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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS 
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Doctor of Philosophy 

ENHANCED PRE-CLINICAL ASSESSMENT OF TOTAL KNEE REPLACEMENT USING 

COMPUTATIONAL MODELLING WITH EXPERIMENTAL CORROBORATION & 

PROBABILISTIC APPLICATIONS 

by Anthony Michael Strickland 

 

Demand for Total Knee Replacement (TKR) surgery is high and rising; not just in 

numbers of procedures, but in the diversity of patient demographics and increase 

of expectations. Accordingly, greater efforts are being invested into the pre-

clinical analysis of TKR designs, to improve their performance in-vivo. A wide 

range of experimental and computational methods are used to analyse TKR 

performance pre-clinically. However, direct validation of these methods and 

models is invariably limited by the restrictions and challenges of clinical 

assessment, and confounded by the high variability of results seen in-vivo.  

  Consequently, the need exists to achieve greater synergy between different pre-

clinical analysis methods. By demonstrating robust corroboration between in-

silico and in-vitro testing, and both identifying & quantifying the key sources of 

uncertainty, greater confidence can be placed in these assessment tools. This 

thesis charts the development of a new generation of fast computational models 

for TKR test platforms, with closer collaboration with in-vitro test experts (and 

consequently more rigorous corroboration with experimental methods) than 

previously.  

  Beginning with basic tibiofemoral simulations, the complexity of the models was 

progressively increased, to include in-silico wear prediction, patellofemoral & full 

lower limb models, rig controller-emulation, and accurate system dynamics. At 

each stage, the models were compared extensively with data from the literature 

and experimental tests results generated specifically for corroboration purposes. 

  It is demonstrated that when used in conjunction with, and complementary to, 

the corresponding experimental work, these higher-integrity in-silico platforms 

can greatly enrich the range and quality of pre-clinical data available for decision-

making in the design process, as well as understanding of the experimental 

platform dynamics. Further, these models are employed within a probabilistic 

framework to provide a statistically-quantified assessment of the input factors 

most influential to variability in the mechanical outcomes of TKR testing. This 

gives designers a much richer holistic visibility of the true system behaviour than 

extant „deterministic‟ simulation approaches (both computational and 

experimental). 

  By demonstrating the value of better corroboration and the benefit of stochastic 

approaches, the methods used here lay the groundwork for future advances in 

pre-clinical assessment of TKR. These fast, inexpensive models can complement 

existing approaches, and augment the information available for making better 

design decisions prior to clinical trials, accelerating the design process, and 

ultimately leading to improved TKR delivery in-vivo to meet future demands. 
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GLOSSARY OF TERMS 

 

ACL  - Anterior Cruciate Ligament 

ADL   - Activity of Daily Living (any regular subject activity; e.g. walking) 

ADAMS - Automatic Dynamic Analysis of Mechanical Systems (MBD Software) 

AMTI  - Advanced Mechanical Technologies, Inc (company name) 

A-P  - Anterior-Posterior (translational direction) 

Ad-Ab  - Adduction-Abduction (rotational axis of knee; see also V-V) 

Arthroplasty - lit. „arthron-‟ (joint) + „-plastia‟ (moulding); hence „joint surgery‟ 

BW  - Body Weight; normalising term for joint forces (typically ~800N) 

C-D  - Compression-Distraction (knee motion: see also I-S) 

CDF  - Cumulative Density Function (in probability modelling) 

Co-Cr  - Cobalt-Chromium (metal alloy common in orthopaedics) 

COV  - Coefficient of Variation (measure of statistical accuracy)  

CR  - (PCL) Cruciate-Retaining (design option for knee implants) 

CS  - Cross-Shear (crossing motions for knee contact mechanics) 

DD  - Displacement-Driven (knee simulator test method) 

DOE  - Design of Experiment 

DOF  - Degree (or Degrees) Of Freedom 

EF  - Elastic Foundation (computational method for modelling contact) 

FB  - Fixed Bearing (design option for knee implants) 

FD  - Force-Driven (knee simulator test method) 

F-E  - Flexion-Extension (primary rotational axis of knee) 

FE(A)  - Finite Element (Analysis); computational method  

FPI  - Fast Probability Integration (stochastic techniques) 

HIKIN  - High-Kinematics (knee simulator DD gait profile) 

HS  - Heel-strike (beginning of stance phase in gait cycle) 

I-E  - Internal-External (secondary rotational axis of knee) 

in-vitro - Experimental (lit. „in glass‟, used as synonym for ex-vivo) 

in-vivo  - Clinical (lit. „in body‟, antonym ex-vivo – out-of-body) 

in-silico - Computational (permutation of in-silicio; lit. „in silicon‟) 

I-S  - Inferior-Superior (translational direction) 

ISM  - Importance Sampling Method (statistical modelling method) 

JCF  - Joint Contact Force – internal force experienced at joint surface 

JRF  - Joint Reaction Force – external force transmitted by joint 

KKS  - Kansas Knee Simulator (servo-hydraulic knee rig) 

KU  - University of Kansas 

LCL  - Lateral Collateral Ligament (also Fibular Collateral Ligament) 

LHS  - Latin Hypercube Sampling (statistical modelling method) 

LUT  - Look-Up Table 

MBD  - Multi-Body Dynamics (software modelling methods) 
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MCL  - Medial Collateral Ligament (also Tibial Collateral Ligament) 

MCS(T) - Monte-Carlo Simulation (Technique) 

MCycle - Mega-Cycle (1 million cycles; used in long-term wear tests) 

MIS  - Minimally Invasive Surgery 

M-L  - Medial-Lateral (translational direction) 

MoP  - Metal on Polyethylene (articulation for knee implants) 

MPP  - Most Probable Point (for FPI methods) 

(A)MV(+) - (Advanced) Mean Value (+) (family of FPI Methods) 

NESSUS - Numerical Evaluation of Stochastic Structures Under Stress 

OA  - Osteoarthritis (synonyms: Osteoarthrosis, Arthrosis) 

(F/S)ORM - (First/Second) Order Reliability Method; FPI methods 

PCL  - Posterior Cruciate Ligament 

PDF  - Probability Density function (also Distribution function) 

PE  - Polyethylene (of which UHMWPE is a particular form) 

PFC  - Press-Fit Condylar (J&J TKR design) 

PID  - Proportional-Integral-Derivative (control scheme) 

PKS  - Perdue Knee Simulator (servo-hydraulic knee rig; basis for KKS) 

PL  - Patellar Ligament (occasionally referred to as patellar tendon) 

PMMA  - Polymethylmethacrylate (principal constituent of bone cement) 

PS  - PCL Substituting/Sacrificing (design option for knee implants) 

QT  - Quadriceps Tendon 

RA  - Rheumatoid Arthritis (systemic form of arthritis) 

RMS  - Root-Mean-Square (convenient measure of vector signals) 

(A/P)ROM - (Active / Passive) Range of Motion 

RP  - Rotating Platform (design option for knee implants) 

RSE  - Response Surface Equation 

RSM  - Response Surface Method (FPI Method) 

S/C  - Semi-Constrained (specific tibial insert design) 

SA  - Sensitivity Analysis (in statistical modelling) 

SD  - Standard Deviation (statistical measure; also denoted by σ) 

SKS  - Stanmore Knee Simulator (wear simulator rig) 

T(J/K)A - Total (Joint / Knee) Arthroplasty  

T(J/K)R - Total (Joint / Knee) Replacement 

TO  - Toe-Off (end of stance phase in gait cycle) 

V-V  - Varus-Valgus (secondary rotational axis of knee) 

U/C  - Un-Constrained (specific tibial insert design) 

UHMWPE - Ultra-High Molecular Weight Polyethylene 

UKR  - Unicompartmental Knee Replacement 

UMKC  - University of Missouri (Kansas City)  
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SUMMARY 

 

The purpose of this thesis is to demonstrate that computational and 

experimental methods can be used together more effectively to provide an 

enriched pre-clinical analysis toolset for design of knee replacements, and 

further to show that accounting for variability (by using probabilistic 

methods) plays an essential role in developing a more holistic understanding 

of knee mechanics. 

With rising life expectancy, joint problems are increasingly common in the 

developed world. In recent decades, hip and knee surgery has become 

commonplace, with millions of procedures now performed annually worldwide. 

However, several factors limit the effectiveness of joint replacement surgery, 

especially for the knee: high inter-patient variability, rising expectations from 

surgery and imperfect understanding of the mechanics, biology & tribology of the 

joint. Chapter One begins by discussing the biology, pathology and intervention 

options related to knee replacement in more detail. 

In consequence of these challenges, considerable effort goes into analysis and 

design of new implants. To avoid expensive and risky clinical (in-vivo) trials, there 

is an increasing emphasis on pre-clinical testing, using experimental (in-vitro) and 

computational (in-silico) methods. A review of the relevant literature and historical 

developments in this area is presented in Chapter Two. Important examples in 

the field of knee testing are experimental knee wear simulators, lower limb 

simulators, and finite element stress analysis. However, these are often used as 

either isolated computational studies, with inadequate experimental 

corroboration, or isolated experimental studies, lacking the enriched analysis and 

visualisation which computational modelling can provide. The need exists to use 

in-vitro and in-silico methods together more effectively, providing a holistic, data-

rich means of assessing the many variables and uncertainties in knee 

biomechanics. 

A major aim of the thesis was to demonstrate that „single-shot‟ models alone are 

not adequate to fully account for the results observed in-vivo and in-vitro. 

Historically, many biomechanical studies have failed to account for the wide 

range of variability seen in such factors as patient activity or surgical positioning 

accuracy. Models which do simultaneously take account of the multiple different 

variable input factors are termed „probabilistic‟ models. Chapter Three describes 

some of the existing probabilistic techniques that can be used to obtain a more 
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„holistic‟ overview of system performance, and considers how these methods 

might be applied to model the influence of variability for biomechanical systems.  

Capturing the influence of variability in knee analysis is a key aim of the thesis. 

To facilitate the large number of simulations necessary to explore this variability, 

a faster modelling approach is needed. Chapter Four describes the early 

modelling efforts, exploring the use of multi-body dynamics models as a low-cost 

surrogate to replace deformable finite-element methods. These models can 

potentially deliver faster performance (simulation times of minutes rather than 

hours) with only a limited loss in accuracy. Early results demonstrated 

satisfactorily that MBD could be used as a fast surrogate for finite element 

methods, able to reproduce the kinetics & kinematics for force- and 

displacement-driven tests, and also approximate the finite-element predictions 

for contact pressure and wear. We used these fast rigid-body models to simulate 

multiple in-vitro wear tests, and so assess the performance of existing in-silico 

wear algorithms. 

With these baseline deterministic models in place, Chapter Five describes how 

the models were coupled with probabilistic methods to begin exploring the 

influence of variability on knee biomechanics, firstly reproducing the results of 

existing studies in the literature, and then progressing on to novel investigations. 

However, none of the existing studies corroborated the probabilistic methods 

with corresponding probabilistic experimental data; therefore it was determined 

that better corroboration against specific experimental test platforms was 

needed, to serve as the basis for a corroborated probabilistic study. 

The first targeted corroboration was for the Kansas lower-limb simulator, 

described extensively in Chapter Six. This focused model design & verification 

exercise revealed the importance of accurately capturing the „dynamics‟ of the 

simulator (e.g. damping effects and inertia), and also the influence the controller 

can have upon the overall system performance. As a result of this, it was 

recognised that in order to achieve accurate corroboration, a knee-wear simulator 

model needed to include the control system, and had to accurately represent all 

the mechanical dynamics of a specific rig design. 

Therefore, the AMTI knee simulator was used as the basis of a much more robust 

set of in-silico models, as described in Chapter Seven. Using this higher-fidelity 

model, forces and kinematics could be accurately predicted using experimental 

feedback data. With this deterministic model performing well, the final aim was to 

build a probabilistic study around this model, to investigate whether the 

variability predicted by in-silico models matched in-vitro test results (i.e. a first-of-
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kind „probabilistic corroboration‟). Data from over one-hundred experimental 

trials was compared with a probabilistic computational study, to discover if the 

resulting variations in knee mechanics and wear corresponded for in-vitro and in-

silico analysis methods. 

The key outcomes of the thesis may be summarised as follows: 

 Rigid „multi-body-dynamics‟ based models were shown to perform 

acceptably as fast surrogates in place of finite-element models. 

 Models of specific real-world experimental platforms were developed. 

Good agreement with in-vitro results was achieved (to within 5% averaged 

RMS errors), and the experimental data could be augmented with 

additional in-silico data (e.g. wear „decomposition‟ to visualise contact 

pressure or cross-shear).  

 The „probabilistic‟ models including variability reveal that small variations 

in input test conditions can considerably alter the resulting outcomes; e.g. 

it is possible to achieve very high wear rates (2 to 3 times the normal level) 

even with small component misalignments of only a few degrees. 

 The focus on computational wear modelling has led to developments in 

our understanding of wear; it has been robustly demonstrated that in-silico 

models can qualitatively rank designs in terms of wear performance, but 

there is still too much uncertainty to have quantitative confidence in the 

results to a high degree of accuracy. 

 By combining probabilistic experimental and computational results for the 

first time, this thesis reveals important limitations of computational 

models when predicting the variation in real-world wear rates: in-silico 

methods seem to be under-estimating the true amount of observed 

variation by at least a factor of four (more for some older theoretical wear 

approaches). 

This work has demonstrated that much faster in-silico models can still deliver 

acceptable accuracy. This speed increase can be harnessed to investigate 

variability, to perform multiple analyses, and so extend the domain of testing 

beyond what is possible with purely experimental means. But computational 

models must always be grounded in reality by robust corroboration with 

experimental methods, so close collaboration is essential. These studies 

demonstrate that close collaboration between computational and experimental 

specialists can yield benefits for both; the computational models are more 
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realistic and more accurate, and the experimental data can be augmented with 

enriched in-silico visualisation methods, and complemented with additional data 

from probabilistic studies (which would be too time-consuming to run 

experimentally). 

In this thesis the combination of fast computational analysis with experimental 

data was used to investigate the current generation of wear concepts, and it is 

shown that whilst these existing wear formulae are useful and beneficial 

analytical tools, they are not perfect, and there is room for considerable 

improvement in the current theories of wear. The combination of experimental 

and computational methods, taking account of the important role of variability in 

the tests, has been the key to advancing our understanding of the capabilities 

and limitations of existing wear theories. 

To progress our understanding of knee biomechanics further in the future, it will 

increasingly be necessary for different research specialists to collaborate 

together, in order to corroborate their methods and so build confidence in our 

results collectively, and enhance the total quantity and quality of pre-clinical data 

available to researchers, implant designers and clinicians. Equally, as a research 

community, emphasis must shift from „single-shot‟ experimental and 

computational models of knee biomechanics to more „probabilistic‟ approaches 

capturing the substantial variability observed in the knee in-vivo. The methods 

that have been used and the models that have been developed demonstrate what 

is possible when such a holistic approach to pre-clinical analysis is adopted. 
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CHAPTER ONE - REVIEW OF THE HUMAN KNEE 

Anatomy, Physiology, Pathology & Clinical Treatments 

1.1. Introduction: Motivation for Understanding the Human Knee 

Advances in medicine, diet & living conditions have led to increases in life 

expectancy across the developed world. As a result, UN estimates predict that the 

percentage of the population aged 60 or over will have risen from about 10% in 

2000 to over 20% in 2050 worldwide, with the European rate rising from 20% in 

2000 to almost 35% in 2050 [1]. 

As a result, many of the physiological problems associated with older age are 

more prevalent. Joint problems are particularly common. Over decades of normal 

daily activity, the articulating surfaces experience damage leading to pain and 

hence reduction of mobility. Less frequently, joint problems can also be the result 

of progressive or congenital diseases affecting younger individuals as well as 

older subjects. 

In order to improve patient quality of life, it is desirable to remove, or at least 

reduce, the pain and loss of mobility caused by joint degeneration. Various 

remedial procedures such as knee surgery (called „knee arthroplasty‟) have been 

devised for this purpose. Historically, arthroplasty procedures have traditionally 

been associated with the lower limb joints (specifically, the hip and knee), which 

bear the largest loads and hence are most susceptible to osteoarthritis. The focus 

of the present body of work will be the knee joint, which now undergoes more 

procedures than any other single joint nationally [2]. A necessary pre-requisite for 

this study is therefore a preliminary review of the fundamental anatomy, 

physiology & relevant pathology of the knee joint, and the surgical options for 

intervention. This review is presented in this first chapter. 

1.2. The Human Knee: an Anatomical Review 
1

 

The knee is the largest „synovial‟ joint in the body (i.e. the joint is enclosed in a 

fibrous capsule, containing synovial fluid). Although often referred to as a 

„ginglymus‟ (simple hinge) joint, it is in fact a complex multi-condylar joint, with 

secondary motions including considerable anterior-posterior (A-P) translation, and 

internal-external (I-E) rotation. Technically, it is not one single joint; there is a 

patellofemoral articulation, and two distinct tibiofemoral articulations (both 

                                         
1

 Extensive use is made in this document of the anatomical frames of reference. These are 

defined in Appendix A. The material presented in this section is derived from standard 

human anatomy texts [3, 4]. 
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medial and lateral condyles). It may therefore be considered as three 

„compartments‟, and in this sense a „total‟ knee replacement may be referred to 

as a „tri-compartmental‟ replacement. 

The knee experiences very demanding mechanical loads, since most of the body 

weight acts through the joint and large torques are present due to the large thigh 

& shank moment arms. Furthermore, unlike the hip, the knee is inherently 

unstable, so additional soft tissue forces (from surrounding muscles and 

ligaments) are required to stabilise the joint. The following anatomic description 

progresses from the skeletal components of the knee to the more superficial soft 

tissues: 

Skeletal 

The femur is the principle bone of the „thigh‟ (or upper leg); the „shank‟ (or lower 

leg) consists of both fibula and tibia, although the tibia is the principle load-

bearing structure. The femur & tibia articulate together directly (two convex 

condyles on the distal epiphysis of the femur articulate with the superior surface 

of the proximal tibial condyles), thus forming the tibiofemoral joint. Additionally, 

the anterior „groove‟ of the distal femur also articulates with the patella, (the 

„kneecap‟) a „sesamoid‟ (intra-tendonous) bone providing attachment for, and 

improved leverage to, the quadriceps muscles (Figure 1, left) – this forms the 

patellofemoral joint. The area of the bones where contact occurs is covered with 

a thin layer of articular cartilage, a collagen-based soft-tissue which provides 

impact-damping and reduces joint friction. It is the deterioration of this cartilage 

protection which often leads to joint failure (see Section 1.4). 

Menisci 

In both of the tibiofemoral condyles, a cartilage meniscus is present, which 

reduces joint friction, distributes loads to reduce local contact stresses, and 

provides further impact protection to the joint. The menisci are located over the 

lateral & medial condyles of the tibia, connected posteriorly by a transverse 

ligament, and to both the femur & tibia by additional ligamentous attachments. 

Synovial Membrane 

The articulating region is enclosed by a synovial membrane, containing the 

synovial fluid which assists in lowering joint friction and providing fluid ingress 

for nutrient supply to the cartilage. 
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Figure 1: Sagittal cross-section (left) & posterior view (right) of the knee (from [3]). 

Fibrous Capsule 

An extensive fibrous capsule surrounds the entire joint, blending with the 

surrounding tendons and ligaments, providing additional protection and soft-

tissue restraint. 

Ligaments & Tendons 

The patella is embedded within a tendonous link between the tibial tuberosity 

(on the anterior aspect of the proximal tibia), and the different muscles which 

form the quadriceps group. The (inferior) tendonous link between the tibia and 

patella is called the patellar ligament (PL), while the (superior) link between the 

patella and the quadriceps muscles is the quadriceps tendon (QT). Embedded 

within this tendonous link, the patella provides increased leverage for the 

quadriceps muscles; in deeper flexion angles the quadriceps wraps over the 

anterior surface of the distal femur (quadriceps „wrapping‟). The patella, 

articulating in the patellar groove on the anterior aspect of the distal femur, 

controls the line of action of the quad muscle forces, and by increasing the 

moment arm, increases the magnitude of the extension moment which the 

quadriceps can generate at the knee. 

Ligaments form an essential part of the tibiofemoral joint. The knee is stabilised 

by four main ligaments: two cruciates (anterior & posterior) and two collaterals 

(medial & lateral), abbreviated ACL, PCL, MCL & LCL respectively (Figure 1, right). 
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The MCL is also called the tibial collateral ligament (as it inserts distally to the 

tibia), while the LCL is the fibular collateral ligament (as it inserts to the fibula). 

The function of the ligaments is to constrain the kinematics of the knee, 

increasing the stability of what is an inherently unstable joint (it should be noted 

that the fibrous capsule and the surrounding muscle & tendon tissues also 

provide additional soft-tissue constraint). The collateral ligaments are recruited 

when resisting larger rotational motions; e.g. I-E and varus-valgus (V-V), since 

they have a larger moment arm against such torques. The cruciate ligaments are 

particularly important for their role in guiding A-P translation through different 

flexion angles. In reality, ligaments are complex multi-bundle structures, with 

different origins & insertions, different mechanical properties (stiffness & tensile 

strength) between bundles [5], and a non-linear behaviour (due to the fibrous 

structure „crimping‟ when relaxed), including differing levels of „pre-strain‟ (the 

degree of pre-tensioning the ligament experiences in the „neutral‟ stance 

position). A typical ligament load-extension response is shown in Figure 2. 

Various studies have demonstrated that ligament properties vary considerably 

between different subjects [6], and that the precise configuration of ligament 

bundles is important in determining the overall ligament behaviour [7]. 

 

Figure 2: Typical load-extension response (here: MCL bundle, adapted from [5]). 

Muscle Groups 

The most notable muscles are those responsible for sagittal-plane knee flexion 

(the hamstrings: biceps femoris, semimembranosus & semitendinosus) and 

extension (the quadriceps: rectus femoris and the vastus muscle group: 

v.mediales v.intermedius & v.laterales). Other muscles also play a part in 

flexion-extension (F-E), as well as I-E rotation (see Table 1). The muscles included 

in this table are also depicted graphically in Figure 3. Note: for clarity, this figure 

only includes those muscles directly surrounding the knee joint; as such, some 
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other major lower-extremity muscle groups (e.g. gluteus & soleus) are excluded; 

in reality, there is of course always an interdependence between the role of 

different muscle groups during different activities, and the full musculature of the 

lower limb must be considered as a single system for dynamic analysis.  

Muscle Group Muscle Function 

„Hamstrings‟ 

Biceps Femoris Flexion, External Rotation 

Semimembranosus Flexion, Internal Rotation 

Semitendinosus Flexion, Internal Rotation 

„Quadriceps‟ 

Rectus Femoris Extension 

Vastus Intermedius Extension 

Vastus Laterales Extension 

Vastus Mediales Extension 

Plantar-flexors 

Plantaris (Secondary) Flexion 

Gastrocnemius (Secondary) Flexion 

Secondary 

flexors 

Gracilis Flexion, Tibial Internal Rot. 

Sartorius Flexion 

 Tensor Fascia Lata Stability (extra tension) 

 Popliteus Flexion, Internal Rotation 

Table 1: List of Functional muscles associated with the knee joint. 

 

Figure 3: Muscles around the knee joint (left: anterior view, right: posterior view). 
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1.3. Knee Mechanics: Kinematics & Kinetics 

1.3.1. Motions of the Knee 

It is possible for the knee to move to a limited extent in any of the six possible 

degrees of freedom (3 translations, 3 rotations). F-E is by far the most visually 

apparent rotational action; however considerable I-E and V-V rotation is possible. 

The translational motions are less apparent, although several millimetres of A-P 

and medial-lateral (M-L) displacement is possible, and condylar „lift-off‟ may result 

in slight compression-distraction (C-D) displacements. A number of specific 

issues related to knee kinematics are briefly outlined below: 

Range of Motion at the Knee 

It is difficult to define a „typical‟ range of motion (ROM) for the knee joint, for two 

reasons; firstly, inter-patient variability means that this envelope would not be the 

same for any two subjects. Secondly, the degree of motion achieved is dependent 

upon the loads applied to the knee. This has lead to a distinction being made 

between the „active‟ and „passive‟ ROM (abbreviated AROM and PROM 

respectively) - i.e. whether the motion is made under the subject‟s own muscle 

action, or whether external manipulation is used to achieve the motion. Clinically, 

AROM is reported to average ~130°, decreasing with age. PROM is higher (~160°, 

again decreasing with age) [8, 9]. Terminologically, flexion angles over 90°, and 

especially those beyond 120°, are often referred to as „deep flexion‟ (not required 

for general ambulatory activities, but required for some kneeling & squatting 

everyday activities, such as gardening, domestic cleaning or kneeling prayer). 

Facilitating this „deep flexion‟ ROM is a key goal for next-generation TKR designs. 

Knee „Locking‟ and Screw-Home 

Although the knee is unstable, several effects combine to increase stability in full 

extension. The distal radius of the femoral condyle is larger than the posterior 

radius, thus increasing conformity in full flexion. For normal subjects, the line of 

action of body-weight is slightly anterior to the tibiofemoral contact when in full 

knee extension, tending to maintain the knee in extension. This is accompanied 

by an internal rotation of the femur relative to the tibia, causing the surrounding 

soft tissues to tighten, resulting in a higher degree of stability. This „locked‟ 

stance state is released when the popliteal muscle contracts, causing the femur to 

rotate externally relative to the tibia and so reducing the soft tissue constraint 

prior to the knee flexing (see Figure 4). This mechanism for increasing stability in 

full extension is often referred to as the „screw home‟ effect [10]. 
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Figure 4: Knee „locked‟ in screw-home position (left) and released in flexion (right). 

Femoral Rollback 

The term „femoral rollback‟ refers to a posterior movement („roll-back‟) of the 

femur (or conversely, an anterior movement of the tibia) as the knee flexes (and 

therefore vice-versa, as the knee extends). This concept first gained currency at 

the beginning of the 20
th

 century [11], and was subsequently analysed using 

rudimentary four-bar-linkage models of the knee (Figure 5); both the femoral axis 

of rotation and the tibiofemoral contact point are predicted to move posteriorly 

as flexion increases, according to these simple rigid-linkage predictions. The 

concept became the subject of some debate within the orthopaedic research 

community, with studies both confirming and refuting the femoral rollback 

phenomenon. Consensus is building that femoral rollback is not apparent for the 

medial condyle, but is often observed at the lateral condyle under passive loading 

[12]. Recent fluoroscopy studies (e.g. [13]) reveal the situation during active 

loading (i.e. when the knee is subject to large muscle loads during daily activities) 

to generally be much more variable [14]. Further, there are differences between 

natural and implanted knees, with the latter more likely to exhibit „paradoxical‟ 

anterior femoral motion with flexion (particularly in deep flexion) [15]. Finally, it 

is important to distinguish between the movement of the two bones (defined by 

hard anatomical landmarks), and the movement of the contact point between the 

bones; it is possible to have „paradoxical‟ motion of the contact point relative to 

the motion of the two bones. 
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Figure 5: Simple 2-D (sagittal) linkage model, showing the „femoral rollback‟ concept.  

Medial Pivot 

The „medial pivot‟ concept is related to the concept of femoral rollback. It is 

widely reported that the femur tends to rotate externally as the knee flexes (i.e. 

the tibia rotates internally relative to the femur). This, coupled with the 

hypothesised posterior motion of the femur during femoral rollback, would result 

in a combination of rotation and translation about the long axis of the bones, 

which could equivalently be represented by a single rotation (with no 

corresponding translation) about a „virtual‟ pivot point shifted towards the medial 

condyle (see Figure 6). Note that the „medial pivot‟ concept is dependent upon 

the „femoral rollback‟ assumption, and so the caveats associated with that 

concept apply equally to the medial pivot hypothesis. If paradoxical motion 

occurs, the virtual pivot will not be medially-shifted. Once again, inter-subject 

variability is considerable, and there is no single „correct‟ description of the 

medial pivot effect; however it is widely reported within the literature [16]. 

 

Figure 6: The „medial pivot‟ concept (illustrated on the tibia): rotation plus translation 

(left) is equivalent to rotation about medial condyle (right). 
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Describing Knee Motions: The Grood & Suntay System 

The multiple degrees of freedom and complex motions at the knee mean that 

kinematics can be complex, so kinematics must be defined clearly and reported 

consistently to avoid ambiguity or confusion. An important and widely-adopted 

method was proposed by Grood & Suntay [17]. In this cylindrical-axis co-ordinate 

system, the sequence in which the different rotations and translations are applied 

does not alter the final position & orientation (i.e. the system is sequence-

independent; this is an important advantage over e.g. the Euler co-ordinate 

system); see Figure 7. Although intended for natural knee motions, the Grood & 

Suntay system is equally applicable for in-vitro lower-limb simulators. 

 

Figure 7: Grood & Suntay co-ordinate system: graphical illustration (from [17]). 

1.3.2. Kinetics of the Knee 

For the human knee, loading varies from subject to subject depending upon the 

activity or mix of activities of daily living (ADL), and there is considerable inter-

patient variability. Experimental studies have demonstrated that the most 

important common activities considering both loading and frequency are walking 

(„gait‟) and stair usage [18]. Other activities (e.g. sitting & lying down) may be 

more prominent in terms of duration or frequency of occurrence but place limited 

dynamic loading demands on the knee; conversely some highly demanding 

activities (e.g. „shock‟ loads due to tripping or stumbling) may result in greater 

loads, but occur only very rarely.  
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It is important to characterise both the variety (range) and volume (frequency) of 

activities the joint will be subjected to. Basic data like step rate measurements 

can be obtained using pedometers or foot-switches, whereas the relative mix of 

activities can be extrapolated based on observations across a short time period. 

Inter-patient variability means that generic assumptions are rarely applicable; for 

example, „typical‟ subject step rate is often approximated as a million steps per 

year (when a „standard‟ is required for testing), but for a diverse sample of 

healthy subjects, Seedhom & Wallbridge reported an average of some 1.8 million 

steps/year per joint [19]. A study by Schmalzried et al focussed on arthroplasty 

patients, and found an average of 0.9 million steps/year per joint, but this 

average masked a wide variability, with outliers ranging from just over 70,000 to 

as high as 3.2 million steps/year per joint [20]. Clearly a single „representative‟ 

figure has only limited practical meaning. 

For common ADL types, knee mechanics can be recorded or estimated by various 

methods, including clinical motion analysis using video recording (or, more 

recently, fluoroscopy studies – e.g. [21]) & force plates (for external joint reaction 

forces), coupled with optimization algorithms (based on inverse dynamics 

methods) and/or EMG data (for internal joint contact forces). Rarely, more 

„invasive‟ assessment methods have been used; e.g. Lafortune et al used markers 

fixed with traction pins directly into the bone [22]. The data collected by these 

studies can be used as the basis for input waveforms into a simulated knee 

model, and „standardised‟ waveforms have been devised for comparative testing 

of implant designs (e.g. ISO testing standards [23, 24]).  

Often-cited examples of these studies are the early work by Morrison [25] for 

ambulatory gait, and Andriacchi et al [26] for stair climbing. Other studies have 

reported for more demanding ADLs; e.g. „deep flexion‟ squats (Nagura et al [27]). 

More recent studies have included a larger number of subjects, giving some 

indication of inter-patient variability; e.g. McFadyen & Winter, who recorded both 

stair ascent and descent [28], and the studies for gait and stair activates by 

Costigan et al [29]. More recently, telemetric measurements using prosthetics 

with embedded sensors have provided direct in-vivo data to compare with the 

theoretical results of earlier investigators; first for the hip joint (as pioneered in 

the early 1990‟s by Bergmann et al [30]), and subsequently for the knee, since the 

late 1990‟s (notably studies by Taylor et al [31-33] for a distal femoral implant, 

Kaufman et al [34] and most recently D‟Lima et al [35-37] for an instrumented 

tibial tray). Together, this large body of work provides a picture of the kinematics 

and kinetics of the knee joint for a range of ADLs – this information is invaluable 
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for subsequently modelling the knee, as it provides the „raw data‟ to drive knee 

simulations in a physiologically-representative manner. 

It is important to make a clear distinction between the internal forces acting 

between the contacting joint condylar surfaces (often termed joint contact force, 

or JCF), and the external resultant forces experienced by the whole limb segments 

(termed joint reaction force, or JRF). By necessity of Newtonian mechanics, the 

static magnitude of the external JRF will be of the same order as the subject‟s 

bodyweight (BW), (although dynamic external forces can exceed 1BW due to 

accelerating/decelerating forces in locomotion). The internal JCF can be much 

higher however even under static conditions (often several times BW), since 

antagonistic muscular co-contraction (necessary to stabilise the joint) are 

considerable. 

At the knee, forces are not loaded equally between condyles; the medial condyle 

will typically carry a larger load. It is also larger, however, to balance contact 

pressures. Surface contact pressures reflect the distribution of compressive joint 

forces across the surface of the femoral and tibial condyles. Generally, in a 

natural knee, the combination of low-stiffness articular cartilage on the condyles 

with the load-distributing effects of the meniscal cartilage results in low contact 

pressures when compared to the more rigid materials used in artificial implants. 

Although measuring knee contact pressures in-situ is challenging, several in-vitro 

cadaveric studies have attempted this using pressure-sensitive dyes or 

transducers. Depending on activity, typical mean condylar surface contact 

pressures have been found to be below 2MPa, with peak values around 6MPa [38] 

(a simple order-of-magnitude consideration would anticipate this, since forces of 

a few thousand Newtons are acting on an area of between 10-15cm²). Naturally, 

contact pressures rise with higher loads, or when the contact area is reduced (e.g. 

after a meniscectomy). Unfortunately the relatively stiff synthetic materials used 

for artificial prostheses result in much smaller contact areas, and are known to 

result in contact pressures several times higher than this (often approaching 

20MPa [39]).  

1.3.3. Mechanics of Normal Gait 

Whilst the knee is used in many different ADLs, it is the most mechanically 

demanding which are of interest here, as these contribute most to mechanical 

failure. Of particular importance are the conditions during normal walking (i.e. 

„active gait‟). This is because, although gait does not result in the most extreme 

forces or kinematics, it is by far the most prevalent daily „active‟ ADL for most 

typical arthroplasty patients. For example, a study by Morlock et al [18] found 
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that for hip patients, walking accounted for over 10% of the monitoring time – 

although this is low compared to some of the „passive‟ activities (e.g. sitting, 

lying down), it was much higher than other high-loading activities (e.g. more than 

25 times more frequent than stair climbing). As such, analysis of gait receives 

considerable attention in the literature; therefore the mechanics of „normal‟ gait 

will be reviewed in further detail in this section. 

Knee Flexion (Kinematics) 

The flexion of the knee in gait is the most apparent kinematic feature, with a very 

clear & intuitive functional basis. Flexion of the knee serves two primary 

purposes: To provide „shock absorption‟ damping as the limb is loaded 

immediately after heel strike (HS), and to ensure adequate clearance of the foot 

above the ground during swing phase. These two requirements lead to a 

characteristic biphasic waveform, as shown in Figure 8. 

 

Figure 8: Typical knee flexion for normal gait. 

The first peak is smaller, and quite variable between subjects. A typical knee 

flexion angle for this first peak is around 10-20°. The second peak is much larger, 

typically around 60° of flexion.  

Note that the knee will not necessarily achieve full extension (i.e. „flexion‟ = 0°) at 

any point in the gait cycle. For some subjects, the knee will remain in slight 

„positive‟ flexion, even throughout the stance phase. This is subject-specific; e.g. 

the subject telemeterised by D‟Lima et al [35] never exhibited under ~13° flexion 

in gait. Depending on the subject, the knee may remain always in slight (positive) 

flexion, or conversely achieve slight hyperextension (e.g. [22]), in gait. 

Axial Compressive Force Loading (Kinetics) 

During bipedal motion the lower limbs alternately support the weight of the body 

while in contact with the ground; therefore, to a first approximation, the knee 

bears a „high‟ load in stance, and a „low‟ load in swing. However, the actual 
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loading is more complex (Figure 9). Inverse-dynamics analyses predict a „double-

peak‟ during stance phase (corresponding to vertical acceleration of the trunk); 

this is sometimes observed in-vivo (e.g. [40]), although not consistently.  Loading 

in swing phase is not „zero‟, due to the passive restraint provided by soft tissues, 

and antagonistic muscle action. For the purposes of in-vitro tests it is often 

assumed that the swing phase load is constant (a few hundred Newtons), but 

telemeterised data reveal considerable variation of the load even within swing 

phase, with the lowest loads around mid-swing [35]. Antagonistic co-contraction 

of the muscles around the knee means that JCFs are higher than corresponding 

JRFs. However, whereas the early muscle-optimisation algorithms (e.g. Morrison 

[25]) anticipated JCFs of 3-4BW during gait, latest in-vivo measures suggest actual 

values may not be much higher than 2-2.5BW [35, 40] (see telemeterised 

waveform in Figure 10).  

 

Figure 9: Typical theoretical axial JCF during gait. 

 

Figure 10: Telemetry data for axial JCF (adapted from D'Lima et al [35]). 

Internal-External Torque & Rotation (Kinetics & Kinematics) 

Early experiences with hinged knee prostheses demonstrated that the I-E 

kinematics and kinetics are an important characteristic of normal bipedal gait, 

and cannot be neglected; (early „fixed-hinge‟ prostheses often failed because of 
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the high rotational torques occurring [41]). This I-E action helps to establish 

favourable trunk orientation for the proceeding step. Since the „stance‟ foot is 

fixed on the ground, the I-E moment to twist the trunk must be generated across 

the lower limb. Given that the moment on the trunk is external, the reaction 

moment must be an internal moment; hence at the knee the proximal side 

(femur) experiences an external moment, whereas the distal (tibia) experiences 

an internal moment. This is seen in clinical gait assessment; a large torque peak 

(typically several Newton-metres) is seen in late stance phase (see Figure 11). The 

torsional effect acts to cause an internal rotation of the tibia relative to the femur 

(or, conversely, an external rotation of the femur relative to the tibia).  

 

Figure 11: Typical I-E torque acting at the knee. The torque is principally „external‟ on 

the femur, and hence „internal‟ on the tibia. 

Anterior-Posterior Force & Translation (Kinetics & Kinematics) 

A-P forces and motions are important for TKR performance (and for defining the 

input conditions for force- and displacement-driven knee simulators – see Chapter 

Two). However, there is little consensus on the A-P forces or motions at the knee, 

owing to inter-subject variability (as discussed in Section 1.3.1 regarding the 

femoral rollback and medial pivot concepts). The A-P shear forces are known to 

be of considerable magnitude (Taylor et al reported peak A-P loads of 0.5BW [40]; 

D‟Lima et al reported loads of over 0.3BW [35, 36]). However, there is very little 

consensus on the „shape‟ of this shear-force profile. Even with the „standardised‟ 

ISO waveform [23], the polarity is inverted by some testers (e.g. [42]).  

For A-P kinematics, the ISO-standard adopts a predominantly anterior motion of 

the femur on the tibia [24], (in line with the findings of Lafortune et al [22]), but 

other groups [42, 43] have adopted a predominantly posterior femoral motion, in 

keeping with the medial-pivot hypothesis (Figure 12). Clearly, in light of this lack 

of consensus, further in-vivo fluoroscopic & telemetric studies are required for 

larger cohorts, to better understand how A-P motions vary between subjects. 
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Figure 12: Different A-P motion profiles: ISO-standard [24] with „paradoxical‟ anterior 

femoral rollback (solid), and from Barnett et al [44] with posterior rollback (dashed). 

In the above sections, the anatomy and mechanics of a normal healthy knee have 

been discussed. However, TKR is only required when the knee ceases to function 

correctly. It is next necessary to consider how the knee joint can „fail‟ & hence 

come to require intervention. 

1.4. Pathology & Failure of the Knee Joint 

For the overwhelming majority of cases where some form of clinical intervention 

is required, the cause is some form of arthritis (literally meaning „joint-

inflammation‟ in the Greek). Note that arthritis is not a causal diagnosis; the 

definition is based on the symptoms rather than any specific cause. Generally, the 

cause of this pain and inflammation of the joints is damage to (or total wear-out 

of) the cartilage at the joint. 

The most common form of arthritis is osteoarthritis (OA). This is a localised 

degenerative condition associated with old age and overuse of the joint – 

essentially, natural „wear and tear‟. Hence the eventual onset of „primary‟ OA is 

simply an inherent consequence of a long and active life. Something of a trade-off 

exists, since it is in every patient‟s health interests to remain active in later life, 

and whilst regular physical activity can help control joint swelling and pain [45], 

excessive activity levels can increase the incidences of joint complaints [46]. 

However, other „secondary‟ causes can advance the onset of OA, such as injury, 

obesity or diabetes [46-48]. The effect of OA is that moving or loading the joint 

results in considerable pain; this in turn makes the subject reluctant to engage in 

activity, effectively causing loss of joint functionality and impairing quality of life. 

The second most common cause is rheumatoid arthritis (RA). This is a 

progressive disease in which the immune system triggers inflammation of the 

synovial fluid, causing destruction of the joint soft tissues. RA generally begins to 

cause problems at an earlier age than OA, and is systemic, often affecting 
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multiple joints. Because the condition can continue to progress post-operatively, 

there is an increased risk of revision surgery being required (see Section 1.5.3). 

Several countries maintain national databases to register TJR patients, recording 

reasons for surgery, implant design, revision history, and other relevant statistics 

[49]. A review of recent registry reports demonstrates that OA is easily the most 

prevalent indicator for surgery, with RA consistently in second place - statistics 

for several registries are listed in Table 2 (note: the data is for primary TKR, and 

excludes revision cases). There are other possible reasons why an implant might 

be needed, e.g. osteonecrosis (damage and death of bone tissue) or serious bone 

or soft tissue damage (e.g. due to severe trauma). In mild or early cases (e.g. 

unicompartmental OA), a full TKR may not be used; in extreme cases (e.g. limb 

reconstruction following osteosarcoma) a more extensive prosthetic than a 

standard TKR would be required.  

Registry Report 1
st

 2
nd

 Other 

Australia, 2008 [50] OA (96.8%) RA (2.0%) 1.2% 

Canada, 2007 [51] OA (93%) RA (4%) 3% 

Denmark, 2007 [52] OA (90.9%) RA (5.4%) 5.7% 

England & Wales, 2007 [2] OA (97%) RA (2%) 1% 

Finland, 2006 [53] OA (92%) RA (4%) 4% 

New Zealand, 2006 [54] OA (92.2%) RA (3.5%) 4.3% 

Norway, 2008 [55] OA (77.9%) RA (7.8%) 14.3% 

Scotland, 2008 [56] OA (93.8%) RA (4.1%) 2.1% 

Sweden, 2008 [57] OA (93%) RA (3%) 3% 

Table 2: Top reasons (with %) for primary TKR. 

Note: derived from most recent available registry data (non-concurrent). 

1.5. Surgical Options, Techniques & Limitations 

1.5.1. A Review of Joint Replacement Technologies 

As with many problems associated with old age, treatment for joint complaints 

aims to alleviate undesirable symptoms rather than reverse the causal underlying 

aging process. Partial or total joint replacement is generally the last resort when 

other less drastic measures to alleviate pain and/or restore function via lifestyle 

changes, physiotherapy or medication are unsuccessful. There are a range of 

possible surgical options, depending on the degree of joint deterioration. 

Although TKR is the focus of this study, the other options are briefly outlined 

below (in order of progression from most to least conservative). Whilst some of 

the more conservative options may be less robust or long-lasting, they should not 
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be overlooked; for example, uni-compartmental knee replacements may not 

perform as well as total knee replacements, but they can be used earlier without 

the risk of damaging bone stock, precisely because they are more conservative. 

Therefore, it is often desirable to use such methods, to forestall the need for a 

full TKR as long as possible. Therefore, the bullet-list below should be seen as a 

scale of intervention options, with the earlier options being most conservative, 

and therefore being preferable, where possible. 

