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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Arun Kannath

The utility of breath trace compounds as bio-markers for various physiological condi-
tions has long been exploited for the diagnosis of various diseases. Urea breath tests
have been adopted as the gold standard for the detection of Helicobacter pylori which
is a primary cause for acute gastritis and peptic ulcers. In these tests, small changes
in the ratio of stable COs isotopomers, 2COy and >COg, present in exhaled breath
are measured precisely and this is conventionally done by using an Isotope Ratio Mass
Spectrometer. However, the huge cost and complexity involved in operating these instru-
ments has restricted their widespread use. A viable and low cost alternative is offered
by instruments employing non-dispersive infrared absorption techniques. The feasibility

of such an instrument has been explored in this work.

The instrument presented here is a two channel isotope ratiometer that performs whole
band integrated absorption measurements. Detection is based on a novel feedback mech-
anism whereby an imbalance in the channel absorptions causes the pathlength along one
of the channels to be altered in order to bring the system back to balance. This change
in ratio of pathlengths is directly related to the change in the 3CO5/'?COy concen-
tration. Significant amount of work has already been done to investigate the effects of
interferences from coincident absorption bands and other spectral effects that can lead

to spurious results.

A comprehensive description of the overall system design, development and performance
evaluation of the first prototype instrument has been presented here. This involved sig-
nificant computer modeling and simulations and the results were verified experimentally.
These results provided sufficient evidence to suggest the feasibility of such an instrument
as a diagnostic tool. It was also concluded that some design improvements were required
to circumvent issues related to pathlength variation and a list of recommendations has
been provided for this purpose. On the basis of the results obtained as part of this re-
search endeavour, it was concluded that the non-dispersive instrument design presented
here can form the basis for a low cost commercial alternative for performing carbon

isotope ratio breath tests.
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Chapter 1

Introduction

1.1 Carbon Isotope Ratio Measurements

Isotopes are atoms of the same element having the same atomic number but differ-
ent mass numbers owing to the difference in the number of neutrons. They result
in isotopomers which are molecules of the same species where one atom has been
replaced by its isotopic variant, creating molecules that have different physical
properties and behaviour. It is this difference in behaviour that is exploited in
their detection and concentration measurement which forms the basis of isotope

ratio tests.

In the field of isotopic studies, carbon deserves a special mention because of its
significance in various ecological, geophysical and physiological processes. The
stable isotopes of carbon, ?>C and ¥C, have found applications in diverse areas
such as measurement of atmospheric methane[4], age determination[5], global cli-
mate change research[6, 7], volcanic gas monitoring[8, 9] and detection of trace
sources of petroleum and natural gases[10] to name a few. Another major area of
application is in the field of medical diagnostics for the detection of various health
conditions. This is done by performing different kinds of tests, the most popular

among them being breath tests.

1.2 Breath Tests

Exhaled human breath has been known for many years to be an excellent indicator

of health conditions. The popular alcohol breath test for drivers traces its origin

1



Chapter 1 Introduction 2

to Stubbs[11] who in 1964 realised that detection of certain trace compounds in
exhaled breath indicated alcohol consumption by the individual. Numerous other
studies were carried out independently and it was soon discovered that the detec-
tion of certain breath trace compounds (BTC) could act as bio-markers to vari-
ous conditions such as diabetes[12], cellular damage[13], lung cancer[14, 15], liver
cirrhosis[16], schizophrenia[17], kidney failure[18] and exposure to pollutants[19]

among others.

The presence of isotopes of a BTC provides another useful means of performing
diagnostic tests called isotope tracer tests. Here the ratio of concentration of iso-
topomers of a particular BTC is determined before and after a deliberate increase
in the concentration of the rarer isotopomer. This increase in concentration is
achieved by the intake of a suitable substrate labelled with the isotopic variant of
the target molecule. This substrate is then metabolised by a biochemical reaction
into a labelled byproduct that is eventually expired via the lungs. Therefore, by
analysing a sample of the exhaled breath, the change in ratio of concentration
can be determined which is then used as an indicator of some prevailing health

condition.

The major constituents of human expired breath are shown in table 1.1[20].

Gases Dry Air Alveolar Air | Ezpired Air
mm Hg % | mm Hg % | mm Hg %
Ny (plus inert gases) | 600.2 78.98 | 569.0 74.9 | 566.0 74.5

O, 159.2 20.98 | 149.3 13.6 | 120.0 15.7
COq 0.3 0.04 | 40.0 5.3 | 27.0 3.6
H,0O 0.0 0.0 | 47.0 6.2 | 47.0 6.2

TABLE 1.1: Partial pressure of gases at sea level

The table above shows that there is a significant difference in the composition of
dry, alveolar and expired air. Dry air mainly constitutes nitrogen and oxygen.
During inspiration exchange of gases take place across the blood-alveolar mem-
brane whereby oxygen diffuses into the blood stream. Carbon dioxide, on the
other hand, diffuses from the blood into the alveoli and is released out during

expiration.

Initially breath tests were carried out using radioactive isotopes. Nitrogen and
oxygen are two major constituents of expired breath. However, their radioiso-
topes have very short half life periods and hence not suitable for the tests. Car-
bon has two radioisotopes, *C and 'C with half lives of 5715 years and 20.3

minutes respectively. *CO, was initially used for carrying out breath tests for
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the diagnosis of fat malabsorption[21]. But the associated health hazards posed
by these radioisotopes made them unpopular and focus was shifted to the use of
stable isotopes. 12CO, and ¥CO, are two stable isotopomers having relative nat-
ural abundances of 98.9% and 1.1% respectively. Although these stable isotopes
necessitate expensive measurement techniques and substrate preparation, their
high cost is offset by the inherent safety they offer. This allowed the opportunity
to conduct safe breath tests even on pregnant women and young children which
otherwise would not have been possible with radioisotopes. Hence from a safety

perspective, these isotopomers are ideal for performing breath tests.

The change in the ratio of concentration of the isotopomers is expressed as a
delta value, 6%o which is expressed mathematically by Craig’s formula 1.1. Here
Rs refers to the ratio of concentration of the isotopes in the breath sample after
administration of the test dose and Rr refers to the concentration in the reference

sample prior to it.

7RS—RT

)
Rr

1000 (1.1)
This value of Rr is taken as the standard reference or baseline measurement against
which an increase in '3C concentration is ratioed thereby resulting in positive delta
values. A measurement process of this nature gives high resolution which enables
a more convenient representation of the very small changes in *C concentration
when compared to other forms of enrichment representation such as atom%. This
is because atom% gives the absolute number of atoms of a given isotope in 100
atoms of the element and hence very small enrichment levels will appear only in
the third or fourth decimal position. As this delta measure is not in wide use other
than in this field, we give a detailed example of its usage. For instance, a value of
1%o implies a change in ratio of 1*C/2C of 1.1x107° which is equivalent to a *C

enrichment of 0.001 atom%. This can be illustrated mathematically as follows:

1%0= [(Rs-Rr)/Rr]1000

Rr /1000 =Rs-Rr

Now, Rr=[3C]/[**C] = 1.1/98.9 = 0.011
Therefore, 0.011/1000 = Rs-Rr

iLe. ABC]/[**C] = 1.1x107°

- A[BC] = 1.0879% 1073

This is equivalent to a '3C enrichment of 0.001 atom%. Estimation of a delta value

thus offers a useful means of representing very small changes in 13C concentration.
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1.3 Detection of Helicobacter Pylor:

Helicobacter pylori is a spiral shaped bacterium that lives in the stomach and
duodenum. It was first discovered in 1982 by two Australian physicians, Barry
J. Marshall and J. Robin Warren, for which they were awarded the Nobel Prize
for Physiology or Medicine in 2005. The inside of the stomach has a highly acidic
environment composed of many digestive enzymes and concentrated hydrochloric
acid (2-3 molar concentration) which would make it impossible for bacteria and
other microorganisms to survive. However, the stomach walls are protected from
these gastric juices and enzymes by a layer of mucus lining and it is here that
H.pylori dwells safely. In order to repel any gastric juices that do reach it, H.pylori
secretes an enzyme, urease, that converts the abundant urea in the stomach to

bicarbonates and ammonia as per the reaction given in equation 1.2.

NHy—CO — NHy+ H" +2H,0 — HCO; +2NH} (1.2)

The ammonia and bicarbonates form solutions that are basic and form a protective
"cloud” around H.pylori thereby neutralising the effect of stomach acids. This is
shown graphically in figure 1.1. It is this urea hydrolysis reaction that is subse-
quently used for H.pylori detection. The body’s natural defense mechanisms such
as killer T-cells and other white cells cannot reach the area of infection caused by
H.pylori since they cannot pierce the mucus lining. As a result, H.pylori gradu-
ally colonizes the gastric mucosa leading to acute gastritis and chronic conditions
which finally result in further complications such as peptic ulcer and mucosa as-
sociated lymphoid tissue lymphoma (MALT)[22]. It is also associated with heart
diseases[23] and gastric cancer and has been classified as a class one carcinogen
by the International Agency for Research on Cancer. H.pylori can be detected in
about 30% of the population of developed countries. It is believed to be trans-
mitted orally mainly through ingestion of fecal matter from waste tainted food or
water. It may also be thrown up to the mouth from the stomach during gastro-
esophageal reflux from where it could be transmitted to other people through
oral contact. Strong evidence of intrafamilial spread of H.pylori has also been
reported|[24].

The detection of this bacterium is based on the fact that it produces the enzyme,
urease, that dissociates urea molecule (NHy-CO-NHs) producing ammonia and car-
bon dioxide. Hence if an infected person consumes isotopically labelled *C-urea

(NH,-'¥CO-NH,), the urease produced by H.pylori will break it down producing
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Ficure 1.1: Figure showing how H.pylori is able to survive in the harsh acidic
conditions present in stomach by urea hydrolysis

isotopically labelled CO,. This excess 3CO, will then be released through the ex-
haled breath. A breath sample analysis will indicate a change in the concentration
ratio of the two isotopomers relative to its initial ratio that existed prior to the
administration of isotopically labelled urea. The associated delta value can then
be used as a definite indicator of H.pylori infection and serves as a completely
non-invasive diagnostic tool. This is the principle involved in Urea Breath Tests
(UBT). Detection of H.pylori by UBT has been adopted as the gold standard
because it determines the global presence of the bacterium in the stomach and
quickly shows negative results in case of eradication of the bacterium following
treatment. For UBTs, Rr refers to the ratio [*3CO,]/[**CO4] in the baseline mea-
surement obtained from the breath sample prior to urea administration and Rs is
the ratio ['*CO,]/[**CO,] obtained after urea intake. A pictorial representation of
the UBT process is shown in figure 1.2 [25].
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FIGURE 1.2: Principle of UBT which is used as a gold standard for H.pylori
detection

1.4 Objective

Several analytical techniques are available for precise isotopic ratio measurements,
the most important of which is Isotope Ratio Mass Spectrometry (IRMS). This
is a highly reliable and accurate measurement technique that can detect *CO,
enrichment of the order of 0.1%0[26]. But the high cost of the instrument, its
requirement for high quality vacuum, specialised technicians and careful sample
preparation has restricted its use to large research establishments and laboratories.
The most suitable alternative techniques for detection are the ones that employ
infrared spectroscopy. These instruments are basically infrared ratiometers that
detect the absorption of infrared radiation over a specified wavenumber region.
Isotopic ratio measurement is made possible due to the isotopic shift in their

absorption spectrum which is a direct consequence of their different mass numbers.

The objective of this research endeavour is to design, develop and evaluate the
performance of a compact and low cost infrared spectroscopic instrument based
on a novel detection technique that can perform isotopic ratio measurements for
H.pylori detection with a precision of 1%o. This will make it a very pragmatic and
commercial solution for non-invasive diagnosis. The proposed instrument will be
very simple to use requiring minimum maintenance. The design will not involve

expensive components thereby reducing the overall cost. It will also be portable
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and will require minimum human intervention. The targeted end user is a doctor
or a clinical technician who need not have any background information about the
physics involved. This will be a big step forward in bringing isotope measurement
instruments out from the confines of big research establishments to normal clinics
within the reach of common man. The following chapters in this thesis explore
the feasibility and development of such a spectroscopic instrument and describes
in detail the performance evaluation of the first prototype instrument. Chapter
2 gives a concise overview of the science of spectroscopy and the theory involved.
This is followed by chapter 3 which briefly describes some of the analytical tech-
niques that exist today and attempts to critically evaluate each one of them. The
proposed instrument design details and specifications are also included. Chapter
4 gives details of the computational work and simulations that were carried out
for an indepth analysis of various interfering factors that might influence the mea-
surement process. Chapter 5 provides an insight into the development of various
sub systems and their testing. The initial experimental results followed by actual
gas phase measurements are dealt with in chapter 6. Finally, chapter 7 discusses
the results achieved so far and provides further guidelines and recommendations

for improved instrument performance.



Chapter 2

Infrared Spectroscopy

2.1 Introduction

Spectroscopy deals with the interaction between matter and electromagnetic ra-
diation. When a sample of some substance is placed in the path of light radiation
having frequencies that match with the natural vibrational and rotational frequen-
cies of the molecules, they absorb these radiations and this causes certain energy
level transitions in them (not applicable for homonuclear diatomic molecules such
as Ny and O as there is no net change in dipole moment). The unabsorbed part
of the radiation is of course transmitted. By analysing this transmitted spectrum,
it is possible to identify the portion of the incoming radiation that has been ab-
sorbed by the molecules which in turn tells us about the nature of the substance
under investigation and also its concentration. This is due to the fact that differ-
ent molecules or functional groups absorb characteristic frequencies of radiation.
In other words, the absorption spectrum acts as a fingerprint for identifying the
various molecules that we see around us. This is the governing principle of ab-
sorption spectroscopy. Infrared (IR) spectroscopy utilises the infrared part of the
electromagnetic spectrum which extends beyond the visible from around 700 nm.
It can be broadly divided into near infrared (750 nm-3 pm), mid infrared (3-50
pum) and far infrared (50-1000 pm). Absorption of monochromatic radiation is

governed by the Beer-Lambert law as given in equation 2.1
I = Iyexp(—oa(v)cl) (2.1)

where [ is the transmitted radiation intensity, Iy is the incident monochromatic

radiation intensity, o(v) is the absorptivity or absorption cross-section, ¢ is the

8
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concentration and [ the pathlength. The product ¢l is the effective concentration
which is a measure of the the number of absorbing molecules in the infrared beam

path with units of molecules/cm?. Absorbance is given by equation 2.2
A= —log(T) =o(v)cl (2.2)

where T is transmittance, I/Iy.

Two conditions are assumed for the Beer-Lambert law to hold true. Firstly, this
law applies only to monochromatic incident radiations. Actually, the intensity of
a region of the electromagnetic spectrum that has a small spread of frequencies is
being measured. Hence absorptivity, o(v) is expressed as a frequency dependant
function. Secondly, it is also assumed that the concentration of the absorbing
species is low. At low concentrations, the absorbing component will be surrounded
by solvent molecules whereas at higher concentrations (saturated absorption), the
absorbing species will be surrounded by other similar molecules. This change
in environment will cause a change in the absorptivity, o(v) by, for instance,
changing the hydrogen bonding. Hence at lower concentrations, absorbance will
exhibit a linear dependance on concentration but at higher concentrations this
linearity ceases to exist as other higher order terms of the exponential function
need to be considered. The absorption of incident radiation by a molecule results
in transitions between the vibrational levels producing vibrational spectra. The

classical vibrational frequency for a diatomic molecule is given by equation 2.3

k
v= (1/2%)\/; (2.3)

where k is the force constant and p is the reduced mass. This shows the effect of

mass on molecular vibrational frequency.

2.2 Modes of Vibration

Each atom has three degrees of freedom to specify its motion along the three
coordinates. So a molecule with n atoms will have 3n degrees of freedom. However,
three of these are required for the translational motion of the molecule through
space. In the case of non-linear molecules, three other degrees of freedom are
required to specify the rotation of the molecule around its centre of gravity. A

linear molecule requires only two. Hence a non-linear molecule has 3n-6 internal
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degrees of freedom whereas a linear molecule has 3n-5 degrees of freedom. These
degrees of freedom correspond to the various vibrational modes of the molecule.
However, not all of them may be IR active. Only those vibrations that produce a
change in the dipole moment are IR active. COs is a linear triatomic molecule and
thus has 4 modes of vibration, namely the symmetric stretch, asymmetric stretch
and two degenerate bending modes, one out of plane and the other in plane. These
are shown in figure 2.1. Out of these, the symmetric stretching mode is not IR

active as there is no change in the dipole moment of the molecule.

© © ©

Molecular structure of Carbon Dioxide
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FIGURE 2.1: Vibrational modes of carbon dioxide

2.3 Rotational Vibrational Spectra of CO,

Vibrational energy is quantized and has discrete values called energy levels given

to a first approximation by equation 2.4
Epy =V +1/2)hv (2.4)

where V' is the vibrational quantum number, h is Planck’s constant and v is the
vibrational frequency. In order to interact with the incident electromagnetic radi-
ation, the molecule should also have an oscillating dipole moment associated with

the molecular vibration. This oscillating dipole moment leads to an exchange
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of energy between the radiation and the molecule. As a result of this stipula-
tion, homonuclear diatomic molecules, which do not produce a net change in their
dipole moment, will not absorb the incident radiation and hence will have no vi-
brational spectra. Equation 2.4 is true for harmonic oscillators where the force
holding the molecule is a linear function of the displacement of the atoms. A plot
of displacement v/s time for such an oscillator will be sinusoidal. In anharmonic
oscillators, the restoring force is not a linear function of displacement coordinates.
Also the vibrational frequency is not completely independent of amplitude. For
optical transitions in harmonic oscillators, V' can vary by +1. Transitions where
V' changes from 0 to 1 are dominant and are called fundamental transitions. In
anharmonic oscillators however, V' can vary by £2, +3....giving rise to overtone
transitions whose intensities depend on the anharmonicity of the molecule. These
overtone transitions are generally weaker than their corresponding fundamentals
(except for degenerate vibrations such as the bending mode in CO,). The ex-
pression for vibrational energy in the case of anharmonic oscillators is given by

equation 2.5 where 7, is the anharmonicity constant.

By = (V+1/2)hv — (V +1/2)*hva, + ... (2.5)

During IR absorption, rotational transitions also occur and these produce the
rotational structure of absorption bands. In rotational transitions, absorption of
a photon causes a change in the rotational frequency of the molecule unlike in
vibrational transitions. Rotational energy levels are also quantized as expressed

to a first approximation by equation 2.6
E,ot = BheJ(J +1) (2.6)
where J is the rotational quantum number and B is the rotational constant derived

from the moment of inertia I and is given by equation 2.7.

h

= 8n2el (2.7)

Since moment of inertia depends on molecular mass as shown in equation 2.8

[:w"2

o

(2.8)

where p is the reduced mass of the molecule, it can be deduced that the rotational

constant B also has a dependency on mass. This rotational constant has a slightly
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different value for different vibrational levels. The is because the moment of inertia
changes during a vibration in such a way that the average value of 1/I is not
exactly the same as it is at the equilibrium position. A pure rotational IR spectra
is produced only by those molecules that have a permanent dipole moment. Due
to symmetry conditions, COs belongs to the D, point group. These do not
have a permanent dipole moment and hence CO5 does not have a pure rotational
IR spectra. It produces ro-vibrational spectra due to the combined absorption
by rotation and vibration. From equation 2.6, we expect to see rotational lines

at equally spaced intervals of 2B cm™!.

This is based on the assumption that
the molecule under consideration is a rigid rotor whose dimensions do not change
with the rotation or vibration of the molecule. However, molecules are flexible and
hence rotation causes a change in the bond length due to the effect of centrifugal
distortion. The rotational energy expression for a non-rigid rotor is given by

equation 2.9 where D is the centrifugal dissociation constant.

E,ot = BheJ(J + 1) — Dhe[J(J +1)]? (2.9)

Consider a CO5 molecule that is vibrating along the molecular axis and also ro-
tating at the same time. The dipole moment is also oscillating and is given by

[ = acos 2my,t (2.10)

where v, denotes vibrational frequency. Suppose there is a plane polarised IR ray
approaching this molecule oscillating along the X axis. At any given time, the

molecular axis makes an angle # with the X axis given by
0 =27mu,t (2.11)

where v, denotes rotational frequency. Therefore, the component of i along the

X axis is

Wy = pcosf (2.12)
e = aCOS2TY,t. cos 2Tyt (2.13)
pe = a/2[cos2m(vy + v,)t + cos 21 (v, — ;)] (2.14)

Hence, this component of the dipole moment interacts with the IR rays of two fre-
quencies (vy,+v;) and (v,-v;,). If we consider a large number of identical molecules,

all of them will have the same v, but different values for v, which are quantized.
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By plotting a distribution function of v, against the number of molecules, a peak
value for v, can be obtained. This leads to the formation of a broad spectrum band
spread across a range of frequencies. The asymmetric stretch in COs causes the
oscillating dipole moment to change along the molecular axis resulting, at low res-

olution, in a broad doublet band called a parallel band as shown in figure 2.2. The

V,-V

<

o -

FIGURE 2.2: A parallel band formed from the asymmetric stretch mode result-
ing in a broad doublet at low resolutions with no central peak

bending mode on the other hand has two possible planes of bending. The molecule
can rotate with equal probability about two mutually perpendicular axes. If the
rotational axis is perpendicular to the plane of bending, then the dipole moment
orientation changes along the molecular axis resulting in a broad doublet (parallel
band). But if the rotational axis is parallel to the plane of bending, the dipole
moment orientation does not change resulting in a central peak. Since both have
equal probabilities, the total band is a combination of the two and is called a per-

pendicular band (broad doublet with a central peak) as shown below in figure 2.3.

On the basis of molecular symmetry, COy belongs to the D, h point group. This
defines certain selection rules that determine the allowed and forbidden transitions.
Combining equations 2.4 and 2.6, the total ro-vibrational energy is given by
equation 2.15

Eyrr =V +1/2)hv + BheJ(J + 1) (2.15)

Consider J” is the rotational quantum number for the ground vibrational state,
V=0 and J' is the rotational quantum number for the first excited vibrational

state, V=1. Rotational selection rules permit parallel bands to have AJ==+1 and
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FIGURE 2.3: A perpendicular band formed from the bending mode resulting in
a broad doublet at low resolution and a central peak

for perpendicular bands AJ=0,£1. Hence three different branches are produced

depending upon the transitions of the rotational levels:

when AJ=-1ie J'=J"-1 = P branch
when AJ=+1 ie J'=J"+1 = R branch
when AJ=0 ie J'=J" = Q branch

Now equation 2.15 can also be expressed as

E,r = (V+1/2)hev, + BheJ(J + 1) (2.16)

where 7, is the band centre expressed in wavenumbers, cm™!.

Hence, the energy change during a ro-vibrational transition for a rigid harmonic

oscillator is given by

AE@ r _
h—; =7, + B[J'(J +1) = J"(J" +1)] (2.17)
Hence, for a P branch
AE,,
— —y,—-2BJ" 2.18
e =V (2.18)

where J” = 1,2,3...
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For an R branch

AE
T — 5, +2B(J" +1) (2.19)
hc
where J” = 0,1,2...
And for a Q branch
ABvir _, (2.20)
— =1, .
hc

CO, has two strong IR absorption bands. The fundamental at 667.3 cm™! is the
perpendicular bending mode with P, Q and R branches and is designated as the v,
mode. The other strong fundamental absorption band occurs in the mid-infrared
region of 2349 cm~! which is the asymmetric stretch mode or the v5 mode. This
is a parallel band and has no central maximum i.e., no Q branch. Apart from
this, CO, also has a Raman active band or the v; mode at 1340 cm~!. This is

Iand 1388 ¢cm™! which are formed as

a combination of two bands at 1288 cm™
a result of Fermi Resonance. This happens in anharmonic oscillators when the
frequency of an overtone or a combination band may be nearly as same as that of
a fundamental band. The resonance leads to perturbation of the energy levels and
one of the level is pushed up and the other is pushed down due to repulsion. Only
those vibrational levels that belong to the same species in terms of their symmetry
can perturb each other. In such cases, two relatively strong absorption bands may

be seen instead of a single band for the fundamental.



Chapter 3

Spectroscopic Methods

As discussed in section 1.3, UBTs have become the universally accepted method for
the diagnosis of H.pylori. But there are different ways in which these tests can be
performed. Almost all of these methods are based on infrared (IR) spectroscopy
and several spectroscopic instruments have been designed in the past, each ex-
hibiting varying degrees of accuracy and precision. Some of the prominently used

techniques and their salient features are described briefly in the following sections.

3.1 Non-Dispersive Techniques

Instruments based on non-dispersive infrared spectroscopy (NDIRS) do not make
use of any dispersive elements such as prisms or gratings and hence whole band
absorption measurements are carried out. They offer a cheap and reliable alterna-
tive to IRMS. Optical filters can be used to restrict the IR window to a particular

region of interest.

