amount  of  data  spread,  the  model  is  susceptible  to 

coincidental linking of variables.  For example if the 3% of data where CHT2 is not 

‘furnace cool’ coincided with just one or two alloys of high strength, the model would 

assign an artificially high significance.

It is probable that some models will predict seen data well, have sensible significance 

values but perform poorly on unseen data or predict incorrect trends in the sensitivity 

analysis.  This could be brought about by an input having a large effect in the ‘wrong’ 

direction.  Significance analysis does not tell us if inputs have a large positive or a large 

negative effect on YS just the magnitude of that effect.
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5.15 Conclusion
Cleaning of the data is important.  It is possible to ‘add value’ to the database by using 

knowledge of the alloy properties to select ‘good’ data from ‘bad’ data or interpolate 

between values where it is know that the curve is flat.

Inputs that are very highly skewed i.e. 95% or more at one value can adversely 

affect the learning process.  The neural network model benefited from the removal of 

such inputs such as CHT3 (cooling rate 3).  The best model we can hope to come up 

with should:

• Give good predictions against all seen data.

• Be the closest match to an idealised significance profile.

• Sensitivity analysis should show the correct trends i.e. predictions move in the 

correct direction with response to changes in composition/hear treatment.

In  order  to  do  this  a  set  of  rules  based  on  metallurgical  understanding  should  be 

established.  How should the model respond to:

• Compositional changes

• Changes in heat treatment

• Processing types

An  idealised  significance  profile  should  be  formulated  to  compare  the  model 

significance analysis with.  This could be in the form of rating ideal significances in 

tiers:

• Tier 1 – most important

o Test Temperature

o Heat Treatment 1

o Al

o Cr

o
• Tier 2 – 

o Re

o Fe*
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*Iron is a good example of an input to which the response is critical for some alloys (the 

Inconel alloys) but not important for others.  Selecting tier two inputs is therefore not a 

trivial task and will need to be evaluated on an alloy by alloy basis.

5.16 Low Cycle Fatigue Model

5.16.1 Introduction

The main aim of the QinetiQ neural network program was to work towards developing 

a neural network model for fatigue life prediction to be used in the alloy development 

process.  Low Cycle Fatigue (LCF) is of primary interest.  The previous work using YS 

and UTS databases has proved invaluable in developing a methodology to apply to the 

LCF

LCF  is  a  more  complicated  process  to  model  due  to  the  large  number  of  test 

variables and model inputs.  Fatigue performance data is also subjected to much larger 

scatter bands than tensile performance tests.  Scatter within a tensile test to derive the 

UTS value for a material may be 20% where as scatter of up to 50% is not uncommon 

in fatigue testing. Life to crack initiation is hard to predict and model, and can be an 

appreciable proportion of the total fatigue life.

Fatigue data for materials is less readily published by the alloy manufacturers.  The 

data collection process has relied heavily on reported data in academic papers and data 

from QinetiQ internal test programs.

Using recommendations drawn form UTS and YS neural network models as a guideline 

the following approach was used for analysis and subsequent training using the LCF 

dataset:

• The large amount of scatter present in LCF data meant the data ‘cleaning’ step 

developed for UTS and YS models was not used.

• A  standard  composition  was  adopted  for  each  alloy.   Only  tests  that  were 

specifically  investigating  effect  of  compositional  changes  were  allowed  to 

remain unchanged.

• Statistical  analysis  was  used  to  check input  data  spread  and start  looking  at 

candidates for removal from the input dataset – Much more time has been spent 

on this step due to the large amount of scatter in the data and the relatively small 

size  of  the  dataset.   It  was  important  that  any  trends/problems  during  the 

modelling  process  could be attributed  to  either  data  issues  (such  as  amount, 

spread, scatter) or the ability of the network to fit the data provided.
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• Testing  was  carried  out  using  seen  and  unseen  alloys  to  test  the  predictive 

abilities of the network based on the training dataset.

• The ratio of number of variables to lines of input data is anticipated to be the 

biggest problem in achieving an accurate model.  Methods to reduce the number 

of input variables will be investigated.

• A set of requirements to test the network against are required.  Fatigue life is not 

directly  linked  to  strength  so  the  tests  for  a  ‘good’  model  are  likely  to  be 

different to those specified for YS and UTS models

5.16.2 Selection of inputs and data collection

A literature  review was initially  conducted  to  get  an  indication  of  the  quantity  and 

quality of data available for fatigue testing.  It was decided that only data for strain 

controlled axial tests would be considered initially for the database.

Inputs regarding alloy composition and heat treatment were chosen to be the 

same as those used in the other databases previously discussed.  Additional inputs were 

required for fatigue life analysis and were incorporated in the database:

• Cycles to failure (Nf)

• Test temperature (°C)

• Total strain range (%)

• Strain rate (e%/s)

• Frequency

• R-Ratio

Strain range, strain rate and frequency data were collected for each input as some papers 

quote strain rate and others quote frequency.  All the data was kept in the database; for 

example it is easier to present data in the analysis section by frequency if the test was a 

fixed frequency test and vice versa if the strain rate is kept constant.  In practice, only 

one of the inputs is required as it is purely a function of the other and the total strain 

range.

Once the required inputs had been defined, a comprehensive search of the literature 

was undertaken.  It was found that only 30% of papers initially identified actually had 

enough information to add the data to the database.  Many papers used dimensionless 
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graphs,  did not quote  the strain range or didn’t  include any information on the test 

frequency and waveform used.  Due to the nature of academic and industrial papers, a 

lot  of tests  were looking at  more novel  aspects  of fatigue testing such as testing in 

different  environments  or  investigating  material  coatings  –  most  turbine  blades  are 

coated in use.

Prior to further sorting and data analysis, the original database comprised of 700 

input lines made up from 38 alloy combinations.  A graph of all the data is shown in 

Figure 75.
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Figure 75 – Total input space (strain range vs. cycles to failure) for LCF database

5.16.3 Analysis of Input Data

Graphs of distribution of input variables and distribution of data by alloy were produced 

using Minitab.  Minitab proved particularly useful for producing graphs of data by alloy 

as further groupings for temperature, r-ratio and frequency can be included.  Minitab is 

also able to fit a regression line/curve to each group of data.  The cubic regression fit 

has  been  selected  for  all  graphs.   It  should  be  noted  that  Minitab  includes  all 

combinations of variables in the legend even if the particular combination is not present 

in the raw data.

The alloys Haynes 230 has been used as an example of the data checking process. 

A  graph  of  strain-life  curves  has  been  plotted  by  temperature  and  frequency  with 

regression fits to each group (Figure 76).  A large amount of scatter is visible in the 

427°C range.  In this case, the data is further subdivided by reference source (Figure 77 
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and Figure 78) in order to examine the possible source of the scatter.  In this case it can 

be seen that the 427°C data at 0.33Hz is made up of 2 separate strain life curves from 2 

different sources.  In this particular case, the data from the Haynes datasheet at 427°C 

was removed from the database.  The gap between this data source and the rest from the 

same alloy is particularly large.

Figure 76 – Spread of training data for Haynes 230 by strain range
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The process of plotting data by alloy has been repeated for all alloys in the database in 

order to highlight any problems with the data such as wrong values or large amounts of 

scatter.  The data for PW1480 was initially left in the database, on closer examination of 

the source paper it is apparent that the large amount of scatter (Figure 79) may be due to 

specimen orientation effects under investigation.  This data is a possible candidate for 

further sorting/removal.
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5.16.4 Statistical Analysis

The Minitab software package was used to analyse the data further in conjunction with 

running the models.   The results  of the analysis  were used to  explain trends in the 

predictions or areas where the models seemed to struggle.

Although Minitab was used to generate detailed statistical data about each input, 

Matlab has been used to generate input distribution histograms to be included in this 

report.

Variables with a poor spread of input data are identified as Fe, V, Re, La, Time 

HT1, Time HT2 and total strain range.  It can be seen immediately that the strain range 

data has been skewed by spurious results at a value of around 400.  An amended strain 

range distribution is given in Figure 84.  The treatment of Fe is complicated due to its 

very different roles depending on the alloy in question; this also explains the spread of 

data present.

LCF  lifetimes  (log  Nf)  within  the  database  can  be  seen  to  adopt  a  normal 

distribution.  R ratio and frequency are also both well spread within the limits of what 

tests are actually possible.
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Figure 80 – Distribution of LCF model variables 1

Figure 81 – Distribution of LCF model variables 2
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5.16.5 Preliminary models

The first attempt at training a neural network on the LCF database was carried out using 

Neuromat.   At this  point  the data  had been checked for mistakes  but no extra  data 

sorting or removal had been carried out.  The prediction was carried out against totally 

unseen data.  The source of the data was tests carried out at Southampton University, 

reported in section  6.6.3.1.  Strain range calculations were carried out using FEA as 

tests were carried out in load control.  Although the prediction looks poor (Figure 82), it 

is comforting to see the prediction passes through data-points in the 1-1.5% strain range.

The significance analysis (Figure 83) shows that the model is not really picking 

up the correct trends within the model but it does suggest a very high reliance on the 

strain range input as expected.

LCF Predictions against unseen CMSX-4
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Significance analysis of LCF NN models using Neuromat
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Figure 83 – LCF model significance of inputs

5.16.6 Discussion

The initial model shows reasonably good correlation at 1-1.5% strain range.  Above 

1.5% strain,  models  were unable  to  predict  well.   This  is  not  surprising as  a  large 

percentage  of  the  training  data  is  in  the  range  of  0% -  1% with  most  of  the  data 

clustered between 0% and 0.5% (Figure 84).
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Strain range appears to be by far the most significant input.  This in itself is a function 

of a material’s  properties.   Other inputs seem to have too high a significance value, 

whereas test temperature is predicted to be not as influential.

It is suggested in the literature that the model should be trained using Log Nf, rather 

than Nf, this is implemented in future models.

5.16.7 LCF model 2nd attempt

Models are now trained using Log Nf as an input instead of Nf.  An initial simple test 

dataset was constructed using only CM186 data.  In order to demonstrate that a model 

could be trained using the large number of inputs in the LCF model a simple 10 hidden 

unit model was trained in Matlab and predictions were made.  The results (Figure 85) 

show a very good fit to the training data as expected and gave the confidence to train a 

model using the full database.

Matlab 10 HU's CM186LC, R=-1
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Figure 85 – Matlab neural network demonstrating data fit to CM186 data

Matlab is now used to demonstrate it is possible to use the neural network model to fit 

seen data having been trained on the full database.  All curves are very close to being on 

top of one another (Figure 86) and do not show much dependence on temperature.  That 

said, the test data does not show any conclusive temperature effect either.
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Haynes 230 LCF test data.  R=-1, F=1Hz, vs Model Predictions (fitted data) 2 Hidden 
Unit model, average over 5 models.
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Figure 86 – LCF model predictions for seen data Haynes 230

Removal of input lines
Reducing the number of input variables reduces the size of the modelling space thus 

making it easier for the model to fit the remaining data.  Inputs that are known to have 

no effect or that do not vary from record to record should be removed 

Input  variables  CHT2,  CHT3  are  the  first  candidates  for  removal  from the 

dataset  due  to  the  lack  of  data  spread  within  the  database  (mostly  set  to  0).   It  is 

arguable that the data lines with non zero values for these inputs should be removed. 

However, the lines of data have been left in to preserve the size of the training dataset.

Certain elements included in the composition are referred to as tramp elementsxlix 

for example Mn and Si.  The values in the database are maximum allowable values 

where the ideal value would be zero.  These elements are not in there by design and 

would not be specified when designing a new alloy.  It is felt they do not add anything 

to the model at this current level of complexity and are another candidate for removal.

Fe is also named as a tramp element but due to the inclusion of Inconel alloys 

(as discussed earlier) it must be left in the database.

Model Results
Initial Predictions using an LCF model trained in Neuromat show a very good fit for 

CMSX-4 (seen data) at an R ratio of 0.05.  On examination of input significances for 

this  model,  strain  range  and  test  temperature  are  now  showing  as  the  two  most 

significant inputs as would be expected.  Two other inputs with high significances are 

Vanadium and the duration of the 3rd heat treatment.  The effect of heat treatments is 
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with respect to fatigue life is likely to be different for polycrystalline and single crystal 

alloys where the heat treatment effects grain size and γ’ size respectively.

LCF_12_9_05, CMSX4 R=0.05
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Figure 87 – Neuromat LCF predictions for seen data CMSX-4
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Figure 88 – Input significances for model trained on reduced input dataset

Further tests show that good agreement can be achieved between Neuromat models and 

relatively  simple  models  trained  in  Matlab.   Figure  89 to  Figure  92 show  direct 

comparisons between Neuromat and Matlab models for alloy CM186LC.  This alloy 

was chosen as there is a relatively small amount of scatter in the input data and there is 
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data  for  various  temperatures  at  two different  R ratios.   Both  models  were  able  to 

capture the temperature and R ratio effects satisfactorily.

LCF_12_9_05 CM186LC, R=-1
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Figure 89 – Neuromat LCF predictions for seen data CM186LC R=-1

Matlab 10 HU's CM186LC, R=-1
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Figure 90 – Matlab LCF predictions for seen data CM186LC R=-1

104



LCF_12_9_05 CM186LC, R=0.05

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Log(Nf)

St
ra

in
 R

an
ge

 (%
)

550C 700C 850C 950C LPE_550C LPE_700C LPE_850C LPE_950C Series9

Figure 91 – Neuromat LCF predictions for seen data CM186LC R=0.05

Matlab 10 HU's CM186LC, R=0.05
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Figure 92 – Matlab LCF predictions for seen data CM186LC R=0.05 (Key as in Figure 
91)
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5.16.8 Discussion

There is a large difference between the amount of scatter in the test data in Figure 86 vs 

Figure 87,  Figure 89 and Figure 91.  The models fit extremely well when there is not 

much scatter in the input data.  When there are large amounts of scatter the fit is still 

good, the order in which the curves are presented with respect to temperature is not 

always as expected.  When the input data is examined it is not surprising due to the 

amount of scatter in the training data.

Models  trained  in  Matlab  with  a  set  number  of  HU’s  are  performing  as  well  as 

Neuromat models with an ‘optimum’ number of HU’s.

Predictions  have  only  been  carried  out  at  points  where  there  are  datapoints  in  the 

training set to compare with.  When there is a large amount of scatter in the predicted 

values, a line of best fit has been applied to the results using the line fitting tool in 

Excel.

The predictions should really be made in the form of a continuous line as the 

model  can  predict  points  at  any  strain  range.   This  is  the  way  predictions  were 

performed using the UTS and YS models.  Using this process will highlight over fitting 

of models to data with large amounts of scatter.  The desired output from the model 

should be in the form of a strain life curve.

The models have been seen to improve by reducing the number of inputs.  This was 

done by removing inputs that were not felt to contribute to the performance of the alloy 

(tramp elements) or inputs with very little or no variation in data.

Although the LCF models have not been tested on any unseen data, the fit to 

seen data it very good.  It is felt that there is not yet enough data in the training dataset 

to provide meaningful results against unseen data.

Another proposed method to reduce the number of inputs would be to look at the 

Smith Watson Topper parameterl to condense information about R ratio and frequency.
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5.17 Final Conclusions
Neural network models are able to fit to seen LCF data well although overfitting to data 

with a large amount  of scatter  is a problem.  To improve the models,  more data  is 

required.  The distribution histograms should be used as a starting point to determine 

where data is sparse.

Further investigation is required as to the method of inputting data, whether the raw data 

is used or a curve fitting process is used prior to training.  Further predictions should be 

made at strain range values throughout the entire range to check for overfitting and poor 

generalisation.  Sensitivity analysis is required.  To do this, inputs must be identified 

that have a known effect on fatigue life.  Temperature is currently the only input that 

has been examined this way.

The UTS and YS models showed benefits from ‘human intervention’ i.e. the removal of 

some data that was clearly outside the expected range for the material,  collapsing of 

data, adoption of nominal compositions and the addition of data where the curve was 

know to be flat.

Due  to  the  nature  of  fatigue  data  there  is  a  lot  more  inherent  scatter.   Collecting, 

analysing and sorting the data prior to training takes more precedence than with the 

UTS and YS models.

On analysis of the fatigue data it is apparent that some input data curves do not 

fit the expected pattern.  For example, when plotting SN curves for Haynes 230 (Figure

86) it  would be expected that the curves would be ordered by temperature.   Where 

curves cross or are in completely the wrong order, this data may not be valid to train the 

neural network.

There is no disputing that the data is real but when the neural network is picking 

out  trends  should  it  be  helped  along  by  using  known  information  about  fatigue 

performance trends with temperature or R ratio to improve the data?

The  best  training  database  should  be  a  combination  of  data  from  literature  and 

accumulated knowledge from metallurgy and test experience.  This is where QQ can 

add value to the process over and above collecting large amounts  of data to train a 

neural network.  It has already been shown that large amounts of data alone are not 
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enough.  The UTS database has been steadily improved whilst removing data as the 

process evolved.
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6 Fatigue testing

6.1 Introduction
A turbine blade root contains notches that locate into a “fir-tree” root fixing (Figure 9) 

in the turbine disc.  Fatigue initiation in these stress concentrating features is of some 

concern.  Fatigue crack initiation can occur at relatively low service temperatures in this 

area (e.g. 650°C).  The main purpose of this chapter is therefore to establish the critical 

factors controlling the notch fatigue life of turbine blade single crystals.  When a turbine 

blade is cast, the primary orientation along the blade (usually in the <001> direction) is 

controlled  to  within  certain  limits,  however  the  secondary  orientation  (i.e.  the 

orientation  of  any  notches)  is  not  generally  controlled.   A  programme  of  study  is 

proposed with the following broad aims:

• To establish the critical factors controlling the notch fatigue life of turbine blade 

single crystals.

