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In this paper, we report on the analysis of teaching episodes selected from our 

pedagogical and cognitive research on geometry teaching that illustrate how 

carefully-chosen instructional strategies can guide Grade 8 students to see and 

appreciate the discovery function of proof in geometry. 

INTRODUCTION 

This paper focus on two of the issues in the teaching and learning of 

mathematical proof that have drawn educators’ and researchers’ serious efforts 

during the last two decades. The first is to do with students’ cognitive 

development for acquiring proof capability, and the second is associated with 

the relationship of teaching to such development. To date, what the pedagogical 

factors are and how they may relate to the development of students’ 

understanding of proof remain elusive. For instance, Martin, McCrone, Bower, 

and Dindyal (2005) found that the teacher’s modeling of deductive reasoning 

was an effective means for helping students learn to develop arguments and 

provide appropriate justifications. Yet these researchers also found that students 

might still not be fully capable of understanding the abstract and general nature 

of arguments and representative diagrams. Next, the intervention studies 

conducted in Taiwan and in Germany by Heinze, Cheng, Ufer, Lin, and Reiss 

(2008) show that two totally different instructional approaches were successfully 

used to foster students’ proof competence in the different classrooms and 

learning cultures of East Asia and Western Europe. Noticeably, the two teaching 

strategies had their own advantages and limits on learners with different levels 

of achievement on constructing a multi-step proof.  

For these reasons, and others, it is vital to research new strategies for teaching 

deductive proof, particularly the teaching of the functions of deductive proof as 

a means of explanation and discovery to promote students’ mathematical 

understanding. In this paper, we make a contribution to this central research 

question (raised in theme 5 of the ICMI Study 19 Discussion Document) of how 

teachers might develop effective strategies to help students see and appreciate 

the discovery function of proof – for example, deriving results deductively 

rather than experimentally. 

THE COMPLEXITY OF TEACHERS’ DIDACTICAL PRACTICES 

One of our research aims is to develop fundamental understanding of the 

complexity of teachers’ didactical practice in respect of the development of 
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students’ thinking for constructing proofs in secondary school geometry classes. 

In one component of our research, we linked the van Hiele theory to the 

instructional practice of a sample of expert teachers of geometry at Grade 8 (13-

14 years old) in Shanghai, China (Ding & Jones, 2007). What we found was that 

although the practices of these teachers were linked to some of the van Hiele 

teaching phases, their instructional intentions were sometimes quite different. 

For example, in the Chinese classrooms we noted that the teacher played a 

significant role in building the bridge between students and the mathematical 

subject in the teaching of the solving of geometrical proof problems. Based on 

the analysis of our classroom observation data within the larger study (see Ding, 

2008), we proposed a pedagogical framework to elucidate the unique 

instructional strategies and approaches that expert teachers apply to support the 

development of students’ thinking in constructing proofs in geometry. Our 

proposed framework seeks to account for alternative pedagogies to the van 

Hiele-based instructional model.   

In this paper, we focus on one aspect of this pedagogical framework – that of 

teaching with inductive and deductive approaches. In particular, we apply 

Polya’s (1945) problem-solving framework to the analysis of the instructional 

strategies used by a selected case-study teacher that we call Lily (pseudonym) to 

help her students to see and appreciate the discovery function of proof (for 

further details of the teacher and her class, see Ding & Jones, 2007).  

INSTRUCTIONAL STRATEGIES TO DEDUCTIVE PROOF  

During the process of solving a problem, Polya (1945) highlights two essential 

stages: “working for better understanding” and “hunting for the helpful idea” 

(pp.33-36). In this section, we select two teaching episodes which exemplify the 

instructional strategies related to these two fundamental stages within the 

context of solving a proof problem.  

Working for better understanding 

Proof problem Given: Triangle ABC and AED are equilateral triangles; 

CD=BF. Prove: Quadrilateral CDEF is a parallelogram. Teacher Lily, in the 

second of a sequence of lessons on developing her students’ understanding of 

this multi-step proof problem (see figure 1.1), first guided her students to 

consider a related problem that they had learned before (see figure 1.2).  

 

 

 

 

Figure 1.1 and 1.2  



Thus, Lily began her instruction by redrawing part of the whole figure, 

equilateral triangle ABC, on the blackboard (in other words, figure 1.1 was 

redrawn as figure 1.2). Lily then turned to explaining the importance of the 

given (CD=BF) of the problem. She explained this as follows: 

425. Lily: CD=BF. What does this mean?  

426. Students do not respond 

427 Lily: It means that D and F are dynamic points, aren’t they? (The teacher 

repeated the question a couple of times, dialogue omitted).  