Non-dispersive infrared heterodyne spectrometry is a non-dispersive technique
that was employed for the measurement of isotope ratios[27]. This spectrometer
detects a heterodyne signal that is generated by the partial absorption of ampli-
tude modulated radiation in pressure modulated gas samples. The modulation of
the infrared radiation is achieved by passing it through gas samples whose density

is modulated by a sinusoidal wave.

The radiation, v,, from the source is passed through a cell which contains a gas
with density p; that is density modulated to Ap; at frequency w; by means of a

pneumatic modulator. This results in the generation of a fundamental I} at w;.

16
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When this amplitude modulated signal is absorbed by a second gas at density po
and frequency ws, it generates not only another fundamental F5 at wy but also a
heterodyne signal H; 5 at w; wy. This signal is proportional to the concentration

of absorbing species in the second cell and is given by equation 3.1 shown below.
HLQ = [(1/2)”1”2[1[2AP1A,02C08(601 - wg)t]efA" (31)
where A, is a static component given by

Ao = pilipr + polaps (3.2)

This principle can be used for the measurement of carbon isotopes by first passing
the radiation through two optical cells containing a known amount of '2CO, and
1300, respectively. The modulated radiation is then passed through a third cell
containing the sample gas having both 2C and 3C. As a result, two additional
heterodyne signals, Hy9 g and H;3 ¢, will be generated as shown in equation 3.3.
Here APy is the pressure change of the sample gas and C§ and C& are the

concentrations of 2C and '3C in the sample gas.

His g = M%QZIQZSAPHAPSC%?
Hizs = pislislsAp1sAPsC’ (3.3)

Rs = 0§'/0§ = KHizs/His (3.4)
where K = (uirli2Ap12)/ (1351138 p13)

From equation 3.4 it is clear that the isotopic concentrations can be determined
from the heterodyne signal. This instrument was reported to have achieved a
precision of 0.4%0 and an accuracy of 1.3%o within 120s on a sample of 3% CO,.
However, this method also has its drawback in the form of a liquid Ny cooled
InSb detector. This adds to the cost and complexity of the design. It takes about
5 minutes from start for the detector to be cooled. In addition, this technique
requires larger breath samples than the IRMS. The use of pneumatic systems for
pressure modulation is also inconvenient. Several comparisons between the IRMS
and NDIRS were carried out[28, 29, 30| to evaluate the performance, reliability and
accuracy of NDIRS. The results have shown that with proper collection protocols
and test procedures, NDIRS can be used as a cheaper and viable clinical alternative

to the IRMS although it may exhibit lower precision and accuracy.
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3.2 Narrowband Techniques

These techniques make use of dispersive elements to achieve a high degree of
wavelength selectivity when broadband sources are used. This makes it possible
to resolve the individual absorption lines and hence the chances of coincident
absorption bands are greatly reduced. The use of dispersive elements can be

avoided by using lasers. However, this adds to the total cost of the system.

Photoacoustic (PA) spectroscopy is one such technique that has been employed
for isotopic studies[5, 31, 1]. This method made use of a continuously tunable CO,
laser with a bandwidth of 0.017 cm~!. Studies were carried out on multicomponent
COg mixtures in the 9 um to 11 pum region. The continuous tunability was achieved
by operating the laser at a higher pressure of 11.5 bar resulting in a strong overlap
of the pressure broadened transitions. The laser can be tuned between the 9R, 9P,
10R and 10P branches between 9.2 ym and 10.8 um with a pulse duration of about
100 ns. The beam is allowed to pass through a non-resonant PA cell containing
the gas mixtures. This beam excites the ro-vibrational energy levels of the gas
molecules. A pressure wave is produced inside the cell by means of radiationless
decay which is detected using a microphone. The experimental setup is shown in

figure 3.1.

By using a fitting procedure to superimpose the spectra of individual compounds,
concentration of the individual compounds were determined. However, this method
achieved poor sensitivity because COy absorption was not optimum in this wave-
length region. Greater sensitivity can be achieved in the 4.3 um region provided
an adequate tunable source exists. The technique requires small gas quantities
and is relatively easy to handle. However, from a purely commercial point of view,
it still does not fulfill the needs of a low cost clinical instrument. The use of laser

sources itself contributes to the design complexity and costs.

Laser analysis of isotope ratio based on the optogalvanic effect has also been em-
ployed for carbon isotope ratio measurement[32]. The optogalvanic effect is based
on the detection of an electrical signal in response to a stimulation of resonant
transition in a discharge species. In this particular case, the change in discharge
impedance was detected. A COs laser was used and the laser transitions were
identical to the probing transitions. The transitions used were P(22) 2CO; line
at 10.6 um and the corresponding *CO, line at 11.2 ym. This resonant laser
transition induces a change in the molecular excited state population which in

turn causes a change in the ionization rate. This finally produces a change in the
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FIGURE 3.1: Experimental setup for PA investigations with continuously tun-
able COjy laser, redrawn from [1]. PyD’s, pyrolectric detectors; Mic, microphone

electrical impedance of the discharge which is detected. Tests were conducted on
an exhaled breath sample and the results were impressive. The system reported a
precision of 10 ppm with a sensitivity and accuracy comparable to that of IRMS.
This method has several advantages such as total elimination of any optical com-
ponents and elimination of background optical noise. The only sample preparation
was that the subject’s breath was passed through a desiccator before entering the
discharge cell. However, the use of gas lasers does not make it a cost effective so-
lution and that explains why this technique has not been accepted as a clinically

viable solution.

3.3 Tunable Diode Laser Systems

Another major technique that has been successfully employed for UBTs is the
tunable diode laser absorption spectroscopy (TDLAS). A TDLAS system based on

wavelength modulation spectroscopy with first harmonic detection was developed
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for isotope ratio studies at 2.008 um[2]. The schematic of the experimental setup
is shown in figure 3.2. In this case a distributed feedback (DFB) diode laser was
used. The isotope ratio in the sample cell is determined by comparing its spectra
with that obtained from the reference cell. The laser frequency is scanned over the
absorption regions by means of a triangular wave at 0.045 Hz. Tuning is achieved
by varying the injection current by using a modulating signal at 10 Hz. Lock-in
amplifiers were used for first harmonic detection for better S/N ratio. Line pairs
were chosen taking into account their temperature effects and relative abundances.
The system, however, displayed lower long term precision and drifts from zero
value when both the cells had the same gas composition. This was attributed
to certain non-linear absorption effects. Operating pressures were reduced and
a better precision of 0.7%o0 was obtained with reduced drift. However, further
work needs to be done to achieve greater temperature stabilisation. A similar
procedure was also followed for isotopic studies at 1.6 um[33] and an accuracy of
0.5% was reported. An external Fabry-Perot interferometer was used for frequency
stabilisation. A major problem with these systems is the poor S/N ratio due to
the low absorption strengths and line intensities. This is particularly the case for
the rarer isotope of *C. A logical solution is to perform these tests at a longer
wavelength of 4.3 um where there is stronger absorption but the low prevalence of

DFB lasers that operate in the mid-infrared region is a hindrance.

The use of line pairs for the purpose of isotope ratio measurement poses other
problems. If two lines of similar absorption strengths are chosen then it may
affect the measurement precision due to the disparity in their absorption depths.
However, if this is overcome by considering lines of unequal strengths, temperature
dependencies of the lower transition states come into play once again affecting the
precision. A solution was proposed in the form of a balanced absorption setup[34]
where the major and minor isotopes were measured with different pathlengths
so as to compensate for the large difference in their concentration. The minor
constituent (1*CO;) was measured using a pathlength which was 72 times greater
than that used for the major constituent ('*CO;). This ratio is comparable to the
ratio of their natural abundances and hence both have similar absorption depths.
At the same time line pairs of equal lower state energy distribution can be chosen
so that any temperature fluctuation will reflect equally on both the lines. In
order to avoid problems caused by optical interference fringes in multi pass cells, a
complex cell design such as the off-axis resonator (Herriott) was used. A precision
of 0.2%0 was reported|[34].

Many other TDLAS based systems have been developed|[35, 36] for the non-invasive
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FI1GURE 3.2: Schematic diagram of the TDLAS experimental setup, redrawn
from [2]. FG, function generator; FM,flipping mirror; BS, beam splitter; OI,
optical isolator; Ph, photodiode

diagnosis of H.pylori. These systems used lead salt lasers that were operated in
the 4.3 pm region which offers the most suitable IR window for carbon isotope
analysis due to sufficient absorption strength, prevalence of well isolated lines
and absence of interference from other compounds having coincidental absorption
bands. However, the use of lasers and MCT (mercury cadmium telluride) or InSh
detectors which require adequate cooling adds to their cost and design complexity.
COq laser systems with intracavity absorption cells have also been used for isotope

analysis in atmospheric samples[37, 38].
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3.4 Other Related Work

With UBT gaining increased popularity and acceptance as an effective non-invasive
diagnostic tool, focus was also turned to evaluate its performance in comparison
with other existing methods for diagnosis. For instance, urea blood tests were
compared with UBT and tests were performed on several patients[39]. Results
showed 95% agreement between the two. These blood tests eliminated the need
for any basal tests. However, the blood samples had to be analysed using IRMS
which involved shipping costs and delays in getting the results. UBT was also
found to be as accurate and sensitive as antral histology, rapid urease test and
CLO test[40, 41, 42]. But the accuracy and sensitivity of UBTs are affected by the
dosage of C-13 meal and also the postdose measurement time[43]. Lower carbon
dioxide concentration in exhaled breath (<2%) has been shown to decrease the
specificity and accuracy of these tests[44]. Holding the breath for 5s before exhaling
seems to improve the situation. Several recommendations for the improvement of
test accuracy, specificity and sensitivity have been made in the form of improved
test protocols such as breath collection procedures, optimum C-13 enriched dose
and postdose measurement time and also the need for fasting and abstinence from
any drug intake prior to the test[45, 46, 47]. Studies have also been conducted to
further simplify the procedure by eliminating the collection of basal breath samples
provided the post-dose samples are collected 30 minutes after urea intake[48, 49].
A rather recent form of invasive technique for the diagnosis of H.pylori infection
was developed with the use of ion-sensitive field effect transistor (ISFET)[50]. It
consists of a solid phase tip coated with a monoclonal antibody towards H.pylori’s
urease which adsorbs the enzyme after 15 minutes of immunological interaction
with a gastric mucus sample. This urease is analysed in a measuring cell containing
urea solution. The pH change of urea solution after 55 seconds was measured using
a pair of reference and measuring ISFET thereby indicating the presence of urease
enzyme. Results showed a 92% sensitivity and 98% specificity using UBT as a
gold standard.

3.5 Proposed Instrument Design

As stated in section 1.4, the prime objective of this research project is to develop
a low cost and effective spectroscopic instrument that could be a possible clinical

alternative to the IRMS. It must not be prone to environmental fluctuations in
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temperature or pressure and must provide a stable response with sufficient accu-
racy and precision so that it can be employed for breath tests. On the basis of the
literature review and issues presented in the previous sections, it was concluded
that such an instrument will have to be one that is based on non-dispersive IR

spectroscopy.

In order to avoid problems posed by unequal line strengths, a balanced absorp-
tion system configuration was designed making whole band integrated absorption
measurements rather than comparing individual line pairs. The IR window of 4.3
pm was chosen for performing the measurements due to the strong absorption of
COy 3 mode. Besides, IR technology in the mid-infrared region offers a variety
of optical materials, transmission windows and suitable detectors. A comprehen-
sive study of the various possible interfering compounds present in human exhaled
breath was published by Mansfield[26] and it showed that this particular IR region
was free from all such coincident absorption bands. It is necessary to avoid coin-
cident absorption bands because a change in such bands can be misinterpreted as
a change in C-12 or C-13 bands and hence reduces the responsivity of the system.

Figure 3.3 presents an overall schematic of the proposed spectroscopic instrument.

C-12 Cell C2 L2

ICF
C-13

PSD

ICF

C-12 M2

L1 C1

C-13 Cell

Stepper
Motor

FIGURE 3.3: Schematic diagram of the proposed two channel non-dispersive
infrared spectrometer

The proposed instrument[51, 52] involves the use of a single broad band IR source,
S (any blackbody) that interacts with the two isotopomer channels individually.
The beam is collimated by lens L1 and then passed through an IR interference
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filter, IF, to restrict the bandwidth to the region of interest, 4.1 ym - 4.6 um
approximately. This window spans from the P(60) line of *CO, to the R(60) line
of 12CO; covering 99.9% of the total band strength. The beam is then redirected
alternately along the two channels by the reflective chopper C1, as described later
in this section. Henceforth, 2CO, will be represented as C626 which denotes
the mass numbers of the constituent atoms, O(16)-C(12)-O(16). Similarly, 1*CO,
will be represented as C636. A major unique feature of this setup is the use of
isotope correlation filters (ICF) to enhance selectivity. These filter cells are made
of almost 100% pure C-13 or pure C-12 depending on which isotopomer is being
measured. The C-13 channel thus contains an ICF filled with pure C-12 (C626)
whereas the C-12 channel ICF is made of pure C-13 (C636). This eliminates cross-
interference caused by the overlapping spectra of the two isotopomers. Figure 3.4

gives a pictorial representation of the use of ICF.

The beams are then passed through the gas cells containing first the baseline or
reference sample prior to urea administration and then the breath sample after
urea intake. The transmitted beams are then made to fall on the same detector.
This is made possible by the second chopper C2 which is synchronised to be at
anti-phase relative to C1. The novelty of this design lies in the use of a variable
length gas cell for the C-13 channel. The two cell lengths are roughly in the ratio
of the natural abundances of the two isotopomers (90:1), implying that the C-13
channel cell length is around 100 times that of the C-12 channel cell length. This
ensures balanced absorption for both the channels. The measurement is based on
a novel feedback mechanism whereby the C-13 cell length is initially adjusted so
that the detector gives a null output for equal basal integrated transmittances.
In the case of excess ¥C after urea administration, the unequal absorption will
unbalance the system. The error signal from the phase sensitive detector (PSD)
will then cause the servo loop to change the pathlength of the C-13 cell so as to
drive the system back to balanced condition or null output. The subsequent change
in length of the C-13 cell will then be a direct measure of the increase in ¥CO,
concentration from which the delta value can be evaluated. A point to be noted
here is that this system essentially performs a ratioing of the two channel lengths
and hence measures the relative change in concentrations and not the absolute
concentrations of the two isotopomers. This ratioing feature significantly reduces
its vulnerability to ambient fluctuations, variations in detector responsivity, source
temperature variations or other possible interferences as long as they affect both

the channels equally.

The detector plays a very important role as far as S/N ratio is concerned and it was
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FIGURE 3.4: Schematic diagram of filter cell domains. The rectangular boxes
represent the ICF domains whereas the bars represent the total spectrum spread
of the individual isotopomers

decided to use a very sensitive pyroelectric detector due to its high sensitivity, low
cost and operation at room temperature thereby eliminating the need for a liquid
Ny cooling arrangement. Since the scheme involves a slow measurement process,
faster response times such as those offered by MCT or InSb were not required. The
only requirement is for the IR radiation to be chopped since pyroelectric detectors
respond only when a temperature change occurs in the element. The signal from
the detector is applied to a phase sensitive detector which generates the required
signal to drive the feedback servo loop. The polarity of this output from the phase

sensitive detector provides the directional information for the servo loop and this
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determines whether to increase or decrease the C-13 cell length. The magnitude
of this output signal indicates how far off the system is from balance and hence

represents the proportional term of the loop.

Another unique feature of this instrument design is the proposed use of a pair
of synchronised chopper systems, C1 and C2, that also act as reflecting mirrors.
This innovative design avoids the use of costly beam splitters and also avoids the
undesirable consequence of 50% power loss that is normally associated with 50-50
beam splitters. The choppers will be synchronised and inclined at an angle of 45°
with the beam axis. When the incoming radiation strikes the reflective blades of
C1, it gets reflected and redirected along the C-12 channel after striking mirror
M1. C2 will remain open for the same period of time and allow the transmitted
beam to fall on the detector. Similarly, when C1 allows the beam to pass through
the C-13 channel, it gets reflected by mirror M2 and falls on the the blades of C2
which will reflect the beam on to the detector. This ensures that only one beam
is recorded at a time by the detector which also receives the reference signal from

the choppers.

As seen from the above, the proposed instrument incorporates several unique fea-
tures in terms of the measurement technique involved, the components used and
the overall layout. The use of a feedback servo loop to achieve balanced integrated
absorption along the two channels avoids the need to make any absolute concen-
tration measurements, unlike most of the other conventional designs. Instead, a
change in cell length is used as a measure of change in concentration and this
variable path length design is a novelty in field of isotope ratio measurements.
The ratioing method involved ensures automatic cancellation of common noise
sources and hence provides the system better immunity from such interferents.
The use of synchronised reflecting choppers is another novelty and to the best of
our knowledge, this has not been attempted before in the field of isotope ratio
studies. This has a significant effect in keeping the overall cost of the instrument
low thus making it a very attractive solution for practical and commercial applica-
tions. The use of small and simple optical and electronic components lends greater
portability to the overall instrument and this will help in meeting the stated ob-
jective of a portable and low cost diagnostic tool that requires minimum human
intervention. The research work presented here thus explores the feasibility of
a unique instrument that combines innovative design features and measurement

methodologies.



Chapter 4

Computational Studies and

Analysis

4.1 Development of CO, Spectroscopic Model

In order to fully understand the behaviour and analyse the performance of a CO,
spectroscopic instrument as described in the previous chapter, it was imperative to
develop a highly accurate spectroscopic model of the 4.3 um v3 absorption mode.
This computer model can then be used to perform several simulations to ascertain
the effects of fluctuations in ambient conditions and other interferents that may
result in spurious results. Development of such a spectroscopic model essentially

involves the following three steps.

4.1.1 Modelling of Absorption Line Positions

The first step was to accurately determine the position of the various line transi-
tions that needed to be included in the model. It must be noted that only those
transitions that had the required impact on the calculation of a delta value were
considered significant enough to be incorporated in the model[26]. The vibrational
rotational energy in wavenumbers is given by equation 4.1 where the spectroscopic
constants G,, B, D and H were derived from HITRAN (High-resolution TRANs-
mission) database[53, 54, 55, 56, 57].

AE, (v, ])= (G, -GN+ BJ(J +1)=DJ*J +1)*+ HJ*J +1)*..
= B (J" 4+ 1)+ DI+ 1) — HIBJ +1)3(4.1)
27
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where G -G is the band centre also denoted by 1,, B is the rotational constant,
D is the centrifugal distortion constant and H is the anharmonicity constant. All
the single primed and double primed values denote the upper and lower states
respectively. The same equation can be applied for the P, Q and R branches by

simply altering the values of J' and J” as mentioned in section 2.3.

4.1.2 Modelling of Absorption Line Strengths

Once the position of the line transitions were determined, the individual rotational

line strengths, S(T)[cm~!/molecule cm™2] were computed using equation 4.2

AEU+T][58LJ//1EJ// FJ// 1 —h,CAEU+r

Syr(T) = | 7, On J[1— eﬂfp(T)]

(4.2)
where S? is the rotationless band strength from HITRAN, L ju; is the Honl-London
factor, E;» is the Boltzmann distribution, F';» is the Herman-Wallis factor, T is
the temperature, 296K, K is the Boltzmann’s constant, A is the Planck’s constant,

c is the speed of light and Qg is the rotational partition function.

The probability of a transition is not a constant but depends on the number of
available degenerate levels in the upper transition state and this is represented by
the Honl-London factor which gives the number of participating rotational levels

at a given value of J”. This is given by

(J// + l)(J// _ l)
L?”l - J// (43)

27" + 1)(12)

L9, = (— 4.4

J" J//(J// + 1) ( )
(J"+ 1+ 1)(J" =1+ 1)

L?{ll - J// + 1 (45)

where the superscripts P, Q and R denote the respective branches.

Herman-Wallis factor accounts for effects such as Fermi Resonance, Coriolis Inter-
action and Centrifugal Distortion that arise from the interaction between rotation
and vibration which may alter the bond strength. For P and R branches, this is
given by

Fyr = (14 aym + aym? + azm?*)? (4.6)

where m equals -J” for P branch and J”+1 for R branch. For a Q branch, the



Chapter 4 Computational Studies and Analysis 29

Herman-Wallis factor is given by
FJ// = (1 + b2m2)2 (47)

where m is equal to J”. Here a1, ay, a3 and by are the Herman-Wallis coefficients.

The intensity of a transition line depends on the population of the lower transition
level. The population of a rotational level is related to the rotational partition
function Qg which is a normalising factor that is used to give a constant intensity
as the intensity distribution varies with temperature. Thermal distribution E;~ is

given by
B"heJ"(J" + 1)
KT

For rigid harmonic oscillators at normal temperatures, the partition function can

Ejr = exp (4.8)

be expressed as[58]

KT 1 1 Bhe 4  Bhe 1  Bhc

_ it - 2 3
@rn= g+ s T RT T 315(KT) + 315(KT)

(4.9)

For small B and large T, the rotational partition function can be evaluated using

a simpler expression[58] given by

KT

@n = Bhe

(4.10)

Both equations 4.8 and 4.10 when combined alters the intensity profile of each
rotational line depending upon the change in temperature. The vibrational contri-
bution to the partition function (), can be easily evaluated if anharmonicities are
neglected. These can be neglected safely only for lower vibrational levels for which
the neglect of the interaction of vibration and rotation is also permissible. This
has been included in the rotationless band strength S? obtained from HITRAN

database.

4.1.3 Line Shapes

The final step is to develop the line shape. IR absorption does not take place
at one single frequency but it has a measurable width. At normal pressures of 1
atm, this width is mainly due to collisional broadening and is described by the

normalised Lorentzian function as given in equation 4.11

L v/
fL(VO) B [(770 - AEU-H’)Q + 72] (411)
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where v is the pressure broadening coefficient or the half line width at half intensity.
However, at low pressures, Doppler effect becomes the dominant broadening factor
and this results in a Gaussian line shape. In the present case, Lorentzian line shape

is considered since the study is carried out at atmospheric pressures.

The above procedure is followed for each of the transitions being considered and
finally the line strength is multiplied with the line shape taking into account con-
tributions from other lines whose Lorentzian tail will significantly increase the
intensity. This product then represents each rotational line’s wavenumber depen-
dent absorption coefficient. These are then summed together to obtain a continu-
ous branch profile. This is repeated for the P, R and Q branches as required and
finally added together to get the complete CO4 spectrum. The same procedure is
repeated for both the isotopomers but with different constants as provided by the
HITRAN database[57]. The entire modelling work was accomplished by writing
MATLAB codes (see Appendix B). The overall absorption spectrum for both the
isotopomers in the 4.3 pm region present in their natural abundance is shown in
figure 4.1. Henceforth 2CO, and 3CO, will be referred to as C626 and C636
respectively, as shown in the figure, for convenience. This spectrum was simulated
at a standard temperature and pressure of 296K and 1 atm using a data resolu-
tion of 0.005 cm~!. As seen in the figure, C636 has a much reduced absorption
because its isotopic abundance is almost 100 times lower than C626. It can also
be observed that the R branch of C636 has been distorted due to the saturated
absorption from the P branch of C626.
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FI1GURE 4.1: Simulated overall absorption spectrum of C626 and C636
4.1.4 Validation of the Model

Before the spectroscopic model developed can be used to perform simulation stud-
ies to predict the instrument responses, it needs to be tested for its accuracy. The
accuracy of the model was determined by comparing the line positions and inten-
sities obtained from the model with those obtained from the HITRAN database.
Results of these comparisons showed excellent agreement between the two as rep-

resented by figures 4.2 and 4.3.

Figure 4.2 shows the error in line positions for P and R branches of C626 funda-
mental transition. As can be seen, the maximum error is around 0.00004 cm™*
which translates to roughly 1.2 MHz. Considering that the average rotational line
width of a C626 fundamental transition at FWHM (full width half maximum) is
about 4.8 GHz, this error is only about 1/4000"" of a typical line width indicating

the high accuracy of the model.
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FIGURE 4.2: Error in line position for P and R branches of C626 fundamental
transition

Figure 4.3 shows the percentage error in line strengths for C626 fundamental
transition. Near the branch’s maximum intensity (J=16), the error is around
0.02% which rises to about 0.8% for J=60. Since rotational lines from J(0) to
J(60) cover about 99.9% of the branch intensity distribution, it can be safely
concluded that majority of the branch has been modelled to a high degree of
accuracy. Similar results were also obtained for C636 fundamental and other hot
band transitions. Hence a highly reliable and accurate spectroscopic model has

been developed which can be used for further simulation based studies.