• To  study  the  nucleation,  early  fatigue  crack  growth  and  final  fatigue  crack 

growth regimes.

• To produce simulation models to predict the initiation, growth and coalescence 

or growth to final failure of such fatigue cracks.

• To investigate the effect of secondary orientation on fatigue behaviour.

• To assess the possible use of this within a design procedure.

The aims of the work are to investigate  fatigue crack initiation and early crack 

growth in the notch root of single crystal alloys.  The notched specimen geometry has 

been defined such that the stress concentration is similar to that found in a fir tree notch 

root on a turbine blade, with a stress concentration ~2.  All tests were conducted for a 

<001>  tensile  axis  with  two  differing  nominal  crack  growth  directions  <110> 

(orientation  A)  and  <100>  (orientation  B)  as  shown  in  Figure  18.   Testing  was 

conducted  at  room temperature,  650°C and 725°C.   The  high  temperature  tests  are 

within  the  range of  temperatures  that  the notch  root  experiences  in  service.   Room 

temperature testing has been conducted in order to identify temperature effects and to 

establish loading levels likely to achieve lifetimes ~10,000 cycles.  The LCF regime 

was identified as important in discussion with sponsors (QinetiQ and ALSTOM).  It 

was also an experimental  requirement to allow replication approaches to track crack 
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initiation and surface features of crack growth within a reasonable test duration (~ 3 

weeks at the frequencies chosen).

The  Engineering  Doctorate  (EngD)  work  forms  part  of  a  co-operative  research 

programme  (CRP)  between  the  School  of  Engineering  Sciences,  University  of 

Southampton  and  the  Structures,  Materials  and  Propulsion  Laboratory,  Institute  for 

Aerospace  Research,  NRC,  Canada.   The  material  under  investigation  at  CNRC is 

PWA1484.

A complementary postdoctoral programme (Dr Mark Joyce) is studying the long 

crack propagation behaviour of the same CMSX-4 orientations under equivalent  test 

conditions (R-ratio, frequency, temperature, orientation) thus conventional long crack 

propagation  behaviour  will  also  be  available  for  comparisons  with  the  short  crack 

initiation and growth data produced in this package of work.

René N5 was made available by GE in order to provide a comparison with the work 

being conducted using CMSX-4

6.2 Materials
The CMSX-4 material was supplied by ALSTOM Power in the form of cylindrical cast 

bars.  The bars were between 130mm and 160mm in length and 12mm in diameter.  The 

bars  were  cast  in  the  <001>  and  <111>  directions  and  the  misalignment  for  each 

individual bar was given.  Table 5 gives the details for each casting supplied.  θ and ρ 

refer to the primary (bar axis) and secondary (perpendicular to the bar axis) orientations 

with  respect  to  <001>  directions.   For  <001>,  the  secondary  orientation  is  not 

controlled,  and variations  in  ρ have no real  relevance,  the maximum misorientation 

from the <001> tensile/bar longitudinal direction can be seen to be 8 degrees.  In the 

case of the <111>, ρ should ideally be 45°.  The heat treatment details for the batch are 

given in  Table 6.  Although bars were also supplied in the <111> direction they have 

not yet been used and are not discussed further in this report.  NB the specific details of 

heat  treatment  are  commercially  proprietary  and  examiners  are  asked  to  maintain 

confidentiality.

René N5 material was supplied courtesy of General Electric. 

PWA1484 was sourced and tested at CNRC.  Once testing and analysis was completed 

at CNRC the test specimens were passed over University of Southampton for further 
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metallurgical analysis and microscopy.  The compositions of all 3 materials are given 

below:

CMSX-4 Cr Co W Mo Nb Ta Hf Ti Al Re Ni
Min (%) 6.2 9.3 6.2 6.3 0.07 0.9 5.45 2.8 Bal
Max (%) 6.6 10 6.6 0.6 0.1 6.7 0.12 1.1 5.75 3.1

Rene 
N5 Cr Co W Mo Nb Ta Hf Ti Al Re

Ni

Nom 7.48 7.72 6.38 1.5 7.13 0.15 - 6.18 2.85 Bal

PWA 
1484 Cr Co W Mo Nb Ta Hf Ti Al Re

Ni

Nom 5.0 10.0 6.0 2.0 - 9.0 0.1 - 5.6 3.0 Bal

6.3 Material Characterisation

6.3.1 Sample preparation

Samples  sliced  from  the  end  of  the  cast  bars  were  used  for  basic  material 

characterisation and for determination of secondary orientation of the bars.  A thin slice 

was  removed  using  a  Buehler  Isomet  4000  Linear  Precision  Saw  with  a  11-4207 

abrasive wheel and mounted in conducting bakelite.   The sample was then polished 

using an automatic polisher as detailed:

• 120 grit paper @250 rpm contra rotating, 20lbs pressure, 5 minutes

• 600 grit paper @250 rpm contra rotating, 20lbs pressure, 5 minutes

• 1200 grit paper @250 rpm same rotation direction, 20lbs pressure, 5 minutes

• 4000 grit paper @250 rpm same rotation direction, 20lbs pressure, 5 minutes

• 3µm Diamond paste on dp nap cloth, 150rpm same rotation direction, 15lbs 4 

minutes.

• OPS solution on dp nap cloth, 150 rpm same rotation direction, light pressure, 1 

minute.

Nimonic etch (100ml distilled water, 40ml hydrochloric acid, 10ml nitric acid, 5g 

copper II sulphate) was used to preferentially etch the γ’.  Examination of the samples 

was performed using an optical microscope and a Jeol JSM-6500F FEG SEM in both 

secondary  electron  imaging  (SEI)  and  backscattered  electron  imaging  (BEI)  mode. 

Plain polished specimens were used in the scanning electron microscope (SEM) when 

observing the sample in backscatter mode.
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6.3.2 Hardness testing

Specimens were tested using the micro Vickers hardness method.  Lines of indent tests 

were performed at various loads across each sample to assess the hardness of dendritic 

and interdendritic regions.  Testing was carried out to BS EN ISO 6507

The following equation was used to calculate the hardness value of each indent:

2= 1.854
p

HV
d

Equation 31

Where, 
 P - the applied load [kg] 
d - the average diagonal [mm].

6.3.3 Oxidation Study.

In service, CMSX-4, René N5 and PWA1484 would normally be coated with a suitable 

oxidation  resistant  coating.   Information  about  the  formation  of  oxide  on  uncoated 

samples  at  the  temperatures  of  interest  is  sparse.  Therefore  an assessment  of  oxide 

formation was performed.

Material left over from specimen machining was cut into ~8mm square samples. 

Plain polished samples, and polished and etched samples were prepared and exposed at 

650°C for 1, 2, 4, 8, 16, 32, 64, 128 and 256 hours in a furnace fitted with a calibrated 

thermocouple.   The  test  specimens  were  placed  in  ceramic  crucibles  and  a  sample 

location map was used to ensure that samples with different time exposures were clearly 

identified.  it was anticipated that any identification marks would be obscured during 

the oxidation process and every attempt was made to remove sources of contamination.

All samples were weighed before and after thermal exposure using a calibrated set 

of electronic scales accurate to 0.0001g.  Oxidised samples were examined in the SEM 

starting with the two extremes (1 and 256 hours).  Selected samples were sectioned so 

that the oxide thickness could be observed.  The sectioning and plating procedure is 

documented in section 6.3.4

In the case of the PWA1484, samples  were cut from the end of test  specimens 

supplied by CNRC.
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6.3.4 Sectioning and Ni Plating

The surface of interest (oxidised sample or fracture surface) was protected with a layer 

of  nickel  plate  before  cutting  any  samples.   The  Ni  plating  was  performed  in  the 

following solution:

500 ml H2O

150 g Nickel sulphate

20 g Nickel chloride

20g Boric acid

A 99.9% Ni anode was used.  The superalloy acts as the cathode.  The solution was 

warmed to 55-60°C on a hot plate and agitated using a magnetic stirrer.  A voltage of 3v 

was applied across the system.  A diagram of the test apparatus is given in Figure 93.

Once plating was completed, a thin slice or section was removed from the plated 

sample using a Buehler Isomet  4000 Linear Precision Saw with a 11-4207 abrasive 

wheel.   The sample  was then mounted  in  bakelite  and polished and etched using a 

Nimonic etch.

6.3.5 Porosity Analysis.

Preparation of the notch root is discussed in the following section.  The notch root was 

photographed  after  polishing  and  prior  to  etching  to  record  the  surface  porosity 

distribution for all tested samples.  An optical microscope was used to systematically 

photograph the surface after which the micrographs were pasted together to provide an 

overview of the notch.  This composite picture was then used to generate a binary image 

of the porosity in order to carry out Finite Body Tessellation Analysis (FBTA) on the 

image.  FBTA is a technique developed at Southampton which can capture information 

on size, aspect ratio, clustering and alignment of secondary phases based on grey-scale 

differences  (i.e.  ideal  for  assessing  pore  distribution),  further  details  of  the  FBTA 

technique can be found in a paper by Boselli  et al.li

Surface replicas were taken prior to testing to provide a record of the location of 

surface  porosity  prior  to  testing.   Further  porosity  analysis  was  performed on plain 

polished  mounted  specimens  to  provide  statistical  data  on  the  porosity  size  and 

distribution.
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6.4 Finite Element Model
Finite element modelling was employed for two purposes.  A simple elastic model was 

used to  specify an appropriate  notch geometry for the required stress concentration, 

whilst maintaining the necessary notch diameter to allow polishing preparation of the 

notch root.  A more elegant elasto-plastic solution was obtained to allow estimation of 

the stress/strain  fields  in  the notch root  for a given loading.   (Initial  Finite  element 

models written by Dr. Mark Joyce using ANSYS as part of CRP)

6.4.1 CMSX-4 Model geometry

Constraints on material supply meant that the sample dimensions were limited to 8mm x 

8mm x 50mm for CMSX-4.  The notch geometry was selected to have a minimum 

radius of 2mm as previous work had demonstrated that notches of this radius could be 

polished adequately for acetate replication.  The sample was loaded in 3 point bend as 

specified in the test conditions.

The notch was required to produce a stress concentration factor of ~2 at its root. 

With a fixed notch radius, the stress concentration factor is  dependent on the notch 

depth;  therefore,  this  factor  was  made  variable  in  the  FE model.   To  ensure  good 

approximation of the notch root stress/strain fields a reasonably dense mapped mesh 

using  8  node  quadrilaterals  was  employed.   The  exact  number  in  any given  model 

varied depending on the depth of the notch, but was typically around 1275.  Figure 94 

shows the overall mesh, together with the loading and constraints. Figure 95 shows the 

mesh detail around the notch.

6.4.2 Elastic model - (determination of notch depth)

For this model only the elastic properties supplied by Alstom, given in  Table 3, were 

considered.   A simple constraint was applied to a single node to simulate the lower 

roller, whilst an arbitrary point load of 100N was applied to simulate the upper roller. 

The notch depth was varied from 0.25mm to 1.5mm in 0.25mm increments and the 

magnitude of the notch root stress field was assessed at each stage.  Stress concentration 

factors  were derived  by comparing  the  computed  Von Mises  stress  values  with the 

stress evolved on the top surface of an un-notched bar, these results are given in (Table

4). The results show that a notch depth of 1.25mm gave a stress concentration factor of 

~2.
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6.4.3 Elasto-plastic  model  -  (evaluation  of  notch  root  stress/strain  

fields)

At the load levels required to cause fatigue crack initiation, it is likely that the material 

in the region of the notch root will be deforming plastically.  In order to estimate the 

stress levels in this region under such conditions a more complex elasto-plastic analysis 

is appropriate.  The basic model geometry and mesh from the earlier elastic model was 

retained, the notch depth now fixed at 1.25mm.  The material model was changed to 

include  isotropic  monotonic  plasticity  data  supplied  by  ALSOTM.   This  was 

implemented using a multi-linear curve.  Loading was applied monotonically from zero 

to a maximum of 6000N.  This was applied in 10N increments and the model allowed to 

converge fully (typically only 1-2 iterations required).  At each increment the magnitude 

of  the  notch  root  stress  and  strain  fields  were  assessed,  these  results  are  shown in 

(Figure  96).   It  is  recognised  that  the  model  is  based  on  monotonic  stress-strain 

behaviour at 650°C for the <100> orientation and does not take into account any cyclic 

softening/hardening or plastic anisotropy effects and simply simulates a simple loading 

step.

6.4.4 Sub-sized CMSX-4 specimens

A further set of test specimens 4mm x 4mm x 50mm have also been modelled.  Minor 

changes were made to the model to account for the different geometry

6.4.5 René N5

The finite  element  modelling process was modified for René N5 with a test sample 

geometry of 10mm x 10mm by 50mm.  No data for René N5 material properties was 

made available so the CMSX-4 material model was used to provide a best estimate of 

the loads required for a similar strain range in the Notch root.  

6.4.6 PWA 1484

A finite element model also used to estimate the strain range in the notch root of PWA 

1484 specimens tested by CNRC in order to compare them with CMSX-4 and René N5 

test  data generated at Southampton.   The model  was run in Abaqus and used stress 

strain data for PWA 1480 in absence of any data available for PWA 1484 (Figure 97.). 

PWA1484 test specimens supplied by CNRC were measured using a digital vernier, the 
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FEA model was based upon the average measurements of the test specimens.  The mesh 

was  constructed  using  20  noded brick  elements  with  a  large  amount  of  refinement 

around the notch root (Figure 98).  Mesh quality checks were performed on the meshed 

bar and a mesh convergence study was performed.

6.5 Fatigue Testing

6.5.1 Specimen Preparation

The longitudinal, cast direction, of each bar of CMSX-4 was known to be <001>, 

but the secondary orientation, the nominal crack growth direction, had to be determined 

prior to machining.  The orientation A tensile axis is in the <001> direction and the 

nominal crack growth direction is <110>.  For orientation B, the tensile axis is in the 

<001>  direction  and  the  nominal  crack  growth  direction  is  in  the  <010>  direction 

(Figure 99).  The orientation directions were determined after etching the ends of the 

cylinders with Nimonic etch.  This revealed the dendritic structure, the dendrite arms 

are known to grow along <100> type directions and hence reveal the <100> directions 

perpendicular to the cylinder axis (Figure 100).

The specimens were machined using electrical discharge machining (EDM).  An 

initial specimen size of 8mm x 8mm x 50mm was selected in order to make best use of 

the material supply.  A 4mm diameter notch was machined half way along the specimen 

bar with the centre point of the radius set 0.75mm above the surface of the bar (Figure

101).

The  EDM  process  left  behind  a  highly  oxidized  surface  layer  that  required 

polishing away to reveal the microstructure before testing could take place.  A dental 

felt  coated  with  diamond  paste  was  used  to  polish  the  notch.   The  specimen  was 

clamped in a stage with X and Y adjustment possible via thumb screw and the notch 

was lined up with the dental felt.   Enough pressure was applied to cause the felt to 

deform slightly, a lubricant (metadie) was used and the drill was oscillated up and down 

by hand during polishing.  Three grades of diamond paste were used (6µm, 3µm and 

1µm)  to  obtain  the  polished  finish.   The  process  is  very  lengthy  and  has  proved 

damaging to the bearings in the pillar drill.  This process was modified to include a 

4000 grit paper first stage.  A dental felt pin was slotted to take the paper which is then 

wound around the pin to give an approximate diameter of 2mm.  Using the grinding 

paper speeds up the process considerably.

Figure 102 shows the quality of the finish after polishing and subsequent etching 

(dendrite  orientation  in  the notch can be clearly seen).   The polished surfaces were 
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etched to allow crack interactions with the microstructure on the surface to be assessed. 

Identical  processes  were used for  the  preparation  and testing  of  sub-sized CMSX-4 

samples and René N5 examined later in the project.

6.5.2 Testing Procedure

Notch  fatigue  experiments  were  performed  on  an  Instron  8501 servo  hydraulic 

testing machine fitted with an ESH high temperature vacuum chamber.   Tests  were 

carried  out  on the  notched  specimens  in  symmetric  three  point  bend as  detailed  in 

(Figure 101).  During all testing the load ratio was 0.1.  The preliminary test to establish 

appropriate loading levels to obtain a lifetime ~10,000 cycles was conducted using a 

triangular waveform at 20Hz, in air, at room temperature.  Further tests were conducted 

at  650°C using a  1-1-1-1 trapezoidal  waveform (Figure 103).   Loading  levels  were 

assessed with reference to the FE model  discussed earlier.   High temperatures  were 

achieved with the use of four quartz lamps mounted within the testing chamber.  The 

lamps  and  reflectors  were  positioned  around  the  specimen  with  the  maximum 

concentration of heat at the centre of the chamber where the specimen was mounted. 

Temperature control was via an ESH power cabinet fitted with a Eurotherm 815 set 

point controller.   Specimen temperature was measured by means of an R type Pt-Rh 

thermocouple  spot  welded  within  a  couple  of  millimetres  of  the  notch.   Chamber 

temperature  was  controlled  to  within  +/-  1°C.   The  chamber  was  heated  to  test 

temperature then allowed to soak for 20 minutes before testing commenced.  During 

this time the specimen was held at minimum load.

Interrupted/replica tests were stopped at a pre-determined number of cycles in order 

to take a replica.  Lamps were shut off immediately after the test stopped cycling and 

the  specimen  was  held  at  minimum load.   The  chamber  was  not  opened  until  the 

specimen temperature had fallen below 150°C.  Once the chamber had been opened, a 

large desk fan was used to blow air into the chamber and facilitate cooling.  Before 

taking a replica, the load level was increased to mean load in order to open any surface 

cracks slightly.  Replicas were taken using a Struers RepliSet-F1 kit, the silicon rubber 

compound required a temperature of less than 35°C to set satisfactorily.  The specimen 

was then returned to minimum load and the chamber was reheated as outlined above. 

