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Abstract. We prove that finite index subgroups of right angled Artin groups are conju-
gacy separable. We then apply this result to establish various properties of other classes
of groups. In particular, we show that any word hyperbolic Coxeter group contains a
conjugacy separable subgroup of finite index and has a residually finite outer automor-
phism group. Another consequence of the main result is that Bestvina-Brady groups are
conjugacy separable and have solvable conjugacy problem.
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1. Introduction

If G is a group, the profinite topology PT (G) on G is the topology whose basic open
sets are cosets to finite index normal subgroups in G. It follows that every finite index
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subgroup K ≤ G is both closed and open in PT (G), and G, equipped with PT (G), is
a topological group (that is, the group operations are continuous with respect to this
topology). This topology is Hausdorff if and only if the intersection of all finite index
normal subgroups is trivial in G. In this case G is said to be residually finite.

We will say that a subset A ⊆ G is separable in G if A is closed in PT (G). Suppose
that for every element g ∈ G, its conjugacy class gG := {hgh−1 |h ∈ G} ⊆ G is closed in
PT (G). Then G is called conjugacy separable. In other words, G is conjugacy separable
if and only if for any two non-conjugate elements x, y ∈ G there exists a homomorphism
ϕ from G to a finite group Q such that ϕ(x) is not conjugate to ϕ(y) in Q.

Conjugacy separability is evidently stronger than residual finiteness, and is (usually)
much harder to establish. The following classes of groups are known to be conjugacy
separable: virtually free groups (J. Dyer [24]); virtually surface groups (A. Martino [40]);
virtually polycyclic groups (V. Remeslennikov [52]; E. Formanek [27]); limit groups (S.
Chagas and P. Zalesskii [12]) and, more generally, finitely presented residually free groups
(S. Chagas and P. Zalesskii [11]).

Unfortunately, conjugacy separability does not behave very well under free construc-
tions. V. Remeslennikov [53] and P. Stebe [58] showed that the free product of two con-
jugacy separable groups is conjugacy separable. But so far we do not know of any global
criteria which tell when an amalgamated product (or an HNN-extension) of conjugacy
separable groups is conjugacy separable. Perhaps the most general of local results can be
found in [54], where L. Ribes, D. Segal and P. Zalesskii define a new class of conjugacy
separable groups X, which is closed under taking free products with amalgamation along
cyclic subgroups and contains all virtually free and virtually polycyclic groups. Note that
there is no analogue of this result for HNN-extensions with associated cyclic subgroups,
because an HNN-extension of the infinite cyclic group may fail to be residually finite, as
it happens for many Baumslag-Solitar groups.

Let Γ be a finite simplicial graph, and let V and E be the sets of vertices and edges of Γ
respectively. The right angled Artin group G, associated to Γ, is given by the presentation

(1.1) G := 〈V ‖uv = vu, whenever u, v ∈ V and (u, v) ∈ E〉.

In the literature, right angled Artin groups are also called graph groups or partially
commutative groups. These groups received a lot of attention in the recent years: they
seem to be interesting from both combinatorial and geometric viewpoints (they are fun-
damental groups of compact non-positively curved cube complexes). A good overview of
the current results concerning right angled Artin groups can be found in R. Charney’s
paper [13].

In the case when the finite graph Γ is a simplicial tree, conjugacy separability of the
associated right angled Artin group was proved by E. Green [29]. It also follows from the
result of Ribes, Segal and Zalesskii [54] mentioned above, because such tree groups are
easily seen to belong to the class X.
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Following [11], we will say that a group G is hereditarily conjugacy separable if every
finite index subgroup of G is conjugacy separable.

Note that all of the classes of conjugacy separable groups that we mentioned above
(possibly, with the exception of class X) consist, in fact, of hereditarily conjugacy separable
groups due to the obvious reason: these classes are closed under taking subgroups of finite
index. However, there exist conjugacy separable, but not hereditarily separable groups.
The first (infinitely generated) example, demonstrating this, was constructed by Chagas
and Zalesskii in [11]. It is also possible to find finitely generated and finitely presented
examples of this sort even among subgroups of right angled Artin groups (see [41]).

The main result of this work is the following theorem:

Theorem 1.1. Right angled Artin groups are hereditarily conjugacy separable.

Remark that a finite index subgroup of a right angled Artin group may not be a
right angled Artin group itself. The following example was suggested to the author by
M. Bridson:

Example 1.2. Let S be a finite group with a (finite) non-trivial second homology group
H2(S) (for instance, on can take S to be the alternating group A5, since H2(A5) ∼= Z/2Z).
As we know, there is an epimorphism ψ : F → S for some finitely generated free group
F . Let K := {(x, y) ∈ F × F |ψ(x) = ψ(y)} be the fibre product associated to ψ.
Observe that F × F is a right angled Artin group (associated to some finite complete
bipartite graph) and K is a finite index subgroup in it. By [8, Thm. A], H2(S) embeds
into H1(K) ∼= K/[K,K]. Therefore K is not isomorphic to any right angled Artin group,
because the abelianization of a right angled Artin group is always a free abelian group,
and, thus, it is torsion-free.

Generally speaking, we think that hereditary conjugacy separability is a lot stronger
than simply conjugacy separability. Corollaries in the next section can be viewed as a
confirmation of this.

Our proof of Theorem 1.1 is purely combinatorial and mostly self-contained (we use
basic properties of right angled Artin groups and HNN-extensions). The basic idea is to
approximate right angled Artin groups by HNN-extensions of finite groups (which are, of
course, virtually free). This is the main step of the proof. Once this is done, we can use
known properties of virtually free groups to obtain the desired results.

In Section 3 we study the Centralizer Condition, which, among other things, shows that
a given conjugacy separable group is hereditarily conjugacy separable. This condition was
originally introduced by Chagas and Zalesskii in [11], but in a different form. In Sections
4, 5 and 7 we develop machineries of commuting retractions and special HNN-extensions
which are the two basic tools behind the proof of Theorem 1.1.

Acknowledgements. The author is very grateful to Frédéric Haglund and Daniel Wise
for explaining their work in [35] and [34]. The author would also like to thank Martin
Bridson, Ilya Kazachkov, Graham Niblo and Pavel Zalesskii for discussions.
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2. Consequences of the main theorem

Recall that a subgroup H of a group G is said to be a virtual retract of G, if there is a
finite index subgroup K ≤ G such that H ≤ K and H is a retract of K (see Section 4 for
the definition).

It is not difficult to show (see Lemma 9.5) that a virtual retract of a hereditarily con-
jugacy separable group is itself hereditarily conjugacy separable. Therefore, Theorem 1.1
immediately yields

Corollary 2.1. If G is a right angled Artin group and H is a virtual retract of G, then
H is hereditarily conjugacy separable.

In view of the above corollary, it makes sense to define two classes of groups: the class
VR will consist of all groups which are virtual retracts of finitely generated right angled
Artin groups, and the class AVR will consist of groups that contain finite index subgroups
from the class VR.

Looking at the definition, it might seem that the class of right angled Artin groups is
not very large. However, the class of subgroups and virtual retracts of right angled Artin
groups is quite rich and includes many interesting examples. For instance, in the famous
paper [5] M. Bestvina and N. Brady constructed subgroups of right angled Artin groups
which have the property FP2 but are not finitely presented.

On the other hand, in the recent work [35] F. Haglund and D. Wise introduced a new
class of special (or A-special, in the terminology of [35]) cube complexes, that admit a
combinatorial local isometry to the Salvetti cube complex (see [13]) of a right angled Artin
group (possibly, infinitely generated). They proved that the fundamental group of every
special complex X embeds into some right angled Artin group G (if X is not compact
and has infinitely many hyperplanes, then the corresponding right angled Artin group G
will be associated to an infinite graph Γ, and, hence, will not be finitely generated).

An important property established by Haglund and Wise in [35], states that if X is
a compact A-special cube complex, then π1(X ) is a virtual retract of some right angled
Artin group, i.e., π1(X ) ∈ VR. Therefore, using Corollary 2.1, we immediately obtain

Corollary 2.2. If H is the fundamental group of a compact A-special cube complex, then
H is hereditarily conjugacy separable.

Moreover, many other groups are virtually special, i.e., they possess finite index sub-
groups that are fundamental groups of special cube complexes. Among virtually special
groups are all Coxeter groups – see [34], fundamental groups of compact surfaces – see
[18], fundamental groups of compact virtually clean square VH-complexes (introduced by
Wise in [59]) – see [35], graph braid groups (introduced by A. Abrams in [1]) – see [18],
and some hyperbolic 3-manifold groups – see [16].

In this paper we will mainly discuss applications of Theorem 1.1 to Coxeter groups,
even though similar corollaries can be derived for the other classes of virtually special
groups listed above.
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Recall that a Coxeter group is a group G given by the presentation

(2.1) G = 〈s1, . . . , sn ‖ (sisj)
mij = 1, for all i, j with mij ∈ N〉,

where M := (mij) is a symmetric n × n matrix, whose entries satisfy the following
conditions: mii = 1 for every i = 1, . . . , n, mij ∈ N t {∞} and mij ≥ 2 whenever
1 ≤ i < j ≤ n. In the case, when mij ∈ {2,∞} for all i 6= j, G is said to be a right angled
Coxeter group.

For any Coxeter group G, G. Niblo and L. Reeves [48] constructed a locally finite, finite
dimensional CAT(0) cube complex C on which G acts properly discontinuously. In [34]
Haglund and Wise show that G has a finite index subgroup F such that F acts freely on C
and the quotient F \C is an A-special cube complex. In the case when G is right angled or
word hyperbolic (in Gromov’s sense [30]), Niblo and Reeves proved that the action of G
on C is cocompact (see [48]). These results, combined with the virtual retraction theorem
of Haglund and Wise mentioned above, imply that word hyperbolic (or right angled)
Coxeter groups belong to the class AVR. Therefore, using Corollary 2.1 we achieve

Corollary 2.3. Every word hyperbolic (or right angled) Coxeter group G contains a finite
index subgroup F which is hereditarily conjugacy separable.

Actually, as the paragraph above Corollary 2.3 shows, the conclusion of this corollary
holds for every finitely generated Coxeter group G, whose action on the corresponding
Niblo-Reeves cube complex is cocompact. Such Coxeter groups were completely charac-
terized by P.-E. Caprace and B. Mühlherr in [10].

The sole fact of existence of a conjugacy separable finite index subgroup F in G may
seem somewhat unsatisfactory. However, every Coxeter group is virtually torsion-free,
and in a given Coxeter group G it is usually easy to find some torsion-free subgroup of
finite index (for instance, if G is a right angled Coxeter group (2.1), then the kernel of the
natural homomorphism from G onto 〈s1〉2 × · · · × 〈sn〉2 ∼= (Z/2Z)n is torsion-free). The
following statement is proved in Section 9:

Corollary 2.4. If G is a word hyperbolic Coxeter group, then every torsion-free finite
index subgroup H ≤ G is hereditarily conjugacy separable.

The above corollary produces a lot of new examples of conjugacy separable groups.
More generally, in Corollary 9.11 we show that every torsion-free word hyperbolic group
from the class AVR is hereditarily conjugacy separable.

Now, let us discuss some other consequences of the main result. Beside being a classical
subject of group theory, conjugacy separability has two main applications. One of the
applications was found by E. Grossman in [31], where she showed that the outer auto-
morphism group Out(G) of a finitely generated conjugacy separable group G is residually
finite, provided that every pointwise inner automorphism of G is inner (an automorphism
φ ∈ Aut(G) is called pointwise inner if for every g ∈ G, φ(g) is conjugate to g in G).
Thereafter, Grossman used this observation to prove that the mapping class group of a
compact orientable surface is residually finite.
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Note that for a finitely generated residually finite group G, the group of outer automor-
phisms Out(G) need not be residually finite (this should be compared with the classical
theorem of G. Baumslag [4] claiming that the automorphism group Aut(G) of a finitely
generated residually finite group G is residually finite). This is a consequence of the result
of I. Bumagina and D. Wise ([9]) which asserts that for every finitely presented group S
there exists a finitely generated residually finite group G such that Out(G) ∼= S.

In Section 6 we prove that pointwise inner automorphisms of right angled Artin groups
are inner (see Proposition 6.9). Thus Grossman’s result, combined with Theorem 1.1,
gives

Theorem 2.5. For any right angled Artin group G, the group of outer automorphisms
Out(G) is residually finite.

Presently not much is yet known about the outer automorphisms of an arbitrary right
angled Artin group G. M. Laurence [37] showed that Aut(G) (and, hence, Out(G)) is
finitely generated. More recently, M. Day [19] proved that Aut(G) (and, hence, Out(G))
is finitely presented. In [14] R. Charney and K. Vogtmann showed that Out(G) is vir-
tually torsion-free and has finite virtual cohomological dimension. Imposing additional
conditions on the finite graph Γ, corresponding to G, M. Gutierrez, A. Piggott and K.
Ruane were able to extract more information about the structure of Aut(G) and Out(G)
in [33]. After finishing this article the author learned that Charney and Vogtmann gave
a different proof of Theorem 2.5 in [15].

On the other hand, in Section 10 we use a recent result of the author with D. Osin from
[44] to prove the following theorem:

Theorem 2.6. If G ∈ AVR is a relatively hyperbolic group, then Out(G) is residually
finite.

Note that Theorem 2.5 is not a consequence of Theorem 2.6: it is not difficult to show
that a (non-cyclic) right angled Artin group G is relatively hyperbolic if and only if the
graph Γ, corresponding to G, is disconnected.

Applying Theorem 2.6 to our favorite class of groups from AVR, we achieve

Corollary 2.7. For any word hyperbolic Coxeter group G, Out(G) is residually finite.

Unlike automorphisms of right angled Artin groups, automorphism groups of Coxeter
groups have already attracted a lot of attention. In many particular cases the structure
of the (outer) automorphism group is known: see, for instance, P. Bahls’s paper [3] and
references therein. However, because of its generality, the statement of Corollary 2.7
seems to be new.

The second classical application of conjugacy separability was found by A. Mal’cev.
As Mal’cev proved in [39] (see also [45]), a finitely presented conjugacy separable group
G has solvable conjugacy problem. Observe that finite presentability of G is important
here, because the set of finite quotients of an infinitely presented group does not need to
be recursively enumerable.
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It follows that the conjugacy problem is solvable for every group G ∈ VR: G is finitely
presented as a retract of a finitely presented group, and G is conjugacy separable by
Corollary 2.1. However, most of the groups from the class VR that we discussed above
are already known to have solvable conjugacy problem. Moreover, J. Crisp, E. Godelle
and B. Wiest [17] showed that the conjugacy problem for fundamental groups of A-special
cube complexes can be solved in linear time.

Nevertheless, the property of hereditary conjugacy separability for a group G turns out
to be powerful enough to yield conjugacy separability and solvability of the conjugacy
problem for many subgroups which are not virtual retracts of G – see Corollary 11.2.

Recall that a group G is called subgroup separable (or LERF) if every finitely generated
subgroup H ≤ G is separable in G. In Section 11 we prove

Theorem 2.8. Let N be a normal subgroup of a right angled Artin group G such that the
quotient G/N is subgroup separable. Then N is conjugacy separable. If, in addition, N
is finitely generated, then N has solvable conjugacy problem.

Note that requiring G/N to be subgroup separable cannot be dropped in the above
statement: in [43] C. Miller gives an example of a finitely generated subgroup of F2 × F2

that has unsolvable conjugacy problem (here F2 denotes the free group of rank 2, and so
F2 × F2 is the right angled Artin group associated to a square).

The second claim of Theorem 2.8 may seem surprising: in general we cannot use
Mal’cev’s result, mentioned above, to reach the needed conclusion, because the condi-
tions imposed on N do not constrain it to be finitely presented. Indeed, let G be the
right angled Artin group associated to a finite graph Γ and given by (1.1). Let NΓ be the
kernel of the homomorphism ψ : G → Z satisfying ψ(v) = 1 for each v ∈ V , and let LΓ

be the simplicial flag complex, whose 1-skeleton is Γ.

J. Meier and L. VanWyk [42] proved that the group NΓ is finitely generated if and
only if the graph Γ is connected. And in [5] Bestvina and Brady showed that NΓ is
finitely presented if and only if the complex LΓ is simply connected. In the case when Γ
is connected, we will say that NΓ is the Bestvina-Brady group associated to Γ.

For example, if the graph Γ is a cycle of length at least 4, then NΓ is finitely generated,
but not finitely presented. Obviously, the quotient G/NΓ

∼= Z is subgroup separable,
hence, by Theorem 2.8, NΓ is conjugacy separable and has solvable conjugacy problem.
More generally, we have the following corollary:

Corollary 2.9. If N is a finitely generated normal subgroup of a right angled Artin group
G such that G/N is abelian, then N is hereditarily conjugacy separable and has solv-
able conjugacy problem. In particular, Bestvina-Brady groups are hereditarily conjugacy
separable and have solvable conjugacy problem.

Corollary 2.9 is a direct consequence of Corollary 11.3 (proved at the end of Section 11),
that covers the more general case when G/N is polycyclic. We have chosen to mention
the particular situation when the quotient G/N abelian in Corollary 2.9, because in this
case one can tell whether or not the given normal subgroup N is finitely generated, using
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Bieri-Neumann-Strebel invariants, which were studied for right angled Artin groups by
Meier and VanWyk in [42].

After finishing this paper the author learned that the positive solution of the conjugacy
problem for the group N from Theorem 2.8 (or Corollary 2.9) has been known before.
This follows from a more general result of M. Bridson [7], claiming that a normal subgroup
N of a bicombable group G has solvable conjugacy problem, provided G/N has solvable
generalized word problem (see [7] for the definitions). Indeed, any right angled Artin
group G acts properly and cocompactly on a CAT(0) space (which is the universal cover
of the corresponding compact non-positively curved Salvetti cube complex), therefore G
is bicombable by a theorem of J. Alonso and M. Bridson [2]. And if N CG, the subgroup
separability of G/N implies that G/N has solvable generalized word problem, by Mal’cev’s
result [39].

Nevertheless, the statement claiming that N is conjugacy separable in Theorem 2.8
(resp. hereditarily conjugacy separable in Corollary 2.9) is new. Our solution of the
conjugacy problem for N uses a Mal’cev-type argument and can be viewed as another
application of hereditary conjugacy separability of G.

3. Hereditary conjugacy separability and Centralizer Conditions

First, let us specify some notations. If G is a group, H ≤ G is a subgroup and g ∈ G,
then the H-conjugacy class of the element g ∈ G is the subset gH := {hgh−1 |h ∈ H} ⊆ G.
For any A ⊆ G, we denote AH := {hah−1 | a ∈ A, h ∈ H}. The H-centralizer of g ∈ G is
the subgroup CH(g) := {h ∈ H | hg = gh} ≤ G. For an epimorphism ψ : G→ F from G
onto a group F , ψ−1 : 2F → 2G will denote the corresponding full preimage map. If A,B
are two subsets of G then their product AB is defined as the subset {ab | a ∈ A, b ∈ B} ⊆
G. Note that if either A or B is empty, then the product AB is empty as well.