430 Lily: OK. CD=BF. This means that D and F are dynamic points. D could be 

here, could be here, could be here, right? (The teacher recreated the figure 

by using compasses to draw D and F, making CD=BF, and then used a ruler 

to link C and F, A and D. see the result of her drawing in figure 1.2.)  

434 Lily: D and F are dynamic points. Now they move such that CD=BF. So if D 

goes this way. F goes that way. … The different dynamic points go in 

different directions at the same speed, right? … So the length they (D and F) 

moved should be the same, shouldn’t they? (The teacher put red arrows in 

the figure on the blackboard, see figure 1.2)  

435 Lily: If you are told like this statement, you might understand that this means 

CD=BF. We could describe a problem in different way, yet the meaning 

could be same. In this problem, it means that CD=BF.  

436 Lily: Well. Now, are you familiar with this figure? (see figure 1.2)  

The teacher encouraged students in the whole class to observe and compare between 

figures 1.1 and 1.2 on the blackboard (#437-439). 

440 Lily: You could think about this figure during the lesson break (see figure 1.2). 

You learnt about the equilateral triangle at Grade 7. In the process of the 

movement of D and F, D and F move regularly. Could you find what is 

never changed in the movement? 

The instructional process at this stage is one of discovery, to involve students in 

finding the implicit relationship of a geometric figure (see #440). To prove 

quadrilateral CDEF is a parallelogram, one way is to prove CF=ED and CF//ED 

(see figure 1.1). Thus, the teacher’s instructional intention here is to involve 

students in first exploring the facts that AD=CF and angle AOF=60°(see figure 

1.2). The teaching process starts with developing the students’ understanding of 

the principal parts of a “problem to find” (Polya, 1945, p.33), namely the 

unknown, the data, and the condition. Here, the teacher dynamically presents the 

static figure on the blackboard as an interesting way to interpret the data (the 

length of the sides of triangle ABC and the length of CD and BF. #430-435), 

and the conditions of the problem (equilateral triangle ABC and CD=BF). 

However, it is noted that the unknown is not of the construction of the figure, 

but of the hidden geometrical objects and properties of the figure (#440). 

Moreover, two types of teacher questioning simultaneously occur during this 



stage. The first type of question (see #440) requires students to make their own 

guess (Polya, 1945, p.99). The second type of question (see #436, 440) is like 

the questions such as “Is it familiar to you? Have you seen it before?” (Polya, 

1945, p.110). Here, the teacher’s main intention is to engage students in 

extracting relevant elements from their memory, and mobilizing the pertinent 

parts of their prior knowledge. Accordingly, students’ thinking fostered during 

this teaching process can be linked to hypothetical bridging in the work of 

Heinze et al. (2008, p.445), the reasoning of which is similar – to construct the 

intermediary condition in a multi-steps proof. 

Hunting for the helpful idea 

Students continued to have difficulty in perceiving the hidden geometrical 

objects and properties of the figure (AD=CF and angle AOF=60°, see figure 

1.2). So, at the beginning of the following lesson, Lily instigated a whole-class 

discussion of the problem: 

37. Lily: In this figure, could you find what is not changed, when D and F are 

moving? (see figure 1.2) (Students discussed in the classroom (#38).) 

40. Some students: DC=BF. 

41. Lily: DC=BF? This is already given. Except this, what else is not changed? 

42. Some students: Oh, AF=BD. Because AB=BC. 

43. Lily: AB=BC? This is given, as it is an equilateral triangle (ABC).  

More students discussed CF=AD in the class. Lily encouraged a boy student to stand 

up and to present his finding to the class (#44-49). 

50. Wang WY (boy): Two triangles are congruent (probably ADC and CFB). AD 

and CF are always equal.   

After CF=AD was made explicit in the class, Lily moved to draw students’ attention 

to another hidden property of the figure – the location relationship of AD 

and CF. 

58. Lily: Obviously, they (AD, CF) are not parallel. They are intersected, aren’t 

they? How is the angle they formed? Will it change? You could use a 

protractor to measure the figure on your book. You could measure the angle 

before and after the movement. (see figure 1.2) 

59.1. Some students: It will be the same. (One students responded 60º. (#57)) 

59.2. Liuliu (boy): (Noticed his classmate’s response.) 60º, 60º. Only need to prove 

two parallel lines. (probably CF//ED in figure 1.1) 

60. Lily: How do you explain that they are equal? No change? How much is the 

angle then? 

