A nanostructured porous silicon based drug delivery device
A nanostructured porous silicon based drug delivery device
Targeted and controlled delivery of therapeutic agents on demand is pivotal in realising the efficacy of many pharmaceuticals. The design and fabrication of a novel, electrically-addressable, porous structure-based drug delivery device for the controlled release of therapeutic proteins and peptides, are described in this thesis.
The initial prototype microdevice design incorporates a porous polysilicon (PPSi) structure as a drug reservoir. Two alternative methods were investigated to fabricate the PPSi structure: i) the chemical stain etching method; ii) a reactive ion etching (RIE) method through a masking template. Random pores, with irregular pore shape and size in the micro- to mesoporous regime (< 50 nm), were obtained using the stain etching method but this method suffered from poor reproducibility and non-uniformity. Two novel RIE approaches were investigated to fabricate ordered PPSi structures; two different masking templates were investigated – a porous anodic alumina (PAA) and a metal mask with hexagonally arranged holes produced by a novel nanosphere lithography (NSL) technique. A quasi-ordered PAA template with pore diameters in the region of 50 nm was fabricated but was not suitable for the subsequent proposed RIE process. By using the NSL technique, quasi-ordered PPSi structures with tapered pore profiles, were obtained. This is the first demonstration of the fabrication of PPSi with ordered pores of sizes in the macropore range of ~ 370 nm.
A revised silicon-based prototype microdevice was designed and fabricated. The microdevice incorporates a nanostructured, quasi-ordered porous silicon (PSi) as a drug reservoir and an integrated heater and temperature sensor as an active control mechanism. The PSi structure was fabricated using a modified NSL technique and a Bosch-based RIE process. Hexagonally arranged cylindrical pores with diameters between ~75 nm and ~120 nm, and depths in the range of ~330 nm and 500 nm, were obtained. The novel fabrication techniques investigated here are simple and versatile; both p-type and n-type PSi structures have been successfully fabricated.
Proof-of-concept studies, using the revised prototype drug delivery microdevices, suggested that the nanostructured PSi would be suitable for the passive release of an intermediate-sized (~23,000 Dalton) model protein. It is envisaged that the microdevice has the potential to deliver osteoinductive growth factors, on demand, to the site of fracture, in a controlled and sustainable manner, as a first step to an intelligent therapeutic system for skeletal regeneration.
Chau, Chien Fat
b49f2cd5-29a7-4c20-b87e-35600a7a6cfd
October 2009
Chau, Chien Fat
b49f2cd5-29a7-4c20-b87e-35600a7a6cfd
Melvin, T.
fd87f5eb-2bb9-48fa-b7be-7100ace9c50f
Bagnall, D.M.
5d84abc8-77e5-43f7-97cb-e28533f25ef1
Chau, Chien Fat
(2009)
A nanostructured porous silicon based drug delivery device.
University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 324pp.
Record type:
Thesis
(Doctoral)
Abstract
Targeted and controlled delivery of therapeutic agents on demand is pivotal in realising the efficacy of many pharmaceuticals. The design and fabrication of a novel, electrically-addressable, porous structure-based drug delivery device for the controlled release of therapeutic proteins and peptides, are described in this thesis.
The initial prototype microdevice design incorporates a porous polysilicon (PPSi) structure as a drug reservoir. Two alternative methods were investigated to fabricate the PPSi structure: i) the chemical stain etching method; ii) a reactive ion etching (RIE) method through a masking template. Random pores, with irregular pore shape and size in the micro- to mesoporous regime (< 50 nm), were obtained using the stain etching method but this method suffered from poor reproducibility and non-uniformity. Two novel RIE approaches were investigated to fabricate ordered PPSi structures; two different masking templates were investigated – a porous anodic alumina (PAA) and a metal mask with hexagonally arranged holes produced by a novel nanosphere lithography (NSL) technique. A quasi-ordered PAA template with pore diameters in the region of 50 nm was fabricated but was not suitable for the subsequent proposed RIE process. By using the NSL technique, quasi-ordered PPSi structures with tapered pore profiles, were obtained. This is the first demonstration of the fabrication of PPSi with ordered pores of sizes in the macropore range of ~ 370 nm.
A revised silicon-based prototype microdevice was designed and fabricated. The microdevice incorporates a nanostructured, quasi-ordered porous silicon (PSi) as a drug reservoir and an integrated heater and temperature sensor as an active control mechanism. The PSi structure was fabricated using a modified NSL technique and a Bosch-based RIE process. Hexagonally arranged cylindrical pores with diameters between ~75 nm and ~120 nm, and depths in the range of ~330 nm and 500 nm, were obtained. The novel fabrication techniques investigated here are simple and versatile; both p-type and n-type PSi structures have been successfully fabricated.
Proof-of-concept studies, using the revised prototype drug delivery microdevices, suggested that the nanostructured PSi would be suitable for the passive release of an intermediate-sized (~23,000 Dalton) model protein. It is envisaged that the microdevice has the potential to deliver osteoinductive growth factors, on demand, to the site of fracture, in a controlled and sustainable manner, as a first step to an intelligent therapeutic system for skeletal regeneration.
Text
CF_Chau_PhD_Thesis_2009.pdf
- Other
More information
Published date: October 2009
Organisations:
University of Southampton, Optoelectronics Research Centre
Identifiers
Local EPrints ID: 69237
URI: http://eprints.soton.ac.uk/id/eprint/69237
PURE UUID: 56acff51-f996-4abc-a737-c0a67fdd57ff
Catalogue record
Date deposited: 29 Oct 2009
Last modified: 13 Mar 2024 19:28
Export record
Contributors
Author:
Chien Fat Chau
Thesis advisor:
T. Melvin
Thesis advisor:
D.M. Bagnall
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics