The University of Southampton
University of Southampton Institutional Repository

Borehole methods for controlled source electromagnetic exploration

Maxey, Anna Catherine (2009) Borehole methods for controlled source electromagnetic exploration University of Southampton, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, Doctoral Thesis , 208pp.

Record type: Thesis (Doctoral)

Abstract

The Controlled Source ElectroMagnetic (CSEM) method has been developed over the past two decades, to provide information on oceanic crustal structure. The stark contrast between the low resistivity of rock structure saturated with salt water, compared to the high resistivity of oil, has meant that the method is increasingly being adopted by the hydrocarbon industry at the exploration stage. During initial assessment, and subsequent development of oil and gas fields, wells are routinely drilled for a variety of purposes. The boreholes provide a possible means of placing either EMsources or receivers within or beneath the target reservoir. This in turn presents the opportunity of applying CSEM methods, using a combination of seafloor and borehole sources and receivers to improve the characterisation and monitoring of the reservoir. In this thesis, forward modelling is used to test out the various survey configurations, in terms of the improvement Borehole CSEM (BCSEM) affords the appraisal and monitoring of hydrocarbon reserves. The results from 1D modelling have shown that the use of downhole instruments (either source or receivers) increased the amplitude anomalies associated with target layers when compared to conventional CSEM. The edge detection capabilities of BCSEM were tested and it was found that a single downhole receiver and a towed seafloor source produced a significant change in the amplitude of the electric field as the source moved over the edge of the modelled reservoir. The method also returned promising results for 3D bodies, showing sensitivity to small structures that are below the detection threshold for conventional CSEM. There is evidence to support that BCSEM could prove to be a useful 4D tool in monitoring reservoir changes during production. The modelling of a depleting anticline reservoir showed that the anomalies associated with the depletion are at potentially detectable levels.

PDF Maxey_2009_PhD.pdf - Other
Restricted to Registered users only
Download (9MB)

More information

Published date: February 2009
Organisations: University of Southampton

Identifiers

Local EPrints ID: 69036
URI: http://eprints.soton.ac.uk/id/eprint/69036
PURE UUID: 7ab11ff1-cab7-49a9-b4cc-e3dc61843157

Catalogue record

Date deposited: 15 Oct 2009
Last modified: 19 Jul 2017 00:14

Export record

Contributors

Author: Anna Catherine Maxey

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×