The effect of varying temperature and pressure on the absorption profile of CO,
can also be seen from the spectroscopic model as further proof of its validity and
reliability. Let us first examine the effect of increased pressure on the absorption
spectrum. If pure CO, is considered, then an increase in gas pressure will lead
to an increase in the number of molecules. This causes increased collisions be-
tween the various molecules which eventually leads to pressure broadening of the
rotational lines. For COg, the pressure broadening rate is about 7 MHz/Torr or
0.17 cm™! /bar. Since the integrated area under the line is representative of the
number of molecules, an increase in pressure will result in broadened line widths
but having the same peak intensity so as to have an increase in overall area under
the curve. This fact is shown in figure 4.4 and the increase in line width is about

0.08 cm ™! on one side which gives a total increase in line width of 0.16 cm~!. This
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FIGURE 4.3: Error in line strength for P and R branches of C626 fundamental
transition

is very much in agreement with the predicted value and is further testimony to

the accuracy of the model.

A change in temperature also alters the absorption band profile of the gas under
investigation. In the case of fundamental transitions, increase in temperature shifts
the peak towards higher J rotational lines, which is towards lower wavenumbers
for P branch and higher wavenumbers for R branch. This is clear from figure 4.5.
It can also be seen that the lower rotational lines get weaker whereas the higher

rotational lines get stronger.

4.2 Channel Spectral Profiles

The next step towards the realisation of a working instrument was to develop a
model for the complete device by integrating the various individual components.
Such a model when fully developed will exhibit all the properties and behavioral
characteristics of the final instrument. This is necessary to perform instrument
response simulations and characterisation. The basic instrument setup was shown
earlier in figure 3.3. Values of key parameters such as concentration of gas cells and
filter cells and their optimum lengths were determined for a balanced transmission
in both the channels. Considering 4% of human exhaled breath is made of CO2[59],
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FIGURE 4.4: Figure showing pressure broadening effect in pure C636 J(40).
Increased pressure leads to broadening of the line with the same peak intensity
leading to an increase in the overall area under the curve

concentration of 1*CO; is 1.1836x10'® mol/cm? and that of 2CO, is 1.064x10'®
mol/cm?® at STP. With a broadband infrared source at 674K (which corresponds
to a peak emission wavelength of 4.3 um), it was found that a 12-channel cell
pathlength of 0.1 cm will require a 13-channel cell pathlength of 10.245 c¢m in
order to achieve balanced absorption along both channels. Both the filter cells
had an effective concentration (lengthxconcentration) of 3.766x 10! mol/cm? at
100% isotopic purity. The IR filter was assumed to be a square pass band filter
having a pass band covering the entire IR region over which CO, absorption has
been modelled i.e. from 2167.7 ecm™! to 2391.7 ecm ™! or from 4.18 ym to 4.61 pm.
Using these values, codes were written for instrument response simulations. The
transmission spectrum for both the filter and sample cells were first developed to
give a better understanding of the utility of filter cells and how it avoids channel

cross-sensitivity.
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FIGURE 4.5: Effect of temperature increase on band profile for C636 funda-
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Figure 4.6 shows the 12-channel filter and sample cell spectral profile. Similarly
figure 4.7 represents the 13-channel spectral profiles for the filter and sample cells.
The distortion of C636 R branch by saturated C626 P branch can be clearly seen
in figure 4.7(B).
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FIGURE 4.6: Simulation of 12-channel filter cell transmission profile containing
100% pure C636(A) and overall channel transmission profile(B)
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4.3 Simulation of Spurious Results

Various sources of interferents were identified[26] that will produce spurious results
by generating apparent delta. These spurious results reduce the accuracy and
sensitivity of the instrument and will result in false positive or false negative
results which will have greater repercussions for the patient, apart from reducing
the specificity of the instrument. With the development of an instrument model,
simulations were performed to evaluate the effect of these interferents individually
on the final delta value. Based on these results, proper control measures can be
put in place to ensure reliability of the diagnostic result. The results are detailed

below.

4.3.1 Effect of Source Temperature Stability

For the blackbody radiation to have a peak value at 4.3 um, the source should
ideally be at 674K. A deviation from this temperature will only alter the equilib-
rium 13-channel pathlength required for balanced absorption but it will have no
effect on the final delta value as long as the same source temperature is maintained
throughout the course of the experiment. This can be attributed to the inherent
ratio nature of the system and can be proved by measuring the equilibrium lengths

required for different source temperatures as shown in figure 4.8.

From the figure it is evident that as source temperature increases the optimum

13-channel cell length required decreases. At first glance this seems strange since
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FIGURE 4.8: 13-channel cell length required for equilibrium absorption at var-
ious source temperatures

an increase in source temperature will cause the blackbody curve to shift towards
the lower wavelength region implying greater C626 absorption. Hence in order
to balance out the intensities from both channels the 13-channel cell length will
also have to be increased which is contrary to what the figure shows. The rea-
son for this can be understood if one takes into account the complete absorption
process sequentially starting from the filter cells. For this purpose the following
arrangement was considered. Let I1 and 12 be the infrared intensities emanating
from the pure C-13 and pure C-12 filter cells respectively and let 13 and 14 be the
intensities from the 12-channel and 13-channel sample cells respectively. Simula-
tion studies were performed to determine the ratio of intensities 11/12 and 13/14
at various source temperatures and figure 4.9 shows the results. At temperatures
below 674K, the blackbody curve shifts towards the higher wavelength C-13 region
and hence there will be greater absorption in the 12-channel filter. As a result I1
will be less than 12 and the ratio I1/12 will be less than one. Since the sample cell
lengths have been chosen for equilibrium absorption, 13/14 will also be less than
one. In order to bring the system back to balance, the 13-channel cell length will
have to be increased beyond 10.245 ¢cm to bring down 14, as shown in figure 4.8.
At temperatures above 674K, the reverse process takes place with increased 13-
channel filter absorption and a subsequent decrease in 13-channel cell length for
balanced absorption. It can be noted that at 674K, 11/12 is still slightly less than

one. This is due to the fact that the blackbody curve is not exactly symmetrical
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around 4.3 um and hence resulting in more C636 absorption. However, this offset
is compensated for by choosing appropriate cell lengths for both the channels so

that 13/14 is exactly equal to one.

However, if the source temperature varies between the basal and sample tests,
it will result in serious apparent delta values as shown in figure 4.10. Here the
basal temperature was maintained at 674K but the experimental temperature was
varied from 550K to 1000K. Figure 4.11(A) shows us that at 674K, a temperature
change of 1K produces an apparent delta of about 2.5%0 or in other words, source
temperature has to be stabilised to around £0.4K for a 1% precision. The source
temperature is currently set by controlling the voltage supplied to it from the
power supply. If the source temperature fluctuation is beyond permissible limits,
active temperature control using a thermistor or RTD will be required in order to
eliminate apparent delta values that will give rise to spurious results. However, if
we were to operate the source at higher temperatures, it seems that the apparent
delta produced by 1K change decreases in a more or less linear fashion. This
is clear from figure 4.11(B) where 1%o is produced by a temperature change of
about 0.65K when source temperature is 1074K. This indicates that operating the
source at higher temperatures is more beneficial as it slightly eases the constraints

imposed by source temperature stability.
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FIGURE 4.10: Apparent delta due to source temperature variation with a basal
temperature of 674K
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FIGURE 4.11: Apparent delta produced by 1K shift in source temperature(A)
and maximum tolerable temperature shift for 1%o(B)

Operating the source at higher temperatures will cause the equilibrium 13-channel
cell length to decrease as shown in figure 4.8. This is due to the shifts in the
blackbody curve with temperature as shown in figure 4.12. For ease of comparison,
exitance has been normalised in the figure. It can be seen that at temperatures
below 674K, there is a significant change in the shape of the curve that falls within
the IR filter window, with respect to the reference curve shape at 674K. At higher
temperatures, the shift is not so severe. This explains the reason for the dramatic

change in the equilibrium cell length required for temperatures below 674K as



Chapter 4 Computational Studies and Analysis 40

evidenced from the steep slope of the curve in this region in figure 4.8.
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FIGURE 4.12: Blackbody curves with normalised exitances at various temper-
atures

4.3.2 Etalon Temperature Stability

Another source of spurious results investigated by Mansfield[26] was etalon tem-
perature effect. The windows for the filter and sample cells act as low finesse
etalons producing multiple beam interference. This leads to modulation of the

transmitted intensity of infrared radiation as given by equation 4.12

1

p=—""
/o 1+ Fsin®4§/2

(4.12)
where F' is the finesse and 0 is the phase difference. Figure 4.13 shows the modu-

lation of transmitted intensity by etalon fringe effects.

If the temperature of the windows remain the same throughout the course of the
entire test, these fringe effects will be ratioed out as background. However, a
change in the temperature during the course of a test will shift the fringes causing

a change in the delta value.
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FIGURE 4.13: Modulation of transmission spectrum by etalon fringes at 296K
for a 2mm thick calcium fluoride window

Fringe shift for CaFy windows is shown in figure 4.14. Maximum modulation of
the transmission, T% takes place over one FSR (Free Spectral Range which is the
distance between two peaks) and Tpgg is the temperature required to move over a
distance of 1 FSR. Among the various window materials commonly used, fluorides
are considered to be a better choice due to their higher Trgr and lower cost.
Modulation of delta in the case of CaF; is shown in figure 4.15 indicating a T gpgg of
around 18K. A solution to this problem is to wedge the face of the window thereby
introducing a deliberate difference in thickness. The phase difference induced
produces Fizeau fringes that incoherently add up to give almost no interference.
The wedge angle depends on the optimum number of fringes that will minimise
this effect and this is represented by equation 4.13. The upper limit of wedge angle

is set by the resultant optical deviation.

CNA/2
N na

0

(4.13)

where N is the number of fringes, a is the window thickness and n is the refractive
index of the medium. For CaFsy, it was shown that a wedge angle of 0.82 mrad

producing 10 fringes was ideal[60].
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4.3.3 Effect of Ambient Temperature and Pressure

Temperature and pressure inside the cells were also found to affect the observed
delta as they will alter the absorption profile of CO,. Simulations were performed
by changing the temperature of the cells between the basal and sample tests as-
suming thermal equilibrium among the cells themselves. The basal temperature
was maintained at 296K and the sample test temperature was then gradually var-
ied. The results are shown in figure 4.16. It can be seen that a change of 1K in
temperature produces a change of -2.1%o. This implies that in order to restrict the

delta variation to 1%, cell temperature stabilisation of +0.5K is required. In order
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FIGURE 4.16: Effect of ambient temperature variation on apparent delta

to monitor real time cell temperature variations, a temperature sensor LM35CZ
(c.f. Figure A.1) will be attached to the walls of the filter and sample cells. The
signal from the sensor can be used to perform calibrations in real time in case the
temperature fluctuation exceeded permissible limits. Further analysis and control

measures will be devised after observing real time variations of temperature.

Pressure effects were also studied by running simulations at various pressures and
the results are presented in figure 4.17. Average fluctuation in pressure is about
1-2 mbar/hr which will result in a change of only 0.4%o. Since the effect of am-
bient pressure was much less significant, it was decided that no pressure controls
are necessary although a monitoring of the cell pressures will be done. The pres-

sure in the filter cells remains constant as it remains sealed once filled with the




Chapter 4 Computational Studies and Analysis 44

pure isotopomer. During the filling process, pressure gauges will be employed to
regulate the flow. However, for the sample cells, a pressure sensor SDX15A2 (c.f.
Figure A.2) from Sensym will be connected to the gas delivery tubes that enter the
sample cells. This will help to constantly monitor any abrupt pressure fluctuations

although they are unlikely.
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FIGURE 4.17: Effect of ambient pressure variation on ambient delta

4.3.4 Water Vapour Effects

Presence of moisture or water vapour in the cells can cause problems in the form
of additional spectral features and it can also pose problems for the optical com-
ponents such as windows. A study of the line strengths of H,O and CO, was
done in the region 2200 cm™! to 2400 cm~'. All C626 lines were much stronger
than the water lines present in the defined IR region. For C636, lines up to P(50)
were found to be at least five times stronger than the H,O lines. Hence water
vapour does not pose any problems that will result in apparent delta and generate
spurious results. However, anti-condensation mechanisms in the form of molecular
sieves such as Drierite (CaSO,4) will be used to ensure better protection for the
optical windows. These Drierite beads will be inserted into the delivery tubes that
carries the breath sample to the gas cells thereby absorbing any moisture content

in the breath sample and making the gas cells moisture free.
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4.3.5 Background CO,

Fluctuation of COy concentration in the non-sample pathlength (nsp) will also
result in spurious results. This is more serious in the case of C-12 channel due to
high natural abundance of C-12. It was found that a nsp of 20 cm with ambient
CO; level of 1200 ppm (considering a poorly ventilated room) has an effective
concentration that is 6 times greater than the sample cell[26]. Thus it is essential
to purge the instrument beam path. This can be done using a purge of dry Ns
gas having a purge quality of less than 2 ppm. This will make the nsp effective
concentration 100 times less than that of the sample cell. Another important
issue involved is that of purge stability. A variation in purge quality will upset
the balanced transmission of the two channels with greater effect on the C-12
channel. It was determined that a compromise between nsp and purge stability
was required. Greater the nsp, better the purge stability required. A typical nsp
of around 30 c¢m will require a purge stability of better than 4+0.1 ppm for an
apparent delta tolerance of less than 1%o [26]. Another way of circumventing this
problem of background CO, is to use a CO, absorber material such as Ascarite.
Since the whole instrument will be enclosed from all sides, a layer of Ascarite can
be placed within the walls of the instrument cover. This will ensure that the nsp
is always free from background CO,. This avoids all the complexities involved in
using a dry Ny purge, although it will necessitate replacement of the Ascarite layer
once it has been fully replaced by sodium carbonate. Besides, the use of materials
that emit less amounts of CO, for the various components and fittings within the

instrument such as the tubings will also help to keep the nsp free from background
COs.



Chapter 5

Component Development and

Characterisation

5.1 Source Characterisation

An IR broadband source IR-12 (c.f. Figure A.8) from Scitec was chosen as the
blackbody source. It had a thermocouple probe attached to it for accurate mon-
itoring of the source temperature. The source has a peak operating temperature
of about 1074K when driven at 4.5 V/1.8 Amps. In order to characterise this
blackbody source, its output power was measured as a function of source tem-
perature. For this purpose, an IR detector LTIQ2 (c.f. Figure A.9) from Scitec
was used. The detector was fitted with a CaFy, window and had a responsivity
of 250 V/Watt and a detectivity greater than 8.0x10® cmHz'/?W~!. The source
was chopped at 30 Hz and was placed 7.5 cm, 9.0 cm, 10.0 ¢cm and 12.5 cm away
from the detector. The measurements are shown in figure 5.1. The temperature of
the source was measured by using the attached thermocouple probe and a digital

thermometer.

The figure shows that the output of the detector varies in a quadratic fashion with
respect to the source temperature in contrast to a fourth power variation according
to Stefan-Boltzmann law which is expected in an ideal case. The law states that
the total radiant exitance emitted from a unit surface area of a blackbody, M, (T),

is directly proportional to the fourth power of the blackbody’s temperature, 7.

46
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FIGURE 5.1: Characterisation of blackbody source by measuring source exi-
tance as a function of source temperature

That is,
M, (T) =oT* (5.1)

where o is the Stefan-Boltzmann constant. This law, however, is based on the as-
sumption that the blackbody under consideration is a true blackbody with emis-
sivity equal to 1, which is not valid under the present circumstances. Besides,
absorption in the mean pathlength between the source and the detector also needs
to be considered during practical test conditions. As a result, deviation from the
law is expected which explains the observed quadratic dependance rather than a
fourth power dependance. The detector linearity was also checked by calculat-
ing 1/r* fall off of the detector output. There was good agreement between the

expected and experimental values for 7.5 cm and 9.0 cm.

However, the most critical evaluation for the source is its temperature stability
since any fluctuation in the source temperature greater than +0.4K during the
course of the experiment will affect the overall accuracy of the instrument. For
this purpose, simulations were performed to calculate the approximate detector

output for the configuration shown in figure 5.2.

L1 and L2 are CaFy plano-convex lenses having a focal length of 10 cm each that
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DC output

Lock-n

FIGURE 5.2: Setup used to study source temperature stability

will finally form part of the complete design. L1 collimates radiation from the
source, S, whereas L2 focusses it on to the detector, D. The source and detector
were placed at the focus of these lenses as shown. An IR band pass filter, IF,
from FK Opticals was placed just after L1 since it is be better for a collimated
beam to be passed through the filter. More on this filter will be discussed in the
next section. The distance between the two lenses was about 30 ¢cm which will
roughly be the case in the final instrument setup, giving enough room for the filter
and sample gas cells. A chopper running at the proposed chopping frequency of
10 Hz was placed in front of the detector. Optical alignment of the components
was checked using a laser beam. The output of the detector was fed to a lock-in
amplifier to extract the DC signal to get a measure of source temperature stability.
Power loss due to optics and beam divergence was incorporated in the simulation
codes to calculate the output voltage from the detector. Figures 5.3 and 5.4 show
the recorded waveforms at 1074K and 774K. The waveform at 10 Hz is the detector
output and the DC signal on top is the output of the lock-in amplifier. For 1074K,
the experimental detector output of 27.50 mV was in excellent agreement with the
calculated value of 27.9 mV. At 774K, deviation of the experimental value of 5.77
mV from an expected value of 7.0 mV was observed implying better agreement at
higher temperatures. This may be because at 774K, the source is being operated
at a temperature close to the shorter end of its operating range and hence the
deviation in its performance. Besides, at temperatures close to 674K, the detector
signal is more sensitive to variations in ambient COs levels since the peak of the

blackbody curve coincides with the 3 absorption mode of CO,. But the point
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of real interest was the source stability as represented by the DC output from
the lock-in. At both the temperatures, the DC line was adequately stable and

remained constant over the entire period of observation which was 20 minutes.
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FIGURE 5.3: Source stability check at 1074K
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FIGURE 5.4: Source stability check at 774K

For a more quantitative analysis of source stability, the standard deviation of the
DC values at 774K and 1074K were calculated. When converted to absolute tem-
perature scale, these standard deviations provide a measure of source stability. It
was found that at 1074K, this value was about 0.3K whereas at 774K, the sta-
bility was even better with a standard deviation of less than 0.05K. This clearly
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demonstrated that the IR-12 source under test was adequately stable and met
the stability criteria for our instrument by a good measure. Hence it was con-
cluded that no special control measures for stabilising the source was needed at

the moment and this concluded our source stability analysis.

5.2 Infrared Interference Filter

As discussed in chapter 4, the interference filter IF to be used in the instrument
should ideally have a passband ranging from approximately 4.1 ym to 4.6 um,
thus covering almost 99% of the total band strength for COy. This particular
infrared region is most suitable for our application as it is relatively free from other
interfering compounds that have coincident absorption bands. One such filter was
obtained from FK Opticals which had a passband from 4.1 pym to 4.5 pm with a
central wavelength of 4.3 pm. The transmission profile of the filter was obtained
from an FTIR spectrometer and is shown in figure 5.5. To get a clearer picture, the
filter profile was superimposed over the C12 and C13 absorption profiles as shown
in figure 5.6. The filter had a transmission greater than 60% in the passband
region and fully blocked the out of band regions.
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FIGURE 5.5: Interference filter transmission profile recorded using a FTIR
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FIGURE 5.6: Filter profile superimposed over C12 (C626) and C13 (C636)
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5.3 Gas Cell Design and Construction

5.3.1 Isotope Correlation Filter Cells

The proposed two channel IR spectrometer requires four gas cells in all. Each
of the two channels has two gas cells, an isotope correlation filter (ICF) cell for
enhancing selectivity and a sample gas cell containing the breath sample. The
ICF cell in the 12-channel will contain pure *CO, while the ICF cell in the 13-
channel will contain pure *CO,. The optimum ICF effective concentration (which
is concentration times pathlength) for these filter cells was found to be 3.766x 10"
mol/cm?®[26] at 100% isotopic purity. This is equivalent to a pathlength of around
1.4 cm for these ICF cells. The length of these cells depends on the isotopic purity
of the constituent isotopomer. A preliminary enquiry revealed that obtaining ultra
pure 3C labelled CO, will be very expensive. However, the prices come down to
a reasonable level at 99% isotopic purity. Hence if we consider 99% purity for
the 12-channel ICF cell, its pathlength will increase slightly to 1.41 cm so as

3. Using

to maintain the required effective concentration of 3.766x10' mol/cm
99% isotopic purity in the ICF cell will have no adverse effect on the working
of the instrument. The only consequence of using reduced purity is a change

in the optimum 13-channel sample cell length. This will deviate from the actual
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10.245 cm required for balanced absorption. A simulation revealed that decreasing
isotopic purity resulted in a decrease in the 13-channel equilibrium cell length as

shown in table 5.1. In the case of 13-channel ICF cell, this will not be a problem

13C Purity, % | Equilibrium Cell Length, cm
100 10.245
99 10.077
98 9.91
97 9.741
95 9.402

TABLE 5.1: Equilibrium cell length for different 12-channel ICF purity levels

since 12C labelled CO, is available with very high purities of 99.95% at reasonable
costs. Using these dimensions, the two ICF cells were made with provisions for
valve connections at the top. These cells were then fitted with specially wedged
CaFy windows which were purchased from EKSMA. These windows were 38.0 mm
in diameter and had a deliberate wedge of around 4.0 min (1.16 mrad) to overcome
the effect of etalon temperature instability as discussed previously in section 4.3.2.
The windows were glued on to the cells using a special ECOBOND adhesive whose
constituents were mixed in the appropriate ratio so as to make it slightly flexible.
The circular frame into which the windows fit were made of brass since brass had a
thermal expansion coefficient similar to that of CaF, thereby reducing the chances
of the window snapping along its cleavage lines due to thermally induced stress.
A mechanical drawing of the ICF gas cell body has been included in the appendix

for reference(c.f. Figure C.1).

5.3.2 Sample Gas Cells

The sample gas cells will hold the breath samples in both the channels. As dis-
cussed previously, at 674K, the length of these cells will be 0.1 cm and 10.245
cm for the C626 and C636 channels respectively. These lengths are roughly in
the ratio of the absorption strengths of C626 and C636 and will hence ensure a
balanced absorption in both channels. A sketch of the 1 mm 12-channel cell is

provided in figure 5.7.

The design is simple and straightforward apart from the fact that the gap between
the two end windows was just 0.1 cm. Provisions for gas inlet and outlet were

made on either side of the circular frame that holds the windows. 4 mm PFA
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FIGURE 5.7: 1 mm gas cell for C-12 channel

tubes were connected to the cell using brass push-in fittings. The CaFy windows

were then glued on to the cells as before.

The design for the longer cell in the 13-channel was more complicated. One of
the major features of the proposed instrument is its ability to maintain balanced
absorption in both channels by virtue of a unique feedback mechanism where the
length of the 13-channel cell is constantly adjusted to obtain null output from the
detector. Such a condition is indicative of an equilibrium in channel absorptions.
A delta value of 1%o requires a 70 pm change in length whereas 100%o0 will require
the cell length to be changed by about 7 mm. Hence the design of the longer gas
cell had to provide for adjustable pathlength. This was accomplished by having
a section of the cell body made of edge welded bellows. As mentioned earlier,
for a source temperature of 674K, the equilibrium cell length was about 10.245
cm for 100% isotopic purity in the ICF cells. However, if the source was driven
at higher temperatures, the length decreases to about 4.6 cm at 1074K. In order
to ascertain any other secondary effects this decreased cell length might have, a
calculation of the signal strength falling on the detector was made taking into
account all possible sources of power loss such as reflection and divergence losses.
The specifications of the source and detector as found in the data sheets were

used for this purpose. The difference in the channel intensities due to 1%o were



Chapter 5 Component Development and Characterisation 54

calculated and shown in table 5.2.

Temperature, K | Difference in Channel Intensities, nW
674 0.50
874 1.20
1074 1.97

TABLE 5.2: Difference in channel intensities for 1%o at various source temper-
atures

It can be seen that as the temperature increases there is greater difference in the
channel intensities making it easier for detection. This is due to the change in
the shape of the blackbody curve with respect to the absorption profile of the two
isotopomers which can also be deduced from the series of blackbody curves that
were plotted in figure 4.12. Also the relative change in length at various delta
is the same for both 674K and 1074K as seen from the slope of the curves in
figure 5.8.
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FIGURE 5.8: Relative change in cell length for various delta at different tem-
peratures

Thus responsivity of the measurement system will not be affected by increased
source temperature. Hence it is beneficial to drive the source at higher tempera-
tures, say 1074K, implying that the 13-channel cell length will have to be reduced

to about 4.6 cm. However, it was decided to initially carry out tests at 674K as
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decreasing the free length of the cell is always possible at a later stage. Hence the
free length of the whole tube was set at about 10 cm with a stroke of 25 mm to
be provided by the bellows section. This implies that the length of the tube can
be effectively varied from about 8.5 cm to 11.0 cm thereby covering the required
range of lengths for reasonable delta values. The tube section was purchased from
Nor-Cal UK. Some additional changes to the tube section were made in order to
house the end windows. With the addition of windows, the total length of the
gas cell can be varied from 9.5 cm to 12 cm. A sketch of the gas cell is shown in
figure 5.9.