Replication intervals were decreased at the onset of surface cracks appearing. 
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6.5.3 Fractography

Detailed systematic  assessment  of each fracture surface was carried out.   Initial 

overviews were taken both with a Wild macroscope and in the JEOL FEG-SEM, to 

assess gross macroscopic features and to help pinpoint initiation sites and notch surface 

fracture features.   High magnification shots were taken of all  initiation areas and of 

typical  crack  propagation  features,  for  comparison  with  long  crack  specimen 

fractography carried out in the partner programme in the CRP.  The SEM was also used 

in  BEI mode to give topographical  and compositional  scans of the fracture surface. 

Energy  dispersive  x-ray  (EDX)  compositional  mapping  was  conducted  on  sites  of 

particular  interest  on  the  fracture  surface  using  the  FEG  SEM  in  BEI  mode  in 

conjunction with Oxford Inca 300 software.
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Temp (°C) E (GPa) ν σyield 

(MPa)
σ0.2% 

(MPa)
σUTS 

(MPa)
Elong. (%)

20 115 0.4 680 900 1050 5
650 106.9 0.4 700 943 1200 8.77
750 100 0.4 730 980 1200 10

Table 3 - Elastic and plastic properties used in modelling

Notch depth (mm) Stress concentration 
factor

0.25 1.32
0.5 1.53
0.75 1.69

1 1.83
1.25 1.98
1.5 2.13

Table 4 - Stress concentration factor variation with notch depth

Identity Type θ ρ
BAVF A1 <001> 2.3 32.1
BAVF A4 <001> 2.3 2.2
BAVF A6 <001> 4.5 29.0
BAVF A8 <001> 4.0 24.8
BAVF A11 <001> 7.9 44.3
BAVF A12 <001> 6.4 33.6
BAVF A14 <001> 4.9 34.4
BAVF A15 <001> 5.3 32.6
BAVF A16 <001> 3.7 2.6
BAVF A17 <001> 5.2 38.0
AWLSA 3B <111> 51.4 42.6
AWLSA 4B <111> 51.4 43.5
AWLSA 5B <111> 52.5 44.0
AWLSA 8B <111> 50.7 41.8
AWLSA 9A <111> 50.3 44.5

Table 5 - CMSX-4 Bar Identities and Primary Orientations

Standard service heat treatment employed to produce  CMSX-4

• x hrs @ x°C → raise temperature
• x hrs @ x°C → raise temperature
• x hrs @ x°C → raise temperature
• x hrs @ x°C → raise temperature
• x hrs @ x°C → raise temperature
• x hrs @ x°C → raise temperature
• x hrs @ x°C → raise temperature
• x hrs @ x°C → rapid gas fan quench in argon
• x hrs @ x°C → air cool
• x hrs @ x°C → air cool

Table 6 - Heat treatment data supplied by Alstom  (NB the specific details of heat treatment are 
commercially proprietary y)
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Figure 93 – Ni plating apparatus

Figure 94 - Meshing, loading and constraint strategy. Note distributed constraints shown (used in 
elasto-plastic model only) (after Mark Joyce)

Figure 95 - Notch root mesh detail – 8 node mapped quadrilaterals  employed to accurately assess 
notch root fields (after Mark Joyce)
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Figure 96 - Mode I stresses and strains predicted at notch root in CMSX-4 at 650°C. (after Mark 
Joyce)

Figure 97 – Stress/strain behaviour for PWA1480
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Figure 98  - Abaqus FEA model of PWA 1484 test bar with detail of mesh refinement around notch 
root.

Figure 99 - Definition of secondary orientations A and B and their nominal crack growth directions
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Figure 100 - Secondary orientation with relation to dendrites taken from end of cast bar

Figure 101 - Short crack test specimen geometry

Figure 102 - Etched and polished notch (orientation B)

Figure 103 - Trapezoidal 1-1-1-1 waveform.

123



6.6 Results

6.6.1 Material Characterisation

6.6.1.1 Macrostructure.

Dendrites can be observed on polished etched specimens of each alloy (Figure 104, 

Figure  105 &  Figure  106).   Dendrite  orientation  has  been  used  to  determine  the 

orientation of test specimens (A or B) during manufacture (Figure 100) as described in 

Chapter 6.5.1.

Dendrite spacing is of the order of 10µm for each alloy.  Dendrites in CMSX-4 are 

more  clearly  defined.   There  is  a  sharper  transition  between  the  dendritic  and 

interdendritic regions in CMSX-4 than is seen in PWA1484 and René N5.

EDX  analysis  has  been  carried  out  on  CMSX-4  to  determine  segregation  of 

elements for comparison with the literature 220.  EDX plots show higher concentrations 

of Re and W (~20% rel)  within dendritic  areas (Figure 107 &  Figure 108).   These 

values agree with the ratios shown in the literature 220.

Porosity is observed to be interdendritic in nature, Figure 109 shows an example of 

porosity in an etched sample of René N5 with porosity clearly occurring in the lighter, 

interdendritic, regions.

Porosity is visible on plain polished specimens of all 3 alloys.  Collages of optical 

microscope  images  (Figure  110)  have  been  processed  using  tessellation  analysis 

software (Figure 111) to provide statistical information on the porosity distribution of 

each alloy (Table 7, Table 8 & Table 9).  A total area of ~28mm² was analysed over a 

sample of 3 test bars for each alloy.  CMSX-4 samples had the highest porosity levels of 

1.3% with an average aspect ratio of 1.2 and an aspect ratio range of 1 to 5.1.  All 3 

alloys had a maximum pore aspect ratio of 4.5 or more.  The size (2D section area) of 

the pores ranges between 3µm² and 2240µm².

Hardness testing has been completed on CMSX-4 and René N5 using a micro-

hardness Vickers test.  Rows of hardness indents on etched samples have been divided 

into results for dendritic and interdendritic regions.  Results are presented in Table 10. 

Although there was a  lot  of  scatter  in  individual  results,  CMSX-4 shows a  marked 

increase in the average hardness values in the dendritic regions over the interdendritic 

regions.  The standard deviation of the results was of the same order of magnitude as the 

difference between the averages but on closer examination of the data there were some 
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obvious outliers possibly caused by indenting a hard phase or at the site of a pore.  René 

N5 shows the same trend but the difference between the average results was much less 

and too small to be considered statistically significant.

Slip bands are clearly visible around hardness indents.  Figure 112 and Figure 113 

show examples of slip bands in CMSX-4 and PWA1484 respectively.  For slip bands to 

be visible it was necessary to view them on plain polished samples.

6.6.1.2 Microstructure.

On a  polished  and etched sample  of  CMSX-4 the  finer  scale  γ/γ’  microstructure  is 

clearly visible.  A Nimonic etch was used to reveal the γ matrix and confirm the high γ’ 

fraction (Figure 114).  The triangular sections of the matrix are consistent with what 

would be expected for a {111} section through a cuboidal γ’ array.  The same sample 

was also observed in the plain polished condition using backscattered electron imaging 

(Figure 115).  The light areas indicate heavier elements are concentrated in the γ matrix 

as indicated by the literaturelii.

Compositional  analysis  conducted  using  EDX  was  unable  to  determine  the 

compositional differences between the  γ and  γ’.  The interaction volume over which 

compositional values are averaged is an order of magnitude larger than the γ’ channels.

SEM images of PWA1484 and René N5 (Figure 116 &  Figure 117) confirm 

high γ’ fractions.  The same etching procedure was used for all three alloys.  PWA1484 

appears to have thicker  γ channels, and therefore a lower percentage  γ’ is deduced in 

comparison to CMSX-4 and René N5.

6.6.2 Oxidation Studies.

An oxidation study has been carried out on all 3 alloys.  Plain polished samples and 

polished and etched samples were examined by SEM after timed exposure in a furnace 

at  650°C.   An initial  oxidation  study was carried  out  by the author.   Three further 

studies incorporating weight measurements for all three alloys were carried out.

6.6.2.1 CMSX-4

Heavy oxidation was observed on CMSX-4 samples after just one hour.  The γ matrix is 

clearly visible on a polished specimen (Figure 118).  The etched sample also exhibited 
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rapid oxidation,  after one hour the  γ matrix had become much thicker and less well 

defined (Figure 119).

After 256 hours the polished sample had oxidised further, the oxidised γ matrix is 

clearly  more  prominent  than  after  1  hour  exposure  (Figure  120).   On  the  etched 

samples, oxidation was so heavy in places that the γ matrix almost completely obscured 

the etched out γ’ (Figure 121).

Oxidation was not consistent across the surface of each specimen.  Small blemishes 

and areas of lighter and heavier oxidation can be observed.  Light areas of the same 

order as the dendrite spacing are visible on the etched sample after  256 hours.  No 

cracks were observed on any of the oxidation samples unlike the test specimens that 

later suffered from heavy cracking within the oxide layer.  Sections through oxidised 

samples show the oxide layer is both additive and penetrative.  The oxide layer is in 

region of 2-3µm thick with an actual  increase of ~2µm with respect to the original 

substrate surface (Figure 122 & Figure 123).

6.6.2.2 ReneN5

After one hour exposure at 650°C a polished specimen exhibited a similar amount of 

oxidation  as  that  seen  in  the  CMSX-4  (Figure  124).  Oxidation  was  not  uniform 

throughout the sample with some areas experiencing more preferential oxidation than 

others being observed. Under SEM observation, areas of lighter speckled marks were 

found in  the  interdendritic  regions  of  a  polished  sample  after  1  hour  (Figure  125), 

showing  that  the  compositional  differences  between  the  dendrite  centres  and  the 

interdendritic regions may be the reason for the varying degrees of oxidation thus the 

dendrites are effectively shown up by thermal etching.  Figure 126 & Figure 127 show 

small light coloured globular protrusions, possibly oxidised carbides, around the edges 

of the dendritic regions.   Weight gain from oxidation on  René N5 was generally less 

than CMSX-4.

6.6.2.3 PWA1484

There are no micrographs of oxidation of PWA1484.  Observations from the recorded 

masses are that all but one sample of PWA1484 gained weight.  The weight gain of the 

PWA1484 samples was less than the CMSX-4
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6.6.2.4 Summary

The  small  size  of  the  samples  meant  that  the  accuracy  of  the  weighing  equipment 

(0.0001g) was insufficient to accurately record the small  changes in mass.   Average 

mass change results were lost within the experimental scatter and are not presented.

In general, the results show that visually René N5 oxidises in the same manner 

as  CMSX-4,  with the  γ  matrix  showing preferential  oxidation.   This  is  expected  as 

dendrites have the largest portion of Re which is relatively stable.  Weight gain from 

oxidation on René N5 was generally less than CMSX-4.  It was expected that due to the 

low chromium content of CMSX-4 and the comparatively higher Cr content in René 

N5, oxidation resistance would be better in the latter.  Interdendritic carbides are clearly 

visible on samples of René N5 but are less prominent in CMSX-4.  .PWA1484 also 

shows higher resistance to oxidation than CMSX-4.

6.6.3 Fatigue Testing Results

6.6.3.1 Fatigue Test Lifetimes.

Data is presented for a total of 31 fatigue tests.  A total of 14 fatigue tests have been 

completed using the original 8mm x 8mm x 50mm CMS4 samples.  Further samples of 

4mm x 4mm x 50mm were produced to increase the number of tests possible from the 

batch of CMSX-4 available.  Test data from 5 small CMSX-4 bars is presented with the 

help of undergraduate project student Amira Kawar.

During  the  test  program,  a  small  quantity  of  René  N5 became available  for 

testing and has been used for comparison with the CMSX-4 as a similar 2nd generation 

superalloy.   Testing and analysis of 6 fatigue tests has been carried out on (10mm x 

10mm x 50mm) specimens with the help of undergraduate project student Irene Lee.

Fatigue testing using PWA1484 was carried out at CNRC as part of the collaborative 

research programme between University of Southampton Dept and CNRC,.  Test data 

for 6 axial fatigue tests has been supplied by CNRC along with test specimens in order 

to perform microscopic analysis on the fracture surfaces courtesy of Dr Xijia Wu..

All test data and results are presented in Table 11, Table 12, Table 13 & Table

14.  A strain life graph of cycles to failure for each test is given in Figure 152.
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CMSX-4 8x8

Tests, 1,2 and 3 were used to establish a suitable lifetime in order to conduct interrupted 

replica tests, misoriented specimens were chosen for these calibration tests.  A target 

lifetime in the order of 10,000 was identified.  The data generated from the FE model 

was used to select a suitable load/strain condition for the first test.

The first test ran for 100,000+ cycles.  Towards the end of the test the load was 

increased.  This increased load value was used as a starting point for the next test but 

further increases were required in order achieve an acceptable lifetime to failure.  An 

effective calculated strain range of 1.35% gave a lifetime of 62,000 cycles.  All further 

tests using 8mm x8mm bars of CMSX-4 were tested at an estimated strain range of 

1.38%.

Initial results for orientation A and B in air showed favourable lifetimes with 

respect to conducting replica tests.  At 650°C in air the orientation A specimen had a 

considerably longer lifetime.  At 725°C in air the effect of orientation swapped over, 

with the orientation B specimen giving a longer lifetime.

In Vacuum, orientation A tests had longer lifetimes that orientation B at 625°C 

and 725°C.

A replica test was attempted at 650°C.  Heavy oxidation was observed on the 

notch surface after a short period of time.  This heavy oxidation masked any cracks that 

may have initiated on the notch surface.  Cracks in the oxide layer of the notch appeared 

and disappeared throughout the duration of the test thus making replica records very 

difficult to interpret.  This replica test was stopped after ~8000 cycles at which point 

~30 replicas  had  been  taken.   The  test  was  then  run  to  failure  without  any further 

interruptions

CMSX-4 4x4

Considerably  less  scatter  is  observed in  the  test  lifetimes  of  4x4 test  specimens  in 

comparison  to  the  larger  8mm  x  8mm  specimens.   Further  investigation  into  the 

specimen geometry shows that  the  variation  in dimensions  is  much higher  than the 

stated accuracy of the EDM tooling used to produce the test  specimens.   Specimen 

dimensions have been checked using digital vernier calliper and stress and strain values 

have been altered accordingly.  Some specimens were rejected due to tapering of the bar 

thus leaving predominantly orientation B test pieces.  The variation in cycles to failure 

for each of the tests cannot be accounted for by the variation in geometry alone.
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René N5

A total of 6 bars have been tested to date; 3 bars of orientation A and 3 of orientation B. 

The first 3 tests conducted on orientation B bars produced lifetimes of ~3000 cycles. 

Lifetimes for orientation A samples showed the largest scatter with the lowest lifetime 

cycle being 3346 and the highest being 11,490. Of the 6 tests conducted on René N5 

bars, orientation A samples tended to have longer lifetimes than orientation B. 

PWA1484

Testing of PWA1484 was carried out at CNRC.  All testing was carried out in load 

control at 1Hz in axial tension at several strain ranges.  Tests had much longer lifetimes 

in general and the scatter observed showed overlap between the different strain ranges 

tested.

6.6.3.2 Fracture Surface Overviews.

Figure  128 through  to  Figure  151 show  series  of  fracture  surface  overviews  for 

specimens tested to failure in the form of exploded views.  The main fracture surface is 

in the centre, surrounded by the appropriate side and top profiles so the extent of out-of-

plane faceting can be fully appreciated in each case.

CMSX-4 8x8

Room temperature test fracture surfaces (Figure 128) exhibit large facets on the fracture 

surfaces.  Facets have formed along the {111} planes.

At 650°C in air, fracture surfaces appear less faceted than the room temperature tests 

(Figure  129 &  Figure  130).   Side  facets  have  formed  but  the  fracture  surface  is 

relatively smooth in the middle of the specimen.  The orientation B specimen appears 

more faceted that orientation A.  Facets on Orientation A specimen run parallel to the 

sides of the fracture surface, whilst the orientation B specimen has facets that intersect 

the  sides  at  45°.   Major  initiation  points  can  be  identified  even  on  these  low 

magnification overviews.

At 725°C in air the fracture surfaces look similar to those at 650°C (Figure 131).  Side 

facets  are  however  slightly  smaller.   There  is  a  smooth  region  in  the  centre  of  the 
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fracture surface.  Some initiation points can still be identified (although they are less 

distinct).

At 650°C in vacuum fracture surfaces are similar to those tested in air (Figure 132). 

Side facets are comparable in size.  The fracture surface is not obscured by oxidation 

and dendrites are observed on the initial fracture area before the onset of extended slip 

band cracking.

At 725°C in vacuum fracture surfaces have much larger side facets.  In both cases the 

side facet from one side only dominates the fracture surface (Figure 133 & Figure 134). 

The orientation A sample has a similar area of ‘smooth’ fracture surface compared to 

the air test.  The orientation B sample exhibits a massive facet that cuts through most of 

the notch.  The faceted area has a very smooth/shiny fracture surface.

Small 4x4 bars were all tested at 650°C in air.  Side facets take up a larger proportion of 

the fracture surface than on the 8mm x 8mm samples.  ‘Smooth’ areas of initial crack 

growth are similar in appearance to the larger test samples (Figure 135 & Figure 139).

The orientation  A samples  appear  less  faceted  whereas  the  facets  on bar  17 

(Figure 136) almost meet in at the centre of the fracture surface.

René N5

The fracture surfaces obtained from the testing show much similarity with the CMSX-4 

fracture  surfaces  with  orientation  B  bars  appearing  more  faceted  than  those  from 

orientation A.  The fracture surfaces appear to be relatively smooth in the middle of 

each specimen where it appears that initial crack growth has taken place (Figure 140 

Figure 145).

