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ENHANCED PRE-CLINICAL ASSESSMENT OF TOTAL KNEE REPLACEMENT USING
COMPUTATIONAL MODELLING WITH EXPERIMENTAL CORROBORATION &
PROBABILISTIC APPLICATIONS

by Anthony Michael Strickland

Demand for Total Knee Replacement (TKR) surgery is high and rising; not just in
numbers of procedures, but in the diversity of patient demographics and increase
of expectations. Accordingly, greater efforts are being invested into the pre-
clinical analysis of TKR designs, to improve their performance in-vivo. A wide
range of experimental and computational methods are used to analyse TKR
performance pre-clinically. However, direct validation of these methods and
models is invariably limited by the restrictions and challenges of clinical
assessment, and confounded by the high variability of results seen in-vivo.

Consequently, the need exists to achieve greater synergy between different pre-
clinical analysis methods. By demonstrating robust corroboration between in-
silico and in-vitro testing, and both identifying & quantifying the key sources of
uncertainty, greater confidence can be placed in these assessment tools. This
thesis charts the development of a new generation of fast computational models
for TKR test platforms, with closer collaboration with in-vitro test experts (and
consequently more rigorous corroboration with experimental methods) than
previously.

Beginning with basic tibiofemoral simulations, the complexity of the models was
progressively increased, to include in-silico wear prediction, patellofemoral & full
lower limb models, rig controller-emulation, and accurate system dynamics. At
each stage, the models were compared extensively with data from the literature
and experimental tests results generated specifically for corroboration purposes.

It is demonstrated that when used in conjunction with, and complementary to,
the corresponding experimental work, these higher-integrity in-silico platforms
can greatly enrich the range and quality of pre-clinical data available for decision-
making in the design process, as well as understanding of the experimental
platform dynamics. Further, these models are employed within a probabilistic
framework to provide a statistically-quantified assessment of the input factors
most influential to variability in the mechanical outcomes of TKR testing. This
gives designers a much richer holistic visibility of the true system behaviour than
extant ‘deterministic’ simulation approaches (both computational and
experimental).

By demonstrating the value of better corroboration and the benefit of stochastic
approaches, the methods used here lay the groundwork for future advances in
pre-clinical assessment of TKR. These fast, inexpensive models can complement
existing approaches, and augment the information available for making better
design decisions prior to clinical trials, accelerating the design process, and
ultimately leading to improved TKR delivery in-vivo to meet future demands.
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ACL
ADL
ADAMS
AMTI
A-P
Ad-Ab
Arthroplasty -
BW

C-D
CDF
Co-Cr
cov
CR

CS

DD
DOE
DOF

EF

FB

FD

F-E
FE(A)
FPI
HIKIN
HS

I-E
in-vitro
in-vivo
in-silico
I-S

ISM
JCF

JRF
KKS

KU

LCL
LHS
LUT
MBD

GLOSSARY OF TERMS

- Anterior Cruciate Ligament

- Activity of Daily Living (any regular subject activity; e.g. walking)

- Automatic Dynamic Analysis of Mechanical Systems (MBD Software)
- Advanced Mechanical Technologies, Inc (company name)

- Anterior-Posterior (translational direction)

- Adduction-Abduction (rotational axis of knee; see also V-V)

lit. ‘arthron-’ (joint) + ‘-plastia’ (moulding); hence ‘joint surgery’

- Body Weight; normalising term for joint forces (typically ~800N)
- Compression-Distraction (knee motion: see also I-S)

- Cumulative Density Function (in probability modelling)

- Cobalt-Chromium (metal alloy common in orthopaedics)

- Coefficient of Variation (measure of statistical accuracy)

- (PCL) Cruciate-Retaining (design option for knee implants)

- Cross-Shear (crossing motions for knee contact mechanics)
- Displacement-Driven (knee simulator test method)

- Design of Experiment

- Degree (or Degrees) Of Freedom

- Elastic Foundation (computational method for modelling contact)
- Fixed Bearing (design option for knee implants)

- Force-Driven (knee simulator test method)

- Flexion-Extension (primary rotational axis of knee)

- Finite Element (Analysis); computational method

- Fast Probability Integration (stochastic techniques)

- High-Kinematics (knee simulator DD gait profile)

- Heel-strike (beginning of stance phase in gait cycle)

- Internal-External (secondary rotational axis of knee)

- Experimental (lit. ‘in glass’, used as synonym for ex-vivo)

- Clinical (lit. ‘in body’, antonym ex-vivo - out-of-body)

- Computational (permutation of in-silicio; lit. ‘in silicon’)

- Inferior-Superior (translational direction)

- Importance Sampling Method (statistical modelling method)
- Joint Contact Force - internal force experienced at joint surface
- Joint Reaction Force - external force transmitted by joint

- Kansas Knee Simulator (servo-hydraulic knee rig)

- University of Kansas

- Lateral Collateral Ligament (also Fibular Collateral Ligament)
- Latin Hypercube Sampling (statistical modelling method)

- Look-Up Table

- Multi-Body Dynamics (software modelling methods)
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MCL - Medial Collateral Ligament (also Tibial Collateral Ligament)
MCS(T) - Monte-Carlo Simulation (Technique)

MCycle - Mega-Cycle (1 million cycles; used in long-term wear tests)
MIS - Minimally Invasive Surgery

M-L - Medial-Lateral (translational direction)

MoP - Metal on Polyethylene (articulation for knee implants)

MPP - Most Probable Point (for FPI methods)

(AMV(+) - (Advanced) Mean Value (+) (family of FPI Methods)

NESSUS - Numerical Evaluation of Stochastic Structures Under Stress
OA - Osteoarthritis (synonyms: Osteoarthrosis, Arthrosis)
(F/S)ORM - (First/Second) Order Reliability Method; FPI methods

PCL - Posterior Cruciate Ligament

PDF - Probability Density function (also Distribution function)

PE - Polyethylene (of which UHMWPE is a particular form)

PFC - Press-Fit Condylar (J& TKR design)

PID - Proportional-Integral-Derivative (control scheme)

PKS - Perdue Knee Simulator (servo-hydraulic knee rig; basis for KKS)
PL - Patellar Ligament (occasionally referred to as patellar tendon)
PMMA - Polymethylmethacrylate (principal constituent of bone cement)
PS - PCL Substituting/Sacrificing (design option for knee implants)
QT - Quadriceps Tendon

RA - Rheumatoid Arthritis (systemic form of arthritis)

RMS - Root-Mean-Square (convenient measure of vector signals)
(A/P)ROM - (Active / Passive) Range of Motion

RP - Rotating Platform (design option for knee implants)

RSE - Response Surface Equation

RSM - Response Surface Method (FPI Method)

S/C - Semi-Constrained (specific tibial insert design)

SA - Sensitivity Analysis (in statistical modelling)

SD - Standard Deviation (statistical measure; also denoted by o)
SKS - Stanmore Knee Simulator (wear simulator rig)

T(J/KA - Total (Joint / Knee) Arthroplasty

T(J/K)R - Total (Joint / Knee) Replacement

TO - Toe-Off (end of stance phase in gait cycle)

V-V - Varus-Valgus (secondary rotational axis of knee)

u/C - Un-Constrained (specific tibial insert design)

UHMWPE - Ultra-High Molecular Weight Polyethylene

UKR - Unicompartmental Knee Replacement

UMKC - University of Missouri (Kansas City)



SUMMARY

The purpose of this thesis is to demonstrate that computational and
experimental methods can be used together more effectively to provide an
enriched pre-clinical analysis toolset for design of knee replacements, and
further to show that accounting for variability (by using probabilistic
methods) plays an essential role in developing a more holistic understanding
of knee mechanics.

With rising life expectancy, joint problems are increasingly common in the
developed world. In recent decades, hip and knee surgery has become
commonplace, with millions of procedures now performed annually worldwide.
However, several factors limit the effectiveness of joint replacement surgery,
especially for the knee: high inter-patient variability, rising expectations from
surgery and imperfect understanding of the mechanics, biology & tribology of the
joint. Chapter One begins by discussing the biology, pathology and intervention

options related to knee replacement in more detail.

In consequence of these challenges, considerable effort goes into analysis and
design of new implants. To avoid expensive and risky clinical (in-vivo) trials, there
is an increasing emphasis on pre-clinical testing, using experimental (in-vitro) and
computational (in-silico) methods. A review of the relevant literature and historical
developments in this area is presented in Chapter Two. Important examples in
the field of knee testing are experimental knee wear simulators, lower limb
simulators, and finite element stress analysis. However, these are often used as
either isolated computational studies, with inadequate experimental
corroboration, or isolated experimental studies, lacking the enriched analysis and
visualisation which computational modelling can provide. The need exists to use
in-vitro and in-silico methods together more effectively, providing a holistic, data-
rich means of assessing the many variables and uncertainties in knee

biomechanics.

A major aim of the thesis was to demonstrate that ‘single-shot’ models alone are
not adequate to fully account for the results observed in-vivo and in-vitro.
Historically, many biomechanical studies have failed to account for the wide
range of variability seen in such factors as patient activity or surgical positioning
accuracy. Models which do simultaneously take account of the multiple different
variable input factors are termed ‘probabilistic’ models. Chapter Three describes
some of the existing probabilistic techniques that can be used to obtain a more



‘holistic’ overview of system performance, and considers how these methods

might be applied to model the influence of variability for biomechanical systems.

Capturing the influence of variability in knee analysis is a key aim of the thesis.
To facilitate the large number of simulations necessary to explore this variability,
a faster modelling approach is needed. Chapter Four describes the early
modelling efforts, exploring the use of multi-body dynamics models as a low-cost
surrogate to replace deformable finite-element methods. These models can
potentially deliver faster performance (simulation times of minutes rather than
hours) with only a limited loss in accuracy. Early results demonstrated
satisfactorily that MBD could be used as a fast surrogate for finite element
methods, able to reproduce the kinetics & kinematics for force- and
displacement-driven tests, and also approximate the finite-element predictions
for contact pressure and wear. We used these fast rigid-body models to simulate
multiple in-vitro wear tests, and so assess the performance of existing in-silico

wear algorithms.

With these baseline deterministic models in place, Chapter Five describes how
the models were coupled with probabilistic methods to begin exploring the
influence of variability on knee biomechanics, firstly reproducing the results of
existing studies in the literature, and then progressing on to novel investigations.
However, none of the existing studies corroborated the probabilistic methods
with corresponding probabilistic experimental data; therefore it was determined
that better corroboration against specific experimental test platforms was

needed, to serve as the basis for a corroborated probabilistic study.

The first targeted corroboration was for the Kansas lower-limb simulator,
described extensively in Chapter Six. This focused model design & verification
exercise revealed the importance of accurately capturing the ‘dynamics’ of the
simulator (e.g. damping effects and inertia), and also the influence the controller
can have upon the overall system performance. As a result of this, it was
recognised that in order to achieve accurate corroboration, a knee-wear simulator
model needed to include the control system, and had to accurately represent all

the mechanical dynamics of a specific rig design.

Therefore, the AMTI knee simulator was used as the basis of a much more robust
set of in-silico models, as described in Chapter Seven. Using this higher-fidelity
model, forces and kinematics could be accurately predicted using experimental
feedback data. With this deterministic model performing well, the final aim was to
build a probabilistic study around this model, to investigate whether the

variability predicted by in-silico models matched in-vitro test results (i.e. a first-of-
10



kind ‘probabilistic corroboration’). Data from over one-hundred experimental
trials was compared with a probabilistic computational study, to discover if the
resulting variations in knee mechanics and wear corresponded for in-vitro and in-

silico analysis methods.
The key outcomes of the thesis may be summarised as follows:

e Rigid ‘multi-body-dynamics’ based models were shown to perform

acceptably as fast surrogates in place of finite-element models.

e Models of specific real-world experimental platforms were developed.
Good agreement with in-vitro results was achieved (to within 5% averaged
RMS errors), and the experimental data could be augmented with
additional in-silico data (e.g. wear ‘decomposition’ to visualise contact

pressure or cross-shear).

e The ‘probabilistic’ models including variability reveal that small variations
in input test conditions can considerably alter the resulting outcomes; e.g.
it is possible to achieve very high wear rates (2 to 3 times the normal level)

even with small component misalignments of only a few degrees.

e The focus on computational wear modelling has led to developments in
our understanding of wear; it has been robustly demonstrated that in-silico
models can qualitatively rank designs in terms of wear performance, but
there is still too much uncertainty to have quantitative confidence in the

results to a high degree of accuracy.

e By combining probabilistic experimental and computational results for the
first time, this thesis reveals important limitations of computational
models when predicting the variation in real-world wear rates: in-silico
methods seem to be under-estimating the true amount of observed
variation by at least a factor of four (more for some older theoretical wear

approaches).

This work has demonstrated that much faster in-silico models can still deliver
acceptable accuracy. This speed increase can be harnessed to investigate
variability, to perform multiple analyses, and so extend the domain of testing
beyond what is possible with purely experimental means. But computational
models must always be grounded in reality by robust corroboration with
experimental methods, so close collaboration is essential. These studies
demonstrate that close collaboration between computational and experimental

specialists can yield benefits for both; the computational models are more
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realistic and more accurate, and the experimental data can be augmented with
enriched in-silico visualisation methods, and complemented with additional data
from probabilistic studies (which would be too time-consuming to run

experimentally).

In this thesis the combination of fast computational analysis with experimental
data was used to investigate the current generation of wear concepts, and it is
shown that whilst these existing wear formulae are useful and beneficial
analytical tools, they are not perfect, and there is room for considerable
improvement in the current theories of wear. The combination of experimental
and computational methods, taking account of the important role of variability in
the tests, has been the key to advancing our understanding of the capabilities

and limitations of existing wear theories.

To progress our understanding of knee biomechanics further in the future, it will
increasingly be necessary for different research specialists to collaborate
together, in order to corroborate their methods and so build confidence in our
results collectively, and enhance the total quantity and quality of pre-clinical data
available to researchers, implant designers and clinicians. Equally, as a research
community, emphasis must shift from ‘single-shot’ experimental and
computational models of knee biomechanics to more ‘probabilistic’ approaches
capturing the substantial variability observed in the knee in-vivo. The methods
that have been used and the models that have been developed demonstrate what

is possible when such a holistic approach to pre-clinical analysis is adopted.
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CHAPTER ONE - REVIEW OF THE HUMAN KNEE
Anatomy, Physiology, Pathology & Clinical Treatments

1.1. Introduction: Motivation for Understanding the Human Knee

Advances in medicine, diet & living conditions have led to increases in life
expectancy across the developed world. As a result, UN estimates predict that the
percentage of the population aged 60 or over will have risen from about 10% in
2000 to over 20% in 2050 worldwide, with the European rate rising from 20% in
2000 to almost 35% in 2050 [1].

As a result, many of the physiological problems associated with older age are
more prevalent. Joint problems are particularly common. Over decades of normal
daily activity, the articulating surfaces experience damage leading to pain and
hence reduction of mobility. Less frequently, joint problems can also be the result
of progressive or congenital diseases affecting younger individuals as well as

older subjects.

In order to improve patient quality of life, it is desirable to remove, or at least
reduce, the pain and loss of mobility caused by joint degeneration. Various
remedial procedures such as knee surgery (called ‘knee arthroplasty’) have been
devised for this purpose. Historically, arthroplasty procedures have traditionally
been associated with the lower limb joints (specifically, the hip and knee), which
bear the largest loads and hence are most susceptible to osteoarthritis. The focus
of the present body of work will be the knee joint, which now undergoes more
procedures than any other single joint nationally [2]. A necessary pre-requisite for
this study is therefore a preliminary review of the fundamental anatomy,
physiology & relevant pathology of the knee joint, and the surgical options for

intervention. This review is presented in this first chapter.

1.2. The Human Knee: an Anatomical Review '

The knee is the largest ‘synovial’ joint in the body (i.e. the joint is enclosed in a
fibrous capsule, containing synovial fluid). Although often referred to as a
‘ginglymus’ (simple hinge) joint, it is in fact a complex multi-condylar joint, with
secondary motions including considerable anterior-posterior (A-P) translation, and
internal-external (I-E) rotation. Technically, it is not one single joint; there is a

patellofemoral articulation, and two distinct tibiofemoral articulations (both

' Extensive use is made in this document of the anatomical frames of reference. These are
defined in Appendix A. The material presented in this section is derived from standard

human anatomy texts [3, 4].
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medial and lateral condyles). It may therefore be considered as three
‘compartments’, and in this sense a ‘total’ knee replacement may be referred to

as a ‘tri-compartmental’ replacement.

The knee experiences very demanding mechanical loads, since most of the body
weight acts through the joint and large torques are present due to the large thigh
& shank moment arms. Furthermore, unlike the hip, the knee is inherently
unstable, so additional soft tissue forces (from surrounding muscles and
ligaments) are required to stabilise the joint. The following anatomic description
progresses from the skeletal components of the knee to the more superficial soft

tissues:

Skeletal

The femur is the principle bone of the ‘thigh’ (or upper leg); the ‘shank’ (or lower
leg) consists of both fibula and tibia, although the tibia is the principle load-
bearing structure. The femur & tibia articulate together directly (two convex
condyles on the distal epiphysis of the femur articulate with the superior surface
of the proximal tibial condyles), thus forming the tibiofemoral joint. Additionally,
the anterior ‘groove’ of the distal femur also articulates with the patella, (the
‘kneecap’) a ‘sesamoid’ (intra-tendonous) bone providing attachment for, and
improved leverage to, the quadriceps muscles (Figure 1, left) - this forms the
patellofemoral joint. The area of the bones where contact occurs is covered with
a thin layer of articular cartilage, a collagen-based soft-tissue which provides
impact-damping and reduces joint friction. It is the deterioration of this cartilage

protection which often leads to joint failure (see Section 1.4).

Menisci

In both of the tibiofemoral condyles, a cartilage meniscus is present, which
reduces joint friction, distributes loads to reduce local contact stresses, and
provides further impact protection to the joint. The menisci are located over the
lateral & medial condyles of the tibia, connected posteriorly by a transverse

ligament, and to both the femur & tibia by additional ligamentous attachments.

Synovial Membrane

The articulating region is enclosed by a synovial membrane, containing the
synovial fluid which assists in lowering joint friction and providing fluid ingress

for nutrient supply to the cartilage.

14



| !!!,E\.,Eﬂ du'I;

{ o T

| E} il W

] ﬁiﬁ% }‘?’ \Quadriceps Anterior
ey Sl \ Tendon Cruciate

Ligament

Lateral
(Fibular)
Collateral
Ligament

| (AT g
\ ri o Medial
R F . i (Tibial)
. FTE ij Collateral
Ty Lat,eral ," e'"- 4 Ligament
3 Meniscus | §¥
At / 4.
1o '.'. A I ¥
a -u.nf T i i
~_ %« F‘i?&}’ i mj_._: g Medial
DSt F'-E \*f; b ) i Meniscus
- ﬁl*“h\g Patellar B
%.' Ligament i Posterior
5 . L R Cruciate
‘é ” f. ’. Fibula \‘ 'I; £ Ligament

Figure 1: Sagittal cross-section (left) & posterior view (right) of the knee (from [3]).

Fibrous Capsule

An extensive fibrous capsule surrounds the entire joint, blending with the
surrounding tendons and ligaments, providing additional protection and soft-

tissue restraint.

Ligaments & Tendons

The patella is embedded within a tendonous link between the tibial tuberosity
(on the anterior aspect of the proximal tibia), and the different muscles which
form the quadriceps group. The (inferior) tendonous link between the tibia and
patella is called the patellar ligament (PL), while the (superior) link between the
patella and the quadriceps muscles is the quadriceps tendon (QT). Embedded
within this tendonous link, the patella provides increased leverage for the
qguadriceps muscles; in deeper flexion angles the quadriceps wraps over the
anterior surface of the distal femur (quadriceps ‘wrapping’). The patella,
articulating in the patellar groove on the anterior aspect of the distal femur,
controls the line of action of the quad muscle forces, and by increasing the
moment arm, increases the magnitude of the extension moment which the

guadriceps can generate at the knee.

Ligaments form an essential part of the tibiofemoral joint. The knee is stabilised
by four main ligaments: two cruciates (anterior & posterior) and two collaterals
(medial & lateral), abbreviated ACL, PCL, MCL & LCL respectively (Figure 1, right).

15



The MCL is also called the tibial collateral ligament (as it inserts distally to the

tibia), while the LCL is the fibular collateral ligament (as it inserts to the fibula).

The function of the ligaments is to constrain the kinematics of the knee,
increasing the stability of what is an inherently unstable joint (it should be noted
that the fibrous capsule and the surrounding muscle & tendon tissues also
provide additional soft-tissue constraint). The collateral ligaments are recruited
when resisting larger rotational motions; e.g. I-E and varus-valgus (V-V), since
they have a larger moment arm against such torques. The cruciate ligaments are
particularly important for their role in guiding A-P translation through different
flexion angles. In reality, ligaments are complex multi-bundle structures, with
different origins & insertions, different mechanical properties (stiffness & tensile
strength) between bundles [5], and a non-linear behaviour (due to the fibrous
structure ‘crimping’ when relaxed), including differing levels of ‘pre-strain’ (the
degree of pre-tensioning the ligament experiences in the ‘neutral’ stance
position). A typical ligament load-extension response is shown in Figure 2.
Various studies have demonstrated that ligament properties vary considerably
between different subjects [6], and that the precise configuration of ligament

bundles is important in determining the overall ligament behaviour [7].
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Figure 2: Typical load-extension response (here: MCL bundle, adapted from [5]).

Muscle Groups

The most notable muscles are those responsible for sagittal-plane knee flexion
(the hamstrings: biceps femoris, semimembranosus & semitendinosus) and
extension (the quadriceps. rectus femoris and the vastus muscle group:
v.mediales v.intermedius & v.laterales). Other muscles also play a part in
flexion-extension (F-E), as well as I-E rotation (see Table 1). The muscles included
in this table are also depicted graphically in Figure 3. Note: for clarity, this figure

only includes those muscles directly surrounding the knee joint; as such, some
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other major lower-extremity muscle groups (e.g. gluteus & soleus) are excluded;
in reality, there is of course always an interdependence between the role of
different muscle groups during different activities, and the full musculature of the

lower limb must be considered as a single system for dynamic analysis.

Muscle Group Muscle Function
Biceps Femoris Flexion, External Rotation
‘Hamstrings’ Semimembranosus Flexion, Internal Rotation
Semitendinosus Flexion, Internal Rotation
Rectus Femoris Extension
‘ ] , Vastus Intermedius | Extension
Quadriceps -
Vastus Laterales Extension
Vastus Mediales Extension
Plantaris (Secondary) Flexion
Plantar-flexors - _
Gastrocnemius (Secondary) Flexion
Secondary Gracilis Flexion, Tibial Internal Rot.
flexors Sartorius Flexion
Tensor Fascia Lata Stability (extra tension)
Popliteus Flexion, Internal Rotation

Table 1: List of Functional muscles associated with the knee joint.

Tensor Fascia Lata

Sartorius

Rectus Femoris
Biceps Femoris

Semitendinosus
Gracilis
Semimembranosus

lliotibial Band

Patellar Ligament

Popliteus

Gastrocnemius

Plantaris

Figure 3: Muscles around the knee joint (left: anterior view, right: posterior view).

17



1.3. Knee Mechanics: Kinematics & Kinetics

1.3.1. Motions of the Knee

It is possible for the knee to move to a limited extent in any of the six possible
degrees of freedom (3 translations, 3 rotations). F-E is by far the most visually
apparent rotational action; however considerable I-E and V-V rotation is possible.
The translational motions are less apparent, although several millimetres of A-P
and medial-lateral (M-L) displacement is possible, and condylar ‘lift-off’ may result
in slight compression-distraction (C-D) displacements. A number of specific

issues related to knee kinematics are briefly outlined below:

Range of Motion at the Knee

It is difficult to define a ‘typical’ range of motion (ROM) for the knee joint, for two
reasons; firstly, inter-patient variability means that this envelope would not be the
same for any two subjects. Secondly, the degree of motion achieved is dependent
upon the loads applied to the knee. This has lead to a distinction being made
between the ‘active’ and ‘passive’ ROM (abbreviated AROM and PROM
respectively) - i.e. whether the motion is made under the subject’s own muscle
action, or whether external manipulation is used to achieve the motion. Clinically,
AROM is reported to average ~130°, decreasing with age. PROM is higher (~160°,
again decreasing with age) [8, 9]. Terminologically, flexion angles over 90°, and
especially those beyond 120°, are often referred to as ‘deep flexion’ (not required
for general ambulatory activities, but required for some kneeling & squatting
everyday activities, such as gardening, domestic cleaning or kneeling prayer).

Facilitating this ‘deep flexion’ ROM is a key goal for next-generation TKR designs.

Knee ‘Locking’ and Screw-Home

Although the knee is unstable, several effects combine to increase stability in full
extension. The distal radius of the femoral condyle is larger than the posterior
radius, thus increasing conformity in full flexion. For normal subjects, the line of
action of body-weight is slightly anterior to the tibiofemoral contact when in full
knee extension, tending to maintain the knee in extension. This is accompanied
by an internal rotation of the femur relative to the tibia, causing the surrounding
soft tissues to tighten, resulting in a higher degree of stability. This ‘locked’
stance state is released when the popliteal muscle contracts, causing the femur to
rotate externally relative to the tibia and so reducing the soft tissue constraint
prior to the knee flexing (see Figure 4). This mechanism for increasing stability in

full extension is often referred to as the ‘screw home’ effect [10].
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Femur rotates

Femur rotated externally
slightly internally
(tightens ligaments)
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anterior to joint Weight now acts

posterior to joint

Popliteal muscle contracts,
rotating femur externally

Figure 4: Knee ‘locked’ in screw-home position (left) and released in flexion (right).

Femoral Rollback

The term ‘femoral rollback’ refers to a posterior movement (‘roll-back’) of the
femur (or conversely, an anterior movement of the tibia) as the knee flexes (and
therefore vice-versa, as the knee extends). This concept first gained currency at
the beginning of the 20" century [11], and was subsequently analysed using
rudimentary four-bar-linkage models of the knee (Figure 5); both the femoral axis
of rotation and the tibiofemoral contact point are predicted to move posteriorly
as flexion increases, according to these simple rigid-linkage predictions. The
concept became the subject of some debate within the orthopaedic research
community, with studies both confirming and refuting the femoral rollback
phenomenon. Consensus is building that femoral rollback is not apparent for the
medial condyle, but is often observed at the lateral condyle under passive loading
[12]. Recent fluoroscopy studies (e.g. [13]) reveal the situation during active
loading (i.e. when the knee is subject to large muscle loads during daily activities)
to generally be much more variable [14]. Further, there are differences between
natural and implanted knees, with the latter more likely to exhibit ‘paradoxical’
anterior femoral motion with flexion (particularly in deep flexion) [15]. Finally, it
is important to distinguish between the movement of the two bones (defined by
hard anatomical landmarks), and the movement of the contact point between the
bones; it is possible to have ‘paradoxical’ motion of the contact point relative to

the motion of the two bones.
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Figure 5: Simple 2-D (sagittal) linkage model, showing the ‘femoral rollback’ concept.

Medial Pivot

The ‘medial pivot’ concept is related to the concept of femoral rollback. It is
widely reported that the femur tends to rotate externally as the knee flexes (i.e.
the tibia rotates internally relative to the femur). This, coupled with the
hypothesised posterior motion of the femur during femoral rollback, would result
in a combination of rotation and translation about the long axis of the bones,
which could equivalently be represented by a single rotation (with no
corresponding translation) about a ‘virtual’ pivot point shifted towards the medial
condyle (see Figure 6). Note that the ‘medial pivot’ concept is dependent upon
the ‘femoral rollback’ assumption, and so the caveats associated with that
concept apply equally to the medial pivot hypothesis. If paradoxical motion
occurs, the virtual pivot will not be medially-shifted. Once again, inter-subject
variability is considerable, and there is no single ‘correct’ description of the

medial pivot effect; however it is widely reported within the literature [16].

Figure 6: The ‘medial pivot’ concept (illustrated on the tibia): rotation plus translation

(left) is equivalent to rotation about medial condyle (right).
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Describing Knee Motions: The Grood & Suntay System

The multiple degrees of freedom and complex motions at the knee mean that
kinematics can be complex, so kinematics must be defined clearly and reported
consistently to avoid ambiguity or confusion. An important and widely-adopted
method was proposed by Grood & Suntay [17]. In this cylindrical-axis co-ordinate
system, the sequence in which the different rotations and translations are applied
does not alter the final position & orientation (i.e. the system is sequence-
independent; this is an important advantage over e.g. the Euler co-ordinate
system); see Figure 7. Although intended for natural knee motions, the Grood &

Suntay system is equally applicable for in-vitro lower-limb simulators.

Figure 7: Grood & Suntay co-ordinate system: graphical illustration (from [17]).

1.3.2. Kinetics of the Knee

For the human knee, loading varies from subject to subject depending upon the
activity or mix of activities of daily living (ADL), and there is considerable inter-
patient variability. Experimental studies have demonstrated that the most
important common activities considering both loading and frequency are walking
(‘gait’) and stair usage [18]. Other activities (e.g. sitting & lying down) may be
more prominent in terms of duration or frequency of occurrence but place limited
dynamic loading demands on the knee; conversely some highly demanding
activities (e.g. ‘shock’ loads due to tripping or stumbling) may result in greater

loads, but occur only very rarely.
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It is important to characterise both the variety (range) and volume (frequency) of
activities the joint will be subjected to. Basic data like step rate measurements
can be obtained using pedometers or foot-switches, whereas the relative mix of
activities can be extrapolated based on observations across a short time period.
Inter-patient variability means that generic assumptions are rarely applicable; for
example, ‘typical’ subject step rate is often approximated as a million steps per
year (when a ‘standard’ is required for testing), but for a diverse sample of
healthy subjects, Seedhom & Wallbridge reported an average of some 1.8 million
steps/year per joint [19]. A study by Schmalzried et al focussed on arthroplasty
patients, and found an average of 0.9 million steps/year per joint, but this
average masked a wide variability, with outliers ranging from just over 70,000 to
as high as 3.2 million steps/year per joint [20]. Clearly a single ‘representative’

figure has only limited practical meaning.

For common ADL types, knee mechanics can be recorded or estimated by various
methods, including clinical motion analysis using video recording (or, more
recently, fluoroscopy studies - e.g. [21]) & force plates (for external joint reaction
forces), coupled with optimization algorithms (based on inverse dynamics
methods) and/or EMG data (for internal joint contact forces). Rarely, more
‘invasive’ assessment methods have been used; e.g. Lafortune et al used markers
fixed with traction pins directly into the bone [22]. The data collected by these
studies can be used as the basis for input waveforms into a simulated knee
model, and ‘standardised’ waveforms have been devised for comparative testing

of implant designs (e.g. ISO testing standards [23, 24]).

Often-cited examples of these studies are the early work by Morrison [25] for
ambulatory gait, and Andriacchi et al [26] for stair climbing. Other studies have
reported for more demanding ADLs; e.g. ‘deep flexion’ squats (Nagura et al [27]).
More recent studies have included a larger number of subjects, giving some
indication of inter-patient variability; e.g. McFadyen & Winter, who recorded both
stair ascent and descent [28], and the studies for gait and stair activates by
Costigan et al [29]. More recently, telemetric measurements using prosthetics
with embedded sensors have provided direct in-vivo data to compare with the
theoretical results of earlier investigators; first for the hip joint (as pioneered in
the early 1990’s by Bergmann et al [30]), and subsequently for the knee, since the
late 1990’s (notably studies by Taylor et al [31-33] for a distal femoral implant,
Kaufman et al [34] and most recently D’Lima et al [35-37] for an instrumented
tibial tray). Together, this large body of work provides a picture of the kinematics

and kinetics of the knee joint for a range of ADLs - this information is invaluable
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for subsequently modelling the knee, as it provides the ‘raw data’ to drive knee

simulations in a physiologically-representative manner.

It is important to make a clear distinction between the internal forces acting
between the contacting joint condylar surfaces (often termed joint contact force,
or JCF), and the external resultant forces experienced by the whole limb segments
(termed joint reaction force, or JRF). By necessity of Newtonian mechanics, the
static magnitude of the external JRF will be of the same order as the subject’s
bodyweight (BW), (although dynamic external forces can exceed 1BW due to
accelerating/decelerating forces in locomotion). The internal JCF can be much
higher however even under static conditions (often several times BW), since
antagonistic muscular co-contraction (necessary to stabilise the joint) are

considerable.

At the knee, forces are not loaded equally between condyles; the medial condyle
will typically carry a larger load. It is also larger, however, to balance contact
pressures. Surface contact pressures reflect the distribution of compressive joint
forces across the surface of the femoral and tibial condyles. Generally, in a
natural knee, the combination of low-stiffness articular cartilage on the condyles
with the load-distributing effects of the meniscal cartilage results in low contact
pressures when compared to the more rigid materials used in artificial implants.
Although measuring knee contact pressures in-situ is challenging, several in-vitro
cadaveric studies have attempted this using pressure-sensitive dyes or
transducers. Depending on activity, typical mean condylar surface contact
pressures have been found to be below 2MPa, with peak values around 6MPa [38]
(a simple order-of-magnitude consideration would anticipate this, since forces of
a few thousand Newtons are acting on an area of between 10-15cm?). Naturally,
contact pressures rise with higher loads, or when the contact area is reduced (e.g.
after a meniscectomy). Unfortunately the relatively stiff synthetic materials used
for artificial prostheses result in much smaller contact areas, and are known to
result in contact pressures several times higher than this (often approaching
20MPa [39]).

1.3.3. Mechanics of Normal Gait

Whilst the knee is used in many different ADLs, it is the most mechanically
demanding which are of interest here, as these contribute most to mechanical
failure. Of particular importance are the conditions during normal walking (i.e.
‘active gait’). This is because, although gait does not result in the most extreme
forces or kinematics, it is by far the most prevalent daily ‘active’ ADL for most

typical arthroplasty patients. For example, a study by Morlock et al [18] found
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that for hip patients, walking accounted for over 10% of the monitoring time -
although this is low compared to some of the ‘passive’ activities (e.g. sitting,
lying down), it was much higher than other high-loading activities (e.g. more than
25 times more frequent than stair climbing). As such, analysis of gait receives
considerable attention in the literature; therefore the mechanics of ‘normal’ gait

will be reviewed in further detail in this section.

Knee Flexion (Kinematics)

The flexion of the knee in gait is the most apparent kinematic feature, with a very
clear & intuitive functional basis. Flexion of the knee serves two primary
purposes: To provide ‘shock absorption’ damping as the limb is loaded
immediately after heel strike (HS), and to ensure adequate clearance of the foot
above the ground during swing phase. These two requirements lead to a
characteristic biphasic waveform, as shown in Figure 8.
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Figure 8: Typical knee flexion for normal gait.

The first peak is smaller, and quite variable between subjects. A typical knee
flexion angle for this first peak is around 10-20°. The second peak is much larger,

typically around 60° of flexion.

Note that the knee will not necessarily achieve full extension (i.e. ‘flexion’ = 0°) at
any point in the gait cycle. For some subjects, the knee will remain in slight
‘positive’ flexion, even throughout the stance phase. This is subject-specific; e.g.
the subject telemeterised by D’Lima et al [35] never exhibited under ~13° flexion
in gait. Depending on the subject, the knee may remain always in slight (positive)

flexion, or conversely achieve slight hyperextension (e.g. [22]), in gait.

Axial Compressive Force Loading (Kinetics)

During bipedal motion the lower limbs alternately support the weight of the body
while in contact with the ground; therefore, to a first approximation, the knee

bears a ‘high’ load in stance, and a ‘low’ load in swing. However, the actual
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loading is more complex (Figure 9). Inverse-dynamics analyses predict a ‘double-
peak’ during stance phase (corresponding to vertical acceleration of the trunk);
this is sometimes observed in-vivo (e.g. [40]), although not consistently. Loading
in swing phase is not ‘zero’, due to the passive restraint provided by soft tissues,
and antagonistic muscle action. For the purposes of in-vitro tests it is often
assumed that the swing phase load is constant (a few hundred Newtons), but
telemeterised data reveal considerable variation of the load even within swing
phase, with the lowest loads around mid-swing [35]. Antagonistic co-contraction
of the muscles around the knee means that JCFs are higher than corresponding
JRFs. However, whereas the early muscle-optimisation algorithms (e.g. Morrison
[25]) anticipated JCFs of 3-4BW during gait, latest in-vivo measures suggest actual
values may not be much higher than 2-2.5BW [35, 40] (see telemeterised

waveform in Figure 10).
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Figure 9: Typical theoretical axial JCF during gait.
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Figure 10: Telemetry data for axial JCF (adapted from D'Lima et al [35]).

Internal-External Torque & Rotation (Kinetics & Kinematics)

Early experiences with hinged knee prostheses demonstrated that the I-E
kinematics and kinetics are an important characteristic of normal bipedal gait,

and cannot be neglected; (early ‘fixed-hinge’ prostheses often failed because of
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the high rotational torques occurring [41]). This I-E action helps to establish
favourable trunk orientation for the proceeding step. Since the ‘stance’ foot is
fixed on the ground, the I-E moment to twist the trunk must be generated across
the lower limb. Given that the moment on the trunk is external, the reaction
moment must be an internal moment; hence at the knee the proximal side
(femur) experiences an external moment, whereas the distal (tibia) experiences
an internal moment. This is seen in clinical gait assessment; a large torque peak
(typically several Newton-metres) is seen in late stance phase (see Figure 11). The
torsional effect acts to cause an internal rotation of the tibia relative to the femur

(or, conversely, an external rotation of the femur relative to the tibia).
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Figure 11: Typical I-E torque acting at the knee. The torque is principally ‘external’ on

the femur, and hence ‘internal’ on the tibia.

Anterior-Posterior Force & Translation (Kinetics & Kinematics)

A-P forces and motions are important for TKR performance (and for defining the
input conditions for force- and displacement-driven knee simulators - see Chapter
Two). However, there is little consensus on the A-P forces or motions at the knee,
owing to inter-subject variability (as discussed in Section 1.3.1 regarding the
femoral rollback and medial pivot concepts). The A-P shear forces are known to
be of considerable magnitude (Taylor et al reported peak A-P loads of 0.5BW [40];
D’Lima et al reported loads of over 0.3BW [35, 36]). However, there is very little
consensus on the ‘shape’ of this shear-force profile. Even with the ‘standardised’

ISO waveform [23], the polarity is inverted by some testers (e.g. [42]).

For A-P kinematics, the ISO-standard adopts a predominantly anterior motion of
the femur on the tibia [24], (in line with the findings of Lafortune et al [22]), but
other groups [42, 43] have adopted a predominantly posterior femoral motion, in
keeping with the medial-pivot hypothesis (Figure 12). Clearly, in light of this lack
of consensus, further in-vivo fluoroscopic & telemetric studies are required for

larger cohorts, to better understand how A-P motions vary between subjects.
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In the above sections, the anatomy and mechanics of a normal healthy knee have
been discussed. However, TKR is only required when the knee ceases to function
correctly. It is next necessary to consider how the knee joint can ‘fail’ & hence

come to require intervention.

1.4. Pathology & Failure of the Knee Joint

For the overwhelming majority of cases where some form of clinical intervention
is required, the cause is some form of arthritis (literally meaning ‘joint-
inflammation’ in the Greek). Note that arthritis is not a causal diagnosis; the
definition is based on the symptoms rather than any specific cause. Generally, the
cause of this pain and inflammation of the joints is damage to (or total wear-out

of) the cartilage at the joint.

The most common form of arthritis is osteoarthritis (OA). This is a localised
degenerative condition associated with old age and overuse of the joint -
essentially, natural ‘wear and tear’. Hence the eventual onset of ‘primary’ OA is
simply an inherent consequence of a long and active life. Something of a trade-off
exists, since it is in every patient’s health interests to remain active in later life,
and whilst regular physical activity can help control joint swelling and pain [45],
excessive activity levels can increase the incidences of joint complaints [46].
However, other ‘secondary’ causes can advance the onset of OA, such as injury,
obesity or diabetes [46-48]. The effect of OA is that moving or loading the joint
results in considerable pain; this in turn makes the subject reluctant to engage in

activity, effectively causing loss of joint functionality and impairing quality of life.

The second most common cause is rheumatoid arthritis (RA). This is a
progressive disease in which the immune system triggers inflammation of the
synovial fluid, causing destruction of the joint soft tissues. RA generally begins to

cause problems at an earlier age than OA, and is systemic, often affecting
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multiple joints. Because the condition can continue to progress post-operatively,

there is an increased risk of revision surgery being required (see Section 1.5.3).

Several countries maintain national databases to register TJR patients, recording
reasons for surgery, implant design, revision history, and other relevant statistics
[49]. A review of recent registry reports demonstrates that OA is easily the most
prevalent indicator for surgery, with RA consistently in second place - statistics
for several registries are listed in Table 2 (note: the data is for primary TKR, and
excludes revision cases). There are other possible reasons why an implant might
be needed, e.g. osteonecrosis (damage and death of bone tissue) or serious bone
or soft tissue damage (e.g. due to severe trauma). In mild or early cases (e.g.
unicompartmental OA), a full TKR may not be used; in extreme cases (e.g. limb
reconstruction following osteosarcoma) a more extensive prosthetic than a

standard TKR would be required.

Registry Report 1 2 Other
Australia, 2008 [50] OA (96.8%) | RA (2.0%) 1.2%
Canada, 2007 [51] OA (93%) RA (4%) 3%
Denmark, 2007 [52] OA (90.9%) | RA (5.4%) 5.7%
England & Wales, 2007 [2] OA (97%) RA (2%) 1%
Finland, 2006 [53] OA (92%) RA (4%) 4%
New Zealand, 2006 [54] OA (92.2%) | RA (3.5%) 4.3%
Norway, 2008 [55] OA (77.9%) | RA (7.8%) 14.3%
Scotland, 2008 [56] OA (93.8%) | RA (4.1%) 2.1%
Sweden, 2008 [57] OA (93%) RA (3%) 3%

Table 2: Top reasons (with %) for primary TKR.

Note: derived from most recent available registry data (non-concurrent).

