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Neural networks have been used extensively in material science with varying success.
It has been demonstrated that they can be very effective at predicting mechanical
properties such as yield strength and ultimate tensile strength. These networks require
large amounts of input data in order to learn the correct data trends. A neural network
modelling process has been developed which includes data collection methodology and
subsequent filtering techniques in conjunction with training of a neural network model.
It has been shown that by using certain techniques to ‘improve’ the input data a network
will not only fit seen and unseen Ultimate Tensile Strength (UTS) and Yield Strength
(YS) data but correctly predict trends consistent with metallurgical understanding.
Using the methods developed with the UTS and YS models, a Low Cycle Fatigue

(LCF) life model has been developed with promising initial results.

Crack initiation at high temperatures has been studied in CMSX4 in both air and
vacuum environments, to elucidate the effect of oxidation on the notch fatigue initiation
process. In air, crack initiation occurred at sub-surface interdendritic pores in all cases.
The sub-surface crack grows initially under vacuum conditions, before breaking out to
the top surface. Lifetime is then dependent on initiating pore size and distance from
the notch root surface. In vacuum conditions, crack initiation has been observed more
consistently from surface or close-to-surface pores - indicating that surface oxidation is
in-filling/”’healing” surface pores or providing significant local stress transfer to shift
initiation to sub-surface pores. Complementary work has been carried out using PWA
1484 and Rene NS5. Extensive data has been collected on initiating pores for all 3
alloys. A model has been developed to predict fatigue life based upon geometrical
information from the initiating pores. A Paris law approach is used in conjunction with
long crack propagation data. The model shows a good fit with experimental data and
further improvements have been recommended in order to increase the capability of the

model.
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1 Introduction

This thesis is presented in two distinct but linked sections. Both pieces of work have
been carried out as part of an Engineering Doctorate sponsored by QinetiQ. A theme of
fatigue in nickel base superalloy runs throughout and other strong links can be drawn
between the chapters. Literature reviews of neural networks and Ni based superalloys
are pertinent to the neural network modelling and are therefore both included before the
neural network modelling section. An introduction to the second section on fatigue life

and crack initiation in notch bend bars is included in section 6

1.1 Neural Networks for Fatigue Life Prediction

Nickel based super alloys were developed initially for their high temperature resistance.
Creep and oxidation resistance are major design considerations for turbine blades
whereas turbine discs require high strength to cope with forces at high rotational speed.
Fatigue performance of superalloys is becoming increasingly important as aero engine
lives are extended and there is a push to extend intervals between inspections and
overhauls. Fatigue lifing of aero engines is normally based on a safe life approach
where lives are determined by physical test programs.

Much is known about how alloying additions affect the microstructure and therefore the
mechanical properties of a superalloy and new alloying combinations can be formulated
with reasonable confidence of the expected material performance. As superalloys get
closer to the limit of their performance due to extreme heat, corrosive atmospheres and
high rotational forces further improvements in mechanical performance are generally
small.

A modelling technique that allows predictions to be carried out on multiple
combinations of alloying conditions, processing routes and heat treatment temperatures
will provide a powerful tool in the evolution of new alloys.

Neural networks have been used extensively in material science with varying
success. It has been demonstrated that they can be very effective at predicting
mechanical properties such as yield strength, ultimate tensile strength and even crack
growth rates given the correct information. These networks require large amounts of
input data in order to learn the correct data trends and tensile strength related data is
relatively easy and cheap to accumulate. Fatigue life data on the other hand is costly
and time consuming to generate and not normally provided by the material

manufacturer.



The development of a neural network modelling process which includes data
collection from a variety of sources and subsequent filtering of said data in conjunction
with training of a neural network model will provide a framework to develop such a

tool.



2 Neural Network Design and Architecture

2.1 What is a Neural Network?

Neural networks can be used to analyse trends in data or be trained to predict results for
previoudy unseen data. A neural network is composed of simple computational
elements called nodes, whose behaviour is based upon the function of the animal
neuron. The processing ability of the network is stored in the weights associated with
the interconnecting units

The following sections will describe the construction of a Multi Layer Perceptron
network as used by Neuromat. Reference has been made to other types of network

comparing their respective advantages and disadvantages.

2.2 McCulloch-Pitts Neuron

The history of neural networks can be traced back to the work of trying to model the
neurons in the human brain. The first model of a neuron was created by physiologists,
McCulloch and Pitts (1943). The model they created has two inputs and a single output.
McCulloch and Pitts noted that a neuron would not activate if only one of the inputs
was active. The weights for each input are equal, and the output is binary. Until the
inputs sum to a certain threshold level, the output remains zero (Figure 1). The
McCulloch-Pitts neuron has limitations. It cannot solve the “exclusive or” function
(XOR) or the “exclusive nor” function (XNOR).

2.3 Perceptron

Frank Rosenblatt, using the McCulloch-Pitts neuron, went on to develop the first
perceptron’. This perceptron, which could learn through the weighting of inputs, was
instrumental in the later formation of neural networks. A basic perceptron is
represented in Figure 2.

If the perceptron is used to look at a simple linear problem the activation of the neuron
is defined by:ii

a-= z wx; t ¢ Equation 1
i

Where W are the weights, X isinputs and ¢the bias value. The output, Y, is then given
by applying athreshold to the activation



Y=0if a < output

Equation 2
Y =1 if a 2 output

Given a set of inputs and results, the perceptron can be trained to predict the results by
adjusting the weights and bias accordingly. In order to do this a random set of inputs
and weights is chosen and an output isrecorded. The difference between the output and
the real data is calculated in an error function. The weights and bias are then
systematically changed until the error is minimised. The choice of starting values and
weights along with the algorithms required to minimise the error function are a whole
area of research in themselves.

In order to model more complex non linear problems the summation function
within the hidden unit can be changed. The activation function is often chosen to be the

logistic sigmoid (Equation 3) or the hyperbolic tangent (Equation 4).

1/(1+e™) Equation 3
tanh(x) Equation 4

These functions are used because they are mathematically convenient and are close to
linear near origin while saturating rather quickly when getting away from the origin.
This allows MLP networks to model well both strongly and mildly nonlinear mappings.
For example, a hidden unit utilising a hyperbolic tangent would contain two contain two

functions:

Y= Z wPh+ @™ Equation 5

h= tanhEZ Wﬁ.l)xj + (D(I)E Equation 6
J

The input data x; are multiplied by weights w®, the sum of al these products form the
argument of the hyperbolic tangent. The output y is described by the function h
multiplied by another weight w®@, the product of which is then added to a second bias
6@, Combining these equations gives the output y as a non-linear function of w,®.

Varying the weights will change the shape of the hyperbolic tangent.

The neuron, or perceptron, is the base upon which neural networks are built. A single

neuron cannot do very much. However, several neurons can be combined into a layer



or multiple layers that have greater power. A neura network has a layer of input nodes
and a hidden layer comprised of neurons which then in turn feed one or more output
nodes. There may be more than one hidden layer. Each node in each layer is connected
to all nodes in preceding and following layers (Figure 3). The equations for a multiple
hidden unit network are the same as for a single unit. The parameters must now be

summed over all hidden units as well as inputs.

2.4 Multi-layer perceptron

This is perhaps the most common network architecture in use today. This class of
network consists of multiple layers of computational units, typically interconnected as a
feed-forward network. In this case each neuron in one layer is directly connected to all
neurons of the subsequent layer (Figure 4). Each unit performs a biased weighted sum
of inputs and passes this activation level through a transfer function to produce an
output. Such networks can model functions of almost arbitrary complexity, with the
number of layers, number of unitsin each layer and type of function within each hidden
unit determining the model complexity.

Multi-layer networks use a variety of learning techniques, the most common being
back propagation. Output values are compared with known data in order to calculate a
predefined error-function. Using this information, the algorithm adjusts the weights of
each connection in order to reduce the value of the error-function. Thisis an iterative
process which seeks to minimize the error function value. The danger is that the
network over fits the training data and fails to capture the true statistical process
generating the data. An example of over fitting is given in Figure 5, where the red line
represents a well trained model and the black line demonstrates over fitting. A smple
heuristic, called early stopping, often ensures that the network will generalize well to
examples not in the training set.

Other typical problems of the back-propagation algorithm are the speed of
convergence and the possibility of ending up at local minimum rather than the global

minimum of the error function.

2.5 Backpropagation
As the algorithm's name implies, the errors (and therefore the learning) propagate
backwards from the output nodes to the inner nodes. A summary of the backpropagtion

technique is as follows



Present a training sample to the neural network.

Compare the network's output to the desired output from that sample. Calculate
the error in each output neuron.

For each neuron, calculate what the output should have been, and a scaling
factor, how much lower or higher the output must be adjusted to match the
desired output. This is the local error.

Adjust the weights of each neuron to lower the local error.

Assign "blame" for the local error to neurons at the previous level, giving greater
responsibility to neurons connected by stronger weights.

Repeat the steps above on the neurons at the previous level, using each one's

"blame" as its error.

Backpropagation neural networks are good at prediction and classification.

2.6 Early stopping

Early stopping has two main advantages; it enables fast training of neural networks and

it can be applied successfully to networks in which the number of weights far exceeds

the sample size. The technique involves the following stages:

Divide the available data into training and validation sets.
Use a large number of hidden units.

Use very small random initial values.

Use a slow learning rate.

Compute the validation error rate periodically during training.

Stop training when the validation error rate begins to increase

There are still several unresolved practical issues in early stopping

How many cases should be assigned to the training and validation sets

Should the split into training and validation sets be carried out randomly or by
an algorithm?

What constitutes an increase in validation error, over and above natural

fluctuation during training?

2.7 Fitting and over-fitting.

A neural network is able to fit an extremely complex function given that it has a

sufficiently large number of hidden units. Problems are caused when the neura
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network fits the data so well it is modelling noise in the data rather than the underlying
trend, this process is known as overfitting. An example of overfitting is given in Figure
5, the black dots represent the training data and the model prediction is the solid black
line. When the unseen test data is added (x) it is apparent that the model does not fit to
this data and that the red line (simpler model) would provide a much better fit.

2.8 Regularization

Regularization is any method of preventing overfitting of data by a model. Most
regularization methods work by implicitly or explicitly penalizing models based on the
number of their parameters. Regularization is discussed in more depth with respect to

Neuromat software in alater chapter.

2.9 Other types of network
Recurrent network
Recurrent network (RN) is a model with bi-directional data flow. While feed forward

network propagates data linearly from input to output, RN also propagates data from
later processing stagesto earlier stages.

A simple recurrent network (SRN) is a variation on the multi-layer perceptron,
sometimes called an "Elman network”. A three-layer network is used, with the addition
of a set of "context units' in the input layer. There are connections from the middle
hidden layer to these context units fixed with weight 1. At each time step, the input is
propagated in a standard feedforward fashion, and then a learning rule, usualy
backpropagation, is applied. The fixed back connections result in the context units
always maintaining a copy of the previous values of the hidden units (since they
propagate over the connections before the learning rule is applied). Thus the network
can maintain a sort of state, allowing it to perform such tasks as sequence-prediction

that are beyond the power of a standard multi-layer perceptron.

Hopfield network

The Hopfield net is a recurrent neural network in which all connections are symmetric,
this network has the property that its dynamics are guaranteed to converge. If the
connections are trained using Hebbian learning then the Hopfield network can perform
robust content-addressable memory, robust to connection alteration.

As a conseguence there is no separate input or output layer but instead each node

receives input signals and every node has an output. The connection weights between



each pair of nodes are symmetrical; that is, they are equal for messages passed in either
direction.

Input signals are applied to al nodes simultaneously. Random starting
connection weights are used to generate an output signal which is then immediately fed
back to al nodes as a new input. This process is repeated until the network reaches a
stable state. The final outputs are taken as the response of the network.

The trained network contains multiple patterns stored in the coded form of the
connection weights. When an input is presented to the trained network, the output given
is the stored pattern that is closest to the input pattern. This is a type of associative

memory.

Boltzmann machine

The Boltzmann machine can be thought of as a noisy Hopfield network. Invented by
Geoff Hinton and Terry Sgnowski (1985), the Boltzmann machine was important
because it was one of the first neura networks in which learning of latent variables
(hidden units) was demonstrated. Boltzmann machine learning was sow to simulate,
but the Contrastive Divergence algorithm of Geoff Hinton (introduced in about 2000)
allows models including Boltzmann machines and Product of Experts to be trained

much faster.

Support vector machine

A support vector machine (SVM) is a recently developed form of machine learning
algorithm. The training of SVMs is based on quadratic programming, a form of
optimization that (usually) has only one global minimum. Therefore, and because SVMs
have means to reduce the danger of overfitting, some practitioners prefer SVM training

to neural network training.



Self-organizing map / Kohonen Net

A Kohonen network is atwo-layered network, much like the Perceptron. But the output
layer for a two-neuron input layer can be represented as a two-dimensional grid, also
known as the "competitive layer". The input values are continuous, typically normalized
to any value between -1 and +1. Training of the Kohonen network does not involve
comparing the actual output with a desired output. Instead, the input vector is compared
with the weight vectors leading to the competitive layer. The neuron with a weight
vector most closely matching the input vector is called the winning neuron.

Only the winning neuron produces output, and only the winning neuron gets its weights
adjusted. In more sophisticated models, only the weights of the winning neuron and its
immediate neighbours are updated.

After training, alimited number of input vectors will map to activation of distinct output
neurons. Because the weights are modified in response to the inputs, rather than in
response to desired outputs, competitive learning is called unsupervised learning, to
distinguish it from the supervised learning of Perceptrons.

| nstantaneously trained networks
Instantaneously trained neural networks (ITNN) are also called "Kak networks' after

their inventor Subhash Kak. They were inspired by the phenomenon of short-term
learning that seems to occur instantaneoudy. In these networks the weights of the
hidden and the output layers are mapped directly from the training vector data
Ordinarily, they work on binary data but versions for continuous data that require small
additional processing are also available.

Spiking neural networks
The Spiking (or pulsed) neural networks (SNN) are models which explicitly take into

account timing of inputs. The network input and output are usually represented as series
of spikes (delta-function or more complex shapes). SNNs have an advantage of being
able to continuously process information. SNNs are often implemented as recurrent

networks.



2.10 Analysis of Significance of Inputs.
This is often called sensitivity analysis. The basic principle of it is that on a trained
system the test data is changed for each input while keeping the other inputs fixed. The
relative effect on the output is recorded for each variation in input.. With this
information, the relative importance of the inputs can be calculated.

Neural nets are non-linear by nature, so their sensitivities are non-linear as well.
There is no such thing as a significance factor for an input - there's a non-linear
significance function that may or may not depend on other input values’. A selection of
methods and their relative advantages and disadvantages are discussed by Sarle’ but no
recommendation is given to which method performs best. The methods used depend on
the type of network and training algorithm in use.

Neuromat uses Automatic Relevance Determination (ARD) to associate

significances with the inputs.

2.11 Neural Networks to Predict Material Properties

Neural networks have been used extensively in the literature to look at mechanical and
compositional properties of steels” and welds and to model/controlvit casting
processes.

Evans* compared a number of well known parametric models and a multilayer
neural network to determine whether the latter can produce improved long term rupture
life predictions for 2.25Cr-1Mo steel. Even the more complex non-linear models (e.g.
Manson-Haferd) produced implausible extrapolations. In contrast, the optimised neural
network was able to identify general patterns in the training data that were useful for
extrapolation purposes and this, as reflected in an average error of some 4-5%.

Huang and Blackwell have successfully trained and tested a neural network with
mechanica property variables relating to the temperatures and strain rates used when
hot forming IN718 sheet*. Model inputs were temperature, strain and strain rate with
stress as an output. The output of the model was used to define a constitutive
relationship for this material that could be used in the finite element modelling of the
sheet forming process. A model with 5 hidden units was trained on 70 lines of input
data and tested against a further 60. Tests against randomly selected unseen data

produced good results within tight error bounds.
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H. Badeshia’ has written a useful review of neural networks in material science,
initially concentrating on steels, but going on to talk about work in Ni base superalloys,
ceramics and composites. Most relevant papers concerned with mechanical properties
of superalloys are mentioned in further detail bellow.

Schooling, Brown and Reed"' have developed a neural network model for prediction
of fatigue behaviour. The model has 6 inputs, temperature, yield strength Young's
modulus, ultimate tensile strength and Nv number (number of valence. electrons divided
by the number of atoms). 64 sets of input data were used constructing the model
although there is no mention to which aloys were included. It was shown that that is
possible to model trends in fatigue crack growth behaviour with variation in material
properties. A trend for increased stage |1 fatigue life with increased instability to sigma-
phase formation was shown to exist, although the observed effect was small due to the
small range of Nv in Ni-based superalloys.

Jones and Mackay*' have modelled Y S and UTS of wrought polycrystalline Ni base
superalloys. Inputs consisted of chemical composition and test temperature and totalled
16. The training dataset consisted of 200 datapoints and utilised a 50/50 split for
training and testing. Performance was quantified by calculating RMS error values
between training and testing data. The model performs well predicting the YS of a“y/y
superalloy”. The physical significance of the models was investigated by varying
compositional and temperature. Alloy compositions for Astroloy and Waspalloy were
used.

Ward and Knowles® have modelled the yield strength of Ni based superalloys using
a neural network within a Bayesian framework based on work by Mackay. Although
there is no reference to the exact program used, a network employing 6 or 7 hidden
nodes was developed. Automatic Relevance Determination was used to influence the
importance of inputs. A database with around 200 datapoints ranging over 36 different
alloys was used to train the network. Significance values for inputs were generated post
testing and largely agreed with the literature.

Predictions against Nimonic 115 were good, error bars were shown to predict an
uncertainly level of +/_50MPa. It is assumed that Nim115 was previously unseen data
although the paper does not state this categorically. Further studies looking at the
theoretical effect of changing y volume fraction showed sensible results. The most
influential parameters were found to be temperature, followed by they ' and y* formers
Al, Ti, TI/Al and Nb and the refractory elements Mo W and Ta. The other elements

included were found to have little influence on yield strength.
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Further work by Warde and Knowles¥ looks at the use of neural networks to aid
alloysdesign. Two neural network models (YS and UTS) were used in the optimisation
of a number of Ni based superalloys. The number and range of input variables was
increased so that the compositional window for new alloys was within the bounds of the
neural network.

Elements Cr. Co, Mo, Ta, Al, Ti were set at 3 different levels, min, max and
average, based upon values in the training dataset. All other additions were held at a
constant level. The neural network model was then run for every combination of
alloying element resulting in 729 new aloys. Thislist was narrowed down on the basis
of the predicted YS and UTS follower by the use of MTDATA? to evaluate thermal
stability of the alloys.

At the time of writing, the authors had no facility to predict Fatigue or CRS values

Tancret and Badhesia have produced three papers looking at mechanical properties
modelling*, phase diagram and segregation simulation® and experimental results¥i' of
an aloy design process incorporating neural network modelling. Results are
summarised in afinal paper

Neural network modelling was used to predict mechanical properties: yield stress,
ultimate tensile stress, tensile ductility, creep rupture stress and the yf1 and Y1 lattice
parameters a, and a,. The training data was collected from industrial sources and from
the scientific literature. The databases contain information on the alloy compositions,
on the heat and/or mechanical treatments, and on test conditions temperature and
lifetime in the case of creep rupture.

Models are shown to perform well against known data (examples are given for UTS
and tensile ductility models) and selected unknown data (CRS model shown).
The aim of the work was to come up with a new alloy composition avoiding expensive
alloying elements such as Co, Mo, Ta, Nb, Hf and Re. Neural network models were
used to test new alloy compositions in order to find suitable compositions that met the
design requirements. However, because undesirable phases may form in these new
alloy compositions, a phase diagram and chemical segregation simulation method was
used in parallel with the neural network models?’.
Once the new alloy was cast, the results of mechanical tests were compared with initial

property predictions made using the neural network models. Experimental results agree

"MTDATA - Windows software and thermodynamic databases for the calculation of chemical speciation
phase diagrams and mechanical properties.
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well with the averaged predictions achieved from neural network models (Figure 6 &
Figure 7).

Fuji, Mackay and Badheshia* used a neural network for the prediction of crack
propagation rate in Ni-based superalloys, using up to 51 input variables with 1894
combinations of fatigue crack growth. Input variables included AK, composition,
temperature, grain size, heat treatment, loading condition, atmosphere, R-ratio, load,
waveform sample thickness and yield strength. All data for the database was collected
from published literature. It was found that using a committee of models reduced the
test error by ~3% over the best single model for this type of problem. The effect of
grain size alone was evaluated, confirming that an increase in grain size should lead to a
decrease in the fatigue crack growth rate.

A software package called NEUROMAT based on the work of Mackay has been
developed by Badhesia, Ward, Knowles . (currently being used at QinetiQ as part of its
NN capability) information available at Neuromat website.

A cut down version of the software is also available online* and allows for CRS,
UTS and YS of Ni-based superaloys to be calculated. The input variables include
composition and four heat treatments, of which temperature and duration have to be
specified.

A neural network for life prediction was developed and demonstrated for predicting

the elevated temperature (0.7-0.8 Tm) creep—fatigue behaviour of Ni-base alloy
INCONEL 690,
A design of experiments method was used to select a test matrix which would provide a
statistically significant variation in fatigue life over the testing region. A 252 factoria
design required 16 tests to be carried out at each test temperature containing 5 extrinsic
parameters at 2 levels.

The back-propagation neural network technique, when based upon a statistically
designed training set, was shown to have the potential for achieving superior creep—
fatigue life cycle predictions when compared to the modified Coffin—-Manson, linear life
fraction and hysteresis energy methods, with 100% of the predictions at 1000°C and
90% of the predictions at 1100°C lying within an error band of */. 2.

13



2.11.1 Summary of Literature

Neural networks have been used extensively in material science for material property
predictions. Models range from process modelling with a small number of inputs
(generally mechanical properties and processing parameters) through to material
property prediction from chemical composition and heat treatment of the alloy.

It has been shown that for asingle aloy system atraining dataset can be generated
experimentally using design of experiments method to insure that results are statistically
significant. Training neural networks on this dataset provided accurate predictions for
the creep fatigue behaviour of Inconel 690.

Increasing the size and complexity of models requires a large and carefully
selected dataset. Results from more complex models are often quoted as a function of
training test error rather than using them to predict properties of unseen aloys.

Models based upon chemical compositions and heat treatments have been used
to assess the significance of inputs. This can be done by looking at the automatic
significance output from some models or by systematically varying inputs recording the
effect on the output of the model. Presented results have shown good correlation
between model significances and actual metallurgical theory.

Neural network models have been used as a tool in the design of a completely
new aloy in combination with phase / chemical segregation ssimulations. The resulting
alloy has been shown to have mechanical properties close to those originally predicted
by the neural network model.

14
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3 Fatigue

3.1 Introduction to Fatigue

It is rare that a component is simply subjected to static loads that do not vary with time.
More commonly, loads fluctuate in intensity or alternate between tension and
compression. It is possible for these fluctuating loads to cause cumulative damage to a
component even when load levels are well below the yield stress of the material. The
term fatigue is used to describe this damage accumulation effect. There are different
stages of fatigue damage, the progression of which can be broadly classified into the

following stages™".

e Sub-structural and microstructural changes which cause nucleation of
permanent damage.

* The creation of microscopic cracks.

* The growth and coalescence of microscopic flaws to form ‘dominant’
cracks, which may eventually lead to catastrophic failure.

» Stable propagation of the dominant crack.

» Structural instability or complete fracture.

This report looks in more detail at the first three stages of fatigue damage as classified

by Suresh218 as they deal with the areas defined within the project aims.

3.2 Total Lifetime Approaches

The standard method of recording the fatigue performance of a material is through the
use of an S-N curve (Figure 10). An S-N curve relates the applied cyclic stress (or
cyclic strain) to the number of cycles to failure of a component. At low stresses/strains
the cycles to failure of a material can run into millions of cycles whereas at very high
stresses/strains failure can be within a few cycles. Cycles to failure are therefore plotted
on a logarithmic scale. Typically fatigue lifetimes of 100,000 cycles and below are
considered to be Low Cycle Fatigue (LCF) compared to High Cycle Fatigue (HCF),
when components last for 100,000 cycles up to 100,000,000 cycles. The strain life
approach can be adopted for LCF. Strain life data can be fitted to Equation 1 from the

work of Coffin®™¥ and Manson™",

he 0,-0, b, . -
> T T (2Nf) te,(2Ny) Equation 7
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Where Ny is number of cycles to failure, E is elastic modulus, a and b are constants, 0 f

is the fatigue strength coefficient and ¢ f is the fatigue ductility coefficient. The first

and second terms on the right hand side are the elastic and plastic components,

respectively, of the total strain amplitude.

3.3 Introduction to Fracture Mechanics

The above fatigue characterisation approaches are total lifetime approaches. They
encompass number of cycles to initiation, as well as number of cycles for propagation,
of the initiating defect, until component failure occurs. Most engineering components
contain an existing defect distribution, as such damage tolerant fatigue lifing approaches
have been developed which allow the propagation of an existing defect to be assessed.
A flaw, such as internal porosity, a scratch or a microcrack in a component will act as a
stress concentrator, raising stresses locally in the vicinity of the flaw-tip. Fracture
mechanics allows the characterisation of these local crack tip stresses and can therefore
be used to characterise crack propagation through a given material. When using
fracture mechanics methods it is important to understand the assumptions and
limitations upon which the methodology is based — a brief introduction of the basics

follows.

3.3.1 Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics (LEFM) was developed by Griffith218 and is the most
widely used fracture mechanics approach to characterise fatigue crack growth. LEFM
assumes that a material behaves in a linear elastic fashion i.e. that stress is a linear
function of strain and all deformation is recoverable. The local stresses near the crack
tip can be calculated using this approach. For example, consider a sharp, through
thickness crack, length of 2a, in a thin elastic plate (Figure 11). The local stresses close
to the crack tip are given to a first approximation by the following equations, where the
polar co-ordinates r and 0[] have their origin at the crack tip and the stresses tend to
infinity as r tends to zero (This does not occur in reality due to plastic yielding of the
material at the crack tip218).

ﬁ
2

_ Qa0 b3 .
-0 2 H Etos sin 25| H Equation 8
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The Griffith Energy Balance approach states that a crack can form, or an existing crack
can grow, only if such a process causes the total energy to decrease or remain constant.
Thus the critical conditions for fracture can be defined as the point where crack growth
occurs under equilibrium conditions, with no net change in total energy™"",

Consider a plate subject to constant stress as described previously (Figure 11),
plate width >>2a and plane stress conditions apply. In order for this crack to grow,
sufficient potential energy must be available in the plate to overcome the surface energy
of the material. The Griffith energy balance for an incremental increase in the crack

area, d4, under equilibrium conditions can be expressed as:

dE _dJ| |

5= Equation 11
dA dA dA

Where E is the total energy, [] is the potential energy supplied by the internal strain
energy and external forces, and W; is the work required to create new surfaces. For a

cracked plate (Figure 12) Griffith used the stress analysis of Inglis™"" to show that:

2 2
B
N="0N,- ng ab Equation 12
E

Where [] , is the potential energy of an un-cracked plate and B is the plate thickness.
Since formation of a crack requires the creation of two surfaces, Wi is given by:

WS = 4aBye Equation 13

Where Y.is the surface energy of the material, giving:

2
- d_ﬂ = ng “a Equation 14
dA E
and
a, . 2y Equation 15
=2y, quation
dA

Equating 7 and 8 and solving for fracture stress gives:

1/2

g, = HzEye H Equation 16
0 Ta []
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This is a good approximation as long as the material is brittle, for example it works well

with glass and some plastics. Rearranging the equation gives:

0 Nna-= vV2Ey o Equation 17

Indicating that as the crack length (a) increases, the fracture strength (Or) decreases.
Above Oy in a real material plastic flow occurs. LEFM predicts that local crack tip
stresses are greater than Oy hence we expect yield at the crack tip over a certain area.
This area is called the plastic zone. If the crack tip extends, a new plastic zone has to
form at the crack tip and plastic work is done. In order for the criterion to be suitable
for more ductile solids, a plastic work term Y, must be incorporated in the original

equation.

ﬂgfa
E

= 2(y o ¥ yp) Equation 18

Where the term on the left is the force driving crack growth and the term on the right is
the overall work done in fracture (Y. +Y,). In most engineering materials the term Y,, is
several orders of magnitude larger than Y-.

The stress intensity factor, K, is the fundamental parameter used to describe the
stress intensity at the crack tip. The local stresses close to the crack tip are given to a
first approximation by the following equations, where the polar co-ordinates r and 0[]
have their origin at the crack tip, the stresses tend to infinity as r tends to zero218. This
does not occur in reality due to plastic yielding of the material at the crack tip. The

general equation relating the crack length, applied stress and K is given by:

Ua O
kK =0-Jmaf HW—H Equation 19

Where 0 is the far-field applied stress, a is the flaw size and f(a/W) is the compliance
function to take into account the different component geometry and crack shapes. If
two cracks of different geometry have the same value of K, then in theory the stress
fields around the crack tips are identical assuming the elastic approximation holds.

K can also be equated with the left-hand term in Equation 11, i.e. at fracture
there is found to be a critical value of K, which is a materials parameter, the fracture

toughness. (This is true as long as there is sufficient constraint to ensure predominantly
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plane strain conditions are operating and hence LEFM holds). More generally K is

normally given a subscript to denote the mode of loading (Figure 13) i.e. K;, Ky or Ky;.