The orientation of the dendrites can be seen on the fracture surfaces with the 

dendritic structure appearing in the shape of a‘+’ or ‘x’ depending on orientation.
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PWA1484

All the specimens showed extremely large, effectively single, facets at 45° to the tensile 

axis. These edges do not show ‘zig-zag’ faceted growth except for one sample.  The 

initiation sites could be clearly identified through the macroscope (Figure 146 to Figure

151).

The fracture surfaces in all the PWA1484 samples tend to be smoother along the 

macroscopic facets when compared to the sections near the notches.  Dendrites can be 

observed on some of the fracture surfaces.  The fracture surfaces are shinier than either 

the CMSX-4 or the René N5 samples  thus suggesting less oxidation of the fracture 

surface.

6.6.3.3 Detailed Fractography – 

CMSX-4 Tests in Air

Room  temperature  tests  exhibit  multiple  surface  initiation  points.   Figure  153 and 

Figure 154 give an example of an interdendritic pore that caused initiation of the critical 

crack.  River-lines were observed on fracture surfaces and were used to trace back to the 

major, and minor crack initiation sites.

An example of a pore on the notch surface that did not initiate a crack is given 

(Figure 155) also note the etched microstructure on the surface and within the pore 

clearly showing the narrow γ-matrix channels retained after the etching away of the γ’ 

precipitates.   The  circular  appearance  of  such  pores  on  the  top  surface  gives  little 

indication  of  the  3D nature  of  these  complex  casting  defects.   The  fracture  surface 

shows the critical pore cross-section that initiates failure to be angular and elongated.

At  high  temperatures,  Initial  crack  propagation  was  smooth  with  river  lines 

(Figure 156 B) pointing back towards major and minor initiation points (Figure 156 A). 

The  fracture  surface  was  obscured  by  oxidation.   As  the  crack  progressed  further 

through the specimen, alternating slip band cracking was observed (Figure 156 C) along 

{111} slip planes at high crack tip stresses.

At 650°C heavy oxidation of the notch root was observed during and at the end 

of the first test to failure (Figure 157 and  Figure 158).  Cracks were observed in the 

oxide layer, both during, and at the end of the test.  The cracks appeared to penetrate the 

substrate at times (Figure 159 and  Figure 160) but did not initiate the major fatigue 

crack.  Further evidence of this is seen in Figure 161, Figure 162 & Figure 163.
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Crack initiation at high temperatures occurred at sub surface pores in all cases; 

650°C and 725°C orientations A and B.  An example of a fracture surface at 725°C 

orientation A is show in Figure 164 with crack initiation locations marked.  Although 

large cracks are seen in the surface oxide they do not appear to be the primary cause of 

failure (Figure 165).

All initiating sub surface pores were encircled by a halo, examples of which are 

given in (Figure 166 to  Figure 169).  The halo is generally circular in shape with its 

uppermost  boundary  touching,  or  coming  very  close  to,  the  surface  of  the  notch. 

Subsurface  pores  were  predominantly  irregular  shapes  consistent  with  interdendritic 

spacing both in size and shape.   The texture of the fracture surface within the halo 

differs  from  that  seen  in  the  surrounding  area.   This  is  better  observed  using 

backscattered electron imaging (Figure 170) to look at topographical features on the 

fracture surface.  Using this method several new crack initiation points were identified.

A  compositional  scan  also  picked  up  differences  within  the  halo  region 

compared with the surrounding area (Figure 171) and shows an enriched area within the 

halo.  This feature was observed at several other halo initiation sites.  The compositional 

scan has been broken up into individual elements in order to identify depleted areas 

(Figure 172 to Figure 180).

Further down the fracture surface 2-4mm away from the notch root alternating 

slip band cracking is observed along {111} slip planes at high crack tip stresses (Figure

181 & Figure 182).

Due to  the  high  levels  of  oxidation  it  was  necessary  to  section  the  fracture 

surface  to  reveal  more  detail  of  the  interaction  between  the  microstructure  and  the 

fatigue  cracks.   Figure  183 provides  details  of  where  the  cuts  were  made  and  the 

locations of the subsequent figures.  The oxide layer is seen to be thicker in the notch 

root than on the fracture surface (Figure 184) with the notch root oxide in the order of 1 

– 1.5µm.  At high magnification the cracks can be seen to following slip bands and 

cutting the γ’ precipitate (Figure 185).  In Figure 186 several slip bands are observed. 

The crack is caused to deviate due to the proximity of a pore and swaps from travelling 

along one slip band to another.  At this location closer to the fracture surface, some 

signs of oxidation along the crack can be observed.  A section through ‘rooftop’ facets 

formed  at  high  ∆K  levels  (Figure  187)  shows  a  heavily  oxidised  secondary  crack 

extending along a slip band from one of the facets.
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CMSX-4 Tests in Vacuum

Four tests were conducted on CMSX-4 samples in vacuum.  A minimum vacuum level 

of 1x10-5 mbar was achieved for each test.  From initial observation there were no signs 

of  oxidation  during  the  tests  –  this  was  expected  but  confirmed  the  quality  of  the 

vacuum achieved.

Dendrites  are  immediately  visible  on  the  fracture  surface  under  an  optical 

microscope  and SEM (Figure  188).   Crack  initiation  occurs  at  porosity  both at  the 

surface (Figure 189) and subsurface (Figure 190 &  Figure 191) although it  is much 

harder to pinpoint subsurface initiation due to the lack of the halo feature around the 

porosity  which  is  presumed  to  be  caused  by  an  oxidation  phenomenon  –  this  is 

discussed more detail in section 6.8

Much more detail is present on the fracture surface in comparison to the tests 

conducted in air.  The interaction of slip bands with pores is observed and the presence 

of striations can be seen on some of the larger faceted areas of the fracture surface 

(Figure 192).  At high  ∆K levels the effect of porosity on highly micro-faceted crack 

propagation is observed (Figure 193).

Without a difference in oxidation around a pore on the fracture surfaces is more 

difficult  to  categorise  porosity  initiation  sites  as  surface  or  subsurface.   Figure  194 

appears to be an example of surface initiation with Figure 190 & Figure 191.showing 

examples sub surface porosity initiation all on the same fracture surface (OA, Vacuum, 

650°C).

René N5 Tests in Air

An overview of an orientation A fracture surface is shown in Figure 195 (OA, 650°C, 

Air, 3346 cycles).  The major initiation sites are clearly visible and were also identified 

by the river lines which appear to lead back to major and minor sites of initiation. These 

sites were then examined in detail with the points of interest labelled A to D as depicted 

in Figure 195.

Subsurface pores  were found at  locations  A, B and D and a  relatively large 

surface pore of approximately 7.5µm in length was located at site C.  A circular ‘halo’ 

was found around the pore at site D (Figure 203) with its uppermost boundary nearly 

reaching the notch surface.  It was also noted that the texture of the surface within the 

halo  differed  from  the  surrounding  area.  The  subsurface  pores  were  found  to  be 

consistent in size with the interdendritic spacing.
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An example of an orientation B specimen is given in Figure 204.  Initiation from 

porosity is seen to occur at sites A,B, D and E (Figure 205 to  Figure 208).  At the 

initiation site located at site C, river lines lead to what appears to be an oxidised carbide 

(Figure 209 Figure 210)

The characteristic subsurface pore and halo feature is present on most of the 

fracture surface samples, two examples of which are given in Figure 211 & Figure 212.

PWA1484 Tests in Air

Examples of 2 PWA1484 fracture surfaces are give in Figure 213 to Figure 220.  Figure

213 shows an overview of a fracture surface with the main initiation point labelled. 

SEM images  at  successively higher  resolutions  (Figure 214 Figure 215 Figure 216) 

trace the initiation point back to a dark phase most likely to be a secondary carbide. 

The smooth surface area of this sample is relatively small.  A large number of pores are 

visible  on the side facet  (Figure 214)  but  there  is  no sign of  cracks  initiating  from 

porosity.

A  second  example  of  a  PW1484  fracture  surface  is  given  in  Figure  217. 

Dendrites are clearly visible in Figure 218.  The main initiation point is visible as a half 

circular area (Figure 219) with river lines running back towards the initiating feature, 

which in this case is an interdendritic pore (Figure 220).

6.6.3.4 Collection of Porosity Data

It is apparent that porosity is one of the main factors that controls fatigue life in alloy 3 

alloys and may be a source of some of the scatter seen in the fatigue life data.

Several parameters that describe the pore size and location have been defined 

(Figure  221 and  Figure  222)  and  used  to  collect  data  about  initiating  pores  on  all 

fracture surfaces.  The irregular shape of the pores made taking measurements quite 

difficult and potentially very subjective.  For each pore, a centroid was estimated.  From 

this point, the depth of the pore (d) was recorded.  The greatest distance across the pore, 

tip to tip, passing through the centre was recorded as the major dimension (x).  The 

minor dimension (y) is measure at 90° to the major axis and is taken as an average 

dimension as indicated by the dashed lines  The tessellation analysis software (TAP) 

was used to  measure the area of the pore from a digital image and provide data about 

the aspect ratio.  The aspect ratio defined in TAP is the maximum chord length divided 
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by the perpendicular width.  Tables of results containing the porosity information are 

presented for each alloy in Table 15.
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CMSX-4

Obj 
Area

 (μm²)

Obj 
Aspect 
Ratio

Obj 
Angle
 (rad)

No. 
NNs

NN 
Dist
 (μm)

Mean 
NND
 (μm)

NN 
Angle
(rad)

Mean 542.1 1.2 0.7 5.8 67.9 195.6 0.8
Median 440.0 1.1 0.7 6.0 56.8 194.0 0.8
Mode 3.0 1.1 0.8 5.0 6.9 99.1 0.2
Standard 
Deviation 503.2 0.3 0.4 1.4 58.2 70.9 0.5
Minimum 3.0 1.0 0.0 2.0 4.8 12.0 0.0
Maximum 2241.9 5.1 1.6 10.0 268.5 374.8 1.6
Sum 375667.4 849.4 471.3 4017.0 47047.4 135585.1 562.6
Count 693 693 693 693 693 693 693
Total area 
analysed

28.79 
mm²

% porosity 1.30%
Table 7 CMSX-4 porosity data (3 samples taken)

René N5

Obj 
Area

 (μm²)

Obj 
Aspect 
Ratio

Obj 
Angle
 (rad)

No. 
NNs

NN 
Dist
 (μm)

Mean 
NND
 (μm)

NN 
Angle
(rad)

Mean 105.2 1.5 0.6 5.7 56.8 181.3 0.8
Median 14.9 1.3 0.5 6.0 35.6 173.8 0.8
Mode 3.0 1.0 0.0 5.0 3.5 #N/A 0.5
Standard 
Deviation 222.3 0.6 0.5 1.9 63.7 92.6 0.4
Minimum 3.0 1.0 0.0 2.0 3.5 4.1 0.0
Maximum 1443.7 4.8 1.6 12.0 319.9 438.6 1.6
Sum 79499.4 1136.6 434.1 4311.0 42962.4 137071.4 592.3
Count 756 756 756 756 756 756 756
Total area 
analysed

27.42 
mm²

% porosity 0.29%
Table 8 René N5 porosity data (3 samples taken)

PW 1484

Obj 
Area

 (μm²)

Obj 
Aspect 
Ratio

Obj 
Angle
 (rad)

No. 
NNs

NN 
Dist
 (μm)

Mean 
NND
 (μm)

NN 
Angle
(rad)

Mean 241.2 1.4 0.6 5.7 45.9 142.6 0.8
Median 50.7 1.1 0.6 6.0 31.1 138.6 0.9
Mode 3.0 1.0 0.0 5.0 3.5 41.7 1.1
Standard 
Deviation 406.1 0.6 0.5 1.7 45.5 80.8 0.5
Minimum 3.0 1.0 0.0 2.0 3.5 3.5 0.0
Maximum 3704.7 4.5 1.6 11.0 217.4 369.9 1.6
Sum 274239.3 1611.0 676.8 6495.0 52178.2 162155.1 953.4
Count 1137 1137 1137 1137 1137 1137 1137
Total area 
analysed

28.64 
mm²

% porosity 0.96%
Table 9 PWA1484 porosity data (3 samples taken)
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Vickers Hardness Value
Dendritic 
Region  Interdendritic Region

CMSX-4    
A {110} 342 > 318
B {100} 356 > 295
C {111} 323 > 298
René N5    

A {110} 336 > 313
B {100} 350 > 349
C {111} 348 > 346
Table 10 – Average Vickers Hardness Values for CMSX-4 and René N5

Test 
ID.

Wave-
form

Temp 
(°C)

Air/ 
Vac

Orient-
ation

Pmax 
(KN)

"∆ε" 
(%)

Cycles to 
Failure

1 20Hz 21 Air X 4.9 0.95 100,000+
2 1-1-1-1 650 Air X 5.7 1.21 100,000+
3 1-1-1-1 650 Air X 6.1 1.35 62,000
6 1-1-1-1 650 Air B 6.2 1.38 6500
4 1-1-1-1 650 Air A 6.2 1.38 25,500
14 1-1-1-1 650 Vac B 6.2 1.38 9,378
16 1-1-1-1 650 Vac A 6.2 1.38 15,871
9 1-1-1-1 725 Air A 6.2 1.38 5,271
11 1-1-1-1 725 Air B 6.2 1.38 13,717
7 1-1-1-1 725 Vac A 6.2 1.38 11,363
12 1-1-1-1 725 Vac B 6.2 1.38 4,960
8 5Hz 21 A A 6.2 1.38 21,661
13 1-1-1-1 650 Air B 6.2 1.38 46,665
15 1-1-1-1 650 Air B 6.2 1.38 9,632

Table 11 CMSX 8mm x 8mm  Fatigue Test Results
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Test 
ID.

Wave-
form

Temp 
(°C)

Air/ 
Vac

Orient-
ation

Pmax 
(KN)

"∆ε" 
(%)

Cycles 
to 
Failure

Images

16 1-1-1-1 650 Air A Overlo
ad

3.37 500 Figure
135

17 1-1-1-1 650 Air B 1 1.49 3592 Figure
136

24 1-1-1-1 650 Air B 0.85 1.19 81,000 Figure
137

28 1-1-1-1 650 Air B 1.2 1.54 130,792 Figure
138

29 1-1-1-1 650 Air B 0.8 1.48 16,386 Figure
139

Table 12 CMSX-4 4mm x 4mmm Fatigue Test Results

Test 
ID.

Wave-
form

Temp 
(°C)

Air/ 
Vac

Orient-
ation

Pmax 
(KN)

"∆ε" 
(%)

Cycles 
to 
Failure

Images

1 1-1-1-1 650 Air B 12.26 1.38 3,325 Figure 140
2 1-1-1-1 650 Air B 12.26 1.38 2,573 Figure 141
3 1-1-1-1 650 Air B 12.26 1.38 3,507 Figure 142
4 1-1-1-1 650 Air A 12.26 1.38 4,945 Figure 143
5 1-1-1-1 650 Air A 12.26 1.38 3,346 Figure 144
6 1-1-1-1 650 Air A 12.26 1.38 11,490 Figure 145

Table 13 René N5 10mm x 10mm Fatigue Test Results

Test 
ID.