1.5. Surgical Options, Techniques & Limitations

1.5.1. A Review of Joint Replacement Technologies

As with many problems associated with old age, treatment for joint complaints
aims to alleviate undesirable symptoms rather than reverse the causal underlying
aging process. Partial or total joint replacement is generally the last resort when
other less drastic measures to alleviate pain and/or restore function via lifestyle
changes, physiotherapy or medication are unsuccessful. There are a range of
possible surgical options, depending on the degree of joint deterioration.
Although TKR is the focus of this study, the other options are briefly outlined
below (in order of progression from most to least conservative). Whilst some of

the more conservative options may be less robust or long-lasting, they should not
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be overlooked; for example, uni-compartmental knee replacements may not
perform as well as total knee replacements, but they can be used earlier without
the risk of damaging bone stock, precisely because they are more conservative.
Therefore, it is often desirable to use such methods, to forestall the need for a
full TKR as long as possible. Therefore, the bullet-list below should be seen as a
scale of intervention options, with the earlier options being most conservative,

and therefore being preferable, where possible.

e Tissue resection: For younger patients, it may not be appropriate to use an

implant at first, instead resecting the natural knee tissues, e.qg. meniscectomy,
where the damaged meniscal cartilage is partially or totally removed, and
osteotomy, where a portion of bone is removed to better distribute loads

across the knee.

e Interpositional spacers: where only the meniscus is damaged, a conservative

option is an interpositional spacer, to replace the worn cartilage (so

preventing bone-on-bone articulation) without any resection of bone stock.

e Hemiarthroplasty: hemiarthroplasty replaces only the articulating surface of

one bone, e.g. a tibial hemiarthroplasty may replace only one of the tibial

condyles, with an anatomically representative resurfacing implant.

e Unicompartmental & bi-lateral arthroplasty: When damage is limited to one

condyle a popular option is to use a unicompartmental knee replacement
(UKR) - this does require limited resection of both the femur and tibia, but
leaves sufficient bone stock for subsequent revision to a full TKR if needed. In
some cases, separate UKR implants can be used for the medial and lateral
condyles (called bi-lateral arthroplasty), allowing the intercondylar region and
associated cruciate ligaments to be entirely retained. Early clinical data shows
UKR has a higher revision rate than TKR [57], and some concerns remain over
whether UKR can accelerate contra-lateral condyle degradation [58]; however
this is based on early experiences, and results will potentially improve as the
technique is more widely practised. Nonetheless UKR is an attractive option,
since despite any shortcomings in longevity it is generally easier to revise
from a UKR to a TKR, than to revise a TKR.

e Primary TKR (‘tri-compartmental’ knee arthroplasty): TKR involves resection

of considerable bone stock, including at least part of the intercondylar region
of both the femur and tibia. Many design variants exist, for example fixed-
base, rotating platform & mobile bearing; PCL-retaining, substituting &

sacrificing (see Section 1.5.2). Compared to other surgical approaches, TKR is
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well-established with a proven clinical record. TKR may or may not include a
patellar resurfacing; this will depend upon the condition of the patient’s own

patellofemoral joint, the design of implant and the surgical team’s practice.

e Revision: Revision normally requires a more extensive implant than the
original TKR - e.g. a long-stemmed hinged joint replacement might be used if
considerable bone has been lost. However, if the primary procedure used a
UKR, then a standard TKR might be appropriate for the revision. Generally,
every new revision procedure carries further risk of infection or complications
and also further reduces bone stock. Therefore, driving down revision rates by

increasing implant longevity is highly desirable.

Rarely, in severe cases it may no longer be possible to provide a joint
replacement, due to severe infection, or serious loss of bone stock. In these
cases, the only options available may be arthrodesis (the ‘fusing’ of the joint into

a fixed position, with the associated mobility impairment), or amputation.

Naturally, on this ‘scale’ of intervention options, it is desirable to forestall
progression to more extensive solutions for as long as possible, since it is not
presently possible to reverse the increasing damage to natural tissues and
structures caused by the more aggressive procedures. Of all the listed options,
TKR is currently the most common, and many recipients of conservative implants
will eventually have these revised to TKR. As an established and widely adopted
technique, it also has lower revision rates than some of the less-established
alternatives, representing the best opportunity to halt the spiral of implant failure
and revision. Consequently TKR is a natural focus for any design efforts to
improve longevity and function. The following section outlines the design
philosophies of TKR.

1.5.2. TKR Design Characteristics

In this study, the term ‘TKR’ is taken to refer to the design family of
endoprostheses which resurface the entire distal surface of the femoral condyles,
and resect the proximal tibial condyles, such that two artificial surfaces articulate
together to form the new tibiofemoral joint. This design format became popular
in the 1970’s, in the wake of the success of new materials applied to total hip
replacement designs [59]. Early designs either sought to mimic the geometric
anatomy of the natural knee, or else to work from mechanical principles to
accommodate the functionality of the natural knee. Both approaches (anatomic &
functional) resulted in some common features; note the geometric similarity of

the implants in Figure 13. However there are several important design aspects
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where different designs follow different philosophies; the most major variations

are outlined below.

Figure 13: Commercial TKR designs, from left to right: PFC Sigma (DePuy), NexGen
(Zimmer), Advance MP (Wright Medical) and LCS (DePuy).

Materials: The tibiofemoral joint must be low-friction (to minimise tribological
damage to the implants); metal-on-polyethylene (MoP) articulation had proven to
be successful for hip implants, and so was adopted for TKR. Whereas modern hip
implants are now migrating to more advanced technologies, such as all-metal or
ceramic bearings, two features make this less appropriate for the knee. First, the
geometry of hip bearings is simple (spherical); this is not true for knee
components, which must generally be hand-finished to achieve a suitable surface.
Second, the hip is constantly held in compression by the musculature; this is not
true for the less stable knee joint, where tibiofemoral ‘lift-off’ can occur, resulting
in impact loading. Therefore MoP remains the state of the art for TKR. The
femoral component is generally manufactured from cobalt-chromium (Co-Cr),
providing high strength, good biocompatibility and excellent corrosion
resistance. The tibial articulating insert is a medical grade ultra-high molecular
weight polyethylene (UHMWPE), e.g. GUR-1020, GUR-1050 or GUR-4150; however
experiences with early designs demonstrated that the lower stiffness of UHMWPE
against cancellous bone could lead to failure [60], and it soon became standard
for the tibial polyethylene insert to be mounted in a metal tray (often Co-Cr or
titanium) for stiffer backing. The use of polyethylene leads to potential concerns
over the effects of wear debris (see Section 1.5.3). To counter these problems, a
range of refinements have been made to the production processes for UHMWPE
(e.g. gamma-ray vacuum sterilisation is used to encourage polymer cross-linking,

which can greatly reduce wear susceptibility [61]).

Patellar replacement: The patella may or may not be separately re-surfaced; if it is

resurfaced the implant is generally all-polyethylene. The shape of the patellar
implant may be anatomically representative, or simply oval or dome-shaped.

Similarly, the anterior groove on the femoral implant may or may not be
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symmetrical: in the natural knee, the patellar groove slopes laterally by several
degrees as it progresses proximally. However if this feature is adopted, separate
femoral components must be manufactured for left and right knees. To avoid
this, some designs use a straight vertical patellar groove. The disadvantage is
that this may change the line of action of the quadriceps force, diverging from
the normal loading of the natural knee.

Tibial bearing design: The use of a metal-backed insert is now widespread, and

many designs now also introduce an additional degree of freedom between this
tray and the polyethylene insert. The theory is that allowing the tibial insert this
extra freedom of motion can split the tibial motion across two different bearings
- this means both that the tibial insert can rotate to a more conformal position
against the femoral component (increasing surface contact area and so
decreasing pressure), and also that the kinematic motions associated with
producing wear can be reduced [42] (see discussion on wear and cross-shear
motions in Chapter Four).

One design concept is to use a central peg, permitting only I-E rotation between
the tray and insert; i.e. a rotating platform (Figure 14, centre). Another concept is
a slotted peg permitting both rotation and translation; i.e. mobile bearings
(Figure 14, right). Nonetheless, fixed designs with no tibial bearing (Figure 14,
left) are still common; although theoretically rotating & mobile bearings offer
advantages, currently these benefits do not clearly translate to improved clinical
results [62, 63].

Fixed Bearing Rotating Platform Mobile Bearing

Figure 14: Comparison of tibial bearing designs.

Cruciate retention/resection: surgical treatment of the cruciate ligaments is an

important decision in the choice of knee implant design. Almost every design
must resect the ACL, as a necessity in order to install a full resurfacing implant
(this has been one impetus for bi-lateral use of UKR, where the ACL and PCL can
both be preserved), and there is no need to resect the collateral ligaments (which
do not obstruct the intercondylar region). However there is no clear consensus on

whether to resect or retain the PCL; the final decision rests with the practising
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surgeon, and the key factors are typically the physical condition of the patient’s

ligaments, and individual surgical preference.

Some implants are designed to leave the PCL intact, taking advantage of the
stability it provides for large flexion angles. These designs are referred to as PCL-
retaining, or simply cruciate-retaining (CR), and generally have less conformal
sagittal geometry, since the PCL helps restrict A-P motion (see Figure 15).
However this requires the PCL to be in good condition, and correctly tensioned
when the implant is fitted. Such low conformity-surfaces can also result in higher

tibial contact pressures.

N
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Figure 15: ‘CR’ design. As the femur flexes and experiences anterior force, the PCL

acts as a ‘spring’ to constrain the anterior motion.

The alternative is to resect the PCL; devices which do this are PCL-substituting or
PCL-sacrificing (PS). The key design feature is either a more conformal geometry,
or else a distinct motion-constraining feature, e.g. a cam system in the
intercondylar region (see Figure 16). The implant must provide the constraint
which the PCL would otherwise offer, so larger restraint forces must be
supported. If features such as camming systems are used this can lead to large
shear stresses within the cam, whereas using a more conformal surface will
distribute contact forces better, reducing surface contact pressure. The decision
must be based on the condition of the PCL in the patient. Many designs are
modular (so that the surgeon can choose an alternative if intra-operative
inspection of the PCL indicates that additional constraint is needed). Reported
clinical results for both PCL retaining and resecting approaches are mixed;
although retaining the PCL is considered preferable when the surgical team is

experienced [64].
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Figure 16: ‘PS’ design. As the femur flexes and experiences anterior force, the inter-

condylar ‘cam’ system engages to resist anterior motion.

Fixation: As with hip replacements, the option exists to use either cemented or
cementless fixation. Cemented designs typically use cement to fix the tibial tray
and the femoral resurfacing implant (the tibial insert is normally held in place by
mechanical interlock with the tray). Direct cementing of an all-polyethylene tibial
component may be used, reinforcing the low stiffness of the UHMWPE with the
higher-modulus polymethylmethacrylate (PMMA) bone cement. Components may
be designed for a ‘press-fit’ (e.g. the femoral resurfacing implants), although due
to the high rotational torques experienced by the knee (see Section 1.3), fixation
pegs are often included. For cementless designs, a further possibility is to
provide a coating for improved fixation; this may take the form of a porous
coating for better mechanical interlock, and/or osteoconductive coatings such as
hydroxylapatite to encourage bone in-growth. Whereas for hip prosthesis,
cementless designs have risen considerably in popularity in recent years (with
30% of recent UK hip procedures using cementless fixation vs. 48% cemented), for
the knee implants, only 7% are cementless vs. 83% cemented (the remainder in

both cases being hybrid or conservative implants - data from NJR 2007 [2]).

1.5.3. TKR Failure Mechanisms

Assuming the initial arthroplasty surgery is successful, there are still many risks
of failure post-operatively. Some of the most common are listed below. Note that
the factors are not independent or exclusive (e.g. wear-induced osteolysis may
lead to loosening, or increase the risk of direct mechanical failure of the
component). Some of these factors are unrelated to the mechanical environment;
others depend strongly on joint mechanics and it is these factors (designated by
an asterisk*) that are most relevant to the results of the subsequent
computational mechanical modelling; other factors are recorded here for
completeness but will not be attended to further in this thesis. Statistics for

different national joint registers are compared in Table 3, showing the frequency
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with which these failure types occur. It is noteworthy that in the table, objective

‘mechanical’ failure criteria such as loosening do dominate; however other more

subjective criteria such as pain also feature for some national registries.

Wear*: Although any surfaces in moving contact will experience wear, for TKR
the most prevalent occurrence is wear of the polyethylene used in the tibial
and patellar components. Although the small degree of wear might not
compromise the implants directly (i.e. the structural integrity of the implant
itself may remain satisfactory), the build-up of wear debris in the surrounding
biological tissue can lead to problems; in particular osteolysis [65]. This is a
process whereby macrophages (biological agents which are part of the body’s
immune response) attempt to remove the foreign wear debris from the body,
but in the process also reabsorb the surrounding natural bone stock. This
leads to decreased bone density and hence ultimately can compromise the
mechanical integrity of surrounding bone tissue (which in turn can cause bone
fracture and/or component loosening). Macrophage activity is part of the
normal bone remodelling process, but can be increased by the presence of
wear debris particles. Use of appropriate low-wear materials and controlling
the articulating motion can both help reduce the volume of wear debris
created. For a given implant design and material type, wear is hypothesised to
be a function of the sliding path motions and the contact pressure; these
factors can be readily investigated with mechanical models, and so will be a
key metric for assessment in the analyses described in this thesis. (For more

on the mechanics of wear, refer to Chapter Four).

Loosening*®: the failure of a mechanical fixation interface (for cemented
implants, either the bone-cement or implant-cement interface; for cementless
designs, the bone-implant interface, or if coatings are used, at the coating
interface). This is commonly reported (e.g. [66]), and can have many causes;
e.g. wear-induced osteolysis or migration (due to poor initial fixation, or
cementing quality leading to excessive micro-motion). Although loosening will
not be investigated directly, it is the most frequently reported mode of failure,
and is often causally related to other failure mechanisms which will be

explored (e.g. wear).

Dislocation / Subluxation®: this can potentially occur for the patellofemoral

or tibiofemoral joint if soft tissue constraint (from the ligaments or fibrous
capsule) is inadequate, or if the component is severely malpositioned during

surgery. Although rare, such incidents are reported in the literature [67]. Since
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these events are a direct function of the knee kinematics, they can be easily

assessed using mechanical modelling.

Instability*: The knee is inherently unstable, depending on the extensive
surrounding soft tissue (ligaments and muscles) to provide stability.
Consequently, if this soft tissue support is damaged (e.g. trauma from
surgical incision, or resection / improper balancing of the ligaments) the
internal kinematics of the knee would be under-constrained. This can cause
the patient to feel the sensation of instability, reducing their confidence when
walking or moving, and hence impairing mobility [68]. Note that instability is a
result of underlying mechanical issues, but also psychological patient-
perceptions; the latter are very difficult to analyse; however the actual degree

of mechanical constraint can be assessed readily as an indicator of instability.

Patellar complications*: patients may report pain specifically around the

patella; poor patellar tracking is a common problem. In cases where the
patella was not initially resurfaced, a revision may be indicated to include a
patella implant if the original results are not satisfactory. Again, there is a
degree of subjective patient perception involved, but the mechanics
(patellofemoral kinematics and contact pressures) are more objective and can

be measured directly.

Disease Progression: with TKR for RA, the joint may continue to degenerate

after surgery, leading to further problems. Good survival rates can be achieved
for RA patients [69], but rates are generally lower than for OA [2, 50-57]).

Mechanical Fracture: Implants can potentially suffer structural failure in-vivo.

Historically there were problems in particular for the tibial tray [70] (due to
poor design, or osteolysis undermining the bone supporting the tray);

standard tests are now used to reduce this risk [71].

Limited function: if components are misplaced or ligaments are not balanced,

knee ROM may be reduced, impeding some ADLs (e.g. kneeling, stair

climbing). Rarely, this may even be an indication for revision [72].

Infection: deep infection may necessitate the removal of the implant. Good
hygiene practice, implant irradiation, including antibiotics in cement and
similar measures can mitigate this risk [73], but infection rates of a few
percent remain typical [2, 50-57].

Pain: may be related other failures, (e.g. where ‘progression’ is reported, the
patient will also be in pain). Post-operative pain is common [74], and even
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without clear causes may necessitate revision. Unlike mechanical modes of

failure, pain is a very subjective metric to assess.

Registry 1 2 3
Australia, 2008 [50] Loosening (37%) Infection (15%) Wear (8%)
Canada, 2007 [51] Loosening (33%) Wear (30%) Instability (17%)
Denmark. 2007 [52] Loosening (35%) Pain (21%) Instability (18%)
England & Wales, 2007 [2] | Loosening (46%) Pain (16%) Osteolysis (16%)
Finland, 2006 [53] Infection (25%) Misalignment (12%) | Patella (8%)
New Zealand, 2006 [54] Pain (33%) Loosening (33%) Infection (26%)
Norway, 2008 [55] Loosening (25%) Pain (22%) Infection (10%)
Sweden, 2008 [57] Loosening (25%) Patella (21%) Instability (11%)

Table 3: Top specific reasons for revision (%). Most recent data (non-concurrent).
Percentage values averaged for all revision types.

1.5.4. Success Rates with TKR

At first consideration, TKR is a very successful procedure, with most registries
and studies typically indicating survivorship of 90%+ at 10 years, and 80%+ at 20
years [75]. However, the fact that an implant has ‘survived’ (i.e. not been
removed) does not automatically make it faultless (a patient may still be in pain,
or suffer from lack of function). A single discrete ‘success/failure’ metric does not
capture these other problems and limitations; a more graded, multi-factor scale is

needed to identify underlying issues.

Subjective scores such as the Oxford Knee Score [76], or Knee Society Score [77]
can be used to gauge the implant’s success on a more continuous scale, and
these generally show that the majority of patients experience some pain and/or
loss of function post-operatively. For example, in the England & Wales National
Joint Registry, less than 10% of knee patient respondents reported ‘no’ or ‘hardly
any’ problems - implying that over 90% of respondents had some problems with
their new implant [2]. Compare this to the hip patients in the same registry
report: around 30% had ‘no’ or ‘hardly any’ problems; over three times the
equivalent knee rate. The proportions with moderate to severe problems were
also about twice as high for the knee patients as for hip patients: 11% versus
6.1%. This illustrates a considerable disparity between the patient-perceived
outcomes of hip and knee replacements. Studies which have used ‘pain’ as a
failure endpoint (rather than revision) see a much higher ‘failure’ rate (e.g.
around 30% [74]). Similarly, although very few knees are actually revised due to
inadequate flexion range [72], this masks the higher rate of patients with

imperfect knee functional scores post-operatively (e.g. inadequate flexion range,
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which is not serious enough to indicate revision, but may impede participation in
certain activities). The clear conclusion is that, across the population, knee

replacements are not performing as well as hips.

Further, pre-operative patient selection masks the true effectiveness of the
treatment; younger patients are contra-indicated for TKR, based on the increased
demands of a longer potential lifespan and higher activity levels. Therefore the
true number of people whose needs and expectations are not fully met by current

TKR procedures is much larger than the headline revision rates alone suggest.

Even laying these caveats aside and reviewing revision rates alone, percentages
should still be considered in terms of the underlying real numbers. Data from
those nations with national joint registries accounts for over 120,000 knee
replacements per year [2, 50-57], and with an estimated 300,000 knee
replacements annually in the US alone [75], the annual figure worldwide is
substantially over half a million procedures. Consequently, even a few percent
represents tens of thousands of patients every year for whom TKR has been
unsuccessful. As the number of patients continues to increase, the case for
driving down the percentage of failures is strengthened. This should include
addressing all aspects of sub-optimal performance (i.e. improving longevity,

reducing pain, and also increasing functionality.)

However, a review of long-term registry data demonstrates that the rate of
improvement is decreasing (for example, in the longest-running Swedish registry,
it is reported that whereas TKR revision rate at 5 years dropped from over 12% to
~5% between 1980-1990, the corresponding drop between 1990-2000 was only
~2%, from ~5% to ~3% [57]). This is a classic example of the ‘Pareto Principle’; the
drive for improvement becomes progressively more challenging as improvements
are made: as the most obvious and effective improvements are implemented, the
remaining outlier cases are more difficult to address, requiring more detailed

understanding of the system and more effort to engineer appropriate solutions.

1.6. Summary

This chapter has presented an overview of knee anatomy, demonstrating that the
knee is a complex joint facing demanding loading conditions. The challenges this
presents for TKR designs has been discussed, along with a review of existing
design solutions, and a discussion of how these designs are performing in-vivo. It
has been shown that there are important shortcomings which still need to be

addressed, and the challenge facing orthopaedic researchers is increasing as the
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drive for continuous improvement requires an ever great understanding of the

knee, and ever more design effort.

However, the time and resources that can be dedicated to orthopaedic research
cannot correspondingly increase indefinitely; therefore future research efforts
must become more carefully focused, to achieve the most benefit with the finite
resources available. To this end, the role of pre-clinical assessment tools has
grown more prominent over recent decades; developers cannot afford the costs
associated with development, prototyping and clinical trials before detecting
problems with a design. Increasingly, efforts focus on predicting likely outcomes

whilst the implant is still in the early design stages; i.e. pre-clinical analysis.

Note that the subjective nature of many ‘failures’ presents a particular design
problem; for instance, if a patient reports severe pain, this may indicate revision,
even if no causal explanation can be found for the pain. It is very challenging for
an implant designer to address such subjective and poorly-understood issues in
the pre-clinical design phase; and indeed how this may be done is beyond the
scope of the present thesis. Rather, we will attempt to demonstrate how the
general methodology of pre-clinical design might be improved, and demonstrate
these improvements within the domain of some of the more ‘established’ pre-
clinical testing that is routinely performed (i.e. mechanical phenomena such as
kinematics and wear). It is hoped that in the future, some of the lessons learnt
will be more generally applicable to other forms of pre-clinical analysis for TKR

implant designs.

Chapter Two will review some of the techniques developed to assist in this pre-
clinical assessment, and demonstrate the need for more intelligent assessment

tools as the research field continues to develop.
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CHAPTER TWO - PRE-CLINICAL ANALYSIS METHODS

Experimental and theoretical methods used for pre-clinical analysis, and the

benefits of cross-corroboration between alternative approaches

2.1. The Motivation for Pre-clinical Modelling & Analysis

As has been discussed in Chapter One, the human knee is a complex system, and
any surgical intervention or implant design requires a robust understanding of
this system behaviour to achieve the optimal outcome. The earlier in the design
process that change decisions can be made, the lower the subsequent
development costs; hence there is a strong incentive to have an effective set of
analysis methods available pre-clinically. This requires a representative model
(offering some advantage in terms of time, risk, cost or ethics compared to a
clinical trial) to enable practical predictions of the likely performance (and hence
suitability) of a design proposal, modification or feature. If this model is of
sufficient robustness & integrity, it may then be used to predict behaviour under
‘perturbed’ conditions, and hence ultimately be used for broad-based

‘probabilistic’ studies of the full range of varying factors.

Quantitative pre-clinical assessment tools are well established, and have
flourished with the improvement over recent decades in electronics, sensors and
computing performance. Such models can be broadly split into two disciplines:
theoretical/analytic models, which virtually model the expected behaviour of the
system to make predictions, and the experimental/empirical models, which
directly test ‘real-world’ models under representative physical conditions. The
analytical approach is generally modelled computationally, to handle the
complexity of the models, and may broadly be referred to under the label in-silico
modelling; the empirical approach is equivalently termed in-vitro modelling. Both
classes of analysis can be contrasted to clinical trials within a living subject,
termed in-vivo tests. It is important to appreciate that in-silico, in-vitro and in-vivo
analysis can be complementary rather than competitive, since their functions are

fundamentally different:

e In-silico models generally either explicitly model the underlying ‘physics’ of
the system, or else fit some response to an extant ‘training’ set of known
results; this can result in fast, low-cost models which are readily
parameterised and monitored to study the effect of perturbations or
configuration changes within the domain of the ‘known’ operational
behaviour. However, they cannot address the phenomenologically ‘novel’; if
the system is operating under conditions where the underlying laws of physics

are not properly understood, purely analytic models are not applicable. (In
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other words, in-silico models may interpolate between known conditions, but
when extrapolated to operate under unknown conditions or additional

confounding effects, less confidence can be placed in the results).

e In-vitro models by contrast implicitly invoke the laws of physics in order to
operate; therefore the underlying behaviours do not need to be understood to
undertake testing - however this does limit the ability of the models as
predictive tools. Experimental tests can be more expensive and time
consuming than computational tests, and can be limited by the practical
achievability of the proposed test conditions (e.g. hardware limitations).

e In-vivo tests may be considered the ‘gold standard’, since they directly test
under in-situ conditions; however, the associated expense, timescales and
ethical issues often make such testing highly challenging. Further, in-vivo
tests tend to be very specific and narrow in focus, which is particularly
problematic given the very high variability associated with biological systems.
For example, tests on a single patient with in-vivo telemeterised sensors may
provide ‘real’ results, but for the equivalent cost and effort, it might be
possible to perform gait analysis using inverse dynamics on a large cohort of
patients, giving some indication of the statistical distributions observed in the

variability of force magnitudes.

Both analytical and empirical approaches have been used extensively for analysis
of the human knee; the following sections will consider some of this extant

published research.

2.2. Theoretical/Analytical Methods

Mathematically-based models are valuable, because they use the underlying
physics of the system to predict outcomes without the cost and risks of a physical
simulation. In reality, the knee is a complex system, and cannot be accurately
defined without extensive and complex mathematical formulations. Whilst some
of the constituent mechanical behaviours can be represented satisfactorily using
parametric equations (e.g. ligament stiffness/strain relationships), others (e.g.
contact mechanics) can only be loosely approximated by such simplistic
functions. Again, this complexity has resulted in a range of different approaches
to modelling, depending on the objectives, and the available resources.
Fundamentally, a distinction may be made between models which remain purely
analytic, using parametric and differential equations to describe the knee
holistically at the system-level, and those models which adopt a discretised

‘numerical integration method’, e.g. the ‘finite element’ approach (see Figure 17).
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Figure 17: A broad classification of ‘theoretical’ knee models.

Rigid-Body Modelling

The fact that a simplified analytic model could be solved with less numerical
effort made these ideal candidates for very early models of the knee, before the
advent of affordable and accessible computing. Simple rigid-body models in the
sagittal plane can be dated to the early part of the 20" century, e.g. the ‘four-bar-
linkage’ model, treating the cruciate ligaments as rigid restraints during flexion-
extension F-E motion (employed by Strasser as early as 1917 [78]). This model
was progressively developed by subsequent research, for example including non-
linear elastic spring elements for ligaments [79], and performing sensitivity
studies on the model [80]. These four-bar linkage models have been widely used
to develop understanding of the mechanics of the knee (e.g. the work of
O’Connor et al [81]).

Initially, when computational power was limited, this sagittal-plane modelling
approach proved popular, as it captured the single most obvious motion (i.e. F-E),
but could also describe some secondary motions (e.g. A-P ‘rollback’ as the knee
flexes). However, sagittal-plane-only models cannot include I-E, V-V or M-L
motions. 3-D analytic models did begin to emerge in the 1980’s [82], taking
advantage of computers to assist with the calculations. However, these could still
be classed as analytic models, since the system was still defined globally using
analytic equations (not discretised numerical integration methods); the computer
purely assisted with evaluation of the mathematics. Today, purely analytic models
are still used for some studies of the knee, notably in the work of Hefzy et al [83],
which has advanced to include detailed analytic representation of both

patellofemoral and tibiofemoral articulations, with nonlinear ligaments and
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quadriceps wrapping (Figure 18). These models may very readily be formulated

with dynamic equations, whereas FE models are often static or quasi-static.
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Figure 18: Analytic modelling of the knee joint (from [83]).

Although much research has been dedicated to FE-based models, analytic
solutions remain a very useful tool, especially for stochastic simulations, since
they offer the low computational cost essential for large volumes of trials. Multi-
body dynamics (MBD) simulations fall within this category, and are still widely
used (e.g. Bei et al [84] demonstrating the combination of dynamic simulation
with multi-body deformable contact). This approximation to the true deformable
behaviour of the material uses a pre-defined relationship between pressure and
‘penetration distance’, or ‘overclosure’. Typically, the penetration will be
estimated at a number of points, forming a rudimentary discretised ‘point cloud’,
reminiscent of the finite element approach discussed below. Despite this use of
discretisation, MBD models are effectively a class of analytic model, since they
still seek to apply analytic equations to describe the system dynamics, and do not
fundamentally have to depend upon discrete numerical integration methods.
They may be distinguished from ‘pure’ analytic models in that the geometries
involved are not represented in analytic form; rather, they are typically obtained
from CAD data, making the analysis too complex to evaluate without a computer.

MBD models are widely used for models of both natural knees & TKR implants

(Figure 19).
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Figure 19: MBD for the natural knee, left (courtesy Guess et al, UMKC), and for
artificial implants, right.

Finite Element Methods:

Whilst computers may be used to ease the calculation of the simple purely
analytic models described above, they have also enabled a fundamentally
different approach to the analysis of biomechanics - finite element analysis (FE,
or FEA). Unlike analytic models, the basis of numerical integration methods is not
to provide ‘exact’ solutions, but instead approximate the true result by a ‘brute
force’ approach to the solution, applying fundamental physical equations
discretised across small spatial and/or temporal intervals. As these intervals
become smaller, the approximation becomes better, but computational effort

also increases as the number of separate discretised equations increases.

As with other analytic in-silico models, an advantage of computational numerical
techniques for stochastic studies is that the process of parameterising the model
is simplified; a numerical value representing the input parameter can be changed
instantaneously. Conversely, the individual trials are now much slower, such that
a high-fidelity FE model of the knee gait cycle might require hours to simulate an
event lasting around one second. So, in contrast to experimental simulations,
computational models are very easy to re-configure (after initial pre-processing),
but currently take much longer to simulate. As such they are better suited to
multi-variable parametric studies, but less well suited if a highly adaptive model is
required to run many successive cycles. (In-silico models may still be used for
adaptive studies, e.g. in adaptive long-term wear damage studies [85]; typically a
large ‘step size’ must be used between adaptive updates, to limit the number of
analysis runs required). A stochastic analysis requires more trials (potentially
thousands, but even if ‘fast’ stochastic methods are used, dozens of trials will

still be needed). This is not problematic if there are sufficient computational
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resources available for simulation; however, in the present case, the work in this
thesis is being done as a ‘proof-of-concept’ with (relatively) limited processing
power available. Therefore, for these studies a high-resolution model using

deformable FE would not be appropriate.

The Application of FE to Biomechanics

FE was first applied to knee bioengineering in the 1970s, with simple 2-D static
simulations (e.g. Askew et al [86], who demonstrated the effect of bone
anisotropy on the fixation of the tibial component). Full 3-D static models soon
followed; in the early 1980s Lewis et al used 3-D FE to evaluate different tibial
component designs [87]. Most early studies focussed on bone stresses; later
studies began to investigate the stresses within the polymer components [88],
with studies focusing on both the tibia and patella (e.g. the work of Bartel et al
[89, 90], using FE to differentiate between designs, for example to demonstrate
the effect of increased conformity or insert thickness). For non-static assessments
(i.e. implant kinematics), explicit quasi-static models are used (as demonstrated
by Godest et al for TKR gait [91]). Combined with stress predictions, this allows
FE-based models to predict wear performance (e.g. Knight et al [92]), and to be
used for design optimisation algorithms (e.g. Willing et al [93]). However, these

sophisticated studies come at considerable computational cost.

Modern FE simulations can be elaborate, including fully non-rigid deformable
bodies, membranes for modelling ligaments, and complex contact friction
effects. This can result in simulations requiring several hours to achieve a full
solution across a single gait cycle (e.g. an explicit deformable-FE gait cycle can
require 6-7 hours [91]) - making large multi-cycle analyses very laborious. It is
possible to simplify the FE model to achieve much faster solve times (using rigid-
body contacts essentially similar to the MBD models); for example work by
Halloran et al using the elastic foundation (EF) method [94] has been used as the

basis for the first stochastic studies of TKR mechanics [95].

2.3. Experimental Methods

Empirical measurements, using experimental physical rigs or simulators, are
often considered superior to purely theoretical simulations, since the physical
laws controlling the system are implicitly invoked, rather than explicitly modelled
(meaning the model can simulate un-investigated physical conditions). However,
the simulation must still represent the in-vivo conditions as closely as possible,
and must be carefully designed to ensure that all influential behaviours are
captured. For TKR pre-clinical analysis, a top-level distinction can be made

between two classes of experimental methods (Figure 20). General materials
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testing screens for material properties (e.g. strength, wear or biocompatibility),
whereas mechanical knee testing directly uses ‘true’ natural or implanted knee

geometry, capturing the combined effects of materials and design form.

Experimental Methods
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Material tests for Knee/implant test rigs
fatigue, impact, (kinetics & kinematics)
compressive load,
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Figure 20: Representative classification of biomechanical simulators.

Materials Testing

A wide range of different tests will be performed on any new material prior to
clinical adoption, including various forms of biological and mechanical screening
(for example, impact testing on ceramic components, fatigue testing on tibial
trays, or wear testing on metal-alloy and polymer components). A study of the
literature on jn-vitro testing (e.g. amongst many others [96-99]), the specific ISO
or ASTM standards for materials testing (e.g. [23, 71, 100]) or any of the relevant
textbooks in the field (e.g. [101, 102]) will provide more detail on some of the
different forms of testing undertaken. In this particular thesis, the only testing
method which will be described in further detail (owing to its direct relevance to
the present body of work) is the widely-used pin-on-disc (POD) test, also known as
pin-on-plate (POP). This is a tribological assessment of the material, to gauge the
likely wear-rate that might be seen in-vitro, and ultimately in-vivo. POD tests do
not use implant geometry, which would otherwise become a confounding factor.
Instead, the same geometry is used for each candidate material (a simple flat-
headed ‘pin’ of the material articulating against a flat disc of the opposing
material), and a simple, repeatable motion is driven under compressive loading
(see Figure 21). The motions and loads are normally not physiologically-derived

(the sliding path normally follows a simplified path profile, and the POD machine
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cannot distinctly model rolling as opposed to sliding contact). TKR tests and POD
tests tend to give different values for normalised wear rates; this is not fully
understood as the precise mechanisms of wear are not fully characterised.
Nonetheless, data from POD wear testing provides a qualitative ranking of relative
wear rates compared to existing established clinical materials, and can be useful
for providing a first estimate of the expected wear for TKR implants. Following
the advent of modern orthopaedic implants, POD tests have been used as a
baseline wear test of materials since the early 1970s and through subsequent
decades (e.g. [97, 103, 104]).

Compressive Load
(applied to either pin or disc)

Rotation/translation motion 1
(applied to either pin or disc) 'Pin'

'Disc’ Path of relative translation /
rotation between pin & disc

Figure 21: Typical POD wear test configuration (left) & commercial POD tester: AMTI
6-station ‘Orthopod’ (right, image: Advanced Mechanical Technology, Inc.)

Today POD testing is still widely used to explore the relationship between the
factors hypothesised to influence wear performance (e.g. the relative effects of
cross-shear [105] and correlation to contact pressure [106, 107]), as it provides a
much more controllable environment to define specific motion paths and contact
pressures. POD testing is used extensively to explore the fundamentals of wear,

in order to devise theoretical algorithms for wear prediction (see Chapter Four).

Mechanical Knee Testing

Whilst materials screening is necessary, it is still essential to perform tests which
are more representative of the full in-vivo conditions. For this reason, mechanical
knee test simulators were developed, which directly perform static or dynamic
mechanical tests on the implants themselves. In only a few decades these in-vitro
models have developed from rudimentary 2-D rigid-linkage models to

sophisticated representations of the complete lower limb (Figure 22).
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Figure 22: Early (left) & modern (right) in-vitro knee models (from [108] & [109]).

There are a few examples in the literature of early rudimentary biomechanical
simulators (e.g. the 2-D sagittal model reported in [108]); however the first
noteworthy efforts came in the late 1970’s and early 1980’s. For example, Werner
et al performed limited testing of I-E torques and rotations for different
prostheses [110], and later Thatcher et al developed a more comprehensive rig
capable of applying axial compressive loads, shear loads and torques, to monitor

both A-P translation, and rotations [111].

In reality it is difficult for a simulator to accurately reproduce the mechanical
environment of the knee. The knee is an unstable joint with complex geometry
and kinematics, driven by multiple muscle forces and restrained by a complex
arrangement of active and passive soft tissue constraint. Further, there is no
‘standard’ human knee (due to the degree of patient variability) - geometries,
forces and tissue properties all vary considerably. In response to this complexity,

different modelling approaches have been used for in-vitro test designs.

A fundamental difference in the ‘extent’ of the modelling scope emerged (see
Figure 20): in some cases, the model focussed only on the internal kinematics
and kinetics of the implanted prostheses, often focusing on a single articulation
(e.g. tibiofemoral only) - these may be termed ‘joint’ simulators. In other cases,
the entire lower limb would be modelled (to include the effects of muscle forces &
lines of action) - these may be termed ‘limb’ simulators. Both classes of rig are

discussed in more detail below.

Joint Simulators

The knee is part of a complex system of muscles, joints, ligaments and bones
which together form the functional lower limb. To avoid modelling the full

complexity of this limb-level system, many tests are devised to model solely the
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loads at the specific joint interface. These ‘joint’ simulators can then use
aggregate loading and restraint conditions to mimic the effect of the surrounding
muscles and soft tissues. The various knee-wear simulators (as described in ISO-

14243 [23, 24]) are an example of this design ethos.

Two rival approaches to control may be adopted: force-driven or displacement-
driven (Figure 20). Whereas the biological knee is inherently force-driven (due to
body weight, muscle loads and ground reaction forces), many simulators directly
drive the relative displacement of the femur and tibia (to by-pass the complex
interplay between limb lever arms, muscle forces & moments, articular surface

geometry and restraining soft tissue).

To speak of ‘force’ or displacement’ control is slightly misleading, since either
strategy is generally a hybrid; e.g. axial compression is universally applied as a
force rather than an inferior-superior (I-S) displacement, conversely F-E is
generally applied as an angular displacement input regardless of the other
control inputs. The difference emerges for ‘secondary’ effects such as A-P shear

force vs. A-P displacement, and I-E torsion torque vs. I-E angle.

Note that no simulator operates in true ‘displacement’ control, since the ‘real-
world’ actuators are inherently force-driven (typically pneumatic or hydraulic).
Rather, the control feedback loop will use displacement (measured with LVDTSs or
potentiometers) as the target control signal. This does mean that achieving
accurate tracking is important in displacement-controlled simulator design, and it
is possible for the achieved ‘true’ displacement-driven kinematics to be very
different to the intended ‘target’ input waveforms (e.g. see [112], where with a
more conforming implant under test, the displacement-driven simulator could not

scarcely achieve 50% of the desired displacement during stance phase).

One of the first tibiofemoral joint simulator designs was by Walker & Hsieh [113],
which simply oscillated the femoral component whilst applying a constant stance-
phase load on a multi-station machine. Many variants followed; notable recent
examples are the Leeds/ProSIM simulator (Simulation Solutions, Stockport, UK),
the MTS Bionix knee wear simulator (MTS, Eden Prairie, MN, USA) and the AMTI-
Boston simulator (Advanced Mechanical Technology, Watertown, MA, USA), all of
which can be displacement- or force- driven, and the Instron/Stanmore knee
simulator (SKS) [114], a force-controlled tibiofemoral simulator (Figure 23). These

knee wear simulators are widely used for commercial testing of TKR designs.
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Figure 23: SKS Mechanical Configuration (from [114]).

There are limitations to this strategy of simulating conditions directly at the joint.
Since the various contributing forces from muscles & ligaments are modelled as
an ‘aggregate’ load (and not individually incorporated), the loading and restraint
applied in the simulator are not truly physiologically representative.
Consequently, operating outside of the intended in-vitro conditions can result in
non-physiological mechanics; for example cadaver knees loaded in the SKS (using
the knee’s natural ligaments in place of the standard horizontal springs) have
exhibited very exaggerated kinematics [115]. Nonetheless, knee implant wear
simulators have become established as the de-facto standard for pre-clinical

implant testing.

Limb Simulators

Full lower-limb simulator rigs have a more extensive modelling scope; by
applying loads at the hip and the foot/ankle, they can more realistically account
for such factors as variations in muscle forces or component positioning, since
the actual knee joint is not directly (artificially) constrained, and has all six
potential degrees of freedom of motion. However, these simulators are inherently
more complex, since more of the lower limb is modelled, requiring more
components (to represent the full thigh, shank, hip and ankle) and more
actuators (to provide representative loading) to be physically incorporated. This
requires more comprehensive understanding of the behaviour of the equivalent
biological elements to model them correctly. It also places demands on the
physical engineering of the rig, which should aim to match the inertia, strength,
speed and power of the natural lower-limb (a difficult challenge, owing to the

high performance of the target biological system).
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An important benefit of the full lower-limb test rigs is that the simulator can be
driven directly with clinical data. Ground plate reaction forces & torques can be
applied at the ‘ankle’, and motion-capture video recordings and inverse-dynamics
then used to determine corresponding kinematics or kinetics at the more
proximal joints. Any study intending to vary the muscle forces and limb moment
arms would be much simpler to implement on such a rig. However, since the
kinematics at the knee are not directly driven (but are determined by loads and
motions at the hip and ankle), it can be difficult to reproduce specific implant
kinematics & kinetics at the knee. Hence it is more difficult to directly match the
input waveform profile of a knee-wear ‘joint’ simulator to a corresponding ‘limb’
simulator; so the two cannot easily be directly compared. (A limb simulator must
of course include both the tibiofemoral and patellofemoral joints, so in theory it
should be possible to compare results with either a patellofemoral or tibiofemoral

knee joint simulator).

Early examples of these whole-limb simulators emerged in the 1970’s (e.g. Shaw
& Murray demonstrated a single-axis, manually-operated mechanical rig for
quadriceps-driven F-E as early as 1973 [116]), with subsequent designs becoming
more sophisticated. The configuration adopted by Perry in 1975 [117] fixed the
‘ankle’ with a sagittal-plane hinge and allowed the ‘hip’ to translate vertically (see
Figure 24, left). The Oxford knee rig [118] was also based on this same
configuration, but including additional degrees of freedom for out-of-plane
loading (see Figure 24, right). These rigs were designed to be used for quasi-
static analysis; i.e. the rig did not have the capability to be dynamically ‘actuated’

by loading the knee with representative muscle forces.

_H Flexion/Extension

Figure 24: Left: Perry’s knee testing fixture [117]; Right: Oxford knee rig [119].
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One of the more advanced rigs of this type is the Perdue/Kansas design, which is
a servo-hydraulic powered dynamic five-axis simulator, driven by the forces at the
ankle and hip. The original Perdue Knee Simulator (PKS) was designed as a next-
generation wear testing station in the late 1970’s (see early work by Zachman et
al [120]). The conceptual design of this rig is shown in Figure 25. The ‘shank’ &
‘thigh’ are fixed to sliding ‘hip’ & ‘ankle’ sleds. Four actuators drive the rig: in the
sagittal plane, a vertical force emulates bodyweight, and a ‘quad’ actuator
replicates the quadriceps muscles. At the ankle, actuators drive vertical rotation
(equivalent to I-E for small flexion angles), and also M-L load, to produce

adduction-abduction (Ad-Ab) moments, hence allowing out-of-plane loading to be

applied.
Vertical
Load
Quadriceps
Force
Hip
Flexion
Angle
Tibial
Torque

%

Adduction-
Abduction
Force

Figure 25: Mechanical configuration of the original PKS (From Zachman [120]).