 Tissue resection: For younger patients, it may not be appropriate to use an 

implant at first, instead resecting the natural knee tissues, e.g. meniscectomy, 

where the damaged meniscal cartilage is partially or totally removed, and 

osteotomy, where a portion of bone is removed to better distribute loads 

across the knee. 

 Interpositional spacers: where only the meniscus is damaged, a conservative 

option is an interpositional spacer, to replace the worn cartilage (so 

preventing bone-on-bone articulation) without any resection of bone stock. 

 Hemiarthroplasty: hemiarthroplasty replaces only the articulating surface of 

one bone, e.g. a tibial hemiarthroplasty may replace only one of the tibial 

condyles, with an anatomically representative resurfacing implant.  

 Unicompartmental & bi-lateral arthroplasty: When damage is limited to one 

condyle a popular option is to use a unicompartmental knee replacement 

(UKR) – this does require limited resection of both the femur and tibia, but 

leaves sufficient bone stock for subsequent revision to a full TKR if needed. In 

some cases, separate UKR implants can be used for the medial and lateral 

condyles (called bi-lateral arthroplasty), allowing the intercondylar region and 

associated cruciate ligaments to be entirely retained. Early clinical data shows 

UKR has a higher revision rate than TKR [57], and some concerns remain over 

whether UKR can accelerate contra-lateral condyle degradation [58]; however 

this is based on early experiences, and results will potentially improve as the 

technique is more widely practised. Nonetheless UKR is an attractive option, 

since despite any shortcomings in longevity it is generally easier to revise 

from a UKR to a TKR, than to revise a TKR. 

 Primary TKR („tri-compartmental‟ knee arthroplasty): TKR involves resection 

of considerable bone stock, including at least part of the intercondylar region 

of both the femur and tibia. Many design variants exist, for example fixed-

base, rotating platform & mobile bearing; PCL-retaining, substituting & 

sacrificing (see Section 1.5.2). Compared to other surgical approaches, TKR is 
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well-established with a proven clinical record. TKR may or may not include a 

patellar resurfacing; this will depend upon the condition of the patient‟s own 

patellofemoral joint, the design of implant and the surgical team‟s practice. 

 Revision: Revision normally requires a more extensive implant than the 

original TKR – e.g. a long-stemmed hinged joint replacement might be used if 

considerable bone has been lost. However, if the primary procedure used a 

UKR, then a standard TKR might be appropriate for the revision. Generally, 

every new revision procedure carries further risk of infection or complications 

and also further reduces bone stock. Therefore, driving down revision rates by 

increasing implant longevity is highly desirable. 

Rarely, in severe cases it may no longer be possible to provide a joint 

replacement, due to severe infection, or serious loss of bone stock. In these 

cases, the only options available may be arthrodesis (the „fusing‟ of the joint into 

a fixed position, with the associated mobility impairment), or amputation. 

Naturally, on this „scale‟ of intervention options, it is desirable to forestall 

progression to more extensive solutions for as long as possible, since it is not 

presently possible to reverse the increasing damage to natural tissues and 

structures caused by the more aggressive procedures. Of all the listed options, 

TKR is currently the most common, and many recipients of conservative implants 

will eventually have these revised to TKR. As an established and widely adopted 

technique, it also has lower revision rates than some of the less-established 

alternatives, representing the best opportunity to halt the spiral of implant failure 

and revision. Consequently TKR is a natural focus for any design efforts to 

improve longevity and function. The following section outlines the design 

philosophies of TKR. 

1.5.2. TKR Design Characteristics 

In this study, the term „TKR‟ is taken to refer to the design family of 

endoprostheses which resurface the entire distal surface of the femoral condyles, 

and resect the proximal tibial condyles, such that two artificial surfaces articulate 

together to form the new tibiofemoral joint. This design format became popular 

in the 1970‟s, in the wake of the success of new materials applied to total hip 

replacement designs [59]. Early designs either sought to mimic the geometric 

anatomy of the natural knee, or else to work from mechanical principles to 

accommodate the functionality of the natural knee. Both approaches (anatomic & 

functional) resulted in some common features; note the geometric similarity of 

the implants in Figure 13. However there are several important design aspects 
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where different designs follow different philosophies; the most major variations 

are outlined below. 

    

Figure 13: Commercial TKR designs, from left to right: PFC Sigma (DePuy), NexGen 

(Zimmer), Advance MP (Wright Medical) and LCS (DePuy). 

Materials: The tibiofemoral joint must be low-friction (to minimise tribological 

damage to the implants); metal-on-polyethylene (MoP) articulation had proven to 

be successful for hip implants, and so was adopted for TKR. Whereas modern hip 

implants are now migrating to more advanced technologies, such as all-metal or 

ceramic bearings, two features make this less appropriate for the knee. First, the 

geometry of hip bearings is simple (spherical); this is not true for knee 

components, which must generally be hand-finished to achieve a suitable surface. 

Second, the hip is constantly held in compression by the musculature; this is not 

true for the less stable knee joint, where tibiofemoral „lift-off‟ can occur, resulting 

in impact loading. Therefore MoP remains the state of the art for TKR. The 

femoral component is generally manufactured from cobalt-chromium (Co-Cr), 

providing high strength, good biocompatibility and excellent corrosion 

resistance. The tibial articulating insert is a medical grade ultra-high molecular 

weight polyethylene (UHMWPE), e.g. GUR-1020, GUR-1050 or GUR-4150; however 

experiences with early designs demonstrated that the lower stiffness of UHMWPE 

against cancellous bone could lead to failure [60], and it soon became standard 

for the tibial polyethylene insert to be mounted in a metal tray (often Co-Cr or 

titanium) for stiffer backing. The use of polyethylene leads to potential concerns 

over the effects of wear debris (see Section 1.5.3). To counter these problems, a 

range of refinements have been made to the production processes for UHMWPE 

(e.g. gamma-ray vacuum sterilisation is used to encourage polymer cross-linking, 

which can greatly reduce wear susceptibility [61]). 

Patellar replacement: The patella may or may not be separately re-surfaced; if it is 

resurfaced the implant is generally all-polyethylene. The shape of the patellar 

implant may be anatomically representative, or simply oval or dome-shaped. 

Similarly, the anterior groove on the femoral implant may or may not be 
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symmetrical: in the natural knee, the patellar groove slopes laterally by several 

degrees as it progresses proximally. However if this feature is adopted, separate 

femoral components must be manufactured for left and right knees. To avoid 

this, some designs use a straight vertical patellar groove. The disadvantage is 

that this may change the line of action of the quadriceps force, diverging from 

the normal loading of the natural knee. 

Tibial bearing design: The use of a metal-backed insert is now widespread, and 

many designs now also introduce an additional degree of freedom between this 

tray and the polyethylene insert. The theory is that allowing the tibial insert this 

extra freedom of motion can split the tibial motion across two different bearings 

– this means both that the tibial insert can rotate to a more conformal position 

against the femoral component (increasing surface contact area and so 

decreasing pressure), and also that the kinematic motions associated with 

producing wear can be reduced [42] (see discussion on wear and cross-shear 

motions in Chapter Four).  

One design concept is to use a central peg, permitting only I-E rotation between 

the tray and insert; i.e. a rotating platform (Figure 14, centre). Another concept is 

a slotted peg permitting both rotation and translation; i.e. mobile bearings 

(Figure 14, right). Nonetheless, fixed designs with no tibial bearing (Figure 14, 

left) are still common; although theoretically rotating & mobile bearings offer 

advantages, currently these benefits do not clearly translate to improved clinical 

results [62, 63]. 

 

Figure 14: Comparison of tibial bearing designs. 

Cruciate retention/resection: surgical treatment of the cruciate ligaments is an 

important decision in the choice of knee implant design. Almost every design 

must resect the ACL, as a necessity in order to install a full resurfacing implant 

(this has been one impetus for bi-lateral use of UKR, where the ACL and PCL can 

both be preserved), and there is no need to resect the collateral ligaments (which 

do not obstruct the intercondylar region). However there is no clear consensus on 

whether to resect or retain the PCL; the final decision rests with the practising 
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surgeon, and the key factors are typically the physical condition of the patient‟s 

ligaments, and individual surgical preference.  

Some implants are designed to leave the PCL intact, taking advantage of the 

stability it provides for large flexion angles. These designs are referred to as PCL-

retaining, or simply cruciate-retaining (CR), and generally have less conformal 

sagittal geometry, since the PCL helps restrict A-P motion (see Figure 15). 

However this requires the PCL to be in good condition, and correctly tensioned 

when the implant is fitted. Such low conformity-surfaces can also result in higher 

tibial contact pressures. 

 

Figure 15: „CR‟ design. As the femur flexes and experiences anterior force, the PCL 

acts as a „spring‟ to constrain the anterior motion. 

The alternative is to resect the PCL; devices which do this are PCL-substituting or 

PCL-sacrificing (PS). The key design feature is either a more conformal geometry, 

or else a distinct motion-constraining feature, e.g. a cam system in the 

intercondylar region (see Figure 16). The implant must provide the constraint 

which the PCL would otherwise offer, so larger restraint forces must be 

supported. If features such as camming systems are used this can lead to large 

shear stresses within the cam, whereas using a more conformal surface will 

distribute contact forces better, reducing surface contact pressure. The decision 

must be based on the condition of the PCL in the patient. Many designs are 

modular (so that the surgeon can choose an alternative if intra-operative 

inspection of the PCL indicates that additional constraint is needed). Reported 

clinical results for both PCL retaining and resecting approaches are mixed; 

although retaining the PCL is considered preferable when the surgical team is 

experienced [64]. 
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Figure 16: „PS‟ design. As the femur flexes and experiences anterior force, the inter-

condylar „cam‟ system engages to resist anterior motion. 

Fixation: As with hip replacements, the option exists to use either cemented or 

cementless fixation. Cemented designs typically use cement to fix the tibial tray 

and the femoral resurfacing implant (the tibial insert is normally held in place by 

mechanical interlock with the tray). Direct cementing of an all-polyethylene tibial 

component may be used, reinforcing the low stiffness of the UHMWPE with the 

higher-modulus polymethylmethacrylate (PMMA) bone cement. Components may 

be designed for a „press-fit‟ (e.g. the femoral resurfacing implants), although due 

to the high rotational torques experienced by the knee (see Section 1.3), fixation 

pegs are often included. For cementless designs, a further possibility is to 

provide a coating for improved fixation; this may take the form of a porous 

coating for better mechanical interlock, and/or osteoconductive coatings such as 

hydroxylapatite to encourage bone in-growth. Whereas for hip prosthesis, 

cementless designs have risen considerably in popularity in recent years (with 

30% of recent UK hip procedures using cementless fixation vs. 48% cemented), for 

the knee implants, only 7% are cementless vs. 83% cemented (the remainder in 

both cases being hybrid or conservative implants – data from NJR 2007 [2]). 

1.5.3. TKR Failure Mechanisms 

Assuming the initial arthroplasty surgery is successful, there are still many risks 

of failure post-operatively. Some of the most common are listed below. Note that 

the factors are not independent or exclusive (e.g. wear-induced osteolysis may 

lead to loosening, or increase the risk of direct mechanical failure of the 

component). Some of these factors are unrelated to the mechanical environment; 

others depend strongly on joint mechanics and it is these factors (designated by 

an asterisk*) that are most relevant to the results of the subsequent 

computational mechanical modelling; other factors are recorded here for 

completeness but will not be attended to further in this thesis. Statistics for 

different national joint registers are compared in Table 3, showing the frequency 
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with which these failure types occur. It is noteworthy that in the table, objective 

„mechanical‟ failure criteria such as loosening do dominate; however other more 

subjective criteria such as pain also feature for some national registries. 

 Wear*: Although any surfaces in moving contact will experience wear, for TKR 

the most prevalent occurrence is wear of the polyethylene used in the tibial 

and patellar components. Although the small degree of wear might not 

compromise the implants directly (i.e. the structural integrity of the implant 

itself may remain satisfactory), the build-up of wear debris in the surrounding 

biological tissue can lead to problems; in particular osteolysis [65]. This is a 

process whereby macrophages (biological agents which are part of the body‟s 

immune response) attempt to remove the foreign wear debris from the body, 

but in the process also reabsorb the surrounding natural bone stock. This 

leads to decreased bone density and hence ultimately can compromise the 

mechanical integrity of surrounding bone tissue (which in turn can cause bone 

fracture and/or component loosening). Macrophage activity is part of the 

normal bone remodelling process, but can be increased by the presence of 

wear debris particles. Use of appropriate low-wear materials and controlling 

the articulating motion can both help reduce the volume of wear debris 

created. For a given implant design and material type, wear is hypothesised to 

be a function of the sliding path motions and the contact pressure; these 

factors can be readily investigated with mechanical models, and so will be a 

key metric for assessment in the analyses described in this thesis. (For more 

on the mechanics of wear, refer to Chapter Four). 

 Loosening*: the failure of a mechanical fixation interface (for cemented 

implants, either the bone-cement or implant-cement interface; for cementless 

designs, the bone-implant interface, or if coatings are used, at the coating 

interface). This is commonly reported (e.g. [66]), and can have many causes; 

e.g. wear-induced osteolysis or migration (due to poor initial fixation, or 

cementing quality leading to excessive micro-motion). Although loosening will 

not be investigated directly, it is the most frequently reported mode of failure, 

and is often causally related to other failure mechanisms which will be 

explored (e.g. wear). 

 Dislocation / Subluxation*: this can potentially occur for the patellofemoral 

or tibiofemoral joint if soft tissue constraint (from the ligaments or fibrous 

capsule) is inadequate, or if the component is severely malpositioned during 

surgery. Although rare, such incidents are reported in the literature [67]. Since 
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these events are a direct function of the knee kinematics, they can be easily 

assessed using mechanical modelling. 

 Instability*: The knee is inherently unstable, depending on the extensive 

surrounding soft tissue (ligaments and muscles) to provide stability. 

Consequently, if this soft tissue support is damaged (e.g. trauma from 

surgical incision, or resection / improper balancing of the ligaments) the 

internal kinematics of the knee would be under-constrained. This can cause 

the patient to feel the sensation of instability, reducing their confidence when 

walking or moving, and hence impairing mobility [68]. Note that instability is a 

result of underlying mechanical issues, but also psychological patient-

perceptions; the latter are very difficult to analyse; however the actual degree 

of mechanical constraint can be assessed readily as an indicator of instability. 

 Patellar complications*: patients may report pain specifically around the 

patella; poor patellar tracking is a common problem. In cases where the 

patella was not initially resurfaced, a revision may be indicated to include a 

patella implant if the original results are not satisfactory. Again, there is a 

degree of subjective patient perception involved, but the mechanics 

(patellofemoral kinematics and contact pressures) are more objective and can 

be measured directly. 

 Disease Progression: with TKR for RA, the joint may continue to degenerate 

after surgery, leading to further problems. Good survival rates can be achieved 

for RA patients [69], but rates are generally lower than for OA [2, 50-57]). 

 Mechanical Fracture: Implants can potentially suffer structural failure in-vivo. 

Historically there were problems in particular for the tibial tray [70] (due to 

poor design, or osteolysis undermining the bone supporting the tray); 

standard tests are now used to reduce this risk [71].  

 Limited function: if components are misplaced or ligaments are not balanced, 

knee ROM may be reduced, impeding some ADLs (e.g. kneeling, stair 

climbing). Rarely, this may even be an indication for revision [72]. 

 Infection: deep infection may necessitate the removal of the implant. Good 

hygiene practice, implant irradiation, including antibiotics in cement and 

similar measures can mitigate this risk [73], but infection rates of a few 

percent remain typical [2, 50-57]. 

 Pain: may be related other failures, (e.g. where „progression‟ is reported, the 

patient will also be in pain). Post-operative pain is common [74], and even 
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without clear causes may necessitate revision. Unlike mechanical modes of 

failure, pain is a very subjective metric to assess.  

Registry 1
st

 2
nd

 3
rd

 

Australia, 2008 [50] Loosening (37%) Infection (15%) Wear (8%) 

Canada, 2007 [51] Loosening (33%) Wear (30%) Instability (17%) 

Denmark. 2007 [52] Loosening (35%) Pain (21%) Instability (18%) 

England & Wales, 2007 [2] Loosening (46%) Pain (16%) Osteolysis (16%) 

Finland, 2006 [53] Infection (25%) Misalignment (12%) Patella (8%) 

New Zealand, 2006 [54] Pain (33%) Loosening (33%) Infection (26%) 

Norway, 2008 [55] Loosening (25%) Pain (22%) Infection (10%) 

Sweden, 2008 [57] Loosening (25%) Patella (21%) Instability (11%) 

Table 3: Top specific reasons for revision (%). Most recent data (non-concurrent). 

Percentage values averaged for all revision types.  

1.5.4. Success Rates with TKR 

At first consideration, TKR is a very successful procedure, with most registries 

and studies typically indicating survivorship of 90%+ at 10 years, and 80%+ at 20 

years [75]. However, the fact that an implant has „survived‟ (i.e. not been 

removed) does not automatically make it faultless (a patient may still be in pain, 

or suffer from lack of function). A single discrete „success/failure‟ metric does not 

capture these other problems and limitations; a more graded, multi-factor scale is 

needed to identify underlying issues. 

Subjective scores such as the Oxford Knee Score [76], or Knee Society Score [77] 

can be used to gauge the implant‟s success on a more continuous scale, and 

these generally show that the majority of patients experience some pain and/or 

loss of function post-operatively. For example, in the England & Wales National 

Joint Registry, less than 10% of knee patient respondents reported „no‟ or „hardly 

any‟ problems – implying that over 90% of respondents had some problems with 

their new implant [2]. Compare this to the hip patients in the same registry 

report: around 30% had „no‟ or „hardly any‟ problems; over three times the 

equivalent knee rate. The proportions with moderate to severe problems were 

also about twice as high for the knee patients as for hip patients: 11% versus 

6.1%. This illustrates a considerable disparity between the patient-perceived 

outcomes of hip and knee replacements. Studies which have used „pain‟ as a 

failure endpoint (rather than revision) see a much higher „failure‟ rate (e.g. 

around 30% [74]). Similarly, although very few knees are actually revised due to 

inadequate flexion range [72], this masks the higher rate of patients with 

imperfect knee functional scores post-operatively (e.g. inadequate flexion range, 



38 

 

which is not serious enough to indicate revision, but may impede participation in 

certain activities). The clear conclusion is that, across the population, knee 

replacements are not performing as well as hips. 

Further, pre-operative patient selection masks the true effectiveness of the 

treatment; younger patients are contra-indicated for TKR, based on the increased 

demands of a longer potential lifespan and higher activity levels. Therefore the 

true number of people whose needs and expectations are not fully met by current 

TKR procedures is much larger than the headline revision rates alone suggest.  

Even laying these caveats aside and reviewing revision rates alone, percentages 

should still be considered in terms of the underlying real numbers. Data from 

those nations with national joint registries accounts for over 120,000 knee 

replacements per year [2, 50-57], and with an estimated 300,000 knee 

replacements annually in the US alone [75], the annual figure worldwide is 

substantially over half a million procedures. Consequently, even a few percent 

represents tens of thousands of patients every year for whom TKR has been 

unsuccessful. As the number of patients continues to increase, the case for 

driving down the percentage of failures is strengthened. This should include 

addressing all aspects of sub-optimal performance (i.e. improving longevity, 

reducing pain, and also increasing functionality.) 

However, a review of long-term registry data demonstrates that the rate of 

improvement is decreasing (for example, in the longest-running Swedish registry, 

it is reported that whereas TKR revision rate at 5 years dropped from over 12% to 

~5% between 1980-1990, the corresponding drop between 1990-2000 was only 

~2%, from ~5% to ~3% [57]). This is a classic example of the „Pareto Principle‟; the 

drive for improvement becomes progressively more challenging as improvements 

are made: as the most obvious and effective improvements are implemented, the 

remaining outlier cases are more difficult to address, requiring more detailed 

understanding of the system and more effort to engineer appropriate solutions. 

1.6. Summary 

This chapter has presented an overview of knee anatomy, demonstrating that the 

knee is a complex joint facing demanding loading conditions. The challenges this 

presents for TKR designs has been discussed, along with a review of existing 

design solutions, and a discussion of how these designs are performing in-vivo. It 

has been shown that there are important shortcomings which still need to be 

addressed, and the challenge facing orthopaedic researchers is increasing as the 
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drive for continuous improvement requires an ever great understanding of the 

knee, and ever more design effort.  

However, the time and resources that can be dedicated to orthopaedic research 

cannot correspondingly increase indefinitely; therefore future research efforts 

must become more carefully focused, to achieve the most benefit with the finite 

resources available. To this end, the role of pre-clinical assessment tools has 

grown more prominent over recent decades; developers cannot afford the costs 

associated with development, prototyping and clinical trials before detecting 

problems with a design. Increasingly, efforts focus on predicting likely outcomes 

whilst the implant is still in the early design stages; i.e. pre-clinical analysis. 

Note that the subjective nature of many „failures‟ presents a particular design 

problem; for instance, if a patient reports severe pain, this may indicate revision, 

even if no causal explanation can be found for the pain. It is very challenging for 

an implant designer to address such subjective and poorly-understood issues in 

the pre-clinical design phase; and indeed how this may be done is beyond the 

scope of the present thesis. Rather, we will attempt to demonstrate how the 

general methodology of pre-clinical design might be improved, and demonstrate 

these improvements within the domain of some of the more „established‟ pre-

clinical testing that is routinely performed (i.e. mechanical phenomena such as 

kinematics and wear). It is hoped that in the future, some of the lessons learnt 

will be more generally applicable to other forms of pre-clinical analysis for TKR 

implant designs. 

Chapter Two will review some of the techniques developed to assist in this pre-

clinical assessment, and demonstrate the need for more intelligent assessment 

tools as the research field continues to develop. 
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CHAPTER TWO - PRE-CLINICAL ANALYSIS METHODS 

Experimental and theoretical methods used for pre-clinical analysis, and the 

benefits of cross-corroboration between alternative approaches 

2.1. The Motivation for Pre-clinical Modelling & Analysis 

As has been discussed in Chapter One, the human knee is a complex system, and 

any surgical intervention or implant design requires a robust understanding of 

this system behaviour to achieve the optimal outcome. The earlier in the design 

process that change decisions can be made, the lower the subsequent 

development costs; hence there is a strong incentive to have an effective set of 

analysis methods available pre-clinically. This requires a representative model 

(offering some advantage in terms of time, risk, cost or ethics compared to a 

clinical trial) to enable practical predictions of the likely performance (and hence 

suitability) of a design proposal, modification or feature. If this model is of 

sufficient robustness & integrity, it may then be used to predict behaviour under 

„perturbed‟ conditions, and hence ultimately be used for broad-based 

„probabilistic‟ studies of the full range of varying factors. 

Quantitative pre-clinical assessment tools are well established, and have 

flourished with the improvement over recent decades in electronics, sensors and 

computing performance. Such models can be broadly split into two disciplines: 

theoretical/analytic models, which virtually model the expected behaviour of the 

system to make predictions, and the experimental/empirical models, which 

directly test „real-world‟ models under representative physical conditions. The 

analytical approach is generally modelled computationally, to handle the 

complexity of the models, and may broadly be referred to under the label in-silico 

modelling; the empirical approach is equivalently termed in-vitro modelling. Both 

classes of analysis can be contrasted to clinical trials within a living subject, 

termed in-vivo tests. It is important to appreciate that in-silico, in-vitro and in-vivo 

analysis can be complementary rather than competitive, since their functions are 

fundamentally different: 

 In-silico models generally either explicitly model the underlying „physics‟ of 

the system, or else fit some response to an extant „training‟ set of known 

results; this can result in fast, low-cost models which are readily 

parameterised and monitored to study the effect of perturbations or 

configuration changes within the domain of the „known‟ operational 

behaviour. However, they cannot address the phenomenologically „novel‟; if 

the system is operating under conditions where the underlying laws of physics 

are not properly understood, purely analytic models are not applicable. (In 
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other words, in-silico models may interpolate between known conditions, but 

when extrapolated to operate under unknown conditions or additional 

confounding effects, less confidence can be placed in the results).  

 In-vitro models by contrast implicitly invoke the laws of physics in order to 

operate; therefore the underlying behaviours do not need to be understood to 

undertake testing – however this does limit the ability of the models as 

predictive tools. Experimental tests can be more expensive and time 

consuming than computational tests, and can be limited by the practical 

achievability of the proposed test conditions (e.g. hardware limitations).  

 In-vivo tests may be considered the „gold standard‟, since they directly test 

under in-situ conditions; however, the associated expense, timescales and 

ethical issues often make such testing highly challenging. Further, in-vivo 

tests tend to be very specific and narrow in focus, which is particularly 

problematic given the very high variability associated with biological systems. 

For example, tests on a single patient with in-vivo telemeterised sensors may 

provide „real‟ results, but for the equivalent cost and effort, it might be 

possible to perform gait analysis using inverse dynamics on a large cohort of 

patients, giving some indication of the statistical distributions observed in the 

variability of force magnitudes.  

Both analytical and empirical approaches have been used extensively for analysis 

of the human knee; the following sections will consider some of this extant 

published research. 

2.2. Theoretical/Analytical Methods 

Mathematically-based models are valuable, because they use the underlying 

physics of the system to predict outcomes without the cost and risks of a physical 

simulation.  In reality, the knee is a complex system, and cannot be accurately 

defined without extensive and complex mathematical formulations. Whilst some 

of the constituent mechanical behaviours can be represented satisfactorily using 

parametric equations (e.g. ligament stiffness/strain relationships), others (e.g. 

contact mechanics) can only be loosely approximated by such simplistic 

functions. Again, this complexity has resulted in a range of different approaches 

to modelling, depending on the objectives, and the available resources. 

Fundamentally, a distinction may be made between models which remain purely 

analytic, using parametric and differential equations to describe the knee 

holistically at the system-level, and those models which adopt a discretised 

„numerical integration method‟, e.g. the „finite element‟ approach (see Figure 17). 
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Figure 17: A broad classification of „theoretical‟ knee models. 

Rigid-Body Modelling 

The fact that a simplified analytic model could be solved with less numerical 

effort made these ideal candidates for very early models of the knee, before the 

advent of affordable and accessible computing. Simple rigid-body models in the 

sagittal plane can be dated to the early part of the 20
th

 century, e.g. the „four-bar-

linkage‟ model, treating the cruciate ligaments as rigid restraints during flexion-

extension F-E motion (employed by Strasser as early as 1917 [78]). This model 

was progressively developed by subsequent research, for example including non-

linear elastic spring elements for ligaments [79], and performing sensitivity 

studies on the model [80]. These four-bar linkage models have been widely used 

to develop understanding of the mechanics of the knee (e.g. the work of 

O‟Connor et al [81]). 

Initially, when computational power was limited, this sagittal-plane modelling 

approach proved popular, as it captured the single most obvious motion (i.e. F-E), 

but could also describe some secondary motions (e.g. A-P „rollback‟ as the knee 

flexes). However, sagittal-plane-only models cannot include I-E, V-V or M-L 

motions. 3-D analytic models did begin to emerge in the 1980‟s [82], taking 

advantage of computers to assist with the calculations. However, these could still 

be classed as analytic models, since the system was still defined globally using 

analytic equations (not discretised numerical integration methods); the computer 

purely assisted with evaluation of the mathematics. Today, purely analytic models 

are still used for some studies of the knee, notably in the work of Hefzy et al [83], 

which has advanced to include detailed analytic representation of both 

patellofemoral and tibiofemoral articulations, with nonlinear ligaments and 
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quadriceps wrapping (Figure 18). These models may very readily be formulated 

with dynamic equations, whereas FE models are often static or quasi-static. 

 

Figure 18: Analytic modelling of the knee joint (from [83]). 

Although much research has been dedicated to FE-based models, analytic 

solutions remain a very useful tool, especially for stochastic simulations, since 

they offer the low computational cost essential for large volumes of trials. Multi-

body dynamics (MBD) simulations fall within this category, and are still widely 

used (e.g. Bei et al [84] demonstrating the combination of dynamic simulation 

with multi-body deformable contact). This approximation to the true deformable 

behaviour of the material uses a pre-defined relationship between pressure and 

„penetration distance‟, or „overclosure‟. Typically, the penetration will be 

estimated at a number of points, forming a rudimentary discretised „point cloud‟, 

reminiscent of the finite element approach discussed below. Despite this use of 

discretisation, MBD models are effectively a class of analytic model, since they 

still seek to apply analytic equations to describe the system dynamics, and do not 

fundamentally have to depend upon discrete numerical integration methods. 

They may be distinguished from „pure‟ analytic models in that the geometries 

involved are not represented in analytic form; rather, they are typically obtained 

from CAD data, making the analysis too complex to evaluate without a computer. 

MBD models are widely used for models of both natural knees & TKR implants 

(Figure 19). 
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Figure 19: MBD for the natural knee, left (courtesy Guess et al, UMKC), and for 

artificial implants, right. 

Finite Element Methods: 

Whilst computers may be used to ease the calculation of the simple purely 

analytic models described above, they have also enabled a fundamentally 

different approach to the analysis of biomechanics – finite element analysis (FE, 

or FEA). Unlike analytic models, the basis of numerical integration methods is not 

to provide „exact‟ solutions, but instead approximate the true result by a „brute 

force‟ approach to the solution, applying fundamental physical equations 

discretised across small spatial and/or temporal intervals. As these intervals 

become smaller, the approximation becomes better, but computational effort 

also increases as the number of separate discretised equations increases. 

As with other analytic in-silico models, an advantage of computational numerical 

techniques for stochastic studies is that the process of parameterising the model 

is simplified; a numerical value representing the input parameter can be changed 

instantaneously. Conversely, the individual trials are now much slower, such that 

a high-fidelity FE model of the knee gait cycle might require hours to simulate an 

event lasting around one second.  So, in contrast to experimental simulations, 

computational models are very easy to re-configure (after initial pre-processing), 

but currently take much longer to simulate. As such they are better suited to 

multi-variable parametric studies, but less well suited if a highly adaptive model is 

required to run many successive cycles. (In-silico models may still be used for 

adaptive studies, e.g. in adaptive long-term wear damage studies [85]; typically a 

large „step size‟ must be used between adaptive updates, to limit the number of 

analysis runs required). A stochastic analysis requires more trials (potentially 

thousands, but even if „fast‟ stochastic methods are used, dozens of trials will 

still be needed). This is not problematic if there are sufficient computational 
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resources available for simulation; however, in the present case, the work in this 

thesis is being done as a „proof-of-concept‟ with (relatively) limited processing 

power available. Therefore, for these studies a high-resolution model using 

deformable FE would not be appropriate. 

The Application of FE to Biomechanics  

FE was first applied to knee bioengineering in the 1970s, with simple 2-D static 

simulations (e.g. Askew et al [86], who demonstrated the effect of bone 

anisotropy on the fixation of the tibial component). Full 3-D static models soon 

followed; in the early 1980s Lewis et al used 3-D FE to evaluate different tibial 

component designs [87]. Most early studies focussed on bone stresses; later 

studies began to investigate the stresses within the polymer components [88], 

with studies focusing on both the tibia and patella (e.g. the work of Bartel et al 

[89, 90], using FE to differentiate between designs, for example to demonstrate 

the effect of increased conformity or insert thickness). For non-static assessments 

(i.e. implant kinematics), explicit quasi-static models are used (as demonstrated 

by Godest et al for TKR gait [91]). Combined with stress predictions, this allows 

FE-based models to predict wear performance (e.g. Knight et al [92]), and to be 

used for design optimisation algorithms (e.g. Willing et al [93]). However, these 

sophisticated studies come at considerable computational cost. 

Modern FE simulations can be elaborate, including fully non-rigid deformable 

bodies, membranes for modelling ligaments, and complex contact friction 

effects. This can result in simulations requiring several hours to achieve a full 

solution across a single gait cycle (e.g. an explicit deformable-FE gait cycle can 

require 6-7 hours [91]) – making large multi-cycle analyses very laborious. It is 

possible to simplify the FE model to achieve much faster solve times (using rigid-

body contacts essentially similar to the MBD models); for example work by 

Halloran et al using the elastic foundation (EF) method [94] has been used as the 

basis for the first stochastic studies of TKR mechanics [95].  

2.3. Experimental Methods 

Empirical measurements, using experimental physical rigs or simulators, are 

often considered superior to purely theoretical simulations, since the physical 

laws controlling the system are implicitly invoked, rather than explicitly modelled 

(meaning the model can simulate un-investigated physical conditions). However, 

the simulation must still represent the in-vivo conditions as closely as possible, 

and must be carefully designed to ensure that all influential behaviours are 

captured. For TKR pre-clinical analysis, a top-level distinction can be made 

between two classes of experimental methods (Figure 20). General materials 
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testing screens for material properties (e.g. strength, wear or biocompatibility), 

whereas mechanical knee testing directly uses „true‟ natural or implanted knee 

geometry, capturing the combined effects of materials and design form. 

 

Figure 20: Representative classification of biomechanical simulators. 

Materials Testing 

A wide range of different tests will be performed on any new material prior to 

clinical adoption, including various forms of biological and mechanical screening 

(for example, impact testing on ceramic components, fatigue testing on tibial 

trays, or wear testing on metal-alloy and polymer components). A study of the 

literature on in-vitro testing (e.g. amongst many others [96-99]), the specific ISO 

or ASTM standards for materials testing (e.g. [23, 71, 100]) or any of the relevant 

textbooks in the field (e.g. [101, 102]) will provide more detail on some of the 

different forms of testing undertaken. In this particular thesis, the only testing 

method which will be described in further detail (owing to its direct relevance to 

the present body of work) is the widely-used pin-on-disc (POD) test, also known as 

pin-on-plate (POP). This is a tribological assessment of the material, to gauge the 

likely wear-rate that might be seen in-vitro, and ultimately in-vivo. POD tests do 

not use implant geometry, which would otherwise become a confounding factor. 

Instead, the same geometry is used for each candidate material (a simple flat-

headed „pin‟ of the material articulating against a flat disc of the opposing 

material), and a simple, repeatable motion is driven under compressive loading 

(see Figure 21). The motions and loads are normally not physiologically-derived 

(the sliding path normally follows a simplified path profile, and the POD machine 
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cannot distinctly model rolling as opposed to sliding contact). TKR tests and POD 

tests tend to give different values for normalised wear rates; this is not fully 

understood as the precise mechanisms of wear are not fully characterised. 

Nonetheless, data from POD wear testing provides a qualitative ranking of relative 

wear rates compared to existing established clinical materials, and can be useful 

for providing a first estimate of the expected wear for TKR implants. Following 

the advent of modern orthopaedic implants, POD tests have been used as a 

baseline wear test of materials since the early 1970s and through subsequent 

decades (e.g. [97, 103, 104]).  

     

Figure 21: Typical POD wear test configuration (left) & commercial POD tester: AMTI 

6-station „Orthopod‟ (right, image: Advanced Mechanical Technology, Inc.) 

Today POD testing is still widely used to explore the relationship between the 

factors hypothesised to influence wear performance (e.g. the relative effects of 

cross-shear [105] and correlation to contact pressure [106, 107]), as it provides a 

much more controllable environment to define specific motion paths and contact 

pressures. POD testing is used extensively to explore the fundamentals of wear, 

in order to devise theoretical algorithms for wear prediction (see Chapter Four). 

Mechanical Knee Testing 

Whilst materials screening is necessary, it is still essential to perform tests which 

are more representative of the full in-vivo conditions. For this reason, mechanical 

knee test simulators were developed, which directly perform static or dynamic 

mechanical tests on the implants themselves. In only a few decades these in-vitro 

models have developed from rudimentary 2-D rigid-linkage models to 

sophisticated representations of the complete lower limb (Figure 22). 



48 

 

              
        

Figure 22: Early (left) & modern (right) in-vitro knee models (from [108] & [109]). 

There are a few examples in the literature of early rudimentary biomechanical 

simulators (e.g. the 2-D sagittal model reported in [108]); however the first 

noteworthy efforts came in the late 1970‟s and early 1980‟s. For example, Werner 

et al performed limited testing of I-E torques and rotations for different 

prostheses [110], and later Thatcher et al developed a more comprehensive rig 

capable of applying axial compressive loads, shear loads and torques, to monitor 

both A-P translation, and rotations [111].  

In reality it is difficult for a simulator to accurately reproduce the mechanical 

environment of the knee. The knee is an unstable joint with complex geometry 

and kinematics, driven by multiple muscle forces and restrained by a complex 

arrangement of active and passive soft tissue constraint. Further, there is no 

„standard‟ human knee (due to the degree of patient variability) – geometries, 

forces and tissue properties all vary considerably. In response to this complexity, 

different modelling approaches have been used for in-vitro test designs. 

A fundamental difference in the „extent‟ of the modelling scope emerged (see 

Figure 20): in some cases, the model focussed only on the internal kinematics 

and kinetics of the implanted prostheses, often focusing on a single articulation 

(e.g. tibiofemoral only) – these may be termed „joint‟ simulators. In other cases, 

the entire lower limb would be modelled (to include the effects of muscle forces & 

lines of action) – these may be termed „limb‟ simulators. Both classes of rig are 

discussed in more detail below. 

Joint Simulators 

The knee is part of a complex system of muscles, joints, ligaments and bones 

which together form the functional lower limb. To avoid modelling the full 

complexity of this limb-level system, many tests are devised to model solely the 
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loads at the specific joint interface. These „joint‟ simulators can then use 

aggregate loading and restraint conditions to mimic the effect of the surrounding 

muscles and soft tissues. The various knee-wear simulators (as described in ISO-

14243 [23, 24]) are an example of this design ethos. 

Two rival approaches to control may be adopted: force-driven or displacement-

driven (Figure 20). Whereas the biological knee is inherently force-driven (due to 

body weight, muscle loads and ground reaction forces), many simulators directly 

drive the relative displacement of the femur and tibia (to by-pass the complex 

interplay between limb lever arms, muscle forces & moments, articular surface 

geometry and restraining soft tissue).  

To speak of „force‟ or displacement‟ control is slightly misleading, since either 

strategy is generally a hybrid; e.g. axial compression is universally applied as a 

force rather than an inferior-superior (I-S) displacement, conversely F-E is 

generally applied as an angular displacement input regardless of the other 

control inputs. The difference emerges for „secondary‟ effects such as A-P shear 

force vs. A-P displacement, and I-E torsion torque vs. I-E angle.  

Note that no simulator operates in true „displacement‟ control, since the „real-

world‟ actuators are inherently force-driven (typically pneumatic or hydraulic). 

Rather, the control feedback loop will use displacement (measured with LVDTs or 

potentiometers) as the target control signal. This does mean that achieving 

accurate tracking is important in displacement-controlled simulator design, and it 

is possible for the achieved „true‟ displacement-driven kinematics to be very 

different to the intended „target‟ input waveforms (e.g. see [112], where with a 

more conforming implant under test, the displacement-driven simulator could not 

scarcely achieve 50% of the desired displacement during stance phase). 

One of the first tibiofemoral joint simulator designs was by Walker & Hsieh [113], 

which simply oscillated the femoral component whilst applying a constant stance-

phase load on a multi-station machine. Many variants followed; notable recent 

examples are the Leeds/ProSIM simulator (Simulation Solutions, Stockport, UK), 

the MTS Bionix knee wear simulator (MTS, Eden Prairie, MN, USA) and the AMTI-

Boston simulator (Advanced Mechanical Technology, Watertown, MA, USA), all of 

which can be displacement- or force- driven, and the Instron/Stanmore knee 

simulator (SKS) [114], a force-controlled tibiofemoral simulator (Figure 23). These 

knee wear simulators are widely used for commercial testing of TKR designs. 
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Figure 23: SKS Mechanical Configuration (from [114]). 

There are limitations to this strategy of simulating conditions directly at the joint. 

Since the various contributing forces from muscles & ligaments are modelled as 

an „aggregate‟ load (and not individually incorporated), the loading and restraint 

applied in the simulator are not truly physiologically representative. 

Consequently, operating outside of the intended in-vitro conditions can result in 

non-physiological mechanics; for example cadaver knees loaded in the SKS (using 

the knee‟s natural ligaments in place of the standard horizontal springs) have 

exhibited very exaggerated kinematics [115]. Nonetheless, knee implant wear 

simulators have become established as the de-facto standard for pre-clinical 

implant testing. 

Limb Simulators 

Full lower-limb simulator rigs have a more extensive modelling scope; by 

applying loads at the hip and the foot/ankle, they can more realistically account 

for such factors as variations in muscle forces or component positioning, since 

the actual knee joint is not directly (artificially) constrained, and has all six 

potential degrees of freedom of motion. However, these simulators are inherently 

more complex, since more of the lower limb is modelled, requiring more 

components (to represent the full thigh, shank, hip and ankle) and more 

actuators (to provide representative loading) to be physically incorporated. This 

requires more comprehensive understanding of the behaviour of the equivalent 

biological elements to model them correctly. It also places demands on the 

physical engineering of the rig, which should aim to match the inertia, strength, 

speed and power of the natural lower-limb (a difficult challenge, owing to the 

high performance of the target biological system). 
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An important benefit of the full lower-limb test rigs is that the simulator can be 

driven directly with clinical data. Ground plate reaction forces & torques can be 

applied at the „ankle‟, and motion-capture video recordings and inverse-dynamics 

then used to determine corresponding kinematics or kinetics at the more 

proximal joints. Any study intending to vary the muscle forces and limb moment 

arms would be much simpler to implement on such a rig. However, since the 

kinematics at the knee are not directly driven (but are determined by loads and 

motions at the hip and ankle), it can be difficult to reproduce specific implant 

kinematics & kinetics at the knee. Hence it is more difficult to directly match the 

input waveform profile of a knee-wear „joint‟ simulator to a corresponding „limb‟ 

simulator; so the two cannot easily be directly compared. (A limb simulator must 

of course include both the tibiofemoral and patellofemoral joints, so in theory it 

should be possible to compare results with either a patellofemoral or tibiofemoral 

knee joint simulator). 

Early examples of these whole-limb simulators emerged in the 1970‟s (e.g. Shaw 

& Murray demonstrated a single-axis, manually-operated mechanical rig for 

quadriceps-driven F-E as early as 1973 [116]), with subsequent designs becoming 

more sophisticated. The configuration adopted by Perry in 1975 [117] fixed the 

„ankle‟ with a sagittal-plane hinge and allowed the „hip‟ to translate vertically (see 

Figure 24, left). The Oxford knee rig [118] was also based on this same 

configuration, but including additional degrees of freedom for out-of-plane 

loading (see Figure 24, right). These rigs were designed to be used for quasi-

static analysis; i.e. the rig did not have the capability to be dynamically „actuated‟ 

by loading the knee with representative muscle forces. 

   

Figure 24: Left: Perry‟s knee testing fixture [117]; Right: Oxford knee rig [119]. 
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One of the more advanced rigs of this type is the Perdue/Kansas design, which is 

a servo-hydraulic powered dynamic five-axis simulator, driven by the forces at the 

ankle and hip. The original Perdue Knee Simulator (PKS) was designed as a next-

generation wear testing station in the late 1970‟s (see early work by Zachman et 

al [120]). The conceptual design of this rig is shown in Figure 25. The „shank‟ & 

„thigh‟ are fixed to sliding „hip‟ & „ankle‟ sleds. Four actuators drive the rig: in the 

sagittal plane, a vertical force emulates bodyweight, and a „quad‟ actuator 

replicates the quadriceps muscles. At the ankle, actuators drive vertical rotation 

(equivalent to I-E for small flexion angles), and also M-L load, to produce 

adduction-abduction (Ad-Ab) moments, hence allowing out-of-plane loading to be 

applied. 

 

Figure 25: Mechanical configuration of the original PKS (From Zachman [120]). 