Wave-
form

Temp 
(°C)

Air/ 
Vac

Orient
-ation

Pmax 
(KN)

"∆ε" 
(%)

Cycles to 
Failure

Images

P28-A 1Hz 520 Air B 12.26 1.26 58495 Figure 146
P28-B 1Hz 520 Air B 12.26 1.26 121110 Figure 147
P24-B 1Hz 500 Air B 12.26 1.19 127649 Figure 148
P22-B 1Hz 480 Air B 12.26 1.12 136206 Figure 149
P22-A 1Hz 480 Air B 12.26 1.12 154284 Figure 150
P26-A 1Hz 500 Air B 12.26 1.19 182001 Figure 151

Table 14 PWA1484 axial tension tests (CNRC) Fatigue Test Results
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Bar/Pore details

Area 
(μm²) 
From 
TAP

Aspect 
Ratio 
(a/c) 
From 
TAP

Major 
Axis 
(μm)

Minor 
Axis 
(μm)

Depth 
(μm)

Area 
(μm²) 
From 
TAP

Aspect 
Ratio 
(a/c) 
From 
TAP

Major 
Axis 
(μm)

Minor 
Axis 
(μm)

Depth 
(μm)

Side A Side B
CMSX4-1 1011 1.09 40 13 0
CMSX4-2
CMSX4-3 494 6.5 100 10 80
CMSX4-4 1351 3.7 100 25 250
CMSX4-6 2639 1.7 90 10 130

735 1.2 30 40 25
645 2.5 75 10 40

CMSX4-7 1933 2.9 128 24 47
CMSX4-8 715 1.8 40 15 0

495 1.5 30 10 0
438 1.8 25 10 0

CMSX4-9 1903 2.0 50 30 200
842 2.0 60 60 350
550 1.5 30 20 50
860 1.2 60 10 125
426 2.1 50 10 90

CMSX4-11 1062 2.0 50 5 350
791 1.5 80 10 45

CMSX4-12 1230 4.2 92 33 40
CMSX4-14 2554 2.4 90 28 0
CMSX4-15
CMSX4-16 3095 1.7 128 40 0

5563 1.5 147 83 114
Bar 13_AK_OB_pore A 1106.8 5.7 72.9 4.8 44.2 1031.5 4.1 68.8 4.8 44.2
Bar 16_AK_OB
Bar 17_AK_OB_ pore A 591.6 1.4 19.2 9.8 16.3 555.0 19.2 9.2 15.2
Bar 17_AK_OB_pore B 228.2 1.3 10.9 6.7 10.7 213.3 1.4 10.3 6.6 9.1
Bar 17_AK_OB_pore C 273.1 1.9 17.8 4.9 19.6 298.2 1.9 18.8 5.1 23.8
Bar 17_AK_OB_pore D 1418.4 1.6 40.0 11.3 86.7
Bar 24_AK_OB_pore A 1243.6 1.4 32.5 12.2 246.7 1405.5 1.6 33.3 13.4 260.0
Bar 28_AK_OB_pore A 223.5 3.2 23.0 3.1 22.3 134.5 5.0 20.2 2.1 20.0
Bar 29_AK_OB_pore A 576.5 1.3 19.7 9.3 40.7 571.8 1.7 19.6 9.3 N/A
P22-A 552.1 18.4 9.5 24.7
P22-B 2185.5 3.5 58.3 11.9 90.0
P24-A 175.8 1.4 9.1 6.2 36.4
P26-A 348.3 1.7 11.5 9.6 32.0
P28-A 1185.5 1.9 30.6 12.4 92.6
P28-B 1292.5 2.7 52.8 7.8 50.0
Bar 1_IL_OB_Pore A 312.7 1.2 10.9 9.1 11.6 279.4 3.1 20.8 4.3 10.3
Bar 1_IL_OB_Pore B 1672.3 2.8 53.0 10.0 59.1
Bar 1_IL_OB_Pore C 107.4 1.3 7.3 4.7 38.2 106.2 1.1 6.7 5.1 42.7
Bar 1_IL_OB_Pore D 1488.1 3.0 47.8 9.9 62.6 347.5 1.3 17.1 6.5 28.0
Bar 1_IL_OB_Pore E(2) 398.7 1.7 16.3 7.8 15.7
Bar 1_IL_OB_Pore E 412.1 1.8 18.2 7.2 16.7 531.9 1.2 17.4 9.7 52.2
Bar 1_IL_OB_Pore F 234.1 1.2 10.0 7.5 23.3
Bar 1_IL_OB_Pore G 187.8 1.1 8.3 7.2 27.3 681.8 1.4 26.5 8.2 48.7
Bar 1_IL_OB_Pore H 172.1 3.5 15.2 3.6 23.9
Bar 1_IL_OB_Pore I 210.4 1.2 9.5 7.0 13.6 210.4 1.2 9.5 7.0 13.6
Bar 1_IL_OB_Pore J 268.3 1.1 10.0 8.5 14.7
Bar 1_IL_OB_Pore K 257.5 1.1 9.8 8.4 15.9 551.9 2.2 25.0 7.0 29.1
Bar 1_IL_OB_Pore L 45.8 1.1 4.5 3.2 6.0
Bar 1_IL_OB_Pore M 141.4 1.2 7.0 6.4 15.0 282.6 3.0 20.0 4.5 8.0
Bar 1_IL_OB_Pore N 1419.2 1.3 35.0 12.9 20.7 240.5 1.4 10.2 7.5 7.3
Bar 1_IL_OB_Pore O 50.1 1.4 5.1 3.1 6.3 265.4 1.7 14.0 6.0 22.2
Bar 1_IL_OB_Pore P(1) 357.8 1.6 15.9 7.2 90.9
Bar 1_IL_OB_Pore P(2) 362.1 1.6 20.5 5.6 53.6
Bar 10_IL_OA_Pore A 373.6 1.4 13.6 8.7 28.8 6208.1 1.3 77.1 25.7
Bar 10_IL_OA_Pore B 1341.8 3.9 60.9 7.0 25.5 1429.7 1.9 32.3 14.1 21.0
Bar 10_IL_OA_Pore C(1) 591.0 5.6 58.1 3.2 26.5
Bar 10_IL_OA_Pore C(2) 332.0 1.2 12.3 8.6 15.3
Bar 10_IL_OA_Pore C 2052.1 2.2 53.3 12.3 17.1
Bar 10_IL_OA_Pore D 7347.4 1.3 81.6 28.7 81.6 626.4 1.8 20.7 9.7 50.7
Bar 10_IL_OA_Pore E 375.0 1.3 11.8 10.1 12.7 375.0 1.3 11.8 10.1 12.7
Bar 11_IL_OA_Pore B 457.0 1.2 18.7 7.8 41.3 457.0 1.2 18.7 7.8 41.3

Table 15 – Data from all initiating pores in all 3 alloys
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Figure 104 CMSX-4 dendrites  (100) orientation Figure 105 PWA1484 dendrites  (100) orientation

Figure 106  - René N5 Figure 107 SEI Image

Figure 108 Rhenium Concentration Figure 109  - Example of interdendritic porosity in 
RenéN5
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Figure 110 Sample of porosity in CMSX-4 used for porosity analysis 
(collage of 4 separate images)

Figure 111 – Example of FBTA cell gathering for CMSX-4 porosity

Figure 112 CMSX-4 - Slip bands around a hardness indent
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Figure 113 PWA1484 - Slip bands around a hardness indent

Figure 114 CMSX-4 etched surface {001} orientation using FEG-SEM

Figure 115 SEM images Etched surface (left) Backscattered electron image (right) 111 plane
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Figure 116 SEM image Etched surface of René N5 γ matrix (110) orientation A 

Figure 117 SEM image Etched surface of PWA1484 γ matrix (110) orientation A
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Figure 118 SEM  images – Polished CMSX-4 after 1 hour exposure at 650°C
(A) Preferential oxidation of γ matrix (B) Surface blemish (C) γ obscured
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Figure 119 SEM  images – Polished CMSX-4 after 256 hours exposure at 650°C
(A) Preferential oxidation of γ matrix (B) Surface blemish
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Figure 120 SEM  images – Polished  and etched CMSX-4 after 1 hour exposure at 650°C
(A) Heavily oxidised γ matrix (B) overview (C) Oxidised γ (D) γ totally obscured
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Figure 121 SEM  images – Polished  and etched CMSX-4 after 1 hour exposure at 650°C
(A) Light areas consistent with dendrite spacing (B) Heavily oxidised γ matrix  (C) γ totally 

obscured
 (D) transition between light and dark area in (a)
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Figure 122 SEM image - Slice from oxidised sample showing oxide thickness.

Figure 123 SEM image – As Figure 122, higher magnification
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Figure 124  - Preferential oxidation of γ‘on an polished sample of Rene N5

Figure 125 - oxidised carbides on Rene N5 oxidation sample (1)

Figure 126 - oxidised carbides on Rene N5 
oxidation sample (2)

Figure 127 - - - oxidised carbides on Rene N5 oxidation 
sample (3)
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Figure 128 Orientation A, Air, 21°C
Test to failure– 21,661 cycles

Figure 129 Orientation A, Air, 650°C 
Test to failure – 25,500 cycles

Figure 130 Orientation B, Air, 650°C
 Test to failure – 6,500 cycles
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Figure 131 Orientation B Air, 725°C
Test to failure – 13,717 cycles

Figure 132 Orientation B, Vac, 650°C
 Test to failure – 9,378 cycles

Figure 133 Orientation A, Vacuum, 725°C
Test to failure – 11,363 cycles
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Figure 134 Orientation B Vacuum, 725°C
Test to failure – 4,960 cycles
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Figure 135 CMSX-4 Bar 16 OA
Δε=3.37 %, 500 cycles to failure

Figure 136 CMSX-4 Bar 17 OB
Δε=1.49 %, 3592 cycles to failure

Figure 137 CMSX-4 Bar 24 OB
Δε=1.19 %  81000 cycles to failure

Figure 138 CMSX-4 Bar 28 OB
Δε=1.54 %  130792 cycles to failure

Figure 139 CMSX-4 Bar 29 OB
 Δε=1.48 %, 16386 cycles to failure
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Figure 140 René N5 Bar 1 OB
Δε=1.38 %, 3325 cycles to failure

Figure 141 René N5 Bar 2 OB
Δε=1.38 %, 2573 cycles to failure

Figure 142 René N5 Bar 3 OB
Δε=1.38 %, 3507 cycles to failure

Figure 143 René N5 Bar 4 OA
Δε=1.38 %, 4945 cycles to failure

Figure 144 René N5 Bar 5 OA
Δε=1.38 %, 3346 cycles to failure

Figure 145 René N5 Bar 6 OA
Δε=1.38 %, 11490 cycles to failure
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Figure 146 BAR P28-A, OB
Δε=1.26 %, 58495 cycles to failure

Figure 147 BAR  P28-B, OB
Δε=1.26 %, 121110 cycles to failure

Figure 148 BAR P24-A, OB
Δε=1.19 %, 127649 cycles to failure

Figure 149 BAR P22-B, OB
Δε=1.12 %, 127649 cycles to failure

Figure 150 BAR P22-A, OB
Δε=1.12 %, 154284 cycles to failure

Figure 151 BAR P26-A, OB
Δε=1.19 %, 182001 cycles to failure
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Figure 152 – Strain Life data for all fatigue tests.
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Figure 153 SEI micrograph - Bar 1 - Orientation X, Fracture surface (a).

Figure 154 SEI micrograph Interdendritic surface pore identified as major initiation point as 
marked on Figure 153

Figure 155 SEI micrograph of Pore on surface of etched notch from CMSX-4 room temperature 
test.
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Figure 156 SEI micrograph Example of fracture surface features
OA, 725°C, Air, 5271 cycles

Figure 157 Bar 2 - SEI micrograph overview Bar 2 orientation X, Air, 650°C, 100,000 cycles.

Figure 158 SEI micrograph - Blemish observed on notch surface after testing at 650°C
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Figure 159 SEI micrograph - Large penetrating crack in oxide layer observed on notch surface 
after testing at 650°C.

Figure 160 SEI micrograph image – As Figure 159 side on.

Figure 161 BEI Topographical Scan of cracks in notch root oxide layer

Figure 162 SEI micrograph of cracks in notch root oxide layer
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Figure 163 SEI micrograph of cracks in notch root oxide layer

Figure 164 SEI micrograph – Fracture surface  overview ,OA, 725°C, Air, 5271 cycles.

Figure 165 SEI micrograph – Crack in notch surface (Figure 164 location A)
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Figure 166 SEI micrograph – Subsurface ‘halo’ 
crack initiation point (Figure 164 location B)

Figure 167 SEI micrograph Sub-surface 
initiation point Orientation B, 650°C, 1-1-1-1, 

6,500 cycles

Figure 168 - SEI micrograph Subsurface 
initiation point Orientation A, 725°C

Figure 169 - SEI micrograph Subsurface 
initiation point Orientation A, 725°C

Figure 170 - BEI Topographical Scan. Sub-
surface initiation point Orientation A, 725°C

Figure 171 - BEI Compositional Scan. Sub-
surface initiation point Orientation A, 725°C
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Figure 172 - EDX plot for Nickel, from Figure
171

Figure 173 - EDX plot for Oxygen, from Figure
171

Figure 174 - EDX plot for Nickel, from Figure
171

Figure 175 - EDX plot for Nickel, from Figure
171

Figure 176 - EDX plot for Titanium, from 
Figure 171

Figure 177 - EDX plot for Chromium, from 
Figure 171

Figure 178 - EDX plot for Silicon, from Figure
171

Figure 179 - EDX plot for Aluminium, from 
Figure 171
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Figure 180 - EDX plot for Tungsten, from 
Figure 171

Figure 181 SEI micrograph crack propagation in CMSX-4 OA
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Figure 182 SEI micrograph crack propagation in CMSX-4 OB

N o t c h

F r a c t u r e  
S u r f a c e

N o t c h

F r a c t u r e  
S u r f a c e

Figure 183 – Detail of sectioning and location of Figure 184, Figure 187Figure 185Figure 186.
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Figure 184 SEI micrograph (Location A) oxide layer in notch root

Figure 185 SEI micrograph (Location B) Crack following  a slip band, cutting through g’

Figure 186 SEI micrograph (Location C) Crack deviation around pore before continuing along 
slip band
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Figure 187 SEI micrograph (Location D) oxide layer on fracture surface exhibiting ‘rooftop’ 
faceting

Figure 188 – SEI micrograph fracture surface overview 650°, OB, Vacuum.

Figure 189 SEI micrograph – initiation pore 650°, OB, Vacuum
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Figure 190 SEI micrograph – initiation pore 650°, OA, Vacuum

Figure 191 SEI micrograph – initiation pore 650°, OA, Vacuum

Figure 192 SEI micrograph – Slip bands, pore and striations, 650°, OB, Vacuum
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Figure 193 SEI micrograph – Fast fracture region with porosity, 650°, OB, Vacuum

Figure 194 SEI micrograph – initiation pore 650°, OA, Vacuum
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Figure 195 SEI micrograph overview – René N5 ffracture surface OA, 650°C, Air.
Test to failure 3346 cycles

Figure 196 - SEI micrograph Initiation site A 
(Figure 195)

Figure 197 - SEI micrograph Detail of initiating 
pore from Figure 196

Figure 198 - SEI micrograph Initiation site B 
(Figure 195)

Figure 199 - SEI micrograph Detail of initiating 
pore from Figure 198
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Figure 200 - SEI micrograph Initiation site C 
(Figure 195)

Figure 201 - SEI micrograph Detail of initiating 
pore from Figure 200

Figure 202 - SEI micrograph Initiation site D 
(Figure 195)

Figure 203 - SEI micrograph Detail of initiating 
pore from Figure 202
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Figure 204 Rene N5 fracture surface overview, OB.

Figure 205 - SEI micrograph at location A 
(Figure 204)

Figure 206 - SEI micrograph at location B 
(Figure 204)

Figure 207 - SEI micrograph at location D 
(Figure 204)

Figure 208 - SEI micrograph at location E 
(Figure 204)

171



Figure 209 - SEI micrograph at location C 
(Figure 204)

Figure 210 - SEI micrograph Detail of C 
(Figure 204)

Figure 211 - SEI micrograph orientation B with 
Nf of 3325 cycles 

Figure 212 - SEI micrograph orientation B 
with Nf of 3507 cycles

Figure 213 Overview of fracture surface Bar P26-A, 
Orientation B, Nf = 182001.

Figure 214 SEI micrograph of the major 
initiation site in region A (Figure 213)
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Figure 215 SEI micrograph at initiating facet region A 
(Figure 213)

Figure 216 SEI micrograph detail of the dark 
phase in Figure 215 (possible oxidised carbide) 

that initiated first crack.

 

Figure 217 - Overview of fracure surface Bar P26-A, 
Orientation B, Nf = 182001:

Figure 218 SEI micrograph overview of the 
major initiation site in region A (Figure 217)

Figure 219 - SEI micrograph of the initiation site in 
region A (Figure 217) 

Figure 220 - SEI micrograph of initiating pore 
in Figure 219
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Figure 221 Pore measurement details

Figure 222 Pore area calculation using TAP software 
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6.7 Discussion & Analysis of Results

6.7.1 Fatigue Life Data

Comparison of test data with data supplied by Alstom is shown in Figure 223.  The data 

from notch bend tests at Southampton consistently tends towards the higher boundary of 

the data provided by Alstom.  This may reflect the consistent surface finish achieved by 

polishing the notch root on all tests conducted as part of this work

6.7.2 Fractography

CMSX-4 samples have been tested at a variety of temperatures and as temperature is 

increased, smooth areas in the centre of the fracture surface are larger.  At higher strain 

ranges and lower temperatures  a more crystallographic,  highly faceted crack growth 

mode is observed.  The increase in strain range is likely to set up more extended slip 

band cracking.  When cracks initiate at typical stress concentrating features sufficient 

local stress will be generated to produce long slip bands with repeated cutting of  γ’. 

This  is  also reflected  in  the fact  that  at  longer  crack  lengths  a  transition  to  overall 

faceted crack growth was observed indicative of extended slip-band cracking.  This was 

correlated with a high  ∆K (50 MPa√m) value in the long crack propagation studies 

carried out by Mark Joyce220.  At lower temperatures more planar slip processes are 

expected leading to more faceted fracture surfaces (as observed)

For all 3 alloys the orientation of the {111} facets differs between orientations A 

and B as  expected.   This  facet  orientation  causes  orientation  B fracture  surfaces  to 

appear more faceted than orientation A.  In orientation A samples the facets run parallel 

to the sides of the fracture surface, whereas with orientation B they intersect the sides at 

45°.  The angled appearance of the orientation B facets gives the illusion of orientation 

B samples being more faceted.   The actual area taken up by side facets in the high 

temperature tests appears similar between the 2 orientations.

In CMSX-4 and René N5, oxidation obscures the detail of the fracture surface in 

the notch root at 650°C.  A build up of cracked oxide scale in the notch root makes 

replication techniques difficult.

Crack initiation in most tests has occurred at surface or subsurface pores, this 

agrees with observations in the literature  219,219,.   At room temperature,  initiation is 

observed to be from pores at the notch surface.  Porosity analysis of the notch surface is 

of limited use in characterising pores that extend below the surface.  Most interdendritic 
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pores have complex 3D geometrical shapes due to the nature of their formation.  These 

complex shapes do break the notch surface but only appear as circular or oval pores.

It is not yet fully understood why cracks do not initiate at the notch surface at 

higher temperatures.  Cracks in the surface oxide do penetrate the substrate but do not 

initiate the critical  crack.  There may be sufficient oxidation of the surface pores to 

effectively plug them up therefore reducing the stress concentration induced by the pore 

-  similar  to  oxide  induced  closure  effects.   The  stress/strain  fields  below the  notch 

surface  may  change/redistribute  at  higher  temperatures  thus  making  sub  surface 

initiation more likely.  Tests on CMSX-4 in vacuum revert back to a mix of surface and 

subsurface initiation.