\z:

FIGURE 5.9: Variable length gas cell in the 13-channel with micrometer ar-
rangement

As seen in the figure a special arrangement consisting of a single axis translation
stage was incorporated into the cell structure to provide the necessary cell length
manipulation. The micrometer connected to the linear translator will eventually
be driven by a motor that will form part of a position control feedback mechanism
that derives its error signal from the phase sensitive detector connected to the
pyroelectric detector. A screw arrangement was also provided for adjusting the

horizontal alignment so that the end windows remain parallel to each other.
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5.4 Phase Locked Optical Choppers

5.4.1 Electronic Phase Locking

The use of two synchronised optical choppers as a substitute to beam splitters was
briefly mentioned in chapter 3. Beam splitters are frequently employed in many
optical instruments in order to split the incoming light or to combine light from two
different channels. Such a scheme works well in most cases and their simplicity is an
added advantage. However, in our application, beam splitters pose certain issues
and problems that are further compounded by the highly sensitive and low power
signal detection nature of the measurements involved. Beam splitters normally
used are 50:50 beam splitters where only 50% of the input power is received at
the output. The use of two such beam splitters, one for splitting and directing the
beams along the two channels and the other to recombine and redirect them onto
the detector, will reduce the amount of power falling on the detector by 75% or a
factor of 4. This 75% loss in optical power will reduce the S/N ratio at the detector
which is undesirable. Secondly, beam splitters in the mid infrared region are quite
expensive and the use of two such beam splitters will not be a good choice for a
low cost diagnostic instrument. Besides, polarisation related problems in the form
of slightly different reflectances for the s and p polarised light will result in slightly
different intensities of infrared radiation falling on the detector, thereby upsetting
the balanced nature of the system and giving rise to spurious delta. Such small
variations will have a profound effect on the final outcome since we are precisely

looking for such small variations to detect changes in the isotopic ratio.

All this led to an alternative idea of using synchronised optical choppers that also
act as mirrors. As discussed in section 3.5, two such optical choppers, one at the
input and the other at the output, will perform the same task as the beam splitters.
Two sets of three blade choppers were thus designed and made from aluminium.
The blade surfaces were lapped and then polished using a diamond compound in

order to make them reflective. One such chopper is shown in figure 5.10.

As seen in the figure, the edges of the blades were deliberately cut back by 45°
so as to prevent light from being reflected off these edges. This was be necessary
since the choppers were inclined at an angle of 45° with the optical axis. The
choppers were mounted on two low inertia dc servo motors from McLennan (c.f.
Figure A.10, Figure A.11) with built in encoders for feedback purposes. The next
step was to phase lock them such that both the motors have the same chopping
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F1GURE 5.10: Three blade reflective chopper

frequency of 10 Hz but are 180° out of phase. Referring to figure 3.3 in chapter
3, when C1 alternatively reflects light along the C-12 channel and transmits light
through the C-13 channel, C2 being in anti-phase with the first, will alternatively
transmit light from the C-12 channel and reflect light from the C-13 channel. This
ensures synchronous detection of the two channel intensities without any loss of
power. At any given time, the detector receives light from only one of the two
channels. Hence it is essential to maintain a phase locked relation between the two
choppers. In order to obtain a more quantitative information about the extent of
phase lock required and the effect of a phase perturbation, the intensity profile
of the two channels had to be computed. To get this intensity profile, it was
necessary to develop a mathematical expression to define the area of the beam
that is exposed as the chopper blades sweep across it. This can be pictorially

represented by figure 5.11.

Consider a beam diameter of radius r with the centre at point O fully blocked
by a chopper blade whose edges are formed by CP and DP where P is the centre
of the 3 blade chopper. Let length of OP be equal to R. This represents a case
where the entire beam diameter fits perfectly within the reflecting surface of the
chopper blades. As the chopper rotates, a a part of the beam is exposed and falls
on the detector and this is represented by the shaded portion with AP forming
the new position of the edge CP. Hence, the area of the shaded portion is required

to compute the intensity of light falling from each channel and their combination
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P

FIGURE 5.11: Diagram representing the IR beam being chopped by one of the
chopper blades with the shaded area being the exposed portion

then gives the total intensity falling on the detector. Referring to figure 5.11, for
a 3 chopper blade with 1:1 mark to space ratio,

ZCPD = 60°

Z0PD = Z0PC = 30°

OP =R

OA = OB = OC = r which is radius of the beam.
Let ZCPA = ¢.

S ZAPO =30°-¢ =10
From AOEP, ZOEP = 90°, since AAOB is an isosceles triangle.
.. OE = Rsinf

From AOPC, sin30 = r/R
.. R = 2r, which is true if the beam fits perfectly between the chopper blades.
From AOEB, EB = V12 — OE? = /1?2 — R2sin20
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. AB = 2v/12 — R2s5in2%60

Now area of the segment (shaded portion) = area of sector AOB - area of AAOB.
Area of sector AOB = 1/2 x r? x 2a = r?a = r?cos }(Rsinf/r) — A

Area of AAOB =1/2 x AB x OE = 1/2 x 2v/r? — R?sin?0 x Rsinf
= v1r?2 — R2s5in2%6 x Rsinl — B

*. Area of segment = A - B
Area of segment = r?cos ! (Rsinf/r) - v/r2 — R?sin?0 x Rsinf = fn(R,r,0)

By using the above expression for the area of beam exposed, it was possible to
plot the intensity profile of the two channels as a function of chopper position as

shown in figure 5.12.

600

2N w g
o o O o 9o
S o o o o
T T T I
/
/
/
/
/
\
\
\
\
\
| (S N —

— chl > -

— - ch2 ~ =7 i

—— chl+ch2
1

Intensity, arb units

o

|
=
o
o

o

0.005 0.01 0.015 0.02 0.025 0.03 0.035
Time, sec

Magnitude

-100 -50 0 50 100
Frequency, Hz

FIGURE 5.12: Channel intensities at 180° phase shift. The top graph shows the
intensity profile of the individual channels and their sum whereas the bottom
graph is the FFT of the sum
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Here the top graph shows the intensities of both the channels individually and their
combination falling on the detector as one chopper blade completely sweeps the
infrared beam i.e. the beam goes through a full cycle of being fully transmitted to
fully reflected. The bottom graph is the FF'T of the overall sum intensity showing
the frequency components. As seen, when the two choppers are exactly 180° out
of phase, the total intensity falling on the detector remains a constant value and
the FFT shows a peak at DC or 0 Hz. As a result, the detector gives a null output
since it responds only to changes in input intensity. This is the ideal condition.
However, if a slight perturbation in the phase lock is present, thereby shifting the
phase relation from 180° to 180°+6, the combined intensity falling on the detector
will assume a more sinusoidal shape indicating the presence of harmonics in the
FFT. This is shown in figure 5.13 where the phase shift is 185°. The chopping
frequency was assumed to be 30 Hz. The small bumps at 60 Hz, 90 Hz and 120
Hz are the even and odd harmonics that will be picked up by the detector. In a
similar fashion, the intensity amplitude at different values of 6 were computed for
the various harmonics as shown in figure 5.14. Here w represents the fundamental
frequency of 30 Hz. As observed from figure 5.14, initially the second harmonic 2w
dominates but very soon the fundamental increases sharply almost in a quadratic
fashion. The even and odd harmonics will be filtered out by the phase sensitive
detector and what remains is the fundamental w. The next step is to find the
maximum value of # that can be tolerated which gives rise to an unbalance in
channel intensities equivalent to the one produced by a 1%¢ 3C enrichment. On
the basis of the above obtained results, this was found to be around 0.3°. Hence
this clearly implies that a very tight and stable phase lock is required to eliminate

any spurious results and achieve a high precision.
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FIGURE 5.13: Channel intensities at 185° phase shift. The top graph shows the
intensity profile of the individual channels and their sum whereas the bottom
graph is the FFT of the sum
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Thus a stable phase locked loop (PLL) is required in order to maintain the speed
and phase relationship between C1 and C2 within the acceptable tolerance limits.
This can be done electronically by considering a master-slave configuration for the
two choppers where C1 will be the master motor and C2 the slave. A speed control

loop for C1 will ensure that it runs at a stable 10 Hz chopping frequency (200 rpm
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motor speed for a 3 blade chopper) and C2 will then follow C1 and maintain the
same frequency by virtue of the PLL. A Pulse Width Modulation (PWM) scheme

as shown in figure 5.15 was used to control the speed of C1.

+12V
DC 1
+
IN4007 01 _ ~X
LM324 M3
—»
o ( ]
PWM E|RF234N FIV T *
ADC Error DC Reference

F1GURE 5.15: PWM speed control of master chopper C1

A LM324 quad opamp was used to generate the PWM signals required to run the
motor. Feedback signal from the motor encoder was fed to a frequency to voltage
converter (F/V) LM331 (c.f. Figure A.3, Figure A.4) whose output was then
compared with the reference DC voltage. The resultant error signal was used as
the DC level to generate the PWM pulses by comparing it with a triangular wave.
Hence by setting the DC reference voltage at the appropriate value by means of a
potentiometer, the required speed was attained. The motor was driven by a power
MOSFET IRFZ34N and set to run at 3.33 Hz so that the chopper blades chopped
the light at 10 Hz. The chopping frequency was obtained from the reflective sensor
attached in front of the motor as shown in figure 5.16. The encoder signal for the
motor running at 200 rpm (3.33 Hz) was recorded as shown in figure 5.17. The
signal has a frequency of 1.66 KHz which is equivalent to 3.33 Hz since the encoder

gives 500 lines per revolution.
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FIGURE 5.16

Lol

: Motor with the chopper blades and reflective sensor attached
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ch A: Frequency(kHz] 1.668
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FIGURE 5.17: Motor encoder signal at 200 rpm
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In order to check the stability of the speed control system, a transient analysis was
performed by applying step and ramp inputs using the DC reference voltage. The
corresponding changes in the F/V output were recorded as shown in figure 5.18.
The graph shows very good stability with very little oscillations and overshoots
and the F/V output faithfully follows the changes in the input.

FIGURE 5.18: Transient analysis of the motor speed control

The next step was to phase lock chopper C2 with the master chopper C1. This
required C2 to run at the same speed as C1 but in anti-phase. Hence a frequency
and phase control was required. In order to implement this, a PLL 1C HEF4046
(c.f. Figure A.5, Figure A.6, Figure A.7) from Philips Semiconductor was em-
ployed. The schematic is shown in figure 5.19. Phase comparator type 2 (PC2)
present in HEF4046 was used for establishing a phase lock. PC2 received two
inputs, the signal input from C1 and the comparator input from C2 as shown. If
the two signals varied in frequency, the output will then swing to one of the supply
levels depending on which input was faster. If however the signals had the same
frequency but differed in phase, the output will then be a train of square pulses
whose amplitude range will depend upon which input was ahead. The comparator
gave a mid-rail dc value only if the two inputs were at the same frequency and
phase. Since PC2 locked only at 0°, it was necessary to initially invert the signal
from C1 using an inverter so that C2 locked on to this inverted C1 which effec-
tively made C1 and C2 to be 180° out of phase. The output from PC2 was fed to

an integrator with a corner frequency of 0.159 Hz to get the mean dc value. This
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FIGURE 5.19: Phase locking of the two optical choppers
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was then compared with the mid-rail value using LM833 to generate the required
error signal. This error signal was then fed as input to the PI controller whose
output was used to drive C2. When a lock was achieved the error signal will be
zero and the integrator will hold on to the previous output value and maintain the
locked condition. In case of any changes in the speed of C1, this control loop will

ensure that C2 followed the changes continuously maintaining the phase relation.

The phase lock scheme described here was implemented and put to test. It was
observed that although C1 was constantly chopping at a fixed frequency of 10
Hz, C2 was not able to lock on to the master signal with the desired accuracy.
The photoreflective signal for C2 was seen to be constantly fluctuating about
the mean position although it was successfully tracking frequency variations in
C1. This suggested a loop instability problem with the oscillation in the C2
signal exceeding acceptable levels. In order to study this systematically, the entire
control loop was modelled and the loop transfer function was computed. Loop
stability was analysed using the control system toolbox in MATLAB. Bode plots
were generated and gains for the PI controllers were varied for maximum loop
stability. Although marginal improvements in the phase lock were observed, the
absolute phase accuracy achieved did not meet the design criteria of +0.3°. Since
further work on this electronic phase lock circuit was required, it was decided
to move on to an alternative design and then revisit the problem once the other

objectives were met. Implementation of an electronic phase lock scheme will not
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only add to the novelty of the system but will also act as a precursor for a more
advanced digital control scheme that can be incorporated in a future version of

the diagnostic system.

5.4.2 Mechanical Phase Locking - An Alternative Approach

Due to the above mentioned difficulties that were encountered in implementing
an electronic phase lock, an alternative mechanical design was conceived to cir-
cumvent the issue. The design basically consisted of a single motor driving both
the chopper blades C1 and C2. The motor was centrally attached to a horizontal
aluminium bar which was mounted on two vertical steel supports at the two ends.
The two chopper blades were then attached to these vertical supports making sure
the mirrored surfaces faced opposite sides. The entire assembly is shown in fig-
ure 5.20. Since a frequency or phase lock was not required, the speed of the motor
was set using a PWM scheme in an open loop configuration. The use of a single
motor to drive both the choppers ensures perfect speed match between C1 and
C2 as long as the gear linkages and interconnecting belts do not contribute any
additional disturbances. Hence a symmetrical assembly design was chosen so that
in the event of any unwanted jitter or drifts, both the arms are equally affected
thereby ensuring continuous speed synchronisation. For this purpose, good qual-
ity rollers and steel reinforced belts were used to link the motor shaft with the
individual choppers. The choppers were initially positioned such that they were
more or less 180° out of phase with each other and this provided the coarse phase
adjustment. For finer phase adjustments, provision was made for two micrometers
to be attached to one of the chopper arms of the assembly. These micrometers
acted in opposition on the belt connected to the chopper, increasing or decreasing
the tension on the belt as they were rotated either clockwise or anticlockwise and
thus providing the required fine adjustment in phase. This was monitored by ob-

serving the output from both the photoreflective sensors as shown in figure 5.21.

In order to eliminate unwanted triggering due to the presence of spikes on these
signals, a waveform shaping circuit shown in figure 5.22 had to be designed at the
output of the photoreflective sensors. The signals from C1 and C2 were fed to a
low power dual comparator LM393N (c.f. Figure A.12) where they were compared
against a set reference voltage. The outputs were then wired to the inputs of
two schmitt triggers using LM833N (c.f. Figure A.13, Figure A.14) which were
designed to trigger at 1.03 V and hold until 0.9 V. This removed all the unwanted
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F1GURE 5.20: Mechanical assembly for phase locking of optical choppers

triggering in the raw signals from C1 and C2 and a neat and stable 0-5 V square

signal was obtained for both C1 and C2 as in figure 5.21.

Although speed and phase lock was thus established, more significant was the
absolute phase accuracy that the mechanical system could provide. This was
monitored on a scope by triggering on one of the chopper signals and measuring
the shift experienced in the other signal about its mean position. This was observed
to be around 200 psec which translates to 0.7° for a 10 Hz signal. Hence the two
choppers were locked in anti-phase with an absolute phase accuracy of 180°40.7°.
In terms of delta, this is equivalent to more than 2%o. Although this was not nearly
as good as the required figure of 0.3°, under the circumstances it was decided to go
ahead with this level of accuracy for performing all initial tests and experiments.
It is worth noting that phase jitter is averaged out by the output time constants
of the phase sensitive detector and hence much of the 200 usec does not matter.
Long term drifts are much less of an issue due to the symmetrical mechanical

design thereby affecting both channels equally.
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FIGURE 5.21: Photoreflective sensor signals from choppers C1 and C2 showing
both the choppers are in anti-phase to each other
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FIGURE 5.22: Wave shaping circuit for the photoreflective sensors
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5.5 Gas Delivery Rig

An easy and efficient gas delivery mechanism was required to fill the filter cells with
the isotopomers at appropriate pressure, minimising any wastage of the gas and
eliminating any leaks. The same system will be used to fill the sample gas cells with
calibration gas mixtures for initial experimental tests. For this purpose a dedicated

gas delivery rig as depicted in figure 5.23 was put up. Both isotopomer gases were

3% CO,+N, G1

G2
b
V2 ? V5
i er V4
' |

To vacuum pump

U Gas Cell U

Pure
13CO2

Pure
12002

FIGURE 5.23: Dedicated gas delivery rig for filling the ICF and sample cells

supplied in lecture bottles at slightly above atmospheric pressure. Hence regulators
were not required to control their flow into the gas cells. *CO5 at 99% enrichment
procured from Spectra Gases and a 1 litre 2CO, lecture bottle generally used
for welding purposes were used as pure isotopomer gases. The flow of standard
calibration mixture of 3% 2CO, and balance Ny from a pressurised cylinder was
regulated and connected to one branch of the gas rig. This mixture was used to
simulate normal breath samples during the initial studies that were carried out.
Two pressure gauges, one for monitoring gas pressure (G1) and a Pirani gauge
for monitoring the quality of vacuum (G2), were used. Initially V3/V6 and V4
were opened to pump the cell down to vacuum. Typically pressures as low as 0.04
mbar were achieved on the Pirani guage. Then V4 was closed and the appropriate
gas valve opened in order to fill the cell. Fill pressures were maintained slightly
above atmospheric pressure so as to detect any gas leakage after sealing. Once

filled and sealed, the cells were detached from rest of the system and used for the
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tests. High quality vacuum seals and epoxies were used to minimise leakage from
the cells and various joints on the rig. Considerable time and effort was put into
making the rig as leak proof as possible so that undesirable gas exchanges, which

will affect the measurement precision, were eliminated.

This dedicated gas filling rig was designed such that both the filter cells and the
sample gas cells can be connected to it for appropriate gas delivery. However, if
gas mixtures containing varying concentrations of both 12CO, and *CO, were re-
quired then this will necessitate proper mixing of the two to ensure a homogenous
composition throughout the gas cell. Such gas mixtures are ideal to check the
sensitivity and responsivity of the system and also to carry out performance eval-
uation tests of the whole system. For this purpose special gas sampling bags from
Adtech Polymer Engineering were used. These bags were fitted with a universal
thread connection that was mated with the gas rig. In this way the appropriate
gas mixtures were first prepared in these sampling bags before they were trans-
ferred to the sample cells. Since the bags were made of Tedlar PVF | mixing of the
constituent gases was done by simply pressing and squeezing the bags once they
have been filled. The gas mixture was then forced out into the sample cells after
about 10 minutes giving enough time for both 2CO, and 3CO, to mix thoroughly
to form a uniform mixture. The sampling bags had a maximum capacity of about
3 litres. If the 13-channel sample cell was to be filled, it was initially purged with
dry Ns so as to expel any other interfering gases present inside it, including at-
mospheric CO;. Considering a cell length of about 11 cm and CaFy windows of
38 mm dia, the cell volume is 0.125 litres. Hence a 3 L gas bag ensured enough
supply of the gas mixture to fully replace the already existing dry N inside the

cell.

5.6 Temperature and Pressure Sensors

The use of sensors for continuous monitoring of cell temperature and pressure was
discussed previously under section 4.3.3. It must, however, be noted that it is
not the absolute ambient or cell temperature and pressure that is of concern here
but the variation in ambient conditions during the course of a test. A change in
the absolute ambient temperature or pressure can be accounted for by running
the spectroscopic model previously developed at these new ambient conditions.
The resultant absorption coefficients will then determine the new equilibrium cell

length for the 13-channel cell. However, if a temperature or pressure variation
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occurs between the basal and sample test of an experiment, this will result in
spurious delta values. Since delta evaluation is essentially a ratiometric method,
it is important to maintain the same set of ambient conditions during the basal and
sample tests. Simulation studies showed that a temperature variation of +0.5K
will result in a delta variation of 1%o. Hence it was decided to monitor the cell
temperatures in real time by using temperature sensors such as LM35CZ. Since the
sample and filter cells within each channel were placed in close proximity, it was
fair to assume thermal equilibrium between them. However, the same cannot be
said when considering temperatures across the two channels. Therefore two such
sensors were used for monitoring cell temperatures in the two channels separately.
One sensor was attached to the walls of the C636 channel gas cell and the other was
attached to the 1 mm gas cell placed in the C626 channel. The signal from these
sensors were recorded and displayed using a virtual instrument interface software
such as LABVIEW. If the variations were found to exceed the tolerance limits,
then appropriate temperature stabilisation techniques will be employed. A basic

low noise amplifier circuit was connected at the output of the sensors.

Although pressure variations were not expected to be dramatic enough to affect
delta measurement, cell pressure was monitored using SDX15A2 which is a tem-
perature compensated pressure sensor. Since the entire gas flow system was sealed
once the cells were filled, gas pressure remained the same in both channels. Hence
a single sensor attached to the gas delivery tube was sufficient for pressure moni-
toring. Figure 5.24 shows a picture of the SDX15A2 used for pressure monitoring.

Since the sensor gives a differential output, additional circuitry had to be designed

FIGURE 5.24: Picture of the SDX15A2 pressure sensor

to convert it to a single ended voltage signal. Also, the SDX sensor had low com-
mon mode output voltage and hence it required special circuitry that can work
with input common mode voltages close to ground. High precision single sup-

ply instrumentation amplifiers such as AMPO4FP (c.f. Figure A.15) were ideally
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F1cURE 5.25: Signal conditioning circuit for pressure sensor SDX15A2

suited for this application. The signal conditioning circuit for the SDX pressure

sensor using AMP04 is shown in figure 5.25.

Referring to the SDX data sheet (c.f. Figure A.2), the sensor gives an output of
0.09 V at 15 psi for a supply voltage, Vs, of 12 V. The design goals for the circuit

were set as follows:

e Power supply, Vs =9V
e Span = 6.5V 4+ 0.1 V at 14.5 psi

e Amplifier gain, Av = 100 KQ / Rg (from AMP04 data sheet)

Sensor output = 0.09 x (9/12) x (14.5/15) = 0.65 V
Gain Av = 6.5 V/0.65 V = 100
Hence, Rg = 1 KQ

Thus, for a given pressure P, final output voltage, Vo = 100 x 0.09 x (9/12) x
(P/15). Any offset nulling was achieved by adjusting the common mode voltage
of the instrumentation amplifier. In the present circuit this was done by changing
the reference voltage at pin 5 of AMP04 using the variable resistor as shown in
figure 5.25. All the electronic circuits for both the temperature and pressure sen-

sors were enclosed within an aluminium box and placed in between the channels



Chapter 5 Component Development and Characterisation 73

as shown in figure 5.26. For calibration purposes, the prevailing ambient temper-

ature and pressure values were obtained from a reliable source[61] and used as the

reference value.

Temperature sensor

FIGURE 5.26: Picture of the aluminium box housing all the amplifier and signal
processing circuits for both the temperature and pressure sensors
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5.7 Detector Electronics

As previously stated, the LTIQ2 pyroelectric detector from Scitec Instruments
was used in this work. It has a stated responsivity of 210 V/W at 10 Hz and
a specific detectivity, D* of 8.108 cmv/Hz/W. For an element size of 2 mm X
2 mm, the noise equivalent power (NEP) is 0.25 nW. Previous simulations and
calculations had shown that 1%o corresponds to a power change of about 0.3
nW at the detector. Hence the current detector specifications are capable of
detecting such minute power variations. Since the detector was configured in a
voltage mode, the integrated preamplifier was a voltage follower JFET with a
high input impedance (gate resistor) of the order of giga ohms. A low noise drain
current supply circuitry was built using an additional JFET as recommended by
the supplier. The overall circuit diagram is shown in figure 5.27. A low noise FET
input opamp such as the OPA2604 (c.f. Figure A.16) was used for final signal
conditioning providing a gain of 100 over a pass band of 2-160 Hz.

FIGURE 5.27: Detector circuit for high precision and low noise application

The entire detector circuit was assembled and enclosed in an aluminium casing
provided with BNC connectors. In order to evaluate the response of the detector,
an experiment was conducted to measure the detector output voltage as a function

of source temperature. The schematic shown in figure 5.28 was used for this
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purpose.

S | J ‘ | : D
L1 IF L2

FIGURE 5.28: Experimental setup for detector output measurement

IR radiation from the source S was made to pass through the lens L1 and filter IF
before being refocussed onto the detector D using L2. The radiation was chopped
at 10 Hz. Source temperature was varied from 674K to 1074K and the correspond-
ing detector signals were recorded and compared with expected values obtained
from simulations. Figure 5.29 shows that both simulation and experimental values
are in good agreement with each other taking into account uncertainties involved

in estimating the source temperature accurately. The detector response to varying
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FIGURE 5.29: Variation of detector output with source temperature

isotopomer concentration was also studied by placing a filter cell filled with 3CO,
in the beam path. The isotopomer concentration in the cell was varied (with bal-
ance Ng) and detector output was measured for different source temperatures. All

optical losses from the lenses, IF filter, windows and beam divergence were taken
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into account and the results were compared with simulation. Figure 5.30 shows

the experimental results to be in good agreement with the simulation values.