Although the rig has gone through various re-builds subsequently (to decrease 

weight and increase flexion range) the only fundamental design alteration to the 

simulator has been to include an additional sagittal-plane actuator to provide 

ankle F-E moments. This actuator (mounted anterior of the distal tibia) is not 

physiologically representative of specific muscle groups (in-vivo, ankle plantar-

flexion is provided by the gastrocnemius & soleus muscles situated posteriorly in 

the shank). However, it does compensate for the lack of an antagonistic 

„hamstring‟ force to counter the quad actuator, and provides a means to apply a 

strong flexion moment when the knee is close to full extension (normally the 

„body weight‟ applied by the vertical actuator can produce a strong flexion 

moment, but not at full extension). This five-axis version of the simulator has 

been further developed by Maletsky et al [121]. The latest build now features 

more feedback data by the inclusion of a six-axis load cell to directly measure 

loads at the tibia [122]. This current Kansas Knee Simulator (KKS) design 
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represents a versatile platform for in-vitro testing, and has also been the subject 

of derivative computational models [109, 123]. 

2.4. Corroboration & Validation, and the Case for Stochastic 

Analysis Approaches 

The previous sections have illustrated the wide range of extant pre-clinical 

analysis models in use, both computational and experimental. However, no single 

form of testing is sufficient in isolation. In-silico studies in isolation are subject to 

suspicion as long as there is no consensus on the precise causal mechanics of 

wear. But in-vitro studies alone cannot provide the range and volume of 

information which can be quickly and efficiently evaluated computationally. 

Rather, the combination of in-vitro and in-silico wear prediction methods 

corroborated together provides a better, more extensive toolset for pre-clinical 

analysis of TKR wear. 

It is important to make a clear distinction between „corroboration‟ and „validation‟ 

of a model. A model is only truly „validated‟ when it matches „true‟ reality (i.e. in 

the case of knee assessment, post-clinical in-vivo outcomes) – this may be 

considered the „gold standard‟. However, when it is not possible to directly 

validate a model (due to difficulties of capturing data in the real world), two 

independent models may be „corroborated‟. This means they are in „relative’ 

agreement with each other; which does not necessarily mean that they are both 

correct (compared to the „absolute’ reality), but it does allow greater confidence 

to be placed in the models, as corroboration would reveal any obvious errors, 

mistakes or serious differences between the two (they would both have to be 

wrong in exactly the same way for the error to go undetected). As such, 

corroboration may be considered more of a „silver‟ standard, which has its place 

earlier in the design process, or when validation is not practically possible. 

Clearly there is a natural inter-dependence between the different forms of 

analysis. In-vitro studies can be used to begin investigating the underlying 

phenomena. Using this data, in-silico models can then be developed to match this 

behaviour, and then extrapolated to predict the system response under a wider 

range of conditions. A good agreement between in-vitro & in-silico models may be 

considered to „corroborate‟ the models. Finally, a few selected in-vivo tests may 

be used when the understanding of the system is more mature, to provide this 

important „validation‟ with the in-situ real world application of the system.  



54 

 

Figure 26 illustrates this in the case of knee assessment. Corroboration is 

possible early in the pre-clinical analysis stages between in-vitro and in-silico 

models, provided they model comparable conditions (i.e. based on the same 

mechanical conditions, using the same components under test). Comparing data 

between in-vitro platforms is not straightforward due to the many confounding 

factors (e.g. comparing POD tests to TKR wear tests), and experimental models 

are not close enough to the in-vivo reality to truly „validate‟ them directly. Hence 

these interlinks are shown with dashed arrows. By contrast, in-silico simulations 

provide a parallel, complementary modelling „domain‟ where cross-

communication & data transfer between different stages is much easier. The 

„silver standard‟ of corroboration between in-silico and in-vitro models gives 

greater confidence in the understanding of the test mechanics & modelling 

domain, however ultimately the aim is the „gold standard‟ of validation with 

clinical performance results. Accurately reproducing the complex holistic ‘in-vivo’ 

environment is beyond the capability of experimental methods; however in-silico 

musculoskeletal models may ultimately provide the best means to achieve this. In 

order to produce computational models of sufficient quality, the „early stage‟ 

corroboration with in-vitro methods is essential however. In-vitro tests continue 

to be necessary, to provide the real-world grounding for the explicitly defined 

mechanics of the in-silico models.  

 

Figure 26: The role of corroboration and validation - conceptual diagram. 

The value of corroborative studies has been recognised by a number of 

researchers who have published in-silico models based on the experimental 

results of in-vitro simulations. For POD models, this work has been performed by 
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a number of teams, including Hamilton et al [124] who corroborated the work of 

Turell et al [105], and Kang et al [125], who used their own proprietary data. For 

TKR simulations, computational-experimental corroboration has been performed 

by amongst others Godest et al and Halloran et al for kinematics, [91, 94], Knight 

for displacement driven wear [126] and long term wear [92], and Willing & Kim, 

Hamilton et al and others for force-driven wear [124, 127]. Generally, the aim is 

to demonstrate that the in-silico models & methods produce comparable results 

to the experimentation, so that the computational model can then be extended to 

be used for further investigation; in other words, the aim is not just duplication, 

but to produce a quality in-silico analysis tool which can be used to augment the 

experimental capability 

However, in all of this discussion a key consideration has been excluded up to 

this point; namely, the in-vivo domain is inherently highly variable; there can be 

no single „validation‟ with clinical data, since the data in any two cases would be 

different (different patients, different mechanical loads, different surgical 

outcomes, different activity levels). This is a major confounding factor when 

attempting to „validate‟ a model; a single-run on an in-vitro test platform cannot 

possibly reflect this range of outcomes. In-silico models, used as a 

complementary analysis tool, have the speed and power to run multiple cycles 

(e.g. with probabilistics to explore variations in alignment or loading conditions), 

but it is essential that they are well-corroborated in order for this data to be 

meaningful. Therefore, the in-silico modelling domain has the potential to act as a 

„bridge‟ between the in-vitro and in-vivo domains, introducing stochastic analysis 

approaches to the models derived from the experimental laboratory. 

2.5. Summary 

The use of experimental and theoretical methods for in-vitro and in-silico pre-

clinical analysis is well-established. These various models have been 

demonstrated to provide useful analysis and predictions of knee behaviour whilst 

operating under normal knee conditions. However, as has been stated, high 

variability is an inherent feature of biological systems such as the human knee, 

and in order to provide a truly complete picture of knee performance, analysis 

should not be limited to „normal‟ conditions only, but should include more 

complete variation in factors such as loading, geometry and alignment. 
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Most of the studies cited above are either deterministic (operating for a single 

case with specific known inputs), or parametric „one at a time‟ studies (sweeping 

across a range of values for one variable or a small group of related variables). 

Only limited work has been done in recent times to extend these models across 

the entire domain of uncertainty associated with TKR. But without this „holistic‟ 

perspective, it is impossible to be confident that the system is fully characterised 

by the current body of literature. Therefore, a more complete stochastic analysis 

of TKR is called for, to map the areas of variability and cross-coupling effects not 

explored by existing studies. This requires further extensions to the current body 

of knowledge; to understand the sources and levels of variability within the 

system, and also to demonstrate the application of stochastic techniques using 

knee mechanical models & statistical data. This stochastic framework will be 

explored in the next chapter. 



57 

 

CHAPTER THREE – PROBABILISTIC METHODS 
2

 

Sources of variability & review of numerical probability integration methods 

3.1. Concepts of Probabilistics 

To facilitate a discussion of the case for stochastic modelling, it is necessary to 

begin with a few definitions of relevant concepts. Any given model may be 

reduced to an “input-system-output” paradigm; certain influences on the system 

will influence the resulting output states; these input values may be termed input 

factors. Input factors may have known „fixed‟ values which are accurately 

measurable and controllable. If all the factors are of this nature, there is no 

uncertainty and the model may be described as deterministic. However, if there is 

a degree of uncertainty in one or more of the factors, this input variability makes 

the system indeterminate; in which case stochastic (or „probabilistic‟) modelling 

may be applied. The variable factors may be denoted individually as X
1

, X
2

, X
3

 ... 

X
N

, or collectively as a single vector value, X (or ). 

If a factor does not have a single fixed value, it may take a continuous or discrete 

range of values. For a model with N variable factors, the range of possible 

combinations may be represented in an N-dimensional region of space, with each 

factor forming a separate orthogonal axis – the resulting representation is the 

design-space. Figure 27 illustrates this concept for a 2-dimensional example, with 

two variable factors, X
1

 and X
2

. X
1

 can take values from -3 to 3; X
2

 can take values 

from 0 to 5; the resulting design space is a 2-D surface, where every point on the 

surface represents a different unique combination of the two variables. 

 

Figure 27: Illustration of the design space concept in 2-D. 

                                         
2

 The concepts presented in the following section are derived from various standard texts 

on the subject of probabilistic modelling & reliability theory [128-133]. Any of these may 

be consulted for further information on the techniques of stochastic analysis. 
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However, the design space only indicates whether a combination of values is 

possible; it does not contain any information about whether that combination is 

probable. For this, it is first necessary to know the probability density function 

(PDF) associated with the different factors. A PDF is a function spanning the range 

of possible values for X, the magnitude of the PDF (p
X

) indicates the probability 

associated with a given value of X. A PDF may take any form, however a number 

of „standard‟ types are commonly encountered (e.g. Normal or Gaussian, 

lognormal, Poisson, binomial, Weibull, Rayleigh, etc). Figure 28 assigns two 

different PDFs to the variables in the present 2-D example; X
1

 takes a Normal 

distribution with mean of 0 and standard deviation of 1; X
2

 takes a lognormal 

distribution with mean 1 and standard deviation ½. (Note the PDFs have been 

clipped slightly to fit within the bounds; in reality they extend to ∞). Note that, 

for a multi-factor problem, it is possible that the PDF for one factor could change 

depending on the value of the other factors; in this case this coupling of the 

factors must be accounted for. However, in the absence of better data, it is often 

assumed that factors are independent; i.e. that variations in one have no effect on 

the others, and hence the PDF does not change. 

 

Figure 28: Two typical PDFs; left – Gaussian, right – lognormal. Note: the area integral 

under any PDF is always unity. 

Combining the geometric mapping of the design space with the information in 

these PDFs allows the construction of the possibility space – this is again shown 

for the 2-D example in Figure 29. The advantage over the design space is that it 

is now apparent which combinations of variables are more or less likely; so for 

example, events around the region X
1

 = 3, X
2

 = 5 have a very low associated 

probability of occurrence (as a result it might not be too relevant how the system 

performs under these conditions). 
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Figure 29: Illustration of the „possibility space‟ in two dimensions. Note that the 

volume-integral of the PDF across the possibility space is always unity. 

3.2. The Case for Probabilistic Analysis 

The studies described in Chapter Two included a wide range of deterministic 

studies (i.e. considering only the „neutral‟ case without regarding any 

perturbations of input factors). Historically, when in-vitro & in-silico models were 

first developed, the aim was simply to „validate‟ these simulations with a single 

„target‟ output, considered to represent „typical‟ real-world conditions (for 

example, [91, 92, 112, 114]). Of course, such studies are an essential first step, 

but beyond this, they provide no information about the effect of any variability. 

As the science of orthopaedics matured, it became desirable to better understand 

the influence of various factors identified as important. Studies began using 

parametric „one at a time‟ sweep methods (varying one factor, or a small number 

of factors, across a range of values), for example, [134, 135]. This provides a 

valuable first indication of the factor‟s influence. However there are two 

limitations of such methods. 

Firstly, „one-at-a-time‟ studies are decoupled from statistical information about 

the PDF for the input factor. Trials evenly-sampled across an input range do not 

give information about the probability of a given outcome; for this, information 

about the probability of the input conditions is also required. (It is of course 

possible to perform a one-dimensional „sweep‟ study with better selection of 

input values based on measured statistical distributions of the input parameter, 

but in the field of orthopaedic research, historically many studies have used 

regular step sizes, taking no account of the true input PDF, e.g. [136, 137]). 
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Secondly, parametric „one-at-a-time‟ studies fail to map out the entire possibility 

space. This can be readily visualised in 2-D for two variables (Figure 30). 

 

Figure 30: „One-at-a-time‟ studies (above) provide no information about probability 

distributions, or the correlations between factors across multiple dimensions.  

This introduces the need for „stochastic‟ or „probabilistic‟ studies: the entire 

possibility space can be investigated, and the output data will be related to input 

variability, giving corresponding statistical data (see Figure 31). However, as is 

also clear from the illustration, this greatly increases the space that must be 

explored, and this increases according to a power law of the number of input 

variables; 3 variables gives 3-D space, 4 variables gives 4-D space, etc. This rapid 

increase in the scale of the task is often referred to as „the curse of 

dimensionality‟, and presents a serious challenge to stochastic study design. To 

address this challenge, a number of different methods exist for implementing 

probabilistic studies. These will be discussed in the next section. 

 

Figure 31: Example „probabilistic‟ study; samples are distributed across the 

possibility space, based on the PDFs of the input factors. Note that this requires 

more trials than the deterministic or „one-at-a-time‟ studies. 
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3.3. Numerical Approaches to Modelling Probability 
3

 

Most computer-based statistical modelling relies on the concept of „numerical 

probability integration‟ – in other words, the summing (integration) of individual 

numerical trials, to approximate the true (analytical) probability. The method of 

probability approximation by numerical integration of statistical samples has only 

been applied to the specialist field of orthopaedic biomechanics relatively 

recently, as the computational resources it requires have become more readily 

available. The most established method is the „Monte-Carlo‟ simulation technique 

(MCST), which uses purely random samples across the possibility space. However, 

this is computationally intensive, and consequently other methods have been 

devised, which can broadly be split into two categories. Importance sampling 

methods (ISM) fundamentally use the MCST approach, but improve efficiency by 

selectively reducing the sample-space based on knowledge of the system. Fast 

probability integration (FPI) methods are alternative approaches which are more 

approximate, but more efficient. 

3.3.1. Monte-Carlo Simulation Technique 

The Monte-Carlo technique is essentially a „gamble‟; the approach uses brute 

force rather than careful selection of trials to achieve a good result, relying on a 

very large number of trials to achieve high-fidelity. Random (or pseudo-random) 

samples are created, based on the known (or assumed) PDF associated with each 

input variable. These values are then used to generate associated output values.  

As with other approximate numerical-integration methods, the „resolution‟ of the 

integration determines the accuracy of the calculations; typically many thousands 

of trials are required to obtain useful results, and the number of trials required 

will increase when the probabilities involved are small. Once the trials are 

completed, output distributions (mean, standard deviation or specific probability 

levels) can be determined readily, e.g. if the measure of interest is a probability of 

failure (p
f

), this can be estimated by taking the ratio of failures (N
f

) to total trials 

(N); see Figure 32. Alternatively, the outcome associated with a particular 

probability range can be calculated, by taking the p
th

 percentile of the trial results. 

Intuitively, accuracy increases as the number of trials increases (with reference to 

the figure, a larger number of trials gives a higher „resolution‟ image of the 

possibility space).  

                                         
3

 Figures in this section adapted from the conference paper: "Probabilistic Computer-Aided 

Analysis of Variables Affecting the Performance of Total Knee Replacement". Strickland et 

al, 2006, Biomedical Futures 2006 – Musculoskeletal Biomechanics (Durham, UK) 
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Note that the figure illustrates how MCST reveals the path of the ‘limit state’ 

function, sometimes denoted g(X). This is the boundary between „success‟ and 

„failure‟ trials (although the term may be used for the threshold between any two 

distinguishable system outcome states; e.g. achieving a particular performance-

level or not). Only an approximation to the „true‟ limit state is obtained with 

numerical integration methods. 

 

Figure 32: Estimating Probability of Failure (p
f

) via MCST. 

It is often important to know the accuracy of these probability estimates, and this 

can be ascertained approximately by calculating the „coefficient of variation‟ 

(COV). This uses a binomial approximation to model the maximum possible error 

in MCST, for a given number of trials, N, and probability of failure, p
f

: 

f

ff
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N

pp
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)1(
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Note that it is clear from this equation that COV will approach zero as N tends to 

infinity; however small values of p
f

 will also yield a larger COV. A smaller COV 

means the results of the MCST are more accurate. Hence the accuracy of MCST 

suffers if the number of trials is low, but also if the probability being estimated is 

very small. A typical numerical relationship between N and COV is shown in 

Figure 33.  

Note that the when applying the COV measure in practice, p
f

 is not known, and so 

the estimate generated by the MCST trials must be used. The danger is that this 

value may not be accurate, especially for low values of N; therefore the apparent 

relationship does not match the „smooth‟ theoretical relationship (in fact the COV 

may seem quite low for some very low values of N) – however this is erroneous; 

COV must be used with care for small values of N. 

N

N
p

f

f



63 

 

 

Figure 33: Typical relationship between number of trials and coefficient of variation 

(actual & estimated). Note the estimate may be above or below the true COV, but 

converges towards the true value (as N → ∞ and true COV → 0). 

3.3.2. Latin Hypercube Sampling and Orthogonal Sampling 

A variation of MCST which is sometimes used is Latin Hypercube Sampling (LHS). 

Rather than distribute the trials entirely at random across the possibility space, 

LHS attempts to distribute them to ensure an even coverage of the possibility 

space. Figure 34 illustrates this principle with a „worst case‟ example; whereas for 

a small number of trials it is possible for the trials to „cluster‟ with MCST, LHS 

constrains the trials to be evenly spread over the possibility space in distinct 

partitions, so reducing this risk. This can potentially reduce the error in 

probability estimates. 

 

Figure 34: „Worst-case‟ comparison of MCST (left) with LHS (right). Note in this 

example, the MCST error in p
f

 is several times larger than with LHS. This is an 

extreme case; the differences would generally be much less pronounced. 

Within each partition, the sample may be taken at a random point, or using the 

mean or median value within the partition. For best results the LHS sampling is 

weighted such that the partitions are not of equal width, but rather of equal area 

integral beneath the PDF, i.e. the associated probability of each partition is equal. 

Consequently, partitions are smallest closest to the mean value „peak‟ of the PDF, 

as in Figure 34. For problems with multiple dimensions, samples are selected to 

give a good statistical spread by ensuring that each sample falls into a unique 

row and column. The 2-D case is called the „Latin Square‟; the more general N-

dimensional case is the eponymous „Latin Hypercube‟. To achieve higher sample 
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rates, this procedure can be applied with smaller bins, or else repeated multiple 

times with different LHS arrangements.  

 

Figure 35: Example of 2-D LHS (or „Latin Square‟), showing variation of partition area, 

and also unique sampling in each row/column. 

However, for problems with multiple dimensions, the LHS method can still result 

in „clustering‟ (because the sampling between dimensions is independent). A 

further refinement of LHS is „orthogonal‟ sampling (for problems with more than 

one dimension). Here, the possibility space is partitioned into smaller segments 

across dimensions, and the additional constraint imposed that an equal number 

of samples must be selected from each segment. Figure 36 again illustrates a 

„worst case‟ example, comparing MCST, LHS and the orthogonal LHS method. 

Note that the orthogonal case should yield the most representative distribution of 

samples, although LHS in turn is generally more evenly distributed than MCST 

trials. However, this figure depicts an exaggerated case, since there are a small 

number of samples. The benefits of LHS & orthogonal sampling are greatest with 

a small number of trials. As the number of trials increases, the possibility of such 

a „clustering‟ scenario with MCST decreases; all methods converge towards the 

true solution, so the difference becomes negligible. 

 

Figure 36: A „worst case‟ comparison of MCST (left), LHS (centre) & orthogonal (right) 

sample sets; LHS & orthogonal methods are more robust against clustering, which is 

most apparent for small numbers of trials, as in this example. 

X2 

X1 
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Clearly, in the limiting case as N tends to infinity, the MCST family of methods 

offers an excellent solution, and may be considered the „gold standard‟. However, 

coming close to this solution may require many thousands of trials (depending on 

the problem & the required accuracy, the number of trials is routinely of the order 

10
3

, 10
4

 or 10
5

). This is often not feasible where the individual trials are 

computationally expensive; in such cases, techniques are sought to reduce the 

number of trials required for a given level of accuracy. Two sets of methods will 

be reviewed in the following sections: importance sampling methods, and fast 

probability integration methods. 

3.3.2. Importance Sampling Methods (ISM) 

An adaptation of MCST is ISM. There are a number of methods within this 

category; the common feature is that the possibility space is not fully explored; 

instead, trials focus on areas of interest, e.g. only assigning trials to areas on the 

„fringes‟ of the possibility space. The effect is to multiply the accuracy; for 

example, if it is known beforehand with confidence that ¾ of the possibility space 

will not be associated with failure then samples can be focused in the remaining 

¼, such that the same accuracy is achieved 4 times faster. An example of one of 

the simplest forms of ISM, the radius-based method, is shown in Figure 37. The 

failures all lie beyond a given radius from the mean value – therefore samples are 

not needed from this inner region, and can be concentrated on the outer region. 

The result is then scaled by the probability of the entire outer domain (p
d

).  

 

Figure 37: Comparison of MCST (left) with radius-based ISM (right). ISM achieves the 

same result as MCST with fewer trials; however, it is important to be confident that 

no failures would occur within the inner radius. Note that by definition, p
i

 + p
d

 = 1. 

 

N

N
p

f

f d

di

df

f p
pp

p

N

N
p



66 

 

The risk is that any failures within the region presumed „safe‟ will not be 

detected, so there must be sufficient confidence in the assumptions made. Note 

ISM depends on some additional knowledge of the system to reduce the sample 

space, so if the system is completely unknown, ISM cannot be used directly (since 

no region can be considered „safe‟). One possibility is to apply a low-resolution 

MCST to „screen‟ the possibility space, before using ISM. Another, more 

sophisticated approach is to use „adaptive‟ importance sampling, which gradually 

refines the sample space, based on new information obtained as the sampling 

progresses. 

3.3.3. Fast Probability Integration (FPI) Methods 

3.3.3.1. Response Surface Methods (RSM) 

The response-surface modelling approach was first described in the literature by 

Box and Wilson [138], and in its most basic form is a none-adaptive, DOE-based 

FPI method (although more sophisticated variations of RSM are also now used). 

The concept of RSM is to fit a simple analytic function of the input variables to 

approximate the output parameter, across the full range of the sample space. 

Typically, this will be a low-order polynomial (called the „response surface 

equation‟, RSE), and regression techniques will be used to select the term 

coefficients. However, it is possible to derive alternative forms of RSM, not based 

on simple polynomials but based on non-linear models with the outcome of the 

earliest trials being used to adaptively select the subsequent trials. (For more 

details on these methods, the reader is referred to the texts referenced in the 

footnote at the beginning of this chapter). These more sophisticated alternatives 

could be used for biomechanical problems in future, but will not be considered 

further for the concept studies discussed in this thesis; simple polynomial-based 

RSE methods will be demonstrated in the first instance.  

Once a simple RSE is derived, this can be used as the basis for a MCST, since the 

RSE can be evaluated much faster than the true model. This method works best 

when the true output can be well-represented by an analytic function, e.g. very 

linear models can easily be fitted; highly non-linear systems are not well-

represented. Figure 38 illustrates the method used to approximate a simple limit-

state. 
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Figure 38: Fitting an RSE to a system response. The higher the order of the equation, 

the better the potential fit. 

Trials could be random, but a better result is achieved by distributing the trials 

regularly across the sample space (e.g. using LHS or orthogonal sampling). The 

higher the order of the RSE used, the more terms that will be included; hence the 

more samples needed to achieve a good fit with the regression. For an N-

dimensional model, the number of terms required for up to a cubic RSE is given 

in Table 4, in combinatorial and polynomial form (for quantitative comparison, 

the number of trials needed for a 10-factor system is also listed in each case). 

The actual number of trials used to achieve the RSE fit must in turn be several 

times this number, to achieve a reliable fit: 

RSE Order Combinatorial Expression Polynomial 

Expression 

Example  

(N = 10) 

Constant 1 1 1 

Linear 1+N 1+N 11 

Linear with 

cross-terms 
1+N+ CN

2  1+
2

1 N+
2

1 N² 56 

Full 

quadratic 
1+N+ CN

2 +N 1+
2

3 N+
2

1 N² 66 

Full cubic 1+N+ CN

2 +N+ CN

3 +2 CN

2 +N 1+
6

11 N+N²+
6

1 N³ 286 

Table 4: Number of terms required for different RSE models (with N factors). 

Clearly, higher order RSEs require more runs according to the highest-power 

polynomial term. Beyond cubic terms this becomes impractical for most models 

(the number of trials required is scarcely less than a low-resolution MCST 

approach). Results are generally not highly accurate, because the RSE is a global 

model; the same analytic function must approximate the output across the entire 

sample space. If accuracy is only required about one region of interest, a better 
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result may be achieved by fitting a local model at that point; this is the approach 

taken by a number of the FPI models, as discussed in the following section. 

3.3.3.2. First and Second Order Reliability Methods (FORM & SORM) 

FORM and SORM are based on the underlying assumption that, somewhere along 

the limit state function g(X), there is a region of most statistical significance (i.e. 

the conditions which are most likely to be responsible for failure) – this point is 

variously termed the „design point‟, or „most probable point‟ (MPP). The aim of 

F/SORM is to fit an analytic model at and around this specific localised point, to 

achieve higher accuracy. 

To better visualise the concept of the MPP, consider a 1-D system, which „fails‟ if 

the single variable (X
1

) exceeds a certain „limit state‟ value, g(X) (Figure 39, left). 

This can be generalised to 2-D and higher models. In the 2-D case, the limit state 

is no longer a point, but a boundary line across the 2-D space (Figure 39, right). 

In the general N-dimensional case, the limit state is a hyper-dimensional surface, 

generally termed the limit-state surface. All locations in the possibility space that 

lie beyond this surface constitute a „failure‟. 

 

Figure 39: Limit state concept for 1-D (left) and 2-D (right) systems. 

Now, in the 2-D case (and for higher dimensions), a PDF can be „mapped‟ along 

this limit state (see the shaded region in Figure 39, right); this represents the 

limit-state probability of occurrence. There will exist a point at which the PDF 

reaches a global maximum; by definition this point is the „MPP‟ of the limit-state. 

Finding this point is complex if the input factors all have differing distributions; 

therefore the possibility space may be normalised, to re-map all the factors as 

normal distributions, with mean of 1 and standard deviation of 0. (The 

normalised input factors are then designated using „U‟ rather than „X‟). Now, 

conveniently, the MPP on the limit-state PDF will be the point of closest approach 

to the origin, and can be located using geometric methods (Figure 40). 
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Figure 40: Locating the MPP in normalised (U) space, based on geometric proximity 

to the origin. 

Typically an iterative approach is required to locate the MPP, which requires 

multiple trials. Once the design point is located, further trials are required to fit 

an appropriate analytical model. FORM fits a linear model, which is less accurate 

and converges to the design point more slowly, but requires fewer trials per 

iteration. SORM fits a higher-order model, requiring more trials to fit per iteration, 

but offers faster convergence and more accuracy. 

In both cases, there are risks associated with the method. As with MCST, the 

input variables must be correctly characterised. Further, it is possible that the 

area of high probability along the limit state g(X) may be broadly distributed, 

such that no singular region represents the „majority‟ probability of failure. (For 

instance, consider a broad, low PDF; many areas have moderate probability of 

occurrence, but no area is significantly the most probable; In this case the 

MPP/design point concept is less applicable). The MPP search algorithms also 

have limitation; for example, they may converge to a sub-optimal „local‟ MPP 

which is not the true „global‟ MPP. However, for well-conditioned problems, FORM 

& SORM can provide a much better localised approximation around the design 

point than is achieved by the global RSM approach. 

3.3.3.3. Mean Value (MV) & Advanced Mean Value (AMV) Methods 

The MV family of methods (MV, AMV, AMV+), again begin with an approximation 

of the function; in this case the approximation is made about the mean value of 

the input functions (i.e. the „origin‟ of the possibility space). For MV, the 

expansion of the function takes the form of a first order (i.e. linear) Taylor-series 

expansion (requiring N + 1 runs for an N-dimensional problem), comparable to a 

first-order RSM. Note that here the linear model is applied directly to the factors 

in X-space, without converting to normalised U-space. The MV model is suitable 
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for fairly linear problems, but is not accurate for non-linear behaviour; its main 

practical use is as the basis for the subsequent AMV method. 

The AMV method takes the linear model derived by the MV method, and attempts 

to include corrective terms to approximate the higher-order effects. However, 

unlike RSM, FORM and SORM, the AMV formulation does not provide a parametric 

function that can be applied elsewhere in the possibility space. Instead, it takes 

the MV prediction and (using data from the calculated MPP of interest), corrects 

this value for a single point in the possibility space. The higher-order 

approximation achieved by AMV cannot be applied at any point other than that 

for which it was derived; hence estimating probabilities for additional points 

requires additional applications of the AMV method. 

Figure 41 illustrates the application of MV and AMV, for a 2-D domain. In 

illustration a), the mean centre-value is evaluated, along with small perturbations 

in the two variables X
1

 and X
2

 (1+2=3 evaluations). This gives the MV model of the 

output objective (the sloped plane). In illustration b), a probability level has been 

chosen, and the approximate location of the limit state g(X) estimated with the 

linear projection from the MV model. The MPP for this limit state is found, and 

another evaluation performed at this point. This new value allows for a corrected 

AMV estimate of the output at the probability level. This has given a good 

estimate at the point in question with only four evaluations; however, the 

disadvantage is that no similar information is available for the rest of the 

possibility space or limit state function. 

 

Figure 41: a) Deriving a linear MV model; b) Using AMV for a given probability level. 

AMV+ is an extension of this method; essentially it is the AMV method applied 

iteratively, so each new estimate is further corrected with additional trials, to a 

specified error level – although this can quickly become computationally 

expensive. Due to the good convergence of the AMV method, the AMV+ method 
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is rarely required, except for very non-linear or non-monotonic functions, or when 

particularly high accuracy is required. 

The MV method is fast, but not accurate for non-linear models. The AMV methods 

are efficient, but as with FORM/SORM, they rely on the MPP concept, so again can 

be confounded by local minima in the limit-state evaluation. The AMV method‟s 

impressively low computational cost comes at a price: this method only provides 

information for a single point, so in order to construct a full PDF the method 

must be applied repeatedly for every point of interest.  

For any of the practical probabilistic methods discussed above, from full MCST to 

FPI methods, care must be applied when implementing a stochastic study; the 

results will only be accurate if the parameters of the various input factors, as well 

as the physical model, are representative of reality. Statistical properties such as 

mean, standard deviation, distribution type and inter-variable correlations must 

all be accurately characterised for every factor under study. 

3.4. Visualising Probabilistic Results 

A common feature of all probabilistic methods is that they generate a large 

volume of output data; instead of a single „deterministic‟ value, a full PDF of 

possible values can potentially be constructed. For a system with multiple output 

objectives of interest (and especially if these outputs are vector values, e.g. time-

varying metrics), this can potentially produce an overload of information, making 

the results & important observations less accessible. It is important to ensure that 

the stochastic study can still deliver simple, clear results or it will not be a useful 

tool for designers or clinicians. Therefore ways must be found to clearly present 

key results. 

3.4.1. Performance Envelopes 

For time-varying output objectives, a useful visualisation tool is the „performance 

envelope‟. Effectively, every time instant represents a unique „system‟, with a 

unique stochastic behaviour and hence a unique PDF for each of the outputs, Y. 

This is too much data to present to the user; consequently, an effective 

simplification is to only display specific „levels‟ on each PDF; e.g. the mean value, 

and an „upper‟ and „lower‟ bound (1 or 2 standard deviations, or a fixed 

percentile value). This is illustrated in Figure 42. The 3-D data is reformatted into 

a 2-D time-plot which is easy to interpret. 
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Figure 42: Concept of „performance envelope‟ illustrations. Displaying only selected 

points from the PDF at each time-instant allows a simpler, more readily interpretable 

visualisation to be produced. 

Note that when „performance envelopes‟ are used, care must be taken in 

choosing the limits to display. Clearly 0% and 100% are not appropriate, as for 

many distributions these would extend to ±∞ and so provide no useful 

information. Values very close to these extremes are unlikely to be appropriate 

either; for any numerical probability approximation, generally the „tails‟ of the 

distributions (i.e. furthest from the mean value, where the PDF is very low) are the 

most poorly approximated area. Hence larger errors are likely in these outlying 

regions. So if a model is based on a thousand MCST trials, a 1% to 99% envelope 

might be justifiable, but if only a hundred trials were used, the accuracy would be 

lower, and a 5% to 95% interval would be more appropriate. (The COV discussed 

earlier provides a useful means to quantify the error that would be associated 

with a given choice of envelope interval range). Conversely, if the bands are too 

narrow (e.g. ±1σ), they may not reveal the range of outlier cases (e.g. for a 

Gaussian distribution the first standard deviation either side of the mean 

excludes some 32% of all possible results). 

3.4.2. Sensitivity Analysis (SA) 

Another highly valuable technique is to report „sensitivity factors‟. The aim is to 

clearly illustrate which of the input factors are having most effect on a given 

system output Y, so that designers or clinicians can quickly see which of the 

factors is having most impact, and focus only on these factors. (Similarly, it may 

allow stochastic-study designers to determine which factors to preserve or omit 

for future probabilistic studies, if computational resources are limited). 

Even for a single, scalar-value output objective (i.e. space- & time-invariant), 

providing a single „bottom line‟ value for sensitivity is not straightforward. The 

value of the „sensitivity‟ can vary, depending on the location in the possibility 

space (at any point, the local sensitivity is the partial derivative of the output-
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function ∂Y/∂X
N

; this value can of course vary across the design space, depending 

on the shape of the response function). One may quote the sensitivity at a 

specific local point of particular relevance (e.g. the MPP from an FPI approach), or 

alternatively fit a global approximation (e.g. RSM), and quote sensitivity based on 

this global function. Obviously, the global sensitivity is less accurate, but more 

broadly applicable. 

When a signal is varying across time or space, (i.e. vector-outputs), the task 

becomes still more challenging; the same factor may have very different effects at 

different times, or different locations in the system (e.g. in knee mechanics, a 

particular malpositioning of the components may increase pressure locally on one 

condyle, but decrease pressure on the contra-lateral condyle). It may not be 

appropriate to attempt to express a single-value of „sensitivity‟ for such a case. 

Alternatives are to make a distinction between different „regions‟ (spatial or 

temporal) and quote separate sensitivity values for each region; or to report only 

the averaged-magnitude of the sensitivity, to give a general indication of the 

overall influence of the factor. Nonetheless, sensitivity analysis should be applied 

with care in uncertainty analysis, to avoid providing misleading or overly-

simplistic data. Note also that for systems where factors are heavily 

interdependent, quoting individual sensitivities is again misleading. Sensitivity 

factors are most meaningful therefore, for scalar-outputs of relatively linear 

systems with independent factors. 

It is often desirable to display sensitivities for different factors alongside each 

other, to give a quantitative indication of the relative ranking of factors. In this 

case, it is important that the sensitivities are normalised, to compare like-for-like.  

Consider two factors, X
1

 and X
2

. If at some point of interest the system output Y is 

twice as sensitive to X
2

 as X
1

 (i.e. ∂Y/∂X
2

 = 2∂Y/∂X
1

), it may seem that X
2

 is the 

more sensitive factor. However, if the input variations in X
1

 are actually ten times 

larger than X
2

 (e.g. X
2

 has a standard deviation ten times lower), then it is 

apparent that in reality the actual system response will be more affected by X
1

 

owing to its much greater variability. Hence normalised sensitivity is a function of 

both the raw sensitivity value and also the input variance for each factor. This 

requires possibility-space information (not just design-space), since the statistical 

properties of the input factors are required. Figure 43 shows a typical SA plot; 

note that if the sensitivity factors are based on a linearised fit then, by 

trigonometry, the squares of the normalised values (or β-values) will sum to unity. 
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Figure 43: Typical sensitivity analysis results, displayed as a bar graph. SA can 

provide a very clear, accessible visualisation tool for stochastic analysis; e.g. it is 

immediately clear in this example which factor is most influential. 

3.5. Considerations for Correlating Multiple Outputs 

When there are multiple output objectives, designers or clinicians may wish to 

explore the correlation between the different outputs. This is particularly useful 

when it is difficult to directly assess the values of the uncertain input factors. For 

example, in the case of the human knee, directly assessing the individual 

stiffness, pre-strain or insertion sites of the ligaments is not readily achievable in-

vivo, but these input factors will influence the behaviour of the knee in active gait 

(one set of „output objectives‟). Equally however, they will affect the passive laxity 

of the knee (a different set of outputs). It may be hypothesised that some 

correlations exist between these two different sets of outputs (active & passive); if 

this were proved to be the case, then by understanding these correlations it may 

be possible to infer the probable results for one output objective based on the 

known results of other outputs measured. (For example, assessing the passive 

laxity for some particular case may indicate that the knee is more likely to 

experience exaggerated kinematics post-operatively in normal gait; the surgeon 

may then be better informed to adjust the ligament balance intra-operatively).  

In order to analyse such correlations, the outputs must be evaluated and 

compared under corresponding input conditions (so all factors are controlled, to 

be compared „like-for-like‟). There are two possible approaches; either the 

individual trials must be sampled at exactly the same input levels for the different 

output objectives, or alternatively a continuous functional expression must be 

built (e.g. an RSE model), so that after the trials are completed, the functions for 

the different objectives can be evaluated by re-sampling at co-incident points (see 

Figure 44). In either approach the final outcome is a series of coincident points to 

compare; however re-sampling with a functional model is much faster than 
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running original trials (as only the fitted function needs to be evaluated), so 

provided less trials are required to build the function, then this may be 

computationally more efficient. 

 

Figure 44: Alternatives for correlating outputs. Left: matched (coincident) trials; 

Right: function-fitting & re-sampling. 

If the stochastic method uses pre-selected trials, and does not feature a recursive 

„search‟ approach, then the first method with matched trials can be used (obvious 

examples are the Monte-Carlo or LHS approaches, where the trials are all 

specified before the evaluation begins). However, for the search-based methods 

such as FORM/SORM and AMV, (which use an iterative approach whereby the 

inputs for new trials are decided based on the value of the previous trials),  this 

cannot be done, as each different output objective will result in a different 

iterative search path. In these cases, a functional model across the possibility 

space is necessary. Some models inherently accommodate this; for example, the 

essence of the FORM/SORM approaches is to build a first-or-second order 

regression model of the system; this can then be used directly as the function for 

correlating the two output objectives. However, the same is not true of the AMV 

family; the AMV approach only evaluates the model at a single input level and 

does not give any functional description across the possibility space. AMV is 

therefore unsuitable for determining multi-output correlations. 

3.6. Performance Issues for Large-scale Stochastic Studies 

The fundamental determining influence when choosing a numerical probabilistic 

method is always the performance-accuracy trade-off. Mechanical models of the 

knee are inevitably quite complex and multi-factorial; this means that there is 
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always a relatively high „cost‟ associated with the probabilistic studies, and makes 

the trade-off between required solve-time and accuracy of the results more 

challenging. In practice, how this trade-off will be made depends on the 

computational resources available; for a full industrial deployment, with many 

thousands of processor-hours available, complex fully deformable models and 

intensive MCST methods may be a realistic option. However, for „proof of 

concept‟ exploratory studies (such as the present work), much less computational 

power is available, so the trade-off must be more in favour of lower simulation 

cost, at the expensive of accuracy. 

As has been discussed in this and previous chapters, there are several possible 

complementary strategies available to reduce the cost of the evaluation. One 

approach is to make appropriate simplifications to the mechanical „physics‟ of the 

model (i.e. the actual TKR simulation). Examples are the use of rigid bodies, 

elastic-foundation contact algorithms or linear material properties (as discussed 

in Chapter Two). Alongside this trade-off in the mechanical domain, similar 

performance-accuracy tradeoffs can be made in the statistical domain too, as 

discussed in this chapter (e.g. using FPI methods). 

However, other methods are also available which blur the distinction between a 

„mechanical‟ and „statistical‟ model in conjunction – two important classes are 

surrogate models and statistical emulators. A surrogate model is essentially still a 

mechanical model, but no longer necessarily modelling the causal physics. This is 

distinct from simplified mechanical models; the models in MBD or rigid-body FE 

are still based on underlying physics; the physics are just simplified for faster 

performance. In a surrogate model, there is no physically causal link between the 

input conditions and the output; often, it is reduced to a simple analytic function 

dissociated from any physical meaning (e.g. a response-surface style function). 

The use of such surrogate models has been explored for TKR mechanics [139], 

although it has not been applied in any published stochastic studies. 

A statistical emulator is fundamentally different, in that it does not represent a 

mechanical model of the system at all; it is a purely statistical description of the 

mechanical simulation (see Figure 45). The emulator must be trained with a data 

set from the simulator to be emulated (this could be in-vivo, in-vitro or in-silico 

data), so a mechanical model is still required; however, subsequently the 

emulator can be used in lieu of any mechanical model. An advantage of this 

approach is that, because it is a purely statistical model, it is possible to associate 

a statistical error level with the prediction returned by the emulator – i.e. the 

emulator can predict its own accuracy. A disadvantage of these more abstract 
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modelling approaches is that, the further divorced they become from the 

underlying physics, the more difficult it is to verify their behaviour (e.g. they do 

not have mechanically meaningful intermediate outputs or states that can be 

corroborated with physical reality); similarly they are not well-suited to 

extrapolating outside of the „known‟ physics into novel operating conditions 

(whereas a mechanical model may be able to extrapolate, within reason). 

 

Figure 45: Rationale for surrogate & emulation techniques; emulation uses a purely 

statistical model of the system. 

For initial conceptual work, as in the present studies, the use of a „true‟ physical 

model (albeit simplified for computational efficiency) is desirable to simplify 

analysis, troubleshooting and debugging of technical development issues. 

However, for any subsequent high-volume work (e.g. a professional/commercial 

high-performance highly-automated probabilistic framework), entirely eliminating 

the computational overhead of mechanical modelling by using a statistical 

emulator may be an advantageous approach to consider. 

3.7. Probabilistics Applied to Knee Biomechanics 

In these studies, the application of interest for probabilistic methods will be knee 

biomechanics. Historically, probabilistic methods were first applied in the fields 

of more „conventional‟ engineering (civil & structural engineering applications; 
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e.g. [140, 141]). Only relatively recently were probabilistic methods first applied 

to the field of bioengineering; initially in relation to structural mechanics of knee 

replacements (by Browne et al [142]). Other studies began applying probabilistic 

methods not just to the structural strength, but to the kinematics and kinetics of 

implants. These studies were first applied to the comparatively simple domain of 

THR mechanics (e.g. [143, 144]). Most recently, they have been applied to TKR 

models, as reported by Laz, Pal et al [95, 145]. These most recent studies 

represent the „state-of-the-art‟, and will be the starting point for the development 

work in the present project. 

Ideally, every knee, every patient, & every TKR would be identical. Then, the same 

remedial procedure would always result in a fixed outcome („success‟ or „failure‟), 

and the design of implants and techniques could easily be adapted accordingly. 

The tremendous challenge of TKR is the amount of variability, in terms of implant 

design options & rationale, surgical procedure and inter-patient variations. 

Whereas a heavily automated process working exclusively with synthetic 

components can achieve a very high repeatability and very low tolerances, TKR is 

a specialist highly manual procedure, operating upon biological systems which 

can exhibit high levels of physiological and pathological variability. Examples of 

variables within these categories are listed in Table 5; despite this list being 

extensive, it is not exhaustive. Some of the variables represent discrete choices 

(e.g. to retain or resect the PCL); others represent continuous „distributions‟ (e.g. 

subject weight). Clearly a very large number of factors can be influential, and 

where studies concentrate on a few „key‟ variables, any number of uncontrolled or 

unexplored secondary factors can confound results, making predictions and 

recommendations less reliable. 