Although the rig has gone through various re-builds subsequently (to decrease
weight and increase flexion range) the only fundamental design alteration to the
simulator has been to include an additional sagittal-plane actuator to provide
ankle F-E moments. This actuator (mounted anterior of the distal tibia) is not
physiologically representative of specific muscle groups (in-vivo, ankle plantar-
flexion is provided by the gastrocnemius & soleus muscles situated posteriorly in
the shank). However, it does compensate for the lack of an antagonistic
‘hamstring’ force to counter the quad actuator, and provides a means to apply a
strong flexion moment when the knee is close to full extension (normally the
‘body weight’ applied by the vertical actuator can produce a strong flexion
moment, but not at full extension). This five-axis version of the simulator has
been further developed by Maletsky et al [121]. The latest build now features
more feedback data by the inclusion of a six-axis load cell to directly measure

loads at the tibia [122]. This current Kansas Knee Simulator (KKS) design
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represents a versatile platform for in-vitro testing, and has also been the subject

of derivative computational models [109, 123].

2.4. Corroboration & Validation, and the Case for Stochastic
Analysis Approaches

The previous sections have illustrated the wide range of extant pre-clinical
analysis models in use, both computational and experimental. However, no single
form of testing is sufficient in isolation. In-silico studies in isolation are subject to
suspicion as long as there is no consensus on the precise causal mechanics of
wear. But in-vitro studies alone cannot provide the range and volume of
information which can be quickly and efficiently evaluated computationally.
Rather, the combination of in-vitro and in-silico wear prediction methods
corroborated together provides a better, more extensive toolset for pre-clinical

analysis of TKR wear.

It is important to make a clear distinction between ‘corroboration’ and ‘validation’
of a model. A model is only truly ‘validated’ when it matches ‘true’ reality (i.e. in
the case of knee assessment, post-clinical in-vivo outcomes) - this may be
considered the ‘gold standard’. However, when it is not possible to directly
validate a model (due to difficulties of capturing data in the real world), two
independent models may be ‘corroborated’. This means they are in ‘relative’
agreement with each other; which does not necessarily mean that they are both
correct (compared to the ‘absolute’ reality), but it does allow greater confidence
to be placed in the models, as corroboration would reveal any obvious errors,
mistakes or serious differences between the two (they would both have to be
wrong in exactly the same way for the error to go undetected). As such,
corroboration may be considered more of a ‘silver’ standard, which has its place

earlier in the design process, or when validation is not practically possible.

Clearly there is a natural inter-dependence between the different forms of
analysis. In-vitro studies can be used to begin investigating the underlying
phenomena. Using this data, in-silico models can then be developed to match this
behaviour, and then extrapolated to predict the system response under a wider
range of conditions. A good agreement between in-vitro & in-silico models may be
considered to ‘corroborate’ the models. Finally, a few selected in-vivo tests may
be used when the understanding of the system is more mature, to provide this

important ‘validation’ with the in-situ real world application of the system.
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Figure 26 illustrates this in the case of knee assessment. Corroboration is
possible early in the pre-clinical analysis stages between in-vitro and in-silico
models, provided they model comparable conditions (i.e. based on the same
mechanical conditions, using the same components under test). Comparing data
between in-vitro platforms is not straightforward due to the many confounding
factors (e.g. comparing POD tests to TKR wear tests), and experimental models
are not close enough to the in-vivo reality to truly ‘validate’ them directly. Hence
these interlinks are shown with dashed arrows. By contrast, in-silico simulations
provide a parallel, complementary modelling ‘domain’ where cross-
communication & data transfer between different stages is much easier. The
‘silver standard’ of corroboration between in-silico and in-vitro models gives
greater confidence in the understanding of the test mechanics & modelling
domain, however ultimately the aim is the ‘gold standard’ of validation with
clinical performance results. Accurately reproducing the complex holistic ‘in-vivo’
environment is beyond the capability of experimental methods; however in-silico
musculoskeletal models may ultimately provide the best means to achieve this. In
order to produce computational models of sufficient quality, the ‘early stage’
corroboration with in-vitro methods is essential however. In-vitro tests continue
to be necessary, to provide the real-world grounding for the explicitly defined

mechanics of the in-silico models.

in-silico POD test “ Knee simulator “ ‘in-vivo’ style models (using

Stream simulator models rig models musculoskeletal modelling)
2 2 P
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o Preliminary tests | , | knee simulators e.g. | ,«--
D) (e.9. POD testing  |{ 20)| tibiofemoral knee  [*--= VALIDATION
S/ of materials) | * |  wear simulators

In-vivo clinical assessment e.g. radiographs,
in-vivo synovial fluid particulate assessment;
stream Ex-vivo assessment e.g. explant retrieval,
surface profilometry

Figure 26: The role of corroboration and validation - conceptual diagram.

The value of corroborative studies has been recognised by a number of
researchers who have published in-silico models based on the experimental

results of in-vitro simulations. For POD models, this work has been performed by
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a number of teams, including Hamilton et al [124] who corroborated the work of
Turell et al [105], and Kang et al [125], who used their own proprietary data. For
TKR simulations, computational-experimental corroboration has been performed
by amongst others Godest et al and Halloran et al for kinematics, [91, 94], Knight
for displacement driven wear [126] and long term wear [92], and Willing & Kim,
Hamilton et al and others for force-driven wear [124, 127]. Generally, the aim is
to demonstrate that the in-silico models & methods produce comparable results
to the experimentation, so that the computational model can then be extended to
be used for further investigation; in other words, the aim is not just duplication,
but to produce a quality in-silico analysis tool which can be used to augment the

experimental capability

However, in all of this discussion a key consideration has been excluded up to
this point; namely, the in-vivo domain is inherently highly variable; there can be
no single ‘validation’ with clinical data, since the data in any two cases would be
different (different patients, different mechanical loads, different surgical
outcomes, different activity levels). This is a major confounding factor when
attempting to ‘validate’ a model; a single-run on an in-vitro test platform cannot
possibly reflect this range of outcomes. In-silico models, used as a
complementary analysis tool, have the speed and power to run multiple cycles
(e.g. with probabilistics to explore variations in alignment or loading conditions),
but it is essential that they are well-corroborated in order for this data to be
meaningful. Therefore, the in-silico modelling domain has the potential to act as a
‘bridge’ between the in-vitro and in-vivo domains, introducing stochastic analysis

approaches to the models derived from the experimental laboratory.

2.5. Summary

The use of experimental and theoretical methods for in-vitro and in-silico pre-
clinical analysis is well-established. These various models have been
demonstrated to provide useful analysis and predictions of knee behaviour whilst
operating under normal knee conditions. However, as has been stated, high
variability is an inherent feature of biological systems such as the human knee,
and in order to provide a truly complete picture of knee performance, analysis
should not be limited to ‘normal’ conditions only, but should include more

complete variation in factors such as loading, geometry and alignment.
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Most of the studies cited above are either deterministic (operating for a single
case with specific known inputs), or parametric ‘one at a time’ studies (sweeping
across a range of values for one variable or a small group of related variables).
Only limited work has been done in recent times to extend these models across
the entire domain of uncertainty associated with TKR. But without this ‘holistic’
perspective, it is impossible to be confident that the system is fully characterised
by the current body of literature. Therefore, a more complete stochastic analysis
of TKR is called for, to map the areas of variability and cross-coupling effects not
explored by existing studies. This requires further extensions to the current body
of knowledge; to understand the sources and levels of variability within the
system, and also to demonstrate the application of stochastic techniques using
knee mechanical models & statistical data. This stochastic framework will be

explored in the next chapter.
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CHAPTER THREE - PROBABILISTIC METHODS *

Sources of variability & review of numerical probability integration methods

3.1. Concepts of Probabilistics

To facilitate a discussion of the case for stochastic modelling, it is necessary to
begin with a few definitions of relevant concepts. Any given model may be
reduced to an “input-system-output” paradigm; certain influences on the system
will influence the resulting output states; these input values may be termed input
factors. Input factors may have known ‘fixed’ values which are accurately
measurable and controllable. If all the factors are of this nature, there is no
uncertainty and the model may be described as deterministic. However, if there is
a degree of uncertainty in one or more of the factors, this input variability makes
the system indeterminate; in which case stochastic (or ‘probabilistic’) modelling
may be applied. The variable factors may be denoted individually as X, X,, X, ...

X, or collectively as a single vector value, X (or X).

If a factor does not have a single fixed value, it may take a continuous or discrete
range of values. For a model with N variable factors, the range of possible
combinations may be represented in an N-dimensional region of space, with each
factor forming a separate orthogonal axis - the resulting representation is the
design-space. Figure 27 illustrates this concept for a 2-dimensional example, with
two variable factors, X, and X,. X, can take values from -3 to 3; X, can take values
from 0 to 5; the resulting design space is a 2-D surface, where every point on the

surface represents a different unique combination of the two variables.

X;value range: 0 to 5

Figure 27: lllustration of the design space concept in 2-D.

2 The concepts presented in the following section are derived from various standard texts
on the subject of probabilistic modelling & reliability theory [128-133]. Any of these may
be consulted for further information on the techniques of stochastic analysis.
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However, the design space only indicates whether a combination of values is
possible; it does not contain any information about whether that combination is
probable. For this, it is first necessary to know the probability density function
(PDF) associated with the different factors. A PDF is a function spanning the range
of possible values for X, the magnitude of the PDF (p) indicates the probability
associated with a given value of X. A PDF may take any form, however a number
of ‘standard’ types are commonly encountered (e.g. Normal or Gaussian,
lognormal, Poisson, binomial, Weibull, Rayleigh, etc). Figure 28 assigns two
different PDFs to the variables in the present 2-D example; X takes a Normal
distribution with mean of 0 and standard deviation of 1; X, takes a lognormal
distribution with mean 1 and standard deviation %. (Note the PDFs have been
clipped slightly to fit within the bounds; in reality they extend to «). Note that,
for a multi-factor problem, it is possible that the PDF for one factor could change
depending on the value of the other factors; in this case this coupling of the
factors must be accounted for. However, in the absence of better data, it is often
assumed that factors are independent; i.e. that variations in one have no effect on

the others, and hence the PDF does not change.
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Figure 28: Two typical PDFs; left - Gaussian, right - lognormal. Note: the area integral

under any PDF is always unity.

Combining the geometric mapping of the design space with the information in
these PDFs allows the construction of the possibility space - this is again shown
for the 2-D example in Figure 29. The advantage over the design space is that it
is now apparent which combinations of variables are more or less likely; so for
example, events around the region X, = 3, X, = 5 have a very low associated
probability of occurrence (as a result it might not be too relevant how the system

performs under these conditions).
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Figure 29: lllustration of the ‘possibility space’ in two dimensions. Note that the
volume-integral of the PDF across the possibility space is always unity.

3.2. The Case for Probabilistic Analysis

The studies described in Chapter Two included a wide range of deterministic
studies (i.e. considering only the ‘neutral’ case without regarding any
perturbations of input factors). Historically, when in-vitro & in-silico models were
first developed, the aim was simply to ‘validate’ these simulations with a single
‘target’ output, considered to represent ‘typical’ real-world conditions (for
example, [91, 92, 112, 114]). Of course, such studies are an essential first step,

but beyond this, they provide no information about the effect of any variability.

As the science of orthopaedics matured, it became desirable to better understand
the influence of various factors identified as important. Studies began using
parametric ‘one at a time’ sweep methods (varying one factor, or a small number
of factors, across a range of values), for example, [134, 135]. This provides a
valuable first indication of the factor’s influence. However there are two

limitations of such methods.

Firstly, ‘one-at-a-time’ studies are decoupled from statistical information about
the PDF for the input factor. Trials evenly-sampled across an input range do not
give information about the probability of a given outcome; for this, information
about the probability of the input conditions is also required. (It is of course
possible to perform a one-dimensional ‘sweep’ study with better selection of
input values based on measured statistical distributions of the input parameter,
but in the field of orthopaedic research, historically many studies have used

regular step sizes, taking no account of the true input PDF, e.g. [136, 137]).
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Secondly, parametric ‘one-at-a-time’ studies fail to map out the entire possibility

space. This can be readily visualised in 2-D for two variables (Figure 30).

sweep study is in design space;
no information on probability _~"".....

data points are along
sweep-axes only

-------
- .,
.......

---------

no data in
these regions

Figure 30: ‘One-at-a-time’ studies (above) provide no information about probability

distributions, or the correlations between factors across multiple dimensions.

This introduces the need for ‘stochastic’ or ‘probabilistic’ studies: the entire
possibility space can be investigated, and the output data will be related to input
variability, giving corresponding statistical data (see Figure 31). However, as is
also clear from the illustration, this greatly increases the space that must be
explored, and this increases according to a power law of the number of input
variables; 3 variables gives 3-D space, 4 variables gives 4-D space, etc. This rapid
increase in the scale of the task is often referred to as ‘the curse of
dimensionality’, and presents a serious challenge to stochastic study design. To
address this challenge, a number of different methods exist for implementing

probabilistic studies. These will be discussed in the next section.
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Figure 31: Example ‘probabilistic’ study; samples are distributed across the
possibility space, based on the PDFs of the input factors. Note that this requires

more trials than the deterministic or ‘one-at-a-time’ studies.
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3.3. Numerical Approaches to Modelling Probability ?

Most computer-based statistical modelling relies on the concept of ‘numerical
probability integration’ - in other words, the summing (integration) of individual
numerical trials, to approximate the true (analytical) probability. The method of
probability approximation by numerical integration of statistical samples has only
been applied to the specialist field of orthopaedic biomechanics relatively
recently, as the computational resources it requires have become more readily
available. The most established method is the ‘Monte-Carlo’ simulation technique
(MCST), which uses purely random samples across the possibility space. However,
this is computationally intensive, and consequently other methods have been
devised, which can broadly be split into two categories. Importance sampling
methods (ISM) fundamentally use the MCST approach, but improve efficiency by
selectively reducing the sample-space based on knowledge of the system. Fast
probability integration (FPI) methods are alternative approaches which are more

approximate, but more efficient.

3.3.1. Monte-Carlo Simulation Technique

The Monte-Carlo technique is essentially a ‘gamble’; the approach uses brute
force rather than careful selection of trials to achieve a good result, relying on a
very large number of trials to achieve high-fidelity. Random (or pseudo-random)
samples are created, based on the known (or assumed) PDF associated with each

input variable. These values are then used to generate associated output values.

As with other approximate numerical-integration methods, the ‘resolution’ of the
integration determines the accuracy of the calculations; typically many thousands
of trials are required to obtain useful results, and the number of trials required
will increase when the probabilities involved are small. Once the trials are
completed, output distributions (mean, standard deviation or specific probability
levels) can be determined readily, e.g. if the measure of interest is a probability of
failure (), this can be estimated by taking the ratio of failures (N) to total trials
(N); see Figure 32. Alternatively, the outcome associated with a particular
probability range can be calculated, by taking the p" percentile of the trial results.
Intuitively, accuracy increases as the number of trials increases (with reference to
the figure, a larger number of trials gives a higher ‘resolution’ image of the

possibility space).

3 Figures in this section adapted from the conference paper: "Probabilistic Computer-Aided
Analysis of Variables Affecting the Performance of Total Knee Replacement". Strickland et
al, 2006, Biomedical Futures 2006 - Musculoskeletal Biomechanics (Durham, UK)
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Note that the figure illustrates how MCST reveals the path of the ‘limit state
function, sometimes denoted g(X). This is the boundary between ‘success’ and
‘failure’ trials (although the term may be used for the threshold between any two
distinguishable system outcome states; e.g. achieving a particular performance-
level or not). Only an approximation to the ‘true’ limit state is obtained with

numerical integration methods.
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Figure 32: Estimating Probability of Failure (p) via MCST.

It is often important to know the accuracy of these probability estimates, and this
can be ascertained approximately by calculating the ‘coefficient of variation’
(COV). This uses a binomial approximation to model the maximum possible error

in MCST, for a given number of trials, N, and probability of failure, p_:

/(1_ P) Py
cov=t N __ ()

Py

Note that it is clear from this equation that COV will approach zero as N tends to
infinity; however small values of p_will also yield a larger COV. A smaller COV
means the results of the MCST are more accurate. Hence the accuracy of MCST
suffers if the number of trials is low, but also if the probability being estimated is
very small. A typical numerical relationship between N and COV is shown in

Figure 33.

Note that the when applying the COV measure in practice, p, is not known, and so
the estimate generated by the MCST trials must be used. The danger is that this
value may not be accurate, especially for low values of N; therefore the apparent
relationship does not match the ‘smooth’ theoretical relationship (in fact the COV
may seem quite low for some very low values of N) - however this is erroneous;

COV must be used with care for small values of N.
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Figure 33: Typical relationship between number of trials and coefficient of variation
(actual & estimated). Note the estimate may be above or below the true COV, but
converges towards the true value (as N — « and true COV — 0).

3.3.2. Latin Hypercube Sampling and Orthogonal Sampling

A variation of MCST which is sometimes used is Latin Hypercube Sampling (LHS).
Rather than distribute the trials entirely at random across the possibility space,
LHS attempts to distribute them to ensure an even coverage of the possibility
space. Figure 34 illustrates this principle with a ‘worst case’ example; whereas for
a small number of trials it is possible for the trials to ‘cluster’ with MCST, LHS
constrains the trials to be evenly spread over the possibility space in distinct
partitions, so reducing this risk. This can potentially reduce the error in

probability estimates.
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Figure 34: ‘Worst-case’ comparison of MCST (left) with LHS (right). Note in this
example, the MCST error in p_is several times larger than with LHS. This is an

extreme case; the differences would generally be much less pronounced.

Within each partition, the sample may be taken at a random point, or using the
mean or median value within the partition. For best results the LHS sampling is
weighted such that the partitions are not of equal width, but rather of equal area
integral beneath the PDF, i.e. the associated probability of each partition is equal.
Consequently, partitions are smallest closest to the mean value ‘peak’ of the PDF,
as in Figure 34. For problems with multiple dimensions, samples are selected to
give a good statistical spread by ensuring that each sample falls into a unique
row and column. The 2-D case is called the ‘Latin Square’; the more general N-

dimensional case is the eponymous ‘Latin Hypercube’. To achieve higher sample

63



rates, this procedure can be applied with smaller bins, or else repeated multiple

times with different LHS arrangements.

Figure 35: Example of 2-D LHS (or ‘Latin Square’), showing variation of partition area,

and also unique sampling in each row/column.

However, for problems with multiple dimensions, the LHS method can still result
in ‘clustering’ (because the sampling between dimensions is independent). A
further refinement of LHS is ‘orthogonal’ sampling (for problems with more than
one dimension). Here, the possibility space is partitioned into smaller segments
across dimensions, and the additional constraint imposed that an equal number
of samples must be selected from each segment. Figure 36 again illustrates a
‘worst case’ example, comparing MCST, LHS and the orthogonal LHS method.
Note that the orthogonal case should yield the most representative distribution of
samples, although LHS in turn is generally more evenly distributed than MCST
trials. However, this figure depicts an exaggerated case, since there are a small
number of samples. The benefits of LHS & orthogonal sampling are greatest with
a small number of trials. As the number of trials increases, the possibility of such
a ‘clustering’ scenario with MCST decreases; all methods converge towards the

true solution, so the difference becomes negligible.
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Figure 36: A ‘worst case’ comparison of MCST (left), LHS (centre) & orthogonal (right)
sample sets; LHS & orthogonal methods are more robust against clustering, which is

most apparent for small numbers of trials, as in this example.
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Clearly, in the limiting case as N tends to infinity, the MCST family of methods
offers an excellent solution, and may be considered the ‘gold standard’. However,
coming close to this solution may require many thousands of trials (depending on
the problem & the required accuracy, the number of trials is routinely of the order
10%, 10* or 10°. This is often not feasible where the individual trials are
computationally expensive; in such cases, techniques are sought to reduce the
number of trials required for a given level of accuracy. Two sets of methods will
be reviewed in the following sections: importance sampling methods, and fast

probability integration methods.

3.3.2. Importance Sampling Methods (ISM)

An adaptation of MCST is ISM. There are a number of methods within this
category; the common feature is that the possibility space is not fully explored;
instead, trials focus on areas of interest, e.g. only assigning trials to areas on the
‘fringes’ of the possibility space. The effect is to multiply the accuracy; for
example, if it is known beforehand with confidence that % of the possibility space
will not be associated with failure then samples can be focused in the remaining
Ya, such that the same accuracy is achieved 4 times faster. An example of one of
the simplest forms of ISM, the radius-based method, is shown in Figure 37. The
failures all lie beyond a given radius from the mean value - therefore samples are
not needed from this inner region, and can be concentrated on the outer region.

The result is then scaled by the probability of the entire outer domain (p).

p, DX

= xp
P+Pg D X+DO ‘

Figure 37: Comparison of MCST (left) with radius-based ISM (right). ISM achieves the

same result as MCST with fewer trials; however, it is important to be confident that

no failures would occur within the inner radius. Note that by definition, p. + p, = 1.
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The risk is that any failures within the region presumed ‘safe’ will not be
detected, so there must be sufficient confidence in the assumptions made. Note
ISM depends on some additional knowledge of the system to reduce the sample
space, so if the system is completely unknown, ISM cannot be used directly (since
no region can be considered ‘safe’). One possibility is to apply a low-resolution
MCST to ‘screen’ the possibility space, before using ISM. Another, more
sophisticated approach is to use ‘adaptive’ importance sampling, which gradually
refines the sample space, based on new information obtained as the sampling

progresses.

3.3.3. Fast Probability Integration (FPI) Methods

3.3.3.1. Response Surface Methods (RSM)

The response-surface modelling approach was first described in the literature by
Box and Wilson [138], and in its most basic form is a none-adaptive, DOE-based
FPI method (although more sophisticated variations of RSM are also now used).
The concept of RSM is to fit a simple analytic function of the input variables to
approximate the output parameter, across the full range of the sample space.
Typically, this will be a low-order polynomial (called the ‘response surface
equation’, RSE), and regression techniques will be used to select the term
coefficients. However, it is possible to derive alternative forms of RSM, not based
on simple polynomials but based on non-linear models with the outcome of the
earliest trials being used to adaptively select the subsequent trials. (For more
details on these methods, the reader is referred to the texts referenced in the
footnote at the beginning of this chapter). These more sophisticated alternatives
could be used for biomechanical problems in future, but will not be considered
further for the concept studies discussed in this thesis; simple polynomial-based

RSE methods will be demonstrated in the first instance.

Once a simple RSE is derived, this can be used as the basis for a MCST, since the
RSE can be evaluated much faster than the true model. This method works best
when the true output can be well-represented by an analytic function, e.g. very
linear models can easily be fitted; highly non-linear systems are not well-
represented. Figure 38 illustrates the method used to approximate a simple limit-

state.
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Figure 38: Fitting an RSE to a system response. The higher the order of the equation,
the better the potential fit.

Trials could be random, but a better result is achieved by distributing the trials
regularly across the sample space (e.g. using LHS or orthogonal sampling). The
higher the order of the RSE used, the more terms that will be included; hence the
more samples needed to achieve a good fit with the regression. For an N-
dimensional model, the number of terms required for up to a cubic RSE is given
in Table 4, in combinatorial and polynomial form (for quantitative comparison,
the number of trials needed for a 10-factor system is also listed in each case).
The actual number of trials used to achieve the RSE fit must in turn be several

times this number, to achieve a reliable fit:

RSE Order Combinatorial Expression Polynomial Example
Expression (N=10)
Constant 1 1 1
Linear 1+N 1+N 11
Linear with N 2
cross-terms T+N+5C ]+%N+%N 56
Full N 3 2
1 N N
quadratic 14N+,C +N +A +% 66
Full cubic 1+N+5C +N+"C +2C +N 1+1}€N+N2+%N3 286

Table 4: Number of terms required for different RSE models (with N factors).

Clearly, higher order RSEs require more runs according to the highest-power
polynomial term. Beyond cubic terms this becomes impractical for most models
(the number of trials required is scarcely less than a low-resolution MCST
approach). Results are generally not highly accurate, because the RSE is a global
model; the same analytic function must approximate the output across the entire

sample space. If accuracy is only required about one region of interest, a better
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result may be achieved by fitting a local model at that point; this is the approach

taken by a number of the FPI models, as discussed in the following section.

3.3.3.2. First and Second Order Reliability Methods (FORM & SORM)

FORM and SORM are based on the underlying assumption that, somewhere along
the limit state function g(X), there is a region of most statistical significance (i.e.
the conditions which are most likely to be responsible for failure) - this point is
variously termed the ‘design point’, or ‘most probable point’ (MPP). The aim of
F/SORM is to fit an analytic model at and around this specific localised point, to

achieve higher accuracy.

To better visualise the concept of the MPP, consider a 1-D system, which ‘fails’ if
the single variable (X)) exceeds a certain ‘limit state’ value, g(X) (Figure 39, left).
This can be generalised to 2-D and higher models. In the 2-D case, the limit state
is no longer a point, but a boundary line across the 2-D space (Figure 39, right).
In the general N-dimensional case, the limit state is a hyper-dimensional surface,
generally termed the limit-state surface. All locations in the possibility space that

lie beyond this surface constitute a ‘failure’.

g(X) point on 1-D line

Figure 39: Limit state concept for 1-D (left) and 2-D (right) systems.

Now, in the 2-D case (and for higher dimensions), a PDF can be ‘mapped’ along
this limit state (see the shaded region in Figure 39, right); this represents the
limit-state probability of occurrence. There will exist a point at which the PDF

reaches a global maximum; by definition this point is the ‘MPP’ of the limit-state.

Finding this point is complex if the input factors all have differing distributions;
therefore the possibility space may be normalised, to re-map all the factors as
normal distributions, with mean of 1 and standard deviation of 0. (The
normalised input factors are then designated using ‘U’ rather than ‘X’). Now,
conveniently, the MPP on the limit-state PDF will be the point of closest approach

to the origin, and can be located using geometric methods (Figure 40).
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Figure 40: Locating the MPP in normalised (U) space, based on geometric proximity
to the origin.

Typically an iterative approach is required to locate the MPP, which requires
multiple trials. Once the design point is located, further trials are required to fit
an appropriate analytical model. FORM fits a linear model, which is less accurate
and converges to the design point more slowly, but requires fewer trials per
iteration. SORM fits a higher-order model, requiring more trials to fit per iteration,

but offers faster convergence and more accuracy.

In both cases, there are risks associated with the method. As with MCST, the
input variables must be correctly characterised. Further, it is possible that the
area of high probability along the limit state g(X) may be broadly distributed,
such that no singular region represents the ‘majority’ probability of failure. (For
instance, consider a broad, low PDF; many areas have moderate probability of
occurrence, but no area is significantly the most probable; In this case the
MPP/design point concept is less applicable). The MPP search algorithms also
have limitation; for example, they may converge to a sub-optimal ‘local’ MPP
which is not the true ‘global’ MPP. However, for well-conditioned problems, FORM
& SORM can provide a much better localised approximation around the design

point than is achieved by the global RSM approach.

3.3.3.3. Mean Value (MV) & Advanced Mean Value (AMV) Methods
The MV family of methods (MV, AMV, AMV+), again begin with an approximation

of the function; in this case the approximation is made about the mean value of
the input functions (i.e. the ‘origin’ of the possibility space). For MV, the
expansion of the function takes the form of a first order (i.e. linear) Taylor-series
expansion (requiring N + 1 runs for an N-dimensional problem), comparable to a
first-order RSM. Note that here the linear model is applied directly to the factors

in X-space, without converting to normalised U-space. The MV model is suitable
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for fairly linear problems, but is not accurate for non-linear behaviour; its main

practical use is as the basis for the subsequent AMV method.

The AMV method takes the linear model derived by the MV method, and attempts
to include corrective terms to approximate the higher-order effects. However,
unlike RSM, FORM and SORM, the AMV formulation does not provide a parametric
function that can be applied elsewhere in the possibility space. Instead, it takes
the MV prediction and (using data from the calculated MPP of interest), corrects
this value for a single point in the possibility space. The higher-order
approximation achieved by AMV cannot be applied at any point other than that
for which it was derived; hence estimating probabilities for additional points
requires additional applications of the AMV method.

Figure 41 illustrates the application of MV and AMV, for a 2-D domain. In
illustration a), the mean centre-value is evaluated, along with small perturbations
in the two variables X, and X, (1+2=3 evaluations). This gives the MV model of the
output objective (the sloped plane). In illustration b), a probability level has been
chosen, and the approximate location of the limit state g(X) estimated with the
linear projection from the MV model. The MPP for this limit state is found, and
another evaluation performed at this point. This new value allows for a corrected
AMV estimate of the output at the probability level. This has given a good
estimate at the point in question with only four evaluations; however, the
disadvantage is that no similar information is available for the rest of the

possibility space or limit state function.

» =

a). 'MV' A b). 'AMV' )

Figure 41: a) Deriving a linear MV model; b) Using AMV for a given probability level.

AMV+ is an extension of this method; essentially it is the AMV method applied
iteratively, so each new estimate is further corrected with additional trials, to a
specified error level - although this can quickly become computationally

expensive. Due to the good convergence of the AMV method, the AMV+ method
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is rarely required, except for very non-linear or non-monotonic functions, or when

particularly high accuracy is required.

The MV method is fast, but not accurate for non-linear models. The AMV methods
are efficient, but as with FORM/SORM, they rely on the MPP concept, so again can
be confounded by local minima in the limit-state evaluation. The AMV method’s
impressively low computational cost comes at a price: this method only provides
information for a single point, so in order to construct a full PDF the method

must be applied repeatedly for every point of interest.

For any of the practical probabilistic methods discussed above, from full MCST to
FPI methods, care must be applied when implementing a stochastic study; the
results will only be accurate if the parameters of the various input factors, as well
as the physical model, are representative of reality. Statistical properties such as
mean, standard deviation, distribution type and inter-variable correlations must

all be accurately characterised for every factor under study.

3.4. Visualising Probabilistic Results

A common feature of all probabilistic methods is that they generate a large
volume of output data; instead of a single ‘deterministic’ value, a full PDF of
possible values can potentially be constructed. For a system with multiple output
objectives of interest (and especially if these outputs are vector values, e.g. time-
varying metrics), this can potentially produce an overload of information, making
the results & important observations less accessible. It is important to ensure that
the stochastic study can still deliver simple, clear results or it will not be a useful
tool for designers or clinicians. Therefore ways must be found to clearly present

key results.

3.4.1. Performance Envelopes

For time-varying output objectives, a useful visualisation tool is the ‘performance
envelope’. Effectively, every time instant represents a unique ‘system’, with a
unique stochastic behaviour and hence a unique PDF for each of the outputs, Y.
This is too much data to present to the user; consequently, an effective
simplification is to only display specific ‘levels’ on each PDF; e.g. the mean value,
and an ‘upper’ and ‘lower’ bound (1 or 2 standard deviations, or a fixed
percentile value). This is illustrated in Figure 42. The 3-D data is reformatted into

a 2-D time-plot which is easy to interpret.
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< time, t
Figure 42: Concept of ‘performance envelope’ illustrations. Displaying only selected
points from the PDF at each time-instant allows a simpler, more readily interpretable
visualisation to be produced.

Note that when ‘performance envelopes’ are used, care must be taken in
choosing the limits to display. Clearly 0% and 100% are not appropriate, as for
many distributions these would extend to *co and so provide no useful
information. Values very close to these extremes are unlikely to be appropriate
either; for any numerical probability approximation, generally the ‘tails’ of the
distributions (i.e. furthest from the mean value, where the PDF is very low) are the
most poorly approximated area. Hence larger errors are likely in these outlying
regions. So if a model is based on a thousand MCST trials, a 1% to 99% envelope
might be justifiable, but if only a hundred trials were used, the accuracy would be
lower, and a 5% to 95% interval would be more appropriate. (The COV discussed
earlier provides a useful means to quantify the error that would be associated
with a given choice of envelope interval range). Conversely, if the bands are too
narrow (e.g. £10), they may not reveal the range of outlier cases (e.g. for a
Gaussian distribution the first standard deviation either side of the mean

excludes some 32% of all possible results).

3.4.2. Sensitivity Analysis (SA)

Another highly valuable technique is to report ‘sensitivity factors’. The aim is to
clearly illustrate which of the input factors are having most effect on a given
system output Y, so that designers or clinicians can quickly see which of the
factors is having most impact, and focus only on these factors. (Similarly, it may
allow stochastic-study designers to determine which factors to preserve or omit

for future probabilistic studies, if computational resources are limited).

Even for a single, scalar-value output objective (i.e. space- & time-invariant),
providing a single ‘bottom line’ value for sensitivity is not straightforward. The
value of the ‘sensitivity’ can vary, depending on the location in the possibility

space (at any point, the local sensitivity is the partial derivative of the output-
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function aY/dX ; this value can of course vary across the design space, depending
on the shape of the response function). One may quote the sensitivity at a
specific local point of particular relevance (e.g. the MPP from an FPI approach), or
alternatively fit a global approximation (e.g. RSM), and quote sensitivity based on
this global function. Obviously, the global sensitivity is less accurate, but more

broadly applicable.

When a signal is varying across time or space, (i.e. vector-outputs), the task
becomes still more challenging; the same factor may have very different effects at
different times, or different locations in the system (e.g. in knee mechanics, a
particular malpositioning of the components may increase pressure locally on one
condyle, but decrease pressure on the contra-lateral condyle). It may not be
appropriate to attempt to express a single-value of ‘sensitivity’ for such a case.
Alternatives are to make a distinction between different ‘regions’ (spatial or
temporal) and quote separate sensitivity values for each region; or to report only
the averaged-magnitude of the sensitivity, to give a general indication of the
overall influence of the factor. Nonetheless, sensitivity analysis should be applied
with care in uncertainty analysis, to avoid providing misleading or overly-
simplistic data. Note also that for systems where factors are heavily
interdependent, quoting individual sensitivities is again misleading. Sensitivity
factors are most meaningful therefore, for scalar-outputs of relatively linear

systems with independent factors.

It is often desirable to display sensitivities for different factors alongside each
other, to give a quantitative indication of the relative ranking of factors. In this
case, it is important that the sensitivities are normalised, to compare like-for-like.
Consider two factors, X, and X,. If at some point of interest the system output Y is
twice as sensitive to X, as X, (i.e. aY/aX2 = 23Y/3X1), it may seem that X, is the
more sensitive factor. However, if the input variations in X are actually ten times
larger than X, (e.g. X, has a standard deviation ten times lower), then it is
apparent that in reality the actual system response will be more affected by X,
owing to its much greater variability. Hence normalised sensitivity is a function of
both the raw sensitivity value and also the input variance for each factor. This
requires possibility-space information (not just design-space), since the statistical
properties of the input factors are required. Figure 43 shows a typical SA plot;
note that if the sensitivity factors are based on a linearised fit then, by

trigonometry, the squares of the normalised values (or B-values) will sum to unity.
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Figure 43: Typical sensitivity analysis results, displayed as a bar graph. SA can
provide a very clear, accessible visualisation tool for stochastic analysis; e.g. it is
immediately clear in this example which factor is most influential.

3.5. Considerations for Correlating Multiple Outputs

When there are multiple output objectives, designers or clinicians may wish to
explore the correlation between the different outputs. This is particularly useful
when it is difficult to directly assess the values of the uncertain input factors. For
example, in the case of the human knee, directly assessing the individual
stiffness, pre-strain or insertion sites of the ligaments is not readily achievable in-
vivo, but these input factors will influence the behaviour of the knee in active gait
(one set of ‘output objectives’). Equally however, they will affect the passive laxity
of the knee (a different set of outputs). It may be hypothesised that some
correlations exist between these two different sets of outputs (active & passive); if
this were proved to be the case, then by understanding these correlations it may
be possible to infer the probable results for one output objective based on the
known results of other outputs measured. (For example, assessing the passive
laxity for some particular case may indicate that the knee is more likely to
experience exaggerated kinematics post-operatively in normal gait; the surgeon

may then be better informed to adjust the ligament balance intra-operatively).

In order to analyse such correlations, the outputs must be evaluated and
compared under corresponding input conditions (so all factors are controlled, to
be compared ‘like-for-like’). There are two possible approaches; either the
individual trials must be sampled at exactly the same input levels for the different
output objectives, or alternatively a continuous functional expression must be
built (e.g. an RSE model), so that after the trials are completed, the functions for
the different objectives can be evaluated by re-sampling at co-incident points (see
Figure 44). In either approach the final outcome is a series of coincident points to

compare; however re-sampling with a functional model is much faster than
74



running original trials (as only the fitted function needs to be evaluated), so
provided less trials are required to build the function, then this may be

computationally more efficient.

Matched Trials Functional Re-sampling
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Figure 44: Alternatives for correlating outputs. Left: matched (coincident) trials;
Right: function-fitting & re-sampling.

If the stochastic method uses pre-selected trials, and does not feature a recursive
‘search’ approach, then the first method with matched trials can be used (obvious
examples are the Monte-Carlo or LHS approaches, where the trials are all
specified before the evaluation begins). However, for the search-based methods
such as FORM/SORM and AMV, (which use an iterative approach whereby the
inputs for new trials are decided based on the value of the previous trials), this
cannot be done, as each different output objective will result in a different
iterative search path. In these cases, a functional model across the possibility
space is necessary. Some models inherently accommodate this; for example, the
essence of the FORM/SORM approaches is to build a first-or-second order
regression model of the system; this can then be used directly as the function for
correlating the two output objectives. However, the same is not true of the AMV
family; the AMV approach only evaluates the model at a single input level and
does not give any functional description across the possibility space. AMV is

therefore unsuitable for determining multi-output correlations.

3.6. Performance Issues for Large-scale Stochastic Studies

The fundamental determining influence when choosing a numerical probabilistic
method is always the performance-accuracy trade-off. Mechanical models of the

knee are inevitably quite complex and multi-factorial; this means that there is
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always a relatively high ‘cost’ associated with the probabilistic studies, and makes
the trade-off between required solve-time and accuracy of the results more
challenging. In practice, how this trade-off will be made depends on the
computational resources available; for a full industrial deployment, with many
thousands of processor-hours available, complex fully deformable models and
intensive MCST methods may be a realistic option. However, for ‘proof of
concept’ exploratory studies (such as the present work), much less computational
power is available, so the trade-off must be more in favour of lower simulation

cost, at the expensive of accuracy.

As has been discussed in this and previous chapters, there are several possible
complementary strategies available to reduce the cost of the evaluation. One
approach is to make appropriate simplifications to the mechanical ‘physics’ of the
model (i.e. the actual TKR simulation). Examples are the use of rigid bodies,
elastic-foundation contact algorithms or linear material properties (as discussed
in Chapter Two). Alongside this trade-off in the mechanical domain, similar
performance-accuracy tradeoffs can be made in the statistical domain too, as

discussed in this chapter (e.g. using FPI methods).

However, other methods are also available which blur the distinction between a
‘mechanical’ and ‘statistical’ model in conjunction - two important classes are
surrogate models and statistical emulators. A surrogate model is essentially still a
mechanical model, but no longer necessarily modelling the causal physics. This is
distinct from simplified mechanical models; the models in MBD or rigid-body FE
are still based on underlying physics; the physics are just simplified for faster
performance. In a surrogate model, there is no physically causal link between the
input conditions and the output; often, it is reduced to a simple analytic function
dissociated from any physical meaning (e.g. a response-surface style function).
The use of such surrogate models has been explored for TKR mechanics [139],

although it has not been applied in any published stochastic studies.

A statistical emulator is fundamentally different, in that it does not represent a
mechanical model of the system at all; it is a purely statistical description of the
mechanical simulation (see Figure 45). The emulator must be trained with a data
set from the simulator to be emulated (this could be in-vivo, in-vitro or in-silico
data), so a mechanical model is still required; however, subsequently the
emulator can be used in lieu of any mechanical model. An advantage of this
approach is that, because it is a purely statistical model, it is possible to associate
a statistical error level with the prediction returned by the emulator - i.e. the

emulator can predict its own accuracy. A disadvantage of these more abstract
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modelling approaches is that, the further divorced they become from the
underlying physics, the more difficult it is to verify their behaviour (e.g. they do
not have mechanically meaningful intermediate outputs or states that can be
corroborated with physical reality); similarly they are not well-suited to
extrapolating outside of the ‘known’ physics into novel operating conditions

(whereas a mechanical model may be able to extrapolate, within reason).
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Figure 45: Rationale for surrogate & emulation techniques; emulation uses a purely

statistical model of the system.

For initial conceptual work, as in the present studies, the use of a ‘true’ physical
model (albeit simplified for computational efficiency) is desirable to simplify
analysis, troubleshooting and debugging of technical development issues.
However, for any subsequent high-volume work (e.g. a professional/commercial
high-performance highly-automated probabilistic framework), entirely eliminating
the computational overhead of mechanical modelling by using a statistical

emulator may be an advantageous approach to consider.

3.7. Probabilistics Applied to Knee Biomechanics

In these studies, the application of interest for probabilistic methods will be knee
biomechanics. Historically, probabilistic methods were first applied in the fields

of more ‘conventional’ engineering (civil & structural engineering applications;
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e.g. [140, 141]). Only relatively recently were probabilistic methods first applied
to the field of bioengineering; initially in relation to structural mechanics of knee
replacements (by Browne et al [142]). Other studies began applying probabilistic
methods not just to the structural strength, but to the kinematics and kinetics of
implants. These studies were first applied to the comparatively simple domain of
THR mechanics (e.g. [143, 144]). Most recently, they have been applied to TKR
models, as reported by Laz, Pal et al [95, 145]. These most recent studies
represent the ‘state-of-the-art’, and will be the starting point for the development

work in the present project.

Ideally, every knee, every patient, & every TKR would be identical. Then, the same
remedial procedure would always result in a fixed outcome (‘success’ or ‘failure’),
and the design of implants and techniques could easily be adapted accordingly.
The tremendous challenge of TKR is the amount of variability, in terms of implant
design options & rationale, surgical procedure and inter-patient variations.
Whereas a heavily automated process working exclusively with synthetic
components can achieve a very high repeatability and very low tolerances, TKR is
a specialist highly manual procedure, operating upon biological systems which
can exhibit high levels of physiological and pathological variability. Examples of
variables within these categories are listed in Table 5; despite this list being
extensive, it is not exhaustive. Some of the variables represent discrete choices
(e.g. to retain or resect the PCL); others represent continuous ‘distributions’ (e.g.
subject weight). Clearly a very large number of factors can be influential, and
where studies concentrate on a few ‘key’ variables, any number of uncontrolled or
unexplored secondary factors can confound results, making predictions and

recommendations less reliable.