More students like Liuliu suggested 60º of angles AOF and COD (#61-62). 

64. Lily: If this angle (AOF) is 60º. How to prove? (The teacher used number 1 to 

represent angle AOF, see figure 1.1). 



Some students like Beibei (girl) wondered why angle AOF is 60º, while Lily 

encouraged an explanation of the finding (#65-67). 

68. Beibei: (asked Liuliu) Why is it 60º? Parallel? 

69. Liuliu: If both of them are 60º, then they are always parallel. (Probably if angle 

AOF=angle ADE=60º, then FC//ED.) 

70. Linlin (boy): Oh, in the middle, there is a pair of vertically opposite angles! 

(Probably angle AOF=angle COD) 

The teacher invited a boy student to present his ideas to the whole class (#71). 

72 Zheng YQ (boy): Because angle 1= angle DAC + angle ACF. (The teacher then 

used number 2 to represent angle DAC.) 

75.1 Some students, Linlin and Liuliu: Ah? It is angle ACF? (Surprised tune) 

76. Zheng YQ: Because of the congruent triangles (ADC and FBC), angle 2=angle 

FCB. 

76.1 Some students: Oh, the bottom angle! (Probably angle ACD.) (Surprised tune) 

The instructional process at this stage facilitates further discovery, involving 

students seeing and appreciating how new pieces of information are logically 

deduced by proof. Students are engaged in seeking the logic connection of the 

principal parts of a “problem to prove” (Polya, 1945, p.33), namely the 

hypothesis and the conclusion. Here, the hypothesis of the problem involves 

equilateral triangle ABC and CD=BF. There are several conclusions hidden in 

the static figure, such as congruent triangles ADC and FBC, CF=AD and angles 

AOF and COD are 60º. Moreover, the teacher varies two types of questions 

during this stage. The first type of questions (see #37, 58) encourages students to 

make their own guess. Mostly, however, the teacher addresses the second type 

of questions (see #60), which leads students to make a deductive reasoning for 

their conjectures. Noticeably, during this teaching process, some students (see 

#42) could only make simple bridging for a single-step proof (Heinze et al., 

2008, p.444). Some (see #59.2, 69, 70) constructed hypothetical bridging, yet 

goalless at the moment as they were not able to order the relationship of 

geometrical properties. A few students (see #50, 72, 76) demonstrated their 

coordination ability to approach the multi-steps proof (ibid, p.445).    

DISCUSSION  

In this paper, two factors characterize the instructional strategies for helping 

lower secondary school students to see and appreciate the discovery function of 

proof in geometry: one is the variation of mathematical problems; the other the 

variation of teaching questions.  

Understanding of a proof problem is the instructional result of the variation of 

mathematical problems in the foregoing episodes. The instruction started from 

guiding students to understand the principles of a “problem to find” and 

achieved finally in engaging students to seek the logic connection of the 

principal parts of a “problem to prove”. The instructional strategy here may be 



called presenting a proof problem as an experimental problem. Such 

instructional practice, in our opinion, represents an important didactical 

opportunity for enhancing students’ capability in coping with the co-operation 

between experiment and proof. In such ways, students learn to mentally 

manipulate geometrical objects. Consequently, they learn to derive results not 

from operational construction and measurement of a figure, but from their 

previously acquired geometrical knowledge.  

The episodes also provide evidence of the variation of teacher questions. On the 

one hand, the teacher’s questioning involves students’ geometrical intuition, as 

she encourages students to formulate a range of plausible reasons for the 

properties and relations of the geometric figure (for instance, see #57, 59.1, 70). 

On the other hand, the intention of the teacher’s questioning is to increase 

students’ awareness of the discovery function of deductive proof, in which 

deduction makes possible a discovery that is inaccessible to insight or 

empiricism. For instance, as shown in the two selected teaching episodes, 

though an empirical approach by itself can be a plausible way to perceive some 

facts and gather information for deduction (see #40, 42, 59.1, 59.2, 70), it would 

be insufficient to discover the relation of angles AOF, COD and ACD 60º (see 

#68, 75.1, 76.1).  

The didactical practice identified in our study substantiates the hypothesis by 

Martin et al. (2005) that students can, with the appropriate instructional 

strategies, become more skilled in how to construct proofs on a multi-tiered 

procedure (p.122). In addition, students’ diverse learning responses indicate the 

complex pedagogical situations the teacher created. A key task for our future 

research is to identify types of pedagogical situations which would 

systematically involve the dynamical co-operation between experiment and 

proof, towards their fusion in unitary mental objects for solving mathematical 

proof problems. 
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