Implant Design Surgical Procedure Patient Factors 

Geometry (e.g. degree of 

articular conformity) 

Surgical experience Weight (& weight changes post-

operatively) 

Size (standard sizing; 

component size mismatching) 

Malpositioning Anthropometry (e.g. limb length) 

Material (polyethylene grade / 

cross-linking; stiffnesses, 

friction coefficients) 

Bone resection accuracy (cutting 

errors affect malpositioning, 

component fit) 

Soft tissue conditions e.g. Muscle 

forces, Ligament/Capsule quality, 

Ligament/Muscle Insertion sites 

Assistive surgical tool design 

(affects surgical accuracy) 

Cement mantle quality (porosity, 

thickness, coverage) 

Clinical / Pathological; e.g. effect of 

RA Progression, Physiotherapy regime 

Fixation method Ligament balancing Patient recovery times 

Tibial Bearing 

(fixed vs. mobile) 

Soft tissue trauma due to incision 

(surgical approach; MIS vs. 

conventional surgery) 

Post-operative lifestyle (diet, exercise, 

activity level) 

PCL retention/resection Patellar treatment (preserved, 

resurfaced?) 

Range and frequency of daily 

activities 

Manufacturing tolerances Surgical Approach (conventional vs. 

computer assisted) 

Post-operative gait adaptation 

Table 5: A sample of factors influencing the outcome of TKR. 
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For accurate results, all of these must be accurately characterised, so that the 

statistical distributions (PDF shape, mean & standard deviation), and correlations 

between factors are known. This requires data on these sources of variability to 

be collected. A wide range of possible sources are available; for the pre-operative 

factors, information on design geometry and sizes is easily captured with CAD 

data sources; the variability in geometry is specified by manufacturing tolerances, 

which are generally well-documented. Variations in material properties can be 

acquired from materials testing standards (e.g. NISTS standards for UHMWPE 

[146, 147] indicate variations in material strength & stiffness), or from other 

experimental testing (e.g. POD tests can give an indication of variability in friction 

co-efficient). Intra-operative variability factors have been recognised as an area of 

concern, and as such several studies have published relevant data measuring the 

variation in different malpositioning outcomes for TKR (e.g. [148-150]). Some 

patient-variability factors (e.g. bodyweight and limb anthropometry) are well-

reported in large-cohort population surveys (e.g. the US NHANES [151]). Further, 

specialist studies have used cadaveric mechanical testing to determine the 

properties of internal biological structures such as ligaments & tendons; the 

ranges they report provide some indication of variability e.g. [152-155]. For in-

vivo mechanics, some gait analysis studies with larger cohorts have included an 

„envelope‟ of variability on the data (e.g. see [28, 29]), and occasionally other 

studies include variability effects (e.g. the telemeterised data from Taylor et al 

[33] or the step-rate data from Schmalzried et al [20]); however the available data 

is limited, and incomplete. For these conceptual studies, it will sometimes be 

necessary to estimate variability based on other comparable sources, and it will 

generally be necessary to assume independence between factors and normal-

distribution of variation, in the absence of better data. An important conclusion 

for further work is that, ultimately, better data on variability will have to be 

sourced (or else directly measured) to achieve greater accuracy in future 

probabilistic studies. 

Although the available input data for the present studies is not ideal, an 

important outcome for this study will be to demonstrate a methodology allowing 

engineers and surgeons to have visibility of the complete scope of input 

variability and its effect on kinetics and kinematics, in particular in terms of 

sensitivity. This may help to identify areas to focus research efforts or procedural 

guidelines; for example, if a particular implant is highly susceptible to variations 

in one or a handful of factors, the designer could focus analysis efforts on these 

factors and their influence.  
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3.8. Conclusions 

Clearly there is considerable scope for a study of variability in TKR. The number 

of variables involved means that a study will require considerable computational 

effort; this can be lessened by choosing appropriate probability integration 

techniques. 

It has been seen that there are a number of standard techniques for numerical 

probability integration. While MCST and its derivatives represent the most reliable 

method, this is a computationally expensive strategy to pursue. For any complex 

numerical engineering problem, the faster alternatives are worth investigation. 

The results of different methods will be compared in subsequent studies, but as 

has been discussed there are risks and disadvantages with every method; 

therefore for the early investigations, these methods will always be validated with 

an MCST analysis. 

The following chapter will describe how early work has applied some of these 

stochastic techniques to simplified numerical rigid-body models of the implanted 

knee. 
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CHAPTER FOUR – DETERMINISTIC MODEL DEVELOPMENT & 

CORROBORATION 

4.1. Defining the Model 

4.1.1. Study Scope 

As with any project, time and resources for these studies are limited. Because 

they are being approached from a mechanical engineering perspective, emphasis 

will be placed on the causal link between the input variability and the resulting 

kinematics & kinetics. In some areas, the further causal relationship between 

kinematics/kinetics and mechanical failure modes will be partially explored (e.g. 

wear prediction). However, to fully characterise the different „failure‟ modes (as 

discussed in Chapter One) would require a much more extensive model including 

the causal links between mechanical performance and failure (e.g. interface de-

bonding and bone re-modelling), besides other non-mechanical failure influences 

(e.g. infection, inflammation and necrosis). A systematic representation of the 

study scope is illustrated in Figure 46.  

Figure 46: Scope of present study; dashed partition indicates „partial‟ inclusion. 

4.1.2. Modelling Environment (Software) 

In Chapter Two, fast in-silico MBD models were identified as an appropriate 

platform for the stochastic study methods described in Chapter Three. A number 

of software applications support MBD modelling; the software used in these 

studies is MSC.ADAMS (MSC Software Corp) - “Automatic Dynamic Analysis of 

Mechanical Systems”. It is widely-used for MBD, and is dedicated to the solving of 

specifically dynamic problems (whereas FE is traditionally associated with static or 

quasi-static solutions). The software allows CAD geometry for the implant design 

under test to be imported directly and used within the model, and allows co-

simulation with MATLAB/Simulink for control-plant modelling. Probabilistic 

studies can be managed internally by the ADAMS/'Insight' module (for design-of-

experiment (DOE) studies), or externally by any hand-coded or 3
rd

 party statistical 

software, e.g. NESSUS (South-West Research Institute). 
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4.1.3. Target Simulator Configuration 

For any model of TKR mechanics, there are many potential factors to include, and 

the complexity of the model can very quickly expand drastically. This brings with 

it associated risks (unexpected behaviours, errors and simulation failures). To 

mitigate these risks, the earliest developmental models should not be fully-

featured stochastic studies. Instead, the various sources of variability should be 

introduced sequentially in phases (i.e. a „crawl-walk-run‟ approach). Therefore, 

the first objective is to demonstrate that a „baseline‟ deterministic model (similar 

to those used in existing FE models) can equivalently be implemented using the 

alternative MBD software environment. This has three purposes: to gain 

experience with the software, to provide a platform for further modelling, and to 

corroborate results with existing computational & experimental data. The target 

for early corroboration efforts was the study by Halloran et al [94, 156], who used 

FE methods to simulate the SKS and compared experimental and computational 

results. In his thesis, Halloran performed extensive FE-based modelling [157]; he 

also explored rigid (non-deformable) FE, using the „elastic foundation‟ bed-of-

springs approach to model contact, based on interpenetration of the geometries 

and a pressure-overclosure relationship to determine the resulting contact forces. 

These rigid-FE linear-elastic-foundation models are particularly suitable targets for 

a „silver standard‟ in-silico versus in-silico corroboration, since their use of rigid 

body models makes them comparable to MBD-based methods. Therefore, the 

following section describes a specific, targeted corroboration against Halloran‟s 

baseline SKS model. 

4.2. Initial (Deterministic) Corroboration 

4.2.1. Implant Geometry  

This deterministic study tested a standard, widely-used CR TKR design, with a Co-

Cr femoral component on a FB tibial UHMWPE insert. For this TKR model, two 

alternative designs for the insert are available – a „semi-constrained’ (S/C) design 

with more conformal articular geometry in the sagittal-plane, and a less 

conformal „unconstrained’ (U/C) design (see Figure 47). Both alternative tibial 

inserts use the same femoral component. The „parasolid‟ format CAD models of 

two designs were acquired from the manufacturer for use in these studies. Unless 

otherwise stated, results are always presented for a right knee. 
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Figure 47: CAD geometry for femoral & tibial components (left), & sagittal-plane 

comparison between S/C & U/C tibial inserts (right). 

4.2.2. Driving Inputs 

The experiment was designed to simulate a normal gait cycle, loosely based on 

ISO-14243-1 force-driven gait [23]. As discussed in Chapter Two, the SKS is a 

hybrid force/displacement-driven simulator, so the four input waveforms required 

are A-P force, I-E torque, axial compressive force & flexion angle. In this case, the 

inputs were not identical to the ISO standard, so the „feedback‟ data retrieved 

from the experimental rig is used instead (see Figure 48). Note that the illustrated 

gait cycle begins at heel strike; the stance phase is then the first ~60% of the 

cycle, followed by toe-off, then the remaining ~40% represents the swing phase 

through to the next heel strike event. The cycle is intended to be driven close to 

real-time speeds of around 1Hz. 

    

Figure 48: Input waveforms for force-driven SKS (adapted from Halloran et al [94]). 

4.2.3. Spring Restraint Model 

The SKS uses a transverse-plane spring restraint model. This is not directly 

anatomically representative of ligaments (since this is not the aim of the original 

wear simulator); however it does appropriately restrain the implant kinematics 

when used in conjunction with the input waveforms depicted above (i.e. it 
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provides an aggregate restraint at the knee, broadly equivalent to the effect of 

natural soft tissues in the transverse plane). The system consists of four spring 

buffers in the A-P orientation, with a fixed M-L separation providing the moment 

arm for I-E rotational torque restraint (see Figure 49). Various values of different 

spring stiffness have been proposed [158], sometimes featuring a short „dead 

zone‟ permitting a few mm of unrestrained motion. For this model, Halloran et al 

adopted a spring configuration used by DesJardins [159]; this configuration is 

accordingly reproduced here. Each spring was treated as linear, (with the dead 

zone neglected) and with a stiffness of 5.21N/mm, with the spring M-L 

separation, Δ
M-L

, set at ±28.7mm. (It may be verified that the corresponding total 

transverse stiffness is ±20.84N/mm, with angular torsional stiffness of ± 0.30 

N·m/°). 

 

Figure 49: Spring restraint in the transverse plane. 

4.2.4. Mechanical Configuration 

The natural tibiofemoral joint has no fixed axes, but in practice most simulators 

constrain the femoral and tibial components, typically reducing the system to 6 

(out of a possible 12) degrees of freedom (DOF), since it is generally only the 

relative orientations of the femoral and tibial components with respect to one 

another that are of interest. The SKS model follows this convention, as shown in 

Figure 50 (compare to Figure 23 in Chapter Two). Note that because each DOF is 

applied sequentially, the order of application does affect the kinematics (unlike 

e.g. Grood & Suntay co-ordinates [17]). However, for small angles (< ~10°) this 

has negligible influence; hence the F-E rotation, which is not limited to small 

angles, must be applied last. The configuration is summarised in Table 6. 
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Figure 50: Mechanical DOF Arrangement. 

Femoral Component Tibial Component 

I-S translation M-L translation 

V-V rotation A-P translation 

F-E rotation (driven as SKS input) I-E rotation 

Table 6: SKS configuration for the six degrees of freedom. 

Dynamic terms had to be assigned for the various properties of the resulting 

bodies. The target study by Halloran et al was based on limited experimental 

data, and so the inertia, friction and damping for the model were all estimated 

based on engineering judgement. For this present corroboration study, the values 

used are based on the target study, in order to match the computational model; 

as such these values do not accurately represent the in-vitro SKS rig. 

Representative inertia was assigned to the femoral component (5kg). A higher 

inertia was assigned to the tibial component (25kg). The tibiofemoral friction co-

efficient was constant at 0.04, and the transverse-plane damping was set to 1% of 

the spring stiffnesses (50N.s/m per spring). 

4.2.5. Component Positioning 

Technically, the ISO-standard defines specific guidelines for the position of a 

fixed femoral axis of rotation [23, 24]. However, many studies do not precisely 

observe this standard, and as the aim of this exercise is corroboration rather than 

rigorous adherence to standards, the proprietary axis positioning within the 

original experimental studies will be adhered to when differences exist. 
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4.2.6. Contact Algorithm 

An important metric for knee performance is contact pressure (CP). However, 

whereas kinematics (i.e. translations & rotations) can be readily determined from 

MBD analysis, the kinetics (forces, torques) are only reported as resultant values 

for the whole rigid body. Therefore in order to model the force distribution (and 

hence CP), a macro was written to discretise the surface of the tibial insert into 

multiple elements (see Figure 51). The resultant contact force for each of these 

elements (and the element area) could then be used to estimate CP. (Essentially 

this is comparable to the elastic foundation approach [94, 160]). For this study, it 

was determined that a resolution of 1mm² would be adequate for CP visualisation 

(based on sensitivity studies and comparisons to previous FE models [91, 94]). 

 

Figure 51: Tibial insert, showing 1mm² grid. 

ADAMS features an internal „impact‟ function [161]; this allows the two rigid 

bodies to partially „interpenetrate‟, and then approximates deformable contact by 

relating contact normal force (F
N

) to the interpenetration depth (g), using an 

exponential relationship, where k is the stiffness co-efficient; e is the exponent: 

e

N gkF  ( 2 ) 

With suitable values for k and e, this can be used to fit an EF-style contact model. 

For a simple linear model, with material thickness ~10mm and cell area 1mm², it 

may be shown that e = 1 and k ≈ 10
5

 gives a reasonable first approximation, 

which can be further „tuned‟ to experimental data (for more, see Appendix C). 

4.2.7. Output Measures 

The output measures reported here are A-P translation & I-E rotation (reported 

relative to the „settled‟ reference positions of the components, as defined above), 

contact area and peak CP (the highest surface pressure recorded for any of the 

mesh elements on the tibial insert at each point in time). 
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4.2.8. Results 

In Figure 52, results for A-P Translation, I-E Rotation, peak CP and contact area 

are shown. In the graphs, the rigid-body result from MBD (ADAMS) is compared 

with FE and experimental data for the same implant design presented by Halloran 

et al. Maximum A-P range was ~4mm, with I-E rotation varying by ~7°, and CP 

closely following the axial force waveform, with a maximum value of ~ 17MPa.  

 

 

 

 

Figure 52: Tibial A-P translation (top left), I-E rotation (top right), maximum CP, 

(bottom left), & contact area (bottom right). MBD - ADAMS (dotted trace) vs. FE - 

Halloran [94] (dashed trace), with experimental kinematics (solid trace) 

Figure 53 shows an example contour plot for CP, at a single point in the gait 

cycle, comparing both the FE and MBD methods – note the two are very similar. 

This MBD-based model solved in under 10 minutes (Intel P4 3GHz, 2Gb RAM); a 

favourable computational cost compared to more complex deformable FE models. 
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Figure 53: Contour maps for CP Distribution. Left: FE (Halloran [94]). Right: MBD 

(ADAMS). (Taken at 10% gait; scale maximum 10MPa). 

4.2.9. Discussion 

The ADAMS model results corresponded well with both the magnitudes and 

trends reported in the corroborated publication study, although there are some 

small differences due to various differences in the modelling approach taken. The 

„contact‟ and „friction‟ models are slightly different in the present study, and the 

system of discretising the tibial component is proprietary, introducing small 

differences. Also, although FE is fully capable of dynamic analysis, historically 

biomechanical FE studies have often been „quasi-static‟, meaning each time 

instant is evaluated in isolation. This means that inertial effects (the mass of the 

components) or dynamic effects (damping in the polymer contact or spring 

restraint) were not considered. ADAMS is fully dynamic so does incorporate such 

influences, introducing further differences. 

An important observation is that whilst the FE models appear to „validate‟ well 

with the experimental data, by applying quasi-static conditions (and hence 

neglecting dynamic effects), they are failing to capture the full mechanics of the 

in-vitro test. The SKS configuration is quite forgiving, owing to the „hard‟ restraint 

provided by the physical springs; nonetheless dynamic terms can play a very 

important role in dictating the kinetics and kinematics. Unfortunately, dynamic 

properties are not widely reported as historically they have not been widely 

modelled. Subsequently, these properties must be better understood for more 

accurate fully-dynamic modelling. 

Nevertheless, the results are sufficiently similar to published studies to give 

further confidence in the choice of modelling environment, and the model itself. 

The solve time is comparable to published rigid body studies (e.g. the rigid EF 

model variant reported by Halloran et al [94]) and sufficiently low to allow 

multiple-trials in a larger-scale stochastic study. With a well-corroborated 

deterministic model as a baseline, the analysis capabilities of this model could 

now be extended, by incorporating in-silico wear prediction. 
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4.3. Implementing In-silico Wear Prediction 

The ability to predict wear in-silico is valuable, as wear and wear-related osteolysis 

& loosening are leading causes of TKR failure (see Chapter One). However, the 

precise physical mechanisms of wear are not fully quantitatively understood, and 

„wear‟ is a catch-all term which includes a number of distinct tribological 

„mechanisms‟; for example: 

 Surface fatigue wear – caused by contact between two bodies, where there 

is limited or no sliding motion (e.g. rolling contact). This mechanism 

generally produces minimal wear damage. 

 Adhesive – caused by two bodies sliding together with a compressive load 

applied between them; the degree of wear varies based on the motions and 

compressive loads. 

 Abrasive – caused by hard particles mechanically abrading against a softer 

material. The particles may be embedded with a composite material; e.g. 

barium sulphate particles in bone cement. 

 Three-body wear – a form of abrasive wear where loose („third body‟) 

particles become located between the two contacting surfaces, causing 

accelerated wear. 

 Corrosive – caused by the degradation of the material properties, rather 

than purely mechanical effects. Corrosive wear can however be 

exacerbated by the mechanical environment. 

Any or all of these processes may be occurring in a given TKR in-vivo; it is 

therefore important to differentiate and understand what is being modelled by 

the predictive wear algorithm. For a well-implanted modern TKR, the mechanism 

believed to be most important is adhesive/abrasive wear; this is the focus of the 

models described henceforth. 

4.3.1. Adhesive / Abrasive Wear Theory 

Fundamentally, the same concept underlies all forms of mechanical wear. Energy 

is transferred from the kinetic energy of the moving surfaces, to the increased 

surface energy of the wear particles generated. This energy transfer is facilitated 

via surface friction during motion; therefore the amount of energy lost to friction 

dictates the maximum energy available for tribological processes (this theoretical 

relationship has been described in detail by Wang [162], who illustrates a strong 

relationship between wear rate and friction coefficient). Despite attempts at a 

theoretical basis such as [162], wear prediction remains largely an empirical 
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science. The foundational work in quantifying wear predictions was the 

relationship reported experimentally by Archard in the early 1950s, in relation to 

wear of bearings in electrical machines [163]. The relationship has been widely 

used in the tribological study of prosthetics, as the Archard/Lancaster equation: 

sCPkW ..  ( 3 ) 

Where W is the experimentally-measured wear depth, k is a scaling constant, CP is 

the contact pressure, and s is the sliding distance (the product of contact 

pressure & sliding distance is sometimes termed „tribological intensity‟). Note this 

is a localised expression for the localised linear wear depth; to estimate a wear 

volume, this must be integrated across the contact area, taking account of 

variations in contact pressure and cumulative sliding distance (in other words, 

calculating wear computationally requires piecewise numerical integration).  

Beginning in the mid-1990s this wear formulation has been applied to 

computational biomechanics, notably in the FE-based work of Maxian et al [85, 

164-166]. Essentially, the simplified form of the equation above is applied to each 

finite element in contact, at each time step. Summing together these discrete 

contributions gives the total wear volume. This can be converted to an equivalent 

wear mass based on the density of UHMWPE (~0.93 mg/mm³ [167]). 

Although the Archard equation has some theoretical basis, it is not an analytic 

formulation. In practice, it does not account for variations in material properties 

across the surface (inhomogenities, varying surface roughness, varying degrees 

of cross-linking on the molecular level), or variations in the size & surface energy 

of wear particles. Rather, it provides an empirical approximation, designed to 

provide an aggregate estimate of wear as a macroscopic-level phenomenon. 

4.3.2. Modelling the „Cross-Shear‟ Effect 

The Archard/Lancaster wear formulation assumes that the wear constant „k‟ is a 

fixed value. This means that, regardless of variations in contact pressure, sliding 

distance or any other parameter, the same proportion of frictional energy is 

assumed to be producing the same volume of wear debris. However, it has been 

demonstrated that the wear „constant‟ varies considerably. One particular 

influence appears to be the orientation of the sliding contact between the two 

bodies, relative to the alignment of the polymer fibres on the contact surface. 

However, the surface alignment in turn depends upon the time-history of the 

previous sliding motions. As a result, the overall wear rate can increase if the 

orientation of sliding motions at any fixed point on the surface changes 

considerably over time through the activity cycle. Generally, relatively „linear‟ 
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motions (unidirectional or bi-directional sliding) result in much lower wear, 

whereas a path featuring considerable lateral shearing motion (i.e. sliding 

motions tangential to the principle sliding direction) results in higher wear than 

the Archard/Lancaster prediction would suggest. This has resulted in alternative 

formulations for wear based on the crossing-motion, or cross-shear (CS) theory, 

where essentially the wear constant „k‟ becomes variable, as a function of the CS: 

sCPCSkW .).(  ( 4 ) 

The effect of different crossing-motion paths has been demonstrated empirically 

by Turell et al [105]. Causally, it is postulated that the CS increases wear by 

causing fibrillar de-bonding. For linear sliding paths, the UHMWPE fibrils are 

found to be aligned with the sliding direction; for high-CS sliding paths, the fibril 

alignment is more multi-directional [168]. There are several proposed metrics for 

defining the „degree‟ of cross-shear. The most rudimentary is the M-L/A-P ratio, 

assuming the principle sliding direction to be along the A-P axis, (Figure 54, left 

condyle). However, this formulation produces singularities if the motion is 

entirely in the M-L direction. Therefore, an alternative is to use a „bounded‟ form 

(Where the denominator is not „A-P‟ but the sum of „M-L+A-P‟). A more 

sophisticated approach is to determine a specific principle direction vector based 

on the actual path data. This principle sliding direction is designated „B‟, with the 

transverse (i.e. „cross-shear‟) direction designated „A‟ (see Figure 54, right 

condyle).  

Whereas the M-L/A-P model breaks down if the principal sliding direction 

becomes predominantly lateral, the A/B model can account for any sliding 

direction, so is more robust. For the A/B formulation, both the unbounded & 

bounded (A/A+B) formulations are again possible (see Table 7). 

 

Figure 54: Defining cross-shear for M-L/A-P ratio (left) and A/B ratio (right). These 

simple models use a „cycle-averaged‟ measure of the crossing motions seen at any 

point on the insert surface. For „skewed‟ path orientations, M-L/A-P tends to over-

predict CS (as shown by the lower-aspect ratio of the enclosing rectangle). 



92 

 

Wear model Unbounded Bounded 

M-L/A-P 
AP

ML
kCSk .)( 0  

APML

ML
kCSk .)( 0

 

A/B 

B

A
kCSk .)( 0

 

BA

A
kCSk .)( 0

 

Table 7: Four alternative formulations for cycle-averaged cross-shear. 

These proposed CS models are purely empirical, and have no physically-based 

analytical derivation; they are based on limited observations from in-vitro 

experimentation. Unfortunately limited data exists for such in-vitro experiments, 

owing to the costs and timescales involved. Further reported studies often vary 

different factors (e.g. implant design, material) from test to test, which means the 

results are not directly comparable. To compound these challenges, wear tests 

exhibit a high degree of variability even when repeating the same test on multiple 

stations (e.g. Fisher et al reported variations of >±30% [169]). 

In consequence of this paucity of good data, there is no consensus on a definitive 

„correct‟ model for wear available, and alternative formulations continue to be 

suggested. One example is the „crossing intensity‟ formulation proposed by 

Fregly et al [124]. Here, cross-shear is estimated as the „spread‟ of different 

sliding directions, weighted by both the sliding distance and contact pressure. 

This effectively gives a „standard deviation‟ of the spread of sliding directions; 

normalising this by the „worst case‟ sliding path (circular rotation) gives the 

crossing-intensity value, which can then be used as a CS term (see Figure 55). Yet 

another proposal by Willing et al [170] considers a „closed-path‟ of sliding 

vectors, and expresses CS as the ratio between the perimeter length and enclosed 

area of this shape (see Figure 56). 

 

Figure 55: Alternative CS concepts:  Hamilton's statistically-based "crossing 

intensity". Wear increases as the „spread‟ of sliding vectors increases. 
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Figure 56: Alternative CS concepts: Willing's geometrically-based "cross-factor" 

method. Wear increases for paths where “Area : Perimeter” ratio is higher. 

4.3.3. The Role of Contact Pressure in Wear 

Historically, ever since Archard‟s original hypothesis it has been assumed that 

linear wear depth rate is directly proportional to contact pressure (as discussed 

above). More recently however, this assumption has been challenged in studies by 

a number of authors. Using POD testing, Mazzucco et al [107] and Ernsberger et 

al [106] have both argued that there is no apparent relationship between wear 

depth rate and contact pressure (i.e. it is independent); work by Kang et al goes 

further, arguing that there is an inverse relationship between wear and contact 

pressure (i.e. wear factor decreases as contact-pressure increases, at least within 

the range of CP tested [125, 171]).  

However, these studies were all performed in the simpler domain of POD tests, 

where geometry is not a confounding factor, and contact pressure is (ideally) 

constant across the articulating surface. How applicable these conclusions are for 

more the complex geometries, kinetics and kinematics of TKR wear is a matter of 

ongoing debate. A major obstacle in comparing and testing these different 

proposals for wear algorithms is that there is often limited experimental data to 

base the formula on, and small numbers of trials (often in the limited domain of 

POD tests) cannot provide sufficient grounds to explore the differences between 

the various algorithms proposed. Therefore, the need exists to apply these 

algorithms across a wider range of experimental TKR tests to corroborate their 

performance on a larger scale. 

Clearly, until the precise details of adhesive/abrasive wear are better quantified 

experimentally, debate will remain as to which mathematical model gives the 

most accurate results. In light of this, it was decided to include a range of 

different wear algorithms within the models in the present studies. 

Note that there is a considerable workload of post-processing involved in 

evaluating wear – a typical activity might include several hundred time-frames; in 

any frame, as many as a thousand elements may be in contact – this results in a 
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very large number of individual pressure & sliding calculations to evaluate. The 

computational cost of post-processing may be an important factor when choosing 

a wear formulation to use with a large-volume DOE or probabilistic study. The A/B 

formulation and the crossing-intensity formulation are both recursive; it is 

necessary to scan through the data once to determine the „principal‟ sliding 

direction, and then again to apply the actual wear summation. (As such, for high-

speed stochastic studies it may sometimes be preferable to use the less accurate 

but faster M-L/A-P formulation).  

For the exploratory studies here and in subsequent chapters, a number of the 

algorithms described above are incorporated and used in parallel, in order to 

compare their performance in different situations. 

4.3.4. Adaptive Wear Modelling 

The process of wear is inherently dynamically adaptive; localised high wear can 

result in faster deformation in certain locations, thus altering the surfaces of the 

articulating geometries, and thus altering the kinematics and contact pressure 

distribution for subsequent cycles. This is most clearly seen in the „bedding in‟ 

phenomenon, where concentrations of high pressure will tend to result in 

localised high wear, such that the surfaces become more conforming and the 

contact is more evenly distributed, thus reducing pressure concentrations.  

It is possible to simulate this adaptation, by re-modelling the contacting surface 

between consecutive simulations, as first demonstrated by Maxian et al [85]. In 

reality, the surface adaptation is a continuous process. Numerically, however, this 

would be very impractical; the geometry would need to be minutely modified 

during every individual cycle. For a 5- or 10- million cycle test requiring ~5-10 

minutes of computation time per cycle, this would result in simulation times of 

thousands of years (i.e. clearly not feasible). 

Instead, the surface adaptation is applied in discrete blocks of cycles; it is 

assumed that for „short‟ periods the wear rate and wear depth are approximately 

linear (convergence tests suggest a maximum step size of 500,000 cycles to 

1Mcycle [85, 92], corresponding to a few months of in-vivo use). An entire long-

term simulation of several million cycles may then be completed in just a handful 

of iterations. Generally, a sensitivity test will be used, testing decreasing step 

sizes to verify that the overall wear rate converges towards the rate observed 

under „continuous‟ conditions. The flow diagram for this algorithm is illustrated 

in Figure 57. 
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Figure 57: Computational adaptive wear prediction: process flowchart. 

4.3.5. Implementing the Wear Algorithms with MBD  

In order to calculate wear within ADAMS, the simulation results must be post-

processed. This could potentially be done using a number of software tools; 

however using an external third party application would require data to be 

imported and exported between programs. Instead, the command-scripting 

capabilities of ADAMS were used, to perform the post-processing internally within 

the ADAMS environment. Computationally, this is considerably slower, since the 

macro scripting language is not compiled; however, the convenience of keeping 

all processing within ADAMS is considered to outweigh this disadvantage. 

The macros operate by interrogating the results database (containing kinematic & 

kinetic information from the previous analysis). The „output‟ is a series of 

numerical arrays (indexed to reference the discretised elements of the tibial 

surface) containing information such as total sliding distance, contact pressure, 

cross-shear, or wear depth, for each cell. The ADAMS GUI has been adapted to 

display this data in the form of colour plots (similar to the contact pressure plots 

illustrated in the earlier deterministic corroboration, see Figure 53). For example, 

see Figure 58, showing colourised „contour maps‟ for linear wear depth. This 

facilitates both numerical & graphical visualisation of the predictive wear results. 

     

Figure 58: Linear wear depth contour plots in hue (left) & gray-scale (right). 
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The capability to model adaptive wear has also been incorporated. In FE models, 

this is achieved by altering the entire surface mesh; the surface must remain 

congruent; therefore the individual nodes are displaced based on the linear wear 

depth, forming the new „smooth‟ surface mesh. In ADAMS, the surface may be 

allowed to become incongruent, since the contact algorithm is based purely on 

the interpenetration depth for the entire surface element; therefore individual 

cells may be entirely displaced vertically (see Figure 59). This is less physically 

representative, but an acceptable compromise within the MBD environment. 

 

Figure 59: Comparing surface adaptation methodology for MBD (above) & FE (below). 

4.4. Corroborating In-silico Wear Models 

It is recognised that in-silico computational wear predictions are not analytically-

based, and so cannot ever provide „exact‟ predictions of in-vitro wear. In light of 

this, it is important that the results from MBD-based wear modelling do not 

introduce any additional error or variation – they should corroborate closely with 

other in-silico FE-based methods, as well as in-vitro studies. With the capabilities 

of the wear model developed, the model was corroborated with published results 

using established FE-based models & wear simulator rigs. 

A first step is to corroborate a single „deterministic‟ case in detail. The long-term 

adaptive wear study by Knight et al [92] was selected, because it includes both FE 

and experimental results, and is information-rich, presenting data for adaptive 

wear steps, showing wear depths, volumes, and contour plots. An MBD-based 

model was constructed to replicate the test conditions (using proprietary force-

driven inputs with soft/hard springs in a SKS configuration, and a CR FB 

commercial knee implant). Adaptive wear was simulated for 10 „steps‟ of 500,000 
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cycles each, out to 5MCycles. The wear model used was the simple „Archard‟ 

formulation (no cross-shear), with a wear constant, k, of 2.64×10
-7

 mm
3

/N·m. 

In Figure 60, the MBD-based model is compared to the results reported by Knight 

et al. Wear depth and volume are very similar; there are differences in the precise 

wear contours, but the trends are similar (greater & more concentrated wear on 

the medial side, with a more dispersed wear scar shifted posteriorly on the lateral 

condyle). Note that the wear post-processing adds an additional overhead to 

computation times; hence whereas the baseline mechanical model solves in 5-10 

minutes, simulations with a full wear analysis (for multiple wear methods) can 

take 15-20 minutes (computing the wear rates for all the different alternative 

wear algorithms incorporated into the ADAMS model). There is therefore a solve-

time trade-off which must be considered when incorporating wear algorithms. 

 

Figure 60: Comparison of FE & MBD adaptive wear. Left: cumulative wear depth 

(above) & mass (below). Right: wear depth contours for (A) ADAMS MBD, (B) FE – 

Knight et al [92], and (C) experimental. 

Alongside this comparison test, a number of other corroboration studies were 

performed, comparing the ADAMS model to existing FE-based wear predictions 

and experimental wear data. For the sake of brevity, these are not reported in 

detail in this thesis, although some of the results from these studies were utilised 

as part of the work described in the following section. 
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4.5. Investigating In-silico Wear Theories 
4

 

4.5.1. Methods 

The MBD-based model has now been shown to provide a fast and accurate 

alternative modelling approach to FE, matching deterministic results for 

kinematics, kinetics, and also for existing wear prediction methods. However, the 

power of these wear prediction methods has not been effectively demonstrated; 

to-date, in-silico wear models have been „tuned‟ to and compared with only small 

experimental datasets, either using published pin-on-disc (POD) data, e.g. in 

[105, 124], or else TKR wear simulator results, e.g. [92, 127]. Whilst these studies 

demonstrate the value of in-silico methods in individual cases, they cannot 

broadly corroborate across a range of test conditions. 

The initial wear predictions used with this model are based on standard 

algorithms discussed above; the baseline Archard/Lancaster sliding-distance 

model [163] (without CS), and other algorithms including CS (e.g. M-L/A-P [126], 

A/A+B [105], and * „crossing intensity‟ [124]). Alongside these existing 

formulations, alternative arrangements have been included to explore the effect 

of excluding CP from the wear model [106, 107, 125]. 

Twenty-two different experimental tests were selected, sourced from the public 

literature and proprietary test data, where „conventional‟ polyethylene was tested 

(with minimal or no cross-linking), to ensure that the tests would be broadly 

comparable. Implant geometry was acquired from manufacturers or reverse-

engineered. Results for a range of kinematics under displacement-control for the 

PFC sigma (fixed and mobile bearing designs) and LCS were sourced from [172, 

173]. These implants were also tested under ISO 14243-1 force-control [174]. 

Results for the NexGen CR implant were corroborated under force-control [92, 

175] and displacement control [43]. Additional implants included were the 

Vanguard PS under ISO force-control [176], and Triathlon CR under displacement 

control [177]. Proprietary unpublished test data was also used to corroborate 

semi-constrained & unconstrained design variants of the PFC sigma under 

displacement-controlled conditions. Finally, tests of femoral components against 

„flat‟ polyethylene surfaces using displacement control [178] were included to 

corroborate the wear algorithms across a wider range of contact pressures & 

areas in-vitro. The full list of test-cases is summarised in Table 8. Note that 

because of the number of tests, it is not possible to include the full set of test-

                                         

4

 This section is adapted from the journal article: “In-silico Wear Prediction for Knee 

Replacements - Methodology and Corroboration”. Strickland et al, J.Biomech (In Press). 
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conditions in this document for every case. In each model, the same procedure 

was followed; component positioning, allowed motions, spring constraint (where 

applicable), input loading profiles and any other relevant factors were matched to 

the reported test conditions in the literature. Where these conditions were not 

stated, and where the original investigators could not be successfully contacted 

for further clarification, „generic‟ test conditions were imposed (e.g. assuming a 

60-40 M-L load split [23], using a representative friction co-efficient of 0.04 [91], 

and adjusting the model configuration according to a typical set-up for the test 

machine being used; i.e. replicating the standard mechanical configurations for 

Instron, ProSIM, or AMTI simulator rigs, as available from the manufacturers). The 

original papers may be referred to for more details on individual test cases. 

Source(s) Implant(s)  

(PE derivative) 

Inputs (forces & kinematics) 

McEwen et al [173] Sigma FB & RP; LCS 

(GUR1020 & 1050) 

Displacement (various kinematics) 

& ISO 14243-1 (Force) Gait 

Galvin et al [178] Sigma femoral on  flat 

PE (GUR1020) 

Displacement-driven Gait (various 

levels of kinematics) 

Knight et al [92] NexGen CR (GUR1050) ISO-derivative Gait 

Cottrell et al [175] NexGen CR (GUR1050) ISO 14243-1 (Force) Gait 

Muratoglu et al [43] NexGen CR (GUR1050) ISO-derivative Gait 

Williams et al [177] Triathlon (GUR1020) ISO-derivative Gait 

Haider et al [174] Sigma FB & RP 

(GUR1020) 

ISO 14243-1 (Force) Gait 

Haider et al [176] Vanguard PS 

(GUR1050) 

ISO 14243-1 (Force) Gait 

Proprietary 

unpublished data 

Sigma FB S/C & U/C 

(GUR1020) 

Displacement-driven ISO-

derivative & high-kinematics gait 

Proprietary 

unpublished data 

Sigma femoral on flat 

PE (GUR1020) 

ISO-derivative; High & low levels 

of axial load & I-E rotation 

Table 8: Listing of test-cases used for corroboration, with references where 

applicable. 

Wear rates reported in mg were converted to mm³ using a density of 

0.93mg/mm³. Although the model is capable of adaptive wear, to limit 

computational times for this exploratory study, volumetric wear rate for each case 

was calculated based on a single-cycle. Published experimental and 

computational long-term studies demonstrate that whilst linear wear depth rates 

may vary over time (e.g. [92]: Figure 7, [179]: Figure 3a), volumetric wear is 

reasonably linear within the first few million cycles, (e.g. [92]: Figure 6, [179]: 

Figure 3b, [42]: Figure 2, [44]: Figure 2, [180]: Figure 10). (Although the precise 

mechanics are not quantitatively understood, the increase in contact area due to 

„bedding-in‟ seems to offset the gradual decrease in linear wear depth rate). 
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Once all the necessary experimental configuration data had been obtained for 

these tests (e.g. implant geometry, loading input waveforms, spring restraint 

setup and available degrees of freedom), the tests were simulated in-silico using 

the fast rigid-body model, and predicted wear was evaluated for each of the 

proposed wear formulations included in the model. The computationally-derived 

rates were then compared to the reported experimental wear rate (with error 

levels, where available). This allowed the predictive power of different wear 

algorithms to be compared directly. 

4.5.2. Results 

All of the test-cases were simulated successfully and were post-processed to 

evaluate predicted wear using the different algorithms. The volume of data 

generated is considerable, so wear contour maps are not compared here; only the 

baseline volumetric wear rate for each model using each algorithm is reported.  

The following figures show correlation plots for a few of the selected models. 

Note that in every plot, there is considerable „scatter‟, and the uncertainty (shown 

by error bars) in the experimental results is very large. The results very clearly 

confirm the current general consensus that the baseline Archard model has very 

limited predictive power to assess wear (Figure 61) – this is equally applicable for 

the knee as for the hip, despite the typically lower degree of cross-shear.  

 

Figure 61: Experimental wear vs. wear predicted using the „Archard‟ algorithm. 

By comparison, every variation of wear algorithm which includes some 

representation of CS has a much greater predictive power (typically R² of 0.5 to 

0.6; e.g. see A/A+B model in Figure 62). Considering these CS models, there are 

several important observations. First, the inclusion or exclusion of contact 

pressure as a proportional term within the algorithm does not consistently or 
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considerably alter the predictive power of the model for this particular set of test-

cases. Second, the precise „definition‟ (i.e. mathematical formulation) of CS used 

is of secondary importance compared to the decision to include or exclude a CS 

metric – the relative difference between alternative CS-based models is less than 

the difference between models with and without CS (compare Figure 62 and 

Figure 63). 

 

Figure 62: Experimental wear vs. wear predicted using „A/A+B‟ algorithm. 

 

Figure 63: Experimental wear vs. wear predicted using „M-L/M-L+A-P‟ algorithm. 

Again, the treatment of CP within the algorithm also appears to be of secondary 

importance; both models with a proportional-CP term, and with no CP term, have 

similar predictive power for this set of test cases, provided that a CS metric is 

included (compare Figure 63 and Figure 64); the models including a proportional 

CP term appear slightly stronger, however the role of contact-pressure in wear 
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mechanics remains unclear – a plot of wear rate vs. cycle-averaged CP reveals no 

noteworthy correlations (see Figure 65).  

 

Figure 64: Experimental wear vs. wear predicted using „M-L/M-L+A-P‟ (without CP). 

 

Figure 65: In-vitro wear vs. cycle-averaged contact pressure (no strong correlation). 

Despite these uncertainties, it is possible to „rank‟ the performance of the 

different CS algorithms for this particular test-case set. Based on this set of test-

cases, the A/A+B wear model proposed by Turell [105] appears to be marginally 

the strongest predictor of in-vitro wear (Figure 62). 

Previously, the reported empirical wear constants used in mathematical models of 

wear have been based on limited data-sets (e.g. a small sample of POD test 

results [105]). Based on this study, regression-fitting techniques were used to 

provide a set of wear constants for the different models tuned to this group of 

test-cases, for future use by other researchers to improve their TKR wear 

predictions. This has two advantages; the constants are directly based on TKR 
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tests, rather than derived from POD or THR tests (removing a potential 

confounding factor) and the values have been assigned based on this larger 

„training‟ data set. The values suggested for the different models are listed in 

Table 9. Note that, although these values are more robust for general use than 

values derived from a smaller test set, they are still only approximations; using a 

larger data set, or including a wider range of activities, or considering different 

materials, could all result in different wear constants. Further, for any specific 

subset of tests (within a single research centre where test conditions are more 

repeatable & comparable), a better „specific‟ constant may be selected; however 

this would have less applicability to test results from other research centres. 

Ultimately, with better experimental data, factors currently included under the 

„constant‟ term may have to be recognised as distinct variables within the wear 

algorithm. 

Wear Depth 

Formulation 

Historical (Legacy) 

Constant, K
W

 

Revised Constant, K
W

 

(based on test-cases) 

Model predictive 

power with new 

constant (R²) 

Archard 

H = K
W

.p.S 
2.64 10

-7

 mm³/N.m  2.0 10
-7

 mm³/N.m .12 

Sliding distance  

H = K
W

.S 
-  1 10

-6

 mm/m .04 

M-L/M-L+A-P 

H = K
W

.CS.p.S 
3 10

-6

 mm³/N.m  2.7 10
-6

 mm³/N.m .58 

A/A+B 

H = K
W

.CS.p.S 

3 10
-6 

mm³/N.m  3.3 10
-6

 mm³/N.m .60 

* 

H = K
W

. ( *)² 

-  1.1 10
-5

 mm³/N.m .29 

M-L/M-L+A-P  

(no CP) 

H = K
W

.CS.S 

-  1.43 10
-5

 mm/m .54 

A/A+B (no CP) 

H = K
W

.CS.S 
-  1.8 10

-5

 mm/m .49 

Table 9: Summary of current and suggested wear constants for different algorithms. 

4.5.3. Discussion 

It is not possible to speak of an empirically-defined model as being „correct‟, 

since it has no direct analytic derivation. Therefore, the relevant question is: 

“which model appears to offer the greatest predictive power?” Previously, 

published studies have only corroborated with individual experimental tests, and 

so the performance of these models is not well-understood. Undertaking a more 

comprehensive corroboration requires multiple simulations from different 

sources, which necessitates faster in-silico modelling methods (e.g. rigid body FE- 

or MBD- based models). The combination of in-vitro & in-silico wear prediction 
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methods corroborated together provides the fullest, most powerful toolset for 

pre-clinical analysis of TKR wear. In-silico studies in isolation are subject to 

suspicion as long as there is no consensus on the precise causal mechanics of 

wear. But in-vitro studies alone cannot provide the same range and volume of 

information as can be quickly and efficiently evaluated computationally. 