Definition 3.1. Suppose that G is a group. We will say that G satisfies the Centralizer
Condition (briefly, CC), if for every finite index normal subgroup KCG and every g ∈ G
there is a finite index normal subgroup LCG such that L ≤ K and

(3.1) CG/L(ḡ) ⊆ ψ
(
CG(g)K

)
in G/L

(where ψ : G→ G/L is the natural epimorphism and ḡ := ψ(g)).

Note that (3.1) is equivalent to ψ−1
(
CG/L(ḡ)

)
⊆ CG(g)K in G, since ker(ψ) = L ≤ K.

The idea behind this condition is to provide control over the growth of centralizers in
finite quotients of G. If the group G is residually finite, the Centralizer Condition CC can

be reformulated in terms of the topology on the profinite completion Ĝ of the group G.
In the Appendix to this paper (see Corollary 12.2) we prove that the condition CC from
Definition 3.1 is equivalent to the following:

(3.2) CG(g) = CĜ(g) in Ĝ, for every g ∈ G

(where CG(g) denotes the closure of CG(g) in Ĝ).
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Originally the condition (3.2) appeared in the recent work of Chagas and Zalesskii [11],
where they proved that a conjugacy separable group G satisfying (3.2) is hereditarily
conjugacy separable (see [11, Prop. 3.1]). We will actually show that, provided G is
conjugacy separable, this condition is equivalent to hereditary conjugacy separability:

Proposition 3.2. Let G be a group. Then the following are equivalent:

(a) G is hereditarily conjugacy separable;
(b) G is conjugacy separable and satisfies CC.

Before proving Proposition 3.2, let us define two more conditions.

Definition 3.3. Let G be a group, H ≤ G and g ∈ G. We will say that the pair
(H, g) satisfies the Centralizer Condition in G (briefly, CCG), if for every finite index
normal subgroup K CG there is a finite index normal subgroup LCG such that L ≤ K
and CH̄(ḡ) ⊆ ψ (CH(g)K) in G/L, where ψ : G → G/L is the natural homomorphism,
H̄ := ψ(H) ≤ G/L, ḡ := ψ(g) ∈ G/L.

The subgroup H will be said to satisfy the Centralizer Condition in G (briefly, CCG)
if for each g ∈ G, the pair (H, g) has CCG.

Now, let demonstrate why the Centralizer Conditions are useful.

Lemma 3.4. Suppose that G is a group, H ≤ G and g ∈ G. Assume that the pair (G, g)
satisfies CCG and the conjugacy class gG is separable in G. If the double coset CG(g)H
is separable in G, then the H-conjugacy class gH is also separable in G.

Proof. Consider any element y ∈ G with y /∈ gH .

If y /∈ gG, then, using the separability of gG, we can find a finite quotient Q of G and
a homomorphism φ : G → Q so that φ(y) /∈ φ(g)Q. Hence φ(y) /∈ φ(g)φ(H) = φ(gH), as
required.

Therefore we can assume that y = zgz−1 for some z ∈ G. If there existed an element f ∈
CG(g)∩z−1H, then zf ∈ H and y = zgz−1 = (zf)g(zf)−1 ∈ gH , leading to a contradiction
with our assumption on y. Hence CG(g) ∩ z−1H = ∅, i.e., z−1 /∈ CG(g)H. Since CG(g)H
is separable in G, there is K CG such that |G : K| <∞ and z−1 /∈ CG(g)HK. Now, the
condition CCG implies that there exists a finite index normal subgroup LCG such that
L ≤ K and CG/L(ψ(g)) ⊆ ψ(CG(g)K), where ψ : G→ G/L is the natural epimorphism.

We claim that ψ(y) /∈ ψ(gH) in G/L. Indeed, if ψ(y) = ψ(hgh−1) for some h ∈ H,
then ψ(z−1h) ∈ CG/L(ψ(g)). Hence ψ(z−1) ∈ CG/L(ψ(g))ψ(H) ⊆ ψ(CG(g)KH), i.e.,
z−1 ∈ CG(g)KHL = CG(g)HK because L ≤ K CG. But this yields a contradiction with
the construction of K.

Therefore we have found an epimorphism ψ from G to a finite group G/L such that
the image of y does not belong to the image of gH . Hence gH is separable in G. �

Observe that for a subgroup H of a group G and any subset S ⊆ H, if S is closed
in PT (G), then S is closed in PT (H). Therefore Lemma 3.4 immediately implies the
following:
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Corollary 3.5. Let G be a conjugacy separable group satisfying CC, and let H ≤ G be
a subgroup such that CG(h)H is separable in G for every h ∈ H. Then H is conjugacy
separable. Moreover, for each h ∈ H the H-conjugacy class hH is closed in PT (G).

It is not difficult to see that Lemma 3.4 has a partial converse (we leave its proof as an
exercise for the reader):

Remark 3.6. Assume that H is a subgroup of a group G and g ∈ G is an arbitrary element.
If gH is separable in G then the double coset CG(g)H is separable in G.

In this paper we are going to use a different converse to Lemma 3.4:

Lemma 3.7. Let G be a group. Suppose that H ≤ G, g ∈ G, K C G and |G : K| < ∞.
If the subset gH∩K is separable in G, then there is a finite index normal subgroup LC G
such that L ≤ K and CH̄(ḡ) ⊆ ψ (CH(g)K) in G/L (in the notations of Definition 3.3).

Proof. Denote k := |H : (H ∩ K)| ≤ |G : K| < ∞. Then H =
⊔k
i=1 zi(H ∩ K) for

some z1, . . . , zk ∈ H. Renumbering the elements zi, if necessary, we can suppose that
there is l ∈ {0, 1, . . . , k} such that whenever 1 ≤ i ≤ l, z−1

i gzi /∈ gH∩K , and whenever
l + 1 ≤ j ≤ k, z−1

j gzj ∈ gH∩K in G.

By the assumptions, there exists a finite index normal subgroup L C G such that
z−1
i gzi /∈ gH∩KL whenever 1 ≤ i ≤ l. Moreover, after replacing L with L ∩ K, we can

assume that L ≤ K.

Let ψ be the natural epimorphism from G to G/L and consider any element x̄ ∈ CH̄(ḡ).
Then x̄ = ψ(x) for some x ∈ H, and ψ(x−1gx) = ψ(g) in G/L, i.e., x−1gx ∈ gL in G.
As we know, there is i ∈ {1, . . . , k} and y ∈ H ∩K such that x = ziy. Consequently,
z−1
i gzi ∈ ygLy−1 = ygy−1L ⊆ gH∩KL. Hence, i ≥ l + 1, that is, z−1

i gzi = ugu−1 for some
u ∈ H ∩K.

Thus ziu ∈ CH(g) and x = ziy = (ziu)(u−1y) ∈ CH(g)(H ∩K) ⊆ CH(g)K. Therefore
we proved that x̄ ∈ ψ(CH(g)K) in G/L for every x̄ ∈ CH̄(ḡ). This yields the inclusion
CH̄(ḡ) ⊆ ψ (CH(g)K) in G/L, as required. �

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. First let us assume (b). Consider an arbitrary finite index sub-
group H ≤ G. For every h ∈ H the double coset CG(h)H is a finite union of left cosets
modulo H, hence it is separable in G. Therefore, by Corollary 3.5, H is conjugacy sepa-
rable. That is, (b) implies (a).

Now, assume that G is hereditarily conjugacy separable. We need to show that G
satisfies CC. Take any g ∈ G and any K C G with |G : K| < ∞. Observe that the
subgroup H := K〈g〉 ≤ G has finite index in G, and gH = gK = gH∩K . Since H is
conjugacy separable, gH is closed in PT (H), but then it is also closed in PT (G) because
any finite index subgroup of H has finite index in G. Therefore gH∩K = gH is separable
in G, and so we can apply Lemma 3.7 to find the finite index normal subgroup L C G
from its claim. Hence the group G satisfies CC. �
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4. Commuting retractions

In this section we establish certain properties of commuting retractions that constitute
the core of our approach to studying residual properties of right angled Artin groups. This
approach is based on a simple observation that canonical retractions of a right angled Artin
group onto its special subgroups pairwise commute (see Remark 6.1 in Section 6).

Let G be a group and let H be a subgroup of G. Recall that an endomorphism ρH :
G→ G is called a retraction of G onto H if ρH(G) = H and ρH(h) = h for every h ∈ H.
In this case H is said to be a retract of G. Note that ρH ◦ ρH = ρH . If H is a retract and
g ∈ G, then the subgroup F := gHg−1 ≤ G, conjugate to H in G, is also a retract. The
corresponding retraction ρF ∈ End(G) is given by the formula ρF (x) := gρH(g−1xg)g−1

for all x ∈ G.

The following observation is very useful:

Lemma 4.1. Let H be a retract of a group G and let ρH : G → G be the corresponding
retraction. Suppose that MCG satisfies ρH(M) ⊆M . Then the retraction ρH canonically
induces a retraction ρH̄ : G/M → G/M of G/M onto the natural image H̄ of H in G/M ,
defined by the formula ρH̄(gM) = ρH(g)M for all gM ∈ G/M .

Proof. Evidently, it is enough to check that ρH̄ is well-defined. If g1M = g2M for some
g1, g2 ∈ G, then f = g−1

2 g1 ∈M , g1 = g2f and ρH(f) ∈M . Hence

ρH̄(g1M) = ρH(g1)M = ρH(g2)ρH(f)M = ρH(g2)M = ρH̄(g2M),

as required. �

Assume that H and F are two retracts of a group G and ρH , ρF ∈ End(G) are the
corresponding retractions. We will say ρH commutes with ρF if they commute as elements
of the monoid of endomorphisms End(G), i.e., if ρH(ρF (g)) = ρF (ρH(g)) for all g ∈ G.

Remark 4.2. If the retractions ρH and ρF commute then ρH(F ) = H ∩ F = ρF (H) and
the endomorphism ρH∩F := ρH ◦ ρF = ρF ◦ ρH is a retraction of G onto H ∩ F .

Indeed, obviously the restriction of ρH∩F to H ∩ F is the identity map. And ρH∩F (G) ⊆
ρH(G) ∩ ρF (G) = H ∩ F , hence ρH∩F (G) = H ∩ F . Consequently ρH(F ) = ρH(ρF (G)) =
ρH∩F (G) = H ∩ F . Similarly, ρF (H) = H ∩ F .

In the next proposition we establish an important property of commuting retractions
that could be of independent interest.

Proposition 4.3. Let H1, . . . , Hm be retracts of a group G such that the corresponding
retractions ρH1 , . . . , ρHm pairwise commute. Then for any finite index normal subgroup
KCG there is a finite index normal subgroup M CG such that M ≤ K and ρHi

(M) ⊆M
for each i = 1, . . . ,m. Consequently, for every i = 1, . . . ,m, the retraction ρHi

canonically
induces a retraction ρH̄i

of G/M onto the image H̄i of Hi in G/M .

Proof. The second claim of the proposition follows from Lemma 4.1, so it suffices to
construct the subgroup M CG with the needed properties.
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If J = {i1, . . . , ik} is a subset of the finite set I := {1, 2, . . . ,m}, we define the retraction
ρJ of G onto

⋂
j∈J Hj by

ρJ := ρHi1
◦ ρHi2

◦ · · · ◦ ρHik
.

This makes sense since our retractions pairwise commute. When J = ∅, ρJ will be the
identity map of G.

Now, for every subset J of I = {1, 2, . . . ,m} we define the subgroup DJ ≤ G as follows.
First we set DI :=

⋂m
i=1Hi∩K – a finite index normal subgroup of (H1∩· · ·∩Hm). Next,

if J is a proper subset of I, we define DJ recursively, according to the following formula:

(4.1) DJ := ρJ

 ⋂
i∈I\J

ρ−1
J∪{i}(DJ∪{i})

 ∩K,
where ρ−1

J∪{i}(DJ∪{i}) denotes the full preimage (under ρJ∪{i}) of DJ∪{i} in G.

Since the intersection of a finite number of finite index normal subgroups is again a
finite index normal subgroup, and images, as well as full preimages, of finite index normal
subgroups under homomorphisms are again normal and of finite index (in their respective
groups), we see that DJ is normal and has finite index in ρJ(G) =

⋂
j∈J Hj. Thus, if we

set M := D∅ =
⋂
i∈I ρ

−1
Hi

(D{i}) ∩K, we shall have M CG, |G : M | <∞ and M ≤ K.

If J ⊂ I and i ∈ I \ J , using (4.1) and the fact that ρ{i} ◦ ρJ = ρJ∪{i}, we can observe
that ρ{i}(DJ) ⊆ DJ∪{i}.

On the other hand, let us show that DJ∪{i} ⊆ DJ . We will use induction on the
cardinality |I \J |. If |I \J | = 1 then I = J t{i}. And if g ∈ DJ∪{i} = DI =

⋂
i∈I Hi∩K,

then ρI(g) = g, therefore g ∈ ρ−1
I (DI) and g = ρJ(g) ∈ ρJ

(
ρ−1
I (DI)

)
. Thus g ∈ DJ .

Suppose, now, that the statement has been proved for all proper subsets J ′ of I with
|J ′| > |J |. Take any i ∈ I\J and consider an element g ∈ DJ∪{i} ≤

⋂
j∈J∪{i}Hj∩K. Then

ρJ∪{i}(g) = g, therefore g ∈ ρ−1
J∪{i}(DJ∪{i}). We need to show that for any i′ ∈ I \(J∪{i}),

g ∈ ρ−1
J∪{i′}(DJ∪{i′}), or, equivalently, that ρJ∪{i′}(g) ∈ DJ∪{i′}. But

ρJ∪{i′}(g) = ρi′(ρJ(g)) = ρ{i′}(g) ∈ ρ{i′}(DJ∪{i}) ⊆ DJ∪{i,i′}.

And, since DJ∪{i,i′} ⊆ DJ∪{i′} by the induction hypothesis, we can conclude that g ∈⋂
i′∈I\J ρ

−1
J∪{i′}(DJ∪{i′}). Recalling that g ∈

⋂
j∈J Hj ∩ K, we achieve g = ρJ(g) ∈ DJ .

Thus DJ∪{i} ⊆ DJ and the inductive step is established.

We are now able to show that ρHi
(M) ⊆ M for every i ∈ I. Indeed, since ρHi

(M) ⊆
D{i}, it is enough to check that D{i} ⊆ M . Take any j ∈ I. As we proved, ρHj

(D{i}) =

ρ{j}(D{i}) ⊆ D{i}∪{j} ⊆ D{j}. Therefore, D{i} ⊆ ρ−1
Hj

(D{j}) for each j ∈ J . By definition,
D{i} ≤ K, consequently, for any i ∈ I, we achieve

ρHi
(M) ⊆ D{i} ⊆

⋂
i∈I

ρ−1
Hi

(D{i}) ∩K = M,

as required. �
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The next observation is an easy consequence of the definition of M using the formula
(4.1).

Remark 4.4. In Proposition 4.3, if G/K is a finite p-group for some prime number p, then
so is G/M .

Given two subgroups H and F of a group G, it is usually difficult to find quotient-
groups Q of G such that the image of the intersection of H and F in Q coincides with the
intersection of the images of these subgroups in Q. However, in the case when H and F
are retracts and the corresponding retractions commute this will be automatic for many
quotients of G.

Lemma 4.5. Suppose that the retractions ρH , ρF ∈ End(G) commute, and M C G is a
normal subgroup satisfying ρH(M) ⊆M and ρF (M) ⊆M . Then ϕ(H∩F ) = ϕ(H)∩ϕ(F )
in G/M , where ϕ : G→ G/M is the natural epimorphism.

Proof. By Lemma 4.1 ρH and ρF canonically induce retractions ρϕ(H) and ρϕ(F ) of G/M
onto ϕ(H) and ϕ(F ) respectively.

Clearly, ϕ(H∩F ) ⊆ ϕ(H)∩ϕ(F ), and so, we only need to establish the inverse inclusion.
Consider an arbitrary ḡ ∈ ϕ(H)∩ϕ(F ). Then ḡ = ϕ(g) for some g ∈ G, and ρϕ(F )(ḡ) = ḡ,
ρϕ(H)(ḡ) = ḡ. Therefore

ḡ = ρϕ(H)

(
ρϕ(F )(ϕ(g))

)
= ρϕ(H) (ϕ(ρF (g))) = ϕ (ρH(ρF (g))) ∈ ϕ(H ∩ F ),

where the last inclusion follows from Remark 4.2. Thus ϕ(H) ∩ ϕ(F ) ⊆ ϕ(H ∩ F ). �

Lemma 4.5 allows to obtain the first interesting application of Proposition 4.3.

Corollary 4.6. Let H1, . . . , Hm be retracts of a group G such that the corresponding
retractions ρH1 , . . . , ρHm pairwise commute. Then for any finite index normal subgroup
KCG there is a finite index normal subgroup M CG such that M ≤ K and ρHi

(M) ⊆M
for each i = 1, . . . ,m. Moreover, if ϕ : G→ G/M denotes the natural epimorphism, then
ϕ(
⋂m
i=1 Hi) =

⋂m
i=1 ϕ(Hi).

Proof. First we apply Proposition 4.3 to find the finite index normal subgroup M from
its claim. The last statement of the corollary will be proved by induction on m. If
m = 1 there is nothing to prove. So let us assume that m ≥ 2 and we have already
shown that ϕ(

⋂m−1
i=1 Hi) =

⋂m−1
i=1 ϕ(Hi). Using Remark 4.2 we see that the map ρF :=

ρH1 ◦ · · · ◦ ρHm−1 ∈ End(G) is a retraction of G onto F :=
⋂m−1
i=1 Hi. By Proposition 4.3,

ρHi
(M) ⊆M for each i = 1, . . . ,m, therefore

ρF (M) = (ρH1 ◦ · · · ◦ ρHm−2)
(
ρHm−1(M)

)
⊆

(ρH1 ◦ · · · ◦ ρHm−3)
(
ρHm−2(M)

)
⊆ · · · ⊆ ρH1(M) ⊆M.

By the assumptions, the retractions ρF and ρHm commute, hence we can apply
Lemma 4.5 to conclude that ϕ(F ∩ Hm) = ϕ(F ) ∩ ϕ(Hm). But ϕ(F ) =

⋂m−1
i=1 ϕ(Hi)

by the induction hypothesis, consequently ϕ(
⋂m
i=1Hi) = ϕ(F ∩ Hm) =

⋂m
i=1 ϕ(Hi), and

the proof is finished. �
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Let us now give an example which shows that the statements of Corollary 4.6 and
Lemma 4.5 are no longer true if the retractions do not commute.

Example 4.7. Let S be any infinite simple group, and let H be an arbitrary group pos-
sessing non-trivial finite quotients. Set G := H ∗S, fix an element s ∈ S \ {1} and denote
F := sHs−1 ≤ G. Evidently H is a retract of G, where the retraction ρH : G → G of G
onto H is the identity on H and trivial on S. Clearly the endomorphism ρF ∈ End(G)
defined by ρF (g) := sρH(s−1gs)s−1 for every g ∈ G, is a retraction of G onto F .