K, ym=Y0 \/IT_a Equation 20

Where 0 is the applied stress, a is a characteristic crack dimension and Y is a
dimensionless constant that depends on mode and loading conditions (including
component and crack geometry). K can therefore be relatively easily calculated from
specimen geometry, loading conditions and defect size, and gives a measure of the
magnitude of the crack tip stress field.

AK is therefore a suitable parameter for the characterisation of fatigue crack
growth where the crack growth mechanisms are assumed to be primarily controlled by
the range of crack tip stresses. Such crack propagation data is typically obtained from
test coupons of materials containing a pre-existing, relatively large, defect (typically of
the order of millimetres long). To this defect, defined stress states are applied, allowing
both AK and crack growth rate to be calculated. Log-log plots of the crack growth rate
per cycle (da/dN vs. AK) typically show a sigmoidal relationship divided into three
distinct regions (Figure 14). Regime A shows that at very low AK, the crack growth
rate is negligible. Below the threshold stress intensity factor, AKg, crack growth is
arrested or imperceptible. Stage I crack growth is usually predominant in this regime
and there is a large influence of microstructure, mean stress, crack length and
environment.

Regime B is denoted the Paris regime, because at intermediate AK values, the

relationship between da/dN and AK is given by the Paris equation:

E = CAK™ Equation 21
dN

Where C and m are materials constants. This behaviour is relatively microstructure
insensitive and less affected by mean stress levels (or minimum to maximum load ratios
(R-ratios)). If crack growth is predominantly in the Paris regime, and both the initial
crack length, and the final crack length (e.g. the crack length giving fast failure or undue
compliance such as general yield in the un-cracked ligament) are known, then the
number of cycles required for the initial defect to grow to the final crack length can be
calculated using integration approaches based on Equation 18. Regime C is where

monotonic failure processes are contributing heavily to the fatigue crack growth as Kax
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approaches the fracture toughness (Kic) and the crack growth rate rapidly increases with
increasing AK due to increasing bursts of monotonic failure, until final failure occurs.
This regime is also heavily influenced by microstructure and mean stress levels, but as it
contributes to so few cycles of the overall fatigue lifetime is generally considered to be
of minor importance.

The use of K to define crack tip stresses assumes elastic behaviour, i.e. that the
crack tip plasticity is sufficiently limited that K still characterises the near crack tip
stress field (i.e. that the linear elastic behaviour assumption gives a reasonable
approximation). If a significant amount of plastic deformation has taken place,
alternative parameters such as the J-integral have been employed to characterise the
fatigue crack growth?'®. AK is still valid however if there is limited plastic deformation
occurring at the crack tip and there is sufficient material around the plastic zone which

is behaving elastically providing constraint.

3.4 Initiation of fatigue cracks

The principal sites of fatigue crack initiation in engineering components include
voids, slag or gas entrapments, inclusions, dents, scratches, forging laps and folds,
macroscopic stress concentrations, as well as regions of microstructural and chemical
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non uniformity Studies on a range of superalloys have identified high temperature

XXix

crack initiation at slip bands™™, inclusions

XXX

, pre-cracked carbide particles and

preferentially oxidised carbides™*¥,

3.5 Stage I /1l /1l crack growth

Several fatigue propagation modes have been observed which can be generally linked to

the three regimes of da/dN versus AK behaviour shown in Figure 14.

Stage 1

Stage I crack growth behaviour occurs at low AK levels (near threshold) for large
defects and during early stages of small (e.g. freely initiating) crack growth. When the
crack and the zone of plastic deformation surrounding the crack tip are confined to a
few grain diameters, crack growth occurs predominantly by single shear in the direction

of the primary slip systems*'®,

Stage I crack growth is characterised by faceted fracture
surface appearance and is often referred to as crystallographic crack growth, as cracks
grow along the crystallographic slip planes e.g. {111} in face-centred cubic (FCC)

materials. Stage 1 crack growth persists while the crack tip plastic zone size
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remains smaller than some microstructural feature. It is most pronounced in those

materials which exhibit highly planar slip.

Stage II

Stage II crack growth occurs when the plastic zone size becomes larger than the afore-
mentioned microstructural feature. Crack propagation is now perpendicular to the
applied stress and several slip systems are acting at once. Examination of the fracture
surface at a microscopic level may reveal parallel ridges which have formed parallel to
the crack front. These closely spaced ridges are called striations, where each ridge
represents one fatigue cycle. Striations may not however always be visible on a

fatigued fracture surface.

Stage 111
Stage III crack growth typically occurs under high AK values, and rapidly accelerating

crack growth rates, up to final failure of the component. On observation of the resulting
fracture surface there is often evidence of significant plastic collapse of the material. A

component spends the shortest proportion of its life in stage III crack growth.

3.6 Extrinsic shielding effects (closure mechanisms)

Crack propagation rates can be significantly affected by shielding effects, these can be
due to changes in the locally experienced crack tip stresses due to crack deflection
(resolved crack tip stresses alter), changes in local materials properties (e.g. stiffness as
a secondary particle is encountered) or crack closure. Crack closure is the term used to
describe load transfer in the wake of a growing crack due to contact between the crack
faces behind the crack tip. Crack closure could arise from (1) surface roughness/crack
path tortuousity (coupled with a degree of mode II shear irreversibility), (2) oxide debris
entrained in the crack or (3) plasticity ahead of the crack tip, leading to significant
plastic wake material existing along the crack flanks. All three mechanisms can cause
contact of the crack surfaces behind the crack tip at a stress intensity factor (Keciosure)
greater than the applied minimum stress intensity factor (Kuin) and therefore the crack
tip sees an effective AK that is less than the applied AK i.e. a reduced crack tip driving
force. Closure effects are most significant in the near-threshold regime, where applied
AK levels are low and K., may be less than Kgeswe. For all of these crack wake effects

to build up the cracks need to have grown a significant distance.
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3.7 Short crack behaviour

Initiation and so-called short crack growth behaviour is technically important for
superalloy components (e.g. turbine discs and blades). A large part of the overall
fatigue life may be spent in initiation and so-called short crack growth phases at the
high stress levels experienced in service. Useful definitions of what constitutes a short

crack are given by Suresh?'®.

Microstructurally short cracks, where the crack length is similar to a
characteristic microstructural dimension such as grain size in monolithic
materials.

Mechanically short cracks, where the crack length is similar to the crack tip
plastic zone for smooth specimens, or cracks that are engulfed by the plastic
strain field of a notch.

Physically short cracks, which may be larger than any microstructural
dimension or plastic zones, but small in relation to the size of the component in
which they have occurred.

Chemically short cracks, which are nominally amenable to LEFM analyses, but
exhibit apparent anomalies in the propagation rates below a certain crack size as
a consequence of the dependence of environmental stress corrosion fatigue

effects on crack dimensions.

It is important to note the difference between short and long cracks as there are
observed differences in the propagation behaviour when compared on a nominal AK
basis. Generally, short cracks propagate at higher rates than long cracks when
compared at similar AK ranges, as shown schematically in Figure 15. This indicates
that AK is no longer characterising the crack tip stress state for both long and short
cracks. Various arguments have been put forward as to why we see this anomalous
behaviour for small defects. Clearly mechanically short cracks do not experience
LEFM conditions and parameters such as AJ have been used as correlation parameters
with some success®'®. The early stages of short crack growth (at apparent low AK
ranges) are also very scattered; this wide variation in crack growth rates is due to the
strong influence of microstructure for such small defects. Temporary crack arrests at
obstacles to slip such as grain boundaries and second phase particles are typically seen.
The occurrence of such obstacles will vary from crack to crack, leading to the widely
varied crack growth rates typically observed. At nominally similar low AK ranges for

large defects (near-threshold), locally, such arrest events are also seen. These effects
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are averaged along the length of the defect, thus showing little scatter from crack to
crack.

In the long crack case, significant closure effects are also expected to arise near
threshold, which have not developed in short cracks that have developed insufficient
crack wake. At longer crack lengths the short crack behaviour starts to approach the
crack growth rates seen in long crack specimens. This is believed to be a combination
of more typical LEFM conditions being attained, along with the evolution of similar

closure levels as the crack length increases.

3.8 Creep and Environmental Interactions

Creep is a thermally activated process and is therefore significant in elevated
temperature fatigue behaviour. Creep is a time-dependent inelastic deformation and
hence significant creep can render the standard LEFM approach invalid. Creep damage
processes can also synergistically interact with the damage process at the fatigue crack
tip. To characterise creep-fatigue, crack growth rates can be partitioned into fatigue and
creep components, or the crack growth driving forces can be split into elastic and
inelastic components. This is further complicated by the influence creep may have in
the plastic zone ahead of the crack, possible crack tip blunting by creep, and
environmental interactions. Oxidation processes (particularly intergranular attack) can

become more significant at higher temperatures.

3.9 Creep-Fatigue
The characterisation of fatigue crack growth incorporating creep is complicated, as the
interactions of these effects cannot be described by a straightforward summation of the
individual effects. Creep and environmental effects can combine to accelerate crack
growth, or, oppose each other, slowing the crack growth and in some cases even
contributing to crack arrest™"

The most simplistic method to characterise crack growth in the mixed cycle and the
time-dependent regime, is the summation of the individual effects of fatigue and creep

components of the crack growth.

da  Odal Oda
T H—NH H—NE Equation 22

Where (da/dN)cr and (da/dN)r are the crack growth rates due to creep and fatigue

components respectively. This approach only holds true if there is no interaction
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between the creep and fatigue crack growth, giving a total crack growth rate equal to the
sum of the individual fatigue and creep components of the crack growth. When creep-
fatigue interactions occur at the crack tip, the crack growth could either be accelerated
due to creep crack growth, or slowed due to stress relief from creep deformation.
Environmental effects are not taken into account if there are any, as this is a simple
approach. The crack growth rate in the mixed crack growth mode regime would be
underestimated by linear superposition as creep and environment effects tend to
accelerate crack growth.

Other research has shown that using a more sophisticated approach of the time

integration method proved to be more successful. The general form of the equation is

da  Odal  Odal

T H_NH t H_tHdt Equation 23

Where (da/dN)f is the crack growth rate due to simply fatigue unaffected by creep or
environment effects. This is obtained by testing at high frequencies in a vacuum

environment. Data from sustained load tests under conditions that are similar to creep-

fatigue tests is required in order to calculate the integral term of the equation.
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4 Nickel Based Super Alloys

4.1 Development of Nickel Based Alloys

Nickel based super alloys were developed initially for their high temperature resistance.
As engine materials have to operate at higher and higher temperatures other materials
are no longer appropriate. Aluminium alloys, although used in high percentages
throughout the airframe have a service temperature of around 200°C making them
unsuitable for any aero engine components. Stainless steels can operate at up to 700°C
but are very heavy and corrosion is an issue at elevated temperatures. Titanium is often
used in compressors and is a good mid temperature material, useful up to 500°C.
Nickel based alloys (superalloys) have good high temperature mechanical properties
such as resistance to creep, fatigue, creep-fatigue and good strength at high temperature.
They can operate at temperatures up to 1200°C but are very heavy. The weight penalty
of these materials is an acceptable compromise for their very high operating

temperature.

4.2 Microstructure
A typical nickel based superalloy consists of a y matrix, a solid solution strengthened
matrix consisting of mostly nickel with additions of molybdenum, tungsten and
chromium. It is a Face Centred Cubic (FCC) matrix. The main strengthening
precipitate ¥ consists of Ni3(Ti,Al), it is also FCC but ordered and coherent with the y
matrix. At smaller sizes it is spherical but at larger sizes it adopts a cuboidal structure
(Figure 16) to minimise lattice misfit strain. Increases in the Yy’ fraction bring about an
increased yield strength with blade alloys typically having a y’ fraction of 70-80%.
Grain boundary carbides also play a role in strengthening cast and wrought forms of
polycrystalline superalloy but are not relevant to single crystals. Alloying additions are
used to improve the performance of nickel based alloys even further. Aluminium and
titanium, as mentioned previously, provide precipitate strengthening and are key to the
formation of y’. Chromium additions increase the corrosion resistance of the alloy by
forming a protective Cr,0; layer. The addition of chromium limits the amount of
titanium and aluminium additions possible due to the combination of solubility of each
element being affected by each of the other additions. A balance has to be struck
between strength and corrosion resistance. Turbine blades typically contain lower

percentages of chromium and high percentage of titanium and aluminium. Other
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alloying elements are also used, the additions and reasons for use are discussed further

when looking at the metallurgy of CMSX-4 in section 4.5.1.

4.3 Deformation of Nickel Base Alloys

Nickel base superalloys have a tendency towards planar slip. As dislocations cut
through the Yy’ precipitate they reduce the effective area of the precipitate blocking their
path. Successive dislocations therefore have to cut through less and less precipitate thus
favouring slip along that plane. However, as the Yy’ precipitate is ordered, the passage of
a single dislocation sets up an anti-phase boundary (APB) with a high associated
energy. This state is short lived as the passage of a second dislocation removes the anti-
phase boundary. It is therefore energetically favourable for dislocations to pass though
the y’ in pairs (super dislocations). In FCC materials, dislocations commonly dissociate
into two partial dislocations. If these dislocations separate out the area between then
becomes known as a stacking fault. The stacking fault has a stacking fault energy
(SFE) associated with it, proportional to the stacking fault area. This dissociation into
partial dislocations makes cross slip (a dislocation crossing from one slip plane to
another) difficult. All these factors promote planar slip at low temperatures. More
intense slip bands mean that stage one crack growth along the slip bands is enhanced,
and highly faceted fatigue fracture surfaces are often observed where the crack has
grown along the {111} slip planes.

As temperature increases, thermally activated processes such as cross-slip are
initiated, more wavy slip is promoted and a second cubic slip system also starts to
operate. When a superdislocation (the double pairs of partial dislocations separated by
the APB) cross-slips from a {111} onto a {100} plane, the APB energy is reduced. If
the first dislocation then cross-slips back onto a {111} plane (favourable for lowering
the SFE between the two partials), it is unfavourable for the APB to follow it due to the
lower APB energy on {100}, and the superdislocation becomes locked into position.
This is known as Kear-Wilsdorf locking™", (Figure 17), and is thought to be the
mechanism responsible for the anomalous yield behaviour of Yy (increasing Oy is
observed with increasing temperature). This complex dislocation locking is the

mechanism behind the high strength of nickel-base superalloys at high temperatures.

4.4 Single Crystals
The presence of grain boundaries and the average grain size in polycrystalline alloys is

an important factor in the fatigue and creep behaviour of nickel based superalloys. In
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turbine blades of aircraft jet engines, it is known that the elimination of transverse grain
boundaries promotes substantial improvements in creep and fatigue lives. As a result,
directionally solidified and single crystalline superalloys are widely used as materials
for turbine blades in gas turbine engines.

Single crystals are cast using a process called directional solidification. This
process requires the controlled withdrawal of a mould from an electrically heated
furnace. A multiple turn constriction called a ‘pigtail’ is used at the bottom of the
mould, this constriction only allows one grain orientation to grow up through the pigtail
as the mould is withdrawn from the furnace. During casting, the alloy is cooled through
portions of the phase diagram where liquid and solid phases co-exist. This zone is
called the mushy zone. If the mushy zone is extensive it allows convection currents to
form as the casting solidifies. These convection currents can cause the tips of
solidifying dendrites to be broken off and swirl away to cause randomly occurring grain
initiation sites ahead of the solidification front. These inclusions are called freckling.
An extensive mushy zone can also cause compositional segregation within the solid and
liquid phases, leading to significant variations in composition between dendrite cores
and interdendritic regions. Both of these processes are deleterious to material
properties, segregation can be removed with subsequent heat treatment, but extensive
segregation can lead to locally varying melting points, with the risk of incipient melting
during solution heat treatment. Both processes can be minimised by using a sharp
temperature gradient during the casting process. Single crystals have highly anisotropic
mechanical properties, both in terms of stiffness and plasticity. The highest stiffness is
measured along the close packed <111> direction and the lowest being along the <001>
direction. Anisotropic plasticity is caused by slip systems with the highest resolved
shear stresses experiencing the most intense plastic deformation, with obvious
implications for both creep and fatigue behaviour (higher order plastic deformation

phenomena).

4.5 CMSX-4

4.5.1 Microstructure and Physical Properties
CMSX-4 is a second generation single crystal superalloy containing 3% rhenium in
particular, and other alloying additions to provide solid solution strengthening.
Rhenium is found predominantly in the Yy matrix, it retards coarsening of the Yy’

strengthening phase and increases Yy misfit. Rhenium clusters act as efficient
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obstacles to dislocation movement in the y matrix, more so than isolated solute atoms,
and therefore are believed to contribute significantly to the high strength of the alloy*™*".
Rhenium has been linked to enhanced strain ageing, since its large atomic radius
promotes the trapping of dislocations™. Rhenium has also been shown to reduce
creep™i

Chromium provides corrosion and oxidation resistance due to the formation of the
non-porous surface oxide Cr,O;. However the chromium levels are lowered to allow
increased aluminium and titanium levels. Also at high temperatures Al,O; scales
provide additional resistance to oxidation. Cobalt, when added to Nickel-base
superalloys, reduces the solubility of aluminium and titanium in the nickel-chromium y
matrix. This encourages the formation of the y’ phase. Cobalt can also reduce creep by
lowering the stacking fault energy, thereby hindering dislocation cross-slip and climb.
Molybdenum, niobium, tungsten and tantalum are added to the monocrystalline nickel
base superalloys to solid-solution strengthen the y and y’ phases and can help reduce
creep deformation. The addition of carbon removes the detrimental elements such as
sulphur and oxygen. Molybdenum can reduce creep at high temperatures since it
reduces self-diffusivity.

The addition of molybdenum, tantalum, tungsten, rhenium and cobalt has been
shown to strongly affect the y/y’ lattice misfit due to their large atomic radii. In
particular rhenium additions have been shown to produce a more negative misfit™",

It has also been shown that the lattice misfit is severely affected by the dendritic

structure, since the refractory elements are prone to segregation™™,

4.5.2 Heat Treatment
Cast superalloys (such as CMSX-4) are given heat treatment to strengthen, improve
ductility and homogenize their structure. In outline they receive a lengthy, staged
solution heat treatment to reduce dendritic segregation effects, followed by a single

stage ageing heat treatment to optimise the y’ distribution.

4.5.3 Oxidation behavior

CMSX-4 has a low chromium content and therefore has relatively poor oxidation
resistance. This is an accepted trade off in order to gain improved mechanical
properties by using a higher percentage of aluminium and titanium. Turbine blades are

manufactured with a protective coating to prevent oxidation at high operating
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temperatures thus allowing for the low chromium content. The literature reflects this in

that there is very little written about the oxidation of uncoated CMSX-4.

4.5.4 Creep

Creep behaviour of CMSX-4 is well documented. Tests are normally conducted at
higher temperatures (750°C to 1000°C). CMSX-4 exhibits excellent creep resistance at
elevated temperature due to hardening by Yy’ precipitates. At high temperatures, and in
particular, low stresses, rafting is observed™. Rafting occurs when the Yy’ begins to
deform under stress and high temperature. Each cubical particle shortens along the
[001] direction and expands along the [100] and [010] directions. When deformation of
the particles reaches 15%, adjacent particles may weld together to produce an elongated
(rafted) Yy’ structure along [100] or [010] directions. Multiple crack initiation is

xli

common in creep failure™.

4.5.5 Fatigue Behaviour

At room temperatures in polycrystalline nickel base superalloys, cracks can initiate
from slip bands, grain boundaries, carbides, due to cracking of inclusions/precipitates,
or at defects. Cracks that have initiated at inclusions or precipitates usually arise due to
differences in the thermal expansion coefficients or the strength between the inclusions
and the matrix.*".

Casting micropores have been found to initiate LCF cracks early in the life of MAR-
M200 and CMSX-2 single crystals at 650°C*", The initiating pore was either at the
surface or sub-surface and when crack initiation occurred at the surface in CMSX-2, the
replica record showed that life was mainly spent in crack growth. Fatigue failure in
CMSX-2 was found to occur by the growth of a single crack that initiated at porosity
and in MAR-M200, several cracks that initiated at pores coalesced to final failure.

Crack initiation in CMSX-4 appears to be controlled by porosity and oxidation
spikes219. Oxidation is also suggested to be a dominant factor in crack growth*"
Oxidation at the crack tip becomes important at higher temperatures with oxide induced
closure causing crack tip blunting and reducing crack growth rates™":

Ott et al carried out fatigue tests on CMSX-4 and CMSX-6. Samples were pre-
strained in the [001] direction in either tension, resulting in a raft structure

perpendicular to the applied stress, or in compression, providing a rafted structure

parallel to the applied stress, at 1100°C in vacuum to develop a rafted microstructure.
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Fatigue tests were then carried out on these samples at 950°C in air under strain control
to assess the effects of rafting parallel and perpendicular to the applied stress compared
to an unstrained baseline. The tests were performed with a total strain amplitude of
1.2%. It was found that this produced a stress of ~500MPa irrespective of the rafting
orientation. Fatigue tests with the tensile axis parallel to the [001] direction were
carried out, short cracks were seen to initiate at either surface pores or from cracks in
the brittle oxide layer.

Schubert et al*'? carried out fatigue tests on CMSX-4 at 750°C and 1000°C in air
and in vacuum. Testing single edge notch (SEN) type samples with small corner or
edge cracks simulated small cracks in turbine blades. Tests were carried out at a load
ratio of 0.1 and a frequency of SHz. In addition creep fatigue tests were carried out with
a trapezoidal 0.1-300-0.1-1 waveform. Pre-cracking was performed at test temperature
at 10Hz. Specimens were orientated such that the tensile axis was parallel to the <001>
direction, whilst the nominal crack growth direction was either in the <100> or the
<110> direction. Fatigue cracks grown in air at 750°C were seen to propagate along y
channels in the nominal mode I direction zigzagging between the {111} and {100}
planes at low and medium AK levels. At higher AK a change in the surface crack
growth mechanism to the {111} planes was observed together with cutting of the Yy’
phase. At 1000°C no cutting of the Y’ occurred and hence propagation was via cross
sliding on the {100} planes along the y channels.

The difference between secondary notch orientations was much more pronounced at
750°C than at 1000°C. In both cases the change was only evident at low AK levels (<20
MPavm). Similarly the effect of environment on fatigue crack growth rates was only

evident at low AK levels (<20 MPavm).

4.5.6 Summary of CMSX-4 findings
Creep behaviour of CMSX-4 is well documented between 750°C-1000°C where it
exhibits excellent creep resistance due to hardening by Yy precipitates. At high
temperatures, and in particular, low stresses, rafting is observed. Multiple crack
initiation is common in creep failure. Fatigue behaviour of CMSX-4 is less commonly
investigated. The literature suggests that initiation is controlled by porosity and
oxidation spikes. Oxidation is suggested to be a dominant factor in crack growth with
oxidation induced closure effects retarding crack growth. Oxidation also causes crack

tip blunting, this is more apparent at higher temperatures.
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5 Neural Network Modelling

5.1 Program of Work

Fatigue performance of nickel based superalloys is an increasingly important
consideration when designing new alloys. Producing a new alloy and carrying out a
fatigue testing program is an expensive and time consuming process. The ability to
predict fatigue performance or trends based upon the alloy composition and processing
routes would provide a powerful tool in alloy development and could help narrow down
the combinations of alloying elements before raw material is produced. Such a tool

would help reduce costs during an alloy development program.

This work follows on from an initial program of work within the Engine Materials
Lifing group at QinetiQ, Farnborough. Neural network modelling has already been
used within QinetiQ to model YS, UTS and CRS of alloys based on their chemical
composition and processing root. This work has been used as a precursor to developing

a modelling technique for predicting fatigue life. The main aims of this work are:

* Using current neural network models as a starting point, develop a
methodology of collection and screening of input data.

* Develop guidelines for training and validation of neural network models for
prediction of mechanical properties of Ni-based superalloys.

» Search literature and in house QinetiQ data for LCF data to populate a new
neural network model.

* Use experience gained from work with current models to develop and
validate a model for prediction of alloy fatigue life. Model development

should include justification of selection of inputs

The first few sections of this chapter discuss work performed with YS and UTS models.
Large datasets were already available and some initial work had already been carried
out, this work has been built upon further and reported. YS and UTS models are much
simpler to analyse as results are presented as a function of test temperature only for each
alloy. They therefore presented good subjects to further develop modelling techniques
and strategies which could then be applied to an LCF model.

The development of the YS and UTS neural network models was supported with

statistical analysis of the data, first using examination by Excel spreadsheet then
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progressing onto Minitab statistical analysis software. Results from the models have
been compared with unseen test data.

The second section of this work applies the methodologies developed for, and
lessons learned from, development of YS and UTS models to the development of a
fatigue life prediction model. Further work has been carried out to establish the correct
inputs for the model and initial models have been compared with unseen test data.

The modelling process employed in this work is of a cyclic nature where the
process of learning from data is seen as a continuous process. Once a dataset has been
established and trained, the results have been used to suggest improvements either in the
modelling process or by modifying the input data. The modelling process is then

repeated and observations recorded.

Prior Data
Knowledge 4 Collection

v f

Model Design o
—PpV/alidation

Care has been taken not to implement too many changes at once so the effect of each

one can be established.

5.2 Software Approaches

5.2.1 Neuromat Overview

Neuromat Model Manager is a user friendly neural network modelling software package
that is available for Linux RedHat. It is commercially available software supplied by
Neuromat Ltd in conjunction with Cambridge University.

Neuromat performs the training of multiple models, selection of models to form
committees and ranks their performance. Models comprising of committees can then be
re-trained and used to predict against unseen data with reference to the levels of
confidence of the prediction and significances of individual inputs. The key advantages
of Neuromat are the ability to generate error bars when predicting data and the inclusion
of an algorithm to determine the significance of inputs to the model. The methods used

in Neuromat software are described in more technical detail in the following sections.
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5.2.2 Bayesian learning

The neural network used in Neuromat is a feed forward network consisting of two
layers. The activation function of the neurons in the hidden layer is a fanh function.
The second layer neuron performs a linear combination of each hidden unit output. The
algorithm used to train the models has been written by D.J.C. Mackay219. It
implements a particular learning method using Bayesian statistics to choose the most
probable distribution for the weights given the data. Training of the model is based on
Bayesian probability theory and treats learning as an inference problem. Rather than
trying to identify the best set of weights, the algorithm infers a probability distribution
for the weights from the data presented. The training method tries to minimise an error

function M(w) (Equation 24).

Mw)= PE,+0E Equation 24

where E) is the sum squared error between the target and the predictions for a given
choice of weights, and E, is a regulariser, that is a term which favours small values of

the weights:

E, = %Z w,’ Equation 25

When making predictions, the variety of solutions corresponding to different
possible sets of weights are averaged using the probabilities of these sets of weights, a
process called marginalising.

An advantage of this process is the ability to quantify the uncertainty of fitting. If
the probability distribution assigned to a weight set is sharply peaked, the most probable
values will give the largest contribution to the prediction. Alternative solutions will
have little importance and the prediction will be associated with a small uncertainty. If,
the data is such that different sets of weights are all similarly probable (a wide
distribution of probabilities) all predictions will contribute in similar proportions and the
error bar will be large. Large error bars signify sparse or noisy data and provide a good
reminder when the network is trying to predict outside the training space (extrapolate

data).
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5.2.3 Ranking models
Rankings can be performed by Log Predictive Error (LPE) or Test Error (TE). TE uses

a sum of squared errors with regularisation constants o and  to control influence of ED

and E,, (Equation 24). Where Ed is given as:

E,(w)= %Z [y(x";w)- 1" ] Equation 26

LPE attaches less importance to points which are outliers 1ie. badly

predicted/erroneous data.

LPE=Y Yi(t, - y,)’ /0" + log(/2n0 | Equation 27

m

Where o, is an error bound. Penalty for bad predictions is much less if that

prediction is accompanied by appropriately large error bars.

5.2.4 Data Preparation

The training database is first ‘rearranged’ with every second line being placed at the end
of the dataset. The next step is the normalisation of the data. Data is normalized

between —0.5 and 0.5 using Equation 28.

X~ X _.
Xy=——-05 Equation 28
X - X

max min

5.2.5 Training models

Neuromat takes steps to avoid the overfitting problem by dividing the data into a
training set and a test set. Figure 19 shows an example of a model (the black line)
overfitting to the training data. When the rest of the data is presented (Figure 20) to the
model it is associated with large test errors as the model does not generalise well.
Figure 21 shows the relationship between training and test error as the complexity of the
model increases. There reaches a point when the model begins to over fit to the data
and although the training error continues to decrease, the ability to predict unseen data
reduces.

For most of the experiments detailed in this chapter, data is split 50/50 for training

and selecting models and committees (NB - New version of software allows this ratio to
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be changed). The first half of the database is used to train a number of models. The
numbers of models trained is set by the maximum number of hidden units and seeds
selected. Neuromat has the capacity to create models with up to 25 hidden units.
During the training process, Neuromat creates a model for every combination of hidden
unit and seed. For example selecting a maximum of 10 hidden units and 5 seeds would
require the creation of 50 models. Every combination of 1 to 10 hidden unit models
starting at any one of 5 seed points will be trained. The remaining percentage of the

data is then used to test and rank each model in turn

5.2.6 Committees of models

The complexity of a model depends on its number of hidden units. Therefore, models
with different numbers of hidden units will give different predictions. Committees
generally perform better than single models, especially in areas of uncertainty due to
sparse or noisy data.