Of course, there are important limitations to these studies; the simulation can 

only perform well if the underlying behaviours are modelled correctly, so the 

actual mechanical conditions must be accurately captured to set a „benchmark‟ 

for corroboration. A pertinent observation from the multiple test-case 

corroboration is that there is considerable variability in the experimental results 

reported in the literature (both within, and especially between, different research 

centres). This could be due to variations in standard experimental procedure (e.g. 

whether wear is reported for the counter-face or not, or whether secondary axes 

such as M-L translation or V-V rotation are fixed or free), or simply due to 

unintentional errors (e.g. component malpositioning and measurement 

tolerances). This is a serious confounding factor in attempting to provide a more 

exhaustive corroboration; the „noise‟ due to experimental variability masks the 

finer influence of the choice of wear algorithm. This can be mitigated to some 

extent if all the particulars of the experimental procedure are fully reported (and 

so can be recreated in the computational model), and if tolerances on in-vitro 

uncertainty are reduced to a minimum. Only by corroborating with a „tighter‟ set 

of experimental test results will it be possible to determine with greater 

confidence which is the most appropriate empirical algorithm for wear prediction 

(i.e. the best formulation for CS, the true influence of contact pressure & area, 

etc). To re-iterate: a central conclusion of this study is that it will not be possible 

to further refine our theoretical models of TKR wear prediction, until more and 

better experimental data is available to differentiate clearly between proposed 

algorithms. 

Nonetheless, this study clearly has some selective power, e.g. in discounting the 

Archard/Lancaster sliding distance models (as has been advanced elsewhere in 

the literature [44, 126]), and supporting cross-shear models. However, the quality 

of the available data is not adequate to preferentially select individual wear 

algorithms within this sub-set of cross-shear based models. 

The present study compared models with and without a proportional term for 

contact pressure, in light of current debates about the role of CP in polyethylene 

wear. The results are not conclusive; both families of models had comparable 

predictive power; with neither showing a clear advantage. This may indicate that 
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the range of contact pressures encountered in standard TKR wear tests does not 

vary sufficiently for the influence to become apparent, or that there are 

antagonistic factors which have a confounding influence (e.g. increased articular 

conformity will reduce CP, but may also be influencing lubrication and debris 

transport). Again, ultimately the best way to resolve this issue is with a greater 

number of well-defined, targeted corroborations between in-vitro and in-silico 

wear analysis platforms. 

There are many possible improvements and extensions to the models presented 

here; besides the challenge of accurately capturing experimental conditions, 

adaptive models could be used to account for variations in PE depth over time 

and so investigate long-term wear for each test case (as in [92, 179]), and more 

detailed deformable FE models could be used to better predict contact pressures, 

so achieving higher accuracy. Probabilistic methods could be used to attempt to 

capture the experimental uncertainty in-silico. However, whilst all of these are 

desirable goals, they also all entail a considerable increase in the computational 

modelling workload, which is not currently justified by the quality of published 

experimental data.  

As understanding of wear mechanics improves, the wear algorithms could be 

customised to different combinations of articulating materials (e.g. different 

UHMWPE grades). All these tests are for gait-simulation (mostly based on a 

derivative of the ISO standard); it would be beneficial and informative to extend 

this to include a much wider range of activities with more varied loading. 

However, this would of course require extensive corresponding experimental test 

data. Corroborating within a single framework for a wider range of implant 

designs, simulator configurations, lubrication conditions, materials and loading 

regimes will all ultimately play a part in augmenting our holistic understanding of 

TKR wear.  

This study illustrates the valuable role in-silico models can play in exploring and 

refining fundamental concepts concerning TKR polyethylene wear. It 

demonstrates that the current generation of CS-based empirical wear models 

have useful predictive power when corroborated with in-vitro experiments and are 

able to qualitatively rank the wear performance of different designs under 

different loading regimes; however there is room for further refinement in our 

current understanding and predictive modelling of wear. The best way to advance 

our understanding of wear is through greater corroboration between both 

computational and experimental approaches, to exploit the unique strengths of 

both domains. By doing so, future pre-clinical analysis tools used for wear 
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prediction will offer designers a richer, faster and more accurate insight into the 

causes of TKR wear. 

4.6. Conclusions 

The ADAMS MBD model now features the capability to model wear based on 

sliding distance, contact pressure and optionally cross-shear. Wear depths, 

volumes and contour plots can be reported, as well as cross-shear pressure & 

sliding distance surface maps. The wear can also be applied adaptively to 

simulate the „bedding in‟ effect associated with long-term wear studies. Further, 

this functionality has been corroborated with both in-silico FE and in-vitro wear 

simulator results, and used for a detailed assessment of the „state-of-the-art‟ in 

in-silico wear prediction. This gives good confidence for integrating this 

additional output metric reporting capability into the framework of subsequent 

probabilistic studies.  

The use of in-silico wear prediction within deterministic models has been 

demonstrated by (amongst others) Knight, using FE-based methods [181], and 

also Bei [137]. This earlier work included many of the capabilities implemented 

within this chapter (e.g. adaptive wear, contour-map visualisation, etc), albeit 

using fewer alternative algorithms and fewer comparisons to experimental data. 

However, these previous studies were purely deterministic, aiming to 

demonstrate „proof of concept‟ in-silico of the extant theoretical wear models. 

They did not attempt to incorporate the effect of uncertainty, and the consequent 

variation of possible resulting wear outcomes. The ability to include wear within a 

probabilistic study (e.g. to report the typical distribution of wear rates for typical 

component malpositioning variability) is a powerful additional tool for supporting 

TKR implant design. All of the necessary components are now in place for 

probabilistic methods to be applied to these MBD models of TKR mechanics – this 

will be the objective in the following chapter. 
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CHAPTER FIVE – PROBABILISTIC MODELLING: 

CORROBORATION & APPLICATIONS 

5.1. Prerequisites: Stochastic Modelling Methodology 

With a deterministic rigid-body model generating comparable results to existing 

FE models, the next objective was to demonstrate and corroborate the proposed 

stochastic tools and methods in conjunction with this new mechanical model.  

Essentially, the statistical modelling environment will sit as a „wrapper‟ around 

the inner mechanical model. This mechanical model is fundamentally the same 

deterministic model as developed in the previous chapter, although with added 

parameterisation of various input factors, and additional measurements of output 

characteristics). As such, there are a range of options for statistical modelling; 

any software able to „interface‟ with the mechanical model to write input variables 

and read output measures is a potential candidate for use in probabilistic 

modelling.  

For mechanical models in ADAMS, three options were explored for statistical 

modelling: 

 Using the native „ADAMS Insight‟ software. This has the advantage that it can 

very easily interface directly with ADAMS, so no user-coding is required. The 

main disadvantage is that it exclusively uses design-of-experiment (DOE) 

methods. This means the input values for all trials must be fixed at the start 

of simulation – the subsequent trial values cannot be dynamically adapted 

based on the results of earlier trials. This excludes any of the adaptive FPI 

methods – e.g. FORM/SORM, the AMV family of methods, and adaptive ISM 

(See Chapter Three for more details). However, other standard methods (RSM 

or MCST & LHS) are supported by „Insight‟. 

 Using third-party software: commercial packages are available for statistical 

analysis, designed to interface with other modelling environments. One of the 

most well-established is NESSUS; this software does not natively support 

interfacing with ADAMS, but by using the custom application support it can be 

tailored to interface. This is a cumbersome procedure compared to using 

„Insight‟, but has the advantage that NESSUS does support adaptive trial 

sampling, so fully supports all FPI methods. 

 Using proprietary coding: the above options are convenient for stand-alone 

models in ADAMS, however it is sometimes necessary to run ADAMS as a co-

simulation with MATLAB/Simulink to facilitate more sophisticated control 
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plant modelling. In these instances, „Insight‟ cannot be used, and using 

NESSUS becomes even more convoluted. For these co-simulation models, 

directly encoding a statistical wrapper by hand within MATLAB is a relatively 

straightforward alternative. 

For simplicity of implementation in these first studies, it was decided to use the 

„Insight‟ module. The simulations will use non-adaptive sampling methods: 

Monte-Carlo and RSM, so „Insight‟ is adequate for purpose. However, some later 

models used the third approach mentioned above (see Chapter Six). 

5.2. Probabilistic Corroboration Study: Knee Wear Simulator 

Mechanics 
5

 

5.2.1. Background 

A recent probabilistic study by Laz et al (2006) [95] performed a preliminary 

investigation into the use of stochastic methods to measure knee simulator 

variability. The study used a baseline rigid-body FE simulation of a standard in-

vitro knee wear simulator setup (the SKS). The aim was to demonstrate the use of 

probabilistic methods, and to compare the conventional MCST approach with a 

computationally more expedient AMV approach. 

It was decided to attempt to re-create this study with the MBD-environment 

models, in order to develop the stochastic capabilities needed for later studies; in 

this way the results generated could be corroborated with existing data in the 

literature. 

5.2.2. Methods  

The deterministic model already developed in Chapter Four was used as the basis 

for this study. It was parameterised to allow user-specified variations for 12 input 

„factors‟. These input parameters were chosen to duplicate the published study; 

the twelve parameters are listed in Table 10, along with the values for mean and 

standard deviation. The published study compared two levels of variability 

(nominally titled level „A‟ - low, and level „B‟ - high).  

 

                                         

5

 Results in this section are adapted from the conference paper: "Comparison of two 

methods for probabilistic finite element analysis of total knee replacement" C.Arsene, 

M.A.Strickland, P.J.Laz and M.Taylor. In: 8th International Symposium on Computer 

Methods in Biomechanics and Biomedical Engineering 2008: Porto, Portugal. The present 

author contributed the MBD-based models used in this study. 
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Factor (Abbreviation) Mean value σ (Level „A‟) σ (Level „B‟) 

F-E Axis A-P position (FEax_AP) 0mm 

0.25mm 0.5mm 

F-E Axis I-S position (FEax_IS) 25.4mm 

I-E Axis A-P position (IEax_AP) 7.62mm 

I-E Axis M-L position (IEax_ML) 0mm 

Initial F-E angle (Init_Fem_FE) 

0° 0.5° 1° 

Tibial tilt malrotation (Insert_Tilt) 

Femoral I-E malrotation (Fem_IE) 

Tibial V-V malrotation (Insert_VV) 

Spring M-L separation (Δ
M-L

) 28.7mm 0.5mm 

Spring stiffness (K) 5.21N/mm 0.09N/mm 

M-L Load Split % (ML_Load) 60% 2.5% 

Friction Coefficient (µ) 0.04 0.01 

Table 10: Input factors for probabilistic study (from [95]). 

These factors are based on in-vitro wear simulators, not in-vivo knee 

replacements. For example, the concept of a „fixed axis‟ for F-E and I-E rotation is 

not applicable to the natural knee; nor do the transverse-plane spring factors 

directly represent any equivalent in-vivo property. Similarly, the levels of 

variability are based on estimated in-vitro simulator setup errors, rather than 

surgical positioning errors (in-vitro simulators can be configured more accurately; 

intra-operative in-vivo positioning is generally more variable [148-150]). All 

factors were assumed to be independent with Gaussian distributions (values were 

bounded to lie within ±3σ to avoid extreme outliers). Whilst this assumption is 

tolerable for a „proof of concept‟ study, it may have considerable implications. 

Note also that in some cases, this assumption of Gaussian distribution is clearly 

inappropriate; for example, such a distribution can always potentially have 

negative values; this is not suitable for a friction co-efficient which should never 

be less than zero (a lognormal distribution would be more appropriate). However, 

for consistency with the published study the same set of conditions will be 

adopted at present. (Before the method is deployed for practical real-world 

problems, it would be beneficial to justify these assumptions using 

experimentally-collected data). 

5.2.3. FPI Methods 

Laz et al used the AMV method (corroborated with a 1000-trial MCST run) for the 

analysis, interfacing to NESSUS from the Abaqus FE modelling software (Abaqus, 

Inc). If „insight‟ is used initially then the AMV method cannot be corroborated in 

this study. However, it is desirable to demonstrate the capability for both 
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„standard‟ MCST methods, and also „fast‟ (low-cost) alternatives. Therefore a 

1000-trial MCST will also be the baseline for this corroboration. In addition, 

lower-cost response surface methods (rather than AMV methods) will be 

benchmarked against the MCST results, to explore how suitable these „fast‟ 

models are for subsequent studies. RSM models based on 50, 100 and 1000 

samples were generated for comparison to the MCST data. In this first instance, a 

„linear‟ model was selected, for computational efficiency and to provide a first 

indication of how much non-linearity might be evident in the TKR system. 

5.2.4. Corroborating Results with Published Data 

For corroboration, figures are presented directly comparing the Laz et al results 

(finite element) with the present study (ADAMS MBD); in each case, the 

comparison is for the MCST results. The 1% - 99% envelopes for both levels of 

variability („A‟ & „B‟) are shown for A-P translation (Figure 66), I-E Rotation (Figure 

67) and Peak CP (Figure 68). Figure 69 compares the sensitivity factors (for A-P 

translation). The results demonstrate a good correlation with the „performance 

envelope‟ kinematics in the literature data. Similar trends in the envelope size and 

shape are seen; for example both sets of results show a clear decrease in 

kinematic variability range in the swing phase (>60% gait) compared to stance 

phase. Some differences are notable; particularly in swing phase. These 

differences are partly attributable to differences in the model mechanical set-up 

(e.g. initial component positioning, and the „neutral‟ point for the fixed femoral 

and tibial axes), and partly to internal model parameters (e.g. dynamic terms; 

inertia, friction & damping).  

 

Figure 66: Comparison of MCST A-P envelopes with published data. 
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Figure 67: Comparison of MCST I-E envelopes with published data. 

 

Figure 68: Comparison of MCST peak CP envelopes with published data. 

 

Figure 69: Comparison of MCST A-P sensitivity factors (based on Level „A‟ results). 
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In terms of sensitivity, the same factors were found to be most dominant, with 

the ranking identical for the top factors. For A-P and I-E kinematics, the 

corroboration was particularly strong, with sensitivity differences well under 0.1 

on the normalised scale in every case. The differences were somewhat larger for 

the contact pressure data (up to 0.2), due to the different formulation of contact 

model used. 

5.2.5. Comparing „Fast‟ Methods (RSM) with MCST 

Results were compared for „level A‟ variability using RSM & MCST (Figure 70 and 

Figure 71). For kinematics (A-P & I-E) in particular, RSM closely matches MCST; 50 

or 100 samples are adequate to approximate the envelopes; there is no benefit in 

having more trials (see Figure 70 as an example). This suggests that the 

kinematics are not particularly non-linear.  

However, peak contact pressure is more non-linear (partly due to numerical solver 

„noise‟), resulting in poorer response-surface fitting, especially if fewer samples 

are used – although regardless of the number of trials, the fit is not perfect (see 

Figure 71).  

Nonetheless, RSM provides a fair first-approximation to the peak CP envelope, 

which may be adequate for exploratory studies where high accuracy can be 

sacrificed for speed of evaluation. 

 

Figure 70: Level „A‟ MCST vs. RSM (based on 50, 100 or 1000 trials): A-P translation. 
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Figure 71: Level „A‟ MCST vs. RSM (based on 50, 100 or 1000 trials): Peak CP. 

Discussion: Despite some evident differences, the results presented are broadly 

comparable to the study by Laz et al. This is encouraging, since it corroborates 

the proposed software & methods with data from the literature. Differences can 

be accounted for by the slightly different modelling approach used in the 

published study. There, non-deformable FE was used with elastic-foundation 

contact, and the statistical method used to produce the envelope points was 

AMV. As discussed in Chapter Three, there are potential issues with AMV for a 

very irregular or non-linear system behaviour – the contact pressure in particular 

is prone to numerical „spikes‟ and oscillations; these can cause particular 

difficulty with AMV, and differences between AMV and MCST become more 

apparent [179].  

The comparison between RSM and MCST is promising; for the system studied 

here, RSM is able to produce very comparable results to MCST with 10-20 times 

less computational workload. (In terms of solution time, the MCST required 

around 5 days for 1000 trials; by comparison RSM with 50 trials required only 6 

hours). Note that the quality of this match depends on the variability levels 

considered in the „performance envelope‟. For lower ranges (e.g. 10%/90% or 

5%/95%) the match is exceptionally good; however for more extreme ranges (e.g. 

1%/99% or broader) the accuracy deteriorates. This is because these values sit on 

the „tails‟ of the distributions, and as discussed in Chapter Three, obtaining an 

accurate prediction of distribution tail values is difficult for FPI methods. 

Therefore „fast‟ probabilistic methods are more suited to reporting performance 

envelopes within a narrower range (2 standard deviations or lower). 
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It is always prudent with any new model to first validate the FPI method using a 

more exhaustive MCST simulation; however the close agreement here 

demonstrates that there are only limited differences in results due to the FPI 

techniques.  

Note one very important observation: although the FE and MBD approaches have 

been corroborated here, it is not possible to validate either approach with in-vitro 

data because comparable probabilistic experimental data for this virtual test is 

not available (the study is purely theoretical). This is a major potential limitation; 

until probabilistic computational methods have been corroborated with 

probabilistic experimental data (and not just deterministic experimental data), 

questions will remain about the integrity of the in-silico tests in isolation.  

5.2.6. Extension Work: Further Results & Discussion 

A very important point to recall is that the AMV method used by Laz et al has a 

key limitation: every individual sample point of interest requires its own unique 

evaluation using AMV. This means that monitoring multiple objectives for the 

same experiment actually increases the computational overhead. To appreciate 

the impact this has, consider the case in this example: 

If the model has 12 input factors, then 12+1 = 13 trials are required for the initial 

„MV‟ analysis. Now, A-P, I-E and CP are monitored throughout the gait cycle, at a 

sample-rate of 80 samples per cycle. For each output, two levels are monitored 

(the „low‟ 1%, and the „high‟ 99% levels). This means that for these 3 output 

measures, 2x3x80 = 480 trials are required; in addition to the original 13 – this is 

now close to 500 trials. But if it was desirable to monitor a new output (say V-V 

rotation, or contact area) at the same sample rate, this would add another 2x80 = 

160 trials for each output. Hence with only a few more time-varying outputs the 

number of trials required could exceed the 1000-trials needed for Monte-Carlo. 

Compare to the RSM model; only 100 trials are used; this is a fixed overhead. The 

RSM results will be less accurate than AMV at any targeted point. But any number 

of output measures can be retrieved from the model, as it is not „tuned‟ to local 

points in the possibility space, but is a broad „global‟ fit (as discussed in Chapter 

Three). This means that AMV is well-suited for a small number of outputs when 

accuracy is important, but RSM may be a better choice for an investigatory study 

such as this, where many outputs may be of interest. 

To illustrate this advantage, a number of additional metrics are reported below 

which were not included in the original publication by Laz et al. Together, they 
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provide additional insights into the influence of variability on knee simulator 

mechanics. 

Contact Area 

Contact area can easily be retrieved for the model. An envelope showing contact 

area variability (1%-99%) is shown for the two levels in Figure 72. Variations are 

limited compared to the contact pressure envelopes; however contact area 

variations may be important, as some studies suggest total wear volume 

correlates better to contact area than contact pressure [106]. 

 

Figure 72: Contact Area envelopes (1-99%). 

M-L Load Split 

Medial-Lateral load split is an important metric as it defines the amount of 

loading on each condyle, which in turn affects the kinematics of the knee as well 

as polyethylene stresses [136]. The ISO-standards go to considerable lengths to 

define a „controlled‟ application of M-L load split [23, 24] (based on the 

assumption that in a „normal‟ knee the loading is split approximately 60% on the 

medial condyle, 40% on the lateral condyle). However this load-split is achieved by 

specifying a „fixed‟ translation along the M-L axis for the application of the axial 

force. As such it cannot account for dynamic changes in component positioning 

throughout the gait cycle. Only recently has the actual M-L load split been 

measured in-vitro by Zhao et al [182], this revealed considerable variation from 

the „target‟ 60-40 Medial-biased loading. However, this was for one subject only 

and did not take account of positioning variability. Here, we have post-processed 

M-L load split in the present probabilistic study; the results are shown in Figure 

73. There is very considerable variability in the load split, which is not apparent 



116 

 

from monitoring only the peak CP (as in Figure 68). Note that extreme values 

(close to 0% or 100%) would indicate uni-condylar loading occurring. This would 

have implications beyond the modelling scope of this study, since condylar “lift-

off” is known to be associated with a considerable increase in wear rates [172] 

which cannot be readily explained by existing theoretical wear models. Here, 

although the peak values approach 80% (in swing-phase, corresponding with 

higher flexion), the loading is never entirely uni-condylar. 

  

Figure 73: Medial-Lateral Load Split (1-99% Envelopes). 

‘Relative’ Kinematics (A-P & I-E) 

In the original published study, A-P and I-E kinematics were reported as „absolute‟ 

values. This means that the „zero‟ position was based on the settled component 

positions for the deterministic (unperturbed) case, for every trial. So, if a trial had 

a 3° shift of femoral I-E rotation, and then traced a similar motion to the 

unperturbed case, then the „envelope‟ would show an offset „variation‟ of 3 

degrees. The „absolute‟ values are useful for some purposes (e.g. laxity/ROM 

assessment), but not for others. It is possible that the relative motions could 

actually be completely unchanged (merely offset), but the variability envelope 

would still appear to be very large. The relative motions are of particular 

importance for understanding contact paths for wear prediction. Therefore it is 

useful to report the relative kinematic envelopes alongside the absolute 

kinematics (i.e. for each trial, the „zero‟ position is based on the average 

component positions specifically for that trial). 

The „relative‟ envelopes are reported here for A-P translation (Figure 74) and I-E 

rotation (Figure 75). It is apparent that these offset envelopes are quite different 



117 

 

to the „absolute‟ envelopes (Figure 66 and Figure 67 earlier). These „relative‟ 

envelopes are narrower than the envelopes for „absolute‟ values, showing that 

while the precise location of the contact may vary considerably, the actual 

kinematics relative to the starting point are not as variable. (This is important, 

because wear rate will be related to this degree of relative motion; i.e. the total 

sliding distance). 

  

Figure 74: Envelope of relative kinematics for A-P translation (1% - 99%). 

 

Figure 75: Envelope of relative kinematics for I-E rotation (1% - 99%). 

These further output metrics further demonstrate the range of data that can be 

extracted from a probabilistic study. They also illustrate that the choice of FPI 

method has implications for how many metrics can be reported; using AMV 

introduces an overhead for each new output monitored, so may not be the ideal 

choice for a „data-rich‟ investigation where many metrics are of interest. 
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5.3. Concept-Study: Can Passive Laxity Predict Gait Mechanics? 
6

  

5.3.1. Background 

The probabilistic framework based on ADAMS-MBD has now been corroborated 

with published FE-based methods. This gives greater confidence for using the 

MBD models for other probabilistic studies.  

The study in the previous section considered only one activity, (although multiple 

output metrics were monitored for this activity). An interesting feature of 

probabilistic modelling is that multiple activities can be compared together to 

explore potential correlations (see Chapter Three).  

In this section, the model is extended to form an original study demonstrating 

conceptually how probabilistic studies can provide a framework to explore 

relationships not just within but between different activities. In this study, two 

distinct classes of activity are compared: the ‘passive’ laxity motions of the knee, 

and the kinematics & peak contact pressures experienced in an ‘active’ gait cycle.  

Simple passive laxity drawer loading can readily be performed intra-operatively, 

but the question of whether these tests can yield information about the likely 

post-operative „active‟ performance of the knee has yet to be rigorously 

addressed. Currently, this is a subjective judgement based on the expertise of the 

clinical professional.  

A comparison using simulation methods may allow more quantitative statements 

to be made about the predictive power (and hence practical value) of such passive 

laxity tests. The present conceptual study will demonstrate how such an 

investigation might be structured, using simplified computational simulations of 

simulated gait and laxity drawer loading. 

5.3.2. Methods 

This study is based upon an adaptation of the probabilistic setup corroborated in 

the previous section [95], and incorporates several factors included in that study 

(misalignment, friction and M-L load split). However, various developments are 

introduced in order to explore the passive/active performance correlations. 

                                         

6

 This section is adapted from the journal article: “Could Passive Knee Laxity be Related to 

Active Gait Mechanics? An Exploratory Computational Biomechanical Study Using 

Probabilistic Methods”. Strickland et al, CMBBE (In Press). 
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Mechanical Modelling: 

The study will compare the two variant knee implants described in Chapter Four 

(S/C and U/C), in order to compare designs and consider the influence of design-

specific variations (in this case, sagittal-plane conformity). 

The standard configuration for the SKS (as used in the earlier models) features 

springs in the transverse plane to provide A-P and I-E restraint only. However, to 

conceptually explore correlations with laxity range tests (which include out-of-

plane forces and moments), here a simplified 3-D restraint model was used 

instead. This uses nonlinear spring-elements to approximate the combined 

restraint provided by the knee ligaments, within the range-of-motion of interest 

(0° to 60° flexion).  

Since every new spring element increases the number of factors involved (which 

greatly increases the number of simulations required), the restraint model was 

kept to a rudimentary minimum of three elements: together providing the 

necessary I-E, V-V and A-P restraint.  

Note that this model is not representative of the complexity of true ligament 

restraint in-vivo (with multiple bundles and insertion/origin sites [7]). Further, in 

an intact knee in-vivo, the degree of laxity in full extension would be reduced to a 

minimum by the „locking‟ mechanisms discussed in Chapter One; however in this 

simplified computational model there is still some laxity, since some of the 

important contributors to restraint (the capsule and surrounding tissues, and the 

patellar restraint) are omitted.  

Nonetheless this model provides a comparable „aggregate‟ restraint force across 

the gait envelope, when compared to „physiological‟ ligament-based models, as 

described in the literature [183, 184]. Although not identical, the envelopes are 

sufficiently similar for conceptualisation purposes (Figure 76 shows the envelopes 

for the S/C insert throughout the flexion range, for both A-P translation and I-E 

rotation).  

Unified „mean value‟ properties for the spring-restraint elements (i.e. the 

stiffnesses and pre-strain levels selected for each spring-element) are listed in 

Table 11. 
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Figure 76: Comparison of laxity envelopes for multi-bundle and unified spring-

restraint models, at three levels of drawer force (±50, 100 & 150N) and torque (±1, 2 

& 3N·m). The envelope „width‟ shows the degree of laxity at a given flexion angle. 

The nonlinear force (F) / strain ( ) relationship for the spring elements was 

adopted from previous analytic studies [185]: 

1

1

1

2

1
2

20

0

)(

4

0

k

k
F  ( 5 ) 

Where the instantaneous strain ( ), is defined relative to the initial spring-element 

length (L
0

), the instantaneous length (L), and the „pre-strain‟ (
p

) which determines 

whether the element is considered to be under tension at its initial length: 
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(Note the similarity between this analytic expression, and the experimental curves 

presented in Chapter One - Figure 2). There are three controllable parameters 

within this non-linear model: linear-region stiffness (k), toe-in (
1

) (which 

determines the strain level at which the linear region begins), and pre-strain (
p

), 

as a percentage of the natural length.  
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Variability levels for these factors were derived from the literature [6], with the 

three parameters (
1

, 
p

 and k) for each of the three spring-elements giving a total 

of nine variable factors. This is more appropriate for a demonstration study to 

maintain a moderate number of factors in total; however a fully-featured 

musculoskeletal model would need many more factors to be accurately 

representative of in-vivo dynamics – this in turn would require many times more 

simulation trials. 

Combined with the factors adopted from published studies, the complete set of 

input variables are listed in Table 11; all variables are assumed to be 

independent, following a Gaussian distribution bounded at ±3σ. 

Factor Mean (μ) S.D. (σ)  Factor Mean (μ) S.D. (σ) 

F-E axis I-S  25.4 mm 

0.5 mm 

 LSpr k 70 N/mm 

20% F-E axis A-P 0 mm  MSpr k 100 N/mm 

Tibial axis M-L 0 mm  PSpr k 130 N/mm 

Tibial axis A-P 7.62 mm  LSpr 
p

 +5% 

1% Initial F-E angle 

0° 1° 

 MSpr 
p

 0% 

Initial I-E angle  PSpr 
p

 +2% 

Initial tilt angle  LSpr 
1

 

+3% 1% Initial V-V angle  MSpr 
1

 

Friction (μ) 0.04 0.01  PSpr 
1

 

M-L load split 60M-40L 2.5%     

 

Table 11: Input factors, with mean & SD. The new terms (right) are related to the 

spring-restraint („M‟edial, „L‟ateral and „P‟osterior „Spr‟ings); („k‟ is the linear stiffness; 

„ε
P

‟ is the pre-strain, & „ε
1

‟ is the toe-in, as a percentage of natural length). 

As in previous studies, output kinematics and peak contact pressures were 

analysed through a standard 1-second gait cycle, based on ISO-derived 

force/displacement input waveforms [91] (Figure 77).  

For gait, the selected output measures were A-P translation & I-E rotation, and 

peak contact pressure, sampled throughout the cycle. Kinematics are reported in 

terms of „offset‟ values; i.e. normalised relative to the initial equilibrium position. 
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Figure 77: Input waveforms for force-driven gait simulation (Adapted from [91]). 

Additionally, three paired tests of passive laxity drawer loading were simulated 

with typical clinical passive loading levels [186]: anterior-posterior (A-P) draw 

(±100 N), internal-external (I-E) torsion (±5 N·m), and varus-valgus (V-V) torsion 

(±10 N·m). Laxity loading was simulated both in full extension and at 20° flexion 

(reflecting the clinical practice of testing at high-laxity flexion angles associated 

with stance), with compressive axial loading limited to 300N for „passive‟ 

restraint [187]. For these output measures, the displacement (translation or 

rotation) was reported relative to the initial „offset‟ reference position (when 

unloaded). A „positive‟ value indicates displacement in the direction of the applied 

force or torque.  

Statistical Modelling: 

The key concept of this study is that by analysing the output of multiple different 

tests, it may be possible to identify correlations between them; this could 

potentially allow a test with one activity to be a predictor for the probable 

outcome of a different activity, e.g. allow passive laxity to be a predictor for 

active gait. 

For this study, in order to provide a matched set of trials (to directly compare 

correlations as discussed in Chapter Three), a randomised 1000-trial matched 

MCST analysis was performed, with the same matrix of input factor settings used 

for both the gait cycle and laxity draw simulations.  

Because this simplified model did not include capsule or musculature 

contributions to joint restraint, the range and levels of variability studied meant a 

handful of statistically outlying trials resulted in subluxation under high laxity 

drawer loading. This was particularly the case for those trials where the spring 

stiffnesses were lower (especially the „MCL‟ spring-element, which averaged 

below 50% of its mean stiffness in the subluxation outlier cases). Without the 
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additional restraint that would normally be provided by other sources (e.g. joint 

capsule, patellar mechanics) a value of stiffness significantly below the „mean‟ 

level in these spring elements alone cannot provide adequate restraint to 

realistically constrain the tibiofemoral mechanics. These outlier trials were 

therefore excluded from the subsequent correlation analysis. 

Results from the simulations were used to determine 1%-99% performance 

envelopes for gait cycle kinetics & kinematics, and to determine the statistical 

distributions for laxity drawer displacements for both designs. 

To identify correlations between active gait and passive laxity, scalar statistical 

metrics for the time-varying gait waveforms were required for each trial. The 

waveform minimum, maximum, mean, range, and standard deviation were 

chosen for this purpose. Each of these five values was calculated for the three 

gait cycle output measures, and the results from all trials were correlated with the 

three pairs of laxity drawer displacements, giving a 3×15 correlation matrix. This 

matrix was generated for both the S/C and U/C implants to allow comparison 

between designs. 

5.3.3. Results 

Active Gait Simulation Characteristics 

Probabilistic performance envelopes for the simulated ISO-wear gait cycle were 

calculated for comparison with the previous studies. The gait kinematics and 

peak contact pressure are shown in Figure 78. Both S/C and U/C designs are 

included on the same axes for comparison; the kinematics are reported as „offset‟ 

values to more clearly illustrate design-specific differences between S/C and U/C 

designs.  

For the S/C design, it is apparent that the offset A-P and I-E motions of the knee 

are more closely constrained during stance phase, whereas the U/C design 

permits more variability of motion. For both designs, the variability envelope 

expands to its widest during swing phase (due to lower articular surface 

conformity and lower compressive forces). The differences between the S/C and 

U/C designs are also apparent in general envelope trends, with larger envelopes 

for the U/C design (reflecting the larger mean-value kinematics and contact 

pressures). 
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Figure 78: Kinematics and peak contact pressures for gait simulation, with variability 

envelopes (1% - 99%). Solid fill: S/C, hatched fill: U/C. 
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Passive Laxity Drawer-Loading Distributions 

The distributions of laxity draw range for A-P, I-E and V-V are shown in Figure 79. 

The „range‟ is the total difference in displacement between the two opposite 

draws; e.g. between the displacement for posterior draw of -100N, and the 

displacement for anterior draw of +100N. 

 

  

  

Figure 79: Distribution in laxity draw ranges due to input variability. Solid fill: S/C, 

hatched fill: U/C. 
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It is clear that the greatest difference between designs is for the A-P drawer 

loading, where the lower sagittal conformity of the U/C design allows higher draw 

ranges. The distributions of I-E laxity for the two designs lie within a similar 

range, whilst for V-V laxity, the distributions are very similar in shape, with higher 

laxity for the S/C design. 

Passive-Active Correlations 

The correlations are reported in terms of Pearson-squared (R²) values in Table 12 

with the strongest correlations highlighted. Note that these values indicate the 

strength of the correlation only (not whether a correlation is positive or negative).  

  S/C U/C 

  A-P I-E V-V A-P I-E V-V 

G
A

IT
 A

-P
 

MIN 0.05 0.03 0.01 0.12 0.04 0.00 

MAX 0.01 0.00 0.03 0.02 0.00 0.05 

RANGE 0.05 0.08 0.12 0.10 0.06 0.07 

MEAN 0.02 0.00 0.01 0.07 0.01 0.01 

ST.DEV 0.07 0.04 0.02 0.06 0.04 0.08 

G
A

IT
 I

-E
 

MIN 0.01 0.12 0.05 0.15 0.08 0.00 

MAX 0.01 0.00 0.09 0.02 0.02 0.21 

RANGE 0.01 0.15 0.10 0.20 0.36 0.34 

MEAN 0.05 0.09 0.04 0.16 0.07 0.00 

ST.DEV 0.03 0.12 0.09 0.25 0.38 0.33 

G
A

IT
 C

P
 

MIN 0.08 0.20 0.31 0.23 0.31 0.42 

MAX 0.00 0.01 0.00 0.09 0.02 0.02 

RANGE 0.03 0.10 0.10 0.24 0.13 0.03 

MEAN 0.04 0.36 0.36 0.06 0.27 0.33 

ST.DEV 0.06 0.43 0.40 0.41 0.52 0.33 

Table 12: Correlation matrix: active gait parameters (rows, headings left) versus 

passive laxity draw ranges (columns, headings top) for S/C & U/C designs. 

The correlation coefficients are mostly low; this is to be expected of a complex 

mechanical system with multiple influential factors. Nonetheless, some of the 

correlations are sufficient to provide some degree of predictive power (R² up to 

0.5). Notable trends are apparent for both the S/C and U/C designs, especially 

under the I-E and V-V torsional loading. The largest difference between the two 

designs was for A-P drawer loading; this would be expected, since the design 

difference between the two is in the sagittal plane, and would most directly affect 

A-P laxity. The more conforming S/C design showed limited predictive power 

between active & passive mechanics (with laxity motion restricted), whereas the 

U/C design had higher correlation coefficients. As would be expected, some of 
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these metrics are inter-related; e.g. a good correlation for „range‟ tends to be 

accompanied by a good correlation for „standard deviation‟ (although note that 

this is not necessarily the case, depending on the shape of the time-varying 

waveforms). 

For active gait parameters, the strongest correlations occurred for contact 

pressures, with moderate correlations for I-E rotation and very little correlation 

for A-P translation. The tests for laxity drawer loading had greater predictive 

power for variations in minimum (i.e. swing phase) contact pressures, suggesting 

that the influence of the modelled restraint force is causing this correlation. I-E 

rotation was not well-correlated for the S/C design; only small I-E rotations occur 

for this design during gait, so any correlations are likely to be less evident. For 

illustrative purposes, Figure 80 provides representative example correlation 

scatter-plots for the weakest and strongest correlations observed. Note that in the 

„weaker‟ correlation plot (A-P range for the S/C design) the limited correlation in 

the main „clustering‟ of trials is masked by the number of outlier trials with 

greater A-P laxity. (In this particular case, the high-laxity outliers are due to lower 

pre-strain of the „PCL‟ spring-element permitting greater motion).  

 

 

Figure 80: Examples of observed correlations: stronger (I-E laxity range for U/C),  

and weaker (A-P laxity range for S/C). 
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5.3.4. Discussion 

The performance envelopes predicted for the normal gait cycle are comparable to 

the previous corroboration study. A larger degree of output variability is evident 

in the present study, due to the additional input variability factors related to the 

spring restraint model. This is most apparent in the peak contact pressure 

envelopes, where a variability range of up to 6MPa is seen for both designs. The 

effect of compressive forces due to the spring element restraint will increase 

contact pressure ranges; this is further compounded by malpositioning leading to 

exaggerated gait kinematics with lower tibiofemoral conformity at contact, and 

hence higher contact pressures.  

When the envelopes for S/C and U/C designs are compared, these results do 

suggest that insert design can play a role in controlling the influence of variability 

on gait mechanics. However, this may be specific to the simplified mechanical 

configuration being demonstrated in this conceptual study, and further studies 

using more extensive models would be required to confirm this observation. 

The laxity loading reveals a high degree of torsional laxity in these simulations at 

both flexion angles (0° and 20°); this must be interpreted in light of the reduced 

transverse-plane restraint provided by the spring elements used in the model 

(comparable cadaver experiments using this tibiofemoral test configuration have 

also yielded unusually high levels of rotation [115, 188]). Trends were similar at 

both flexion angles simulated, with magnitudes of laxity range generally greater 

for the 20° position, as would be expected. As anticipated, the most apparent 

differences between designs were for the A-P drawer loading; it is notable that 

when the full distribution of variability is considered, higher V-V laxity is evident 

for the more constrained S/C design than the U/C (this is associated with greater 

I-E rotation of the tibial component under V-V torques for the S/C compared to 

U/C designs, suggesting that this rotation may facilitate the higher V-V laxity 

without requiring condylar lift-off). 

Although the range of passive laxity motion is very low for V-V rotation, the 

correlations are generally strongest; this is most likely because much of the 

correlation is due to variability in the 3-D restraint model: Whereas A-P and I-E 

loads act in the transverse plane, V-V loads are out-of-plane and can directly 

distract the joint, resulting in increased restraint forces and so giving more ready 

indication of variability in the soft-tissue constraint. Note that many in-vitro 

simulators model spring-restraint only in the transverse plane, and so cannot 

simulate this V-V restraint. Again, this illustrates the influence that the choice of 

mechanical model may have upon the study outcomes. 
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As was noted in the results, some correlations may be masked by outlier effects, 

due to one particular input variable (e.g. the PCL „pre-strain‟ term for A-P range 

with the S/C design). This has an important implication; it is possible that there 

are other important input variables that have not been included in this study, and 

the inclusion of these further additional inputs might serve to weaken, or 

conversely strengthen, the observed correlations. 

This conceptual study has explored the relationship between the influence of 

variability on passive laxity and gait kinematics & kinetics, for two specific TKR 

design variations, using a simplified mechanical model of the tibiofemoral joint 

with rudimentary „soft tissue restraint‟ representation. Correlations were 

demonstrated for certain parameters: in some cases, with predictive powers up to 

R² = 0.5. This may allow design-specific predictions about gait mechanics to be 

made based on tests of laxity drawer loading; for example, high V-V laxity means 

it is more probable that a knee with the U/C insert will experience greater I-E 

rotation in gait; the same trend is less probable for the S/C insert. This becomes 

clinically relevant when these mechanical observations are related to modes of 

failure; for example, studies have associated more pronounced I-E rotational 

kinematics with higher component wear [173, 189]. It could therefore be 

hypothesised that the U/C implanted knee exhibiting higher passive V-V laxity 

might be more susceptible to greater wear damage from prolonged active gait; 

however, this relationship would be less apparent for the S/C implanted knee, 

where the correlations are weaker. 

This study is intended only to illustrate the use in principle of statistical 

correlations to link the characteristic mechanics of different active and passive 

daily activities, and there are some important limitations to the models which 

should not be overlooked. The simplified restraint model and rigid-body contact 

formulations will result in reduced fidelity. Further the set of input variables 

studied is limited, with generalised assumptions made about distributions and 

correlations; these would need to be better modelled. The opportunity exists to 

develop this methodology with more complete and accurate anatomical models to 

explore (for specific designs) whether passive laxity can be a predictor for active 

gait mechanics. Note however that, the more complex the model, the more 

variable factors that must be accounted for, and hence the more trials that are 

needed to obtain a sound statistical model of the system. In consequence, a more 

accurate model could also require far more computational time than the 7-days 

needed for the 2×1000 trials in this proof-of-concept. The results of this 

exploratory study suggest this may be the case, for a limited sub-set of gait 

characteristics, and subject to design-dependency. It remains to be investigated 
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whether other activities (e.g. stair usage or deep flexion manoeuvres) would 

exhibit similar correlations to passive laxity motion, for a range of different 

flexion angles. 

It would require further investigation with a wider range of variability factors and 

implant designs to determine how much of this correlation is universal (i.e. 

related directly to the variable input factors themselves, such as soft-tissue 

effects), and how much is controlled or constrained by the implant design (such 

as A-P motion for the S/C design in this study). However, it seems apparent that 

certain design features (e.g. lower constraint) can improve predictive power, and 

that some tests of laxity drawer loading (e.g. V-V) correlate better than others to 

gait characteristics. Measurement errors are known to be associated with 

assessments of passive laxity [190]; this would erode the strength of these 

correlations, so a more exhaustive study would also need to account for 

uncertainty in the laxity ranges. 

This study illustrates conceptually another potential application of probabilistics, 

demonstrating the design-dependent correlations between passive laxity and 

active gait mechanics, and suggesting that for some gait characteristics these 

correlations potentially offer useful predictive power as a decision-support tool. 

5.4. Probabilistic Wear Assessment: Multi-Design Comparison 
7

 

5.4.1. Background 

Chapter Four demonstrated the valuable role in-silico wear assessments can play 

in pre-clinical analysis. These wear methods are easily incorporated to 

probabilistic studies, giving a more holistic perspective on the influences and 

variability of predicted wear.  

Wear is known to be highly variable both in-vitro and in-vivo, but it is difficult to 

collect large enough data-sets clinically or experimentally to explore this 

variability (due to time and cost). By contrast, in-silico models can use large 

numbers of trials with low associated time & cost. Therefore using probabilistic 

computational methods it is possible to explore whether input variability (e.g. 

component malpositioning) can account for the high degree of wear variability 

observed. 

                                         
7

 This section is adapted from the conference proceedings: “In-silico Predictions of TKR 

Robustness to Wear Variability: A Probabilistic Cross-Design Comparison". 2009, M.A. 

Strickland and M. Taylor. In: Transactions, ORS 55th Annual Meeting (Las Vegas, NV). 
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In this study, we will combine wear prediction with probabilistic methods to 

compare the predictions of multiple different wear algorithms, and to compare 

multiple TKR designs (to observe whether some are more robust to wear 

variability than others). The only existing published study for probabilistic wear of 

TKR [179] was for a single implant design, and failed to include any cross-s (using 

Archard wear only). This study will provide a more complete overview, including 

multiple designs and multiple wear theories. 

5.4.2. Methods 

Existing TKR designs were incorporated from CAD geometry or reverse-

engineering, including 6 fixed-bearing (CR) and 2 rotating-platform designs. For 

each one, an in-silico simulation of an in-vitro wear test was used. Once again, the 

mechanical configuration was based upon the force-driven SKS [114]  with a 

soft/hard spring combination as recommended by Haider et al [158] (7.24N/mm 

anterior & 33.8N/mm posterior). The inputs used were „true‟ ISO-standard gait 

[23] (not experimental feedback data this time, as different designs were under 

test so no single feedback dataset would be appropriate).  