0.9 T T
—A— 674K sim
@ A 674K exp
0.8 —%— 774K sim | ]|
P * 774K exp
—@— 874K sim
0.7 ® 874K exp

o o o
a [0}
T T

Detector Output, volts

o

A
A A A

44
In,
14

0 I I I I I I I I I
[0} 10 20 30 40 50 60 70 80 90 100

13C02 Concentration, %

FIGURE 5.30: Detector output at different source temperatures as a function
of 13CO4 concentration. Balance is filled with Ny

The solid lines indicate the simulation values at 674K, 774K and 874K. Any devi-
ation from the expected values can be attributed to the uncertainty in estimating
the source temperature and in determining the exact isotopomer concentration in
the gas cell. It was also observed that as the concentration increased beyond 60%,
the absorption lines became saturated and very little change in detector output

was observed.

Further simulations were carried out to study the relative absorption of C626 and
C636 at different isotopomer concentrations for various source temperatures and
the detector output was plotted. Figure 5.31 shows that C636 is definitely the
stronger absorber of the two since it yielded lower detector output values. The
corresponding surface plot for C626 absorption is shown in figure 5.32. All these
simulations were carried out by considering the IF filter transmission characteris-

tics over the wavenumber range used for absorption calculations.
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Next individual channel signals and the combined signal falling on the detector
were recorded. This was implemented by setting up the system as it will be
in its final configuration with both the isotopomer channels in place. Empty
sample cells were introduced into their respective beam paths. However, filter
cells with pure isotopomers were not used because their introduction will make
the remaining unpurged beam path sensitive to absorption by atmospheric CO,
thereby upsetting the balance of the system. The various optical components and
mechanical chopper assembly were positioned and aligned using a He-Ne laser
beam. Each channel was individually measured by blocking off the other with a
suitable material. Laser spots from the individual channels were made to focus
at the same spot on the detector window so that the detector did not see any
effective change in temperature or power as the two channels were chopped in a
synchronous manner. This will imply a balanced absorption system with equal
transmittances along the two channels since the absorption losses along the path
length and reflection losses from the optics and cell windows were exactly the same
in the two channels. Under such balanced conditions, a null detector output was
expected since the detector responded only to changes in temperature. The laser
was then replaced by the broadband infrared source maintained at 674K and the
detector output was monitored. However, due to slight alignment and focussing
errors, perfect balance was not attained initially. An iris diaphragm was therefore
introduced in the C626 channel to attenuate the signal in order to achieve equal
channel intensities. The optical setup is shown in figure 5.33. The signals were

viewed on the oscilloscope and their peak to peak voltages were compared.

C-13 Cell

FIiGURE 5.33: Experimental setup used to observe both individual channel
signals and the combined signal falling on the detector under balanced conditions
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Figure 5.34 and figure 5.35 below shows the individual channel signals.
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FIGURE 5.34: Detector output signal for C626 channel
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FI1GURE 5.35: Detector output signal for C636 channel
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As expected the C626 and C636 channel signals exhibited a phase shift of 180°
with respect to each other due to the anti-phase arrangement of the choppers C1
and C2. Signal from the C626 channel (figure 5.34) is aligned along the falling
edge of the 10 Hz reference signal whereas the C636 channel signal (figure 5.35)
is aligned along its rising edge. It should be noted here that the 10 Hz reference
signal can be obtained from the photoreflective sensor attached either to C1 or
C2. This will not have any impact other than swapping the position of the two
individual channel signals with respect to the reference when viewed on a scope.
It will of course change the polarity of the final phase sensitive detector output
when the system is unbalanced and eventually determine the direction of rotation

of the feedback stepper motor.

However, the combined signal from both the channels had a strong second har-
monic component (20 Hz) as shown below in figure 5.36 which was contrary to
the expected dc signal or null output at balance. At first sight this seems intrigu-
ing but a careful analysis of the individual channel signals offers a satisfactory

explanation. The appearance of this 20 Hz signal can be attributed to the fact
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FIGURE 5.36: Combined detector output when both the channels are transmit-
ting showing a distinct 20 Hz component

that the shape of the detector output waveform for the individual channels is not
symmetric and hence when the two signals add up, they do not exactly cancel out
each other resulting in a waveform with twice the frequency of the original signals.

This can be proven by simulating the individual pyroelectric detector signals from
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each channel and then computing the fourier transform of the combined signal
to reveal the various frequency components present in the output. A pyroelectric
output signal can be effectively modelled as a RC low pass filter output signal by
the proper choice of R and C values. Consider two such signals of 10 Hz each as
shown in figure 5.37 which are in anti-phase, thus emulating the two individual
channel signals. If the two signals are made to have exactly the same peak to
peak values at all points, they then cancel out each other completely on addition

resulting in a null output as shown in the bottom half of figure 5.37.
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FI1GURE 5.37: Individual channel signals of exactly the same amplitude and the
resultant combined signal

However, this condition is extremely difficult to obtain in an experiment because
small variations in the reflectivity of the chopper blades or a slight misalignment
of the channel beams will result in a signal having slightly different amplitudes
for each peak. Now consider a similar case where the two signals have slightly
different amplitudes at each peak. This approximates a real experimental signal
more closely. The top half of figure 5.38 shows the two channel signals and the
bottom half represents the combined signal. This combined signal now shows a

second harmonic feature which was absent in the earlier case. FFT spectra of the
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individual channel signal and the combined signal are shown in figure 5.39. The
spectrum for the combination signal now clearly shows a dominant 20 Hz compo-
nent which was absent when the channel signals had the exact same amplitudes.
This analysis thus offers a reasonable and logical explanation for the presence of a

strong second harmonic component at the detector output even when the system

was at balance.
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FiGure 5.38: Individual channel signals of slightly different amplitudes and
the resultant combined signal
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FIGURE 5.39: FFT spectra of the individual channel signal at 10 Hz and the
combined signal when both channels have slightly different amplitudes. Note
the presence of a strong second harmonic component at 20 Hz

5.8 Cell Length Adjustment and Feedback Servo
Loop

A unique feature of the diagnostic system presented here is its ability to maintain
equal integrated transmittances along the two channels. This is done by restor-
ing the system to the balanced point as represented by a null detector output.
This process of self-balancing is implemented by the use of a feedback servo loop
that uses the unbalanced detector output to drive the C636 channel sample cell
length in the required direction so as to maintain balanced absorption. Hence
the response and behaviour of the feedback mechanism plays a vital role in the
proper functioning of the system. For precise length adjustment and accurate
determination of the length varied, it was decided to use a stepper motor which
will be attached to the micrometer head of the sample cell assembly. The use of
a stepper motor also makes digital control feasible by the use of an appropriate
driver card. This renders greater flexibility to the design in terms of step size and
direction control. A unipolar stepper motor 16HS-110 (8 leads) from Mclennan
(c.f. Figure A.17) which provided 200 steps/revolution under full step mode was
used for this purpose. To achieve finer step resolution, a gear head with 12.5:1 gear
ratio was also attached to the motor. A driver card RSSM2 (c.f. Figure A.18)



Chapter 5 Component Development and Characterisation 84

was used for controlling the stepper motor. The driver card was configured to
run the motor in full step mode with the clock input signal (CKI) derived from
an externally generated square wave signal. This clock input was simulated in
LABVIEW and delivered to the driver card via the analog output channel A0.0 of
a USB multi-function DAQ 6008 from National Instruments. More details on the
DAQ are provided in the following section. Similarly, direction control was also
implemented via analog output channel A0.1 of the DAQ. The ENB terminal was
held high (+5V) to enable CKI. The four phase leads of the stepper motor (leads
1, 2, 3 and 4 in c.f. Figure A.17) were wired to the appropriate phase terminals
PHA, PHB, PHC and PHD on the driver card. Leads 1’ and 2’ and leads 3’ and
4’ were tied together since in a full step mode only one of the phase windings was
energised at a time. Forcing resistors (Ry) were used to limit the current in the
motor windings when driven at higher voltages for higher speeds. The value for

R was calculated as follows:

| Supplyvoltage, Vs

Ry — Resistance/phase, Rm (5.2)

| Current/phase, Im

Here, Vs =24 V, Im = 0.5 A (from data sheet), Rm = 7.2 Q

Hence, Ry = 40.8 Q

Two resistors of 22 ) each were connected in series to give a total Ry value of 44
Q.

The total current through each phase now became 0.468 A with a power dissipation
for Ry equalling 0.468%x 22 = 4.83 W

Hence Ry with 22 /9 W ratings were used.

The interface and connections between the stepper motor driver card and the

motor itself is shown in figure 5.40.

5.9 Virtual Interface - LABVIEW Implementa-

tion

For the entire instrument to work effectively as a single unit, it is essential to ensure
proper and timely collection of data from the various sensors and also acquisition
of detector signals. The information then needs to be processed and converted to
command signals to actuate the stepper motor assembly to perform the feedback

control process. In order to make the entire measurement and control process
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FIGURE 5.40: Stepper motor interface with the driver card RSSM2

totally automated, the controlling software needs to be seamlessly integrated with
the hardware. LABVIEW provides a very professional and industry relevant means

of implementing this by building a Virtual Interface (VI).

As mentioned previously, NI USB 6008 DAQ was used for acquiring signals and
data from various sensors and detectors. Figure 5.41 shows the front panel of
the VI used for acquiring and displaying temperature and pressure data from
the sensors. Also indicated are the detector output (Det o/p) and the 10 Hz
reference signal (Ref) from the chopper. As can be seen from the figure, the
C13 and C12 temperature data was very stable and the fluctuation observed was
much less than +0.5K to require any active temperature control measures. The
pressure data also showed good stability with a standard deviation less than +1
mbar which was equivalent to a spurious delta of 0.3%0. Depending on the nature
of the detector output, the signal processing scheme in LABVIEW was used to
generate the DIR signal (figure 5.40) which was used to turn the stepper motor
either in the clockwise or anticlockwise direction, so as to restore the system to
balance. The direction of rotation was determined by checking the polarity of the

PSD signal. By implementing a set of relays in LABVIEW, it was possible to
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turn the stepper motors ON and OFF and also to control the direction of rotation

with a 0 V signal indicating a clockwise direction and a 5 V dc signal indicating

anti-clockwise direction.
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F1GURE 5.41: LABVIEW VI showing acquisition and display of data from the
pressure and temperature sensors and also form the pyroelectric detector

5.10 Overall Instrument Enclosure

Once all the subsystems and various components were ready, the next step was

to integrate them all within a closed environment which will eventually become

the instrument enclosure. Such an enclosure needs to have an environment free

from ambient CO5. The presence of ambient CO, in the non-sample pathlength

will seriously hamper accurate measurement of isotopomer ratios due to the rela-

tively greater abundance of >CO, in comparison to the rarer isotopomer *COs,.

This will result in an increased absorption along the C626 channel leading to

imbalances in the integrated transmittances between the two channels. The intro-

duction of filter cells containing pure isotopomers further compounds the problem
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by rendering the system more sensitive to absorption effects along the non-sample
path length of the beams. All this necessitates the removal of background CO,
from within the enclosure. It was suggested earlier in section 4.3.5 that the use
of COy absorbing materials was a possible solution to this problem. Ascarite is
one such popular COy absorber and is actually made of sodium hydroxide coated
with amorphous silica. The initial plan was to place a tray of Ascarite within the
enclosure. Another way was to apply a layer of Ascarite along the walls of the
enclosure. This will ensure sufficient surface area for absorption of background
CO,. However, further examination of the chemical properties[62] of this absorber
revealed that the handling of Ascarite had to be treated with utmost care and
caution. Ascarite is highly corrosive in nature and can cause severe burns through
all exposure routes. The health hazards associated with it requires that all engi-
neering controls and personal safety measures are in place before it is put to use.
The use of such a chemical will cause a lot of inconvenience since frequent access
and handling of optical and electronic components within the enclosure will be
a necessity. Hence it was decided to drop the idea of using Ascarite. Instead, a
continuously purged environment within the enclosure is also equally effective in
eliminating background COs. A well monitored and regulated feed of dry nitrogen
into the enclosure can keep the background CO, levels sufficiently low. Besides,
the sample cells will have to be purged with Ny prior to the introduction of the
sample gas. A purge of the gas cells will also be required each time a new sample
of same or different concentration is fed into them. Hence, the use of Ny purge
cannot be avoided. An effective and simple design for gas pathways will accom-
plish the twin tasks of purging the enclosure as a whole and the individual gas
cells. The use and placement of valves to isolate the gas cells also needs to be

considered carefully.

Figure 5.42 is a schematic sketch of the enclosure showing the purge pathways.
For convenience, only the two sample gas cells have been shown. As can be seen,
valve V1 controls the flow of dry N5 into the enclosure. A part of the purge is fed
straight into the top of the enclosure through a special arrangement that allows
the gas to pass through a number of small orifices. This flow is maintained long
enough until the background level of CO, has dropped to permissible limits. A
similar arrangement at the opposite end of enclosure provides outlet for the purge
gas. A part of the inlet purge is also directed into the C636 sample cell using V2
and V3. The gas enters near one end of the gas cell and exits near the other end,
thereby ensuring a proper purge of the entire volume of the gas cell. If the inlet

and outlet points where placed at the same end, some residual gas can possibly
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remain unpurged at the other end thereby interfering with a fresh sample that is
fed into it. The outlet valve V4 then feeds Ny into the 1 mm gas cell in the C626

channel and the gas then leaves via V6 as shown.

N, PURGE IN N, PURGE OUT

T

C-13 CELL C-12 CELL T

[6C OOl

!

FIGURE 5.42: Overall instrument enclosure depicting purge gas and sample gas
flow pathways

The advantage of using this scheme is that once the sample cells have been suffi-
ciently purged, the flow of Ny into them can be regulated using valves V2, V3 and
V6. A rectangular box having dimensions of 110 cm x 60 cm x 50 ¢cm was made
using light weight aluminium frames and transparent windows on all four sides
and the top. The front face window was made detachable so as to gain easy access
into the enclosure. Holes were drilled at appropriate places for the feedthrough
tubes to be inserted. The enclosure was made as leak tight as possible to minimise
exchange of gases with the ambient. A flow regulator was also attached to the
frame of the enclosure. All the exposed tapped holes on the optical table were also

sealed to prevent escape or entry of gases through them. Since the entire enclosure
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and not just the beam paths is being purged, the amount of purge time required
depends on the volume of the enclosure. A background air level of less than 0.1%
is sufficient to ensure no significant absorption along the non-sample path length.
The actual amount of CO, will be much lower since COs only constitutes about
0.04% of ambient air. If we assume 50% mixing each time a volume of purge gas
equivalent to the enclosure volume is fed through, then it will take 10 such mixings
to get the background air levels down to less than 0.1%. For an enclosure of the
above dimensions, it will take about 300 litres of dry Ny to completely occupy
the box. Ten times this volume will mean the total amount of dry Ny required to
establish 0.1% of background air is 3000 litres. With an acceptable flow rate of
about 25 1t/min, the total purge time is roughly two hours. After this time, the
purge flow rate can be reduced to about 1-2 1/min to maintain the purge quality
throughout the course of the experiments. The overall instrument setup sealed
within the enclosure is shown below in figure 5.43. The PVF gas sampling bag

can be seen attached at the top of the enclosure.

FIGURE 5.43: Overall setup within the instrument enclosure with the gas sam-
pling bag attached at the top



Chapter 6

Experimental Results and

Analysis

6.1 Initial Experiments and Tests

In the previous chapters, a detailed discussion of the overall instrument configura-
tion and its various sub systems was provided. A thorough understanding of the
performance requirements was acquired and the possible sources of interference
that can result in spurious measurements and ways to overcome their effects were
also discussed. Once all the necessary electronics and data acquisition system were
put in place, the next logical step was to carry out preliminary gas based tests and
compare the results with data obtained from simulated tests. For this purpose, a
custom made gas filling rig was also designed. Before conducting gas based trials,
it was important to check and ensure that the gas cells were leak proof and that
there was no possibility of exchange of gases with the surroundings. Presence of
leaks will change the concentration of the sample gas within the cells, thereby al-
tering the absorption profile along the two channels. The gas cells themselves are
unlikely to be a source of leak since both the filter and sample gas cells were well
sealed with CaFy windows using a special adhesive. However, the same cannot be

said about the valve connections and other gas tube attachments that were made.

To check the presence of leaks, a Magnahelic differential pressure gauge was used to
monitor the cell pressure relative to the ambient pressure. The longer C-13 gas cell
was subjected to a leak test and the ability to change its length provided an added
advantage in performing the test. The gas cell length was initially maintained at 11

cm and the cell was continuously purged with Ny. A 60-0-60 Pascals Magnahelic
90
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differential pressure gauge was connected to it to monitor differential pressure
relative to the ambient. As expected the gauge indicated a reading close to 0.
The cell length was then increased to 11.3 cm and the pressure reading suddenly
dropped to -30 Pascals but then gradually rose back to the 0 mark indicating
a leak. The length was then decreased to 10.7 cm and a similar behaviour was
observed with the pressure reading rising sharply to 40 Pascals and then returning
back to 0 in under 15 minutes. All this showed that the gas cell suffered from
considerable leakage. In order to further establish the presence of leaks, a test
using the FTIR (Fourier Transform Infrared Spectrometer) was carried out. The
gas cell was filled with the 3% CO, sample gas mixture and the length maintained
at 10.7 cm. Figure 6.1 shows the transmission spectra of the gas cell obtained
using the FTIR with a scan resolution of 1 cm™!. Subsequent spectra were also
recorded after intervals of 2 hours and 4 hours and a final spectra was recorded
the following day. The FTIR spectra clearly indicate a progressive reduction in
absorption in the gas cell with the passage of time, finally resulting in very little

or almost no absorption the following day.
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FIGURE 6.1: FTIR spectra showing reduction in absorption in the gas cell due
to the presence of leaks. Scan resolution was 1 cm™!
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The above tests confirmed the presence of leaks from the gas cell. Valves V3, V4
and V5 attached to the gas cell along with the tube connections were the most
likely sources of these leaks. These were ordinary plastic finger valves with push-in
connections at either ends. They where chosen due to their low cost and ease of
connecting to the gas delivery tubes. The gas cell was then subjected to a leak test
using a helium leak detector to identify the exact points of leak. As suspected,
considerable leakage signal was picked up in and around the valves and the tube
connections. The cell window ends on the other hand did not show any signs of
leakage. All the valves were immediately replaced with superior quality Swagelok
ball valves and fittings and the cell was subjected to another round of leak tests
which came out satisfactory. Similar valve replacements were also carried out for
the 1 mm gas cell and the filter cells. Another round of pressure tests using the
Magnahelic was conducted and this time the drop in pressure recorded was less
than 10 Pascals /hour. This indicated a significant improvement from the previous
pressure change of 40 Pascals in 15 minutes. A picture of the C-13 sample cell

with improved connections and valve fittings is shown below in figure 6.2.

FIGURE 6.2: Photo of the C-13 sample cell with Swagelok connections and
valve fittings for a better leak proof system

During the course of these pressure tests, it was also realised that the gas sampling
bag had to be left attached to the C-13 cell with valve V5 open while making
actual length change measurements. If V5 was closed, any change in the length

of the C-13 cell will simply have the effect of changing the pressure inside gas
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cell leading to pressure broadening of the absorption lines with a drop in its peak
intensity. This, however, will not change the integrated absorption measured as
the area under the curve since the amount of gas present in the cell remains the
same. Hence, variation in length under such conditions will not alter the channel
integrated transmittance preventing the feedback loop from driving the system to
equilibrium or balanced absorption. But by maintaining V5 in the open position,
a change in length will either draw in extra gas into the cell or drive out excess gas
from the cell into the sample bag thereby maintaining constant pressure. This has
the effect of changing the integrated absorption along the channel. An increase in
length will draw in extra gas from the gas bag thereby increasing absorption and
a decrease in length will therefore result in decreased absorption. This is evident
in the low resolution FTIR scans taken from the gas cells with the bag attached as
shown in figure 6.3. The scans were recorded at different lengths of 9.9 cm, 10.7 cm
and 11.7 cm and the corresponding increase in absorption or drop in transmission

can be clearly seen for increasing lengths.
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FI1Gure 6.3: FTIR spectra showing change in overall absorption when gas bag
is attached to the sample cell. Scan resolution was 4 cm™!

Using the gas filling rig, the filter cells were filled with the corresponding pure
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isotopomers. They were then placed in their respective channels. The source tem-
perature was varied from 674K to 874K in steps of 50K and the corresponding
detector output voltage was recorded and compared against expected value ob-
tained from simulation studies. These measurements were later repeated with the

empty sample cells also placed in the beam path.

Figures 6.4 and 6.5 show that the experimental data confirms well the simulation
results which validates the accuracy of the simulation model and the systematic

approach adopted so far.
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FIGURE 6.4: Plot showing comparison between C-12 channel simulated results
and actual experimental values for detector output at various source tempera-
tures

Since all the tests conducted so far yielded satisfactory results, it was decided
to check how the entire instrument setup responds when the sample cells were
filled with the 3% gas mixture. More specifically, the objective was to determine
if the system can detect a variation in the integrated channel absorptions. The
output from the detector was fed to a SRS 530 dual channel lock-in amplifier from
Stanford Research Systems. The PSD received its 10 Hz reference signal from the
photoreflective sensors discussed previously. The dc output from the PSD was
then used to study the response of the system when there is a change in channel

transmittances. This can be done either by using the X/Y mode or the R/¢ mode



Chapter 6 Experimental Results and Analysis 95

0.3

<
)
o

s

—— C-13 channel
cell sim

—=- C-13 channel
filter exp
C-13 channel | |
cell exp

—— C-13 channel

0.05 filter sim

o
)

o
.
(&)

Detector output, Volts

o
=

624 674 724 774 824 874 924

Source Temperature, K

FIGURE 6.5: Plot showing comparison between C-13 channel simulated results
and actual experimental values for detector output at various source tempera-
tures

on the SRS 530. Both convey the same information although in different forms.
A suitable integration time constant of 10 seconds was chosen. The procedure
adopted was as follows. Before making use of the filter and sample cells, it was
necessary to have proper phase setting on the PSD. The channels were made to
balance initially without using any of the gas cells. The source temperature was
maintained at 674K and the choppers were turned on. The inherent imbalance
in the system due to the slightly different channel intensities was corrected by
making use of an iris that was placed in the C-12 channel. Once satisfactory
balance was achieved, the system was unbalanced by blocking one of the channels
and the PSD was switched to X/Y mode. The detector output signal at this
point coincided either with the leading or falling edge of the 10 Hz square wave,
depending on which channel had been blocked indicating that it was 90° out of
phase with respect to the reference. In order to maximise the output, the phase
was adjusted to obtain a maximum positive value (cos 0° is positive) or maximum
negative value (cos 180° is negative) for the unbalanced signal. If now the other
channel was blocked and the first one exposed, X value on the PSD output will
swing to a maximum value with reverse polarity. Hence by observing the polarity

of the X value, it was possible to determine which channel was stronger and by
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how much it was stronger. The same information can also be obtained using the

R/¢ mode which gives a direct measurement of the phase value.