It is not difficult to see that the retractions ρH and ρF do not commute (for instance,
because (ρH ◦ ρF )(G) = H, (ρF ◦ ρH)(G) = F and H ∩ F = {1}).

If K CG is an arbitrary proper normal subgroup of finite index, then S ⊂ K (because
S has no non-trivial finite quotients), hence the kernel ker(ρH) (which is equal to the
normal closure of S in G) is contained in K. Consequently, ρH(K) ⊆ ρ−1

H (ρH(K)) ⊆ K.
Similarly, ρF (K) ⊆ K.

Observe that H ∩ F = {1} by construction. Denote by Q the quotient G/K and let
ϕ : G→ Q be the natural epimorphism. Since s ∈ S ≤ ker(ϕ) we see that

ϕ(H) ∩ ϕ(F ) = ϕ(H) = Q 6= {1} = ϕ(H ∩ F ).

That is, in any non-trivial finite quotient Q of G the intersection of the images of H and
F is strictly larger than the image of H ∩ F .

5. Implications for the profinite topology

Throughout this section we will assume that A and B are retracts of a group G such
that the corresponding retractions ρA ∈ End(G) and ρB ∈ End(G) commute. Our goal
here is to establish several consequences of these settings for the profinite topology on G.

Lemma 5.1. For arbitrary elements x, y ∈ G define α := ρA (ρB(x)x−1)xρB (x−1) ∈
AxB ⊆ G and β := ρA (ρB(y)y−1) yρB (y−1) ∈ AyB ⊆ G. Then the following two
conditions are equivalent:

(i) y ∈ AxB;
(ii) β ∈ αA∩B.

Proof. Observe that y ∈ AxB if and only if AyB = AxB, which is equivalent to AβB =
AαB. Thus y ∈ AxB if and only if β ∈ AαB.

To show that (i) implies (ii), suppose that there are a ∈ A and b ∈ B such that

(5.1) β = aαb.

By definition, ρA(α) = 1 = ρA(β), hence 1 = ρA(a)ρA(b). Therefore, (5.1) implies that
a = ρA(a) = ρA(b−1) ∈ ρA(B) = A ∩B (by Remark 4.2).

Now, since ρB ◦ ρA = ρA ◦ ρB we have ρB(α) = 1 = ρB(β). Therefore, applying ρB to
both sides of the equality (5.1), we get 1 = ρB(a)ρB(b) = ab because a, b ∈ B. Hence
b = a−1 ∈ A ∩B and β = aαa−1 ∈ αA∩B.



HEREDITARY CONJUGACY SEPARABILITY OF RIGHT ANGLED ARTIN GROUPS 15

Now, suppose that β ∈ αA∩B. Then β ∈ (A ∩ B)α(A ∩ B) ⊆ AαB. Thus (ii) implies
(i). �

Let us look at the proof of the above lemma in the particular case when y = x. Then
we see that β = α, and

A ∩ xBx−1 = γ−1
(
A ∩ αBα−1

)
γ, where γ := ρA

(
ρB(x)x−1

)
∈ A.

We also see that a ∈ A ∩ αBα−1 if and only if there is b ∈ B such that α = a−1αb.
But, as we showed in the proof of Lemma 5.1, this can happen only if b = a ∈ A ∩ B.
I.e, αa = aα and a ∈ A∩B, which is equivalent to a ∈ CA∩B(α). Thus, in this particular
case we obtain the following statement:

Lemma 5.2. If x ∈ G is an arbitrary element, then

A ∩ xBx−1 = γ−1CA∩B(α)γ in G,

where α := ρA (ρB(x)x−1)xρB (x−1) ∈ AxB and γ := ρA (ρB(x)x−1) ∈ A .

Combining Lemma 5.1 with Corollary 4.6 we achieve

Lemma 5.3. Consider any x ∈ G and denote α := ρA (ρB(x)x−1)xρB (x−1) ∈ AxB ⊆ G.
If the conjugacy class αA∩B is separable in G, then the double coset AxB is also separable
in G.

Proof. Suppose that an element y ∈ G satisfies y /∈ AxB. By Lemma 5.1, this is equivalent
to β /∈ αA∩B, where β := ρA (ρB(y)y−1) yρB (y−1). Since αA∩B is separable, there is a
finite index normal subgroup K C G such that ψ(β) /∈ ψ

(
αA∩B

)
= ψ(α)ψ(A∩B), where

ψ : G→ G/K is the canonical epimorphism.

By Corollary 4.6, there exists a finite index normal subgroup M C G such that M ≤
K, ρA(M) ⊆ M , ρB(M) ⊆ M and ϕ(A ∩ B) = ϕ(A) ∩ ϕ(B), where ϕ is the natural
epimorphism from G to G/M . Since ψ factors through ϕ, we can conclude that ϕ(β) /∈
ϕ(α)ϕ(A∩B) = ϕ(α)ϕ(A)∩ϕ(B). But by Lemma 4.1, there are canonically induced commuting
retractions ρĀ and ρB̄ of G/M onto Ā := ϕ(A) and B̄ := ϕ(B) respectively. Moreover,
letting x̄ := ϕ(x), ȳ := ϕ(y) and using the definition of the retractions ρĀ and ρB̄, we
obtain ϕ(α) = ρĀ (ρB̄(x̄)x̄−1) x̄ρB̄ (x̄−1) and ϕ(β) = ρĀ (ρB̄(ȳ)ȳ−1) ȳρB̄ (ȳ−1). Therefore,
by Lemma 5.1, applied to the retracts Ā and B̄ in G/M , we have ȳ /∈ Āx̄B̄. That is,
ϕ(y) /∈ ϕ(AxB). Hence the double coset AxB is separable in G. �

Since the 1A∩B = {1} is separable in G whenever G is residually finite, we have the
following immediate consequence of Lemma 5.3.

Corollary 5.4. If A and B are retracts of a residually finite group G such that the
corresponding retractions commute, then the double coset AB is separable in G.

The statement of Corollary 5.4 has been known before – see, for example, [35, Lemma
9.3], but the proof that we have presented here is new.

The following statement is well-known:
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Lemma 5.5. Suppose that G is a residually finite group and A ≤ G is a retract of G. If
a subset S ⊆ A is closed in PT (A), then S is closed in PT (G).

Proof. We will show that S coincides with its closure clG(S) in the profinite topology on
G. By Corollary 5.4 the subgroup A = AA is closed in PT (G), hence clG(S) ⊆ A. Now, if
a ∈ A\S, then there is a homomorphism φ : A→ Q from A to a finite group Q such that
φ(a) /∈ φ(S). Since A is a retract of G, we have a homomorphism ψ : G→ Q defined by
ψ := φ ◦ ρA. Evidently ψ(a) = φ(a) /∈ φ(S) = ψ(S), hence a /∈ clG(S). Thus S = clG(S),
as required. �

Now, the reason why we need Lemma 5.2, is because it tells us that if one can control
the A ∩ B-centralizers in G, then one can also control the intersections of conjugates of
the retracts A and B. As it can be seen from Example 4.7, in general we may not be able
to find a finite quotient Q of G, in which the image of the intersection of two particular
conjugates of A and B is equal to the intersection of their images. However, provided
that a certain Centralizer Condition is satisfied, we can find many finite quotients Q of
G where these two sets are very close to each other.

Lemma 5.6. Let x be an element of G and let α := ρA (ρB(x)x−1)xρB (x−1) ∈ G.
Suppose that the pair (A ∩ B,α) satisfies the Centralizer Condition in G. Then for any
finite index normal subgroup K C G there exists a finite index normal subgroup M C G
such that M ≤ K, ρA(M) ⊆M , ρB(M) ⊆M and ϕ(A)∩ϕ(xBx−1) ⊆ ϕ(A∩xBx−1)ϕ(K)
in G/M , where ϕ : G→ G/M is the natural epimorphism.

Proof. By Lemma 5.2, A ∩ xBx−1 = γ−1CA∩B(α)γ, where γ := ρA (ρB(x)x−1) ∈ A.
Since the pair (A ∩ B,α) has CCG, there is a subgroup L C G of finite index in G, such
that L ≤ K and ψ−1

(
Cψ(A∩B)(ψ(α))

)
⊆ CA∩B(α)K in G, where ψ : G → G/L is the

natural epimorphism. Applying Corollary 4.6 to A, B and L we find a finite index normal
subgroup M CG, together with the epimorphism ϕ : G→ G/M , such that M ≤ L ≤ K,
ρA(M) ⊆M , ρB(M) ⊆M and ϕ(A) ∩ ϕ(B) = ϕ(A ∩B).

By Lemma 4.1, ρA and ρB canonically induce retractions ρĀ and ρB̄ of G/M onto
Ā := ϕ(A) and B̄ := ϕ(B) respectively. Obviously ρĀ commutes with ρB̄ in End(G/M),
because ρA commutes with ρB in End(G).

Denote x̄ := ϕ(x), ᾱ = ρĀ (ρB̄(x̄)x̄−1) x̄ρB̄ (x̄−1) ∈ G/M and γ̄ := ρĀ (ρB̄(x̄)x̄−1) ∈ Ā.
Observe that ᾱ = ϕ(α) and γ̄ = ϕ(γ) by the definitions of ρĀ and ρB̄. Then by Lemma 5.2,
Ā∩ x̄B̄x̄−1 = γ̄−1CĀ∩B̄(ᾱ)γ̄ in G/M . Therefore, recalling that Ā∩ B̄ = ϕ(A∩B), we get

ϕ−1
(
Ā ∩ x̄B̄x̄−1

)
= ϕ−1

(
γ̄−1CĀ∩B̄(ᾱ)γ̄

)
= γ−1ϕ−1

(
Cϕ(A∩B)(ᾱ)

)
γ.

But since ψ factors through ϕ (as ker(ϕ) = M ≤ L = ker(ψ)), we obviously have

ϕ−1
(
Cϕ(A∩B)(ᾱ)

)
⊆ ψ−1

(
Cψ(A∩B)(ψ(α))

)
⊆ CA∩B(α)K.

Hence we can conclude that ϕ−1
(
Ā ∩ x̄B̄x̄−1

)
⊆ γ−1CA∩B(α)γK = (A ∩ xBx−1)K. Con-

sequently, ϕ(A) ∩ ϕ(xBx−1) = Ā ∩ x̄B̄x̄−1 ⊆ ϕ(A ∩ xBx−1)ϕ(K), and the lemma is
proved. �
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In this paper we will need one more criterion for separability of specific double cosets
in G. In a certain sense it generalizes Remark 3.6.

Lemma 5.7. Consider arbitrary elements x, g ∈ G. Denote D := xBx−1 ≤ G and
α := ρA (ρB(x)x−1)xρB (x−1) ∈ G. Suppose that the conjugacy classes αA∩B and gA∩D

are separable in G, and the pair (A∩B,α) satisfies CCG. Then the double coset CA(g)D
is separable in G.

Proof. Consider any z ∈ G with z /∈ CA(g)D. First, suppose that z /∈ AD. Since αA∩B

is separable in G, Lemma 5.3 implies that AxB is separable, hence AD = (AxB)x−1

is separable as well (because multiplication by a fixed group element on the right is
a homeomorphisms of G with respect to the profinite topology). Therefore there is a
finite index normal subgroup N C G such that z /∈ ADN , hence z /∈ CA(g)DN because
CA(g) ≤ A.

Thus we can assume that z ∈ AD, i.e., there exist a0 ∈ A and d0 ∈ D such that
z = a0d0. Since z /∈ CA(g)D, y := zd−1

0 /∈ CA(g)(A ∩ D). Consequently, for every
h ∈ A ∩D, (yh)g(yh)−1 6= g, i.e., y−1gy 6= hgh−1, implying that y−1gy /∈ gA∩D in G.

Now, the separability of gA∩D in G implies that there is a finite index normal subgroup
K C G such that y−1gy /∈ gA∩DK. And, by Lemma 5.6, we can find a finite index
normal subgroup M C G such that M ≤ K and ϕ(A) ∩ ϕ(D) ⊆ ϕ(A ∩ D)ϕ(K), where
ϕ : G→ G/M is the natural epimorphism. Let K̄, Ā, D̄, ȳ and ḡ denote the ϕ-images of
K, A, D, y and g respectively.

Since K̄ C G/M , we have ḡĀ∩D̄ ⊆ ḡϕ(A∩D)K̄ ⊆ ḡϕ(A∩D)K̄ and ȳ−1ḡȳ /∈ ḡϕ(A∩D)K̄ as
M ≤ K. Hence ȳ−1ḡȳ /∈ ḡĀ∩D̄.

To finish the proof, it remains to show that ϕ(z) /∈ ϕ(CA(g)D). Suppose, on the
contrary, that there exist a ∈ CA(g) and d ∈ D such that ϕ(z) = ϕ(ad). Then ϕ(a0d0) =
ϕ(ad), thus h̄ := ϕ(a−1a0) = ϕ(dd−1

0 ) ∈ Ā ∩ D̄, and ϕ(z) = ϕ(a)h̄ϕ(d0). Consequently,
ȳ = ϕ(z)ϕ(d−1

0 ) = ϕ(a)h̄ and

ȳ−1ḡȳ = h̄−1ϕ(a−1ga)h̄ = h̄−1ḡh̄ ∈ ḡĀ∩D̄,
contradicting to our construction.

Thus, for every z /∈ CA(g)D we found M C G with |G : M | < ∞ such that z /∈
CA(g)DM . Therefore the double coset CA(g)D is separable in G. �

6. Some properties of right angled Artin groups

In this section we recall a few properties of right angled Artin groups, which will be used
in the proof of the main result. At the end of the section we prove that every pointwise
inner automorphism of a right angled Artin group is inner.

Let Γ be a finite graph (without loops or multiple edges) with the set of vertices V .
For any vertex v ∈ V its star star(v) consists of all vertices (including v itself) that are
adjacent to v in Γ. If S ⊆ V , then star(S) :=

⋂
v∈S star(v). Observe that for two subsets

S, T ⊆ V , T ⊆ star(S) happens if and only if S ⊆ star(T ).
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Let G = G(Γ) be the associated right angled Artin group. To simplify notation, we
will identify elements of V with the corresponding generators of G. Then for each v ∈ V ,
star(v) contains precisely those elements from V that commute with v in G. For any
subset A of G, A±1 will denote the union A∪A−1 ⊆ G. Thus every element g ∈ G can be
represented as a word W in letters from V±1. The support supp(W ) is the set of all v ∈ V
such that v±1 appears as a letter in W . A word W is said to be graphically reduced if it has
no subwords of the form vUv−1 or v−1Uv, where v ∈ V and supp(U) ⊆ star(v). Evidently,
if the word W is not graphically reduced, then one can find a shorter word representing
the same element of the group G. This process will eventually terminate (because the
length of W is finite), hence for each element g ∈ G there exists a graphically reduced
word representing it in G.

E. Green [29] proved that if two graphically reduced words W and W ′ represent the
same element g ∈ G, then W and W ′ have the same length and supp(W ) = supp(W ′).
Moreover, for any given g ∈ G, graphically reduced words are precisely the shortest
possible words representing g in G (proofs of these facts using re-writing systems can also
be found in [25, Sec. 2.2]). Therefore, for any element g we can define its length |g| as the
length of any graphically reduced word W representing g in G, and its support supp(g)
as supp(W ).

Finally, for any g ∈ G define FL(g) – the set of first letters of g – as the set of all
letters a ∈ V±1 such that a appears as the first letter of some graphically reduced word
W representing g in G. Similarly, we define the set of last letters LL(g) of g as those
a ∈ V±1 that appear as a last letter of some graphically reduced word representing g in
G. A useful fact observed by Green in [29] states that for any g ∈ G the letters in FL(g)
pairwise commute (in G). Evidently, LL(g) = (FL(g−1))−1.

Consider any subset S of V and let ∆ be the full subgraph of Γ on the vertices from S.
Let H denote the right angled Artin group corresponding to ∆. The identity map on S
can be regarded as a map from the generating set of H into G. Since ∆ is a subgraph of Γ
all the relations between these generators of H hold between their images in G. Therefore,
by von Dyck’s Theorem, there is a homomorphism ξ : H → G extending the identity map
on S.

On the other hand, since ∆ is a full subgraph of Γ, by von Dyck’s Theorem, the map
ρS : V t {1} → V t {1} defined by ρS(1) := 1 and

(6.1) ρS(v) :=

{
v if v ∈ S
1 if v ∈ V \ S ,

can be extended to a homomorphism ρH : G → H. Obviously, the composition ρH ◦ ξ :
H → H is the identity map on H. Therefore ξ is injective, hence it is an isomorphism
between H and the subgroup of G generated by S. Consequently, ρH , regarded as an
endomorphism of G, becomes a (canonical) retraction of G onto 〈S〉 ≤ G.

For any S ⊆ V the subgroup H := 〈S〉 ≤ G is called special (or full, or canonically
parabolic, depending on the source). Note that the trivial subgroup {1} ≤ G is also special
and corresponds to the empty subset of V . As we saw above, any special subgroup is a
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right angled Artin group itself, and is a retract of G. It is easy to see that if S, T are two
subsets of V then the corresponding maps ρS and ρT defined by (6.1) commute with each
other. This leads to the following important observation.

Remark 6.1. If H and F are special subgroups of a right angled Artin group G, then H
and F are retracts of G and the corresponding canonical retractions ρH , ρF ∈ End(G)
commute.

Remark 6.2. If S, T ⊆ V then 〈S〉 ∩ 〈T 〉 = 〈S ∩ T 〉.

Indeed, by Remarks 6.1 and 4.2, we have

〈S〉 ∩ 〈T 〉 = ρ〈T 〉(〈S〉) = 〈ρ〈T 〉(S)〉 = 〈ρT (S)〉 = 〈S ∩ T 〉.

Recall that a group G is said to have the Unique Root property if for any positive integer
n and arbitrary elements x, y ∈ G the equality xn = yn implies x = y in G. The group
G is called bi-orderable if G can be endowed with a total order �, which is bi-invariant,
i.e., for any x, y, z ∈ G, if x � y, then zx � zy and xz � yz.

Lemma 6.3. Right angled Artin groups have the Unique Root property.

Proof. G. Duchamp and D. Krob [21] (see also [22]) proved that right angled Artin groups
are bi-orderable. Let G be a right angled Artin group, and let � be a total bi-invariant
order on G.

Suppose that xn = yn for some x, y ∈ G, n ∈ N, and x 6= y. Without loss of generality
we can assume that x ≺ y. Let us show that xk ≺ yk for every k ∈ N. This is true for
k = 1, so, proceeding by induction on k, suppose that k ≥ 2 and xk−1 ≺ yk−1 has already
been shown. Then xk = xk−1x ≺ xk−1y ≺ yk−1y = yk, where we used the induction
hypothesis together with the bi-invariance of the order.

Hence, we have proved that xn ≺ yn, contradicting to xn = yn. Thus x = y. �

The Unique Root property for right angled Artin groups can also be easily established
using the fact that these groups are residually torsion-free nilpotent, which was also proved
in [21].