An  oxidation  study  showed  that  moderate  to  heavy  oxidation  occurs  in  a 

relatively short space of time at 650°C in both René N5 and CMSX-4.  The  γ matrix 

becomes  visible  on  polished  specimens  after  1  hour  exposure  due  to  preferential 

oxidation of the γ matrix.  This can be confirmed by looking at an etched specimen after 

1 hour thermal exposure.  After 256 hours, varying levels of oxidation are observed on 

each sample.  No pores are visible on the surface after thermal exposure.  A section 

through an oxidised pore would provide valuable information on the oxidation process 

and possibly provide an insight as to why cracks do not initiate at the surface at high 

temperatures.  Compositional differences caused by debris picked up during the casting 

process may be the cause of some of the more extreme surface blemishing.

Sectioning  of  CMSX-4 samples  showed the oxide  layer  to  be thicker  in  the 

notch root than on the fracture surface.  This is likely to be a function of exposure time. 

Fracture  surface  sections  show  that  oxidation  occurs  at  crack  boundaries  as  they 

propagate into the specimen, oxidation assisted crack propagation is seen.  Oxidation 

test samples show that the oxide layer protrudes into the substrate as well as causing 

growth on top of the substrate.  Preferential oxidation of the matrix is seen both on the 

sample surface and below the surface.  Oxide thickness is greater on the oxidation study 

samples in comparison with the notch bend bars.  The main difference being that study 

samples  were not  subjected to  any stress during oxidation.   This  suggests  a  certain 

amount of spallation from the notch surface occurs during testing.   The presence of 

multiple  surface cracks certainly backs up this  argument.   Despite the cracks in the 

oxide  layer,  more  than  90% of  the  critical  cracks  in  all  high  temperature  air  tests 

initiated at sub surface pores. With this in mind it was apparent that characterisation and 

analysis  of all initiating sub surface pores was required.  Although this is still  a 2D 
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approach, it is looking at pores on the critical fracture path rather than distributions on 

the notch surface.

6.7.3 Analysis of porosity initiating fatigue cracks

Data of all initiating pores has been collected as discussed in the previous section.  Raw 

data is presented in (Table 15).  Where both fracture surfaces have been analysed for 

test sample,  an average value over the two fracture surfaces has been calculated.  A 

main initiating pore has been identified where possible  for each test  where multiple 

initiation points were recorded.  On many of the fracture surfaces,  a main initiation 

point is difficult to identify.   In the absence of an obvious major initiating point, the 

largest pore (area) has been identified.  Several other values have been calculated from 

the raw data on a test by test basis:

• Total area of initiating pores per test bar (from TAP measurement)

• Average area of initiating pores per test bar (from TAP measurement)

• Aspect ratio of each pore (from manual measurements) = major axis / 

minor axis

• Average major axis of initiating pores per test bar.

• Average minor axis of initiating pores per test bar.

• Elliptical area of each pore (area of an ellipse using Major and Minor axis)

• Aspect ratio of each pore (from Major and Minor Axis)

• Average depth of initiating pore per test bar.

The major and minor axes were also recalculated on the basis of the measurements from 

the TAP software.  Using the area of an ellipse as an approximation for the pore shape, 

values for A and C were calculated from the area and aspect ratio values returned from 

the software:

TAP Area = π x a x b  Equation 32

TAP Aspect Ratio = a/b Equation 33

Therefore: b = 
.

TAPArea
π r

Equation 34

And
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a = Aspect Ratio x b Equation 35

Scatter plots have been systematically generated to show the effect of each variable on 

cycles to failure.   Plots were generated for every pore, average pore and main pore 

values.

The variable that shows the greatest correlation with cycles to failure is the sum area 

of initiating pores (Figure 224).  The major outlier highlighted in Figure 224 relates to a 

CMSX-4 test,  orientation  A, 650°C in Vacuum.   Plotting  just  the area of  the main 

initiating pore areas shows no correlation with fatigue life (Figure 225).

6.7.4 Effect of shape of initiating porosity

Porosity data collected from plain polished samples has been compared with the data 

from porosity that  was characterised as an initiating pore (Table 16).   For all  three 

alloys the maximum and mean area of the initiating pores is far greater than that seen in 

the data collected from plain polished specimens.  The average and maximum aspect 

ratio of initiating pores is greater for CMSX-4 and PWA1484 although it is less for 

ReneN5

A simple analysis of pore aspect ratio has been conducted using Scott and Thorpe’s 

approximation for a semi-elliptical surface crackliii under pure bend loading conditions. 

A pore area was selected that was representative of those observed to initiate cracks. 

The ratio of a/c was varied whilst keeping the area of the pore constant.  A pore with 

high aspect ratio with major axis parallel to the notch surface gives the highest value of 

Kd (stress intensity at the maximum depth position) Figure 226.

6.7.5 CMSX-4 long crack data

Long crack testing has been carried at 650°C and 725°C using CMSX-4 to complement 

the  program  of  work.   Testing  was  carried  out  by  Mark  Joyce  as  part  of  the 

collaborative research project as discussed in the introduction.  Methodology and results 

from the long crack testing are described in detail in the literatureliv.  The long crack 

data will be used to compare with fatigue test lifetime trends and to help develop a 

simple lifing model.  The long crack test matrix is given in  Table 17, data has been 

generated for orientation A and B samples in air at 650°C and 725°C with tests also 

completed in vacuum at 650°C.  Results from the tests in the form of crack growth rate 

vs. ∆Κ are presented in Figure 227.
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At 650°C, fatigue crack propagation in air was seen to be faster in orientation B 

than in A, particularly at lower ∆K levels.  Under vacuum, fatigue crack propagation 

rates in orientation A were seen to be similar to that in air at high ∆K.  At 725 C crack 

growth rates were generally faster than at 650°C.

Examples of long crack test fracture surfaces are given in Figure 228 (OA, Air, 

650°C) and Figure 229 (OA, vacuum, 650°C).  Comparisons have been made between 

short crack fracture surfaces and long crack fracture surfaces along with relevant crack 

propagation data for ∆K.   Measurements were taken from several short crack fracture 

surfaces to ascertain the size of the crack at the onset to rooftop cracking.  Using Scott 

and Thorpe approximation for an elliptical crack in pure bend 220, ∆K is found to be ~ 

50 MPa√m for the crack measurements as shown in Figure 230 and Figure 231 using an 

FEA stress estimate at the notch root.

This result fits with long crack data where Mark Joyce measured ∆K to be in the 

region  of  50  MPa√m at  the  transition  to  rooftop  cracking  in  his  SENB specimens 

(Figure 228 & Figure 229).

6.7.6 Lifing Model

Crack  initiation  at  high  temperature  is  seen  to  occur  at  subsurface  pores  and  is 

characterised  by a  halo around the pore where initial  crack growth has  occurred in 

vacuum.   The  proposed mechanism that  causes  this  halo  effect  is  due  to  the  crack 

initiating and propagating in vacuum until it breaks the surface of the sample and is 

exposed to air.  Initial crack propagation conditions are that of fatigue crack propagation 

in  vacuum.   Once  air  can  enter  the  crack,  the  initial  fatigue  area  within  the  halo 

undergoes oxidation,  after failure has occurred.  The boundary of the halo marks the 

point at which the crack continues to propagate, but now under combined fatigue and 

oxidation conditions.  The two mechanisms described give rise to the change in texture 

and composition of the oxidised fatigue crack that are visible in SEI and BEI modes 

with the FEG SEM.  Similar halo effects have been seen in polycrystalline disk alloyslv

An initial modelling approach has been implemented.  The model uses a simplified pore 

geometry representative in size and shape of those observed on existing fracture surface. 

FE analysis or fracture mechanics is required to calculate K values around the pore.  An 

estimation of the evolution of the crack shape from the pore to the circular crack path 

(as confirmed by the halo) via K-calculations indicated a circular shape was adopted 

very soon after initiation.  Data from crack propagation work in vacuum can be used to 
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estimate the number of cycles before the subsurface crack reaches the surface by Paris 

law  integration  approaches.   Crack  growth  data  from  air  tests  is  then  be  used  in 

conjunction with K calibrations based on Scott and Thorpe 220 in order to calculate the 

last component of the fatigue lifetime, again using Paris law integration approaches.

The  model  was  developed  as  part  of  the  collaborative  research  project  with 

CNRC and has been written by Dr Xijia Wu using C++.  The model code has been 

included in APPENDIX 3

The model was written for the 8mm x 8mm CMSX-4 notch bend tests at the 

strain calculated for theses tests.  The model uses some important initial assumptions:

• The crack initiation is caused by an initial elliptical flaw

• That the sample has no initiation life. 

• The initial sub-surface flaw is in vacuum conditions.

• The initial growth direction is controlled by the orientation of the pore therefore 

orientation B growth rate data in vacuum is applied to minor and major axis of 

the ellipse 

• The subsurface crack adopts a circular morphology

• The surface crack adopts a semi-circular morphology upon breaking the surface.

• Growth to failure is controlled by data from long crack tests in air.

A schematic of the proposed crack growth model is given in Figure 232 where steps 1-2 

take place in vacuum conditions before the crack breaks the surface (3) and adopts the 

semi circular morphology.

The model assumes that the crack begins to propagate from the 1st cycle.  The initial 

growth occurs in a uniform stress field.  For a subsurface pore, K values around the 

ellipse are calculated using the following equations:

Equation 36

Equation 37

Where Fsn is a boundary correction factor, which in case of the CMSX-4 8x8 bars is 

1.1lvi. It is found that,  numerically,  the crack propagates more rapidly from the blunt 
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sides of the ellipse (value of  c increases) thus rapidly forming a circular crack.  This 

agrees with the proposed theory based on the fractography results.  The model evaluates 

K then performs 100 iterations before re-evaluating K.  At the end of each loop, the 

values for a and c are compared to the depth d.  If either a or c are greater than or equal 

to  d, the pore has broken the surface.  During subsurface growth, crack propagation 

distance per cycle is calculated using the Paris equation (Equation 38 & Equation 39) 

where C and m are calculated from experimental data for long crack growth in vacuum 

for an orientation B sample.

-7 4.25= 1.85×10 × aa K Equation 38
-7 4.25= 1.85×10 × cc K Equation 39

Once the crack has reached the surface it is assumed that the crack becomes a semi-

elliptical crack with depth  a and width  2a (at this point the crack is circular so  a=c). 

The  stress  intensity  factor  is  calculated  using  a  weight  function  for  a  through edge 

crack.  The model now uses orientation specific data for crack growth in air to continue 

growing the crack until a critical value of K is reached and the specimen fails.  The 

critical  K value  is  based  on  results  from Mark Joyce  and has  been  initially  set  at 

60MPa√m

A flow chart describing the modelling process (Figure 234) shows the various loops 

the model takes as it assesses whether crack growth is occurring subsurface (therefore 

using vacuum crack propagation data) or has broken the surface (at which point the air 

crack growth data is used for the correct specimen orientation).

The model inputs are  a,  c and  d in mm,  C and  m material constants derived from 

vacuum and air crack growth and a critical K value at which the bar fails.  Crack growth 

rate  data  is  input  in  mm/cycle.  A comma separated  text  input  file  containing  the 9 

columns of data for each pore is read in to the model which then returns a two column 

output  file  with the  subsurface  crack  growth  life  and the total  number  of  cycles  to 

failure.

6.7.6.1 Sensitivity to Pore Geometry

Minitab software has been used to perform a full factorial design of experiments (DOE) 

analysis using idealised porosity geometry.  The test matrix uses three levels for pore 

geometry and depth with a 2 level field for sample orientation.  The test matrix is not 

shown, but is a full factorial design incorporating every possible combination of the 3 
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inputs giving rise to 54 combinations.  Statistical data from initiating porosity has been 

used to select the maximum, middle and minimum values for pore dimensions a and c 

and the pore depth  d.   Interaction plots  have been created  for both the internal  life 

(Figure 235) and the total life (Figure 236) predicted by the model.  Each shows the 

effect of two variables with respect to fatigue life (right hand axis).  The scale for one 

variable is given along the top, with the second variable inferred through the legends 

(far right).  Certain combinations where a is less than c are not plotted as a (the major 

axis) must always be greater than c by definition.

The internal life model shows that the depth of the pore has most effect when a and/

or c are small with a large depth giving rise to a longer lifetime.  The top left graph for 

the  effect  of  a vs.  c indicates  that  the  aspect  ratio  has  comparatively  small  effect. 

Orientation will not have any effect on internal life as orientation B vacuum data is 

always used.

Interaction plots for total life show that the greatest effects occur when a and/or  c 

are small.  This time the trend is reversed.  Small pores at the surface show the largest 

number of cycles to failure.

Response surface plots  have also been used to  identify  the relationship  between 

parameters.  Comparing a and c with cycles to failure again shows that aspect ratio has 

very little  effect  in comparison with the major  dimension  of  the  pore (Figure 237). 

Having established that the major dimension has the greater effect it is plotted against 

the pore depth (Figure 238) which again shows that a small  pore close to or at  the 

surface will equate to the longest life.  Plotting predicted internal life against predicted 

cycles to failure shows a linear relationship for lifetimes greater than 10,000 cycles.  At 

shorter lives the relationship does not hold true

6.7.6.2 Sensitivity to Paris Constants and K level at failure

The model sensitivity to material  constants has also been analysed.   A full  factorial 

DOE experiment has been designed to look at the effect of the Paris constants C and m 

and the critical value of K for specimen failure on the lifetime of an average sized pore 

in a CMSX-4 notch bend bar.  The experiment design values used are given in Table 18 

A 3 level experiment with 5 inputs generated 243 results.  The average effects of each 

input are given in  Figure 240.  The effect  of  m and  C constants  both in air  and in 

vacuum on total life appear to conform to an inverse power law relationship with small 

values tending towards infinite life as would be expected.  At very long lives, changes 
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in crack growth rate in vacuum shows a greater effect on total life.  The effect of the 

critical K value at which failure occurs appears to be linear although it may be levelling 

off at high values of K.  An interaction plot for all 5 factors is given in Figure 241.

6.7.6.3 Fatigue life model results.

The fatigue life model has been presented with all porosity data for all initiating pores. 

Data from long crack tests has been used for CMSX-4 data (Figure 242).  Vacuum 

crack growth rates for 650°C has been used for the 725°C predictions in absence of 

actual  data.   PWA1484 and René N5 were modelled  using  CMSX-4 data  in  air  at 

650°C.

Results have been presented in the form of a scatter plot of actual cycles to failure 

vs. predicted cycles to failure with x=y representing a perfect prediction.  It should be 

noted that the current form of the model calculates the stress field for an 8mm x 8mm 

CMSX-4 notch bend bar.  All tests were carried out at similar estimated strain ranges so 

have been included in the analysis but results are likely to be less accurate.  Results for 

CMSX-4 8mm x 8mm notch bend bars are presented in Figure 243.  The model shows 

good agreement with the test data 

Figure 244 shows predicted values for all test data.   Large icons are used to 

represent the main initiating point for each test bar with small icons used to represent all 

minor  initiation points  for each test.   CMSX-4 tests  (now including the small  sized 

specimens) still show good correlation with actual test results with 5 of the tests lying 

very  close  to  the  actual  values.   All  René  N5  tests  were  over  predicted  and  all 

PWA1484 test were under predicted.

The model has also been run using pore data collected from measurements taken 

by hand.  The model using data generated from TAP (Figure 243) performs much better 

with data points lying closer to the actual test results.

6.7.7 Fatigue life modeling using Neural Networks

Neural network models have been trained using output data from the Paris lifing 

model described in the previous chapter or using raw data from fatigue tests.  The 

neural networks were run within MATLAB software and used the same scripts 

described in chapter 5.2.9.  Only small changes in the script were required to allow for 

different numbers of variables in the input file and to change and labelling in graphs 
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generated as part of the training process.  Examples of Matlab scripts used are given in 

APPENDIX 2.

6.7.7.1 Training a Neural Network to emulate the lifing model

The lifing model described in section  6.7.6 has already been used to generate a 

large dataset of results for various pore geometries for statistical analysis (6.7.6.1).  This 

dataset is of sufficient size to use to train a neural network model.  A Matlab script was 

used to train models ranging from 1 to 20 HU’s using the dataset.  The neural network 

model produced a good fit to the data with just 4 HU’s (Figure 245) with very little 

improvement shown with higher numbers of hidden units (Figure 246).