Once the PSD has been properly set for measurements, the filter cells were placed
in their respective beam paths along the with the empty sample cells. The entire
enclosure was closed and purged continuously at 25 1t/min for approximately two
hours. During this period, the sample cells were also continuously purged to
expel any CO4 containing ambient air within them. It was observed that at the
beginning of the purge session, the C636 channel signal appeared stronger than
the C626 channel signal. This was seen by observing the detector output on an
oscilloscope as shown in figure 6.6. Also the PSD output was positive indicating a
stronger C636 channel signal. This was expected because once the filter cells were
placed in the beam paths, the unpurged beam path beyond the filter cells will
result in increased C626 absorption due to its greater abundance in the ambient
unpurged air. Hence the C636 channel peaks falling on the leading edge will

become stronger. But as the enclosure continues to get purged driving out excess
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stronger than the C626 channel signal(falling edge peaks)
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COg from the non-sample pathlength, a reduction in the imbalance can be observed
as illustrated in figure 6.7. Both the channel peaks now have nearly the same peak

to peak intensity.
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FIGURE 6.7: Oscilloscope display showing combined signal at the end of the
purge session with both channel peaks of nearly the same intensity

At the end of the purge session, one channel was individually blocked and the
PSD output was recorded in real time using a PICO oscilloscope. The sample gas
mixture containing 3% CO, and balance N, was fed into the sample cells using the
gas filling rig and the sample air bag. The results are shown in figure 6.8. The data
was recorded for over 300 seconds. When the C626 channel was blocked, the PSD
output started at a strongly positive value indicating a strong C636 signal. But
when the sample gas was fed into the cells after 100 seconds, the output recorded
a dip in its value due to increased C-13 absorption along the unblocked path.
Similarly, when the C636 channel was initially blocked, the PSD output started
at a negative X value indicating a stronger C626 channel signal but once the
gas mixture was fed into the cells after 150 seconds, the PSD output became less
negative indicating a drop in signal strength. The direction of change in the output

recorded for both the channels was precisely what was expected since the addition
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of the sample gas drove the PSD output towards the equilibrium point. Hence a
signal that initially had a large positive value became less positive and a signal
that initially had a large negative value became less negative after introduction of
the sample gas. The change in these PSD values is less pronounced in figure 6.8
because the system starts from an unbalanced point with a strong unbalanced
background signal. To better demonstrate this effect, the same procedure was
repeated with the system initially in a balanced state. It should be noted that
both these tests were conducted under open loop conditions in the absence of any
feedback servo control for cell length manipulation. In this test, after the sample
cells were purged with Ny, one of the gas cells was completely sealed using the
inlet and outlet valves. Sample gas was thus fed to only one of the sample cells at
a time and the corresponding change in PSD output was recorded as before. This
is shown in figure 6.9. When the C-12 channel was sealed, the output started from
a value very close to 0 volts indicating the balanced state and remained so until
about 150 seconds when the sample gas was introduced into the C-13 sample cell.
This immediately had the desired effect on the output making it more negative
indicating an increased absorption along the C-13 channel and hence a stronger C-
12 channel signal (negative value). On the contrary, when the C-13 cell was sealed
and sample gas filled into the C-12 cell, the opposite effect was observed. The
output initially started close to 0 volts and remained so until 200 seconds when
the introduction of the sample gas caused the signal to become more positive. This
was indicative of a stronger C-13 channel signal due to increased absorption along
the C-12 channel. Furthermore, it can also be observed that the shift in values is
more dramatic when the C-13 cell was sealed. This is because the introduction of
the sample gas into the C-12 cell causes a bigger change from the equilibrium point
than that caused by absorption in the C-13 cell on account of the greater isotopic
abundance of C626 than C636. Hence, it can be safely said that the above tests
completely validates the understanding of the absorption mechanism and also the

instrument response to gas based experiments.

6.2 System Noise Analysis

A systematic analysis of noise is essential in order to completely characterise a
system. This will provide us with key information such as noise floor which even-
tually determines the sensitivity of the measurement setup. In our current system,

there are four major possible sources of noise, namely:
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FIGURE 6.8: Variation of PSD output when sample gas is introduced into the

system already in an unbalanced state

1. Pyroelectric detector noise
2. Noise from low noise FET op-amp
3. Input noise of the PSD

4. Johnson noise from resistors in external low noise circuit

6.2.1 Pyroelectric Detector Noise

The LTIQ2 pyroelectric detector acts as a major source of noise in our mea-

surement setup. It has an integrated JFET pre-amplifier configured as a voltage

follower. The main sources of noise within a pyroelectric detector are:

e Temperature noise, Vg, due to the statistical behaviour of heat exchange

between the responsive element and its surroundings

e tand noise, Vip, which describes the thermal noise of the element resistance
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FIGURE 6.9: Variation of PSD output when sample gas is introduced into the
system starting from a balanced position. The change in output is therefore
more noticeable in this case

e Thermal noise, Vgg, of the FET input resistance which is usually in gi-

gaohms

e Current noise of the FET expressed as a voltage by considering the FET

resistance, Vg

e Voltage noise of the FET, Vgy

Taking into account contributions from all these sources, the total normalised noise

voltage from the detector can be expressed as

The quoted overall noise density in the data sheet for this detector is 80 nV/v H z.
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6.2.2 Noise from FET op-amp

The low noise FET op-amp at the output of the detector provides the neces-
sary signal filtering and amplification for making sensible measurements. It has a
quoted voltage noise density, Vpgr of 25 nV/+v/ Hz for an operating frequency of
10 Hz.

6.2.3 PSD Input Noise

The lock-in amplifier (PSD) SRS 530 has a quoted noise density, Vpgp, of TnV
/V/Hz as given in the manufacturer’s data sheet. The actual amount of noise at the
output of the system is, however, determined by the Equivalent Noise Bandwidth
(ENBW) set by the output low pass filter of the PSD. ENBW is the range of
frequencies contained within an ideal square pass band that has the same power
density as that of a real filter. It depends on the time constant and filter roll-off
set on the PSD. The low pass filter at the output of the PSD acts as a bandpass
filter centered around the externally provided reference frequency and the filter cut
off determines the detection bandwidth. In other words, it becomes the limiting

bandwidth in the measurement process.

6.2.4 Johnson Noise

Johnson noise or thermal noise is produced due to the thermal motion of charge
carriers in resistive elements. This motion sets up a local charge gradient. The

rms noise voltage is given by

V; = \/AKTRjAf = 0.13VRAf (6.2)

where R is the value of resistance and Af the noise bandwidth. From figure 5.27,
we see that a 100K, a 47K and a 1K resistor is used. Neglecting the 1K resistor
due to its insignificant contribution, the total Johnson noise from the resistors is
approximately 50 nV/ V' Hz. To summarise, table 6.1 lists the noise sources and

their corresponding noise contributions.

Hence we see from the above table that detector noise is the dominant source of
noise as desired. Improving the noise performance of the FET op-amp thus offers

little benefit. The overall noise value is the square root of the sum of the squares
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Noise Source Noise Density, nV/\/E
Pyroelectric Detector, Vp 80
FET op-amp, Vegr 25
PSD, Vpsp 7
Johnson Noise, V; 50

TABLE 6.1: Various sources of noise present in the system and their respective
theoretical noise contributions

of these individual noise contributions. This is given by

Ve = \/VE + Vipr + Viisp + V3 (6.3)

Substituting the above values, Vy = 98 nV /v Hz. The output rms voltage noise
is given by
Vims = Vi X Gain x Vv ENBW (6.4)

The low noise amplifier circuit gain is 100. As discussed before, ENBW depends
on the output filter characteristics set on the lock-in amplifier. Here we have used
a single stage RC filter with a 6dB/octave roll off. Hence the value of ENBW
becomes \/W . Using this, the rms noise values were computed for different

time constants and listed below in table 6.2.

RC Time Constant, seconds | RMS Noise, 1V,
3 2.82
10 1.55
30 0.9

TABLE 6.2: Computed noise values for various integration time constants se-
lected on the PSD

These theoretical noise values are the noise floors of the system and hence deter-
mines the minimum detectable delta values. In order to convert these noise values
into corresponding delta values, a calibration curve was simulated in MATLAB
as shown in figure 6.10. Here the detector output voltage for various delta values
was computed for an optimum C-13 cell length of 10.245 cm. Based on the curve,
a 3 second time constant implies a minimum measurement of 1%o whereas a 10

second time constant implies 0.5%o.
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FIGURE 6.10: Theoretical calibration curve showing the detector output for
various delta values. The curve is then used for the estimation of measurement
sensitivity and minimum detectable delta
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6.2.5 Experimental Estimation of Noise

The previous section indicates that the current design should enable us to detect
changes of the order of 1% using a convenient time constant of 3 seconds. To
experimentally verify this, the system was initially maintained in a balanced ab-
sorption state and the PSD output was recorded using the PICO scope as before.
Then the system was unbalanced by changing the iris aperture thereby disturbing
the equilibrium state and the PSD output either increased or decreased depending
upon the direction of iris change. The PSD output was recorded until it attained
a steady state value. The rise or fall time depended on the time constant cho-
sen on the PSD. From the recorded values, noise was calculated by measuring
the standard deviation of the steady state values. Figures 6.11 and 6.12 show
the measured standard deviations for a time constant of 10 and 3 seconds respec-
tively as the system goes from a balanced to an unbalanced state. It can be seen
that in both cases the noise level increases as we move from a balanced state to
an unbalanced state which is indicative of a noise generating mechanism being
present within each channel. Under balanced conditions, the effect of these noises
is ratioed out and reduced due to the symmetrical design of the system. Further
evidence of this behaviour is presented later in this section. Referring back to the
calibration curve, we can deduce that the experimental analysis suggests a mini-
mum delta measurement of 1.1%0 to 2.14%0 for a 10 second time constant. For a

3 second time constant, the values range from 3.37%¢ to 5.77%.

The observed discrepancy in the theoretical and experimental noise estimates is in
the range of a factor of 2 to 6 for various measurements. This points to the pos-
sibility of other noise sources that have been ignored in the simulation studies for
ease of evaluation. For instance, the theoretical studies were carried out under the
assumption that the source temperature remains constant throughout the course
of measurement. However, in reality noise contribution from source temperature
fluctuation can reduce detection sensitivity. The discrepancy may also be due to
the difference in test conditions prevalent during the experimental work from the
assumed test conditions. Lack of a purged environment during the experimental

tests will result in fluctuations in the ambient CO5 concentration.
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A comprehensive study was carried out in order to further understand noise gen-
eration in the system. Individual tests were carried out to ascertain noise contri-
bution from the detector and the effect of possible interference or pick up from
the chopper motor. Noise from each channel when present alone along with the
combined noise was also evaluated. To determine the detector noise, the source
and the choppers were turned off and the detector alone was switched on. A PSD
with a time constant of 10 seconds was used to make the measurement. A refer-
ence signal of 10 Hz was provided by a separate function generator. In this case,
since no optical signal is being measured, noise can be calculated from the average
of the observed values. Figure 6.13 shows the data recorded at the PSD output
when used in the R/¢ mode. The random jumps in the phase value indicates
that true noise is being measured and the PSD is not detecting any meaningful
signal. The observed noise value for the detector (including noise from the FET
amplifier and the PSD) was 1.64 ¢V which compared very well with the theoretical
value of 1.55 pV as listed in table 6.2. Next the source was turned on and the
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FIGURE 6.13: Plot showing the record of PSD output in magnitude and phase
when the detector alone was switched on

broadband IR radiation was allowed to fall on the detector. The measurement

process was repeated as above and the observed noise was measured to be 1.72
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1V. The recorded PSD output is shown in figure 6.14. Hence there was no signifi-
cant deviation from the previous noise value when the source was turned off. This
agrees with the expected result since no additional source of noise was introduced
and the pyroelectric detector does not suffer from any shot noise contribution.
Then the chopper motor was turned on but the optical beam was blocked and the
signal falling on the detector was monitored. The recorded values from the PSD
are shown in figure 6.15. Once again, no significant difference was noted and the
measured noise of 1.8 puV agreed well with previously obtained values. Since no
optical signal was being detected, we can safely eliminate any pick up from the
chopper motor as a source of interference that may have a significant bearing on

measurement sensitivity.
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FIGURE 6.14: Plot showing the record of PSD output in magnitude and phase
when the detector was exposed to the optical beam from the source
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FIGURE 6.15: Plot showing the record of PSD output in magnitude and phase
with the choppers turned on

Individual channel noise was also measured in a similar way. One channel was
blocked at a time and the standard deviation of the PSD output was calculated.
Several measurements were recorded and it was found that each channel con-
tributed on an average 85 1V of noise. This figure is much higher than the previous
measurements suggesting significant noise generation when detecting IR radiation
chopped by the mechanical chopper assembly. This can be due to an irregular
chopping pattern arising from any chopping frequency fluctuations that exhibits
itself in the form of noise. More discussion on this will be provided in a later
section. Also the phase signal now showed a steady value indicating that a 10
Hz signal was being constantly measured by the system. However, when noise
measurements were made under balanced absorption conditions using both the
channels, noise was significantly reduced to 5.64 V. This observation strongly
suggests that the noise generation mechanism present in each of the channels tend
to counteract or oppose each other thereby reducing the overall noise when the
two beams are combined at the detector. This is not surprising because of the fact
that both the choppers are in anti-phase resulting in an automatic elimination

of common noise sources present along the two channels. In fact, this is one of
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the salient features of the measurement system attributed to its unique symmetric
design thereby ensuring cancellation of common interferences and noises. A record
of the data for the balanced condition is shown in figure 6.16. The phase signal
now indicates a constant value which implies that even under balanced or near
balanced conditions, an optical signal is being detected by the PSD. This directly
relates to the 20 Hz signal that we observed previously when the two channels
were balanced and an explanation for its appearance was also provided earlier in
section 5.7. The need for suppression of this 2w signal will be taken up in a later

section.
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FIGURE 6.16: Plot showing the record of PSD output in magnitude and phase
when the both the channels were exposed and the system was maintained in
equilibrium

To summarise, noise contribution from the detector alone was found out to be 1.64
1V for a 10 second time constant. This corresponds very well with the theoretical
calculation of 1.55 pV presented earlier in table 6.2. The overall noise for the
balanced condition was experimentally determined to be 5.64 pV. This value is
also in good agreement with the rms noise value shown in figure 6.11. A summary

of the noise values determined experimentally has been listed below in table 6.3



Chapter 6 Experimental Results and Analysis 110

Noise Source Evaluated Noise, 1 Vrms
Detector alone 1.64
Detector + source 1.72
Detector + chopper 1.8
Individual channels 85
Balanced 5.64

TABLE 6.3: Various sources of noise present in the system and their respective
noise figures

6.3 Source Temperature Stability

In the previous section, it was stated that the source temperature was assumed
to be constant for the purpose of simulation studies. For the blackbody curve
to peak at 4.3 um, the source temperature must be maintained at 674K. It was
earlier show in chapter 5 that a source temperature stability of +0.5K will en-
sure a measurement sensitivity of around 1%o. Section 5.1 dealt with the issue of
source stability by performing experimental tests and it was concluded that the
IR-12 broadband source was adequately stable. However, this does not rule out
the possibility of turbulent convection related temperature fluctuation (as opposed
to slow drifts over time) and hence this aspect was also investigated. Heat trans-
fer from the source by radiation does not exceed 1-2% of the total heat transfer
through the gas at temperatures around 600K[63]. The source heats up the air
around it and as result the hot air rises up and this establishes a convective cur-
rent in the vicinity of the hot source. In certain cases, this leads to turbulence
which will exhibit itself as a random source temperature fluctuation at the de-
tector and produce noise. To determine if the primary mode of heat transfer is
conduction or convection, Rayleigh number (R,) for the particular case needs to
be computed. Rayleigh number is a dimensionless number that is associated with
the heat transfer within a fluid. If the value of R, is below a critical value, R,.,
then heat transfer by conduction dominates. When it exceeds the critical value,
heat transfer is primarily in the form of convection. The value of R,. is typically
taken as 1700 for a closed top boundary configuration or the Benard Configuration

(as in the present case) and if R,>5500, the convection becomes turbulent[64].

The Rayleigh number is actually a product of two other dimensionless numbers,
the Grashof number (G,) and the Prandtl number (P,).

R,=G, x P, (6.5)
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The Grashof number approximates the ratio of buoyancy to viscous forces acting

on a fluid[65] and is given by

G, = (6.6)

where g is acceleration due to gravity, 3 is volumetric thermal expansion coefficient
which is approximately equal to 1/T (T is absolute temperature), Ts is source
temperature, Too is quiescent temperature, L is characteristic length and v is

kinematic viscosity.

The Prandtl number gives the ratio of viscous diffusion rate to thermal diffusion
rate and is given by
v

P (6.7)

where « is thermal diffusivity. Typical value for P, is 0.7 for air and most gases|[66].

By substituting appropriate values in equation 6.6, we obtain a value for G, =
1033 for a characteristic source length L of 3.5 mm (from data sheet). Using P,
= 0.7, equation 6.5 gives a value for R, = 723.1 which is less than 1700 that is
required for convective heat transfer to dominate. Since this calculated R, value
falls well short of 5500 that is required to set up turbulence, we can conclude that
no turbulent heat transfer mechanism exists which can make a contribution to the
measurement noise. However, it should be noted that the safety margin is not
large and an increase in source temperature T's or more significantly an increase in
the characteristic length L (since it changes as a cube) can easily cause the value
of R, to exceed 1700.

6.4 Frequency Stabilisation and Control

While performing various tests discussed previously, it was observed that the ref-
erence frequency signal derived from the choppers showed sudden small shifts in
value during the course of a measurement. Since this reference signal was fed to
the PSD for the purpose of locking on to the output signal from the detector, the
resultant DC output from the PSD also showed some variations. These frequency
fluctuations can result in erroneous measurements since the basal and enriched

sample test measurements may be carried out at different chopping frequencies.
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Figure 6.17 below shows this unstable frequency characteristic that was observed.
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FIGURE 6.17: Figure showing the unstable nature of the reference chopping
frequency and its effect on the measured PSD output

The chopping frequency was set to 11 Hz. It can be seen that a drop in frequency
(two such drops are clearly recorded in the figure) triggers a similar effect immedi-
ately afterwards on the measured PSD values. The output values decrease at first
and then slowly rise back to the previous value after the frequency has returned to
its set value. This is the reason why the PSD output values had to be recorded for
a longer period of time than the frequency values and hence the time axis values
were deliberately not displayed due to the difference in record duration. The step
like behaviour of the PSD output values is a result of the resolution limit imposed
by the PICO scope used for recording the data. With an 8 bit resolution on the
PICO scope and £5 V setting, the minimum step size is % which is about 40 mV.
This agrees with the step size seen on the plot. Any changes in the PSD out-
put below 40 mV will not be recorded by the PICO. The shape of the frequency
and PSD output plots strongly suggests a strong correlation between chopping

frequency fluctuation and fluctuation in the PSD output. This output fluctuation
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gives rise to a spurious signal that will result in an erroneous measurement of
delta values. Thus a control mechanism for frequency stabilisation needs to be
incorporated into the design. The reference chopping frequency is obtained by
using photoreflective sensors as mentioned previously. The speed of the chopper
motor was set using a PWM scheme whereby the motor frequency was varied by
changing the DC signal fed to the PWM chip. This open loop control scheme was
modified to provide a closed loop control of the chopping frequency. The modified

circuit diagram is shown below in figure 6.18.

10K
IN4OO7GD 01 | ~X

LM331
LM324 FIV
PWM | s @
> Y IRFZ34N
100K Ref Speed
DC Error VR §

- 10K

+Vé—/\/v\/1

Level Shifter =

FIGURE 6.18: Circuit schematic of the closed loop frequency control imple-
mented for chopper frequency stabilisation

The motor encoder signals were fed to a LM331 frequency to voltage converter.
The output was then compared with a reference signal that set the reference speed
through a potentiometer. The error signal was then amplified and level shifted by
using a summing circuit and the output was then fed back to the PWM chip as
the DC signal that sets the pulse width. The level shifter was used so that the
DC signal at point C lies in the mid range of the triangular wave generated by the
PWM chip. By adjusting the voltage at point A, the speed of the chopper motor

was set and any deviation from the set speed will cause the signal at C to vary
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the pulse width accordingly. The implementation of this closed loop frequency
control resulted in significant improvement in the frequency stability as seen in
figure 6.19. No significant jumps or shifts in the frequency was observed and the
standard deviation in the recorded frequency was down to 0.002 Hz from a previous
value of 0.33 Hz. This improved frequency control was essential in making more

reliable and accurate measurements possible.
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FIGURE 6.19: Figure showing significant improvement in chopping frequency
stability by implementing a closed loop control circuit

6.5 Resolution Measurements Using Fine Wires

The experiment using an iris to balance or unbalance the system can also be
employed for determining measurement resolution. That is, by causing a change
in the iris aperture when the system is in balance, the power transmitted along one
of the channels can be changed and hence the system response can be monitored.
This way, the smallest detectable change in power can be found which in turn

gives us a measure of minimum delta. From the calibration curve in figure 6.10,



Chapter 6 Experimental Results and Analysis 115

we see that 1% implies a voltage change AV of 8 Vi, which is equivalent to a
power change AP of 0.38 nW with a detector responsivity of 209 V/W and a gain
of 100. However, using the iris imposes a limitation in the form of the smallest
change that can be produced by manually adjusting the iris lever. With a slow
and cautious approach, the smallest change in the iris aperture that was manually
possible resulted in a change in output voltage of 2 mV,_,x. This was too large a
change to reveal any information about the measurement resolution. To produce
much smaller changes in the channel transmitted power, very fine wires of various
thicknesses were chosen and introduced into the beam path of one of the channels.
The wires were held stretched using clamps and placed across the middle of the
cell windows so that it lies across the middle of the optical beam. The resultant
change in optical power was calculated from the beam diameter and the wire
thickness. Any change in the PSD output was recorded using a time constant of

3 seconds. The results are summarised in table 6.4. The table shows that the

Wire dia, mm | Change in Power AP, W | Delta
0.25 0.104 293%o0
0.127 0.053 150%0
0.05 0.021 59%o0
0.025 0.010 28%o0

TABLE 6.4: Table showing various fine wires used and the corresponding change
detected both in terms of optical power and delta values

minimum simulated delta that can be detected with adequate accuracy using a 3
second time constant and a 0.025 mm thick wire is 28%yg. Previous experimental
noise studies indicated the possibility of measuring down to 6% with the present
system. This however could not be reproduced here because of the non availability

of wires that were thinner than 0.025 mm.

6.6 Suppression of 2w Component

The cause of the 2w component of the chopping frequency appearing at the output
of the detector with the system in balance was discussed previously in section 5.7.
It was expected that the use of a lock-in amplifier would prevent this 2w (20 Hz)
component from interfering with the measurement. This is because the output
low pass filter in the lock-in will only allow signals that are in a narrow bandwidth
around the reference frequency of 10 Hz while rejecting all others. However, in

the present case, this does not hold true. This can be understood if we carefully
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analyse how a lock-in amplifier functions. A lock-in or a PSD can be visualised
as a combination of a multiplier followed by a low pass filter. The two inputs
to the multiplier are the reference frequency from the chopper which is a 10 Hz
signal in this case and the detector output which happens to be a 20 Hz signal
under balanced absorption. The multiplier produces as its output both the sum
and difference frequency components, that is, a 10 Hz and a 30 Hz signal. These
are then applied directly to output low pass time constant set on the PSD. A 3
second time constant gives a low pass cut off at 0.053 Hz. Considering a single
pole output stage with a 6 dB/octave roll off, the 30 Hz signal will be adequately
attenuated but the 10 Hz signal will be attenuated by 48 dB or 250 times. In
other words, if we consider a 250 mV signal, the dc output of the PSD will be
modulated by a 1 mV signal at 10 Hz. Hence we see that the 2w component at
the input manifests itself as a break through 10 Hz modulation on the dc output.
Another possible reason for 2w component affecting the output is the harmonic
rejection offered by the lock-in amplifier. Analog lock-in amplifiers such as the the
SRS 530 detect and produce a dc response even to the harmonics of the internally
generated reference signal. Their stated harmonic rejection of -55 dB (less than
1000 times) is not sufficient enough to fully suppress this effect. Hence, even
under balanced absorption, the PSD detects a signal which contributes to the
output and gets recorded. This residual balance signal will impact the resolution
of the measurement process. Ideally at perfect balance, the output of the PSD
should represent a noise signal in which case the magnitude or the R value will
be noisy and very close to zero with the phase oscillating randomly from +180°
to -180°. As the system moves away from balance, the value of R increases and
the phase becomes steady and constant indicating detection of a true unbalanced
signal. Figure 6.20 shows a plot of the magnitude in terms of R, X and Y values
and the phase as function of iris aperture diameter. The system was taken through
its balance point which can be identified by the lowest point on the R curve. At
the same time, phase of the signal also undergoes a 180° reversal as seen in the

figure.
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FIGURE 6.20: Variation of PSD output as a function of iris aperture diameter.