In Neuromat, committees are constructed using the best performing models ranked
on either LPE or TE basis. Predictions are then made using an average from all models
in the committee. A graph of combined test error against number of models in
committee can be plotted (Figure 22). This information can then be used to select the
optimum number of models with which to construct a committee. The process of

selecting models is done by hand.

5.2.7 Significance of inputs.

Significance values for all inputs are generated during training. Neuromat uses
Automatic Relevance Determination (ARD) which was developed by Mackay*™. The
aim of ARD is to discover which hidden variables are relevant in explaining the
dynamics of the system of interest. The ARD is implemented as a form of Bayesian
structure learning where a prior Gaussian distribution is placed on the weights,
favouring small magnitudes. The essence of ARD is that each input unit has its own
prior variance parameter. Small variance suggests that all weights leaving the unit will
be small, so the unit will have little influence on subsequent values. A large variance

indicates that the unit is important in explaining the data.
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5.2.8 Neuromat Notation

Neuromat uses letter and number notation to reference individual models within a
committee. The letter is used to define the number of hidden units within the model,
a=1, b=2, c=3 etc. The number represents which initial seed point was used to train the
model. For example H3 would refer to an 8 hidden unit model that was seeded with

seed number 3.
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Figure 19 Examples of two possible data fits Figure 20 Addition of test data to indemtify
(after Neuromat reference manual) model overfitting (after Neuromat reference
manual)

Test error

R

e

P —
Traimmng error

Complexity

Figure 21 Effect of complexity (number of HU’s) on test and training error

Figure 22 — Test error vs. number of models in a committee
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5.2.9 Matlab

Much of the work done with Neuromat has been mirrored using Matlab. This was not
so much an exercise in rewriting Neuromat in Matlab script but using Matlab to run
experiments to investigate trends in the data and understand how the neural network
modelling process works. The Matlab modelling process provides greater transparency
of Neuromat thus allowing assumptions and methods to be checked in greater detail.
Matlab also allows much simpler and therefore quicker analysis of network models to
be performed.

The Neural Network Toolbox is a powerful collection of MATLAB functions for
the design, training, and simulation of neural networks. It supports a wide range of
network architectures and training methods including: supervised training of
feedforward networks using the perceptron learning rule, Widrow-Hoff rule, several
variations on backpropagation (including the fast Levenberg-Marquardt algorithm), and
radial basis networks; supervised training of recurrent Elman networks; unsupervised
training of associative networks including competitive and feature map layers; Kohonen
networks, self-organizing maps, and learning vector quantization.

The Neural Network Toolbox has comprehensive help files which detail the theory
and use of all the functions mentioned in this chapter. The Toolbox is delivered as
MATLAB M-files, enabling users to see the algorithms and implementations, as well as
to make changes or create new functions to address a specific application.

Scripts have been written as part of this work to aid the training and prediction

process and can be found in APPENDIX 2.

The models written to date are currently using ‘trainbr’ function which utilises Bayesian
Regularisation Backpropagation much the same as Neuromat. This allows small tests to
be carried out quickly and simply without having to train a full Neuromat model. It also
seemed a sensible starting point as the writers of Neuromat have spent time choosing a

sensible training method for this sort of problem.

The basis of this work is to investigate how to collect, process and use data to train
models, not to investigate neural network models themselves.

Matlab Scripts have been written to pre process the data, train the Networks and
produce graphs of results and predictions all in one run. Matlab scripts have been

written to implement the following processes:
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During the training process, a graph of training Sum of Squared Errors (SSE) vs test
SSE is produced (Figure 23). The test dataset has to be specified before training. The
training vs test SSE can be used to stop the training process at a certain point (a form of
early stopping).

All the models to date have been trained for a set number of Epochs. An epoch
represents the presentation of the set of training (input and/or target) vectors to a
network and the calculation of new weights and biases.

Generation of a graph showing each target data-point vs the predicted value
from the trained model (Figure 24). The line Y=X signifies a perfect prediction. The
graph is one of many ways to see how well the model has fit the training data. A

similar graph can be produced for prediction against unseen data

Predictions from each individual model are plotted against the actual test data (Figure
25). At the time of writing, no script has been written to select the optimum

combination of models for one or multiple values of hidden units.

A first attempt has also been made at assigning significances to the input variables of
the trained model. The example chart shown in Figure 26 is generated calculating the
sum product of each input weight and all the subsequent weights of hidden units
between a particular input and the output. This method is a rather crude treatment of

analysis of input variables and requires refinement.
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Figure 23 — Example of Matlab output during training
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Figure 24 — Example of test vs training error graph generated using Matlab
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Figure 25 — Example of Matlab neural network predictions vs. actual data
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5.3 Initial Modelling Work using UTS Database
QinetiQ currently have 3 neural network models based around the Neuromat neural
network program supplied by Cambridge University. Each Model uses its own database
comprising of in house data and data available in the literature.

At the time of writing, the UTS database comprises of 1288 lines of data and 32

inputs shown below.

Nickel Hafnium

Chromium Rhenium

Cobalt Lanthanum
Molybdenum Process

Tungsten Crystallography
Tantalum Solution Temp
Niobium Solution Time
Aluminium Solution Cooling type
Titanium Ageing Temp 1

Iron Ageing Time 1
Manganese Ageing Cooling type 1
Silicon Ageing Temp 2
Carbon Ageing Time 2

Boron Ageing Cooling type 2
Zirconium Test Temperature °C
Vanadium UTS (MPa)

5.4 Data Collection Methodology

5.4.1 Data Sources

An initial search through the literature and QinetiQ internal databases was carried out to
investigate the amount, and more importantly, the quality of data available. Data

sources include:

* Superalloys conference proceedings

* Nickel Development Institute (NiDI) Handbook

*  QinetiQ reports such as MANDATE Brite EuRam FPIV Programme
e INCO Alloy Datasheets

The first steps taken were to take existing QinetiQ data and build a Microsoft Access
database. An extra field was included for the full reference source for each record with
hyperlinks to electronic journal papers where applicable. This is particularly valuable

information to QinetiQ and proved useful when checking the data for spurious results.
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5.4.2 Selection of Inputs

Inputs have been selected to describe the chemical composition, processing route and
heat treatment as they all affect the microstructure and therefore strength of the alloy.
The roles of alloying additions and processing routes are discussed in section 4.2.

Selecting the right number of inputs depends on several factors:

1. There must be enough inputs to adequately describe the alloy composition
and other processes that are commonly documented.

2. As the number of inputs increases, so does the complexity of the neural
network and the amount of data required to train it.

3. Input data must be consistently recorded for each record used.

Initial models have used the full chemical composition of the alloy with further
work being carried out to determine if some elements could be left out of future models.
Inputs were chosen based upon information that was readily available in data sources,
such inputs could only be used if that particular piece of information was recorded for
every alloy. Missing data is difficult to represent in a neural network, a cell cannot
simply be left blank. A value of zero is generally not an accurate representation for
unknown data. Blank cells can be filled with the average value for that input but this is
not desirable as it is not a true result and could be very different from the actual missing
value. A better solution is to remove the record containing the missing data.

With this in mind, if the list of inputs was over defined many sources of data would
be unusable. The input data has been divided up into 3 categories; Composition,
Processing and Heat Treatment. Varying data in each category will have a measurable

effect on the strength of the alloy.

5.4.3 Alloy composition

Alloying elements that are included specifically to strengthen the superalloy are
discussed in the literature review. To start off with, full compositional information was
recorded for each alloy. The initial list comprised of 19 elements: Ni, Cr, Co, Mo, W,
Ta, Nb, Al, Ti, Fe, Mn, Si, C, B, Zr, V, Hf, Re, and La.

It is expected that the most important elements will be those that are included for y’

formation and solid solution strengthening. The removal of some of these elements as
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inputs is discussed later in the chapter. Alloy compositions are recorded as weight

percent to an accuracy of 2 decimal places.

5.4.4 Processing parameters

Information about the processing route of each alloy was limited to; Cast or cast and
wrought as the first input and Polycrystalline (PX), directionally solidified (DS) or
single crystal (SX) as the second. These parameters are the only ones which are
regularly recorded and they all have a significant effect on material properties which
cannot be described by composition and heat treatment alone. Processing parameters

are recorded by allocating a number to each parameter as shown:

Process Crystallography
Cast 0 P 0
X
Wrought 1 D 1
S
PM 2 S 2
X

The disadvantage with this method is that it infers some sort of numerical ranking to the
processes which may adversely affect the model. An alternative method could be used

as shown:

P1 P2 P3 Cl C2 C3
Cast I 0 O 1 0 O

P

X
Wrought 0 1 0 D 0 1 O

S

PM 0O 0 1 S

X
The problem here lies in the creation of 4’ more input columns in this case. It was
decided to use the first method for initial modelling attempts in order to keep the

number of inputs to a minimum.

2 Whichever method is used to describe level information for processes should also be
used for cooling rate information (see heat treatments) so the increase in inputs would

be by 7 and not 3.
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5.4.5 Heat Treatments

The heat treatment used will determine the y/y’ microstructure and grain size (where
applicable) thus having a large effect on the strength of the alloy. The most common
heat treatment cycle is normally a combination of a solution treatment and one or two
ageing treatments. Heat treatment information has therefore been split into 9 inputs.
Information on heat treatments is recorded with 3 critical parameters (Temperature,
Time and Cooling type). Cooling rate is also important but was not often included in
papers and specifications and was therefore left out. It is also a function of the cooling
method used, so this parameter should adequately describe the process.

Temperature and time inputs are simply recorded in °C and hours respectively.
Cooling methods are recorded in much the same way as processing information and are

subject to the same decision as to how to record the levels.

Cooling Method
Air cool 0
Furnace cool 1
Water Quench 2
Oil Quench 3

Some alloys have a multi step heat treatment that does not fit the structure of the input
database. For these alloys, a method of reducing complex multi step treatments into one
equivalent step was used. A single step was calculated to give an equivalent amount of
diffusion of Al and Ti in Ni. An example for the treatment of alloy CM247LC DS is
given.

The solution heat treatment for CM247LC DS is 1221°C for 2 hours + 1232°C for 2
hours + 1246°C for 2 hours + 1260°C for 2 hours then rapid fan quench in argon.

Diffusion of aluminium in nickel (k) has been calculated using the Arrhenius equation.
k= AG_E'”HRT Equation 29

Where 4 and E, are material constants from the literature™", R is the gas constant

and T the temperature in °Kelvin. The diffusion distance is then calculated:

Distance = V(k.7) Equation 30

Where k has been calculated in Equation 29 and ¢ is the time in seconds. The time
required for each step, at the maximum temperature (1260°C) instead of the actual

temperature, to give an equivalent diffusion distance was then calculated. An example
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is given for diffusion of aluminium in nickel (Figure 27). Values for titanium were very

similar.
Constants
Temp | Temp Diffusion Eqiv Time
(°C) | (°K) R A Q D Time (s)| distance (cm) | @ 1553°K

1221 | 1494 | 1.987] 4.41 |73160] 8.737E-11 7200 0.000793115 | 3846.2925
1232 | 1505 | 1.987] 4.41 |73160] 1.046E-10 | 7200 0.000867861 | 4605.438
1246 | 1519 |1.987] 4.41 |73160] 1.311E-10 | 7200 0.000971433 | 5770.2683
1260 | 1533 | 1.987] 4.41 |73160] 1.635E-10 | 7200 0.001085128 7200

Total
Seconds 21421.999
Hours 5.9505552

Figure 27 — Excel calculations for solution heat treatment approximation

The 4 step solution treatment is therefore substituted with 1 solution treatment step at

1260°C for 6 hours.

5.5 Predictions using UTS_IW7_Test database.

The IW7 test database represents the initial database of raw data, as inherited from
QinetiQ for this work. The data has been collected by a combination of undergraduate
students and researchers over the period of several years The following set of results
represents a summary of the work completed prior to any raw data analysis and
subsequent data clean-up. The model was trained using a maximum of 18 hidden units

and 9 seeds. A maximum of 60 models was selected to train committees.

e Best LPE committee comprises of 4 models.
* Best TE committee comprises of 8 models.

¢ Best LPE and TE committees had no models in common.

52



12007 UTS Predictions for Nim739

1000 - ®

800 +

Committee 2 Best 4 LPE
ordered
Committee 2 error bounds

UTS (MPa)

e Data from NIM739 Datasheet

N
o
S

Committee 3 Best 8 TE
ordered
200 4 Committee 3 error bounds

Temperature °C

0 200 400 600 800 1000 1200

Figure 28 - UTS predictions for Nim739 using UTS IW7_Test

Both the LPE and TE committees gave good results when tested against unseen Nim739
data (Figure 28). The best LPE committee prediction was closer to the test data. Test
data was very close to staying within error bounds throughout the temperature range.
Maximum predicted error was 118 MPa with an average error of +/- 84MPa

When tested against data for M313 the LPE committee prediction was very close to
the test data again. (Figure 29). The model had significantly wider error bounds than
the prediction for Nim739 with an average error +/- 468MPa for the best LPE

committee. The best TE model committee was not tested using this data.
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Figure 29 - UTS predictions for M313 using UTS _IW7_Test

The training database was checked for data that is similar to data used to test the
models. Although there is no Nim739 data in the database there is IN939 which has an

almost identical composition. The IN939 data in the training database has been plotted

with the ‘unseen’ Nim739’ data and the predicted values for Nim739 (Figure 30).

Comparison of seen vs unseen data
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Figure 30 - Comparison of data for Nim739 and IN939 + Neuromat prediction
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Figure 32 - Significance of inputs for best LPE committee.

Significance plots for both committees (Figure 31 & Figure 32) show that the most
significant data inputs to the models are; test temperature, cooling rate from heat
treatment 2 and weight percentage of boron. It is expected that test temperature should
be the most significant input but the relative high significances of heat treatment 2 and

boron in comparison to additions such as Al and Ti is not expected.
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5.6 Supporting work using Matlab
Initial work with Matlab for this dataset produced results that were not repeatable. A
network that was trained and gave reasonable predictions could be retrained from
scratch with the same data in an identical manner and yet give very different results.
This was found to be due to the way that the model chooses its starting weights.
One of the first lines in the code which ‘initialised’ the network randomly selects the
starting weights and biases (or ‘seeds’). To make the training process repeatable the
starting weights and biases can be recorded and re-used to yield similar training results.
The effect of changing initial weights is well illustrated in Figure 33 where each line
represents the prediction from a single 25 hidden unit model started with random seeds

on identical training datasets.

UTS Predictions for M21

Matkab medel, Trainke, 25 Hu's, 10 randam seeds
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Figure 33 — Models trained using the same training in Matlab using different initial
values

The first attempts using Matlab to generate models were run by hand with no extra
scripting. The results in Figure 34 show UTS predictions for alloy Nimonic 739 from

single models against seen data.
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Figure 34 — Predictions for Nim739 UTS, varying number of HU’s
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5.7 Summary of Preliminary Results

Matlab models have shown that a large number of seed points will give the network the
best chance at finding an optimum fit to the UTS data and the difference between
networks trained from different seeds can be very large. It is advisable to select the
maximum number of seeds points in Neuromat before training the model to give it the
best chance of arriving at a globally optimised solution

Initial Matlab models have shown that a single model in the region of 16 to 25
hidden units can provide a reasonable fit to seen data. No one model fitted all seen test
alloys well.

Although the first results from the “raw” database proved encouraging, it was
found that for one ‘unseen’ alloy (Nim739) there was a very similar alloy present in the
database so this was not a critical test of the model’s predictive ability. More
importantly, the results of the significance analysis showed that the model was relying
heavily on inputs that are believed to be metallurgically less important than others. The
predictions shown are the best results achieved for this particular model/database
combination.

With this in mind, statistical analysis of the input data was conducted before

further models were trained.

o Data spread for each input within the database
= Maxima, Minima, Mean, Distribution etc..
o Analysis of data in large subsets
o Number of data points per alloy
o Scatter of subsets for alloys with a large number of data points (Alloys
with >10 data points have been identified and results for each alloy
plotted)

o Any repeat tests within database

o Wit% Totals were checked
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5.8 Data Preparation and Analysis

Data was stored within a Microsoft Access database in order to make data analysis and

data sorting more straightforward. Datasets were exported to Excel or .txt files for

analysis or to train a neural network model when required. This insures that the very

latest database was always used when producing statistical analysis of data or training a

neural network.

Each database was exported to a spreadsheet in Excel. The excel data analysis tool

for ‘Descriptive Statistics’ was used to analyse the data. The Descriptive Statistics tool

generates the following information:

Mean
Standard Error
Median
Mode
Standard Deviation
Sample Variance
Kurtosis
o Returns the kurtosis of a data set. Kurtosis characterizes the relative
peakedness or flatness of a distribution compared with the normal
distribution. Positive kurtosis indicates a relatively peaked distribution.
Negative kurtosis indicates a relatively flat distribution
Skewness
o asymmetry of a distribution around its mean. Positive skewness indicates
a distribution with an asymmetric tail extending toward more positive
values. Negative skewness indicates a distribution with an asymmetric
tail extending toward more negative values.
Range
Minimum
Maximum

In addition to the analysis performed automatically by Excel, two more calculations

were performed.

When

The percentage of data points for each input that are non zero. E.g. The column
for Ni contains 100% non zero values.

The distribution above and below 100% for the total weight percent for each
alloy.

looking at analytical results for; Process, Crystallography (X) and the three

cooling rates (CHT1, CHT2 and CHT3) it must be taken into account that these inputs
are coded 0,1,2,3.
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UTS Data Ni_(Wt%) cr Co Mo w Ta Nb Al Ti Fe Mn

Mean 57.83 15.67 10.34 3.57 1.85 091 1.06 281 2.60 287 0.07

Standard Error 0.19 0.13 0.20 0.10 0.08 0.06 0.05 0.05 0.05 0.18 0.00

Median 57.27 16.00 11.00 3.00 1.00 0.00 0.00 250 2.60 0.00 0.00

Mode 57.27 16.00 0.00 3.00 0.00 0.00 0.00 2.50 5.00 0.00 0.00

Standard Deviation 6.68 4.61 7.25 3.60 293 203 1.75 1.91 1.68 6.48 0.15

Sample Variance 44.64 21.30 52.52 12.96 8.56 4.1 3.06 3.64 281 41.94 0.02

Kurtosis 0.59 0.58 -1.20 17.76 3.63 10.17 1.15 -1.01 -1.29 290 8.96

Skewness 0.60 -0.32 -0.23 3.58 207 3.04 1.61 0.35 0.06 211 294

Range 36.00 30.00 25.15 25.00 12.20 11.90 6.50 8.00 5.50 27.16 0.80

Minimum 40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 76.00 30.00 25.15 25.00 12.20 11.90 6.50 8.00 5.50 27.16 0.80

Number of records 1288

Percentage of non zero values 100.0% 99.5% 76.4% 86.0% 52.4% 28.3% 44.3% 97.7%  91.9% 38.5% 35.2%
Si C B Zr ) Hf Re La Process X

Mean 0.07 0.08 0.01 0.05 0.02 0.08 0.05 0.00 0.61 0.11

Standard Error 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.01

Median 0.00 0.06 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Mode 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Standard Deviation 0.14 0.08 0.03 0.10 0.12 0.30 0.37 0.00 0.72 0.42

Sample Variance 0.02 0.01 0.00 0.01 0.01 0.09 0.14 0.00 0.51 0.18

Kurtosis 12.30 15.04 4545 65.17 57.14 17.98 53.57 179.71 -0.74 13.01

Skewness 3.23 3.13 6.28 761 7.59 428 742 13.47 0.73 3.74

Range 0.95 0.60 0.25 1.00 1.00 2,00 290 0.02 200 2.00

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 0.95 0.60 0.25 1.00 1.00 2.00 2.90 0.02 2.00 2.00

Number of records

Percentage of non zero values 36.7% 98.2% 83.6% 64.5% 21% 9.5% 22% 0.5% 47.3% 7.7%

TempHT1  TimeHT1 CHT1 TempHT2 TimeHT:  CHT2 TempHT3 TimeHT: CHT3 Temp_C UTS_MPa

Mean 969.30 294 0.36 707.91 13.95 0.10 407.20 8.59 0.02 498.01 998.36
Standard Error 10.21 0.06 0.02 8.78 0.30 0.01 10.24 0.20 0.01 9.61 10.38
Median 1100.00 2.00 0.00 760.00  16.00 0.00 620.00 8.00 0.00 609.05 1050.00
Mode 1100.00 4.00 0.00 20.00 24.00 0.00 20.00 2.00 0.00 20.00 1050.00
Standard Deviation 366.31 2.00 0.86 31512  10.87 0.40 367.46 7.26 0.26 344.73 372.35
Sample Variance 134185.98 4.01 0.74 99301.06 118.09 0.16 135025.68 52.73 0.07 118840.20  138646.36
Kurtosis 272 17.90 3.01 0.72 13.37 32.74 -1.90 -0.96 124.29 -1.29 -0.28
Skewness -2.09 273 2.14 -1.25 1.84 5.34 -0.06 0.55 11.23 -0.29 -0.60
Range 1295.00 18.83 3.00 1140.00 119.00 3.00 1020.00  32.00 3.00 1080.29 1647.38
Minimum 20.00 0.17 0.00 20.00 1.00 0.00 20.00 0.00 0.00 19.71 35.00
Maximum 1315.00 19.00 3.00 1160.00  120.00 3.00 1040.00  32.00 3.00 1100.00 1682.38
Number of records

Count - zero values 0 0 1089 0 0 1195 0 1 1278 0 0
Percentage of non zero values 100.0% 100.0% 15.5% 100.0%  100.0% 7.2% 100.0%  99.9% 0.8% 100.0% 100.0%

Table 1 Data analysis of UTS database

Analysis shows that there is a good population of data for boron within that database
and the data is not particularly skewed or have any large outliers (Table 1).

Data for heat treatment 2 (CHT2) shows that 99% of the values are set at 0 which
corresponds to air cool. Weight percentage totals show that only 507 entries have a
total weight percentage that equates to 100% exactly. Furthermore, there are 135 alloy
entries outside 100 */.0.5% and 22 entries that are less that 99%.

This data does not represent mistakes during data entry but is representative of
actual data published. A lot of data is quoted as nominal values within ranges which
quite often do not add up to 100%.

A form within Microsoft Access was used with an underlying query to
automatically generate graphs to show spread of data points within one alloy type or a
group of alloys. Figure 35 shows the full spread of data points within the original
database. Clusters of data are observed at common test temperatures 0°C, 550°C,
650°C etc. Large amounts of scatter are visible at these temperatures and require closer

inspection on an alloy by alloy basis. Presenting Neuromat with data with such a large
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spread will cause it to use large error bars in area where there is actually a lot of data.
Some obvious outliers are visible at 20°C with UTS values of between 400 and

600MPa.
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Figure 35 — Full spread of UTS data by alloy (UTS vs. Temp)

The two distinct clusters of data can be separated out further by plotting with respect to
alloy type / process (Figure 36). It can be seen that the higher cluster is generally
comprised of powder metallurgy alloys. Some outliers that have been removed during
the checking process have also been circled on this graph.

Alloys were examined on an alloy by alloy basis in order to identify incorrect data
points. An example of a typical alloy curve within the database is shown in Figure 37.
Figure 38 shows U720 and all its derivatives which exhibit a high amount of scatter due
to the subtle alloy variations within the group and the large amount of test data from a

variety of sources.
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UTS data for all alloys in database
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Figure 36 — Identification of outliers in UTS database
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Figure 37 — Material curve for alloy R44

| LTS Alloys in graph subform
Alloy
UTS Results by allo
Mo Datspoines | 8 Y o | » | Alloy 720 A
) y — Allay 720 B
MinTewo(Tl | 20 1800 [ |u720PM
Max Temp (C) | 1050/ ™ uT20
Standard Deviation | 2655 1601855 3 % 1 3 2 ! . [ u72o
Min UTS [MPa) [6342 1400 |_|ur20LC
e ] . [ |ur20PM
MarUTS (4Pe) [ 1602 ey . [ |ur2ocaw
Stondard Deviation | 2223 | = * . H o [ |ur20cw
£ 1000 - 3 [ |ur2oHc
ur20LC
w —
b 000 . [ urzo0
800 . UT20PM
400
200
*
0
0 200 400 600 800 1000 1200
Temp (°C)

Figure 38 — Data for U720 exhibiting large amounts of scatter at common test
temperatures

5.9 Modifications to database.

Heat Treatments
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When the data was initially input into the database, heat treatment columns were filled
from left to right depending on how many heat treatments the alloys received. Each
heat treatment step is added for a particular reason and can have different effects on the
microstructure. The model should benefit from each treatment (solution and age) being
identified in its own column.

The heat treatment columns in the database have now been rearranged so that the
significance’s would correspond to different types of heat treatment. Column
TempHT]1 has been reserved for solution treatments (high temperature relatively short
duration). All heat treatments in column TempHTI that were identified as ageing
treatments were moved to columns TempHT2 and TempHT3 with single ages in

TempHT?2.

Weight Percentages & Inclusion of Ni
The Nickel column can be calculated as a function of all the rest of the alloying

elements, it is therefore unnecessary to include this information in order to train the
neural network. The removal of this column also generates the assumption that all

weight percentage totals are now 100%.

Removal of outliers
The graphs for each alloy were used to identify clear outliers. Data was amended when

type errors were identified. Some data was removed when it was believed that it was

clearly wrong i.e. differed by an order of magnitude from the next nearest result.
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5.10 Models Using refined UTS Database
UTS models trained with full database including test alloys (UTS 17 01 _05)

* LPE committee comprises of 15 models (Figure 39) Models range between 5

and 14 hidden units.

* TE committee comprises of 12 models (Figure 40) Models range between 5 and

9 hidden units.
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Figure 39 - Committee based on LPE

ranking
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Figure 40 - Committee based on TE

ranking

The committee models were exported so that they can be run on a as a standard PC as a

standalone application. A single text file has been created with all test alloys and all

variations for sensitivity analysis so that model only needs to be run once in order to

generate all data required.

Predictions against test alloys (seen data)

Graphs show that the LPE committee performs better with test alloys 617 (Figure 41)

and 901 (Figure 42) with very little difference between the two for MERL 76 (Figure

43). LPE predictions appear to be lower than TE based prediction.

Error bands for MERL 76 predictions show decreased confidence levels at higher

temperatures which correlate well to the spread of data in the database.
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UTS Predictions for Inconel 617
(UTS_17_01_05)
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Figure 41 — Neuromat predictions for Inconel 617 UTS
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Figure 42 — Neuromat predictions for Nimonic 901 UTS
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UTS Predictions for Merl 76
(UTS_17_01_05)

1800

—_— 4 Actual data

1600 — —
R § Merl76 TE

N Error
1400 F— = Merl76 LPE —|

AN

\\
400 \
200

0 200 400 600 800 1000 1200
Temperature °C

UTS (MPa)
o3 8
S S

Figure 43 — Neuromat predictions for MERL 76 UTS
Significance of input variables.
Significance values from each model in each committee have been recorded. The
following graph shows the average significance values for each committee model
(Figure 44).

Significance values for composition inputs appear more consistent with
metallurgical understanding than previous models using raw data. Boron is no longer
considered to be the element that has most effect on UTS. The significances of heat
treatment steps are however less believable with cooling rate of the first ageing
treatment (CHT?2) appearing to have the most effect. It has however been shown in the
literature that, in the case of U720, there is significant influence of quenching medium

xlviii

on the properties of the alloy due to the effect on tertiary y’ formation
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Average Significance Values for committees
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Figure 44 — Significance of inputs for input dataset UTS 17 01 05

Sensitivity Analysis

Inconel 617 is present in the training dataset. The prediction is carried out for an ageing
treatment at 650°C for 8 hours and shows an average increase in UTS of ~300MPa

(Figure 45).
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Figure 45 — Sensitivity of UTS model to change in heat treatment for Inconel 617

MERL 76 was chosen as an example of a high strength disk alloy within the database.
The prediction for MERL 76 without any ageing treatments (Figure 46) showed a small
increase in UTS although error bounds have increased from */. 100MPa to */. 400MPa.

Decreasing the 1% ageing temperature produced a small increase in UTS whereas
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increasing the 1* ageing temperature produced a small decrease in UTS — these

predictions were accompanied by tighter error bounds (/. 100MPa).
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Figure 46 - Sensitivity of UTS model to change in 1% age temperature for MERL 76

Making changes to the second age rather than the first ageing treatment had no real

effect on the UTS values over the prediction for the standard spec alloy (Figure 47).
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Figure 47 - Sensitivity of UTS model to change in 2™ age temperature for MERL 76

Predictions for un-aged Nimonic 901 (a medium strength disk alloy) suggested a

decrease in UTS on average. The error bounds accompanying this prediction are huge

(*/-1350 MPa). The effect of altering the ageing temperature was negligible (Figure 48)

but the model does not have sufficient data to predict for this case.