6.7.7.2 Training a Neural Network on test data

The amount of data collected for initiating pores is relatively small in comparison 

to the number of variables.  Subsets of variables have been used to train neural networks 

to see how well they can fit to the data.  Based on metallurgical understanding and the 

analysis  of porosity data with respect  to lifetime,  the most  important  variables  have 

been selected:

• Strain range

• Sum area of pores

• Test temperature

• Material type

Combinations of the above variables were presented to the neural network with 

respect to test lifetime in each case.  There are a large number of combinations of inputs 

so  only  the  most  significant  ones  will  be  discussed.   Using  just  the  sum area  and 

material type produced a relatively poor fit (Figure 247).  The strain range for most tests 

is related directly to the material type so it could be expected that a reasonable fit would 

be achieved.  Adding the strain range as a separate input allowed the neural network to 

achieve a much better fit to the data (Figure 248).  The significance of the inputs (Figure

249) shows strain range to have the largest effect with the sum area and material type 

having smaller effects (both of a similar magnitude).
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The addition of test temperature produced almost exactly the same results (Figure

250) in comparison to the fit achieved without.  The variation of test temperatures in the 

input data is very small and confined to tests conducted using CMSX-4.
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CMSX-4

Sample Data - 
Pore Area 

 (μm²)

Initiating 
Pores - Pore 

Area 
 (μm²)

Sample Data 
- Apect Ratio

Initiating 
Pores - 
Aspect Ratio

Mean 542.1 1206.1 1.2 2.2
Median 440.0 842.0 1.1 1.8
Mode 3.0 1.1
Standard 
Deviation 503.2 1119.8 0.3 1.3
Minimum 3.0 179.0 1.0 1.1
Maximum 2241.9 5563.0 5.1 6.5

René N5

Sample Data - 
Pore Area 

 (μm²)

Initiating 
Pores - Pore 

Area 
 (μm²)

Sample Data 
- Apect Ratio

Initiating 
Pores - 
Aspect Ratio

Mean 105.2 1037.5 1.2 2.2
Median 14.9 1185.5 1.1 1.9
Mode 3.0 1.1
Standard 
Deviation 222.3 809.7 0.3 0.9
Minimum 3.0 175.8 1.0 1.4
Maximum 1443.7 2185.5 5.1 3.5

PW 1484

Sample Data - 
Pore Area 

 (μm²)

Initiating 
Pores - Pore 

Area 
 (μm²)

Sample Data 
- Apect Ratio

Initiating 
Pores - 
Aspect Ratio

Mean 105.2 655.4 1.2 1.8
Median 14.9 457.0 1.1 1.6
Mode 3.0 1.1
Standard 
Deviation 222.3 750.2 0.3 0.8
Minimum 3.0 45.8 1.0 1.1
Maximum 1443.7 3986.9 5.1 5.6

Table 16 – Comparison of Average Porosity Data vs. Critical Porosity Data
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Sample ID Orientation Temperature 
(°C)

Environment Comments

OALC1 A 650 Air Completed

OALC2 A 650 Vac Completed

OALC3 A 725 Air Completed

OALC4 A 725 Vac Not Completed

OBLC1 B 650 Air Completed

OBLC2 B 650 Vac Completed*

OBLC3 B 725 Air Completed

OBLC4 B 725 Vac Not Completed
Table 17 – Long crack data test matrix

A C D Paris  M Vac Paris M Air Paris C Vac Paris C Air K crit

30 15 175 2 2 1.00E-10 1.00E-10 20
30 15 175 3 3 1.00E-09 1.00E-09 40
30 15 175 4 4 1.00E-08 1.00E-08 60

Table 18 – 5 factor, 3 level design for sensitivity to material constants
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Strain Life Data for CMSX-4
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Figure 223 – Comparison of Southampton data with Alstom test data.
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Figure 224 – Sum area of initiating pores vs. cycles to failure
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Major Initiating Pore Areas vs Cycles to Failure

y = 1467.9x-0.0687

R2 = 0.0121

0

500

1000

1500

2000

2500

3000

1000 10000 100000 1000000
Log Cycles to Failure

A
ve

ra
ge

 P
or

e 
A

re
a 

of
 In

iti
at

in
g 

Po
re

s

CMSX4

PWA1484

Rene N5

Power (Best
Fit)

Figure 225 – Major initiating pore vs. cycles to failure

Figure 226 - effect of a/c ration on effective Kd (a simple analysis using Scott and Thorpe)
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CMSX4 Long Crack Data
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Figure 227 - CMSX-4 Long Crack Data (after Mark Joyce220)
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Figure 228 Orientation A, Air fracture surface (after Mark Joyce220)
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Figure 229 Orientation A, Vacuum fracture surface (after Mark Joyce220)

Figure 230 – Crack measurements for S&T analysis – OX 650°C air

Figure 231 – BAR OA, 725°C, Air, 5271 cycles
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Figure 232 – Schematic of crack propagation from subsurface pore

Figure 233 Stress fieled in notch root of CMSX-4 notch bend bar
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Figure 234 – Flow chart  for Notch Fatigue Model
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Figure 235  - Interaction plot for a, c and d with respect to subsurface life
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Figure 236 - Interaction plot for a, c and d with respect to total life
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Figure 237 – Surface plot for relationship between a, c and total cycles to failure

Figure 238 – Surface plot for relationship between a, d and total cycles to failure
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Figure 239 – Correlation between predicted internal life and total predicted cycles to failure
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Figure 240 – Average effects for change in material properties vs cycles to failure for an average 
sized pore
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Figure 241 – Interactions plot for mvac, mair, Cvac, Cair, Kcrit Vs. Cycles to failure
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Power Law Data Fits to CMSX4 Long Crack Data
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Figure 242 – Power law fits in Excel to long crack data supplied by Mark Joyce
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Figure 243 - Predicted results vs. actual test results for 8mm x 8mm CMSX-4 Notch Bend Bars
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Figure 244 – Predicted results vs. actual test results (Large data points = main initiating pore, small 
data points = all other initiating pores for each bar)
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Figure 245 – Training vs target data for 4 HU neural network using results from fatiue lifing 
model.

Figure 246 – Training error for neural networks using 1-20 HU’s.

Figure 247 - Training vs target data for 3 HU neural network. Inputs = Material and Sum Area
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Figure 248 - - Training vs target data for 3 HU neural network. Inputs = Material, Sum Area and 
Strain Range.

Figure 249 – Significance of inputs for 3 HU model in Figure 248

Figure 250 - Training vs target data for 3 HU neural network. Inputs = Material, Sum Area, Test 
Temperature and Strain Range.

198



6.8 Discussion
Pore measurements have been recorded for all initiating pores.  Pore shape was 

classified very broadly into either circular,  or oval.   Pores were measured along the 

major long axis (a) and along an arbitrary ‘short’ axis (c) perpendicular to the long axis. 

The depth of the pore (d) was measured from the centre of area of the pore.

Finite body tessellation analysis has been used to analyse the complicated 2D 

shapes of the porosity in order to get an accurate measure of area.  This process also 

generates an aspect ratio which was used to re-calculate the minor axis measurement

Comparisons  of  statistical  porosity  data  shows  that  the  average  pore  size  is 

greater for pores on the fracture surface in comparison to a prepared polished surface. 

This indicates that cracks form on intersections with the greatest cross sectional area of 

each pore.

It was shown that the sum area of all initiating pores has the greatest correlation 

with fatigue life, more so than plotting just the main initiating pore area.  The sum area 

will indirectly account for coalescence effects and therefore provides the more accurate 

correlation with test  life.   All  other variables show little  correlation with life.   Pore 

aspect ratio was expected to be an important factor in the initiation of fatigue cracks but 

the simplified oval approximation of the pore does not bear enough resemblance to the 

actual pore shape for this to be assessed.

Comparisons have been made between CMSX-4 short crack fracture surfaces 

and Mark Joyce’s long crack fracture surfaces along with relevant crack propagation 

data for  ∆K. Measurements were taken from several  short crack fracture surfaces to 

ascertain the size of the crack at the onset to rooftop cracking Using Scott and Thorpe 

approximation for an elliptical crack in pure bend220 ∆K is found to be 54 MPa√m for 

the  crack  measurements.   This  result  fits  with  long  crack  data  where  Mark  Joyce 

measured ∆K to be in the region of 50 MPa√m at transition to rooftop cracking in his 

SENB specimens.  This simple approximation for the crack geometry and loading is 

useful, as it shows reasonable correlation between the Scott and Thorpe ∆K calculation 

and the fractography calibration.  This result implies that the notch stress field gradient 

in the CMSX-4 8mm x 8mm bend bars has a limited effect at these crack sizes.  

Analytical  work has been carried out to understand the effects of sub surface 

pore geometry.   A pore with high aspect ratio with major axis parallel  to the notch 

surface gives the highest value of Kd (stress intensity at the maximum depth position). 

More  detailed  approximations  for  elliptical  subsurface  cracks  by  Rooke  and 

Cartwrightlvii have been investigated.  The aim was to conduct a simple 2D analysis of 
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an elliptical subsurface crack and analyse the combined effects of depth, a/c ratio and 

rotation.  The Rook and Cartwright solution was not flexible enough to suitably model 

porosity conditions.  Analysis is also still 2D.

6.8.1 Fatigue life modeling

Using  observations  from  fracture  surfaces,  a  modelling  approach  to  capture 

initiation  from  a  geometrical  feature,  such  as  a  pore,  has  been  proposed.   Crack 

initiation at high temperature is seen to occur at subsurface pores and is characterised by 

a halo around the pore when testing in air.  The proposed mechanism that causes this 

halo effect is due to the crack initiating and propagating in vacuum until it breaks the 

surface of the sample and is exposed to air.  Initial crack propagation conditions are that 

of fatigue crack propagation in vacuum.  Once air can enter the crack, the initial fatigue 

area within the halo undergoes oxidation,  after failure has occurred.  The boundary of 

the halo marks  the point  at  which the crack continues to propagate,  but  now under 

combined fatigue and oxidation conditions.

Development of a fatigue lifing model based upon initiation from porosity features 

has  allowed  a  theoretical  sensitivity  study  to  be  carried  out.   The  effects  of  pore 

dimension and material constants have been analysed separately.  Internal life is mostly 

dependant on depth of pore when pore size is small.  This combination gives rise to the 

longest crack growth distance required for the subsurface crack to reach the surface. 

This observation is reversed when looking at total life, where small pores close to the 

surface generate the longest total life.  Crack growth rate data in vacuum for CMSX-4 is 

faster than that in air so it follows that a small initiation point from which the majority 

of the crack growth is in air will yield the longest lifetime.

The major dimension a is seen to be the next most important factor in the model but 

did not appear to be coupled with the c dimension to the extent expected.  A long thin 

pore is not much better or worse that a long fat pore.  It has been shown numerically 

that crack growth in a sub surface ellipse occurs more quickly in the  c direction thus 

causing the void to be circular.  Any coupling between variables is more likely to come 

from the relationship between area and lifetime rather than aspect ratio and lifetime.

Sensitivity to crack growth rate constants  m and C is high with longer lifetimes as 

either value is decreased.  Relationships between m and lifetime and C and lifetime are 

of a power law type with small values of m and C tending towards infinite lifetimes.  It 

is therefore important that there is confidence in crack growth rate data used for the 
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model.  It is suggested that repeat long crack tests may be beneficial to generate more 

accurate material constants although short crack growth laws are probably even more 

appropriate but considerably more difficult to obtain.  The effect of changing the critical 

K value appeared to be linear over the range of values tested.  Effect plot did suggest 

that the value was starting to flatten off at high K levels.  This is expected because at the 

these K levels crack propagation is so fast that changes in the critical failure level will 

have little effect on the total life.

The model has been presented with data for all pores identified as initiation points 

from all 3 alloys.  Crack growth rate data from CMSX-4 has been used for all cases in 

absence of any more relevant data.  Predicted results for 8mm x 8mm CMSX-4 bars 

show good correlation with actual test  results.   With the exception of two tests, the 

model is under predicting lifetimes.  Differences between the predicted value and actual 

value are thought to be due to two reasons:

• The model assumes instant initiation from the critical pore.  This is possible but 

is unlikely to occur in  all cases.  The number of cycles to initiation cannot be 

captured in this model and can be treated as a probabilistic function.  Confidence 

limits could be added in one direction (increased life) to indicated to possible 

increased  in  life  due  to  initiation.   These  values  can  only  be  determined 

experimentally although the geometry of the pores is expected to have an effect.

• The model does not use short crack data, using a Paris law approximation will 

result in faster crack growth at low ∆K regions.  The Paris growth law will also 

under predict growth rate as the sample approached failure but the number of 

cycles accumulated during this stage is low so the effect is much smaller.

When  presented  with  data  for  PWA1484  and  René  N5 the  model  is  less  accurate. 

Lifetimes for René N5 are constantly over predicted.  This alloy showed the greatest 

number of initiating pores on each fracture surface.  Multiple initiations and coalescence 

will  yield  shorter  lives  than  those  predicted  from  a  single  pore  in  the  model. 

Modifications are required to allow for multiple initiation points in the model.  As two 

small cracks approach each other a larger semi elliptical crack will be formed.  Rules for 

this coalescence can be added in a future model.  The effect of multiple cracks on the 

stress field is more complicated and may require changes to the underlying fracture 

mechanics equations.
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Crack  shape  evolution  during  progression  from subsurface  initiation  to  circular 

subsurface crack (halo) to semi elliptical crack and coalescence with nearby neighbours 

could possibly be monitored by running another test.   Running a test that  alternated 

between  high  and  low frequency  or  between  high  and  low R ratio  could  generate 

beachmarks defining the crack front at various points throughout crack growth.

Lifetimes for PWA1484 are consistently over predicted.  The crack growth rate data 

is incorrect (CMSX-4 data has been used).  Data for PWA1484 has been found in the 

literature  and  substituted  into  the  model  but  did  not  improve  the  accuracy  of  the 

predictions.   PWA1484  testing  was  performed  in  axial  tension.   Therefore  the 

assumptions of stress gradient are different for this type of sample.  The stress value 

calculated in the model  will  be much less accurate  for this  sample geometry and is 

likely to cause the greatest difference between actual and predicted results.  The model 

requires modification for this particular specimen geometry before more crack growth 

rate data is added.

Predictions for all 3 alloys are dependent on the predicted stress value to drive the 

crack  growth  rate.   FE  analysis  shows  that  the  notch  region  becomes  plastic  at 

maximum load.  An estimation of the stress has been made but could be refined by 

performing tensile tests  to generate stress strain curves to feed into an FE model to 

predict notch field stresses.  This process could be refined further by performing cyclic 

stress strain tests in order to assess the amount of plastic hardening/softening that takes 

place during the first few cycles.  This data will also allow for re –assessment of the 

strain range for each test and may move Southampton data closer to the Alstom test data 

as shown in (Figure 223)

Neural networks have been trained on artificial data from the lifing model and on 

real  data collected from fatigue tests using Matlab.  It has been demonstrated that a 

neural network can be trained on data from the fatigue lifing model with only a small 

error in the resulting predictions.  However, when actual test data is used, the neural 

network was unable to fit the data to the same degree.  This could be attributed to two 

factors, both of which are likely to have an effect.  Firstly, the model cannot account for 

the crack initiation life, this has been discussed with relation to the fatigue lifing model 

already.   The  neural  network model  would benefit  from error  bars  as  generated  by 

Neuromat  software  to  give  an  indication  of  the  amount  uncertainty  present  in  the 

predictions.  This would provide a good measure of variability of initiation life within 

the tests.  In order for this to be successful the neural network will require a much larger 

training set before any meaningful conclusions can be drawn.  Secondly, although there 
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are a large number of variables that affect  fatigue life,  only a small  combination of 

variables was used for each model.  In order to use a larger number of input variables, 

the size of the input dataset would need to be increased substantially.  The size, location 

and number of initiating pores cannot be predefined before testing so methods such as 

DOE cannot be used to pre-define a test matrix.

6.9 Conclusions
Crack initiation was dominated by inter-dendritic <100> aligned micro-porosity, which 

is directly affected by the secondary orientation of the sample, although no clear effect 

of secondary orientation on overall notch fatigue life has been found

Surface  oxide  cracks  did  not  appear  to  initiate  critical  fatigue  cracks.  At  high 

temperature in vacuum, initiation occurs from pores at or close to the notch surface, 

whereas at high temperatures in air, initiation occurs almost exclusively at sub-surface 

pores, indicating a possible in-filling of surface pores by oxidation.

Scatter  in  lifetimes  can  be  partially  modelled  by  a  multi-part  Paris  type  lifing 

approach,  modelling  initial  sub-surface  crack  growth  from  a  pore  under  vacuum 

conditions and subsequent crack growth under air once the crack breaks through to the 

surface. Vacuum long crack propagation rates at 650˚C indicate that apparent vacuum 

lifetime improvement is not necessarily due to slower propagation.  Development of the 

model requires more realistic crack growth laws, allowing for crack coalescence and to 

be tested more extensively against increased amounts of experimental data.

A neural network model is able to capture the complicated relationships within the 

fatigue lifing model but unable to fit to real test data presented with respect to a reduced 

number of test variables.  A neural network approach will also benefit from a larger 

spread of test data.
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7 Final Conclusions 
Fatigue life estimation for a given alloy has been carried out using two different 

approaches

Both  sections  of  work hope to  address  some of  the  factors  which  influence  the 

fatigue  life  of  superalloys  and  the  inherent  scatter  in  fatigue  life  data.   The  first 

approach uses neural network models to fit patterns in data in order to predict material 

performance based upon a set of inputs (composition and processing parameters).  At 

this level, the model does not have any ‘knowledge’ of metallurgy or microstructural 

evolution of the alloys concerned.

The contribution of the work presented comes from methodologies developed for 

the selection of training data in the first instance combined with defining a set of tests 

for the trained model.  A model trained on a small  amount of ‘good’ data will give 

better predictions than a model trained using a much larger dataset including ‘bad’ data. 

The  decision  as  to  which data  should be included in  the model  has  been  based on 

metallurgical  knowledge  and  experience  gained  from  actually  using  the  training 

datasets.   Initial  neural  network  models  were  re-trained  multiple  times  with  small 

changes to the training dataset and the effects on the output recorded for each change 

made.  The sensitivity tests are then required to judge if the model is picking up real 

trends in the data that can be explained by our physical understanding of the problem. 

Without  these  processes,  the  neural  network  modelling  is  reduced  to  a  data  fitting 

exercise.  The processes are now being used by QinetiQ as part of their neural network 

modelling method.

Supporting work with Matlab has been carried out to complement the work carried 

out  using  Neuromat.   This  work  has  not  questioned  the  theories  behind  the  neural 

network modelling process employed by Neuromat.  An understanding of each step in 

isolation  was  achieved  buy  using  Matlab  scripts  to  generate  a  more  transparent 

modelling process that both increased the knowledge of the process and validated the 

results that were generated using Neuromat.