Lemma 6.4. Let H be a conjugate of a special subgroup in a right angled Artin group G.
If K ≤ G is a subgroup such that |K : (K ∩H)| <∞ then K ⊆ H.

Proof. By the assumptions, H is a retract of G. Let ρH ∈ End(G) denote the correspond-
ing retraction. Take any x ∈ K. Since |K : (K ∩ H)| < ∞, there is n ∈ N such that
xn ∈ H. Therefore, setting y := ρH(x) ∈ H, we obtain xn = ρH(xn) = yn. And the
Unique Root property for G implies that x = y ∈ H. Thus K ⊆ H. �

After writing down the proof of the next technical result (Lemma 6.5), the author
learned that it has already been established by A. Duncan, I. Kazachkov and V. Remeslen-
nikov in their recent paper [23, Prop. 2.6]. However, the proof presented here is somewhat
different, and the author decided to keep it in this work for completeness.
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Lemma 6.5. Let G be a right angled Artin group associated to a finite graph Γ with
vertex set V. Suppose that S, T ⊆ V and g ∈ G. Then there are P ⊆ T and h ∈ 〈T 〉
such that g〈S〉g−1 ∩ 〈T 〉 = h〈P〉h−1 in G. Consequently, the intersection of conjugates of
two special subgroups in G is a conjugate of a special subgroup of G.

Proof. We will use induction on (|S| + |g|), where |S| denotes the cardinality of S. If
S = ∅, then 〈S〉 = {1} and the statement is trivial. If |g| = 0, i.e., g = 1 in G, then
g〈S〉g−1 ∩ 〈T 〉 = 〈S〉 ∩ 〈T 〉 = 〈S ∩ T 〉 by Remark 6.2.

Thus we can assume that S 6= ∅ and g 6= 1, n := |S|+ |g| ≥ 2, and the claim has been
proved for all S and g with |S|+ |g| < n.

If there is a ∈ FL(g) ∩ T ±1, set f := a−1g. Then |f | < |g|, a〈T 〉a−1 = 〈T 〉 and

g〈S〉g−1 ∩ 〈T 〉 = a
(
f〈S〉f−1 ∩ 〈T 〉

)
a−1 = (ah)〈P〉(ah)−1

for some h ∈ 〈T 〉 and some P ⊆ T by the induction hypothesis.

If, on the other hand, there is b ∈ LL(g) ∩
(
S ∪ star(S)

)±1
, set f := gb−1. Then

|f | < |g|, b〈S〉b−1 = 〈S〉 and g〈S〉g−1 ∩ 〈T 〉 = f〈S〉f−1 ∩ 〈T 〉 and we can apply the
induction hypothesis once again.

Therefore, we can suppose that FL(g)∩T ±1 = ∅ and LL(g)∩
(
S ∪ star(S)

)±1
= ∅. We

assert that in this case

(6.2) g〈S〉g−1 ∩ 〈T 〉 =
⋃
s∈S

(
g 〈S \ {s}〉 g−1 ∩ 〈T 〉

)
.

Indeed, if (6.2) is false, then there exist x ∈ 〈S〉 and y ∈ 〈T 〉 such that supp(x) = S and
gxg−1 = y in G.

Choose graphically reduced words W,X and Y representing in G the elements g, x and
y respectively, so that supp(X) = S and supp(Y ) ⊆ T . Let a be the first letter of W , then
a = v±1 for some v ∈ V . According to our assumptions, v ∈ supp(WXW−1)\supp(Y ) and
WXW−1 = Y in G. Hence the left-hand side of the latter equality cannot be graphically
reduced.

Note that no letter a of W can be cancelled with a letter of X in the word WXW−1,
because this would mean that a ∈ supp(X)±1 = S±1 and a commutes with the suffix of
W after it, hence a ∈ LL(g) ∩ S±1 = ∅. Similarly, no letter from X can cancel with a
letter from W−1, therefore a reduction in WXW−1 can occur only from the presence of
a subword cUc−1, where c is a letter from the initial copy of W and U contains X as a
subword. Thus, c = w±1 for some w ∈ V , supp(W ) ⊆ supp(U) ⊆ star(w). Consequently,
S ⊆ star(w), and c is a last letter of g, because it commutes with the suffix of W after it.
This implies that c ∈ LL(g) ∩ star(S)±1 6= ∅ contradicting to our assumption.

Therefore (6.2) is true, implying that the group K := g〈S〉g−1 ∩ 〈T 〉 ≤ G is covered by
a finite union of its subgroups. A classical theorem of B. Neumann [46] claims that in this
case one of these subgroups must have finite index in K. Thus there is s0 ∈ S such that
|K : (g 〈S \ {s0}〉 g−1 ∩ 〈T 〉) | < ∞. Using the induction hypothesis, we can find P ⊆ T
and h ∈ 〈T 〉 such that g 〈S \ {s0}〉 g−1 ∩ 〈T 〉 = h〈P〉h−1. Therefore h〈P〉h−1 ≤ K and
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|K : h〈P〉h−1| < ∞. Hence Lemma 6.4 can be applied to achieve the required equality
K = h〈P〉h−1. �

Let us recall a few more facts about right angled Artin groups.

An element g ∈ G is said to be A-cyclically reduced if it cannot be written as g = aha−1,
where a ∈ V±1 and |h| = |g| − 2 (we have added the letter “A” to avoid confusion with
a similar notion for special HNN-extensions introduced in Section 7). In the paper [57]
H. Servatius proved that for every element g of a right angled Artin group G there exists
a unique A-cyclically reduced element h such that g = fhf−1 for some f ∈ G with
|g| = |h|+ 2|f |. In particular, supp(h) ⊆ supp(g). Therefore, if g ∈ G is not A-cyclically
reduced then |g2| = |fh2f−1| ≤ 2|h|+ 2|f | < 2|g|. Thus we obtain the following

Remark 6.6. If an element g ∈ G is not A-cyclically reduced, then for any graphically
reduced word W representing g in G, the word W 2 ≡ WW cannot be graphically reduced.

Another consequence of the above theorem of Servatius is that every given element of
G is conjugate to a unique (up to a cyclic permutation) A-cyclically reduced element. In
particular, we can make

Remark 6.7. If the elements g, h ∈ G are A-cyclically reduced and conjugate in G, then
supp(g) = supp(h).

A special subgroup A of the right angled Artin group G is said to be maximal if A = 〈S〉
for some maximal proper subset S of V (i.e., if |S| = |V| − 1).

Lemma 6.8. For any non-trivial element g ∈ G there is a maximal special subgroup A
in G such that g /∈ AG.

Proof. Arguing by contradiction, suppose that there are f1, . . . , fn ∈ G such that g ∈⋂n
i=1 fiAif

−1
i in G, where A1, . . . , An is the list of all maximal special subgroups of G.

Then for each i ∈ {1, . . . , n}, there is an A-cyclically reduced element ai ∈ Ai \ {1} such
that g is conjugate to ai in G. Choose any letter v ∈ supp(a1) and take j ∈ {1, . . . , n}
such that Aj = 〈V \ {v}〉. Then a1 must be conjugate to aj in G, which is impossible by
Remark 6.7, because v ∈ supp(a1) \ supp(aj) (as supp(aj) ⊆ V \ {v}). This contradiction
proves the lemma. �

Recall that an automorphism φ of a group G is called pointwise inner if for each g ∈ G
there exists f = f(g) ∈ G, such that φ(G) = fgf−1 in G. Let Autpi(G) denote the set
of all pointwise inner automorphisms of G. It is easy to see that Autpi(G) is a normal
subgroup of the full automorphism group Aut(G), containing the subgroup of all inner
automorphisms Inn(G).

We are now going to prove that the the group of pointwise inner automorphisms of a
right angled Artin group G coincides with the group of inner automorphisms of G.

Proposition 6.9. For any right angled Artin group G we have Autpi(G) = Inn(G).
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Proof. Suppose there exists φ ∈ Autpi(G) \ Inn(G). Since φ maps every generator of G
to its conjugate, we can replace φ by its composition with an inner automorphism of G
to assume that φ(v) = v for some v ∈ V .

Then there is an automorphism µ lying in the right coset Inn(G)φ ⊂ Autpi(G) such
that the set Fix(µ) is maximal, where Fix(µ) denotes the subset of all elements in V fixed
by µ. Note that Fix(µ) $ V because µ 6= idG (the identity map idG of G does not belong
to the coset Inn(G)φ by our assumption). And Fix(µ) 6= ∅ since v ∈ Fix(φ) 6= ∅.

Let Fix(µ) = {v1, . . . , vk} ⊂ V and pick any w ∈ V \Fix(µ). By the assumptions, there
is f ∈ G such that µ(w) = fwf−1. Choose a shortest element f with this property.

First, suppose that there is a ∈ FL(f) ∩
(⋂k

i=1 star(vi)
)±1

. Then a ∈
⋂k
i=1CG(vi),

hence after defining a new automorphism λ ∈ Inn(G)φ by λ(g) := a−1µ(g)a for all g ∈ G,
we will have Fix(µ) ⊆ Fix(λ), λ(w) = (a−1f)w(a−1f)−1 and |a−1f | < |f |. Note that
a−1f 6= 1 because, otherwise, we would have w ∈ Fix(λ) contradicting to the maximality
of Fix(µ). Thus we can replace µ with λ, making f shorter. We can continue doing the
same for λ, and so on. Eventually we will end up with an automorphism µ ∈ Inn(G)φ
(we keep the same notation for it, although the actual automorphism may be different)
such that µ(w) = fwf−1, f is a shortest element with this property, f 6= 1, and

(6.3) FL(f) ∩ star (Fix(µ))±1 = FL(f) ∩

(
k⋂
i=1

star(vi)

)±1

= ∅.

Denote S := Fix(µ) ∩ FL(f)±1 ⊂ V . Using (6.3), we see that for every s ∈ S there is
v(s) ∈ Fix(µ) such that v(s) /∈ star(s). Note that in this case v(s) /∈ FL(f)±1 because
s ∈ FL(f)±1 and any two elements of FL(f)±1 commute. Set T := {v(s) | s ∈ S} ⊆
Fix(µ) \ FL(f)±1, and write Fix(µ) = {t1, . . . , tl} t {s1, . . . , sm}, where T = {t1, . . . , tl}
(consequently, S ⊆ {s1, . . . , sm}). Finally, define the words T := t1 . . . tl, S := s1 . . . sm
and let g be the element represented by the word by TSTw in G.

Since µ ∈ Autpi(G), there exists x ∈ G such that µ(g) = xgx−1. On the other hand,
µ(g) = TSTUwU−1, for some graphically reduced non-empty word U representing f in
G. Note that the word UwU−1 is graphically reduced (otherwise, we could make U , and
hence f , shorter) and w /∈ supp(TST ) = Fix(µ). Therefore the only possible reduction
which could occur in the word W ≡ TSTUwU−1 would arise from cancellation of a letter
from TST with a letter from U or U−1. However, no letter t from the first copy of T
could cancel with a letter from U or U−1 in W , because supp(S) 6⊂ star(t) (as t = v(s)
for some s ∈ S and s ∈ supp(S) \ star(v(s))). On the other hand, if some letter t from
the second copy of T in W cancelled with some letter a from U , then a ∈ FL(f), but this
would contradict to t ∈ T and T ∩ FL(f)±1 = ∅. If this letter t cancelled with a letter a
from U−1 in W , then we would have supp(U) ⊂ star(t), which is impossible as t = v(s)
for some s ∈ supp(U) and s /∈ star(v(s)). Therefore, if W is not graphically reduced,
then a letter s from S must cancel with a letter a = s−1 from U or U−1, in particular,
T = supp(T ) ⊆ star(s), implying that s /∈ S. However, if s cancels with a letter from
U , we see that a ∈ FL(f), hence s ∈ S, which is false. And if s cancelled with a letter
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a from U−1, then we would get a contradiction with the fact that UwU−1 is graphically
reduced, because a−1 = s is a letter of U lying between s and a in W .

Therefore W ≡ TSTUwU−1 is a graphically reduced word representing µ(g) in G. Con-
sequently, |µ(g)| = 2‖T‖+‖S‖+2‖U‖+1 > 2‖T‖+‖S‖+1 = |g| since ‖U‖ > 0 (‖U‖ de-
notes the length of the word U). But µ(g) = xgx−1, hence µ(g) is not A-cyclically reduced.
By Remark 6.6, a reduction can be made in the word W 2 ≡ TSTUwU−1TSTUwU−1.
But an argument similar to the above shows that this is impossible.

Thus we have arrived to a contradiction, which proves that Autpi(G) = Inn(G), as
needed. �

Remark 6.10. The reader could have noticed that in the proof of Proposition 6.9 we have
actually shown more than it claims. In fact, we have proved that any endomorphism φ
of a right angled Artin group G, which maps each conjugacy class of G into itself, is an
inner automorphism of G.

7. Special HNN-extensions

The purpose of this section is to develop necessary tools for dealing with special HNN-
extensions.

Let A be a group and let H ≤ A be a subgroup.

Definition 7.1. The special HNN-extension of A with respect to H is the group G given
by the presentation

(7.1) G = 〈A, t ‖ tht−1 = h for every h ∈ H〉.

In other words, the special HNN-extension G is a particularly simple HNN-extension of
A, where both of the associated subgroups are equal to H and the isomorphism between
these subgroups is the identity map on H.

Let Γ be a finite graph with the set of vertices V of cardinality n ∈ N . The reason why
we are interested in special HNN-extensions is the the observation below.

Remark 7.2. Let G be the right angled Artin group associated to Γ. Then G can be
obtained from the trivial group via a sequence of special HNN-extensions. More precisely,
there are right angled Artin groups {1} = G0, G1, . . . , Gn = G such that Gi+1 is a
special HNN-extension of Gi with respect to some special subgroup Hi ≤ Gi for every
i = 0, . . . , n− 1.

The groups Gi can be constructed as follows. Let V = {v1, . . . , vn} and denote Si+1 :=
{v1, . . . , vi} ∩ star(vi+1) ⊂ V for i = 1, . . . , n − 1. Set G0 := {1}, G1 := 〈v1〉 (the infinite
cyclic group generated by v1), and

Gi+1 := 〈Gi, vi+1 ‖ vi+1sv
−1
i+1 = s for every s ∈ Si+1〉, i = 1, . . . , n− 1.

Clearly, G = Gn and for each i, Gi+1 is a special HNN-extension of Gi with respect to the
special subgroup 〈Si+1〉 of Gi, and Gi is a special subgroup of G generated by {v1, . . . , vi}.
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Remark 7.3. If G is a right angled Artin group associated to Γ, then for any maximal
special subgroup A ≤ G, G splits as a special HNN -extension (7.1) of A with respect to
a certain special subgroup H of A.

Indeed, if A = 〈S〉, where S ⊂ V and V = S t {t}, set U := star(t) \ {t} ⊆ S. Then
G = 〈A, t ‖ tut−1 = u, ∀u ∈ U〉 is a special HNN-extension of A with respect to the
subgroup H := 〈U〉 ≤ A.

Special HNN-extensions are usually much easier to deal with than general HNN-
extensions. Throughout this section we will limit ourselves to considering only the former
ones, even though most of the statements can be re-formulated in the general situation.

Let G be the special HNN-extension given by (7.1). von Dyck’s Theorem yields the
following Universal Property of special HNN-extensions, which will be important for us:

Remark 7.4. For any group B, every homomorphism ψ : A→ B can be naturally extended
to a homomorphism ψ̃ : G→ P , where P := 〈B, s ‖ sxs−1 = x, ∀x ∈ ψ(H)〉 is the special

HNN-extension of B with respect to ψ(H), so that ψ̃|A = ψ and ψ̃(t) = s.

Lemma 7.5. In the notations of Remark 7.4, ker(ψ̃) = N , where N C G is the normal
closure of ker(ψ) ≤ A ≤ G in G.

Proof. Obviously, N ≤ ker(ψ̃), and hence N ∩ A = ker(ψ̃) ∩ A = ker(ψ). Let φ : G →
Q := G/N be the natural epimorphism with ker(φ) = N . Consequently, if we define

θ : Q → P to be the natural epimorphism with the kernel φ(ker(ψ̃)), then we will have

ψ̃ = θ ◦ φ.

Observe that φ(t)φ(x)φ(t)−1 = φ(txt−1) = φ(x) in Q for every x ∈ H, and the map
ξ : ψ(A) → φ(A) defined by ξ(ψ(a)) := φ(a) for all a ∈ A, is an isomorphism, since
ker(ψ) = ker(φ) ∩ A. Therefore, by von Dyck’s Theorem, there is a homomorphism

ξ̃ : P → Q such that ξ̃(ψ(a)) = φ(a) for every a ∈ A and ξ̃(s) = φ(t). It is easy to see

that ξ̃ ◦ θ : Q→ Q is the identity map on Q. Hence, θ is injective, that is {1} = ker(θ) =

φ(ker(ψ̃)) in Q, implying that ker(ψ̃) ≤ ker(φ) = N . Thus ker(ψ̃) = N . �

Lemma 7.6. Suppose that ρ ∈ End(A) is a retraction of A onto its subgroup B. Then
there are retractions ρ̃1, ρ̃2 ∈ End(G) of G onto subgroups B ≤ G and C := 〈B, t〉 ≤ G
respectively, such that ρ̃i|A = ρ for i = 1, 2, ρ̃1(t) = 1 and ρ̃2(t) = t.

Proof. Define the maps ρi : A t {t} → A t {t} by ρi(a) := ρ(a) for each a ∈ A, i = 1, 2,
and ρ1(t) := 1 and ρ2(t) := t.

The map ρ1 can be extended to an endomorphism ρ̃1 : G→ G by von Dyck’s Theorem,
and the map ρ2 can be extended to an endomorphism ρ̃2 : G → G by Remark 7.4.
Obviously, ρ̃1 and ρ̃2 are retractions of G onto B and C respectively. �

Every element of the special HNN-extension G, given by (7.1), is a product of the form

(7.2) x0t
ε1x1t

ε2 . . . tεnxn

for some n ∈ N ∪ {0}, xi ∈ A, i = 0, . . . , n, and εj ∈ Z \ {0}, j = 1, . . . , n.
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The product (7.2) is said to be reduced, if xi /∈ H for every i ∈ {1, 2, . . . , n − 1}.
Since t commutes with every element of H, it is easy to see that any g ∈ G is equal to
some reduced product in G. By Britton’s Lemma (see [38, IV.2]) a non-empty reduced
product represents a non-trivial element in G. It follows, that if two reduced products
x0t

ε1x1t
ε2 . . . tεnxn and y0t

ζ1y1t
ζ2 . . . tζmym are equal in G, then m = n and εi = ζi for

every i = 1, . . . , n (see [38, IV.2.3]).