Implant Design Surgical Procedure Patient Factors
Geometry (e.g. degree of Surgical experience Weight (& weight changes post-
articular conformity) operatively)
Size (standard sizing; Malpositioning Anthropometry (e.g. limb length)
component size mismatching)
Material (polyethylene grade / Bone resection accuracy (cutting Soft tissue conditions e.g. Muscle
cross-linking; stiffnesses, errors dffect malpositioning, forces, Ligament/Capsule quality,
friction coefficients) component fit) Ligament/Muscle Insertion sites
Assistive surgical tool design Cement mantle quality (porosity, Clinical / Pathological; e.g. effect of
(affects surgical accuracy) thickness, coverage) RA Progression, Physiotherapy regime
Fixation method Ligament balancing Patient recovery times
Tibial Bearing Soft tissue trauma due to incision Post-operative lifestyle (diet, exercise,
(fixed vs. mobile) (surgical approach; MIS vs. activity level)
conventional surgery)
PCL retention/resection Patellar treatment (preserved, Range and frequency of daily
resurfaced?) activities
Manufacturing tolerances Surgical Approach (conventional vs. Post-operative gait adaptation

computer assisted)

Table 5: A sample of factors influencing the outcome of TKR.
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For accurate results, all of these must be accurately characterised, so that the
statistical distributions (PDF shape, mean & standard deviation), and correlations
between factors are known. This requires data on these sources of variability to
be collected. A wide range of possible sources are available; for the pre-operative
factors, information on design geometry and sizes is easily captured with CAD
data sources; the variability in geometry is specified by manufacturing tolerances,
which are generally well-documented. Variations in material properties can be
acquired from materials testing standards (e.g. NISTS standards for UHMWPE
[146, 147] indicate variations in material strength & stiffness), or from other
experimental testing (e.g. POD tests can give an indication of variability in friction
co-efficient). Intra-operative variability factors have been recognised as an area of
concern, and as such several studies have published relevant data measuring the
variation in different malpositioning outcomes for TKR (e.g. [148-150]). Some
patient-variability factors (e.g. bodyweight and limb anthropometry) are well-
reported in large-cohort population surveys (e.g. the US NHANES [151]). Further,
specialist studies have used cadaveric mechanical testing to determine the
properties of internal biological structures such as ligaments & tendons; the
ranges they report provide some indication of variability e.g. [152-155]. For in-
vivo mechanics, some gait analysis studies with larger cohorts have included an
‘envelope’ of variability on the data (e.g. see [28, 29]), and occasionally other
studies include variability effects (e.g. the telemeterised data from Taylor et al
[33] or the step-rate data from Schmalzried et al [20]); however the available data
is limited, and incomplete. For these conceptual studies, it will sometimes be
necessary to estimate variability based on other comparable sources, and it will
generally be necessary to assume independence between factors and normal-
distribution of variation, in the absence of better data. An important conclusion
for further work is that, ultimately, better data on variability will have to be
sourced (or else directly measured) to achieve greater accuracy in future

probabilistic studies.

Although the available input data for the present studies is not ideal, an
important outcome for this study will be to demonstrate a methodology allowing
engineers and surgeons to have visibility of the complete scope of input
variability and its effect on kinetics and kinematics, in particular in terms of
sensitivity. This may help to identify areas to focus research efforts or procedural
guidelines; for example, if a particular implant is highly susceptible to variations
in one or a handful of factors, the designer could focus analysis efforts on these

factors and their influence.
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3.8. Conclusions

Clearly there is considerable scope for a study of variability in TKR. The number
of variables involved means that a study will require considerable computational
effort; this can be lessened by choosing appropriate probability integration
techniques.

It has been seen that there are a number of standard techniques for numerical
probability integration. While MCST and its derivatives represent the most reliable
method, this is a computationally expensive strategy to pursue. For any complex
numerical engineering problem, the faster alternatives are worth investigation.
The results of different methods will be compared in subsequent studies, but as
has been discussed there are risks and disadvantages with every method;
therefore for the early investigations, these methods will always be validated with
an MCST analysis.

The following chapter will describe how early work has applied some of these
stochastic techniques to simplified numerical rigid-body models of the implanted

knee.
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CHAPTER FOUR - DETERMINISTIC MODEL DEVELOPMENT &
CORROBORATION

4.1. Defining the Model

4.1.1. Study Scope

As with any project, time and resources for these studies are limited. Because
they are being approached from a mechanical engineering perspective, emphasis
will be placed on the causal link between the input variability and the resulting
kinematics & kinetics. In some areas, the further causal relationship between
kinematics/kinetics and mechanical failure modes will be partially explored (e.g.
wear prediction). However, to fully characterise the different ‘failure’ modes (as
discussed in Chapter One) would require a much more extensive model including
the causal links between mechanical performance and failure (e.g. interface de-
bonding and bone re-modelling), besides other non-mechanical failure influences
(e.g. infection, inflammation and necrosis). A systematic representation of the

study scope is illustrated in Figure 46.

PRESENT STUDY SCOPE

'Real-World' failure modes
(e.g. wear, instability)

Input Mechanical model Output mechanics
Variability of TKR simulation (kinetics & kinematics)

Figure 46: Scope of present study; dashed partition indicates ‘partial’ inclusion.

4.1.2. Modelling Environment (Software)

In Chapter Two, fast in-silico MBD models were identified as an appropriate
platform for the stochastic study methods described in Chapter Three. A number
of software applications support MBD modelling; the software used in these
studies is MSC.ADAMS (MSC Software Corp) - “Automatic Dynamic Analysis of
Mechanical Systems”. It is widely-used for MBD, and is dedicated to the solving of
specifically dynamic problems (whereas FE is traditionally associated with static or
quasi-static solutions). The software allows CAD geometry for the implant design
under test to be imported directly and used within the model, and allows co-
simulation with MATLAB/Simulink for control-plant modelling. Probabilistic
studies can be managed internally by the ADAMS/'Insight' module (for design-of-
experiment (DOE) studies), or externally by any hand-coded or 3 party statistical

software, e.g. NESSUS (South-West Research Institute).
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4.1.3. Target Simulator Configuration

For any model of TKR mechanics, there are many potential factors to include, and
the complexity of the model can very quickly expand drastically. This brings with
it associated risks (unexpected behaviours, errors and simulation failures). To
mitigate these risks, the earliest developmental models should not be fully-
featured stochastic studies. Instead, the various sources of variability should be
introduced sequentially in phases (i.e. a ‘crawl-walk-run’ approach). Therefore,
the first objective is to demonstrate that a ‘baseline’ deterministic model (similar
to those used in existing FE models) can equivalently be implemented using the
alternative MBD software environment. This has three purposes: to gain
experience with the software, to provide a platform for further modelling, and to
corroborate results with existing computational & experimental data. The target
for early corroboration efforts was the study by Halloran et al [94, 156], who used
FE methods to simulate the SKS and compared experimental and computational
results. In his thesis, Halloran performed extensive FE-based modelling [157]; he
also explored rigid (non-deformable) FE, using the ‘elastic foundation’ bed-of-
springs approach to model contact, based on interpenetration of the geometries
and a pressure-overclosure relationship to determine the resulting contact forces.
These rigid-FE linear-elastic-foundation models are particularly suitable targets for
a ‘silver standard’ in-silico versus in-silico corroboration, since their use of rigid
body models makes them comparable to MBD-based methods. Therefore, the
following section describes a specific, targeted corroboration against Halloran’s

baseline SKS model.
4.2. Initial (Deterministic) Corroboration

4.2.1. Implant Geometry

This deterministic study tested a standard, widely-used CR TKR design, with a Co-
Cr femoral component on a FB tibial UHMWPE insert. For this TKR model, two
alternative designs for the insert are available - a ‘semi-constrained’ (S/C) design
with more conformal articular geometry in the sagittal-plane, and a less
conformal ‘unconstrained’ (U/C) design (see Figure 47). Both alternative tibial
inserts use the same femoral component. The ‘parasolid’ format CAD models of
two designs were acquired from the manufacturer for use in these studies. Unless

otherwise stated, results are always presented for a right knee.
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Figure 47: CAD geometry for femoral & tibial components (left), & sagittal-plane
comparison between S/C & U/C tibial inserts (right).

4.2.2. Driving Inputs

The experiment was designed to simulate a normal gait cycle, loosely based on
ISO-14243-1 force-driven gait [23]. As discussed in Chapter Two, the SKS is a
hybrid force/displacement-driven simulator, so the four input waveforms required
are A-P force, I-E torque, axial compressive force & flexion angle. In this case, the
inputs were not identical to the ISO standard, so the ‘feedback’ data retrieved
from the experimental rig is used instead (see Figure 48). Note that the illustrated
gait cycle begins at heel strike; the stance phase is then the first ~60% of the
cycle, followed by toe-off, then the remaining ~40% represents the swing phase
through to the next heel strike event. The cycle is intended to be driven close to

real-time speeds of around 1Hz.
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Figure 48: Input waveforms for force-driven SKS (adapted from Halloran et al [94]).

4.2.3. Spring Restraint Model

The SKS uses a transverse-plane spring restraint model. This is not directly
anatomically representative of ligaments (since this is not the aim of the original
wear simulator); however it does appropriately restrain the implant kinematics
when used in conjunction with the input waveforms depicted above (i.e. it
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provides an aggregate restraint at the knee, broadly equivalent to the effect of
natural soft tissues in the transverse plane). The system consists of four spring
buffers in the A-P orientation, with a fixed M-L separation providing the moment
arm for I-E rotational torque restraint (see Figure 49). Various values of different
spring stiffness have been proposed [158], sometimes featuring a short ‘dead
zone’ permitting a few mm of unrestrained motion. For this model, Halloran et al
adopted a spring configuration used by Desjardins [159]; this configuration is
accordingly reproduced here. Each spring was treated as linear, (with the dead
zone neglected) and with a stiffness of 5.21N/mm, with the spring M-L

separation, A, set at £28.7mm. (It may be verified that the corresponding total

M-L?

transverse stiffness is £20.84N/mm, with angular torsional stiffness of + 0.30

N-m/).
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Figure 49: Spring restraint in the transverse plane.

4.2.4. Mechanical Configuration

The natural tibiofemoral joint has no fixed axes, but in practice most simulators
constrain the femoral and tibial components, typically reducing the system to 6
(out of a possible 12) degrees of freedom (DOF), since it is generally only the
relative orientations of the femoral and tibial components with respect to one
another that are of interest. The SKS model follows this convention, as shown in
Figure 50 (compare to Figure 23 in Chapter Two). Note that because each DOF is
applied sequentially, the order of application does affect the kinematics (unlike
e.g. Grood & Suntay co-ordinates [17]). However, for small angles (< ~10°) this
has negligible influence; hence the F-E rotation, which is not limited to small

angles, must be applied last. The configuration is summarised in Table 6.
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Figure 50: Mechanical DOF Arrangement.

Femoral Component

Tibial Component

I-S translation

M-L translation

V-V rotation

A-P translation

F-E rotation (driven as SKS input)

I-E rotation

Table 6: SKS configuration for the six degrees of freedom.

Dynamic terms had to be assigned for the various properties of the resulting
bodies. The target study by Halloran et al was based on limited experimental
data, and so the inertia, friction and damping for the model were all estimated
based on engineering judgement. For this present corroboration study, the values
used are based on the target study, in order to match the computational model;
as such these values do not accurately represent the jn-vitro SKS rig.
Representative inertia was assigned to the femoral component (5kg). A higher
inertia was assigned to the tibial component (25kg). The tibiofemoral friction co-
efficient was constant at 0.04, and the transverse-plane damping was set to 1% of

the spring stiffnesses (50N.s/m per spring).

4.2.5. Component Positioning

Technically, the 1SO-standard defines specific guidelines for the position of a
fixed femoral axis of rotation [23, 24]. However, many studies do not precisely
observe this standard, and as the aim of this exercise is corroboration rather than
rigorous adherence to standards, the proprietary axis positioning within the

original experimental studies will be adhered to when differences exist.
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4.2.6. Contact Algorithm

An important metric for knee performance is contact pressure (CP). However,
whereas kinematics (i.e. translations & rotations) can be readily determined from
MBD analysis, the kinetics (forces, torques) are only reported as resultant values
for the whole rigid body. Therefore in order to model the force distribution (and
hence CP), a macro was written to discretise the surface of the tibial insert into
multiple elements (see Figure 51). The resultant contact force for each of these
elements (and the element area) could then be used to estimate CP. (Essentially
this is comparable to the elastic foundation approach [94, 160]). For this study, it
was determined that a resolution of 1mm?2 would be adequate for CP visualisation

(based on sensitivity studies and comparisons to previous FE models [91, 94]).

Figure 51: Tibial insert, showing 1mm? grid.

ADAMS features an internal ‘impact’ function [161]; this allows the two rigid
bodies to partially ‘interpenetrate’, and then approximates deformable contact by
relating contact normal force (F) to the interpenetration depth (g), using an

exponential relationship, where k is the stiffness co-efficient; e is the exponent:
Fy =kxg° (2)

With suitable values for k and e, this can be used to fit an EF-style contact model.
For a simple linear model, with material thickness ~10mm and cell area Tmm?, it
may be shown that e = 1 and k = 10° gives a reasonable first approximation,

which can be further ‘tuned’ to experimental data (for more, see Appendix C).

4.2.7. Output Measures

The output measures reported here are A-P translation & I-E rotation (reported
relative to the ‘settled’ reference positions of the components, as defined above),
contact area and peak CP (the highest surface pressure recorded for any of the

mesh elements on the tibial insert at each point in time).
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4.2.8. Results

In Figure 52, results for A-P Translation, I-E Rotation, peak CP and contact area
are shown. In the graphs, the rigid-body result from MBD (ADAMS) is compared
with FE and experimental data for the same implant design presented by Halloran
et al. Maximum A-P range was ~4mm, with I-E rotation varying by ~7°, and CP

closely following the axial force waveform, with a maximum value of ~ 17MPa.
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Figure 52: Tibial A-P translation (top left), I-E rotation (top right), maximum CP,
(bottom left), & contact area (bottom right). MBD - ADAMS (dotted trace) vs. FE -

Halloran [94] (dashed trace), with experimental kinematics (solid trace)

Figure 53 shows an example contour plot for CP, at a single point in the gait
cycle, comparing both the FE and MBD methods - note the two are very similar.
This MBD-based model solved in under 10 minutes (Intel P4 3GHz, 2Gb RAM); a

favourable computational cost compared to more complex deformable FE models.
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- - -

Figure 53: Contour maps for CP Distribution. Left: FE (Halloran [94]). Right: MBD
(ADAMS). (Taken at 10% gait; scale maximum 10MPa).

4.2.9. Discussion

The ADAMS model results corresponded well with both the magnitudes and
trends reported in the corroborated publication study, although there are some
small differences due to various differences in the modelling approach taken. The
‘contact’ and ‘friction’ models are slightly different in the present study, and the
system of discretising the tibial component is proprietary, introducing small
differences. Also, although FE is fully capable of dynamic analysis, historically
biomechanical FE studies have often been ‘quasi-static’, meaning each time
instant is evaluated in isolation. This means that inertial effects (the mass of the
components) or dynamic effects (damping in the polymer contact or spring
restraint) were not considered. ADAMS is fully dynamic so does incorporate such

influences, introducing further differences.

An important observation is that whilst the FE models appear to ‘validate’ well
with the experimental data, by applying quasi-static conditions (and hence
neglecting dynamic effects), they are failing to capture the full mechanics of the
in-vitro test. The SKS configuration is quite forgiving, owing to the ‘hard’ restraint
provided by the physical springs; nonetheless dynamic terms can play a very
important role in dictating the kinetics and kinematics. Unfortunately, dynamic
properties are not widely reported as historically they have not been widely
modelled. Subsequently, these properties must be better understood for more

accurate fully-dynamic modelling.

Nevertheless, the results are sufficiently similar to published studies to give
further confidence in the choice of modelling environment, and the model itself.
The solve time is comparable to published rigid body studies (e.g. the rigid EF
model variant reported by Halloran et al [94]) and sufficiently low to allow
multiple-trials in a larger-scale stochastic study. With a well-corroborated
deterministic model as a baseline, the analysis capabilities of this model could

now be extended, by incorporating in-silico wear prediction.
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4.3. Implementing In-silico Wear Prediction

The ability to predict wear in-silico is valuable, as wear and wear-related osteolysis
& loosening are leading causes of TKR failure (see Chapter One). However, the
precise physical mechanisms of wear are not fully quantitatively understood, and
‘wear’ is a catch-all term which includes a number of distinct tribological

‘mechanisms’; for example:

e Surface fatigue wear - caused by contact between two bodies, where there
is limited or no sliding motion (e.g. rolling contact). This mechanism

generally produces minimal wear damage.

e Adhesive - caused by two bodies sliding together with a compressive load
applied between them; the degree of wear varies based on the motions and

compressive loads.

e Abrasive - caused by hard particles mechanically abrading against a softer
material. The particles may be embedded with a composite material; e.g.
barium sulphate particles in bone cement.

e Three-body wear - a form of abrasive wear where loose (‘third body’)
particles become located between the two contacting surfaces, causing

accelerated wear.

e Corrosive - caused by the degradation of the material properties, rather
than purely mechanical effects. Corrosive wear can however be

exacerbated by the mechanical environment.

Any or all of these processes may be occurring in a given TKR jn-vivo; it is
therefore important to differentiate and understand what is being modelled by
the predictive wear algorithm. For a well-implanted modern TKR, the mechanism
believed to be most important is adhesive/abrasive wear; this is the focus of the

models described henceforth.

4.3.1. Adhesive / Abrasive Wear Theory

Fundamentally, the same concept underlies all forms of mechanical wear. Energy
is transferred from the kinetic energy of the moving surfaces, to the increased
surface energy of the wear particles generated. This energy transfer is facilitated
via surface friction during motion; therefore the amount of energy lost to friction
dictates the maximum energy available for tribological processes (this theoretical
relationship has been described in detail by Wang [162], who illustrates a strong
relationship between wear rate and friction coefficient). Despite attempts at a

theoretical basis such as [162], wear prediction remains largely an empirical
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science. The foundational work in quantifying wear predictions was the
relationship reported experimentally by Archard in the early 1950s, in relation to
wear of bearings in electrical machines [163]. The relationship has been widely

used in the tribological study of prosthetics, as the Archard/Lancaster equation:
W =k.CP.s (3)

Where W is the experimentally-measured wear depth, kis a scaling constant, CP is
the contact pressure, and s is the sliding distance (the product of contact
pressure & sliding distance is sometimes termed ‘tribological intensity’). Note this
is a localised expression for the localised linear wear depth; to estimate a wear
volume, this must be integrated across the contact area, taking account of
variations in contact pressure and cumulative sliding distance (in other words,

calculating wear computationally requires piecewise numerical integration).

Beginning in the mid-1990s this wear formulation has been applied to
computational biomechanics, notably in the FE-based work of Maxian et al [85,
164-166]. Essentially, the simplified form of the equation above is applied to each
finite element in contact, at each time step. Summing together these discrete
contributions gives the total wear volume. This can be converted to an equivalent
wear mass based on the density of UHMWPE (~0.93 mg/mm? [167]).

Although the Archard equation has some theoretical basis, it is not an analytic
formulation. In practice, it does not account for variations in material properties
across the surface (inhomogenities, varying surface roughness, varying degrees
of cross-linking on the molecular level), or variations in the size & surface energy
of wear particles. Rather, it provides an empirical approximation, designed to

provide an aggregate estimate of wear as a macroscopic-level phenomenon.

4.3.2. Modelling the ‘Cross-Shear’ Effect

The Archard/Lancaster wear formulation assumes that the wear constant ‘k’ is a
fixed value. This means that, regardless of variations in contact pressure, sliding
distance or any other parameter, the same proportion of frictional energy is
assumed to be producing the same volume of wear debris. However, it has been
demonstrated that the wear ‘constant’ varies considerably. One particular
influence appears to be the orientation of the sliding contact between the two
bodies, relative to the alignment of the polymer fibres on the contact surface.
However, the surface alignment in turn depends upon the time-history of the
previous sliding motions. As a result, the overall wear rate can increase if the
orientation of sliding motions at any fixed point on the surface changes
considerably over time through the activity cycle. Generally, relatively ‘linear’
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motions (unidirectional or bi-directional sliding) result in much lower wear,
whereas a path featuring considerable lateral shearing motion (i.e. sliding
motions tangential to the principle sliding direction) results in higher wear than
the Archard/Lancaster prediction would suggest. This has resulted in alternative
formulations for wear based on the crossing-motion, or cross-shear (CS) theory,

where essentially the wear constant ‘k’ becomes variable, as a function of the CS:
W =k(CS).CP.s (4)

The effect of different crossing-motion paths has been demonstrated empirically
by Turell et al [105]. Causally, it is postulated that the CS increases wear by
causing fibrillar de-bonding. For linear sliding paths, the UHMWPE fibrils are
found to be aligned with the sliding direction; for high-CS sliding paths, the fibril
alignment is more multi-directional [168]. There are several proposed metrics for
defining the ‘degree’ of cross-shear. The most rudimentary is the M-L/A-P ratio,
assuming the principle sliding direction to be along the A-P axis, (Figure 54, left
condyle). However, this formulation produces singularities if the motion is
entirely in the M-L direction. Therefore, an alternative is to use a ‘bounded’ form
(Where the denominator is not ‘A-P’ but the sum of ‘M-L+A-P’). A more
sophisticated approach is to determine a specific principle direction vector based
on the actual path data. This principle sliding direction is designated ‘B’, with the
transverse (i.e. ‘cross-shear’) direction designated ‘A’ (see Figure 54, right

condyle).

Whereas the M-L/A-P model breaks down if the principal sliding direction
becomes predominantly lateral, the A/B model can account for any sliding
direction, so is more robust. For the A/B formulation, both the unbounded &

bounded (A/A+B) formulations are again possible (see Table 7).

Figure 54: Defining cross-shear for M-L/A-P ratio (left) and A/B ratio (right). These
simple models use a ‘cycle-averaged’ measure of the crossing motions seen at any
point on the insert surface. For ‘skewed’ path orientations, M-L/A-P tends to over-

predict CS (as shown by the lower-aspect ratio of the enclosing rectangle).
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Table 7: Four alternative formulations for cycle-averaged cross-shear.

M-L/A-P

A/B

These proposed CS models are purely empirical, and have no physically-based
analytical derivation; they are based on limited observations from in-vitro
experimentation. Unfortunately limited data exists for such in-vitro experiments,
owing to the costs and timescales involved. Further reported studies often vary
different factors (e.g. implant design, material) from test to test, which means the
results are not directly comparable. To compound these challenges, wear tests
exhibit a high degree of variability even when repeating the same test on multiple

stations (e.g. Fisher et al reported variations of >+30% [169]).

In consequence of this paucity of good data, there is no consensus on a definitive
‘correct’” model for wear available, and alternative formulations continue to be
suggested. One example is the ‘crossing intensity’ formulation proposed by
Fregly et al [124]. Here, cross-shear is estimated as the ‘spread’ of different
sliding directions, weighted by both the sliding distance and contact pressure.
This effectively gives a ‘standard deviation’ of the spread of sliding directions;
normalising this by the ‘worst case’ sliding path (circular rotation) gives the
crossing-intensity value, which can then be used as a CS term (see Figure 55). Yet
another proposal by Willing et al [170] considers a ‘closed-path’ of sliding
vectors, and expresses CS as the ratio between the perimeter length and enclosed
area of this shape (see Figure 56).
A-P Axis  "principle sliding direction"

is average orientation
A (denoted by 0)
/

sliding distance vectors

(weighted by contact pressure) "\

N crossing intensity indicates
\ S the spread of different angles
(denoted by c*)
<-. L2 -

254
2277 o L Avis

Figure 55: Alternative CS concepts: Hamilton's statistically-based "crossing

intensity". Wear increases as the ‘spread’ of sliding vectors increases.
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Figure 56: Alternative CS concepts: Willing's geometrically-based "cross-factor"
method. Wear increases for paths where “Area : Perimeter” ratio is higher.

4.3.3. The Role of Contact Pressure in Wear

Historically, ever since Archard’s original hypothesis it has been assumed that
linear wear depth rate is directly proportional to contact pressure (as discussed
above). More recently however, this assumption has been challenged in studies by
a humber of authors. Using POD testing, Mazzucco et al [107] and Ernsberger et
al [106] have both argued that there is no apparent relationship between wear
depth rate and contact pressure (i.e. it is independent); work by Kang et al goes
further, arguing that there is an inverse relationship between wear and contact
pressure (i.e. wear factor decreases as contact-pressure increases, at least within
the range of CP tested [125, 171]).

However, these studies were all performed in the simpler domain of POD tests,
where geometry is not a confounding factor, and contact pressure is (ideally)
constant across the articulating surface. How applicable these conclusions are for
more the complex geometries, kinetics and kinematics of TKR wear is a matter of
ongoing debate. A major obstacle in comparing and testing these different
proposals for wear algorithms is that there is often limited experimental data to
base the formula on, and small numbers of trials (often in the limited domain of
POD tests) cannot provide sufficient grounds to explore the differences between
the various algorithms proposed. Therefore, the need exists to apply these
algorithms across a wider range of experimental TKR tests to corroborate their

performance on a larger scale.

Clearly, until the precise details of adhesive/abrasive wear are better quantified
experimentally, debate will remain as to which mathematical model gives the
most accurate results. In light of this, it was decided to include a range of

different wear algorithms within the models in the present studies.

Note that there is a considerable workload of post-processing involved in
evaluating wear - a typical activity might include several hundred time-frames; in

any frame, as many as a thousand elements may be in contact - this results in a
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very large number of individual pressure & sliding calculations to evaluate. The
computational cost of post-processing may be an important factor when choosing
a wear formulation to use with a large-volume DOE or probabilistic study. The A/B
formulation and the crossing-intensity formulation are both recursive; it is
necessary to scan through the data once to determine the ‘principal’ sliding
direction, and then again to apply the actual wear summation. (As such, for high-
speed stochastic studies it may sometimes be preferable to use the less accurate
but faster M-L/A-P formulation).

For the exploratory studies here and in subsequent chapters, a nhumber of the
algorithms described above are incorporated and used in parallel, in order to

compare their performance in different situations.

4.3.4. Adaptive Wear Modelling

The process of wear is inherently dynamically adaptive; localised high wear can
result in faster deformation in certain locations, thus altering the surfaces of the
articulating geometries, and thus altering the kinematics and contact pressure
distribution for subsequent cycles. This is most clearly seen in the ‘bedding in’
phenomenon, where concentrations of high pressure will tend to result in
localised high wear, such that the surfaces become more conforming and the

contact is more evenly distributed, thus reducing pressure concentrations.

It is possible to simulate this adaptation, by re-modelling the contacting surface
between consecutive simulations, as first demonstrated by Maxian et al [85]. In
reality, the surface adaptation is a continuous process. Numerically, however, this
would be very impractical; the geometry would need to be minutely modified
during every individual cycle. For a 5- or 10- million cycle test requiring ~5-10
minutes of computation time per cycle, this would result in simulation times of

thousands of years (i.e. clearly not feasible).

Instead, the surface adaptation is applied in discrete blocks of cycles; it is
assumed that for ‘short’ periods the wear rate and wear depth are approximately
linear (convergence tests suggest a maximum step size of 500,000 cycles to
1Mcycle [85, 92], corresponding to a few months of in-vivo use). An entire long-
term simulation of several million cycles may then be completed in just a handful
of iterations. Generally, a sensitivity test will be used, testing decreasing step
sizes to verify that the overall wear rate converges towards the rate observed
under ‘continuous’ conditions. The flow diagram for this algorithm is illustrated

in Figure 57.
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Figure 57: Computational adaptive wear prediction: process flowchart.

4.3.5. Implementing the Wear Algorithms with MBD

In order to calculate wear within ADAMS, the simulation results must be post-
processed. This could potentially be done using a number of software tools;
however using an external third party application would require data to be
imported and exported between programs. Instead, the command-scripting
capabilities of ADAMS were used, to perform the post-processing internally within
the ADAMS environment. Computationally, this is considerably slower, since the
macro scripting language is not compiled; however, the convenience of keeping

all processing within ADAMS is considered to outweigh this disadvantage.

The macros operate by interrogating the results database (containing kinematic &
kinetic information from the previous analysis). The ‘output’ is a series of
numerical arrays (indexed to reference the discretised elements of the tibial
surface) containing information such as total sliding distance, contact pressure,
cross-shear, or wear depth, for each cell. The ADAMS GUI has been adapted to
display this data in the form of colour plots (similar to the contact pressure plots
illustrated in the earlier deterministic corroboration, see Figure 53). For example,
see Figure 58, showing colourised ‘contour maps’ for linear wear depth. This

facilitates both numerical & graphical visualisation of the predictive wear results.

Figure 58: Linear wear depth contour plots in hue (left) & gray-scale (right).
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The capability to model adaptive wear has also been incorporated. In FE models,
this is achieved by altering the entire surface mesh; the surface must remain
congruent; therefore the individual nodes are displaced based on the linear wear
depth, forming the new ‘smooth’ surface mesh. In ADAMS, the surface may be
allowed to become incongruent, since the contact algorithm is based purely on
the interpenetration depth for the entire surface element; therefore individual
cells may be entirely displaced vertically (see Figure 59). This is less physically

representative, but an acceptable compromise within the MBD environment.

Multi-Body Dynamics

Solids Translated

ADAPT

Finite Element (mesh) ' Nodes Tiamlated

ADAPT

Figure 59: Comparing surface adaptation methodology for MBD (above) & FE (below).

4.4. Corroborating In-silico Wear Models

It is recognised that in-silico computational wear predictions are not analytically-
based, and so cannot ever provide ‘exact’ predictions of in-vitro wear. In light of
this, it is important that the results from MBD-based wear modelling do not
introduce any additional error or variation - they should corroborate closely with
other in-silico FE-based methods, as well as in-vitro studies. With the capabilities
of the wear model developed, the model was corroborated with published results

using established FE-based models & wear simulator rigs.

A first step is to corroborate a single ‘deterministic’ case in detail. The long-term
adaptive wear study by Knight et al [92] was selected, because it includes both FE
and experimental results, and is information-rich, presenting data for adaptive
wear steps, showing wear depths, volumes, and contour plots. An MBD-based
model was constructed to replicate the test conditions (using proprietary force-
driven inputs with soft/hard springs in a SKS configuration, and a CR FB

commercial knee implant). Adaptive wear was simulated for 10 ‘steps’ of 500,000
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cycles each, out to 5MCycles. The wear model used was the simple ‘Archard’
formulation (no cross-shear), with a wear constant, k, of 2.64x107 mm3/N-m.

In Figure 60, the MBD-based model is compared to the results reported by Knight
et al. Wear depth and volume are very similar; there are differences in the precise
wear contours, but the trends are similar (greater & more concentrated wear on
the medial side, with a more dispersed wear scar shifted posteriorly on the lateral
condyle). Note that the wear post-processing adds an additional overhead to
computation times; hence whereas the baseline mechanical model solves in 5-10
minutes, simulations with a full wear analysis (for multiple wear methods) can
take 15-20 minutes (computing the wear rates for all the different alternative
wear algorithms incorporated into the ADAMS model). There is therefore a solve-

time trade-off which must be considered when incorporating wear algorithms.
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Figure 60: Comparison of FE & MBD adaptive wear. Left: cumulative wear depth
(above) & mass (below). Right: wear depth contours for (A) ADAMS MBD, (B) FE -
Knight et al [92], and (C) experimental.

Alongside this comparison test, a number of other corroboration studies were
performed, comparing the ADAMS model to existing FE-based wear predictions
and experimental wear data. For the sake of brevity, these are not reported in
detail in this thesis, although some of the results from these studies were utilised

as part of the work described in the following section.
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4.5. Investigating In-silico Wear Theories *

4.5.1. Methods

The MBD-based model has now been shown to provide a fast and accurate
alternative modelling approach to FE, matching deterministic results for
kinematics, kinetics, and also for existing wear prediction methods. However, the
power of these wear prediction methods has not been effectively demonstrated;
to-date, in-silico wear models have been ‘tuned’ to and compared with only small
experimental datasets, either using published pin-on-disc (POD) data, e.g. in
[105, 124], or else TKR wear simulator results, e.g. [92, 127]. Whilst these studies
demonstrate the value of in-silico methods in individual cases, they cannot

broadly corroborate across a range of test conditions.

The initial wear predictions used with this model are based on standard
algorithms discussed above; the baseline Archard/Lancaster sliding-distance
model [163] (without CS), and other algorithms including CS (e.g. M-L/A-P [126],
A/A+B [105], and o* ‘crossing intensity’ [124]). Alongside these existing
formulations, alternative arrangements have been included to explore the effect
of excluding CP from the wear model [106, 107, 125].

Twenty-two different experimental tests were selected, sourced from the public
literature and proprietary test data, where ‘conventional’ polyethylene was tested
(with minimal or no cross-linking), to ensure that the tests would be broadly
comparable. Implant geometry was acquired from manufacturers or reverse-
engineered. Results for a range of kinematics under displacement-control for the
PFC sigma (fixed and mobile bearing designs) and LCS were sourced from [172,
173]. These implants were also tested under ISO 14243-1 force-control [174].
Results for the NexGen CR implant were corroborated under force-control [92,
175] and displacement control [43]. Additional implants included were the
Vanguard PS under ISO force-control [176], and Triathlon CR under displacement
control [177]. Proprietary unpublished test data was also used to corroborate
semi-constrained & unconstrained design variants of the PFC sigma under
displacement-controlled conditions. Finally, tests of femoral components against
‘flat’” polyethylene surfaces using displacement control [178] were included to
corroborate the wear algorithms across a wider range of contact pressures &
areas in-vitro. The full list of test-cases is summarised in Table 8. Note that

because of the number of tests, it is not possible to include the full set of test-

* This section is adapted from the journal article: “In-silico Wear Prediction for Knee
Replacements - Methodology and Corroboration”. Strickland et al, J.Biomech (/n Press).
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conditions in this document for every case. In each model, the same procedure
was followed; component positioning, allowed motions, spring constraint (where
applicable), input loading profiles and any other relevant factors were matched to
the reported test conditions in the literature. Where these conditions were not
stated, and where the original investigators could not be successfully contacted
for further clarification, ‘generic’ test conditions were imposed (e.g. assuming a
60-40 M-L load split [23], using a representative friction co-efficient of 0.04 [91],
and adjusting the model configuration according to a typical set-up for the test
machine being used; i.e. replicating the standard mechanical configurations for
Instron, ProSIM, or AMTI simulator rigs, as available from the manufacturers). The

original papers may be referred to for more details on individual test cases.

Source(s)

Implant(s)
(PE derivative)

Inputs (forces & kinematics)

McEwen et al [173]

Sigma FB & RP; LCS
(GUR1020 & 1050)

Displacement (various kinematics)
& ISO 14243-1 (Force) Gait

Galvin et al [178]

Sigma femoral on flat
PE (GUR1020)

Displacement-driven Gait (various
levels of kinematics)

Knight et al [92]

NexGen CR (GUR1050)

ISO-derivative Gait

Cottrell et al [175]

NexGen CR (GUR1050)

ISO 14243-1 (Force) Gait

Muratoglu et al [43]

NexGen CR (GUR1050)

ISO-derivative Gait

Williams et al [177]

Triathlon (GUR1020)

ISO-derivative Gait

Haider et al [174]

Sigma FB & RP
(GUR1020)

ISO 14243-1 (Force) Gait

Haider et al [176] Vanguard PS | ISO 14243-1 (Force) Gait
(GURT1050)

Proprietary Sigma FB S/C & U/C | Displacement-driven ISO-

unpublished data (GUR1020) derivative & high-kinematics gait

Proprietary Sigma femoral on flat | ISO-derivative;, High & low levels

unpublished data PE (GUR1020) of axial load & I-E rotation

Table 8: Listing of test-cases used for corroboration, with references where

applicable.

Wear rates reported in mg were converted to mm?3 using a density of

0.93mg/mm3. Although the model is capable of adaptive wear, to limit
computational times for this exploratory study, volumetric wear rate for each case
Published

computational long-term studies demonstrate that whilst linear wear depth rates

was calculated based on a single-cycle. experimental and
may vary over time (e.g. [92]: Figure 7, [179]: Figure 3a), volumetric wear is
reasonably linear within the first few million cycles, (e.g. [92]: Figure 6, [179]:
Figure 3b, [42]: Figure 2, [44]: Figure 2, [180]: Figure 10). (Although the precise
mechanics are not quantitatively understood, the increase in contact area due to

‘bedding-in’ seems to offset the gradual decrease in linear wear depth rate).
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Once all the necessary experimental configuration data had been obtained for
these tests (e.g. implant geometry, loading input waveforms, spring restraint
setup and available degrees of freedom), the tests were simulated in-silico using
the fast rigid-body model, and predicted wear was evaluated for each of the
proposed wear formulations included in the model. The computationally-derived
rates were then compared to the reported experimental wear rate (with error
levels, where available). This allowed the predictive power of different wear
algorithms to be compared directly.

4.5.2. Results

All of the test-cases were simulated successfully and were post-processed to
evaluate predicted wear using the different algorithms. The volume of data
generated is considerable, so wear contour maps are not compared here; only the

baseline volumetric wear rate for each model using each algorithm is reported.

The following figures show correlation plots for a few of the selected models.
Note that in every plot, there is considerable ‘scatter’, and the uncertainty (shown
by error bars) in the experimental results is very large. The results very clearly
confirm the current general consensus that the baseline Archard model has very
limited predictive power to assess wear (Figure 61) - this is equally applicable for

the knee as for the hip, despite the typically lower degree of cross-shear.
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Figure 61: Experimental wear vs. wear predicted using the ‘Archard’ algorithm.

By comparison, every variation of wear algorithm which includes some

representation of CS has a much greater predictive power (typically R? of 0.5 to

0.6; e.g. see A/A+B model in Figure 62). Considering these CS models, there are

several important observations. First, the inclusion or exclusion of contact

pressure as a proportional term within the algorithm does not consistently or
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considerably alter the predictive power of the model for this particular set of test-
cases. Second, the precise ‘definition’ (i.e. mathematical formulation) of CS used
is of secondary importance compared to the decision to include or exclude a CS
metric - the relative difference between alternative CS-based models is less than
the difference between models with and without CS (compare Figure 62 and
Figure 63).
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Figure 62: Experimental wear vs. wear predicted using ‘A/A+B’ algorithm.
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Figure 63: Experimental wear vs. wear predicted using ‘M-L/M-L+A-P’ algorithm.

Again, the treatment of CP within the algorithm also appears to be of secondary
importance; both models with a proportional-CP term, and with no CP term, have
similar predictive power for this set of test cases, provided that a CS metric is
included (compare Figure 63 and Figure 64); the models including a proportional

CP term appear slightly stronger, however the role of contact-pressure in wear
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mechanics remains unclear - a plot of wear rate vs. cycle-averaged CP reveals no

noteworthy correlations (see Figure 65).
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Figure 64: Experimental wear vs. wear predicted using ‘M-L/M-L+A-P’ (without CP).
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Figure 65: In-vitro wear vs. cycle-averaged contact pressure (no strong correlation).

Despite these uncertainties, it is possible to ‘rank’ the performance of the
different CS algorithms for this particular test-case set. Based on this set of test-
cases, the A/A+B wear model proposed by Turell [105] appears to be marginally

the strongest predictor of in-vitro wear (Figure 62).

Previously, the reported empirical wear constants used in mathematical models of
wear have been based on limited data-sets (e.g. a small sample of POD test
results [105]). Based on this study, regression-fitting techniques were used to
provide a set of wear constants for the different models tuned to this group of
test-cases, for future use by other researchers to improve their TKR wear

predictions. This has two advantages; the constants are directly based on TKR
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tests, rather than derived from POD or THR tests (removing a potential
confounding factor) and the values have been assigned based on this larger
‘training’ data set. The values suggested for the different models are listed in
Table 9. Note that, although these values are more robust for general use than
values derived from a smaller test set, they are still only approximations; using a
larger data set, or including a wider range of activities, or considering different
materials, could all result in different wear constants. Further, for any specific
subset of tests (within a single research centre where test conditions are more
repeatable & comparable), a better ‘specific’ constant may be selected; however
this would have less applicability to test results from other research centres.
Ultimately, with better experimental data, factors currently included under the

‘constant’ term may have to be recognised as distinct variables within the wear

algorithm.
Wear Depth Historical (Legacy) | Revised Constant, K h:g\?veelr?/\'/.ietilit:\::
Formulation Constant, K (based on test-cases) constant (R?)
Archard 4 3 7 3
H=KW.p.S 2.64x107" mm3/N.m 2.0x107 mm3/N.m a2
Sl qstance 1x10° mm/m 04
M-L/M-L+A-P . s " 3
H=KW.CS.p.S 3x10° mm3/N.m 2.7x10° mm3/N.m .58
A/A+B . s © 3
H=KW.CS.p.S 3x10°mm3/N.m 3.3x10° mm3/N.m .60
o 1.1x10° mm?#/N.m 29
H=K, (c%)?
M-L/M-L+A-P
(no CP) - 1.43x10° mm/m .54
H=K,.CS.S
A/A+B (no CP) 5
H=K .CS.S 1.8x10° mm/m 49

Table 9: Summary of current and suggested wear constants for different algorithms.

4.5.3. Discussion

It is not possible to speak of an empirically-defined model as being ‘correct’,
since it has no direct analytic derivation. Therefore, the relevant question is:
“‘which model appears to offer the greatest predictive power?” Previously,
published studies have only corroborated with individual experimental tests, and
so the performance of these models is not well-understood. Undertaking a more
comprehensive corroboration requires multiple simulations from different
sources, which necessitates faster in-silico modelling methods (e.g. rigid body FE-

or MBD- based models). The combination of in-vitro & in-silico wear prediction
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methods corroborated together provides the fullest, most powerful toolset for
pre-clinical analysis of TKR wear. In-silico studies in isolation are subject to
suspicion as long as there is no consensus on the precise causal mechanics of
wear. But in-vitro studies alone cannot provide the same range and volume of

information as can be quickly and efficiently evaluated computationally.

Of course, there are important limitations to these studies; the simulation can
only perform well if the underlying behaviours are modelled correctly, so the
actual mechanical conditions must be accurately captured to set a ‘benchmark’
for corroboration. A pertinent observation from the multiple test-case
corroboration is that there is considerable variability in the experimental results
reported in the literature (both within, and especially between, different research
centres). This could be due to variations in standard experimental procedure (e.qg.
whether wear is reported for the counter-face or not, or whether secondary axes
such as M-L translation or V-V rotation are fixed or free), or simply due to
unintentional errors (e.g. component malpositioning and measurement
tolerances). This is a serious confounding factor in attempting to provide a more
exhaustive corroboration; the ‘noise’ due to experimental variability masks the
finer influence of the choice of wear algorithm. This can be mitigated to some
extent if all the particulars of the experimental procedure are fully reported (and
so can be recreated in the computational model), and if tolerances on in-vitro
uncertainty are reduced to a minimum. Only by corroborating with a ‘tighter’ set
of experimental test results will it be possible to determine with greater
confidence which is the most appropriate empirical algorithm for wear prediction
(i.e. the best formulation for CS, the true influence of contact pressure & area,
etc). To re-iterate: a central conclusion of this study is that it will not be possible
to further refine our theoretical models of TKR wear prediction, until more and
better experimental data is available to differentiate clearly between proposed

algorithms.

Nonetheless, this study clearly has some selective power, e.g. in discounting the
Archard/Lancaster sliding distance models (as has been advanced elsewhere in
the literature [44, 126]), and supporting cross-shear models. However, the quality
of the available data is not adequate to preferentially select individual wear

algorithms within this sub-set of cross-shear based models.