Models have been shown to perform well against known and unknown data from the 

literature  and the next step for QinteiQ is  to use them to help develop a new alloy 

composition and validate the results via physical testing.  Once validated, this modelling 

processes could bring huge cost savings in alloy development by providing a screening 

process before committing to produce test samples of new materials.
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The  second  approach  tackles  a  much  more  specific  problem  with  a  more  a 

mechanistic approach.  Using observations from tests, a model has been described and 

developed using fracture mechanics theory and data derived from tests.  The model has 

been successful in increasing understanding of the role of porosity in the fatigue life of a 

notched test specimen.  This process has helped explain a proportion of the scatter seen 

in fatigue test results.  The modelling process has been backed up by microscopy to 

illustrate the mechanisms present during the fatigue initiation process.  A lot of care has 

been taken to remove sources of scatter where possible.  Statistical analysis methods 

used to analyse the input data for the neural networks have also been used to look for 

patterns in test data with particular emphasis on porosity size and distribution.

Although both sections  of  work  have  started  off  quite  separate,  the  information 

generated as a result of the LCF testing and modelling can know begin to be used in 

conjunction with the neural network model.  A lifing model that is able to take more 

general information about porosity shape distributions and volumes could be used as 

another input to the higher level neural network modelling approach thus addressing 

another source of scatter in the data.

Lessons learnt from each section of work have benefited the other.  Knowledge of 

testing methodologies and practices proved very useful when searching for, and filtering 

through, data presented in technical papers.  Results from LCF tests using a variety of 

alloys have helped highlight factors, such as porosity distribution, which directly affect 

the  scatter  in  fatigue  life  but  as  yet  are  not  incorporated  into  the  neural  network 

modelling process.  Modelling techniques and scripts that were developed as part of the 

neural network program have been applied to data generated as a result of LCF testing 

at Southampton
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8 Further Work

Further  work  to  improve  the  LCF  neural  network  should  concentrate  on 

manipulation of the input data to in order to present the model with ‘clean’ data with a 

possible  reduction  in  the  number  of  inputs.   The  following  experiments  should  be 

carried out:

• Reduce ‘scattered’ input to a series of SN curves.  Theoretically there should 

be no numerical discontinuities in this data so interpolation can be used to 

provide a set number of points per alloy curve.

• Predictions should also be in the form of SN curves, not predictions against 

isolated points

• Investigate  the  use  of  the  Smith  Watson  Topper  parameter  to  condense 

information about R ratio and frequency.

• Investigate grouping other inputs into a single parameter, such as γ’ formers 

Al and Ti.

The fatigue lifing model would benefit from the following information

• Crack growth rate data for Rene N5 and PWA 1484

• More accurate stress calculation for test bars of different geometry – This could 

be achieved using FEA or extension of the current methodology.

Further developments to the model should look at implementing multiple initiation from 

porosity with separate cracks growing and coalescing to produce one large crack.

A statistical input based on the probability distribution for the size and shape of pore for 

a given alloy could be used to generate results with a accompanying levels of scatter. 

This information can then be used as an input to the LCF neural network modelling 

process.

This would require upfront optical or 3D topological analysis of each alloy to define the 

porosity distributions
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APPENDIX 1 – Matlab neural network training script for YS models.

%Neural network training
%Matlab script written by Mark Miller.

clear       %clears current workspace

%----------------MODEL PARAMETERS---------------

humin = 5;      %Min number of hidden units 
humax = 22;      %Max Number of hidden units
ep = 100;    %Number of training epochs
x = 20;      %Number of seed points to use

%----------------PROCESS INTPUT DATA---------------------

load('Input workspace.mat');        %loads matlab workspace 
containing all input data

YS = YS_InputData_26Apr05';       % Takes transpose of 
"YS_InputData" matrix and names it "YS"'

p=YS([1:29],:);                     % Creates matrix containing 
training data "p"

[pn, pmin, pmax] = premnmx(p);      % Creates pn, pmin, pmax - used 
to normalise data

t= YS(30,:);                        % Creates matrix containing 
target data "t"

[tn, tmin, tmax] = premnmx(t);      % Creates tn, tmin, tmax - used 
to normalise data

Test = Testdata';                   % Take transpose of "Testdata" 
and name it "Test"

TestN = tramnmx(Test, pmin, pmax);  % Normalise data using pmin and 
pmax generated from training set

vinputs = vinputs';
vtargets = vtargets';
Test.P = tramnmx(vinputs, pmin, pmax);  % Normalise data using pmin 

and pmax generated from training set
Test.T = tramnmx(vtargets, tmin, tmax);  % Normalise data using 

pmin and pmax generated from training set

TrainingErrors = [];                      %creates array to store 
Training MSE of each model

%TestErrors = []                          %creates array to store 
Test MSE

%of each model - Not in use yet.

%--------------------------First loop to initialize NN for given 
numer of

%Hidden 
Units------------------------------------------------------------

for hu=humin:1:humax;                   %loop between min number 
and max number of HU's in steps of 1

Results = Testdata(:,29);           %Add line of data containing 
temperatures to results matrix

name1 = int2str(hu);                %create text string for 
number of hidden units

name2 = ' Hidden Units ';
HuName = [name1, name2];
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Mkdir (HuName);                     %Create new folder to store 

results.
    cd (HuName);                        %Make new folder working 

directory
    

% ---------------------------NN ARCHITECTURE-------------------

net=newff(minmax(pn),[hu,1],{'tansig','purelin'},'trainbr'); 
%create network

net.trainparam.show = 10;           % Updates graphs every 10 
epochs

net.trainparam.epochs = ep;         % Train network for (ep) 
epochs

%----------------------------Sub Loop to train one model for a 
given number of Hidden Units-----

% Trains network and make predictions using unseen data. 
Process repeats x

% no. times.

for seed=1:1:x;                       % Repeat training x times
        
        name1 = int2str(seed);        %create string for seed 

number
        name2 = 'Seed ';
        SeedName = [name2 name1];
        

net = init(net);                    % Initialise network
eval(['Initnet' num2str(hu) num2str(seed) ' = net']); 

% Record initial network in matrix called "initnet(i)"
  

net = train(net,pn,tn,[],[],[],Test);             % Train 
network - Network plots predictions error against test data.

name1 = 'Training data ';                         % 
Creates name for graph and saves as jpeg

name = [name1 HuName SeedName];
print ('-djpeg', name);
close

% Calculate Training errors

ErrN = sim(net,pn);                             % Perfrom 
prediction for all original input data

e = tn-ErrN;                                    %calculate 
matrix 'e' (targets - predicted values)

perf = mse(e);                                  % Mean 
squared error of 'e'

TrainingErrors = [TrainingErrors perf];         % Add mean 
squared error value to Training Error matrix

plot(tn,ErrN,'ks',tn,tn);                        %Plots 
targets vs predicted

axis([0 1 0 1]);
xlabel('Target data');
ylabel('Prediction');
name1 = 'Training Error ';
name = [name1 HuName SeedName];
title(name);
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print ('-djpeg', name);
close

% Make predictions

aTestN = sim(net,TestN);            % Perfrom prediction 
"aNim" contains normalised predictions

aTest = postmnmx(aTestN, tmin, tmax);   % Un-normalize 
data

Ans = aTest';                       % Transpose results 
matrix

Results = [Results Ans];            % Adds predicted 
results to results file

eval(['Network' num2str(hu) num2str(seed) ' = net']); % 
Rename trained network

        
end

%--------------------PLOT GRAPHS OF INDIVIDUAL MODEL 
PREDICTIONS----------------------------

last = x+1;  %Last line of data predictions
aver = x+2;  %line containing data predictions

MeanRes = mean(Results(:,2:last)')';              %Adds mean 
results to predictions results file

Results = [Results MeanRes];

%Plot results against actual data.  Actual data in 2 column 
matrix,

%temp and YS.

name1 = 'M313 Results '; 
name = [name1 HuName];
plot((Results(1:23,1)),(Results(1:23,2:last)),(M313(:,1)),

(M313(:,2)),'rd');
xlabel('Temp');
ylabel('YS');
title (name);            
print ('-djpeg', name);
close

name1 = 'M22 Results '; 
name = [name1 HuName];
plot((Results(24:46,1)),(Results(24:46,2:last)),(M22(:,1)),

(M22(:,2)),'rd');
xlabel('Temp');
ylabel('YS');
title (name);            
print ('-djpeg', name);
close

    name1 = 'M21 Results ';
name = [name1 HuName];

    plot((Results(47:69,1)),(Results(47:69,2:last)),(M21(:,1)),
(M21(:,2)),'rd');

xlabel('Temp');
ylabel('YS');
title (name);    
print ('-djpeg', name);
close
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%------------------------PLOT GRAPHS OF MEAN 
(COMMITTEE)PREDICTIONS------------

    name1 = 'M313 Average Results '; 
name = [name1 HuName];
plot((Results(1:23,1)),(Results(1:23,aver)),(M313(:,1)),

(M313(:,2)),'rd');
xlabel('Temp');
ylabel('YS');
title (name);  
print ('-djpeg', name);
close

    name1 = 'M22 Average Results '; 
name = [name1 HuName];
plot((Results(24:46,1)),(Results(24:46,aver)),(M22(:,1)),

(M22(:,2)),'rd');
xlabel('Temp');
ylabel('YS');
title (name);        
print ('-djpeg', name);
close

    name1 = 'M21 Average Results '; 
name = [name1 HuName];
plot((Results(47:69,1)),(Results(47:69,aver)),(M21(:,1)),

(M21(:,2)),'rd');
xlabel('Temp');
ylabel('YS');
title (name); 
print ('-djpeg', name);
close

    
    cd ..
    
    %--------------------------------------------------------------

------
    
    eval(['Results' num2str(hu) ' = Results']);         %Renames 

results file corresponding to number of HU's
end

name1 = 'Results';
name = [name1 HuName SeedName];
save(name);                         %Workspace is saved one all 

training finished.
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APPENDIX 2 – Summary of data collected for LCF neural network model

Alloy Reference Source
Alloy 10 B1 NASA
Alloy 10 B1 NASA
Alloy 10 B2 NASA
Alloy 10 C1 NASA
Alloy 10 C2 NASA
Alloy 10 D1 NASA
Alloy 10 D2 NASA
Alloy 10 E1 NASA
Alloy 10 E2 NASA
APK-6 Superalloys 92 Conference Proceedings
C263 QinetiQ Data - CPLife
CM186LC QinetiQ Data - COST522 WP1.1
CM247LC DS Superalloys 96 Conference Proceedings
CM247LC DS V96_37.pdf
CMSX-4 DSLife report - NLR-CR-2002-551
CMSX-6 Superalloys V96_34
CMSX-6 V96_34.pdf
GH4049 International Journal of Fatigue 21 (1999) 791–797
GH4049 The influence of temperature on low cycle fatigue behavior of nickel base 

superalloy GH4049.pdf
HASTELLOY X Fatigue 2002 p1283
HASTELLOY X Superalloys 88 Conference Proceedings
Haynes 230 CPLife - tested at Alstom
Haynes 230 Fatigue 2002 p1283
Haynes 230 Haynes Datasheet
HAYNES 230 Superalloys 2000 Conference Proceedings
HAYNES 230 Superalloys 88 Conference Proceedings
IN 718 Superalloys 92 Conference Proceedings
IN738 LC Fatigue '96 p807
Low Co 
Waspaloy

Superalloys 92 Conference Proceedings

Mar-M-247(WLB) Superalloys 84 Conference Proceedings
Mar-M-247(WLK) Superalloys 84 Conference Proceedings
Mar-M-
247(WST)

Superalloys 84 Conference Proceedings

Mar-M-
247(WWS)

Superalloys 84 Conference Proceedings

Mar-M-
247(WWS)

Superalloys 84 Conference Proceedings

MERL76 Superalloys 96 Conference Proceedings
PWA 1480 Materials Science and Engineering, A 108 (1989) 189-202
RR1000 R44 QinetiQ Data 
SC 16 Superalloys 96 Conference Proceedings
SC16 Fatigue '96 p807
SRR99 Superalloys 96 Conference Proceedings
U720 U720 report (special metals)
U720 PM NASA
U720 PM TM-2000-209418.pdf

211



Alloy Reference Source
U720 PM TM-2002-211571.pdf
U720HC QinetiQ Data  MANDATE - FP4
U720LC QinetiQ Data  MANDATE - FP4
U720Li QinetiQ data - ARP4
U720Li LG QinetiQ data - ARP4
U720PM QinetiQ Data MANDATE - FP4
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APPENDIX 3 C++ Code for Fatigue Lifing Model
Written By Dr Xijia Wu and Modified by Mark Miller

#include <math.h>
#include <stdio.h>

#define BUF_SIZE 512
static const double pi=3.1415926;

double T1(int n)
{

if(n==0) return pi/2;
else if(n==1) 

return 1;
else 

return T1(n-2)*(n-1)/n;
}

double g1(double r_at)
{

return 0.46+3.06*r_at+0.84*pow((1-r_at),5)+0.66*pow(r_at*(1-
r_at),2);

}
double g2(double r_at)
{

return -3.52*r_at*r_at;
}
double g3(double r_at)
{

return 6.17-28.22*r_at+34.54*r_at*r_at-14.39*pow(r_at,3)
  -pow((1-r_at),1.5)-5.88*pow((1-r_at),5)-

2.64*pow(r_at*(1-r_at),2);
}
double g4(double r_at)
{

return -6.63+25.16*r_at-31.04*r_at*r_at+14.41*pow(r_at,3)
   +2*pow(1-r_at,1.5)+5.04*pow(1-r_at,5)+1.98*pow(r_at*(1-

r_at),2);
}

/* Array of function pointers containing the above 'g' functions */
double (*g[4])(double)={&g1,&g2,&g3,&g4};

double SIFofThruEdgeCrack(double a, double r_at, int n)
{

double sif=0.0;

/* Call each 'g' function in turn */
for (int i=0; i<4; i++) {

sif+=g[i](r_at)*T1(n+i);
}
sif*=2*pow(a/1000,n)/sqrt(pi)/pow((1-r_at),1.5)*sqrt(a);

return sif; 
}

/* Perform the main calculation
 * 
 * ORT = orientation, 'A' or 'B'
 */
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int doCalculation(double a, double c, double d, double PMvac, 
double PMair, double PCvac, double PCair, double Kcrit, char ORT, int 
*internal, int *total)

{
double R=0.1;
double stress,strain,Q,K1,K2,K3,a1,r_at;
double s0[7]={1.0716,0.26292,-1.0854,0.62811,-0.16191,0.01962,-

0.00009125};

stress = 0.0;
for (int i=0; i<7; i++) {

stress += s0[i]*pow(d/1000,i);
}

int ni=100;
int I=0;
int J=0;

do {

Q=1+1.46*pow(a/c,1.65);

if (a < d && c < d) {
K1=stress*sqrt(pi*a/Q);
K2=stress*sqrt(pi*a/Q)*a/c;

a += PCvac*pow(K1,PMvac)*ni;
c += PCvac*pow(K2,PMvac)*ni;

J=I;
}
else
{

c=a;
a1=a/Q;
r_at=a/7500/Q;
K1=0.0;
for (int i=0; i<7; i++) {

K1+=s0[i]*SIFofThruEdgeCrack(a1,r_at,i);
}
K2=K1;
switch (ORT)
{
case 'A':

a+=PCair*pow(K1,PMair)*ni;
break;
/* NAB TODO: break;??? */

case 'B':
a+=PCair*pow(K1,PMair)*ni;
break;

}
}

I++;

} while ((K1 < Kcrit) && (K2 < Kcrit));

*internal = J*ni;
*total = I*ni;

return 0;
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}

/* Read a line from the input file that describes the pore.
   pSrc = source file pointer
   a, c, d, ORT = data read from source file */
int readLine(FILE *pSrc, double *a, double *c, double *d, double 

*PMvac, double *PMair,  double *PCvac, double *PCair, double *Kcrit, 
char *ORT)

{
    int retVal = 0;
    char buf[BUF_SIZE];

    if (fgets(buf, BUF_SIZE, pSrc) != NULL)
    {
        int scannedNos;

        /* Check that this line fits the expected format. */
        scannedNos = sscanf(buf, "%c,%lf,%lf,%lf,%lf,%lf,%lf,%lf,

%lf", ORT, a, c, d, PMvac, PMair, PCvac, PCair, Kcrit);
        if (scannedNos == 9)
        {
            retVal = 1;
        }
    }

    return retVal;
}

/* Entry point for the appliction.
 * argc = count of command line parameters
 * argv[] = array of command line parameters as strings.
 * argv[0] = program name as invoked on command line. */
int main(int argc, char* argv[])
{
    if (argc < 3)
    {
        printf("Usage: %s SOURCE DEST\n", argv[0]);
    }
    else
    {
        FILE *pSrc;
        FILE *pDst;
        char ORT;
        double a,c,d,PMvac,PMair,PCvac,PCair,Kcrit;

        pSrc = fopen(argv[1], "r");
        if (!pSrc)
        {
            printf("Unable to open SOURCE file %s\n", argv[1]);
            return 1;
        }

        pDst = fopen(argv[2], "w+");
        if (!pDst)
        {
            printf("Unable to open DEST file %s\n", argv[2]);
            fclose(pSrc);
            return 1;
        }

        while (readLine(pSrc, &a, &c, &d, &PMvac, &PMair, &PCvac, 
&PCair, &Kcrit, &ORT) != 0)

        {
            int internal, total;
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            doCalculation(a, c, d, PMvac, PMair, PCvac, PCair, 
Kcrit, ORT, &internal, &total);

            printf("internal %d, total %d\n", internal, total);
            fprintf(pDst, "%d,%d\n", internal, total);
        }

        fclose(pSrc);
        fclose(pDst);
    }

    return 0;
}
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