Wear was evaluated using the standard algorithms discussed in Chapter Four, 

including variants without contact pressure terms. Distributions were plotted to 

form a PDF of wear rate for each design with each of the different wear 

algorithms. These PDFs could then be compared to evaluate the different TKR 

designs and wear algorithms. Due to the number of trials required for a multi-

design probabilistic study, it was not feasible to use adaptive wear methods; 

therefore wear estimates were based on single-cycle analyses. 

A „streamlined‟ probabilistic analysis was used with higher levels of variability 

than previously, somewhat closer to in-vivo levels of variability. 7 Factors were 

included: six component malpositioning angles (with SD of 2°) and M-L load split 

(with SD of 12.5%). Having previously demonstrated the relative linearity of the 

SKS system, RSM-100 was selected instead of a more expensive MCST – this 

required 800 trials in total (approximate simulation time: 10 days). 

5.4.3. Results 

The choice of wear algorithm has a major influence on the degree of variability 

observed; see Figure 81. Algorithms excluding cross-shear (e.g. the Archard 

model) grossly under-predict wear variability. When CS is included, the SD of the 

resulting wear PDF is typically 3 to 5 times greater. Algorithms ignoring contact-

pressure predict a moderate probability of wear levels below the „neutral‟ 

(unperturbed) wear rate. 
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Figure 81: Typical PDFs for different wear algorithms, normalised relative to the 

deterministic wear rate (in this figure: for S/C fixed-bearing design). 

The comparison between designs reveals that there are clearly design-specific 

differences (Figure 82). The deterministic (unperturbed) wear rate for designs 

varies, as has been reported in many in-vitro studies. However, this probabilistic 

study reveals that the spread of wear rates due to variability is also different.  

 

 

Figure 82: Comparison of PDFs for multiple designs, based on M-L/M-L+A-P wear 

model (6 × fixed-bearing, top; 2 × rotating-platform, below). Note: commercial TKR 

design brands have been anonymised. 
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Some designs appear more resilient to malpositioning and do not exhibit such a 

high spread of wear rates. For example, consider designs FB1 and FB6; looking 

only at the „normal‟ (mean) wear rate, FB6 appears to marginally outperform FB1. 

However, looking at the full distribution, it is clear that FB6 is considerably more 

likely to have a high-wear rate in the event of malpositioning. Note that it is in no 

way possible to extract this information from individual deterministic models 

(either in-vitro or in-silico); a probabilistic approach is essential. 

Note that wear rates of 3 or more times the neutral level have a significant (>5%) 

probability of occurrence for some of the designs studied; again, this is an 

important result which would be overlooked by a simple one-off deterministic 

analysis.  

5.4.4. Discussion: 

This probabilistic application of in-silico wear prediction once again reinforces the 

observation that wear models without CS do not predict the variations reported 

by in-vitro wear tests. Typically, experimental results show a large spread of 

results for any given design (even for small values of „N‟); the Archard formula 

does not predict this, CS must be included to capture this degree of variability. 

Probabilistic studies provide a more challenging validation test for wear theories: 

a complete PDF of wear results is generated, providing a more complete data set 

to corroborate with (rather than an individual wear-rate value). If this 

computational probabilistic approach could be compared with a similar 

„probabilistic‟ data set from in-vitro testing, it may help to identify the most 

accurate wear models under a wider range of test conditions. 

The multi-design comparison reveals two very important observations: 

• Firstly, wear rates can be much higher (greater than three times) the „neutral‟ 

wear rates seen in correctly-aligned in-vitro simulators. This implies that those 

in-vitro results may also under-predict clinical in-vivo wear with 

malpositioning; further work would be needed to explore this. 

• Secondly, wear distributions appear to be design-dependent. This implies that 

the TKR designer does have some ability to „design-in‟ a degree of robustness 

to reduce the „spread‟ of wear rates.  

Once again, limitations to this study must be noted; the models used represent 

in-vitro (not in-vivo) conditions, so could not be expected to reproduce in-vivo 

wear variability (this would require a musculoskeletal modeling approach). As has 

been noted, the wear algorithms used are historical empirical models since 
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UHMWPE wear is not fully quantitatively understood. Better wear models could 

yield different distribution shapes. It is also important to note that the tests are 

abstract; this data is not being compared to any real set of experimental data. 

Without this corroboration, it is not possible to be certain that the factors 

included are the factors which would be relevant in a real experiment.  

Nonetheless, it appears that alignment variability results in much higher top-end 

wear rates, and that this is a design-specific effect. These observations justify 

further investigation with better data, and better-corroborated models. 

5.5. Conclusions 

This chapter has demonstrated that the models & methods introduced in Chapter 

Four are well-suited to probabilistic analysis approaches. Published results in the 

literature have been corroborated, and the same modelling framework has been 

extended to demonstrate potential correlations between active and passive gait. 

An important issue highlighted is that many of these models & methods have not 

been adequately compared to real-world experimental data. In many cases, 

published studies are „validated‟ using a single „feedback‟ dataset (e.g. 

kinematics for one isolated gait cycle), or a single wear-rate value. This does not 

give a complete proof of the model‟s performance. As such it is difficult to know 

with confidence what impact if any the limitations and assumptions of the model 

are having on the results. This is especially true for the probabilistic approaches 

in this chapter: to-date, no probabilistic computational study has been validated 

with true probabilistic experimental data (only isolated deterministic data has 

been used). The aim in subsequent chapters will be to apply these in-silico 

probabilistic methods to much richer data from specific real-world test platforms, 

to achieve a much higher level of corroboration between computational and 

experimental models. This requires test-platforms which are highly controllable, 

well-understood and well-documented. It is also valuable to have good 

collaborative links with the experimental test specialists, to obtain access to high-

quality data, information on operating procedures and technical expertise. 

As such, the studies in the final chapters describe models constructed and 

corroborated in much closer collaboration with experimental researchers. Chapter 

Six outlines the development of a new MBD-based model of the „Kansas‟ Knee 

Simulator (KKS), whilst Chapter Seven demonstrates how the lessons learnt have 

been re-applied to the AMTI knee-wear simulator. 
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CHAPTER SIX – LOWER-LIMB MODELLING 

Development of holistic lower limb models, based on the KKS 

6.1. Background: Motivation for KKS Modelling 

The strengths and limitations of different in-vitro knee simulator configurations 

were discussed in detail in Chapter Two. The full lower-limb simulator 

configuration is potentially more powerful (since the scope of the model is 

greater), but also more complex. Whereas tibiofemoral knee simulators are in 

commercial production, full limb simulators remain bespoke one-off investigation 

platforms, in the domain of academia rather than industry. An advantage of this 

is that, by close collaboration with the experimental KKS research team, much 

more full and detailed specifications and data are available for this platform than 

for the „black box‟ commercial systems. Therefore, a more specific, targeted 

corroboration is possible with this platform than with the previous work – this can 

then be used as the basis for probabilistic analyses. 

6.1.1. The KKS: Technical Description 

The Purdue/Kansas knee simulator is one of the most well-established & 

technically advanced knee simulators available, and has been widely used for 

peer-reviewed research and industrial TKR design & development. Originally 

conceived as a next-generation knee wear simulator, the current KKS design is 

now used to support research on knee kinematics, loading, laxity & stability 

(gravimetric wear assessment is not supported on the current rig for in-vitro 

testing, but this can be estimated using coupled in-silico methods). The KKS is a 

highly versatile platform, able to operate using artificial implant test-pieces, 

implanted cadavers, or natural-knee cadavers, with the capability to track and 

record force-feedback (via load cells) and kinematics (via an „Optotrak‟ motion 

tracking system) in real-time during testing. For further reference, the capabilities 

of the platform are described in more detail in a series of papers by Zachman, 

Hillberry, Rullkoetter & Maletsky [120, 121, 191-196]. 

Alongside the mechanics of the rig, the control system is a very important feature 

of any lower-limb model. For the tibiofemoral knee wear simulators discussed 

previously, the system is essentially stable (the tibial orientation is fixed, and 

compressive loads will tend to stabilise the femur in the conformal condyles) so 

accurate control is less critical. By contrast, the natural knee (and by extension 

any in-vitro lower limb simulator) is unstable. When the knee is in flexion, vertical 

loads at the hip & ankle will tend to increase flexion – this in turn increases the 

moment arm of the vertical loads, and so increases the flexion moment, creating 
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a „positive feedback‟ loop. In the natural knee, stability is achieved through the 

complex holistic system-level operation of the entire neuro-musculoskeletal 

system (i.e. soft tissue restraint, sensory feedback, antagonistic muscle action, 

etc). It is therefore to be expected that a sophisticated control system is also 

required for the KKS. 

The KKS control system is a five-channel PID controller with full cross-

compensation, and the ability to operate all five axes in force- or displacement- 

control, based on a number of uni-axial load cells and linear & rotary 

displacement transducers mounted on the simulator. Consequently, control of the 

KKS is challenging: a range of activities are simulated, requiring different loading 

profiles, and the same control scheme may not be appropriate under all 

conditions. Inappropriate control commands could potentially damage cadaveric 

tissue under test, or even the rig itself. Consequently, there is a strong incentive 

for augmenting the in-vitro test rig with in-silico modelling, to devise and test 

profiles before they are used on the simulator rig itself as a „risk reduction‟ 

exercise. This would also allow more unconventional profiles or control schemes 

to be investigated without the additional sensors, actuators, or reconfiguration 

time that would be required on the in-vitro rig. 

For these reasons, the KKS has previously been modelled using MBD, by Guess et 

al [109, 123] (Figure 83). For more technical detail on this original model, the 

reader is referred to the doctoral thesis of Guess [197]. This earlier model (dating 

from 2003 [198]) was based on an older configuration of the KKS, and whilst it 

conceptually demonstrated MBD modelling of the KKS and its controller, there 

were several key limitations: 

 The model itself used Hertzian contact only for the patellofemoral and 

tibiofemoral articulations. This simplified contact model is fast, but assumes 

spherical contact surfaces, and so is not very accurate. It also cannot provide 

any information about contact pressure distribution at the contact surface – 

(this information is needed for wear prediction). 

 The model did not feature any form of „wrapping‟ for the quadriceps; this 

meant that the in-silico and in-vitro results diverged after around ~80° knee 

flexion, when the Kevlar strap representing the quadriceps tendon (QT) begins 

to wrap across the patellar groove on the femoral component. Without this 

wrapping, the model is effectively limited to shallow flexion activities. There is 

particular interest in „deep‟ flexion performance for many new knee designs, 

so it would be highly desirable for the model to reflect the flexion range of the 

rig. Theoretically, this is approximately 0° to 135°; beyond this mechanical 
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interference between the femur and tibia restricts any further flexion. In 

practice, a range of 120° is closer to the realistically achievable limit. 

 The controller used was based on the internal ADAMS controls toolkit, and 

was limited to a single axis under feedback control. 

 The model did not account for dynamic joint friction or actuator damping.  

 

Figure 83: Original KKS ADAMS MBD-based model (adapted from [123]). 

In light of this, the need was identified for a new computational model to 

overcome these limitations and so provide a more robust and complete 

comparison to the KKS rig. In particular, it was desired that the new model: 

 Better reflect the re-designed KKS geometry & inertia 

 Incorporate the new tri-axial load cell and inclusion of „collateral ligaments‟ 

 Allow the model to be easily re-positioned & parameterised 

 Include „deep flexion‟ capability (i.e. quadriceps wrapping, and modelling of 

any other relevant mechanical interference) 

 Achieve greater accuracy corroborating with the KKS. 

The development of the new model involved collaboration between Kansas 

University (KU), the University of Missouri (UMKC) and the University of 

Southampton. Each research group had specific requirements for the new model; 

KU required a more robust in-silico model for generating deep flexion testing 

profiles to use on the KKS rig; the UMKC & Southampton research groups 

required a more extensive & capable baseline model for purely in-silico studies. 

The following section describes modelling undertaken as part of this work-plan 

by the author whilst on secondment with KU. 
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6.2. Model Development 

6.2.1. Geometry 

Extant CAD geometry from Pro/Engineer (Parametric Technology Corporation) 

was available for the new (redesigned) KKS configuration. This geometry was used 

as the basis for the new ADAMS model. Inertial properties were derived for each 

part based on assigning known material densities to the solid volume. Where 

necessary (e.g. assemblies comprised of multiple materials) certain parts were 

weighed directly to validate this estimated inertia. Note that although the KKS can 

accommodate implanted „cadaver‟ samples, the initial ADAMS model is based 

only on the artificial jig used for direct component testing. The implant described 

in the following tests is a standard-size, fixed-bearing, posterior-stabilised (PS) 

variant of the cruciate-retaining implant used in Chapters Four and Five. 

The complete simulator model includes over 30 parts, compared to the 14 in the 

original model by Guess et al. This reflects the additional components required to 

capture all inertial and dynamic effects; for example the new model explicitly 

includes the actuators, with the moving actuator rods and linkages individually 

modelled, in order to include the additional damping effects, and friction at the 

linkages. Figure 84 compares the two models side-by-side, indicating the main 

areas where the scope of the model has been revised. 

 

Figure 84: Comparing the original (left) and revised (right) KKS models. 
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The parts were assembled in ADAMS using appropriate „joints‟ to limit the 

degrees of freedom. Initially, components were coupled via „rigid‟ hinged or 

sliding linkages. However, it was subsequently discovered that „soft‟ bushing 

elements (with a finite „stiffness‟ on all axes) were far better suited to simulate 

the pliancy & damping effects within the simulator. The model was revised to use 

physically representative joint types (which are more intuitive for design work). 

This does considerably increase the number of degrees of freedom in the model 

(hence increasing solution time). The original model featured ~15 DOF, whereas 

the new model has almost 60. This increase in complexity is not desirable in 

terms of computational cost, but is necessary to correctly model the system 

dynamics (something overlooked by most in-silico models). 

With the underlying mechanical assembly complete, it was possible to begin 

including some of the new features. These were introduced sequentially, so that 

each new extension could be individually tested and „debugged‟ in turn. 

6.2.2. Instrumented Tibial Assembly 

The KKS was recently upgraded to include a tri-axial load-cell for measuring tibial 

loads & moments. The load-cell mounts directly below the tibial insert, to 

measure loads as close to the proximal tibia as is possible (similar in ethos to in-

vivo instrumented tibial inserts). This requires a modified tibial assembly to 

accommodate the large and quite heavy (~1kg) load-cell. The new tibia is slightly 

longer than the original, and is designed to mount the tibial insert with a 

posterior slope of 5°. The differences are illustrated in Figure 85. 

 

Figure 85: Comparison of non-instrumented (left) & instrumented (right) tibial 

assemblies. 
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This new part was modelled in ADAMS based on parasolid geometry for the old 

assembly, and also the new manufactured parts. Rather than removing the 

original non-instrumented tibia, the model was configured with a custom script to 

activate/deactivate and appropriately reposition components, such that either the 

instrumented or non-instrumented variants could be selected using a single 

command-line instruction. The two different variants have different inertia and a 

different centre-of-mass; also the attachment point for the quadriceps is altered, 

and the tibial insert is sloped. All these factors can influence the knee kinematics, 

so the appropriate selection must be made when corroborating with in-vitro data 

(depending which part was used to collect the experimental data). 

6.2.3. Quadriceps „Wrapping‟ 

On the KKS, the quadriceps load is applied by a servo-hydraulic actuator mounted 

on the proximal „femur‟, anterior to the hip joint. The force is transmitted to the 

proximal tibia via a Kevlar strap, intended to represent both the QT & PL. The 

patella is mounted on the strap via a specially designed clamp (such that the 

initial I-S location of the patella in extension can be freely adjusted). In the 

original model by Guess et al, this was represented by two pairs of spring-damper 

elements, providing a line-of-sight restraint force between the quad actuator and 

the patella on the proximal side, and the patella and tibial „tuberosity‟ (a 

mounting point on the proximal anterior tibia) on the distal side. This line-of-

sight spring model did not detect interference with the femoral component, so as 

the knee flexion increased, the proximal springs in particular would penetrate the 

femoral component without being deflected; this reduced the moment arm of the 

quad actuator, such that it could not correctly resist the flexion moment. This in 

turn would lead to further knee flexion, further exacerbating the limitation of the 

non-wrapping model. This „positive feedback‟ effect made the model unable to 

operate beyond ~80°. 

Therefore, a more realistic model able to account for wrapping was required. 

Essentially, this introduces an additional set of contacts between the strap and 

the femoral component. This obviously has adverse implications for solution 

time. However it is particularly problematic, because whereas the tibial and 

patellar contacts are generally close to perpendicular, the strap wrapping contact 

is acting antagonistically, directly against the tibiofemoral contact (see Figure 

86). This makes numerical iterative convergence for the two contacts much more 

challenging, and can greatly increase the required solve time.  
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Figure 86: Antagonistic action between the tibiofemoral joint and strap wrapping 

contact. 

Because of the envisaged impact on solution times, two different methods for 

strap wrapping were proposed, and implemented for a comparison study. The 

methods are outlined below: 

‘Fast’ Point-on-Curve Method 

This method does not use the femoral component geometry directly; instead, the 

sagittal-plane geometry of the femoral component is traced with a simple vector-

path. Contact between the femoral surface and the strap is then based on this 

vector-path representation. For the strap, several point-nodes are then embedded 

along the region where wrapping occurs, to provide contact reaction points (i.e. 

the strap becomes a series of chained spring elements, with point-contact 

occurring only at the linkage points). The advantage of this approach is that no 3-

D solid geometry calculation is involved, thus greatly reducing solve-time. The 

obvious disadvantage is accuracy; the model is only accurate as long as the 

patellar is tracking „normally‟, (i.e. close to the sagittal plane). In addition, a 

specific path must be created for each different femoral implant design under 

test.  

Sphere-on-Solid Method 

Using this method, a series of 3-D ellipsoid primitives (spheres) are embedded 

into the strap. A contact is defined between these spheres and the actual CAD 

geometry of the femoral resurfacing component. This means that the contact will 

conform correctly to the articular surface of the femoral patellar groove. However, 

the spheres still only provide a discretised contact, rather than the continuous 

contact on the physical strap – hence this method is still only an approximation. 
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The use of 3-D solid contact greatly increases the computational complexity, 

which coupled with the antagonistic action between the tibiofemoral reaction 

force & the strap wrapping, can drastically increase solve time. Therefore, this 

approach is not suited for „fast‟ modelling, (e.g. during development or 

debugging). 

As with the switching script for the tibia, both methods are embedded in the 

model, with a custom macro to allow the user to toggle quickly between the two 

alterative configurations. In either case, a decision must be made as to how many 

distinct sections the strap should be discretised into – this is a standard 

performance/accuracy trade-off, and sensitivity studies by UMKC Demonstrated 

that even a small number of discrete wrapping contact points (2 or 3) gives 

acceptable accuracy, provided that the points are appropriately located and 

spaced along the strap (wrapping tends to occur only at the distal end of the QT, 

for the flexion angles of interest – see Figure 87). 

  

Figure 87: Strap wrapping. Three pairs of discrete contacts emulate continuous 

wrapping, in the contact region of interest between the QT & proximal patellar 

groove on the femoral component. 

6.2.4. Collateral Ligaments 

The original KKS did not include any ligament restraint at the knee – it was 

designed for principally sagittal-plane loading (such that collateral ligaments 

would have limited effect), and for use with PCL-sacrificing TKR designs (such that 

neither cruciate ligament needed to be included). In order to provide more 

physiological restraint, and to allow greater out-of-plane loads & motions, it was 

decided to incorporate springs onto the KKS rig to represent the collateral 

ligaments. For simplicity in the first iteration of implementing collaterals, the two 

ligaments were modelled as single-line of action force („SFORCE‟) elements in 
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ADAMS, with zero stiffness under compression, and a constant stiffness of 

30N/mm under tension. This stiffness was dictated by the availability of suitable 

small springs for the physical rig; it is recognised that this is less restraint than 

the values reported for experimental tests on the collateral ligaments [5]. (The 

intention is to revise these springs on the KKS rig to specialist fittings of higher 

stiffness in the future). 

Since the springs have a single line of action, they cannot reflect the true 

physiological behaviour of the multi-bundle collateral ligaments. Instead, the in-

silico model was used to determine insert & origin locations such that the 

ligaments provided additional restraint through the operational flexion range into 

deep-flexion. Based on these recommendations, the collateral springs were then 

installed, mounted on brackets attached to the femoral and tibial assemblies. The 

ADAMS model was updated accordingly to reflect these changes. Note that the 

tibial insertion is distal to the load cell, so that the load cell reports the 

compressive load experienced at the tibiofemoral joint inclusive of ligament 

forces. A complicating factor is that the KKS can be used for either left- or right-

knee components; therefore the asymmetry present in the natural LCL & MCL 

could not be modelled; instead, a „mean‟ line of action was chosen for the 

ligaments, with two alternative attachment points included on both the left and 

right brackets, to accommodate both positions on both sides (Figure 88).  

 

Figure 88: Proposed attachments for the collateral „ligaments‟: coronal view (left) & 

sagittal view (right), showing posterior tibial attachment point for collateral springs. 
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6.2.5. Contact Switching 

In the model developed by Guess et al, the contact method used was Hertzian 

contact only, and contact pressures were not considered. In the new model, 

contact pressure on the tibial and patellar UHMWPE components may be required 

as output metrics in stochastic studies. Therefore, the surfaces of both the tibial 

and patellar inserts were discretised, according to the method described in 

Chapter Four. However, this increased complexity inevitably results in slower 

computational solve-times. As an alternative, a contact „switching‟ macro script 

was devised. Similar to the switching macro for the strap wrapping, this allows 

the user to quickly toggle between a simplified model based on Hertzian contact 

(for „fast‟ purely kinematic analyses or profile generation) and a more complex 

model based on the discretised contact, for obtaining contact pressure or wear 

results when needed. The difference in performance between the two alternatives 

is considerable, and may be an important factor in deciding the best approach for 

further stochastic studies. 

Hertzian contact is an analytic approximation, specific to the simple case of 

linear-elastic bodies with simple geometry. Under a given load, a penetration is 

predicted, based on the separation between the two surfaces, and the material 

properties (modulus and Poisson ratio) – see Figure 89. This produces an elliptical 

load distribution, from which the overall contact area (and hence peak pressure) 

can be estimated. To apply this method to TKR, the surface of the femoral and 

tibial condyles must be approximated as elliptical spheroids of appropriate 

radius. Appropriate material properties are applied (femoral: CoCr; E
F

 ≈ 

2.3×10
11

Pa, v
F

 ≈ 0.3. tibial: UHMWPE; E
T

 ≈ 1GPa, v
T

 ≈ 0.45), and used to determine 

parameters for the contact, using the standard Hertzian contact formulae. First, 

an equivalent „contact‟ radius, R
C

, is evaluated as the reciprocal sum of the tibial 

radius, R
T

, and femoral radius, R
F

: 

FTC RRR

111
 ( 7 ) 

Next, an equivalent „contact‟ stiffness, K
C

, is evaluated, using the modulus of the 

tibial & femoral materials (E
T

 & E
F

) and the Poisson ratio of the materials (v
T

 & v
F

): 

1
22

11

3

4

F

F

T

T
C

E

v

E

v
K  ( 8 ) 

Finally, the Hertzian contact equation can be re-expressed in terms of an IMPACT-

style force-interpenetration relationship (see Chapter Four, Equation 2) for use in 
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ADAMS (where h
C

, the contact separation distance, is equivalent to g, the 

interpenetration depth). This gives the IMPACT stiffness co-efficient k and 

exponent e for the normal force F
N

:  

e

NCCCN gkFhRKF
5.15.0

 ( 9 ) 

  

5.0

CC RKk   5.1e  ( 10 ) 

Note that in the Hertzian model, the value of e is always 1.5 by definition; 

however the value of k will vary depending on the material properties and implant 

geometry, and so must be evaluated on a case-by-case basis. (Note: this is a 

whole-body aggregate contact equation, so these values of k and e cannot be 

compared to the „discretised‟ contact methods described in Chapter Four and 

Appendix C). 

 

Figure 89: Hertzian contact illustration. 

6.2.6. Standardising Polarity within the KKS Model 

An important lesson learnt during the development of the model and in-vitro 

corroboration testing is the ease with which errors may be introduced in the 

polarity of inputs and measures. In the case of primary motions (e.g. flexion), 

these errors would be obvious and easily detected. However, in the case of 

secondary motions (e.g. small amounts of I-E rotation or Ad-Ab rotation) these 

errors are less obvious and can confound subsequent corroboration testing. To 

mitigate against this, the polarity of the different input/output forces & 

displacements was standardised, based on the current polarities used on the KKS 

rig. The subsequent figures illustrate the reference (positive) direction for the 

polarity of the different linear translations & forces (Figure 90) and angular 

rotations & moments (Figure 91). Whilst this may sound an obvious issue, it is 

nonetheless a frequently-overlooked source of mistakes in many in-silico & in-

vitro tests. 
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Figure 90: Polarity of translational forces & displacements on the ADAMS model 

(Note: for axes denoted by *, polarities of force and displacement are inverted). 
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Figure 91: Polarity of rotational torques & angles on the ADAMS model. 
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6.2.7. Model Parameterisation 

The model has been extensively parameterised; almost every DOF can be set by 

the use of numeric „design variables‟ (30 factors in total). Considerable effort has 

been taken to ensure that the parameters are correctly inter-related; e.g. 

adjusting the quadriceps „q-angle‟ will also appropriately shift the M-L dial 

position, and setting the initial vertical (I-E) rotation will also reposition the 

various linkages and actuator heads associated with vertical rotation. Table 13 

lists the factors which have been parameterised within the model. The advantage 

of performing this parameterisation is that these factors could now be used as 

inputs for subsequent probabilistic studies (obviously, further specific factors for 

material properties could be added subsequently). Note however that the 

mechanical configuration of the KKS imposes certain additional limitations on the 

variables; for example although the „shank‟ and „thigh‟ length may be varied in 

the computational model, in reality they must be closely matched, or else the 

knee will not articulate correctly (the KKS does not permit A-P position adjustment 

at the hip or ankle; the design intent is that both hip & ankle flexion angles 

should be approximately equal in order to mate correctly at the knee, and the two 

segment lengths therefore should also be approximately equal). 

Component malpositioning is based on the Grood & Suntay system [17]. Although 

this system is intended for joint motions, it can also be used for the static 

malpositioning of a component relative to the bone. This results in 3 independent 

sets of terms, describing the position of the femoral component relative to the 

femur, the tibial insert relative to the tibia, and the patellar button relative to the 

patella. Each has 6 potential degrees of freedom (3 translations: S1, S2 & S3; 3 

rotations: E1, E2 & E3), resulting in 18 malpositioning parameters (Figure 92). 

Values Fixed Throughout Simulation 

Tibial (shank) length adjustment Femoral (thigh) length adjustment 

Fixed femoral I-E rotation offset Fixed femoral V-V rotation offset 

Fixed quad coronal plane Q-angle Fixed quad actuator lateral offset 

Initial Values at Start of Simulation 

Initial M-L position of ankle sled Initial I-S position of hip sled 

Initial ankle flexion angle Initial hip flexion angle 

Initial ankle vertical rotation angle Initial ankle Ad/Ab angle 

Implant Malpositioning 

Femoral: 6×Grood & Suntay cylindrical axis system positioning variables 

Tibial Insert: 6×Grood & Suntay cylindrical axis system positioning variables 

Patella: 6×Grood & Suntay cylindrical axis system positioning variables 

Table 13: Factors parameterised on the new KKS model. 
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Figure 92: Grood & Suntay malpositioning for components on the KKS model. 

6.2.8. Configuring Dynamic Properties of the KKS Model 

Early testing demonstrated that the computational rig was less stable than the 

physical rig, due to the lack of any dynamic resistance effects in the model. On 

the in-vitro KKS rig there were two important classes of behaviour overlooked in 

the initial modelling. Firstly, the assumption of „rigid‟ fittings and joints was not 

precisely correct; the parts have limited stiffness and so flex slightly, and the 

joints also exhibit a degree of pliancy. These effects essentially „soften‟ the 

system. Secondly, damping & friction effects were found to be substantial; these 

tended to attenuate high-frequency motions, and limit the rate of movement. This 

combination of „softening‟ and „dampening‟ intrinsically improves the stability of 

the system – with the (unintentional) benefit of making system control easier: the 

system has less of the high-frequency characteristics which can lead to oscillatory 

behaviour and instability under PID control.  

It was apparent that the in-silico model could not mimic the behaviour of the KKS 

unless these effects were included. To reflect these effects, various spring-

damper elements (e.g. on the vertical load axis) were deliberately added to the 

physical simulator to mimic the in-vitro conditions and increase system stability. 

However, the number of potential sources of damping, pliancy and friction meant 

that it would not be possible to experimentally determine every term without 

stripping the rig, individually performing a sweep of tests on every component, 

and then testing the assemblies at each joint. This was beyond the scope of the 
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time available for modelling & development work during the secondment at 

Kansas University. Instead, some coefficients could be estimated based on 

engineering data sheets (e.g. manufacturer‟s friction coefficients for the branded 

roller-bearings & servo actuators). Selected other components or assemblies 

(those which could be readily removed & tested in isolation, or those which were 

considered particularly influential) were removed for testing. This testing 

included dead-weight loading for some spring stiffnesses, MTS tensile testing for 

the Kevlar strap stiffness & damping terms (e.g. see Figure 93), and testing of the 

upper hip assembly. 

 

Figure 93: MTS tensile testing to determine analytic fit for strap stiffness/damping. 

To capture any outstanding terms which had been neglected, the model included 

global damping terms which could be „tuned‟ to experimental data. To do this, a 

series of triangular ramp-up/ramp-down waveforms were applied to each axis and 

the system response was measured. This comparison revealed the considerable 

influence of dynamic resistive terms. For example, see Figure 94; in this test, the 

hip was driven through a triangle-wave for flexion angle, between 5° - 30° at a 

lower rate, and between 5° - 17.5° at a higher rate. If there were no dynamic 

losses (friction or damping), the resulting plot of quad angle versus flexion angle 

would be a single curve (with no difference between quad force for flexing & 

extending). However, there is dynamic resistance, so the resulting plot exhibits 

„dynamic hysteresis’. (Note: the term „hysteresis‟ is used here in its 

etymologically-correct sense of referring to any system which has path-dependant 

behaviours; not just the elastic hysteresis effects most commonly associated with 

the term. For dynamic hysteresis, the behaviour depends not only on the path 

taken, but the rate of progress along that path). 
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This dynamic resistance increases as the flexion rate increases (i.e. the hysteresis 

effect is greater for the 5° – 17.5° sweep). The control-system tracking for this test 

was well-tuned, so it may be deduced that the degree of hysteresis for the 

quadriceps positional tracking is almost entirely due to mechanical resistances. It 

is then possible to empirically or analytically fit terms to these results. Note: 

similar hysteresis plots to those observed have been reported by other testers for 

friction and damping effects on other in-vitro platforms [199, 200]. 

 

Figure 94: Damping comparison tests. Zero dynamic resistance would result in no 

hysteresis. Both plots show more hysteresis for the shorter path (5°-17.5°) with the 

higher rate-of-change, but note the greater hysteresis in-vitro (left). 

6.2.9. Controller Development 

The KKS consists of both a mechanical system (the rig itself) but also importantly 

a control system; both must be modelled correctly if the physical and virtual 

simulations are to be comparable. There are two possible approaches to 

modelling control feedback within ADAMS: 

Internal: ADAMS features a basic „controls toolkit‟ capable of constructing the 

control system via a series of interlinked equations (for summing, gains, PID 

controllers, etc). The advantage of this control system is that it is entirely internal 

to ADAMS, providing performance benefits. However, there are a number of 

important disadvantages.  

 The GUI is based on a series of database objects with interlinked equations, 

and cannot be readily visualised; this makes tracing connectivity and 

debugging more difficult. 

 The range of features and functionality within this toolkit is quite limited; 

more sophisticated operations such as cross-compensating and signal slewing 

cannot easily be implemented directly.  
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 The controller is inherently „continuous‟; although this gives a „smoother‟ 

control response, it is not ideal when modelling the effect of a discrete digital 

controller, and also results in slower performance, since iterative convergence 

must account for the continuous controller response (this is not necessary for 

discrete control). 

External: It is also possible to interface ADAMS to external third-party software 

applications, such as EASY5 or MATLAB/Simulink. This works by a process of „co-

simulation‟; the control system determines the inputs for a given sample time 

step, and invokes the ADAMS solver to solve the system mechanics for that single 

step. The results are then output back to the control software, to evaluate the 

required inputs for the next step. The obvious disadvantage of this method is 

that extra software is required, so data must be transferred between both 

programs and additional system memory is required to run both concurrently. 

However, the advantages are substantial. Dedicated control software such as 

Simulink provides a far more powerful toolkit with a more effective GUI for 

visualisation during design & debugging. The ability to operate in discrete time-

sampled mode can actually improve performance considerably, even if the 

number of individual solve steps is increased, simply because the iterative 

convergence process is not coupled to the controller. 

For these reasons, although the controls toolkit was explored, it will not be used 

for these studies. It was decided to investigate the option of a controller system 

in MATLAB/Simulink, based on availability of software & licenses. The ADAMS 

model was configured such that both the mechanical actuator inputs & 

force/displacement measures could be used as inputs and outputs for a „plant‟ 

subsystem within a hand-coded Simulink-based control system. In theory, this 

control system could be augmented to include capabilities beyond the current 

KKS controller (e.g. tracking „virtual‟ measures such as M-L load split or contact 

pressure). However, for these corroboration tests the control scheme was 

designed to mimic the extant PID feedback control and channel cross-coupling 

for the controllable 5 axes of the in-vitro rig. In the computational model as for 

the real controller, force or displacement control can be toggled by switching 

between different feedback channels. (Note that different PID values are required 

depending on the feedback input used). Some other minor features, such as 

signal filtering, load limiting, and display output, were also included. The 

complete Simulink controller is shown in Figure 95. The GUI layout makes 

extensive use of colour-coding, masked sub-systems & signal routing to simplify 

and organise the controller layout – this is necessary because of the control 
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system complexity. For illustration of the „true‟ controller path layouts, a single 

control path (for quadriceps-driven knee angle control) is shown in Figure 96. 

 

Figure 95: Simulink controller for the KKS model – top level view. 

 

 

Figure 96: Simulink controller for the KKS model – partial expanded view, showing 

quadriceps force / knee angle control loop. 
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Originally, it was hoped that PID controller settings could be imported directly 

from the KKS Instron 8x00 6-axis servo-hydraulic controller. Unfortunately, the 

internal PID values for the controller software were based on a proprietary system 

with logarithmic-scale sample-based units. By comparison, the ADAMS/Simulink 

controller was designed to use true SI units for its PID controls, on a linear scale. 

Additionally, the polarity of some inputs and feedback channels are inverted. 

Hence the extant controller settings could not be used, and the model had to be 

re-tuned from scratch. Unfortunately, this means that the controller tuning on the 

in-vitro & in-silico models does not correspond exactly, introducing an additional 

potential source of discrepancies during correlation testing. In practice, 

experimental controller settings are changed from test-to-test, and so to 

accurately corroborate this in-silico, the controller values are also test-specific. 

However, as a general indication of the sign magnitude of the different PID terms, 

tuned PID values for a „typical‟ gait cycle are listed in Table 14. 

 Quad 

Load 

Vertical 

Load 

Ankle 

Force 

Lateral 

Force 

Vertical 

Torque 

Proportional (P) 100 -4 -4 

N
o
t
 
u
s
e
d
 

50 

Integral (I) 500 -2 -16 200 

Derivative (D) 0 -1 0 5 

Table 14: Typical PID controller values for the KKS (gait cycle). 

6.3. Deterministic Corroboration Testing 
8

 

6.3.1. Validation Test-Cases 

With the model development complete, testing and corroboration were 

performed. A series of simple test profiles were devised, to be run in parallel on 

both the physical rig and the computational model. The test would first be run on 

the KKS rig (which did not track the desired inputs precisely). The feedback data 

was then collected and used to drive the computational model. This meant the in-

silico case accounted for the tracking errors in the in-vitro controller, so the focus 

was on the only mechanical behaviour of the system.  

                                         

8

 The validation testing in this section is reported in the conference proceedings: 

"Verification of a dynamic knee simulator computational model". 2008, A.N. Reeve, M.A. 

Strickland, L.P. Maletsky and M. Taylor. In: Proceedings, ASME SBC 2008 (Florida, USA). 

The present author was responsible for much of the computational model development 

and testing, and co-assisted with the test case verifications.  
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Only feedback data for position & uni-axial load cells was used at this stage; the 

tri-axial load cell data was kept „blinded‟. After the in-silico model had been 

simulated, the experimental data from the tri-axial load cell could be compared to 

the computational predictions, to give an independent comparison between the 

in-vitro and in-silico models (i.e. the system had not been „tuned‟ to this data). 

This procedure could then be repeated vice-versa, using the ADAMS model first to 

obtain feedback data to drive the physical KKS. 

The initial family of test-case profiles devised focused mainly on sagittal-plane 

kinetics. These initial tests were intended to be based on purely sinusoidal 

waveforms, to limit the complexity of the system response. (Subsequently, the 

tests would be extended to include more complex loading; e.g. applying constant 

loads to the M-L sled or vertical-torque axis).  

An initial set of test cases were devised and run - however, these profiles used 

rectified sine-waves, i.e. )sin(t . This results in a non-smooth inflexion at the end 

of each cycle (as the polarity of the sine-wave inverts) – see Figure 97. The 

inclusion of these tracking errors made corroboration between the in-vitro & in-

silico cases more uncertain. Note however that the in-silico model was able to 

track better than the in-vitro rig under these conditions. This is a reflection of 

how much faster and easier it is to tune the controller computationally, thanks to 

the intuitive GUI-based controller and fast solve times.    
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Figure 97: Initial „rectified‟ sine-wave profiles. In-vitro tracking for the rectified sine-

waves was inaccurate due to the inflexion at 15° hip flexion. These profiles were 

abandoned in favour of „true‟ sine-waves. 

Subsequently, a second family of profiles were devised, using pure sinusoids to 

avoid the inflexion effect; these profiles are outlined in Table 15. The quad force 

was used to vary position control of the hip to track a „true‟ sine-wave, whilst the 

force-controlled loads applied to the other axes were held constant. Tracking for 
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these profiles was much better on both the rig and in-silico model, simplifying the 

corroboration process. 

Test 

Case 

Quadriceps 

Force 

Vertical 

Load 

Lateral 

Force 

Vertical 

Torque 

Ankle 

Force 

TC1 

Sine-wave, 

range 10° - 

40°, period 

10-seconds 

75N - - - 

TC2 75N 30N - - 

TC3 75N -30N - - 

TC4 75N - 3N·m - 

TC5 75N - -3N·m - 

TC6 75N - - 75N 

Table 15: Revised test-cases, with pure sinusoid „position‟ waveform (quad axis). 

Initially, the root-mean-square (RMS) error was still quite large even with the new 

profiles (as high as ~15% for the sagittal plane kinematics). This was investigated 

further, and it was found that considerable error was induced due to in-vitro 

malpositioning. In the ADAMS model, the components were assumed to be in 

perfect alignment. However, on the KKS simulator, the components had been 

cemented to their fittings with slight inadvertent misalignment (the femoral 

component was placed a few degrees in varus, and slightly externally rotated).  

Since the in-silico model had earlier been extensively parameterised, it could 

easily be re-positioned to match the in-vitro rig misalignment. This was done 

accordingly and the simulations re-run. Once this was accounted for, sagittal 

plane average RMS error dropped to around 5%; see the comparison in Figure 98. 

This means that the differences between the experimental and computational 

results are on the same order as variations due to control system tracking and 

sensor measurement errors. The cycle-averaged RMS errors for the six revised 

test cases are summarised in Table 16 (both before and after accounting for 

misalignment). 

 

Figure 98: Sagittal-plane comparison (here shown for test-case TC6); cycle-averaged 

error is ~5%. Left: A-P force (F
Y

), Centre: axial force (F
Z

), Right: I-E torque (M
X

). 
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Test-case Initial Re-aligned 

TC1 8.6% 4.1% 

TC2 12.4% 5% 

TC3 13.1% 4.8% 

TC4 10.5% 4.5% 

TC5 10.2% 4.7% 

TC6 14.9% 5.3% 

Table 16: Averaged sagittal RMS errors across the profile cycle, comparing initial 

(perfect alignment) & re-aligned (to reflect the misalignment in-vitro). 

These test-cases demonstrated the ability of the in-silico model to match the 

output of the in-vitro rig. Next, simple test profiles were devised on the in-silico 

model to drive the rig (i.e. corroborating in the reverse direction). Figure 99 

shows a „constant compressive load‟ profile; in which one axis drives flexion, 

whilst the other actuators compensate to maintain a constant axial load at the 

knee. Two test cases were created, with hip flexion angle (position control) driven 

by quad-force in one and vertical load and in the other. Note that the achieved 

tracking is very good for both force- and position-control (after the first 10-

second cycle, which is a „transient‟ and is discarded). 

  

Figure 99: Example validation test (sagittal plane loading only). Constant 200lb 

quadriceps load (left), with 15°-30° sine-wave position-control on vertical force 

actuator (right). Transient 1
st

 cycle (0 – 10 seconds) is discarded. 

This profile was generated on the model, and then used to drive the simulator. 

Figure 100 shows the „achieved‟ versus „desired‟ tracking for the position control 

axis and the vertical load axis; the close agreement indicates the in-vitro profile 

has quite successfully been devised by the in-silico model. Once again, the 

tracking is poorest when the simulator encounters non-smooth inflexions in the 

profile; Position tracking (left) exhibits almost no error; vertical load (right) has 
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some high-frequency oscillation „spiking‟ at mid-cycle (at maximum flexion), and 

noticeable deviation from the desired profile at the end-of-cycle inflexion.  

Despite these minor differences, the sagittal tracking corroborates to within a few 

percent (note that this is less than the errors due to malpositioning shown in the 

previous test-cases). This demonstrates the concept of using the in-silico model 

to generate profiles for use in-vitro. 

 

 

Figure 100: In-vitro KKS rig feedback for constant-load profile (using input from in-

silico model). Top: force-feedback comparison for vertical load. Bottom: position-

feedback comparison for hip angle. 

6.3.2. Profile Generation & Testing 

The computational and experimental simulators had been corroborated together 

to within an acceptable tolerance level; it was now possible to proceed with more 

physiologically-representative test conditions. Data for a wide range of activity 

profiles was collated from the literature, including profiles for gait [21-24, 35, 43, 

44, 91, 92], stair ascent [21, 26, 28, 29, 35, 40, 175], stair descent [28, 201] and 

deep-flexion activities such as squat & chair rise [27, 35]. These data profiles 
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were then used as the input for the in-silico model. This did require some 

adaptation of the Simulink controller on a profile-by-profile basis (to account for 

different starting positions, or to change terms in the controller). Figure 101 

illustrates the tracking achieved for one particular profile (gait data from D‟Lima 

et al [35]). The feedback from the in-silico model could then be used to drive the 

KKS rig. Some of these profiles generated using the new ADAMS model have 

subsequently been used for cadaveric TKR tests by KU as part of ongoing 

industrial research. This gives good confidence going forward for the in-silico 

model to be used in a „stand-alone‟ capacity for probabilistic studies. 

  

  

Figure 101: Profile tracking for the ADAMS model (based on in-vivo gait data [35]); 

feedback vs. demand for flexion angle and axial & A-P shear force, with an example 

actuator feedback waveform (quadriceps force). 