The present study compared models with and without a proportional term for
contact pressure, in light of current debates about the role of CP in polyethylene
wear. The results are not conclusive; both families of models had comparable

predictive power; with neither showing a clear advantage. This may indicate that
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the range of contact pressures encountered in standard TKR wear tests does not
vary sufficiently for the influence to become apparent, or that there are
antagonistic factors which have a confounding influence (e.g. increased articular
conformity will reduce CP, but may also be influencing lubrication and debris
transport). Again, ultimately the best way to resolve this issue is with a greater
number of well-defined, targeted corroborations between in-vitro and in-silico

wear analysis platforms.

There are many possible improvements and extensions to the models presented
here; besides the challenge of accurately capturing experimental conditions,
adaptive models could be used to account for variations in PE depth over time
and so investigate long-term wear for each test case (as in [92, 179]), and more
detailed deformable FE models could be used to better predict contact pressures,
so achieving higher accuracy. Probabilistic methods could be used to attempt to
capture the experimental uncertainty in-silico. However, whilst all of these are
desirable goals, they also all entail a considerable increase in the computational
modelling workload, which is not currently justified by the quality of published

experimental data.

As understanding of wear mechanics improves, the wear algorithms could be
customised to different combinations of articulating materials (e.g. different
UHMWPE grades). All these tests are for gait-simulation (mostly based on a
derivative of the ISO standard); it would be beneficial and informative to extend
this to include a much wider range of activities with more varied loading.
However, this would of course require extensive corresponding experimental test
data. Corroborating within a single framework for a wider range of implant
designs, simulator configurations, lubrication conditions, materials and loading
regimes will all ultimately play a part in augmenting our holistic understanding of
TKR wear.

This study illustrates the valuable role in-silico models can play in exploring and
refining fundamental concepts concerning TKR polyethylene wear. It
demonstrates that the current generation of CS-based empirical wear models
have useful predictive power when corroborated with in-vitro experiments and are
able to qualitatively rank the wear performance of different designs under
different loading regimes; however there is room for further refinement in our
current understanding and predictive modelling of wear. The best way to advance
our understanding of wear is through greater corroboration between both
computational and experimental approaches, to exploit the unique strengths of

both domains. By doing so, future pre-clinical analysis tools used for wear
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prediction will offer designers a richer, faster and more accurate insight into the

causes of TKR wear.

4.6. Conclusions

The ADAMS MBD model now features the capability to model wear based on
sliding distance, contact pressure and optionally cross-shear. Wear depths,
volumes and contour plots can be reported, as well as cross-shear pressure &
sliding distance surface maps. The wear can also be applied adaptively to
simulate the ‘bedding in’ effect associated with long-term wear studies. Further,
this functionality has been corroborated with both in-silico FE and in-vitro wear
simulator results, and used for a detailed assessment of the ‘state-of-the-art’ in
in-silico wear prediction. This gives good confidence for integrating this
additional output metric reporting capability into the framework of subsequent

probabilistic studies.

The use of in-silico wear prediction within deterministic models has been
demonstrated by (amongst others) Knight, using FE-based methods [181], and
also Bei [137]. This earlier work included many of the capabilities implemented
within this chapter (e.g. adaptive wear, contour-map visualisation, etc), albeit
using fewer alternative algorithms and fewer comparisons to experimental data.
However, these previous studies were purely deterministic, aiming to
demonstrate ‘proof of concept’ in-silico of the extant theoretical wear models.
They did not attempt to incorporate the effect of uncertainty, and the consequent
variation of possible resulting wear outcomes. The ability to include wear within a
probabilistic study (e.g. to report the typical distribution of wear rates for typical
component malpositioning variability) is a powerful additional tool for supporting
TKR implant design. All of the necessary components are now in place for
probabilistic methods to be applied to these MBD models of TKR mechanics - this

will be the objective in the following chapter.
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CHAPTER FIVE - PROBABILISTIC MODELLING:
CORROBORATION & APPLICATIONS

5.1. Prerequisites: Stochastic Modelling Methodology

With a deterministic rigid-body model generating comparable results to existing
FE models, the next objective was to demonstrate and corroborate the proposed

stochastic tools and methods in conjunction with this new mechanical model.

Essentially, the statistical modelling environment will sit as a ‘wrapper’ around
the inner mechanical model. This mechanical model is fundamentally the same
deterministic model as developed in the previous chapter, although with added
parameterisation of various input factors, and additional measurements of output
characteristics). As such, there are a range of options for statistical modelling;
any software able to ‘interface’ with the mechanical model to write input variables
and read output measures is a potential candidate for use in probabilistic

modelling.

For mechanical models in ADAMS, three options were explored for statistical

modelling:

e Using the native ‘ADAMS Insight’ software. This has the advantage that it can
very easily interface directly with ADAMS, so no user-coding is required. The
main disadvantage is that it exclusively uses design-of-experiment (DOE)
methods. This means the input values for all trials must be fixed at the start
of simulation - the subsequent trial values cannot be dynamically adapted
based on the results of earlier trials. This excludes any of the adaptive FPI
methods - e.g. FORM/SORM, the AMV family of methods, and adaptive ISM
(See Chapter Three for more details). However, other standard methods (RSM
or MCST & LHS) are supported by ‘Insight’.

e Using third-party software: commercial packages are available for statistical
analysis, designed to interface with other modelling environments. One of the
most well-established is NESSUS; this software does not natively support
interfacing with ADAMS, but by using the custom application support it can be
tailored to interface. This is a cumbersome procedure compared to using
‘Insight’, but has the advantage that NESSUS does support adaptive trial

sampling, so fully supports all FPI methods.

e Using proprietary coding: the above options are convenient for stand-alone
models in ADAMS, however it is sometimes necessary to run ADAMS as a co-

simulation with MATLAB/Simulink to facilitate more sophisticated control
107



plant modelling. In these instances, ‘Insight’ cannot be used, and using
NESSUS becomes even more convoluted. For these co-simulation models,
directly encoding a statistical wrapper by hand within MATLAB is a relatively

straightforward alternative.

For simplicity of implementation in these first studies, it was decided to use the
‘Insight’” module. The simulations will use non-adaptive sampling methods:
Monte-Carlo and RSM, so ‘Insight’ is adequate for purpose. However, some later

models used the third approach mentioned above (see Chapter Six).

5.2. Probabilistic Corroboration Study: Knee Wear Simulator

Mechanics °

5.2.1. Background
A recent probabilistic study by Laz et al (2006) [95] performed a preliminary

investigation into the use of stochastic methods to measure knee simulator
variability. The study used a baseline rigid-body FE simulation of a standard in-
vitro knee wear simulator setup (the SKS). The aim was to demonstrate the use of
probabilistic methods, and to compare the conventional MCST approach with a

computationally more expedient AMV approach.

It was decided to attempt to re-create this study with the MBD-environment
models, in order to develop the stochastic capabilities needed for later studies; in
this way the results generated could be corroborated with existing data in the

literature.

5.2.2. Methods

The deterministic model already developed in Chapter Four was used as the basis
for this study. It was parameterised to allow user-specified variations for 12 input
‘factors’. These input parameters were chosen to duplicate the published study;
the twelve parameters are listed in Table 10, along with the values for mean and
standard deviation. The published study compared two levels of variability

(nominally titled level ‘A’ - low, and level ‘B’ - high).

> Results in this section are adapted from the conference paper: "Comparison of two
methods for probabilistic finite element analysis of total knee replacement” C.Arsene,
M.A.Strickland, PJ.Laz and M.Taylor. In: 8th International Symposium on Computer
Methods in Biomechanics and Biomedical Engineering 2008: Porto, Portugal. The present

author contributed the MBD-based models used in this study.

108



Factor (Abbreviation) Mean value | o (Level ‘A’) | o (Level ‘B’)
F-E Axis A-P position (FEax_AP) Omm
F-E Axis I-S position (FEax_IS) 25.4mm
I-E Axis A-P position (IEax_AP) 7.62mm 0-25mm 0-5mm
I-E Axis M-L position (IEax_ML) Omm
Initial F-E angle (Init_Fem_FE)
Tibial tilt malrotation (Insert_Tilt)
Femoral I-E malrotation (Fem_IE) 0 03 ]
Tibial V-V malrotation (Insert_VV)
Spring M-L separation (AM>L) 28.7mm 0.5mm
Spring stiffness (K) 5.21N/mm 0.09N/mm
M-L Load Split % (ML_Load) 60% 2.5%
Friction Coefficient (u) 0.04 0.01

Table 10: Input factors for probabilistic study (from [95]).

These factors are based on in-vitro wear simulators, not in-vivo knee
replacements. For example, the concept of a ‘fixed axis’ for F-E and I-E rotation is
not applicable to the natural knee; nor do the transverse-plane spring factors
directly represent any equivalent in-vivo property. Similarly, the levels of
variability are based on estimated in-vitro simulator setup errors, rather than
surgical positioning errors (in-vitro simulators can be configured more accurately;
intra-operative in-vivo positioning is generally more variable [148-150]). All
factors were assumed to be independent with Gaussian distributions (values were
bounded to lie within £30 to avoid extreme outliers). Whilst this assumption is
tolerable for a ‘proof of concept’ study, it may have considerable implications.
Note also that in some cases, this assumption of Gaussian distribution is clearly
inappropriate; for example, such a distribution can always potentially have
negative values; this is not suitable for a friction co-efficient which should never
be less than zero (a lognormal distribution would be more appropriate). However,
for consistency with the published study the same set of conditions will be
adopted at present. (Before the method is deployed for practical real-world
problems, it would be beneficial to justify these assumptions using

experimentally-collected data).

5.2.3. FPI Methods

Laz et al used the AMV method (corroborated with a 1000-trial MCST run) for the
analysis, interfacing to NESSUS from the Abaqus FE modelling software (Abaqus,
Inc). If ‘insight’ is used initially then the AMV method cannot be corroborated in

this study. However, it is desirable to demonstrate the capability for both
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‘standard’ MCST methods, and also ‘fast’ (low-cost) alternatives. Therefore a
1000-trial MCST will also be the baseline for this corroboration. In addition,
lower-cost response surface methods (rather than AMV methods) will be
benchmarked against the MCST results, to explore how suitable these ‘fast’
models are for subsequent studies. RSM models based on 50, 100 and 1000
samples were generated for comparison to the MCST data. In this first instance, a
‘linear’ model was selected, for computational efficiency and to provide a first

indication of how much non-linearity might be evident in the TKR system.

5.2.4. Corroborating Results with Published Data

For corroboration, figures are presented directly comparing the Laz et al results
(finite element) with the present study (ADAMS MBD); in each case, the
comparison is for the MCST results. The 1% - 99% envelopes for both levels of
variability (‘A’ & ‘B’) are shown for A-P translation (Figure 66), I-E Rotation (Figure
67) and Peak CP (Figure 68). Figure 69 compares the sensitivity factors (for A-P
translation). The results demonstrate a good correlation with the ‘performance
envelope’ kinematics in the literature data. Similar trends in the envelope size and
shape are seen; for example both sets of results show a clear decrease in
kinematic variability range in the swing phase (>60% gait) compared to stance
phase. Some differences are notable; particularly in swing phase. These
differences are partly attributable to differences in the model mechanical set-up
(e.g. initial component positioning, and the ‘neutral’ point for the fixed femoral
and tibial axes), and partly to internal model parameters (e.g. dynamic terms;

inertia, friction & damping).

A-P Translation {(mm) 1% - 99% Envelope

FE - Level A
FE - Level B

% Gait

Figure 66: Comparison of MCST A-P envelopes with published data.
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I-E Rotation () 1% - 99% Envelope

FE - Level A

FE - Level B

% Gait
Figure 67: Comparison of MCST I-E envelopes with published data.

Peak CP (MPa) 1% - 99% Envelope
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Figure 68: Comparison of MCST peak CP envelopes with published data.
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Figure 69: Comparison of MCST A-P sensitivity factors (based on Level ‘A’ results).
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In terms of sensitivity, the same factors were found to be most dominant, with
the ranking identical for the top factors. For A-P and I-E kinematics, the
corroboration was particularly strong, with sensitivity differences well under 0.1
on the normalised scale in every case. The differences were somewhat larger for
the contact pressure data (up to 0.2), due to the different formulation of contact

model used.

5.2.5. Comparing ‘Fast’ Methods (RSM) with MCST

Results were compared for ‘level A’ variability using RSM & MCST (Figure 70 and
Figure 71). For kinematics (A-P & I-E) in particular, RSM closely matches MCST; 50
or 100 samples are adequate to approximate the envelopes; there is no benefit in
having more trials (see Figure 70 as an example). This suggests that the

kinematics are not particularly non-linear.

However, peak contact pressure is more non-linear (partly due to numerical solver
‘noise’), resulting in poorer response-surface fitting, especially if fewer samples
are used - although regardless of the number of trials, the fit is not perfect (see

Figure 71).

Nonetheless, RSM provides a fair first-approximation to the peak CP envelope,
which may be adequate for exploratory studies where high accuracy can be

sacrificed for speed of evaluation.

A-P Translation (mm) 1% - 99% Envelope

-2

3 T e

4 | == RSM-100 O\

—— RSM-1000 \
A R S \ /.
MCST-1000 \/
B
0% 20% 40% 60% 80% 100%
% Gait

Figure 70: Level ‘A’ MCST vs. RSM (based on 50, 100 or 1000 trials): A-P translation.
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Figure 71: Level ‘A’ MCST vs. RSM (based on 50, 100 or 1000 trials): Peak CP.

Discussion: Despite some evident differences, the results presented are broadly
comparable to the study by Laz et al. This is encouraging, since it corroborates
the proposed software & methods with data from the literature. Differences can
be accounted for by the slightly different modelling approach used in the
published study. There, non-deformable FE was used with elastic-foundation
contact, and the statistical method used to produce the envelope points was
AMV. As discussed in Chapter Three, there are potential issues with AMV for a
very irregular or non-linear system behaviour - the contact pressure in particular
is prone to numerical ‘spikes’ and oscillations; these can cause particular
difficulty with AMV, and differences between AMV and MCST become more
apparent [179].

The comparison between RSM and MCST is promising; for the system studied
here, RSM is able to produce very comparable results to MCST with 10-20 times
less computational workload. (In terms of solution time, the MCST required
around 5 days for 1000 trials; by comparison RSM with 50 trials required only 6
hours). Note that the quality of this match depends on the variability levels
considered in the ‘performance envelope’. For lower ranges (e.g. 10%/90% or
5%/95%) the match is exceptionally good; however for more extreme ranges (e.g.
1%/99% or broader) the accuracy deteriorates. This is because these values sit on
the ‘tails’ of the distributions, and as discussed in Chapter Three, obtaining an
accurate prediction of distribution tail values is difficult for FPI methods.
Therefore ‘fast’ probabilistic methods are more suited to reporting performance

envelopes within a narrower range (2 standard deviations or lower).
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It is always prudent with any new model to first validate the FPI method using a
more exhaustive MCST simulation; however the close agreement here
demonstrates that there are only limited differences in results due to the FPI

techniques.

Note one very important observation: although the FE and MBD approaches have
been corroborated here, it is not possible to validate either approach with in-vitro
data because comparable probabilistic experimental data for this virtual test is
not available (the study is purely theoretical). This is a major potential limitation;
until probabilistic computational methods have been corroborated with
probabilistic experimental data (and not just deterministic experimental data),

questions will remain about the integrity of the in-silico tests in isolation.

5.2.6. Extension Work: Further Results & Discussion

A very important point to recall is that the AMV method used by Laz et al has a
key limitation: every individual sample point of interest requires its own unique
evaluation using AMV. This means that monitoring multiple objectives for the
same experiment actually increases the computational overhead. To appreciate

the impact this has, consider the case in this example:

If the model has 12 input factors, then 12+1 = 13 trials are required for the initial
‘MV’ analysis. Now, A-P, I-E and CP are monitored throughout the gait cycle, at a
sample-rate of 80 samples per cycle. For each output, two levels are monitored
(the ‘low’ 1%, and the ‘high’ 99% levels). This means that for these 3 output
measures, 2x3x80 = 480 trials are required; in addition to the original 13 - this is
now close to 500 trials. But if it was desirable to monitor a new output (say V-V
rotation, or contact area) at the same sample rate, this would add another 2x80 =
160 trials for each output. Hence with only a few more time-varying outputs the

number of trials required could exceed the 1000-trials needed for Monte-Carlo.

Compare to the RSM model; only 100 trials are used; this is a fixed overhead. The

RSM results will be less accurate than AMV at any targeted point. But any number

of output measures can be retrieved from the model, as it is not ‘tuned’ to local
points in the possibility space, but is a broad ‘global’ fit (as discussed in Chapter
Three). This means that AMV is well-suited for a small number of outputs when
accuracy is important, but RSM may be a better choice for an investigatory study

such as this, where many outputs may be of interest.

To illustrate this advantage, a number of additional metrics are reported below

which were not included in the original publication by Laz et al. Together, they
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provide additional insights into the influence of variability on knee simulator

mechanics.
Contact Area

Contact area can easily be retrieved for the model. An envelope showing contact
area variability (1%-99%) is shown for the two levels in Figure 72. Variations are
limited compared to the contact pressure envelopes; however contact area
variations may be important, as some studies suggest total wear volume

correlates better to contact area than contact pressure [106].

Contact Area (mm?) 1% - 99% Envelope
400

300
200 ff

100 -

Level B

‘ —===-level A ‘

0% 20% 40% 60% 80% 100%
% Gait

Figure 72: Contact Area envelopes (1-99%).
M-L Load Split

Medial-Lateral load split is an important metric as it defines the amount of
loading on each condyle, which in turn affects the kinematics of the knee as well
as polyethylene stresses [136]. The ISO-standards go to considerable lengths to
define a ‘controlled’ application of M-L load split [23, 24] (based on the
assumption that in a ‘normal’ knee the loading is split approximately 60% on the
medial condyle, 40% on the lateral condyle). However this load-split is achieved by
specifying a ‘fixed’ translation along the M-L axis for the application of the axial
force. As such it cannot account for dynamic changes in component positioning
throughout the gait cycle. Only recently has the actual M-L load split been
measured in-vitro by Zhao et al [182], this revealed considerable variation from
the ‘target’ 60-40 Medial-biased loading. However, this was for one subject only
and did not take account of positioning variability. Here, we have post-processed
M-L load split in the present probabilistic study; the results are shown in Figure

73. There is very considerable variability in the load split, which is not apparent
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from monitoring only the peak CP (as in Figure 68). Note that extreme values
(close to 0% or 100%) would indicate uni-condylar loading occurring. This would
have implications beyond the modelling scope of this study, since condylar “lift-
off” is known to be associated with a considerable increase in wear rates [172]
which cannot be readily explained by existing theoretical wear models. Here,
although the peak values approach 80% (in swing-phase, corresponding with

higher flexion), the loading is never entirely uni-condylar.

M-L Load Split (% Medial) 1% - 99% Envelope
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Figure 73: Medial-Lateral Load Split (1-99% Envelopes).
‘Relative’ Kinematics (A-P & I-E)

In the original published study, A-P and I-E kinematics were reported as ‘absolute’
values. This means that the ‘zero’ position was based on the settled component
positions for the deterministic (unperturbed) case, for every trial. So, if a trial had
a 3° shift of femoral I-E rotation, and then traced a similar motion to the
unperturbed case, then the ‘envelope’ would show an offset ‘variation’ of 3
degrees. The ‘absolute’ values are useful for some purposes (e.g. laxity/ROM
assessment), but not for others. It is possible that the relative motions could
actually be completely unchanged (merely offset), but the variability envelope
would still appear to be very large. The relative motions are of particular
importance for understanding contact paths for wear prediction. Therefore it is
useful to report the vrelative kinematic envelopes alongside the absolute
kinematics (i.e. for each trial, the ‘zero’ position is based on the average

component positions specifically for that trial).

The ‘relative’ envelopes are reported here for A-P translation (Figure 74) and I-E

rotation (Figure 75). It is apparent that these offset envelopes are quite different
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to the ‘absolute’ envelopes (Figure 66 and Figure 67 earlier). These ‘relative’
envelopes are narrower than the envelopes for ‘absolute’ values, showing that
while the precise location of the contact may vary considerably, the actual
kinematics relative to the starting point are not as variable. (This is important,
because wear rate will be related to this degree of relative motion; i.e. the total
sliding distance).

Relative A-P Motion (mm} 1% - 99% Envelope

Level B

% Gait

Figure 74: Envelope of relative kinematics for A-P translation (1% - 99%).

Relative I-E Motion () 1% - 99% Envelope

Level B

% Gait

Figure 75: Envelope of relative kinematics for I-E rotation (1% - 99%).

These further output metrics further demonstrate the range of data that can be
extracted from a probabilistic study. They also illustrate that the choice of FPI
method has implications for how many metrics can be reported; using AMV
introduces an overhead for each new output monitored, so may not be the ideal
choice for a ‘data-rich’ investigation where many metrics are of interest.
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5.3. Concept-Study: Can Passive Laxity Predict Gait Mechanics? °©

5.3.1. Background

The probabilistic framework based on ADAMS-MBD has now been corroborated
with published FE-based methods. This gives greater confidence for using the

MBD models for other probabilistic studies.

The study in the previous section considered only one activity, (although multiple
output metrics were monitored for this activity). An interesting feature of
probabilistic modelling is that multiple activities can be compared together to

explore potential correlations (see Chapter Three).

In this section, the model is extended to form an original study demonstrating
conceptually how probabilistic studies can provide a framework to explore
relationships not just within but between different activities. In this study, two
distinct classes of activity are compared: the ‘passive’ laxity motions of the knee,

and the kinematics & peak contact pressures experienced in an ‘active’ gait cycle.

Simple passive laxity drawer loading can readily be performed intra-operatively,
but the question of whether these tests can yield information about the likely
post-operative ‘active’ performance of the knee has yet to be rigorously
addressed. Currently, this is a subjective judgement based on the expertise of the

clinical professional.

A comparison using simulation methods may allow more quantitative statements
to be made about the predictive power (and hence practical value) of such passive
laxity tests. The present conceptual study will demonstrate how such an
investigation might be structured, using simplified computational simulations of

simulated gait and laxity drawer loading.

5.3.2. Methods

This study is based upon an adaptation of the probabilistic setup corroborated in
the previous section [95], and incorporates several factors included in that study
(misalignment, friction and M-L load split). However, various developments are

introduced in order to explore the passive/active performance correlations.

® This section is adapted from the journal article: “Could Passive Knee Laxity be Related to
Active Gait Mechanics? An Exploratory Computational Biomechanical Study Using
Probabilistic Methods”. Strickland et al, CMBBE (/n Press).
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Mechanical Modelling:

The study will compare the two variant knee implants described in Chapter Four
(S/C and U/C), in order to compare designs and consider the influence of design-

specific variations (in this case, sagittal-plane conformity).

The standard configuration for the SKS (as used in the earlier models) features
springs in the transverse plane to provide A-P and I-E restraint only. However, to
conceptually explore correlations with laxity range tests (which include out-of-
plane forces and moments), here a simplified 3-D restraint model was used
instead. This uses nonlinear spring-elements to approximate the combined
restraint provided by the knee ligaments, within the range-of-motion of interest
(0" to 60" flexion).

Since every new spring element increases the number of factors involved (which
greatly increases the number of simulations required), the restraint model was
kept to a rudimentary minimum of three elements: together providing the

necessary I-E, V-V and A-P restraint.

Note that this model is not representative of the complexity of true ligament
restraint in-vivo (with multiple bundles and insertion/origin sites [7]). Further, in
an intact knee in-vivo, the degree of laxity in full extension would be reduced to a
minimum by the ‘locking’ mechanisms discussed in Chapter One; however in this
simplified computational model there is still some laxity, since some of the
important contributors to restraint (the capsule and surrounding tissues, and the

patellar restraint) are omitted.

Nonetheless this model provides a comparable ‘aggregate’ restraint force across
the gait envelope, when compared to ‘physiological’ ligament-based models, as
described in the literature [183, 184]. Although not identical, the envelopes are
sufficiently similar for conceptualisation purposes (Figure 76 shows the envelopes
for the S/C insert throughout the flexion range, for both A-P translation and I-E

rotation).

Unified ‘mean value’ properties for the spring-restraint elements (i.e. the
stiffnesses and pre-strain levels selected for each spring-element) are listed in
Table 11.
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Figure 76: Comparison of laxity envelopes for multi-bundle and unified spring-
restraint models, at three levels of drawer force (x50, 100 & 150N) and torque (x1, 2
& 3N:m). The envelope ‘width’ shows the degree of laxity at a given flexion angle.

The nonlinear force (F) / strain (¢) relationship for the spring elements was

adopted from previous analytic studies [185]:

0 <0
F= (%jgz 0<e<2¢ (5)
&
k(e —£,) 2¢, <¢

Where the instantaneous strain (¢), is defined relative to the initial spring-element
length (L), the instantaneous length (L), and the ‘pre-strain’ (gp) which determines

whether the element is considered to be under tension at its initial length:

L(e, +1
gzy_l

(6)
L,

(Note the similarity between this analytic expression, and the experimental curves
presented in Chapter One - Figure 2). There are three controllable parameters
within this non-linear model: linear-region stiffness (k), toe-in (¢) (which
determines the strain level at which the linear region begins), and pre-strain (&),

as a percentage of the natural length.
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Variability levels for these factors were derived from the literature [6], with the
three parameters (¢, £ and k) for each of the three spring-elements giving a total
of nine variable factors. This is more appropriate for a demonstration study to
maintain a moderate number of factors in total; however a fully-featured
musculoskeletal model would need many more factors to be accurately
representative of in-vivo dynamics - this in turn would require many times more

simulation trials.

Combined with the factors adopted from published studies, the complete set of
input variables are listed in Table 11; all variables are assumed to be

independent, following a Gaussian distribution bounded at +30.

Factor Mean (p) S.D. (o) Factor | Mean (p) S.D. (o)
F-E axis I-S 25.4 mm LSpr k 70 N/mm
F-E axis A-P 0 mm MSpr k 100 N/mm 20%
0.5 mm
Tibial axis M-L 0 mm PSpr k 130 N/mm
Tibial axis A-P 7.62 mm LSpr £ +5%
Initial F-E angle MSpr & 0% 1%
Initial I-E angle ] ] PSpr ¢ +2%
Initial tilt angle ° ! LSpr ¢,
Initial V-V angle MSpr ¢, +3% 1%
Friction (u) 0.04 0.01 PSpr ¢,
M-L load split 60M-40L 2.5%

Table 11: Input factors, with mean & SD. The new terms (right) are related to the
spring-restraint (‘M’edial, ‘L’ateral and ‘P’osterior ‘Spr’ings); (‘K’ is the linear stiffness;

‘e is the pre-strain, & ‘¢’ is the toe-in, as a percentage of natural length).

As in previous studies, output kinematics and peak contact pressures were
analysed through a standard 1-second gait cycle, based on ISO-derived

force/displacement input waveforms [91] (Figure 77).

For gait, the selected output measures were A-P translation & I-E rotation, and
peak contact pressure, sampled throughout the cycle. Kinematics are reported in

terms of ‘offset’ values; i.e. normalised relative to the initial equilibrium position.
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Figure 77: Input waveforms for force-driven gait simulation (Adapted from [91]).

Additionally, three paired tests of passive laxity drawer loading were simulated
with typical clinical passive loading levels [186]: anterior-posterior (A-P) draw
(100 N), internal-external (I-E) torsion (x5 N-m), and varus-valgus (V-V) torsion
(=10 N-m). Laxity loading was simulated both in full extension and at 20" flexion
(reflecting the clinical practice of testing at high-laxity flexion angles associated
with stance), with compressive axial loading limited to 300N for ‘passive’
restraint [187]. For these output measures, the displacement (translation or
rotation) was reported relative to the initial ‘offset’ reference position (when
unloaded). A ‘positive’ value indicates displacement in the direction of the applied

force or torque.
Statistical Modelling:

The key concept of this study is that by analysing the output of multiple different
tests, it may be possible to identify correlations between them; this could
potentially allow a test with one activity to be a predictor for the probable
outcome of a different activity, e.g. allow passive laxity to be a predictor for

active gait.

For this study, in order to provide a matched set of trials (to directly compare
correlations as discussed in Chapter Three), a randomised 1000-trial matched
MCST analysis was performed, with the same matrix of input factor settings used

for both the gait cycle and laxity draw simulations.

Because this simplified model did not include capsule or musculature
contributions to joint restraint, the range and levels of variability studied meant a
handful of statistically outlying trials resulted in subluxation under high laxity
drawer loading. This was particularly the case for those trials where the spring
stiffnesses were lower (especially the ‘MCL’ spring-element, which averaged

below 50% of its mean stiffness in the subluxation outlier cases). Without the
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additional restraint that would normally be provided by other sources (e.g. joint
capsule, patellar mechanics) a value of stiffness significantly below the ‘mean’
level in these spring elements alone cannot provide adequate restraint to
realistically constrain the tibiofemoral mechanics. These outlier trials were

therefore excluded from the subsequent correlation analysis.

Results from the simulations were used to determine 1%-99% performance
envelopes for gait cycle kinetics & kinematics, and to determine the statistical

distributions for laxity drawer displacements for both designs.

To identify correlations between active gait and passive laxity, scalar statistical
metrics for the time-varying gait waveforms were required for each trial. The
waveform minimum, maximum, mean, range, and standard deviation were
chosen for this purpose. Each of these five values was calculated for the three
gait cycle output measures, and the results from all trials were correlated with the
three pairs of laxity drawer displacements, giving a 3x15 correlation matrix. This
matrix was generated for both the S/C and U/C implants to allow comparison

between designs.
5.3.3. Results
Active Gait Simulation Characteristics

Probabilistic performance envelopes for the simulated ISO-wear gait cycle were
calculated for comparison with the previous studies. The gait kinematics and
peak contact pressure are shown in Figure 78. Both S/C and U/C designs are
included on the same axes for comparison; the kinematics are reported as ‘offset’
values to more clearly illustrate design-specific differences between S/C and U/C

designs.

For the S/C design, it is apparent that the offset A-P and I-E motions of the knee
are more closely constrained during stance phase, whereas the U/C design
permits more variability of motion. For both designs, the variability envelope
expands to its widest during swing phase (due to lower articular surface
conformity and lower compressive forces). The differences between the S/C and
U/C designs are also apparent in general envelope trends, with larger envelopes
for the U/C design (reflecting the larger mean-value kinematics and contact

pressures).
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Passive Laxity Drawer-Loading Distributions

The distributions of laxity draw range for A-P, I-E and V-V are shown in Figure 79.
The ‘range’ is the total difference in displacement between the two opposite
draws; e.g. between the displacement for posterior draw of -100N, and the

displacement for anterior draw of +100N.
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Figure 79: Distribution in laxity draw ranges due to input variability. Solid fill: S/C,

hatched fill: U/C.
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It is clear that the greatest difference between designs is for the A-P drawer
loading, where the lower sagittal conformity of the U/C design allows higher draw
ranges. The distributions of I-E laxity for the two designs lie within a similar
range, whilst for V-V laxity, the distributions are very similar in shape, with higher

laxity for the S/C design.
Passive-Active Correlations

The correlations are reported in terms of Pearson-squared (R2) values in Table 12
with the strongest correlations highlighted. Note that these values indicate the

strength of the correlation only (not whether a correlation is positive or negative).

SIC uic
AP LE VMV | AP IE VWV
MIN 0.12
o
< RANGE 0.08 012 [ 010 006 007
S MEAN 0.07
ST.DEV | 0.07 0.06 0.08
MIN 0.12 015 008
W MAX 0.09 2
E| RANGE 015 010 | 020 036 0.34
Sl MEAN | 005 009 0.16 007
ST.DEV 012 009 | 025 038 0.33
MIN 008 020 031|023 031 042
o MAX 0.09
F| RANGE 010 010 | 024 0.3
3l MEAN 036 036 [ 006 027 033
ST.DEV | 006 043 040 | 041 052 0.33

Table 12: Correlation matrix: active gait parameters (rows, headings left) versus

passive laxity draw ranges (columns, headings top) for S/C & U/C designs.

The correlation coefficients are mostly low; this is to be expected of a complex
mechanical system with multiple influential factors. Nonetheless, some of the
correlations are sufficient to provide some degree of predictive power (R? up to
0.5). Notable trends are apparent for both the S/C and U/C designs, especially
under the I-E and V-V torsional loading. The largest difference between the two
designs was for A-P drawer loading; this would be expected, since the design
difference between the two is in the sagittal plane, and would most directly affect
A-P laxity. The more conforming S/C design showed limited predictive power
between active & passive mechanics (with laxity motion restricted), whereas the
U/C design had higher correlation coefficients. As would be expected, some of
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these metrics are inter-related; e.g. a good correlation for ‘range’ tends to be
accompanied by a good correlation for ‘standard deviation’ (although note that
this is not necessarily the case, depending on the shape of the time-varying

waveforms).

For active gait parameters, the strongest correlations occurred for contact
pressures, with moderate correlations for I-E rotation and very little correlation
for A-P translation. The tests for laxity drawer loading had greater predictive
power for variations in minimum (i.e. swing phase) contact pressures, suggesting
that the influence of the modelled restraint force is causing this correlation. I-E
rotation was not well-correlated for the S/C design; only small I-E rotations occur
for this design during gait, so any correlations are likely to be less evident. For
illustrative purposes, Figure 80 provides representative example correlation
scatter-plots for the weakest and strongest correlations observed. Note that in the
‘weaker’ correlation plot (A-P range for the S/C design) the limited correlation in
the main ‘clustering’ of trials is masked by the number of outlier trials with
greater A-P laxity. (In this particular case, the high-laxity outliers are due to lower

pre-strain of the ‘PCL’ spring-element permitting greater motion).

I-E Rotation Range: Gait vs. Passive Laxity (U/C)
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Figure 80: Examples of observed correlations: stronger (I-E laxity range for U/C),

and weaker (A-P laxity range for S/C).
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5.3.4. Discussion

The performance envelopes predicted for the normal gait cycle are comparable to
the previous corroboration study. A larger degree of output variability is evident
in the present study, due to the additional input variability factors related to the
spring restraint model. This is most apparent in the peak contact pressure
envelopes, where a variability range of up to 6MPa is seen for both designs. The
effect of compressive forces due to the spring element restraint will increase
contact pressure ranges; this is further compounded by malpositioning leading to
exaggerated gait kinematics with lower tibiofemoral conformity at contact, and
hence higher contact pressures.

When the envelopes for S/C and U/C designs are compared, these results do
suggest that insert design can play a role in controlling the influence of variability
on gait mechanics. However, this may be specific to the simplified mechanical
configuration being demonstrated in this conceptual study, and further studies

using more extensive models would be required to confirm this observation.

The laxity loading reveals a high degree of torsional laxity in these simulations at
both flexion angles (0° and 20°); this must be interpreted in light of the reduced
transverse-plane restraint provided by the spring elements used in the model
(comparable cadaver experiments using this tibiofemoral test configuration have
also yielded unusually high levels of rotation [115, 188]). Trends were similar at
both flexion angles simulated, with magnitudes of laxity range generally greater
for the 20° position, as would be expected. As anticipated, the most apparent
differences between designs were for the A-P drawer loading; it is notable that
when the full distribution of variability is considered, higher V-V laxity is evident
for the more constrained S/C design than the U/C (this is associated with greater
I-E rotation of the tibial component under V-V torques for the S/C compared to
U/C designs, suggesting that this rotation may facilitate the higher V-V laxity

without requiring condylar lift-off).

Although the range of passive laxity motion is very low for V-V rotation, the
correlations are generally strongest; this is most likely because much of the
correlation is due to variability in the 3-D restraint model: Whereas A-P and I-E
loads act in the transverse plane, V-V loads are out-of-plane and can directly
distract the joint, resulting in increased restraint forces and so giving more ready
indication of variability in the soft-tissue constraint. Note that many in-vitro
simulators model spring-restraint only in the transverse plane, and so cannot
simulate this V-V restraint. Again, this illustrates the influence that the choice of

mechanical model may have upon the study outcomes.
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As was noted in the results, some correlations may be masked by outlier effects,
due to one particular input variable (e.g. the PCL ‘pre-strain’ term for A-P range
with the S/C design). This has an important implication; it is possible that there
are other important input variables that have not been included in this study, and
the inclusion of these further additional inputs might serve to weaken, or

conversely strengthen, the observed correlations.

This conceptual study has explored the relationship between the influence of
variability on passive laxity and gait kinematics & kinetics, for two specific TKR
design variations, using a simplified mechanical model of the tibiofemoral joint
with rudimentary ‘soft tissue restraint’ representation. Correlations were
demonstrated for certain parameters: in some cases, with predictive powers up to
R2 = 0.5. This may allow design-specific predictions about gait mechanics to be
made based on tests of laxity drawer loading; for example, high V-V laxity means
it is more probable that a knee with the U/C insert will experience greater I-E
rotation in gait; the same trend is less probable for the S/C insert. This becomes
clinically relevant when these mechanical observations are related to modes of
failure; for example, studies have associated more pronounced I|-E rotational
kinematics with higher component wear [173, 189]. It could therefore be
hypothesised that the U/C implanted knee exhibiting higher passive V-V laxity
might be more susceptible to greater wear damage from prolonged active gait;
however, this relationship would be less apparent for the S/C implanted knee,

where the correlations are weaker.

This study is intended only to illustrate the use in principle of statistical
correlations to link the characteristic mechanics of different active and passive
daily activities, and there are some important limitations to the models which
should not be overlooked. The simplified restraint model and rigid-body contact
formulations will result in reduced fidelity. Further the set of input variables
studied is limited, with generalised assumptions made about distributions and
correlations; these would need to be better modelled. The opportunity exists to
develop this methodology with more complete and accurate anatomical models to
explore (for specific designs) whether passive laxity can be a predictor for active
gait mechanics. Note however that, the more complex the model, the more
variable factors that must be accounted for, and hence the more trials that are
needed to obtain a sound statistical model of the system. In consequence, a more
accurate model could also require far more computational time than the 7-days
needed for the 2x1000 trials in this proof-of-concept. The results of this
exploratory study suggest this may be the case, for a limited sub-set of gait
characteristics, and subject to design-dependency. It remains to be investigated
129



whether other activities (e.g. stair usage or deep flexion manoeuvres) would
exhibit similar correlations to passive laxity motion, for a range of different

flexion angles.

It would require further investigation with a wider range of variability factors and
implant designs to determine how much of this correlation is universal (i.e.
related directly to the variable input factors themselves, such as soft-tissue
effects), and how much is controlled or constrained by the implant design (such
as A-P motion for the S/C design in this study). However, it seems apparent that
certain design features (e.g. lower constraint) can improve predictive power, and
that some tests of laxity drawer loading (e.g. V-V) correlate better than others to
gait characteristics. Measurement errors are known to be associated with
assessments of passive laxity [190]; this would erode the strength of these
correlations, so a more exhaustive study would also need to account for

uncertainty in the laxity ranges.

This study illustrates conceptually another potential application of probabilistics,
demonstrating the design-dependent correlations between passive laxity and
active gait mechanics, and suggesting that for some gait characteristics these

correlations potentially offer useful predictive power as a decision-support tool.
5.4. Probabilistic Wear Assessment: Multi-Design Comparison ’

5.4.1. Background

Chapter Four demonstrated the valuable role in-silico wear assessments can play
in pre-clinical analysis. These wear methods are easily incorporated to
probabilistic studies, giving a more holistic perspective on the influences and

variability of predicted wear.

Wear is known to be highly variable both in-vitro and in-vivo, but it is difficult to
collect large enough data-sets clinically or experimentally to explore this
variability (due to time and cost). By contrast, in-silico models can use large
numbers of trials with low associated time & cost. Therefore using probabilistic
computational methods it is possible to explore whether input variability (e.g.
component malpositioning) can account for the high degree of wear variability

observed.

” This section is adapted from the conference proceedings: “In-silico Predictions of TKR
Robustness to Wear Variability: A Probabilistic Cross-Design Comparison". 2009, M.A.
Strickland and M. Taylor. In: Transactions, ORS 55th Annual Meeting (Las Vegas, NV).
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In this study, we will combine wear prediction with probabilistic methods to
compare the predictions of multiple different wear algorithms, and to compare
multiple TKR designs (to observe whether some are more robust to wear
variability than others). The only existing published study for probabilistic wear of
TKR [179] was for a single implant design, and failed to include any cross-s (using
Archard wear only). This study will provide a more complete overview, including

multiple designs and multiple wear theories.

5.4.2. Methods

Existing TKR designs were incorporated from CAD geometry or reverse-
engineering, including 6 fixed-bearing (CR) and 2 rotating-platform designs. For
each one, an in-silico simulation of an in-vitro wear test was used. Once again, the
mechanical configuration was based upon the force-driven SKS [114] with a
soft/hard spring combination as recommended by Haider et al [158] (7.24N/mm
anterior & 33.8N/mm posterior). The inputs used were ‘true’ 1SO-standard gait
[23] (not experimental feedback data this time, as different designs were under

test so no single feedback dataset would be appropriate).

Wear was evaluated using the standard algorithms discussed in Chapter Four,
including variants without contact pressure terms. Distributions were plotted to
form a PDF of wear rate for each design with each of the different wear
algorithms. These PDFs could then be compared to evaluate the different TKR
designs and wear algorithms. Due to the number of trials required for a multi-
design probabilistic study, it was not feasible to use adaptive wear methods;

therefore wear estimates were based on single-cycle analyses.

A ‘streamlined’ probabilistic analysis was used with higher levels of variability
than previously, somewhat closer to in-vivo levels of variability. 7 Factors were
included: six component malpositioning angles (with SD of 2°) and M-L load split
(with SD of 12.5%). Having previously demonstrated the relative linearity of the
SKS system, RSM-100 was selected instead of a more expensive MCST - this

required 800 trials in total (approximate simulation time: 10 days).

5.4.3. Results

The choice of wear algorithm has a major influence on the degree of variability
observed; see Figure 81. Algorithms excluding cross-shear (e.g. the Archard
model) grossly under-predict wear variability. When CS is included, the SD of the
resulting wear PDF is typically 3 to 5 times greater. Algorithms ignoring contact-
pressure predict a moderate probability of wear levels below the ‘neutral’

(unperturbed) wear rate.
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Figure 81: Typical PDFs for different wear algorithms, normalised relative to the
deterministic wear rate (in this figure: for S/C fixed-bearing design).

The comparison between designs reveals that there are clearly design-specific
differences (Figure 82). The deterministic (unperturbed) wear rate for designs

varies, as has been reported in many in-vitro studies. However, this probabilistic

study reveals that the spread of wear rates due to variability is also different.
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Figure 82: Comparison of PDFs for multiple designs, based on M-L/M-L+A-P wear

model (6 x fixed-bearing, top; 2 x rotating-platform, below). Note: commercial TKR

design brands have been anonymised.
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Some designs appear more resilient to malpositioning and do not exhibit such a
high spread of wear rates. For example, consider designs FB1 and FB6; looking
only at the ‘normal’ (mean) wear rate, FB6 appears to marginally outperform FB1.
However, looking at the full distribution, it is clear that FB6 is considerably more
likely to have a high-wear rate in the event of malpositioning. Note that it is in no
way possible to extract this information from individual deterministic models

(either in-vitro or in-silico); a probabilistic approach is essential.