Suppose that an element g ∈ G is equal to a product tε1x1t
ε2 . . . tεnxn. Let us fix this

presentation for g. Any product of the form tεkxkt
εk+1 . . . tεnxnt

ε1x1 . . . t
εk−1xk−1 ∈ G,

for some k ∈ {1, . . . , n}, is said to be a cyclic permutation of g. The element g =
tε1x1t

ε2 . . . tεnxn is called cyclically reduced if each of its cyclic permutations is reduced. A
prefix of g is an element of the form tε1x1t

ε2 . . . tεkxk for some k ∈ {0, 1, . . . , n} (if k = 0
then we have the empty prefix, corresponding to the trivial element of G). Similarly, a
suffix of g is an element of the form tεlxl . . . t

εnxn for some l ∈ {1, 2, . . . , n+ 1}.
It is not difficult to see that every element f ∈ G either belongs to AG in G or is

conjugate to some non-trivial cyclically reduced element in G.

Below is the statement of Collins’s Lemma (see [38, IV.2.5]) in the case of special
HNN-extensions.

Lemma 7.7. Suppose that g = tε1x1t
ε2 . . . tεnxn and f = tζ1y1t

ζ2 . . . tζmym are cyclically
reduced in G, with n ≥ 1. Then g /∈ AG. And if f is conjugate to g in G then m = n and
there exist h ∈ H and a cyclic permutation f ′ of f such that f ′ = hgh−1 in G.

We will also use the following description of centralizers in special HNN-extensions:

Proposition 7.8. Let G be the special HNN-extension given by (7.1). Suppose that the
element g = tε1x1t

ε2 . . . tεnxn ∈ G is cyclically reduced and n ≥ 1.

If xn ∈ H then n = 1 and CG(g) = 〈t〉 × CH(x1) = 〈t〉 × CH(g) ≤ G.

If xn ∈ A \H, let {p1, . . . , pk}, 1 ≤ k ≤ n + 1, be the set all of prefixes of g satisfying
p−1
i gpi ∈ gH in G. For each i = 1, . . . , k, choose hi ∈ H such that hip

−1
i gpih

−1
i = g, and

define the finite subset Ω ⊂ G by Ω := {hip−1
i | i = 1, . . . , k}. Then CG(g) = CH(g)〈g〉Ω.

In order to prove Proposition 7.8 we will need two lemmas below. The proof of the
next statement is similar to the proof of Collins’s Lemma.

Lemma 7.9. Let g = tε1x1t
ε2 . . . tεnxn and f = tζ1y1t

ζ2 . . . tζnyn be cyclically reduced
elements of G, with n ≥ 1 and xn /∈ H. Assume that cgc−1 = f in G, where the element
c is equal to the reduced product z0t

η1z1t
η2 . . . tηmzm. Then there are the following three

mutually exclusive possibilities.

a) m = 0 and c ∈ H;
b) m ≥ 1, zm ∈ H and there is a prefix p of g such that c = hp−1gl in G, for some

h ∈ H and l ∈ Z, l ≤ 0;
c) m ≥ 1, xnz

−1
m ∈ H and there is a suffix s of g such that c = hsgl in G, for some

h ∈ H and l ∈ Z, l ≥ 0.
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Proof. First, suppose that m = 0, i.e., c = z0 ∈ A. Then f−1cgc−1 = 1 in G. Yielding

y−1
n t−ζn . . . y−1

1 t−ζ1z0t
ε1x1t

ε2 . . . tεnxnz
−1
0 = 1.

Therefore the left-hand side is not reduced, hence c = z0 ∈ H.

Assume now that m ≥ 1. The equality cgc−1 = f in G gives rise to the equation

z0t
η1 . . . tηmzmt

ε1x1t
ε2 . . . tεnxnz

−1
m t−ηm . . . t−η1z−1

0 = tζ1y1 . . . t
ζnyn.

The left-hand side cannot be reduced because it contains more t-letters than the right-
hand side. Hence either zm ∈ H or xnz

−1
m ∈ H (note that both of these inclusions cannot

happen simultaneously since xn /∈ H). Let us consider the case when zm ∈ H, as the
second case is similar. Then tηmzmt

ε1 = zmt
ηm+ε1 and, thus, we get

(7.3) z0t
η1 . . . tηm−1(zm−1zm)tηm+ε1x1t

ε2 . . . tεnxnz
−1
m t−ηmz−1

m−1 . . . t
−η1z−1

0 = tζ1y1 . . . t
ζnyn.

Once again, we see that the left-hand side of the above equation cannot be reduced. In
the case when m = 1, this implies that ηm + ε1 = 0. On the other hand, if m > 1, then
zm−1 ∈ A \ H, hence zm−1zm /∈ H, and again, in order for a reduction to be possible
we must have ηm + ε1 = 0. Hence ε1 = −ηm and z−1

m t−ηmz−1
m−1 = tε1x1h

−1
1 , where

h1 := zm−1zmx1 ∈ A. And (7.3) becomes

(7.4) (z0t
η1 . . . zm−2t

ηm−1h1)(tε2x2 . . . t
εnxnt

ε1x1)(z0t
η1 . . . tηm−1h1)−1 = tζ1y1 . . . t

ζnyn.

Now, if m = 1, i.e., c = z0t
−ε1z1 = z0z1t

−ε1 , then we have

1 = f−1cgc−1 = (y−1
n t−ζn . . . y−1

1 t−ζ1)h1(tε2x2 . . . t
εnxnt

ε1x1)h−1
1 .

Hence h1 ∈ H and c = h1(tε1x1)−1, where tε1x1 is a prefix of g.

Otherwise, if m = M ≥ 2 we will use induction on m to prove the claim b) of the lemma.
Thus, we will assume that b) has been established for all elements c with 1 ≤ m ≤M−1.

Note that x1h
−1
1 = z−1

m z−1
m−1 /∈ H since zm ∈ H and zm−1 ∈ A \H (because m ≥ 2 and

the product z0t
η1 . . . tηm−1zm−1t

ηmzm was assumed to be reduced).

Let us look at the equation (7.4). Since m−1 ≥ 1, the left-hand side cannot be reduced.
And a reduction in it can only occur if h1 ∈ H because x1h

−1
1 /∈ H. Hence we are in

the case b) of the lemma, and can apply the induction hypothesis to (7.4). Thus there
is a prefix p of the element g1 := tε2x2 . . . t

εnxnt
ε1x1, h ∈ H and l ∈ Z, l ≤ 0, such that

z0t
η1 . . . zm−2t

ηm−1h1 = hp−1gl1. Consequently,

c = z0t
η1 . . . tηm−1zm−1t

ηmzm = z0t
η1 . . . tηm−1h1x

−1
1 t−ε1 = hp−1gl1x

−1
1 t−ε1 = hq−1gl,

where q = tε1x1p. It is easy to see that either q is a prefix of g, or q = gtε1x1. In the
latter case, c = h(tε1x1)−1gl−1 and tε1x1 is a prefix of g. Thus the step of induction is
established, and the proof of the lemma is finished. �

The next lemma treats the case which was not covered by Lemma 7.9.

Lemma 7.10. Suppose that g = tεx ∈ G, where ε ∈ Z \ {0} and x ∈ H. Then CG(g) =
〈t〉 × CH(x) = 〈t〉 × CH(g). In particular, CG(tε) = 〈t〉 ×H ≤ G.
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Proof. For any c ∈ CG(g) we have cgc−1 = g. Let z0t
η1z1t

η2 . . . tηmzm be a reduced product
representing c in G. Then we have

(7.5) z0t
η1z1t

η2 . . . tηmzmt
εxz−1

m t−ηm . . . t−η2z−1
1 t−η1z−1

0 = tεx.

Arguing as in the proof of Lemma 7.9, we see that if m = 0 then c = z0 ∈ H and
tεx = z0t

εxz−1
0 = tεz0xz

−1
0 , thus 1 = z0xz

−1
0 , i.e., c = z0 ∈ CH(x).

So, assume now that m ≥ 1. Then the equation (7.5) implies that either zm ∈ H
or xz−1

m ∈ H. But either of these inclusions leads to zm ∈ H because x ∈ H by the
assumptions. Therefore tηmzmt

εxz−1
m t−ηm = zmxz

−1
m tε in G and (7.5) becomes

z0t
η1 . . . zm−2t

ηm−1(zm−1zmxz
−1
m )tεz−1

m−1t
ηm−1z−1

m−2 . . . t
−η1z−1

0 = tεx.

If m ≥ 2, then zm−1 ∈ A\H, hence zm−1zmxz
−1
m /∈ H, and the above equation contradicts

to Britton’s Lemma: the left-hand side is reduced, but contains more t-letters than the
right-hand side.

Therefore m = 1, i.e., c = z0t
η1z1 and z1 ∈ H. Consequently,

1 = g−1cgc−1 = x−1t−εz0t
η1z1t

εxz−1
1 t−η1z−1

0 = x−1t−ε(z0z1xz
−1
1 )tεz−1

0 .

Applying Britton’s Lemma again, we achieve z0z1xz
−1
1 ∈ H, implying that z0 ∈ H and

1 = x−1z0z1xz
−1
1 z−1

0 in G. That is, z0z1 ∈ CH(x), and c = z0t
η1z1 = tη1z0z1 ∈ 〈t〉CH(x).

Thus we proved that CG(g) ⊆ 〈t〉CH(x). Finally, since t commutes with every element
from H, it is clear that t ∈ CG(g) and CH(x) ⊂ CH(g) ⊂ CG(g). Hence CG(g) =
〈t〉CH(x) = 〈t〉 × CH(x) ≤ G. The equality CH(g) = CH(x) is immediate. �

Proof of Proposition 7.8. If xn ∈ H, g can be cyclically reduced only when n = 1, and
the claim follows from Lemma 7.10.

So, we can assume that xn ∈ A \ H. Therefore we are able to apply Lemma 7.9 to g
and f := g, which tells us that for any c ∈ CG(g) there exist h ∈ H and l ∈ Z such that
either there is a prefix p of g with c = hp−1gl, or there is a suffix s of g with c = hsgl.
Note that in the latter case there is a prefix p of g such that s = p−1g. Hence we can
assume that c = hp−1gl for some prefix p of g, h ∈ H and l ∈ Z.

But then g = cgc−1 = hp−1gph−1, hence p = pi for some i ∈ {1, . . . , k}. The equalities
hp−1

i gpih
−1 = g = hip

−1
i gpih

−1
i yield h−1gh = p−1

i gpi = h−1
i ghi. Consequently hh−1

i ∈
CH(g) and h ∈ CH(g)hi. Thus c = hp−1

i gl ∈ CH(g)hip
−1
i gl ⊆ CH(g)Ω〈g〉.

We have shown that CG(g) ⊆ CH(g)Ω〈g〉. Observe that Ω ⊂ CG(g) by definition, hence
CG(g) = CH(g)Ω〈g〉 = CH(g)〈g〉Ω. �

Now we formulate a criterion for conjugacy in special HNN-extensions.

Lemma 7.11. Let G be the special HNN-extension (7.1). Suppose that B ≤ A is a
subgroup and g, f ∈ G are elements represented by reduced products x0t

ε1x1t
ε2 . . . tεnxn

and y0t
ζ1y1t

ζ2 . . . tζmym respectively, with n ≥ 1. Then f ∈ gB in G if and only if all of
the following conditions hold:

(i) m = n and εi = ζi for all i = 1, . . . , n;
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(ii) y0y1 . . . yn ∈ (x0x1 . . . xn)B in A;
(iii) for every b0 ∈ B with y0y1 . . . yn = b0(x0x1 . . . xn)b−1

0 in A, the intersection I ⊆ A
is non-empty, where

I := b0CB(x0 . . . xn) ∩ y0Hx
−1
0 ∩ (y0y1)H(x0x1)−1 ∩ · · · ∩ (y0 . . . yn−1)H(x0 . . . xn−1)−1.

Proof. First we establish the sufficiency. Assume that the conditions (i),(ii) and (iii)
hold. Take any b0 ∈ B satisfying (iii) (it exists by (ii)) and let I be the corresponding
intersection. Then there exists an element b ∈ I. The inclusion b ∈ b0CB(x0 . . . xn) implies
that y0y1 . . . yn = b(x0x1 . . . xn)b−1. We will show that f−1bgb−1 = 1, which is equivalent
(in view of (i)) to

(7.6) y−1
n t−εn . . . t−ε2y−1

1 t−ε1y−1
0 bx0t

ε1x1t
ε2 . . . tεnxnb

−1 = 1.

Note that since b ∈ I, y−1
0 bx0 ∈ H, hence y−1

1 t−ε1y−1
0 bx0t

ε1x1 = y−1
1 y−1

0 bx0x1 ∈
H. Therefore we can continue reducing the left-hand side of (7.6), until it becomes
y−1
n . . . y−1

1 y−1
0 bx0x1 . . . xnb

−1, which is equal to 1 in G. Thus the sufficiency is proved.

To obtain the necessity, assume that f = bgb−1 for some b ∈ B, that is,

bx0t
ε1x1t

ε2 . . . tεnxnb
−1 = y0t

ζ1y1t
ζ2 . . . tζmym.

Since both of the sides of the above equality are reduced, applying Britton’s Lemma we
obtain (i). Therefore the equation (7.6) holds in G.

Note that there is a canonical retraction ρA ∈ End(G) of G onto A, such that ρA(t) = 1
(apply Lemma 7.6 to the identity map on A). Hence, y0 . . . yn = ρA(f) = ρA(bgb−1) =
b(x0 . . . xn)b−1, yielding (ii).

To achieve (iii), take any b0 ∈ B satisfying y0y1 . . . yn = b0(x0x1 . . . xn)b−1
0 . Then

b−1
0 b ∈ CB(x0 . . . xn), i.e., b ∈ b0CB(x0 . . . xn). By Britton’s Lemma the left-hand side of

(7.6) cannot be reduced, therefore y−1
0 bx0 ∈ H and b ∈ y0Hx

−1
0 . Consequently, if n ≥ 2,

y−1
1 t−ε1y−1

0 bx0t
ε1x1 = y−1

1 y−1
0 bx0x1 and (7.6) becomes

y−1
n t−εn . . . t−ε2(y−1

1 y−1
0 bx0x1)tε2 . . . tεnxnb

−1 = 1.

Applying Britton’s Lemma to the above equation, we see again that y−1
1 y−1

0 bx0x1 ∈ H,
hence b ∈ (y0y1)H(x0x1)−1. Clearly, we can continue this process, showing that b ∈
(y0 . . . yi)H(x0 . . . xi)

−1 for every i ∈ {0, . . . , n − 1}. Thus, b ∈ I 6= ∅ and the condition
(iii) is satisfied. �

Next comes a similar statement about centralizers.

Lemma 7.12. Let G be the special HNN-extension (7.1). Suppose that B ≤ A is a
subgroup, and an element g ∈ G is represented by a reduced product x0t

ε1x1t
ε2 . . . tεnxn in

G, with n ≥ 1. Then the equality CB(g) = I holds in G, where

I := CB(x0 . . . xn) ∩ x0Hx
−1
0 ∩ (x0x1)H(x0x1)−1 ∩ · · · ∩ (x0 . . . xn−1)H(x0 . . . xn−1)−1.

Proof. Basically, we have already shown this while proving Lemma 7.11. Indeed, denote
f := g. For any b ∈ I, if we take b0 = 1, the proof of sufficiency in Lemma 7.11 asserts
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that bgb−1 = g, i.e., b ∈ CB(g). On the other hand, if bgb−1 = g for some b ∈ B, then the
proof of necessity in Lemma 7.11 claims that b ∈ I. Therefore CB(g) = I. �

8. Proof of the main result

Throughout this section we assume that G is a right angled Artin group associated
to some fixed finite graph Γ with the set of vertices V . The rank rank(G) of G is, by
definition, the number of elements in V .

Our proof of the main result will make use of the following two statements below. The
next Lemma 8.1 was proved by Green in [29]. It can be easily demonstrated by induction
on the number of vertices in the graph associated to a right angled Artin group using
Remark 7.2 and Britton’s Lemma. On the other hand, it also follows from the linearity
of such groups, which was established by S. Humphries in [36].

Lemma 8.1. Right angled Artin groups are residually finite.

We are also going to use the following important fact proved by Dyer in [24].

Lemma 8.2. Virtually free groups are conjugacy separable.

The main Theorem 1.1 will be proved by induction on the rank of the right Artin group
G. The lemma below will be used to establish the inductive step:

Lemma 8.3. Assume that every special subgroup B of G satisfies the condition CCG from
Definition 3.3, and for each g ∈ G, the B-conjugacy class gB is separable in G.

Suppose that A1, . . . , An are special subgroups of G, A0 is a conjugate of a special
subgroup of G, and b, x0, . . . , xn, y1, . . . , yn ∈ G are arbitrary elements. Then for any
finite index normal subgroup K C G there exists a finite index normal subgroup L C G
such that L ≤ K and

(8.1) b̄CĀ0
(x̄0) ∩

n⋂
i=1

x̄iĀiȳi ⊆ ψ

([
bCA0(x0) ∩

n⋂
i=1

xiAiyi

]
K

)
in G/L,

where ψ : G → G/L is the natural epimorphism, b̄ := ψ(b), Āi := ψ(Ai), x̄i := ψ(xi),
i = 0, . . . , n, and ȳj := ψ(yj), j = 1, . . . , n.

Proof. By the assumptions, A0 = hAh−1 for some special subgroup A of G and some
h ∈ G. The proof will proceed by induction on n.

If n = 0, then the existence of a finite index normal subgroup LCG, L ≤ K, enjoying
(8.1), follows from the fact that the pair (A0, x0) satisfies the Centralizer Condition CCG,
because the pair (A, g) has CCG, where g := h−1x0h ∈ G, and bCA0(x0) = bhCA(g)h−1 in
G.

Base of induction: assume n = 1.

Case 1: suppose that bCA0(x0) ∩ x1A1y1 = ∅, which is equivalent to the condition
x1 /∈ bCA0(x0)y−1

1 A1 = bh [CA(g)D]h−1y−1
1 , where D := (y1h)−1A1(y1h).
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In this case, by Lemma 6.5, the intersections A∩A1 and A∩D are conjugates of special
subgroups in G, hence for any f ∈ G, the conjugacy classes fA∩A1 and fA∩D are separable
in G (A ∩D = cSc−1 for some special subgroup S of G, hence fA∩D = c

[
(c−1fc)S

]
c−1),

and the pair (A ∩A1, f) satisfies CCG. Therefore, Lemma 5.7 allows us to conclude that
the double coset CA(g)D is separable in G. Thus the double coset bCA0(x0)y−1

1 A1 is
separable as well, implying that there is a finite index normal subgroup N CG such that
x1 /∈ bCA0(x0)y−1

1 A1N . After replacing N with N ∩K we can assume that N ≤ K.

Now, since the pair (A0, x0) has CCG, there exists a finite index normal subgroup LCG
such that L ≤ N ≤ K and ψ−1 (CĀ0

(x̄0)) ⊆ CA0(x0)N in G (using the same notations as
in the formulation of the lemma). Therefore, ψ−1

(
b̄CĀ0

(x̄0)ȳ−1
1 Ā1

)
⊆ bCA0(x0)y−1

1 A1N ,

yielding that x1 /∈ ψ−1
(
b̄CĀ0

(x̄0)ȳ−1
1 Ā1

)
. Hence b̄CĀ0

(x̄0) ∩ x̄1Ā1ȳ1 = ∅ in G/L, implying
that (8.1) holds in this first case.