68



Effect of heat treatment on Nimonic 901
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Figure 48 Sensitivity of UTS model to change in 1* age temperature for Nimonic 901

Compositional variations

Increasing both aluminium and titanium by 0.5% brought about a predicted decrease in
UTS. Decreasing the amount of aluminium and titanium showed a predicted increase in
UTS. Error bounds remained roughly the same as for the standard specification of the
alloy. The changes in UTS, although small, occurred in the opposite directions to what
was expected as Al and Ti are Y’ formers. A 1% increase in niobium content showed an

increase in UTS of ~30MPa (Figure 49).
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Figure 49 Sensitivity of UTS model to change in composition for Nimonic 901
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UTS models trained with database without test alloys (UTS_19_01_05)

e LPE committee comprises of 5 models (Figure 50) Models range between 7 and
12 hidden units.

e TE committee comprises of 4 models (Figure 51) Models range between 7 and
11 hidden units.
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Figure 50 - Committee based on LPE Figure 51 - Committee based on TE
ranking ranking

The suggested committees are very different for only a small change in the database,
The LPE committee has reduced from 15 to 5 models. Extra models in a committee
improve generalisation but the test error for the 5 model committee was lower (9.0)
compared with 9.5 for the 15 model committee.

The following predictions are tests against unseen data (red and blue lines)
previous predictions (seen data) have also been added to the graph to compare how
much worse (if at all) predictions are when test alloy data is not included in the training

database.

Predictions for UTS made without Inconel 617 in the database are not as close as those
made when Inconel 617 was present. Predictions are better between 800 and 1000°C
for all models. The difference between models was negligible in this temperature range

although error bounds were tighter for models based upon seen data (Figure 52).
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UTS Predictions for Inconel 617
Models trained with data for 617 vs models trained without.
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Figure 52 — Predictions for Inconel 617 using models trained with and without the test
data set.

All predictions for MERL 76 UTS lie within 50MPa of each other and lie on existing
data points for the alloy (Figure 53).

UTS Predictions for Merl 76
Models trained with data for Merl 76 vs models trained without.
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Figure 53 - Predictions for MERL 76 using models trained with and without the test
data set

Predictions made for Nimonic 901 with unseen data are ~500MPa of the target values.
Only the error bounds for the LPE committee actually include the target data. Original

predictions for seen data were very close to actual data in the database (Figure 54).
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Figure 55 — Significance values for UTS model committees.

Significance analysis shows little difference between committees comprising of a small
or large number of models (Figure 55). The significance of Fe is noticeably higher

when the test alloys are present. This may be due to the inclusion of Nimonic 901 (35%

Fe).

Comparison of new UTS models with UTS models trained with old test data

Comparisons have been made between UTS 17 01 05 (current models based on full
database) and UTS 01 11 04 (Old models — including Ni and some minor data errors).

Predictions have been made using old test alloys which were not in the old database but
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are included in the new database therefore new models should give results comparable

to, if not better than previous results.
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Figure 56 — UTS predictions for Nimonic 739 (comparison of old and new models

Predictions for Nimonic 739 remain relatively unchanged to previous models (Figure
56). Error bounds are wider for the new models at low test temperatures despite the
inclusion of the test alloy in the database.

Results for test alloy M313 show the new models to give less accurate predictions
but with tighter error bounds (Figure 57). The LPE committee gave best results for both
old and new models.

Results for test alloy M21 show the new models to give slightly less accurate
predictions but with tighter error bounds (Figure 58). The LPE committee gave best

results for both old and new models.
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Figure 58— UTS predictions for M21 (comparison of old and new models
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5.10.1 Discussion
New models perform well against all 3 test alloys (In617, Nim901, MERL 76) when

test alloy data is included in the training dataset. With the test alloy data removed from

the dataset predictions were as follows:

*  MERL 76 remained unchanged (Figure 53)

* Inconel 617 - less accurate predictions in 0-800°C temperature range (Figure 52)

e Nimonic 901 — predictions out by 100-500MPa with the smaller errors at higher
temperatures (Figure 54)

* In all cases error bounds were wider when predicting for unseen data

Input significance values have improved over previous models they conform much
more closely with metallurgical theory of which additions improve alloy strength.
Significances for compositional inputs no longer show Boron content to be most

significant. On average, the most significant inputs (in order) are:

| Cr | Al | Fe | C | W IMo |B |

Where Cr provides oxidation resistance and solid solution strengthening and Al is a Yy’
former. Fe has two functions, in most alloys it is an impurity and therefore has no effect
but it is present in the Inconel alloys as a Yy’ former and therefore directly linked to
UTS.

The cooling rate of the second ageing treatment is still found to be a significant
input to the model and it has been found in the literature to have a pronounced effect on
strength due to its effect on the formation of the finest y’ 220. Some additional points of
note were:

* The effect of changing ageing temperature and Al and Ti additions appears to

have the opposite effect to that expected (in most cases the effect is only small)

e Addition of Nb increases UTS.

* Ageing 617 increases UTS

The processes of removing outlying data poses the question as to whether scatter is
useful to the modelling process or not. Reducing alloy data to a smooth data curve such

as Figure 37 could improve the ‘accuracy’ of the predictions. Keeping the extra data in
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gives the model information on scatter and will affect the generation of scatter bands
within Neuromat.

The information within the model database is a mixture of data from papers;
where data scatter will occur between repeat tests by the same author or between
different authors, and data from alloy specification sheets where one curve is normally
given. It could be assumed that the manufacturers curve will often represent the
optimum strength of the alloy.

The anticipated use of the neural network models is to investigate new alloy
combinations based upon extrapolation from existing test data. With this in mind, the
scatter band should represent uncertainty in the model due to lack of information in the

training dataset for certain alloying combinations.
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5.10.2 Conclusions

Removing a small amount of erroneous data has had a positive effect on the models.
There is generally a smaller difference between predictions by LPE ranked and TE
ranked models. This is likely to be due to the different ways in which LPE and TE

rankings treat outlying data.

Some models appear to be insensitive to changes in ageing treatment and composition.
Changes in UTS values are generally small for a given composition or heat treatment
variation and in a lot of cases values move in the opposite direction to that which is

expected.

The significance value for the input Fe is artificially high when Nimonic 901 is present.
Removing Nimonic 901 (35% Fe by weight) is detrimental to subsequent predictions
for that alloy (Figure 54). This suggests that the model is trying to fit very small
variations in composition to the large scatter in the data. In reality, a major cause of this
scatter can be put down to the testing conditions or small variations in the material that
are not captured in the chemical composition e.g. levels of porosity. For any given
composition and heat treatment UTS values can vary depending on the processing route

and desired application.

There is a large spread of data points containing Fe in the database — 140 data points for
IN718 variants alone (Figure 59). With this amount of information the model should be
able to predict relatively well for Nimonic 901 whether the small amount of 901 data is

present or not.
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UTS Results ForIN718
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Figure 59 — Spread of data in UTS database for IN718

It has been proposed that alloys with a large data spread such as In 718 (Figure 59)
should be re-examined. Where alloys are all within nominal composition and heat
treatment, results spread will reduce through averaging values and a standard
composition will be adopted. For alloys such as In718 where there are several variants

such as cast and wrought, these distinctions will remain.

Data from tests where the composition or heat treatment has been varied will be
checked on a case by case basis. Baseline data from these tests can be compared with
expected values to assess whether the UTS, YS etc. at the starting point was consistent

with other known data before any compositional changes have been made.
More data is required for most alloys in the 100 — 500°C temperature range. If this is

achieved by extrapolating from existing data for each alloy it is thought that this should

help the model make predictions in this temperature range.
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5.11 YS database
Using the work with the UTS dataset as a guideline the following approach was used for

analysis and subsequent training using the YS data set:

* C(leaning’ of the database was performed — Some data was removed where there

was a very large spread

* A standard composition was adopted for each alloy. Only tests that were

specifically investigating effect of compositional changes were allowed to

remain unchanged.

o Statistical analysis was used to check input data spread and start looking at

candidates for removal from the input dataset.

5.12 Statistical analysis of YS input database.

Minitab software was used to generate information about every input variable to check

for spread of data and incorrect data entries (Figure 60). The graphs also proved useful

in explaining some trends within the network later on. Graphs of YS vs. temperature

were also plotted for each alloy as described previously in order to identify outliers and

areas of large scatter.
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Figure 60 — Input data spread for Cr in the YS database
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Distribution of data for coded inputs; process, crystallography and cooling rates is

presented in Table 2. Input CHT2 contains very little data for cooling rates type 2,3 and

4 and is a possible candidate for removal.

Process X CHT1 | CHT2
Cast 36.5% | PX | 89.8% Air 84.5% | 96.8%
Wrought | 42.1% | DS | 3.6% Furnace | 0.5% |2.2%
PM 21.4% [ SX | 6.6% Qil 9.8% | 1.0%
- - Water 5.2% | 0.0%
Table 2

The input space for each variable vs. test temperature is presented in Figure 61. Cr and

Co (top left) exhibit a good spread with respect to test temperature and no sign of

correlation. Cooling rate 3 shows no variation at all. The bottom right graph is test

temperature and therefore shows 100% correlation.
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Figure 61 — YS database. All inputs with respect to test temperature
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5.13 Results from models trained on ‘clean’ YS dataset

YS 26 _04_05

The original model trained on the clean YS database was presented with all data (786
lines, 28 inputs, 1 output) in the order found in the dataset. The input column for La
was removed as part of the dataset cleaning process. The model always performs well
against seen data (Figure 62 & Figure 63) and generally performed well against unseen
data (Figure 64). The model struggles to predict well against unseen Nimonic 901
(Figure 65).
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Figure 62 — Y'S prediction for Inconel 617 (seen data)
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Figure 63 YS prediction for MERL 76 (seen data)
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Prediction for CMSX4 (unseen data)
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Figure 64 YS prediction for CMSX-4 (unseen data)
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Figure 65 YS prediction for Nimonic 901 (seen data)

Significance analysis for both committees shows good agreement with metallurgical
understanding (Figure 66). The model has assigned the largest significance to test
temperature, with the solution heat treatment temperature and y’ formers Al and Ti also

being assigned relatively high significance values.
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Figure 66 — significance of inputs for YS model

Sensitivity analysis using CMSX-4 (Figure 67) and MERL 76 (Figure 68) as test alloys
shows that the model results move in the correct direction with variation of inputs such
as process, some alloying inputs and variations on heat treatment. In practical terms,
these changes are not actually possible to the extent used in the example but do give a
good indication that the model behaves in the correct way. For example, a large
increase in aluminium gave a large increase in strength in CMSX-4 (aluminium is
present as a Yy’ former). A polycrystalline version of CMSX-4 is predicted to have
increased strength (which in not inconceivable) polycrystalline disk alloys are some of
the strongest. Water quenching gives the biggest reduction in strength — rapid cooling
allows less time for formation of y’. MERL 76 shows a reduction in strength without
the artificial ageing process. Changes in the ageing temperature have virtually no effect

although this is probably too subtle an effect for the model to pick out.
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Sensitivity to Inputs - Model YS_26_04_05 predicting CMSX-4
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Figure 67 — Sensitivity to inputs YS model — CMSX-4 example
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Figure 68 - Sensitivity to inputs YS model - MERL 76 example

YS 02 05 05
This model has been trained using the same YS database but this time data has been

split into 90% training data and 10% test data to investigate new functionality made
available in the Neuromat software. Test errors were similar to those achieved with the
50/50 data split. The sensitivity example using CMSX-4 also shows very similar results

between models.
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Figure 69 Significance of YS input values after training with 90/10 split

Sensitivity to Inputs - Model YS_02_06_05 predicting CMSX-4
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Figure 70 Sensitivity to inputs YS (90/10 split) model - CMSX-4 example

85




5.13.1 Supporting Work with Matlab Neural Network Models

All work conducted so far using Neuromat has used committees of models. The effect
of the seed point (where the model starts off) has not been looked at in detail either.
Matlab neural network models have been used to investigate the effect the seeding of
the neural network models on the fit achieved.

Using seen data as examples, there is a large difference between the fit achieved
between different alloys. Using M313 M21 and M22 as examples, the effect of seeding
has a different effect on each alloy. All three alloys have roughly the same number of
data points in the database. All predictions for M22 are very close to actual data for all
10 networks (Figure 71). M313 alloy predictions show more variation depending on the
networks seed point (Figure 72) whereas M21 shows a huge range in predictions
depending on what value was used to seed the network (Figure 73).

This suggests that the data fit for M21 has more local minima/maxima that will
cause the network to converge on an incorrect ‘answer’. This could indicate that M21
will be more difficult to predict and should be represented in the test portion of the

dataset

Matlab predictions for M22
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Figure 71 —YS predictions for M313 with 10 networks all using different seed points in
Matlab.
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Matlab predictions for M313
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Figure 72-YS predictions for M22 with 10 networks all using different seed points in
Matlab.

Matlab predictions for M21
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Figure 73 - YS predictions for M21 with 10 networks all using different seed points in
Matlab.

The ability of a single model with a given number of hidden units to fit the test data has

been analysed (Figure 74). The range of HU’s in the Neuromat committees was

between 6 and 11 for the YS models. The Matlab models began to fit the data with 5

hidden units with 10 and 15 hidden units giving similar performance. Therefore

showing good correlation with the models selected by Neuromat.
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Figure 74 — Effect of number of hidden units on model data fit (YS dataset) M22 alloy
used as example.
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5.14 Discussion
It has been shown that, with the current dataset, models can be trained to fit the training
data with minimal test error. All the YS models trained since the database cleaning

exercise have predicted very well against seen data.

The best model to date is YS 26 04 05. The model gave good predictions in
conjunction with sensitivity and significance analysis results that tied in with

metallurgical understanding.

The model trained using a 90/10 data split performed as well as models trained using
50/50 data split. Experimentally there was no evident benefit to use either of these
methods in preference. In theory a 90/10 split will provide the model with more
training data thus increasing the certainty of predictions. This assumes that the 10%

data used for testing is representative of the whole dataset and not artificially skewed.

There is insufficient data in input column CHT2. 97% of data is set to (1) — furnace
cool. The effect of this input is, on average, quite high this is unlikely to be a real
effect. With such a small amount of data spread, the model is susceptible to
coincidental linking of variables. For example if the 3% of data where CHT2 is not
‘furnace cool’ coincided with just one or two alloys of high strength, the model would

assign an artificially high significance.

It 1s probable that some models will predict seen data well, have sensible significance
values but perform poorly on unseen data or predict incorrect trends in the sensitivity
analysis. This could be brought about by an input having a large effect in the ‘wrong’
direction. Significance analysis does not tell us if inputs have a large positive or a large

negative effect on YS just the magnitude of that effect.
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5.15 Conclusion
Cleaning of the data is important. It is possible to ‘add value’ to the database by using
knowledge of the alloy properties to select ‘good’ data from ‘bad’ data or interpolate
between values where it is know that the curve is flat.

Inputs that are very highly skewed i.e. 95% or more at one value can adversely
affect the learning process. The neural network model benefited from the removal of
such inputs such as CHT3 (cooling rate 3). The best model we can hope to come up

with should:

* @Give good predictions against all seen data.
* Be the closest match to an idealised significance profile.
» Sensitivity analysis should show the correct trends i.e. predictions move in the
correct direction with response to changes in composition/hear treatment.
In order to do this a set of rules based on metallurgical understanding should be

established. How should the model respond to:

* Compositional changes
* Changes in heat treatment
* Processing types
An idealised significance profile should be formulated to compare the model
significance analysis with. This could be in the form of rating ideal significances in
tiers:
* Tier 1 — most important
o Test Temperature
o Heat Treatment 1
o Al
o Cr
o

e Tier2 -

o Fe*

91



*Iron is a good example of an input to which the response is critical for some alloys (the
Inconel alloys) but not important for others. Selecting tier two inputs is therefore not a
trivial task and will need to be evaluated on an alloy by alloy basis.

5.16 Low Cycle Fatigue Model

5.16.1 Introduction

The main aim of the QinetiQ neural network program was to work towards developing
a neural network model for fatigue life prediction to be used in the alloy development
process. Low Cycle Fatigue (LCF) is of primary interest. The previous work using YS
and UTS databases has proved invaluable in developing a methodology to apply to the
LCF

LCF is a more complicated process to model due to the large number of test
variables and model inputs. Fatigue performance data is also subjected to much larger
scatter bands than tensile performance tests. Scatter within a tensile test to derive the
UTS value for a material may be 20% where as scatter of up to 50% is not uncommon
in fatigue testing. Life to crack initiation is hard to predict and model, and can be an
appreciable proportion of the total fatigue life.

Fatigue data for materials is less readily published by the alloy manufacturers. The
data collection process has relied heavily on reported data in academic papers and data

from QinetiQ internal test programs.

Using recommendations drawn form UTS and YS neural network models as a guideline
the following approach was used for analysis and subsequent training using the LCF

dataset:

* The large amount of scatter present in LCF data meant the data ‘cleaning’ step
developed for UTS and YS models was not used.

* A standard composition was adopted for each alloy. Only tests that were
specifically investigating effect of compositional changes were allowed to
remain unchanged.

» Statistical analysis was used to check input data spread and start looking at
candidates for removal from the input dataset — Much more time has been spent
on this step due to the large amount of scatter in the data and the relatively small
size of the dataset. It was important that any trends/problems during the
modelling process could be attributed to either data issues (such as amount,
spread, scatter) or the ability of the network to fit the data provided.
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* Testing was carried out using seen and unseen alloys to test the predictive
abilities of the network based on the training dataset.

* The ratio of number of variables to lines of input data is anticipated to be the
biggest problem in achieving an accurate model. Methods to reduce the number
of input variables will be investigated.

* A set of requirements to test the network against are required. Fatigue life is not
directly linked to strength so the tests for a ‘good’ model are likely to be
different to those specified for YS and UTS models

5.16.2 Selection of inputs and data collection

A literature review was initially conducted to get an indication of the quantity and
quality of data available for fatigue testing. It was decided that only data for strain
controlled axial tests would be considered initially for the database.

Inputs regarding alloy composition and heat treatment were chosen to be the
same as those used in the other databases previously discussed. Additional inputs were

required for fatigue life analysis and were incorporated in the database:

* Cycles to failure (Nf)
e Test temperature (°C)
* Total strain range (%)
e Strain rate (e%/s)

* Frequency

e R-Ratio

Strain range, strain rate and frequency data were collected for each input as some papers
quote strain rate and others quote frequency. All the data was kept in the database; for
example it is easier to present data in the analysis section by frequency if the test was a
fixed frequency test and vice versa if the strain rate is kept constant. In practice, only
one of the inputs is required as it is purely a function of the other and the total strain
range.

Once the required inputs had been defined, a comprehensive search of the literature
was undertaken. It was found that only 30% of papers initially identified actually had

enough information to add the data to the database. Many papers used dimensionless
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graphs, did not quote the strain range or didn’t include any information on the test
frequency and waveform used. Due to the nature of academic and industrial papers, a
lot of tests were looking at more novel aspects of fatigue testing such as testing in
different environments or investigating material coatings — most turbine blades are
coated in use.

Prior to further sorting and data analysis, the original database comprised of 700

input lines made up from 38 alloy combinations. A graph of all the data is shown in

Figure 75.
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Figure 75 — Total input space (strain range vs. cycles to failure) for LCF database

5.16.3 Analysis of Input Data

Graphs of distribution of input variables and distribution of data by alloy were produced
using Minitab. Minitab proved particularly useful for producing graphs of data by alloy
as further groupings for temperature, r-ratio and frequency can be included. Minitab is
also able to fit a regression line/curve to each group of data. The cubic regression fit
has been selected for all graphs. It should be noted that Minitab includes all
combinations of variables in the legend even if the particular combination is not present
in the raw data.

The alloys Haynes 230 has been used as an example of the data checking process.
A graph of strain-life curves has been plotted by temperature and frequency with
regression fits to each group (Figure 76). A large amount of scatter is visible in the

427°C range. In this case, the data is further subdivided by reference source (Figure 77

94



and Figure 78) in order to examine the possible source of the scatter. In this case it can
be seen that the 427°C data at 0.33Hz is made up of 2 separate strain life curves from 2
different sources. In this particular case, the data from the Haynes datasheet at 427°C
was removed from the database. The gap between this data source and the rest from the

same alloy is particularly large.

Haynes 230 Strain Range vs Log Nf
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Figure 76 — Spread of training data for Haynes 230 by strain range
Haynes 230 by Test Temp and Reference Source
Temp_C Reference Source
—— 427 Fatigue 2002 p1283
1.87 —m 427 Haynes Datasheet
427 Superalloys V00_68
1.6 >§ —aA - 427 Superalloys V88 59
! 760 Fatigue 2002 p1283
\ % * —q— 760  Haynes Datasheet
1.49 ! \ \ —v— 760 Superalloys V00_68
o \ \ \ - 760 Superalloys V88_59
S 1.2 N \ \ — - 816 Fatigue 2002 p1283
2 \ \ \ 816  Haynes Datasheet
< 1.04 —o— 816 Superalloys V00_68
s 816 Superalloys V88 59
a -&- 871 Fatigue 2002 p1283
B 0.8 —A - 871  Haynes Datasheet
= —p - 871 Superalloys V00_68
—4— 871 Superalloys V88 59
0.6 927 Fatigue 2002 p1283
-—- 927  Haynes Datasheet
0.4 927 Superalloys V00_68
—%X-- 927 Superalloys V88_59
—0— 982 Fatigue 2002 p1283
0.2- T — 982  Haynes Datasheet
2 - - 982 Superalloys V00_68
Log NF 982 Superalloys V88_59

Figure 77 Spread of training data for Haynes 230 by test temperature and Ref source.
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Haynes 230 by Reference Source
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Figure 78 Multi-plots -spread of training data for Haynes 230 by test temperature and

The process of plotting data by alloy has been repeated for all alloys in the database in
order to highlight any problems with the data such as wrong values or large amounts of
scatter. The data for PW1480 was initially left in the database, on closer examination of
the source paper it is apparent that the large amount of scatter (Figure 79) may be due to

specimen orientation effects under investigation. This data is a possible candidate for

further sorting/removal.

reference source
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PW1480 Strain Range vs Log Cycles to Failure
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Figure 79 — PWA1480 strain life data

5.16.4 Statistical Analysis

The Minitab software package was used to analyse the data further in conjunction with
running the models. The results of the analysis were used to explain trends in the
predictions or areas where the models seemed to struggle.

Although Minitab was used to generate detailed statistical data about each input,
Matlab has been used to generate input distribution histograms to be included in this
report.

Variables with a poor spread of input data are identified as Fe, V, Re, La, Time
HT1, Time HT2 and total strain range. It can be seen immediately that the strain range
data has been skewed by spurious results at a value of around 400. An amended strain
range distribution is given in Figure 84. The treatment of Fe is complicated due to its
very different roles depending on the alloy in question; this also explains the spread of
data present.

LCF lifetimes (log Ny) within the database can be seen to adopt a normal

distribution. R ratio and frequency are also both well spread within the limits of what

tests are actually possible.
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5.16.5 Preliminary models

The first attempt at training a neural network on the LCF database was carried out using
Neuromat. At this point the data had been checked for mistakes but no extra data
sorting or removal had been carried out. The prediction was carried out against totally
unseen data. The source of the data was tests carried out at Southampton University,
reported in section 6.6.3.1. Strain range calculations were carried out using FEA as
tests were carried out in load control. Although the prediction looks poor (Figure 82), it
is comforting to see the prediction passes through data-points in the 1-1.5% strain range.

The significance analysis (Figure 83) shows that the model is not really picking
up the correct trends within the model but it does suggest a very high reliance on the

strain range input as expected.
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Figure 82 — LCF model predictions against unseen CMSX-4 data
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Significance analysis of LCF NN models using Neuromat
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Figure 83 — LCF model significance of inputs
5.16.6 Discussion

The initial model shows reasonably good correlation at 1-1.5% strain range. Above
1.5% strain, models were unable to predict well. This is not surprising as a large
percentage of the training data is in the range of 0% - 1% with most of the data

clustered between 0% and 0.5% (Figure 84).
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Figure 84 - Analysis of strain range distribution
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Strain range appears to be by far the most significant input. This in itself is a function
of a material’s properties. Other inputs seem to have too high a significance value,
whereas test temperature is predicted to be not as influential.

It is suggested in the literature that the model should be trained using Log Ny, rather

than Nf, this is implemented in future models.

5.16.7 LCF model 2nd attempt

Models are now trained using Log Ny as an input instead of N¢. An initial simple test
dataset was constructed using only CM186 data. In order to demonstrate that a model
could be trained using the large number of inputs in the LCF model a simple 10 hidden
unit model was trained in Matlab and predictions were made. The results (Figure 85)
show a very good fit to the training data as expected and gave the confidence to train a

model using the full database.

Matlab 10 HU's CM186LC, R=-1
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Figure 85 — Matlab neural network demonstrating data fit to CM 186 data

Matlab is now used to demonstrate it is possible to use the neural network model to fit
seen data having been trained on the full database. All curves are very close to being on
top of one another (Figure 86) and do not show much dependence on temperature. That

said, the test data does not show any conclusive temperature effect either.
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Figure 86 — LCF model predictions for seen data Haynes 230

Removal of input lines
Reducing the number of input variables reduces the size of the modelling space thus

making it easier for the model to fit the remaining data. Inputs that are known to have
no effect or that do not vary from record to record should be removed

Input variables CHT2, CHT3 are the first candidates for removal from the
dataset due to the lack of data spread within the database (mostly set to 0). It is
arguable that the data lines with non zero values for these inputs should be removed.
However, the lines of data have been left in to preserve the size of the training dataset.

Certain elements included in the composition are referred to as tramp elements™™
for example Mn and Si. The values in the database are maximum allowable values
where the ideal value would be zero. These elements are not in there by design and
would not be specified when designing a new alloy. It is felt they do not add anything
to the model at this current level of complexity and are another candidate for removal.

Fe is also named as a tramp element but due to the inclusion of Inconel alloys

(as discussed earlier) it must be left in the database.

Model Results
Initial Predictions using an LCF model trained in Neuromat show a very good fit for

CMSX-4 (seen data) at an R ratio of 0.05. On examination of input significances for
this model, strain range and test temperature are now showing as the two most
significant inputs as would be expected. Two other inputs with high significances are

Vanadium and the duration of the 3™ heat treatment. The effect of heat treatments is
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with respect to fatigue life is likely to be different for polycrystalline and single crystal

alloys where the heat treatment effects grain size and Yy’ size respectively.

LCF_12_9 05, CMSX4 R=0.05
1.80
1.60 ¢
. 1.40 v 2L
120 DU
g &«
g 1.00 IR S
X 0.80
£
& 0.60
? 0.40
0.20
0-00 T T T T T T T T T
0.00 050 1.00 150 200 250 300 350 400 450 5.00
Log(Nf)
#550C 0 550C_LPE A 550C_TE e 850C ¢ 850C_LPE A 850C_TE

Figure 87 — Neuromat LCF predictions for seen data CMSX-4
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Figure 88 — Input significances for model trained on reduced input dataset

Further tests show that good agreement can be achieved between Neuromat models and
relatively simple models trained in Matlab. Figure 89 to Figure 92 show direct
comparisons between Neuromat and Matlab models for alloy CM186LC. This alloy

was chosen as there is a relatively small amount of scatter in the input data and there is
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data for various temperatures at two different R ratios.

capture the temperature and R ratio effects satisfactorily.

Both models were able to
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Figure 89 — Neuromat LCF predictions for seen data CM186LC R=-1
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Figure 90 — Matlab LCF predictions for seen data CM186LC R=-1

104




LCF_12_9 05CM186LC, R=0.05

1.80

1.60 > —O¢—&

1.40 > 5=+

3 ’oﬁ: o e

- 120 o B
g o W T SO .
Q
& 1.00 * O e,
5 o h o
c 0.80 B5—e
©
= m}
» 0.60 hd

0.40

0.20

0.00 ‘ ‘ ‘ ‘ ; ; ; ; ; ‘

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
Log(Nf)
‘. 550C ¢ 700C ~ 850C ¢ 950C O LPE_550C [ LPE_700C  LPE_850C 0 LPE_950C — Series9 ‘

Figure 91 — Neuromat LCF predictions for seen data CM186LC R=0.05
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Figure 92 — Matlab LCF predictions for seen data CM186LC R=0.05 (Key as in Figure
91)
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5.16.8 Discussion

There is a large difference between the amount of scatter in the test data in Figure 86 vs
Figure 87, Figure 89 and Figure 91. The models fit extremely well when there is not
much scatter in the input data. When there are large amounts of scatter the fit is still
good, the order in which the curves are presented with respect to temperature is not
always as expected. When the input data is examined it is not surprising due to the

amount of scatter in the training data.

Models trained in Matlab with a set number of HU’s are performing as well as

Neuromat models with an ‘optimum’ number of HU’s.

Predictions have only been carried out at points where there are datapoints in the
training set to compare with. When there is a large amount of scatter in the predicted
values, a line of best fit has been applied to the results using the line fitting tool in
Excel.

The predictions should really be made in the form of a continuous line as the
model can predict points at any strain range. This is the way predictions were
performed using the UTS and YS models. Using this process will highlight over fitting
of models to data with large amounts of scatter. The desired output from the model

should be in the form of a strain life curve.

The models have been seen to improve by reducing the number of inputs. This was
done by removing inputs that were not felt to contribute to the performance of the alloy
(tramp elements) or inputs with very little or no variation in data.

Although the LCF models have not been tested on any unseen data, the fit to
seen data it very good. It is felt that there is not yet enough data in the training dataset
to provide meaningful results against unseen data.