6.4. Probabilistic KKS Modelling 

6.4.1. Methodology 

The in-silico KKS model is implemented differently to the previous MBD-based 

models; therefore before including a probabilistic „wrapper‟ for, it is necessary to 

re-evaluate the most appropriate statistical software and models to use. 
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The most important difference is the use of co-simulation between 

MATLAB/Simulink and ADAMS; this means that ADAMS is now run „externally‟ 

from within the MATLAB environment. As such, „internal‟ applications (such as the 

native „Insight‟ module) cannot be used. Instead, as discussed in Chapter Five, the 

simplest option is to directly encode a DOE „wrapper‟ using the native m-file 

scripting language in MATLAB. This approach was used with the KKS model, as 

illustrated in Figure 102. 

The input variable perturbations are read in as a raw „matrix‟ (this can be 

copy/pasted from another application such as „Insight‟, or generated directly). 

These values are then used to individually run co-simulations with 

Simulink/ADAMS; at the end of each simulation, the data is retrieved and stored 

(again in matrix-form) using comma-separated-value (*.csv) files. The data can 

subsequently be transferred into MATLAB, „Insight‟, MS-Excel or any other 

suitable application for post-processing. This approach is somewhat more 

cumbersome than the earlier „Insight‟-based models, but is necessary to 

accommodate the co-simulation of the control-plant.  

 

Figure 102: Concept structure for probabilistic study with KKS model. The MBD-

based mechanical „plant‟ model is nested within a controller „wrapper‟, which in turn 

is nested within a probabilistic wrapper managing the multiple trials. 

Note that this basic model is not capable of adaptive sampling (as discussed in 

Chapter Three); however, it is adequate for a conceptual study. Also, the KKS-

based trials are considerably slower than the simple SKS-based models (~30 

minutes versus ~5 minutes); coupled with the additional doubled overhead of 

wear-post-processing for both the tibiofemoral and patellofemoral joints, a full 
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trial and post-processing can require almost an hour. As such, full MCST studies 

are more computationally expensive, and fast RSM-based methods are a more 

attractive option. However, it is necessary for this first analysis to use MCST, to 

demonstrate the linearity of the system (in order for subsequent studies to use 

RSM with greater confidence). 

Therefore, a 1000-trial MCST will serve as the „baseline‟ probabilistic study. The 

study is based on the gait profile by D‟Lima et al [35], as shown in Figure 101. For 

this first study, eight variables were selected: malrotation of the three angles for 

positioning of both the femoral and tibial components (as in earlier studies), as 

well as two new variables reflecting the full lower-limb scope of the model: The 

initial „height‟ of the patellar implant (I-S position) which is known to affect the 

quadriceps extension-moment, and the quadriceps actuator „dial‟ position (which 

controls the Q-angle on the in-vitro rig. These last two variables alter the effect of 

the quadriceps force actuator, which is a step towards more physiologically-

representative loading compared to the tibiofemoral knee-wear simulators. The 

input factors are summarised in Table 17; for all variables, a Gaussian 

distribution was used, cropped at ±3σ. 

Factor Abbreviation Mean  S.D. 

Femoral F-E Rotation Fem_FE 0° 2° 

Femoral I-E Rotation Fem_IE 0° 2° 

Femoral V-V Rotation Fem_VV 0° 2° 

Tibial „Tilt‟ (F-E Rotation) Tib_FE 0° 2° 

Tibial I-E Rotation Tib_IE 0° 2° 

Tibial V-V Rotation Tib_VV 0° 2° 

Patellar Clamp „Height‟ (I-S) Pat_IS 0mm 2mm 

Quad Dial Angle Q_Dial 0° 2° 

Table 17: Input factors for initial KKS probabilistic study. 

A wider range of output measures were monitored for this study. The standard 

metrics introduced for the tibiofemoral knee wear simulators are preserved here 

(e.g. A-P translation, I-E rotation and contact pressure). In addition, for the patella 

kinematics (tilt, rotation) and contact pressure were also monitored. Wear results 

were evaluated for both the tibial insert and the patellar insert, using the different 

algorithms introduced in Chapter Four. Besides this, the different force-feedback 

(uni-axial and tri-axial sensors) and displacement-feedback sensors on the rig 

were also monitored for each trial.  

This represents a very large total data set and only selected results of interest are 

presented in the following section (since this concept study is only intended as a 
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demonstration of probabilistic methods for the validated in-silico KKS model). An 

important issue for probabilistic studies in general is condensing the volume of 

data produced, to make it concise, relevant and accessible to designers and 

clinicians. 

6.4.2 Results & Discussion 

The volume of data generated by a probabilistic study on the KKS is considerable; 

it is possible to retrieve force feedback and displacement feedback for the entire 

rig as a whole, as well as the tibiofemoral and patellofemoral joints in isolation. 

Here, a number of pertinent observations are made regarding selected results: 

KKS Rig Feedback: Tracking Responses 

The probabilistic study was run in conjunction with a controller; for some specific 

channels (flexion angle, axial load), this means that the controller is working to 

reduce any variability for those axes. This is apparent in Figure 103; for this 

simulation, quadriceps force is used to control flexion angle. Consequently, there 

is almost no flexion-angle variability, whereas the quadriceps actuator effectively 

compensates for the variability in flexion angle, and hence shows very high levels 

of variability itself. This is important, conceptually, when devising the control 

system for a probabilistic study (as will be discussed further subsequently). 

 

Figure 103: Comparing flexion angle (controlled) and quad force (driving); 5%-95% 

envelopes. 

Tri-axial Load-cell Feedback 

The six channels from the load-cell (Figure 104) re-emphasise the above 

observation; three of the channels are „controlled‟: A-P force (F
Y

), axial force (F
Z

) 

and I-E torque (M
Z

). The other three are uncontrolled. The differences are 

immediately apparent. Putting certain axes under tight closed-loop control 

effectively constrains other available degrees of freedom to compensate. 

Ultimately, this leads to higher variability in the uncontrolled channels. 
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Figure 104: Response envelopes for the load-cell forces & moments (5%-95%). Note: 

axes pre-scripted with an asterisk (*) are under direct force-control. 

This raises an important question for the pre-clinical test designer: what is the 

aim in incorporating variability into a study? In this case, as a baseline analysis, 

the controller was commanded to track the same input loads and displacements, 

regardless of the implant mal-alignment. However, in reality, severely misaligned 

components would probably lead to adaptations in the nature of the gait cycle 

kinematics and kinetics; in other words, a single „target‟ profile would not be 

applicable. In this case, constraining such a tightly-controlled profile leads to a 
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wide imbalance between a number of control channels with very limited 

variability, and a much higher level of variability on the other uncontrolled axes. It 

may be important for future modelling efforts to re-evaluate this approach, to 

achieve more physiologically meaningful variability studies.   

Tibiofemoral Mechanics 

The isolated feedback for the tibiofemoral joint might be compared to the earlier 

tibiofemoral probabilistic simulations in Chapter Five. The profiles are not strictly 

comparable (besides differences in the in-vitro platform, the input profiles are 

also different: the earlier studies were based on ISO-prescribed gait, whereas this 

study was based on telemeterised data), nonetheless, comparisons can be drawn. 

Figure 105 shows the kinematic envelopes. The A-P envelope shows similar 

trends to the earlier models. The input variability (standard deviation of 

misalignment angles) is lower; however, more factors were included in the earlier 

studies, which would increase the envelope size. The envelope for I-E rotation is 

quite different; it reveals a very high level of variability for the KKS in swing 

phase. (This swing-phase variability is also apparent for some of the force-

feedback and load-cell data).  

 

Figure 105: 5% - 95% Envelopes for tibiofemoral kinematics: A-P (left) and I-E (right). 

The peak CP (Figure 106) is higher for the KKS data, despite the fact that the 

input profile specifies lower axial forces than the ISO standard (~1800N 

compared to 2600N). CP variability is also high; given that the contact forces are 

well-controlled this suggests that the contact area is quite variable, depending on 

component mal-positioning. 
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Figure 106: Peak CP for tibial insert (5%-95% envelope). 

Patellofemoral Mechanics 

The KKS patellar kinematics are not strictly representative of in-vivo kinematics; 

the KKS „patella‟ assembly has no lateral constraint, so higher levels of M-L 

translation and patellar tilt are possible. Figure 107 illustrates this; I-S translation 

and patellar rotation are both relatively well-constrained. However, the M-L 

translation and patellar tilt show very high variations (translations up to 30mm 

and rotations up to 30°).  

  

  

Figure 107: Patellar kinematics: I-S translation (top, left) and patellar rotation (top, 

right), are well-constrained. M-L translation (bottom, left) and patellar tilt (bottom, 

right) exhibit excessive variability. 
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These extreme values are not physiologically representative; this illustrates the 

important role of the para-patellar retinaculum and medial patellofemoral 

ligament in controlling patellar kinematics. Note that in the in-silico model, the 

degree of tilt and M-L translation was found to be very sensitive to the friction 

and damping at the patellofemoral joint – once again demonstrating the 

importance of accurately characterising system dynamics between the in-vitro and 

in-silico models. 

Patellar peak CP correlates closely with the quadriceps-actuator force (Figure 

108). This would be expected, since this actuator provides the constraining force 

which is principally responsible for the compressive load on the patella. Note that 

the periods of lower contact pressure correspond to the greater variability in M-L 

translation and patellar tilt – the patellar motion is more erratic when the 

constraining load is reduced. These pressures reported for the patellar are well-

beyond the range of linear-elasticity for UHMWPE; in practice rigid-body modelling 

will not yield meaningful values for contact pressure under such extreme 

conditions (inspection of the polyethylene components on the in-vitro rig 

demonstrates that visible plastic deformation of the components does occur 

under normal use). Therefore, these values must be interpreted with some 

caution, especially for the highest reported pressures. 

 

Figure 108: Patella insert peak contact pressure, MPa (5%-95% envelope). 

In-silico Wear Prediction  

The tibiofemoral wear results compare well to previous studies with tibiofemoral 

knee wear simulators. The different wear models all predict a „mean‟ wear rate in 

the region of ~7–9 mm³/MCycle (Figure 109). Once again, Archard wear is the 

least variable, with a standard deviation of only ~0.25mm³/MCycle; for the CS-

based models the wear variability is many times higher. Once again, a 

characteristic asymmetry is apparent in the wear PDFs; the „tail‟ of the 
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distribution for top-end wear rates predicts a considerable proportion of high-

wear outcomes, given this level of input variability. 

 

Figure 109: Predicted KKS tibiofemoral wear rates for different wear models (PDF 

magnitudes scaled for clear comparison in figure). 

The patellofemoral wear results are less reliable, in light of the under-constrained 

kinematics for tilt and M-L translation (Figure 110). The „top-end‟ wear rates 

(highest values in the PDF) are unrealistically high, owing to the inflated sliding 

distances from the exaggerated kinematics. However, the mean-value predictions 

for the patellofemoral wear (~2-5 mm³/MCycle) are comparable to the limited 

available data for patellofemoral wear in-vitro (e.g. Ellison et al reported rates of 

2.2±1.2 mm³/MCycle [202]). 

 

Figure 110: Predicted patellofemoral wear rates for different wear models (PDF 

magnitudes scaled for clear comparison in figure). 

It is possible to use SA to determine the sensitivity of this variation in wear to the 

different input factors. Figure 111 shows the linearised sensitivity factors for the 

tibial and patellar wear rate, based on the “M-L/M-L+A-P” wear model. The results 

reveal some similarities, but also notable differences between the factors 

contributing to wear of the patellar and tibial inserts. 
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Figure 111: Sensitivity analysis results for tibial wear (above) and patellar wear 

(below). Wear model analysed is the „M-L/M-L+A-P‟ formulation. 

For the tibial insert, wear is dominated by the tibial tilt (Tib_FE), with the other 

mal-rotations also moderately strong. This is comparable (but not identical) to the 

findings of Pal et al [179] - note that their study was based on the SKS knee wear 

simulator, so results would not be identical (friction, which was the main factor in 

that published study, was not varied in this initial KKS probabilistic study). For the 

patellar insert, the sensitivities are more distributed; some of the mal-positioning 

factors are still important, but the quadriceps dial angle (which directly affects 

patellar tracking) is now also more influential. In both cases, the F-E offset of the 

femoral component has minimal influence; the clamping height of the patellar 

insert on the Kevlar „QT‟ strap is also relatively unimportant. Note that these 

sensitivity factors are design-dependent and activity-dependent, so general rules 

cannot be inferred from this one data-set as to which factors are influencing wear 

under other test conditions. A similar probabilistic approach would be needed to 

investigate on a case-by-case basis. 
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The KKS is not used as a wear-assessment platform in-vitro (historically, it was 

decided by the original designers after early work on the rig not to pursue this 

line of development, for various practical reasons). Consequently, it is not 

possible to corroborate these wear results. This is a disadvantage of the KKS 

model; it can be used to corroborate the kinematics and mechanics of the 

platform, but cannot be used to further explore in-silico wear prediction 

algorithms.  

The study demonstrates conceptually the application of probabilistics to the KKS 

in-silico model, and raises some important questions about the control-

philosophy for studies of variability on the KKS. This work could easily be 

extended to include a wider range of factors, different ADL activity profiles, or 

indeed control-system modifications.  

6.5. Discussion 

The studies in this chapter represent a considerable degree of experience gained 

through modelling and corroborating the KKS platform. Although the target of 

the models is a different platform to the work in previous chapters, many of the 

lessons learnt are more broadly applicable.  

It is clear that having better experimental data available (in terms of quantity and 

quality) permits much better corroboration of the computational model. For the 

KKS, the model is much more specific to a particular hardware configuration; 

input from CAD data to validation test feedback has been used to ensure the in-

silico and in-vitro models are well aligned. This gives much greater confidence in 

results, since the test results can be matched directly to real-world data. A two-

way collaboration between experimental and computational researchers means 

that the validation process has been pro-actively designed (i.e. choice/number of 

tests, degree of complexity etc); not merely attempted reactively post-hoc. This 

resulted in a more systematic, more comprehensive validation process, where 

complexity was progressively phased in and so the design & test process is more 

structured. 

Note that although the initial model is quite specific, it is of course possible to 

generalise or customise the model, beginning with the corroborated version as a 

„baseline‟; the penalty trade-off is that progressive modifications make the model 

more flexible to new studies, at the cost of diverging further from the 

corroborated benchmark. 

The in-silico model of the KKS developed represents a highly useful model, with 

the potential for further usage and development. The model has been used 
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during the course of these studies as a test-bed for developing new activity 

profiles, and also to explore potential rig modifications. These and other uses 

(e.g. predicting behaviour changes for cadaveric knee specimens) could be 

developed further, or combined with probabilistic methods to better-understand 

uncertainty in the KKS testing. 

Lessons can be applied from this modelling approach to the world of in-vitro knee 

wear testing. A more specific, targeted corroboration would result in a better-

defined, more accurate in-silico model; this could then be used as a baseline for 

further study. However, as has been demonstrated, this requires sound 

collaborative links as the prerequisite for better cross-disciplinary co-operation. It 

is apparent that the complexity of the target platform need not be an issue; the 

KKS is far more complex, mechanically and in terms of control systems, than the 

knee wear simulators. However in spite of this complexity and the number of 

unknown parameters affecting the dynamic behaviour of the KKS, corroboration 

to within good accuracy (>95%) was possible. In light of this, it should clearly be 

possible to achieve better corroboration with the simpler knee wear simulators. 

The final chapter describes attempts to develop such an advanced model for one 

specific knee wear test rig. 
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CHAPTER SEVEN – ADVANCED KNEE-SIMULATOR 

CORROBORATIVE MODELLING 

Demonstrating computationally-enriched pre-clinical analysis methods for the 

AMTI Knee Wear Simulator 

7.1. Introduction 

The studies in Chapter Four demonstrated that the MBD environment is well-

suited to high-speed studies of TKR mechanics in-silico wear assessment. Chapter 

Five further demonstrated that probabilistic methods can be used in conjunction 

with these baseline models for a more holistic picture of TKR performance. 

Chapter Six showed that close corroboration of in-silico models with in-vitro data 

makes the models much more robust and gives much greater confidence in the 

results. 

In this final chapter, the capabilities, methodologies, and lessons learnt in the 

previous work are integrated into a highly-robust, extensively corroborated 

validation model for a specific knee-wear simulator design, including 

computational wear modelling and, ultimately, a probabilistic study 

demonstrating the corroboration between in-silico and in-vitro stochastic data 

sets. 

7.1.1. The AMTI Knee Simulator 

The modelling in this chapter is targeted specifically at a commercial knee 

simulator design by AMTI. This simulator is used widely in industry, and through 

industrial collaboration links, it was possible to access high-quality data and 

research expertise for this platform, which is essential for robustly corroborating 

any computational model to a high standard. 

The AMTI-Boston KS2-6-1000 (Figure 112) is a 6-station servo-hydraulic knee 

simulator, conceptually similar to the other commercial rigs available for 

tibiofemoral knee wear testing (e.g. the SKS, the MTS-Bionix or Leeds/ProSIM 

designs introduced in Chapter Two). The six stations are divided into two „banks‟ 

of three (left and right), to compare different designs under test. Note that the 

stations are not truly independent; feedback is based on the first station only, 

and common inputs must be applied to each station in the bank. 
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Figure 112: AMTI-Boston KS2-6-1000 Knee Simulator (Image: Advanced Mechanical 

Technology, Inc.) 

There are some important design configuration differences between the AMTI rig 

and other commercial designs, as described below: 

 The rig is capable of both force-driven and displacement-driven operation; 

however when running under force control, unlike the SKS, it does not use 

„physical‟ spring buffers to mimic soft-tissue restraint. Instead, it uses a 

proprietary „virtual‟ spring-restraint system (using software-based 

compensation of the driving inputs). This has the advantage that the soft-

tissue effects can be re-programmed and customised by the user; however it 

does introduce an additional degree of complexity to the control system. 

 The physical configuration (i.e. how the different degrees of freedom are 

modelled) is quite different to the SKS; for instance there is no single „hinge‟ 

for varus-valgus; both V-V and M-L motions are combined with a roller-bearing 

system. Figure 113 illustrates the configuration for a single-station of the rig. 

Unlike other rigs, the AMTI simulator applies A-P force and displacement to 

the femoral component, with all the stations in that bank linked together and 

driven by a single central actuator (i.e. the stations are not independent). Note 

however that the force-feedback is measured beneath the tibial platen; this 

means that inertial effects between the points of application and measurement 

need to be considered. 
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Figure 113: Schematic for single station of AMTI simulator: exploded view and (inset) 

in-situ. 

7.1.2. Modelling Strategy 

Because construction materials, dimensions and other details were known or 

could be measured directly for the parts in the rig, it was possible to construct a 

faithful representation of this configuration in-silico. Further, through industrial 

research links, it was also possible to run certain tests specifically to measure 

dynamic characteristics of the system (besides using other test data to validate 

the model). 

Note that the machine operates under both displacement- and force-control. 

Therefore there are effectively two quite distinct modes of operation, which need 

to be characterised and corroborated separately. Displacement control is 

conceptually simpler, and so was addressed first. A „crawl-walk-run‟ incremental 

approach was taken to modelling. Initially a very basic mechanical model was 
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constructed; subsequently the various properties (inertia, friction and damping) 

were measured, estimated, or „tuned‟ to experimental data. Finally, more 

sophisticated features (controller modelling for force-driven operation and in-

silico wear prediction & visualisation metrics) were incorporated once the baseline 

mechanical model was validated. Ultimately, the integrated model could be used 

for a probabilistic analysis. 

7.2. Displacement-Driven Modelling: Corroboration 

7.2.1. Modelling Details (Methodology) 

The first target was a baseline mechanical model of the AMTI rig, to be operated 

in displacement-control. This rig has been the target of previous in-silico 

modelling. Zhao et al used MBD methods to model the AMTI simulator [203], but 

this model was mechanically very simplistic and neglected the friction, damping 

and other details.  

Lanovaz et al [200, 204] made a more robust effort to corroborate the rig using 

FE-methods, exploring the effects of inertia, friction and pliancy; however this 

model failed to address dynamic damping terms so was less accurate for force 

control, and did not include in-silico wear prediction; it also used deformable FE, 

and so was very slow (7½ hours even with 8 processors) compared to MBD or 

rigid FE methods. 

For the present work, the extant SKS model was used as the baseline for the new 

model, and overhauled to reflect the AMTI configuration. The principle changes 

are highlighted below: 

 Model domain scope: the SKS model included only the tibial and femoral 

components; the actual mechanics of the rig construction were ignored. Here, 

the rig fittings have been explicitly modelled; the model includes the tibial 

platen and roller-bearing assembly down to the load-cell. This allows the 

model to include additional sources of inertia, friction and damping; e.g. the 

bearing friction between the platen base and the brass roller bearings is very 

variable and can sometimes be quite high; this would be neglected if the 

assembly was not modelled. 

 Tri-axial load-cell: integral to a more robust corroboration is accurately 

predicting the forces measured by the load-cell. To facilitate this, a series of 6 

measures (3 forces and 3 torques) were included at the same relative location 

as the in-vitro sensor, and with polarities to match the experimental data 

(Figure 114). 
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Figure 114: Orientation and polarity for load-cell measurements. 

 Inertia: the inertia of the tibial assembly is particularly important, as this 

component forms part of the control-feedback loop (see later section on force-

driven controller modelling). The mass and moments of inertia for the platen 

were calculated based on geometry and density, with the mass verified by 

direct measurement. For the femoral assembly, mass is less critical; 

approximate values were assigned for the components based on density 

estimates (on the order of ~3kg); sensitivity tests demonstrated the model is 

insensitive to changes in femoral assembly mass under displacement control. 

 Observation of the rig suggested that there was some pliancy on the femoral 

axis (especially in the A-P direction). Lanovaz et al modelled this as a linear-

elastic deflection of the F-E shaft [200], however investigation of the force-

displacement relationship suggests a nonlinear „backlash‟ effect. Whatever the 

source, there is a noticeable hysteresis effect between force and displacement, 

which must be accounted for in the computational model.  The result can be 

up to a ~0.5mm difference between the reported and true A-P displacements 

for force-driven gait profiles. Note that this is still an issue for displacement-

driven tests, since the system can only track the measured (not actual) 

displacement. The discrepancies in displacement may be small, but for a 

conformal implant under test, this corresponds to large differences in the A-P 

shear force; e.g. see Figure 115, where the predicted A-P force almost 

doubles, if the flexion arm pliancy is not included in the model. 
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Figure 115: Effect of including F-E arm pliancy on A-P contact forces. 

7.2.2. DD Corroboration Test 1: „High-Kinematics‟ Gait Test 

With a baseline model developed, corroboration testing was performed. In-vitro 

data was available for the two CR FB knee variants from Chapter Four (S/C and 

U/C). Two standard profiles had been tested under displacement-control; ISO-gait 

and a „high-kinematics‟ (HIKIN) alternative (based on the profile in [44] – see 

Figure 116).  

 

 

Figure 116: Input Waveforms for „HIKIN‟ profile. Note „achieved‟ kinematics are 

slightly smoother around sudden inflexions. 
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Various tests were corroborated, but the S/C insert with HIKIN will be focused on 

here. The AMTI simulator does not perfectly track these profiles (which require 

very sharp inflexions in the A-P and I-E profiles); the precise tracking varies 

depending on the implant under test, but there is always some deviation between 

the desired and achieved profiles. In Figure 116 the „desired‟ and „achieved‟ 

waveforms are compared. The main differences are around the sharp inflexions; 

the differences are small, but the impact on force-feedback (due to the higher-

order derivatives of these inputs) is considerable. For corroboration testing, the 

„achieved‟ (feedback) waveform was used (when available). 

Note: for the AMTI rig, A-P translation is defined as the distance from the 

centreline of the fixed F-E axis to the centreline of the tibial platen; a positive 

value indicates the „femur‟ is more posterior relative to the „tibia‟. The initial 

value (~15mm) is the „dwell point‟; i.e. the point where the components are in 

their „settled‟ position under nominal compressive load at full-extension. This is a 

design-specific value (e.g. the value is generally lower for the U/C design). 

The profile was simulated in-silico, and the resulting tri-axial force predictions 

compared to the in-vitro feedback data. Initial studies revealed that certain 

factors in particular were very influential: 

 „Dwell point‟: although the dwell point is theoretically prescribed by the profile 

offset, in practice small errors in the simulator setup, component positioning 

and the axis „zero‟ positions can result in variability (generally < 1mm) in the 

exact dwell point. This is small, but sufficient to make a large difference 

(several hundred Newtons) to the sagittal-plane force-feedback (especially F
Y

, 

the A-P force component). For any individual test results, the dwell-point value 

can be „tuned‟ to match; more generally the variability is better included as a 

factor within a probabilistic study framework. 

 Friction: tibiofemoral friction is known to be important (e.g. see the results of 

the probabilistic studies in Chapter Five), and for the AMTI simulator the 

friction coefficient makes a particular difference to the F
Y

 force (and hence M
X

 

moment also). However, the friction coefficient is test-specific; POD studies 

have shown friction is much higher for more complex motion paths [205]; 

therefore tuning a „global‟ friction constant for any model is less than ideal. 

Nonetheless, early exploratory studies comparing the in-silico model with in-

vitro data suggest that values at the lower end of the reported range seem to 

best match the experimental results (0.01 < μ < 0.02).  
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 Friction from the roller bearings is also important; the M-L force (F
X

) and Ad-Ab 

torque (M
Y

) are most sensitive to this factor. Experimentally, the bearing 

friction (ideally zero) is often surprisingly high (μ up to 0.1) and can 

considerably reduce the freedom of motion about the axial-load pivot. 

 The „pliancy‟ of femoral arm was also important; this seems to vary from 

station to station; values of 1kN/mm are typical, but variations in the range 

±50% are needed to account for the experimental feedback data. 

Because of the high experimental variability observed with all of these 

parameters, „tuning‟ is necessary for any specific data-set. For the present data 

set, values were determined based on an iterative tuning process (using the 

localised sensitivity to gauge the correction factor required); the final values are 

listed in Table 18. 

Parameter Value 

A-P dwell point 12.25 mm 

Tibiofemoral friction coefficient 0.01 

Roller-bearing friction (M-L) 0.06 

Roller-bearing friction (V-V) 0.03 

Femoral axis pliancy 1000 N/mm 

Table 18: Values used for the S/C HIKIN experimental corroboration. 

Using these values, good corroboration was achieved for all 6 axes of the load-

cell feedback. Results are shown in Figure 117. Note that the experimental data is 

presented for all 6 stations running the same test – this immediately shows the 

high degree of experimental variability from station to station. This indicates that 

it would never be possible to achieve an „exact‟ match with deterministic studies 

alone; a probabilistic study is the only way to corroborate the system given the 

variability present. 

If the „average‟ of these experimental values is taken, it is possible to report 

quantitative error levels (see Table 19). Note that although the percentages are 

high on some axes, (e.g. F
X

) the actual absolute errors are low. This table must be 

interpreted with caution, given the inherent experimental variability – if the 

individual experimental feedback traces were compared to the averaged mean 

trace, many of them would appear to exhibit worse „errors‟ than the 

computational model. Quoting error levels is of limited value when the system 

includes a high degree of uncertainty; once again, a more „probabilistic‟ approach 

to corroboration is fundamentally necessary, given this variability. 
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Figure 117: Corroboration for HIKIN profile with S/C insert – in-vitro (solid, N=6) 

versus in-silico (dashed) - forces (left) and moments (right). 
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Measurement Cycle-averaged 

Absolute Error 

Error as Percentage of 

Max. Absolute Value 

F
X

 (M-L) 16.6 (N) 35.0% 

F
Y

 (A-P) 30.8 (N) 14.6% 

F
Z

 (I-S) 79.1 (N) 3.2% 

M
X

 (about M-L) 5.14 (N·m) 9.2% 

M
Y

 (about A-P) 1.68 (N·m) 10.3% 

M
Z

 (about I-S) 0.48 (N·m) 8.9% 

Table 19: Error levels in the first deterministic corroboration (S/C HIKIN). 

Nevertheless, this deterministic corroboration represents an important step 

forward from the tests in Chapters Four and Five; the inclusion of instrumented 

force-feedback to compare across in-silico and in-vitro tests provides a robust 

extra degree of corroboration. This study has shown that the ADAMS-based 

computational model of the AMTI simulator is in good agreement with the spread 

of experimental results. 

Once again, it is possible to use the new computational model to greatly enrich 

the data-set available from the rig alone. Figure 118 illustrates some of the 

additional data that can be retrieved in-silico which is not available directly in-

vitro. Plots of contact area and M-L load split through the gait cycle, sliding 

distance distributions, sliding paths at individual nodes, contour maps for cross-

shear and wear depth, and intra-cycle wear rate plots all provide an enhanced 

perspective on the test. Of course, the value of this in-silico dataset depends 

entirely on how representative it is of in-vitro conditions – hence, the importance 

of the more rigorous computational-experimental corroboration described above. 

 

Figure 118: Additional visualisation metrics are available in-silico to enrich the 

overall pre-clinical analysis process. Here: intra-cycle wear rate (left) and cross-shear 

contour map (right). 
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7.2.3. DD Corroboration Test 2: „Femur-On-Flat‟ Gait Test 

The S/C HIKIN test demonstrates that the model can be tuned to a specific test-

case, and the results achieve good corroboration. However, for a different test, it 

is recognised that variations in the implant design and procedure might lead to 

variations in component positioning. Therefore, the same precise „tuned‟ values 

would not be applicable. Instead, a „femur-on-flat‟ experimental test was selected 

for a second corroboration study. This consists of a regular S/C femoral 

component, articulating against a „flat‟ polyethylene insert (i.e. with no condylar 

„cups‟, such that there is no geometric conformity). Femur-on-flat studies are 

currently being used to investigate wear behaviour under extreme ranges of 

contact pressure, to better understand the mechanics of wear (e.g. see [178]). 

The advantage for present purposes is that theoretically there is no „dwell‟ point, 

as the flat surface means there is zero conformity. This removes one of the most 

influential variables, making „tuning‟ of the model less critical. 

Experimentally, the inputs for this test are identical to the „HIKIN‟ profile, except 

that axial loading is scaled up from a peak value of 2,600N (~600lb) to 3,600N 

(~800lb). The high loading, coupled with low conformity of the flat „insert‟, 

results in extremely high contact pressures concentrated on a small area of 

polyethylene (this makes the test of interest to wear theorists). The test was run 

as previously, but replacing the S/C insert with a flat alternative, (once again 

discretised into 1mm² cells as described in Chapter Four). The simulation was run 

with a 0.1 second „ramp-up‟ into the profile, followed by the 1.0 second profile 

itself, using the „tuned‟ values described in the first corroboration test. Initial 

results did not corroborate as well as hoped; on further investigation a number of 

issues were identified: 

 The high pressures in this test made the assumption of linear elasticity 

(inherent in the rigid-body model) inadequate: considerable plastic 

deformation was apparent on the in-vitro implants after testing. However, this 

could be accounted for; modified implants were generated, based on surface 

profiles of the actual experimental samples, which featured this deformation 

effectively ‟built in‟. These were used for subsequent modelling. Note that this 

now meant A-P dwell position was an important factor once again, since the 

sagittal profile of the insert was no longer „flat‟, but deformed. 

 The feedback data had considerable „noise‟ which was more apparent for the 

small-magnitude forces & moments in this test; pre-conditioning to smooth 

the higher derivatives of the input waveforms helped to reduce this artefact. 
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 It was evident that, even with these refinements, the corroboration was not 

perfect; there was a minimal degree of malpositioning (under 1° on the I-E and 

V-V axes) which was having a small, but noticeable influence on the force-

feedback. If this was accounted for (by correspondingly aligning the 

components in the in-silico model) slightly better accuracy could be achieved 

(although this effect was minor compared to the surface deformation and 

„dwell point‟ issues). 

In Figure 119, results are shown for the load-cell feedback channels, for all six 

axes. Note that more channels of in-vitro data were available for this test. 

  

  

  

Figure 119: Corroboration for „femur-on-flat‟ test – load-cell forces (left) & moments 

(right) in-vitro (solid, N=9) versus in-silico (dashed). 
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Note that (contrary to initial expectations) the predicted and observed shear 

forces are actually substantial (several hundred Newtons for F
X

 and F
Y

); this is in 

large part due to the increased degree of conformity induced by plastic 

deformation experimentally (and the corresponding conformity introduced when 

this plastic deformation was modelled approximately in the in-silico simulation).  

The corroboration is not perfect, but again for the experimental data, there is 

some variability between stations (and it is apparent that some stations are 

„outlying‟ very noticeably from the others), so once again, no single-shot 

„deterministic‟ simulation could match this spread of experimental results. 

Once again, a table of „error levels‟ was compiled, based on comparison to the 

experimental „averaged‟ values (Table 20). Error levels are comparable to the first 

S/C HIKIN corroboration test; given the additional challenges presented by the 

femur-on-flat test, this is a positive result. Note that once again, the highest 

errors are in F
x

, the M-L shear force (which is however uncontrolled, and so less 

critical). 

Measurement Cycle-averaged 

Absolute Error 

Error as Percentage of 

Max. Absolute Value 

F
X

 (M-L) 31.4 (N) 26.3% 

F
Y

 (A-P) 20.9 (N) 10.8% 

F
Z

 (I-S) 18.4 (N) 0.5% 

M
X

 (about M-L) 4.15 (N·m) 12.1% 

M
Y

 (about A-P) 1.84 (N·m) 9.8% 

M
Z

 (about I-S) 0.53 (N·m) 23.6% 

Table 20: Error levels in the second deterministic corroboration (fem-on-flat). 

Note that further corroboration studies were performed, which are not reported 

in this thesis for brevity (including further femoral-on-flat tests, and various gait 

tests using the S/C and U/C inserts). 

The most pertinent conclusion of these different studies is that, in every case, 

experimental variability means that various factors must always be „tuned‟ to 

achieve the best possible corroboration. As such, it is always possible to raise the 

question whether this tuning is legitimately accounting for in-vitro experimental 

variability, or in fact compensating for deficiencies in the in-silico model. The best 

way to address this is with a full probabilistic corroboration; this will be 

addressed subsequently in the present chapter. 
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7.3. Force-Driven Modelling: Corroboration 

7.3.1. AMTI Control-System Modelling 

The most important difference between DD and FD operation is that the force-

driven method requires a more sophisticated control system, to mimic the effect 

of the virtual spring restraint. The controller works by measuring A-P translation / 

I-E rotation, calculating the restraint force/torque at this level via a spline-based 

„look-up table‟ (LUT), and superimposing this force/torque onto the input 

waveforms for A-P force / I-E torque. This is illustrated conceptually in Figure 120. 

The advantage of this configuration is that the „springs‟ are defined only in 

software; therefore it is necessary to change only the data splines to alter the 

spring characteristics. This is both faster than physically replacing spring buffers 

on the in-vitro rig, and also allows any particular non-linear spring relationships 

to be defined (rather than needing to source physical springs with appropriate 

stiffnesses). 

  

Figure 120: Conceptual AMTI FD „virtual spring restraint‟ operation schematic. 

For the specific model being corroborated in this study, the springs were based 

on the work of Haider et al [158] (who proposed a combination of „soft‟ and 

„hard‟ springs to better represent the in-vivo effect of resecting the ACL but 

retaining the PCL). The idealised load-displacement relationship is shown in 
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Figure 121. (Note that in practice the model does not precisely mimic this 

relationship – see later discussion and Figure 127). 

 

Figure 121: Spring restraint splines for the AMTI model (derived from [158]). I-E 

restraint is symmetric, with ±5° „dead zone‟; A-P restraint is asymmetric (to represent 

resected ACL & retained PCL) with ±2.5mm „dead zone‟);  

As already stated, on the AMTI rig the A-P motion is applied to the femoral 

component. This introduces a slight complication, since the force-feedback load 

cell is mounted beneath the tibial insert. Consequently it is important to 

accurately model the dynamics of the system, to capture the influence of inertia 

between the applied force (femoral side) and feedback (tibial side). Figure 122 

illustrates the sagittal mechanics (considering A-P force components only, and 

neglecting angular or non-sagittal components of loads and displacements). 

  

Figure 122: Sagittal plane A-P forces for the AMTI simulator. 
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Resolving by applying Newton‟s 2
nd

 Law for the femur & tibia gives, respectively: 

R(←)  ffCA amFF .'  ( 11 ) 

0MEAC FF  ( 12 ) 

Where F
A

 is the applied force, F
C

 is the A-P component of the contact force acting 

on the tibia, and F
C

' is the reaction force to F
C

, acting on the femur. F
MEA

 is the 

„measured‟ force; i.e. the force „fed back‟ by the load-cell beneath the tibia. The 

terms m
f

 & m
t

 designate the mass of the femoral and tibial components & their 

associated mounting jigs; the terms a
f

 & a
t

 are the corresponding accelerations 

(note that a
t

 is zero, since the tibial component has no unconstrained A-P DOF). 

The desired force on the tibia, denoted F
D

, is the combined sum of the input ISO-

derivative waveform (denoted F
ISO

), and the superimposed spring restraint force, 

F
SPR

, which is a function of the measured A-P translation, Δ
A-P

 

)( PASPRISOD FFF  ( 13 ) 

If the control system was based only on displacement-feedback (i.e. the Δ
A-P

 

measure), the only option would be to set the applied force, F
A

 equal to the 

desired force, F
D

. However, it is clear that the measured force at the tibia, F
MEA

 

would not then be equal to the desired force: 

DA FF  ( 14 ) 

ffCD amFF .'  ffDC amFF .'  ( 15 ) 

0MEAC FF  ( 16 ) 

ffDCCMEA amFFFF .'  ( 17 ) 

The inertial effect of the femoral component A-P acceleration would result in a 

discrepancy between the achieved (measured) and desired A-P force profile. 

Instead, the controller must include closed-loop feedback of the measured force, 

in order to achieve F
MEA

 = F
D

. (Note: the above analysis neglects pliancy of the F-E 

shaft also; this would introduce a further complication in reality) 

As with the control systems described in Chapter Six, external co-simulation 

using MATLAB/Simulink was chosen for control-plant modelling. A custom 

controller was constructed, based upon the same design concept as the in-vitro 

AMTI controller, but including a number of additional features and visualisation 
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tools for enhanced diagnostic functionality. A screen-shot of the GUI designed for 

this purpose is shown in Figure 123. 

 

Figure 123: Custom AMTI Controller modelled in Simulink. 

The precise details of the experimental control system are commercially 

confidential, but it is known that the in-vitro system uses a proprietary adaptive 

control system. The PID-based model used here is therefore only an 

approximation to the real AMTI controller; since the actual in-vitro system has 

comparatively good accuracy, compared to other commercial rig designs, the in-

silico values are tuned to achieve the best possible tracking for the conditions 

under test. Typical values are given in Table 21 (note that the precise settings can 

vary from case to case, so the values given are only a representative „starting 

point‟ for subsequent refinement in any specific test-case; generally, the more 

conformal the implant design, the stronger the controller settings must be). 

 Vertical 

Load 

A-P 

Force 

I-E 

Torque 

Proportional (P) 10 0.1 1 

Integral (I) 3 0.1 1 

Derivative (D) 1 -0.01 0 

Table 21: Typical PID values for a force-driven AMTI gait test. 

7.3.2. FD Corroboration Test 1: Isolated Axis Tests 

With the model and controller developed, the first corroboration tests were 

attempted. Early efforts to corroborate full force-driven ISO gait were 
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unsuccessful (kinematics for A-P and I-E did not match the experimental results). 

Therefore, a more incremental approach was taken.  

A series of tests were devised, which „deactivated‟ selected inputs of a standard 

force-driven gait test, to simplify the ensuing mechanics. Axial compressive load 

was always included for stability, but the other three input channels (flexion 

angle, I-E torque and A-P force), were each analysed in isolation from the others 

(Table 22). These three „isolation tests‟ allowed the behaviour of each axis to be 

studied without the confounding effect of influences from the others.  

These tests were run by our industrial collaborators for the purpose of comparing 

the computational model with in-vitro data (note: tests were run „dry‟, instead of 

running under lubrication for many millions of cycles as required for wear 

assessment: obtaining kinematics is much easier, and requires only a handful of 

cycles to remove initial transients. However this does of course alter the 

operating friction). For all the test-cases the virtual springs provided a simple 

linear restraint (30N/mm for A-P and 0.6N·m/°). 

Test Case Vertical Load F-E Angle A-P Force I-E Torque 

1. „VL-FE‟ 

ISO14243-1 

ISO14243-1 constant 0N constant 0N·m 

2. „VL-AP‟ constant 0° ISO14243-1 constant 0N·m 

3. „VL-IE‟ constant 0° constant 0N ISO14243-1 

Table 22: Inputs for force-driven „isolation tests‟. 

The corroboration revealed the importance of dynamic effects for the AMTI rig 

under FD control. A large degree of damping was necessary (especially on the A-P 

axis) to accurately match the experimental kinematics. This experimental 

damping is believed to be due in part to the construction materials (e.g. the tibial 

platen is constructed of a relatively „soft‟ polymer), in part due to damping in the 

system hydraulics, and in part due to other sources of pliancy within the 

mechanics of the rig. 

Based on „tuning‟ to these cases, a reasonable match was obtained between the 

computational and experimental results, for both kinematics (A-P & I-E) and 

kinetics (the load-cell feedback). Figure 124 shows the kinematics for all three 

tests (note, in-vitro data was only collected for one station, so unfortunately no 

indication of experimental variability is available for these isolation tests).  
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Figure 124: Kinematic feedback for all three isolation tests. 

Figure 125 shows the tri-axial load cell force-feedback for just the final test case 

(VL-IE); again data is unfortunately only available for the first station in the bank, 

so it is not possible to determine how representative this single experimental 

data-set is, or if it was in fact an unrepresentative „outlier‟. 
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Figure 125: Load-cell feedback for isolation test 3 (VL-IE). 

In the event, corroborating the force-driven model proved considerably more 

challenging that corroborating the displacement-driven tests. There were a 

number of reasons for this; firstly, limited data was available. Force-driven tests 

were relatively new for the AMTI platform, so there was not a large volume of 

historical data available. In these isolation tests, data was only available for a 

single station, so it is impossible to know if these individual waveforms were 
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representative (close to the average) or in fact outliers; previous tests have shown 

that experimental ranges of uncertainty are quite large, and without any 

indication of the experimental variability in this case the quality of the 

corroboration cannot be assured. Additionally, the control-system tracking of the 

rig itself was not as good under force control as under displacement control – this 

is apparent from analysis of the original in-vitro data. The Simulink model was 

designed to track the „ideal‟ inputs so does not account for the experimental 

tracking errors in forces. (It is not possible to easily factor in tracking errors, due 

to the confounding influence of the „virtual spring‟ system). Further, in this 

particular case, some of the forces and moments for the isolation tests are 

inherently quite small (e.g. in the VL-IE test, there is very little A-P shear force); 

this makes the signal-noise ratio unfavourable, so once again corroboration is 

difficult. Despite these challenges, progress has been made in identifying 

influential factors for force-controlled testing. 

7.3.3. Corroboration Test 2: Full ISO-derivative Gait 

Having tuned the dynamics of the individual axes using the isolation tests, a full 

FD gait test was next modelled. Unfortunately, the only available experimental 

data suitable for corroboration was a relatively early data-set – an initial 

„benchmarking‟ test of the S/C design following the commissioning of the force-

driven rig upgrade. Feedback data for this test was therefore used to undertake a 

computational simulation. The inputs (Figure 126) were similar to the ISO-

standard [23], but were slightly phase-shifted relative to one another (e.g. the 

flexion waveform seems to be phase-delayed by ~10% cycle). 

 

Figure 126: Inputs for ISO-derivative FD gait corroboration test. Note there are 

different phase shifts for the different waveforms; e.g. F-E is delayed by ~10% cycle, 

whereas axial force is delayed by only ~3%. 
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This test was conducted under lubrication in-vitro, so the high „dry‟ friction 

values used for the isolation tests (0.07 to 0.1), were scaled down to „wet‟ values 

(0.01 to 0.02). The virtual springs were configured to simulate soft/hard springs 

with a spring-gap (the actual feedback splines are shown in Figure 127). Note that 

the achieved feedback does not match the ideal relationship shown earlier in 

Figure 121; there is a degree of hysteresis, and the spline-interpolation 

sometimes leads to „positive feedback‟ where the restraint force acts to increase 

the kinematic offset. This will cause differences in performance compared to the 

ideal spring relationship – therefore the in-silico model was based on the 

experimental (rather than theoretical) splines, to better match the resulting in-

vitro data. The kinematics (A-P and I-E) and force-feedback were compared to the 

limited available experimental data (N=3 channels). 