Case 2: bCA0(x0) ∩ x1A1y1 6= ∅ in G.

Let us make the following general observation:

Remark 8.4. Let H,F be subgroups of a group G such that bH ∩ xFy 6= ∅ in G for some
elements b, x, y ∈ G. Then for any a ∈ bH ∩ xFy we have bH ∩ xFy = a(H ∩ y−1Fy).

Thus we can pick any a ∈ bCA0(x0)∩x1A1y1, and according to Remark 8.4, we will have
bCA0(x0)∩x1A1y1 = a

(
CA0(x0) ∩ y−1

1 A1y1

)
= aCE(x0) in G, where E := A0 ∩ y−1

1 A1y1 ≤
G. By Lemma 6.5, E = cSc−1 for some special subgroup S of G and some c ∈ A0.

As we saw in the beginning of the proof, it follows from our assumptions that the pair
(E, x0) satisfies CCG. Hence there must exist a finite index normal subgroup M C G
such that M ≤ K and Cϕ(E)(ϕ(x0)) ⊆ ϕ(CE(x0)K) in G, where ϕ : G → G/M denotes
the natural epimorphism. On the other hand, by Lemma 5.6, there is L C G such that
|G : L| < ∞, L ≤ M ≤ K and ψ(A) ∩ ψ

(
(y1h)−1A1y1h1

)
⊆ ψ

(
A ∩ (y1h)−1A1y1h1

)
ψ(M)

in G/L. Therefore

(8.2) Ā0 ∩ ȳ−1
1 Ā1ȳ1 = ψ(h)

[
ψ(A) ∩ ψ

(
(y1h)−1A1y1h1

)]
ψ(h−1) ⊆

ψ(h)
[
ψ
(
A ∩ (y1h)−1A1y1h1

)
ψ(M)

]
ψ(h−1) = ψ(A0 ∩ y−1

1 A1y1)ψ(M) = ψ(E)ψ(M)

(in the notations from the formulation of the lemma). Observe that ā := ψ(a) ∈
b̄CĀ0

(x̄0) ∩ x̄1Ā1ȳ1, hence, by Remark 8.4, b̄CĀ0
(x̄0) ∩ x̄1Ā1ȳ1 = ā

(
CĀ0

(x̄0) ∩ ȳ−1
1 Ā1ȳ1

)
,

and applying (8.2) we achieve

(8.3) b̄CĀ0
(x̄0) ∩ x̄1Ā1ȳ1 ⊆ āCψ(EM)(x̄0).

Since L ≤ M , there is an epimorphism ξ : G/L→ G/M such that ker(ξ) = ψ(M) and
ϕ = ξ ◦ ψ. Note that ξ(ψ(EM)) = ξ(ψ(E)ψ(M)) = ϕ(E) and ξ(x̄0) = ϕ(x0). Consider
any z ∈ Cψ(EM)(x̄0) in G/L. Then

ξ(z) ∈ Cϕ(E)(ϕ(x0)) ⊆ ϕ(CE(x0)K) = ξ
(
ψ(CE(x0)K)

)
.

Hence z ∈ ψ(CE(x0)K) ker(ξ) = ψ(CE(x0)K) because ker(ξ) = ψ(M) ≤ ψ(K). Thus we
have shown that Cψ(EM)(x̄0) ⊆ ψ(CE(x0)K) in G/L. Finally, combining this with (8.3),
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we obtain

b̄CĀ0
(x̄0) ∩ x̄1Ā1ȳ1 ⊆ āψ(CE(x0)K) = ψ(aCE(x0)K) = ψ([bCA0(x0) ∩ x1A1y1]K),

therefore (8.1) holds in Case 2.

Thus we have established the base of induction.

Step of induction: suppose that n ≥ 2 and the statement of the lemma has been

proved for n− 1.

If bCA0(x0) ∩
⋂n−1
i=1 xiAiyi = ∅ in G, then, by the induction hypothesis, there is a finite

index normal subgroup LCG such that L ≤ K and

b̄CĀ0
(x̄0) ∩

n−1⋂
i=1

x̄iĀiȳi ⊆ ψ

([
bCA0(x0) ∩

n−1⋂
i=1

xiAiyi

]
K

)
= ∅ in G/L.

Hence, the left-hand side of (8.1) will also be empty, and thus (8.1) will be true.

Therefore, we can assume that bCA0(x0)∩
⋂n−1
i=1 xiAiyi 6= ∅ in G. But in this case we can

apply Remark 8.4 (n − 1) times to find some a ∈ G such that bCA0(x0) ∩
⋂n−1
i=1 xiAiyi =

a
(
CA0(x0) ∩

⋂n−1
i=1 y

−1
i Aiyi

)
= aCE(x0), where E := A0∩

⋂n−1
i=1 y

−1
i Aiyi is a conjugate of a

special subgroup in G by Lemma 6.5. Now we can use the base of induction n = 1, to find
a finite index normal subgroup MCG such that M ≤ K and for the natural epimorphism
ϕ : G→ G/M we have

(8.4) ϕ−1
(
ϕ(a)Cϕ(E)(ϕ(x0)) ∩ ϕ(xnAnyn)

)
⊆ [aCE(x0) ∩ xnAnyn]K in G.

By the induction hypothesis, there exists a finite index normal subgroup L C G such
that L ≤M ≤ K and

(8.5) ψ−1

(
b̄CĀ0

(x̄0) ∩
n−1⋂
i=1

x̄iĀiȳi

)
⊆

[
bCA0(x0) ∩

n−1⋂
i=1

xiAiyi

]
M in G.

Combining (8.5) with (8.4) and recalling that ker(ψ) = L ≤M = ker(ϕ) we obtain the
following in G:

ψ−1

(
b̄CĀ0

(x̄0) ∩
n⋂
i=1

x̄iĀiȳi

)
= ψ−1

(
b̄CĀ0

(x̄0) ∩
n−1⋂
i=1

x̄iĀiȳi

)
∩ ψ−1

(
x̄nĀnȳn

)
⊆[

bCA0(x0) ∩
n−1⋂
i=1

xiAiyi

]
M ∩ xnAnynL ⊆ aCE(x0)M ∩ xnAnynM ⊆

ϕ−1
(
ϕ(a)Cϕ(E)(ϕ(x0))

)
∩ ϕ−1 (ϕ(xnAnyn)) = ϕ−1

(
ϕ(a)Cϕ(E)(ϕ(x0)) ∩ ϕ(xnAnyn)

)
⊆

[aCE(x0) ∩ xnAnyn]K =

[
bCA0(x0) ∩

n⋂
i=1

xiAiyi

]
K.

Hence (8.1) holds in G/L and we have verified the inductive step, finishing the proof
of the lemma. �
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The next two statements basically establish the main result. These Lemmas 8.5 and
8.6 will be proved by simultaneous induction on rank(G). The proofs of each of these two
lemmas when rank(G) = r will use both of their conclusions about right angled Artin
groups of ranks strictly less than r.

Lemma 8.5. If G is a right angled Artin group of rank r, then for any special subgroup
B of G and any element g ∈ G, the B-conjugacy class gB is separable in G.

Lemma 8.6. Let G be a right angled Artin group of rank r. Then every special subgroup
B of G satisfies the Centralizer Condition CCG from Definition 3.3.

The base of induction for both lemmas is r = 0, that is, when G is the trivial group.
In this case the two statements are trivial. Therefore the proofs of Lemmas 8.5 and 8.6
start with assuming that both of their claims have been established for all right angled
Artin groups of rank < r, and will aim to prove the inductive step by considering the case
when rank(G) = r ≥ 1.

The proofs of Lemmas 8.5 and 8.6 make use of the four auxiliary statements below.
These statements – Lemmas 8.7 through 8.10 – start with a right angled Artin group G
of rank r (presented as a special HNN-extension

(8.6) G = 〈A, t ‖ tht−1 = h, ∀h ∈ H〉.
of a maximal special subgroup A ≤ G with respect to some special subgroup H ≤ A –
see Remark 7.3), and assume that Lemmas 8.5 and 8.6 have already been established for
A, since rank(A) = r − 1 < r = rank(G).

Lemma 8.7. Suppose that B is a special subgroup of G contained in A, g ∈ G \ A and
f ∈ G \ gB. Then there exists an epimorphism ψ from A onto a finite group Q such that

for the corresponding extension ψ̃ : G→ P from G onto the special HNN-extension P of

Q (with respect to ψ(H)), obtained according to Remark 7.4, we have ψ̃(f) /∈ ψ̃(g)ψ̃(B) in
P .

Proof. Let x0t
ε1x1t

ε2 . . . tεnxn and y0t
ζ1y1t

ζ2 . . . tζmym be reduced products representing g
and f in G respectively. Since g /∈ A we have n ≥ 1.

Case 1: suppose, at first, that the condition (i) from Lemma 7.11 does not hold. By
Corollary 5.4 and Lemma 8.1, the special subgroup H = HH of A is closed in PT (A),
hence there is a finite index normal subgroup LCA and the corresponding epimorphism
ψ : A→ Q := A/L such that such that ψ(xi) /∈ ψ(H), i = 1, . . . , n−1, and ψ(yj) /∈ ψ(H),
j = 1, . . . ,m− 1. Let

(8.7) P := 〈Q, s ‖ sqs−1 = q, ∀ q ∈ ψ(H)〉
be the special HNN-extension of Q with respect to ψ(H). By Remark 7.4, ψ can be

extended to a homomorphism ψ̃ : G → P such that ψ̃|A = ψ and ψ̃(t) = s. Therefore,

ψ̃(g) = x̄0s
ε1x̄1s

ε2 . . . sεnx̄n, ψ̃(f) = ȳ0s
ζ1 ȳ1s

ζ2 . . . sζm ȳm and these products are reduced
in P , where x̄i := ψ(xi) and ȳj := ψ(yj) for all i = 0, . . . , n, j = 0, . . . ,m. And since

the condition (i) did not hold for g and f , this condition will not hold for ψ̃(g) and ψ̃(f).

Therefore, ψ̃(f) /∈ ψ̃(g)ψ̃(B) by Lemma 7.11.
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Thus we can now assume that n = m and εi = ζi for i = 1, . . . , n. Denote x :=
x0 . . . xn ∈ A and y := y0 . . . yn ∈ A.

Case 2: suppose that y /∈ xB in A. Then, by the induction hypothesis, xB is separable
in A, hence there is a finite group Q and an epimorphism ψ : A → Q such that ψ(y) /∈
ψ(x)ψ(B). Let P be the special HNN-extension of Q defined by (8.7), and let ψ̃ : G→ P

be the corresponding extension of ψ with ψ̃(t) = s. By Lemma 7.6, there is a retraction
ρ̃Q ∈ End(P ) of P onto Q (extending the identity map on Q) satisfying ρ̃Q(s) = 1.
Therefore, using the above notations, we have

ρ̃Q

(
ψ̃(f)

)
= ρ̃Q(ȳ0s

ε1 ȳ1s
ε2 . . . sεn ȳn) = ȳ0ȳ1 . . . ȳn = ψ(y) ∈ Q,

similarly, ρ̃Q

(
ψ̃(g)

)
= ψ(x) ∈ Q. And since ρ̃Q

(
ψ̃(B)

)
= ψ(B) and ψ(y) /∈ ψ(x)ψ(B) we

can conclude that ψ̃(f) /∈ ψ̃(x)ψ̃(B).

Case 3: we can now assume that both of the conditions (i) and (ii) of Lemma 7.11
are satisfied. Choose any b0 ∈ B such that y = b0xb

−1
0 . As f /∈ gB in G, according to

Lemma 7.11 we must have I = ∅ in A, where

I := b0CB(x) ∩ y0Hx
−1
0 ∩ (y0y1)H(x0x1)−1 ∩ · · · ∩ (y0 . . . yn−1)H(x0 . . . xn−1)−1.

As we saw earlier, H is separable in A, therefore there is a finite index normal subgroup
KCA such that xi /∈ HK and yi /∈ HK for 1 ≤ i ≤ n−1. Now, since rank(A) = r−1 < r,
the right angled Artin group A satisfies the claims of Lemmas 8.5 and 8.6 by the induction
hypothesis. Consequently, we can apply Lemma 8.3 to A and K, finding a finite index
normal subgroup LC A such that L ≤ K and

(8.8) b̄0CB̄(x̄) ∩
n⋂
i=1

x̄iH̄ȳi ⊆ ψ(IK) = ∅ in Q := A/L,

where b̄0, B̄, x̄, x̄i, H̄, ȳi denote the ψ-images of b0, B, x, xi, H, yi in Q respectively. As
before we can extend ψ to a homomorphism ψ̃ : G → P , where P is given by (8.7), and

ψ̃(t) = s. Since L ≤ K we have x̄i, ȳi /∈ ψ(H) for i = 1, . . . , n, and so x̄0s
ε1x̄1s

ε2 . . . sεnx̄n
and ȳ0s

ε1 ȳ1s
ε2 . . . sεn ȳn are reduced products in P representing the elements ψ̃(g) and

ψ̃(f) respectively. Thus, Lemma 7.11, in view of (8.8), implies that ψ̃(f) /∈ ψ̃(g)ψ̃(B) in
P . And Lemma 8.7 is proved. �

Lemma 8.8. Suppose that g0, f0, f1, . . . , fm ∈ G, and the elements g0 = tε1x1 . . . t
εnxn,

f0 = tζ1y1 . . . t
ζkyk are cyclically reduced in G, with n ≥ 1. If fj /∈ gH0 for every j =

1, . . . ,m, then there is a finite group Q and an epimorphism ψ : A → Q such that for
the corresponding epimorphism ψ̃ : G → P , extending ψ, with ψ̃(t) = s (where P is the
special HNN-extension given by (8.7)), all of the following are true:

• ψ̃(fj) /∈ ψ̃(g0)ψ̃(H) in P , for each j ∈ {1, . . . ,m};
• the elements ψ̃(g0) = sε1x̄1 . . . s

εnx̄n and ψ̃(f0) = sζ1 ȳ1 . . . s
ζk ȳk are cyclically re-

duced in P , where x̄i := ψ̃(xi), i = 1, . . . , n, ȳl := ψ̃(yl), l = 1, . . . , k.
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Proof. For every j = 1, . . . ,m, since fj /∈ gH0 in G, we can apply Lemma 8.7 (as H ≤ A
is a special subgroup of G), to find a finite index normal subgroup Lj C A, such that

ψ̃j(fj) /∈ ψ̃j(g0)ψ̃j(H) in Pj, where ψ̃j : G→ Pj is the homomorphism (obtained according
to Remark 7.4) extending the natural epimorphism ψj : A→ A/Lj, and Pj is the special
HNN-extension of A/Lj with respect to ψj(H).

Now, since H is separable in A (by Lemma 8.1 and Corollary 5.4), there is a finite index
normal subgroup K C A such that xi /∈ HK whenever xi /∈ H, for all i = 1, . . . , n, and
yl /∈ HK whenever yl /∈ H, for all l = 1, . . . , k. Define the finite index normal subgroup L
of A by L := L1 ∩ · · · ∩ Lm ∩K, and let ψ : A→ Q := A/L be the natural epimorphism.
Observe that for each j, the map ψj factors through the map ψ. Hence, once we let

ψ̃ : G → P be the extension of ψ as in the formulation of Lemma 8.8, the Universal
Property of special HNN-extensions (Remark 7.4) will imply that ψ̃j factors through ψ̃,

for every j = 1, . . . ,m. Consequently, ψ̃(fj) /∈ ψ̃(g0)ψ̃(H) in P , for each j ∈ {1, . . . ,m}.
The second assertion of Claim B holds due to the choice of K and because L ≤ K. Thus
Lemma 8.8 is proved. �

Lemma 8.9. Let K CG be a normal subgroup of finite index, let B be a special subgroup
of G with B ≤ A, and let an element g ∈ G \ A be represented by a reduced product
x0t

ε1x1t
ε2 . . . tεnxn in G, with n ≥ 1. Then there is a finite group Q and an epimorphism

ψ : A → Q such that for the corresponding homomorphism ψ̃ : G → P , extending ψ and
obtained according to Remark 7.4, with ψ̃(t) = s (where P is the special HNN-extension
given by (8.7)), all of the following are true:

• Cψ̃(B)

(
ψ̃(g)

)
⊆ ψ̃ (CB(g)K) in P ;

• ker(ψ) ≤ A ∩K and ker(ψ̃) ≤ K.

Proof. Since A is residually finite (Lemma 8.1), the special subgroup H = HH is closed
in PT (A) by Corollary 5.4. Therefore there exists a finite index normal subgroup M1CA
such that xi /∈ HM1 in A for all i = 1, . . . , n − 1. As usual, we can replace M1 with
M1 ∩K1, to make sure that M1 ≤ K1, where K1 := A ∩K.

Note that, according to Lemma 7.12, CB(g) = I in G, where

I := CB(x) ∩ x0Hx
−1
0 ∩ (x0x1)H(x0x1)−1 ∩ · · · ∩ (x0 . . . xn−1)H(x0 . . . xn−1)−1,

and x := x0 . . . xn ∈ A.

Since rank(A) = r − 1 < r, by the induction hypothesis the claims of Lemmas 8.5 and
8.6 hold for A. Hence, we can use Lemma 8.3 to find a finite index normal subgroup L1CA
such that L1 ≤ M1 ≤ K1 and, for the corresponding epimorphism ψ : A → Q := A/L1,
we have

J := CB̄(x̄) ∩ x̄0H̄x̄
−1
0 ∩ (x̄0x̄1)H̄(x̄0x̄1)−1 ∩ · · · ∩ (x̄0 . . . x̄n−1)H̄(x̄0 . . . x̄n−1)−1 ⊆ ψ(IM1)

in Q, where B̄, x̄, H̄ and x̄i denote the ψ-images of B, x, H and xi in Q, i = 0, . . . , n.

Let P be the special HNN-extension of Q given by (8.7), and let ψ̃ : G → P be

the extension of ψ provided by Remark 7.4, with ψ̃(t) = s. Since xi /∈ HL1 in A for
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i = 1, . . . , n− 1, the product x̄0s
ε1x̄1 . . . s

εnx̄n is reduced and represents the element ψ̃(g)

in P . Consequently, Lemma 7.12 tells us that Cψ̃(B)

(
ψ̃(g)

)
= J in P . And noting that

ψ(M1) ≤ ψ(K1) = ψ̃(K1) ≤ ψ̃(K), we achieve

Cψ̃(B)

(
ψ̃(g)

)
= J ⊆ ψ(I)ψ(M1) ⊆ ψ̃(I)ψ̃(K) = ψ̃ (CB(g)K) in P.