Another proposed method to reduce the number of inputs would be to look at the

Smith Watson Topper parameter' to condense information about R ratio and frequency.

106



5.17 Final Conclusions

Neural network models are able to fit to seen LCF data well although overfitting to data
with a large amount of scatter is a problem. To improve the models, more data is
required. The distribution histograms should be used as a starting point to determine

where data is sparse.

Further investigation is required as to the method of inputting data, whether the raw data
is used or a curve fitting process is used prior to training. Further predictions should be
made at strain range values throughout the entire range to check for overfitting and poor
generalisation. Sensitivity analysis is required. To do this, inputs must be identified
that have a known effect on fatigue life. Temperature is currently the only input that

has been examined this way.

The UTS and Y'S models showed benefits from ‘human intervention’ i.e. the removal of
some data that was clearly outside the expected range for the material, collapsing of
data, adoption of nominal compositions and the addition of data where the curve was

know to be flat.

Due to the nature of fatigue data there is a lot more inherent scatter. Collecting,
analysing and sorting the data prior to training takes more precedence than with the
UTS and Y'S models.

On analysis of the fatigue data it is apparent that some input data curves do not
fit the expected pattern. For example, when plotting SN curves for Haynes 230 (Figure
86) it would be expected that the curves would be ordered by temperature. Where
curves cross or are in completely the wrong order, this data may not be valid to train the
neural network.

There is no disputing that the data is real but when the neural network is picking
out trends should it be helped along by using known information about fatigue

performance trends with temperature or R ratio to improve the data?

The best training database should be a combination of data from literature and
accumulated knowledge from metallurgy and test experience. This is where QQ can
add value to the process over and above collecting large amounts of data to train a

neural network. It has already been shown that large amounts of data alone are not
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enough. The UTS database has been steadily improved whilst removing data as the

process evolved.
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6 Fatigue testing

6.1 Introduction

A turbine blade root contains notches that locate into a “fir-tree” root fixing (Figure 9)
in the turbine disc. Fatigue initiation in these stress concentrating features is of some
concern. Fatigue crack initiation can occur at relatively low service temperatures in this
area (e.g. 650°C). The main purpose of this chapter is therefore to establish the critical
factors controlling the notch fatigue life of turbine blade single crystals. When aturbine
blade is cast, the primary orientation along the blade (usually in the <001> direction) is
controlled to within certain limits, however the secondary orientation (i.e. the
orientation of any notches) is not generally controlled. A programme of study is

proposed with the following broad aims:

* To establish the critical factors controlling the notch fatigue life of turbine blade
single crystals.

* To study the nucleation, early fatigue crack growth and final fatigue crack
growth regimes.

* To produce simulation models to predict the initiation, growth and coalescence
or growth to final failure of such fatigue cracks.

* To investigate the effect of secondary orientation on fatigue behaviour.

* To assess the possible use of this within a design procedure.

The aims of the work are to investigate fatigue crack initiation and early crack
growth in the notch root of single crystal alloys. The notched specimen geometry has
been defined such that the stress concentration is similar to that found in a fir tree notch
root on a turbine blade, with a stress concentration ~2. All tests were conducted for a
<001> tensile axis with two differing nominal crack growth directions <110>
(orientation A) and <100> (orientation B) as shown in Figure 18. Testing was
conducted at room temperature, 650°C and 725°C. The high temperature tests are
within the range of temperatures that the notch root experiences in service. Room
temperature testing has been conducted in order to identify temperature effects and to
establish loading levels likely to achieve lifetimes ~10,000 cycles. The LCF regime
was identified as important in discussion with sponsors (QinetiQ and ALSTOM). It

was also an experimental requirement to allow replication approaches to track crack
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initiation and surface features of crack growth within a reasonable test duration (~ 3

weeks at the frequencies chosen).

The Engineering Doctorate (EngD) work forms part of a co-operative research
programme (CRP) between the School of Engineering Sciences, University of
Southampton and the Structures, Materials and Propulsion Laboratory, Institute for
Aerospace Research, NRC, Canada. The material under investigation at CNRC is
PWA1484.

A complementary postdoctoral programme (Dr Mark Joyce) is studying the long
crack propagation behaviour of the same CMSX-4 orientations under equivalent test
conditions (R-ratio, frequency, temperature, orientation) thus conventional long crack
propagation behaviour will also be available for comparisons with the short crack
initiation and growth data produced in this package of work.

René N5 was made available by GE in order to provide a comparison with the work

being conducted using CMSX-4

6.2 Materials

The CMSX-4 material was supplied by ALSTOM Power in the form of cylindrical cast
bars. The bars were between 130mm and 160mm in length and 12mm in diameter. The
bars were cast in the <001> and <111> directions and the misalignment for each
individual bar was given. Table 5 gives the details for each casting supplied. 0 and p
refer to the primary (bar axis) and secondary (perpendicular to the bar axis) orientations
with respect to <001> directions. For <001>, the secondary orientation is not
controlled, and variations in p have no real relevance, the maximum misorientation
from the <001> tensile/bar longitudinal direction can be seen to be 8 degrees. In the
case of the <111>, p should ideally be 45°. The heat treatment details for the batch are
given in Table 6. Although bars were also supplied in the <111> direction they have
not yet been used and are not discussed further in this report. NB the specific details of
heat treatment are commercially proprietary and examiners are asked to maintain
confidentiality.

René N5 material was supplied courtesy of General Electric.

PWA1484 was sourced and tested at CNRC. Once testing and analysis was completed

at CNRC the test specimens were passed over University of Southampton for further
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metallurgical analysis and microscopy. The compositions of all 3 materials are given

below:
CMSX-4 | Cr Co W Mo Nb Ta Hf Ti Al Re Ni
Min (%) 6.2 9.3 6.2 6.3 0.07 0.9 545 2.8 Bal
Max (%) | 6.6 10 6.6 0.6 0.1 6.7 0.12 1.1 575 3.1

Rene Ni
N5 Cr Co w Mo | Nb Ta Hf Ti Al Re

Nom 748 | 7.72 6.38 1.5 713 | 0.15 - 6.18 | 2.85 Bal
PWA Ni
1484 Cr Co W Mo | Nb Ta Hf Ti Al Re

Nom 5.0 | 10.0 6.0 2.0 - 9.0 0.1 - 5.6 3.0 Bal

6.3 Material Characterisation

6.3.1 Sample preparation

Samples sliced from the end of the cast bars were used for basic material
characterisation and for determination of secondary orientation of the bars. A thin slice
was removed using a Buehler Isomet 4000 Linear Precision Saw with a 11-4207
abrasive wheel and mounted in conducting bakelite. The sample was then polished
using an automatic polisher as detailed:

e 120 grit paper @250 rpm contra rotating, 201bs pressure, 5 minutes

e 600 grit paper @250 rpm contra rotating, 201bs pressure, 5 minutes

e 1200 grit paper @250 rpm same rotation direction, 20lbs pressure, 5 minutes

* 4000 grit paper @250 rpm same rotation direction, 201bs pressure, 5 minutes

* 3um Diamond paste on dp nap cloth, 150rpm same rotation direction, 151bs 4

minutes.

*  OPS solution on dp nap cloth, 150 rpm same rotation direction, light pressure, 1

minute.

Nimonic etch (100ml distilled water, 40ml hydrochloric acid, 10ml nitric acid, 5g
copper II sulphate) was used to preferentially etch the y’. Examination of the samples
was performed using an optical microscope and a Jeol JSM-6500F FEG SEM in both
secondary electron imaging (SEI) and backscattered electron imaging (BEI) mode.
Plain polished specimens were used in the scanning electron microscope (SEM) when

observing the sample in backscatter mode.
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6.3.2 Hardness testing

Specimens were tested using the micro Vickers hardness method. Lines of indent tests
were performed at various loads across each sample to assess the hardness of dendritic

and interdendritic regions. Testing was carried out to BS EN ISO 6507

The following equation was used to calculate the hardness value of each indent:

HV = 1.854% Equation 31

Where,
P - the applied load [kg]
d - the average diagonal [mm].

6.3.3 Oxidation Study.
In service, CMSX-4, René N5 and PWA 1484 would normally be coated with a suitable

oxidation resistant coating. Information about the formation of oxide on uncoated
samples at the temperatures of interest is sparse. Therefore an assessment of oxide
formation was performed.

Material left over from specimen machining was cut into ~8mm square samples.
Plain polished samples, and polished and etched samples were prepared and exposed at
650°C for 1, 2, 4, 8, 16, 32, 64, 128 and 256 hours in a furnace fitted with a calibrated
thermocouple. The test specimens were placed in ceramic crucibles and a sample
location map was used to ensure that samples with different time exposures were clearly
identified. it was anticipated that any identification marks would be obscured during
the oxidation process and every attempt was made to remove sources of contamination.

All samples were weighed before and after thermal exposure using a calibrated set
of electronic scales accurate to 0.0001g. Oxidised samples were examined in the SEM
starting with the two extremes (1 and 256 hours). Selected samples were sectioned so
that the oxide thickness could be observed. The sectioning and plating procedure is
documented in section 6.3.4

In the case of the PWA1484, samples were cut from the end of test specimens

supplied by CNRC.
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6.3.4 Sectioning and Ni Plating

The surface of interest (oxidised sample or fracture surface) was protected with a layer
of nickel plate before cutting any samples. The Ni plating was performed in the

following solution:

500 ml H,O

150 g Nickel sulphate
20 g Nickel chloride
20g Boric acid

A 99.9% Ni anode was used. The superalloy acts as the cathode. The solution was
warmed to 55-60°C on a hot plate and agitated using a magnetic stirrer. A voltage of 3v
was applied across the system. A diagram of the test apparatusis given in Figure 93.

Once plating was completed, a thin slice or section was removed from the plated
sample using a Buehler Isomet 4000 Linear Precision Saw with a 11-4207 abrasive
wheel. The sample was then mounted in bakelite and polished and etched using a

Nimonic etch.

6.3.5 Porosity Analysis.

Preparation of the notch root is discussed in the following section. The notch root was
photographed after polishing and prior to etching to record the surface porosity
distribution for all tested samples. An optical microscope was used to systematically
photograph the surface after which the micrographs were pasted together to provide an
overview of the notch. This composite picture was then used to generate a binary image
of the porosity in order to carry out Finite Body Tessellation Analysis (FBTA) on the
image. FBTA is a technique developed at Southampton which can capture information
on size, aspect ratio, clustering and alignment of secondary phases based on grey-scale
differences (i.e. ideal for assessing pore distribution), further details of the FBTA
technique can be found in a paper by Boselli et al."

Surface replicas were taken prior to testing to provide a record of the location of
surface porosity prior to testing. Further porosity analysis was performed on plain
polished mounted specimens to provide statistical data on the porosity size and

distribution.
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6.4 Finite Element Model

Finite element modelling was employed for two purposes. A simple elastic model was
used to specify an appropriate notch geometry for the required stress concentration,
whilst maintaining the necessary notch diameter to allow polishing preparation of the
notch root. A more elegant elasto-plastic solution was obtained to allow estimation of
the stress/strain fields in the notch root for a given loading. (Initial Finite element

models written by Dr. Mark Joyce using ANSYS as part of CRP)

6.4.1 CMSX-4 Model geometry

Constraints on material supply meant that the sample dimensions were limited to 8mm x
8mm x 50mm for CMSX-4. The notch geometry was selected to have a minimum
radius of 2mm as previous work had demonstrated that notches of this radius could be
polished adequately for acetate replication. The sample was loaded in 3 point bend as
specified in the test conditions.

The notch was required to produce a stress concentration factor of ~2 at its root.
With a fixed notch radius, the stress concentration factor is dependent on the notch
depth; therefore, this factor was made variable in the FE model. To ensure good
approximation of the notch root stress/strain fields a reasonably dense mapped mesh
using 8 node quadrilaterals was employed. The exact number in any given model
varied depending on the depth of the notch, but was typically around 1275. Figure 94
shows the overall mesh, together with the loading and constraints. Figure 95 shows the

mesh detail around the notch.

6.4.2 Elastic model - (determination of notch depth)

For this model only the elastic properties supplied by Alstom, given in Table 3, were
considered. A simple constraint was applied to a single node to simulate the lower
roller, whilst an arbitrary point load of 100N was applied to simulate the upper roller.
The notch depth was varied from 0.25mm to 1.5mm in 0.25mm increments and the
magnitude of the notch root stress field was assessed at each stage. Stress concentration
factors were derived by comparing the computed Von Mises stress values with the
stress evolved on the top surface of an un-notched bar, these results are given in (Table
4). The results show that a notch depth of 1.25mm gave a stress concentration factor of

~2.
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6.4.3 Elasto-plastic model - (evaluation of notch root stress/strain
fields)

At the load levels required to cause fatigue crack initiation, it is likely that the material
in the region of the notch root will be deforming plastically. In order to estimate the
stress levels in this region under such conditions a more complex elasto-plastic analysis
is appropriate. The basic model geometry and mesh from the earlier elastic model was
retained, the notch depth now fixed at 1.25mm. The material model was changed to
include isotropic monotonic plasticity data supplied by ALSOTM. This was
implemented using a multi-linear curve. Loading was applied monotonically from zero
to a maximum of 6000N. This was applied in 10N increments and the model allowed to
converge fully (typically only 1-2 iterations required). At each increment the magnitude
of the notch root stress and strain fields were assessed, these results are shown in
(Figure 96). It is recognised that the model is based on monotonic stress-strain
behaviour at 650°C for the <100> orientation and does not take into account any cyclic
softening/hardening or plastic anisotropy effects and simply simulates a simple loading

step.

6.4.4 Sub-sized CMSX-4 specimens

A further set of test specimens 4mm x 4mm x 50mm have also been modelled. Minor

changes were made to the model to account for the different geometry

6.4.5 René N5

The finite element modelling process was modified for René N5 with a test sample
geometry of 10mm x 10mm by 50mm. No data for René N5 material properties was
made available so the CMSX-4 material model was used to provide a best estimate of

the loads required for a similar strain range in the Notch root.

6.4.6 PWA 1484

A finite element model also used to estimate the strain range in the notch root of PWA
1484 specimens tested by CNRC in order to compare them with CMSX-4 and René N5
test data generated at Southampton. The model was run in Abaqus and used stress
strain data for PWA 1480 in absence of any data available for PWA 1484 (Figure 97.).
PWA1484 test specimens supplied by CNRC were measured using a digital vernier, the
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FEA model was based upon the average measurements of the test specimens. The mesh
was constructed using 20 noded brick elements with a large amount of refinement
around the notch root (Figure 98). Mesh quality checks were performed on the meshed

bar and a mesh convergence study was performed.

6.5 Fatigue Testing

6.5.1 Specimen Preparation

The longitudinal, cast direction, of each bar of CMSX-4 was known to be <001>,
but the secondary orientation, the nominal crack growth direction, had to be determined
prior to machining. The orientation A tensile axis is in the <001> direction and the
nominal crack growth direction is <110>. For orientation B, the tensile axis is in the
<001> direction and the nominal crack growth direction is in the <010> direction
(Figure 99). The orientation directions were determined after etching the ends of the
cylinders with Nimonic etch. This revealed the dendritic structure, the dendrite arms
are known to grow along <100> type directions and hence reveal the <100> directions
perpendicular to the cylinder axis (Figure 100).

The specimens were machined using electrical discharge machining (EDM). An
initial specimen size of 8mm x 8mm x 50mm was selected in order to make best use of
the material supply. A 4mm diameter notch was machined half way along the specimen
bar with the centre point of the radius set 0.75mm above the surface of the bar (Figure
101).

The EDM process left behind a highly oxidized surface layer that required
polishing away to reveal the microstructure before testing could take place. A dental
felt coated with diamond paste was used to polish the notch. The specimen was
clamped in a stage with X and Y adjustment possible via thumb screw and the notch
was lined up with the dental felt. Enough pressure was applied to cause the felt to
deform slightly, a lubricant (metadie) was used and the drill was oscillated up and down
by hand during polishing. Three grades of diamond paste were used (6pm, 3um and
Ipm) to obtain the polished finish. The process is very lengthy and has proved
damaging to the bearings in the pillar drill. This process was modified to include a
4000 grit paper first stage. A dental felt pin was slotted to take the paper which is then
wound around the pin to give an approximate diameter of 2mm. Using the grinding
paper speeds up the process considerably.

Figure 102 shows the quality of the finish after polishing and subsequent etching
(dendrite orientation in the notch can be clearly seen). The polished surfaces were
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etched to allow crack interactions with the microstructure on the surface to be assessed.
Identical processes were used for the preparation and testing of sub-sized CMSX-4

samples and René N5 examined later in the project.

6.5.2 Testing Procedure

Notch fatigue experiments were performed on an Instron 8501 servo hydraulic
testing machine fitted with an ESH high temperature vacuum chamber. Tests were
carried out on the notched specimens in symmetric three point bend as detailed in
(Figure 101). During all testing the load ratio was 0.1. The preliminary test to establish
appropriate loading levels to obtain a lifetime ~10,000 cycles was conducted using a
triangular waveform at 20Hz, in air, at room temperature. Further tests were conducted
at 650°C using a 1-1-1-1 trapezoidal waveform (Figure 103). Loading levels were
assessed with reference to the FE model discussed earlier. High temperatures were
achieved with the use of four quartz lamps mounted within the testing chamber. The
lamps and reflectors were positioned around the specimen with the maximum
concentration of heat at the centre of the chamber where the specimen was mounted.
Temperature control was via an ESH power cabinet fitted with a Eurotherm 815 set
point controller. Specimen temperature was measured by means of an R type Pt-Rh
thermocouple spot welded within a couple of millimetres of the notch. Chamber
temperature was controlled to within +/- 1°C. The chamber was heated to test
temperature then allowed to soak for 20 minutes before testing commenced. During
this time the specimen was held at minimum load.

Interrupted/replica tests were stopped at a pre-determined number of cycles in order
to take a replica. Lamps were shut off immediately after the test stopped cycling and
the specimen was held at minimum load. The chamber was not opened until the
specimen temperature had fallen below 150°C. Once the chamber had been opened, a
large desk fan was used to blow air into the chamber and facilitate cooling. Before
taking a replica, the load level was increased to mean load in order to open any surface
cracks slightly. Replicas were taken using a Struers RepliSet-F1 kit, the silicon rubber
compound required a temperature of less than 35°C to set satisfactorily. The specimen
was then returned to minimum load and the chamber was reheated as outlined above.

Replication intervals were decreased at the onset of surface cracks appearing.
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6.5.3 Fractography

Detailed systematic assessment of each fracture surface was carried out. Initial
overviews were taken both with a Wild macroscope and in the JEOL FEG-SEM, to
assess gross macroscopic features and to help pinpoint initiation sites and notch surface
fracture features. High magnification shots were taken of all initiation areas and of
typical crack propagation features, for comparison with long crack specimen
fractography carried out in the partner programme in the CRP. The SEM was also used
in BEI mode to give topographical and compositional scans of the fracture surface.
Energy dispersive x-ray (EDX) compositional mapping was conducted on sites of
particular interest on the fracture surface using the FEG SEM in BEI mode in

conjunction with Oxford Inca 300 software.
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Temp (°C) | E (GPa) | v (AGAYS;) (&Ogg ) (|\7UFT>Z) Elong. (%)
20 115 0.4 680 900 1050 5
650 1069 | 0.4 700 943 1200 8.77
750 100 0.4 730 980 1200 10

Table 3 - Elastic and plastic properties used in modelling

Notch depth (mm) Stress concentration
factor

0.25 1.32

0.5 1.53
0.75 1.69

1 1.83
1.25 1.98

1.5 2.13

Table 4 - Stress concentration factor variation with notch depth

Identity Type 0 p
BAVF Al <001> 2.3 32.1
BAVF A4 <001> 2.3 2.2
BAVF A6 <001> 4.5 29.0
BAVF A8 <001> 4.0 24.8
BAVF All <001> 7.9 44.3
BAVF Al2 <001> 6.4 33.6
BAVF Al14 <001> 4.9 34.4
BAVF Al5 <001> 5.3 32.6
BAVF Al6 <001> 3.7 2.6
BAVF A17 <001> 5.2 38.0
AWLSA 3B <111> 51.4 42.6

AWLSA 4B <111> 514 43.5
AWLSA 5B <111> 52.5 44.0
AWLSA 8B <111> 50.7 41.8
AWLSA 9A <111> 50.3 44.5

Table 5 - CMSX-4 Bar Identities and Primary Orientations

Standard service heat treatment employed to produce CMSX-4

* xhrs @x°C - raise temperature
* xhrs @x°C - raise temperature
* xhrs (@x°C — raise temperature
* xhrs @x°C - raise temperature
* xhrs @x°C - raise temperature
* xhrs @x°C - raise temperature
* xhrs (@x°C — raise temperature

» xhrs @x°C - rapid gas fan quench in argon
* xhrs @x°C - air cool
* xhrs @x°C - air cool

Table 6 - Heat treatment data supplied by Alstom (NB the specific details of heat treatment are
commercially proprietary y)
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Figure 93 — Ni plating apparatus

el

=

Figure 94 - Meshing, loading and constraint strategy. Note distributed constraints shown (used in
elasto-plastic model only) (after Mark Joyce)

Figure 95 - Notch root mesh detail — 8 node mapped quadrilaterals employed to accurately assess
notch root fields (after Mark Joyce)
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Figure 96 - Mode I stresses and strains predicted at notch root in CMSX-4 at 650°C. (after Mark
Joyce)
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Figure 97 — Stress/strain behaviour for PWA1480
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Figure 98 - Abaqus FEA model of PWA 1484 test bar with detail of mesh refinement around notch
root.
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Figure 99 - Definition of secondary orientations A and B and their nominal crack growth directions
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Figure 103 - Trapezoidal 1-1-1-1 waveform.
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6.6 Results

6.6.1 Material Characterisation

6.6.1.1 Macrostructure.

Dendrites can be observed on polished etched specimens of each alloy (Figure 104,
Figure 105 & Figure 106). Dendrite orientation has been used to determine the
orientation of test specimens (A or B) during manufacture (Figure 100) as described in
Chapter 6.5.1.

Dendrite spacing is of the order of 10um for each alloy. Dendrites in CMSX-4 are
more clearly defined. There is a sharper transition between the dendritic and
interdendritic regions in CMSX-4 than is seen in PWA 1484 and René NS5.

EDX analysis has been carried out on CMSX-4 to determine segregation of
elements for comparison with the literature 220. EDX plots show higher concentrations
of Re and W (~20% rel) within dendritic areas (Figure 107 & Figure 108). These
values agree with the ratios shown in the literature 220.

Porosity is observed to be interdendritic in nature, Figure 109 shows an example of
porosity in an etched sample of René N5 with porosity clearly occurring in the lighter,

interdendritic, regions.

Porosity is visible on plain polished specimens of all 3 alloys. Collages of optical
microscope images (Figure 110) have been processed using tessellation analysis
software (Figure 111) to provide statistical information on the porosity distribution of
each alloy (Table 7, Table 8 & Table 9). A total area of ~28mm? was analysed over a
sample of 3 test bars for each alloy. CMSX-4 samples had the highest porosity levels of
1.3% with an average aspect ratio of 1.2 and an aspect ratio range of 1 to 5.1. All 3
alloys had a maximum pore aspect ratio of 4.5 or more. The size (2D section area) of
the pores ranges between 3um? and 2240um?.

Hardness testing has been completed on CMSX-4 and René N5 using a micro-
hardness Vickers test. Rows of hardness indents on etched samples have been divided
into results for dendritic and interdendritic regions. Results are presented in Table 10.
Although there was a lot of scatter in individual results, CMSX-4 shows a marked
increase in the average hardness values in the dendritic regions over the interdendritic
regions. The standard deviation of the results was of the same order of magnitude as the

difference between the averages but on closer examination of the data there were some
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obvious outliers possibly caused by indenting a hard phase or at the site of a pore. René
N5 shows the same trend but the difference between the average results was much less
and too small to be considered statistically significant.

Slip bands are clearly visible around hardness indents. Figure 112 and Figure 113
show examples of slip bands in CMSX-4 and PWA1484 respectively. For slip bands to

be visible it was necessary to view them on plain polished samples.

6.6.1.2 Microstructure.

On a polished and etched sample of CMSX-4 the finer scale Yy microstructure is

clearly visible. A Nimonic etch was used to reveal the y matrix and confirm the high y’

fraction (Figure 114). The triangular sections of the matrix are consistent with what

would be expected for a {111} section through a cuboidal y’ array. The same sample

was also observed in the plain polished condition using backscattered electron imaging
(Figure 115). The light areas indicate heavier elements are concentrated in the y matrix
as indicated by the literature™.

Compositional analysis conducted using EDX was unable to determine the
compositional differences between the y and y’. The interaction volume over which
compositional values are averaged is an order of magnitude larger than the y’ channels.

SEM images of PWA1484 and René¢ N5 (Figure 116 & Figure 117) confirm
high y’ fractions. The same etching procedure was used for all three alloys. PWA1484

appears to have thicker y channels, and therefore a lower percentage Yy’ is deduced in

comparison to CMSX-4 and René NS5.

6.6.2 Oxidation Studies.

An oxidation study has been carried out on all 3 alloys. Plain polished samples and
polished and etched samples were examined by SEM after timed exposure in a furnace
at 650°C. An initial oxidation study was carried out by the author. Three further

studies incorporating weight measurements for all three alloys were carried out.

6.6.2.1 CMSX-4

Heavy oxidation was observed on CMSX-4 samples after just one hour. The y matrix is

clearly visible on a polished specimen (Figure 118). The etched sample also exhibited
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rapid oxidation, after one hour the y matrix had become much thicker and less well
defined (Figure 119).

After 256 hours the polished sample had oxidised further, the oxidised y matrix is
clearly more prominent than after 1 hour exposure (Figure 120). On the etched
samples, oxidation was so heavy in places that the y matrix almost completely obscured
the etched out y’ (Figure 121).

Oxidation was not consistent across the surface of each specimen. Small blemishes
and areas of lighter and heavier oxidation can be observed. Light areas of the same
order as the dendrite spacing are visible on the etched sample after 256 hours. No
cracks were observed on any of the oxidation samples unlike the test specimens that
later suffered from heavy cracking within the oxide layer. Sections through oxidised
samples show the oxide layer is both additive and penetrative. The oxide layer is in
region of 2-3um thick with an actual increase of ~2um with respect to the original

substrate surface (Figure 122 & Figure 123).

6.6.2.2 ReneN5

After one hour exposure at 650°C a polished specimen exhibited a similar amount of
oxidation as that seen in the CMSX-4 (Figure 124). Oxidation was not uniform
throughout the sample with some areas experiencing more preferential oxidation than
others being observed. Under SEM observation, areas of lighter speckled marks were
found in the interdendritic regions of a polished sample after 1 hour (Figure 125),
showing that the compositional differences between the dendrite centres and the
interdendritic regions may be the reason for the varying degrees of oxidation thus the
dendrites are effectively shown up by thermal etching. Figure 126 & Figure 127 show
small light coloured globular protrusions, possibly oxidised carbides, around the edges
of the dendritic regions. Weight gain from oxidation on René N5 was generally less

than CMSX-4.

6.6.2.3 PWA1484

There are no micrographs of oxidation of PWA1484. Observations from the recorded
masses are that all but one sample of PWA1484 gained weight. The weight gain of the
PWA1484 samples was less than the CMSX-4
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6.6.2.4 Summary

The small size of the samples meant that the accuracy of the weighing equipment
(0.0001g) was insufficient to accurately record the small changes in mass. Average
mass change results were lost within the experimental scatter and are not presented.

In general, the results show that visually René N5 oxidises in the same manner
as CMSX-4, with the y matrix showing preferential oxidation. This is expected as
dendrites have the largest portion of Re which is relatively stable. Weight gain from
oxidation on René N5 was generally less than CMSX-4. It was expected that due to the
low chromium content of CMSX-4 and the comparatively higher Cr content in René
NS5, oxidation resistance would be better in the latter. Interdendritic carbides are clearly
visible on samples of René N5 but are less prominent in CMSX-4. .PWA1484 also
shows higher resistance to oxidation than CMSX-4.

6.6.3 Fatigue Testing Results

6.6.3.1 Fatigue Test Lifetimes.

Data is presented for a total of 31 fatigue tests. A total of 14 fatigue tests have been
completed using the original 8mm x 8mm x 50mm CMS4 samples. Further samples of
4mm x 4mm x 50mm were produced to increase the number of tests possible from the
batch of CMSX-4 available. Test data from 5 small CMSX-4 bars is presented with the
help of undergraduate project student Amira Kawar.

During the test program, a small quantity of René N5 became available for
testing and has been used for comparison with the CMSX-4 as a similar 2™ generation
superalloy. Testing and analysis of 6 fatigue tests has been carried out on (10mm x

10mm x 50mm) specimens with the help of undergraduate project student Irene Lee.

Fatigue testing using PWA1484 was carried out at CNRC as part of the collaborative
research programme between University of Southampton Dept and CNRC,. Test data
for 6 axial fatigue tests has been supplied by CNRC along with test specimens in order
to perform microscopic analysis on the fracture surfaces courtesy of Dr Xijia Wu..

