The University of Southampton
University of Southampton Institutional Repository

Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge

Bennett, Sarah A., Rouxel, Olivier, Schmidt, Katja, Garbe-Schönberg, Dieter, Statham, Peter J. and German, Christopher R. (2009) Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge Geochimica et Cosmochimica Acta, 73, (19), pp. 5619-5634. (doi:10.1016/j.gca.2009.06.027).

Record type: Article


Fe isotopes are a potential tool for tracing the biogeochemical redox cycle of Fe in the ocean. Specifically, it is hypothesized that Fe isotopes could enable estimation of the contributions from multiple Fe sources to the dissolved Fe budget, an issue that has received much attention in recent years. The first priority however, is to understand any Fe isotope fractionation processes that may occur as Fe enters the ocean, resulting in modification of original source compositions. In this study, we have investigated the Fe inputs from a basalt-hosted, deep-sea hydrothermal system and the fractionation processes that occur as the hot, chemically reduced and acidic vent fluids mix with cold, oxygen-rich seawater.
The samples collected were both end-member vent fluids taken from hydrothermal chimneys, and rising buoyant plume samples collected directly above the same vents at 5°S, Mid-Atlantic Ridge. Our analyzes of these samples reveal that, for the particulate Fe species within the buoyant plume, 25% of the Fe is precipitated as Fe-sulfides. The isotope fractionation caused by the formation of these Fe-sulfides is ?Fe(II)–FeS = +0.60 ± 0.12‰.
The source isotope composition for the buoyant plume samples collected above the Red Lion vents is calculated to be ?0.29 ± 0.05‰. This is identical to the value measured in end-member vent fluids collected from the underlying “Tannenbaum” chimney. The resulting isotope compositions of the Fe-sulfide and Fe-oxyhydroxide species in this buoyant plume are ?0.89 ± 0.11‰ and ?0.19 ± 0.09‰, respectively. From mass balance calculations, we have been able to calculate the isotope composition of the dissolved Fe fraction, and hypothesize that the isotope composition of any stabilised dissolved Fe species exported to the surrounding ocean may be heavier than the original vent fluid. Such species would be expected to travel some distance from areas of hydrothermal venting and, hence, contribute to not only the dissolved Fe budget of the deep-ocean but also it’s dissolved Fe isotope signature.

Full text not available from this repository.

More information

Published date: 1 October 2009
Organisations: Ocean and Earth Science, National Oceanography Centre,Southampton


Local EPrints ID: 68698
ISSN: 0016-7037
PURE UUID: e95f8613-65be-45f4-9de2-1b07d9b42b27

Catalogue record

Date deposited: 15 Sep 2009
Last modified: 19 Jul 2017 00:16

Export record



Author: Sarah A. Bennett
Author: Olivier Rouxel
Author: Katja Schmidt
Author: Dieter Garbe-Schönberg
Author: Christopher R. German

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.