 

Figure 127: Actual (feedback) splines for virtual spring restraint: A-P (left) & I-E 

(right). For comparison, the „ideal‟ relationship is also shown (c.f. Figure 121). 

The results of this test did not corroborate as well as hoped. Whilst reasonable 

agreement was achieved for the A-P translation, the in-vitro I-E rotation could not 

be reproduced in-silico (Figure 128).  

   

Figure 128: FD ISO-gait kinematics – in-vitro (solid) versus in-silico (dashed). 
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For the experimental load-cell data, considerable variability was observed (even 

within just 3 stations of available data); this made it difficult to determine how 

representative these samples were. The computational waveforms matched 

reasonably, except for the F
Y

 and M
X

 channels (Figure 129). The fact that M
Z

 (the I-

E torque) is in good agreement with the experimental data, but the actual I-E 

rotation is so different, suggested that there was some considerable pliancy or 

motion between the load-cell and the insert itself. 

  

  

  

Figure 129: FD gait load-cell feedback; in-vitro (solid, N=3) vs. in-silico (dashed). 
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Several factors were hypothesised to be playing a role in the differences 

observed; the fact that the different inputs were out of synchronisation with one 

another, the imperfect tracking of the in-vitro controller, unaccountably high 

damping, or backlash/pliancy effects still not correctly modelled computationally. 

It was apparent further investigation would be required to better corroborate this 

study. Unfortunately, the data was quite old, and details of the precise 

experimental procedure have been lost. Further, some of the hardware on the rig 

had been changed since the original test (e.g. the tibial platen was entirely re-

designed). It is therefore not possible to precisely re-create this test, to determine 

if changes in methodology (e.g. component positioning, or fixed-axis location) 

accounted for some of the differences in results.  

Recently, the test conditions were re-created on the AMTI rig, using the new 

hardware configuration. The results of this comparison were very different to the 

earlier test (see the plots of A-P and I-E kinematics in Figure 130). Given that there 

is such variation in the in-vitro data, it was apparent that an accurate 

corroboration in-silico would not be possible at this stage; further experimental 

data will be required. There are, however, some important observations from this 

attempt: firstly, any in-silico corroboration study depends on quality, consistent 

in-vitro data to be robust and effective. Secondly, variations in methodology can 

have a major role in experimental results, and the corroboration effort must 

attempt to include consideration of these „hidden‟ effects. 

  

Figure 130: Revised data for the FD S/C ISO-gait test, compared to the original data. 

Left: A-P translation; right: I-E rotation. 

For both the displacement- and force-driven models, variability has been revealed 

to be a key concern. The aim of the final study was to address this more 

exhaustively, by attempting the first probabilistic corroboration between in-vitro 

and in-silico experimental results of TKR testing. 



195 

 

7.4. Corroboration of Probabilistic Methods 
9

 

7.4.1. Study Structure (Methods) 

The limiting factor in corroborating probabilistic methods is of course the 

availability of a large enough body of in-vitro data. An analysis of historical data 

available from previous industrial testing revealed that the most suitable data-set 

was for displacement-driven testing of the S/C design with high-kinematics (for 

conventional PE). There were still only a handful of comparable tests in total, but 

given the number of stations running simultaneously (typically 3 – 6 per test), and 

the number of intervals the test was run on for (typically 10 – 12 per test), it was 

possible to source >100 data points for force-feedback and interval wear rates. 

The in-silico study was tailored to match this data. The experimental set-up is as 

per Section 7.4.2 (the deterministic corroboration). The model was parameterised 

with several factors previously identified as influential during the „tuning‟ phase 

of the corroboration studies, together with additional malpositioning factors. In 

some cases statistical properties (mean, SD) could be based on available data 

(e.g. for the A-P dwell position, the in-vitro feedback data available indicated the 

degree of variation in the initial offset of the A-P waveform). In other cases, 

variability was assigned based on engineering judgement, or else estimated from 

the variability already observed in the earlier corroboration study (some indication 

of the variability could be obtained based on the N=6 samples from the 

deterministic study in Section 7.2.2 - whereas now a total of N=128 samples are 

available). The variables, and their assigned values, are listed in Table 23. The 

Normal distributions are cropped at ±3σ; the Lognormal distributions (which 

cannot be less than zero by definition) are cropped only at +3σ. 

Factor Description Dist. Type Mean S.D. 

AP_Dwell Initial A-P Dwell offset Normal 12.5mm 0.5mm 

Fem_FE Femoral F-E malrotation Normal 0° 0.5° 

Fem_IE Femoral I-E malrotation Normal 0° 0.5° 

Fem_VV Femoral V-V malrotation Normal 0° 1° 

Tib_ML M-L offset of insert on platen Normal 0mm 0.5mm 

TF_μ Tibiofemoral Contact Friction Lognormal 0.01 0.02 

Roll_μ Roller-bearing Friction Lognormal 0.02 0.01 

Table 23: Input factors for the AMTI probabilistic corroboration study. 

                                         

9

 This section is adapted from the conference proceedings: “Holistic Approaches to Pre-

clinical TKR Analysis: Computationally-Enriched Experimental Testing". 2009, Strickland et 

al. In: Knee Arthroplasty 2009 IMechE MED (London, UK). 
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Various output metrics were monitored for this study. A-P and I-E are driven so 

need not be measured; instead load-cell measurements were recorded, along with 

peak CP, M-L load split and the various wear metrics (sliding distance, cross-shear 

and linear wear rate for the different wear models described in Chapter Four). 

7.4.2. Results 

Figure 131 shows the 6 load-cell channels, with envelopes at ±1SD from the mean 

value (this is quite a limited range, but represents the only available in-vitro data).  

  

  

  

Figure 131: Comparison of response envelopes for load-cell measures: in-vitro (solid) 

versus in-silico (dashed). Envelopes are ±1SD (to match available in-vitro data). 
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In this first probabilistic comparison of in-vitro and in-silico data, the response 

envelopes show promising agreement between the two, for a „proof of concept‟ 

study. In every case, the computational envelope tracks with similar trends and 

magnitudes to the experimental data. There are some clear differences; most 

notably in swing phase where the experimental data consistently shows more 

variability than is predicted in-silico. This is believed to be related to 

measurement errors within the load-cell itself. This is especially clear for the F
Z

 

channel; the computational model predicts almost no variability (as intuitively 

would be expected in the vertical direction, since this axis is under direct force-

driven control), whereas the experimental data reveals a near-constant-width 

envelope of variation. The fact the width is so constant suggests strongly that 

these are offsets in the load-cell sensor calibration. This is an important point: in 

the computational domain, „measurement‟ is an error-free process; however, 

experimentally the process of measurement can inherently introduce further 

error. In this case, it appears that the load-cells in stations 2 and 3 (which are not 

used for the control-system feedback) can carry offset or calibration errors, hence 

introducing further variability into the experimental results. This also may explain 

why the experimental envelopes are sometimes considerably larger than the 

computational envelopes on some of the other axes. Future models may need to 

account for this additional error by including a model of measurement variability 

– clearly, there is room for improvement. It is also possible that other important 

input factors have been missed in this demonstration study – including such as-

yet-unidentified additional input variables may account further for some of the 

differences between the computational and experimental models. 

The envelopes for contact pressure and M-L load split (Figure 132) reveal a higher 

degree of variability than was seen in the earlier theoretical/idealised probabilistic 

studies of Chapter Five (recall that in those earlier studies the envelopes were for 

1%-99%, or about ±2½SD; here the envelopes are only ±1SD, but are still 

substantial). Note the considerable lateral load-shift and CP „spike‟ in late swing 

phase (~85% gait); this is also evident in the load-cell data and is a result of the 

sharp A-P & I-E inflexions – this is a danger with displacement-driven testing. The 

results suggest that both test kinematics and system variability can have a 

considerable influence on whether the intended 60-40 load-split is achieved or 

not. 
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Figure 132: Response envelopes for peak contact pressure and M-L load split. 

Envelopes shows mean (solid line) ±1SD (dashed). 

Sensitivity results (Figure 133) reveal that A-P dwell position plays a dominant role 

for many of the metrics under study – this is an interesting result, since Laz et al 

reported translational misalignment factors as being less significant than angular 

malrotation factors. However, that study did not consider the influence of 

variability in the A-P dwell position. By using real experimental data as the basis 

for the current study, A-P dwell was identified as a key factor with comparatively 

high levels of variability, which in fact dominates the malrotation terms. Similarly, 

the roller-bearing friction was also a strong factor – which again would be 

neglected by a less detailed model. 

   

Figure 133: Selected sensitivity plots (normalised cycle-averaged values) for A-P 

shear force F
Y

 (left) and peak contact pressure (right). 

The wear results provide the most pertinent observations about the current state 

of in-silico / in-vitro corroboration. PDFs for wear rate were compiled for each of 

the theoretical models and compared to the spread of interval wear rates 

recorded experimentally. Selected results are shown in Figure 134. Note that, 

even laying aside the differences in the deterministic „mean‟ wear rates (which 
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have already been explored and discussed in Chapter Four), none of the in-silico 

PDFs come close to matching the level of experimental variability. The 

probabilistic wear study in Chapter Five revealed an approximately four-fold 

increase in wear between the „Archard‟ wear model, and models with cross-shear. 

The results here show a further four-fold increase from those CS based models to 

the in-vitro results. At present, the mechanical model is still imperfect, and so 

some of the discrepancy could be due to the mechanical model, as well as the 

wear algorithm. However, the differences in the mechanical model are 

considerably less than the differences observed in these wear results.  

 

 

Figure 134: PDF of wear rates for experimental and selected computational results 

(note: the vertical axes are scaled individually, for visual clarity). 
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This raises important questions for computational wear modelling: principally, 

what is the cause of this discrepancy? Does it represent variability in the true wear 

rate, which is not currently detected by current wear theories? Or is it an artefact 

of experimental measurement procedures? Further, if it is an artefact of 

experimental methods, how reliable is in-vitro data as a basis for constructing 

theoretical wear models around? Ultimately, it should be possible to identify the 

best wear models by matching their PDFs to the PDF of in-vitro wear; if 

experimental methodology has such a confounding influence, this could limit 

efforts to better-understand the fundamental mechanics of wear. 

7.4.3. Discussion 

This study represents the first time a true corroboration has been attempted for a 

probabilistic analysis. The results are imperfect; this is to be expected, since 

there is no direct way to ascertain the uncertainty of „inputs‟ to the system. 

However, the fact that magnitudes and trends are so demonstrably similar is very 

encouraging, and demonstrates convincingly that the fundamental methodology 

behind the probabilistic approach is sound.  

Of particular interest is the higher degree of variability in the experimental wear 

data compared to the computational results. This reveals the importance of 

measurement error within the in-vitro assessment process. This has previously 

been neglected by probabilistic studies. However, as the results here clearly 

show, there is evidence that measurement errors (for both the load-cell results 

and for wear assessment) are playing a strong (if not dominant) role in the 

observed variability. 

This discrepancy clearly needs to be addressed if in-vitro and in-silico models are 

to be corroborated more accurately. However, the question is, should in-silico 

models attempt to model measurement variability, or is it the role of 

experimental testers to reduce this variability? In either case, the key to 

successful corroboration is better collaboration. If in-silico models are to reflect 

the true variability inherent in experimental procedure, this requires a better 

understanding of those experimental procedures; spending time working 

alongside experimentalists to understand the methods and processes being used, 

in order to identify (and quantify) where variations and uncertainty are 

introduced. If, on the other hand, in-vitro variability is to be reduced, this can be 

greatly assisted by co-operating with computational modellers; for example, in 

the present study the computational results may be used to identify the key 

sensitivity factors; experimental procedures could then be focused on better-

controlling these factors. In this case, the procedure for assigning A-P dwell 
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position has subsequently been revised to be more repeatable; closer attention is 

also now paid to the friction of the roller bearings. 

There are important limitations to the study described here. The sample set 

remains relatively small at just over 100 samples; ideally much more data would 

be needed for a robust corroboration. This is the reason for presenting data only 

to ±1SD; presenting data for 5-95% or 1-99% would require sample sizes an order 

of magnitude larger. The damping and friction terms have been tuned based on 

limited experimental testing. Ideally, a more robust set of tests would be needed 

to fully characterise the dynamics of the rig. The in-silico controller is not 

identical to the in-vitro version; more information would be required from the 

manufacturer to construct a more accurate model, and so limit differences due to 

the control system. The wear models are based on existing theoretical concepts 

which are only empirical and approximate. Further influential input factors may 

exist, and the current factors could be more accurately characterised statistically. 

The wear was evaluated based upon a single-cycle analysis; this cannot account 

for adaptive wear effects (however, a fully adaptive probabilistic wear assessment 

was beyond the scope of this exploratory study). Additionally, creep and plastic 

deformation of the polymer were neglected, further limiting accuracy.  

Nonetheless, the study very clearly shows the benefits of better corroboration. 

The results raise interesting questions about the underlying experimental data 

and the mechanics of wear. The fact that much variability is unaccounted for 

shows that there is still considerable scope to progress this work in the future. 

7.5. Summary 

The various displacement- and force- driven models of the AMTI simulator in this 

chapter have built on many of the lessons learnt in the earlier modelling 

activities. The availability of better experimental data (especially the combination 

of force and displacement feedback from the tri-axial load-cell as well as 

displacement transducers) means that there are more means by which the model 

can be corroborated. This gives greater confidence in the model when good 

corroboration is achieved, but equally provides a much richer diagnostic resource 

when discrepancies arise. 

The displacement-driven modelling in particular was very successful. The model 

performs well, with good accuracy, but solution times far faster than the FE-based 

methods employed by Lanovaz et al [200]. This reduction in computational cost is 

a key enabling pre-requisite for probabilistic studies, such as that described in 

Section 7.4. This „probabilistic‟ perspective is very valuable, revealing that even 
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for a relatively controlled gait-test, the actual kinetics of the contact are 

inherently variable (with implications for kinematics and wear rates). The 

comparison of in-vitro and in-silico probabilistic results is also highly informative; 

it is apparent that while the variability in mechanics can be replicated in-silico, the 

corresponding variability in wear rates cannot currently be accounted for purely 

based on existing wear algorithms. Probabilistic assessments of wear may prove 

to be a key future tool in furthering the understanding of wear mechanisms. 

The challenges of accurate and repeatable force-driven simulation are illustrated 

by the difficulties encountered in reproducing both the kinematics and kinetics of 

force-driven gait. This is obviously a challenge for future computational modelling 

efforts. However, it is equally a challenge for experimentalists (who benefit from 

a sound, quantifiable understanding of the mechanics of their test simulations 

through in-silico corroboration) – since good experimental data is the basis for 

any effective in-silico modelling. The influence of bearing friction, and pliancy in 

the F-E axis assembly, clearly demonstrate that the results are being altered by 

unintentional artefacts from the experimental set-up. Equally, the „dynamic‟ 

properties (e.g. inertia and damping), which are not tailored to represent in-vivo 

dynamics, are also influential. The compounded effect of these different factors is 

that the test outcomes are variable and susceptible to subtle changes in the 

experimental hardware or procedures. This is not ideal, as such variations 

confound the important aim of the tests: to understand the effect of TKR design 

and materials on kinematics and wear-performance. By working together, 

computational and experimental researchers may be able to better identify and 

hence mitigate some of these other confounding influences. 
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CONCLUSIONS & FURTHER WORK 

 

This thesis set out to demonstrate that computational and experimental methods 

could be used together more effectively to provide an enriched pre-clinical 

analysis toolset, and further to show that accounting for variability using 

probabilistic methods is an essential part of any study of knee biomechanics. 

The need for improved pre-clinical analysis methods, driven by rising demand for 

TKR, is presenting new challenges to orthopaedic designers and researchers. 

Established computational and experimental methods have a venerable pedigree 

in building the body of current scientific knowledge and providing guidance for 

current TKR designs. However, these studies have often been isolated, poorly 

corroborated and limited in scope, failing to consider the high levels of variability 

inherent in TKR performance. 

It is clear that there are deficiencies and limitations in the existing experimental 

studies. The lack of standardisation on „normal‟ gait profiles for wear testing 

(compare the profiles proposed in [44] and [24]) reflects an imperfect 

understanding of the true in-vivo mechanics. The large differences in wear rates 

reported between very similar tests (e.g. compare [206] and [177] where tests 

from the same research centre on comparable TKR designs exhibited a tenfold 

difference in wear) demonstrate that experimental procedures and sources of 

variability are also not fully controlled or understood. The results between 

different research centres are still less consistent, (for example wear-tests 

including stair activities have contradicted each other, reporting both higher 

[201] and lower [175] wear rates compared to normal gait) – clearly showing the 

degree of variability and uncertainty in current in-vitro methods. 

There is, then, a need to better-understand the outcomes of experimental 

research, and fast computational models can augment experimental tests to 

improve understanding and provide better data for pre-clinical research and 

development. 

Central to making progress in this field is the need for better collaboration 

between in-silico and in-vitro testers. By working to corroborate results across 

multiple test platforms, researchers can gain a more complete picture of the test 

mechanics, and subsequently have access to a more powerful database from 

which to extract and visualise the results of the test in-silico. 

Probabilistic methods can provide the framework for understanding the influence 

of variability; multiple factors can be combined in a single model and explored in 
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a statistically robust manner. The work of Browne et al [142] in introducing these 

methods to the field of orthopaedics, and Laz, Pal et al [95, 179] in developing 

their application to TKR mechanics, has established the foundation for the 

broader uptake of probabilistic methods. However, probabilistic approaches 

require many more trials, and therefore necessitate faster modelling methods 

than the deformable FE models preferred historically. Rigid-body modelling (for 

example using MBD software) can provide this speed increase, and has been 

successfully adopted by various research groups, including Bei, Lin et al at the 

University of Florida [84, 139] as well as in the various studies included in this 

thesis [122, 207-213]. There is of course an accuracy trade-off; however if 

sufficient attention is paid to in-vitro corroboration efforts, it is apparent that the 

accuracy is still acceptable for many investigatory studies. (In fact, the errors 

resulting from poor or inadequate corroboration can be larger than any errors 

from assumptions of rigid-body mechanics). 

In this thesis, the development of a new generation of MBD-based knee 

simulations has been charted from conceptualisation and early demonstration, 

through further studies incorporating probabilistic methods and in-silico wear 

prediction, up to highly-focused corroboration studies against specific data-rich 

in-vitro testing platforms (the KKS and AMTI knee simulators). 

The work in these final chapters represents the „state-of-the-art‟ in computational 

modelling of TKR in-vitro simulation, and in-silico/in-vitro corroboration. By 

combining fast rigid-body modelling techniques, contemporary theoretical wear 

models, and probabilistic methods, and by actively engaging in a deeper level of 

collaboration between computational and experimental researchers, an excellent 

foundation has been laid for future pre-clinical analysis efforts.  

Whilst it is important to recognise that this work represents a step-change from 

the basic deterministic FE-based models of only a few years previously, it is 

equally important to appreciate that there remains a great deal of work to be 

done, if in-vitro knee testing is to be better understood. The efforts to 

corroborate dynamic models have demonstrated that many of these dynamic 

effects (friction, damping, inertia) and their influence on test outcomes are not 

rigorously understood, even within the experimental community. Working with in-

silico modellers gives experimentalists an excellent opportunity to ascertain and 

improve their own understanding of their test-platforms; every discrepancy 

encountered between the computational and experimental results represents an 

opportunity to investigate, diagnose, and ultimately build a more sound 

understanding of the real-world physical mechanics. 
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This is particularly true in the domain of wear theories. The work in this thesis 

has shown that existing wear models are a valuable tool, and do have real and 

useful predictive power, demonstrating this more robustly and conclusively than 

any other studies previously. However, it is also apparent that they are not 

perfect; the mid-range correlations observed in Chapter Four and the comparison 

of wear distributions in Chapter Seven demonstrate this. The resulting challenge 

involves both experimental and computational researchers; experimentalists 

must identify and reduce the variability and uncertainty in their tests (both within 

and especially between different research centres) if the data they provide is to be 

most effective. Computational modellers must then revise the theoretical 

algorithms, to better reflect the observations revealed through POD and TKR 

testing. This is best deployed as an iterative learning process; new in-silico 

models should be based on in-vitro results, but the predictions and anomalies 

they highlight then need to be rigorously screened experimentally. 

The work in this thesis, and associated modelling efforts working with 

experimental researchers in industry, has helped to identify key limitations in our 

current wear theories – it has been demonstrated robustly that the present 

models are not perfect, and that better data is needed in order to advance further 

[211]. Existing studies have already begun to challenge the assumptions about 

the role of contact pressure (e.g. [106, 107]), and recent POD investigations 

supported by the authors using MBD-based modelling have also challenged the 

assumption that wear is simply proportional to sliding distance (Dressler et al, 

[214]). The newest wear-modelling algorithms involve the concept of 

incorporating a „memory‟ into the polymer, so that wear is a function of the time-

history of sliding directions (not simply the total sliding distance or even cycle-

averaged cross-shear) [215]. However, even these models neglect other known 

important factors; for example the choice of material type (e.g. [173]), and the 

phenomenon of „lift-off‟ (e.g. [172]) are known to influence wear; clearly, there is 

considerable scope to progress the theory of wear modelling. In-silico simulation 

has a key role to play in this, because it is flexible, adaptable and can provide a 

rich source of supplementary data. Computational models can serve as the 

medium by which different experimental test platforms communicate and 

interface. For example, the kinematics and kinetics of lower limb simulators such 

as the KKS rig can be analysed computationally, and re-framed to serve as new 

activity profiles for wear-simulators such as the AMTI rig. In turn, these 

physiological profiles and loads can be post-processed from wear-simulator based 

TKR testing, and used to provide more appropriate sliding paths and load-profiles 

for POD tests. Wear models can then be developed and refined in the POD-testing 
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domain, and ultimately re-exported to the knee-simulator platforms such as the 

AMTI, SKS, or KKS rigs. Note that the computational models are not in any way 

supplanting the experimental tests; rather they complement, enhance and 

interface the experimental tests, producing a more holistic, more robust, better 

synchronised and integrated environment for pre-clinical analysis of TKR designs, 

materials and technologies. 

The technical contributions made by this thesis, and the contribution to 

knowledge in the field, may therefore be summarised as follows: 

 Rigid-body MBD models have been developed and robustly corroborated 

against various existing FE-based simulations, demonstrating that the 

performance-accuracy trade-off with MBD can be acceptable, if used 

appropriately. This confirms the findings of e.g. Bei [137] and Guess [197], 

who used such rigid-body modelling approaches extensively. 

 Specifically, improved models of the KKS and AMTI platforms have been 

delivered, building on the previous modelling of these platforms by (amongst 

others) Guess [109] and Lanovaz [200]. These new models can now serve as 

the basis for further ongoing research. 

 In the process, specific lessons have been learned about the mechanical 

behaviour of these experimental platforms. For example, the KKS modelling 

identified the considerable losses induced by frictional effects on the quad 

actuator in particular; subsequently the rig has been accordingly re-designed 

with new degrees of freedom to accommodate small amounts of 

misalignment. Similarly, the AMTI models highlighted the effect of friction in 

the roller-bearings; in light of this, much closer attention is now paid to this 

friction influence during experimental testing. These are two examples of how 

computational modelling can „feedback‟ into the physical domain of in-vitro 

testing (i.e. bi-directional sharing of information between in-vitro & in-silico 

platforms), hence the collaboration is mutually beneficial to computational 

and experimental modellers. 

 The combination of probabilistic methods with wear prediction has revealed 

that with many theoretical wear models, wear rate are quite sensitive to 

relatively small variations in the „input‟ conditions under test. For example, 

the study in Chapter Five revealed that misaligning the components to a 

relatively small degree (with a standard deviation of only 2°) is sufficient to 

produce a two- or three-fold increase in wear rates. Further, this sensitivity 
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appears to be somewhat design-specific. This would not be observed with 

purely „deterministic‟ assessments of wear (whether in-silico or in-vitro). 

 More generally, the focus on in-silico wear prediction in this thesis has led to 

an improved appreciation of the capabilities and limitations of existing 

models. We are now able to compare the predictive power of many of the 

current wear algorithms [216], and have identified a key weakness in their 

inability to account for the true observed experimental variability (as shown in 

the final chapter). 

 The application of probabilistic methods has been demonstrated, building on 

the foundation laid by Laz [95] and Pal [217]. We have performed a „first-of-

kind‟ probabilistic corroboration in the field of knee biomechanics [212], with 

a proof-of-concept study on the AMTI simulator providing promising initial 

results. This study shows that it should be possible to corroborate 

experimental knee test platforms probabilistically, and in the process identify 

which input factors are affecting the system performance. This work also sets 

a benchmark for future studies to work towards, in terms of combining 

computational-experimental corroboration with probabilistic methods. 

The assumptions and limitations within the present models should not be 

overlooked. Fundamentally, rigid-body modelling is inherently inaccurate for TKR 

contact mechanics; the contact pressures for almost any knee design or ADL 

profile will exceed the elastic limit of polyethylene; permanent plastic 

deformation will occur; over the long-term testing timescales of wear simulations, 

creep will alter the surface profile. Whilst these effects are generally relatively 

small, in certain cases (e.g. edge-loading of the insert, or loading of the cam-post 

in PS designs) the nonlinear behaviour may be considerable – then the 

assumptions behind rigid-body modelling begin to break down. (Nonetheless, the 

large performance gain for this small loss of accuracy must be considered) [94]. 

The choice of parameters for contact and friction modelling is based upon 

experimental tuning, and this introduces difficulties. Contact properties may vary 

from material to material; these differences are not characterised. Friction co-

efficient is known to be related to wear rate (Wang, [162]) and to vary across the 

polymer surface depending on the local motion paths at any given point (as 

shown by Dunn et al [205]) – again, the assumption of a single co-efficient value 

held constant across the surface and throughout the cycle is an over-

simplification of reality. To the author‟s knowledge, no force-driven simulation 

has yet been reported which varies friction across the contact area; despite the 

fact that, as reported by Godest et al, friction is known to be influential for force-
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driven modelling, and the reported coefficients used vary by as much as an order 

of magnitude [91]. There is clearly an opportunity for better accuracy in this area 

in future. 

The statistical modelling introduces the need for further assumptions; as 

discussed in Chapter Five, there is only limited and sporadic experimental data 

available describing the variation observed in many of the relevant factors; 

without better data, assumptions must be made about factor interdependence, 

distribution shapes, mean values, levels of standard deviation, and range limits 

on variables. All of these have the potential to introduce errors. It is hoped that 

with the wider adoption of probabilistic methods, researchers in the experimental 

and computational community will begin to appreciate more the value of better 

statistical data, and consequently more effort will be made to collate and report 

this information. A cursory analysis of the data reported by Mahaluxmivala et al 

[149] suggests that component misalignments may well be relatively independent 

of one-another, and have distributions close to Gaussian (as assumed in this 

thesis and other published studies); however this must be investigated further. 

In light of these limitations, and the other various obstacles and challenges 

identified during the various studies described, there is considerable scope for 

further work. Experimentally, there remains much work to be done in better 

understanding the mechanics of wear; in-silico models have a role to play in 

supporting this investigation, and better POD-test models will help to corroborate 

the most fundamental investigations into wear behaviour. There are challenges in 

translating the work done using POD investigations to the domain of TKR testing; 

again, the ability to decompose and analyse the mechanics in detail using 

computational methods is valuable in bridging this transition between different 

testing platforms.  

Nonetheless, the progress made with the current work is valuable; the concepts 

and methods of corroborated probabilistic analysis methods have been 

demonstrated and applied for a range of different platforms, and de-risked by 

extensive comparison to existing published work. The foundation has been laid 

for these models and modelling approaches to be used to support 

commercial/industrial TKR research and design efforts. 

The models created, especially the KKS and AMTI simulators, have potential to be 

used for further studies. The KKS model has been robustly validated, but only 

applied for a concept-demonstration study. The model could be used for a wide 

range of purposes besides profile generation and testing, probabilistic studies of 

misalignment. The flexibility of the in-silico model makes it an ideal test-bed to 
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explore future modifications to the rig (e.g. the possibility of a mobile A-P axis, or 

of including a „hamstring‟ actuator). Further, computational tools would allow 

better cross-platform modelling; it is possible to isolate and extract the 

kinematics for any given profile on the ADAMS KKS model, and use these as the 

basis for new knee-wear simulator profiles (e.g. on the AMTI rig). The central 

theme once again emerges: computational corroborative modelling has the 

potential to bridge and interconnect the various distinct experimental testing 

domains, providing a more holistic perspective, and enriching existing pre-clinical 

analysis capabilities. But this depends on high-quality, well-corroborated models. 

Note that all the work in this thesis has focused exclusively on corroboration with 

in-vitro testing; the entire domain of in-vivo validation has not been directly 

considered. The author would argue that in fact, until rigorous corroboration is 

possible between in-silico and in-vitro results, any application to in-vivo 

performance will always be open to question, hence fundamentally undermining 

the confidence of the broader healthcare community in any results presented. By 

first demonstrating good computational-experimental corroboration in the 

domain of pre-clinical in-vitro analysis, researchers and designers can 

demonstrate that they have a sound, robust, and quantifiable understanding of 

the physics of the systems they are working with; this in itself does not 

demonstrate that the results are applicable to in-vivo outcomes, but it is an 

essential foundation towards that goal. 

Ultimately, the delivery of new TKR designs is a large-scale, multidisciplinary 

effort, involving specialists from the clinical, industrial and academic community, 

encompassing backgrounds as varied as surgeons, mechanical engineers, 

physiotherapists, materials scientists, anaesthetists, computational modellers, 

manufacturing engineers, and many others. The tools and methods discussed in 

this thesis represent a small but essential part of this larger process-chain. Pre-

clinical analysis represents the enabling technology to deliver the next generation 

of knee replacements, in order to drive down revision rates and improve 

functional performance. Ensuring the very best tools are available to designers 

supports them in making the very best design decisions. By giving designers the 

confidence that their tests are reproducible and fully characterised, by presenting 

the „holistic‟ perspective offered with probabilistic methods, and by integrating 

the widest possible suite of tools for assessing knee kinematics, kinetics, laxity & 

wear, computationally enriched pre-clinical analysis methods can help to make 

those design decisions better, ultimately contributing to real improvements in 

patients‟ experience of TKR and subsequent quality of life. 
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APPENDIX A – HUMAN ANATOMIC REFERENCE FRAMES 

 

1. Reference Planes 

The human body can be adequately decomposed into three orthogonal reference 

frames. A plane may be defined to cut the body at any point, although planes 

cutting through the midpoint of the body are sometimes termed distinctly; e.g. 

the mid-way sagittal plane is termed the „median‟ or „mid-sagittal‟ plane. 

Sagittal (lateral):  Plane normal to the M-L axis, formed by the A-P & I-S axes 

Coronal (frontal, dorsal):  Plane normal to the A-P axis, formed by the M-L & I-S axes 

Transverse (horizontal):  Plane normal to the I-S axis, formed by the M-L & A-P axes 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Directional Terms (Translations) 

Many of these terms are used to indicate the relative position of features (or 

sometimes, to describe a relative motion), and do not have any „absolute‟ 

positional meaning. The most common are summarised in the following table 

(Note there is more than one term for some of these directions; the preferred 

term is shown in bold; the alternative in parentheses). 

Coronal 

Sagittal 

Transverse 

Superior 

 

Inferior 

 

Anterior 

 

Posterior 

Medial 

 

Lateral 
Medial 

 

Lateral 

 

Proximal 

Distal 

Distal 

Proximal 



211 

 

Inferior (caudal): „Lower‟ (closer to the base, caudal literally refers to „tail‟) 

Superior (cranial):  „Higher‟ (closer to the head) 

Medial:  Towards the median (mid-sagittal) plane; „inner‟ 

Lateral:  Away from the median (mid-sagittal) plane; „outer‟ 

Anterior (ventral):  „Forwards‟ (towards the front surface) 

Posterior (dorsal):  „Rearwards‟ (towards the rear surface) 

Proximal (central):  Closer to the centre of the body (torso) 

Distal (peripheral):  Further away from the centre of the body 

 

3. Directional Terms (Rotations) 

Adduction:  An active motion towards the median plane 

Abduction:  An active motion away from the median plane 

Internal rotation:  Rotation inwards (towards the body) 

External rotation:  Rotation outwards (away from the body) 

Varus:  An inward twisting of the distal limb (for the knee, „bow-legged‟) 

Valgus:  an outward twisting of the distal limb (for the knee, „knock-kneed‟) 

Flexion:  Motion that decreases the joint angle, or the state of being „flexed‟ 

Extension:  Motion that increases the joint angle, or the state of being „extended‟ 

Hyperextension:  Extension beyond the „normal‟ joint range 

 

 

Adduction 

 

Abduction 

 

 

 

 

 

Internal rotation 

 

 

 

 

 

External rotation 

    

 

Varus 

 

Valgus 

 

Flexion 

 

Extension 

 

Hyperextension 
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4. Motions at the Tibiofemoral & Patellofemoral Joints  

It is important to use anatomical frames of reference at the knee joint with 

caution. No segment of the knee is stationary; the tibia, femur and patella all 

change position and orientation in normal gait and other activities. Therefore, use 

of a term such as „inferior‟ or „superior‟ is misleading; the terms „proximal‟ and 

„distal‟ are better suited. (For example, with the hip extended the „distal‟ direction 

along the tibia is „inferior‟ when the knee is fully extended, but „posterior‟ if the 

knee is at 90° flexion). It is important that the frame of reference should always 

be reported (i.e. motion should be „with respect to‟ the femur, tibia or patella), 

e.g. an „anterior‟ motion of the tibia could equally be presented as a „posterior‟ 

motion of the femur (and vice-versa).  

However, since these various terms are widely used to describe knee kinematics, 

the following figures illustrate the conventional use of the terms for the 

tibiofemoral and patellofemoral joints. (Note: the illustrations show a „right‟ knee; 

for a „left‟ knee, the direction of medial-lateral, varus-valgus, internal-external, 

and patellar tilt & rotation would be mirrored. 

 

Figure A1: The motions of the tibiofemoral joint.
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Figure A2: The motions of the patellofemoral joint. 
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APPENDIX B – INTERFACING MSC.ADAMS WITH NESSUS  

Note: the information is presented in the context of an interface to NESSUS; however a 

similar technique may be used to link to any 3
rd

 party software via an ASCII-based conduit 

ADAMS includes its own proprietary stochastic analysis module (ADAMS/Insight) 

and does not directly interface to NESSUS. However it is useful to establish an 

interface to exploit some of the advanced analysis methods not supported within 

Insight. The following is a step-by-step guide: 

1. Create the rigid-body model in ADAMS/View. Use design variables for the 

parameters that will be varied as input factors. Use requests or measures for 

the parameters to be measured as output responses. The model must contain 

a script written using ADAMS solver commands („acf‟ syntax). The model must 

also contain at least one design objective; however this is a „dummy objective‟ 

and will not be referenced by NESSUS. Save the model as a binary file (*.bin), 

for speed of access (this will use more disk space, but the model itself will not 

be duplicated) 

 

2. Use a text editor such as notepad to create a template ADAMS/View command 

file (*.cmd) to run a DOE trial with the following commands: 

 

 

 

 

 

 

 

Where «RED» text is replaced with the required names. The input file must 

include the full path. Note the string of X‟s for the table_of_values parameter 

is deliberate; this string should be long enough for the numerical precision 

required by the model. More variable names & values can be added using 

comma separators; only two are shown for brevity. 

 

3. Beneath the above commands, add additional commands to export the output 

data to ASCII text file(s). The precise syntax depends upon the output data 

required. If a REQUEST is to be used from ADAMS, use the following syntax: 

 

 

 

file binary read file_name = "«PATH/FILENAME.BIN»" 

 

simulation multi_run doe & 

    model_name = «MODELNAME» & 

    sim_script_name = «SCRIPTNAME» & 

    variable_names = «FACTOR#1», «FACTOR#2» & 

    objective_names = «OBJECTIVE» & 

    rows_in_table = 1 & 

    table_of_values = XXXXX, XXXXX 

 

file request write &  

analysis_name = Last_Run & 

file_name = "«OUTPUT.REQ»" 
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If numeric data is to be exported (e.g. from a MEASURE), use the following 

syntax: 

 

 

 

Create as many outputs files as needed, although note that the specified 

filenames must not include a full path. Save the file as DOE_TEMPLATE.CMD. It 

will serve as the master template file to be edited by NESSUS.  

 

4. Load NESSUS, and start a new project. Define a suitable problem statement, 

e.g. “output1=f(x1, x2)”, and under response model define the model type as 

“Numerical” and application as “USER_DEFINED”. Choose Interactive mode, and 

enter the following execution command (note this is ADAMS version-specific; 

replace the text „adams05r2‟ according to your version of ADAMS): 

 

call adams05r2 aview ru-s b DOE_MODIFIED.cmd 

Underneath, for input files select your template file (DOE_TEMPLATE.CMD). 

Specify the destination as DOE_MODIFIED.CMD. The output files should refer 

to your «OUTPUT.REQ» or «OUTPUT.TXT» file(s). 

 

5. Under Create Mappings, create a mapping for each variable, ensuring the 

target is DOE_MODIFIED.CMD. For each variable, select the relevant 

line/column index for replacement, highlighting the correct „XXXXX‟ string. 

Ensure variables are in the correct order. 

 

6. Under „Select Responses‟, for each output make a similar mapping to the 

corresponding output file (*.res or *.txt). Note ADAMS can format and sort the 

output data using additional command line parameters which can be included 

in the *.cmd file - experimentation will reveal the most suitable file formatting 

to use for a given requirement. 

 

NESSUS is now able to interface to ADAMS, to run stochastic analyses. Note that 

the output files will be put into subfolders underneath the NESSUS project 

directory. If the input file path is not specified in the *.cmd file, ADAMS will 

overwrite the NESSUS path setting, and all output files will be created in the base 

directory, resulting in a „file not found‟ error in NESSUS. Consult the ADAMS and 

NESSUS help files for further reference on specific commands and options. 

numeric_results write &  

result_set_component_name = «MEASURE.CMPT» & 

file_name = "«OUTPUT.TXT»" 
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APPENDIX C – CHOSING CONTACT PARAMETERS IN ADAMS 

This information is a guide to help the new ADAMS user chose appropriate parameters for 

the ‘IMPACT’ function in ADAMS, to create an ‘elastic foundation’ (EF) contact model for 

tibiofemoral or patellofemoral knee mechanics 

The ADAMS „IMPACT‟ function [161] relates contact normal force (F
N

) directly to 

geometric penetration depth (g), using an exponential relationship of the form: 

e

N gkF  

Where k is the stiffness co-efficient and e is the force exponent. To derive suitable 

values for a rudimentary first approximation, several assumptions are made. For 

the discretised tibial or patellar insert, every cell is considered to be identical and 

differentially small, of equal material thickness (e.g. for a typical tibial insert, h ~ 

10mm). For the models in this thesis, the contact surface area of the cell was 

chosen as A = 1mm² (based on sensitivity studies), so to a first approximation, 

using the Young‟s modulus relationship between modulus, (E), stress (σ) and 

strain ( ): 

E  

With penetration related to strain by the equation: 

hg  

And contact pressure taken as a homogenous stress, and so related to normal 

force by the equation: 

A

F
CP n

 

So for a basic linear stress/strain relationship, with a given constant value of 

modulus (typical values for UHMWPE are ~1GPa, depending upon the grade; the 

NIST standard is 1258 MPa ±22<MPa [167]), the exponent, e, should be taken as 

unity, whilst the stiffness constant, k, would be: 

h

A
E

h

A

g

F
k n

 

Although this is a very simplistic approach, it is found that in many cases, this 

linear-elastic model is adequate for a first-order estimate of contact mechanics 

(especially if there is limited high-stress contact, e.g. edge-loading or cam-

loading). There are alternative proposals in existence, e.g. early mathematical 
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models of knee mechanics used a direct relationship between surface contact 

pressure and the penetration depth (see the models of Blankevoort, e.g. [218, 

219]), and these have subsequently been adopted for use in MBD and rigid-FE 

based models (e.g. [84, 94, 220]). Note though, that despite differences in 

terminology (e.g. “elastic foundation”, “bed-of-springs”, “pressure-overclosure 

relationship”), and different forms of the equations, these models are all 

essentially similar; considering the equation presented by Blankevoort: 

d
hvv

Ev
p

)21)(1(

)1(
   (from [219]) 

It is apparent that the pressure term, p, can be replaced with force, F divided by 

area, A, and the „d‟ term is equivalent to penetration depth „g‟; so the equation 

can be re-written as: 

g
h

A
E

vv

v
F

)21)(1(

)1(
 

Then the „stiffness‟ term, „k‟, is of essentially similar form to the equations used 

within ADAMS, (although with a correction factor for the Poisson ratio, „v‟): 
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The FE study by Halloran [94] used rigid-body models of FE based on linear elastic 

foundation models, and also deformable models of FE. This study reported only 

small differences between the rigid linear model, and the fully deformable model. 

Of course, the deformable model can be more accurate, and deformable models 

become necessary when high loads lead to significant non-linear behaviour or 

plastic deformation. 

To better reflect the relatively incompressible & elastic nature of the polymer, a 

factor may also be included to account for the Poisson ratio of the material, v 

(typically around ~0.45 for UHMWPE): 

h
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In reality, UHMWPE has a non-linear stress/strain relationship (modulus varies 

with strain); a typical experimental relationship is shown in the chart below. In 

this case, the linear model above cannot be used, and since the exponential curve 

cannot be fitted exactly, an appropriate regression fit must be chosen. 
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Typical stress-strain relationship for UHMWPE (from [221]). 

If the exponential „IMPACT‟ function is to reflect this nonlinearity, the exponent 

will not be „1‟; instead, both „e‟ and „k‟ must be fitted to the experimental data. 

The best result can be achieved by optimising the fit only within the area of 

interest. High stresses (above 20MPa) should not occur frequently; therefore the 

fit of the exponential curve may be optimised for the region below this (< ~6% 

strain). For example, the best fit achieved for the data in the above chart used the 

values k ≈ 6500, e ≈ 0.75 (R² = 0.989 for 0 ≤  ≤ 0.06). Note that these constants 

are specific to the values of „h‟ and „A‟ selected above (a different arrangement 

would need new constants). As with other numerical methods, a higher degree of 

nonlinearity in the contact mathematics will adversely affect solution times. 

Generally, the solver performance will be better for values of e greater than one. 

This is because the force F
N

 is set to zero for negative penetration depths (i.e. 

when the solids are not in contact, there is no contact force). The transition into 

contact using an exponential-type relationship will always be a continuous 

function, but the derivatives of this function will not be continuous if e <= 1, as is 

illustrated in the following figure. 

 

Relationship between F
N

 and g, for different values of e. Discontinuous derivatives of 

this function make numerical solution more challenging; therefore, from the 

perspective purely of computational-performance, values of e > 1 are to be preferred. 
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In conclusion, for exploratory and developmental modelling, it may be preferable 

to use values of e close to, but greater than unity for improved computational 

performance. For situations where experimental data is not available, the 

simplified „linear‟ elastic approach (i.e. e=1) has been shown to perform 

acceptably (for more detail on these linear elastic models with rigid-body 

modelling, the reader is referred to the thesis of Halloran [157]). When better 

accuracy is needed and good experimental data is available, a custom-fit non-

linear model may be selected instead (albeit at the cost of computational-

numerical performance). 
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