All test data and results are presented in Table 11, Table 12, Table 13 & Table

14. A strain life graph of cycles to failure for each test is given in Figure 152.
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CMSX-4 8x8

Tests, 1,2 and 3 were used to establish a suitable lifetime in order to conduct interrupted
replica tests, misoriented specimens were chosen for these calibration tests. A target
lifetime in the order of 10,000 was identified. The data generated from the FE model
was used to select a suitable load/strain condition for the first test.

The first test ran for 100,000+ cycles. Towards the end of the test the load was
increased. This increased load value was used as a starting point for the next test but
further increases were required in order achieve an acceptable lifetime to failure. An
effective calculated strain range of 1.35% gave a lifetime of 62,000 cycles. All further
tests using 8mm x8mm bars of CMSX-4 were tested at an estimated strain range of
1.38%.

Initial results for orientation A and B in air showed favourable lifetimes with
respect to conducting replica tests. At 650°C in air the orientation A specimen had a
considerably longer lifetime. At 725°C in air the effect of orientation swapped over,
with the orientation B specimen giving a longer lifetime.

In Vacuum, orientation A tests had longer lifetimes that orientation B at 625°C
and 725°C.

A replica test was attempted at 650°C. Heavy oxidation was observed on the
notch surface after a short period of time. This heavy oxidation masked any cracks that
may have initiated on the notch surface. Cracks in the oxide layer of the notch appeared
and disappeared throughout the duration of the test thus making replica records very
difficult to interpret. This replica test was stopped after ~8000 cycles at which point
~30 replicas had been taken. The test was then run to failure without any further

interruptions

CMSX-4 4x4

Considerably less scatter is observed in the test lifetimes of 4x4 test specimens in
comparison to the larger 8mm x 8mm specimens. Further investigation into the
specimen geometry shows that the variation in dimensions is much higher than the
stated accuracy of the EDM tooling used to produce the test specimens. Specimen
dimensions have been checked using digital vernier calliper and stress and strain values
have been altered accordingly. Some specimens were rejected due to tapering of the bar
thus leaving predominantly orientation B test pieces. The variation in cycles to failure

for each of the tests cannot be accounted for by the variation in geometry alone.
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René N5

A total of 6 bars have been tested to date; 3 bars of orientation A and 3 of orientation B.
The first 3 tests conducted on orientation B bars produced lifetimes of ~3000 cycles.
Lifetimes for orientation A samples showed the largest scatter with the lowest lifetime
cycle being 3346 and the highest being 11,490. Of the 6 tests conducted on René N5

bars, orientation A samples tended to have longer lifetimes than orientation B.

PWA1484

Testing of PWA1484 was carried out at CNRC. All testing was carried out in load
control at 1Hz in axial tension at several strain ranges. Tests had much longer lifetimes
in general and the scatter observed showed overlap between the different strain ranges

tested.

6.6.3.2 Fracture Surface Overviews.

Figure 128 through to Figure 151 show series of fracture surface overviews for
specimens tested to failure in the form of exploded views. The main fracture surface is
in the centre, surrounded by the appropriate side and top profiles so the extent of out-of-

plane faceting can be fully appreciated in each case.

CMSX-4 8x8
Room temperature test fracture surfaces (Figure 128) exhibit large facets on the fracture

surfaces. Facets have formed along the {111} planes.

At 650°C in air, fracture surfaces appear less faceted than the room temperature tests
(Figure 129 & Figure 130). Side facets have formed but the fracture surface is
relatively smooth in the middle of the specimen. The orientation B specimen appears
more faceted that orientation A. Facets on Orientation A specimen run parallel to the
sides of the fracture surface, whilst the orientation B specimen has facets that intersect
the sides at 45°. Major initiation points can be identified even on these low

magnification overviews.

At 725°C in air the fracture surfaces look similar to those at 650°C (Figure 131). Side

facets are however slightly smaller. There is a smooth region in the centre of the
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fracture surface. Some initiation points can still be identified (although they are less

distinct).

At 650°C in vacuum fracture surfaces are similar to those tested in air (Figure 132).
Side facets are comparable in size. The fracture surface is not obscured by oxidation
and dendrites are observed on the initial fracture area before the onset of extended slip

band cracking.

At 725°C in vacuum fracture surfaces have much larger side facets. In both cases the
side facet from one side only dominates the fracture surface (Figure 133 & Figure 134).
The orientation A sample has a similar area of ‘smooth’ fracture surface compared to
the air test. The orientation B sample exhibits a massive facet that cuts through most of

the notch. The faceted area has a very smooth/shiny fracture surface.

Small 4x4 bars were all tested at 650°C in air. Side facets take up a larger proportion of

the fracture surface than on the 8mm x 8mm samples. ‘Smooth’ areas of initial crack

growth are similar in appearance to the larger test samples (Figure 135 & Figure 139).
The orientation A samples appear less faceted whereas the facets on bar 17

(Figure 136) almost meet in at the centre of the fracture surface.

René N5
The fracture surfaces obtained from the testing show much similarity with the CMSX-4
fracture surfaces with orientation B bars appearing more faceted than those from
orientation A. The fracture surfaces appear to be relatively smooth in the middle of
each specimen where it appears that initial crack growth has taken place (Figure 140
Figure 145).

The orientation of the dendrites can be seen on the fracture surfaces with the

dendritic structure appearing in the shape of a‘+’ or ‘x’ depending on orientation.
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PWA1484

All the specimens showed extremely large, effectively single, facets at 45° to the tensile
axis. These edges do not show ‘zig-zag’ faceted growth except for one sample. The
initiation sites could be clearly identified through the macroscope (Figure 146 to Figure
151).

The fracture surfaces in all the PWA1484 samples tend to be smoother along the
macroscopic facets when compared to the sections near the notches. Dendrites can be
observed on some of the fracture surfaces. The fracture surfaces are shinier than either
the CMSX-4 or the René N5 samples thus suggesting less oxidation of the fracture

surface.

6.6.3.3 Detailed Fractography —

CMSX-4 Tests in Air

Room temperature tests exhibit multiple surface initiation points. Figure 153 and
Figure 154 give an example of an interdendritic pore that caused initiation of the critical
crack. River-lines were observed on fracture surfaces and were used to trace back to the
major, and minor crack initiation sites.

An example of a pore on the notch surface that did not initiate a crack is given
(Figure 155) also note the etched microstructure on the surface and within the pore
clearly showing the narrow y-matrix channels retained after the etching away of the y’
precipitates. The circular appearance of such pores on the top surface gives little
indication of the 3D nature of these complex casting defects. The fracture surface
shows the critical pore cross-section that initiates failure to be angular and elongated.

At high temperatures, Initial crack propagation was smooth with river lines
(Figure 156 B) pointing back towards major and minor initiation points (Figure 156 A).
The fracture surface was obscured by oxidation. As the crack progressed further
through the specimen, alternating slip band cracking was observed (Figure 156 C) along
{111} slip planes at high crack tip stresses.

At 650°C heavy oxidation of the notch root was observed during and at the end
of the first test to failure (Figure 157 and Figure 158). Cracks were observed in the
oxide layer, both during, and at the end of the test. The cracks appeared to penetrate the
substrate at times (Figure 159 and Figure 160) but did not initiate the major fatigue
crack. Further evidence of this is seen in Figure 161, Figure 162 & Figure 163.
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Crack initiation at high temperatures occurred at sub surface pores in all cases;
650°C and 725°C orientations A and B. An example of a fracture surface at 725°C
orientation A is show in Figure 164 with crack initiation locations marked. Although
large cracks are seen in the surface oxide they do not appear to be the primary cause of
failure (Figure 165).

All initiating sub surface pores were encircled by a halo, examples of which are
given in (Figure 166 to Figure 169). The halo is generally circular in shape with its
uppermost boundary touching, or coming very close to, the surface of the notch.
Subsurface pores were predominantly irregular shapes consistent with interdendritic
spacing both in size and shape. The texture of the fracture surface within the halo
differs from that seen in the surrounding area. This is better observed using
backscattered electron imaging (Figure 170) to look at topographical features on the
fracture surface. Using this method several new crack initiation points were identified.

A compositional scan also picked up differences within the halo region
compared with the surrounding area (Figure 171) and shows an enriched area within the
halo. This feature was observed at several other halo initiation sites. The compositional
scan has been broken up into individual elements in order to identify depleted areas
(Figure 172 to Figure 180).

Further down the fracture surface 2-4mm away from the notch root alternating
slip band cracking is observed along {111} slip planes at high crack tip stresses (Figure
181 & Figure 182).

Due to the high levels of oxidation it was necessary to section the fracture
surface to reveal more detail of the interaction between the microstructure and the
fatigue cracks. Figure 183 provides details of where the cuts were made and the
locations of the subsequent figures. The oxide layer is seen to be thicker in the notch
root than on the fracture surface (Figure 184) with the notch root oxide in the order of 1
— 1.5pm. At high magnification the cracks can be seen to following slip bands and
cutting the y’ precipitate (Figure 185). In Figure 186 several slip bands are observed.
The crack is caused to deviate due to the proximity of a pore and swaps from travelling
along one slip band to another. At this location closer to the fracture surface, some
signs of oxidation along the crack can be observed. A section through ‘rooftop’ facets
formed at high AK levels (Figure 187) shows a heavily oxidised secondary crack

extending along a slip band from one of the facets.
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CMSX-4 Tests in Vacuum

Four tests were conducted on CMSX-4 samples in vacuum. A minimum vacuum level
of 1x10° mbar was achieved for each test. From initial observation there were no signs
of oxidation during the tests — this was expected but confirmed the quality of the
vacuum achieved.

Dendrites are immediately visible on the fracture surface under an optical
microscope and SEM (Figure 188). Crack initiation occurs at porosity both at the
surface (Figure 189) and subsurface (Figure 190 & Figure 191) although it is much
harder to pinpoint subsurface initiation due to the lack of the halo feature around the
porosity which is presumed to be caused by an oxidation phenomenon — this is
discussed more detail in section 6.8

Much more detail is present on the fracture surface in comparison to the tests
conducted in air. The interaction of slip bands with pores is observed and the presence
of striations can be seen on some of the larger faceted areas of the fracture surface
(Figure 192). At high AK levels the effect of porosity on highly micro-faceted crack
propagation is observed (Figure 193).

Without a difference in oxidation around a pore on the fracture surfaces is more
difficult to categorise porosity initiation sites as surface or subsurface. Figure 194
appears to be an example of surface initiation with Figure 190 & Figure 191.showing
examples sub surface porosity initiation all on the same fracture surface (OA, Vacuum,

650°C).

René N5 Tests in Air

An overview of an orientation A fracture surface is shown in Figure 195 (OA, 650°C,
Air, 3346 cycles). The major initiation sites are clearly visible and were also identified
by the river lines which appear to lead back to major and minor sites of initiation. These
sites were then examined in detail with the points of interest labelled A to D as depicted
in Figure 195.

Subsurface pores were found at locations A, B and D and a relatively large
surface pore of approximately 7.5um in length was located at site C. A circular ‘halo’
was found around the pore at site D (Figure 203) with its uppermost boundary nearly
reaching the notch surface. It was also noted that the texture of the surface within the
halo differed from the surrounding area. The subsurface pores were found to be

consistent in size with the interdendritic spacing.

133



An example of an orientation B specimen is given in Figure 204. Initiation from
porosity is seen to occur at sites A,B, D and E (Figure 205 to Figure 208). At the
initiation site located at site C, river lines lead to what appears to be an oxidised carbide
(Figure 209 Figure 210)

The characteristic subsurface pore and halo feature is present on most of the

fracture surface samples, two examples of which are given in Figure 211 & Figure 212.

PWA1484 Tests in Air

Examples of 2 PWA1484 fracture surfaces are give in Figure 213 to Figure 220. Figure
213 shows an overview of a fracture surface with the main initiation point labelled.
SEM images at successively higher resolutions (Figure 214 Figure 215 Figure 216)
trace the initiation point back to a dark phase most likely to be a secondary carbide.
The smooth surface area of this sample is relatively small. A large number of pores are
visible on the side facet (Figure 214) but there is no sign of cracks initiating from
porosity.

A second example of a PW1484 fracture surface is given in Figure 217.
Dendrites are clearly visible in Figure 218. The main initiation point is visible as a half
circular area (Figure 219) with river lines running back towards the initiating feature,

which in this case is an interdendritic pore (Figure 220).

6.6.3.4 Collection of Porosity Data

It is apparent that porosity is one of the main factors that controls fatigue life in alloy 3
alloys and may be a source of some of the scatter seen in the fatigue life data.

Several parameters that describe the pore size and location have been defined
(Figure 221 and Figure 222) and used to collect data about initiating pores on all
fracture surfaces. The irregular shape of the pores made taking measurements quite
difficult and potentially very subjective. For each pore, a centroid was estimated. From
this point, the depth of the pore (d) was recorded. The greatest distance across the pore,
tip to tip, passing through the centre was recorded as the major dimension (x). The
minor dimension (y) is measure at 90° to the major axis and is taken as an average
dimension as indicated by the dashed lines The tessellation analysis software (TAP)
was used to measure the area of the pore from a digital image and provide data about

the aspect ratio. The aspect ratio defined in TAP is the maximum chord length divided
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by the perpendicular width. Tables of results containing the porosity information are

presented for each alloy in Table 15.
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Obj Obj Obj No NN Mean NN

Area  Aspect Angle NN'S Dist NND Angle
CMSX-4 (um?)  Ratio (rad) (um) (um) (rad)
Mean 542 .1 1.2 0.7 5.8 67.9 195.6 0.8
Median 440.0 1.1 0.7 6.0 56.8 194.0 0.8
Mode 3.0 1.1 0.8 5.0 6.9 99.1 0.2
Standard
Deviation 503.2 0.3 04 1.4 58.2 70.9 0.5
Minimum 3.0 1.0 0.0 20 4.8 12.0 0.0
Maximum 2241.9 5.1 1.6 10.0 268.5 374.8 1.6
Sum 375667.4 8494 471.3 4017.0 47047.4 135585.1 562.6
Count 693 693 693 693 693 693 693
Total area 28.79
analysed mm?
% porosity 1.30%

Table 7 CMSX-4 porosity data (3 samples taken)

Obj Obj Obj No NN Mean NN

Area  Aspect Angle NN'S Dist NND Angle
René N5 (um?)  Ratio (rad) (um) (um) (rad)
Mean 105.2 1.5 0.6 5.7 56.8 181.3 0.8
Median 14.9 1.3 0.5 6.0 35.6 173.8 0.8
Mode 3.0 1.0 0.0 5.0 3.5 #N/A 0.5
Standard
Deviation 222.3 0.6 0.5 1.9 63.7 92.6 04
Minimum 3.0 1.0 0.0 20 3.5 4.1 0.0
Maximum 1443.7 4.8 1.6 12.0 319.9 438.6 1.6
Sum 794994 1136.6 434.1 4311.0 429624 137071.4 592.3
Count 756 756 756 756 756 756 756
Total area 27.42
analysed mm?
% porosity 0.29%

Table 8 René NS porosity data (3 samples taken)

Obj Obj Obj No NN Mean NN

Area  Aspect Angle NN'S Dist NND Angle
PW 1484 (um?)  Ratio (rad) (um) (um) (rad)
Mean 241.2 14 0.6 5.7 45.9 142.6 0.8
Median 50.7 1.1 0.6 6.0 311 138.6 0.9
Mode 3.0 1.0 0.0 5.0 3.5 41.7 1.1
Standard
Deviation 406.1 0.6 0.5 1.7 45.5 80.8 0.5
Minimum 3.0 1.0 0.0 20 3.5 3.5 0.0
Maximum 3704.7 4.5 1.6 11.0 2174 369.9 1.6
Sum 274239.3 1611.0 676.8 6495.0 52178.2 1621551 953.4
Count 1137 1137 1137 1137 1137 1137 1137
Total area 28.64
analysed mm?
% porosity 0.96%

Table 9 PWA1484 porosity data (3 samples taken)
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Vickers Hardness Value

Dendritic

Region Interdendritic Region
CMSX-4
A {110} 342 > 318
B {100} 356 295
C {111} 323 > 298
René N5
A {110} 336 > 313
B {100} 350 > 349
C {111} 348 > 346

Table 10 — Average Vickers Hardness Values for CMSX-4 and René N5

Test | Wave- | Temp | Air/ | Orient- | Pmax | "Ag" | Cycles to
ID. | form O Vac | ation (KN) (%) | Failure
1 20Hz 21 Air X 4.9 0.95 | 100,000+
2 1-1-1-1 650 Air X 5.7 1.21 | 100,000+
3 1-1-1-1 650 Air X 6.1 1.35 62,000
6 1-1-1-1 650 Air B 6.2 1.38 6500
4 1-1-1-1 650 Air A 6.2 1.38 25,500
14 | 1-1-1-1 650 Vac B 6.2 1.38 9,378
16 | 1-1-1-1 650 Vac A 6.2 1.38 15,871
9 1-1-1-1 725 Air A 6.2 1.38 5,271
11 1-1-1-1 725 Air B 6.2 1.38 13,717
7 1-1-1-1 725 Vac A 6.2 1.38 11,363
12 | 1-1-1-1 725 Vac B 6.2 1.38 4,960
8 5Hz 21 A A 6.2 1.38 21,661
13 | 1-1-1-1 650 Air B 6.2 1.38 46,665
15 | 1-1-1-1 650 Air B 6.2 1.38 9,632

Table 11 CMSX 8mm x 8mm Fatigue Test Results
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Test | Wave- | Temp | Air/ | Orient- | Pmax | "Ag" | Cycles Images
ID. | form O Vac | ation (KN) (%) | to
Failure
16 | 1-1-1-1 650 Air A Overlo | 3.37 500 Figure
ad 135
17 | 1-1-1-1 650 Air B 1 1.49 3592 Figure
136
24 | 1-1-1-1 650 Air B 0.85 1.19 81,000 Figure
137
28 | 1-1-1-1 650 Air B 1.2 1.54 | 130,792 Figure
138
29 | 1-1-1-1 650 Air B 0.8 1.48 16,386 Figure
139
Table 12 CMSX-4 4mm x 4mmm Fatigue Test Results
Test | Wave- | Temp | Air/ | Orient- | Pmax | "Ag" | Cycles Images
ID. | form (°O) Vac | ation (KN) (%) | to
Failure
1 1-1-1-1 650 Air B 12.26 | 1.38 3,325 | Figure 140
2 I-1-1-1 650 Air B 12.26 | 1.38 2,573 Figure 141
3 1-1-1-1 650 Air B 12.26 | 1.38 3,507 | Figure 142
4 1-1-1-1 650 Air A 12.26 | 1.38 4,945 Figure 143
5 1-1-1-1 650 Air A 12.26 | 1.38 3,346 | Figure 144
6 1-1-1-1 650 Air A 12.26 | 1.38 11,490 | Figure 145
Table 13 René N5 10mm x 10mm Fatigue Test Results
Test Wave- | Temp | Air/ | Orient | Pmax "Ag" | Cycles to | Images
ID. form | (°C) Vac | -ation | (KN) (%) | Failure
P28-A | 1Hz 520 Air B 12.26 1.26 58495 Figure 146
P28-B | 1Hz 520 Air B 12.26 1.26 121110 Figure 147
P24-B | 1Hz 500 Air B 12.26 1.19 127649 Figure 148
P22-B | 1Hz 480 Air B 12.26 1.12 136206 Figure 149
P22-A | 1Hz 480 Air B 12.26 1.12 154284 Figure 150
P26-A | 1Hz 500 Air B 12.26 1.19 182001 Figure 151

Table 14 PWA1484 axial tension tests (CNRC) Fatigue Test Results
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Area Aspect Area Aspect
(um?) Ratio |Major |Minor Depth |(um?) Ratio |Major |Minor Depth
(a/c) Axis Axis (a/c) Axis Axis
From (um) From (um)
From ((um)  |(um) From |(um)  |(um)
TAP TAP TAP TAP
Bar/Pore details
Side A Side B
CMSX4-1 1011 1.09 40 13 0
CMSX4-2
CMSX4-3 494 6.5 100 10 80
CMSX4-4 1351 3.7 100 25 250
CMSX4-6 2639 1.7 90 10 130
735 1.2 30 40 25
645 2.5 75 10 40
CMSX4-7 1933 2.9 128 24 47
CMSX4-8 715 1.8 40 15 0
495 1.5 30 10 0
438 1.8 25 10 0
CMSX4-9 1903 2.0 50 30 200
842 2.0 60 60 350
550 1.5 30 20 50
860 1.2 60 10 125
426 2.1 50 10 90
CMSX4-11 1062 2.0 50 5 350
791 1.5 80 10 45
CMSX4-12 1230 4.2 92 33 40
CMSX4-14 2554 2.4 90 28 0
CMSX4-15
CMSX4-16 3095 1.7 128 40 0
5563 1.5 147 83 114
Bar 13_AK_OB_pore A 1106.8 5.7 72.9 4.8 44.2 1031.5 4.1 68.8 4.8 44.2
Bar 16_AK_OB
Bar 17_AK_OB_ pore A 591.6 1.4 19.2 9.8 16.3 555.0 19.2 9.2 15.2
Bar 17_AK_OB_pore B 228.2 1.3 10.9 6.7 10.7 213.3 1.4 10.3 6.6 9.1
Bar 17_AK_OB_pore C 2731 1.9 17.8 4.9 19.6 298.2 1.9 18.8 5.1 23.8
Bar 17_AK_OB_pore D 1418.4 1.6 40.0 1.3 86.7
Bar 24 AK_OB_pore A 1243.6 1.4 32.5 12.2 246.7 1405.5 1.6 33.3 13.4 260.0
Bar 28_AK_OB_pore A 223.5 3.2 23.0 3.1 22.3 134.5 5.0 20.2 2.1 20.0
Bar 29 _AK_OB_pore A 576.5 1.3 19.7 9.3 40.7 571.8 1.7 19.6 9.3 N/A
P22-A 552.1 18.4 9.5 24.7
P22-B 2185.5 3.5 58.3 11.9 90.0
P24-A 175.8 1.4 9.1 6.2 36.4
P26-A 348.3 1.7 11.5 9.6 32.0
P28-A 1185.5 1.9 30.6 12.4 92.6
P28-B 1292.5 2.7 52.8 7.8 50.0
Bar1_IL_OB _Pore A 312.7 1.2 10.9 9.1 11.6 279.4 3.1 20.8 4.3 10.3
Bar 1_IL_OB_Pore B 1672.3 2.8 53.0 10.0 59.1
Bar1_IL_OB _Pore C 107.4 1.3 7.3 4.7 38.2 106.2 1.1 6.7 5.1 42.7
Bar1_IL_OB_Pore D 1488.1 3.0 47.8 9.9 62.6 347.5 1.3 17.1 6.5 28.0
Bar 1_IL_OB_Pore E(2) 398.7 1.7 16.3 7.8 15.7
Bar 1_IL_OB_Pore E 4121 1.8 18.2 7.2 16.7 531.9 1.2 17.4 9.7 52.2
Bar1_IL_OB _Pore F 234.1 1.2 10.0 7.5 23.3
Bar1_IL_OB _Pore G 187.8 1.1 8.3 7.2 27.3 681.8 1.4 26.5 8.2 48.7
Bar1_IL_OB_Pore H 172.1 3.5 15.2 3.6 23.9
Bar1_IL_OB_Porel 210.4 1.2 9.5 7.0 13.6 210.4 1.2 9.5 7.0 13.6
Bar1_IL_OB_Pore J 268.3 1.1 10.0 8.5 14.7
Bar 1_IL_OB_Pore K 257.5 1.1 9.8 8.4 15.9 551.9 2.2 25.0 7.0 29.1
Bar 1_IL_OB_Pore L 45.8 1.1 45 3.2 6.0
Bar1_IL_OB _Pore M 141.4 1.2 7.0 6.4 15.0 282.6 3.0 20.0 4.5 8.0
Bar1_IL_OB_Pore N 1419.2 1.3 35.0 12.9 20.7 240.5 1.4 10.2 7.5 7.3
Bar1_IL_OB _Pore O 50.1 1.4 5.1 3.1 6.3 265.4 1.7 14.0 6.0 22.2
Bar 1_IL_OB_Pore P(1) 357.8 1.6 15.9 7.2 90.9
Bar 1_IL_OB_Pore P(2) 362.1 1.6 20.5 5.6 53.6
Bar 10_IL_OA Pore A 373.6 1.4 13.6 8.7 28.8 6208.1 1.3 771 25.7
Bar 10_IL_OA_Pore B 1341.8 3.9 60.9 7.0 255 1429.7 1.9 32.3 14.1 21.0
Bar 10_IL_OA_Pore C(1) 591.0 5.6 58.1 3.2 26.5
Bar 10_IL_OA_Pore C(2) 332.0 12 12.3 8.6 15.3
Bar 10_IL_OA_Pore C 2052.1 2.2 53.3 12.3 17.1
Bar 10_IL_OA Pore D 7347.4 1.3 81.6 28.7 81.6 626.4 1.8 20.7 9.7 50.7
Bar 10_IL_OA_Pore E 375.0 1.3 11.8 10.1 12.7 375.0 1.3 11.8 10.1 12.7
Bar 11_IL_OA Pore B 457.0 1.2 18.7 7.8 41.3 457.0 1.2 18.7 7.8 41.3

Table 15 — Data from all initiating pores in all 3 alloys
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Figure 104 CMSX-4 dendrites (100) orientation Figure 105 PWA1484 dendrites (100) orientation

Figure 106 - René N5 Figure 107 SEI Image

Figure 108 Rhenium Concentration Figure 109 - Example of interdendritic porosity in
RenéN5
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Figure 110 Sample of porosity in CMSX-4 used for porosity analysis
(collage of 4 separate images)
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Figure 111 — Example of FBTA cell gathering for CMSX-4 porosity
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Figure 112 CMSX-4 - Slip bands around a hardness indent
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Figure 113 PWA1484 - Slip bands around a hardness indent

Figure 115 SEM images Etched surface (left) Backscattered electron image (right) 111 plane
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Figure 117 SEM image Etched surface of PWA1484 y matrix (110) orientation A
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Figure 118 SEM images — Polished CMSX-4 after 1 hour exposure at 650°C
(A) Preferential oxidation of y matrix (B) Surface blemish (C) y obscured
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SEI 10.0kv  X10,000 Tum WD 13.7mm

NOME SEI 10,0k X1,600 10pm WD 13.7mm

Figure 119 SEM images — Polished CMSX-4 after 256 hours exposure at 650°C
(A) Preferential oxidation of y matrix (B) Surface blemish
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Figure 120 SEM images — Polished and etched CMSX-4 after 1 hour exposure at 650°C
(A) Heavily oxidised y matrix (B) overview (C) Oxidised y (D) Yy totally obscured

146




10,0K\ i 100gm

10.0kY  X10,000 1pm

ol

SEl 100KV X10,000 Tum

SE 10.0kV

Figure 121 SEM images — Polished and etched CMSX-4 after 1 hour exposure at 650°C
(A) Light areas consistent with dendrite spacing (B) Heavily oxidised y matrix (C) Yy totally
obscured
(D) transition between light and dark area in (a)
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Figure 123 SEM image — As Figure 122, higher magnification
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JERA GEO0T 3EI 150K 8 000 1pm WD 10.6Emm

Figure 125 - oxidised carbides on Rene N5 oxidation sample (1)

Figure 126 - oxidised carbides on Rene N5 Figure 127 - - - oxidised carbides on Rene N5 oxidation
oxidation sample (2) sample (3)
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Figure 128 Orientation A, Air, 21°C
Test to failure— 21,661 cycles

Figure 129 Orientation A, Air, 650°C
Test to failure — 25,500 cycles

Figure 130 Orientation B, Air, 650°C
Test to failure — 6,500 cycles
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Figure 131 Orientation B Air, 725°C
Test to failure — 13,717 cycles

Figure 132 Orientation B, Vac, 650°C
Test to failure — 9,378 cycles

Figure 133 Orientation A, Vacuum, 725°C
Test to failure — 11,363 cycles
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Figure 134 Orientation B Vacuum, 725°C
Test to failure — 4,960 cycles
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Figure 135 CMSX-4 Bar 16 OA Figure 136 CMSX-4 Bar 17 OB
Ae=3.37 %, 500 cycles to failure Ae=1.49 %, 3592 cycles to failure

T £ 1 L%

Figure 137 CMSX-4 Bar 24 OB Figure 138 CMSX-4 Bar 28 OB
Ae=1.19 % 81000 cycles to failure Ae=1.54 % 130792 cycles to failure

Figure 139 CMSX-4 Bar 29 OB
Ae=1.48 %, 16386 cycles to failure
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Figure 141 René N5 Bar 2 OB
Ae=1.38 %, 3325 cycles to failure Ae=1.38 %, 2573 cycles to failure

Figure 142 René N5 Bar 3 OB Figure 143 René N5 Bar 4 OA
Ae=1.38 %, 3507 cycles to failure Ae=1.38 %, 4945 cycles to failure

Figure 144 René NS Bar 5 OA Figure 145 René NS Bar 6 OA
Ae=1.38 %, 3346 cycles to failure Ae=1.38 %, 11490 cycles to failure
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Figure 146 BAR P28-A, OB Figure 147 BAR P28-B, OB
Ae=1.26 %, 58495 cycles to failure Ae=1.26 %, 121110 cycles to failure

1 Smm =
Figure 148 BAR P24-A, OB Figure 149 BAR P22-B, OB
Ae=1.19 %, 127649 cycles to failure Ae=1.12 %, 127649 cycles to failure

Figure 150 BAR P22-A, OB Figure 151 BAR P26-A, OB
Ae=1.12 %, 154284 cycles to failure Ae=1.19 %, 182001 cycles to failure
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Figure 152 — Strain Life data for all fatigue tests.