Finally, observe that ker(ψ) = L1 ≤ K1 = A ∩K and ker(ψ̃) is the normal closure of

L1 in G (by Lemma 7.5). And since L1 ≤ K C G, we see that ker(ψ̃) ≤ K in G. Thus
Lemma 8.9 has been established. �

Lemma 8.10. Let g0 = tε1x1 . . . t
εnxn be a cyclically reduced element in G, with n ≥ 1.

Then there exists an epimorphism ψ from A onto a finite group Q such that for the
corresponding extension ψ̃ : G → P from G onto the special HNN-extension P of Q
(given by (8.7)), with ψ̃|A = ψ and ψ̃(t) = s, we have

ker(ψ) ≤ A ∩K, ker(ψ̃) ≤ K in G, and CP

(
ψ̃(g0)

)
⊆ ψ̃

(
CG(g0)K

)
in P.

Proof. Clearly there exists m ∈ {0, 1, . . . , n} such that we can enumerate all the prefixes
p1, . . . , pn+1 of g0 so that p−1

j g0pj /∈ gH0 in G whenever 1 ≤ j ≤ m, and p−1
j g0pj ∈ gH0 in G

whenever m+ 1 ≤ j ≤ n+ 1. For each j ∈ {m+ 1,m+ 2, . . . , n+ 1}, choose hj ∈ H such
that hjp

−1
j g0pjh

−1
j = g0 in G, and set Ω := {hjp−1

j |m+ 1 ≤ j ≤ n+ 1} ⊂ G.

Let f0 := g0 = tε1x1 . . . t
εnxn and fj := p−1

j g0pj for j = 1, . . . ,m. Applying Lemma 8.8
to g0, f0, . . . , fm ∈ G we find a finite group Q1, an epimorphism ψ1 : A → Q1, the
special HNN-extension P1 of Q1 with respect to ψ1(H), and the corresponding extension

ψ̃1 : G → P1 of ψ1 (obtained by Remark 7.4), such that ψ̃1(fj) /∈ ψ̃1(g0)ψ̃1(H) in P1, for

each j ∈ {1, . . . ,m}, and the element ψ̃1(g0) is cyclically reduced in P1.

On the other hand, by Lemma 8.9, there exist a finite group Q2, an epimorphism
ψ2 : A → Q2, the special HNN-extension P2 of Q2 with respect to ψ2(H), and the

corresponding extension ψ̃2 : G → P2 of ψ2, such that Cψ̃2(H)

(
ψ̃2(g0)

)
⊆ ψ̃2 (CH(g0)K)

in P2, ker(ψ2) ≤ A ∩K and ker(ψ̃2) ≤ K.

Define a finite index normal subgroup L0 C A by L0 := ker(ψ1) ∩ ker(ψ2) ≤ A ∩ K,
and let ψ : A → Q := A/L0 be the natural epimorphism. By Remark 7.4, there is an

epimorphism ψ̃ : G → P , extending ψ so that ψ̃(t) = s, where P is the special HNN-
extension of Q given by (8.7). Since ker(ψ) = L0 ≤ ker(ψi), the maps ψi : A→ Qi factor
through ψ for i = 1, 2. Consequently, according to the Universal Property of special
HNN-extensions (Remark 7.4), the maps ψ̃i : G → Pi factor through ψ̃ : G → P for
i = 1, 2. Therefore we have

(8.9) ψ̃(g0) is cyclically reduced and ψ̃(fj) /∈ ψ̃(g0)ψ̃(H) in P , ∀ j ∈ {1, . . . ,m}.

On the other hand, since ker(ψ̃) ≤ ker(ψ̃2) ≤ K in G, we also have

ψ̃−1
(
Cψ̃(H)

(
ψ̃(g0)

))
⊆ ψ̃−1

2

(
Cψ̃2(H)

(
ψ̃2(g0)

))
⊆ CH(g0)K in G,
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which implies

(8.10) Cψ̃(H)

(
ψ̃(g0)

)
⊆ ψ̃ (CH(g0)K) in P.

Case 1: xn ∈ H. Then, according to Proposition 7.8, n = 1, CG(g0) = 〈t〉CH(g0) in G,

and CP

(
ψ̃(g0)

)
= 〈s〉Cψ̃(H)

(
ψ̃(g0)

)
in P . Recalling (8.10), we see that

CP

(
ψ̃(g0)

)
⊆
〈
ψ̃(t)

〉
ψ̃ (CH(g0)K) = ψ̃ (CG(g0)K) in P.

Case 2: xn ∈ A \H. In this case (8.9) implies that ψ̃(pm+1), . . . , ψ̃(pn+1) is the list of

all prefixes of ψ̃(g0) satisfying ψ̃(pj)
−1ψ̃(g0)ψ̃(pj) ∈ ψ̃(g0)ψ̃(H), because if 1 ≤ j ≤ m, then

ψ̃(pj)
−1ψ̃(g0)ψ̃(pj) = ψ̃(p−1

j g0pj) = ψ̃(fj) /∈ ψ̃(g0)ψ̃(H) in P .

Therefore, by Proposition 7.8, CP

(
ψ̃(g0)

)
= Cψ̃(H)

(
ψ̃(g0)

)〈
ψ̃(g0)

〉
Ω̄, where Ω̄ :=

{ψ̃(hj)ψ̃(pj)
−1 |m+ 1 ≤ j ≤ n+ 1} = ψ̃(Ω) ⊂ P . Thus, recalling (8.10), we achieve

CP

(
ψ̃(g0)

)
⊆ ψ̃

(
CH(g0)K〈g0〉Ω

)
= ψ̃(CG(g0)K) in P.

In either of the two cases we have shown that CP

(
ψ̃(g0)

)
⊆ ψ̃(CG(g0)K) in P . This

completes the proof of Lemma 8.10. �

We are finally ready to prove the two main Lemmas 8.5 and 8.6 announced above.

Proof of Lemma 8.5. There are two separate cases to consider.

Case 1: B 6= G.

Choose a maximal special subgroup A of G containing B. Then A is a right angled Artin
group of rank r − 1, and, according to Remark 7.3, G splits as a special HNN-extension
(8.6) of A with respect to some special subgroup H of A.

If g ∈ A, then gB is closed in PT (A) by the induction hypothesis. Since G is residually
finite (Lemma 8.1), gB is separable in G by Lemma 5.5.

Thus we can suppose that g ∈ G \ A. Take any element f ∈ G \ gB. Let Q, P ,

ψ : A→ Q and ψ̃ : G→ P be given by Lemma 8.7, so that ψ̃(f) /∈ ψ̃(g)ψ̃(B) in P .

Observe that P is a virtually free group as an HNN-extension of the finite group Q,

hence P is residually finite. Since ψ̃(B) = ψ(B) ⊆ Q is finite, ψ̃(g)ψ̃(B) is a finite subset
of P . Hence there is a homomorphism ξ : P → R from P to a finite group R such that

ξ
(
ψ̃(f)

)
/∈ ξ

(
ψ̃(g)ψ̃(B)

)
in R. Consequently, the homomorphism ϕ : G → R, defined

by ϕ := ξ ◦ ψ̃, satisfies the condition ϕ(f) /∈ ϕ(gB). Therefore we have shown that gB is
separable in G in Case 1.

Case 2: B = G.

If g = 1 then gG = {1} is separable in G because G is residually finite (Lemma 8.1).
Hence we can suppose that g 6= 1. But then, by Lemma 6.8, there exists a maximal
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special subgroup A of G such that g /∈ AG. The group G is a special HNN-extension (8.6)
of A with respect to a certain special subgroup H ≤ A (by Remark 7.3). Obviously, g is
conjugate in G to some cyclically reduced element g0 = tε1x1 . . . t

εnxn with n ≥ 1, because
g /∈ AG. This implies that gG = gG0 in G.

To show that gG is closed in PT (G), consider any element f ∈ G \ gG.

Sub-case 2.1: suppose, at first, that f /∈ AG. Then we can find a cyclically reduced
element f0 = tζ1y1 . . . t

ζmym ∈ fG. Let f1, f2, . . . , fm be the list of all cyclic permutations
of f0 in G.

Observe that fj /∈ gH0 ⊂ gG for every j = 1, . . . ,m, because f0 /∈ gG. Therefore we can

apply Lemma 8.8 to find Q, P , ψ : A→ Q and ψ̃ : G→ P from its claim.

Since ψ̃(f1), . . . , ψ̃(fm) is the list of all cyclic permutations of ψ̃(f0) in P , Lemma

8.8, together with Lemma 7.7, imply that ψ̃(f0) /∈ ψ̃(g0)P in P . Now, according to
Lemma 8.2, there is a homomorphism ξ : P → R such that R is a finite group and

ξ
(
ψ̃(f0)

)
/∈ ξ
(
ψ̃(g0)

)R
. Therefore, defining the homomorphism ϕ : G→ R by ϕ := ξ ◦ ψ̃

we achieve ϕ(f0) /∈ ϕ(g0)R in R. But since ϕ(f) is conjugate to ϕ(f0) and ϕ(g0) is
conjugate to ϕ(g) in R, we can conclude that ϕ(f) /∈ ϕ(g)R = ϕ(gG) in R.

To finish proving Case 2, it remains to consider

Sub-case 2.2: f ∈ AG. Set m := 0 and denote f0 = g0 ∈ G. Applying Lemma 8.8 to g0

and f0, we can find a homomorphism ψ̃ from G to a special HNN -extension P of a finite
group Q such that ψ̃(g0) = sε1ψ̃(x1) . . . sεnψ̃(xn) is cyclically reduced in P . Since n ≥ 1,

by Lemma 7.7 we have ψ̃(g0) /∈ ψ̃(A)P = ψ̃(AG) in P , hence ψ̃(f) /∈ ψ̃(g0)P = ψ̃(g)P in
P . Arguing as above, we can find a finite quotient R of P (and, hence, of G) such that
the images of f and g are not conjugate in R.

We can now conclude that the conjugacy class gG is closed in PT (G). Thus Case 2 is
considered. This finishes the proof of Lemma 8.5. �

Proof of Lemma 8.6. Take any element g ∈ G and any finite index normal subgroup
K CG. As in Lemma 8.5, the proof splits into two main cases.

Case 1: B 6= G.

Choose a maximal special subgroup A of G containing B. Then A is a right angled
Artin group of rank r−1 < r, and G is the special HNN-extension (8.6) of A with respect
to a certain special subgroup H ≤ A (by Remark 7.3). Define the finite index normal
subgroup K1 of A by K1 := K ∩ A.

Sub-case 1.1: g ∈ A. Then, according to the induction hypothesis, the pair (B, g)
satisfies the Centralizer Condition CCA in A, hence there exists L1 C A such that |A :
L1| <∞, L1 ≤ K1, and the natural epimorphism ψ : A→ Q := A/L1 satisfies

(8.11) Cψ(B)(ψ(g)) ⊆ ψ (CB(g)K1) in Q.

Let ρA : G → A be the canonical retraction and set L := ρ−1
A (L1) ∩K. Then L C G,

|G : L| < ∞, L ≤ K and ρA(L) = L1 ≤ K1 (since K1 = K ∩ A ⊆ ρA(K)). Let
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ϕ : G→ R := G/L be the natural epimorphism. Observe that ker(ψ) = ker(ϕ) ∩A in G.
Indeed, ker(ψ) = L1, ker(ϕ) = L, and L1 ⊆ ρ−1

A (L1)∩K∩A = L∩A, L∩A ⊆ ρA(L) = L1.

Therefore, without loss of generality, we can assume that Q ≤ R, and the restriction of
ϕ to A coincides with ψ. Then we have ψ(K1) = ϕ(K1) ⊆ ϕ(K) in R. Since g ∈ A and
B ≤ A, (8.11) implies that

Cϕ(B)(ϕ(g)) = Cψ(B)(ψ(g)) ⊆ ψ (CB(g))ψ(K1) ⊆ ϕ (CB(g))ϕ(K) in R,

which shows that the pair (B, g) has CCG in Sub-case 1.1.

Sub-case 1.2: g ∈ G \ A. Then the element g can be represented as a reduced product
x0t

ε1x1t
ε2 . . . tεnxn in G, with n ≥ 1. Therefore we can find the groups Q, P and the maps

ψ : A → Q, ψ̃ : G → P from the claim Lemma 8.9, so that all of the assertions of that
lemma hold.

Note that the subgroup ψ̃(B)∩ ψ̃(K) ≤ Q ≤ P is finite, therefore, since P is residually

finite (as a virtually free group), the finite set ψ̃(g)ψ̃(B)∩ψ̃(K) is separable in P . Conse-
quently, by Lemma 3.7, there exists a finite group R and an epimorphism ξ : P → R such
that ker(ξ) ≤ ψ̃(K) and

Cξ(ψ̃(B))

(
ξ
(
ψ̃(g)

))
⊆ ξ

(
Cψ̃(B)

(
ψ̃(g)

)
ψ̃(K)

)
in R.

Define the epimorphism ϕ : G → R by ϕ := ξ ◦ ψ̃, and observe that ker(ϕ) =

ψ̃−1 (ker(ξ)) ⊆ ψ̃−1
(
ψ̃(K)

)
= K ker(ψ̃). But ker(ψ̃) ≤ K according to the second asser-

tion of Lemma 8.9, hence L := ker(ϕ) ≤ K in G.

Finally, recalling the first assertion of Lemma 8.9, we see that

Cϕ(B) (ϕ(g)) = Cξ(ψ̃(B))

(
ξ
(
ψ̃(g)

))
⊆ ξ

(
Cψ̃(B)

(
ψ̃(g)

)
ψ̃(K)

)
⊆ ξ

(
ψ̃ (CB(g)K) ψ̃(K)

)
= ϕ(CB(g)K) in R.

Thus we have shown that the pair (B, g) has CCG in Sub-case 1.2. Therefore, B has CCG

in Case 1.

Case 2: B = G.

The pair (G, 1) evidently satisfies CCG, therefore we can assume that g 6= 1. In this
case, by Lemma 6.8, there exists a maximal special subgroup A of G such that g /∈ AG.
By Remark 7.3, G splits as a special HNN-extension (8.6) of A with respect to a certain
special subgroup H ≤ A. Obviously, there exists z ∈ G such that g = zg0z

−1 in G, for
some cyclically reduced element g0 = tε1x1 . . . t

εnxn, where n ≥ 1 because g /∈ AG.

Now we apply Lemma 8.10 to find Q, P , ψ : A → Q and ψ̃ : G → P from its claim,

so that ker(ψ̃) ≤ K and CP

(
ψ̃(g0)

)
⊆ ψ̃(CG(g0)K) in P . Note that P is virtually free

(being an HNN-extension of a finite group Q), hence every subgroup of P is virtually free
as well. Therefore, by Lemma 8.2, P is hereditarily conjugacy separable, and, thus, by
Proposition 3.2, P satisfies the Centralizer Condition CC.
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Consequently, there exists a finite group R and an epimorphism ξ : P → R such that
ker(ξ) ≤ ψ̃(K) and

CR

(
ξ
(
ψ̃(g0)

))
⊆ ξ

(
CP

(
ψ̃(g0)

)
ψ̃(K)

)
in R.

Defining the epimorphism ϕ : G → R by ϕ := ξ ◦ ψ̃, and arguing in the same manner
as in Sub-case 1.2, we can show that L := ker(ϕ) ≤ K and CR (ϕ(g0)) ⊆ ϕ(CG(g0)K) in
R. Conjugating both sides of the latter inclusion by ϕ(z) (and recalling that g = zg0z

−1

in G), we achieve CR (ϕ(g)) ⊆ ϕ(CG(g)K).

Hence B = G has CCG in Case 2, and Lemma 8.6 is proved. �

Thus Lemmas 8.5 and 8.6 have been proved when rank(G) = r. Therefore, by induction
they are true for all r ∈ N∪{0}, and we are ready to prove the main result of this paper.

Proof of Theorem 1.1. Let G be a right angled Artin group associated to a finite simplicial
graph Γ. Then for every g ∈ G, the conjugacy class gG is separable in G by Lemma 8.5.
And Lemma 8.6 tells us that G satisfies the Centralizer Condition CC. Therefore, by
Proposition 3.2, G is hereditarily conjugacy separable. �

9. Applications to separability properties

The first two applications that we mention do not directly follow from the statement
of Theorem 1.1, but are consequences of its proof.

Corollary 9.1. Let A and B be conjugates of special subgroups of a right angled Artin
group G. Then for any element x ∈ G, the double coset AxB is separable in G.

Proof. Evidently, it is enough to consider the case when A and B are special subgroups of
G. Then A and B are retracts of G and the corresponding retractions commute (Remark
6.1). By Remark 6.2, A ∩ B is also a special subgroup of G, hence Lemma 8.5 implies
that the subset αA∩B is separable in G for every α ∈ G. Therefore, AxB is separable in
G by Lemma 5.3. �

In the case when x = 1 and A,B are special subgroups of G (not conjugates of them),
Corollary 9.1 was proved by Haglund and Wise in [35, Cor. 9.4] using different arguments,
based on Niblo’s criterion for separability of double cosets (see [47]). Unfortunately, in
general this criterion cannot be used to prove separability of double cosets of the form
AxB if x ∈ G is an arbitrary element (because the retractions onto A and xBx−1 may no
longer commute).

Similarly, using Lemmas 8.5 and 8.6 together with Lemmas 6.5 and 5.7, we can obtain
the following:

Corollary 9.2. Suppose that A and D are conjugates of special subgroups in a right
angled Artin group G, and g ∈ G is an arbitrary element. Then the double coset CA(g)D
is separable in G.
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The rest of applications in this section discuss conjugacy separability of various groups.
Let us start with the following well-known observation:

Lemma 9.3. If H is a retract of a conjugacy separable group G, then H is conjugacy
separable.

Proof. Indeed, let ρH ∈ End(G) be a retraction of G onto H. Suppose that x, y ∈ H
and y /∈ xH in H. If there existed g ∈ G such that y = gxg−1 in G, then we would
have y = ρH(y) = ρH(g)ρH(x)ρH(g)−1 = ρH(g)xρH(g)−1 in H, contradicting to our
assumption. Therefore, y /∈ xG, and since G is conjugacy separable, there is a finite
group R and a homomorphism ϕ : G → R such that ϕ(y) /∈ ϕ(x)R. Let Q := ϕ(H) and
ψ : H → Q ≤ R be the restriction of ϕ to H. By construction, we have that ψ(y) /∈ ψ(x)Q

in Q. Therefore H is conjugacy separable. �

Remark 9.4. If F is a finite index subgroup in a virtual retract H of a group G, then F
itself is a virtual retract of G.

Indeed, let K ≤ G be a finite index subgroup containing H, and let ρH be a retraction
of K onto H. Then M := ρ−1

H (F ) ≤ K has finite index in K, and, hence, in G. Evidently
the restriction of ρH to M is a retraction of M onto F .

Combining Remark 9.4 with Lemma 9.3 we obtain the following statement (cf. [11,
Thm. 3.4]):

Lemma 9.5. A virtual retract of a hereditarily conjugacy separable group is hereditarily
conjugacy separable itself.