The values were recorded as the system passed from an unbalanced state to a

balanced point and then back to an unbalanced state with the associated phase
reversal

Figure 6.21 provides a magnified view of the magnitude and phase values near
the balance point. The minimum residual value of R was 1.5 mV. By manually
adjusting the iris, it was not possible to bring the system to the actual balance
point. However, the broad shape of the R value in the vicinity of the balance point
indicates the presence of a strong residual signal near balance. If pure noise alone
was present at balance, the R curve would have been much narrower with a sharp

drop in its value at balance.
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FIGURE 6.21: Magnified view of variation in magnitude and phase near the
balance point

In order to suppress the 2w component, a low noise voltage pre-amplifier SRS 560
that includes a low pass filter was connected at the output of the detector before
the signal was fed to the PSD. The pre-amplifier was operated using a 10 Hz cut
off and similar set of measurements were recorded. These were compared with
the previous data obtained in the absence of the pre-amp and shown below in
figure 6.22. The phase reversal was observed as before and the magnitude curve
was much narrower this time with a residual magnitude of 0.7 mV at balance (10
Hz curve in the plot). This represented a definite improvement over the previous
case (curve indicated as none in the plot). To check the 2w suppression, the
2F detection capability in the PSD was employed. The test was repeated and
both the F and 2F outputs from the PSD were recorded and this is depicted
in figure 6.23. As observed, when the system is grossly out of balance, the 10
Hz component dominates the PSD output with the phase dependant on which
channel is stronger. However, as we move towards the balance point by manually
adjusting the iris, the 10 Hz component begins to fall rapidly and finally at the
balance point, it drops below the 20 Hz component. This correlates perfectly well

with the appearance of a 2w component at balance.
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FIGURE 6.22: Plot showing variation of magnitude with iris aperture after
using a low noise pre-amplifier. The magnitude curve is much narrower when

compared to the initial case

Although the use of a low noise pre-amplifier has helped in reducing the residual

magnitude, it is evident from figure 6.23 that the 2w component has not been

fully suppressed. This necessitated the use of a dedicated filter design to effec-

tively eliminate the 20 Hz component at balance thereby improving the overall

detectability of the system. For our work, ideally we require a filter that offers the

following characteristics:

e Maximum steepness in roll off.

e The phase response of the filter should be smooth around the cut off fre-

quency without any sudden changes that prevents us from making an accu-

rate phase measurement, since phase of the detector signal indicates which

channel is stronger.

e Fasy to design and implement.

Various types of active filter designs were considered such as Butterworth, Cheby-
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FIGURE 6.23: Figure showing both the F and 2F outputs from the lock-in

as a function of iris diameter. When the system is away from balance, the

10 Hz component dominates but at the balance point it falls below the 20 Hz
component

shev and Bessel filter configurations. They vary from one another in their perfor-
mance characteristics such as pass band and stop band characteristics and also in
their roll off steepness. A trade off between filter performance and design complex-
ity is inevitable. Butterworth filters have a very flat response in their pass band
with very little ripples. However their roll off rate is not the steepest. Chebyshev
filters on the other hand provide the steepest roll off but also generate ripples in
the pass band. These are also called equiripple filters and the number of ripples
increases with the number of poles. However, to achieve the same degree of per-
formance, a Chebyshev requires less number of poles than a Butterworth filter.
The amount of ripples can also be controlled and maintained within a certain level
(0.5 dB) by the judicious use of components with proper tolerance limits. In spite
of the presence of pass band ripples, it is more advantageous to use a Chebyshev
design for higher order filters because some amount of ripple will almost always
appear in the pass band even in a Butterworth filter. This is due to the deviation

of the components from their predicted responses as a result of their finite toler-
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ances. Elliptical filters which are an extreme case of Chebyshev filter allow ripples
in the stop band as well in order to obtain even steeper roll off. A comparison
of roll off steepness for Butterworth and Chebyshev filters is shown in figure 6.24.

Bessel filters on the other hand have maximally flat time delay in the pass band

FIGURE 6.24: Figure comparing roll off for a Butterworth and Cheybyshev
filter with 1 Hz cut off frequency. Y-axis in log scale(taken from [3])

thereby minimising waveform distortion. However, flat time delay is not a con-
sideration in the present case. Besides, their roll off has poor steepness even in
comparison to a Butterworth filter. The various filters and their characteristics

have been summarised in table 6.5 below.

In the present case, the most important criteria for filter selection is steepness of
the roll off since the aim is to eliminate all unwanted frequencies above 10 Hz and
provide maximum suppression for the 20 Hz component. The best performance
in this regard is offered by the Chebyshev filter. Although they allow pass band
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Filter Type Characteristics

Butterworth Very flat response in pass band
Poor roll off
Requires more stages than a Chebyshev for similar performance

Chebyshev Steepest roll off
Ripples in pass band can be kept within tolerable limits
Less complex design and requires fewer stages

Bessel Maximally flat time delay in pass band, no wave distortion
Roll off steepness poorer than Butterworth

TABLE 6.5: Table showing various types of filter designs that were considered
and their associated characteristics

ripples and have poorer performance in this regard in comparison to Butterworth
filters, this is not a critical factor in our application. Simplicity and ease of design
is always an advantage and the Chebyshev filter requires reduced number of poles
for equivalent performance when compared to a Butterworth filter. The only area
where Bessel filters are useful is in providing flat time delay response but this
again is not important in the current application. From the above discussion, it

was decided that a Chebyshev filter was the ideal choice for our filter requirements.

Figure 6.25 shows a typical single stage 2 pole Chebyshev filter, also known as a
Sallen Key filter with a 12 dB/octave roll off. The cut off frequency, f. is given by

1
fc B 27T\/ R1R20102

For increased attenuation, a two stage 4 pole filter was designed by using Fil-

(6.8)

terPro which is an active filter design application software provided by Texas
Instruments[67]. Each stage provided 12 dB/octave or 40 dB/decade attenua-
tion with a total attenuation of 24 dB/ocatve or 80 dB/decade. The circuit was
implemented using standard op-amps and the filter response was evaluated exper-
imentally for different cut off frequencies of 10 Hz, 11 Hz and 12 Hz and plotted
as in figure 6.26.
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FIGURE 6.25: A single stage 2 pole Chebyshev filter
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FIGURE 6.26: Figure showing experimentally evaluated frequency response of
a 2 stage 4 pole Chebyshev filter with different cut off frequencies
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The component values were chosen so that the pass band ripple was below 0.5 dB.
The experimentally obtained attenuation was close to 28 dB/octave for the case
where f, was 10 Hz. The overall circuit for the two stage 4 pole filter with f, of 10
Hz is shown below in figure 6.27. This filter was then used in conjunction with the
low noise SRS 560 and the PSD output was again recorded as a function of iris
aperture. The results are displayed in figure 6.28. The magnitude plot is much

narrower and the phase reversal much steeper than before.

6.9uF
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33K | 22K
. 270R | 220K
150F '
220n——

FIGURE 6.27: Circuit diagram of a 2 stage 4 pole Chebyshev filter with a cut
off frequency of 10 Hz and 0.5 dB ripple

The improvement in the suppression of the 2w component can be further un-
derstood from figure 6.29 which shows dramatic improvement in comparison to

figure 6.23.
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FIGURE 6.28: Plot of PSD output variation when a Chebyshev filter is used in

conjunction with the low noise pre amplifier SRS 560
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FIGURE 6.29: Figure showing suppression of the 2F component in the PSD

output when a Chebyshev filter was used. At balance, the 10 Hz signal clearly

dominates the 20 Hz component
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Further improvement in reducing the residual balance signal was possible by re-
placing the SRS 560 with a dual channel low noise filter SRS 650. The overall
schematic from the detector to the PSD is shown below in figure 6.30. The two
filters present in SRS 650 can be operated independently of each other and hence
offers greater design flexibility. By configuring one channel as a high pass filter
with a cut on frequency of 8.5 Hz and the other as a low pass filter with a cut
off at 11.5 Hz, the two can be cascaded to form a bandpass filter covering the fre-
quency range of interest. A gain of 10 dB was set on each channel and once again
the PSD output was recorded and this is represented by figure 6.31. The residual
balance signal recorded for this scheme was only 0.22 mV which is the best result
that was obtained so far. The R value still does not hit the origin because of the
difficulty in obtaining, by manual iris adjustments, the precise iris diameter that

corresponds to the equilibrium point.

Detector (F +V
Chopped IR +
light Amplfier 0 2 stage 4 pole P Ref .
Chebyshev —> SR8650 0 TOPC
100K PSD
0K
Reference
chopping
frequency

FIGURE 6.30: Figure showing the schematic setup of signal flow from the py-
roelectric detector to the PSD through the Chebyshev filter
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FIGURE 6.31: Plot of PSD output variation when a combination of Chebyshev
filter and low noise filter SRS 650 was used to provide improved performance

By using this combination of Chebyshev filter and SRS 650, it can be said with
reasonable confidence that the problem arising due to the second harmonic com-
ponent or 20 Hz signal has been eliminated. Figures 6.32 and 6.33 were recorded
from the oscilloscope. The combined trace now shows an expected signal at bal-
ance and clearly, no signs of a 20 Hz signal are visible. This is in stark contrast

to the earlier situation as shown in figure 5.36 in section 5.7.
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FIGURE 6.32: Figure showing detector output signals from each channel indi-
vidually, C626 channel (A) and C636 channel (B)
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FIGURE 6.33: Figure showing the combined detector output when both chan-
nels are transmitting without the presence of any 20 Hz signal
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6.7 Gas Based Experiments

So far it has been established that the two channel balanced absorption setup can
detect changes in the channel integrated transmittances and respond as expected.
This is characterised by a reversal of phase as the system goes through the balance
point. The final phase of instrument development involves the use of actual gas
mixtures to test and determine the instrument behaviour and response and thereby
validate the underlying theory and operating principle. To conduct these gas
based tests, the usual operating procedure was followed for setting up the correct
phase on the PSD. The filter cells were filled with pure isotopomers and placed
in their respective channels. The PSD, as expected, indicated a stronger C636
channel signal, as before, at this stage. The length of the C636 sample cell was
maintained around the theoretical equilibrium length of 10.245 cm. The 3% sample
gas mixture was then fed into both the sample cells by using the sample gas bag.
The interconnecting valve between the two channels was closed so as to isolate
them from one another. The instrument enclosure was closed and purged with
nitrogen for about 2 hours. At the end of the purge session, 5 ml of pure *CO,
was injected into the C636 cell by using a microsyringe and the PSD output was
observed. There was a sudden flip in the phase to a positive value indicating a
stronger C626 channel signal. This was due to the increased absorption along the
C636 channel as a result of the extra *CO, that was added. Subsequent filling
of Ny into the sample cell resulted in another phase reversal with the phase value
becoming negative, thus indicating a stronger C636 channel signal. This again
agrees with theory because virtually no absorption is taking place in the C636
channel whereas the C626 channel sample cell still contains the 3% gas mixture
that was initially fed into it. This test thus indicated that the instrument responds
to gross changes in channel transmittances which was induced by the introduction
of extra absorbing gas into one of the channels. However, 5 ml of pure CO,
translates to a very high delta value. Hence to test the response of the instrument
to lower delta values, the experiment was repeated by following the same procedure
but using a different concentration of enriched sample gas. 3 ml of pure 3CO, was
added to a bag containing 3 litres of Ny and mixed thoroughly. About 20 ml of this
mixture was extracted using the microsyringe and slowly fed into the sample cells
at the end of the purge session. This is akin to the situation where an enriched
breath sample obtained after the ingestion of C-13 labelled test dose is fed into the
measurement system after initially balancing the setup by varying the C636 cell
length. When an amount of extra 3CO, corresponding to an equivalent delta of

11%0 was added, a phase reversal was observed indicating a stronger C626 channel
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signal. This was accompanied by a drop in the magnitude (R value) as the phase
shifted by 180°. This is clearly visible in figure 6.34 shown below and the pattern
is similar to the results obtained from earlier experiments using the iris. Repeated
trials produced similar phase reversals for equivalent delta in the range of 10.5%0

to 11.5%0. These tests confirm the fact that the balanced absorption measurement
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FIGURE 6.34: Figure showing the phase and magnitude response of the system
when an enriched sample equivalent to 11%o was fed into it

system responds to imbalances caused by changes in channel transmittances. The
instrument in the present configuration is certainly capable of detecting changes
of the order of 11%o0. Previous noise analysis, however, suggests that the detection
limit is in the vicinity of 5%o to 6%o. To confirm this, the tests were repeated
with lower concentrations of enriched sample gas. However, these tests failed to
produce any conclusive results that indicated a delta detection capability lower
than 11%g.

A change in length of the C636 cell without the addition of any enriched gas
sample at the end of the purge session should also produce a change in the channel
transmittances thereby contributing to a delta value. This is because, when the
length of the gas cell is varied, it either draws in or pushes out more gas from or
into the attached gas bag and hence this affects the absorption within the cell. A
change in cell length is required to balance the two individual channel intensities
and thereby restore the system balance. The instrument is initially balanced after
the basal tests and then once the enriched sample is fed into it, the feedback
loop drives the variable length gas cell in the required direction to restore system

balance. It is this change in length that gives us a measure of the delta value. To
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test this, the gas cells were filled with the 3% sample mixture and the C636 cell
length was maintained near the theoretical equilibrium length of 10.245 cm. The
enclosure was purged for 2 hours as before. Then the length of the gas cell was
varied by using the servo loop and micrometer arrangement without adding any
enriched gas sample. This was done by sending out a series of command pulses to
the motor driver via the USB data acquisition card using the LABVIEW interface
that was created. The length was varied initially from 10.245 cm to 9.9 cm which
is equivalent to a delta change of about 35%o. This is well within the detection
limit of the instrument. However, the PSD output did not show any sign of phase
reversal or a significant change in the magnitude to suggest a change in absorption.
The length of the cell was then increased to 11.5 cm past the equilibrium point
but again no evidence of a phase reversal was observed. Repeated tests did not
provide any satisfactory results that indicated a change in length resulting in a

delta value and this was contrary to what was expected.

So the current problem was that no phase reversal was observed in the PSD output
as a result of cell length variation. A closer examination of the PSD output revealed
a likely source of the problem. After the channels were initially balanced using
an iris in the absence of any gas cells, the filter and sample cells were placed in
the beam path. At this point, as mentioned earlier, the C636 channel always
appeared stronger due to the higher concentration of C626 in the unpurged non-
sample path length. The entire enclosure was then purged for 2 hours. However,
at the end of the purge session with the C636 cell length at or near its equilibrium
value, it was observed that instead of having balanced absorption along the two
channels, the C636 channel was still stronger than the C626 channel. This was also
observed when the sample cells were purged with Ny gas instead of the sample gas.
According to previous calculations, a purge session lasting 2 hours at 25 1/min is
sufficient enough to expel all the background CO, present inside the enclosure. A
stronger C636 channel represents unequal absorption in the two channels implying
that the system is in a state of imbalance at the end of the purge session which
is contrary to what was expected. This can also be ascertained by referring to
figure 6.34 where the phase at the beginning of the measurement (at the end of
purge session) started from a negative value, again indicating a stronger C636
channel. However in this case, direct introduction of significant amount of pure
13C0O, (20 ml) produced an immediate phase reversal. This indicates the presence
of an equilibrium point and proves that the system responds to unequal absorptions
along the two channels by producing a phase reversal as the system goes past the

balance point. But when a similar imbalance was created using cell length variation
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rather than isotopomer concentration variation, the same effect was not observed.
This leads to the conclusion that at the beginning of the measurement process
(end of purge session), the system was so far away from a balance point that
the change in channel transmittances produced as a result of the length change
that was possible with the current bellows and micrometer arrangement was not
sufficient to push the system past the balance point and cause a phase reversal.
The possibility of the equilibrium cell length of 10.245 cm being grossly inaccurate
was considered as a likely cause for this. If this was true, then the maximum
stroke offered by the current arrangement will be incapable of driving the system
to balance. However, the possibility of a theoretical value of cell length that is in
proportion to the relative abundances of the two isotopomers being incorrect is
unlikely. In any case, this was put to test and the cell length was increased to 17
cm by attaching extensions to the cell tube. Tests were repeated but this did not

help in solving the problem and no phase reversals were observed.

From the above it can be concluded that the key issue here was that the system
became unbalanced at the end of the purge session and there were no means
available to re-balance under purged conditions. This prevented the system from
reaching an equilibrium point which prevented any phase reversal with cell length
manipulation. Possible reasons for this imbalance even after purging are mentioned

below:

1. The two channel beams falling on different areas on the pyroelectric detector.
2. Difference in reflectivities of the chopper mirrors.

3. Presence of dust particles in the beam path.

Further description of these are provided in the following chapter. It is imperative
that any further improvement in the system performance can be made possible
only if this problem is adequately resolved. This implies ensuring the system is
in a state of balance with a null detector output at the end of the purge session.
Additional mechanical adjustments will have to be made in order to accomplish
this without having to open up the enclosure and loose the purge within. However,
any further structural alterations will require further testing and this will entail
additional time which unfortunately was not available at our disposal. Hence it
was decided to conclude the experimental programme at this juncture and use the
vast amount of data and knowledge generated to provide recommendations and

suggestions for carrying this work forward. More details and discussions on this is
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provided in the following chapter along with possible design modifications for an

improved system performance.



Chapter 7
Summary and Conclusion

The previous chapters have described in detail the various experiments that were
carried out in order to fully characterise the measurement system and this had gen-
erated abundant information and useful results. Through various simulations and
experimental results it was shown that the present system was capable of detecting
less than 11%o. However, some issues remain that prevents us from achieving any
phase reversal with cell length manipulation. This chapter summarises and reca-
pitulates the progress made so far, considers the remaining difficulties and makes

recommendations for future work.

7.1 Recapitulation of Results

In order to gain a thorough understanding of the instrument behaviour and to
predict its real-time response, it was imperative to develop a highly accurate spec-
troscopic model of CO,. The various steps that were followed to obtain such
a reliable model were detailed earlier in section 4.1. The high accuracy of the
model was then validated by comparing it against line parameters obtained from
the HITRAN database. The error in line position was 1/4000™" of a typical line
width whereas the error in line strength was 0.02% for the maximum intensity
lines. This model was then used as a basis for conducting an extensive range of
computer simulations that were used to predict system response to various pos-
sible interferents that will result in spurious results. In each case, the effect of
the interferent was assessed and suitable control measures were recommended if
the effect was considered to be significant. On the basis of these simulations, it

was concluded that source temperature fluctuations of +0.5K between the basal

134
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and enriched sample tests can result in a delta variation of 1%o. The long term
stability test of the actual blackbody source IR-12 is described in chapter 5 where
it was observed to meet the necessary stability requirements. Etalon temperature
instability of the cell windows was another possible source of interferent that was
looked into[26] and the use of wedged windows for the gas cells was recommended.
COy temperature fluctuations were also found to generate spurious results and it
was necessary to maintain a thermal equilibrium between the gas cells in the two
channels. However, variation in gas pressure was not found to be a major problem

and hence no control measures were put in place.

Chapter 5 deals with the fabrication and characterisation of the various sub-
systems that form part of the measurement setup. Details regarding the blackbody
source and the optical infrared filter were provided. Design and construction of
the mechanical chopper assembly and the various sample gas and filter gas cells
were described in detail. A dedicated gas filling rig was developed for use with
the isotope filter cells and the sample cells. Integration of temperature and pres-
sure sensors with the instrument and their associated electronics was also dealt
with. This was followed by a discussion on the characteristics of the pyroelectric
detector and the design details of the amplifier. Experiments were conducted to
determine detector response at various source temperatures and also with varying
isotopomer concentrations and the results showed extremely good co-relation with
simulation results. The working of the feedback servo loop and the stepper motor
interface was also discussed followed by a description of the virtual interface de-
veloped using LABVIEW. Finally, the overall instrument enclosure was described
including the purge gas and sample gas flow pathways. The optimum purge flow
rate was calculated and the purge procedure was also outlined. Thus chapter 5
systematically investigated the features and responses of the various sub-systems

involved and set the stage for the gas testing phase.

Chapter 6 contains all the various experimental tests that were conducted in order
to evaluate and quantify the overall system performance. Leak tests were con-
ducted on the gas cells using a helium leak detector and a Magnahelic differential
pressure gauge and suitable modifications were carried out. Lock-in amplifiers were
coupled with the system and gas based measurements were recorded to demon-
strate the change in output signal when an imbalance was deliberately introduced
into the system. These are shown in figures 6.8 and 6.9. A very comprehensive
and detailed analysis of the various noise sources was carried out. The overall
system noise was thus calculated and this defined the minimum detection limit of

the spectroscopic instrument. The major sources of noise identified were:
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1. Pyroelectric detector
2. FET op-amp at the detector output
3. PSD input noise

4. Johnson noise from the resistors

Theoretical calculations showed the instrument responsivity to be limited by the
pyroelectric detector which was the largest contributor to the overall noise with
a noise density of 80 nV/ VHz. Referring to the calibration curve shown in fig-
ure 6.10, the overall noise voltage of 2.82 uV represented a minimum detection
of 1% for a 3 sec time constant. In order to experimentally verify this, a de-
liberate imbalance was created in the system by changing the iris aperture and
the fluctuation in the output response was measured. A 3 sec time constant cor-
responded to a minimum delta measurement of 3.4%o to 5.7%c. Although this
was higher than a desired value of 1%, it was a reasonable performance to ex-
pect from an initial experimental design. The observed discrepancy between the
theoretical and experimental values may be due to the lack of a purged environ-
ment that can result in fluctuations in the ambient COy concentration. Further
experiments were conducted to study noise emanating from individual compo-
nents such as the detector and the chopper motor and the results were found to
be along expected lines. Although these contributions were small, they help in
explaining the observed discrepancy in the minimum delta measurement. Noise
from the two channels were recorded individually by blocking the other channel
and then the combined overall noise was also experimentally measured using a
PSD. It was found that a much higher level of noise, around 85 V, was present
when the channels were operated individually. However, this large noise present in
both the channels disappeared to a very large extent when both the channels were
used in a balanced state bringing the overall noise down to 5.6 V. This clearly
implied that the noise generating mechanism present in the individual channels
was the same but in anti-phase, resulting in elimination of common noise sources
when the two channels were present together. This was one of the key features of
the spectroscopic instrument presented here and can be attributed to the overall
symmetrical design of the measurement system. Possibility of noise arising from
source temperature fluctuation due to convection was also investigated in great
detail. However, the results obtained from a mathematical analysis were not in-
dicative of any such process occurring in the background and hence the hypothesis

was ruled out, although the safety margin was small.
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Finally gas based experiments were conducted to check how the system responded
when an imbalance was created by feeding in extra sample gas containing pure
13C0O,. Figure 6.31 shows a phase reversal as the system goes past the balance
point due to the increased absorption along one of the channels. The PSD output
magnitude (R value) hits a minimum at the balance point and then increases again
as one of the channels becomes stronger. Similar experiments were carried out by
further reducing the concentration of *CO, and similar results were obtained.
Figure 6.34 shows the magnitude and phase response when an enriched sample
equivalent to 11%o was fed into the sample cells. As expected an immediate phase
reversal was observed that confirmed the instrument’s ability to detect changes
as low as 11%o. However, repeated attempts to reproduce this phase change by
varying the C-13 cell length did not succeed. Gross errors in calculating the
equilibrium cell length was considered to be a potential cause for this but this was
ruled out after tests with much longer cell lengths failed to provide any satisfactory
results. Further diagnosis revealed the true nature of the problem and it was
realized that at the end of the purge session, the instrument started from a position
of imbalance due to a stronger C636 channel, instead of a balanced state. Hence,
the balance point that corresponded to a null detector output was much farther
away than what can be compensated merely by a cell length change. Figure 7.1
below is a pictorial representation of the current problem. The figure on the
left represents the current scenario where the system starts from an unbalanced
position and hence the R vector resides well within the top left quadrant that
represents a stronger C636 channel. A subsequent change in length is unable to
take the R vector past the balance point. Instead it simply reduces the value of R
as indicated by the arrow without actually hitting the equilibrium (the 0 origin).
In an ideal case, however, if the system was present in a balanced state, the cell
length manipulation will reduce the R vector significantly and push it towards the
origin. In the vicinity of the origin, noise starts to dominate and the signal will
have a random phase. Further change in length will take it past the equilibrium
point and cause the R vector to flip its phase and come out through the bottom

right quadrant as depicted in the figure.

Although there were severe time constraints as far as the project was concerned,
as a final effort, it was decided to incorporate another iris in the C636 channel
with an arrangement to externally adjust the aperture diameter. This enabled us
to manually restore the system to a balance point at the end of the purge session
without having to open the enclosure and break the purge in the process. Once

the balance was restored, the cell length was varied once again to observe any
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FIGURE 7.1: Pictorial representation showing why a phase reversal is not ob-
served under the present circumstances merely by a change in cell length

phase changes in the PSD output. The R vector constantly fluctuated around the
zero mark but again no phase reversals were observed. Some long term drift on
the R value was seen however. Besides, the external mechanical adjustment for
the iris aperture had significant backlash making it extremely difficult to get the

exact balance point.

7.2 Major Challenges Encountered

During the course of this research endeavor some challenging situations were en-
countered which had a serious impact on the time line of the project. One of the
most intriguing and unexpected observations was the appearance of the 2w com-
ponent at the output of the detector under balanced absorption conditions. This
was contrary to the DC signal that was expected at balance. With the help of
computer based simulations, it was possible to offer a logical explanation and jus-
tify the source of this 20 Hz signal in the detector output. This has been covered
in chapter 5. It was initially assumed that this 20 Hz signal will be removed by
the low pass filter at the output of the PSD and hence will not interfere with the
measurement process. However, experiments conducted by varying the iris aper-
ture showed that a dominant 2w component existed at the balance point when
practically no signal should have been detected. In fact, even this high quality
PSD was incapable of adequately suppressing the 2w component. To the best of
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the author’s knowledge, this situation is rare. A 2 stage 4 pole chebyshev filter
was designed and developed to suppress this 2w component and satisfactory results
were obtained as a result. The fluctuation in the reference frequency derived from
the mechanical choppers was a problem that could not be easily traced initially.
The problem manifested itself in the form of steps or jumps that were observed
in the PSD output as shown in figure 6.17. PSDs would normally be considered
insensitive to such small variations in reference frequency and so this effect must
be some detail of the internal design. This problem was circumvented by building
a closed loop frequency control circuit based on PWM technique to stabilise the

chopping frequency.