156



Surface initiation point (Figure

/ =

Figure 153 SEI micrograph - Bar 1 - Orientation X, Fracture surface (a).

=l

Figure 154 SEI micrograph Interdendritic surface pore identified as major initiation point as
marked on Figure 153

H 12 000 lpm W 15 Amm

Figure 155 SEI micrograph of Pore on surface of etched notch from CMSX-4 room temperature
test.
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SFI X40  100mm WD 19.2mm

Figure 156 SEI micrograph Example of fracture surface features
0A, 725°C, Air, 5271 cycles

dation (Figure 158,Figure 159 & Figure 160)

Trnm

Figure 157 Bar 2 - SEI micrograph overview Bar 2 orientation X, Air, 650°C, 100,000 cycles.

Figure 158 SEI micrograph - Blemish observed on notch surface after testing at 650°C
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Figure 159 SEI micrograph - Large penetrating crack in oxide layer observed on notch surface
after testing at 650°C.

I A0 16 Trnam

Figure 160 SEI micrograph image — As Figure 159 side on.

TOPO 1 / 100m WD 17.6mm

Figure 161 BEI Topographical Scan of cracks in notch root oxide layer

Figure 162 SEI micrograph of cracks in notch root oxide layer
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Figure 164 SEI micrograph — Fracture surface overview ,0A, 725°C, Air, 5271 cycles.

Figure 165 SEI micrograph — Crack in notch surface (Figure 164 location A)
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Figure 166 SEI micrograph — Subsurface ‘halo’ Figure 167 SEI micrograph Sub-surface
crack initiation point (Figure 164 location B) initiation point Orientation B, 650°C, 1-1-1-1,
6,500 cycles

MOME 1

Figure 168 - SEI micrograph Subsurface Figure 169 - SEI micrograph Subsurface

10,0 ]

initiation point Orientation A, 725°C initiation point Orientation A, 725°C
Figure 170 - BEI Topographical Scan. Sub- Figure 171 - BEI Compositional Scan. Sub-
surface initiation point Orientation A, 725°C surface initiation point Orientation A, 725°C
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Figure 172 - EDX plot for Nickel, from Figure Figure 173 - EDX plot for Oxygen, from Figure
171 171

Co Kal CHal_2
Figure 174 - EDX plot for Nickel, from Figure Figure 175 - EDX plot for Nickel, from Figure
171 171

TiKal Cr Kal
Figure 176 - EDX plot for Titanium, from Figure 177 - EDX plot for Chromium, from
Figure 171 Figure 171

=i kal Al Kt
Figure 178 - EDX plot for Silicon, from Figure Figure 179 - EDX plot for Aluminium, from
171 Figure 171

162



Wy a1
Figure 180 - EDX plot for Tungsten, from
Figure 171

PUNE SEI 10.0kV

Figure 181 SEI micrograph crack propagation in CMSX-4 OA
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X100 100pum WD 13.7mm
Figure 182 SEI micrograph crack propagation in CMSX-4 OB
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Figure 183 — Detail of sectioning and location of Figure 184, Figure 187Figure 185Figure 186.
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Figure 186 SEI micrograph (Location C) Crack deviation around pore before continuing along
slip band
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SEI 100K 1,000 10pm WO 14 3mm

Figure 187 SEI micrograph (Location D) oxide layer on fracture surface exhibiting ‘rooftop’
faceting

Figure 188 — SEI micrograph fracture surface overview 650°, OB, Vacuum.

SEl 100 Wi i

Figure 189 SEI micrograph — initiation pore 650°, OB, Vacuum
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JEM GHO00T SEI 15,0k X170 100gm WD

Figure 190 SEI micrograph — initiation pore 650°, OA, Vacuum

Mk W mm

Figure 191 SEI micrograph — initiation pore 650°, OA, Vacuum

JEM GHO0E =13 | 150k HESD

—
10 WD 10./mm

Figure 192 SEI micrograph — Slip bands, pore and striations, 650°, OB, Vacuum

167



Figure 193 SEI micrograph — Fast fracture region with porosity, 650°, OB, Vacuum

JEMBS001 SEI 150KV 10 14.Smm
Figure 194 SEI micrograph — initiation pore 650°, OA, Vacuum
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Figure 195 SEI micrograph overview — René N5 ffracture surface OA, 650°C, Air.
Test to failure 3346 cycles

Sk 5000

T R T -
Figure 196 - SEI micrograph Initiation site A Figure 197 - SEI micrograph Detail of initiating
(Figure 195) pore from Figure 196

Figure 198 - SEI micrograph Initiation site B Figure 199 - SEI micrograph Detail of initiating
(Figure 195) pore from Figure 198
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1M BS00T L] 1LY MESD gam W 11 Amm

Figure 200 - SEI micrograph Initiation site C Figure 201 - SEI micrograph Detail of initiating
(Figure 195) pore from Figure 200

Sk EEF = S0y NF WD 112 mm S BS00F SEI 150y XEI0 A00um WD 112mm

Figure 202 - SEI micrograph Initiation site D Figure 203 - SEI micrograph Detail of initiating
(Figure 195) pore from Figure 202
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Figure 205 - SEI microraph a location A Figure 206 - SEI micrograph at location B
(Figure 204) (Figure 204)

p

Figure 207 - SI miograph at location D Figure 208 - SEI micrograph at location E
(Figure 204) (Figure 204)
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Figure 20 - SEI micrograph at location C Figure 210 - SEI micrograph Detail of C
(Figure 204) (Figure 204)

igure 211 - SEI micrograph orientation B with Figure 212 - SEI micrograph orientation B
Nf of 3325 cycles with Nf of 3507 cycles

M A
\ 4

Crack

growth

direction

e st sl
Figure 213 Overview of fracture surface Bar P26-A, Figure 214 SEI micrograph of the major
Orientation B, Nf = 182001. initiation site in region A (Figure 213)

172



Figure 215 SEI micrograph at initiating facet region A  Figure 216 SEI micrograph detail of the dark
(Figure 213) phase in Figure 215 (possible oxidised carbide)
that initiated first crack.

v

Crack
growth SR Y e
direction <o /b
R A
JSM 6500F SEl 15.0kV X18 Tmm WD 20.4mm
Figure 217 - Overview of fracure surface Bar P26-A, Figure 218 SEI micrograph overview of the
Orientation B, Nf = 182001: major initiation site in region A (Figure 217)

JSM 6500F SEI 15.0kV X60 100um WD 20.4mm

Figure 219 - SEI micrograph of the initiation site in Figure 220 - SEI micrograph of initiating pore
region A (Figure 217) in Figure 219
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Figure 221 Pore measurement details
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Figure 222 Pore area calculation using TAP software
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6.7 Discussion & Analysis of Results

6.7.1 Fatigue Life Data

Comparison of test data with data supplied by Alstom is shown in Figure 223. The data
from notch bend tests at Southampton consistently tends towards the higher boundary of
the data provided by Alstom. This may reflect the consistent surface finish achieved by

polishing the notch root on all tests conducted as part of this work

6.7.2 Fractography

CMSX-4 samples have been tested at a variety of temperatures and as temperature is
increased, smooth areas in the centre of the fracture surface are larger. At higher strain
ranges and lower temperatures a more crystallographic, highly faceted crack growth
mode is observed. The increase in strain range is likely to set up more extended slip
band cracking. When cracks initiate at typical stress concentrating features sufficient
local stress will be generated to produce long slip bands with repeated cutting of y’.
This is also reflected in the fact that at longer crack lengths a transition to overall
faceted crack growth was observed indicative of extended slip-band cracking. This was
correlated with a high AK (50 MPaVm) value in the long crack propagation studies
carried out by Mark Joyce®. At lower temperatures more planar slip processes are
expected leading to more faceted fracture surfaces (as observed)

For all 3 alloys the orientation of the {111} facets differs between orientations A
and B as expected. This facet orientation causes orientation B fracture surfaces to
appear more faceted than orientation A. In orientation A samples the facets run parallel
to the sides of the fracture surface, whereas with orientation B they intersect the sides at
45°. The angled appearance of the orientation B facets gives the illusion of orientation
B samples being more faceted. The actual area taken up by side facets in the high
temperature tests appears similar between the 2 orientations.

In CMSX-4 and René N5, oxidation obscures the detail of the fracture surface in
the notch root at 650°C. A build up of cracked oxide scale in the notch root makes
replication techniques difficult.

Crack initiation in most tests has occurred at surface or subsurface pores, this
agrees with observations in the literature 219", At room temperature, initiation is
observed to be from pores at the notch surface. Porosity analysis of the notch surface is

of limited use in characterising pores that extend below the surface. Most interdendritic
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pores have complex 3D geometrical shapes due to the nature of their formation. These
complex shapes do break the notch surface but only appear as circular or oval pores.

It is not yet fully understood why cracks do not initiate at the notch surface at
higher temperatures. Cracks in the surface oxide do penetrate the substrate but do not
initiate the critical crack. There may be sufficient oxidation of the surface pores to
effectively plug them up therefore reducing the stress concentration induced by the pore
- similar to oxide induced closure effects. The stress/strain fields below the notch
surface may change/redistribute at higher temperatures thus making sub surface
initiation more likely. Tests on CMSX-4 in vacuum revert back to a mix of surface and
subsurface initiation.

An oxidation study showed that moderate to heavy oxidation occurs in a
relatively short space of time at 650°C in both René N5 and CMSX-4. The y matrix
becomes visible on polished specimens after 1 hour exposure due to preferential
oxidation of the y matrix. This can be confirmed by looking at an etched specimen after
1 hour thermal exposure. After 256 hours, varying levels of oxidation are observed on
each sample. No pores are visible on the surface after thermal exposure. A section
through an oxidised pore would provide valuable information on the oxidation process
and possibly provide an insight as to why cracks do not initiate at the surface at high
temperatures. Compositional differences caused by debris picked up during the casting
process may be the cause of some of the more extreme surface blemishing.

Sectioning of CMSX-4 samples showed the oxide layer to be thicker in the
notch root than on the fracture surface. This is likely to be a function of exposure time.
Fracture surface sections show that oxidation occurs at crack boundaries as they
propagate into the specimen, oxidation assisted crack propagation is seen. Oxidation
test samples show that the oxide layer protrudes into the substrate as well as causing
growth on top of the substrate. Preferential oxidation of the matrix is seen both on the
sample surface and below the surface. Oxide thickness is greater on the oxidation study
samples in comparison with the notch bend bars. The main difference being that study
samples were not subjected to any stress during oxidation. This suggests a certain
amount of spallation from the notch surface occurs during testing. The presence of
multiple surface cracks certainly backs up this argument. Despite the cracks in the
oxide layer, more than 90% of the critical cracks in all high temperature air tests
initiated at sub surface pores. With this in mind it was apparent that characterisation and

analysis of all initiating sub surface pores was required. Although this is still a 2D
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approach, it is looking at pores on the critical fracture path rather than distributions on

the notch surface.

6.7.3 Analysis of porosity initiating fatigue cracks

Data of all initiating pores has been collected as discussed in the previous section. Raw
data is presented in (Table 15). Where both fracture surfaces have been analysed for
test sample, an average value over the two fracture surfaces has been calculated. A
main initiating pore has been identified where possible for each test where multiple
initiation points were recorded. On many of the fracture surfaces, a main initiation
point is difficult to identify. In the absence of an obvious major initiating point, the
largest pore (area) has been identified. Several other values have been calculated from

the raw data on a test by test basis:

* Total area of initiating pores per test bar (from TAP measurement)

* Average area of initiating pores per test bar (from TAP measurement)

* Aspect ratio of each pore (from manual measurements) = major axis /
minor axis

* Average major axis of initiating pores per test bar.

* Average minor axis of initiating pores per test bar.

» Elliptical area of each pore (area of an ellipse using Major and Minor axis)

* Aspect ratio of each pore (from Major and Minor Axis)

* Average depth of initiating pore per test bar.

The major and minor axes were also recalculated on the basis of the measurements from
the TAP software. Using the area of an ellipse as an approximation for the pore shape,
values for A and C were calculated from the area and aspect ratio values returned from

the software:

TAP Area=Tixaxb Equation 32
TAP Aspect Ratio = a/b Equation 33
/TAPA
Therefore: b = Larared Equation 34
T.r
And
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a = Aspect Ratiox b Equation 35

Scatter plots have been systematically generated to show the effect of each variable on
cycles to failure. Plots were generated for every pore, average pore and main pore
values.

The variable that shows the greatest correlation with cycles to failure is the sum area
of initiating pores (Figure 224). The major outlier highlighted in Figure 224 relates to a
CMSX-4 test, orientation A, 650°C in Vacuum. Plotting just the area of the main

initiating pore areas shows no correlation with fatigue life (Figure 225).

6.7.4 Effect of shape of initiating porosity

Porosity data collected from plain polished samples has been compared with the data
from porosity that was characterised as an initiating pore (Table 16). For all three
alloys the maximum and mean area of the initiating pores is far greater than that seen in
the data collected from plain polished specimens. The average and maximum aspect
ratio of initiating pores is greater for CMSX-4 and PWA1484 although it is less for
ReneN5

A simple analysis of pore aspect ratio has been conducted using Scott and Thorpe’s
approximation for a semi-elliptical surface crack' under pure bend loading conditions.
A pore area was selected that was representative of those observed to initiate cracks.
The ratio of a/c was varied whilst keeping the area of the pore constant. A pore with
high aspect ratio with major axis parallel to the notch surface gives the highest value of

K (stress intensity at the maximum depth position) Figure 226.

6.7.5 CMSX-4 long crack data

Long crack testing has been carried at 650°C and 725°C using CMSX-4 to complement
the program of work. Testing was carried out by Mark Joyce as part of the
collaborative research project as discussed in the introduction. Methodology and results
from the long crack testing are described in detail in the literature™. The long crack
data will be used to compare with fatigue test lifetime trends and to help develop a
simple lifing model. The long crack test matrix is given in Table 17, data has been
generated for orientation A and B samples in air at 650°C and 725°C with tests also

completed in vacuum at 650°C. Results from the tests in the form of crack growth rate

vs. AK are presented in Figure 227.
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At 650°C, fatigue crack propagation in air was seen to be faster in orientation B
than in A, particularly at lower AK levels. Under vacuum, fatigue crack propagation
rates in orientation A were seen to be similar to that in air at high AK. At 725 C crack
growth rates were generally faster than at 650°C.

Examples of long crack test fracture surfaces are given in Figure 228 (OA, Air,
650°C) and Figure 229 (OA, vacuum, 650°C). Comparisons have been made between
short crack fracture surfaces and long crack fracture surfaces along with relevant crack
propagation data for AK. Measurements were taken from several short crack fracture
surfaces to ascertain the size of the crack at the onset to rooftop cracking. Using Scott
and Thorpe approximation for an elliptical crack in pure bend 220, AK is found to be ~
50 MPaVm for the crack measurements as shown in Figure 230 and Figure 231 using an
FEA stress estimate at the notch root.

This result fits with long crack data where Mark Joyce measured AK to be in the
region of 50 MPaVm at the transition to rooftop cracking in his SENB specimens

(Figure 228 & Figure 229).

6.7.6 Lifing Model

Crack initiation at high temperature is seen to occur at subsurface pores and is
characterised by a halo around the pore where initial crack growth has occurred in
vacuum. The proposed mechanism that causes this halo effect is due to the crack
initiating and propagating in vacuum until it breaks the surface of the sample and is
exposed to air. Initial crack propagation conditions are that of fatigue crack propagation
in vacuum. Once air can enter the crack, the initial fatigue area within the halo
undergoes oxidation, affer failure has occurred. The boundary of the halo marks the
point at which the crack continues to propagate, but now under combined fatigue and
oxidation conditions. The two mechanisms described give rise to the change in texture
and composition of the oxidised fatigue crack that are visible in SEI and BEI modes

with the FEG SEM. Similar halo effects have been seen in polycrystalline disk alloys"

An initial modelling approach has been implemented. The model uses a simplified pore
geometry representative in size and shape of those observed on existing fracture surface.
FE analysis or fracture mechanics is required to calculate K values around the pore. An
estimation of the evolution of the crack shape from the pore to the circular crack path
(as confirmed by the halo) via K-calculations indicated a circular shape was adopted

very soon after initiation. Data from crack propagation work in vacuum can be used to
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estimate the number of cycles before the subsurface crack reaches the surface by Paris
law integration approaches. Crack growth data from air tests is then be used in
conjunction with K calibrations based on Scott and Thorpe 220 in order to calculate the
last component of the fatigue lifetime, again using Paris law integration approaches.

The model was developed as part of the collaborative research project with
CNRC and has been written by Dr Xijia Wu using C++. The model code has been
included in APPENDIX 3

The model was written for the 8mm x 8mm CMSX-4 notch bend tests at the

strain calculated for theses tests. The model uses some important initial assumptions:

* The crack initiation is caused by an initial elliptical flaw

* That the sample has no initiation life.

* The initial sub-surface flaw is in vacuum conditions.

* The initial growth direction is controlled by the orientation of the pore therefore
orientation B growth rate data in vacuum is applied to minor and major axis of
the ellipse

* The subsurface crack adopts a circular morphology

* The surface crack adopts a semi-circular morphology upon breaking the surface.

*  Growth to failure is controlled by data from long crack tests in air.

A schematic of the proposed crack growth model is given in Figure 232 where steps 1-2
take place in vacuum conditions before the crack breaks the surface (3) and adopts the
semi circular morphology.

The model assumes that the crack begins to propagate from the 1* cycle. The initial
growth occurs in a uniform stress field. For a subsurface pore, K values around the

ellipse are calculated using the following equations:

2
K=F_o {jr"'a\/q::t;)s2 w+[a) sin? y
g ¢ Equation 36

1.65
—E*(k)y~1+14d £
o
¢ Equation 37

Where F;, is a boundary correction factor, which in case of the CMSX-4 8x8 bars is

1.1™, It is found that, numerically, the crack propagates more rapidly from the blunt
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sides of the ellipse (value of ¢ increases) thus rapidly forming a circular crack. This
agrees with the proposed theory based on the fractography results. The model evaluates
K then performs 100 iterations before re-evaluating K. At the end of each loop, the
values for a and ¢ are compared to the depth d. If either a or ¢ are greater than or equal
to d, the pore has broken the surface. During subsurface growth, crack propagation
distance per cycle is calculated using the Paris equation (Equation 38 & Equation 39)
where C and m are calculated from experimental data for long crack growth in vacuum

for an orientation B sample.

a=1.85x107xK **» Equation 38
c=1.85x107 x K ** Equation 39

Once the crack has reached the surface it is assumed that the crack becomes a semi-
elliptical crack with depth a and width 2a (at this point the crack is circular so a=c).
The stress intensity factor is calculated using a weight function for a through edge
crack. The model now uses orientation specific data for crack growth in air to continue
growing the crack until a critical value of K is reached and the specimen fails. The
critical K value is based on results from Mark Joyce and has been initially set at
60MPavm

A flow chart describing the modelling process (Figure 234) shows the various loops
the model takes as it assesses whether crack growth is occurring subsurface (therefore
using vacuum crack propagation data) or has broken the surface (at which point the air
crack growth data is used for the correct specimen orientation).

The model inputs are a, ¢ and d in mm, C and m material constants derived from
vacuum and air crack growth and a critical K value at which the bar fails. Crack growth
rate data is input in mm/cycle. A comma separated text input file containing the 9
columns of data for each pore is read in to the model which then returns a two column
output file with the subsurface crack growth life and the total number of cycles to

failure.

6.7.6.1 Sensitivity to Pore Geometry

Minitab software has been used to perform a full factorial design of experiments (DOE)
analysis using idealised porosity geometry. The test matrix uses three levels for pore
geometry and depth with a 2 level field for sample orientation. The test matrix is not

shown, but is a full factorial design incorporating every possible combination of the 3
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inputs giving rise to 54 combinations. Statistical data from initiating porosity has been
used to select the maximum, middle and minimum values for pore dimensions a and ¢
and the pore depth d. Interaction plots have been created for both the internal life
(Figure 235) and the total life (Figure 236) predicted by the model. Each shows the
effect of two variables with respect to fatigue life (right hand axis). The scale for one
variable is given along the top, with the second variable inferred through the legends
(far right). Certain combinations where a is less than c¢ are not plotted as a (the major
axis) must always be greater than ¢ by definition.

The internal life model shows that the depth of the pore has most effect when a and/
or ¢ are small with a large depth giving rise to a longer lifetime. The top left graph for
the effect of a vs. ¢ indicates that the aspect ratio has comparatively small effect.
Orientation will not have any effect on internal life as orientation B vacuum data is
always used.

Interaction plots for total life show that the greatest effects occur when a and/or ¢
are small. This time the trend is reversed. Small pores at the surface show the largest
number of cycles to failure.

Response surface plots have also been used to identify the relationship between
parameters. Comparing a and ¢ with cycles to failure again shows that aspect ratio has
very little effect in comparison with the major dimension of the pore (Figure 237).
Having established that the major dimension has the greater effect it is plotted against
the pore depth (Figure 238) which again shows that a small pore close to or at the
surface will equate to the longest life. Plotting predicted internal life against predicted
cycles to failure shows a linear relationship for lifetimes greater than 10,000 cycles. At

shorter lives the relationship does not hold true

6.7.6.2 Sensitivity to Paris Constants and K level at failure

The model sensitivity to material constants has also been analysed. A full factorial
DOE experiment has been designed to look at the effect of the Paris constants C and m
and the critical value of K for specimen failure on the lifetime of an average sized pore
in a CMSX-4 notch bend bar. The experiment design values used are given in Table 18
A 3 level experiment with 5 inputs generated 243 results. The average effects of each
input are given in Figure 240. The effect of m and C constants both in air and in
vacuum on total life appear to conform to an inverse power law relationship with small

values tending towards infinite life as would be expected. At very long lives, changes
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in crack growth rate in vacuum shows a greater effect on total life. The effect of the
critical K value at which failure occurs appears to be linear although it may be levelling

off at high values of K. An interaction plot for all 5 factors is given in Figure 241.

6.7.6.3 Fatigue life model results.

The fatigue life model has been presented with all porosity data for all initiating pores.
Data from long crack tests has been used for CMSX-4 data (Figure 242). Vacuum
crack growth rates for 650°C has been used for the 725°C predictions in absence of
actual data. PWA1484 and René N5 were modelled using CMSX-4 data in air at
650°C.

Results have been presented in the form of a scatter plot of actual cycles to failure
vs. predicted cycles to failure with x=y representing a perfect prediction. It should be
noted that the current form of the model calculates the stress field for an 8mm x 8mm
CMSX-4 notch bend bar. All tests were carried out at similar estimated strain ranges so
have been included in the analysis but results are likely to be less accurate. Results for
CMSX-4 8mm x 8mm notch bend bars are presented in Figure 243. The model shows
good agreement with the test data

Figure 244 shows predicted values for all test data. Large icons are used to
represent the main initiating point for each test bar with small icons used to represent all
minor initiation points for each test. CMSX-4 tests (now including the small sized
specimens) still show good correlation with actual test results with 5 of the tests lying
very close to the actual values. All René NS5 tests were over predicted and all
PWA1484 test were under predicted.

The model has also been run using pore data collected from measurements taken
by hand. The model using data generated from TAP (Figure 243) performs much better

with data points lying closer to the actual test results.

6.7.7 Fatigue life modeling using Neural Networks

Neural network models have been trained using output data from the Paris lifing
model described in the previous chapter or using raw data from fatigue tests. The
neural networks were run within MATLAB software and used the same scripts
described in chapter 5.2.9. Only small changes in the script were required to allow for

different numbers of variables in the input file and to change and labelling in graphs
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generated as part of the training process. Examples of Matlab scripts used are given in

APPENDIX 2.

6.7.7.1 Training a Neural Network to emulate the lifing model

The lifing model described in section 6.7.6 has already been used to generate a
large dataset of results for various pore geometries for statistical analysis (6.7.6.1). This
dataset is of sufficient size to use to train a neural network model. A Matlab script was
used to train models ranging from 1 to 20 HU’s using the dataset. The neural network
model produced a good fit to the data with just 4 HU’s (Figure 245) with very little

improvement shown with higher numbers of hidden units (Figure 246).

6.7.7.2 Training a Neural Network on test data

The amount of data collected for initiating pores is relatively small in comparison
to the number of variables. Subsets of variables have been used to train neural networks
to see how well they can fit to the data. Based on metallurgical understanding and the
analysis of porosity data with respect to lifetime, the most important variables have

been selected:

» Strain range
e Sum area of pores
* Test temperature

* Material type

Combinations of the above variables were presented to the neural network with
respect to test lifetime in each case. There are a large number of combinations of inputs
so only the most significant ones will be discussed. Using just the sum area and
material type produced a relatively poor fit (Figure 247). The strain range for most tests
is related directly to the material type so it could be expected that a reasonable fit would
be achieved. Adding the strain range as a separate input allowed the neural network to
achieve a much better fit to the data (Figure 248). The significance of the inputs (Figure
249) shows strain range to have the largest effect with the sum area and material type

having smaller effects (both of a similar magnitude).
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The addition of test temperature produced almost exactly the same results (Figure
250) in comparison to the fit achieved without. The variation of test temperatures in the

input data is very small and confined to tests conducted using CMSX-4.
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CMSX-4

Mean
Median
Mode
Standard
Deviation
Minimum
Maximum

René N5

Mean
Median
Mode
Standard
Deviation
Minimum
Maximum

PW 1484

Mean
Median
Mode
Standard
Deviation
Minimum
Maximum

Initiating

Sample Data - Pores - Pore Sample Data Initiating
Pore Area . Pores -
(um?) Area - Apect Ratio Aspect Ratio
(um?)
5421 1206.1 1.2 2.2
440.0 842.0 1.1 1.8
3.0 1.1
503.2 1119.8 0.3 1.3
3.0 179.0 1.0 1.1
2241.9 5563.0 5.1 6.5
Initiating e
Sample Data - Pores - Pore Sample Data Initiating
Pore Area . Pores -
(um?) Area - Apect Ratio Aspect Ratio
(pm?)
105.2 1037.5 1.2 2.2
14.9 1185.5 1.1 1.9
3.0 1.1
222.3 809.7 0.3 0.9
3.0 175.8 1.0 1.4
1443.7 2185.5 5.1 3.5
Initiating o
Sample Data - Pores - Pore Sample Data Initiating
Pore Area . Pores -
(um?) Area - Apect Ratio Aspect Ratio
(um?)
105.2 655.4 1.2 1.8
14.9 457.0 1.1 1.6
3.0 1.1
222.3 750.2 0.3 0.8
3.0 45.8 1.0 1.1
1443.7 3986.9 5.1 5.6

Table 16 — Comparison of Average Porosity Data vs. Critical Porosity Data
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Sample ID Orientation Temperature | Environment | Comments
°O)
OALCI A 650 Air Completed
OALC2 A 650 Vac Completed
OALC3 A 725 Air Completed
OALC4 A 725 Vac Not Completed
OBLCI B 650 Air Completed
OBLC2 B 650 Vac Completed*
OBLC3 B 725 Air Completed
OBLC4 B 725 Vac Not Completed
Table 17 — Long crack data test matrix
A C D Paris M Vac| Paris M Air | Paris C Vac | Paris C Air | K crit
30 15 175 2 2 1.00E-10 1.00E-10 20
30 15 175 3 3 1.00E-09 1.00E-09 40
30 15 175 4 4 1.00E-08 1.00E-08 60

Table 18 — 5 factor, 3 level design for sensitivity to material constants
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Strain Life Data for CMSX-4
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Figure 223 — Comparison of Southampton data with Alstom test data.
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Figure 224 — Sum area of initiating pores vs. cycles to failure
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Major Initiating Pore Areas vs Cycles to Failure
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Figure 225 — Major initiating pore vs. cycles to failure

Effect of a/c ratio on Kd

Figure 226 - effect of a/c ration on effective K, (a simple analysis using Scott and Thorpe)

189




CMSX4 Long Crack Data
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Figure 227 - CMSX-4 Long Crack Data (after Mark Joyce™")
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Figure 228 Orientation A, Air fracture surface (after Mark Joyce

220)
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Figure 229 Orientation A, Vacuum fracture surface (after Mark Joyce®’)

Figure 231 — BAR OA, 725°C, Air, 5271 cycles
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Figure 232 — Schematic of crack propagation from subsurface pore
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Figure 233 Stress fieled in notch root of CMSX-4 notch bend bar
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Figure 234 — Flow chart for Notch Fatigue Model
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Interaction Plot for Internal Life
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Figure 235 - Interaction plot for a, ¢ and d with respect to subsurface life
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Figure 236 - Interaction plot for a, ¢ and d with respect to total life
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Surface Plot of Cycles to Failurevs C, A

Zycles to Failure

Figure 237 — Surface plot for relationship between a, c and total cycles to failure
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Figure 238 — Surface plot for relationship between a, 4 and total cycles to failure
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Figure 239 — Correlation between predicted internal life and total predicted cycles to failure
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Mean of Cycles to Railure

Main Effects Plot (data means) for Cycles to Failure
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Figure 240 — Average effects for change in material properties vs cycles to failure for an average

sized pore

Interaction Plot (data means) for Cycles to Failure
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Figure 241 — Interactions plot for mya.c, Mair, Cyacy Cair, Kerit V. Cycles to failure
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Power Law Data Fits to CMSX4 Long Crack Data
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Figure 242 — Power law fits in Excel to long crack data supplied by Mark Joyce
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Figure 243 - Predicted results vs. actual test results for Smm x 8mm CMSX-4 Notch Bend Bars

Fatigue Test Lifetimes Predicted vs. Actual Results - Using Data From TAP
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Figure 244 — Predicted results vs. actual test results (Large data points = main initiating pore, small
data points = all other initiating pores for each bar)
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Figure 245 — Training vs target data for 4 HU neural network using results from fatiue lifing
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Figure 246 — Training error for neural networks using 1-20 HU’s.
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Figure 247 - Training vs target data for 3 HU neural network. Inputs = Material and Sum Area
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Figure 249 — Significance of inputs for 3 HU model in Figure 248
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6.8 Discussion

Pore measurements have been recorded for all initiating pores. Pore shape was
classified very broadly into either circular, or oval. Pores were measured along the
major long axis (a) and along an arbitrary ‘short’ axis (c) perpendicular to the long axis.
The depth of the pore (d) was measured from the centre of area of the pore.