Next comes a classical fact about conjugacy separable groups:

Lemma 9.6. Suppose G is a group satisfying the Unique Root property. If G contains a
conjugacy separable subgroup H of finite index, then G is conjugacy separable.

Proof. Consider any element x ∈ G. We need to show that the conjugacy class xG is
separable in G.

Assume, first, that x ∈ H. Then xH is closed in PT (H), and since |G : H| < ∞,

it is also closed in PT (G). Choose z1, . . . , zk ∈ G so that G =
⊔k
i=1 ziH. Then xG =⋃k

i=1 zix
Hz−1

i is a finite union of closed sets in PT (G), hence xG is separable in G.

Now, if x ∈ G is an arbitrary element, then there is n ∈ N such that g := xn ∈ H,
and, as we have shown above, gG is separable in G. Take any y ∈ G \ xG. Since G has
the Unique Root property, we see that yn /∈ gG. Hence, there exists a finite index normal
subgroup NCG such that yn /∈ gGN in G. Consequently, y /∈ xGN (because the inclusion
y ∈ xGN implies the inclusion yn ∈ (xn)GN). Thus G is conjugacy separable. �

It is easy to see that Lemma 9.6 can be generalized as follows:

Lemma 9.7. If a group G has the Unique Root property and contains a hereditarily con-
jugacy separable subgroup of finite index, then G is itself hereditarily conjugacy separable.
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Note that the assumption of Lemma 9.6 demanding G to satisfy the Unique Root
property is important: in [28] A. Goryaga constructed an example of a finitely generated
group G which is not conjugacy separable, but contains a conjugacy separable subgroup
of index 2.

Corollary 9.8. If a group G ∈ AVR has the Unique Root property, then G is hereditarily
conjugacy separable.

Proof. Let K ≤ G be a subgroup of finite index. By definition, G contains a finite
index subgroup H which is a virtual retract of some right angled Artin group A. Since
|H : (K ∩H)| ≤ |G : K| ≤ ∞, K ∩H is a virtual retract of A by Remark 9.4. But the
index |K : (K ∩H)| is also finite, hence K ∈ AVR.

Now, Theorem 1.1 and Lemma 9.5 imply that K ∩H is conjugacy separable. Hence K
is conjugacy separable by Lemma 9.6. Thus G is hereditarily conjugacy separable. �

Recall that two groups G1 and G2 are said to be commensurable, if there exist finite
index subgroups H1 ≤ G1 and H2 ≤ G2 such that H1 is isomorphic to H2. The proof of
Corollary 9.8 allows to conclude that the class AVR is closed under passing to subgroups
of finite index. Therefore we can make

Remark 9.9. If G1 is commensurable to G2 and G1 ∈ AVR, then G2 ∈ AVR.

As we observed in Lemma 6.3, right angled Artin groups have the Unique Root property.
Another well-known class of groups with this property is the class of torsion-free word
hyperbolic groups.

Lemma 9.10. Torsion-free word hyperbolic groups have the Unique Root property.

Proof. Let G be a torsion-free word hyperbolic group. Suppose that xn = yn in G for
some x, y ∈ G and n ∈ N. Since G is torsion-free, we can assume that the orders of x and
y are infinite. It is well-known that every element g ∈ G, of infinite order, belongs to a
unique maximal virtually cyclic subgroup E(g) ≤ G (see, for instance, [49, Lemma 1.16]).

Note that the element g := xn ∈ G has infinite order and g ∈ E(x) ∩ E(y). Therefore,
E(x) = E(y), thus y ∈ E(x). But since G is torsion-free, the virtually cyclic subgroup
E(x) ≤ G must be cyclic. That is, there exists z ∈ G such that x = zk and y = zl for
some k, l ∈ Z. Obviously, the equality xn = yn implies that k = l. Thus x = y, and,
hence, G enjoys the Unique Root property. �

Combining Lemma 9.10 with Corollary 9.8 we obtain

Corollary 9.11. If G ∈ AVR is a torsion-free word hyperbolic group, then G is heredi-
tarily conjugacy separable.

Using Osin’s results from [50], it is not difficult to generalize Lemma 9.10 as follows:
if a group G is torsion-free and hyperbolic relative to a collection of proper subgroups,
each of which has the Unique Root property, then G has the Unique Root property. As
a result, Corollary 9.11 can also be restated for this kind of relatively hyperbolic groups.
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We can also establish Corollary 2.4, mentioned in Section 2.

Proof of Corollary 2.4. Since H has finite index in G, it is also word hyperbolic ([30]),
thus, according to Lemma 9.10, H enjoys the Unique Root property.

By Corollary 2.3, G has a hereditarily conjugacy separable subgroup F ≤ G of finite
index. Define K := H∩F ≤ G. Then K will be hereditarily conjugacy separable (because
|F : K| < ∞). And since |H : K| < ∞, Lemma 9.7 implies that H is hereditarily
conjugacy separable. �

10. Applications to outer automorphism groups

We have already discussed a few applications of Theorem 1.1 to outer automorphism
groups in Section 2. This section’s aim is to prove Theorem 2.6.

We refer the reader to Osin’s monograph [51] for the definition and basic properties of
relatively hyperbolic groups. All relatively hyperbolic groups that we consider here are
hyperbolic relative to families of proper subgroups. In the sense of B. Farb [26], this would
correspond to weak relative hyperbolicity together with the Bounded Coset Penetration
Condition (the equivalence of Osin’s and Farb’s definitions for finitely generated groups
is proved in [51, Thm. 6.10]).

The following lemma is not difficult to prove but its statement is very useful (see, for
example, [32, Lemma 5.4]).

Lemma 10.1. Suppose that G is a finitely generated group and N is a centerless normal
subgroup of finite index in G. Then some finite index subgroup of Out(G) is isomorphic to
a quotient of a subgroup of Out(N) by a finite normal subgroup. In particular, if Out(N)
is residually finite, then Out(G) is residually finite.

Recall, that a group G is called elementary, if it contains a cyclic subgroup of finite
index.

Lemma 10.2. If G is a non-elementary relatively hyperbolic group, then its center Z(G)
is finite.

Proof. Suppose that G is hyperbolic relative to a family of proper non-trivial subgroups
{Hλ}λ∈Λ.

First, if |Λ| = ∞, then G splits as a non-trivial free product by [51, Thm. 2.44], and,
thus, Z(G) = {1}. If the set Λ is finite and each parabolic subgroup Hλ, λ ∈ Λ, is
finite, then G is word hyperbolic (in the sense of Gromov) by [51, Cor. 2.41]. And it is
well-known that the center of a non-elementary word hyperbolic group is finite.

Therefore we can assume that there is some µ ∈ Λ such that |Hµ| =∞. A theorem of
Osin [51, Thm. 1.4] claims that the intersection Hµ∩gHµg

−1 is finite for every g ∈ G\Hµ.
If z ∈ Z(G), then Hµ = Hµ ∩ zHµz

−1 is infinite, hence z ∈ Hµ, i.e., Z(G) ⊆ Hµ.
On the other hand, there exists g ∈ G \ Hµ because Hµ is a proper subgroup of G.
By Osin’s theorem, Hµ ∩ gHµg

−1 is finite. And since Z(G) ⊆ gHµg
−1, we see that

Z(G) ⊆ Hµ ∩ gHµg
−1 must be finite. �
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The proof of Theorem 2.6 will use the following fact, established in [44, Cor. 1.4]:

Lemma 10.3. If G is a torsion-free non-elementary relatively hyperbolic group, then
Autpi(G) = Inn(G).

Proof of Theorem 2.6. Let G be a relatively hyperbolic group from the class AVR. If
G is virtually cyclic, then Out(G) is finite (cf. [44, Lemma 6.6]). Hence we can further
suppose that G is non-elementary. By the assumptions, G contains a finite index subgroup
N ∈ VR, and, in view of Remark 9.4, we can assume that N CG.

Note that N is finitely generated (and even finitely presented), as a virtual retract of
a finitely presented group. And since N has finite index in G, it is non-elementary and
relatively hyperbolic. The latter is an immediate consequence of Bowditch’s definition of
relatively hyperbolic groups given in [6, Def. 2] (which is equivalent to Osin’s definition,
as shown in [51, Thm. 6.10]); this also follows from the powerful result of C. Druţu [20,
Thm. 1.2], which claims that relative hyperbolicity is invariant under quasi-isometries.

By construction, N is a virtual retract of some right angled Artin group A. And since
A is torsion-free, N ≤ A is torsion-free as well. Therefore, according to Lemma 10.2,
Z(N) = {1}. The group N is finitely generated and conjugacy separable by Corollary
2.1, and Autpi(N) = Inn(N) by Lemma 10.3. Hence we can apply Grossman’s theorem
[31, Thm. 1] to conclude that Out(N) is residually finite. Consequently, Out(G) is
residually finite by Lemma 10.1. �

11. Applications to the conjugacy problem

As it was shown by Mal’cev [39] and Mostowskii [45], a finitely presented conjugacy
separable group has solvable conjugacy problem. This result can be generalized as follows:

Lemma 11.1. Suppose that H is a finitely generated subgroup of a finitely presented
group G, such that for every h ∈ H the H-conjugacy class hH is separable in G. Then
the conjugacy problem for H is solvable.

Proof. Without loss of generality we can assume that G = 〈X ‖R〉, for some finite set X
and a finite set of words R over the alphabet X±1, and H is generated by a finite subset
Y of X. Let F (X) denote the free group on the set X and let F (Y ) be the subgroup
of F (X) generated by Y . Then the identity map on X gives rise to the epimorphism
θ : F (X)→ G, such that ker θ = N is the normal closure of R in F (X).

Since N is the normal closure of only finitely many words in F (X) and Y is finite, a
standard argument (cf. [45]) shows that there is a partial algorithm A, which, given two
reduced words U,W ∈ F (Y ), terminates if and only if U ∈ W F (Y )N (i.e., if θ(U) ∈ θ(W )H

in G). The algorithm A lists every word from W F (Y )N in F (X), freely reduces it and
compares it with U ; it stops once it finds a word in W F (Y )N that is equal to U in F (X).

On the other hand, as G ∼= F (X)/N is finitely presented, there is an effective procedure
listing all homomorphisms ψ from F (X) to all finite groups Q, satisfying N ⊆ kerψ (see
[45]). Given such a homomorphism ψ and any two reduced words U,W ∈ F (Y ), one
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can decide in finitely many steps whether or not ψ(U) ∈ ψ(W )ψ(F (Y )) in Q, because
ψ(F (Y )) = 〈ψ(Y )〉 and Y is finite.

For any U,W ∈ F (Y ) denote u := θ(U) and w := θ(W ). If u /∈ wH , the separability of
wH in G implies the existence of a finite group Q and a homomorphism φ : G→ Q such
that φ(u) /∈ φ(wH) = φ(w)φ(H) in Q. Thus the homomorphism ψ := φ ◦ θ : F (X) → Q
satisfies N ⊆ kerψ and ψ(U) /∈ ψ(W )ψ(F (Y )) in Q. And, of course, the existence of such
a homomorphism ψ tells us that u /∈ wH in G.

Hence, there is a partial algorithm B, which takes on input two words U,W ∈ F (Y )
and terminates if and only if θ(U) ∈ θ(W )H in G. This algorithm goes through all the
homomorphisms ψ from F (X) to finite groups Q with N ⊆ kerψ, and stops when it finds
one such that ψ(U) /∈ ψ(W )ψ(F (Y )) in Q.

The solution of the conjugacy problem for H amounts to taking on input two reduced
words U, V ∈ F (Y ) and running the two partial algorithms A and B simultaneously. One
(and only one) of these two algorithms will eventually terminate, thus answering whether
or not θ(U) is conjugate to θ(W ) in H. �

Corollary 11.2. Let G be a hereditarily conjugacy separable group. Suppose that H is
a subgroup of G such that the double coset CG(h)H is separable in G for every h ∈ H.
Then H is conjugacy separable. If, in addition, G is finitely presented and H is finitely
generated, then H has solvable conjugacy problem.

Proof. The first claim is a direct consequence of Proposition 3.2 and Corollary 3.5. They
also imply that hH is separable in G for every h ∈ H. Therefore, the second claim follows
from Lemma 11.1. �

We are now in a position to prove Theorem 2.8, announced in Section 2.

Proof of Theorem 2.8. In [57] Servatius completely described centralizers of elements in
right angled Artin groups. In particular, it follows from his description that CG(h) is
finitely generated for every h ∈ G.

Let ψ : G → G/N be the natural epimorphism and consider any h ∈ N . Then
E := ψ(CG(h)) is a finitely generated subgroup of G/N , hence E is closed in PT (G/N)
by the assumptions. Since the map ψ is continuous (when G and G/N are considered
as topological groups equipped with their profinite topologies), we can conclude that
CG(h)N = ψ−1(E) is closed in PT (G) for every h ∈ N .

Therefore the claim of Theorem 2.8 follows from Theorem 1.1 and Corollary 11.2. �

Corollary 11.3. Let N be a finitely generated normal subgroup of a right angled Artin
group G such that the quotient G/N is virtually polycyclic. Then every finite index sub-
group K of N is conjugacy separable and has solvable conjugacy problem.

Proof. Since N is finitely generated, K contains a characteristic subgroup L of N with
|N : L| < ∞. And since N C G, we can conclude that L C G, and the group G/L is
an extension of the finite group N/L by the virtually polycyclic group G/N . An easy
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induction on the length of the series with cyclic quotients shows that every finite-by-
polycyclic group is polycyclic-by-finite. Thus G/L is virtually polycyclic, hence it is
subgroup separable – see [56, Ex. 11 in Chapter 1.C].

Arguing as in the proof of Theorem 2.8, we see that the double coset CG(h)L is separable

in G for each h ∈ G. But K =
⋃k
i=1 Lxi for some k ∈ N and x1, . . . , xk ∈ K. Therefore

CG(h)K =
⋃k
i=1CG(h)Lxi is separable in G (as a finite union of separable subsets) for all

h ∈ K.

Note that K is finitely generated as a finite index subgroup of N , hence K is conjugacy
separable and has solvable conjugacy problem by Theorem 1.1 and Corollary 11.2. �

12. Appendix: the Centralizer Condition in profinite terms

Our intention here is to prove that for residually finite groups the condition CC from
the Definition 3.1 is equivalent to the condition (3.2) of Chagas and Zalesskii. We refer
the reader to the book [55] for the background on profinite completions.

Proposition 12.1. Let H be a subgroup of a residually finite group G and let g ∈ G.
The following are equivalent:

1) the pair (H, g) satisfies the condition CCG from Definition 3.3;

2) CH(g) = CH(g), where H ≤ Ĝ is the closure of H in the profinite completion Ĝ
of G.

Proof. The profinite completion Ĝ of G is the inverse limit of finite quotients of G. There

is a canonical embedding of Ĝ into the Cartesian product
∏

N∈N G/N , where N is the

set of all finite index normal subgroups of G. Thus Ĝ can be equipped with the product
topology, making it a compact topological group (each finite group G/N is endowed with
the discrete topology).

For each N ∈ N let ψN denote the natural epimorphism from G to G/N . Then the

map ψ : G → Ĝ, defined by ψ(x) := (ψN(x))N∈N for every x ∈ G, is a homomorphism.

And since G is residually finite, ψ is injective. Therefore we can assume that G ≤ Ĝ, and
so the condition 2) makes sense. Every homomorphism ψM , M ∈ N , can be uniquely

extended to a continuous homomorphism ψ̂M : Ĝ→ G/M (ψ̂M can also be regarded as a

restriction to Ĝ of the canonical projection from
∏

N∈N G/N to G/M).

First, suppose that the pair (H, g) satisfies CCG. Consider any h ∈ H such that

h /∈ CH(g). Then there exists K ∈ N such that ψ̂K(h) /∈ ψK(CH(g)). Hence, by CCG,
there is L ∈ N satisfying L ≤ K and ψ−1

L

(
CψL(H)(ψL(g))

)
⊆ CH(g)K = ψ−1

K (ψK(CH(g))).

Therefore ψ̂K factors through ψ̂L, hence ψ̂L(h) /∈ ψL(CH(g)K). Consequently, ψ̂L(h) /∈
CψL(H)(ψL(g)), and so h /∈ CH(g). Thus we established the inclusion CH(g) ⊆ CH(g).
Since the inverse inclusion is evident, we have proved that 1) implies 2).

Now, let us assume that the condition 2) holds. Choose any K ∈ N and denote
L := {L ∈ N | L ≤ K}. Arguing by contradiction, suppose that for each L ∈ L there is
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xL ∈ H such that ψL(xL) ∈ CψL(H)(ψL(g)) \ (ψL(CH(g)K)). Note that L is a directed set

(if L1, L2 ∈ L then L1 � L2 if and only if L2 ⊆ L1), hence (xL)L∈L is a net in Ĝ. Since Ĝ

is compact, this net has a cluster point h ∈ H ≤ Ĝ.

Consider any N ∈ N and set L = N ∩ K ∈ L. Then, according to the definition

of the topology on Ĝ, there is M ∈ L such that M ⊆ L and ψL(xM) = ψ̂L(h). By

construction, ψL(xM) ∈ CψL(H)(ψL(g)), hence ψ̂L(h) ∈ CψL(H)(ψL(g)), implying that

ψ̂N(h) ∈ CψN (H)(ψN(g)) because L ≤ N . Since the latter holds for every N ∈ N , we can
conclude that h ∈ CH(g).

On the other hand, since h is a cluster point of the net (xL)L∈L and K ∈ L, there exists

M ∈ L such that ψK(xM) = ψ̂K(h). But since M ≤ K we have xM /∈ CH(g)KM =

CH(g)K = ψ−1
K (ψK(CH(g))). Thus ψ̂K(h) = ψK(xM) /∈ ψK(CH(g)), which implies that

h /∈ CH(g).

Thus we found an element h ∈ CH(g) \ CH(g), contradicting to the condition 2).
Consequently, 2) implies 1). �

Proposition 12.1 implies that for residually finite groups the Centralizer Condition CC
from Definition 3.1 is equivalent to the condition (3.2) introduced by Chagas and Zalesskii
in [11]:

Corollary 12.2. A is residually finite group G satisfies CC if and only if CG(g) = CĜ(g)
for every g ∈ G.

It is well known that conjugacy separability of a residually finite group G is equivalent
to the condition

(12.1) gĜ ∩G = gG in Ĝ, for all g ∈ G.

In other words, the condition (12.1) says that two elements g and g′ of G are conjugate

in Ĝ if and only if they are conjugate in G.

We are now able to reformulate the hereditary conjugacy separability of G in purely
profinite terms:

Corollary 12.3. Suppose that G is a residually finite group. Then G is hereditarily
conjugacy separable if and only if for every g ∈ G both of the following hold in the

profinite completion Ĝ of G:

• gĜ ∩G = gG;
• CG(g) = CĜ(g).

Proof. The necessity follows from Proposition 3.2 and Corollary 12.2.

The sufficiency is given by the result of Chagas and Zalesskii [11, Prop. 3.1]. It can
also be deduced by first applying Corollary 12.2 and then Proposition 3.2. �
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