7.3 Recommendations for Future Work

The aim of this research undertaking was to develop a low cost spectroscopic
instrument capable of making carbon isotope ratio measurements for possible use
in Urea Breath Tests (UBTSs). In light of the achievements and results achieved so
far, it can be safely said that the work described in this document demonstrates the
feasibility of such a diagnostic system that incorporates several innovative features.
The low cost feature of this instrument lies in the use of non-expensive optical
components and a simple broadband source instead of using costly tunable diode
lasers and its associated controllers. Pyroelectric detectors offered the required
responsivity and this also eliminated the need for cooling arrangements. This
makes the system an attractive option for a commercial product. Whole band
integrated absorption measurements were made rather than using absorption line
pairs to ascertain concentration of the absorbing species. Another unique feature
of the instrument is its highly symmetrical design and the ratioing nature of the
setup ensured that it is not vulnerable to external interferences such as variations
in source temperature, ambient fluctuations or detector responsivity since they
affect both the channels to the same extent. The novel concept of variable length
gas cell with a feedback servo loop was also tested and implemented for the first
time. This avoided the need to make any absolute concentration measurements.
Although the detection limits predicted from noise analysis was less than 6%,
experimental trials were only able to demonstrate levels of 10.5%0 to 11.5%0. From
all of the above it can be concluded that further improvement in detection limits
can be achieved only by incorporating certain modifications in the implementation
of the design. An attempt has been made below to describe some of the possible

areas of modification with a view of creating an improved system that is much
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closer to a fully commercially viable product.

One alteration that will decrease the size of the overall system will be the use of
beam tubes to cover the beam path from the source all the way upto the detector,
and passing along the two channels. These beam tubes should have adequate
provisions for gas inlet and outlet. This will greatly reduce the volume that needs
to be Ny purged thereby cutting down the duration of the purge session from
the current 2 hours to possibly under 30 minutes. This will have an obvious effect
during the system development phase by reducing the overall time required for the
measurement, process. Another advantage arising from this modification is that
even during the purge session, it offers the user adequate access to the various
optical and non-optical components to manoeuvre them. This is especially useful
when the need arises to rebalance the system or perform a diagnostic check on the
various electronic circuit boards. This is not possible in the present case without
breaking open the purge. However, some careful consideration needs to be given
to the actual construction of the beam tubes around the mechanical chopper and
mirror assembly. The 45° inclination of these components may require the tubes

to have adequate windows to contain the purge along the other sections.

Another useful feature that can be incorporated is the use of motorised irises
along the two channels for achieving balanced absorption. This makes it possible
to achieve precision control of the aperture by using suitable driver software such
as LABVIEW. Fine adjustments can thus be done at the end of the purge session
to bring the system closer to the balance point before introduction of the sample

gases.

Driving the IR source at a higher temperature will also prove beneficial as more
power falls on the detector. Table 5.2 shows that the relative difference in channel
intensities gets bigger as source temperature increases and this makes it possible to
carry out more sensitive measurements. Increase in source temperature causes the
peak of the blackbody curve to shift towards the 2CO, absorption region but as
long as the temperature is adequately stable over the entire measurement process,

it will not have any adverse effect on the responsivity of the system.

Another possibility that needs to be explored in more detail is the use of elec-
tronically locked synchronised choppers that can replace the current mechanically
linked choppers. Some initial work in this regard has already been done as de-
scribed previously in section 5.4. If successfully implemented, electronic phase
locking of the choppers C1 and C2 will reduce phase jitter and backlash that is

normally associated with mechanical systems. This will result in improved phase
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accuracy from the present +0.7°and reduced overall noise present in the system.
This will greatly help in achieving the desired 1%o measurement precision. It
avoids the use of gear linkages and belts which undergo gradual wear and tear,
thereby inducing additional uncertainties with respect to position of the chopper
blades and their frequency stability. Besides, it eliminates the use of bulky steel
frames to connect the two choppers as in the present case. This greatly improves
the design of the instrument by reducing its overall size and making it more com-

pact and portable.

The inability of the instrument to achieve a balance point by cell length manipu-
lation demands a deeper investigation into the problem. One of the contributing
factors to this is the absence of balanced absorption along the two channels at the

end of the purge session. The likely reasons for this have been listed below:

e If one of the channel beams falling on the detector window only partially
covers the detector active area, the other channel will then appear stronger
and result in a virtual imbalance. By using an iris, balance can be achieved
initially at the beginning of the purge session. However, once the background
COg, levels have been sufficiently reduced by purging the enclosure, inequali-
ties in channel beam intensities become more visible. He-Ne lasers were used
to check the alignment of the two channel beams with respect to the detector,
but it was not possible to get the two spots to overlap each other completely
and occupy the exact same spot on the detector active area. Introduction
of the filter cells after balancing the channels can produce a further shift in
the beam alignment, thereby reducing the channel strength and causing an

imbalance.

e Difference in the reflectivities of the two chopper mirrors C1 and C2 can also
result in a slight imbalance in channel intensities. As mentioned earlier, the
two chopper mirrors were manually diamond polished to make their surfaces
reflective. However, it is not possible to guarantee that both C1 and C2 have
the same reflectivity and hence one channel may be better reflected than the

other leading to unequal intensities.

e Another possible reason may be the presence of dust particles on the win-
dows that will reduce the intensity of the channel beam and thus create an

imbalance.

Under normal circumstances, all the above listed problems can be resolved by

balancing the two channels with the irises. However, in the present case this
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cannot be done without breaking the purge within the enclosure and hence the

recommendation for motorised irises that can be externally controlled.

7.4 Key Remaining Issue

Even after re-balancing the system using a second iris along the C-13 channel,
variation in cell length did not push the system towards the balance point. Phase
reversals were observed when enriched gas samples were fed to the sample cells
but the same could not be replicated by cell length manipulation. This strongly
suggests a problem with gas flow from the air bag attached to the sample cell when
the length of the C636 cell is varied. Extensive studies were carried out using a
Magnahelic pressure gauge and leak detectors to identify any possible sources of
leak from the gas cell and required modifications were made. This, however, did

not improve the results obtained with cell length manipulation.

In the absence of any other logical explanation for the above, gas flow from the
air bag still appears to be the most likely cause of this problem and this requires
further testing and studying. It seems that some underlying phenomenon that
governs the flow of gas from the air bag into the gas cell has not been considered and
this needs to be examined in detail on a priority basis. Once this final stumbling
block is overcome and the aforementioned modifications are incorporated, the
measurement system presented here will prove to be a very useful diagnostic tool

for the detection of H.pylori.
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Data Sheets

This section contains data sheets for the following components:

e Temperature sensor LM35CZ

e Pressure sensor SDX15A2

e I'/V converter LM331

e PLL IC HEF4046

e Infrared source IR-12

e Pyroelectric detector LTT Q2

e Low inertia DC servo motor M66CI-24
e Low power dual comparator LM393
e Low noise dual op-amp LM833

e Instrumentation Amplifier AMP04
e Dual FET input op-amp OPA2604
e Unipolar Stepper Motor 16HS-110
e Stepper Motor Driver Card

e CAD drawing for ICF cell
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FIGURE A.1: LM35CZ
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SenSym
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SENSORIECHNICS

Aubinger Weg 27, 82178 Puehhaim, Germany
Phone: +40 (0} 50 800830, Fax: + 40 [(0B0 5008333

http:hwwiw senscitechnicscom

FIGURE A.2: SDX15A2
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FIGURE A.3: LM331
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FIGURE A.4: LM331
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FIicure A.5: HEF4046 PLL IC



Appendix A Data Sheets 149

FIGurRE A.6: HEF4046 PLL IC
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FicGure A.7: HEF4046 PLL IC
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FIGURE A.8: IR-12 Source
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Further developmeants may entaill modifications of indicated data without notification. Revision 05/2005.
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Ficure A.9: LTT Q2
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Low inertia dc ser
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FIGURE A.10: DC servo motor

¥ Melennan



Appendix A Data Sheets

154

30 Watt lIronless rotor dc servo motor
Specification dc servo motor type MEECE

Parformance
ME&E Maotor- options: MesCE- =12 =24 @ 24 vde
Mominal Vallage { Vdc ) 12 30 24
Maimum Output Power | Watis) 15 30 20
Molond spaed | rpm ) 2,700 2,900 2300
Spead @ rated torque { 1,800 2,300 1,600
Rated T orgque ] 12 12
Peaak Tangue 25 35 a7
Max Mo load current m = 120 65 &0
Rator Ineria | Kgem® ) 0214 0214
Mechanical time coratant | milli sacs) 245 17
Torgue Corstant { MomJ A) 41 28
Voltage Constam { W /1000 ripm) 427 103
Raotor Resstancs { Ohmis ) 14 ;|
Rator inductanos | mH 14 ad
C ommulatian copper -graghiie
Bearnngs pre-laaded ba
M aamum radial laad 100 N, 12 mm from bearng face
Mapcimum el kad 19N
Ambient oparating temparatur e ranga 10w +s07C

motor-tacho versions MGECT series

types: MESCI2 T3 | MGSC24 T3 MEEC24 TH
Mominal Yoltage 12vdc 24-30 Vde 24-30 Vde
Maotor specification Az abave

Tacho Specification T.3 series ThH series
Voltage consiant Wi000 ipm 325 650
Avarage nppla peak | peak 3% | ripple frequency 18 cycles per rav |
Rotor resstancs Ohms 12 AT

M, continuous speed | rpm 4,000

motor-encoder version MG6G-CIl..series

Ty ps; M&sC) . T-12 M&&C) . T-24
MesC! .. L-12 ME&C! .. L-24

Mominal Yoltage T2%dc 2dvide

Maotar specificafion As above

Encoder type Cl..T Cl...L

Supply e 5+05% 5405

M. Qulput signal de el el

Sgnal wave form Squang Squang

Ouiput Circuil TTL RS 422

Output Configuration Cual Track Dual Track + Index

Quadraturs ntary |
Number of Lines 100 ar 500

Ty pical Motor-encoder part numbser:

500 lina dual track encodar with Index

Note:

&6 CI 500 | -24

24-30 Vdc motor winding

ME&6 sarvo motars are also available with anintagral parking brake | MGSDB )
It a parking brake is required please contact us tor full specification of M8S0E options

Melennan Serve Supplies Lid.

=

Tel: +d4 [B707 700 700 www.mclennan.co.uvk

FIGURE A.11: DC servo motor

MEG series
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2]

LM193
LM293 - LM393

LOW POWER DUAL VOLTAGE COMPARATORS

WIDE SINGLE SUPPLY VOLTAGE RANGE
OR DUAL SUPPLIES :+2V TO +368Y OR £1V
TO =18V

VERY LOW SUPPLY CURRENT (0.4mA)
INDEPENDENT OF SUPPLY VOLTAGE
{1TmW/comparator at +5vY)

LOW INPUT BIAS CURRENT - 25nA TYP
LOW INPUT OFFSET CURRENT : +5nA TYP
LOW INPUT OFFSET VOLTAGE : 21mV TYP

INFUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND

LOW QUTPUT SATURATION VOLTAGE :
250mV TYP. (lo =4mA)

DIFFERENTIAL INPUT VOLTAGE RANGE
EQUAL TO THE SUPPLY VOLTAGE

TTL, DTL, ECL, MOS, CMOS COMPATIBLE
OUTPUTS

DESCRIPTION

These devices consist of two independent low
voltage comparators designed specifically to oper-
ate from a single supply over a wide range of volt-
ages. Operation from split power supplies is also
possible.

These comparators also have a unique character-
istic in that the input common-mode voltage range
includes ground even though operated from a sin-
gle power supply voltage.

PIN CONNECTIONS (top view)

E

N
DIPS (Plastic Package)

D
S08 (Plastic Micropackage)

K 4

TSSOP8 (Thin Shrink Small Outline Package)

¢

Mini SO8 (Plastic Micropackage)

ORDER CODE
Part Temperature Package
Number Range N D P s
LM193 -55°C, +125°C . . . .
LM293 -40°C, +105°C . . . .
LM353 0°C, +70°C . . . .

Example : LM333D

N = Dual in Line Package (DIP)
E = Small Outline Package (SO) - also available in Tape & Reel (DT)
5

Thin Shrink Small Cutlineg Package (TSSOP) - only available in Taps

ZReel (PT)
= MiniSO Package (MiniSO) only availabie in Tape & Reel (ST)

1] =y B
] ] 7
3] 16
o] iE

1 - Qutput 1

2 - Inverting input 1

3 - Non-inverting input 1
4- Vcc'

5 - Non-inverting input 2
G - Inverting input 2

7 - Qutput 2

8-Vee©

FiGURE A.12: LM393 Dual comparator
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FiGURE A.13: LM833 Dual op-amp
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FiGURE A.14: LM833 Dual op-amp
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F1GURE A.15: AMPO04 Precision Instrumentation Amplifier
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BURR-BROWN?®

OPA2604

wynw burr-brown.com/databook/OPAZG04. html

Dual FET-Input, Low Distortion
OPERATIONAL AMPLIFIER

FEATURES APPLICATIONS

® LOW DISTORTION: 0.0003% at 1kHz ® PROFESSIONAL AUDIO EQUIPMENT
® LOW NOISE: 10nV/\Hz @® PCM DAC IlV CONVERTER

® HIGH SLEW RATE: 25V/ius ® SPECTRAL ANALYSIS EQUIPMENT
@® WIDE GAIN-BANDWIDTH: 20MHz @ ACTIVE FILTERS

® UNITY-GAIN STABLE ® TRANSDUCER AMPLIFIER

® WIDE SUPPLY RANGE: V, = 4.5 to £24V @ DATA ACQUISITION

@® DRIVES 600L LOADS

DESCRIPTION 1 @

The OPA2604 15 a dual. FET-input operational ampli- ‘

fier designed for enhanced AC performance. Very low f 4 3

distortion. low noise and wide bandwidth provide > = é 2> f-;
| |

superior performance in high quality audio and other i i 1
applications requinng excellent dvnanic performance. 3 j——‘ j-——‘—{ )

New circunt techniques and special laser trunmung of ol Tistarticn ‘ -
(2.8 ek | Cutput (1.7)
28

dvnamic circuit performance vield very low harmonic #— Rejsction
distortion. The result 1s an op amp with exceptional
sound gquality. The low-noise FET mput of the
OPA?604 provides wide dynamie range. even with lngh
source impedance. Offset voltage 15 laser-timmed to
mimmize the need for mterstage coupling capacitors.

The OPA2604 15 avalable i 8-pin plastic mun-DIP
and SO-8 surface-mount packages. specified for the
~25°C to +85°C temperature range.

—AAR

AN

* Patents Granted:
#5053718, 5016788

Intermational Airpert Industrial Park « Mailing Address: PO Box 11400, Tucson, AZ 8573 « Street Address: 6730 5. Tucson Blvd,. Tucson, AL #5706 = Tel: 45200 746-1111 « Tw: 9108521111
Irftermet: hitp:Faww. bur-brewn com? « FAXLine: (800) 548-6133 (US/Canada Only) < Cable: BERCORP « Telex: (666491 « FAX: (520) 839-1510 « lmmediate Product [nfee (200) 548-6132

£ 1991 Burr-Brown Corporatien POS-1085E Printed tn .S . A Ocrober, 1887

FiGUurE A.16: OPA2604 Dual FET input op-amp
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Size 16 hybrid stepper motor 16 HS series

The 16 HS hybrid stepper motor provides 200 steps / revolution{ 400 steps /rev when operated
in Ysstep mode ) and is ideal for instrumentation drives requiring a combination of compact
dimensions, high dynamic performance and accuracy. The motor is physically interchangeable
with the larger 17HS model but it's reduced overall frame size and the reduced length of the
16HS-0 series makes it ideal for use in applications where space is at a premium.

The motor is available with a choice of windings to permit operation using either Uni-polar or Bi-
polar drive circuits and offers an excellent combination of performance, reliability, and quality at
economic prices ideally suited to OEM manufacturers of quality instrumentation products .

Dimensions: mm
Length:

9 “ L :J‘S 5 Shaft Length: mm
2rHM @22 Motor Shaft length
Rear shaft =0 16HS-006 24 mm
Option on | = 16HS-012 12mm
16HS-1-- To—1tE=—F —_ 16HS-110
/__5_ 16HS-115 13 mm
= 4 G5 16HS-132
Leads: T
AWG26-24 : 2 studs Alternative shaft lengths are available
300 mm ]ong ” M3 x 5.5 long to special order
Specification
motor type length | holding rotor resistance | current inductance | number mass
L ¥ torgque inertia per phase per phase | per phase of leads
mim Nem Kgcm*© ohms amps mH Kg
Uni-polar types
16HS-006 205 5 0.011 24 D.26 12.5 B 0.18
16HS-110 34 9 0.016 7.2 0.5 5.8 8 0.20
Bi-peolar types
16HS-012 208 a7 0.011 6.6 0.6 8.5 4 0.15
16HS-115 34 11.5 0.016 44 0.75 56 4 0.20
16HS-132 34 12.0 0.016 115774 1.6 14 4 0.20
Lead colours
Uni-polar types Bi-polar types
s sl loh 4 s|r| 4| 3| |z |1 v |z 2.| 2| s |+ ~
] I
2
o
H
Lead colour identity:
Uni-polar types Bi-polar types
6 lead versions 8 lead versions 4 |ead versions
A Black I Red/White
1 Red 1 Red 1 Red
2 Red /| White 2 Yellow/white i Yellow
2 Yellow
B White g Black/white
3 Green ) Black 2 Black
4 Green/White 4 QOrangeiwhite 2 Orange
4 Crange
Meclennan Servo Supplies Ltd.  Tel: +44 (0)8707 700 700 www.mclennan.co.uk .+ F Mclennan

FiGURE A.17: Unipolar Stepper Motor



Appendix A Data Sheets 161

FIGURE A.18: Stepper Motor Driver Card
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Spectroscopic Modelling

This section contains extracts of the MATLAB codes used to generate the spec-
troscopic model for the v3 mode of CO,. Only the fundamental band and a hot

band transition for >?CO, have been show here.
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%*******************************************************************

% C12 Spectroscopic modelling Lower Upper
% Following transitions were considered: 00001 - 00011 A Fundamental
% All are parallel bands(no changeinl) 01101 - 01111 B Hotband

% 02201-02211 C
% 10002-10012 D Thisisoneof thelevelsinafermi diad
% 10001-10011 E Thisisthe other level of the fermi diad
% 11102-11112 F
% 03301-03311 G
% 11110-11111 N

% Note: The notation from left to right isvl v2 | v3 x where v1: Raman fundamental at
around 1340cn™-1

% v2: Bending mode at 667.3cm*-1

% I: Angular momentum quant no:

% v3: Asymm stretching mode at 2349cm™-1
% x: Denotesfermi diad if its2

C12=Carbon12;

%Transition C12 00001-00011
%
w1=C12(1,3);

B1=C12(1,4);

D1=C12(1,5);

H1=C12(1,6);

b1=C12(1,7);

d1=C12(1,8);

h1=C12(1,9);

11=C12(1,11); % this is the angular momentum quantum number
all=C12(1,12);

a21=C12(1,13);

a31=C12(1,14);

b11=C12(1,15);

s1=C12(1,16);

P1=pposition(w1,B1,D1,H1,b1,d1,h1,JA);
R1=rposition(w1,B1,D1,H1,b1,d1,h1,JB);

%Transition C12 01101-01111 e Note: e refersto the lower sub-level due to I-type doubling
%
w2=C12(2,3);

B2=C12(2,4);

D2=C12(2,5);

H2=C12(2,6);

b2=C12(2,7);

d2=C12(2,8);

h2=C12(2,9);

12=C12(2,11);

al2=C12(2,12);

a22=C12(2,13);

a32=C12(2,14);

b12=C12(2,15);

s2=C12(2,16);

P2=pposition(w2,B2,D2,H2,b2,d2,h2,JC); %For P and R, only e-e or f-f is possible and not e-
f.

FiGURE B.1: MATLAB codes used to generate spectroscopic model for the v
mode of COq
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R2=rposition(w2,B2,D2,H2,b2,d2,h2,dD); %Also only transitions from symmetrical
rotational lines are present due to group symmetry.

%Transition C12 01101-01111 f Note: f refers to the upper sub-level dueto I-type doubling
%
w3=C12(3,3);

B3=C12(3,4);

D3=C12(3,5);

H3=C12(3,6);

b3=C12(3,7);

d3=C12(3,8);

h3=C12(3,9);

13=C12(3,11);

al3=C12(3,12);

a23=C12(3,13);

a33=C12(3,14);

b13=C12(3,15);

s3=C12(3,16);

P3=pposition(w3,B3,D3,H3,b3,d3,h3,JA);
R3=rposition(w3,B3,D3,H3,b3,d3,h3,JA);
Q2=qgposition(w2,B2,D2,H2,b3,d3,h3,ID); % For Q, only e-f or f-e is possible.
Q3=qgposition(w3,B3,D3,H3,b2,d2,h2,JA);

%To find the max R value and min P value inorder to define the IR window range
%
Pall=[P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P21 P22 P23 P24 P25 P26
P27 P28 P29 P30];

Pmin=min(Pall)
Rall=[R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R21 R22 R23 R24
R25 R26 R27 R28 R29 R30];

Rmax=max(Rall)
int=(Rmax-Pmin)/delta
INT=round(int)

points=0:1:INT;
wavenumber=Pmin+(delta* points);

%Transition C12 00001-00011
%
[HP1,HR1]=honl(JA,JB,0,|11); %Honl-London factor for degeneracy
[EP1,ER1]=boltz(B1,JA,JB,0,beta); %Boltzmann Distribution
[FP1,FR1]=herman(JA,JB,all,a21,a31); %Herman-Wallis
Qrl=partition(B1,beta,|1); %Partition function
[LP1,LR1]=lorentz(P,JA,JB,0,P1,R1,0,Pmin,delta,points); %L orentz line function
[SP1,SR1]=intensity(P1,R1,0,w1,s1,HP1,HR1,0,EP1,ER1,0,FP1,FR1,0,Qr1,betamal);
%l ntensity of lines

BranchP1=SP1*LP1; %Final branch profile after considering line
broadening

BranchR1=SR1*LR1;

BandA=BranchP1+BranchR1, %Overall band spectrum

figure

FiGURE B.2: MATLAB codes used to generate spectroscopic model for the v
mode of COq
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plot(wavenumber,BandA)

xlabel (‘wavenumber(cm”-1)");

ylabel (Absorption’);

title("Absorption Spectrum for C12 BandA'");

%Transition C12 01101-01111 e
%
[HP2,HR2,HQ2]=honl (JC,JD,JD,I2);

[EP2,ER2,EQ2]=holtz(B2,JC,JD,JD,beta);

[FP2,FR2]=herman(JC,JD,al2,a22,a32);

FQ2=1;

Qr2=partition(B2,beta,|2);

[LP2,LR2,LQ2]=lorentz(P,JC,JD,JD,P2,R2,Q2,Pmin,delta,points);
[SP2,SR2,SQ2]=intensity(P2,R2,Q2,w2,s2,HP2,HR2,HQ2,EP2,ER2,EQ2,FP2,FR2,FQ2,Qr2,
beta,mol);

BranchP2=SP2* L P2;

BranchR2=SR2*LR2;

BranchQ2=SQ2*LQ2;

%Transition C12 01101-01111 f
%
[HP3,HR3,HQ3]=honl (JA,JA JA 13);

[EP3,ER3,EQ3]=boltz(B3,JA ,JA,JA beta);

[FP3,FR3]=herman(JA,JA,al13,a23,a33);

FQ3=1,

Qr3=partition(B3,beta,l3);
[LP3,LR3,LQ3]=lorentz(P,JA,JA,JA,P3,R3,Q3,Pmin,delta,points);
[SP3,SR3,SQ3]=intensity(P3,R3,Q3,w3,s3,HP3,HR3,HQ3,EP3,ER3,EQ3,FP3,FR3,FQ3,Qr3,
beta,mol);

BranchP3=SP3*LP3;

BranchR3=SR3*LR3;

BranchQ3=SQ3*LQs3;
BandB=BranchP2+BranchR2+BranchQ2+BranchP3+BranchR3+BranchQ3;

figure

plot(wavenumber,BandB);

xlabel (‘wavenumber(cm™-1)");

ylabel (‘Absorption’);

title('Absorption Spectrum for C12 Band B');

F1GURE B.3: MATLAB codes used to generate spectroscopic model for the v
mode of COq
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