Finite body tessellation analysis has been used to analyse the complicated 2D
shapes of the porosity in order to get an accurate measure of area. This process also
generates an aspect ratio which was used to re-calculate the minor axis measurement

Comparisons of statistical porosity data shows that the average pore size is
greater for pores on the fracture surface in comparison to a prepared polished surface.
This indicates that cracks form on intersections with the greatest cross sectional area of
each pore.

It was shown that the sum area of all initiating pores has the greatest correlation
with fatigue life, more so than plotting just the main initiating pore area. The sum area
will indirectly account for coalescence effects and therefore provides the more accurate
correlation with test life. All other variables show little correlation with life. Pore
aspect ratio was expected to be an important factor in the initiation of fatigue cracks but
the simplified oval approximation of the pore does not bear enough resemblance to the
actual pore shape for this to be assessed.

Comparisons have been made between CMSX-4 short crack fracture surfaces
and Mark Joyce’s long crack fracture surfaces along with relevant crack propagation
data for AK. Measurements were taken from several short crack fracture surfaces to
ascertain the size of the crack at the onset to rooftop cracking Using Scott and Thorpe
approximation for an elliptical crack in pure bend220 AK is found to be 54 MPavm for
the crack measurements. This result fits with long crack data where Mark Joyce
measured AK to be in the region of 50 MPavm at transition to rooftop cracking in his
SENB specimens. This simple approximation for the crack geometry and loading is
useful, as it shows reasonable correlation between the Scott and Thorpe AK calculation
and the fractography calibration. This result implies that the notch stress field gradient
in the CMSX-4 8mm x 8mm bend bars has a limited effect at these crack sizes.

Analytical work has been carried out to understand the effects of sub surface
pore geometry. A pore with high aspect ratio with major axis parallel to the notch
surface gives the highest value of Ky (stress intensity at the maximum depth position).
More detailed approximations for elliptical subsurface cracks by Rooke and

Cartwright™ have been investigated. The aim was to conduct a simple 2D analysis of
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an elliptical subsurface crack and analyse the combined effects of depth, a/c ratio and
rotation. The Rook and Cartwright solution was not flexible enough to suitably model

porosity conditions. Analysis is also still 2D.

6.8.1 Fatigue life modeling

Using observations from fracture surfaces, a modelling approach to capture
initiation from a geometrical feature, such as a pore, has been proposed. Crack
initiation at high temperature is seen to occur at subsurface pores and is characterised by
a halo around the pore when testing in air. The proposed mechanism that causes this
halo effect is due to the crack initiating and propagating in vacuum until it breaks the
surface of the sample and is exposed to air. Initial crack propagation conditions are that
of fatigue crack propagation in vacuum. Once air can enter the crack, the initial fatigue
area within the halo undergoes oxidation, affer failure has occurred. The boundary of
the halo marks the point at which the crack continues to propagate, but now under
combined fatigue and oxidation conditions.

Development of a fatigue lifing model based upon initiation from porosity features
has allowed a theoretical sensitivity study to be carried out. The effects of pore
dimension and material constants have been analysed separately. Internal life is mostly
dependant on depth of pore when pore size is small. This combination gives rise to the
longest crack growth distance required for the subsurface crack to reach the surface.
This observation is reversed when looking at total life, where small pores close to the
surface generate the longest total life. Crack growth rate data in vacuum for CMSX-4 is
faster than that in air so it follows that a small initiation point from which the majority
of the crack growth is in air will yield the longest lifetime.

The major dimension a is seen to be the next most important factor in the model but
did not appear to be coupled with the ¢ dimension to the extent expected. A long thin
pore is not much better or worse that a long fat pore. It has been shown numerically
that crack growth in a sub surface ellipse occurs more quickly in the ¢ direction thus
causing the void to be circular. Any coupling between variables is more likely to come
from the relationship between area and lifetime rather than aspect ratio and lifetime.

Sensitivity to crack growth rate constants m and C is high with longer lifetimes as
either value is decreased. Relationships between m and lifetime and C and lifetime are
of a power law type with small values of m and C tending towards infinite lifetimes. It

is therefore important that there is confidence in crack growth rate data used for the
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model. It is suggested that repeat long crack tests may be beneficial to generate more
accurate material constants although short crack growth laws are probably even more
appropriate but considerably more difficult to obtain. The effect of changing the critical
K value appeared to be linear over the range of values tested. Effect plot did suggest
that the value was starting to flatten off at high K levels. This is expected because at the
these K levels crack propagation is so fast that changes in the critical failure level will
have little effect on the total life.

The model has been presented with data for all pores identified as initiation points
from all 3 alloys. Crack growth rate data from CMSX-4 has been used for all cases in
absence of any more relevant data. Predicted results for 8mm x 8mm CMSX-4 bars
show good correlation with actual test results. With the exception of two tests, the
model is under predicting lifetimes. Differences between the predicted value and actual

value are thought to be due to two reasons:

» The model assumes instant initiation from the critical pore. This is possible but
is unlikely to occur in all cases. The number of cycles to initiation cannot be
captured in this model and can be treated as a probabilistic function. Confidence
limits could be added in one direction (increased life) to indicated to possible
increased in life due to initiation. These values can only be determined

experimentally although the geometry of the pores is expected to have an effect.

* The model does not use short crack data, using a Paris law approximation will
result in faster crack growth at low AK regions. The Paris growth law will also
under predict growth rate as the sample approached failure but the number of

cycles accumulated during this stage is low so the effect is much smaller.

When presented with data for PWA1484 and René¢ N5 the model is less accurate.
Lifetimes for René N5 are constantly over predicted. This alloy showed the greatest
number of initiating pores on each fracture surface. Multiple initiations and coalescence
will yield shorter lives than those predicted from a single pore in the model.
Modifications are required to allow for multiple initiation points in the model. As two
small cracks approach each other a larger semi elliptical crack will be formed. Rules for
this coalescence can be added in a future model. The effect of multiple cracks on the
stress field is more complicated and may require changes to the underlying fracture

mechanics equations.
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Crack shape evolution during progression from subsurface initiation to circular
subsurface crack (halo) to semi elliptical crack and coalescence with nearby neighbours
could possibly be monitored by running another test. Running a test that alternated
between high and low frequency or between high and low R ratio could generate
beachmarks defining the crack front at various points throughout crack growth.

Lifetimes for PWA 1484 are consistently over predicted. The crack growth rate data
is incorrect (CMSX-4 data has been used). Data for PWA1484 has been found in the
literature and substituted into the model but did not improve the accuracy of the
predictions. PWA1484 testing was performed in axial tension. Therefore the
assumptions of stress gradient are different for this type of sample. The stress value
calculated in the model will be much less accurate for this sample geometry and is
likely to cause the greatest difference between actual and predicted results. The model
requires modification for this particular specimen geometry before more crack growth
rate data is added.

Predictions for all 3 alloys are dependent on the predicted stress value to drive the
crack growth rate. FE analysis shows that the notch region becomes plastic at
maximum load. An estimation of the stress has been made but could be refined by
performing tensile tests to generate stress strain curves to feed into an FE model to
predict notch field stresses. This process could be refined further by performing cyclic
stress strain tests in order to assess the amount of plastic hardening/softening that takes
place during the first few cycles. This data will also allow for re —assessment of the
strain range for each test and may move Southampton data closer to the Alstom test data
as shown in (Figure 223)

Neural networks have been trained on artificial data from the lifing model and on
real data collected from fatigue tests using Matlab. It has been demonstrated that a
neural network can be trained on data from the fatigue lifing model with only a small
error in the resulting predictions. However, when actual test data is used, the neural
network was unable to fit the data to the same degree. This could be attributed to two
factors, both of which are likely to have an effect. Firstly, the model cannot account for
the crack initiation life, this has been discussed with relation to the fatigue lifing model
already. The neural network model would benefit from error bars as generated by
Neuromat software to give an indication of the amount uncertainty present in the
predictions. This would provide a good measure of variability of initiation life within
the tests. In order for this to be successful the neural network will require a much larger

training set before any meaningful conclusions can be drawn. Secondly, although there
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are a large number of variables that affect fatigue life, only a small combination of
variables was used for each model. In order to use a larger number of input variables,
the size of the input dataset would need to be increased substantially. The size, location
and number of initiating pores cannot be predefined before testing so methods such as

DOE cannot be used to pre-define a test matrix.

6.9 Conclusions

Crack initiation was dominated by inter-dendritic <100> aligned micro-porosity, which
is directly affected by the secondary orientation of the sample, although no clear effect
of secondary orientation on overall notch fatigue life has been found

Surface oxide cracks did not appear to initiate critical fatigue cracks. At high
temperature in vacuum, initiation occurs from pores at or close to the notch surface,
whereas at high temperatures in air, initiation occurs almost exclusively at sub-surface
pores, indicating a possible in-filling of surface pores by oxidation.

Scatter in lifetimes can be partially modelled by a multi-part Paris type lifing
approach, modelling initial sub-surface crack growth from a pore under vacuum
conditions and subsequent crack growth under air once the crack breaks through to the
surface. Vacuum long crack propagation rates at 650°C indicate that apparent vacuum
lifetime improvement is not necessarily due to slower propagation. Development of the
model requires more realistic crack growth laws, allowing for crack coalescence and to
be tested more extensively against increased amounts of experimental data.

A neural network model is able to capture the complicated relationships within the
fatigue lifing model but unable to fit to real test data presented with respect to a reduced
number of test variables. A neural network approach will also benefit from a larger

spread of test data.
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7 Final Conclusions
Fatigue life estimation for a given alloy has been carried out using two different

approaches

Both sections of work hope to address some of the factors which influence the
fatigue life of superalloys and the inherent scatter in fatigue life data. The first
approach uses neural network models to fit patterns in data in order to predict material
performance based upon a set of inputs (composition and processing parameters). At
this level, the model does not have any ‘knowledge’ of metallurgy or microstructural

evolution of the alloys concerned.

The contribution of the work presented comes from methodologies developed for
the selection of training data in the first instance combined with defining a set of tests
for the trained model. A model trained on a small amount of ‘good’ data will give
better predictions than a model trained using a much larger dataset including ‘bad’ data.
The decision as to which data should be included in the model has been based on
metallurgical knowledge and experience gained from actually using the training
datasets. Initial neural network models were re-trained multiple times with small
changes to the training dataset and the effects on the output recorded for each change
made. The sensitivity tests are then required to judge if the model is picking up real
trends in the data that can be explained by our physical understanding of the problem.
Without these processes, the neural network modelling is reduced to a data fitting
exercise. The processes are now being used by QinetiQ as part of their neural network
modelling method.

Supporting work with Matlab has been carried out to complement the work carried
out using Neuromat. This work has not questioned the theories behind the neural
network modelling process employed by Neuromat. An understanding of each step in
isolation was achieved buy using Matlab scripts to generate a more transparent
modelling process that both increased the knowledge of the process and validated the
results that were generated using Neuromat.

Models have been shown to perform well against known and unknown data from the
literature and the next step for QinteiQ is to use them to help develop a new alloy
composition and validate the results via physical testing. Once validated, this modelling
processes could bring huge cost savings in alloy development by providing a screening

process before committing to produce test samples of new materials.
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The second approach tackles a much more specific problem with a more a
mechanistic approach. Using observations from tests, a model has been described and
developed using fracture mechanics theory and data derived from tests. The model has
been successful in increasing understanding of the role of porosity in the fatigue life of a
notched test specimen. This process has helped explain a proportion of the scatter seen
in fatigue test results. The modelling process has been backed up by microscopy to
illustrate the mechanisms present during the fatigue initiation process. A lot of care has
been taken to remove sources of scatter where possible. Statistical analysis methods
used to analyse the input data for the neural networks have also been used to look for

patterns in test data with particular emphasis on porosity size and distribution.

Although both sections of work have started off quite separate, the information
generated as a result of the LCF testing and modelling can know begin to be used in
conjunction with the neural network model. A lifing model that is able to take more
general information about porosity shape distributions and volumes could be used as
another input to the higher level neural network modelling approach thus addressing

another source of scatter in the data.

Lessons learnt from each section of work have benefited the other. Knowledge of
testing methodologies and practices proved very useful when searching for, and filtering
through, data presented in technical papers. Results from LCF tests using a variety of
alloys have helped highlight factors, such as porosity distribution, which directly affect
the scatter in fatigue life but as yet are not incorporated into the neural network
modelling process. Modelling techniques and scripts that were developed as part of the
neural network program have been applied to data generated as a result of LCF testing

at Southampton
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8 Further Work

Further work to improve the LCF neural network should concentrate on
manipulation of the input data to in order to present the model with ‘clean’ data with a
possible reduction in the number of inputs. The following experiments should be

carried out:

* Reduce ‘scattered’ input to a series of SN curves. Theoretically there should
be no numerical discontinuities in this data so interpolation can be used to
provide a set number of points per alloy curve.

* Predictions should also be in the form of SN curves, not predictions against
isolated points

* Investigate the use of the Smith Watson Topper parameter to condense
information about R ratio and frequency.

* Investigate grouping other inputs into a single parameter, such as y’ formers

Al and Ti.

The fatigue lifing model would benefit from the following information

* Crack growth rate data for Rene N5 and PWA 1484
* More accurate stress calculation for test bars of different geometry — This could

be achieved using FEA or extension of the current methodology.

Further developments to the model should look at implementing multiple initiation from

porosity with separate cracks growing and coalescing to produce one large crack.

A statistical input based on the probability distribution for the size and shape of pore for
a given alloy could be used to generate results with a accompanying levels of scatter.
This information can then be used as an input to the LCF neural network modelling
process.

This would require upfront optical or 3D topological analysis of each alloy to define the

porosity distributions
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APPENDIX 1 — Matlab neural network training script for YS models.

%Neural network training
$Matlab script written by Mark Miller.

clear %clears current workspace

§mmmmmmmmmm—mm o MODEL PARAMETERS-----—-———-———--

humin = 5; $Min number of hidden units

humax = 22; %Max Number of hidden units

ep = 100; $Number of training epochs

x = 20; %Number of seed points to use
G PROCESS INTPUT DATA---——--——————————————
load ('Input workspace.mat'); %loads matlab workspace

containing all input data
YS = YS InputData 26Apr05';
"YS InputData" matrix and names it "YS"

oo

Takes transpose of
|l

P=YS([1:29],:); % Creates matrix containing
training data "p"
[pn, pmin, pmax] = premnmx(p) ; % Creates pn, pmin, pmax - used

to normalise data

t= YS(30,:);
target data "t"

[tn, tmin, tmax] = premnmx(t);
to normalise data

o\

Creates matrix containing

oe

Creates tn, tmin, tmax - used

oe

Test = Testdata'; Take transpose of "Testdata"
and name it "Test"

TestN = tramnmx (Test, pmin, pmax);
pmax generated from training set

vinputs = vinputs';

vtargets = vtargets';

Test.P = tramnmx (vinputs, pmin, pmax); % Normalise data using pmin
and pmax generated from training set

Test.T = tramnmx (vtargets, tmin, tmax); % Normalise data using

pmin and pmax generated from training set

oo

Normalise data using pmin and

TrainingErrors = []; %creates array to store
Training MSE of each model

$TestErrors = [] %creates array to store
Test MSE

%0f each model - Not in use yet.

e First loop to initialize NN for given
numer of

%Hidden
Units-—-—-————"""""""""""""""""""-"""—" "~

for hu=humin:1:humax; %1loop between min number

and max number of HU's in steps of 1

Results = Testdata(:,29); %Add line of data containing
temperatures to results matrix

namel = int2str (hu); %create text string for
number of hidden units

name?2 = ' Hidden Units ';

HuName = [namel, name2];
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Mkdir (HuName) ; %Create new folder to store
results.

cd (HuName) ; $Make new folder working
directory
e NN ARCHITECTURE---—-=-————=————————

net=newff (minmax (pn), [hu,1], {'tansig', '"purelin'}, 'trainbr');
%create network

net.trainparam.show = 10; % Updates graphs every 10
epochs

net.trainparam.epochs = ep; % Train network for (ep)
epochs

———————————————————————————— Sub Loop to train one model for a
given number of Hidden Units-----

[o)

% Trains network and make predictions using unseen data.
Process repeats x

Q

% no. times.

for seed=1l:1:x; % Repeat training x times
namel = int2str(seed); %create string for seed
number
name?2 = 'Seed ';
SeedName = [name2?2 namel];
net = init (net); % Initialise network
eval (['Initnet' num2str (hu) num2str(seed) ' = net']);

[o)

% Record initial network in matrix called "initnet (i)"

net = train(net,pn,tn, [],[],[],Test); % Train
network - Network plots predictions error against test data.

namel = 'Training data '; %
Creates name for graph and saves as jpeg

name = [namel HuName SeedName];

print ('-djpeg', name);

close

Q

% Calculate Training errors

ErrN = sim(net,pn); % Perfrom
prediction for all original input data

e = tn-ErrN; %calculate
matrix 'e' (targets - predicted values)

perf = mse(e); % Mean
squared error of 'e'

TrainingErrors = [TrainingErrors perf]; % Add mean

squared error value to Training Error matrix

plot (tn,ErrN, 'ks',tn, tn); %$Plots
targets vs predicted

axis ([0 1 0 11);

xlabel ('Target data'):;

ylabel ('Prediction');

namel = 'Training Error ';

name = [namel HuName SeedName];

title (name) ;
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print ('-djpeg', name);
close

% Make predictions

aTestN = sim(net, TestN) ; % Perfrom prediction
"aNim" contains normalised predictions

aTest = postmnmx (aTestN, tmin, tmax); % Un-normalize
data

Ans = aTest'; % Transpose results
matrix

Results = [Results Ans]; % Adds predicted

results to results file

eval ([ '"Network' num2str (hu) num2str(seed) ' = net'l); %
Rename trained network

end

G——m PLOT GRAPHS OF INDIVIDUAL MODEL
PREDICTIONS-—————=———=—————————————————

last = x+1; %Last line of data predictions

aver = x+2; %line containing data predictions

MeanRes = mean (Results(:,2:1last)"')’'; $Adds mean
results to predictions results file
Results = [Results MeanRes];

%$Plot results against actual data. Actual data in 2 column
matrix,
Stemp and YS.

namel = 'M313 Results ';

name = [namel HuName];

plot ((Results(1:23,1)), (Results(1:23,2:1last)), (M313(:,1)),
(M313(:,2)),'rd");

xlabel('Temp');

ylabel ('YS"'");

title (name)

print ('-djpeg', name);

close

namel = 'M22 Results ';

name = [namel HuName];

plot ((Results(24:46,1)), (Results(24:46,2:1last)), (M22(:,1)),
(M22(:,2)),'rd");
xlabel('Temp');

ylabel ('YS'");

title (name)
print ('-djpeg', name);
close

namel = 'M21 Results ';
name = [namel HuName];

plot ((Results(47:69,1)), (Results(47:69,2:1ast)), (M21(:,1)),
(M21(:,2)),'rd");
xlabel('Temp');

ylabel ('YS'");

title (name)

print ('-djpeg', name);
close
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e PLOT GRAPHS OF MEAN
(COMMITTEE) PREDICTIONS-—=-=-—-—-—-~

namel = 'M313 Average Results ';
name = [namel HuName];
plot ((Results(1:23,1)), (Results(1:23,aver)), (M313(:,1)),
(M313(:,2)),'rd");

xlabel('Temp');
ylabel ('YS');
title (name)
print ('-djpeg', name);
close
namel = 'M22 Average Results ';
name = [namel HuName];

plot ((Results(24:46,1)), (Results(24:46,aver)), (M22(:,1)),
M22(:,2)),'zxd");
xlabel('Temp');

ylabel ('YS');
title (name)
print ('-djpeg', name);
close
namel = 'M21 Average Results ';
name = [namel HuName];

plot ((Results(47:69,1)), (Results(47:69,aver)), (M21(:,1)),
M21(:,2)),"'zxd");
xlabel('Temp');

ylabel ('YS'");
title (name)
print ('-djpeg', name);
close
cd
eval (['Results' num2str (hu) ' = Results']); %$Renames
results file corresponding to number of HU's
end
namel = 'Results'
name = [namel HuName SeedName];
save (name) ; SWorkspace is saved one all

training finished.
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APPENDIX 2 — Summary of data collected for LCF neural network model

Alloy Reference Source
Alloy 10 B1 NASA
Alloy 10 B1 NASA |
Alloy 10 B2 NASA |
Alloy 10 C1 NASA |
Alloy 10 C2 NASA |
Alloy 10 D1 NASA |
Alloy 10 D2 NASA |
Alloy 10 E1 NASA |
Alloy 10 E2 NASA |
APK-6 HSuperaIons 92 Conference Proceedings \
C263 QinetiQ Data - CPLife |
CM186LC QinetiQ Data - COST522 WP1.1 |
CM247LC DS HSuperaIons 96 Conference Proceedings \
CM247LC DS  V96_37.pdf |
CMSX-4 DSLife report - NLR-CR-2002-551 |
CMSX-6 'Superalloys V96_34 |
CMSX-6 V96_34.pdf |
GH4049 International Journal of Fatigue 21 (1999) 791-797 |
GH4049 The influence of temperature on low cycle fatigue behavior of nickel base

superalloy GH4049.pdf

HASTELLOY X Fatigue 2002 p1283 |
HASTELLOY X Superalloys 88 Conference Proceedings |
Haynes 230 HCPLife - tested at Alstom \
Haynes 230 Fatigue 2002 p1283 |
Haynes 230 HHaynes Datasheet \
HAYNES 230  Superalloys 2000 Conference Proceedings |
HAYNES 230 HSuperaIons 88 Conference Proceedings \
IN 718 HSuperaIons 92 Conference Proceedings \
IN738 LC Fatigue '96 p807 |
Low Co Superalloys 92 Conference Proceedings
Waspaloy

Mar-M-247(WLB)HSuperalloys 84 Conference Proceedings

HMar-M-247(WLK)HSuperalloys 84 Conference Proceedings

Mar-M- Superalloys 84 Conference Proceedings
247(WST)

Mar-M- Superalloys 84 Conference Proceedings
247(WWS)

Mar-M- Superalloys 84 Conference Proceedings
247(WWS)

MERL76 'Superalloys 96 Conference Proceedings
PWA 1480 HMateriaIs Science and Engineering, A 108 (1989) 189-202
RR1000 R44  QinetiQ Data

SC 16 HSuperaIons 96 Conference Proceedings
SC16 Fatigue '96 p807

SRR99 HSuperaIons 96 Conference Proceedings
u720 HU720 report (special metals)

U720 PM NASA

U720 PM 'TM-2000-209418.pdf
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Alloy Reference Source
U720 PM TM-2002-211571.pdf
U720HC QinetiQ Data MANDATE - FP4 |
u720LC QinetiQ Data MANDATE - FP4 |
U720Li QinetiQ data - ARP4 |
U720Li LG QinetiQ data - ARP4 |
U720PM QinetiQ Data MANDATE - FP4 |
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APPENDIX 3 C++ Code for Fatigue Lifing Model
Written By Dr Xijia Wu and Modified by Mark Miller

#include <math.h>
#include <stdio.h>

#define BUF SIZE 512
static const double pi=3.1415926;

double T1 (int n)
{
if (n==0) return pi/2;
else 1if (n==1)
return 1;
else
return T1(n-2)*(n-1)/n;
}

double gl (double r at)
{

return 0.46+3.06*r at+0.84*pow ((l-r at),5)+0.66*pow (r_at* (1-
r at),2);

}
double g2 (double r at)
{
return -3.52*r at*r at;
}
double g3 (double r_ at)
{

return 6.17-28.22*r at+34.54*r at*r at-14.39%*pow(r_at, 3)

-pow ((l-r at),1.5)-5.88*pow((l-r at)

2.64*pow(r_at*(l-r_at),2);

}
double g4 (double r at)

{

15)_

return -6.63+25.16*r at-31.04*r at*r at+l4.41l*pow(r at,3)
+2*pow (1-r_at,1.5)+5.04*pow (1-r_at,5)+1.98*pow (r_at* (1-

r at),2);

}

/* Array of function pointers containing the above 'g'

double (*g[4]) (double)={&gl, &g2, &g3,&g4d};

double SIFofThruEdgeCrack(double a, double r at,

{
double sif=0.0;

/* Call each 'g' function in turn */
for (int i=0; 1i<4; i++) {

sif+=g[i] (r_at)*T1l(n+i);
}

int n)

functions */

sif*=2*pow(a/1000,n) /sqgrt (pi) /pow((l-r at),1.5)*sqrt(a);

return sif;

/* Perform the main calculation
*

* ORT = orientation, 'A' or 'B'

*/
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int doCalculation (double a, double ¢, double d, double PMvac,
double PMair, double PCvac, double PCair, double Kcrit, char ORT, int
*internal, int *total)
{
double R=0.1;
double stress,strain,Q,K1,K2,K3,al,r at;
double s0[7]={1.0716,0.26292,-1.0854,0.62811,-0.16191,0.01962, -
0.00009125}%;

stress = 0.0;
for (int i=0; 1i<7; i++) {

stress += s0[i]*pow(d/1000,1);
}

int ni=100;
int I=0;
int J=0;

do {
Q=1+1.46*pow(a/c,1.65);

if (a < d && ¢ < d) {
Kl=stress*sqrt (pi*a/Q);
K2=stress*sqgrt (pi*a/Q) *a/c;

a += PCvac*pow (K1, PMvac) *ni;
c += PCvac*pow (K2, PMvac) *ni;

J=I;
else

Cc=ay,

al=a/Q;

r_at=a/7500/9Q;

K1=0.0;

for (int i=0; i<7; i++) {

Kl+=s0[i]*SIFofThruEdgeCrack(al,r at,i);

}

K2=K1;

switch (ORT)

{

case 'A':
a+=PCair*pow (K1, PMair) *ni;
break;
/* NAB TODO: break;??? */

case 'B':
a+=PCair*pow (K1, PMair) *ni;
break;

I++;
} while ((K1 < Kcrit) && (K2 < Kcrit));

*internal = J*ni;
*total = I*ni;

return O;
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}

/* Read a line from the input file that describes the pore.

p
a

Src
4 CI

= source file pointer
d, ORT = data read from source file */

int readLine(FILE *pSrc, double *a, double *c, double *d, double
*PMvac,

char *ORT)

{

1",

dou

ble *PMair, double *PCvac, double *PCair, double *Kcrit,

int retval = 0;
char buf [BUF SIZE];

if |

{

ORT,

}

fgets (buf, BUF SIZE, pSrc) != NULL)
int scannedNos;

/* Check that this line fits the expected format. */
scannedNos = sscanf (buf, "%c,%1f,%1f,%1f,%1f,%1f,%1f,%1f,
a, ¢, d, PMvac, PMair, PCvac, PCair, Kcrit);
if (scannedNos == 9)
{

retval = 1;
}

return retVal;

Entry point for the appliction.

argc = count of command line parameters
argv[] = array of command line parameters as strings.
argv|[0] = program name as invoked on command line. */

int main (int argc, char* argvl([])

{

&PCair,

if (argc < 3)
{
printf ("Usage: %s SOURCE DEST\n", argv([0]);
}
else
{
FILE *pSrc;
FILE *pDst;
char ORT;
double a,c,d,PMvac,PMair,PCvac, PCair,Kcrit;
pSrc = fopen(argv[l], "r");
if (!pSrc)
{
printf ("Unable to open SOURCE file %s\n", argv[1l]);
return 1;
}
pDst = fopen(argv[2], "w+");
if (!'pDst)
{
printf ("Unable to open DEST file %s\n", argv([2]);
fclose (pSrc) ;
return 1;
}
while (readlLine (pSrc, &a, &c, &d, &PMvac, &PMair, &PCvac,
&Kcrit, &ORT) != 0)

{

int internal, total;
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doCalculation(a, ¢, d, PMvac, PMair, PCvac, PCair,
Kcrit, ORT, &internal, &total):

printf ("internal %d, total %d\n", internal, total);

fprintf (pDst, "%d,%d\n", internal, total);

fclose (pSrc) ;
fclose (pDst) ;

return O;
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