Note that wear rates of 3 or more times the neutral level have a significant (>5%)
probability of occurrence for some of the designs studied; again, this is an
important result which would be overlooked by a simple one-off deterministic

analysis.

5.4.4. Discussion:

This probabilistic application of in-silico wear prediction once again reinforces the
observation that wear models without CS do not predict the variations reported
by in-vitro wear tests. Typically, experimental results show a large spread of
results for any given design (even for small values of ‘N’); the Archard formula

does not predict this, CS must be included to capture this degree of variability.

Probabilistic studies provide a more challenging validation test for wear theories:
a complete PDF of wear results is generated, providing a more complete data set
to corroborate with (rather than an individual wear-rate value). If this
computational probabilistic approach could be compared with a similar
‘probabilistic’ data set from in-vitro testing, it may help to identify the most

accurate wear models under a wider range of test conditions.
The multi-design comparison reveals two very important observations:

« Firstly, wear rates can be much higher (greater than three times) the ‘neutral’
wear rates seen in correctly-aligned in-vitro simulators. This implies that those
in-vitro results may also under-predict clinical in-vivo wear with

malpositioning; further work would be needed to explore this.

« Secondly, wear distributions appear to be design-dependent. This implies that
the TKR designer does have some ability to ‘design-in’ a degree of robustness

to reduce the ‘spread’ of wear rates.

Once again, limitations to this study must be noted; the models used represent
in-vitro (not in-vivo) conditions, so could not be expected to reproduce in-vivo
wear variability (this would require a musculoskeletal modeling approach). As has
been noted, the wear algorithms used are historical empirical models since
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UHMWPE wear is not fully quantitatively understood. Better wear models could
yield different distribution shapes. It is also important to note that the tests are
abstract; this data is not being compared to any real set of experimental data.
Without this corroboration, it is not possible to be certain that the factors

included are the factors which would be relevant in a real experiment.

Nonetheless, it appears that alignment variability results in much higher top-end
wear rates, and that this is a design-specific effect. These observations justify

further investigation with better data, and better-corroborated models.

5.5. Conclusions

This chapter has demonstrated that the models & methods introduced in Chapter
Four are well-suited to probabilistic analysis approaches. Published results in the
literature have been corroborated, and the same modelling framework has been

extended to demonstrate potential correlations between active and passive gait.

An important issue highlighted is that many of these models & methods have not
been adequately compared to real-world experimental data. In many cases,
published studies are ‘validated’ using a single ‘feedback’ dataset (e.g.
kinematics for one isolated gait cycle), or a single wear-rate value. This does not
give a complete proof of the model’s performance. As such it is difficult to know
with confidence what impact if any the limitations and assumptions of the model
are having on the results. This is especially true for the probabilistic approaches
in this chapter: to-date, no probabilistic computational study has been validated
with true probabilistic experimental data (only isolated deterministic data has
been used). The aim in subsequent chapters will be to apply these in-silico
probabilistic methods to much richer data from specific real-world test platforms,
to achieve a much higher level of corroboration between computational and
experimental models. This requires test-platforms which are highly controllable,
well-understood and well-documented. It is also valuable to have good
collaborative links with the experimental test specialists, to obtain access to high-

qguality data, information on operating procedures and technical expertise.

As such, the studies in the final chapters describe models constructed and
corroborated in much closer collaboration with experimental researchers. Chapter
Six outlines the development of a new MBD-based model of the ‘Kansas’ Knee
Simulator (KKS), whilst Chapter Seven demonstrates how the lessons learnt have
been re-applied to the AMTI knee-wear simulator.
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CHAPTER SIX - LOWER-LIMB MODELLING

Development of holistic lower limb models, based on the KKS

6.1. Background: Motivation for KKS Modelling

The strengths and limitations of different in-vitro knee simulator configurations
were discussed in detail in Chapter Two. The full lower-limb simulator
configuration is potentially more powerful (since the scope of the model is
greater), but also more complex. Whereas tibiofemoral knee simulators are in
commercial production, full limb simulators remain bespoke one-off investigation
platforms, in the domain of academia rather than industry. An advantage of this
is that, by close collaboration with the experimental KKS research team, much
more full and detailed specifications and data are available for this platform than
for the ‘black box’ commercial systems. Therefore, a more specific, targeted
corroboration is possible with this platform than with the previous work - this can

then be used as the basis for probabilistic analyses.

6.1.1. The KKS: Technical Description

The Purdue/Kansas knee simulator is one of the most well-established &
technically advanced knee simulators available, and has been widely used for
peer-reviewed research and industrial TKR design & development. Originally
conceived as a next-generation knee wear simulator, the current KKS design is
now used to support research on knee kinematics, loading, laxity & stability
(gravimetric wear assessment is not supported on the current rig for in-vitro
testing, but this can be estimated using coupled in-silico methods). The KKS is a
highly versatile platform, able to operate using artificial implant test-pieces,
implanted cadavers, or natural-knee cadavers, with the capability to track and
record force-feedback (via load cells) and kinematics (via an ‘Optotrak’ motion
tracking system) in real-time during testing. For further reference, the capabilities
of the platform are described in more detail in a series of papers by Zachman,
Hillberry, Rullkoetter & Maletsky [120, 121, 191-196].

Alongside the mechanics of the rig, the control system is a very important feature
of any lower-limb model. For the tibiofemoral knee wear simulators discussed
previously, the system is essentially stable (the tibial orientation is fixed, and
compressive loads will tend to stabilise the femur in the conformal condyles) so
accurate control is less critical. By contrast, the natural knee (and by extension
any in-vitro lower limb simulator) is unstable. When the knee is in flexion, vertical
loads at the hip & ankle will tend to increase flexion - this in turn increases the

moment arm of the vertical loads, and so increases the flexion moment, creating
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a ‘positive feedback’ loop. In the natural knee, stability is achieved through the
complex holistic system-level operation of the entire neuro-musculoskeletal
system (i.e. soft tissue restraint, sensory feedback, antagonistic muscle action,
etc). It is therefore to be expected that a sophisticated control system is also
required for the KKS.

The KKS control system is a five-channel PID controller with full cross-
compensation, and the ability to operate all five axes in force- or displacement-
control, based on a number of uni-axial load cells and linear & rotary
displacement transducers mounted on the simulator. Consequently, control of the
KKS is challenging: a range of activities are simulated, requiring different loading
profiles, and the same control scheme may not be appropriate under all
conditions. Inappropriate control commands could potentially damage cadaveric
tissue under test, or even the rig itself. Consequently, there is a strong incentive
for augmenting the in-vitro test rig with in-silico modelling, to devise and test
profiles before they are used on the simulator rig itself as a ‘risk reduction’
exercise. This would also allow more unconventional profiles or control schemes
to be investigated without the additional sensors, actuators, or reconfiguration

time that would be required on the in-vitro rig.

For these reasons, the KKS has previously been modelled using MBD, by Guess et
al [109, 123] (Figure 83). For more technical detail on this original model, the
reader is referred to the doctoral thesis of Guess [197]. This earlier model (dating
from 2003 [198]) was based on an older configuration of the KKS, and whilst it
conceptually demonstrated MBD modelling of the KKS and its controller, there

were several key limitations:

e The model itself used Hertzian contact only for the patellofemoral and
tibiofemoral articulations. This simplified contact model is fast, but assumes
spherical contact surfaces, and so is not very accurate. It also cannot provide
any information about contact pressure distribution at the contact surface -
(this information is needed for wear prediction).

e The model did not feature any form of ‘wrapping’ for the quadriceps; this
meant that the in-silico and in-vitro results diverged after around ~80° knee
flexion, when the Kevlar strap representing the quadriceps tendon (QT) begins
to wrap across the patellar groove on the femoral component. Without this
wrapping, the model is effectively limited to shallow flexion activities. There is
particular interest in ‘deep’ flexion performance for many new knee designs,
so it would be highly desirable for the model to reflect the flexion range of the

rig. Theoretically, this is approximately 0° to 135°; beyond this mechanical
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interference between the femur and tibia restricts any further flexion. In
practice, a range of 120" is closer to the realistically achievable limit.

e The controller used was based on the internal ADAMS controls toolkit, and
was limited to a single axis under feedback control.

¢ The model did not account for dynamic joint friction or actuator damping.

Hip Sled

Vertical

Quadriceps Load Axis

Axis

Prosthetic Knee
Geometries

Vertical
@ Torque Axis
Ankle :
Flexion .
AXis Ad/Ab Axis

Figure 83: Original KKS ADAMS MBD-based model (adapted from [123]).

In light of this, the need was identified for a new computational model to
overcome these limitations and so provide a more robust and complete

comparison to the KKS rig. In particular, it was desired that the new model:

e Better reflect the re-designed KKS geometry & inertia

e Incorporate the new tri-axial load cell and inclusion of ‘collateral ligaments’

¢ Allow the model to be easily re-positioned & parameterised

¢ Include ‘deep flexion’ capability (i.e. quadriceps wrapping, and modelling of
any other relevant mechanical interference)

e Achieve greater accuracy corroborating with the KKS.

The development of the new model involved collaboration between Kansas
University (KU), the University of Missouri (UMKC) and the University of
Southampton. Each research group had specific requirements for the new model;
KU required a more robust in-silico model for generating deep flexion testing
profiles to use on the KKS rig; the UMKC & Southampton research groups
required a more extensive & capable baseline model for purely in-silico studies.
The following section describes modelling undertaken as part of this work-plan

by the author whilst on secondment with KU.
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6.2. Model Development

6.2.1. Geometry

Extant CAD geometry from Pro/Engineer (Parametric Technology Corporation)
was available for the new (redesigned) KKS configuration. This geometry was used
as the basis for the new ADAMS model. Inertial properties were derived for each
part based on assigning known material densities to the solid volume. Where
necessary (e.g. assemblies comprised of multiple materials) certain parts were
weighed directly to validate this estimated inertia. Note that although the KKS can
accommodate implanted ‘cadaver’ samples, the initial ADAMS model is based
only on the artificial jig used for direct component testing. The implant described
in the following tests is a standard-size, fixed-bearing, posterior-stabilised (PS)

variant of the cruciate-retaining implant used in Chapters Four and Five.

The complete simulator model includes over 30 parts, compared to the 14 in the
original model by Guess et al. This reflects the additional components required to
capture all inertial and dynamic effects; for example the new model explicitly
includes the actuators, with the moving actuator rods and linkages individually
modelled, in order to include the additional damping effects, and friction at the
linkages. Figure 84 compares the two models side-by-side, indicating the main

areas where the scope of the model has been revised.

Frame modelled, to include
friction & motion limit 'brakes'

Quadriceps clamp &
patellar clamp included

Knee uses CAD geometry;
not spheroid primitives

— -

I

Vertical torque =
actuator & linkage !
assembly included

Il I

Actuators included to
model inertia & damping

N7/

Figure 84: Comparing the original (left) and revised (right) KKS models.
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The parts were assembled in ADAMS using appropriate ‘joints’ to limit the
degrees of freedom. Initially, components were coupled via ‘rigid’ hinged or
sliding linkages. However, it was subsequently discovered that ‘soft’ bushing
elements (with a finite ‘stiffness’ on all axes) were far better suited to simulate
the pliancy & damping effects within the simulator. The model was revised to use
physically representative joint types (which are more intuitive for design work).
This does considerably increase the number of degrees of freedom in the model
(hence increasing solution time). The original model featured ~15 DOF, whereas
the new model has almost 60. This increase in complexity is not desirable in
terms of computational cost, but is necessary to correctly model the system

dynamics (something overlooked by most in-silico models).

With the underlying mechanical assembly complete, it was possible to begin
including some of the new features. These were introduced sequentially, so that

each new extension could be individually tested and ‘debugged’ in turn.

6.2.2. Instrumented Tibial Assembly

The KKS was recently upgraded to include a tri-axial load-cell for measuring tibial
loads & moments. The load-cell mounts directly below the tibial insert, to
measure loads as close to the proximal tibia as is possible (similar in ethos to in-
vivo instrumented tibial inserts). This requires a modified tibial assembly to
accommodate the large and quite heavy (~1kg) load-cell. The new tibia is slightly
longer than the original, and is designed to mount the tibial insert with a

posterior slope of 5°. The differences are illustrated in Figure 85.

Posterior tilt

. — .| Instrumented tibia
— - | slightly longer (/4”)

; ( Insert now at 5 - (

Non-instrumented has more
anterior quad attachment

Tri-axial Load
cell added

Added: Mount for
collateral ligaments

Instrumented has larger mass &
more proximal centre of gravity

Figure 85: Comparison of non-instrumented (left) & instrumented (right) tibial

assemblies.
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This new part was modelled in ADAMS based on parasolid geometry for the old
assembly, and also the new manufactured parts. Rather than removing the
original non-instrumented tibia, the model was configured with a custom script to
activate/deactivate and appropriately reposition components, such that either the
instrumented or non-instrumented variants could be selected using a single
command-line instruction. The two different variants have different inertia and a
different centre-of-mass; also the attachment point for the quadriceps is altered,
and the tibial insert is sloped. All these factors can influence the knee kinematics,
so the appropriate selection must be made when corroborating with in-vitro data

(depending which part was used to collect the experimental data).

6.2.3. Quadriceps ‘Wrapping’

On the KKS, the quadriceps load is applied by a servo-hydraulic actuator mounted
on the proximal ‘femur’, anterior to the hip joint. The force is transmitted to the
proximal tibia via a Kevlar strap, intended to represent both the QT & PL. The
patella is mounted on the strap via a specially designed clamp (such that the
initial 1-S location of the patella in extension can be freely adjusted). In the
original model by Guess et al, this was represented by two pairs of spring-damper
elements, providing a line-of-sight restraint force between the quad actuator and
the patella on the proximal side, and the patella and tibial ‘tuberosity’ (a
mounting point on the proximal anterior tibia) on the distal side. This line-of-
sight spring model did not detect interference with the femoral component, so as
the knee flexion increased, the proximal springs in particular would penetrate the
femoral component without being deflected; this reduced the moment arm of the
quad actuator, such that it could not correctly resist the flexion moment. This in
turn would lead to further knee flexion, further exacerbating the limitation of the
non-wrapping model. This ‘positive feedback’ effect made the model unable to

operate beyond ~80°.

Therefore, a more realistic model able to account for wrapping was required.
Essentially, this introduces an additional set of contacts between the strap and
the femoral component. This obviously has adverse implications for solution
time. However it is particularly problematic, because whereas the tibial and
patellar contacts are generally close to perpendicular, the strap wrapping contact
is acting antagonistically, directly against the tibiofemoral contact (see Figure
86). This makes numerical iterative convergence for the two contacts much more

challenging, and can greatly increase the required solve time.
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Figure 86: Antagonistic action between the tibiofemoral joint and strap wrapping
contact.

Because of the envisaged impact on solution times, two different methods for
strap wrapping were proposed, and implemented for a comparison study. The
methods are outlined below:

‘Fast’ Point-on-Curve Method

This method does not use the femoral component geometry directly; instead, the
sagittal-plane geometry of the femoral component is traced with a simple vector-
path. Contact between the femoral surface and the strap is then based on this
vector-path representation. For the strap, several point-nodes are then embedded
along the region where wrapping occurs, to provide contact reaction points (i.e.
the strap becomes a series of chained spring elements, with point-contact
occurring only at the linkage points). The advantage of this approach is that no 3-
D solid geometry calculation is involved, thus greatly reducing solve-time. The
obvious disadvantage is accuracy; the model is only accurate as long as the
patellar is tracking ‘normally’, (i.e. close to the sagittal plane). In addition, a
specific path must be created for each different femoral implant design under

test.
Sphere-on-Solid Method

Using this method, a series of 3-D ellipsoid primitives (spheres) are embedded

into the strap. A contact is defined between these spheres and the actual CAD

geometry of the femoral resurfacing component. This means that the contact will

conform correctly to the articular surface of the femoral patellar groove. However,

the spheres still only provide a discretised contact, rather than the continuous

contact on the physical strap - hence this method is still only an approximation.
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The use of 3-D solid contact greatly increases the computational complexity,
which coupled with the antagonistic action between the tibiofemoral reaction
force & the strap wrapping, can drastically increase solve time. Therefore, this
approach is not suited for ‘fast’ modelling, (e.g. during development or
debugging).

As with the switching script for the tibia, both methods are embedded in the
model, with a custom macro to allow the user to toggle quickly between the two
alterative configurations. In either case, a decision must be made as to how many
distinct sections the strap should be discretised into - this is a standard
performance/accuracy trade-off, and sensitivity studies by UMKC Demonstrated
that even a small number of discrete wrapping contact points (2 or 3) gives
acceptable accuracy, provided that the points are appropriately located and
spaced along the strap (wrapping tends to occur only at the distal end of the QT,

for the flexion angles of interest - see Figure 87).

Figure 87: Strap wrapping. Three pairs of discrete contacts emulate continuous
wrapping, in the contact region of interest between the QT & proximal patellar

groove on the femoral component.

6.2.4. Collateral Ligaments

The original KKS did not include any ligament restraint at the knee - it was
designed for principally sagittal-plane loading (such that collateral ligaments
would have limited effect), and for use with PCL-sacrificing TKR designs (such that
neither cruciate ligament needed to be included). In order to provide more
physiological restraint, and to allow greater out-of-plane loads & motions, it was
decided to incorporate springs onto the KKS rig to represent the collateral
ligaments. For simplicity in the first iteration of implementing collaterals, the two

ligaments were modelled as single-line of action force (‘SFORCE’) elements in
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ADAMS, with zero stiffness under compression, and a constant stiffness of
30N/mm under tension. This stiffness was dictated by the availability of suitable
small springs for the physical rig; it is recognised that this is less restraint than
the values reported for experimental tests on the collateral ligaments [5]. (The
intention is to revise these springs on the KKS rig to specialist fittings of higher
stiffness in the future).

Since the springs have a single line of action, they cannot reflect the true
physiological behaviour of the multi-bundle collateral ligaments. Instead, the in-
silico model was used to determine insert & origin locations such that the
ligaments provided additional restraint through the operational flexion range into
deep-flexion. Based on these recommendations, the collateral springs were then
installed, mounted on brackets attached to the femoral and tibial assemblies. The
ADAMS model was updated accordingly to reflect these changes. Note that the
tibial insertion is distal to the load cell, so that the load cell reports the
compressive load experienced at the tibiofemoral joint inclusive of ligament
forces. A complicating factor is that the KKS can be used for either left- or right-
knee components; therefore the asymmetry present in the natural LCL & MCL
could not be modelled; instead, a ‘mean’ line of action was chosen for the
ligaments, with two alternative attachment points included on both the left and

right brackets, to accommodate both positions on both sides (Figure 88).

Lateral offset exaggerated
to avoid interference
(i.e. no spring-wrapping)

Femoral origin
close to natural
flexion axis

Two holes for
anterior or posterior
tibial insertion

Bracket mounts
distal to load-cell,
so collateral forces [ .-

are measured

"~ CORONAL "~ SAGITTAL

Figure 88: Proposed attachments for the collateral ‘ligaments’: coronal view (left) &

sagittal view (right), showing posterior tibial attachment point for collateral springs.
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6.2.5. Contact Switching

In the model developed by Guess et al, the contact method used was Hertzian
contact only, and contact pressures were not considered. In the new model,
contact pressure on the tibial and patellar UHMWPE components may be required
as output metrics in stochastic studies. Therefore, the surfaces of both the tibial
and patellar inserts were discretised, according to the method described in
Chapter Four. However, this increased complexity inevitably results in slower
computational solve-times. As an alternative, a contact ‘switching’ macro script
was devised. Similar to the switching macro for the strap wrapping, this allows
the user to quickly toggle between a simplified model based on Hertzian contact
(for ‘fast’ purely kinematic analyses or profile generation) and a more complex
model based on the discretised contact, for obtaining contact pressure or wear
results when needed. The difference in performance between the two alternatives
is considerable, and may be an important factor in deciding the best approach for

further stochastic studies.

Hertzian contact is an analytic approximation, specific to the simple case of
linear-elastic bodies with simple geometry. Under a given load, a penetration is
predicted, based on the separation between the two surfaces, and the material
properties (modulus and Poisson ratio) - see Figure 89. This produces an elliptical
load distribution, from which the overall contact area (and hence peak pressure)
can be estimated. To apply this method to TKR, the surface of the femoral and
tibial condyles must be approximated as elliptical spheroids of appropriate
radius. Appropriate material properties are applied (femoral: CoCr; E, =
2.3x10'"Pa, v, = 0.3. tibial: UHMWPE; E_~ 1GPa, v_=~ 0.45), and used to determine
parameters for the contact, using the standard Hertzian contact formulae. First,
an equivalent ‘contact’ radius, R, is evaluated as the reciprocal sum of the tibial

radius, R, and femoral radius, R
_ = —
S (7)

Next, an equivalent ‘contact’ stiffness, K, is evaluated, using the modulus of the

tibial & femoral materials (E, & E) and the Poisson ratio of the materials (v, & v):

4(1-v.2 1-v.2)"
Ke == T+ F (8)
3| E, E,

Finally, the Hertzian contact equation can be re-expressed in terms of an IMPACT-

style force-interpenetration relationship (see Chapter Four, Equation 2) for use in
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ADAMS (where h_, the contact separation distance, is equivalent to g, the
interpenetration depth). This gives the IMPACT stiffness co-efficient k and

exponent e for the normal force F:

sk =K.R.” e=15 (10)

Note that in the Hertzian model, the value of e is always 1.5 by definition;
however the value of kwill vary depending on the material properties and implant
geometry, and so must be evaluated on a case-by-case basis. (Note: this is a
whole-body aggregate contact equation, so these values of k and e cannot be
compared to the ‘discretised’ contact methods described in Chapter Four and

Appendix C).

Femoral

. FEMORAL Radius, Rs ;

; “\ F, (force distribution) y’ 4
N\ 4

TIBIAL h. (penetration depth)

Figure 89: Hertzian contact illustration.

6.2.6. Standardising Polarity within the KKS Model

An important lesson learnt during the development of the model and in-vitro
corroboration testing is the ease with which errors may be introduced in the
polarity of inputs and measures. In the case of primary motions (e.g. flexion),
these errors would be obvious and easily detected. However, in the case of
secondary motions (e.g. small amounts of I-E rotation or Ad-Ab rotation) these
errors are less obvious and can confound subsequent corroboration testing. To
mitigate against this, the polarity of the different input/output forces &
displacements was standardised, based on the current polarities used on the KKS
rig. The subsequent figures illustrate the reference (positive) direction for the
polarity of the different linear translations & forces (Figure 90) and angular
rotations & moments (Figure 91). Whilst this may sound an obvious issue, it is
nonetheless a frequently-overlooked source of mistakes in many in-silico & in-

vitro tests.

145



Quad Actuator
Dial Translation Vertical Translation
+ Left (from front)

- Right (from front) + Down (‘inferior')

- Up (‘Superior')
Quad Force

+ Out/Distal (‘slackens’)
- In/Proximal (‘tightens’)

Vertical Force

+ Down (‘inferior’)
- Up (‘superior’)

Quad Actuator
Rod Translation

+ Out ('distal’)
- In (‘proximal')

Vertical Torque
Actuator Rod Translation

+ In (left)
- Out (right)

Vertical Torque Actuator
Force (transverse) Lateral (Ad-Ab’) Translation*
+ Rod in (‘Left’)

Left t
- Rod out (‘Right') + Left (from front)

- Right (from front)

Ankle Flexion Actuator
Rod Translation*

+ Out (proximal) Lateral (‘Ad-Ab’) Force*

-In (distal'
n (‘distal’) +Rod in / ‘Right’

- Rod out / ‘Left'
Ankle Flexion Force*

+ In ('distal’)
- Out (‘proximal’)

Figure 90: Polarity of translational forces & displacements on the ADAMS model

(Note: for axes denoted by *, polarities of force and displacement are inverted).
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Figure 91: Polarity of rotational torques & angles on the ADAMS model.
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6.2.7. Model Parameterisation

The model has been extensively parameterised; almost every DOF can be set by
the use of numeric ‘design variables’ (30 factors in total). Considerable effort has
been taken to ensure that the parameters are correctly inter-related; e.g.
adjusting the quadriceps ‘g-angle’ will also appropriately shift the M-L dial
position, and setting the initial vertical (I-E) rotation will also reposition the
various linkages and actuator heads associated with vertical rotation. Table 13
lists the factors which have been parameterised within the model. The advantage
of performing this parameterisation is that these factors could now be used as
inputs for subsequent probabilistic studies (obviously, further specific factors for
material properties could be added subsequently). Note however that the
mechanical configuration of the KKS imposes certain additional limitations on the
variables; for example although the ‘shank’ and ‘thigh’ length may be varied in
the computational model, in reality they must be closely matched, or else the
knee will not articulate correctly (the KKS does not permit A-P position adjustment
at the hip or ankle; the design intent is that both hip & ankle flexion angles
should be approximately equal in order to mate correctly at the knee, and the two

segment lengths therefore should also be approximately equal).

Component malpositioning is based on the Grood & Suntay system [17]. Although
this system is intended for joint motions, it can also be used for the static
malpositioning of a component relative to the bone. This results in 3 independent
sets of terms, describing the position of the femoral component relative to the
femur, the tibial insert relative to the tibia, and the patellar button relative to the
patella. Each has 6 potential degrees of freedom (3 translations: S1, S2 & S3; 3

rotations: E1, E2 & E3), resulting in 18 malpositioning parameters (Figure 92).

Values Fixed Throughout Simulation

Tibial (shank) length adjustment

Femoral (thigh) length adjustment

Fixed femoral I-E rotation offset

Fixed femoral V-V rotation offset

Fixed quad coronal plane Q-angle

Fixed quad actuator lateral offset

Initial Values at Start of Simulation

Initial M-L position of ankle sled

Initial I-S position of hip sled

Initial ankle flexion angle

Initial hip flexion angle

Initial ankle vertical rotation angle

Initial ankle Ad/Ab angle

Implant Malpositioning

Femoral: 6xGrood & Suntay cylindrical axis system positioning variables

Tibial Insert: 6xGrood & Suntay cylindrical axis system positioning variables

Patella: 6xGrood & Suntay cylindrical axis system positioning variables

Table 13: Factors parameterised on the new KKS model.
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Figure 92: Grood & Suntay malpositioning for components on the KKS model.

6.2.8. Configuring Dynamic Properties of the KKS Model

Early testing demonstrated that the computational rig was less stable than the
physical rig, due to the lack of any dynamic resistance effects in the model. On
the in-vitro KKS rig there were two important classes of behaviour overlooked in
the initial modelling. Firstly, the assumption of ‘rigid’ fittings and joints was not
precisely correct; the parts have limited stiffness and so flex slightly, and the
joints also exhibit a degree of pliancy. These effects essentially ‘soften’ the
system. Secondly, damping & friction effects were found to be substantial; these
tended to attenuate high-frequency motions, and limit the rate of movement. This
combination of ‘softening’ and ‘dampening’ intrinsically improves the stability of
the system - with the (unintentional) benefit of making system control easier: the
system has less of the high-frequency characteristics which can lead to oscillatory

behaviour and instability under PID control.

It was apparent that the in-silico model could not mimic the behaviour of the KKS
unless these effects were included. To reflect these effects, various spring-
damper elements (e.g. on the vertical load axis) were deliberately added to the
physical simulator to mimic the in-vitro conditions and increase system stability.
However, the number of potential sources of damping, pliancy and friction meant
that it would not be possible to experimentally determine every term without
stripping the rig, individually performing a sweep of tests on every component,

and then testing the assemblies at each joint. This was beyond the scope of the
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time available for modelling & development work during the secondment at
Kansas University. Instead, some coefficients could be estimated based on
engineering data sheets (e.g. manufacturer’s friction coefficients for the branded
roller-bearings & servo actuators). Selected other components or assemblies
(those which could be readily removed & tested in isolation, or those which were
considered particularly influential) were removed for testing. This testing
included dead-weight loading for some spring stiffnesses, MTS tensile testing for
the Kevlar strap stiffness & damping terms (e.g. see Figure 93), and testing of the
upper hip assembly.

Stress-Strain for Kevlar Strap Tensile Test

40 ~
35 - 25mm strap sample
5cycles @ 0.0385Hz
o 30 - Peak force 2.3kN
% 25 - Peak strain 2.37%
o 20 -
& 15 -
10 -
5 - —— MTS Test Data
e - - - - Analytic Fit
0 - S ‘ : : |
0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

Strain

Figure 93: MTS tensile testing to determine analytic fit for strap stiffness/damping.

To capture any outstanding terms which had been neglected, the model included
global damping terms which could be ‘tuned’ to experimental data. To do this, a
series of triangular ramp-up/ramp-down waveforms were applied to each axis and
the system response was measured. This comparison revealed the considerable
influence of dynamic resistive terms. For example, see Figure 94; in this test, the
hip was driven through a triangle-wave for flexion angle, between 5° - 30" at a
lower rate, and between 5° - 17.5" at a higher rate. If there were no dynamic
losses (friction or damping), the resulting plot of quad angle versus flexion angle
would be a single curve (with no difference between quad force for flexing &
extending). However, there is dynamic resistance, so the resulting plot exhibits
‘dynamic hysteresis’. (Note: the term ‘hysteresis’ is used here in its
etymologically-correct sense of referring to any system which has path-dependant
behaviours; not just the elastic hysteresis effects most commonly associated with
the term. For dynamic hysteresis, the behaviour depends not only on the path
taken, but the rate of progress along that path).
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This dynamic resistance increases as the flexion rate increases (i.e. the hysteresis
effect is greater for the 5° - 17.5° sweep). The control-system tracking for this test
was well-tuned, so it may be deduced that the degree of hysteresis for the
quadriceps positional tracking is almost entirely due to mechanical resistances. It
is then possible to empirically or analytically fit terms to these results. Note:
similar hysteresis plots to those observed have been reported by other testers for
friction and damping effects on other in-vitro platforms [199, 200].

Damping Effects - In-vitro Rig Damping Effects: In-silico Model
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Figure 94: Damping comparison tests. Zero dynamic resistance would result in no
hysteresis. Both plots show more hysteresis for the shorter path (5-17.5°) with the
higher rate-of-change, but note the greater hysteresis in-vitro (left).

6.2.9. Controller Development

The KKS consists of both a mechanical system (the rig itself) but also importantly
a control system; both must be modelled correctly if the physical and virtual
simulations are to be comparable. There are two possible approaches to
modelling control feedback within ADAMS:

Internal: ADAMS features a basic ‘controls toolkit’ capable of constructing the
control system via a series of interlinked equations (for summing, gains, PID
controllers, etc). The advantage of this control system is that it is entirely internal
to ADAMS, providing performance benefits. However, there are a number of

important disadvantages.

e The GUI is based on a series of database objects with interlinked equations,
and cannot be readily visualised; this makes tracing connectivity and
debugging more difficult.

e The range of features and functionality within this toolkit is quite limited;
more sophisticated operations such as cross-compensating and signal slewing

cannot easily be implemented directly.
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e The controller is inherently ‘continuous’; although this gives a ‘smoother’
control response, it is not ideal when modelling the effect of a discrete digital
controller, and also results in slower performance, since iterative convergence
must account for the continuous controller response (this is not necessary for

discrete control).

External: 1t is also possible to interface ADAMS to external third-party software
applications, such as EASY5 or MATLAB/Simulink. This works by a process of ‘co-
simulation’; the control system determines the inputs for a given sample time
step, and invokes the ADAMS solver to solve the system mechanics for that single
step. The results are then output back to the control software, to evaluate the
required inputs for the next step. The obvious disadvantage of this method is
that extra software is required, so data must be transferred between both
programs and additional system memory is required to run both concurrently.
However, the advantages are substantial. Dedicated control software such as
Simulink provides a far more powerful toolkit with a more effective GUI for
visualisation during design & debugging. The ability to operate in discrete time-
sampled mode can actually improve performance considerably, even if the
number of individual solve steps is increased, simply because the iterative

convergence process is not coupled to the controller.

For these reasons, although the controls toolkit was explored, it will not be used
for these studies. It was decided to investigate the option of a controller system
in MATLAB/Simulink, based on availability of software & licenses. The ADAMS
model was configured such that both the mechanical actuator inputs &
force/displacement measures could be used as inputs and outputs for a ‘plant’
subsystem within a hand-coded Simulink-based control system. In theory, this
control system could be augmented to include capabilities beyond the current
KKS controller (e.g. tracking ‘virtual’ measures such as M-L load split or contact
pressure). However, for these corroboration tests the control scheme was
designed to mimic the extant PID feedback control and channel cross-coupling
for the controllable 5 axes of the in-vitro rig. In the computational model as for
the real controller, force or displacement control can be toggled by switching
between different feedback channels. (Note that different PID values are required
depending on the feedback input used). Some other minor features, such as
signal filtering, load limiting, and display output, were also included. The
complete Simulink controller is shown in Figure 95. The GUI layout makes
extensive use of colour-coding, masked sub-systems & signal routing to simplify

and organise the controller layout - this is necessary because of the control
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system complexity. For illustration of the ‘true’ controller path layouts, a single

control path (for quadriceps-driven knee angle control) is shown in Figure 96.
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Originally, it was hoped that PID controller settings could be imported directly
from the KKS Instron 8x00 6-axis servo-hydraulic controller. Unfortunately, the
internal PID values for the controller software were based on a proprietary system
with logarithmic-scale sample-based units. By comparison, the ADAMS/Simulink
controller was designed to use true Sl units for its PID controls, on a linear scale.
Additionally, the polarity of some inputs and feedback channels are inverted.
Hence the extant controller settings could not be used, and the model had to be
re-tuned from scratch. Unfortunately, this means that the controller tuning on the
in-vitro & in-silico models does not correspond exactly, introducing an additional
potential source of discrepancies during correlation testing. In practice,
experimental controller settings are changed from test-to-test, and so to
accurately corroborate this in-silico, the controller values are also test-specific.
However, as a general indication of the sign magnitude of the different PID terms,

tuned PID values for a ‘typical’ gait cycle are listed in Table 14.

Quad | Vertical | Ankle Lateral | Vertical

Load Load Force Force Torque
Proportional (P) 100 -4 -4 S 50
Integral (1) 500 -2 16 3 200
Derivative (D) 0 -1 0 § 5

Table 14: Typical PID controller values for the KKS (gait cycle).
6.3. Deterministic Corroboration Testing ®

6.3.1. Validation Test-Cases

With the model development complete, testing and corroboration were
performed. A series of simple test profiles were devised, to be run in parallel on
both the physical rig and the computational model. The test would first be run on
the KKS rig (which did not track the desired inputs precisely). The feedback data
was then collected and used to drive the computational model. This meant the in-
silico case accounted for the tracking errors in the in-vitro controller, so the focus

was on the only mechanical behaviour of the system.

¢ The validation testing in this section is reported in the conference proceedings:
"Verification of a dynamic knee simulator computational model”. 2008, A.N. Reeve, M.A.
Strickland, L.P. Maletsky and M. Taylor. In: Proceedings, ASME SBC 2008 (Florida, USA).
The present author was responsible for much of the computational model development

and testing, and co-assisted with the test case verifications.
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Only feedback data for position & uni-axial load cells was used at this stage; the
tri-axial load cell data was kept ‘blinded’. After the in-silico model had been
simulated, the experimental data from the tri-axial load cell could be compared to
the computational predictions, to give an independent comparison between the
in-vitro and in-silico models (i.e. the system had not been ‘tuned’ to this data).
This procedure could then be repeated vice-versa, using the ADAMS model first to
obtain feedback data to drive the physical KKS.

The initial family of test-case profiles devised focused mainly on sagittal-plane
kinetics. These initial tests were intended to be based on purely sinusoidal
waveforms, to limit the complexity of the system response. (Subsequently, the
tests would be extended to include more complex loading; e.g. applying constant
loads to the M-L sled or vertical-torque axis).

An initial set of test cases were devised and run - however, these profiles used

rectified sine-waves, i.e.|sin(t)|. This results in a non-smooth inflexion at the end

of each cycle (as the polarity of the sine-wave inverts) - see Figure 97. The
inclusion of these tracking errors made corroboration between the in-vitro & in-
silico cases more uncertain. Note however that the in-silico model was able to
track better than the in-vitro rig under these conditions. This is a reflection of
how much faster and easier it is to tune the controller computationally, thanks to

the intuitive GUI-based controller and fast solve times.
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Figure 97: Initial ‘rectified’ sine-wave profiles. In-vitro tracking for the rectified sine-
waves was inaccurate due to the inflexion at 15" hip flexion. These profiles were

abandoned in favour of ‘true’ sine-waves.

Subsequently, a second family of profiles were devised, using pure sinusoids to
avoid the inflexion effect; these profiles are outlined in Table 15. The quad force
was used to vary position control of the hip to track a ‘true’ sine-wave, whilst the

force-controlled loads applied to the other axes were held constant. Tracking for
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these profiles was much better on both the rig and in-silico model, simplifying the

corroboration process.

Test | Quadriceps | Vertical Lateral Vertical Ankle

Case Force Load Force Torque Force

TCI 75N - - -

TC2 75N 30N - -
Sine-wave,

TC3 range ~]O° - 75N '3ON - -

TC4 | 407, period | 75N - 3N-m -
10-seconds

TC5 75N - -3N-m -

TC6 75N - - 75N

Table 15: Revised test-cases, with pure sinusoid ‘position’ waveform (quad axis).

Initially, the root-mean-square (RMS) error was still quite large even with the new
profiles (as high as ~15% for the sagittal plane kinematics). This was investigated
further, and it was found that considerable error was induced due to in-vitro
malpositioning. In the ADAMS model, the components were assumed to be in
perfect alignment. However, on the KKS simulator, the components had been
cemented to their fittings with slight inadvertent misalignment (the femoral

component was placed a few degrees in varus, and slightly externally rotated).

Since the in-silico model had earlier been extensively parameterised, it could
easily be re-positioned to match the in-vitro rig misalignment. This was done
accordingly and the simulations re-run. Once this was accounted for, sagittal
plane average RMS error dropped to around 5%; see the comparison in Figure 98.
This means that the differences between the experimental and computational
results are on the same order as variations due to control system tracking and
sensor measurement errors. The cycle-averaged RMS errors for the six revised
test cases are summarised in Table 16 (both before and after accounting for

misalignment).
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Figure 98: Sagittal-plane comparison (here shown for test-case TC6); cycle-averaged
error is ~5%. Left: A-P force (Fy), Centre: axial force (FZ), Right: I-E torque (MX).
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Test-case Initial Re-aligned
TCI1 8.6% 4.1%
TC2 12.4% 5%
TC3 13.1% 4.8%
TC4 10.5% 4.5%
TC5S 10.2% 4.7%
TC6 14.9% 5.3%

Table 16: Averaged sagittal RMS errors across the profile cycle, comparing initial
(perfect alignment) & re-aligned (to reflect the misalignment in-vitro).

These test-cases demonstrated the ability of the in-silico model to match the
output of the in-vitro rig. Next, simple test profiles were devised on the in-silico
model to drive the rig (i.e. corroborating in the reverse direction). Figure 99
shows a ‘constant compressive load’ profile; in which one axis drives flexion,
whilst the other actuators compensate to maintain a constant axial load at the
knee. Two test cases were created, with hip flexion angle (position control) driven
by quad-force in one and vertical load and in the other. Note that the achieved
tracking is very good for both force- and position-control (after the first 10-

second cycle, which is a ‘transient’ and is discarded).

Force-Control Tracking Position-Control Tracking
650 (Quadriceps Force Axis) (Vertical Force Axis)
-0l T o 30 4
= Feedback = P 7’
€ 700 | < p
o 825 1 -,
S 750 - - — = Command = P
rd 3 7’
2 -800 - % 20 >
b L v
= -850 1 = o7 Feedback
i S 15 ”
S 900 - T S| TnesTs s ‘; - — — Command
Qo I
‘950 T T T T 1 ]0 T T
0 10 20, 30 40 50 10 ) 20 30
Time (s) Hip Angle - Command (°)

Figure 99: Example validation test (sagittal plane loading only). Constant 200lb
quadriceps load (left), with 15°-30° sine-wave position-control on vertical force

actuator (right). Transient 1 cycle (0 - 10 seconds) is discarded.

This profile was generated on the model, and then used to drive the simulator.
Figure 100 shows the ‘achieved’ versus ‘desired’ tracking for the position control
axis and the vertical load axis; the close agreement indicates the in-vitro profile
has quite successfully been devised by the in-silico model. Once again, the
tracking is poorest when the simulator encounters non-smooth inflexions in the

profile; Position tracking (left) exhibits almost no error; vertical load (right) has
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some high-frequency oscillation ‘spiking’ at mid-cycle (at maximum flexion), and
noticeable deviation from the desired profile at the end-of-cycle inflexion.

Despite these minor differences, the sagittal tracking corroborates to within a few
percent (note that this is less than the errors due to malpositioning shown in the
previous test-cases). This demonstrates the concept of using the in-silico model

to generate profiles for use in-vitro.
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Figure 100: In-vitro KKS rig feedback for constant-load profile (using input from in-
silico model). Top: force-feedback comparison for vertical load. Bottom: position-

feedback comparison for hip angle.

6.3.2. Profile Generation & Testing

The computational and experimental simulators had been corroborated together

to within an acceptable tolerance level; it was now possible to proceed with more

physiologically-representative test conditions. Data for a wide range of activity

profiles was collated from the literature, including profiles for gait [21-24, 35, 43,

44,91, 92], stair ascent [21, 26, 28, 29, 35, 40, 175], stair descent [28, 201] and

deep-flexion activities such as squat & chair rise [27, 35]. These data profiles
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were then used as the input for the in-silico model. This did require some
adaptation of the Simulink controller on a profile-by-profile basis (to account for
different starting positions, or to change terms in the controller). Figure 101
illustrates the tracking achieved for one particular profile (gait data from D’Lima
et al [35]). The feedback from the in-silico model could then be used to drive the
KKS rig. Some of these profiles generated using the new ADAMS model have
subsequently been used for cadaveric TKR tests by KU as part of ongoing
industrial research. This gives good confidence going forward for the in-silico

model to be used in a ‘stand-alone’ capacity for probabilistic studies.
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Figure 101: Profile tracking for the ADAMS model (based on in-vivo gait data [35]);
feedback vs. demand for flexion angle and axial & A-P shear force, with an example

actuator feedback waveform (quadriceps force).

6.4. Probabilistic KKS Modelling

6.4.1. Methodology

The in-silico KKS model is implemented differently to the previous MBD-based
models; therefore before including a probabilistic ‘wrapper’ for, it is necessary to

re-evaluate the most appropriate statistical software and models to use.
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The most important difference is the use of co-simulation between
MATLAB/Simulink and ADAMS; this means that ADAMS is now run ‘externally’
from within the MATLAB environment. As such, ‘internal’ applications (such as the
native ‘Insight’ module) cannot be used. Instead, as discussed in Chapter Five, the
simplest option is to directly encode a DOE ‘wrapper’ using the native m-file
scripting language in MATLAB. This approach was used with the KKS model, as
illustrated in Figure 102.

The input variable perturbations are read in as a raw ‘matrix’ (this can be
copy/pasted from another application such as ‘Insight’, or generated directly).
These values are then wused to individually run co-simulations with
Simulink/ADAMS; at the end of each simulation, the data is retrieved and stored
(again in matrix-form) using comma-separated-value (*.csv) files. The data can
subsequently be transferred into MATLAB, ‘Insight’, MS-Excel or any other
suitable application for post-processing. This approach is somewhat more
cumbersome than the earlier ‘Insight’-based models, but is necessary to
accommodate the co-simulation of the control-plant.

——~_")|PROBABILISTIC WRAPPER (WATLAB) — _I

——1I JCONTROL PLANT (SIMULINK)  loops everyg
INP (N) time-step loops every
trial I
|
| | |
' !
M
| |
I |
| |
I I I MECHANICAL
I_ PLAN _(ADAMS) |

Figure 102: Concept structure for probabilistic study with KKS model. The MBD-
based mechanical ‘plant’ model is nested within a controller ‘wrapper’, which in turn

is nested within a probabilistic wrapper managing the multiple trials.

Note that this basic model is not capable of adaptive sampling (as discussed in
Chapter Three); however, it is adequate for a conceptual study. Also, the KKS-
based trials are considerably slower than the simple SKS-based models (~30
minutes versus ~5 minutes); coupled with the additional doubled overhead of

wear-post-processing for both the tibiofemoral and patellofemoral joints, a full
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trial and post-processing can require almost an hour. As such, full MCST studies
are more computationally expensive, and fast RSM-based methods are a more
attractive option. However, it is necessary for this first analysis to use MCST, to
demonstrate the linearity of the system (in order for subsequent studies to use
RSM with greater confidence).

Therefore, a 1000-trial MCST will serve as the ‘baseline’ probabilistic study. The
study is based on the gait profile by D’Lima et al [35], as shown in Figure 101. For
this first study, eight variables were selected: malrotation of the three angles for
positioning of both the femoral and tibial components (as in earlier studies), as
well as two new variables reflecting the full lower-limb scope of the model: The
initial ‘height’ of the patellar implant (I-S position) which is known to affect the
quadriceps extension-moment, and the quadriceps actuator ‘dial’ position (which
controls the Q-angle on the in-vitro rig. These last two variables alter the effect of
the quadriceps force actuator, which is a step towards more physiologically-
representative loading compared to the tibiofemoral knee-wear simulators. The
input factors are summarised in Table 17; for all variables, a Gaussian

distribution was used, cropped at +30.

Factor Abbreviation Mean S.D.
Femoral F-E Rotation Fem_FE 0° 2°
Femoral I-E Rotation Fem_IE 0° 2°
Femoral V-V Rotation Fem_VV 0° 2°
Tibial ‘Tilt’ (F-E Rotation) Tib_FE 0° 2°
Tibial I-E Rotation Tib_IE 0° 2°
Tibial V-V Rotation Tib_VV 0° 2°

Patellar Clamp ‘Height’ (I-S) Pat_IS Omm 2mm
Quad Dial Angle Q_Dial 0° 2°

Table 17: Input factors for initial KKS probabilistic study.

A wider range of output measures were monitored for this study. The standard
metrics introduced for the tibiofemoral knee wear simulators are preserved here
(e.g. A-P translation, I-E rotation and contact pressure). In addition, for the patella
kinematics (tilt, rotation) and contact pressure were also monitored. Wear results
were evaluated for both the tibial insert and the patellar insert, using the different
algorithms introduced in Chapter Four. Besides this, the different force-feedback
(uni-axial and tri-axial sensors) and displacement-feedback sensors on the rig

were also monitored for each trial.

This represents a very large total data set and only selected results of interest are

presented in the following section (since this concept study is only intended as a
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demonstration of probabilistic methods for the validated in-silico KKS model). An
important issue for probabilistic studies in general is condensing the volume of
data produced, to make it concise, relevant and accessible to designers and

clinicians.

6.4.2 Results & Discussion

The volume of data generated by a probabilistic study on the KKS is considerable;
it is possible to retrieve force feedback and displacement feedback for the entire
rig as a whole, as well as the tibiofemoral and patellofemoral joints in isolation.

Here, a number of pertinent observations are made regarding selected results:
KKS Rig Feedback: Tracking Responses

The probabilistic study was run in conjunction with a controller; for some specific
channels (flexion angle, axial load), this means that the controller is working to
reduce any variability for those axes. This is apparent in Figure 103; for this
simulation, quadriceps force is used to control flexion angle. Consequently, there
is almost no flexion-angle variability, whereas the quadriceps actuator effectively
compensates for the variability in flexion angle, and hence shows very high levels
of variability itself. This is important, conceptually, when devising the control

system for a probabilistic study (as will be discussed further subsequently).
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Figure 103: Comparing flexion angle (controlled) and quad force (driving); 5%-95%

envelopes.
Tri-axial Load-cell Feedback

The six channels from the load-cell (Figure 104) re-emphasise the above
observation; three of the channels are ‘controlled’: A-P force (F), axial force (F)
and I-E torque (M)). The other three are uncontrolled. The differences are
immediately apparent. Putting certain axes under tight closed-loop control
effectively constrains other available degrees of freedom to compensate.

Ultimately, this leads to higher variability in the uncontrolled channels.
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Figure 104: Response envelopes for the load-cell forces & moments (5%-95%). Note:

axes pre-scripted with an asterisk (*) are under direct force-control.

This raises an important question for the pre-clinical test designer: what is the
aim in incorporating variability into a study? In this case, as a baseline analysis,
the controller was commanded to track the same input loads and displacements,
regardless of the implant mal-alignment. However, in reality, severely misaligned
components would probably lead to adaptations in the nature of the gait cycle
kinematics and kinetics; in other words, a single ‘target’ profile would not be

applicable. In this case, constraining such a tightly-controlled profile leads to a
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wide imbalance between a number of control channels with very limited
variability, and a much higher level of variability on the other uncontrolled axes. It
may be important for future modelling efforts to re-evaluate this approach, to

achieve more physiologically meaningful variability studies.
Tibiofemoral Mechanics

The isolated feedback for the tibiofemoral joint might be compared to the earlier
tibiofemoral probabilistic simulations in Chapter Five. The profiles are not strictly
comparable (besides differences in the in-vitro platform, the input profiles are
also different: the earlier studies were based on ISO-prescribed gait, whereas this

study was based on telemeterised data), nonetheless, comparisons can be drawn.

Figure 105 shows the kinematic envelopes. The A-P envelope shows similar
trends to the earlier models. The input variability (standard deviation of
misalignment angles) is lower; however, more factors were included in the earlier
studies, which would increase the envelope size. The envelope for I-E rotation is
quite different; it reveals a very high level of variability for the KKS in swing
phase. (This swing-phase variability is also apparent for some of the force-

feedback and load-cell data).

Tibial A-P (mm) Tibial I-E (°)

Figure 105: 5% - 95% Envelopes for tibiofemoral kinematics: A-P (left) and I-E (right).

The peak CP (Figure 106) is higher for the KKS data, despite the fact that the
input profile specifies lower axial forces than the ISO standard (~1800N
compared to 2600N). CP variability is also high; given that the contact forces are
well-controlled this suggests that the contact area is quite variable, depending on

component mal-positioning.
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Figure 106: Peak CP for tibial insert (5%-95% envelope).

Patellofemoral Mechanics

The KKS patellar kinematics are not strictly representative of in-vivo kinematics;

the KKS ‘patella’ assembly has no lateral constraint, so higher levels of M-L

translation and patellar tilt are possible. Figure 107 illustrates this; I-S translation

and patellar rotation are both relatively well-constrained. However, the M-L

translation and patellar tilt show very high variations (translations up to 30mm

and

rotations up to 30°).

PatellaI-S (mm)

Patella Rotation (°)

Figure 107: Patellar kinematics: I-S translation (top, left) and patellar rotation (top,

right), are well-constrained. M-L translation (bottom, left) and patellar tilt (bottom,

right) exhibit excessive variability.



These extreme values are not physiologically representative; this illustrates the
important role of the para-patellar retinaculum and medial patellofemoral
ligament in controlling patellar kinematics. Note that in the in-silico model, the
degree of tilt and M-L translation was found to be very sensitive to the friction
and damping at the patellofemoral joint - once again demonstrating the
importance of accurately characterising system dynamics between the in-vitro and

in-silico models.

Patellar peak CP correlates closely with the quadriceps-actuator force (Figure
108). This would be expected, since this actuator provides the constraining force
which is principally responsible for the compressive load on the patella. Note that
the periods of lower contact pressure correspond to the greater variability in M-L
translation and patellar tilt - the patellar motion is more erratic when the
constraining load is reduced. These pressures reported for the patellar are well-
beyond the range of linear-elasticity for UHMWPE; in practice rigid-body modelling
will not yield meaningful values for contact pressure under such extreme
conditions (inspection of the polyethylene components on the in-vitro rig
demonstrates that visible plastic deformation of the components does occur
under normal use). Therefore, these values must be interpreted with some

caution, especially for the highest reported pressures.

Patella Peak CP (MPa)

0% 20% 40% 60% 30% 100%

Figure 108: Patella insert peak contact pressure, MPa (5%-95% envelope).
In-silico Wear Prediction

The tibiofemoral wear results compare well to previous studies with tibiofemoral
knee wear simulators. The different wear models all predict a ‘mean’ wear rate in
the region of ~7-9 mm3/MCycle (Figure 109). Once again, Archard wear is the
least variable, with a standard deviation of only ~0.25mm3/MCycle; for the CS-
based models the wear variability is many times higher. Once again, a

characteristic asymmetry is apparent in the wear PDFs; the ‘tail’ of the
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distribution for top-end wear rates predicts a considerable proportion of high-

wear outcomes, given this level of input variability.

in-silico (Archard)
— in-silico (standard CS)
in-silico (CS without CP)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Probability Density (not to scale)

In-silico Predicted Tibial Wear Rate (mm? / MCycle)

Figure 109: Predicted KKS tibiofemoral wear rates for different wear models (PDF

magnitudes scaled for clear comparison in figure).

The patellofemoral wear results are less reliable, in light of the under-constrained
kinematics for tilt and M-L translation (Figure 110). The ‘top-end’ wear rates
(highest values in the PDF) are unrealistically high, owing to the inflated sliding
distances from the exaggerated kinematics. However, the mean-value predictions
for the patellofemoral wear (~2-5 mms3/MCycle) are comparable to the limited
available data for patellofemoral wear in-vitro (e.g. Ellison et al reported rates of
2.2+1.2 mm3/MCycle [202]).

in-silico (Archard)
—— in-silico (standard CS)
— jn-silico (CS without CP)
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In-silico Predicted Patellar Wear Rate (mm? / MCycle)

Figure 110: Predicted patellofemoral wear rates for different wear models (PDF

magnitudes scaled for clear comparison in figure).

It is possible to use SA to determine the sensitivity of this variation in wear to the
different input factors. Figure 111 shows the linearised sensitivity factors for the
tibial and patellar wear rate, based on the “M-L/M-L+A-P” wear model. The results
reveal some similarities, but also notable differences between the factors

contributing to wear of the patellar and tibial inserts.
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SA: Tibial Insert Wear (M-L/M-L+A-P)
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Figure 111: Sensitivity analysis results for tibial wear (above) and patellar wear

(below). Wear model analysed is the ‘M-L/M-L+A-P’ formulation.

For the tibial insert, wear is dominated by the tibial tilt (Tib_FE), with the other
mal-rotations also moderately strong. This is comparable (but not identical) to the
findings of Pal et al [179] - note that their study was based on the SKS knee wear
simulator, so results would not be identical (friction, which was the main factor in
that published study, was not varied in this initial KKS probabilistic study). For the
patellar insert, the sensitivities are more distributed; some of the mal-positioning
factors are still important, but the quadriceps dial angle (which directly affects
patellar tracking) is now also more influential. In both cases, the F-E offset of the
femoral component has minimal influence; the clamping height of the patellar
insert on the Kevlar ‘QT’ strap is also relatively unimportant. Note that these
sensitivity factors are design-dependent and activity-dependent, so general rules
cannot be inferred from this one data-set as to which factors are influencing wear
under other test conditions. A similar probabilistic approach would be needed to

investigate on a case-by-case basis.
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The KKS is not used as a wear-assessment platform in-vitro (historically, it was
decided by the original designers after early work on the rig not to pursue this
line of development, for various practical reasons). Consequently, it is not
possible to corroborate these wear results. This is a disadvantage of the KKS
model; it can be used to corroborate the kinematics and mechanics of the
platform, but cannot be used to further explore in-silico wear prediction

algorithms.

The study demonstrates conceptually the application of probabilistics to the KKS
in-silico model, and raises some important questions about the control-
philosophy for studies of variability on the KKS. This work could easily be
extended to include a wider range of factors, different ADL activity profiles, or

indeed control-system modifications.

6.5. Discussion

The studies in this chapter represent a considerable degree of experience gained
through modelling and corroborating the KKS platform. Although the target of
the models is a different platform to the work in previous chapters, many of the

lessons learnt are more broadly applicable.

It is clear that having better experimental data available (in terms of quantity and
quality) permits much better corroboration of the computational model. For the
KKS, the model is much more specific to a particular hardware configuration;
input from CAD data to validation test feedback has been used to ensure the in-
silico and in-vitro models are well aligned. This gives much greater confidence in
results, since the test results can be matched directly to real-world data. A two-
way collaboration between experimental and computational researchers means
that the validation process has been pro-actively designed (i.e. choice/number of
tests, degree of complexity etc); not merely attempted reactively post-hoc. This
resulted in a more systematic, more comprehensive validation process, where
complexity was progressively phased in and so the design & test process is more

structured.

Note that although the initial model is quite specific, it is of course possible to
generalise or customise the model, beginning with the corroborated version as a
‘baseline’; the penalty trade-off is that progressive modifications make the model
more flexible to new studies, at the cost of diverging further from the

corroborated benchmark.

The in-silico model of the KKS developed represents a highly useful model, with
the potential for further usage and development. The model has been used
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during the course of these studies as a test-bed for developing new activity
profiles, and also to explore potential rig modifications. These and other uses
(e.g. predicting behaviour changes for cadaveric knee specimens) could be
developed further, or combined with probabilistic methods to better-understand

uncertainty in the KKS testing.

Lessons can be applied from this modelling approach to the world of in-vitro knee
wear testing. A more specific, targeted corroboration would result in a better-
defined, more accurate in-silico model; this could then be used as a baseline for
further study. However, as has been demonstrated, this requires sound
collaborative links as the prerequisite for better cross-disciplinary co-operation. It
is apparent that the complexity of the target platform need not be an issue; the
KKS is far more complex, mechanically and in terms of control systems, than the
knee wear simulators. However in spite of this complexity and the number of
unknown parameters affecting the dynamic behaviour of the KKS, corroboration
to within good accuracy (>95%) was possible. In light of this, it should clearly be
possible to achieve better corroboration with the simpler knee wear simulators.
The final chapter describes attempts to develop such an advanced model for one

specific knee wear test rig.
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CHAPTER SEVEN - ADVANCED KNEE-SIMULATOR
CORROBORATIVE MODELLING

Demonstrating computationally-enriched pre-clinical analysis methods for the
AMTI Knee Wear Simulator

7.1. Introduction

The studies in Chapter Four demonstrated that the MBD environment is well-
suited to high-speed studies of TKR mechanics in-silico wear assessment. Chapter
Five further demonstrated that probabilistic methods can be used in conjunction
with these baseline models for a more holistic picture of TKR performance.
Chapter Six showed that close corroboration of in-silico models with in-vitro data
makes the models much more robust and gives much greater confidence in the

results.

In this final chapter, the capabilities, methodologies, and lessons learnt in the
previous work are integrated into a highly-robust, extensively corroborated
validation model for a specific knee-wear simulator design, including
computational wear modelling and, ultimately, a probabilistic study
demonstrating the corroboration between in-silico and in-vitro stochastic data

sets.
7.1.1. The AMTI Knee Simulator

The modelling in this chapter is targeted specifically at a commercial knee
simulator design by AMTI. This simulator is used widely in industry, and through
industrial collaboration links, it was possible to access high-quality data and
research expertise for this platform, which is essential for robustly corroborating

any computational model to a high standard.

The AMTI-Boston KS2-6-1000 (Figure 112) is a 6-station servo-hydraulic knee
simulator, conceptually similar to the other commercial rigs available for
tibiofemoral knee wear testing (e.g. the SKS, the MTS-Bionix or Leeds/ProSIM
designs introduced in Chapter Two). The six stations are divided into two ‘banks’
of three (left and right), to compare different designs under test. Note that the
stations are not truly independent; feedback is based on the first station only,

and common inputs must be applied to each station in the bank.
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Figure 112: AMTI-Boston KS2-6-1000 Knee Simulator (Image: Advanced Mechanical
Technology, Inc.)

There are some important design configuration differences between the AMTI rig

and other commercial designs, as described below:

e The rig is capable of both force-driven and displacement-driven operation;
however when running under force control, unlike the SKS, it does not use
‘physical’ spring buffers to mimic soft-tissue restraint. Instead, it uses a
proprietary  ‘virtual’ spring-restraint system (using software-based
compensation of the driving inputs). This has the advantage that the soft-
tissue effects can be re-programmed and customised by the user; however it

does introduce an additional degree of complexity to the control system.

e The physical configuration (i.e. how the different degrees of freedom are
modelled) is quite different to the SKS; for instance there is no single ‘hinge’
for varus-valgus; both V-V and M-L motions are combined with a roller-bearing
system. Figure 113 illustrates the configuration for a single-station of the rig.
Unlike other rigs, the AMTI simulator applies A-P force and displacement to
the femoral component, with all the stations in that bank linked together and
driven by a single central actuator (i.e. the stations are not independent). Note
however that the force-feedback is measured beneath the tibial platen; this
means that inertial effects between the points of application and measurement
need to be considered.
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Figure 113: Schematic for single station of AMTI simulator: exploded view and (inset)

in-situ.

7.1.2. Modelling Strategy

Because construction materials, dimensions and other details were known or
could be measured directly for the parts in the rig, it was possible to construct a
faithful representation of this configuration in-silico. Further, through industrial
research links, it was also possible to run certain tests specifically to measure
dynamic characteristics of the system (besides using other test data to validate

the model).

Note that the machine operates under both displacement- and force-control.
Therefore there are effectively two quite distinct modes of operation, which need
to be characterised and corroborated separately. Displacement control is
conceptually simpler, and so was addressed first. A ‘crawl-walk-run’ incremental

approach was taken to modelling. Initially a very basic mechanical model was
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constructed; subsequently the various properties (inertia, friction and damping)
were measured, estimated, or ‘tuned’ to experimental data. Finally, more
sophisticated features (controller modelling for force-driven operation and in-
silico wear prediction & visualisation metrics) were incorporated once the baseline
mechanical model was validated. Ultimately, the integrated model could be used

for a probabilistic analysis.
7.2. Displacement-Driven Modelling: Corroboration

7.2.1. Modelling Details (Methodology)

The first target was a baseline mechanical model of the AMTI rig, to be operated
in displacement-control. This rig has been the target of previous in-silico
modelling. Zhao et al used MBD methods to model the AMTI simulator [203], but
this model was mechanically very simplistic and neglected the friction, damping

and other details.

Lanovaz et al [200, 204] made a more robust effort to corroborate the rig using
FE-methods, exploring the effects of inertia, friction and pliancy; however this
model failed to address dynamic damping terms so was less accurate for force
control, and did not include in-silico wear prediction; it also used deformable FE,
and so was very slow (7% hours even with 8 processors) compared to MBD or

rigid FE methods.

For the present work, the extant SKS model was used as the baseline for the new
model, and overhauled to reflect the AMTI configuration. The principle changes

are highlighted below:

e Model domain scope: the SKS model included only the tibial and femoral
components; the actual mechanics of the rig construction were ignored. Here,
the rig fittings have been explicitly modelled; the model includes the tibial
platen and roller-bearing assembly down to the load-cell. This allows the
model to include additional sources of inertia, friction and damping; e.g. the
bearing friction between the platen base and the brass roller bearings is very
variable and can sometimes be quite high; this would be neglected if the

assembly was not modelled.

e Tri-axial load-cell: integral to a more robust corroboration is accurately
predicting the forces measured by the load-cell. To facilitate this, a series of 6
measures (3 forces and 3 torques) were included at the same relative location
as the in-vitro sensor, and with polarities to match the experimental data
(Figure 114).
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Figure 114: Orientation and polarity for load-cell measurements.

Inertia: the inertia of the tibial assembly is particularly important, as this
component forms part of the control-feedback loop (see later section on force-
driven controller modelling). The mass and moments of inertia for the platen
were calculated based on geometry and density, with the mass verified by
direct measurement. For the femoral assembly, mass is less critical,
approximate values were assigned for the components based on density
estimates (on the order of ~3kg); sensitivity tests demonstrated the model is

insensitive to changes in femoral assembly mass under displacement control.

Observation of the rig suggested that there was some pliancy on the femoral
axis (especially in the A-P direction). Lanovaz et al modelled this as a linear-
elastic deflection of the F-E shaft [200], however investigation of the force-
displacement relationship suggests a nonlinear ‘backlash’ effect. Whatever the
source, there is a noticeable hysteresis effect between force and displacement,
which must be accounted for in the computational model. The result can be
up to a ~0.5mm difference between the reported and true A-P displacements
for force-driven gait profiles. Note that this is still an issue for displacement-
driven tests, since the system can only track the measured (not actual)
displacement. The discrepancies in displacement may be small, but for a
conformal implant under test, this corresponds to large differences in the A-P
shear force; e.g. see Figure 115, where the predicted A-P force almost

doubles, if the flexion arm pliancy is not included in the model.
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Figure 115: Effect of including F-E arm pliancy on A-P contact forces.

7.2.2. DD Corroboration Test 1: ‘High-Kinematics’ Gait Test

With a baseline model developed, corroboration testing was performed. In-vitro
data was available for the two CR FB knee variants from Chapter Four (S/C and
U/C). Two standard profiles had been tested under displacement-control; ISO-gait
and a ‘high-kinematics’ (HIKIN) alternative (based on the profile in [44] - see
Figure 116).

HIKIN Flexion Angle () HIKIN Axial Force (kN)

Angle ()
Force (kN)

0 T T T T 1 0.0 T T T T 1
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
% Gait % Gait
HIKIN A-P Translation (mm) HIKIN I-E Rotation (°)

Rotation (°)
[an]

Translation (mm)

Desired Desired
T . - S -4 - .
T A Achieved| | | ====- Achieved
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Figure 116: Input Waveforms for ‘HIKIN’ profile. Note ‘achieved’ kinematics are

slightly smoother around sudden inflexions.
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Various tests were corroborated, but the S/C insert with HIKIN will be focused on
here. The AMTI simulator does not perfectly track these profiles (which require
very sharp inflexions in the A-P and I-E profiles); the precise tracking varies
depending on the implant under test, but there is always some deviation between
the desired and achieved profiles. In Figure 116 the ‘desired’ and ‘achieved’
waveforms are compared. The main differences are around the sharp inflexions;
the differences are small, but the impact on force-feedback (due to the higher-
order derivatives of these inputs) is considerable. For corroboration testing, the

‘achieved’ (feedback) waveform was used (when available).

Note: for the AMTI rig, A-P translation is defined as the distance from the
centreline of the fixed F-E axis to the centreline of the tibial platen; a positive
value indicates the ‘femur’ is more posterior relative to the ‘tibia’. The initial
value (~15mm) is the ‘dwell point’; i.e. the point where the components are in
their ‘settled’ position under nominal compressive load at full-extension. This is a

design-specific value (e.g. the value is generally lower for the U/C design).

The profile was simulated in-silico, and the resulting tri-axial force predictions
compared to the in-vitro feedback data. Initial studies revealed that certain

factors in particular were very influential:

e ‘Dwell point’: although the dwell point is theoretically prescribed by the profile
offset, in practice small errors in the simulator setup, component positioning
and the axis ‘zero’ positions can result in variability (generally < Tmm) in the
exact dwell point. This is small, but sufficient to make a large difference
(several hundred Newtons) to the sagittal-plane force-feedback (especially F,,
the A-P force component). For any individual test results, the dwell-point value
can be ‘tuned’ to match; more generally the variability is better included as a

factor within a probabilistic study framework.

e Friction: tibiofemoral friction is known to be important (e.g. see the results of
the probabilistic studies in Chapter Five), and for the AMTI simulator the
friction coefficient makes a particular difference to the F, force (and hence M,
moment also). However, the friction coefficient is test-specific; POD studies
have shown friction is much higher for more complex motion paths [205];
therefore tuning a ‘global’ friction constant for any model is less than ideal.
Nonetheless, early exploratory studies comparing the in-silico model with in-
vitro data suggest that values at the lower end of the reported range seem to
best match the experimental results (0.01 < y < 0.02).
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e Friction from the roller bearings is also important; the M-L force (F) and Ad-Ab
torque (M) are most sensitive to this factor. Experimentally, the bearing
friction (ideally zero) is often surprisingly high (u up to 0.1) and can

considerably reduce the freedom of motion about the axial-load pivot.

e The ‘pliancy’ of femoral arm was also important; this seems to vary from
station to station; values of TkN/mm are typical, but variations in the range

+50% are needed to account for the experimental feedback data.

Because of the high experimental variability observed with all of these
parameters, ‘tuning’ is necessary for any specific data-set. For the present data
set, values were determined based on an iterative tuning process (using the
localised sensitivity to gauge the correction factor required); the final values are
listed in Table 18.

Parameter Value
A-P dwell point 12.25 mm
Tibiofemoral friction coefficient 0.01
Roller-bearing friction (M-L) 0.06
Roller-bearing friction (V-V) 0.03
Femoral axis pliancy 1000 N/mm

Table 18: Values used for the S/C HIKIN experimental corroboration.

Using these values, good corroboration was achieved for all 6 axes of the load-
cell feedback. Results are shown in Figure 117. Note that the experimental data is
presented for all 6 stations running the same test - this immediately shows the
high degree of experimental variability from station to station. This indicates that
it would never be possible to achieve an ‘exact’ match with deterministic studies
alone; a probabilistic study is the only way to corroborate the system given the

variability present.

If the ‘average’ of these experimental values is taken, it is possible to report
guantitative error levels (see Table 19). Note that although the percentages are
high on some axes, (e.g. F) the actual absolute errors are low. This table must be
interpreted with caution, given the inherent experimental variability - if the
individual experimental feedback traces were compared to the averaged mean
trace, many of them would appear to exhibit worse ‘errors’ than the
computational model. Quoting error levels is of limited value when the system
includes a high degree of uncertainty; once again, a more ‘probabilistic’ approach

to corroboration is fundamentally necessary, given this variability.
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Figure 117: Corroboration for HIKIN profile with S/C insert - in-vitro (solid, N=6)

versus in-silico (dashed) - forces (left) and moments (right).
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Measurement Cycle-averaged Error as Percentage of
Absolute Error Max. Absolute Value

F. (M-L) 16.6 (N) 35.0%
F, (A-P) 30.8 (N) 14.6%
F, (I-S) 79.1 (N) 3.2%

M, (@about M-L) 5.14 (N-m) 9.2%

M, (@about A-P) 1.68 (N-m) 10.3%

M, (about I-S) 0.48 (N-m) 8.9%

Table 19: Error levels in the first deterministic corroboration (S/C HIKIN).

Nevertheless, this deterministic corroboration represents an important step
forward from the tests in Chapters Four and Five; the inclusion of instrumented
force-feedback to compare across in-silico and in-vitro tests provides a robust
extra degree of corroboration. This study has shown that the ADAMS-based
computational model of the AMTI simulator is in good agreement with the spread

of experimental results.

Once again, it is possible to use the new computational model to greatly enrich
the data-set available from the rig alone. Figure 118 illustrates some of the
additional data that can be retrieved in-silico which is not available directly in-
vitro. Plots of contact area and M-L load split through the gait cycle, sliding
distance distributions, sliding paths at individual nodes, contour maps for cross-
shear and wear depth, and intra-cycle wear rate plots all provide an enhanced
perspective on the test. Of course, the value of this in-silico dataset depends
entirely on how representative it is of in-vitro conditions - hence, the importance

of the more rigorous computational-experimental corroboration described above.
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Figure 118: Additional visualisation metrics are available in-silico to enrich the
overall pre-clinical analysis process. Here: intra-cycle wear rate (left) and cross-shear
contour map (right).
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7.2.3. DD Corroboration Test 2: ‘Femur-On-Flat’ Gait Test

The S/C HIKIN test demonstrates that the model can be tuned to a specific test-
case, and the results achieve good corroboration. However, for a different test, it
is recognised that variations in the implant design and procedure might lead to
variations in component positioning. Therefore, the same precise ‘tuned’ values
would not be applicable. Instead, a ‘femur-on-flat’ experimental test was selected
for a second corroboration study. This consists of a regular S/C femoral
component, articulating against a ‘flat’ polyethylene insert (i.e. with no condylar
‘cups’, such that there is no geometric conformity). Femur-on-flat studies are
currently being used to investigate wear behaviour under extreme ranges of
contact pressure, to better understand the mechanics of wear (e.g. see [178]).
The advantage for present purposes is that theoretically there is no ‘dwell’ point,
as the flat surface means there is zero conformity. This removes one of the most

influential variables, making ‘tuning’ of the model less critical.

Experimentally, the inputs for this test are identical to the ‘HIKIN’ profile, except
that axial loading is scaled up from a peak value of 2,600N (~600lb) to 3,600N
(~800lb). The high loading, coupled with low conformity of the flat ‘insert’,
results in extremely high contact pressures concentrated on a small area of
polyethylene (this makes the test of interest to wear theorists). The test was run
as previously, but replacing the S/C insert with a flat alternative, (once again
discretised into 1Tmma2 cells as described in Chapter Four). The simulation was run
with a 0.1 second ‘ramp-up’ into the profile, followed by the 1.0 second profile
itself, using the ‘tuned’ values described in the first corroboration test. Initial
results did not corroborate as well as hoped; on further investigation a number of

issues were identified:

e The high pressures in this test made the assumption of linear elasticity
(inherent in the rigid-body model) inadequate: considerable plastic
deformation was apparent on the in-vitro implants after testing. However, this
could be accounted for; modified implants were generated, based on surface
profiles of the actual experimental samples, which featured this deformation
effectively ’built in’. These were used for subsequent modelling. Note that this
now meant A-P dwell position was an important factor once again, since the

sagittal profile of the insert was no longer ‘flat’, but deformed.

e The feedback data had considerable ‘noise’ which was more apparent for the
small-magnitude forces & moments in this test; pre-conditioning to smooth

the higher derivatives of the input waveforms helped to reduce this artefact.
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It was evident that, even with these refinements, the corroboration was not
perfect; there was a minimal degree of malpositioning (under 1° on the I-E and
V-V axes) which was having a small, but noticeable influence on the force-
feedback. If this was accounted for (by correspondingly aligning the
components in the jn-silico model) slightly better accuracy could be achieved
(@lthough this effect was minor compared to the surface deformation and

‘dwell point’ issues).

In Figure 119, results are shown for the load-cell feedback channels, for all six

axes. Note that more channels of in-vitro data were available for this test.
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Figure 119: Corroboration for ‘femur-on-flat’ test - load-cell forces (left) & moments
(right) in-vitro (solid, N=9) versus in-silico (dashed).
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Note that (contrary to initial expectations) the predicted and observed shear
forces are actually substantial (several hundred Newtons for F _and F); this is in
large part due to the increased degree of conformity induced by plastic
deformation experimentally (and the corresponding conformity introduced when

this plastic deformation was modelled approximately in the in-silico simulation).

The corroboration is not perfect, but again for the experimental data, there is
some variability between stations (and it is apparent that some stations are
‘outlying’ very noticeably from the others), so once again, no single-shot

‘deterministic’ simulation could match this spread of experimental results.

Once again, a table of ‘error levels’ was compiled, based on comparison to the
experimental ‘averaged’ values (Table 20). Error levels are comparable to the first
S/C HIKIN corroboration test; given the additional challenges presented by the
femur-on-flat test, this is a positive result. Note that once again, the highest

errors are in F, the M-L shear force (which is however uncontrolled, and so less

critical).
Measurement Cycle-averaged Error as Percentage of
Absolute Error Max. Absolute Value

F, (M-L) 31.4 (N) 26.3%
F, (A-P) 20.9 (N) 10.8%
F, (I-S) 18.4 (N) 0.5%

M, (about M-L) 4.15 (N-m) 12.1%

M, (about A-P) 1.84 (N-m) 9.8%

M, (about I-S) 0.53 (N-m) 23.6%

Table 20: Error levels in the second deterministic corroboration (fem-on-flat).

Note that further corroboration studies were performed, which are not reported
in this thesis for brevity (including further femoral-on-flat tests, and various gait

tests using the S/C and U/C inserts).

The most pertinent conclusion of these different studies is that, in every case,
experimental variability means that various factors must always be ‘tuned’ to
achieve the best possible corroboration. As such, it is always possible to raise the
guestion whether this tuning is legitimately accounting for in-vitro experimental
variability, or in fact compensating for deficiencies in the in-silico model. The best
way to address this is with a full probabilistic corroboration; this will be

addressed subsequently in the present chapter.
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7.3. Force-Driven Modelling: Corroboration

7.3.1. AMTI Control-System Modelling

The most important difference between DD and FD operation is that the force-
driven method requires a more sophisticated control system, to mimic the effect
of the virtual spring restraint. The controller works by measuring A-P translation /
I-E rotation, calculating the restraint force/torque at this level via a spline-based
‘look-up table’ (LUT), and superimposing this force/torque onto the input
waveforms for A-P force / I-E torque. This is illustrated conceptually in Figure 120.
The advantage of this configuration is that the ‘springs’ are defined only in
software; therefore it is necessary to change only the data splines to alter the
spring characteristics. This is both faster than physically replacing spring buffers
on the in-vitro rig, and also allows any particular non-linear spring relationships
to be defined (rather than needing to source physical springs with appropriate
stiffnesses).
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/ | Spline LUT
—
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Spline LUT

Figure 120: Conceptual AMTI FD ‘virtual spring restraint’ operation schematic.

For the specific model being corroborated in this study, the springs were based
on the work of Haider et al [158] (Who proposed a combination of ‘soft’ and
‘hard’ springs to better represent the in-vivo effect of resecting the ACL but

retaining the PCL). The idealised load-displacement relationship is shown in

184



Figure 121. (Note that in practice the model does not precisely mimic this

relationship - see later discussion and Figure 127).
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Figure 121: Spring restraint splines for the AMTI model (derived from [158]). I-E
restraint is symmetric, with £5° ‘dead zone’; A-P restraint is asymmetric (to represent
resected ACL & retained PCL) with £2.5mm ‘dead zone’);

As already stated, on the AMTI rig the A-P motion is applied to the femoral
component. This introduces a slight complication, since the force-feedback load
cell is mounted beneath the tibial insert. Consequently it is important to
accurately model the dynamics of the system, to capture the influence of inertia
between the applied force (femoral side) and feedback (tibial side). Figure 122
illustrates the sagittal mechanics (considering A-P force components only, and

neglecting angular or non-sagittal components of loads and displacements).

+ A-P displacement
< (measured)

+ FA (APPLIED Force)

+mya =0
&K—

(No A-P motion
on tibial side)

(reaction against
load-cell)

LOAD-CELL

Figure 122: Sagittal plane A-P forces for the AMTI simulator.
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Resolving by applying Newton’s 2" Law for the femur & tibia gives, respectively:

R(«) F,—-F.'=m;.a, (11)

Fe —Fuyea=0 (12)

Where F, is the applied force, F_is the A-P component of the contact force acting
on the tibia, and F_"is the reaction force to F, acting on the femur. F _ is the
‘measured’ force; i.e. the force ‘fed back’ by the load-cell beneath the tibia. The
terms m & m, designate the mass of the femoral and tibial components & their
associated mounting jigs; the terms a & a, are the corresponding accelerations
(note that a is zero, since the tibial component has no unconstrained A-P DOF).
The desired force on the tibia, denoted F, is the combined sum of the input ISO-
derivative waveform (denoted F_), and the superimposed spring restraint force,

F.» Which is a function of the measured A-P translation, 4, ,
FD = FISO + FSPR(AA—P) (13)

If the control system was based only on displacement-feedback (i.e. the 4,
measure), the only option would be to set the applied force, F, equal to the
desired force, F. However, it is clear that the measured force at the tibia, Fos

would not then be equal to the desired force:

F.=Fp (14)

Fo —F.'=m;.a; S R'=Fy —mg g (15)
Fo —Fuea=0 (16)
SoFyea = —Fc = F.'=Fy —m; .a; (17)

The inertial effect of the femoral component A-P acceleration would result in a
discrepancy between the achieved (measured) and desired A-P force profile.
Instead, the controller must include closed-loop feedback of the measured force,
in order to achieve F,_ = F . (Note: the above analysis neglects pliancy of the F-E

shaft also; this would introduce a further complication in reality)

As with the control systems described in Chapter Six, external co-simulation
using MATLAB/Simulink was chosen for control-plant modelling. A custom
controller was constructed, based upon the same design concept as the in-vitro

AMTI controller, but including a number of additional features and visualisation
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tools for enhanced diagnostic functionality. A screen-shot of the GUI designed for

this purpose is shown in Figure 123.

E1AMTI_CTRL_3v1 =] B3
File Edit View Simulation Format Tools Help
D\ﬁﬂ@\#%ﬂ[@wﬁlﬁ':\b IIZ.D INormal _ﬂi@@m‘“@
otondjchaem y
(IN) Knee Angle
(IN) Axial Force ;EA-P Translation
D> LA =
AP Zero (mm) 4 :E I-E Rotation
] v-v Rotation
H B3] M-L Rotation
(IN) A-P Force 4 >
»F2]| LoAD-CELL
;@FEEDBACK()@)
>
>
(IN) I-E Torque =@
UNIVERSITY OF
Southampton
3chool of Engineering Sciences
Ready |100% [ [ lode15s 7

Figure 123: Custom AMTI Controller modelled in Simulink.

The precise details of the experimental control system are commercially
confidential, but it is known that the in-vitro system uses a proprietary adaptive
control system. The PID-based model used here is therefore only an
approximation to the real AMTI controller; since the actual in-vitro system has
comparatively good accuracy, compared to other commercial rig designs, the in-
silico values are tuned to achieve the best possible tracking for the conditions
under test. Typical values are given in Table 21 (note that the precise settings can
vary from case to case, so the values given are only a representative ‘starting
point’ for subsequent refinement in any specific test-case; generally, the more

conformal the implant design, the stronger the controller settings must be).

Vertical A-P I-E
Load Force Torque
Proportional (P) 10 0.1 1
Integral (1) 3 0.1 1
Derivative (D) 1 -0.01 0

Table 21: Typical PID values for a force-driven AMTI gait test.

7.3.2. FD Corroboration Test 1: Isolated Axis Tests

With the model and controller developed, the first corroboration tests were

attempted. Early efforts to corroborate full force-driven ISO gait were
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unsuccessful (kinematics for A-P and I-E did not match the experimental results).

Therefore, a more incremental approach was taken.

A series of tests were devised, which ‘deactivated’ selected inputs of a standard
force-driven gait test, to simplify the ensuing mechanics. Axial compressive load
was always included for stability, but the other three input channels (flexion
angle, I-E torque and A-P force), were each analysed in isolation from the others
(Table 22). These three ‘isolation tests’ allowed the behaviour of each axis to be

studied without the confounding effect of influences from the others.

These tests were run by our industrial collaborators for the purpose of comparing
the computational model with in-vitro data (note: tests were run ‘dry’, instead of
running under lubrication for many millions of cycles as required for wear
assessment: obtaining kinematics is much easier, and requires only a handful of
cycles to remove initial transients. However this does of course alter the
operating friction). For all the test-cases the virtual springs provided a simple
linear restraint (30N/mm for A-P and 0.6N-m/°).

Test Case | Vertical Load F-E Angle A-P Force I-E Torque
1. ‘VL-FE’ ISO14243-1 constant ON constant ON-m
2. VL-AP’ 1SO14243-1 constant 0° ISO14243-1 constant ON-m
3. ‘VL-IF’ constant 0° | constant ON ISO14243-1

Table 22: Inputs for force-driven ‘isolation tests’.

The corroboration revealed the importance of dynamic effects for the AMTI rig
under FD control. A large degree of damping was necessary (especially on the A-P
axis) to accurately match the experimental kinematics. This experimental
damping is believed to be due in part to the construction materials (e.g. the tibial
platen is constructed of a relatively ‘soft’ polymer), in part due to damping in the
system hydraulics, and in part due to other sources of pliancy within the

mechanics of the rig.

Based on ‘tuning’ to these cases, a reasonable match was obtained between the
computational and experimental results, for both kinematics (A-P & I-E) and
kinetics (the load-cell feedback). Figure 124 shows the kinematics for all three
tests (note, in-vitro data was only collected for one station, so unfortunately no

indication of experimental variability is available for these isolation tests).
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Figure 124: Kinematic feedback for all three isolation tests.

Figure 125 shows the tri-axial load cell force-feedback for just the final test case
(VL-IE); again data is unfortunately only available for the first station in the bank,
so it is not possible to determine how representative this single experimental
data-set is, or if it was in fact an unrepresentative ‘outlier’.
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Figure 125: Load-cell feedback for isolation test 3 (VL-IE).

In the event, corroborating the force-driven model proved considerably more

challenging that corroborating the displacement-driven tests. There were a

number of reasons for this; firstly, limited data was available. Force-driven tests

were relatively new for the AMTI platform, so there was not a large volume of

historical data available. In these isolation tests, data was only available for a

single station, so it is impossible to know if these individual waveforms were



representative (close to the average) or in fact outliers; previous tests have shown
that experimental ranges of uncertainty are quite large, and without any
indication of the experimental variability in this case the quality of the
corroboration cannot be assured. Additionally, the control-system tracking of the
rig itself was not as good under force control as under displacement control - this
is apparent from analysis of the original in-vitro data. The Simulink model was
designed to track the ‘ideal’ inputs so does not account for the experimental
tracking errors in forces. (It is not possible to easily factor in tracking errors, due
to the confounding influence of the ‘virtual spring’ system). Further, in this
particular case, some of the forces and moments for the isolation tests are
inherently quite small (e.g. in the VL-IE test, there is very little A-P shear force);
this makes the signal-noise ratio unfavourable, so once again corroboration is
difficult. Despite these challenges, progress has been made in identifying

influential factors for force-controlled testing.

7.3.3. Corroboration Test 2: Full ISO-derivative Gait

Having tuned the dynamics of the individual axes using the isolation tests, a full
FD gait test was next modelled. Unfortunately, the only available experimental
data suitable for corroboration was a relatively early data-set - an initial
‘benchmarking’ test of the S/C design following the commissioning of the force-
driven rig upgrade. Feedback data for this test was therefore used to undertake a
computational simulation. The inputs (Figure 126) were similar to the ISO-
standard [23], but were slightly phase-shifted relative to one another (e.g. the

flexion waveform seems to be phase-delayed by ~10% cycle).
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Figure 126: Inputs for ISO-derivative FD gait corroboration test. Note there are
different phase shifts for the different waveforms; e.g. F-E is delayed by ~10% cycle,
whereas axial force is delayed by only ~3%.
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This test was conducted under lubrication in-vitro, so the high ‘dry’ friction
values used for the isolation tests (0.07 to 0.1), were scaled down to ‘wet’ values
(0.01 to 0.02). The virtual springs were configured to simulate soft/hard springs
with a spring-gap (the actual feedback splines are shown in Figure 127). Note that
the achieved feedback does not match the ideal relationship shown earlier in
Figure 121; there is a degree of hysteresis, and the spline-interpolation
sometimes leads to ‘positive feedback’ where the restraint force acts to increase
the kinematic offset. This will cause differences in performance compared to the
ideal spring relationship - therefore the in-silico model was based on the
experimental (rather than theoretical) splines, to better match the resulting in-
vitro data. The kinematics (A-P and I-E) and force-feedback were compared to the

limited available experimental data (N=3 channels).
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Figure 127: Actual (feedback) splines for virtual spring restraint: A-P (left) & I-E
(right). For comparison, the ‘ideal’ relationship is also shown (c.f. Figure 121).

The results of this test did not corroborate as well as hoped. Whilst reasonable
agreement was achieved for the A-P translation, the in-vitro I-E rotation could not

be reproduced in-silico (Figure 128).
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Figure 128: FD ISO-gait kinematics - in-vitro (solid) versus in-silico (dashed).
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For the experimental load-cell data, considerable variability was observed (even
within just 3 stations of available data); this made it difficult to determine how
representative these samples were. The computational waveforms matched
reasonably, except for the F and M, channels (Figure 129). The fact that M, (the I-
E torque) is in good agreement with the experimental data, but the actual I-E
rotation is so different, suggested that there was some considerable pliancy or
motion between the load-cell and the insert itself.
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Figure 129: FD gait load-cell feedback; in-vitro (solid, N=3) vs. in-silico (dashed).
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Several factors were hypothesised to be playing a role in the differences
observed; the fact that the different inputs were out of synchronisation with one
another, the imperfect tracking of the in-vitro controller, unaccountably high
damping, or backlash/pliancy effects still not correctly modelled computationally.
It was apparent further investigation would be required to better corroborate this
study. Unfortunately, the data was quite old, and details of the precise
experimental procedure have been lost. Further, some of the hardware on the rig
had been changed since the original test (e.g. the tibial platen was entirely re-
designed). It is therefore not possible to precisely re-create this test, to determine
if changes in methodology (e.g. component positioning, or fixed-axis location)

accounted for some of the differences in results.

Recently, the test conditions were re-created on the AMTI rig, using the new
hardware configuration. The results of this comparison were very different to the
earlier test (see the plots of A-P and I-E kinematics in Figure 130). Given that there
is such variation in the in-vitro data, it was apparent that an accurate
corroboration in-silico would not be possible at this stage; further experimental
data will be required. There are, however, some important observations from this
attempt: firstly, any in-silico corroboration study depends on quality, consistent
in-vitro data to be robust and effective. Secondly, variations in methodology can
have a major role in experimental results, and the corroboration effort must

attempt to include consideration of these ‘hidden’ effects.
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Figure 130: Revised data for the FD S/C ISO-gait test, compared to the original data.

Left: A-P translation; right: I-E rotation.

For both the displacement- and force-driven models, variability has been revealed
to be a key concern. The aim of the final study was to address this more
exhaustively, by attempting the first probabilistic corroboration between in-vitro

and in-silico experimental results of TKR testing.
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7.4. Corroboration of Probabilistic Methods °

7.4.1. Study Structure (Methods)

The limiting factor in corroborating probabilistic methods is of course the
availability of a large enough body of in-vitro data. An analysis of historical data
available from previous industrial testing revealed that the most suitable data-set
was for displacement-driven testing of the S/C design with high-kinematics (for
conventional PE). There were still only a handful of comparable tests in total, but
given the number of stations running simultaneously (typically 3 - 6 per test), and
the number of intervals the test was run on for (typically 10 - 12 per test), it was

possible to source >100 data points for force-feedback and interval wear rates.

The in-silico study was tailored to match this data. The experimental set-up is as
per Section 7.4.2 (the deterministic corroboration). The model was parameterised
with several factors previously identified as influential during the ‘tuning’ phase
of the corroboration studies, together with additional malpositioning factors. In
some cases statistical properties (mean, SD) could be based on available data
(e.g. for the A-P dwell position, the in-vitro feedback data available indicated the
degree of variation in the initial offset of the A-P waveform). In other cases,
variability was assigned based on engineering judgement, or else estimated from
the variability already observed in the earlier corroboration study (some indication
of the variability could be obtained based on the N=6 samples from the
deterministic study in Section 7.2.2 - whereas now a total of N=128 samples are
available). The variables, and their assigned values, are listed in Table 23. The
Normal distributions are cropped at *30; the Lognormal distributions (which

cannot be less than zero by definition) are cropped only at +30.

Factor Description Dist. Type Mean S.D.
AP_Dwell Initial A-P Dwell offset Normal 12.5mm | 0.5mm
Fem_FE Femoral F-E malrotation Normal 0° 0.5°
Fem_IE Femoral I-E malrotation Normal 0° 0.5°

Fem_VV Femoral V-V malrotation Normal 0° 1°
Tib_ML M-L offset of insert on platen Normal Omm 0.5mm
TF_p Tibiofemoral Contact Friction Lognormal 0.01 0.02
Roll_p Roller-bearing Friction Lognormal 0.02 0.01

Table 23: Input factors for the AMTI probabilistic corroboration study.

° This section is adapted from the conference proceedings: “Holistic Approaches to Pre-
clinical TKR Analysis: Computationally-Enriched Experimental Testing". 2009, Strickland et
al. In: Knee Arthroplasty 2009 IMechE MED (London, UK).
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Various output metrics were monitored for this study. A-P and I-E are driven so
need not be measured; instead load-cell measurements were recorded, along with
peak CP, M-L load split and the various wear metrics (sliding distance, cross-shear
and linear wear rate for the different wear models described in Chapter Four).

7.4.2. Results

Figure 131 shows the 6 load-cell channels, with envelopes at +1SD from the mean

value (this is quite a limited range, but represents the only available in-vitro data).

0% 20% 40% 60% 30% 100% 0% 20% 40% 60% 30% 100%
% Gait % Gait

Figure 131: Comparison of response envelopes for load-cell measures: in-vitro (solid)

versus in-silico (dashed). Envelopes are +£1SD (to match available in-vitro data).
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In this first probabilistic comparison of in-vitro and in-silico data, the response
envelopes show promising agreement between the two, for a ‘proof of concept’
study. In every case, the computational envelope tracks with similar trends and
magnitudes to the experimental data. There are some clear differences; most
notably in swing phase where the experimental data consistently shows more
variability than is predicted in-silico. This is believed to be related to
measurement errors within the load-cell itself. This is especially clear for the F,
channel; the computational model predicts almost no variability (as intuitively
would be expected in the vertical direction, since this axis is under direct force-
driven control), whereas the experimental data reveals a near-constant-width
envelope of variation. The fact the width is so constant suggests strongly that
these are offsets in the load-cell sensor calibration. This is an important point: in
the computational domain, ‘measurement’ is an error-free process; however,
experimentally the process of measurement can inherently introduce further
error. In this case, it appears that the load-cells in stations 2 and 3 (which are not
used for the control-system feedback) can carry offset or calibration errors, hence
introducing further variability into the experimental results. This also may explain
why the experimental envelopes are sometimes considerably larger than the
computational envelopes on some of the other axes. Future models may need to
account for this additional error by including a model of measurement variability
- clearly, there is room for improvement. It is also possible that other important
input factors have been missed in this demonstration study - including such as-
yet-unidentified additional input variables may account further for some of the

differences between the computational and experimental models.

The envelopes for contact pressure and M-L load split (Figure 132) reveal a higher
degree of variability than was seen in the earlier theoretical/idealised probabilistic
studies of Chapter Five (recall that in those earlier studies the envelopes were for
1%-99%, or about +2)SD; here the envelopes are only +1SD, but are still
substantial). Note the considerable lateral load-shift and CP ‘spike’ in late swing
phase (~85% gait); this is also evident in the load-cell data and is a result of the
sharp A-P & I-E inflexions - this is a danger with displacement-driven testing. The
results suggest that both test kinematics and system variability can have a
considerable influence on whether the intended 60-40 load-split is achieved or

hot.
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Figure 132: Response envelopes for peak contact pressure and M-L load split.
Envelopes shows mean (solid line) £1SD (dashed).

Sensitivity results (Figure 133) reveal that A-P dwell position plays a dominant role
for many of the metrics under study - this is an interesting result, since Laz et al
reported translational misalignment factors as being less significant than angular
malrotation factors. However, that study did not consider the influence of
variability in the A-P dwell position. By using real experimental data as the basis
for the current study, A-P dwell was identified as a key factor with comparatively
high levels of variability, which in fact dominates the malrotation terms. Similarly,

the roller-bearing friction was also a strong factor - which again would be

neglected by a less detailed model.
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Figure 133: Selected sensitivity plots (normalised cycle-averaged values) for A-P

shear force F, (left) and peak contact pressure (right).

The wear results provide the most pertinent observations about the current state
of in-silico / in-vitro corroboration. PDFs for wear rate were compiled for each of
the theoretical models and compared to the spread of interval wear rates
recorded experimentally. Selected results are shown in Figure 134. Note that,

even laying aside the differences in the deterministic ‘mean’ wear rates (which
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have already been explored and discussed in Chapter Four), none of the in-silico
PDFs come close to matching the level of experimental variability. The
probabilistic wear study in Chapter Five revealed an approximately four-fold
increase in wear between the ‘Archard’ wear model, and models with cross-shear.
The results here show a further four-fold increase from those CS based models to
the in-vitro results. At present, the mechanical model is still imperfect, and so
some of the discrepancy could be due to the mechanical model, as well as the
wear algorithm. However, the differences in the mechanical model are

considerably less than the differences observed in these wear results.
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Figure 134: PDF of wear rates for experimental and selected computational results

(note: the vertical axes are scaled individually, for visual clarity).
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This raises important questions for computational wear modelling: principally,
what is the cause of this discrepancy? Does it represent variability in the true wear
rate, which is not currently detected by current wear theories? Or is it an artefact
of experimental measurement procedures? Further, if it is an artefact of
experimental methods, how reliable is in-vitro data as a basis for constructing
theoretical wear models around? Ultimately, it should be possible to identify the
best wear models by matching their PDFs to the PDF of in-vitro wear; if
experimental methodology has such a confounding influence, this could limit
efforts to better-understand the fundamental mechanics of wear.

7.4.3. Discussion

This study represents the first time a true corroboration has been attempted for a
probabilistic analysis. The results are imperfect; this is to be expected, since
there is no direct way to ascertain the uncertainty of ‘inputs’ to the system.
However, the fact that magnitudes and trends are so demonstrably similar is very
encouraging, and demonstrates convincingly that the fundamental methodology
behind the probabilistic approach is sound.

Of particular interest is the higher degree of variability in the experimental wear
data compared to the computational results. This reveals the importance of
measurement error within the in-vitro assessment process. This has previously
been neglected by probabilistic studies. However, as the results here clearly
show, there is evidence that measurement errors (for both the load-cell results
and for wear assessment) are playing a strong (if not dominant) role in the

observed variability.

This discrepancy clearly needs to be addressed if in-vitro and in-silico models are
to be corroborated more accurately. However, the question is, should in-silico
models attempt to model measurement variability, or is it the role of
experimental testers to reduce this variability? In either case, the key to
successful corroboration is better collaboration. If in-silico models are to reflect
the true variability inherent in experimental procedure, this requires a better
understanding of those experimental procedures; spending time working
alongside experimentalists to understand the methods and processes being used,
in order to identify (and quantify) where variations and uncertainty are
introduced. If, on the other hand, in-vitro variability is to be reduced, this can be
greatly assisted by co-operating with computational modellers; for example, in
the present study the computational results may be used to identify the key
sensitivity factors; experimental procedures could then be focused on better-

controlling these factors. In this case, the procedure for assigning A-P dwell
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position has subsequently been revised to be more repeatable; closer attention is

also now paid to the friction of the roller bearings.

There are important limitations to the study described here. The sample set
remains relatively small at just over 100 samples; ideally much more data would
be needed for a robust corroboration. This is the reason for presenting data only
to £1SD; presenting data for 5-95% or 1-99% would require sample sizes an order
of magnitude larger. The damping and friction terms have been tuned based on
limited experimental testing. Ideally, a more robust set of tests would be needed
to fully characterise the dynamics of the rig. The in-silico controller is not
identical to the in-vitro version; more information would be required from the
manufacturer to construct a more accurate model, and so limit differences due to
the control system. The wear models are based on existing theoretical concepts
which are only empirical and approximate. Further influential input factors may
exist, and the current factors could be more accurately characterised statistically.
The wear was evaluated based upon a single-cycle analysis; this cannot account
for adaptive wear effects (however, a fully adaptive probabilistic wear assessment
was beyond the scope of this exploratory study). Additionally, creep and plastic

deformation of the polymer were neglected, further limiting accuracy.

Nonetheless, the study very clearly shows the benefits of better corroboration.
The results raise interesting questions about the underlying experimental data
and the mechanics of wear. The fact that much variability is unaccounted for

shows that there is still considerable scope to progress this work in the future.

7.5. Summary

The various displacement- and force- driven models of the AMTI simulator in this
chapter have built on many of the lessons learnt in the earlier modelling
activities. The availability of better experimental data (especially the combination
of force and displacement feedback from the tri-axial load-cell as well as
displacement transducers) means that there are more means by which the model
can be corroborated. This gives greater confidence in the model when good
corroboration is achieved, but equally provides a much richer diagnostic resource

when discrepancies arise.

The displacement-driven modelling in particular was very successful. The model
performs well, with good accuracy, but solution times far faster than the FE-based
methods employed by Lanovaz et al [200]. This reduction in computational cost is
a key enabling pre-requisite for probabilistic studies, such as that described in

Section 7.4. This ‘probabilistic’ perspective is very valuable, revealing that even
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for a relatively controlled gait-test, the actual kinetics of the contact are
inherently variable (with implications for kinematics and wear rates). The
comparison of in-vitro and in-silico probabilistic results is also highly informative;
it is apparent that while the variability in mechanics can be replicated in-silico, the
corresponding variability in wear rates cannot currently be accounted for purely
based on existing wear algorithms. Probabilistic assessments of wear may prove

to be a key future tool in furthering the understanding of wear mechanisms.

The challenges of accurate and repeatable force-driven simulation are illustrated
by the difficulties encountered in reproducing both the kinematics and kinetics of
force-driven gait. This is obviously a challenge for future computational modelling
efforts. However, it is equally a challenge for experimentalists (who benefit from
a sound, quantifiable understanding of the mechanics of their test simulations
through in-silico corroboration) - since good experimental data is the basis for
any effective in-silico modelling. The influence of bearing friction, and pliancy in
the F-E axis assembly, clearly demonstrate that the results are being altered by
unintentional artefacts from the experimental set-up. Equally, the ‘dynamic’
properties (e.g. inertia and damping), which are not tailored to represent in-vivo
dynamics, are also influential. The compounded effect of these different factors is
that the test outcomes are variable and susceptible to subtle changes in the
experimental hardware or procedures. This is not ideal, as such variations
confound the important aim of the tests: to understand the effect of TKR design
and materials on kinematics and wear-performance. By working together,
computational and experimental researchers may be able to better identify and

hence mitigate some of these other confounding influences.
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CONCLUSIONS & FURTHER WORK

This thesis set out to demonstrate that computational and experimental methods
could be used together more effectively to provide an enriched pre-clinical
analysis toolset, and further to show that accounting for variability using

probabilistic methods is an essential part of any study of knee biomechanics.

The need for improved pre-clinical analysis methods, driven by rising demand for
TKR, is presenting new challenges to orthopaedic designers and researchers.
Established computational and experimental methods have a venerable pedigree
in building the body of current scientific knowledge and providing guidance for
current TKR designs. However, these studies have often been isolated, poorly
corroborated and limited in scope, failing to consider the high levels of variability

inherent in TKR performance.

It is clear that there are deficiencies and limitations in the existing experimental
studies. The lack of standardisation on ‘normal’ gait profiles for wear testing
(compare the profiles proposed in [44] and [24]) reflects an imperfect
understanding of the true in-vivo mechanics. The large differences in wear rates
reported between very similar tests (e.g. compare [206] and [177] where tests
from the same research centre on comparable TKR designs exhibited a tenfold
difference in wear) demonstrate that experimental procedures and sources of
variability are also not fully controlled or understood. The results between
different research centres are still less consistent, (for example wear-tests
including stair activities have contradicted each other, reporting both higher
[201] and lower [175] wear rates compared to normal gait) - clearly showing the

degree of variability and uncertainty in current in-vitro methods.

There is, then, a need to better-understand the outcomes of experimental
research, and fast computational models can augment experimental tests to
improve understanding and provide better data for pre-clinical research and

development.

Central to making progress in this field is the need for better collaboration
between in-silico and in-vitro testers. By working to corroborate results across
multiple test platforms, researchers can gain a more complete picture of the test
mechanics, and subsequently have access to a more powerful database from

which to extract and visualise the results of the test in-silico.

Probabilistic methods can provide the framework for understanding the influence

of variability; multiple factors can be combined in a single model and explored in
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a statistically robust manner. The work of Browne et al [142] in introducing these
methods to the field of orthopaedics, and Laz, Pal et al [95, 179] in developing
their application to TKR mechanics, has established the foundation for the
broader uptake of probabilistic methods. However, probabilistic approaches
require many more trials, and therefore necessitate faster modelling methods
than the deformable FE models preferred historically. Rigid-body modelling (for
example using MBD software) can provide this speed increase, and has been
successfully adopted by various research groups, including Bei, Lin et al at the
University of Florida [84, 139] as well as in the various studies included in this
thesis [122, 207-213]. There is of course an accuracy trade-off, however if
sufficient attention is paid to in-vitro corroboration efforts, it is apparent that the
accuracy is still acceptable for many investigatory studies. (In fact, the errors
resulting from poor or inadequate corroboration can be larger than any errors

from assumptions of rigid-body mechanics).

In this thesis, the development of a new generation of MBD-based knee
simulations has been charted from conceptualisation and early demonstration,
through further studies incorporating probabilistic methods and in-silico wear
prediction, up to highly-focused corroboration studies against specific data-rich

in-vitro testing platforms (the KKS and AMTI knee simulators).

The work in these final chapters represents the ‘state-of-the-art’ in computational
modelling of TKR in-vitro simulation, and in-silico/in-vitro corroboration. By
combining fast rigid-body modelling techniques, contemporary theoretical wear
models, and probabilistic methods, and by actively engaging in a deeper level of
collaboration between computational and experimental researchers, an excellent

foundation has been laid for future pre-clinical analysis efforts.

Whilst it is important to recognise that this work represents a step-change from
the basic deterministic FE-based models of only a few years previously, it is
equally important to appreciate that there remains a great deal of work to be
done, if in-vitro knee testing is to be better understood. The efforts to
corroborate dynamic models have demonstrated that many of these dynamic
effects (friction, damping, inertia) and their influence on test outcomes are not
rigorously understood, even within the experimental community. Working with in-
silico modellers gives experimentalists an excellent opportunity to ascertain and
improve their own understanding of their test-platforms; every discrepancy
encountered between the computational and experimental results represents an
opportunity to investigate, diagnose, and ultimately build a more sound

understanding of the real-world physical mechanics.
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This is particularly true in the domain of wear theories. The work in this thesis
has shown that existing wear models are a valuable tool, and do have real and
useful predictive power, demonstrating this more robustly and conclusively than
any other studies previously. However, it is also apparent that they are not
perfect; the mid-range correlations observed in Chapter Four and the comparison
of wear distributions in Chapter Seven demonstrate this. The resulting challenge
involves both experimental and computational researchers; experimentalists
must identify and reduce the variability and uncertainty in their tests (both within
and especially between different research centres) if the data they provide is to be
most effective. Computational modellers must then revise the theoretical
algorithms, to better reflect the observations revealed through POD and TKR
testing. This is best deployed as an iterative learning process; new in-silico
models should be based on in-vitro results, but the predictions and anomalies

they highlight then need to be rigorously screened experimentally.

The work in this thesis, and associated modelling efforts working with
experimental researchers in industry, has helped to identify key limitations in our
current wear theories - it has been demonstrated robustly that the present
models are not perfect, and that better data is needed in order to advance further
[211]. Existing studies have already begun to challenge the assumptions about
the role of contact pressure (e.g. [106, 107]), and recent POD investigations
supported by the authors using MBD-based modelling have also challenged the
assumption that wear is simply proportional to sliding distance (Dressler et al,
[214]). The newest wear-modelling algorithms involve the concept of
incorporating a ‘memory’ into the polymer, so that wear is a function of the time-
history of sliding directions (not simply the total sliding distance or even cycle-
averaged cross-shear) [215]. However, even these models neglect other known
important factors; for example the choice of material type (e.g. [173]), and the
phenomenon of ‘lift-off’ (e.g. [172]) are known to influence wear; clearly, there is
considerable scope to progress the theory of wear modelling. In-silico simulation
has a key role to play in this, because it is flexible, adaptable and can provide a
rich source of supplementary data. Computational models can serve as the
medium by which different experimental test platforms communicate and
interface. For example, the kinematics and kinetics of lower limb simulators such
as the KKS rig can be analysed computationally, and re-framed to serve as new
activity profiles for wear-simulators such as the AMTI rig. In turn, these
physiological profiles and loads can be post-processed from wear-simulator based
TKR testing, and used to provide more appropriate sliding paths and load-profiles

for POD tests. Wear models can then be developed and refined in the POD-testing
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domain, and ultimately re-exported to the knee-simulator platforms such as the

AMTI, SKS, or KKS rigs. Note that the computational models are not in any way

supplanting the experimental tests; rather they complement, enhance and

interface the experimental tests, producing a more holistic, more robust, better

synchronised and integrated environment for pre-clinical analysis of TKR designs,

materials and technologies.

The technical contributions made by this thesis, and the contribution to

knowledge in the field, may therefore be summarised as follows:

Rigid-body MBD models have been developed and robustly corroborated
against various existing FE-based simulations, demonstrating that the
performance-accuracy trade-off with MBD can be acceptable, if used
appropriately. This confirms the findings of e.g. Bei [137] and Guess [197],

who used such rigid-body modelling approaches extensively.

Specifically, improved models of the KKS and AMTI platforms have been
delivered, building on the previous modelling of these platforms by (amongst
others) Guess [109] and Lanovaz [200]. These new models can now serve as

the basis for further ongoing research.

In the process, specific lessons have been learned about the mechanical
behaviour of these experimental platforms. For example, the KKS modelling
identified the considerable losses induced by frictional effects on the quad
actuator in particular; subsequently the rig has been accordingly re-designed
with new degrees of freedom to accommodate small amounts of
misalignment. Similarly, the AMTI models highlighted the effect of friction in
the roller-bearings; in light of this, much closer attention is now paid to this
friction influence during experimental testing. These are two examples of how
computational modelling can ‘feedback’ into the physical domain of in-vitro
testing (i.e. bi-directional sharing of information between in-vitro & in-silico
platforms), hence the collaboration is mutually beneficial to computational

and experimental modellers.

The combination of probabilistic methods with wear prediction has revealed
that with many theoretical wear models, wear rate are quite sensitive to
relatively small variations in the ‘input’ conditions under test. For example,
the study in Chapter Five revealed that misaligning the components to a
relatively small degree (with a standard deviation of only 2°) is sufficient to

produce a two- or three-fold increase in wear rates. Further, this sensitivity
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appears to be somewhat design-specific. This would not be observed with

purely ‘deterministic’ assessments of wear (whether in-silico or in-vitro).

e More generally, the focus on in-silico wear prediction in this thesis has led to
an improved appreciation of the capabilities and limitations of existing
models. We are now able to compare the predictive power of many of the
current wear algorithms [216], and have identified a key weakness in their
inability to account for the true observed experimental variability (as shown in
the final chapter).

e The application of probabilistic methods has been demonstrated, building on
the foundation laid by Laz [95] and Pal [217]. We have performed a ‘first-of-
kind’ probabilistic corroboration in the field of knee biomechanics [212], with
a proof-of-concept study on the AMTI simulator providing promising initial
results. This study shows that it should be possible to corroborate
experimental knee test platforms probabilistically, and in the process identify
which input factors are affecting the system performance. This work also sets
a benchmark for future studies to work towards, in terms of combining

computational-experimental corroboration with probabilistic methods.

The assumptions and limitations within the present models should not be
overlooked. Fundamentally, rigid-body modelling is inherently inaccurate for TKR
contact mechanics; the contact pressures for almost any knee design or ADL
profile will exceed the elastic limit of polyethylene; permanent plastic
deformation will occur; over the long-term testing timescales of wear simulations,
creep will alter the surface profile. Whilst these effects are generally relatively
small, in certain cases (e.g. edge-loading of the insert, or loading of the cam-post
in PS designs) the nonlinear behaviour may be considerable - then the
assumptions behind rigid-body modelling begin to break down. (Nonetheless, the

large performance gain for this small loss of accuracy must be considered) [94].

The choice of parameters for contact and friction modelling is based upon
experimental tuning, and this introduces difficulties. Contact properties may vary
from material to material; these differences are not characterised. Friction co-
efficient is known to be related to wear rate (Wang, [162]) and to vary across the
polymer surface depending on the local motion paths at any given point (as
shown by Dunn et al [205]) - again, the assumption of a single co-efficient value
held constant across the surface and throughout the cycle is an over-
simplification of reality. To the author’s knowledge, no force-driven simulation
has yet been reported which varies friction across the contact area; despite the

fact that, as reported by Godest et al, friction is known to be influential for force-
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driven modelling, and the reported coefficients used vary by as much as an order
of magnitude [91]. There is clearly an opportunity for better accuracy in this area

in future.

The statistical modelling introduces the need for further assumptions; as
discussed in Chapter Five, there is only limited and sporadic experimental data
available describing the variation observed in many of the relevant factors;
without better data, assumptions must be made about factor interdependence,
distribution shapes, mean values, levels of standard deviation, and range limits
on variables. All of these have the potential to introduce errors. It is hoped that
with the wider adoption of probabilistic methods, researchers in the experimental
and computational community will begin to appreciate more the value of better
statistical data, and consequently more effort will be made to collate and report
this information. A cursory analysis of the data reported by Mahaluxmivala et al
[149] suggests that component misalignments may well be relatively independent
of one-another, and have distributions close to Gaussian (as assumed in this
thesis and other published studies); however this must be investigated further.

In light of these limitations, and the other various obstacles and challenges
identified during the various studies described, there is considerable scope for
further work. Experimentally, there remains much work to be done in better
understanding the mechanics of wear; in-silico models have a role to play in
supporting this investigation, and better POD-test models will help to corroborate
the most fundamental investigations into wear behaviour. There are challenges in
translating the work done using POD investigations to the domain of TKR testing;
again, the ability to decompose and analyse the mechanics in detail using
computational methods is valuable in bridging this transition between different

testing platforms.

Nonetheless, the progress made with the current work is valuable; the concepts
and methods of corroborated probabilistic analysis methods have been
demonstrated and applied for a range of different platforms, and de-risked by
extensive comparison to existing published work. The foundation has been laid
for these models and modelling approaches to be used to support

commercial/industrial TKR research and design efforts.

The models created, especially the KKS and AMTI simulators, have potential to be

used for further studies. The KKS model has been robustly validated, but only

applied for a concept-demonstration study. The model could be used for a wide

range of purposes besides profile generation and testing, probabilistic studies of

misalignment. The flexibility of the in-silico model makes it an ideal test-bed to
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explore future modifications to the rig (e.g. the possibility of a mobile A-P axis, or
of including a ‘hamstring’ actuator). Further, computational tools would allow
better cross-platform modelling; it is possible to isolate and extract the
kinematics for any given profile on the ADAMS KKS model, and use these as the
basis for new knee-wear simulator profiles (e.g. on the AMTI rig). The central
theme once again emerges: computational corroborative modelling has the
potential to bridge and interconnect the various distinct experimental testing
domains, providing a more holistic perspective, and enriching existing pre-clinical

analysis capabilities. But this depends on high-quality, well-corroborated models.

Note that all the work in this thesis has focused exclusively on corroboration with
in-vitro testing; the entire domain of in-vivo validation has not been directly
considered. The author would argue that in fact, until rigorous corroboration is
possible between in-silico and in-vitro results, any application to in-vivo
performance will always be open to question, hence fundamentally undermining
the confidence of the broader healthcare community in any results presented. By
first demonstrating good computational-experimental corroboration in the
domain of pre-clinical in-vitro analysis, researchers and designers can
demonstrate that they have a sound, robust, and quantifiable understanding of
the physics of the systems they are working with; this in itself does not
demonstrate that the results are applicable to in-vivo outcomes, but it is an

essential foundation towards that goal.

Ultimately, the delivery of new TKR designs is a large-scale, multidisciplinary
effort, involving specialists from the clinical, industrial and academic community,
encompassing backgrounds as varied as surgeons, mechanical engineers,
physiotherapists, materials scientists, anaesthetists, computational modellers,
manufacturing engineers, and many others. The tools and methods discussed in
this thesis represent a small but essential part of this larger process-chain. Pre-
clinical analysis represents the enabling technology to deliver the next generation
of knee replacements, in order to drive down revision rates and improve
functional performance. Ensuring the very best tools are available to designers
supports them in making the very best design decisions. By giving designers the
confidence that their tests are reproducible and fully characterised, by presenting
the ‘holistic’ perspective offered with probabilistic methods, and by integrating
the widest possible suite of tools for assessing knee kinematics, kinetics, laxity &
wear, computationally enriched pre-clinical analysis methods can help to make
those design decisions better, ultimately contributing to real improvements in

patients’ experience of TKR and subsequent quality of life.
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APPENDIX A - HUMAN ANATOMIC REFERENCE FRAMES

1. Reference Planes

The human body can be adequately decomposed into three orthogonal reference
frames. A plane may be defined to cut the body at any point, although planes
cutting through the midpoint of the body are sometimes termed distinctly; e.g.

the mid-way sagittal plane is termed the ‘median’ or ‘mid-sagittal’ plane.

Sagittal (lateral): Plane normal to the M-L axis, formed by the A-P & I-S axes
Coronal (frontal, dorsal): Plane normal to the A-P axis, formed by the M-L & I-S axes
Transverse (horizontal): Plane normal to the I-S axis, formed by the M-L & A-P axes

Coronal : / Posterior

Sagittal

Anterior

Superior

.

' Transverse

Inferior

Medial

Lateral

2. Directional Terms (Translations)

Many of these terms are used to indicate the relative position of features (or
sometimes, to describe a relative motion), and do not have any ‘absolute’
positional meaning. The most common are summarised in the following table
(Note there is more than one term for some of these directions; the preferred

term is shown in bold; the alternative in parentheses).
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Inferior (caudal): ‘Lower’ (closer to the base, caudal literally refers to ‘tail’)

Supervior (cranial): ‘Higher’ (closer to the head)

Medial. Towards the median (mid-sagittal) plane; ‘inner’
Lateral: Away from the median (mid-sagittal) plane; ‘outer’
Anterior (ventral): ‘Forwards’ (towards the front surface)

Posterior (dorsal): ‘Rearwards’ (towards the rear surface)

Proximal (central): | Closer to the centre of the body (torso)

Distal (peripheral): | Further away from the centre of the body

3. Directional Terms (Rotations)

Adduction: An active motion towards the median plane

Abduction: An active motion away from the median plane

Internal rotation: | Rotation inwards (towards the body)

External rotation: | Rotation outwards (away from the body)

Varus: An inward twisting of the distal limb (for the knee, ‘bow-legged’)
Valgus: an outward twisting of the distal limb (for the knee, ‘knock-kneed’)
Flexion: Motion that decreases the joint angle, or the state of being ‘flexed’
Extension: Motion that increases the joint angle, or the state of being ‘extended’
Hyperextension: Extension beyond the ‘normal’ joint range

Adduction Abduction Internal rotation External rotation

Flexion Extension  Hyperextension
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4. Motions at the Tibiofemoral & Patellofemoral Joints

It is important to use anatomical frames of reference at the knee joint with
caution. No segment of the knee is stationary; the tibia, femur and patella all
change position and orientation in normal gait and other activities. Therefore, use
of a term such as ‘inferior’ or ‘superior’ is misleading; the terms ‘proximal’ and
‘distal’ are better suited. (For example, with the hip extended the ‘distal’ direction
along the tibia is ‘inferior’ when the knee is fully extended, but ‘posterior’ if the
knee is at 90° flexion). It is important that the frame of reference should always
be reported (i.e. motion should be ‘with respect to’ the femur, tibia or patella),
e.g. an ‘anterior’ motion of the tibia could equally be presented as a ‘posterior’

motion of the femur (and vice-versa).

However, since these various terms are widely used to describe knee kinematics,
the following figures illustrate the conventional use of the terms for the
tibiofemoral and patellofemoral joints. (Note: the illustrations show a ‘right’ knee;
for a ‘left’ knee, the direction of medial-lateral, varus-valgus, internal-external,

and patellar tilt & rotation would be mirrored.
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Flexion / 1\/
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Figure Al: The motions of the tibiofemoral joint.
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Figure A2: The motions of the patellofemoral joint.
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APPENDIX B - INTERFACING MSC.ADAMS WITH NESSUS

Note: the information is presented in the context of an interface to NESSUS; however a

similar technique may be used to link to any 3™ party software via an ASCll-based conduit

ADAMS includes its own proprietary stochastic analysis module (ADAMS/Insight)

and does not directly interface to NESSUS. However it is useful to establish an

interface to exploit some of the advanced analysis methods not supported within

Insight. The following is a step-by-step guide:

1.

Create the rigid-body model in ADAMS/View. Use design variables for the
parameters that will be varied as input factors. Use requests or measures for
the parameters to be measured as output responses. The model must contain
a script written using ADAMS solver commands (‘acf’ syntax). The model must
also contain at least one design objective; however this is a ‘dummy objective’
and will not be referenced by NESSUS. Save the model as a binary file (*.bin),
for speed of access (this will use more disk space, but the model itself will not
be duplicated)

. Use a text editor such as notepad to create a template ADAMS/View command

file (*.cmd) to run a DOE trial with the following commands:

file binary read file_name = "«PATH/FILENAME.BIN»"

simulation multi_run doe &
model_name = «MODELNAME» &
sim_script_name = «SCRIPTNAME» &
variable_names = «<FACTOR#1», «<FACTOR#2» &
objective_names = «OBJECTIVE» &
rows_in_table =1 &

table_of_values = XXXXX, XXXXX

Where «RED» text is replaced with the required names. The input file must
include the full path. Note the string of X’s for the table_of_values parameter
is deliberate; this string should be long enough for the numerical precision
required by the model. More variable names & values can be added using
comma separators; only two are shown for brevity.

. Beneath the above commands, add additional commands to export the output

data to ASCII text file(s). The precise syntax depends upon the output data
required. If a REQUEST is to be used from ADAMS, use the following syntax:

file request write &
analysis_name = Last_Run &
file_name = "«OUTPUT.REQ»"
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If numeric data is to be exported (e.g. from a MEASURE), use the following
syntax:

numeric_results write &
result_set_component_name = «MEASURE.CMPT» &
file_name = "«OUTPUT.TXT»"

Create as many outputs files as needed, although note that the specified
filenames must not include a full path. Save the file as DOE_TEMPLATE.CMD. It
will serve as the master template file to be edited by NESSUS.

4. Load NESSUS, and start a new project. Define a suitable problem statement,
e.g. “output1=f(x1, x2)”, and under response model define the model type as
“Numerical” and application as “USER_DEFINED”. Choose Interactive mode, and
enter the following execution command (note this is ADAMS version-specific;
replace the text ‘adams05r2’ according to your version of ADAMS):

call adams05r2 aview ru-s b DOE_MODIFIED.cmd

Underneath, for input files select your template file (DOE_TEMPLATE.CMD).
Specify the destination as DOE_MODIFIED.CMD. The output files should refer
to your «OUTPUT.REQ» or «OUTPUT.TXT» file(s).

5. Under Create Mappings, create a mapping for each variable, ensuring the
target is DOE_MODIFIED.CMD. For each variable, select the relevant
line/column index for replacement, highlighting the correct XXXXX’ string.
Ensure variables are in the correct order.

6. Under ‘Select Responses’, for each output make a similar mapping to the
corresponding output file (*.res or *.txt). Note ADAMS can format and sort the
output data using additional command line parameters which can be included
in the *.cmd file - experimentation will reveal the most suitable file formatting
to use for a given requirement.

NESSUS is now able to interface to ADAMS, to run stochastic analyses. Note that
the output files will be put into subfolders underneath the NESSUS project
directory. If the input file path is not specified in the *.cmd file, ADAMS will
overwrite the NESSUS path setting, and all output files will be created in the base
directory, resulting in a ‘file not found’ error in NESSUS. Consult the ADAMS and

NESSUS help files for further reference on specific commands and options.
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APPENDIX C - CHOSING CONTACT PARAMETERS IN ADAMS

This information is a guide to help the new ADAMS user chose appropriate parameters for
the ‘IMPACT’ function in ADAMS, to create an ‘elastic foundation’ (EF) contact model for
tibiofemoral or patellofemoral knee mechanics

The ADAMS ‘IMPACT’ function [161] relates contact normal force (F) directly to

geometric penetration depth (g), using an exponential relationship of the form:
Fy =kxg°

Where k is the stiffness co-efficient and e is the force exponent. To derive suitable
values for a rudimentary first approximation, several assumptions are made. For
the discretised tibial or patellar insert, every cell is considered to be identical and
differentially small, of equal material thickness (e.g. for a typical tibial insert, h ~
10mm). For the models in this thesis, the contact surface area of the cell was
chosen as A = 1Tmm? (based on sensitivity studies), so to a first approximation,
using the Young’s modulus relationship between modulus, (E), stress (o) and

strain (&):
o
E=—
£
With penetration related to strain by the equation:

g=¢xh

And contact pressure taken as a homogenous stress, and so related to normal

force by the equation:

o=CP :i

A

So for a basic linear stress/strain relationship, with a given constant value of
modulus (typical values for UHMWPE are ~1GPa, depending upon the grade; the
NIST standard is 1258 MPa +22<MPa [167]), the exponent, e, should be taken as
unity, whilst the stiffness constant, k, would be:

F, oxA _A

-2
g e&xh h

Although this is a very simplistic approach, it is found that in many cases, this
linear-elastic model is adequate for a first-order estimate of contact mechanics
(especially if there is limited high-stress contact, e.g. edge-loading or cam-

loading). There are alternative proposals in existence, e.g. early mathematical
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models of knee mechanics used a direct relationship between surface contact
pressure and the penetration depth (see the models of Blankevoort, e.g. [218,
219]), and these have subsequently been adopted for use in MBD and rigid-FE
based models (e.g. [84, 94, 220]). Note though, that despite differences in
terminology (e.g. “elastic foundation”, “bed-of-springs”, “pressure-overclosure
relationship”), and different forms of the equations, these models are all

essentially similar; considering the equation presented by Blankevoort:

D= 1-v)E

= @ v)A-20h d (from[219)])

It is apparent that the pressure term, p, can be replaced with force, F divided by
area, A, and the ‘d’ term is equivalent to penetration depth ‘g’; so the equation

can be re-written as:

- A

T arv)-2v) h°

Then the ‘stiffness’ term, ‘k’, is of essentially similar form to the equations used

within ADAMS, (although with a correction factor for the Poisson ratio, ‘V’):

_E_ (1-v) _Eé
g @+v)(1-2v) h

The FE study by Halloran [94] used rigid-body models of FE based on linear elastic
foundation models, and also deformable models of FE. This study reported only
small differences between the rigid linear model, and the fully deformable model.
Of course, the deformable model can be more accurate, and deformable models
become necessary when high loads lead to significant non-linear behaviour or

plastic deformation.

To better reflect the relatively incompressible & elastic nature of the polymer, a
factor may also be included to account for the Poisson ratio of the material, v
(typically around ~0.45 for UHMWPE):

_(+2v)ox A

EX

A

k =El+2v)—

h
In reality, UHMWPE has a non-linear stress/strain relationship (modulus varies
with strain); a typical experimental relationship is shown in the chart below. In
this case, the linear model above cannot be used, and since the exponential curve

cannot be fitted exactly, an appropriate regression fit must be chosen.
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Stress-Strain Relationship for UHMWPE

w
(%}

w
o
!

N
vl

Stress,c (MPa)
—_— N
[0, o

o
|

vl
L

o

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Strain, ¢

o

Typical stress-strain relationship for UHMWPE (from [221]).

If the exponential ‘IMPACT’ function is to reflect this nonlinearity, the exponent
will not be ‘1’; instead, both ‘e’ and ‘K’ must be fitted to the experimental data.
The best result can be achieved by optimising the fit only within the area of
interest. High stresses (above 20MPa) should not occur frequently; therefore the
fit of the exponential curve may be optimised for the region below this (< ~6%
strain). For example, the best fit achieved for the data in the above chart used the
values k = 6500, e = 0.75 (R2 = 0.989 for 0 < ¢ < 0.06). Note that these constants
are specific to the values of ‘h’ and ‘A’ selected above (a different arrangement
would need new constants). As with other numerical methods, a higher degree of
nonlinearity in the contact mathematics will adversely affect solution times.
Generally, the solver performance will be better for values of e greater than one.
This is because the force F is set to zero for negative penetration depths (i.e.
when the solids are not in contact, there is no contact force). The transition into
contact using an exponential-type relationship will always be a continuous
function, but the derivatives of this function will not be continuous if e <= 1, as is

illustrated in the following figure.

- e
F=kxg _
A ’ /
Derivative is discontinuous e< e :
atg=0,fore<lore=1 /
For g <0, / ’:.
Fis fixed at 0 o
(i.e. no contact) / o e> 1
- 0 +
g (penetration depth)

Relationship between F, and g, for different values of e. Discontinuous derivatives of
this function make numerical solution more challenging; therefore, from the
perspective purely of computational-performance, values of e > 1 are to be preferred.
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In conclusion, for exploratory and developmental modelling, it may be preferable
to use values of e close to, but greater than unity for improved computational
performance. For situations where experimental data is not available, the
simplified ‘linear’ elastic approach (i.e. e=1) has been shown to perform
acceptably (for more detail on these linear elastic models with rigid-body
modelling, the reader is referred to the thesis of Halloran [157]). When better
accuracy is needed and good experimental data is available, a custom-fit non-
linear model may be selected instead (albeit at the cost of computational-

numerical performance).
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